Functional Programming
111 JdVd

Second Edition

Harness the Power of Streams
and Lambda Expressions

Functional Programming in
Java, Second Edition

Harness the Power of Streams and Lambda
Expressions

by Venkat Subramaniam

Version: P1.0 (July 2023)

Copyright © 2023 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

Sir Charles Antony Richard Hoare’s quote is used by permission of the ACM.

Abelson and Sussman’s quote is used under Creative Commons license.

About the Pragmatic Bookshelf

The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn

more about this book and access the free resources, go to https:/pragprog.com/book/vsjava2e, the
book's homepage.

Thanks for your continued support,
The Pragmatic Bookshelf

The team that produced this book includes: Dave Rankin (CEO), Janet Furlow (COO),
Tammy Coron (Managing Editor), Jacquelyn Carter (Development Editor),

Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout),

Andy Hunt and Dave Thomas (Founders)

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/vsjava2e

For international rights, please contact rights@pragprog.com.

mailto:support@pragprog.com
mailto:rights@pragprog.com

To perseverance.

Table of Contents

Foreword to the First Edition

Acknowledgments

Preface
Who’s This Book For
What’s in This Book
Java Version Used in This Book
How to Read the Code Examples

Online Resources

1. Hello, Lambda Expressions!
Change the Way You Think
The Big Gains of Functional-Style Code
Why Code in the Functional Style?

Evolution, Not Revolution

A Little Sugar to Sweeten

2. Using Collections

Iterating through a List
Transforming a List
Finding Elements

Skipping Values

Terminating Iterations

Reusing L.ambda Expressions

Using Lexical Scoping and Closures
Picking an Element

Reducing a Collection to a Single Value

Joining Elements

3. Strings, Comparators, and Filters

Iterating a String

Implementing the Comparator Interface

Multiple and Fluent Comparisons

Using the collect Method and the Collectors Class

Listing All Files in a Directory

Listing Select Files in a Directory,

Listing Immediate Subdirectories Using flatMap
Watching a File Change

4. Transforming Data

Computing Statistics
When to Use map vs. flatMap
Checking for Criteria

Partitioning a Collection

Counting Occurrences
Summing_Values
Using flatMapping_and filtering

Teeing Operations

5. Designing with Lambda Expressions

Separating Concerns Using Lambda Expressions
Delegating Using L.ambda Expressions
Decorating Using I.ambda Expressions

A Peek into the default Methods

Creating Fluent Interfaces Using Lambda Expressions

6. Working with Resources

Cleaning Up Resources

Using the Execute Around Method Pattern to Clean Up Resources

Managing Locks

Creating Concise Exception Tests

7. Being Lazy
Delayed Initialization
Lazy Evaluations
Leveraging the Laziness of Streams

Creating Infinite, Lazy Collections

8. Optimizing Recursions

Using Tail-Call Optimization

Speeding Up with Memoization

9. Composing Functions with Lambda Expressions

Using Function Composition
Using MapReduce

Taking a Leap to Parallelize

10. Error Handling
Taking a Holistic View of Error Handling

Checked Exceptions and Functional Style with Streams

Exception Handling vs. Functional Style

Dealing with It Downstream

Handling Failures in Functional Programming

11. Refactoring to Functional Style

Creating a Safety Net for Refactoring
Refactoring the Traditional for Loop

Refactoring More Complex Loops

Refactoring Unbounded Loops
Refactoring for-each

Refactoring to Rework the Logic

Refactoring File Processing
Refactoring Data Grouping Operations

Refactoring Nested Loops
Real-World Refactoring

12.

13.

Al.

A2,

A3.

Functional Programming Idioms

Don’t Write Dense [Lambda Expressions
Prefer Method References

Properly_Structure the Functional Pipeline

Keep Separate Conditions in Separate Filters
Provide Good Domain-Specific Parameter Names

Use Type Inference for Parameters

Side Effects in Functional Pipelines

Bringing It All Together

Essential Practices to Succeed with the Functional Style

Performance Concerns

Adopting the Functional Style

Starter Set of Functional Interfaces

Syntax Overview

Web Resources

Bibliography

Copyright © 2023, The Pragmatic Bookshelf.

Foreword to the First Edition

Venkat Subramaniam would never be described as a “waterfall” sort of guy.
So, when he mentioned that he was starting on a Java 8 book—long before

the design of Java 8 was settled—I was not at all surprised. It was clear this
was going to be an “agile” book project.

Despite having to more than occasionally rework the text as the language
and library features evolved, Venkat had a secret advantage—he knew
where we were going. The Java 8 design was heavily influenced by the core
principles of functional programming: functions as values, immutability,
and statelessness. We didn’t do this because functional programming is
trendy or cool; we did it because programs that are expressed as stateless
transformations on immutable data, rather than as modifications of mutable
data structures, tend to be easier to read and maintain, to be less error-prone,
and to parallelize more gracefully.

The new features introduced in Java 8 were designed together to facilitate
development of more expressive and parallel-friendly libraries. Lambda
expressions reduce the syntactic overhead of encoding behavior as data;
default methods allow existing libraries to evolve over time, enabling core
JDK classes such as Collections to take advantage of lambda expressions;
the java.util.stream package leverages these language features to offer rich
aggregate operations on collections, arrays, and other data sources in a
declarative, expressive, and parallel-friendly manner. All of this adds up to
more powerful and performant code, as well as a more pleasant
programming experience.

This book not only provides lots of examples of how to use these new
features, but offers readers a peek into the underlying principles behind
their design, and why they result in better code. Let Venkat be your guide to
this new and improved Java—you’re in for a treat.

Brian Goetz
Java Language Architect, Oracle Corporation
September 2013

Copyright © 2023, The Pragmatic Bookshelf.

Praise for Functional Programming
in Java, Second Edition

Functional Programming in Java, Second Edition offers a guided
tour of how to apply principles of functional programming to make
modern Java code more clear, concise, and reliable. Updated to
cover the latest features of Java, each chapter is packed with before-
and-after examples that illustrate the utility and power of Java’s
lambdas and streams.

Brian Goetz, Java Language Architect at Oracle and author of
Java Concurrency in Practice

I don’t have time to read all of the books out there, much less re-
read anything. The second edition of Venkat’s Functional
Programming in Java is one that is worth doing so. I was a big fan
of the first edition, but the new one builds upon those existing
strengths to produce the best introduction to modern Java
programming. This includes new chapters on error-handling,
functional idioms, and most critically, a discussion on concrete
techniques to refactor to a functional style. Get on the Functional
Bus and write better software.

R Brian Sletten, President, Bosatsu Consulting, Inc., and author of
WebAssembly: The Definitive Guide

To stay relevant, a developer never stops learning. Functional
Programming in Java, Second Edition offers Java developers of all
levels an opportunity to keep their Java coding skills sharp and up-
to-date in such areas as lambda expressions and Stream. You’ll be
going back to this book often to pick up many best practices,

approaches and tips to keep your Java programming skills as sharp
as possible.
— Sharat Chander, Senior Director, Java SE Product Management

Venkat has a unique story-telling style of writing. It doesn’t make
any assumptions, and leads the reader very easily from one concept
to the next with plenty of code examples, in an intuitive and easy to
understand way. If you’re new to functional programming, this book
provides a great foundation on the topic - helping to grasp syntax as
well as the more conceptual topics.

— Jlan Roughley, VP of Engineering at TrueNorth

This work revitalizes the appreciation of craftsmanship, making it
an excellent choice for reading groups and team discussions.
Specifically, Chapter 12, "Functional Programming Idioms," should
be revisited before embarking on any new project. Venkat’s talents
for distillation are on full display, gifting the reader with material
not available by web search or LLM.

. Don Bogardus, Quality Automation Architect at Everee and Vice
President, Utah JUG

Acknowledgments

To say that the past few years have been challenging would be a gross
understatement. Every single person in this world has been affected to
various degrees, some a lot more than others. Nevertheless, it has rather
been a test of perseverance. Taking up the project to update this book to the
second edition, while writing yet another new book, in the middle of so
many uncertainties and changes, was hard. But here we are, thanks in large
part to the support of some amazing people.

I first want to convey my sincere thanks to the Java language team members
at Oracle for their continued hard work toward the functional capabilities of
Java. The improvements to the JDK over the more recent releases of Java
have enriched our ability, as programmers, to use the functional facilities of
Java.

My sincere thanks to Brian Goetz, Brian Sletten, Jos¢€ Esteves de Souza
Neto, and Ian Roughley for taking the time to review the second edition and
for providing valuable feedback. I want to express my gratitude to Brian
Goetz for taking the time to provide extensive feedback and helping me
make several improvements to various parts of the book. Any errors that
may be in the book are solely mine.

I’d like to express my thanks to Joe Horvath and Nicholas Dierauf for being
early readers and for reporting errors in the book’s errata page. Thank you
for your help in improving this book, much appreciated. A huge thanks to

David Tonhofer for patiently helping me to improve many things in this
book.

This second edition wouldn’t have been possible without the aid of many
people who helped me with the first edition. Thank you, Kimberly Barnes,
Fred Daoud, Raju Gandhi, Marty Hall, Praveen Kumar, Rebecca Parsons,
Kirk Pepperdine, Chris Richardson, Ian Roughley, Nate Schutta, Ken Sipe,
Dan Sline, and Bruce Take. I am also thankful to Greg Helton, Giinter
Jantzen, Narayanan Jayaratchagan, Wacek Kusnierczyk, Nabeel Ali
Memon, Marc-Daniel Ortega, Arjo Ouwens, Philip Schwarz, Ekaterina Sh,
Dan Talpau, Benjamin Tan, Brian Tarbox, Marco Vermeulen, and Jason
Weden for taking the time to report errors in the first edition.

Jackie Carter is the amazing editor for this book, and I am happy to call her
a good friend. You made this soooo much fun and a pleasant journey,
Jackie. Thank you. The kind folks at The Pragmatic Bookshelf have been
amazing yet again and made this so easy. I thank my wife, Kavitha, for
giving me her support and patience.

Copyright © 2023, The Pragmatic Bookshelf.

Preface

You’re in for a treat. One of the most prominent and widely used languages
in the world supports object-oriented, imperative style, and functional style
programming. You can mix one of the most powerful tools—the object-
oriented paradigm—with the imperative style, as we did in the past, or with
the functional style, as you’ll learn in this book, to reduce the complexity of
code. We can do quite effectively in Java what was previously possible only
on the JVM using other languages—this means more power to Java
programmers.

I’m thankful to have had the privilege over the past few decades to program
with multiple languages: C, C++, Java, C#, F#, Ruby, Groovy, Scala,
Clojure, Kotlin, Erlang, Haskell, Elm, JavaScript.... When asked which
one’s my favorite, my resounding answer has been that it’s not the language
that excites me, but the way we program.

The science and engineering in programming drew me in, but it’s the art in
programming that keeps me. Coding has a lot in common with writing—
there’s more than one way to express our ideas. Java helps us write code
using objects, and we can mix that with the functional capabilities to
implement our designs and ideas.

The functional programming facilities in Java can make our code more
expressive, easier to write, less error-prone, and easier to parallelize than
with the imperative style. The functional way has been around for decades
and widely used in languages like Lisp, Clojure, Erlang, Smalltalk, Scala,

Groovy, and Ruby. It’s not only a relatively new way in Java but also a
better way.

Since coding is like writing, we can learn a few things from that field. In On
Writing Well [Zin01], William Zinsser recommends simplicity, clarity, and
brevity. To create better applications, we can start by making the code
simpler, clearer, and more concise. We’ll explore how the functional style of
programming in Java helps us do exactly that throughout this book.

Who’s This Book For

This book is for programmers well versed in object-oriented programming
in Java and keen to learn and apply the functional programming facilities.
You’ll need good programming experience in previous versions of Java, at
least Java 5, to make the best use of this book.

Programmers mostly interested in JVM languages like Scala, Groovy,
JRuby, Kotlin, and Clojure can benefit from the examples in this book and
can relate back to the facilities offered in those languages. They can also
use these examples to help fellow Java programmers on their teams.

Programmers experienced with the functional style of programming in other
languages and who are now involved in Java projects can use this book, as
well. They can learn how what they know translates to the specifics of the
lambda expressions’ usage in Java.

Programmers who are familiar with lambda expressions in Java can use this
book to help coach and train their team members who are getting up to
speed in this area.

What’s in This Book

This book will help you get up to speed with the functional programming
capabilities in Java, think in the elegant style, and benefit from the additions
to the Java Development Kit (JDK) library. We’ll take an example-driven
approach to exploring the concepts. Rather than discuss the theory of
functional programming, we’ll dive into specific day-to-day tasks to apply
the elegant style. This approach will quickly get these concepts under our
belts so we can put them to real use on projects right away.

On the first read, take the time to go over the chapters sequentially as we
build upon previously discussed concepts and examples. Each chapter
closes with a quick summary to recap what was covered. Later, when
working on applications, take a quick glance at any relevant example or
section in the book. There’s also a syntax appendix for quick reference.

Here’s how the rest of the book is organized.

We discuss the functional style of programming, its benefits, and how it
differs from the prevalent imperative style in Chapter 1, Hello, Lambda
Expressions!. We’ll also look into how Java supports lambda expressions in
this chapter.

The JDK collections have received some special functional treatment in
Java, with new interfaces, classes, and methods that support functional-style
operations. We’ll explore these in Chapter 2, Using_Collections.

In Chapter 3, Strings, Comparators,_and Filters, we’ll exploit functional

style and lambda expressions to work with strings, implement the
Comparator interface, and use filters for file selection.

The Collectors is one of the most versatile utility classes in the JDK with
some amazing capabilities to transform data. We’ll dive more deeply into

that in Chapter 4, Transforming Data.

In addition to using the functional-style facilities in the JDK, we can benefit
from applying the elegant style in the design of methods and classes we
create. We’ll cover functional-style design techniques in Chapter 5,
Designing with Lambda Expressions.

The lambda expressions facilitate a code structure that helps delineate
operations to manage object lifetimes and resource cleanup, as we’ll discuss
in Chapter 6, Working with Resources.

We’ll see lambda expressions shine in Chapter 7, Being Lazy. They provide
us the ability to postpone instance creation and method evaluations as well
as create infinite lazy collections, and thereby improve the code’s
performance.

In Chapter 8, Optimizing Recursions, we’ll use lambda expressions to
optimize recursions and achieve stellar performance using memoization
techniques.

We’ll put the techniques we cover in the book to some real use in Chapter 9,
Composing Functions with Lambda Expressions, where we’ll transform
objects, implement MapReduce, and safely parallelize a program with little
effort.

Failures are part of system design and in Chapter 10, Error Handling we’ll
look at how to deal with errors in functional programming and when
working with the Streams API.

Since Java has been around for a few decades, there’s a lot of imperative
style code out there in the enterprises. You can use the many examples in
Chapter 11, Refactoring to Functional Style to practice thinking
functionally and refactoring existing imperative style code to the functional
style.

Writing good maintainable code requires more than learning the syntax and
semantics. Knowing the dos and especially the don’ts can help create code
that truly 1s easier for the team to maintain. You’ll learn about the idiomatic
styles that work the best in Chapter 12, Functional Programming ldioms.

In Chapter 13, Bringing It All Together, we’ll go over the key concepts and
the practices needed to adopt functional programming techniques.

In Appendix 1, Starter Set of Functional Interfaces, we’ll take a glance at
some of the most popular functional interfaces.

A quick overview of the syntax for functional interfaces, lambda
expressions, and method/constructor references is in Appendix 2, Syntax
Qverview.

The URLs mentioned throughout this book are gathered together for your
convenience in Appendix 3, Web Resources.

Java Version Used in This Book

To run most of the examples in this book you need at least Java 8. Some of
the examples use features that are present in newer versions of Java.

Using automated scripts, the examples in this book have been tried out with
the following version of Java:

openjdk version "18.0.1.1" 2022-04-22
Open]DK Runtime Environment (build 18.0.1.1+2-6)
OpenJDK 64-Bit Server VM (build 18.0.1.1+2-6, mixed mode, sharing)

Take a few minutes to download the appropriate version of Java for your
system. This will help you follow along with the examples in this book.

How to Read the Code Examples

When writing code in Java, we place classes in packages and executable
statements and expressions in methods. To reduce clutter, we’ll skip the
package names and imports in the code listings. All code in this book
belongs to a package:

package fpij;

Any executable code not listed within a method is part of an undisplayed
main method. When going through the code listings, if you have the urge to

look at the full source code, remember it’s only a click away on the website
for this book.

Online Resources

A number of web resources referenced throughout the book are collected in
Appendix 3, Web Resources. Here are a couple that will help you get started
with this book:

The OpenJDK website!!! for downloading the version of Java used in this
book.

This book’s page!® on the Pragmatic Bookshelf website. From there you can
download all the example source code for the book. You can also provide
feedback by submitting errata entries or posting your comments and
questions in the forum. If you’re reading the book in PDF form, you can
click on the link above a code listing to view or download the specific
examples.

Now for some fun with lambda expressions and Stream...

Venkat Subramaniam
June 2023

Footnotes
[l https://openjdk.org/projects/jdk/18/

(2] http://www.pragprog.com/titles/vsjava2e

Copyright © 2023, The Pragmatic Bookshelf.

https://openjdk.org/projects/jdk/18/
http://www.pragprog.com/titles/vsjava2e

Chapter 1

Hello, Lambda Expressions!

Java has been evolving at a rapid pace in recent years and Java 8 has
become the baseline version in many organizations. We can write object-
oriented code in Java with the imperative style or functional style and even
mix them within the same application as we see fit. The imperative style has
been the most popular and practiced way of writing code in Java. But this
style, albeit most familiar to developers, is packed with accidental
complexity. Many developers are transitioning to use the functional style of
programming in Java, more and more each day. Some of the major reasons
are the functional style code’s reduced complexity and ease of reading and
understanding, once the developers get used to the syntax and the paradigm,
of course.

With the functional style, the everyday tasks we perform get simpler, easier,
and more expressive. We can quickly write concise, elegant, and expressive
code with fewer lines of code and errors. We don’t have to figure out what
the code is doing, it becomes obvious and easy to understand. The benefit is
that we can focus on the domain and the inherent capabilities of the
application rather than trying to decipher what the code does. We can also
use this to easily enforce policies and implement common design patterns
without being drowned in verbose long-winded code. The net result is that
we can be more productive in creating and delivering applications faster.

In this book, we’ll explore the functional style of programming using direct
examples of everyday tasks we do as programmers. Before we take the leap
to this elegant style, which is a better way to design and program, let’s
discuss the reasons to change from the familiar imperative style.

Change the Way You Think

Imperative style—that’s what Java has provided us with since its inception. In
this style, we tell Java every step of what we want it to do and then we watch
it faithfully exercise those steps. That’s worked fine, but it’s a bit low-level.
The code tends to get verbose, and we often wish the language were a tad
more intelligent; we could then tell it—declaratively—what we want rather
than delve into #ow to do it. Thankfully, Java can help us do that. Let’s look at
a few examples to see the benefits and the differences in style.

The Habitual Way

Let’s start on familiar ground to see the two paradigms in action. Here’s an
imperative way to find if Chicago is in a collection of given cities—remember,

the listings in this book only have snippets of code (see How to Read the Code

Examples).

introduction/Ffpij/Cities.java

boolean found = false;
for(String city : cities) {
if(city.equals("Chicago")) {
found = true;
break;
}
}

System.out.println("Found chicago?:" + found);

This imperative version is noisy and low-level; it has several moving parts.
We first initialize a smelly boolean flag named found and then walk through
each element in the collection. If we find the city we’re looking for, then we
set the flag and break out of the loop. Finally, we print out the result of our
finding.

A Better Way

http://media.pragprog.com/titles/vsjava2e/code/introduction/fpij/Cities.java

As observant Java programmers, the minute we set our eyes on this code we’d
quickly turn it into something more concise and easier to read, like this:

introduction/Ffpij/Cities.java
System.out.println("Found chicago?:" + cities.contains("Chicago"));

That’s one example of declarative style—the contains method helped us get
directly to our business.

Tangible Improvements

That change improved our code in a few ways:

e No messing around with mutable variables

e [teration steps wrapped under the hood

e Less clutter

e Better clarity; retains our focus

e Less impedance; code closely trails the business intent
e Less error prone

e Easier to understand and maintain

Beyond Simple Cases

That was simple—the declarative function to check if an element is present in
a collection has been around in Java for a long time. Now imagine not having
to write imperative code for more advanced operations, like parsing files,
working with databases, making calls to web services, programming
concurrency, and so on. Java now makes it possible to write concise, elegant,
less error-prone code, not just for simple cases, but throughout our
applications.

The Old Way

Let’s look at another example. We’ll define a collection of prices and try out a
few ways to total discounted price values.

final List<Integer> prices = Arrays.aslList(10, 30, 17, 20, 18, 45, 12);

http://media.pragprog.com/titles/vsjava2e/code/introduction/fpij/Cities.java

Suppose we’re asked to total the prices greater than $20, discounted by 10%.
Let’s do that in the habitual Java way first.

introduction/fpij/Discountimperative.java

double totalOfDiscountedPrices = 0.0;

for(int price : prices) {
if(price > 20) {
totalOfDiscountedPrices += price * 0.9;

}
}

System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

That’s familiar code; we start with a mutable variable to hold the total of the
discounted prices. We then loop through the prices, pick each price greater
than $20, compute each item’s discounted value, and add those to the total.
Finally, we print the total value of the discounted prices.

And here’s the output from the code.
Total of discounted prices: 67.5

It worked, but writing it feels dirty. It’s no fault of ours; we had to use what
was available. But the code is fairly low-level—it suffers from “primitive
obsession” and defies the single-responsibility principle (SRP). And the code
also violates the single level of abstraction principle (SLAP) since it delves
into multiple nested levels of details. It first works with the collection of
prices, then for each price it examines the value, and then for each selected
value (three levels down in nesting) it computes the products and performs the
sum. In addition to having to work with a poor design, those of us working
from home have to keep this code away from the eyes of kids aspiring to be
programmers, for they may be dismayed and sigh, “That’s what you do for a
living?”

A Better Way, Again

http://media.pragprog.com/titles/vsjava2e/code/introduction/fpij/DiscountImperative.java

We can do better—a lot better. Our code can resemble the requirement
specification. This will help reduce the gap between the business needs and
the code that implements them, further reducing the chances of the
requirements being misinterpreted.

Rather than tell Java to create a mutable variable and then to repeatedly assign
a value to it, let’s talk with it at a higher level of abstraction, as in the next
code.

introduction/fpij/DiscountFunctional.java

final double totalOfDiscountedPrices =
prices.stream()
.filter(price -> price > 20)
.mapToDouble(price -> price * 0.9)
.sum();

"

System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

Let’s read that aloud—Hfilter prices greater than $20, map the prices to
discounted values, and then add them up. The code flows along with logic in
the same way we’d describe the requirements. As a convention in Java, we
wrap long lines of code and line up the dots vertically before the method
names, as in the previous example.

The code is concise, but we’re using a number of new things from modern
Java. To start with, we invoke a stream method on the prices list. This opens the

door to a special iterator with a wealth of convenience functions, which we’ll
discuss later.

Instead of explicitly iterating through the prices list, we’re using a few special
methods, such as filter and map. Unlike the methods we were used to in older
versions of Java and the Java Development Kit (JDK), these methods take an
anonymous function—a lambda expression—as a parameter, within the
parentheses (). (We’ll soon explore this further.) We invoke the sum method,
which is a special form of the reduce operation, to compute the total on the
result of the mapToDouble which is a special form of the map method.

http://media.pragprog.com/titles/vsjava2e/code/introduction/fpij/DiscountFunctional.java

The looping is concealed much like it was under the contains method. But the
map method (and the filter method) 1s more sophisticated. For each price from
the prices list that passes through the filter, the mapToDouble method invokes the

provided lambda expression to transform the given price to a discounted price.
The sum method, which is a reduce operation, adds up the transformed values
to provide the final result.

Here’s the output from this version of code:

Total of discounted prices: 67.5

The Improvements

You can see several improvements compared to the habitual way:

e Nicely composed, not cluttered

* Free of low-level operations

e Easier to enhance or change the logic

e [teration controlled by a library of methods
 Efficient; lazy evaluation of loops

e Easier to parallelize where desired

Later we’ll discuss how Java provides these improvements.

Lambdas to the Rescue

Lambdas, which are anonymous functions, are the functional key to relieve us
from the hassles of imperative programming. Unlike methods, which belong
to a class, lambdas are free-standing functions we can create within methods.
By changing the way we program and by making use of lambdas, we can write
code that’s not only elegant and concise but also less prone to errors; more
efficient; and easier to optimize, enhance, and parallelize.

The Big Gains of Functional-Style Code

Functional-style code has a higher signal-to-noise ratio; we write fewer
lines of code, but each line or expression achieves more. We gained quite a
bit from the functional-style version, compared with the imperative-style
version:

e We avoided explicit mutation or reassignment of variables, which are
often sources of bugs and result in code that’s hard to make concurrent.
In the imperative version, we repeatedly set the totalOfDiscountedPrices
variable within the loop. In the functional-style version, there is no
explicit mutation in our code. Fewer mutations lead to fewer errors in
code.

e The functional version can easily be parallelized. If the computation
was time-consuming, we can easily run it concurrently for each
element in the list. If we parallelized the imperative version, we’d have
to worry about concurrent modification of the totalOfDiscountedPrices
variable. In the functional version, we gain access to the variable only
after it’s fully baked, which removes the thread-safety concerns.

e The code is more expressive. Rather than conveying the intent in
multiple steps—create an initial dummy value, loop through prices,
add discounted values to the variable, and so on—we simply ask the
list’s map method to return another list with discounted values and sum

them.

e The functional-style version is more concise; it took fewer lines of
code than the imperative version to achieve the same result. More
concise code means less code to write, less code to read, and less code
to maintain—see Does Concise Just Mean Less Code?.

e The functional-style version is intuitive—code reads more like how
we’d state the problem—and it’s easier to understand once we’re
familiar with the syntax. The map method applies the given function
(which computes the discount) to each element of the collection and
produces the resulting collection, as we see in the following figure.

10 ——» ——— 9.0
15—» —— 135
& price * 0.9 bt
* »
= s
50 ———» map —p 450

With the support for lambda expressions, we can fully use the power of the
functional style of programming in Java. If we embrace this style, we can
create more expressive and concise code with less mutability and fewer
erTors.

One of Java’s key strengths has been its support of the object-oriented
paradigm. The functional style is not counter to object-oriented
programming (OOP). The real paradigm shift is from the imperative to the
declarative style of programming. With modern Java, we can now intermix
functional and OO styles of programming quite effectively. We can
continue to use the OOP style to model domain entities, their states, and
their relationships. In addition, we can model the behavior or state
transformations, business workflows, and data processing as a series of
functions to form a function composition.

\iy
Does Concise Just Mean Less Code?

Concise is short, devoid of noise, and boiled down to its essence to convey the intent
effectively. The benefits are far-reaching.

Writing code is like throwing ingredients together; making it concise is like turning that into
a sauce. It often takes more effort to write concise code. It’s less code to read, but effective
code is transparent. A short code listing that’s hard to understand or hides details is ferse
rather than concise.

Concise code aids design agility and has less ceremony. This means we can quickly try out
our design ideas and move forward if they’re good, or move on if they turn sour.

Why Code in the Functional Style?

We saw the general benefits of the functional style of programming, but is it
worth picking up this new style? Should we expect a marginal
improvement, or is it life-altering? Those are genuine questions that we
need answered before we commit our time and effort.

Writing Java code isn’t that hard; the syntax is simple. We’ve gotten quite
familiar and comfortable with the libraries and their APIs. What really gets
us is the effort required to code and maintain the typical enterprise
applications that we develop with Java.

We must ensure that fellow programmers have closed the database
connections at the right time, that they’re not holding on to transactions any
longer than needed, that they’re handling the exceptions well and at the
right level, that they’re securing and releasing locks properly...and the list
goes on.

Each one of these in isolation may not seem like a big deal. But when
combined with the domain’s inherent complexities, things get
overwhelming, labor-intensive, and hard to maintain.

What if we could encapsulate each of these decisions into tiny pieces of
code that can manage the constraints well? Then we wouldn’t have to
continuously expend time, effort, and energy to enforce policies. That
would be a big win—a less cognitive load—so let’s see how the functional
style can help.

Iteration on Steroids

We write iterations all the time to process a list of objects and to work with
sets and maps. The iterators we’re used to in Java are familiar and

primitive, but not simple. Not only do they take a few lines of code to work
with but they’re also hard to compose.

How do we iterate and print each element in a collection? We could use a
for loop. How do we select some elements from a collection? With the same
for loop, but some extra mutable variables have to step in to support the
operation. Now after selecting the values, how do we reduce the results to a
single value, such as a minimum, a maximum, or an average? More
looping, more mutable variables.

That’s like having a jack-of-all-iterations, but a master of none. Java now
provides specialized internal iterators for various operations: one to simply
loop, one to map data values, one to filter out select values, one to reduce,
and several convenience functions to pick the min, max, average, and so on.
In addition, these operations are easy to compose so we can combine a
variety of them to implement the business logic with greater ease and less
code. When we’re done, the code is easier to understand as it logically
flows through the sequence described in the problem. We’ll see several
examples of this in Chapter 2, Using_Collections, and throughout the book.

Enforcing Policies

Policies rule enterprise applications. For instance, we may have to ensure an
operation has proper security credentials. We may have to ensure that
transactions run fast and update audit trails properly. These tasks often turn
into mundane service-tier code like the following pseudocode form:

Transaction transaction = getFromTransactionFactory();
//... operation to run within the transaction ...

checkProgressAndCommitOrRollbackTransaction();
UpdateAuditTrail();

There are two issues with this kind of approach. First, it often leads to
duplication of effort and, in turn, increases maintenance costs. Second, it’s

easy to forget about exceptions that may be thrown in the application code,
thus jeopardizing the transaction lifetime and the update of audit trails. We
could implement a proper try and finally block, but every time someone

touches that code, we’d have to reverify that it’s not broken.

Alternatively, we could get rid of the factory and turn this code on its head.
Instead of receiving a transaction, we could send the processing code to a
well-managed function, like so (in pseudocode):

runWithinTransaction((Transaction transaction) -> {
//... operation to run within the transaction ...

1

This is such a small step with huge savings. The policy to check the status
and update the audit trails is abstracted and encapsulated within the
runWithinTransaction method. To this method we send a piece of code that
needs to run in the context of a transaction. We no longer have to worry
about forgetting to perform the steps or about the exceptions being handled
well. The policy-enforcing function takes care of all that.

We’ll cover how to use lambda expressions to enforce such policies in
Chapter 6, Working with Resources.

Extending Policies

Policies seem to grow around us—beyond their being enforced, enterprise
applications require ways to extend them. Based on some configuration
information, we may have to add or remove a series of operations that, in
turn, may have to be processed before core logic in a module is executed.
This is a common task in Java, but it requires much forethought and design.

The machinery for extensibility is often one or more interfaces. We could
carefully design these interfaces and the hierarchy of classes that will
implement them. The result may be effective, but this effort possibly leaves
a number of interfaces and classes that we have to maintain. The design can

easily become heavyweight and hard to maintain, jeopardizing the very goal
of extensibility we set out for.

There’s an alternative—functional interfaces and lambda expressions,
which let us design extensible policies. This way we’re not forced to create
extra interfaces or conform to a method name, but instead, we can focus on
the core behaviors we’d like to provide, as we’ll see in Decorating Using

Lambda Expressions.

Hassle-Free Concurrency

A big application is close to its delivery milestone when a huge
performance issue comes to the surface. The team quickly figures out that
the bottleneck is in the titanic module of the application, which involves
processing large volumes of data. Someone on the team suggests that we
can improve performance if we more effectively exploit the available
multiple cores. But the excitement from the suggestion is likely short-lived
if the titanic module is like typical old-style Java code.

The team quickly realizes that converting the titanic module’s code from a
sequential to a concurrent version would take substantial effort, create
additional complexity, and open doors for many multithreading-related
bugs. Isn’t there an easier way to get better performance?

What if there is no difference between sequential and concurrent code, and
the effort to run it sequentially versus concurrently is merely the flip of a
switch to clearly express our intent?

That may seem possible only in Narnia, but it’s quite real if we develop our
modules with functional purity. The internal iterators and functional style
remove the last roadblock to easy parallelism. The JDK library has been
designed to make the switch between serial and parallel execution require
only a small and explicit but unobtrusive code change, as we’ll see in
laking a Leap to Parallelize.

Telling the Story

So much is lost in the translation between what the business wants and how
the code implements it. The bigger that gap, the greater the chance of errors
and the higher the cost of maintenance. If the code reads more like the way
the business states the problem, it becomes easier to read, easier to discuss
with the business folks, and easier to evolve to meet their changing
demands.

For instance, you hear the business say, “Get the prices for all the tickers,
find the prices that are less than $500, and total the net asset value of only
the stocks that make the cut.” Using the new facilities available, we can
write something like this:

tickers.stream()
.map(StockUtil::getprice)
.filter(StockUtil::priceIsLessThan500)
.sum()

There’s little chance of losing something in translation here, as there’s not
much to translate. This is function composition at work, and we’ll see more
of it in this book, especially in Chapter 9, Composing Functions with

Lambda Expressions.

Separation of Concerns

A common need in applications is the separation of the core computations
from the fine-grained logic the computations depend on. For example, an
order-processing system may want to apply different tax computations
based on the origin of the transaction. Separating the tax-computation logic
from the rest of the processing will help us create more reusable and
extensible code.

In OOP we call this separation of concern and often use the strategy pattern
to solve it. The effort typically involves creating one or more interfaces and
a bunch of classes to implement them.

We can achieve the same now but with far less code. And we can try out our
design ideas really fast without being bogged down by a hierarchy of code
that we have to lay out first. We’ll cover how to create this pattern and
separate concerns using lightweight functions in Separating Concerns
Using Lambda Expressions.

Delaying Evaluation

When creating enterprise applications, we may have to interact with web
services, make database calls, process XML...the list goes on. There are so
many operations that we have to perform, but not all of them are necessary
all the time. Avoiding some operations or at least postponing the ones that
don’t have to be performed yet is one of the easiest ways to improve
performance and application start-up or response time.

It’s a simple goal, but one that may be hard to implement using a pure OOP
approach. We would have to fuss with object references and null checks to
postpone the initialization of heavyweight objects, for instance.

Alternatively, we can minimize our effort and make the intent more explicit
by using the new Optional class and the functional-style API it provides, as
we’ll see in Delayed Initialization.

Improving Testability

Fewer things tend to break in code that has few moving parts. By nature,
functional-style code is more resilient to change and requires relatively less
testing effort.

In addition, as we’ll see in Chapter 5, Designing with Lambda Expressions,
and Chapter 6, Working with Resources, lambda expressions can stand in as
lightweight mocks or stubs and can help create highly expressive exception
tests. Lambda expressions can also serve as a great testing aid. A common
set of test cases can receive and exercise lambda expressions. The tests can
capture the essence of behaviors that need to be tested for regression. At the

same time, the lambda expressions being passed in can serve as variations
of implementations that need to be exercised.

The automated tests that are part of the JDK itself are great examples of
this. These tests show how lambda expressions help parameterize the test
cases’ key behaviors; for example, they help compose the tests as “make a
container for the results” followed by “assert some parameterized
postconditions.”

We’ve discussed how the functional style not only helps us write better
quality code but also solves elegantly so many of our common application
development challenges. That means we can create applications more
quickly, with less effort and fewer errors—as long as we follow a few
guidelines, as we will discuss next.

Evolution, Not Revolution

To reap the benefits of functional style, we don’t have to switch over to
another language; we simply have to change the way we use Java.

Languages like C++, Java, and C# started out with support for imperative
and object-oriented programming. Now all these languages also embrace
the functional style of programming. We’ve seen examples of these two
styles and discussed the benefits we derived from the functional style. Now
let’s look into some key concepts and practices that will help us adopt the
new style.

The Java language team has put in substantial time and effort to bring
functional capabilities to the language and the JDK. To reap the benefits, we
have to pick up a few new concepts. We can improve our code if we follow
some guidelines:

e Be declarative.

Promote immutability.

Avoid side effects.

Prefer expressions over statements.
Design with higher-order functions.

Let’s quickly look at these practices.

Be Declarative

At the core of the familiar imperative style are mutability and command-
driven programming. We create variables or objects and modify their state
along the way. We also provide detailed commands or instructions to
execute, such as create a loop index, increment its value, check if we
reached the end, update the nth element of an array, and so on. It made
sense for us to program this way in the past due to the nature of the tools
and the hardware limitations.

We saw how the declarative use of the contains method—when used on a
collection—was far easier to work with than the imperative style. All the
hard work and lower-level details were moved into the library function, and
we didn’t have to deal with them. We would prefer doing everything this
way if it were only easier. Immutability and declarative programming are
the essence of the functional style of programming, and Java now makes
them quite approachable.

Promote Immutability

Mutable code has many moving parts. The more things change, the easier it
is for components to break and for errors to creep in. Code where multiple
variables change is hard to understand and difficult to parallelize.
Immutability removes all these problems at the root.

Java supports immutability but doesn’t enforce it—but we can. We need to
change our old habits of mutating objects’ states. As much as possible, we
must use immutable objects.

When declaring variables, fields, and parameters, lean toward declaring
them final, following the sage advice “Treat objects as immutable” from

Effective Java [Blo18], by Joshua Bloch.

When creating objects, promote immutable objects such as the String class.

When working with collections, create immutable or unmodifiable
collections using functions like List.of() or the Collections class’s

unmodifiableList method, for example.

By avoiding mutability we can create pure functions—that is, functions
with no side effects.

Avoid Side Effects

Imagine writing a piece of code to go out to the Web to fetch a stock price
and then update a shared variable. If we have a number of prices to fetch,

we’re forced to run these time-consuming operations sequentially. If we
resort to multithreading, then we have to burden ourselves with threading
and synchronization issues to prevent race conditions. The net result is poor
application performance and/or lack of sleep trying to manage multiple
threads. We can totally eliminate the problems by removing the side effect.

A function with no side effects honors immutability and doesn’t change its
input or anything in its reach. These functions are easier to understand, have
fewer errors, and are easier to optimize. The lack of side effects removes
any concerns of race conditions or simultaneous updates. As a result, we
can also easily parallelize the execution of such functions, as we’ll see in
Ilaking a Leap to Parallelize.

Prefer Expressions over Statements

Statements are stubborn and force mutation. Expressions promote
immutability and function composition. For example, we first used the for
statement to compute the total of the discounted prices. This version
promoted mutation and verbose code. By switching over to the more
expressive declarative version using the map and sum methods, which are
expressions, we avoided mutations and were able to chain or compose
functions.

It’s better to design with expressions and use them more than statements in
our code. This will now make the code concise and easier to understand.
The code will flow logically, in the same order in which we would state the
problem. The concise version is easier to change if the problem changes.

Design with Higher-Order Functions

Unlike some functional programming languages, such as Haskell, that
enforce immutability, Java lets us modify variables at will. In that regard,
Java is not, and will never be, a pure functional programming language. But

we can write code in the functional style in Java by using higher-order
functions.

A higher-order function takes the concept of reuse to the next level. Instead
of solely relying on objects and classes to promote reuse, with higher-order
functions, we can easily reuse small, focused, cohesive, and well-written
functions.

In OOP we’re used to passing objects to methods, creating objects within
methods, and returning objects from within methods. Higher-order
functions do to functions what methods do to objects. With higher-order
functions, we can do the following:

e Pass functions to functions
¢ (Create functions within functions
e Return functions from functions

We’ve already seen an example of passing a function to another function,
and we’ll see examples of creating and returning functions later. Let’s look
at our “passing a function to a function” example again.

prices.stream()
.filter(price -> price > 20)
.mapToDouble(price -> price * 0.9)
sum();

In this example, we’re sending a function, price -> price * 0.9, as an argument
to mapToDouble. The function being passed is created just in time, at the
point of call to the higher-order function mapToDouble. Generally, a function
has a body, a name, a parameter list, and a return type. The just-in-time
function created here has a parameter list followed by an arrow (->), and

then the short body. The type of the parameter may be inferred by the Java
compiler here and the return type is implicit. This function is anonymous; it
has no name. Rather than referring to these as anonymous functions, we call
them lambda expressions.

Passing anonymous functions isn’t a totally unknown concept in Java,;
we’re used to passing instances of anonymous classes. If our anonymous
class had only one method, we still had to go through the ceremony of
creating a class, albeit anonymous, and instantiating it. Instead, we can now
enjoy a lightweight syntax in Java with lambda expressions. Additionally,
we’re accustomed to abstracting concepts with objects. Now we can
combine that with abstracting behavior using lambda expressions.

It takes some rethinking to design applications with this style of
programming. We have to tune our imperative-ingrained minds to think
functionally. This may seem a bit difficult at the beginning, but we’ll get
used to it in no time and can leave those dysfunctional APIs far behind as
we move forward.

Let’s now switch gears and look at how Java handles lambda expressions.
We’re used to passing objects to methods, but now we can store functions
and pass them around. Let’s look at the magic behind how Java accepts a
function as an argument.

A Little Sugar to Sweeten

We could implement all the ideas with what was already available in Java,
but lambda expressions remove the ceremony and sweeten our efforts by
adding a little syntax sugar. This quickly translates into code that’s faster to
create and makes it easier to express our ideas.

In the past, we’ve used a number of interfaces that only have single
methods: Runnable, Callable, Comparable, and so on. These interfaces are
common in the JDK library and often appear where just a single function is
expected. All these existing library methods that expect a single-method
interface can now accept lightweight functions, thanks to the brilliant
syntax sugar provided through functional interfaces.

A functional interface is an interface with one abstract—unimplemented—
method. Again, think of single-method interfaces like Runnable, Callable,
Comparable, and so on, which all fit that definition. The modern JDK has
more of these types of interfaces—Function, Predicate, Consumer, Supplier, and

so on (for a summary of the starter set of functional interfaces see Appendix
1, Starter Set of Functional Interfaces). A functional interface may also
have zero or more static methods and default methods, which are

implemented right within the interface.

We can mark a functional interface with the @Functionalinterface annotation.
The compiler doesn’t require this annotation, but it’s helpful to explicitly
state the purpose that the interface serves. Besides, if we mark an interface
with this annotation, the compiler will enforce the rules for the interface to
qualify as a functional interface.

If a method takes a functional interface as a parameter, then we can pass
any of the following:

e An anonymous inner class, the old-fashioned way (but why would
we?)

e A lambda expression, as we did when we called the map method

¢ A method or constructor reference (as we’ll see later)

The compiler readily accepts a lambda expression or a method/constructor
reference as an argument if the method’s corresponding parameter is a
reference to a functional interface.

When we pass a lambda expression to a method, the compiler will convert
the lambda expression to an instance of the appropriate functional interface.
This conversion isn’t a mere generation of an inner class in place. The
synthesized method of this instance conforms to the abstract method of the
functional interface that corresponds to the argument. For example, the map
method takes the functional interface Function<T, R> as its parameter. In a call
to the map method, the Java compiler synthesizes it, as the following figure

shows.
Call:
prices.stream().map(pri%-> price * 0.9);
TR sy /Isynthesized by the Java Compiler
... Double apply(Integer param) {
int price = Integer.intValue(param);
return Double.valueOf(price * 0.9d);
1
In Stream... e

Stream<R> map(Function<T, R> mapper) {

... = mapper.apply(...);

}
The parameters of the lambda expression must match the parameters of the
interface’s abstract method. This synthesized method returns the lambda

expression’s result. If the return type doesn’t directly match that of the

abstract method, the synthesized method may convert the return value to a
proper assignable type.

We took a peek at how lambda expressions are passed as arguments to
methods. Let’s quickly review what we covered and move on to explore
lambda expressions.

Wrapping Up

It’s a whole new world in modern Java. We can now program in an elegant
and fluent functional style, with higher-order functions. This can lead to
concise code that has fewer errors and is easier to understand, maintain, and
parallelize. The Java compiler works its magic so we can send lambda
expressions or method references where functional interfaces are expected.

We’re all set to dive into the fun parts of lambda expressions and the JDK
library that’s been fine-tuned to work with lambda expressions. In the next
chapter we’ll start by using lambda expressions in one of the most
fundamental programming tasks: working with collections.

Copyright © 2023, The Pragmatic Bookshelf.

Chapter 2

Using Collections

We often use collections of numbers, strings, and objects. They’re so
commonplace that removing even a small amount of ceremony from coding
collections can reduce code clutter greatly. In this chapter we explore the
use of lambda expressions to manipulate collections. We use them to iterate
collections, transform them into new collections, extract elements from
them, and easily concatenate their elements.

After this chapter, our Java code to manipulate collections will never be the
same—it’ll be concise, expressive, elegant, and more extensible than ever
before.

Iterating through a List

Iterating through a list is a basic operation on a collection, but over the years
it’s gone through a few significant changes. We’ll begin with the old style and
evolve an example—enumerating a list of names—to the elegant style.

We can easily create a list of names with the following code:

final List<String> friends =
Arrays.asList("Brian", "Nate", "Neal", "Raju", "Sara", "Scott");

To create an immutable list, we may use the more recently introduced function
List.of() instead of Arrays.asList().

Here’s the habitual, but not so desirable, way to iterate and print each of the
elements.

collections/fpij/lteration.java

for(int 1 = 0; 1 < friends.size(); i++) {
System.out.println(friends.get(i));
}

I call this style the self-inflicted wound pattern—it’s verbose and error-prone.
We have to stop and wonder, “is it i < or i <=?”” This is useful only if we need to
manipulate elements at a particular index in the collection, but even then, we
can opt to use a functional style that favors immutability, as we will

discuss soon.

Java also offers a construct that’s a little bit more civilized than the good old
for loop.

collections/Ffpij/Iteration.java

for(String name : friends) {
System.out.println(name);

3

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Iteration.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Iteration.java

Under the hood, this form of iteration uses the Iterator interface and calls into
its hasNext and next methods.

Both these versions are external iterators, which mix how we do it with what
we’d like to achieve. We explicitly control the iteration with them, indicating
where to start and where to end; the second version does that under the hood

using the Iterator methods. With explicit control, the break and continue

statements can also help manage the iteration’s flow of control.

The second construct has less ceremony than the first. Its style is better than
the first if we don’t intend to modify the collection at a particular index. Both
of these styles are imperative and we can dispense with them in modern Java.

There are quite a few reasons to favor the change to the functional style:
* The for loops are inherently sequential and difficult to parallelize.

e Such loops are non-polymorphic; we get exactly what we ask for. We
passed the collection to for instead of invoking a method (a polymorphic

operation) on the collection to perform the task.

» At the design level, the code fails the "Tell, don’t ask™ principle. We ask
for a specific iteration to be performed instead of leaving the details of
the iteration to underlying libraries.

It’s time to trade in the old imperative style for the more elegant functional-
style version of internal iteration. With an internal iteration, we willfully turn
over most of the Zows to the underlying library so we can focus on the
essential whats. The underlying function will take care of managing the
iteration. Let’s use an internal iterator to enumerate the names.

The Iterable interface has been enhanced with a special method named forEach,
which accepts a parameter of type Consumer. As the name indicates, an
instance of Consumer will consume, through its accept method, what’s given to

it. Let’s use the foreach method with the all-too-familiar anonymous inner-class
syntax.

collections/fpij/lteration.java

friends.forEach(new Consumer<String>() { //Verbose, please don't do this
public void accept(final String name) {
System.out.println(name);

}
s

We invoked the forEach on the friends collection and passed an anonymous
instance of Consumer to it. The forEach method will invoke the accept method of
the given Consumer for each element in the collection and let it do whatever it
wants with it. In this example, we merely print the given value, which is the

name.

Let’s look at the output from this version, which is the same as the output from
the two previous versions:

Brian
Nate
Neal
Raju
Sara
Scott

We changed just one thing: we traded in the old for loop for the new internal
iterator forEach. As for the benefit, we went from specifying how to iterate to
focusing on what we wanted to do for each element. The bad news is the code
looks a lot more verbose—so much that it can drain away any excitement
about the new style of programming. Thankfully, we can fix that quickly; this
is where lambda expressions and the new compiler magic come in. Let’s make
one change again, replacing the anonymous inner class with a lambda
expression.

collections/fpij/Iteration.java

friends.forEach((final String name) -> System.out.println(name));

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Iteration.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Iteration.java

That’s a lot better. We look at less code, but watch closely to see what’s in
there. The forEach is a higher-order function that accepts a lambda expression
or block of code to execute in the context of each element in the list. The
variable name 1s bound to each element of the collection during the call. The
underlying library takes control of how the lambda expressions are evaluated.
It can decide to perform them lazily, in any order, and exploit parallelism as it
sees fit.

This version produces the same output as the previous versions.

The internal-iterator version is more concise than the other ones. But, when
we use it, we’re able to focus our attention on what we want to achieve for
each element rather than how to sequence through the iteration—it’s
declarative.

This version has a limitation. Once the forEach method starts, unlike in the

other two versions, we can’t break out of the iteration. (There are facilities to
handle this limitation.) As a consequence, this style is useful in the common
case where we want to process each element in a collection. Later we’ll see
alternate functions that give us control over the path of iteration.

The standard syntax for lambda expressions expects the parameters to be
enclosed in parentheses, with the type information provided and comma
separated. The Java compiler also offers some lenience and can infer the types.
Leaving out the type is convenient, requires less effort, and is less noisy.
Here’s the previous code without the type information.

collections/fpij/Iteration.java

friends.forEach((name) -> System.out.println(name));

In this case, the Java compiler determines the name parameter is a String type,
based on the context. It looks up the signature of the called method, forEach in

this example, and analyzes the functional interface it takes as a parameter. It
then looks at that interface’s abstract method to determine the expected number

of parameters and their types. We can also use type inference if a lambda

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Iteration.java

expression takes multiple parameters, but in that case, we must leave out the
type information for all the parameters; we have to specify the type for none
or for all of the parameters in a lambda expression.

The Java compiler treats single-parameter lambda expressions as special: we
can leave off the parentheses around the parameter if the parameter’s type is
inferred.

collections/Ffpij/Iteration.java

friends.forEach(name -> System.out.println(name));

There’s one caveat: inferred parameters are non-final. In the earlier example,
where we explicitly specified the type, we also marked the parameter as final.
This prevents us from modifying the parameter within the lambda expression.
In general, modifying parameters is in poor taste and leads to errors, so
marking them final is a good practice. Unfortunately, when we favor type
inference we have to practice extra discipline not to modify the parameter, as
the compiler won’t protect us.

We’ve come a long way with this example and reduced the code quite a bit.
But there’s more. Let’s take one last step to tease out another ounce of
conciseness.

collections/fpij/Iteration.java

friends.forEach(System.out::println);

In the preceding code, we used a method reference. Java lets us simply replace
the body of code with the method name of our choice. We’ll dig into this
further in the next section, but for now, let’s reflect on the wise words of
Antoine de Saint-Exupéry: “Perfection is achieved not when there is nothing
more to add, but when there is nothing left to take away.”

Lambda expressions helped us concisely iterate over a collection. Next, we’ll
cover how they help remove mutability and make the code even more concise
when transforming collections.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Iteration.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Iteration.java

Transforming a List

Manipulating a collection to produce another result is as easy as iterating
through the elements of a collection. Suppose we’re asked to convert a list of
names to all capital letters. Let’s explore some options to achieve this.

Java’s string is immutable, so instances can’t be changed. We could create new
strings in all caps and replace the appropriate elements in the collection. But
the original collection would be lost; also, if the original list is immutable, as it
i1s when created with List.of(), then the list can’t change. Another downside is it
would be hard to parallelize the computations.

Creating a new list that has the elements in all caps is a better option.

That suggestion may seem naive at first; performance is an obvious concern
we all share. Surprisingly, the functional approach often yields better
performance than the imperative approach, as we’ll see in Performance
Concerns.

Let’s start by creating a new collection of uppercase names from the given
collection.

collections/fpij/Transform.java

final List<String> uppercaseNames = new ArraylList<>();

for(String name : friends) {
uppercaseNames.add(name.toUpperCase());

3

In this imperative style, we created an empty list and then populated it with
all-uppercase names, one element at a time, while iterating through the
original list. As a first step to moving toward a functional style, we could use
the internal iterator forEach method from [rerating through a List, to replace the
for loop, as we see next.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Transform.java

collections/fpij/Transform.java

final List<String> uppercaseNames = new ArraylList<>();
friends.forEach(name -> uppercaseNames.add(name.toUpperCase())); //BAD IDEA
System.out.println(uppercaseNames);

We used the internal iterator, but that still required the empty list and the effort
to add elements to it. Furthermore, we modified a shared mutable variable, the

list, from within the lambda expression. That’s a bad idea as it makes it unsafe

to parallelize this iteration if desired, and such code should be avoided. We can
do a lot better.

Using Lambda Expressions and the Stream API

The map method of the Stream interface can help us avoid mutability and make
the code concise. A Stream is much like an iterator on a collection of objects

and provides some nice fluent functions. Using the methods of this interface,
we can compose a sequence of calls so that the code reads and flows in the
same way we’d state problems, making it easier to read.

The stream’s map method can map or transform a sequence of input to a
sequence of output—that fits quite well for the task at hand.

collections/fpij/Transform.java

friends.stream()

.map(name -> name.toUpperCase())

.forEach(name -> System.out.print(name + " "));
System.out.println();

The method stream is available on all collections in the JDK and it wraps the
collection into an instance of Stream. The map method applies the given lambda

expression or block of code, within the parenthesis, on each element in the
Stream. The map method is quite unlike the forEach method, which simply runs

the block in the context of each element in the collection. In addition, the map

method collects the result of running the lambda expression and returns the
result collection. Finally, we print the elements in this result using the forEach
method. The names in the new collection are in all caps:

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Transform.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Transform.java

BRIAN NATE NEAL RAJU SARA SCOTT

The map method is useful to map or transform an input collection into a new
output collection. This method will ensure that the same number of elements
exists in the input and the output sequence. But the element types in the input
don’t have to match the element types in the output collection. In this
example, both the input and the output are a collection of strings. We could’ve
passed to the map method a block of code that returned, for example, the
number of characters in a given name. In this case, the input would still be a
sequence of strings, but the output would be a sequence of numbers, as in the
next example.

collections/fpij/Transform.java

friends.stream()
.map(name -> name.length())
.forEach(count -> System.out.print(count + " "));

The result is a count of the number of letters in each name:
544445

The versions using the lambda expressions have no explicit mutation; they’re
concise. These versions also didn’t need any initial empty collection or
garbage variable; that variable quietly receded into the shadows of the
underlying implementation.

Using Method References

We can nudge the code to be just a bit more concise by using a feature called
method reference. The Java compiler will take either a lambda expression or a
reference to a method where an implementation of a functional interface is
expected. With this feature, a short String::toUpperCase can replace name ->

name.toUpperCase(), like so:

collections/fpij/Transform.java

friends.stream()
.map(String::toUpperCase)

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Transform.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/Transform.java

.forEach(name -> System.out.println(name));

Java knows to invoke the String class’s given method toUpperCase on the
parameter passed into the synthesized method—the implementation of the
functional interface’s abstract method. That parameter reference is implicit
here. In simple situations like the previous example, we can substitute method
references for lambda expressions; see When Should We Use Method
References?.

In the preceding example, the method reference was for an instance method.
Method references can also refer to static methods and methods that take

parameters. We’ll see examples of these later.

Wy
< When Should We Use Method References?

We’d normally use lambda expressions much more than method references when programming
in Java. That doesn’t mean method references are unimportant or less useful, though. They’re
nice replacements when the lambda expressions are short and make simple, direct calls to either
an instance method or a static method. In other words, if lambda expressions merely pass their
parameters through, we can replace them with method references.

These candidate lambda expressions are much like Tom Smykowski, in the movie Office Space,

[3] whose job is to “take specifications from the customers and bring them down to the software
engineers.” For this reason, I call the refactoring of lambdas to method references the office-

space pattern.

In addition to conciseness, by using method references, we gain the ability to use more directly
the names already chosen for these methods.

There’s quite a bit of compiler magic under the hood when we use method references. The
method reference’s target object and parameters are derived from the parameters passed to the
synthesized method. This makes the code with method references much more concise than the
code with lambda expressions. But we can’t use this convenience if we have to manipulate
parameters before sending them as arguments or tinker with the call’s results before returning
them.

The Stream API along with lambda expressions helped us enumerate a
collection and transform it into a new collection. They can also help us

concisely pick an element from a collection, as we’ll see next.

Finding Elements

The now-familiar elegant map() methods to traverse and transform collections
won’t directly help pick elements from a collection. The filter method is
designed for that purpose.

From a list of names, let’s pick the ones that start with the letter N. Since there
may be zero matching names in the list, the result may be an empty list. Let’s
first code it using the old approach.

collections/fpij/PickElements.java

final List<String> startsWithN = new ArrayList<>();
for(String name : friends) {
if(name.startsWith("N")) {
startsWithN.add(name);

}
3

That’s a chatty piece of code for a simple task. We created a variable and
initialized it to an empty collection. Then we looped through the collection,
looking for a name that starts with the desired letter. If found, we added the
element to the collection.

Let’s refactor this code to use the filter method, and see how it changes things.

collections/fpij/PickElements.java

final List<String> startsWithN =
friends.stream()
.filter(name -> name.startsWith("n"))
.collect(Collectors.toList());

The filter method expects a lambda expression that returns a boolean result. If
the lambda expression returns a true for an element, that element is added to a
result collection; it’s skipped otherwise. Finally, the method returns a Stream
with only elements for which the lambda expression yielded a true. In the end,

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickElements.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickElements.java

we transformed the result into a List using the collect method—we’ll discuss
this method further in Using the collect Method and the Collectors Class.

Let’s print the number of elements in the result collection.

collections/Ffpij/PickElements.java

System.out.println(String.format("Found %d names", startsWithN.size()));

From the output, it’s clear that the method picked up the proper number of
elements from the input collection.

Found 2 names

The filter method returns a Stream, which is an internal iterator, just like the
map method does, but the similarity ends there. Whereas the map method
returns a collection of the same size as the input collection, the filter method

may not. It may yield a result collection with a number of elements ranging
from zero to the maximum number of elements in the input collection. But
unlike the map method, the elements in the result collection that the Filter

method returns are a subset of the elements in the input collection.

In the previous example, the list created by the Collectors.toList() may be
mutated later on. If you want the iteration to create an immutable list, then
instead, use Collectors.toUnmodifiableList() (added in the JDK 10) or the toList()
method (added in the JDK 16) instead of collect(Collectors.toList()).

The filter() function is useful to cherry-pick elements in a collection based on

the criteria provided in the predicate passed to the function. If we would rather
skip processing some elements, we could use the skip() or dropwhile() functions,

as we’ll see next.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickElements.java

Skipping Values

Given a collection of values, if we want to skip processing a certain number of
values or until a certain condition is met, we may use the continue statement

along with the if statement in the traditional for loop. In the functional style,
we don’t use if or continue. Instead, we can control the iteration using the skip()
or dropWhile() functions.

If you like to skip the first four values in the collection and only process the
rest, pass the number of values you want to skip to the skip() function, like so:

collections/fpij/SkipElements.java

friends.stream()
.skip(4)
.map(String::toUpperCase)
.forEach(System.out: :println);

The call to skip() in the previous example ignores the first four values in the

collection from further processing. Thus the output is the transformation of all
values except the first four:

SARA
SCOTT

If, instead of skipping a certain number of values, you want to skip values
until an element that meets a certain condition is encountered, use dropWhile(),
which was introduced in the JDK 9. In the next example, we skip until we
encounter a name whose length isn’t greater than 4.

collections/fpij/SkipElements.java

friends.stream()
.dropWhile(name -> name.length() > 4)
.map(String::toUpperCase)
.forEach(System.out: :println);

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/SkipElements.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/SkipElements.java

Whereas filter() works like a garage gate that opens or shuts for each
approaching car, skip() and dropwhile() work more like a door that is closed
initially, swings open, and then stays open.

In the previous code, since the first element of the collection, Brian, has a
length greater than four, it is skipped or dropped from further processing. The
next element, Nate, is of length 4, and thus processing starts from that element.
Even though the element Scott is greater than four letters in length, it is

processed since the door, so to say, has already swung open, as we see in this
output:

NATE
NEAL
RAJU
SARA
SCOTT

We discussed the equivalent of the imperative style continue in the functional
style, but what about the popular break statement?

Terminating Iterations

About an hour after I started teaching a class on functional programming for a
team of developers, a programmer asked if we had any planned breaks. I
quipped "In functional programming we don’t have breaks." While that
comment was met with chuckles, terminating an iteration is serious business.
Java provides at least two ways to exit an iteration before reaching the end of a
collection—limit() and takewhile(), where the latter was added in the JDK 9.

To only process the first three values in a collection, use the limit() function,
like so:

collections/fpij/TakeElements.java

friends.stream()
Limit(3)
.map(String::toUpperCase)
.forEach(System.out::println);

The output shows that only the first three values in the collection were
processed and then the iteration was terminated:

BRIAN
NATE
NEAL

If, instead of a specific number of elements, we want to terminate the iteration
upon encountering an element that meets a certain criteria, we can use
takeWhile(), as in the following code:

collections/fpij/TakeElements.java

friends.stream()
.takeWhile(name -> name.length() > 4)
.map(String::toUpperCase)
.forEach(System.out::println);

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/TakeElements.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/TakeElements.java

In this example, the processing continues as long as the length of the elements
encountered is greater than four. The first element, Brian, meets that

expectation but the second element, Nate, doesn’t and thus the iteration is
terminated right away as we see from the output:

BRIAN

Much like the skip() and dropwhile() functions, the limit() and takewWhile()
methods also behave like a door. But instead of initially being shut, these
methods behave like a door that is open and then shut forever when the given
criteria isn’t met.

The conciseness we’ve achieved by using lambda expressions so far is nice,
but code duplication may sneak in quickly if we’re not careful. Let’s address
that concern next.

Reusing Lambda Expressions

Lambda expressions are deceivingly concise and it’s easy to carelessly
duplicate them in code. Duplicate code leads to poor-quality code that’s hard
to maintain; if we needed to make a change, we’d have to find and touch the
relevant code in several places.

Avoiding duplication can also help improve performance. By keeping the code
related to a piece of knowledge concentrated in one place, we can easily study
its performance profile and make changes in one place to get better
performance.

Now let’s see how easy it is to fall into the duplication trap when using lambda
expressions, and also consider ways to avoid it.

Suppose we have a few collections of names: friends, editors, comrades, and so
on.

final List<String> friends =
Arrays.asList("Brian", "Nate", "Neal", "Raju", "Sara", "Scott");

final List<String> editors =
Arrays.asList("Brian", "Jackie", "John", "Mike");

final List<String> comrades =
Arrays.asList("Kate", "Ken", "Nick", "Paula", "Zach");

We want to filter out names that start with a certain letter. Let’s first take a
naive approach to this using the filter method.

collections/fpij/PickElementsMultipleCollection.java

final long countFriendsStartN =
friends.stream()
.filter(name -> name.startsWith("n"))
.count();

final long countEditorsStartN =

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickElementsMultipleCollection.java

editors.stream()
.filter(name -> name.startsWith("nN"))
.count();

final long countComradesStartN =
comrades.stream()
.filter(name -> name.startsWith("nN"))
.count();

The lambda expressions made the code concise, but quietly led to duplicate
code. In the previous example, one change to the lambda expression needs to
change in more than one place—that’s a no-no. Fortunately, we can assign
lambda expressions to variables and reuse them, just like with objects.

The filter method, the receiver of the lambda expression in the previous
example, takes a reference to a java.util.function.Predicate functional interface.
Here, the Java compiler works its magic to synthesize an implementation of
the Predicate’s test method from the given lambda expression. Rather than
asking Java to synthesize the method at the argument-definition location, we
can be more explicit. In this example, it’s possible to store the lambda
expression in an explicit reference of type Predicate and then pass it to the
function; this is an easy way to remove the duplication.

Let’s refactor the previous code to make it DRY.®! (See the Don’t Repeat
Yourself—DRY——principle in The Pragmatic Programmer: From
Journeyman to Master [HT00], by Andy Hunt and Dave Thomas.)

collections/fpij/PickElementsMultipleCollection.java

final Predicate<String> startsWithN = name -> name.startsWith("N");

final long countFriendsStartN
friends.stream()

filter(startsWithN)
.count();

final long countEditorsStartN
editors.stream()

.filter(startsWithN)
.count();

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickElementsMultipleCollection.java

final long countComradesStartN =
comrades.stream()
.filter(startsWithN)
.count();

Rather than duplicate the lambda expression several times, we created it once
and stored it in a reference named startswithN of type Predicate. In the three

calls to the Ffilter method, the Java compiler happily took the lambda
expression stored in the variable under the guise of the Predicate instance.

The new variable gently removed the duplication that sneaked in.
Unfortunately, it’s about to sneak back in with a vengeance, as we’ll see next,
and we need something a bit more powerful to thwart it.

Using Lexical Scoping and Closures

There’s a misconception among some developers that using lambda
expressions may introduce duplication and lower code quality. Contrary to that
belief, even when the code gets more complicated, we still don’t need to
compromise code quality to enjoy the conciseness that lambda expressions
give, as we’ll see in this section.

We managed to reuse the lambda expression in the previous example, but
duplication will sneak in quickly when we bring in another letter to match.
Let’s explore the problem further and then solve it using lexical scoping and
closures.

Duplication in Lambda Expressions

Let’s pick the names that start with N or B from the friends collection of names.

Continuing with the previous example, we may be tempted to write something
like the following:

collections/Ffpij/PickDifferentNames.java

name -> name.startsWith("nN");
name -> name.startsWith("B");

final Predicate<String> startsWithN
final Predicate<String> startsWithB

final long countFriendsStartN
friends.stream()

.filter(startsWithN)
.count();

final long countFriendsStartB
friends.stream()

.filter(startsWithB)
.count();

The first predicate tests if the name starts with an NV and the second tests for a
B. We pass these two instances to the two calls to the filter method,

respectively. That seems reasonable, but the two predicates are mere

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickDifferentNames.java

duplicates, with only the letter they use being different. Let’s figure out a way
to eliminate this duplication.

Removing Duplication with Lexical Scoping

As a first option, we could extract the letter as a parameter to a function and
pass the function as an argument to the filter method. That’s a reasonable idea,

but the filter method won’t accept some arbitrary function. It insists on

receiving a function that accepts one parameter representing the context
element in the collection and on returning a boolean result. It’s expecting a

Predicate.

For comparison purposes, we need a variable that will cache the letter for later
use and hold onto it until the parameter, name in this example, is received.
Let’s create a function for that.

collections/fpij/PickDifferentNames.java

public static Predicate<String> checkIfStartsWith(final String letter) {
return name -> name.startsWith(letter);

}

We defined checkifStartswith as a static function that takes a letter of type String
as a parameter. It then returns a Predicate that can be passed to the filter method
for later evaluation. Unlike the higher-order functions we’ve seen so far,
which accepted functions as parameters, the checkifStartswith returns a function
as a result. This is also a higher-order function, as we discussed in Evolution,
Not Revolution.

The Predicate that checkifStartswith returned is different from the lambda
expressions we’ve seen so far. In return name -> name.startswith(letter), it’s clear
what name is: it’s the parameter passed to this lambda expression. But what’s
the variable letter bound to? Since that’s not in the scope of this anonymous

function, Java reaches over to the scope of the definition of this lambda
expression and finds the variable letter in that scope. This is called /exical
scoping. Lexical scoping is a powerful technique that lets us cache values

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickDifferentNames.java

provided in one context for use later in another context. Since this lambda
expression closes over the scope of its definition, it’s also referred to as a

closure. For lexical scope access restriction, see Are There Restrictions to
Lexical Scoping?.

W

o

Are There Restrictions to Lexical Scoping?

From within a lambda expression, we can only access local variables that are final or effectively
final in the enclosing scope.

A lambda expression may be invoked right away, or it may be invoked lazily or from multiple
threads. To avoid race conditions, the local variables we access in the enclosing scope aren’t
allowed to change once initialized. Any attempt to change them will result in a compilation
erTor.

Variables marked Final directly fit this bill, but Java doesn’t insist that we mark them as such.
Instead, Java looks for two things. First, the accessed variables have to be initialized within the
enclosing methods before the lambda expression is defined. Second, the values of these
variables don’t change anywhere else—that is, they’re effectively final although they aren’t
marked as such.

When using lambda expressions that capture local state, we should be aware that stateless
lambda expressions are runtime constants, but those that capture local state have an additional
evaluation cost.

We can use the lambda expression returned by checkifStartswith in the call to
the filter method, like so:

collections/Ffpij/PickDifferentNames.java

final long countFriendsStartN =
friends.stream()
.filter(checkIfStartsWith("N"))
.count();
final long countFriendsStartB =
friends.stream()
.filter(checkIfStartsWith("B"))
.count();

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickDifferentNames.java

In the calls to the filter method, we first invoke the checkifStartswith method,

passing in a desired letter. This call immediately returns a lambda expression
that is then passed on to the filter method.

By creating a higher-order function, checkifStartswith in this example, and
using lexical scoping, we managed to remove the duplication in code. We
didn’t have to repeat the comparison to check if the name starts with different
letters.

Refactoring to Narrow the Scope

In the preceding (smelly) example, we used a static method, but we don’t want
to pollute the class with static methods to cache each variable in the future. It

would be nice to narrow the function’s scope to where it’s needed. We can do
that using a Function interface.

collections/fpij/PickDifferentNames.java

final Function<String, Predicate<String>> startsWithLetter =
(String letter) -> {
Predicate<String> checkStarts = (String name) -> name.startsWith(letter);
return checkStarts;

1
This lambda expression replaces the static method checkifStartswith and can
appear within a function, just before it’s needed. The startswithLetter variable
refers to a Function that takes in a String and returns a Predicate.

This version 1s verbose compared to the static method we saw earlier, but we’ll

refactor that soon to make it concise. For all practical purposes, this function is
equivalent to the static method; it takes a String and returns a Predicate. Instead

of explicitly creating the instance of the Predicate and returning it, we can
replace it with a lambda expression.

collections/fpij/PickDifferentNames.java

final Function<String, Predicate<String>> startsWithLetter =

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickDifferentNames.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickDifferentNames.java

(String letter) -> (String name) -> name.startsWith(letter);

We reduced clutter, but we can take the conciseness up another notch by
removing the types and letting the Java compiler infer the types based on the
context. Let’s look at the concise version.

collections/fpij/PickDifferentNames.java

final Function<String, Predicate<String>> startsWithLetter =
letter -> name -> name.startsWith(letter);

It takes a bit of effort to get used to this concise syntax. Feel free to look away
for a moment if this makes you cross-eyed. Now that we’ve refactored that
version, we can use it in place of the checkifStartswith method, like so:

collections/fpij/PickDifferentNames.java

final long countFriendsStartN =
friends.stream()
.filter(startsWithLetter.apply("N"))
.count();
final long countFriendsStartB =
friends.stream()
.filter(startsWithLetter.apply("8"))
.count();

We’ve come full circle with higher-order functions in this section. Our
examples illustrate how to pass functions to functions, create functions within
functions, and return functions from within functions. They also demonstrate
the conciseness and reusability that lambda expressions facilitate.

We made good use of both Function and Predicate in this section, but let’s
discuss how they’re different. A Predicate<T> takes in one parameter of type T
and returns a boolean result to indicate a decision for whatever check it
represents. We can use it anytime we want to make a go or no-go decision for
a candidate we pass to the predicate. Methods like filter that evaluate candidate
elements take in a Predicate as a parameter. On the other hand, a Function<T, R>
represents a function that takes a parameter of type T and returns a result of
type R. This is more general than a Predicate that always returns a boolean. We

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickDifferentNames.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickDifferentNames.java

can use a Function anywhere we want to transform an input to another value, so
it’s logical that the map method uses Function as its parameter.

Selecting elements from a collection was easy. Next, we’ll cover how to pick
just one element out of a collection.

Picking an Element

It’s reasonable to expect that picking one element from a collection would be
simpler than picking multiple elements. But there are a few complications.
Let’s look at the complexity introduced by the habitual approach and then
bring in lambda expressions to solve it.

Let’s create a method that will look for an element that starts with a given
letter, and print it.

collections/fpij/PickAnElement.java

public static void pickName(
final List<String> names, final String startinglLetter) {
String foundName = null;
for(String name : names) {
if(name.startsWith(startingLetter)) {
foundName = name;
break;
}
}

System.out.print(String.format("A name starting with %s:

"

, startinglLetter));

if(foundName !'= null) {
System.out.println(foundName);

} else {
System.out.println("No name found");

}
}

This method’s odor can easily compete with passing garbage trucks. We first
created a foundName variable and initialized it to null—that’s the source of our

first bad smell. This will force a null check, and if we forget to deal with it, the
result could be a NullPointerException or an unpleasant response. We then used

an external iterator to loop through the elements, but had to break out of the
loop if we found an element—here are other sources of rancid smells:
primitive obsession, imperative style, and mutability. Once out of the loop, we

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickAnElement.java

had to check the response and print the appropriate result. That’s quite a bit of
code for a simple task.

Let’s rethink the problem. We simply want to pick the first matching element
and safely deal with the absence of such an element. Let’s rewrite the pickName
method, this time using lambda expressions.

collections/fpij/PickAnElementElegant.java

public static void pickName(
final List<String> names, final String startinglLetter) {

final Optional<String> foundName =
names.stream()
.filter(name ->name.startsWith(startinglLetter))
findFirst();

System.out.println(String.format("A name starting with %s: %s",
startinglLetter, foundName.orElse("No name found")));

}

Some powerful features in the JDK library came together to help achieve this
conciseness. First, we used the filter method to grab all the elements matching

the desired pattern. Then the findFirst method of the Stream class helped pick
the first value from that collection. This method returns a special Optional
object, which is the state-appointed null deodorizer in Java.

The optional class is useful whenever the result may be absent. It protects us
from getting a NullPointerException by accident and makes it quite explicit to the
reader that “no result found™ is a possible outcome. We can inquire if an object
1s present by using the isPresent method, and we can obtain the current value
using its get method or the preferred alternative orElseThrow() method that was

added in the JDK 10. Alternatively, we could suggest a substitute value for the
missing instance, using the method (with the most threatening name) orElse,
like in the previous code.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickAnElementElegant.java

Let’s exercise the pickName function with the sample friends collection we’ve
used in the examples so far.

collections/fpij/PickAnElementElegant.java

pickName(friends, "N");
pickName(friends, "Z");

The code picks out the first matching element, if found, and prints an
appropriate message otherwise.

A name starting with N: Nate
A name starting with Z: No name found

The combination of the findFirst method and the optional class reduced our
code and its smell quite a bit. We’re not limited to the preceding options when
working with optional, though. For example, rather than providing an alternate
value for the absent instance, we can ask Optional to run a block of code or a
lambda expression only if a value is present, like so:

collections/fpij/PickAnElementElegant.java

"

foundName.ifPresent(name -> System.out.println("Hello " + name));

When compared to using the imperative version to pick the first matching
name, the nice, flowing functional style looks better. But are we doing more
work in the fluent version than we did in the imperative version? The answer
1s no—these methods have the smarts to perform only as much work as is
necessary (we’ll talk about this more in Leveraging the Laziness of Streams).

The search for the first matching element demonstrated a few more neat
capabilities in the JDK. Next, we’ll look at how lambda expressions help
compute a single result from a collection.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickAnElementElegant.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickAnElementElegant.java

Reducing a Collection to a Single Value

We’ve gone over a few techniques to manipulate collections so far: picking
matching elements, selecting a particular element, and transforming a
collection. All these operations have one thing in common: they all worked
independently on individual elements in the collection. None required
comparing elements against each other or carrying over computations from
one element to the next. In this section we look at how to compare elements
and carry over a computational state across a collection.

Let’s start with some basic operations and build up to something a bit more
sophisticated. As the first example, let’s read over the values in the friends
collection of names and determine the total number of characters.

collections/fpij/PickALongest.java

System.out.println("Total number of characters in all names: " +
friends.stream()
.mapToInt(name -> name.length())

.sum());

To find the total number of characters, we need the length of each name. We
can easily compute that using the mapTolnt method. Once we transform the

data from the names to their lengths, the final step is to total them. This step
we perform using the built-in sum method. Here is the output for this

operation:
Total number of characters in all names: 26

We leveraged the mapTolnt method, which is a variation of the map operation
(variations like mapTolnt, mapToDouble, and so on create type-specialized
streams such as IntStream and DoubleStream), and then we reduced the resulting
length to the sum value.

Instead of using the sum method, we could use a variety of methods like max to
find the longest length, min to find the shortest length, sorted to sort the

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickALongest.java

lengths, average to find the average of the length, and so on.

The hidden charm in the preceding example is the increasingly popular
MapReduce pattern,*! with the map method being the spread operation and the
sum method being the special case of the more general reduce operation. In
fact, the implementation of the sum method in the JDK uses a reduce method.
Let’s look at the more general form of reduce.

As an example, let’s read over the given collection of names and display the
longest one. If there’s more than one name with the same longest length, we’ll
display the first one we find. One way we could do that is to figure out the
longest length and then pick the first element of that length. But that’d require
going over the list twice—not efficient. This is where a reduce method comes
into play.

We can use the reduce method to compare two elements against each other and
pass along the result for further comparison with the remaining elements in the
collection. Much like the other higher-order functions on collections we’ve
seen so far, the reduce method iterates over the collection. In addition, it carries
forward the result of the computation that the lambda expression returned. An
example will help clarify this, so let’s get down to the code.

collections/fpij/PickALongest.java

final Optional<String> aLongName =
friends.stream()
.reduce((namel, name2) ->
namel.length() >= name2.length() ? namel : name2);
alLongName.ifPresent(name ->
System.out.println(String.format("A longest name: %s", name)));

The lambda expression we are passing to the reduce method takes two
parameters, name1 and name2, and returns one of them based on the length. The
reduce method has no clue about our specific intent. That concern is separated
from this method into the lambda expression that we pass to it—this is a

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickALongest.java

lightweight application of the strategy pattern—see Design Patterns:
Elements of Reusable Object-Oriented Software [GHIV95], by Gamma et al.

This lambda expression conforms to the interface of an apply method of a JDK
functional interface named BinaryOperator. This is the type of the parameter the
reduce method receives. Let’s run the reduce method and see if it picks the first
of the two longest names from our friends list.

A longest name: Brian

As the reduce method iterated through the collection, it called the lambda

expression first, with the first two elements in the list. The result from the
lambda expression is used for the subsequent call. In the second call, name1 is

bound to the result from the previous call to the lambda expression, and name2

1s bound to the third element in the collection. The calls to the lambda
expression continue for the rest of the elements in the collection. The result
from the final call 1s returned as the result of the reduce method call.

The result of the reduce method is an Optional because the list on which reduce

is called may be empty. In that case, there would be no longest name. If the list
had only one element, then reduce would return that element and the lambda

expression we pass wouldn’t be invoked.

Instead of using the reduce method to compute the maximum, we may also use
the specialized max method. In this case, we have to pass a Comparator as an
argument, as in the following:

collections/fpij/PickALongest.java

friends.stream()
.max(java.util.Comparator.comparing(String::length));

That’s certainly concise compared to passing lambda expressions to the reduce
method—we’ll dig further into the use of Comparator in Chapter 3, Strings,

Comparators, and Filters.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickALongest.java

From the example, we can infer that the reduce method’s or the max method’s
result is at most one element from the collection. If we want to set a default or
a base value, we can pass that value as an extra parameter to an overloaded
variation of the reduce method. For example, if the shortest name we want to
pick is Steve, we can pass that to the reduce method, like so:

collections/fpij/PickALongest.java

final String steveOrLonger =
friends.stream()
.reduce("Steve”, (namel, name2) ->
namel.length() >= name2.length() ? namel : name2);

If any name was longer than the given base, it would get picked up; otherwise,
the function would return the base value, Steve in this example. This version
of reduce doesn’t return an Optional since if the collection is empty, the default
will be returned; there’s no concern of an absent or nonexistent value.

Before we wrap up this chapter, let’s visit a fundamental yet seemingly
difficult operation on collections: joining elements.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PickALongest.java

Joining Elements

We’ve explored how to select elements, iterate, and transform collections. Yet
in a trivial operation—concatenating a collection—we could lose all the gains
we made with concise and elegant code if not for a newly added join function.

This simple method is so useful that it’s poised to become one of the most
used functions in the JDK. Let’s see how to use it to print the values in a list,
comma separated.

Let’s work with our friends list. What does it take to print the list of names,
separated by commas, using only the old JDK libraries?

We have to iterate through the list and print each element. Since the Java 5 for
construct is better than the archaic for loop, let’s start with that.

collections/fpij/PrintList.java

for(String name : friends) {
System.out.print(name + ", ");

}
System.out.println();

That was simple code, but let’s look at what it yielded.
Brian, Nate, Neal, Raju, Sara, Scott,

Darn it; there’s a stinking comma at the end (shall we blame it on Scott?).
How do we tell Java not to place a comma there? Unfortunately, the loop will
run its course and there’s no easy way to tell the last element apart from the
rest. To fix this, we can fall back on the habitual loop.

collections/fpij/PrintList.java

for(int 1 = 0; 1 < friends.size() - 1; 1++) {
System.out.print(friends.get(i) + ", ");
}

if(friends.size() > 0)

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PrintList.java
http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PrintList.java

System.out.println(friends.get(friends.size() - 1));
Let’s see if the output of this version was decent.
Brian, Nate, Neal, Raju, Sara, Scott

The result looks good, but the code to produce the output doesn’t. Beam us up,
modern Java.

We don’t have to endure that pain. A StringJoiner class cleans up all that mess
and the string class has an added convenience method join to turn that smelly
code into a simple one-liner.

collections/fpij/PrintList.java

"

System.out.println(String.join(", ", friends));

Let’s quickly verify the output is as charming as the code that produced it.
Brian, Nate, Neal, Raju, Sara, Scott

Under the hood, the string’s join method calls upon the StringJoiner class to
concatenate the values in the second argument, a varargs, into a larger string

separated by the first argument. We’re not limited to concatenating only with a
comma using this feature. We could, for example, take a bunch of paths and

concatenate them to form a classpath easily thanks to the new methods and
classes.

We saw how to join a list of elements; we can also transform the elements
before joining them. We already know how to transform elements using the
map method. We can also be selective about which element we want to keep by

using methods like filter. The final step of joining the elements, separated by
commas or something else, is simply a reduce operation.

We could use the reduce method to concatenate elements into a string, but that
would require some effort on our part. The JDK has a convenience method

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PrintList.java

named collect, which is another form of reduce that can help us collect values
into a target destination.

The collect method does the reduction but delegates the actual implementation

or target to a collector. We could drop the transformed elements into an
ArrayList, for instance. Or, to continue with the current example, we could

collect the transformed elements into a string concatenated with commas.

collections/fpij/PrintList.java

System.out.println(

friends.stream()
.map(String: :toUpperCase)
.collect(joining(", ")));

We invoked the collect on the transformed list and provided it a collector
returned by the joining method, which is a static method on a Collectors utility
class. A collector acts as a sink object to receive elements passed by the collect
method and stores it in a desired format: ArrayList, String, and so on. We’ll
explore the collect method further in Using the collect Method and the
Collectors Class.

Here are the names, now in uppercase and comma separated.
BRIAN, NATE, NEAL, RAJU, SARA, SCOTT

The stringJoiner gives a lot more control over the format of concatenation; we
can specify a prefix, a suffix, and infix character sequences if we desire.

We saw how lambda expressions and the newly added classes and methods
make programming in Java so much easier, and more fun too. Let’s go over
what we covered in this chapter.

http://media.pragprog.com/titles/vsjava2e/code/collections/fpij/PrintList.java

Wrapping Up

Collections are commonplace in programming and, thanks to lambda
expressions and the Stream API, using them is now much easier and simpler
in Java. We can trade the long-winded old methods for elegant, concise
code to perform the common operations on collections. Internal iterators
make i1t convenient to traverse collections, transform collections without
enduring mutability, and select elements from collections without much
effort. Using these functions means less code to write. That can lead to
more maintainable code, more code that does useful domain- or application-
related logic, and less code to handle the basics of coding.

In the next chapter, we’ll cover how lambda expressions simplify another
fundamental programming task: working with strings and comparing
objects.

Footnotes

(31 http://en.wikipedia.org/wiki/Office_Space

(4] http://c2.com/cgi/wiki?DontRepeatYourself

[3] http://research.google.com/archive/mapreduce.xhtml

Copyright © 2023, The Pragmatic Bookshelf.

http://en.wikipedia.org/wiki/Office_Space
http://c2.com/cgi/wiki?DontRepeatYourself
http://research.google.com/archive/mapreduce.xhtml

Chapter 3

Strings, Comparators, and Filters

The JDK includes a number of convenience methods that promote the
functional style. When using familiar classes and interfaces from the library
—string, for example—we need to look for opportunities to use the
functional style in place of the imperative style. Also, anywhere we used an
anonymous inner class with just one method, we can use lambda
expressions to reduce clutter and ceremony.

In this chapter we’ll use lambda expressions and method references to
iterate over a String, to implement Comparators, to list files in a directory, and
to observe file and directory changes. Many of the methods introduced in
the previous chapter will appear here again to help with the tasks at hand.
The techniques you pick up along the way will help turn long, mundane
tasks into concise code snippets you can quickly write and easily maintain.

Iterating a String

The chars method in the String class from the charSequence interface returns an
Intstream, which is useful for fluently iterating over the String’s characters. We
can use this convenient internal iterator to apply an operation on the individual
characters that make up the string. Let’s use it in an example to process a
string. Along the way, we’ll discuss a few more handy ways to use method
references.

compare/fpij/IterateString.java
final String str = "wOOt";

str.chars()
.forEach(ch -> System.out.println(ch));

The chars method returns a Stream over which we can iterate, using the forEach
internal iterator. We get direct read access to the characters in the String within
the iterator. Here’s the result when we iterate and print each character.

119
48
48
116

The result isn’t what we’d expect. Instead of seeing letters, we’re seeing
numbers. That’s because the chars method returns a stream of Integers

representing the letters instead of a stream of Characters. Let’s explore the API
a bit further before we fix the output.

In the previous code, we created a lambda expression in the argument list for
the forEach method. The implementation was a simple call where we routed the
parameter directly as an argument to the println method. Since this is a trivial
operation, we can eliminate this mundane code with the help of the Java
compiler. We can rely on it to do this parameter routing for us, using a method
reference as we did in Using Method References.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/IterateString.java

We already saw how to create a method reference for an instance method. For
example, for the call name.toUpperCase() instance method, the method reference
1s String::toUpperCase. But in this example, we have a call on a static reference
System.out. We can use either a class name or an expression to the left of the
double colon in method references. Using this flexibility, it’s easy to provide a
reference to the println method, as we see next.

compare/fpij/IterateString.java

str.chars()
.forEach(System.out::println);

In this example, we see the smarts of the Java compiler for parameter routing.
Recall that lambda expressions and method references may stand in where
implementations of functional interfaces are expected, and the Java compiler
synthesizes the appropriate method in place (see 4 Little Sugar to Sweeten). In
the earlier method reference we used, String::toUpperCase, the parameter to the

synthesized method turned into the target of the method call, like so:
parameter.toUpperCase();. That’s because the method reference is based on a
class name (String). In this example, the method reference, again to an instance
method, is based on an expression—an instance of PrintStream accessed
through the static reference System.out. Since we already provided a target for
the method, the Java compiler decided to use the parameter of the synthesized
method as an argument to the referenced method, like so:
System.out.println(parameter);. Sweet.

The code with the method reference is concise, but we have to dig into it a bit
more to understand what’s going on. Once we get used to method references,
our brains will know to autoparse these.

In this example, although the code is concise, the output isn’t satisfactory. We
want to see letters and not numbers in their place. To fix that, let’s write a
convenience method that prints an int as a letter.

compare/fpij/lterateString.java

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/IterateString.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/IterateString.java

private static void printChar(int aChar) {
System.out.println((char)(aChar));
}

We can use a reference to this convenience method to fix the output.

compare/fpij/IterateString.java

str.chars()
.forEach(IterateString::printChar);

We can continue to use the result of chars as an int, and when it’s time to print,

we can convert the result to a character. The output of this version will display
letters.

+ © © =

If we want to process characters and not int from the start, we can convert the
ints to characters right after the call to the chars method, like so:

compare/fpij/IterateString.java

str.chars()
.mapToObj(ch -> Character.valueOf((char)ch))
.forEach(System.out::println);

The chars method returns an instance of IntStream. If we call map on it, then the
result will also be an IntStream. But we want a stream of characters (a
Stream<Characters>), and to achieve that, we use mapToObj instead of map.

We used the internal iterator on the Stream that the chars method returned, but
we’re not limited to that method. Once we get a Stream, we can use any
methods available on it, like map, filter, reduce, and so on, to process the

characters in the string. For example, we can filter out only digits from the
string, like so:

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/IterateString.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/IterateString.java

compare/fpij/IterateString.java

str.chars()
.filter(ch -> Character.isDigit(ch))
.forEach(ch -> printChar(ch));

We can see the filtered digits in the next output.

0
0

Once again, instead of the lambda expressions we passed to the filter method
and the forEach method, we can use references to the respective methods.

compare/fpij/IterateString.java

str.chars()
.filter(Character::isDigit)
.forEach(IterateString::printChar);

The method references here helped remove the mundane parameter routing. In
addition, in this example we see yet another variation of method references
compared to the previous two instances where we used them. When we first
saw method references, we created one for an instance method. Later we
created one for a call on a static reference. Now we’re creating a method

reference for a static method—method references seem to keep on giving.

The one for an instance method and the one for a static method look the same
structurally: for example, String::toUpperCase and Character:isDigit. To decide

how to route the parameter, the Java compiler will check whether the method
1s an instance method or a static method. If it’s an instance method, then the
synthesized method’s parameter becomes the call’s target, as in
parameter.toUpperCase(); (the exception to this rule is if the target is already
specified as in System.out:println). On the other hand, if the method is static,
then the parameter to the synthesized method is routed as an argument to this
method, as in Character.isDigit(parameter);. See Appendix 2, Syntax Overview, for

a listing of method-reference variations and their syntax.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/IterateString.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/IterateString.java

While this parameter routing is convenient, there is one caveat—the ambiguity
that results from method collisions. If there’s both a matching instance method
and a static method, we’ll get a compilation error due to the reference’s

ambiguity. For example, if we write Double::toString to convert an instance of
Double to a String, the compiler would get confused whether to use the public
String toString() instance method or the static method public static String
toString(double value), both from the Double class. If we run into this, no sweat;

we simply switch back to using the appropriate lambda-expression version to
move on.

Once we get used to the functional style, we can switch between the lambda
expressions and the more concise method references, based on our comfort
level.

We used the chars() method to easily iterate over characters. Next, we’ll
explore the enhancements to the Comparator interface.

Implementing the Comparator Interface

The Comparator interface is used in hundreds of places in the JDK library, from
searching operations to sorting, reversing, and so on. This good old interface
has turned into a functional interface; the benefit is that we can use charmingly
fluent syntax to implement comparators.

Let’s create a few different implementations of the Comparator to understand

the influence of the functional style. Our fingers will thank us for all the
keystrokes saved by not having to create anonymous inner classes.

Sorting with a Comparator

We’ll build an example to sort a list of people using a few different points of
comparison. Let’s first create the Person JavaBean.

compare/fpij/Person.java

public class Person {
private final String name;
private final int age;

public Person(final String theName, final int theAge) {
name = theName;
age = theAge;

}

public String getName() { return name; }
public int getAge() { return age; }

public int ageDifference(final Person other) {
return age - other.age;

}

public String toString() {
return String.format("%s - %d", name, age);
}
}

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Person.java

We could implement the Comparable interface on the Person class, but that
would limit us to one particular comparison. We’d want to compare on
different things—on name, age, or a combination of fields, for example. To get
this flexibility, we’ll create the code for different comparisons just when we
need them, with the help of the Comparator interface.

Let’s create a list of people to work with, folks with different names and ages.

compare/fpij/Compare.java

final List<Person> people = Arrays.asList(
new Person("John", 20),
new Person("Sara", 21),
new Person("Jane", 21),
new Person("Greg”, 35));

We could sort the people by their names or ages and in ascending or
descending order. To achieve this in the habitual way, we’d implement the
Comparator interface using anonymous inner classes. But the essence here is

the code for the comparison logic, and anything else we write would be pure
ceremony. We can boil this down to its essence using lambda expressions.

Let’s first sort the people in the list in ascending order by age.

Since we have a List, the obvious choice 1s the sort method on the List. But this
method has some downsides. It’s a void method, which means the list will be

mutated when we call it. To preserve the original list, we’d have to make a
copy of it and then invoke the sort method on the copy; that’s quite labor-

intensive. Instead, we’ll seek the help of the Stream.

We can get a Stream from the List and conveniently call the sorted method on it.

Rather than messing with the given collection, it’ll return a sorted collection.
We can nicely configure the Comparator parameter when calling this method.

compare/fpij/Compare.java

List<Person> ascendingAge =

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java

people.stream()

.sorted((personl, person2) -> personl.ageDifference(person2))
.collect(toList());

printPeople("Sorted in ascending order by age:

"

, ascendingAge);

We first transformed the given List of people to a Stream using the stream
method. We then invoked the sorted method on it. This method takes a
Comparator as its parameter. Since Comparator is a functional interface, we
conveniently passed in a lambda expression. Finally, we invoked the collect
method and asked it to put the result into a List. Recall that the collect method is

a reducer that will help to target the members of the transformed iteration into
a desirable type or format. The toList is a static method on the Collectors
convenience class.

The Comparator’s compareTo abstract method takes two parameters, the objects
to be compared, and returns an int result. To comply with this, our lambda
expression takes two parameters, two instances of Person, with their types
inferred by the Java compiler. We return an int indicating whether the objects
are equal.

Since we want to sort by the age property, we compare the two given people’s

ages and return the difference. If they’re the same age, our lambda expression
will return a 0 to indicate they’re equal. Otherwise, it will indicate the first
person 1s younger by returning a negative number or older by returning a
positive number for the age difference.

The sorted method will iterate over each element in the target collection
(people in this example) and apply the given Comparator (a lambda expression

in this case) to decide the logical ordering of the elements. The execution
mechanism of sorted is much like the reduce method we saw earlier. The reduce

method trickles the list down to one value. The sorted method, on the other
hand, uses the result of the comparison to perform the ordering.

Once we sort the instances, we want to print the values, so we invoke a
convenience method printPeople; let’s write that method next.

compare/fpij/Compare.java

public static void printPeople(
final String message, final List<Person> people) {

System.out.println(message);
people.forEach(System.out::println);

}

In this method we print a message and iterate over the given collection,
printing each of the instances.

Let’s call the sorted method, and the people in the list will be printed in
ascending order by age.

Sorted in ascending order by age:

John - 20
Sara - 21
Jane - 21
Greg - 35

Let’s revisit the call to the sorted method and make one more improvement to
it.

.sorted((personl, person2) -> personl.ageDifference(person2))

In the lambda expression we’re passing to the sorted method, we’re simply
routing the two parameters—the first parameter as the target to the
ageDifference method and the second as its argument. Rather than writing this
code, we can use the office-space pattern (that is, ask the Java compiler to do
the routing again, using a method reference).

The parameter routing we want here is a bit different from the ones we saw
earlier. So far, we’ve seen a parameter being used as a target in one case and
as an argument in another case. In the current situation, however, we have two
parameters that we want to be split: the first to be used as a target to the
method and the second as an argument. No worries. The Java compiler gives
us a friendly nod: “I can take care of that for you.”

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java

Let’s replace the lambda expression in the previous call to the sorted method
with a short and sweet reference to the ageDifference method.

people.stream()
.sorted(Person: :ageDifference)

The code is fantastically concise thanks to the method-reference convenience
the Java compiler offers. The compiler took the parameters, the two-person
instances being compared, and made the first the ageDifference method’s target
and the second the parameter. Rather than explicitly connecting these, we let
the compiler work a little extra for us. When using this conciseness, we must
be careful to ensure that the first parameter is the intended target of the method
referenced and the remaining parameters are its arguments.

Reusing a Comparator

We easily sorted the people in ascending order by age, and we can as easily
sort them in descending order. Let’s give that a shot.

compare/fpij/Compare.java

"

printPeople("Sorted in descending order by age: ",
people.stream()
.sorted((personl, person2) -> person2.ageDifference(personil))
.collect(toList()));

We called the sorted method and passed a lambda expression that conforms to
the Comparator interface, much like the previous time. The only difference is
the implementation of the lambda expression—we switched the people in the
age comparison. The result should be a sort by descending order of their ages.
Let’s look at the output.

Sorted in descending order by age:

Greg - 35
Sara - 21
Jane - 21

John - 20

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java

Changing the logic for our comparison was effortless. But we can’t refactor
this version to use the method reference because the parameter order here
doesn’t follow the parameter-routing conventions for method reference; the
first parameter isn’t used as a target to the method, but rather as its argument.
There’s a way to fix that and, in the process, remove the duplication of effort
that crept in. Let’s see how.

Earlier we created two lambda expressions: one to order the ages of two
people in ascending order and the other to do it in descending order. In so
doing, we duplicated the logic and the effort, and we violated the DRY
principle.® If all we want is a reverse of the comparison, the JDK has us
covered with a reversed method on the Comparator, marked with a special
method modifier called default. We’ll discuss default methods in 4 Peek into
the default Methods, but here we’ll use the reversed method to remove the
duplication.

compare/fpij/Compare.java

Comparator<Person> compareAscending =
(personl, person2) -> personl.ageDifference(person2);
Comparator<Person> compareDescending = compareAscending.reversed();

We first created a Comparator, compareAscending, to compare the age of the
people in ascending order using the lambda expression syntax. To reverse the
order of comparison, instead of duplicating the effort, we can simply call
reversed on the first Comparator to get another Comparator with the comparison
order in reverse. Under the hood, the reversed method creates a comparator that
swaps its parameters’ order of comparison. This makes the reversed method a
higher-order method—this function creates and returns another functional
expression with no side effect. Let’s use these two comparators in the code.

compare/fpij/Compare.java
printPeople("Sorted in ascending order by age: ",
people.stream()
.sorted(compareAscending)
.collect(toList())

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java

)
printPeople("Sorted in descending order by age: ",
people.stream()
.sorted(compareDescending)
.collect(toList())

);

It’s becoming clear how the modern features in Java can greatly reduce code
complexity and duplication of effort, but to get all the benefits, we have to
explore the seemingly endless possibilities the JDK offers.

We’ve been sorting by age, but we could easily sort by name too. Let’s sort in
ascending alphabetical order by name; again, only the logic within the lambda
expression needs to change.

compare/fpij/Compare.java

printPeople("Sorted in ascending order by name: ",
people.stream()
.sorted((personl, person2) ->
personl.getName().compareTo(person2.getName()))
.collect(toList()));

In the output we should now see the people with names listed in ascending
alphabetical order.

Sorted in ascending order by name:

Greg - 35
Jane - 21
John - 20
Sara - 21

So far, our comparisons have worked on either the age or the name property.
We can make the logic in the lambda expression more intelligent. For
example, we could sort based on both name and age.

Let’s pick the youngest person in the list. We could find the first person after
we’ve sorted by age in ascending order. But we don’t need to go that far; the
Stream has us covered with a min method. This method also accepts a

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java

Comparator but returns the smallest object in the collection based on the given
comparator.

Let’s use that method.

compare/fpij/Compare.java

people.stream()
.min(Person::ageDifference)
.1fPresent(youngest -> System.out.println("Youngest:

"

+ youngest));

We use the reference for the ageDifference method in the call to the min method.
The min method returns an Optional because the list may be empty and so there

may not be a youngest person. We then print the details of the youngest person
that we get access to from the Optional using its ifPresent method.

Let’s look at the output.
Youngest: John - 20

We can as easily find the oldest person in the list. Simply pass that method
reference to a max method.

compare/fpij/Compare.java

people.stream()
.max(Person: :ageDifference)
.1fPresent(eldest -> System.out.println("Eldest: " + eldest));

Let’s look at the output for the name and age of the oldest in the list.
Eldest: Greg - 35

We saw how lambda expressions and method references make implementing
comparators concise and easy. For its part, the JDK has evolved with a few
convenience methods added to the Comparator interface to make comparisons

more fluent, as we’ll see next.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java

Multiple and Fluent Comparisons

Let’s look at the convenience methods of the Comparator interface and use
them to easily make comparisons based on multiple properties.

We’ll continue with the example from the previous section. To sort people by
their name we used this:

people.stream()
.sorted((personl, person2) ->
personl.getName().compareTo(person2.getName()));

The syntax is concise compared to the inner-classes syntax from yesteryear.
But we can do better thanks to convenience functions in the Comparator

interface. We can more fluently express our objectives by using them. For
example, to sort people by comparing their names, we can write this:

compare/fpij/Compare.java

final Function<Person, String> byName = person -> person.getName();
people.stream()
.sorted(comparing(byName));

In this code we statically imported the comparing method in the Comparator
interface. The comparing method uses the logic embedded in the provided
lambda expression to create a Comparator. In other words, it’s a higher-order
function that takes in one function (Function) and returns another (Comparator).

In addition to making the syntax more concise, the code now reads fluently to
express the problem being solved.

We can take this fluency further to make multiple comparisons. For example,
here’s some cogent syntax to sort people in ascending order by both age and
name:

compare/fpij/Compare.java

final Function<Person, Integer> byAge = person -> person.getAge();

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/Compare.java

final Function<Person, String> byTheirName = person -> person.getName();

"

printPeople("Sorted in ascending order by age and name: ",
people.stream()
.sorted(comparing(byAge).thenComparing(byTheirName))
.collect(toList()));

We first created two lambda expressions: one to return the age of a given
person and the other to return that person’s name. We then combined these two
lambda expressions in the call to the sorted method to compare on both

properties. The comparing method created and returned a Comparator to compare
based on age. On the returned Comparator we invoked the thenComparing

method to create a composite comparator that compares based on both age and
name. The output from this code shows the net result of sorting by age first
and then by name.

Sorted in ascending order by age and name:

John - 20
Jane - 21
Sara - 21
Greg - 35

As we can see, it’s easy to combine the Comparator implementations using the
convenience of lambda expressions and the utility classes in the JDK. Next,
we’ll examine Collectors.

Using the collect Method and the Collectors Class

We’ve used the collect method a few times in the examples to gather Stream
elements into an ArrayList. This method is a reduce operation that’s useful for

transforming the collection into another form, often a mutable collection. The
collect function, when combined with the utility methods of the Collectors class,
provides a wealth of conveniences, as we’ll see in this section.

Let’s examine the power of collect using the Person list as an example. Suppose
we want to collect only people older than 20 years from the original list.
Here’s a version that uses mutability and forEach.

compare/fpij/OlderThan20.java

List<Person> olderThan20 = new ArraylList<>();
people.stream()
.filter(person -> person.getAge() > 20)
.forEach(person -> olderThan20.add(person)); //BAD IDEA
System.out.println("People older than 20: " + olderThan20);

From the Person list we filtered only people who are older than 20 years using
the filter method. Then, within the foreach method, we added the elements into
an ArrayList we initialized before starting the iteration. Let’s look at the output
from this code before we refactor it.

People older than 20: [Sara - 21, Jane - 21, Greg - 35]

The code produced the desired result, but there are a few issues. First, the
operation of adding an element into the target collection is pretty low-level—
imperative rather than declarative. If we decide to make the iteration
concurrent, we immediately have to deal with thread-safety concerns—the
mutability makes it hard to parallelize. Fortunately, we can easily alleviate
these concerns using the collect method. Let’s see how.

The collect method takes a stream of elements and collects or gathers them into
a result container. To do that, the method needs to know three things:

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/OlderThan20.java

* How to make a result container (for example, using the ArrayList::new
method)

e How to add a single element to a result container (for example, using the
ArrayList::add method)

e How to merge one result container into another (for example, using the
ArrayList::addAll method)

The last item may not be necessary for purely sequential operations; the code
is designed to work for both sequential and parallel execution.

Let’s provide these operations to the collect method to gather the results of a
stream after a filter operation.

compare/fpij/OlderThan20.java

List<Person> olderThan20 =
people.stream()
.filter(person -> person.getAge() > 20)
.collect(ArrayList::new, ArraylList::add, ArraylList::addAll); //VERBOSE
System.out.println("People older than 20: " + olderThan20);

This version of code produces the same result as the previous version, but this
version has many benefits.

First, we’re programming with intention and more expressively, clearly
indicating our goal of collecting the result into an ArrayList. The collect method
took a factory or supplier as the first parameter, followed by operations that
help accumulate elements into the collection.

Second, since we’re not performing any explicit mutation in code, it’s easy to
parallelize the execution of the iteration. Since we let the library control the
mutation, it can handle coordination and thread safety for us. This is in spite of
the fact that ArrayList isn’t itself thread-safe—mnifty.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/OlderThan20.java

The collect method can perform parallel additions, as appropriate, into different

sublists, and then merge them in a thread-safe manner into a larger list (hence
the last parameter to help merge lists).

We saw the benefits of the collect method over manually adding elements into
an ArrayList. Next, let’s look at another overloaded version of this method that’s
simpler and more convenient—it uses a Collector as the parameter. The Collector
rolls into an interface the operations of supplier, accumulator, and combiner—
the operations we specified as three separate parameters in the previous
example—for ease and reuse. The Collectors utility class provides a toList
convenience method that creates an implementation of the Collector interface to
accumulate elements into an ArrayList. Let’s modify the previous version to use
this version of collect.

compare/fpij/OlderThan20.java

List<Person> olderThan20 =
people.stream()
.filter(person -> person.getAge() > 20)
.collect(Collectors.tolList());
System.out.println("People older than 20: " + olderThan20);

The convenience of this concise version of collect along with the Collectors
utility doesn’t stop here. There are several methods on the Collectors to perform
various collect or accumulate operations. For example, in addition to toList,
there is toSet to accumulate into a set, toMap to gather into a key-value
collection, and joining to concatenate the elements into a string. We can also
join multiple combine operations using methods like mapping,
collectingAndThen, minBy, maxBy, and groupingBy.

Let’s use groupingBy to group people by their age.

compare/fpij/OlderThan20.java

Map<Integer, List<Person>> peopleByAge =
people.stream()
.collect(Collectors.groupingBy(Person: :getAge));

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/OlderThan20.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/OlderThan20.java

"

System.out.println("Grouped by age: " + peopleByAge);

With a simple call to the collect method we’re able to perform the grouping.
The groupingBy method takes a lambda expression or a method reference—

called the classifier function—that returns the value of the property on which
we want to do the grouping. Based on what we return from this function, it
puts the element in context into that bucket or group. We can see the grouping
in this output:

Grouped by age: {35=[Greg - 35], 20=[John - 20], 21=[Sara - 21, Jane - 21]}

The instances of Person are grouped based on their age.

In the previous example, we grouped and collected people by age. A variation
of the groupingBy method can combine multiple criteria. The simple groupingBy

collector uses the classifier to organize the stream of elements into buckets.
The general groupingBy collector, on the other hand, can apply yet another

collector to each bucket. In other words, the values collected into buckets can
go through more classification and collection downstream, as we’ll see next.

Continuing with the previous example, instead of creating a map of all Person
objects by age, let’s get only people’s names, grouped by age.

compare/fpij/OlderThan20.java

Map<Integer, List<String>> nameOfPeopleByAge =
people.stream()
.collect(
groupingBy(Person: :getAge, mapping(Person::getName, toList())));
System.out.println("People grouped by age: " + nameOfPeopleByAge);

In this version, groupingBy takes two parameters: the first is the age, which is
the criteria to group by, and the second is a Collector, which is the result of a
call to the mapping function. These methods are from the Collectors utility class,
statically imported for use in this code. The mapping method takes two details,
the property on which to map (name in this case) and the type of the object to
collect into, such as a list or set. Let’s look at the output from this code:

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/OlderThan20.java

People grouped by age: {35=[Greg], 20=[John], 21=[Sara, Jane]}

We see that the list of names is grouped by age.

Let’s look at one more combination. Let’s group the names by their first
character and then get the oldest person in each group.

compare/fpij/OlderThan20.java

Comparator<Person> byAge = Comparator.comparing(Person::getAge);
Map<Character, Optional<Person>> oldestPersonOfEachlLetter =
people.stream()
.collect(groupingBy(person -> person.getName().charAt(0),
reducing(BinaryOperator.maxBy(byAge))));
System.out.println("Oldest person of each letter:");
System.out.println(oldestPersonOfEachLetter);

We first group the names based on their first letter. For this, we pass a lambda
expression as the first parameter to the groupingBy method. From within this
lambda expression, we return the first character of the name for grouping
purposes. The second parameter in this example, instead of mapping, performs
a reduce operation. In each group, it reduces the elements to the oldest person,
as decided by the maxBy method. The syntax is a bit dense due to the
combination of operations, but it reads like this: group by the first character of
the name and reduce to the person with the maximum age. Let’s look at the
output, which lists the oldest person in each grouping of names that start with
a given letter.

Oldest person of each letter:
{S=0Optional[Sara - 21], G=Optional[Greg - 35], J=Optional[Jane - 21]}

We’ve seen the power of the collect method and the Collectors. Take a few
minutes to examine the Collectors utility class in your integrated development
environment or the documentation and get familiar with the facilities it offers.
Next, we’ll use lambda expressions to stand in for some filters.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/OlderThan20.java

Listing All Files in a Directory

It’s pretty simple to use the File class’s list method to list all filenames in a
directory. To get all the files instead of just their names, we can use the listFiles

method. That’s easy, but the challenge 1s how to proceed once we get the list.
Rather than the long-winded traditional external iterator, we can use the
elegant functional-style facility to iterate through the list. To achieve this, we
have to reach out to the JDK’s CloseableStream interface, along with some
related higher-order convenience functions.

Here’s the code to list the names of all the files in the current directory.

compare/fpij/ListFiles.java

Files.list(Paths.get(". "))
.forEach(System.out::println);

To list files in a different directory, we can replace "." with the full path of the
directory we desire.

We first created a Path instance from the string using the get method of the
Paths convenience class. Then, using the list method of the Files utility class (in
the java.nio.file package), we got a CloseableStream to iterate over the files in the
given path. We then used the internal iterator, forEach, on it to print the
filenames.

Let’s look at part of the output from this code: listing the files and
subdirectories of the current directory.

./aSampleFiles. txt
./bin
/fpij

If we want only the subdirectories in the current directory instead of a listing
of all the files, we can use the filter method:

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListFiles.java

compare/fpij/ListDirs.java

Files.list(Paths.get(". "))
.filter(Files::isDirectory)
.forEach(System.out::println);

The filter method extracted only the directories from the stream of files.
Instead of passing in a lambda expression, we provided a method reference to
the Files class’s isDirectory method. Recall that the filter method expects a
Predicate, which returns a boolean result, so this method fits the bill. Finally, we
used the internal iterator to print the names of the directories. The output from
this code will show the subdirectories of the current directory.

./bin
/fpij
. /output

That was simple and took fewer lines than it would have with old-style Java
code. Next, let’s look at listing only select files that match a pattern.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListDirs.java

Listing Select Files in a Directory

Java has long provided a variation of the list method to cherry-pick filenames.
This version of list takes a FilenameFilter as its parameter. This interface has one
method, accept, that takes two parameters: File dir (representing the directory)
and String name (representing a filename). We’d return a true from the accept
method to include the given filename in the list, and a false otherwise. Let’s
explore the options to implement this method.

It’s a habitual practice in Java to pass to the list method an instance of an
anonymous inner class that implements the FilenameFilter interface. For
example, let’s look at how we’d select only the java files in a fpij directory
using that approach.

compare/fpij/ListSelectFiles.java

final String[] files =
new File("fpij").list(new java.ilo.FilenameFilter() {
public boolean accept(final File dir, final String name) {
return name.endsWith(".java");

}
s
if(files != null) {
for(String file: files) {
System.out.println(file);
}
}

That took some effort and a few lines of code. There’s a lot of noise in that
code: an object creation, a function call, an anonymous inner class definition,
the embedded method within that class, and so on. We don’t have to endure
that pain anymore; we can simply pass a lambda expression that takes two
parameters and returns a boolean result. The Java compiler can take care of the
rest for us.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListSelectFiles.java

While we could simply replace the anonymous inner class with a lambda
expression in the previous example, we can do better than that. The
DirectoryStream facility can help traverse large directory structures more
efficiently, so let’s explore that route. There’s a variation of the
newDirectoryStream method, which takes an additional filter parameter.

Let’s use lambda expressions to get a list of all java files in the fpij directory.

compare/fpij/ListSelectFiles.java

Files.newDirectoryStream(
Paths.get("fpij"), path -> path.toString().endsWith(".java"))
.forEach(System.out::println);

We got rid of the anonymous inner class and turned the verbose code into
short and sweet code. The net effect of the two versions is the same. Let’s
print the selected files.

The code will display only the .java files in the mentioned directory, as in this
partial output:

fpij/Compare. java
fpij/IterateString.java
fpij/ListDirs.java

We picked files based on filenames, but we can easily pick files based on file
properties, such as whether a file is executable, readable, or writable. For this,
we need a variation of the listFiles method that takes FileFilter as its parameter.
Once again, we can use lambda expressions instead of creating an anonymous
inner class. Let’s look at an example of listing all hidden files in the current
directory.

compare/fpij/ListHiddenFiles.java

final File[] files = new File(".").listFiles(file -> file.isHidden());

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListSelectFiles.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListHiddenFiles.java

If we’re working with a large directory, then we can use the DirectoryStream
instead of directly using the methods on File.

The signature of the lambda expression we passed to the listFiles method
conforms to the signature of the FileFilter interface’s accept method. In the
lambda expression, we receive a File instance as the parameter, named Ffile in
this example. We return a boolean true if the file has the hidden property, or a
false otherwise.

We can further reduce the code here; rather than passing a lambda expression,
we can use a method reference to make the code more concise:

compare/fpij/ListHiddenFiles.java
new File(".").listFiles(File::isHidden);

We created the lambda-expressions version and then refactored it to the more
concise method-references version. When working on new code, it’s perfectly
OK to take that route. If we can see the concise code from miles away, then of
course we can readily key that in. In the spirit of “make it work, then make it
better,” it’s good to get something simple working first, and once we
understand the code, we can take the next step to refactor for conciseness,
performance, and so on.

We worked through an example to filter out select files from a directory. Next,
we’ll look at how to explore subdirectories of a given directory.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListHiddenFiles.java

Listing Immediate Subdirectories Using flatMap

We saw how to list the members of a given directory. Let’s look at the effort to
explore the immediate (one-level deep) subdirectories in a given directory,
first using a rudimentary operation and then, more conveniently, using the
flatMap method.

Let’s use the traditional for loop first to iterate over the files in a given
directory. If a subdirectory contains any files, we’ll add them to our list;
otherwise, we’ll add the subdirectory itself to the list. Finally, we’ll print the
total number of files found. Here’s the code—for the hard way.

compare/fpij/ListSubDirs.java

public static void listTheHardWay() {
List<File> files = new ArraylList<>();

File[] filesInCurrentDir = new File(".").listFiles();
for(File file : filesInCurrentDir) {
File[] filesInSubDir = file.listFiles();
if(filesInSubDir != null) {
files.addAll(Arrays.asList(filesInSubDir));
} else {
files.add(file);

}
}

System.out.println("Count: " + files.size());

}

We fetch the list of files in the current directory and loop through each of the
files. For each file, we query for its children and add them, if present, to the
list of files. That works, but it comes with the usual culprits: mutability,
primitive obsession, imperative, noise.... We can get rid of these using a nice
little method called flatMap.

As the name indicates, this method will flatten after mapping. It maps the
elements 1n a collection, much like the map method does. But unlike the map

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListSubDirs.java

method, where we generally return an element from the lambda expression,
we return a Stream instead. The method then flattens the multiple streams,

obtained by mapping each element, into one flat stream.

We can use flatMap for various operations, but the problem on hand nicely
demonstrates the usefulness of this method. Each subdirectory has a list or
stream of files, and we’re trying to get a combined (or flattened) list of files in
all the subdirectories of the current directory.

Some directories (or files) may be empty and may not have children. In that
case, we simply wrap a stream around the no-child directory or file element. In
case we choose to ignore a file, the flatMap method in the JDK can deal with

empty quite well; it will merge a null reference to a Stream as an empty
collection. Let’s see the flatMap method in action.

compare/fpij/ListSubDirs.java

public static void betterWay() {
List<File> files =
Stream.of(new File(".").listFiles())
.flatMap(file -> file.listFiles() == null ?
Stream.of(file) : Stream.of(file.listFiles()))
.collect(toList());
System.out.println("Count:
}

"

+ files.size());

We obtained a stream of files in the current directory and invoked the flatMap

method on it. To this method we passed a lambda expression that returns a
Stream of children for the given file. The flatMap returns a flattened map of a

collection of all the children of the current directory’s subdirectories. We
collect those back into a List using the toList methods of collect and Collectors.

The lambda expression we passed as a parameter to the flatMap method
returned, for a given file, a Stream of its children (if any). Otherwise, it
returned a stream with just the file. The flatMap method gracefully handled that

and mapped these streams into a resulting collection of streams and finally
flattened it into one final Stream of Files.

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/ListSubDirs.java

FlatMap eliminates so much effort—it nicely combines a sequence of two
operations, often called a monadic composition—into one single elegant step.

We saw how the flatMap method simplifies the task of listing the immediate
(one-level deep) contents of a subdirectory. Next, we’ll create an observer for
file changes.

Watching a File Change

We know how to look for files and directories, but if we want to sit back and
get alerts when a file is created, modified, or deleted, that’s easy as well. Such
a facility is useful for monitoring changes to special files like configuration
files and system resources. Here we’ll explore the facility that’s been available
since Java 7, the wWatchService, to watch for file changes. Most of the features
we’ll see here are from JDK 7 and the main improvement will be in the
convenience of the internal iterator.

Let’s create an example to watch for file changes in the current directory. The
Path class in the JDK can lead to an instance of the file system, which acts as a

factory for the watch service. We can register with this service for any
notification, like so:

compare/fpij/WatchFileChange.java

final Path path = Paths.get(".");
final WatchService watchService =
path.getFileSystem()
.newlWatchService();

path.register(watchService, StandardWatchEventKinds.ENTRY_MODIFY);
System.out.println("Report any file changed within next 1 minute...");

We’ve registered a WatchService to observe any change to the current directory.

We can poll the watch service for any change to files in this directory, and it
will notify us through a watchkey. Once we gain access to the key, we can

iterate through all the events to get the details of the file update. Since multiple
files may change at once, a poll may return a collection of events rather than a
single event. Let’s look at the code for polling and iterating.

compare/fpij/WatchFileChange.java

final WatchKey watchKey = watchService.poll(1, TimeUnit.MINUTES);

http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/WatchFileChange.java
http://media.pragprog.com/titles/vsjava2e/code/compare/fpij/WatchFileChange.java

if(watchKey != null) {
watchKey.pollEvents()
.stream()
.forEach(event ->
System.out.println(event.context()));

}

We see an interplay of features from older versions of Java and more recent
versions here. We transformed the collection returned by pollEvents into a

Stream and then used an internal iterator on it to display the details of the
updated file(s).

Let’s run the code, change the sample.txt file in the current directory, and see if
the program tattles about the change.

Report any file changed within next 1 minute...
sample. txt

When we modified the file, the program promptly reported that the file was
changed. We can use this facility to watch for changes to various files and
perform appropriate tasks in our applications. Or we could register for only
file creation or deletion, as we desire.

Wrapping Up

The regular tasks of working with strings and files and creating custom
comparators got a lot easier and more concise with lambda expressions and
method references. Anonymous inner classes morphed into an elegant style
and, along the way, mutability disappeared like the fog in the morning sun.
As a bonus for favoring this style, we can benefit from the powerful JDK
facilities to iterate efficiently over large directories.

Now you know how to create lambda expressions to pass as parameters to
methods. In the next chapter we’ll take some of the ideas we saw in this
chapter further to almost effortlessly transform data.

Footnotes

(6] http://c2.com/cgi/wiki?DontRepeatYourself

Copyright © 2023, The Pragmatic Bookshelf.

http://c2.com/cgi/wiki?DontRepeatYourself

Chapter 4

Transforming Data

If you’re creating business applications, you deal with data all day, from
breakfast to dinner and then some. You have to find the average, min, and
max; query for the presence of some information; transform one collection
into another; slice a collection; group values; and the list goes on.

If you get paid for the number of lines of code you write, then the
imperative style is quite suitable. We can write more code and then spend
more time trying to figure out why it doesn’t work. Some call that job
security, but it’s that something we’ll soon dread.

You’re here because you care about results and not the amount of effort.
You want to write less code to get the work done and then easily make
changes to it when the business needs change. The functional programming
API in Java along with the amazing functions provided in the JDK have you
covered—they remove the drudgery from the tasks of data transformation.

In this chapter we’ll start with computing some statistics over a collection
of data and then apply transformations that result in multiple data for each
value in a collection. Next, we’ll see how to partition the data based on
some criteria and also how to group data for different traits or
characteristics. We’ll conclude this chapter by looking at how to perform
not just one, but two different transformations in one shot. Through all of
these, we’ll see how little code we actually have to write thanks to the

powerful utility functions in the Collectors class. Less code to write, less

code to change, and more time to get actual work done. Let’s start
transforming some data.

Computing Statistics

Given a collection of data—a list of stock prices, a set of savings accounts, an
array of daily temperature values for a city, for example—we often need to
compute different values across the collection, like the average, min, max, and
so on. Traditionally, using the imperative style approach, we’d first create a
destination variable for the result and initialize it to some value. Then, as we
iterate over the elements in the collection, we’d access the appropriate value
for each element and update the destination variable accordingly, based on the
computation we desire. The result is verbose code that’s often hard to
understand and maintain and also difficult to parallelize if faster execution is
necessary for a large collection of data.

Thanks to the functional capabilities of Java, these concerns disappear like fog
that evaporates in the morning sun. In particular, for transforming data, the
utility functions that are part of the java.util.stream.Collectors class are great

companions for quickly implementing these operations.

We’ll explore the benefits that many of the functions in the Collectors class

offer using a series of examples. We need a collection of data to work with.
For that, we’ll first create a Person record which holds a first name, last name,
and list of email addresses as Strings.

transforming/fpij/Person.java
package fpij;
import java.util.List;

public record Person(
String firstName, String lastName, List<String> emailAddresses) {

"non

public String fullName() { return firstName + + lastName; }

public static final List<Person> SAMPLE_DATA = List.of(
new Person("John", "Doe", List.of()),
new Person("Sara”, "Walker", List.of("sara@example.com")),

http://media.pragprog.com/titles/vsjava2e/code/transforming/fpij/Person.java

new Person("Mike", "Baker",

List.of ("mike@example.com”, "baker@example.com")),
new Person("Dev"”, "Shah",

List.of ("dev@example.com", "shah@example.com")),
new Person("Sara”, "Lee",
List.of ("slee@example.org"”, "lee@example.com")),

new Person("Nancy", "Xie",

List.of ("nancy@example.com"”, "xie@example.com", "nx@example.com")),
new Person("Jill", "Smith", List.of("jill@example.com")));

}

If you’re using an older version of Java that doesn’t support the Records
feature, then implement Person as a regular class and provide methods named
firstName, lastName, and emailAddresses to access the fields of the class.

We need a list of sample Person instances to work with. Instead of writing a
method to create and return a list of Person instances, we store a list in the
SAMPLE_DATA public final field. Records are immutable and so are the lists
created by the List.of() method. Thus, record and final, combined with the of()
method, give us the power to create immutable data that can be freely

accessed without the worry of any inappropriate modifications by the callers.
The sample data contains Person instances where different instances have a

different number of email addresses associated with the fictitious persons.

Suppose our business requirements ask us to find the average number of email
addresses for the people in a list. We want to compute a single value from a
collection of values—you’ll likely recognize that as a reduce operation; see

Chapter 2, Using Collections. In addition to the reduce() method, we’ve seen

some specialized reduce operations such as count(), sum(), and collect(). Let’s
explore a few different options to compute the average number of email
addresses for the people in the SAMPLE_DATA.

Let’s take the most direct evolutionary approach, applying what we know
already:

transforming/fpij/AverageNumberOfEmailAddresses.java

http://media.pragprog.com/titles/vsjava2e/code/transforming/fpij/AverageNumberOfEmailAddresses.java

package fpij;

import static java.util.stream.Collectors.*;
import java.util.List;
import static fpij.Person.SAMPLE_DATA;

public class AverageNumberOfEmailAddresses {
public static void main(String[] args) {
System.out.println("Average number of email addresses: " +
SAMPLE_DATA.stream()
.map(Person: :emailAddresses)
.mapToDouble(List::size)
.sum()/SAMPLE_DATA.size() * 1.0);

}
}

We got a stream from the SAMPLE_DATA, transformed it to a stream of email
addresses using the map() function, then transformed it to a stream of the
number of email addresses, determined the sum, and finally computed the
average.

Let’s execute the code to see what it reports for the given collection:
Average number of email addresses: 1.5714285714285714

That satisfies the business requirements, but in spite of being in the functional
style, that code looks clumsy, especially the last line. As programmers, we
often look for ways to improve the levels of abstraction. As it turns out, the
DoubleStream interface has an average() method that fits right into what we’re
looking for. Let’s modify the previous code to use that method:

"

System.out.println("Average number of email addresses: " +
SAMPLE_DATA.stream()

.map(Person: :emailAddresses)

.mapToDouble(List::size)

.average()

.orElse(0));

That’s better and less noisy than the previous version. The average() method
returns an Optional<Double>, and we return the value if present or 0 otherwise.

This is reasonable code, and it’s good enough for the given problem. This
version is easy to arrive at, understand, and maintain.

You may be tempted to combine some of the steps—feel free to do so as a
matter of preference, to make the code concise. But keep in mind that the
benefit may be mostly aesthetic, and there may not be any gains from the
performance or maintainability point of view.

Given that, let’s go ahead and combine the steps. We can merge the two map()
operations into one, like so:

"

System.out.println("Average number of email addresses: " +
SAMPLE_DATA.stream()
.mapToDouble(person -> person.emailAddresses().size())
.average()
.orElse(0));

It’s logical to ask whether the operations of map() and average() may be

combined. That question may lead us to explore further into the JDK library.
The collect method accepts as a parameter a Collector that performs the action

of collecting the data into a desired form: a list, a set, or a count, for example.
You can make your own implementation of the Collector interface, but the
creators of the JDK took the time and effort to provide several convenience
functions to create Collector implementations for performing different common

operations. Using these functions you can readily implement your desired
tasks. Let’s see how we can do just that for computing the average number of
email addresses of the people in the given list.

System.out.println("Average number of email addresses: " +
SAMPLE_DATA.stream()
.collect(averagingDouble(person -> person.emailAddresses().size())));

We iterate over the SAMPLE_DATA collection using the stream internal iterator
and perform the reduce operation using the collect method. The collect method
accepts as an argument a Collector that can perform various operations on the
collection of data. In this example, we use a Collector returned by the
averagingDouble method. We direct the averagingDouble method to create a

Collector that computes the average number of email addresses for the people
in the SAMPLE_DATA list.

The output of all four versions of code to compute the average number of
email addresses for the people is the same. Pick the version that you feel most
comfortable with. It’s a good practice to evolve the code into functional style,
one step at a time, and refactor as you discover newer functions or more direct
functions to get you to the solution.

We computed the average as the double type. The Collectors class also has
specialized methods averaginglint and averagingLong to compute the average in
the integer and long types, respectively.

In addition to computing averages, you may use other specialized functions to
compute min and max. If you want to compute the average, min, and max all
at the same time, you might wonder if you have to use each one of the
individual specialized methods separately. That’s one option, but that will
make the code verbose, and you’ll also end up iterating over the same
collection three times instead of just once. Collectors provides specialized
methods to get multiple statistical results from a collection in one shot; use
summarizingDouble, summarizingint, or summarizingLong depending on the type of

result you would like.

transforming/fpij/Statistics.java
package fpij;

import static java.util.stream.Collectors.*;
import static fpij.Person.SAMPLE_DATA;

public class Statistics {
public static void main(String[] args) {
var statistics = SAMPLE_DATA.stream()
.collect(
summarizingDouble(person -> person.emailAddresses().size()));

"

System.out.println("Number of people: " + statistics.getCount());

System.out.println(

http://media.pragprog.com/titles/vsjava2e/code/transforming/fpij/Statistics.java

"

"Number of email addresses:
System.out.println(

"Average number of email addresses:
System.out.println(

"Max number of email addresses:
System.out.println(

"Min number of email addresses:

+ statistics.getSum());

n

+ statistics.getAverage());

"

+ statistics.getMax());

"

+ statistics.getMin());

}
3

The summarizingDouble method takes a lambda expression that tells what we
want to compute the statistics over. It returns an instance of the Collector that
will accumulate the results into an instance of a DoubleSummaryStatistics. Once
the computations are completed in one shot, we can get the desired
summarizing data from the instance of DoubleSummarysStatistics. This instance
provides the min, max, average, count, and sum for the values highlighted by
the lambda expressions passed to the summarizingDouble method.

Let’s take a look at the output of the previous code:

Number of people: 7

Number of email addresses: 11.0

Average number of email addresses: 1.5714285714285714
Max number of email addresses: 3.0

Min number of email addresses: 0.0

We saw how to transform a collection into an average or a summary of
statistics. Next, we’ll look at another common transformation and get a good
grasp of when to use map and when to go for flatMap.

When to Use map vs. flatMap

As programmers get introduced to the functional style of programming,
they quickly learn about and get comfortable using the filter and map

methods of the stream API. Whenever we want to transform a collection of
data into another collection, we quickly reach for the map method. That’s

good, but we have to truly understand when this function is the right choice
and when we may have to go beyond.

Let’s take a look at the code to get a list of first names from a list of
persons.

List<String> firstNames = SAMPLE_DATA.stream()
.map(Person::firstName)
.tolList();

System.out.println(firstNames);
That’s simple code and it produces the desired result:
[John, Sara, Mike, Dev, Sara, Nancy, Jill]

We got the first names of each person in the given list of people. Let’s take
a closer look at the function we passed to the map function as a method
reference. The firstName method of the Person record is a one-fo-one
function. Given a single instance of Person, this method returns a single
string with the value of the first name for that Person instance.

The map method is ideal for transforming one collection into another
collection using a one-to-one function as a parameter. But it may not be the
right choice if we need to use a one-to-many function. Let’s dig into this
further.

Suppose we’re asked to get a list of all email addresses of everyone in a list.
We’ll have to use the emailAddresses() method for this operation. Given a

single instance of Person, the emailAddresses method returns a collection of
email addresses with zero or more elements. Whereas the firstName 1s a one-
to-one function, the emailAddresses is a one-tfo-many function. Using map()
for this problem won’t yield the best results. Let’s see why and look at how
flatMap() will nicely solve the problem.

Let’s examine the consequences of passing a one-fo-many function, the
emailAddresses method, to the map function:

List<List<String>> 1istOfListOfEmailAdddresses = SAMPLE_DATA.stream()
.map(Person: :emailAddresses)
.toList();

System.out.println(listOfListOfEmailAdddresses);

As we iterated over the SAMPLE_DATA collection, we took each element and
applied the emailAddresses method and collected the result into a list using
the toList method. The output of this code is:

[[1, [sara@example.com], [mike@example.com, baker@example.com],
[dev@example.com, shah@example.com], [slee@example.org, lee@example.com],
[nancy@example.com, xie@example.com, nx@example.com], [jill@example.com]]

In the output, we have a list of strings embedded within an outer list. In the
code, we stored the result of the iteration into the variable
listOfListOFEmailAdddresses of type List<List<String>>. If we want a list of email
addresses nested within an outer list, then this code worked spectacularly.
But chances are we may actually want a plain and simple one-level list of
email addresses and not a multilevel list—that, of course, depends on what
the business wants.

Thus, if we have a one-to-many function and use the map method, we’ll end
up with a nested collection. If we want a collection instead, we have to take

an extra step after mapping—we’ll have to flatten the generated
List<List<String>> to a one-level List<String>.

Unlike languages like Ruby and Kotlin, Java doesn’t have a flatten
function, but, for a moment, let’s assume it does so we could write code like
this:

SAMPLE_DATA.stream().map(Person: :emailAddresses).flatten() //hypothetical

We’d first map and then flatten to get a one-level list. That’s good, but it
would still involve making two separate calls. It would be great to merge
the two steps into one step. Looking closely, it’s quite logical that the single
combined step should be called mapFlatten and could be used like so:

SAMPLE_DATA.stream().mapFlatten(Person::emailAddresses) //hypothetical

But there is no mapFlatten, fortunately. That’s because, about the third time
you say the method’s name, you’ll feel a sharp pain in the muscles on your
cheek around the jaw joints. This is due to the awkward movements your
lower jaw (mandible) had to endure to say "map flatten." Having a method
named mapFlatten would have led to repetitive stress injury and turned into
an occupational hazard—oh, dear. To avoid that, the method could be
named flatMap instead of mapFlatten.

The method name flatMap is easier to say, it rolls off the tongue, but
remember it does the operation in reverse—it maps first and then flattens.

As it turns out, even though Java doesn’t have a flatten method, it does have
a flatMap. The lambda expressions that you pass to the flatMap method are
required to return a Stream. Let’s use flatMap to transform a list of people
into a list of their email addresses—one flat list:

List<String> emailAddresses = SAMPLE_DATA.stream()
.flatMap(person -> person.emailAddresses().stream())
.toList();

System.out.println(emailAddresses);

We changed from the call to map to a call to flatMap and made sure the
lambda expression passed to flatMap returns a Stream instead of a List. Let’s
take a look at the output after this change:

[sara@example.com, mike@example.com, baker@example.com, dev@example.com,
shah@example.com, slee@example.org, lee@example.com, nancy@example.com,
xie@example.com, nx@example.com, jill@example.com]

Ah, that’s better. We have a simple one-level list of email addresses instead
of an outer list containing a list of email addresses.

From this example we get a pretty good idea of when to use the map vs.
flatMap. Let’s summarize the observations:

e Use map to transform one collection into another collection using a
one-to-one function

o Use flatMap to transform one collection into another collection using a

one-to-many function

Of course, if you want to use a one-fo-many function to map a collection to
a collection nesting another collection—rare but probable—by all means,
use the map method.

Both map() and flatMap() preserve the order when mapping over an ordered
collection. Whereas the map() preserves the cardinality (that is, transforming
n elements results in an output with n elements), flatMap() doesn’t make any

such guarantees. For example, if a transformation for an element doesn’t
yield any values, then the output is compressed for that element.

Checking for Criteria

Transformation of data doesn’t always have to result in a particular value
like an average or a list. Sometimes a "transformation" may actually be an
act of verifying if all the elements in a collection satisfy some
characteristics, and the result may be a mere boolean value. This may be
perceived as a combination of the filter operation on a collection followed
by reduce. The stream API simplifies and provides nice methods for
transformations like this, with good efficiency. Let’s take a look.

Let’s say we’re asked to find in a given collection if any person has at least
one email address and separately if anyone has at least ten email addresses.
We can use the anyMatch function to check if any element in a collection

satisfies a criteria.

n

System.out.println("Anyone has email address: " +

SAMPLE_DATA.stream()
.anyMatch(person -> person.emailAddresses().size() > 0));

n

System.out.println("Anyone has more than 10 email address: " +

SAMPLE_DATA.stream()
.anyMatch(person -> person.emailAddresses().size() >= 10));

The anyMatch method takes a predicate that checks on the desired criteria for

a given person. The predicate isn’t evaluated for every single element in the
collection. Instead, efficiently, the anyMatch method invokes the predicate on

elements, but only until it sees a true response. The instant it knows there’s

one match, it quits evaluating further because such a computation would be
redundant.

Here’s the output of the previous code:

Anyone has email address: true
Anyone has more than 10 email address: false

If, instead of checking that any element matches the given criteria, you
want to check whether each and every element matches, use the allMatch.
Anytime a call to the predicate returns false for an element, further
processing of the collection is terminated by allMatch—short-circuiting for
efficiency. In addition to getting an efficient implementation, a bigger
benefit of using these methods is that we can focus on expressing our intent
clearly and concisely and leave it to the runtime to figure out the details for
efficient execution. Let’s put this function to use in an example:

System.out.println("Everyone has at least one email address: "
SAMPLE_DATA.stream()
.allMatch(person -> person.emailAddresses().size() > 0));

+

n

System.out.println("Everyone has zero or more email address: " +

SAMPLE_DATA.stream()
.allMatch(person -> person.emailAddresses().size() >= 0));

The output of this evaluation is shown here:

Everyone has at least one email address: false
Everyone has zero or more email address: true

We’re not restricted to only checking for any or all matches. We can also
check if none of the elements satisfy a criteria using the noneMatch method.

In the examples we’ve seen so far, we got a single value or list as the
output. But the Collectors class takes care of us even if we need to transform

a collection into multiple collections.

Partitioning a Collection

Sometimes in the middle of processing a pile of data, we may run into a
business requirement that needs us to split a collection of data into two
groups: elements that satisfy a criteria and those that don’t. For example,
full-time employees vs. part-time, minors vs. adults, electric- vs. gas-
operated machines, honest vs. dishonest politicians, and so on. Well, on
second thought, the last one may not need any computational effort.
Nevertheless, in general, splitting a collection is a task we want to carry out
efficiently.

As we’ve seen before, the filter function can be used to pick elements that
satisfy a condition and discard the rest from a collection. But if we use this
method we’ll have to iterate over the collection twice: once for picking the
elements that satisfy the condition and another time for picking elements
that don’t satisfy the condition. That’s code duplication and twice the effort
—not efficient. This is where the partitioningBy method of the Collectors class

steps in.

Instead of iterating twice using filter, we can iterate just once using
partitioningBy. In this case, we can pass the same predicate to partitioningBy
that we’d have passed to one of the filter method calls. The result of the call
to collect that receives the Collector from partitioningBy will be a Map. The Map
will have two keys: true, which contains values corresponding to the list of
elements that satisfy the predicate given to partitioningBy, and false, which
contains the values that don’t satisfy it.

Let’s see this in action with an example where we split the collection of
persons into two groups: those with multiple email addresses and those with
zero or one email address:

Map<Boolean, List<Person>> thoseWithAndWithoutMultipleEmails =
SAMPLE_DATA.stream()

.collect(partitioningBy(person -> person.emailAddresses().size() > 1));

"

System.out.println("Number of people with at most one email address: " +
thoseWithAndWithoutMultipleEmails.get(false).size());

"

System.out.println("Number of people with multiple email addresses: " +

thoseWithAndWithoutMultipleEmails.get(true).size());

The partitioningBy method was used to iterate over the collection just once,
but the result is two separate lists stored into the Map. We can fetch the two
parts, one after the other, by using the get method of the Map, and passing a
boolean value. The output from the code is shown here:

Number of people with at most one email address: 3
Number of people with multiple email addresses: 4

The partitioningBy function splits a collection into two, but we’ve already
seen that the groupingBy function can split a collection into multiple parts.
Let’s dig a bit deeper into that function next.

Counting Occurrences

In Using the collect Method and the Collectors Class, you saw the amazing
capabilities of the groupingBy function and the mapping function to split a
collection into different groups. We got a taste of the recursive nature of the
Collector there. The collect method takes a Collector as a parameter. We can

pass the response from calling groupingBy, for example. But we saw a
variation where we passed the result of a call to the mapping method as the
second argument to groupingBy. Then again, the mapping function itself
expects a Collector as its second argument. This recursive structure is mind-
blowing:

//pseudocode

...stream()
.collect(groupingBy(...)) //collect takes a Collector

or

...stream()
.collect(groupingBy(..., mapping(...))) //groupingBy may take a Collector

or

...stream()
.collect(groupingBy(..., mapping(..., toList())))
//groupingBy may take a Collector and mapping takes a Collector

In this section we’ll revisit the groupingBy function to explore this recursive
nature of Collector related functions.

In the collection of persons, we have people with different names, but some
may coincidentally have the same first names and/or last names. Suppose

we want to count the number of people in the collection with the same first
name. We can use the groupingBy to group the values in the collection based

on the first name. But instead of storing the values for each group or
mapping to get a specific detail of a person, we can use the counting
Collectors function, like so:

Map<String, Long> namesCount =
SAMPLE_DATA.stream()
.collect(groupingBy(Person::firstName, counting()));

System.out.println(namesCount);

The groupingBy function groups the persons in the collection based on their
first name, as specified by the first argument to groupingBy. Instead of

storing the result into a list, the values in the group are then processed by
the Collector created using the counting method. The result is a count of the

number of people within each group created based on the first names, as we
see in this output:

{Mike=1, Dev=1, John=1, Nancy=1, Sara=2, Jill=1}

The Collector created by the counting function expects the count to be of type
Long. This is inconvenient if our code expects the count to be an int rather
than a long. During the reduce operation, we can collect data using the
counting’s Collector and then go on to transform the Long value into an Integer.
We can accomplish this by using the collectingAndThen method to collect data
and perform an operation on it.

Let’s first change the type of the result, the namesCount variable, from
Map<String, Long> to Map<String, Integer>. Then we’ll wrap the call to counting
with a call to collectingAndThen, like so:

Map<String, Integer> namesCount =
SAMPLE_DATA.stream()
.collect(groupingBy(
Person::firstName, collectingAndThen(counting(), Long::intValue)));

System.out.println(namesCount);

We don’t see any difference in the output shown next, but the type of the
counts 1s Integer instead of Long now:

{Mike=1, Dev=1, John=1, Nancy=1, Sara=2, Jill=1}

The recursive nature of Collector you saw in this section shows the power of
composability. You can repeatedly slice and dice the stream in many ways,
until you get the desired results. To start, we saw that the groupingBy()
method lets us pick a classifier function and use it to map the collection to
lists of values based on the classifier. We then saw, using more complicated
examples, how to treat the list of values generated, on the fly, as a stream
that can be collected further. There’s no limit to how deep you can go with
this, thanks to the composable nature of Collector. It takes some time for the
sheer power of this utility class to sink in. If you play with more examples
on your own, you’ll soon have a stronger grasp of it and be well on your
way to more fully exploiting it.

Counting examines the number of elements, but the operation of summing
is a bit more involved. Let’s see how that’s handled by the Collectors.

Summing Values

By now I’m sure you’ve recognized that Collectors, with so many functions,
may be one of the most comprehensive utility classes in the JDK. If you’re
looking for an intellectual company to hang out with on a Friday evening, I
suggest you invite the Collectors—you won’t be disappointed. In addition to
all the methods we’ve seen, the Collectors utility class also has a function to
sum values. Let’s use that to total the number of email addresses a person
has, while grouping the persons in a collection based on their last name.

var namesAndEmailAddressesCount =
SAMPLE_DATA.stream()
.collect(groupingBy(
Person::lastName,
summingInt(person -> person.emailAddresses().size())));

System.out.println(namesAndEmailAddressesCount);

As we’ve seen before, the first argument to the groupingBy decides the label

for the group. The second argument decides what gets stored for each
group. In this case, it is the sum of all the numbers of email addresses that it
sees for each group. Let’s confirm that by viewing the output:

{X1e=3, Baker=2, Smith=1, Walker=1, Shah=2, Doe=0, Lee=2}

If it gets overwhelming, you’re not alone, the Collectors utility class
relentlessly keeps on giving. Take a break and then continue with the next
couple of examples in this chapter.

Using flatMapping and filtering

You’ve used the filter and flatMap methods on the Stream before. The ing
ending method names are used within the collect call instead of directly on
the Stream.

When we’re in the middle of the reduce operation, collecting data, if we
have to deal with a one-fo-many function, we can use flatMapping instead of
mapping the same way we can choose flatMap instead of map at the stream
processing level—see When to Use map vs. flatMap.

Also, if we’re right in the middle of performing a reduce operation, and we

decide to discard some values that are either not visible at the stream level
or rather inconvenient to deal with there, we can use the filtering operation

to tailor the collect operation.

You can use the two methods, Filtering and flatMapping, independently or
together depending on the problem you’re trying to solve.

Suppose we’re asked to group the persons in a collection based on their last
names and store their email addresses that are ending with .com as values.

The first thought that comes to mind is filter—but the data we want to filter
is not at the Person level but embedded into one of the properties,
emailAddresses. It is rather hard to remove non-".com" addresses at the level
of stream processing.

Instead, we’ll delay dealing with the email addresses until the collect. We
can group based on the last name. Then, we can flatMap, not map, since we

have a one-to-many relationship. Since this is in the collect phase, we’ll use
flatMapping instead of flatMap to store the email addresses into each group.

But we want only email addresses that end with ".com", so we need to use
the filtering method. While the filter operation at the level of a stream is

called filter, when done during collect, it’s called Filtering. Let’s take a look
at the code:

var lastNamesAndEmailAddressesFiltered =
SAMPLE_DATA.stream()
.collect(
groupingBy(Person::lastName,
flatMapping(person -> person.emailAddresses().stream(),
filtering(address -> address.endsWith(".com"), toList()))));

System.out.println(lastNamesAndEmailAddressesFiltered);

Much like flatMap, the FlatMapping method expects the lambda expression
passed to it to return a Stream. In this example, we pass the result of that to
the Ffiltering operation, which lets only those email addresses ending with
".com" go through. We finally pack the resulting email addresses into a list.
Let’s take a glance at the output to confirm the code worked as expected:

{
Xie=[nancy@example.com, xie@example.com, nx@example.com],
Baker=[mike@example.com, baker@example.com],
Smith=[jill@example.com],
Walker=[sara@example.com],
Shah=[dev@example.com, shah@example.com],
Doe=[],
Lee=[lee@example.com]

}

We don’t have any non-".com" email addresses in the output; the one address
ending with ".org" was discarded during the processing.

The previous code looked for all email addresses ending with .com, but we
shouldn’t assume that the email addresses will all be lowercase. Unless we
have a guarantee that the addresses will all be in lowercase, we can easily
take care of any case differences in the email addresses using one more
transformation in the middle of the collect operation. We can change the
following code snippet:

flatMapping(person -> person.emailAddresses().stream()
We can replace it with this code snippet to deal with case differences:

flatMapping(
person -> person.emailAddresses().stream().map(String::tolLowerCase)

This change also shows the power of composability—the ability to
transform the lists that are being generated as part of the collect operation.

The filtering and flatMapping are relatively new functions that were added to
the Collectors class. There’s another newer function in that class, and we’ll
see the awesomeness packed into that next.

Teeing Operations

In almost all the examples we’ve seen in this chapter, we converted a
collection into either a single value or another collection. The only
exception to this so far was the partitioningBy function that produced two
separate collections. That’s powerful but limited to giving us a collection
that satisfies a given criteria and another that doesn’t. What if we want to
take this idea of producing two different results from one iteration, but the
results aren’t directly related to each other or mutually exclusive.

The teeing function creates a Collector that will apply two different

transformations on the data that flows through and finally merges the two
results into one cumulative result.

Suppose we want to get the full name of a person who has the least number
of email addresses and we also want the full name of a person who has the
most number of email addresses. We could easily perform the min operation
by iterating once and the max operation by iterating again. But as you would
agree, that’s not desirable. It’s verbose, duplicated code with multiple
iterations, which won’t make us proud when a colleague issues a pull
request. We should do better and we can with teeing.

We can invoke the teeing function in the argument list for the collect method.
The teeing function takes three parameters. The first is a Collector that works
on the data that flows through the functional pipeline, to perform the first
operation or transformation we desire. The second parameter is also a
Collector that works on the data, just like the first one, but performs a
different operation or transformation. Finally, the third parameter, a
BiFunction, 1s used to combine the results of the two operations to produce a
combined cumulative result. Let’s use teeing to find the min and max as
desired:

record MinMax(String least, String most) {}

var leastAndMostEmailAddressPerson =
SAMPLE_DATA.stream()
.collect(
teeing(
minBy(comparing(person -> person.emailAddresses().size())),
maxBy(comparing(person -> person.emailAddresses().size())),
(min, max) ->
new MinMax(min.map(Person::fullName).orElse(""),
max.map(Person: :fullName).orElse(""))));

System.out.println(leastAndMostEmailAddressPerson);

We created a local record MinMax within the method where it’s needed. The
record makes the intent clear and the code expressive as well. Records are a
great way to create tuples in modern Java and are useful for conveniently
handling a small arbitrary collection of data. The first argument passed to
the teeing function picks a person with the minimum number of email

addresses, using the minBy function of Collectors. The second argument picks
the person with the maximum number of email addresses, using the maxBy

method. If the data that flows is empty, then there may not be a min or max.
Thus the results of minBy and maxBy are Optional<T>. In the function to
combine the two values into a cumulative result, we create an instance of
the local record MinMax with the two components or properties. The first,
least, will hold the full name of the person picked by the minBy of Collector; if

there is no value, then we return an empty string. Likewise, we create the
value for the most. Let’s execute the code and check the output:

MinMax[least=John Doe, most=Nancy Xie]

The code identified a person with the least number of email addresses and
the person with the most.

We’ve seen a number of functions of the Collectors utility class. These
functions may be used individually with the collect method. In addition, we

can also combine the methods to solve more complex problems. Because of
the recursive nature of the Collectors functions, most of the methods can take
additional arguments which are themselves Collectors, as we saw in
Counting Occurrences.

Wrapping Up

Transforming data is a common operation in programming, and the updates
in Java make it possible to meet those challenges with elegance and ease.
The power to perform transformations is packed both in the Streams API and
particularly in the Collectors utility class. In this chapter we saw quite a few
transformations that can be done using different methods in Collectors. We
started with some simple transformations, moved on to more complex ones,
and finally concluded with the facilities available to perform multiple
transformations in one shot, with a single iteration. Take time to get
comfortable with the functions in Collectors as it is one of the most
comprehensive classes in the JDK.

In the next chapter we’ll look at ways to design programs with functional
interfaces and lambda expressions.

Copyright © 2023, The Pragmatic Bookshelf.

Chapter 5

Designing with Lambda
Expressions

OOP has become the de facto standard, but with lambda expressions in
Java, we can pull a few more techniques out of our bag of design tricks. In
Java, OOP and functional style can complement each other and can nicely
interplay. We can use these to create lightweight designs that are flexible to
change and easier to extend.

We can replace interfaces, class hierarchies, and anonymous inner classes
with concise code. We need fewer lines of code to get the same job done,
and we can quickly try out new ideas.

In this chapter lambda expressions bring to life some neat design ideas;
where we often use objects, we’ll instead use lightweight functions. We’ll
use lambda expressions to easily separate logic from functions, making
them more extensible. Then, we’ll apply them to delegate responsibilities
and implement the decorator pattern in just a couple of lines of code.
Finally, we’ll use them to turn mundane interfaces into fluent, intuitive
interfaces.

Separating Concerns Using Lambda Expressions

We often create classes to reuse code; we have good intentions, but it’s not
always the right choice. By using higher-order functions, we can accomplish
the same goals without needing a hierarchy of classes.

Exploring Design Concerns

Let’s start with an example to sum asset values as a way to illustrate the design
idea of separation of concerns. We’ll build it in iterations. The design we first
create will mix multiple concerns in one method, but we’ll quickly refactor the
code to make the method more cohesive. Let’s start with an Asset class.

designing/fpij/Asset.java

public class Asset {
public enum AssetType { BOND, STOCK };

private final AssetType type;
private final int value;

public Asset(final AssetType assetType, final int assetValue) {
type = assetType;
value = assetValue;

}
public AssetType getType() { return type; }

public int getValue() { return value; }
}

Asset 1s a simple JavaBean with two properties: type and value. Suppose we’re

asked to total the values of all the assets given—Iet’s write a method for that in
an AssetUtil class.

designing/fpij/AssetUtil.java

public static int totalAssetValues(final List<Asset> assets) {
return assets.stream()

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Asset.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtil.java

.mapToInt(Asset::getValue)
.sum();

}

We used the convenience of lambda expressions within this function. We
transformed the List of Assets into a Stream, then mapped that into a Stream of

values using the mapTolnt method. Finally, we reduced or totaled the values in
this stream to arrive at a single value using the sum method.

Let’s define some assets to try out the code.

designing/fpij/AssetUtil.java

final List<Asset> assets = Arrays.aslList(
new Asset(Asset.AssetType.BOND, 1000),
new Asset(Asset.AssetType.BOND, 2000),
new Asset(Asset.AssetType.STOCK, 3000),
new Asset(Asset.AssetType.STOCK, 4000)

);

Here’s a call to the totalAssetvalues method using these assets.

designing/Fpij/AssetUtil.java

"

System.out.println("Total of all assets: " + totalAssetValues(assets));

The code will report the total of all the given assets, as we see in the output.
Total of all assets: 10000

It’s good we employed lambda expressions to write the totalAssetValues method
—we used fluent iterators and favored immutability. But let’s shift our
attention to the design of the method itself. It’s tangled with three concerns:
how to iterate, what to total, and how to total. This entangled logic will result
in poor reuse. Let’s see how.

Getting Entangled with the Concerns

Imagine we’re asked to total only the bond assets. After a quick glance at the
totalAssetValues method, we realize it does almost everything we need. Why

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtil.java

not copy and paste that code? After all, there’s a reason the integrated
development environments have gone through the trouble to provide keyboard
shortcuts for that, right?

We’ll leave totalAssetValues intact, but we’ll duplicate it and modify the new
version, like so:

designing/Fpij/AssetUtil.java

public static int totalBondValues(final List<Asset> assets) {
return assets.stream()
.mapToInt(asset ->
asset.getType() == AssetType.BOND ? asset.getValue() : 0)
.sum();

3

The only difference, other than their names, between totalBondValues and
totalAssetValues, is in the lambda expressions we send to the mapTolnt function.

In this newer method, we pick the price of the asset if it’s a bond; otherwise,
we use a 0 for the price. Instead of crowding the logic within that one lambda

expression, we could use a filter method to extract only bonds and leave the
lambda expression that was passed to the mapToint method untouched from the
version copied from the totalAssetValues method.

Let’s call this version of the method and make sure it works.

designing/fpij/AssetUtil.java
System.out.println("Total of bonds: " + totalBondValues(assets));

The output should report only the total of bond prices.

Total of bonds: 3000

As fate may have it, now we’re asked to total only stocks. We know it’s
morally wrong to copy and paste code once more, but no one’s looking.

designing/Fpij/AssetUtil.java

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtil.java

public static int totalStockValues(final List<Asset> assets) {
return assets.stream()
.mapToInt(asset ->
asset.getType() == AssetType.STOCK ? asset.getValue() : 0)
.sum();

}

Let’s call this version of the method too:

designing/fpij/AssetUtil.java
System.out.println("Total of stocks: " + totalStockValues(assets));
The output gives us the desired results: a total of stocks only.
Total of stocks: 7000

Hey, it works and we even used lambda expressions. Time to call it done and
celebrate?

Not quite; if our geeky friends discover the duplicates, they’ll no longer hang
out with us. We need a better design: one that’s DRY,™ one that’1l make
mothers proud.

Refactoring to Separate a Key Concern

Let’s revisit the three methods. They share two out of the three concerns we
mentioned earlier. The iteration and the way to total are the same. The “what
to total” concern is different and is a good candidate to separate out of these
methods.

This seems like a good place for the strategy pattern (see Gamma et al.’s
Design Patterns: Elements of Reusable Object-Oriented Software [GHIVI9S]).
We often create interfaces and classes to implement that pattern in Java, but
here lambda expressions will give us a design edge.

Let’s refactor the three methods into one that takes a functional interface as a
parameter.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtil.java

designing/fpij/AssetUtilRefactored.java

public static int totalAssetValues(final List<Asset> assets,
final Predicate<Asset> assetSelector) {
return assets.stream()
.filter(assetSelector)
.mapToInt(Asset::getValue)
.sum();

}

This refactored version of totalAssetValues takes two parameters: the list of
assets and a Predicate to evaluate whether an asset should be considered.

At first, this may look like what we would’ve done all along in Java, but it’s
different in a few ways. Rather than creating our own interface, we’ve reused
the java.util.function.Predicate interface from the JDK. Also, instead of creating
classes or anonymous inner classes, we can pass lambda expressions to the
refactored version of the totalAssetValue method.

Let’s dig into this refactored version. We filtered the list of assets using the
filter method, then mapped the assets to their prices using the mapTolnt

function, and totaled them. We simply passed the Predicate we received on to
the filter method and used a method reference for the mapTolnt’s argument.

The filter method takes care of picking only the assets we’re interested in.
Under the hood, it calls the given Predicate’s test method to make that decision.
If the selector accepts the asset, we use its value to total further down in the
chain.

With this refactoring, we turned the three normal methods into one higher-
order function that depends on a lightweight strategy to handle a configurable
concern, as the following figure illustrates.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtilRefactored.java

assets

an asset
-7 N
lambda expressions
totalAssetValues
select?
5 strategy
A8 Bl
yep or nope

£

total
Let’s use this refactored version of totalAssetValues to total the values of all the
assets.

designing/Fpij/AssetUtilRefactored.java

"

System.out.println("Total of all assets: " +
totalAssetValues(assets, asset -> true));

We invoke the totalAssetValues function, passing it the list of assets as the first
argument and a succinct lambda expression as the second argument. As the
function iterates over the assets, it invokes the lambda expression for each
asset, asking if the asset’s value should be included in the total. Since we want
to total all the assets, we return a boolean true here.

We’ve used the open/closed principle in this refactored design.'¥! We can
easily change the selection criteria without changing the method, as we’ll see
next.

Let’s reuse the function to compute the total of only bonds and then the total
of only stocks. We’ll pass different lambda expressions as the second
argument to the totalAssetValues function.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtilRefactored.java

designing/fpij/AssetUtilRefactored.java

"

System.out.println("Total of bonds: " +
totalAssetValues(assets, asset -> asset.getType() == AssetType.BOND));

"

System.out.println("Total of stocks: " +
totalAssetValues(assets, asset -> asset.getType() == AssetType.STOCK));

Let’s quickly run these last three calls to the refactored totalAssetValues
function to ensure the output is the same as that of the previous version.

Total of all assets: 10000
Total of bonds: 3000
Total of stocks: 7000

We’ve used lambda expressions to separate the concern from the method. This
is a simple use of the strategy pattern, but without the burden of creating extra
classes. This pattern does require a bit more from the higher-order function’s
users—they have to choose the selection logic. But they can save these lambda
expressions into variables and reuse them if they desire.

We focused on concerns at a method level in this section; let’s apply that
technique at the class level next.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/AssetUtilRefactored.java

Delegating Using Lambda Expressions

> We used lambda expressions and the strategy pattern to separate a concern
from a method. We can also use them to separate a concern from a class. From
a reuse point of view, delegation is a better design tool than inheritance. With
delegation it’s easier to vary the implementation we rely on, and we can plug
in a different behavior more dynamically. This can help vary the behavior of
classes independent of the behavior of the parts they depend on, and make the
design more flexible without forcing a deep class hierarchy.

Creating a Delegate

Rather than delegating part of the responsibility to another class, we can
delegate it to lambda expressions and method references. This will further
reduce class proliferation. Let’s explore that idea with an example; we’ll start
with a class, CalculateNAV, that performs financial calculations with data from a
web service.

designing/fpij/CalculateNAV.java

public class CalculateNAV {
public BigDecimal computeStockWorth(
final String ticker, final int shares) {
return priceFinder.apply(ticker).multiply(BigDecimal.valueOf(shares));

}
//... other methods that use the priceFinder ...

}

In the computeStockWorth method we request the price of a ticker from a (yet to
be defined) priceFinder and determine the net worth based on the number of
shares. The CalculateNAV may have other methods to perform other
calculations, such as yield, with the price returned by the priceFinder. That’s a
reason for the priceFinder to be a field in the class rather than a parameter to
one particular method of CalculateNAv.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/CalculateNAV.java

Now we need the priceFinder; we have to decide what kind of object it will be.

We want to send in a ticker symbol and receive a price, hopefully obtained
from a web service. The java.util.function.Function<T, R> functional interface

seems like a good lightweight fit for our needs. Its abstract method can take in

a value and return another value of possibly a different type. Let’s use that to
define the field.

designing/fpij/CalculateNAV.java

private Function<String, BigDecimal> priceFinder;

In the computeStockWorth method we’re already using the Function interface’s
apply method. Let’s initialize the field through a constructor injection rather
than coupling to an implementation directly within the class. In effect, we’re
using dependency injection and the dependency inversion principle.® Instead
of embedding an implementation, we’ll separate the concern and rely on an
abstraction. This will make the code more extensible and help shorten the
coding and testing time. Here’s the constructor for the CalculateNAV class.

designing/Fpij/CalculateNAV.java

public CalculateNAV(final Function<String, BigDecimal> aPriceFinder) {
priceFinder = aPriceFinder;

}

We’re all set to use CalculateNAV, but we need to implement a call to the web
service. Let’s look into that next.

Stubbing the Web Service

We’re focused on the design of CalculateNAV; we want to quickly run it and get
feedback. When test-driving the design of this class using unit tests, we don’t
want to depend on external services—that would make the tests brittle. We
want to stub the web service.

In general, though, creating a stub (or mock) in Java can be arduous and we
often rely on libraries. Thanks to the lambda expressions and their fluency, this

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/CalculateNAV.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/CalculateNAV.java

just got easier. Let’s create a unit test to try out our computeStockWorth method,
stubbing away the implementation of the apply method.

designing/fpij/CalculateNAVTest.java

public class CalculateNAVTest {

@Test

public void computeStockWorth() {
final CalculateNAV calculateNAV =

new CalculateNAV(ticker -> new BigDecimal("6.01"));

BigDecimal expected = new BigDecimal("6010.00");
BigDecimal actual = calculateNAV.computeStockWorth("GOOG", 1000);
BigDecimal delta = actual.subtract(expected);

assertEquals(0, delta.doubleValue(), 0.001);

Y/
}

Creating the test was effortless. We passed a lambda expression to the
CalculateNAV constructor—this is lightweight stubbing of the web service.
From within the lambda expression, we returned a contrived value for the
price in response to the call. Then, in the test, we asserted that the
computeStockWorth returned the expected result, within a tolerance of 0.001, for
a given ticker and the number of shares.

We can also assert that the ticker passed to the lambda expression is the right
one. We can take this further quite easily to add other tests—for example, an
exception test to ensure code properly handles web-service failures. We can do
all this without spending the time to create the code to talk to the web service,
but instead merely stubbing away the implementation.

Let’s run the test and ensure JUnit reports that it passed.

Test run finished after 53 ms

[3 containers found 1
[0 containers skipped 1
[3 contailners started 1

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/CalculateNAVTest.java

containers aborted 1
containers successful]
containers failed 1
tests found 1
tests skipped 1
tests started]
tests aborted 1
tests successful]
tests failed 1

L T e T s T e T e T s Y e T e T s |
O P O r Or O WwWOo

Testing the code was quick; we easily stubbed away the dependency to the
web service, which helped to rapidly develop and test the code. But we can’t
call it done until we run it with a real web service. That’s our next task.

Integrating with a Web Service

Let’s first invoke the computeStockWorth on an instance of our CalculateNAV:

designing/fpij/CalculateNAV.java
final CalculateNAV calculateNav = new CalculateNAV(FinanceData::getPrice);

System.out.println(String.format("100 shares of Apple worth: $%.2f",
calculateNav.computeStockWorth("AAPL", 100)));

Rather than stubbing away the implementation here, we pass a method
reference to a FinanceData’s getPrice method. We need to implement that
method to complete this task.

Talking to a real web service is easy if we can find a service that will provide
current stock prices. For this example, we’ll use the trial URL from Unicorn
Data Services"™¥ to get the stock price for one ticker symbol. The value for the
api_token that’s hardcoded in the next code works only for select ticker

symbols. If you would like to try the example for different stock ticker
symbols, register with the site to get your own value for the api_token or use an
alternate service you like.

designing/fpij/FinanceData.java

public class FinanceData {

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/CalculateNAV.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/FinanceData.java

public static BigDecimal getPrice(final String ticker) {

try {
final String URL =
"https://eodhistoricaldata.com/api/eod/%s.US?%s8&%s8%s";
final URL url = new URI(String.format(URL,
ticker,
"fmt=json",
"filter=last _close”,
"api_token=0eAFFmMIiFG50r CUuwAKQ814WWFQ67YX")) .toURL();

try(Scanner scanner = new Scanner(url.openStream())) {
return new BigDecimal(scanner.nextLine());

}
} catch(Exception ex) {

throw new RuntimeException(ex);

}
}
}

In the getPrice method we send a request to the web service asking only for the
latest closing price. We convert the String data returned by the service into a
BigDecimal and return. Let’s now exercise the call to the computeStockWorth
method we wrote.

100 shares of Apple worth: $14264.00

In the output, we see the worth of 100 shares of Apple stock at the time the
book was written. If we run the code now, the value may be something
insanely higher—Ilet’s hope.

We have to figure out a way to deal with exceptions that may arise when
calling the web service. Suppressing exceptions with empty catch blocks or
printing them in arbitrary places is pure evil. Rather than dealing with
exceptions within lambda expressions, we have to find the right place to
handle them. That requires us to rethrow the exceptions so they can be handled
upstream.

Lambda expressions and method references can throw checked exceptions
only if those exceptions are declared using the throws clause in the abstract

method of the functional interface they stand in for. Since the Function
interface’s apply method doesn’t specify any expected exceptions, we can’t
directly throw the checked exception in this example. As a work-around, we
wrapped the exception into the unchecked RuntimeException. The lambda
expression now simply passes the exception through, and we’ll have to handle
it upstream in the code. Any runtime exception that’s not handled, of course,
will abruptly terminate the application.

We delegated part of the responsibility of our class to lambda expressions and
method references in this example, as the figure demonstrates.

ticker

L= functional interface

CalculateNAV Function<String, BigDecimal>

price / \
/

lambda expression me!‘hod reference
ticker -> 6.01
stub FinanceData::getPrice

The approach we took helped us to decouple the implementation of the call to
the web service from the method that used the data that is fetched from the
service. This also helped us to easily stub the service to quickly test our
calculate method. Next, we’ll use lambda expressions to combine multiple
behaviors.

Decorating Using Lambda Expressions

So far we’ve avoided creating implementation classes to support the delegate
interfaces. We needed simple implementations for these interfaces, so that
worked out fairly well. Let’s increase our demands on these implementations,

ask them to interact with multiple delegates, and see how lambda expressions
handle that.

Delegation is great, but we can take it further if we can chain delegates to add
behavior. We can then create discrete flavors of behavior and sprinkle them
onto the classes, like the toppings at the ice cream shop.

The decorator pattern is powerful, but programmers often hesitate to use it due
to the burdensome hierarchy of classes and interfaces—Iike FilterinputStream
and FilterOutputStream in the JDK—that are used to implement the pattern (see
Gamma et al.’s Design Patterns: Elements of Reusable Object-Oriented
Software [GHIV95]). We can now realize this pattern with less effort in Java.

In the next example, we’ll chain delegates—using lambda expressions, of
course—to realize the decorator pattern. This will help us see how we can
create a flexible and extensible lightweight design with just a few lines of
code.

Designing Filters

Adding filters to a camera is a good example of chaining behavior or
responsibilities. We may start with no filters, then add a filter, and then a few
more. We want our design to be flexible so that it doesn’t care how many
filters we have. Let’s create an example Camera that’ll use filters to process the
captured colors.

designing/fpij/Camera.java

@SuppressWarnings("unchecked")
public class Camera {

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Camera.java

private Function<Color, Color> filter;

public Color capture(final Color inputColor) {
final Color processedColor = filter.apply(inputColor);
//... more processing of color...
return processedColor;

}

//... other functions that use the filter ...
}

The camera has a field for the filter, a reference to an instance of Function (much
like the delegation example we saw earlier). This filter function can receive a
Color and return a processed Color. Looking at what we have so far, the class
may appear to use only one filter, but with a design tweak, we’ll make it work
with multiple filters.

To achieve this flexibility, we’ll use a method that belongs to a special type
called default methods. In addition to abstract methods, interfaces can have
methods with implementation, marked as default. These methods are
automatically added to the classes that implement the interfaces. This was
done as a trick in Java to enhance existing classes with new methods without
having to change each one of them. In addition, interfaces can have static
methods.

In addition to the apply abstract method, the Function interface has a default
method, andThen, to combine or chain multiple Functions. Within the lambda
expression that stands in for a Function parameter, we can readily use this
method.

The andThen method can combine or chain two Functions together. Once we
combine the functions, a call to apply will hop through the chained Functions.
Let’s take a quick look at how that works. Suppose we combine two Functions,
target and next, like this:

wrapper = target.andThen(next);

Now let’s invoke the apply method on the resulting wrapper.
wrapper.apply(input);
The result of that call is the same as doing this:

temp = target.apply(input);
return next.apply(temp);

Without the temporary variable, it would be like this:
return next.apply(target.apply(input));

Let’s write a setFilters method that takes a varargs of Function; we can send

zero or more filters to this function. In addition, let’s create the constructor for
the Camera.

designing/fpij/Camera.java

public void setFilters(final Function<Color, Color>... filters) {
filter =
Stream.of (filters)
.reduce((filter, next) -> filter.andThen(next))
.orElse(color -> color);

}
public Camera() { setFilters(); }

In the setFilters method, we iterate through the filters and combine them into a
chain using the andThen method. If no filter is given, then the reduce method

(we saw this method in Reducing a Collection to a Single Value) will return an
Optional empty. In that case, we provide a dummy filter as an argument to the

orElse method, and it simply returns the color that the filter would receive for
processing. If we provide filters to the setFilters method, the filter field will
refer to the first filter—an instance of Function<Color, Color>—that’s at the head
of a chain of filters.

We provided a lambda expression as a parameter to the orElse method of the
Optional that the reduce method returned. The Function interface has an identity
static method that does the same operation as the lambda expression we wrote.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Camera.java

Instead of creating our own lambda expression, we can use a reference to that
method instead. To do so, we need to change

.orElse(color -> color);
to
.orElseGet(Function::identity);

In addition to the setFilters method, we have a constructor that simply sets the
filter to the dummy filter I mentioned previously.

Our design of the camera with filters is complete, so let’s try it out. We’ll use
1t with no filters first, but we need a Camera instance to start. Let’s create one

and assign it to a local variable camera.

designing/fpij/Camera.java

final Camera camera = new Camera();
final Consumer<String> printCaptured = (filterInfo) ->
System.out.println(String.format("with %s: %s", filterInfo,
camera.capture(new Color(200, 100, 200))));

To see the camera in action, we need a convenience function to print the
capture method’s results. Rather than creating a standalone static method, we
created a lambda expression to stand in for an instance of the Consumer
functional interface, right here within the main method. We chose a Consumer

because printing consumes the value and doesn’t yield any results. This
function will invoke capture with the colors 200, 100, and 200 for the red,

green, and blue parts of color, respectively, and print the resulting
filtered/processed output. Let’s ask the camera to capture the given colors.

designing/fpij/Camera.java
printCaptured.accept("no filter");

Since no filters are given, the captured color should be the same as the input;
let’s verify that in the output.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Camera.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Camera.java

with no filter: java.awt.Color[r=200,g=100,b=200]

Adding a Filter

Adding a filter is a breeze; we simply have to pass the filter to the setFilters

method. The filter can be a simple lambda expression or a method reference.
We can use brighter on the java.awt.Color class as a filter, so let’s simply pass a
reference of this method to the setFilters method.

designing/fpij/Camera.java

camera.setFilters(Color::brighter);
printCaptured.accept("brighter filter");

Let’s look at the result of the capture with this filter in place.
with brighter filter: java.awt.Color[r=255,g=142,b=255]

The input color has been brightened. As we can see, the output RGB values
are higher than the corresponding values in the input. Let’s quickly change the
filter to a darker shade.

designing/fpij/Camera.java

camera.setFilters(Color::darker);
printCaptured.accept("darker filter");

This should reduce the brightness of the input, as we can see in the output.

with darker filter: java.awt.Color[r=140,g=70,b=140]

Adding Multiple Filters

The design is good so far; now let’s mix two filters—a brighter one and a
darker one—to see the effect of chaining.

designing/fpij/Camera.java

camera.setFilters(Color::brighter, Color::darker);
printCaptured.accept("brighter & darker filter");

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Camera.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Camera.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Camera.java

We passed two method references to the setFilters method—just essence, no
ceremony. (We could’ve passed in lambda expressions instead of method
references.) The two filters are now chained, and the filter reference in the
Camera instance is referring to the head of the chain. A call to the capture

method will now route the color processing through each of these filters, as we
see in the following figure:

input color > _
1 | capture > filter— — »| filter 1 — —— | filtern S e
processed color 3 9 eeo \

S~ lambda expressions /
Gaiegia | T R e e i e e s e =

With this filter combination, the input color goes through a series of
transformations or filtering. First, it passes through the bright filter, which
brightens the shades, and then it goes through the dark filter, which makes the
colors darker again, as we can see from the output.

with brighter & darker filter: java.awt.Color[r=178,9=99,b=178]

Adding more than two filters is no different; we simply pass more comma-
separated filters, either as method references or as lambda expressions.

We designed object chaining and implemented the decorator pattern without
having to create a hierarchy of classes. The magic happens in just a couple of
lines of code within the setFilters method. We made good use of the JDK

Function interface here. We saw lambda expressions and method references
really shine in this example.

We ran into another Java feature in this section: the default methods. Let’s take
a closer look at them next.

A Peek into the default Methods

In the design we explored in the previous section, we used the default
methods. default methods aren’t intrinsically tied to lambda expressions or

the functional style of programming. But many of the convenience methods
in collections wouldn’t have been possible without them.

Interface evolution is the key motivation behind default methods. The API
defined in the early *90s was a good idea back then, but for the platform to
stay relevant it needs to evolve. The default methods provide a
nondisruptive path for that. Moving forward, when we design with
interfaces, we’ll likely use default methods. Let’s examine their behavior

and how they intermix with classes.

The Java compiler follows a few simple rules to resolve default methods:

1. Subtypes automatically carry over the default methods from their
supertypes.

2. For interfaces that contribute a default method, the implementation in a
subtype takes precedence over the one in supertypes.

3. Implementations in classes, including abstract declarations, take
precedence over all interface defaults.

4. If there’s a conflict between two or more default method

implementations, or there’s a default-abstract conflict between two
interfaces, the inheriting class should disambiguate.

To get a better understanding of these rules, let’s create an example with
default methods.

public interface Fly {

default void takeOff() { System.out.println("Fly::takeOff"); }
default void land() { System.out.println("Fly::land"); }
default void turn() { System.out.println("Fly::turn"); }
default void cruise() { System.out.println("Fly::cruise”); }

public interface FastFly extends Fly {
default void takeOff() { System.out.println("FastFly::takeOff"); }
}

public interface Sail {
default void cruise() { System.out.println("Sail::cruise”); }
default void turn() { System.out.println("Sail::turn"); }

}

public class Vehicle {
public void turn() { System.out.println("Vehicle::turn"); }

}

All the interfaces in this example have default methods. The FastFly interface
extends from the Fly interface and overrides the takeOff method, providing
its own default implementation. FastFly also carries forward the other three
methods of the Fly interface (rule 1). Any class or interface inheriting from
FastFly will see the implementation of takeOff in FastFly, and not the
implementation in Fly (rule 2).

All three interfaces have implementations for the cruise and turn methods. In
addition, the Vehicle class implements the turn method.

Let’s create a class that inherits these types.

public class SeaPlane extends Vehicle implements FastFly, Sail {
private int altitude;
/). ..
public void cruise() {
System.out.print("SeaPlane: :cruise currently cruise like: ");
if(altitude > 0)
FastFly.super.cruise();
else
Sail.super.cruise();

}
}

SeaPlane extends Vehicle and implements the FastFly and Sail interfaces. Let’s
take a closer look at the implementation of this class.

There appears to be a conflict for the turn method, but that’s not the case.
Even though the turn method 1s present in the interfaces, the implementation
in the superclass Vehicle takes precedence here (rule 3), so there’s no
conflict to resolve.

But the Java compiler will force us to implement the cruise method in the
SeaPlane class because the default implementations in the FastFly (derived
from Fly) and sail interfaces conflict (rule 4).

From within the overridden methods, we can call back into the
corresponding default methods. For example, from within the cruise method,
we can see how to call the default methods of both the FastFly and the Sail
interfaces.

We can see the logic of why we’d need to specify the interface name, like
FastFly or Sail, when invoking the default methods from within the overriding

method. At first glance, the use of super may appear superfluous, but it’s
required. That’s how the Java compiler knows if we’re referring to a default
method (when super is used) or a static method in the interface. In Java,
interfaces can optionally have default methods and static methods, possibly
with the same name.

To see the behavior of the default methods in action, let’s create an instance
of SeaPlane and invoke the methods on it.

SeaPlane seaPlane = new SeaPlane();
seaPlane. takeOff();
seaPlane.turn();

seaPlane.cruise();

seaPlane.land();

Before running the code on the computer, we’ll run it mentally; let’s go
over the code to ensure we’ve understood the rules.

The call to the takeOff method should go to the implementation in the FastFly
interface (rules 1 and 2). The implementation of the turn method in Vehicle
should be picked for the call to the turn method on the SeaPlane, even though
these are available on the interfaces (rule 3). Since we were forced to
implement the cruise method on the SeaPlane, that specific implementation of
the method should be invoked for the call to cruise (rule 4). Finally, the call
to the land method will land on the implementation in the Fly interface (rule

D).

We can now compare the output we got from the mental run of the code
with the output from the run on the computer:

FastFly::takeOff

Vehicle::turn

SeaPlane::cruise currently cruise like: Sail::cruise
Fly::land

We used default methods in interfaces, whereas in the past, interfaces were
allowed to have only abstract methods. Seeing this, it may seem that
interfaces have evolved into abstract classes, but that’s not the case.
Abstract classes can have state, but interfaces can’t—this eliminates the
concerns of the “diamond problem” of collision from multiple inheritance.
Also, we can inherit (implement) a class from multiple interfaces, but we
only inherit (extend) from at most one abstract class. The good old
recommendation to favor interfaces over abstract classes where possible is
still a nice rule to follow. And now, thanks to the ability to have default
methods, interfaces are even more attractive and powerful than before.

Now that we understand the behavior of default methods, let’s shift our
attention back to lambda expressions. So far in this chapter, we’ve seen the

different forms the lambda expressions can take and the multiple design
goals we were able to achieve using them. Next, we’ll cover how they can
influence a class’s interface.

Creating Fluent Interfaces Using Lambda
Expressions

We’ve been looking at the internals of methods and classes in this chapter.
Now let’s shift our focus to see how lambda expressions can help shape a
class’s skin or interface. We can use these techniques to structure the API of
our classes to make it more intuitive and fluent for programmers to use.

Starting with a Design

Let’s start with a simple Mailer class and evolve the design of its interface.

designing/Fpij/Mailer.java

public class Mailer {
public void from(final String address) { /*... */ }
public void to(final String address) { /*... */}
public void subject(final String line) { /*... */ }
public void body(final String message) { /*... */ }
public void send() { System.out.println(”sending..."); }

Y/
}

The class looks routine—a bunch of void methods. Let’s use this class to
configure and send out an email.

designing/fpij/Mailer.java

Mailer mailer = new Mailer();
mailer.from("build@agiledeveloper.com");
mailer.to("venkats@agiledeveloper.com");
mailer.subject("build notification");
mailer.body("...your code sucks...");
mailer.send();

We’ve all encountered code like this, but it has a couple of smells. First, it’s
noisy; we had to repeat the mailer so many times. Second, at the end of the call,

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Mailer.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/Mailer.java

what do we do with the mailer instance? Can we reuse it for another set of
calls, or is it disposable? How do we know?

One answer may be “go read the documentation,” but that doesn’t help the
“put that ‘read me’ document away and start tinkering with stuff” types among
us. Let’s design this API so it’s more intuitive and fluent.

Using Method Chaining

We discussed two smells: repeated use of mailer reference and unclear object
lifetime. Let’s address the first smell now.

Rather than repeating the reference, it would be great to continue a
conversational state on a context object. We can achieve this using a simple
method chaining or cascade method pattern. In this pattern, rather than having
void methods, we make each method return an instance. This returned object is
often this, the object on which the method is invoked. We use this returned
object to build on or chain the subsequent call. Let’s evolve the Mailer to use
this design; we’ll call the new version the MailBuilder. Each method of the
class, except the terminal methods like send, returns a reference instead of
being void.

designing/fpij/MailBuilder.java

public class MailBuilder {
public MailBuilder from(final String address) { /*... */; return this;
public MailBuilder to(final String address) { /*... */; return this;
public MailBuilder subject(final String line) { /*... */; return this;
public MailBuilder body(final String message) { /*... */; return this;
public void send() { System.out.println(”sending..."); }

S W U

Y/
}

The new interface will be less noisy to use; we get rid of the repetitive variable
name and nicely chain the calls.

designing/fpij/MailBuilder.java

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/MailBuilder.java
http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/MailBuilder.java

new MailBuilder()
.from("build@agiledeveloper.com")
.to("venkats@agiledeveloper.com")
.subject("build notification")
.body("...1t sucks less...")
.send();

We started with a MailBuilder instance and chained the calls to the functions, in
sequence, and on the instance that the previous call returned. The method
chaining, or a train wreck as some like to call it, passed the state from one call
to the next as we moved through the chain. The terminal method, send in this

example, wrapped up the sequence.

Even though this design reduced the noise, it has a few disadvantages. The new
keyword sticks out, reducing the API’s fluency and readability. The design
doesn’t prevent someone from storing the reference from new and then
chaining from that reference. In the latter case, we’d still have the issue with
object lifetime, the second smell I mentioned earlier. Also, there are a lot of
corner cases—for example, we have to ensure methods like from are called
exactly once.

We need to refine the design further to make it more intuitive and fluent. Let’s
call our friends, the lambda expressions, for help.

Making the API Intuitive and Fluent

Let’s evolve the design further. This time we’ll combine the method-chaining
approach with lambda expressions. We’ll call this version of mailer

FluentMailer.

designing/fpij/FluentMailer.java

public class FluentMailer {
private FluentMailer() {}

public FluentMailer from(final String address) { /*... */; return this;
public FluentMailer to(final String address) { /*... */; return this;
public FluentMailer subject(final String line) { /*... */; return this;

}
}
}
public FluentMailer body(final String message) { /*... */; return this; }

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/FluentMailer.java

public static void send(final Consumer<FluentMailer> block) {
final FluentMailer mailer = new FluentMailer();
block.accept(mailer);
System.out.println("sending...");

}

Y/
}

Just like in the method-chaining version, all the nonterminal methods return
the instance. In addition, in this version we made the constructor private. This

will disallow direct object creation. We also made the terminal method, send, a
static method and it expects a Consumer as a parameter.

Rather than creating an instance, users will now invoke send and pass a block
of code. The send method will create an instance, yield it to the block, and,

upon return, complete any required validations and perform its final send
operations.

This may feel a bit roundabout, but we removed the smells we discussed
earlier. The object’s scope is confined within the block, and once we return
from the send method, the reference is gone. We can also benefit from the
fluent method chaining within the block, without the sour new keyword
sticking out. Let’s use this new API in an example.

designing/fpij/FluentMailer.java

FluentMailer.send(mailer ->
mailer.from("build@agiledeveloper.com")
.to("venkats@agiledeveloper.com")
.subject("build notification")
.body("...much better..."));

We invoked the send method and passed a lambda expression to it. Within the

lambda expression, we received an instance of the mailer and invoked the
desired chain of methods on it.

http://media.pragprog.com/titles/vsjava2e/code/designing/fpij/FluentMailer.java

The instance’s scope is fairly easy to see: we get it, work with it, and return it.
For that reason, this is also called the loan pattern.

From a mundane repetitive interface, we evolved the design to support a fluent
interface. This design is useful in a number of areas in applications. For
example, we can use it to configure mailers, to specify database-connection
parameters, or anywhere we need to build a series of states on an instance, but
in a controlled manner.

Wrapping Up

Lambda expressions aren’t just a language feature; they turn into a powerful
yet lightweight design tool. Instead of spending the effort to create a
hierarchy of interfaces and classes, we can reuse functional interfaces and
pass around lambda expressions and method references where possible.
This technique can help us easily create delegates to quickly implement the
strategy pattern at both the method and the class level. We can also use
lambda expressions to implement the decorator pattern. By turning lambda
expressions into controlled workhorses, we can create easy-to-read, fluent
interfaces as well as configuration details in code.

In the next chapter we’ll explore a variation of the loan pattern; we’ll use
lambda expressions to exert greater control when managing object lifetime.

Footnotes

[Z1 http://c2.com/cgi/wiki?DontRepeatYourself

[8] http://en.wikipedia.org/wiki/Open/closed_principle

(21 http://c2.com/cgi/wiki?DependencylnversionPrinciple

[10] https://eodhistoricaldata.com

Copyright © 2023, The Pragmatic Bookshelf.

http://c2.com/cgi/wiki?DontRepeatYourself
http://en.wikipedia.org/wiki/Open/closed_principle
http://c2.com/cgi/wiki?DependencyInversionPrinciple
https://eodhistoricaldata.com/

Chapter 6

Working with Resources

We make extensive use of resources when programming—we access files,
communicate to remote services, use database connections, and so on. And,
that often involves working with issues like the timely release of the
resources, locking for synchronization, and handling exceptions that may
arise. Dealing with all of these concerns at the same time can get daunting.
In this chapter we’ll see how we can structure our code, using lambda
expressions, to alleviate the pain of managing resource access in general—
that is, to deal with the mundane tasks that we’d better not get wrong.

We may have been led to believe that the JVM automates all garbage
collection (GC). It’s true that we could let the JVM handle it if we’re only
using internal resources. But GC is our responsibility if we use external
resources, such as when we connect to databases, open files and sockets, or
use native resources.

Java provides a few options to properly clean up resources, but, as we’ll see
in this chapter, none are as effective as what we can do with lambda
expressions. We’ll use lambda expressions to implement the execute around
method (EAM) pattern, which gives us better control over the sequencing of
operations.'!! By using this pattern, as we’ll see, we move the burden of
managing the resource lifetime from the user of a piece of code to its
developer who has better knowledge and control over those details.

We’ll then take the ideas of managing resources further to streamline more
operations around the use of resources. We’ll see how to manage the critical
and error-prone task of managing locks in a safe way. Finally, we’ll look at
how these ideas can also help us with writing exception tests in a concise
and elegant way.

Cleaning Up Resources

GC can be a pain to deal with. A company asked me to help debug a problem
—one programmer described the issue as “it works fine...most of the time.”
The application failed during peak usage. It turned out that the code was
relying on the finalize method to release database connections. The JVM
figured it had enough memory and opted not to run GC. Since the finalizer
was rarely invoked, it led to external resource clogging and the resulting
failure.

We need to manage situations like this in a better way, and lambda expressions
can help. Let’s start with an example problem that involves GC. We’ll build
the example using a few different approaches, discussing the merits and
deficiencies of each. This will help us see the strengths of the final solution
using lambda expressions.

Peeking into the Problem

We’re concerned with external resource cleanup, so let’s start with a simple
example class that uses a Filewriter to write some messages.

resources/fpij/FileWriterExample.java

public class FileWriterExample {
private final FileWriter writer;

public FileWriterExample(final String fileName) throws IOException {
writer = new FileWriter(fileName);

}

public void writeStuff(final String message) throws IOException {
writer.write(message);

}

public void finalize() throws IOException { //Deprecated in Java 9
writer.close();

}

/).

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java

In the FilewriterExample class’s constructor, we initialize an instance of
FileWriter, giving it the name of a file to write to. In the writeStuff method we
write the given message to the file using the instance of the Filewriter we
created. Then, in the finalize method we clean up the resource, calling close on
it with the hope that it will flush the content to the file and close it.

At first glance, the code seems reasonable. After all, classes written in many
Java applications use the finalize method to clean up resources, a standard

practice until Java 8, and a lot of legacy code still uses that function. In reality,
expecting the resources to be cleaned up automatically is rather wishful
thinking.

If the JVM finds that sufficient memory is available, then the GC won’t be
invoked and thus the finalize method won’t be called for a long time. This will

result in the resource not being released in a timely manner and can also lead
to resource contention issues. This is one of the reasons why the Ffinalize

method was deprecated in Java 9, to encourage programmers to move away
from using that method. We’ll look at alternatives to the finalize method

shortly, but first, let’s write a main method to use the FilewriterExample class.

resources/fpij/FileWriterExample.java

public static void main(final String[] args) throws IOException {
final FileWriterExample writerExample =
new FileWriterExample("peekaboo. txt");

writerExample.writeStuff("peek-a-boo");

}

We created an instance of the FilewriterExample class and invoked the writeStuff
method on it, but if we ran this code, we’d see that the peekaboo.txt file was
created but it’s empty. The finalizer never ran; the JVM decided it wasn’t
necessary as there was enough memory. As a result, the file was never closed,
and the content we wrote was not flushed from memory.

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java

If we create several instances of the FilewriterExample class in a long-running

process, we’ll end up with several open files. Many of these files won’t be
closed in a timely manner since the JVM has a lot of memory and sees no
reason to run GC.

Let’s fix the problem by adding an explicit call to close, and let’s get rid of the
finalize method.

Say Farewell to finalize
The Ffinalize method was deprecated in Java 9. Take a few minutes to examine
your own production code to see if the Finalize method is still present in any of the
classes. If you find them, note the occurrences down as technical debt and
schedule time to clean those up using the techniques you learn in this chapter.

Closing the Resource

Even though the object’s memory cleanup is still at the mercy of the JVM’s
GC, we could convince ourselves that the external resources used by an
instance may be quickly cleaned up with an explicit call. That, unfortunately,
will result in more issues. To see this, let’s write a close method.

resources/fpij/FileWriterExample.java

public void close() throws IOException { //Not a good solution
writer.close();

}

In the close method, in turn, we call the Filewriter instance’s close method. If we
used any other external resources in the FilewriterExample, we can clean them
up here, as well. Let’s make explicit use of this method in the main method.

resources/fpij/FileWriterExample.java

final FileWriterExample writerExample =
new FileWriterExample("peekaboo.txt");

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java
http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java

writerExample.writeStuff("peek-a-boo");
writerExample.close();

If we run the code now and look into the peekaboo.txt file, we’ll see the peek-a-
boo message. The code works, but it’s far from perfect.

The explicit call to close cleans up any external resources the instance uses as

soon as we indicate the instance is no longer needed. But we may not reach
the call to the close method if there was an exception in the code leading up to

it. We’ll have to do a bit more work to ensure the call to close happens. Let’s
take care of that next.

Ensuring Cleanup

We need to ensure the call to close happens whether or not there’s an
exception. To achieve this, we can wrap the call in a finally block.

resources/fpij/FileWriterExample.java

final FileWriterExample writerExample =
new FileWriterExample("peekaboo. txt");

try { //Rather verbose
writerExample.writeStuff("peek-a-boo");
} finally {
writerExample.close();

}

This version will ensure resource cleanup even if an exception occurs in the
code, but that’s a lot of effort and the code is verbose and smelly. Java 7
introduced a feature to reduce such smells, as we’ll see next.

Using ARM

The automatic resource management (ARM) is a feature that has been
available since Java 7 and is useful for automatically releasing a resource at
the end of its usage. When used properly, ARM can reduce verbosity in code.
Rather than using both the try and finally blocks that we used in the previous
example, we can use the ARM feature with a special form of the try block with

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java

a resource attached to it. When this syntax is used, the Java compiler takes
care of automatically inserting, in the bytecode, the finally block and a call to
the close method.

Let’s see how the code would look with ARM; we’ll use an instance of a new
FileWriterARM class.

resources/fpij/FileWriterARM.java

try(final FileWriterARM writerARM = new FileWriterARM("peekaboo.txt")) {
writerARM.writeStuff("peek-a-boo");

System.out.println("done with the resource...");

}

We created the instance of the class FilewriterARM within the safe haven of the
try-with-resources form and invoked the writeStuff method within its block.
When we leave the scope of the try block, the close method is automatically
called on the instance/resource managed by this try block. For this to work, the
compiler requires the managed resource class to implement the AutoCloseable
interface, which has just one method, close.

The rules around AutoCloseable have gone through a few changes in Java. First,
Stream implements AutoCloseable and, as a result, all input/output (I/O)-backed
streams can be used with try-with-resources. The contract of AutoCloseable has

been modified from a strict “the resource must be closed” to a more relaxed
“the resource can be closed.” If we’re certain that our code uses an I/O
resource, then we should use try-with-resources.

Here’s the FilewriterARM class used in the previous code.

resources/fpij/FileWriterARM.java

public class FileWriterARM implements AutoCloseable {
private final FileWriter writer;

public FileWriterARM(final String fileName) throws IOException {
writer = new FileWriter(fileName);

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterARM.java
http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterARM.java

}

public void writeStuff(final String message) throws IOException {
writer.write(message);

}

public void close() throws IOException {
System.out.println(“close called automatically...");
writer.close();

}

/.
}

Let’s run the code and look at the peekaboo.txt file and the console for the
code’s output.

done with the resource...
close called automatically...

We can see the close method was called as soon as we left the try block. The
instance we created when entering the try block isn’t accessible beyond the

point of leaving the block. The memory that instance uses will be garbage-
collected eventually based on the GC strategy the JVM employs.

The previous code using ARM is concise and charming, but the programmers
have to remember to use it. The code won’t complain if we ignore this elegant
construct; it will simply create an instance and call methods like writeStuff

outside of any try blocks. If we’re looking for a way to ensure timely cleanup
and avoid programmer errors, we have to look beyond ARM, as we’ll do next.

Using the Execute Around Method Pattern to Clean
Up Resources

ARM was a good step in the right direction, but it’s not very effective—never
trust anything with the word management in it, right? Just kidding. Anyone
using our class has to figure out that it implements AutoCloseable and remember
to use the try-with-resources construct. It’d be great if the API we design
could guide the programmers and, with the compiler’s help, point them in the
right direction. We can easily achieve that with lambda expressions and the
execute around method (EAM) pattern.

EAM is a powerful pattern that makes use of lambda expressions to wrap a
piece of code. As the name alludes to, we can design to perform a pre-op and a
post-op around the execution of the code. Thus the user of our design can
focus on their business logic and delegate the details of managing the creation
and the release of resources to the designers of the code. With the help of this
pattern, resource creation can be performed before the execution of the lambda
expression, and resource cleanup can be streamlined to run automatically after
the execution of the lambda expression. It sounds intriguing and I’m sure
you’re eager to see this in action. Let’s rework the problem at hand to use
EAM.

Preparing the Class for Resource Cleanup

We’ll design a class, FilewriterEAM, that encapsulates heavy resources that need
timely cleanup. In this example we’ll use the Filewriter to represent that
resource. Let’s make both the constructor and the close methods private—that’1l

grab the attention of programmers trying to use the class. They can’t create an
instance directly, and can’t invoke the close on it either. Before we discuss it

further, let’s implement the design devised so far.

resources/fpij/FileWriterEAM.java

public class FileWriterEAM {

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterEAM.java

private final FileWriter writer;

private FileWriterEAM(final String fileName) throws IOException {
writer = new FileWriter(fileName);

}

private void close() throws IOException {
System.out.println("close called automatically...");
writer.close();

}

public void writeStuff(final String message) throws IOException {
writer.write(message);

}
Y/
}

The private constructor and the private close methods are in place, along with
the public method writeStuff.

Using Higher-Order Functions

Since the programmers can’t directly create an instance of FileWriterEAM, we
need a factory method for them to use. Unlike the regular factory methods that
create an instance and throw it across the fence, our method will yield it to
users and wait for them to finish their work with it. We’ll use the help of
lambda expressions to do this, as we’ll see soon. Let’s write this method first.

resources/fpij/FileWriterEAM.java

public static void use(final String fileName,
final UseInstance<FileWriterEAM, IOException> block) throws IOException {

final FileWriterEAM writerEAM = new FileWriterEAM(fileName);

try {
block.accept(writerEAM);

} finally {
writerEAM.close();

}

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterEAM.java

In the use method, we receive two parameters, fileName and a reference to an
interface Uselnstance (Which we haven’t defined yet). Within this method we
Instantiate FilewriterEAM, and within the safe haven of the try and finally block
we pass the instance to an accept method of our soon-to-be-created interface.
When the call returns, we invoke the close method on the instance in the finally
block. Instead of using this construct, we could use ARM within the use

method. In any case, the users of our class don’t have to worry about these
details.

The use method represents the structure of the execute around method pattern.
The main action here is the use of the instance within the accept method, but
the creation and cleanup operations nicely surround this call.

Before we can exercise this code, let’s take care of the last missing piece, the
Uselnstance interface.

resources/fpij/Uselnstance.java

@Functionallnterface
public interface UseInstance<T, X extends Throwable> {
void accept(T instance) throws X;

}

Uselnstance is a functional interface, an ideal candidate for the Java compiler to
automatically synthesize from lambda expressions or method references. We
marked the interface with the @Functionalinterface annotation. This is purely
optional, but useful for conveying our intent more explicitly. Whether we use
this interface or not, the compiler will automatically recognize functional
interfaces structurally, as we discussed in 4 Little Sugar to Sweeten.

We could’ve used a java.function.Consumer interface instead of defining our own
Uselnstance; but, since the method may throw an exception, we needed to

indicate that in our interface. Lambda expressions can only throw checked
exceptions defined as part of the signature of the abstract method being

synthesized (see Chapter 10, Error Handling). We created the Uselnstance

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/UseInstance.java

interface so that the accept method can accept an instance of a generic type; in
this example, we tied it down to an instance of a concrete FilewriterEAM. We

also designed it so this method implementation could potentially throw a
generic exception X—again, in this example tied to the concrete class
IOException.

Using the Design for Instance Cleanup

As the class’s designers, we put in a bit more effort than simply implementing
the AutoCloseable interface. This extra investment on our part will quickly pay
recurring dividends: each time programmers use our class, they’ll get instant
resource cleanup, as we can see here:

resources/fpij/FileWriterEAM.java

FileWriterEAM.use("eam. txt", writerEAM -> writerEAM.writeStuff("sweet"));

First, our class’s users can’t create an instance directly. This prevents them
from creating code that would postpone the resource cleanup beyond its
expiration point (unless they go through extreme measures, such as using
reflection, to defeat the mechanism). Since the compiler will prevent calls to
the constructor or the close method, the programmers will quickly figure out

the benefit of the use method, which yields an instance for their use. To invoke
use, they can use the short-and-sweet syntax that lambda expressions provide,
as we saw in the previous code.

Let’s run this version of code and look at the eam.txt file it creates.
sweet

Let’s also glance at the console for the output from the code.
close called automatically...

We can see that the file has the proper output and that the resource cleanup
happened automatically.

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterEAM.java

In the example, we use the given instance writerEAM for just one call within the
lambda expression. If we have to perform more operations with it, we can
send it off to other functions as an argument. We can also perform a few
operations on it, right within the lambda expression, by using multiline syntax.

resources/fpij/FileWriterEAM.java

FileWriterEAM.use("eam?2. txt", writerEAM -> {
writerEAM.writeStuff("how");
writerEAM.writeStuff("sweet");

1)

We can place multiple lines of code within a lambda expression by wrapping
them in a {} block. If the lambda expression is expected to return a result, be

sure to place a return at the appropriate expression. The Java compiler gives us

the flexibility to write just one line or wrap multiple lines, but we should keep
lambda expressions short.

Long methods are bad, but long lambda expressions are evil—we’d lose the
benefit of code that’s concise, easy to understand, and simple to maintain.
Instead of writing long lambda expressions, we should move the code into
other methods and then use method references for them if possible, or invoke
them from within a lambda expression.

In this example, the Uselnstance’s accept is a void method. If we were interested
in returning some results to the caller of the use method, we’d have to modify
this method’s signature to place an appropriate return type, such as a generic
parameter R. If we were to make this change, then the Uselnstance would be
more like the Function<U, R> interface than like the Consumer<T> interface. We’d
also have to change the use method to propagate the return results from the
modified apply method.

We used lambda expressions to implement the execute around method pattern.
We can benefit from this pattern when designing classes that require a prompt
cleanup of resources. Rather than shifting the burden to our class’s users, we

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterEAM.java

put in a bit more effort, which made their lives much easier and the behavior
of our code a lot more consistent.

This pattern isn’t restricted to the cleanup of resources. For me, the pattern
came to life on a project where my team had to perform operations within the
bounds of transactions. Rather than creating and managing transactions all
over the code, we wrapped them into a nice runWithinTransaction method. The
method’s callers received a transaction instance, and when they returned, the
method took care of checking the status as well as performing actions such as
committing or rolling back the transaction and logging.

We used lambda expressions and the execute around method pattern to
manage resources. Next, we’ll use them to manage locks.

Managing Locks

Locks play a critical part in concurrent Java applications since they’re
essential to ensure the correctness of changes to shared mutable variables from
multiple threads. In this section we’ll use lambda expressions to gain finer
control over locks and open the doors to unit-test the proper locking of critical
sections.

synchronized 1s an age-old keyword used to provide mutual exclusion. A
synchronized block of code, such as synchronized { ...}, is a realization of the

execute around method pattern. This pattern has been around since Java 1.0,
but it was restricted and bound to the synchronized keyword in Java. Lambda

expressions have now unleashed this pattern’s power.

synchronized has some shortcomings—see Java Concurrency in

Practice [Goe06], by Brian Goetz, and Programming Concurrency on the
JVM [Subl1]. First, it’s hard to time out a call to synchronized, and this can
increase the chance of deadlocks and livelocks. Second, it’s hard to mock out
synchronized, and that makes it hard to unit-test to see if code adheres to proper

thread safety.

To address these concerns, the Lock interface, along with a few
implementations such as ReentrantLock, was introduced in Java 5. The Lock
interface gives us better control to lock, unlock, check if a lock is available,
and easily time out if a lock isn’t gained within a certain time span. Because
this is an interface, it’s easy to mock up its implementation for the sake of unit
testing. 2!

There’s one caveat to the Lock interface—unlike its counterpart, synchronized, it
requires explicit locking and unlocking. This means we not only have to
remember to unlock but to do so within the finally block. From our discussions
so far in this chapter, we can see lambda expressions and the execute around
method pattern helping out a lot here.

Let’s first look at a piece of code that uses a Lock.

resources/fpij/Locking.java

public class Locking {
Lock lock = new ReentrantLock(); //or mock

protected void setLock(final Lock mock) {
lock = mock;

}

public void doOp1i() {
lock.lock();
try {
//...critical code...
} finally {
lock.unlock();
}
}
Y/
}

We’re using a Lock lock field to share the lock between the methods of this
class. But the task of locking—for example, within the doop1 method—Ieaves

a lot to be desired. It’s verbose, error-prone, and hard to maintain. Let’s turn to
lambda expressions for help and create a small class to manage the lock.

resources/fpij/Locker.java

public class Locker {

public static void runLocked(Lock lock, Runnable block) {

lock.lock();

try {
block.run();

} finally {
lock.unlock();

}

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/Locking.java
http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/Locker.java

This class absorbs the pain of working with the Lock interface so the rest of the
code benefits. We can use the runLocked method in code to wrap critical
sections.

resources/fpij/Locking.java

public void doOp2() {
runLocked(lock, () -> {/*...critical code ... */});

}

public void doOp3() {
runLocked(lock, () -> {/*...critical code ... */});

}

public void doOp4() {
runLocked(lock, () -> {/*...critical code ... */});

}

The methods are concise, and they use the static method runLocked of the Locker
helper class we created (we’d need an import static Locker.runLocked for this code
to compile). Lambda expressions come to our assistance once more.

We saw how the execute around method pattern helps to make the code
concise and less error-prone, but the elegance and conciseness should help
remove the ceremony, not hide what’s essential. When designing with lambda
expressions, we should ensure that the intent of the code and its consequences
are clearly visible. Also, when creating lambda expressions that capture local
state, we must be aware of the restrictions we discussed in Are There
Restrictions to Lexical Scoping?.

Let’s look at one more benefit the execute around method pattern offers in unit
testing with JUnit.

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/Locking.java

Creating Concise Exception Tests

When Java 5 annotations were introduced, JUnit'¥) was quick to use them.
Overall this was a benefit, but one use in particular, the convenience of
exception tests, led to terse rather than concise code. Let’s understand the
issues and then resolve them using—good guess—Ilambda expressions. We’ll
see here that lambda expressions aren’t just another language feature; they
alter the way we think, design, and even test applications.

Suppose we’re driving the design of a class, RodCutter, through unit tests and
we expect a maxProfitmethod to throw an exception if the argument is zero.
Let’s look at a few ways we can write the exception tests for it.

Attempt 1: Verbose Tests with try and catch

Here’s a test for the maxProfit method with try and catch to check for

exceptions.

resources/fpij/RodCutterTest.java

@Test public void verboseExceptionTest() {
rodCutter.setPrices(prices);

try {
rodCutter.maxProfit(0);

fall("Expected exception for zero length");
} catch(RodCutterException ex) {
assertTrue(true);

}
3

That’s verbose and it may take some effort to understand, but this code is
specific about what’s expected to fail: the call to the maxProfit method.

The desire to make the exception tests concise led to the use of annotation for
exception tests in JUnit 4. The use of annotation reduces verbosity in tests,
but, sadly, makes the test ineffective as we’ll see next.

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/RodCutterTest.java

Attempt 2: Rather Terse Tests Using Annotation

Let’s quickly take a look at how we wrote exception tests in JUnit 4. It was
intended—we could say a failed attempt—to make the tests less verbose using
annotation.

resources/fpij/RodCutterTest.java

@Test(expected = RodCutterException.class) //JUnit 4 feature
public void TerseExceptionTest() {
rodCutter.setPrices(prices);
rodCutter.maxProfit(0);

}

The test is short but deceptive—it’s rather terse instead of being concise. It
tells us that the test should pass if the exception RodCutterException is received,
but it fails to ensure that the method that raised that exception is maxProfit. If
the setPrices method threw that exception, due to some code change, then this
test will continue to pass, but for the wrong reason. A good test should pass
only for the right reasons—this test deceives us. Thankfully, we don’t have to
write such tests anymore to enjoy conciseness. Let’s see how we can use
lambdas in JUnit 5 to write concise tests.

Attempt 3: Concise Test Using Lambda Expressions

The use of annotation in tests is a thing of the past. JUnit 5 has completely
reworked how exception tests are written and makes extensive use of lambda
expressions. As you may expect, this makes the test concise and at the same
time highly effective.

In JUnit 5 you can use a new assertThrows method to verify if a piece of code
throws an expected exception. This method takes two parameters. The first
parameter conveys the type of exception that’s expected. The second
parameter, a lambda expression, 1s used to exercise the code that’s expected to
throw that exception. If the code invoked from the lambda expression throws
the expected exception, the assert succeeds, otherwise it reports a failure.

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/RodCutterTest.java

Let’s use the assertThrows method to create a concise test.

resources/fpij/RodCutterTest.java

@Test
public void ConciseExceptionTest() {
rodCutter.setPrices(prices);

Exception ex =
assertThrows(RodCutterException.class, () -> rodCutter.maxProfit(0));

assertEquals("length should be greater than zero", ex.getMessage());

}

This test is both concise and fine-grained—it’ll pass only if the method
maxProfit throws the expected exception. The previous code also shows that, in
addition to checking if the expected exception was thrown, we can also
optionally check if the exception contains an expected error message.

All the previous tests achieve the same goal, but the last version is better than
the others as it’s both concise and correct.

We saw how lambda expressions help us write tests that target specific
methods for the expected exception, and that helps us create concise, easy-to-
read, and less error-prone tests.

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/RodCutterTest.java

Wrapping Up

We managed resources in this chapter. We can’t totally rely on automatic
garbage collection, especially when our applications use external resources.
The execute around method pattern can help us gain finer control over the
flow of execution, and release external resources. Lambda expressions are a
good fit to implement this pattern. In addition to controlling the object
lifetime, we can use this pattern to better manage locks and to write concise
exception tests. This can lead to more deterministic execution of code,
timely cleanup of heavyweight resources, and fewer errors.

In the next chapter we’ll use lambda expressions to delay the execution of
some parts of code as a way to make the programs more efficient.

Footnotes

(11

—

http://c2.com/cgi/wiki?Execute AroundMethod

&

https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip

https://junit.org

—
[
(98]

—

Copyright © 2023, The Pragmatic Bookshelf.

http://c2.com/cgi/wiki?ExecuteAroundMethod
https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip
https://junit.org/

Chapter 7

Being Lazy

In Java we often execute code eagerly. The arguments are evaluated right at
the time of method calls, for example. There’s a good reason for that; eager
code 1s easy to write and to think about. But delaying commitments until
the last responsible moment is a good agile practice. When executing code,
we can gain in performance by being just a little lazy. Eager is simple, but
lazy is efficient. But, with lambdas we can easily be lazy and make things
simple and efficient at the same time.

Delaying the execution of a function until it’s necessary is a good strategy.
However, we still need to figure out how to delay the function invocation,
and that can take some work. Paradoxically, laziness often requires effort,
and this creates an impediment. After all, who wants to work hard to be
lazy? In Java we don’t have to; we can relax because lambda expressions
make running our programs both lazy and fast.

In this chapter we start with a task to postpone the creation of a
heavyweight object, and then we turn some eager computations into lazy
evaluations. As the last task, we look at creating infinite lazy sequences by
exploiting the laziness built into Streams. The tricks from this chapter can
help our programs run faster, our code become more concise, and us look
smarter.

Delayed Initialization

In object-oriented programming, we ensure that objects are well constructed
before any method calls. We encapsulate, ensure proper state transitions, and
preserve the object’s invariants. This works well most of the time, but when
parts of an object’s internals are heavyweight resources, we’ll benefit if we
postpone creating them. This can speed up object creation, and the program
doesn’t expend any effort creating things that may not be used.

The design decision to postpone creating part of an object shouldn’t burden
the object’s users—it should be seamless. Let’s explore some ways to design
lazy initialization.

A Familiar Approach

In the following example, we’ll craft a way to delay the creation of a
heavyweight instance. Then, we’ll improve on the design.

Let’s start with a Holder class that needs some heavyweight resources. Creating
an instance of this class may take significant time and memory due to the
resources it depends on. To address this, we can move the heavyweight
resources into another class—say, Heavy. Then an instance of Holder will keep a

reference to an instance of Heavy and route calls to it as appropriate.

Let’s create the Heavy class.

lazy/fpij/Heavy.java

public class Heavy {
public Heavy() { System.out.println("Heavy created"); }

public String toString() { return "quite heavy"; }
}

This class represents a hypothetical heavyweight resource. In its constructor,
we print a message to tell us when it’s created. Let’s use an instance of this

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Heavy.java

class in the first trial version of the Holder class, named HolderNaive.

lazy/fpij/HolderNaive.java

public class HolderNaive {
private Heavy heavy;

public HolderNaive() {
System.out.println("Holder created");

}

public Heavy getHeavy() {
if(heavy == null) {
heavy = new Heavy();

}

return heavy;

}
Y/

At first glance, this code appears simple. We created a null reference, heavy,
and assigned it to a proper instance on the first call to the getHeavy method.
Let’s use this class to create an instance of HolderNaive and see if it postpones
the creation of the Heavy instance.

lazy/fpij/HolderNaive.java

final HolderNaive holder = new HolderNaive();
System.out.println("deferring heavy creation...");
System.out.println(holder.getHeavy());
System.out.println(holder.getHeavy());

This is the code’s output:

Holder created

deferring heavy creation...
Heavy created

quite heavy

quite heavy

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/HolderNaive.java
http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/HolderNaive.java

That appears to work. The solution is familiar, but it’s also a rather simplistic
solution that fails thread safety. Let’s work through it.

Providing Thread Safety

For an instance of HolderNaive, the dependent instance of Heavy is created on
the first call to the getHeavy method. On subsequent calls to this method, the

already created instance will be returned. That’s exactly what we want, but
there’s a catch. This code suffers from a race condition.

If two or more threads call the getHeavy method at the same time, then we
could end up with multiple Heavy instances, potentially one per thread. This
side effect is undesirable. Let’s fix it.

public synchronized Heavy getHeavy() {
if(heavy == null) {
heavy = new Heavy();

}

return heavy;

3

We marked getHeavy with the synchronized keyword to ensure mutual exclusion.
If two or more threads call this method concurrently, due to mutual exclusion,
only one will be allowed to enter and the others will queue up for their turn.
The first one to enter into the method will create the instance. When
subsequent threads enter this method, they will see that the instance already
exists, and will simply return it.

We averted the race condition, but the solution created another negative
impact. Every call to the getHeavy method now has to endure the
synchronization overhead; the calling threads have to cross the memory
barrier (see Brian Goetz’s Java Concurrency in Practice [Goe06]) even if
there are no concurrently competing threads.

In fact, the possibility of the race condition is so short-lived it can happen only
when the heavy reference is first being assigned, and the synchronization

approach is a rather heavy-handed solution. We need thread safety until the
reference 1s first created, and free unhindered access to the reference after that.
We’ll achieve this by using David Wheeler’s advice: “Any problem in
computer science can be solved with another level of indirection.”!4

Adding a Level of Indirection

The indirection we’ll add in this example comes from a Supplier<T> class. This
1s a functional interface in the JDK, with one abstract method named get that

returns an instance. In other words, this is a factory that keeps on giving
without expecting anything as input, kind of like a mother’s love.

In the most rudimentary form, a Supplier will return an instance. For example,
we could implement Supplier<Heavy> to return an instance of Heavy, like so:

Supplier<Heavy> supplier = () -> new Heavy();

Alternatively, we could use a constructor reference instead of the traditional
new syntax to instantiate an instance. A constructor reference is much like a
method reference, except it’s a reference to a constructor instead of a method.
We can use a constructor reference anywhere a lambda expression does
nothing more than instantiate an instance. Let’s look at an example with a
constructor reference.

Supplier<Heavy> supplier = Heavy::new;

We took a look at what a Supplier can do for us, but we need something more

than this simple form. We need to postpone and cache the instance. We can do
that by moving the instance creation to another function, as we see next, in the
final version of the Holder class.

lazy/fpij/Holder.java

public class Holder {
private Supplier<Heavy> heavy = () -> createAndCacheHeavy();

public Holder() {
System.out.println("Holder created");

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Holder.java

}

public Heavy getHeavy() {
return heavy.get();

}
Y/
}

The field heavy in this version is an instance of the Supplier<Heavy>. We assign it

to a lambda expression, and the Java compiler synthesizes from it an instance
with the expected get method. The implementation simply routes the call to a

createAndCacheHeavy method, which we’ll implement soon. The getHeavy
method returns the same thing the Supplier’s get method returns.

When an instance of Holder is created, as we can see, an instance of Heavy is

not created. This design achieves the goal of lazy initialization. We also need a
non-draconian solution to thread safety. This is where the createAndCacheHeavy

method comes i1n.
Let’s first look at the code for this method.

lazy/fpij/Holder.java

private synchronized Heavy createAndCacheHeavy() {
class HeavyFactory implements Supplier<Heavy> {
private final Heavy heavylInstance = new Heavy();

public Heavy get() { return heavylInstance; }
}

if(!HeavyFactory.class.isInstance(heavy)) {
heavy = new HeavyFactory();

}

return heavy.get();

}

We’ll mark this method synchronized so threads calling this method
concurrently will be mutually exclusive. But within this method, on the first
call, we quickly replace the Supplier reference, heavy, with a direct supplier,

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Holder.java

HeavyFactory, that will return an instance of Heavy. Let’s see how this
adequately solves thread safety.

Let’s consider a scenario in which a new instance of Holder has just been
created. Let’s assume two threads invoke the getHeavy method concurrently,
followed by a third thread calling this method much later. When the first two
threads call the default supplier’s get method in the Holder, the
createAndCacheHeavy method will let one of them through and make the other
wait. The first thread to enter will check if heavy is an instance of the
HeavyFactory. Since it’s not the default Supplier, this thread will replace heavy
with an instance of HeavyFactory. Finally, it returns the Heavy instance that this
HeavyFactory holds.

The second concurrent thread to enter will again check if heavy is an instance
of HeavyFactory, and will bypass the creation. It would simply return the same
instance the first thread returned. Here we assume Heavy itself is thread-safe,
and we’re only focusing on the thread safety of Holder.

We’ve taken care of the race condition, but since the instance has been created
lazily, we no longer need to be so protective. Now that heavy has been replaced

with HeavyFactory, subsequent calls to the getHeavy method will go directly to
the HeavyFactory’s get method and will not incur any synchronization overhead.

We designed lazy initialization and, at the same time, avoided null checks. We
also ensured the thread safety of the lazy instance creation. This is a simple,
lightweight implementation of the virfual proxy pattern. Next, we’ll use
lambda expressions to postpone function evaluations.

Lazy Evaluations

In the previous section, we delayed the creation of heavyweight objects to
make code execution faster. We’ll explore that further in this section to delay
running methods and use that approach to improve our designs. The main
objective is to reduce the execution of code to the bare minimum—especially
the expensive code—and speed up the execution.

Java already uses lazy execution when evaluating logical operations. For
example, in fn1() || Fn2(), the call fn2 is never performed if fn1 returns a boolean
true. Likewise, if we replace the || with &&, the call to fn2 never happens if fn1
returns a boolean false. Programs benefit from this short-circuiting; we avoid
unnecessary evaluation of expressions or functions, and that can help improve
performance. Often we rely on such short-circuiting for code correctness, as
well.

While Java uses lazy or normal order when evaluating logical operators, it
uses eager or applicative order when evaluating method arguments. All the
arguments to methods are fully evaluated before a method is invoked. If the
method doesn’t use all of the passed arguments, the program has wasted time
and effort executing them. We can use lambda expressions to postpone the
execution of select arguments.

The Java compiler evaluates lambda expressions and method references in the
argument list at the called location. The invocation of these is postponed until
they’re explicitly called from within the methods they’re passed to. We can
take advantage of this behavior to delay or even avoid method invocation by
embedding calls to them within lambda expressions. We can’t seamlessly wrap
arbitrary arguments into lambda expressions. We have to explicitly design for
it, as we’ll see here.

Many methods in the JDK—including methods on the Stream class—do lazy
evaluation. For instance, the filter method may not invoke the Predicate, passed

as an argument, on all the elements in the target collection.

We can design lazy evaluation of arguments to methods by turning the
parameters into functional interfaces. Let’s work that approach into an
example to get a feel for the design.

Starting with Eager Evaluation

In the example here, methods take significant time to run. We’ll call them
eagerly and then alter the design to improve speed.

Let’s start with a method evaluate that takes quite a bit of time and resources to
run.

lazy/fpij/Evaluation.java

public class Evaluation {
public static boolean evaluate(final int value) {
System.out.println("evaluating ..." + value);
simulateTimeConsumingOp(2000);
return value > 100;
}
Y/

}

A call to evaluate would take a couple of seconds to run, so we definitely want
to postpone any unnecessary calls. Let’s create a method, eagerEvaluator, which

is like almost any method we write in Java: all of its arguments will be
evaluated before its call.

lazy/fpij/Evaluation.java

public static void eagerEvaluator(
final boolean inputl, final boolean input2) {
System.out.println("eagerEvaluator called...");
System.out.println("accept?: " + (inputl && input2));
}

The method takes two boolean parameters. Within the method, we perform a
logical and operation on the parameters. Sadly, it’s too late to benefit from the

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Evaluation.java
http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Evaluation.java

lazy evaluation this operation automatically provides since the arguments are
evaluated well before we enter this method.

Let’s invoke eagerEvaluator and pass as arguments the results of two evaluate
method calls.

lazy/fpij/Evaluation.java

eagerEvaluator(evaluate(1), evaluate(2));

If we run this code we’ll see both the calls to evaluate execute well before we
enter the eagerEvaluator method.

evaluating ...1
evaluating ...2
eagerEvaluator called...
accept?: false

This would take at least four seconds to run because of the cumulative delay
from the calls to the evaluate method. We’ll improve on that next.

Designing for Lazy Evaluation

If we know that some arguments may not be used during the execution of a
method, we can design the method’s interface to facilitate the delayed
execution of some or all arguments. The arguments can be evaluated on
demand, as in this lazyEvaluator method:

lazy/fpij/Evaluation.java

public static void lazyEvaluator(
final Supplier<Boolean> inputl, final Supplier<Boolean> input2) {
System.out.println("lazyEvaluator called...");
System.out.println("accept?: " + (inputl.get() && input2.get()));
}

Rather than taking two boolean parameters, the method receives references to
the supplier instances. This JDK functional interface will return an instance,
Boolean in this case, in response to a call to its get method. The logical and

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Evaluation.java
http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Evaluation.java

operation we use within the lazyEvaluator method will invoke the get methods
only on demand.

If we pass two calls to evaluate as arguments to the lazyEvaluator method, the
second will be evaluated only if the first call returned a boolean true. Let’s run
the method to see this.

lazy/Fpij/Evaluation.java

lazyEvaluator(() -> evaluate(1), () -> evaluate(2));

Each supplier makes a call to the evaluate method, but not until the lazyEvaluator
method is invoked. The evaluation is lazy and optional, determined by the
flow of execution within the lazyEvaluator method. We can see this delayed
evaluation in the output when we run the code.

lazyEvaluator called...
evaluating ...1
accept?: false

The arguments aren’t evaluated before we enter the lazyEvaluator method. The
second call to evaluate was skipped in this version. This example call of
lazyEvaluator takes only about two seconds, whereas the previous call to
eagerEvaluator took about four seconds.

We saw the cost savings of the lazy evaluation. This technique is helpful when
we have to evaluate a large number of methods or if method evaluations are
time/resource consuming.

This technique can significantly boost performance, but its disadvantage 1s it
burdens the caller with packaging the calls in a lambda expression. Sure,
lambda expressions are concise, but they’re a hindrance compared to the usual
way of passing arguments. In some contexts, we may be able to use method
references instead of lambda expressions, and this can make the code a bit
more concise and ease the burden a little.

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Evaluation.java

The lazy solutions so far have helped us make code more efficient. Next, we’ll
use it purely for convenience.

Leveraging the Laziness of Streams

In previous chapters we’ve seen the facilities that the Stream interface offers,
but so far we haven’t discussed one of their most salient features—they’re
really lazy, in a good way. The lazy evaluation of Streams is powerful. First, we
don’t have to do anything special to derive their benefits. In fact, we’ve used
them many times already! Second, they can postpone not just one, but a
sequence of evaluations so that only the most essential parts of the logic are
evaluated, and only when needed. Let’s look at how lazy Streams are and how
we benefit from that.

Intermediate and Terminal Operations

Streams have two types of methods: intermediate and terminal, which work

together. The secret behind their laziness is that we chain multiple
intermediate operations followed by a terminal operation.

Methods like map and filter are intermediate; calls to them return immediately,
and the lambda expressions provided to them aren’t evaluated right away. The
core behavior of these methods is cached for later execution and no real work
is done when they’re called. The cached behavior is run when one of the
terminal operations, like findFirst and reduce, is called. But not all the cached
code is executed, and the computation will complete as soon as the desired
result is found. Let’s look at an example to understand this better.

Suppose we’re given a collection of names and we’re asked to print in all caps
the first name that’s only three letters long. We can use Stream’s functional-

style methods to achieve this. But first, let’s create a few helper methods.

lazy/fpij/LazyStreams.java

public class LazyStreams {
private static int length(final String name) {
System.out.println("getting length for " + name);
return name.length();

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/LazyStreams.java

}
private static String toUpper(final String name) {

System.out.println("converting to uppercase: " + name);
return name.toUpperCase();

}
/..
}

The two helper methods simply print the parameters they receive before
returning the expected results. We wrote these methods to take a peek at the
intermediate operations in the code we’ll write next.

lazy/fpij/LazyStreams.java

public static void main(final String[] args) {
List<String> names = List.of("Brad”, "Kate", "Kim", "Jack", "Joe",
"Mike", "Susan", "George", "Robert", "Julia", "Parker", "Benson");

final String firstNameWith3Letters =
names.stream()
.filter(name -> length(name) == 3)
.map(name -> toUpper(name))
findFirst()
.orElse("");

System.out.println(firstNameWith3Letters);
}

We started with a list of names, transformed it into a Stream, filtered out only
names that are three letters long, converted the selected names to all caps, and
picked the first name from that set.

At first glance, it appears the code is doing a lot of work transforming
collections, but it’s deceptively lazy; it didn’t do any more work than was
absolutely essential. Let’s take a look.

Method Evaluation Order

It would help to read the code from right to left, or bottom up, to see what’s
going on here. Each step in the call chain will do only enough work to ensure

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/LazyStreams.java

that the terminal operation in the chain completes. This behavior is in direct
contrast to the usual eager evaluation, but it is efficient.

If the code were eager, the filter method would have first gone through all

dozen names in the collection to create a list of two names, Kim and Joe,
whose length is three (letters). The subsequent call to the map method would

have then evaluated the two names. The findFirst method finally would have

picked the first element of this reduced list. We can visualize this hypothetical
eager order of evaluation in the following figure.

CKIM
—_—D>
= findFirst
O
D—{:b 1 operation
O map
=b 2 operations

filter

12 operations

Joooo0oooooon

15 operations total

But both the Ffilter and map methods are lazy to the bone. As the execution goes
through the chain, the Ffilter and map methods store the lambda expressions and

pass on a facade to the next call in the chain. The evaluations start only when
findFirst, a terminal operation, is called.

The order of evaluation is different as well, as we see in the following figure.
The filter method doesn’t plow through all the elements in the collection in one
shot. Instead, i1t runs until it finds the first element that satisfies the condition
given in the attached lambda expression. As soon as it finds an element, it
passes that to the next method in the chain. This next method, map in this
example, does its part on the given input and passes it down the chain. When

the evaluation reaches the end, the terminal operation checks to see if it has
received the result it’s looking for.

I
1

001

{

I
1

findFirst

filter map 1 operation [JKIM
—_—

HH

C

I
1

3 operations 1 operation [J

Ol

 —
e

C

oL,

|

5 operations total

If the terminal operation got what it needed, the computation of the chain
terminates. If the terminal operation isn’t satisfied, it’ll ask for the chain of
operations to be carried out for more elements in the collection.

By examining the logic of this sequencing of operations, we can see that the
execution will iterate over only essential elements in the collection. We can
see evidence of this behavior by running the code.

getting length for Brad
getting length for Kate
getting length for Kim
converting to uppercase: Kim
KIM

From the output, we can see that most of the elements in the example list were
not evaluated once the candidate name we’re looking for was found.

The logical sequence of operations we saw in the previous example is
achieved under the hood in the JDK using a fusing operation—all the
functions in the intermediate operations are fused together into one function
that’s evaluated for each element, as appropriate, until the terminal operation
is satisfied. In essence, there’s only one pass on the data—filtering, mapping,
and selecting the element all happen in one shot.

Peeking into the Laziness

Writing the series of operations as a chain is the preferred and natural way in
Java. But to really see that the lazy evaluations didn’t start until we reached
the terminal operation, let’s break the chain from the previous code into steps.

lazy/Fpij/LazyStreams.java

Stream<String> namesWith3Letters =
names.stream()
.filter(name -> length(name) == 3)
.map(name -> toUpper(name));

System.out.println("Stream created, filtered, mapped...");
System.out.println("ready to call findFirst...");

final String firstNameWith3Letters =
namesWith3Letters.findFirst()
.orElse("");

System.out.println(firstNameWith3Letters);

We transformed the collection into a stream, filtered the values, and then
mapped the resulting collection. Then, separately, we called the terminal
operation. Let’s run the code to see the sequence of evaluation.

Stream created, filtered, mapped...
ready to call findFirst...

getting length for Brad

getting length for Kate

getting length for Kim

converting to uppercase: Kim

KIM

From the output, we can clearly see that the intermediate operations delayed
their real work until the last responsible moment when the terminal operation
was invoked. And even then, they only did the minimum work necessary to
satisfy the terminal operation. Pretty efficient, eh?

This example helped us uncover Stream’s true power. Next, we’ll use Streams
to create infinite collections.

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/LazyStreams.java

Creating Infinite, Lazy Collections

Using infinite collections can make the code that creates a growing series (such
as the Fibonacci numbers) clearer and easier to express. But from our
experience in Java, we might think a series can’t be infinite due to practical
memory limits. The laziness of Streams comes in again here.

In Java, collections are still required to be finite, but streams can be infinite.
We will see here how laziness becomes an essential workhorse to make infinite
streams possible. We’ll use them to create highly expressive, easy-to-
understand code to produce an infinitely growing series.

A Desperate Attempt

We’ll use a series of prime numbers, 2, 3, 5, 7,... as an example to explore the
concepts here. Let’s first create a helper function to determine if a number is
prime.

public static boolean isPrime(final int number) {
return number > 1 &&
IntStream.rangeClosed(2, (int) Math.sqrt(number))
.noneMatch(divisor -> number % divisor == 0);

}

A number greater than 1 is prime if it’s not divisible by any number between 2
and its square root. Normally, we’d use an external iterator to search for a
divisor in that range. Instead, we use more Java goodness here—the rangeClosed

static method of the IntStream interface.

The closed suffix in the method name emphasizes that the range of values will
include the second parameter. For example, rangeClosed(1, 10) will return the

range of values 1, 2,.., 10 packed into a Stream. In contrast, the range method,
also a static method in the interface, will return a range of values, up to (but not
including) the value in the second parameter.

In the isPrime method, we use the short and sweet noneMatch method on the
stream returned by the rangeClosed method. The noneMatch method takes a
Predicate as its parameter and we use this to determine if there’s a divisor for
the given number. The noneMatch method will yield a boolean true if the lambda
expression returned false for all values in the range—that s, if there are no
divisors.

On our first attempt, we’ll use the isPrime method to create a series of prime

numbers starting at any given number.

//don't try this at the office
public static List<Integer> primes(final int number) {
if(isPrime(number)) {
return concat(number, primes(number + 1));

}

return primes(number + 1);

}

If a given number is prime, we include it in the list of primes that follow the
number. Otherwise, we omit it and move on to get that list.

Hold your tweets; no, your humble author hasn’t gone mad—that code is
enticingly elegant but, sadly, won’t work. If we implement the concat method
and run the code, we’ll enter into a never-ending recursion and end up with a

java.lang.StackOverflowError.

Let’s drill into the code just a bit more to see if we can salvage anything from
it. The stackOverflowError 1s from the recursive calls to the primes method. If we

can be lazy about this call, then we won’t run into issues.

Reaching for the Stars

Earlier we saw how lazy Streams are. They don’t do any real work until we ask

them for the results—kind of like my kids. We can rely on that laziness to
easily create a lazy, infinite collection.

When we create a Stream, from a collection or through other means, we quickly
receive a facade that has the potential to return an infinite list. But it’s wickedly
clever; it returns to us only as many elements as we ask for, producing the
elements just in time. We can use that capability to express an infinite
collection and generate as many (finite) elements as we like from that list. Let’s
see how.

The stream interface has a static method iterate that can create an infinite Stream.
It takes two parameters, a seed value to start the collection, and an instance of a
UnaryOperator interface, which is the supplier of data in the collection. The
Stream the iterate method returns will postpone creating the elements until we
ask for them using a terminating method. To get the first element, for example,
we could call the findFirst method. To get ten elements we could call the limit
method on the Stream, like so: limit(10).

Let’s see how all these ideas shape up in code.

lazy/Fpij/Primes.java

public class Primes {
private static int primeAfter(final int number) {
if(isPrime(number + 1)) {
return number + 1;

}

return primeAfter(number + 1);

}

public static List<Integer> primes(final int fromNumber, final int count) {
return Stream.iterate(primeAfter(fromNumber - 1), Primes::primeAfter)
.limit(count)
.collect(toList());
}
Y/
}

We first defined a convenience method, primeAfter, that returns a prime number

that’s after the given number. If the number next to the given number is prime,
it’s immediately returned; otherwise, the method recursively asks for the prime

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Primes.java

number that follows. The code that deals with the infinite series is in the primes

method. It’s short for what it does; the real complexity is hidden within the
iterate method and the Stream.

The primes method will create an infinite series of prime numbers, starting with
the first prime greater than or equal to the number given as a parameter. In the
call to the iterate method, the first parameter provides the seed for the infinite
series. If the given number is prime, it’s used as the seed. Otherwise, the first
prime after the number is used. The second parameter, a method reference,
stands in for a UnaryOperator that takes in a parameter and returns a value. In
this example, since we refer to the primeAfter method, it takes in a number and
returns a prime after the number.

The result of the call to the iterate method is a Stream that caches the
UnaryOperator it’s given. When we ask for a particular number of elements, and
only then, the stream will feed the current element (the given seed value is used
as the first element) to the cached UnaryOperator to get the next element, and
then feed that element back to the UnaryOperator to get the subsequent element.

This sequence will repeat as many times as necessary to get the number of
elements we asked for, as we see in the following figure.

feed current

element UnaryOperator
_—D
- S apply-- call primeAfter(numb
-
get next
element

Execute only on demand

Let’s call the primes method first to get ten primes starting at 1, and then five
primes starting at 100.

lazy/fpij/Primes.java

"

System.out.println("10 primes from 1: " + primes(1, 10));

System.out.println("5 primes from 100: " + primes(100, 5));

The primes method creates a Stream of an infinite collection of primes, starting

at the given input. To get a particular number of elements from the collection,
we call the limit method. Then we convert the returned collection of elements

into a list and print it. This call to collect triggers the evaluation of the sequence.
The method limit 1s also an intermediate operation that lazily notes the number
of elements needed for later evaluation! Let’s look at this code’s output.

10 primes from 1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
5 primes from 100: [101, 103, 107, 109, 113]

The code produced two series of primes, one starting at 1 and the other starting
at 100. These were extracted from the infinite series we created so succinctly
within the primes method, thanks to the laziness of streams and the power of

lambda expressions/method references.

We saw how lambda expressions and the Stream implementations work in
tandem to make the execution efficient. While lambda expressions and method
references make code elegant, expressive, and concise, the real performance
gains in Java applications will come from Streams. Lambda expressions are the
gateway drug to Java, but Streams are the real addiction—be ready to get
hooked on them as you develop Java applications.

We got a lot done within just a few lines of code; it’s perfectly fine to take a
few minutes to admire the power of lambda expressions, functional interfaces,
and the efficiency of Streams. In the next chapter, we’re ready to take the use of

lambda expressions up another notch to make recursions more efficient.

http://media.pragprog.com/titles/vsjava2e/code/lazy/fpij/Primes.java

Wrapping Up

Efficiency got a boost in Java with the introduction of lambdas; we can be
lazy and postpone the execution of code until we need it. We can delay the
initialization of heavyweight resources and easily implement the virtual
proxy pattern. Likewise, we can delay the evaluation of method arguments
to make the calls more efficient. The real heroes of the improved JDK are
the stream interface and the related classes. We can exploit their lazy
behaviors to create infinite collections with just a few lines of code. That
means highly expressive, concise code to perform complex operations that
we couldn’t even imagine in Java before.

In the next chapter we’ll look at the roles lambda expressions play in
optimizing recursions.

Footnotes

[14] http://en.wikipedia.org/wiki/David Wheeler_(computer_scientist),

Copyright © 2023, The Pragmatic Bookshelf.

http://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)

Chapter 8

Optimizing Recursions

Recursion is a powerful and charming way to solve problems. It’s highly
expressive—using recursion we can provide a solution to a problem by
applying the same solution to its subproblems, an approach known as divide
and conquer. Various applications employ recursion, such as for finding the
shortest distances on a map, computing minimum cost or maximum profit,
or reducing waste.

Most languages in use today support recursion. Unfortunately, problems
that truly benefit from recursion tend to be fairly large and a simple
implementation will quickly result in a stack overflow. In this chapter we’ll
look at the tail-call optimization (TCO) technique to make recursions
feasible for large inputs. Then, we’ll look into problems that can be
expressed using highly recursive overlapping solutions and examine how to
make them blazingly fast using the memoization technique.

Using Tail-Call Optimization

The biggest hurdle to using recursion is the risk of stack overflow for
problems with large inputs. The brilliant TCO technique can remove that
concern. A tail call is a recursive call in which the last operation performed is
a call to itself. This is different from a regular recursion, where the function, in
addition to making a call to itself, often performs further computations on the
result of the recursive call(s). TCO lets us convert regular recursive calls into
tail calls to make recursions practical for large inputs.

Java doesn’t directly support TCO at the compiler level, but we can use
lambda expressions to implement it in a few lines of code. With this solution,
sometimes called trampoline calls, we can enjoy the power of recursion
without the concern of blowing up the stack.

We’ll implement TCO using a very simple and common example, computing a
number’s factorial.

Starting with an Unoptimized Recursion

Let’s start with a piece of code for computing a factorial using a simple
unoptimized recursion.

recur/fpij/Factorial.java

public class Factorial {
public static int factorialRec(final int number) {
if(number == 1) {
return number;

}

return number * factorialRec(number - 1);

}
}

The recursion terminates when we get down to the value of 1. For higher
values, we recursively call the number times the factorial of number minus 1.

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java

Let’s try out this method using the number 5.

recur/fpij/Factorial.java

System.out.println(factorialRec(5));
Here’s the output for the factorial value.
120

That seems to work, but let’s try it again, this time with a larger input value.

recur/fpij/Factorial.java

try {
System.out.println(factorialRec(20000));

} catch(StackOverflowError ex) {
System.out.println(ex);

3

We coded that call defensively; let’s look at the output to see how it turned
out.

java.lang.StackOverflowError

The recursion didn’t handle the large input size. It went down with a bang.
This 1s a showstopper in adopting this powerful and expressive technique.

The problem isn’t the recursion itself. It’s caused by holding the partial result
of computations while waiting for the recursion to complete. Let’s take a
closer look at line 7 in the factorialRec method. The last operation we perform
on that line is multiplication (*). While we hold on to the given number, we
wait for the result of the next call to factorialRec to return. As a consequence,
we climb the call stack for each call, and the execution of code will eventually
blow up if the input size keeps growing. We need a way to be recursive
without holding on to the stack.

In Structure and Interpretation of Computer Programs [AS96], Abelson and
Sussman discuss the TCO technique, where they convert a recursion into a

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java

pure iteration under the hood. Ideally, we’d like to rely on the compiler to
provide such optimization, but since it doesn’t, we can use lambda expressions
to do this manually, as we’ll see next.

Turning to Tail Recursion

Before we can use the TCO technique, we have to redesign our code so it
doesn’t build up the stack. Instead of waiting to perform the multiplication on
line 7 in the factorialRec method, we can compute the partial product with what
we have so far, and pass that on as an extra parameter to the subsequent call.
This will remove the need to perform any arithmetic when we return from the
recursive call. That’s a good first step, but it’s not adequate. In addition, we
have to step down from the current level of the stack before we recursively
call the method. In other words, we need to turn an eager call to factorialRec
into a /azy call. We’ll use a TailCall functional interface and a companion
TailCalls class for this purpose. We’ll soon design these two, but let’s pretend
for now that they already exist.

First, let’s add static imports to the methods of the TailcCalls class.

recur/fpij/Factorial.java

import static fpij.TailCalls.done;
import static fpij.TailCalls.call;

We’ll use these two methods in the new recursive version to compute a
factorial, the factorialTailRec method.

recur/fpij/Factorial.java

public static TailCall<Integer> factorialTailRec(
final int factorial, final int number) {
if (number == 1) {
return done(factorial);

}

return call(() -> factorialTailRec(factorial * number, number - 1));

}

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java

This version to compute the factorial is tail recursive; that is, the last operation
is a (delayed/lazy) call to itself, and there’s no further computation to carry out
on the result upon return. And, rather than calling the method factorialTailRec

eagerly, we wrapped it into a lambda expression for lazy/later execution.

Creating the TailCall Functional Interface

When we call the factorialTailRec method, it returns immediately with an
instance of TailCall. The key idea here is that if we call the done method, we
signal the recursion’s termination. On the other hand, if we were to go through
the call method, we’d be asking for the recursion to continue, but only after we

step down from the current stack level. To fully understand how this works,
we have to look inside these methods, so let’s drill down into the Tailcall

interface and the TailCalls companion class. We’ll start with the interface.

recur/fpij/TailCall.java

@FunctionallInterface
public interface TailCall<T> {

TailCall<T> apply();
default boolean isComplete() { return false; }
default T result() { throw new Error("not implemented"); }

default T invoke() {
return Stream.iterate(this, TailCall::apply)
filter(TailCall::isComplete)
findFirst()

.get()
.result();

}
}

We have four methods in this interface: one abstract and the remaining default.
The isComplete method simply returns a false value. The default
implementation of the result method blows up if called—we’d never call this
method as long as the recursion is in progress; an alternate implementation of

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/TailCall.java

the Tailcall interface will take care of the situation when the recursion does
terminate.

Critical work is done in the short code within the invoke method. This method
collaborates with the apply method, which will return the next TailCall instance
waiting for execution. The invoke method has two responsibilities. First, it has
to repeatedly iterate through the pending TailCall recursions until it reaches the

end of the recursion. Second, upon reaching the end, it has to return the final
result (available in the result method of the terminal Tailcall instance).

The invoke method is short, but there’s a lot going on here, so let’s slow down
and dig into it.

We have no clue how many recursions will be evaluated; it’s not infinite, but
we can treat it as a series of unknown length. Once we get our heads around
treating this as a series of TailCall objects, we can easily use lazy iteration over
a Stream of pending TailCall instances. The technique we used in Creating

Infinite, Lazy Collections, will help us here to lazily produce the next pending
TailCall instance. Let’s take a closer look at how.

To create a lazy list of pending TailCall instances, we use the Stream interface’s
iterate static method. This method takes an initial seed value and a generator.
We use the current TailCall instance, this, as the seed. The generator, a
UnaryOperator, takes in the current element and produces the next element. For
the generator to return the next pending TailCall instance, it can use the apply
method of the current Tailcall. We use the method reference TailCall::apply for
this purpose to create the generator.

In short, we’ve designed the invoke method so that the iteration will start at the
seed, the first instance of TailCall, and iterate through subsequent instances of
TailCall produced by the generator until it finds an instance of TailCall that
signals the termination of recursion.

Creating the TailCalls Convenience Class

The iteration continues until the isComplete method reports a completion. But
the default implementation of this method in the TailCall interface always
returns a false value. This is where the companion TailCalls class comes in. It
provides two different implementations of the TailCall functional interface: one
in the call method and the other in the done method.

recur/fpij/TailCalls.java

public class TailCalls {
public static <T> TailCall<T> call(final TailCall<T> nextCall) {
return nextCall;

}
public static <T> TailCall<T> done(final T value) {

return new TailCall<T>() {
@verride public boolean isComplete() { return true; }
@verride public T result() { return value; }
@Override public TailCall<T> apply() {
throw new Error("not implemented");

}
b
}
}

In this class we implement two static methods, call and done. The call method
simply receives a TailCall instance and passes it along. It’s a convenience
method so the recursive calls (such as FfactorialTailRec) can nicely end with a
symmetric call to either done or call.

In the done method, we return a specialized version of TailCall to indicate the
recursion’s termination. In this method, we wrap the received value into the
specialized instance’s overridden result method. The specialized version’s
isComplete will report the end of the recursion by returning a true value.
Finally, the apply method throws an exception because this method will never
be called on this terminal implementation of TailCall, which signals the end of
the recursion.

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/TailCalls.java

We can see in this design how the TailCall returned through call continues
recursion, and the one returned from done terminates it. Also, the recursive
calls are all evaluated lazily in a loop in the invoke default method, thus never
increasing the stack level like a simple recursion would.

We designed TailCall and TailCalls for use with FfactorialTailRec, but they’re
reusable for any tail-recursive function.

Using the Tail-Recursive Function

We saw a tail-recursive function FactorialTailRec, a functional interface TailCall,
and a convenience class TailCalls. Let’s walk through a scenario to understand
how all these work together.

Let’s start with a call to the factorialTailRec to compute the factorial of 2, like
SO:

factorialTailRec(1, 2).invoke();

The first argument, 1, is the initial value for the factorial; the second argument,
2, 1s the value for which we’d like to find the factorial. The call to
factorialTailRec will check if the given number is equal to 1 and, since it’s not,

will use the call method and pass a lambda expression that synthesizes an
instance of TailCall.

This synthesized instance will lazily call the factorialTailRec with two
arguments, 2 and 1, respectively. Back outside the call to the factorialTailRec
method, the call to the invoke method will create a lazy collection with this first
instance of TailCall as the seed and explore the collection until a terminating
instance of TailCall 1s received. When the apply method of the seed Tailcall 1s
called, it will result in a call to the FactorialTailRec with the two arguments we
mentioned previously. This second call to factorialTailRec will result in a call to
the done method.

The call to done will return a terminating specialized instance of TailCall,
signaling the recursion’s termination. The invoke method will now return the
final result of the computation, 2 in this case.

The TCO of the factorial recursion is complete. Let’s take the factorialTailRec
method for a spin. We’ll call it with a small value for the input parameter first.
recur/fpij/Factorial.java

System.out.println(factorialTailRec(1, 5).invoke());

We seed the factorialTailRec with an initial factorial value, 1 and the number.
The result of this call is a Tailcall instance and we call the invoke method on it.

That call’s result should be the same as the unoptimized recursion version we
saw earlier.

120
Let’s run this version with the large input value.
recur/fpij/Factorial.java
System.out.println(factorialTailRec(1, 20000).1invoke());
The previous version ran into a stack overflow. Let’s check this version’s fate.
0

Our efforts paid off. We averted blowing up the stack, but the result was 0 due
to arithmetic overflow; the factorial result is a very large number. We’ll soon
fix that—we need to use Biginteger instead of int. Before we address that, let’s

revisit the solution. We have some cleaning up to do.

Cleaning Up the Recursion

The implementation of the factorialTailRec 1s alluringly simple. It has one

downside, though: we polluted the method’s interface. Rather than passing a
nice and simple input number, now we have to pass two arguments. We rely on

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java

the callers to supply 1 for the first parameter; an argument like 0 would derail
the result. We also have to call invoke on the result of the call to factorialTailRec

—not pleasant. We can easily fix these issues by introducing one more level of
indirection.

We can turn factorialTailRec into a private method and introduce a public method
that calls it.

recur/fpij/Factorial.java

public static int factorial(final int number) {
return factorialTailRec(1, number).invoke();

}

This method brings back the simple interface and encapsulates the details of
tail recursion. It deals with the extra parameter and takes care of calling the
necessary invoke method in the end. Let’s use this modified version.

recur/fpij/Factorial.java

System.out.println(factorial(5));
System.out.println(factorial(20000));

We ran the latest version with a small value and the preposterously large
value; let’s check out the output.

120
0

The result was good for the small value, but the large value requires a fix.
Let’s attend to that as the last step.

Fixing the Arithmetic Overflow

The factorial code was nice and sweet with the int primitive type. To avert the
arithmetic overflow, we have to switch to Biginteger. Sadly, we’ll lose the
fluency of simple arithmetic operators like * and - and have to use methods on

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Factorial.java

Biginteger to perform these. We’ll reduce clutter in the code by creating small
functions for these operations in a BigFactorial class.

recur/fpij/BigFactorial.java

public class BigFactorial {
public static BigInteger decrement(final BigInteger number) {
return number.subtract(BigInteger.ONE);

}

public static BigInteger multiply(
final BigInteger first, final BigInteger second) {
return first.multiply(second);

}

final static BigInteger ONE = BigInteger.ONE;
final static BigInteger FIVE = new BigInteger("5");
final static BigInteger TWENTYK = new BigInteger("20000");

Y/
}

We wrote some convenience methods and fields to work with Biginteger. Now
let’s look at the important parts, the encapsulated tail-recursive function and
the fluent wrapper around it.

recur/fpij/BigFactorial.java

private static TailCall<BigInteger> factorialTailRec(
final BigInteger factorial, final BigInteger number) {
if(number.equals(BigInteger.ONE)) {
return done(factorial);

}

return call(() ->
factorialTailRec(multiply(factorial, number), decrement(number)));

3

public static BigInteger factorial(final BigInteger number) {
return factorialTailRec(BigInteger.ONE, number).invoke();

}

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/BigFactorial.java
http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/BigFactorial.java

Where we used int in the earlier version, we instead use Biginteger in this
version. The rest of the code is pretty much the same, using the TailCall
interface, the TailCalls class, and the TCO technique.

Let’s call this modified version of Factorial.

recur/fpij/BigFactorial.java

public static void main(final String[] args) {
System.out.println(factorial(FIVE));
System.out.println(String.format("%.10s...", factorial(TWENTYK)));
}

Now that we used Biglnteger, the operation should go well.

120
1819206320. ..

We see the correct value of the factorial for the number 5 and the trimmed
output value for the large input.

With only a few lines of code we turned an unoptimized recursion into a tail
recursion and averted stack overflow, thanks to lambda expressions, functional
interfaces, and infinite Streams.

With this technique on hand, we can boldly implement recursive solutions,
with a minor redesign to turn them into tail calls.

The approach we used here made recursions feasible for large input. Next,
we’ll see how to make them practical from a performance point of view.

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/BigFactorial.java

Speeding Up with Memoization

Quick, what’s 25 * 12?

Unless you have some superpowers, you’ll take some effort and time to arrive
at the result of 300. Now, if I ask again what’s 25 * 12, right away, you’ll
instantaneously snap back the response of 300. How did you get that good so
fast? Well, you remembered the result, temporarily memorized it—or should
we say you memoized it.

If you evaluated an expression or looked up some information recently, and if
you need that again, you most likely use the details from your memory instead
of repeating the task. But computers can do that kind of stuff a lot more
efficiently than we can. Reusing the result of a computation, instead of
repeating its evaluation, is a technique called memoization.

This is especially useful in recursive problems where the solution contains
multiple subproblems with identical solutions.

Let’s look at how memoization can turn excessively recursive problems into
incredibly fast execution. We’ll explore a problem, implement it using
recursion, and take note of how it gets exponentially slow as the problem size
increases. Then we’ll use the memoization technique to speed it up and along
the way see how lambda expressions help with the solution.

An Optimization Problem

We can see optimization problems in various domains, such as economics,
finance, and resource allocation, where an optimal solution is selected from
several feasible ones. For example, we may have to find the maximum profit
from sales of assets or the shortest route between locations. In an algorithmic
technique called dynamic programming, we apply recursion extensively to
solve a problem. This takes recursion to the next level; the solution to a
problem overlaps with solutions to subproblems.

If we naively implement such recursion, we’d end up with computations that
take exponentially increasing amounts of time to run for increasing input
sizes. This 1s where memoization comes in. In this technique, we look up
solutions, if they already exist, and perform and store computations just once.
The redundancy that exists in repeatedly asking for the overlapping solutions
doesn’t translate into recomputations, but instead, it turns into a quick lookup
for the results. This technique transforms the exponential time complexity to
mere linear time. Let’s implement this using an example: the rod-cutting
problem.1

We’ll employ a solution for a company that buys rods at wholesale and sells
them at retail. They figured that by cutting the rods into different sizes, they
could maximize profits. The price that the company can charge for different
lengths of rods changes often, so the company wants us to write a program to
reveal what the maximum profit would be for a given size of rod. Let’s find a
simple solution, and then improve on it.

We’ll start with a class that stores the prices for different lengths of rods.

recur/fpij/RodCutter.java

public class RodCutter {
private final List<Integer> prices;

public RodCutter(final List<Integer> pricesForLengths) {
prices = pricesForLengths;

}
Y/
Let’s work with some sample prices for different lengths, starting with 1".
recur/fpij/RodCutter.java

final List<Integer> priceValues =
Arrays.aslList(2, 1, 1, 2, 2, 2, 1, 8, 9, 15);

final RodCutter rodCutter = new RodCutter(priceValues);

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/RodCutter.java
http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/RodCutter.java

Plain-Vanilla Recursion

We can solve the problem using a simple recursion. If we’re given a 5" rod,
we can look up the price for that length. In this example, that would get us $2.
We can do better than that—after all, a 4" rod also would fetch $2, so we
could cut the rod into two pieces—4" and 1"—to increase profit. Continuing
with this approach, we find that the maximum profit for an arbitrary length n is
the maximum of the profits from each of the possible 2! cuts of that length.
That is, max(no cut, cut(1, n- 1), cut(2, n-2),...), for a given length n. The following
figure is an example of profits from all possible cuts for a 5" rod.

To compute the maximum profit for 5" we need to compute the maximum
profit for 4", 3", 2", and 1". Likewise, to compute the maximum profit for 4",
we need to compute the maximum profit for the smaller sizes. The solution
nicely introduces overlapping recursion; we’ll implement this without any
optimization first, and then improve on it.

Let’s implement the logic for maximum profit.

recur/fpij/RodCutter.java

public int maxProfit(final int length) {
int priceAtLength = length <= prices.size() ? prices.get(length - 1) : 0;

return Math.max(priceAtLength,
IntStream.range(1, length)
.map(i1 -> maxProfit(i) + maxProfit(length - 1))

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/RodCutter.java

.max()
.orklse(0));

}

In the maxProfit method we look up the price for a particular length. Then, we
recursively find the profit for cuts that add up to the given length and pick the
maximum from them. The implementation turns out to be simple. Let’s try it
for a few lengths.

recur/fpij/RodCutter.java

System.out.println(rodCutter.maxProfit(5));
System.out.println(rodCutter.maxProfit(22));

Let’s look at the output for the different lengths.

10
44

The output seems reasonable, but the computation for this takes several
minutes. If we increase the length slightly from 22, the program will slow a
lot, into hours. That’s because the time complexity of this computation is
exponential—o(2™')—we’re performing the computations redundantly for
various lengths. We need to memoize the results to speed up execution—a lot.

Memoizing the Results

Memoization is a simple, yet smart, technique to make recursive overlapping
computations fast. Using this technique, as the program runs, we make
calculations only if they haven’t been made already. Each time a new
calculation happens, we cache the results and reuse those for subsequent calls
for the same input. This technique is useful only if the computations are
expected to return the same result each time for a given input. Our rod-cutting
problem fits that expectation: the profit is the same for a given length and a
given set of prices, no matter how many times we ask. Let’s memoize the
result of the profit calculation.

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/RodCutter.java

When seeking the profit for a sublength, we can skip the computation if the
profit for that length has already been computed. This will speed up the
program, as the redundant calls to find the profit will turn into a quick lookup
of a hashmap. It sounds good, but it would be nice to have reusable code for
that. Let’s create a reusable class; we’ll call it the Memoizer. It doesn’t yet exist,
but we’ll pretend it does and write the code to use it. Let’s refactor the
maxProfit method to use a static method, callMemoized, of the Memoizer class.

public int maxProfit(final int length) {
return callMemoized(this::computeMaxProfit, length);

}

private int computeMaxProfit(
Function<Integer, Integer> memoizedFunction, int length) {

int priceAtLength = length <= prices.size() ? prices.get(length - 1) : 0;

return Math.max(priceAtLength, IntStream.range(1, length)
.map(i -> memoizedFunction.apply(i) + memoizedFunction.apply(length - 1))
.max()
.orElse(0));
}

Let’s look at the crux of the design before we dig into the code. We create a
function, computeMaxProfit, and memoize it. The memoized version will look

up values before making a call to the actual implementation. Let’s discuss how
we achieve this.

In the maxProfit method, we call the (yet-to-be-implemented) Memoizer’s
callMemoized method. To this function we pass a method reference to the
computeMaxProfit method as the first argument and the rod length that we’re
computing the max profit for as the second argument.

The computeMaxProfit method takes two parameters—the first is a reference to
the memoized version of the function and the second is the length for which
we want to compute the max profit. Within the computeMaxProfit method, we

perform our task, and when it’s time for recursion, we route the call to

memoizedFunction, the memoized function reference. This will return quickly if

the value has been cached or memoized. Otherwise, it will recursively route
the call to the computeMaxProfit method to compute for that length. We’ll get a

full picture of how this happens when we see the callMemoized method.

The missing piece of the puzzle is how the memoized function is created from
the argument passed to callMemoized method. Let’s look at the Memoizer class’s

implementation to get a good understanding of that.

recur/fpij/Memoizer.java

public class Memoizer {
public static <T, R> R callMemoized(
final BiFunction<Function<T,R>, T, R> functionToMemoize, final T input) {

Function<T, R> memoizedFunction = new Function<T, R>() {
private final Map<T, R> store = new HashMap<>();

public R apply(final T input) {
if(!store.containsKey(input)) {
store.put(input, functionToMemoize.apply(this, input));

}

return store.get(input);

}
};

return memoizedFunction.apply(input);

}
}

The Memoizer has just one short function. In callMemoized we create an
implementation of Function in which we check to see if the solution for a given
input is already present in the store HashMap. If a value is present for the given
input, we return it; otherwise, we compute the value for the given input, store
it in the store HashMap, and return the computed value.

This version of the maxProfit method nicely encapsulates the details of
memoization. The call to this method looks the same as the previous version:

http://media.pragprog.com/titles/vsjava2e/code/recur/fpij/Memoizer.java

System.out.println(rodCutter.maxProfit(5));
System.out.println(rodCutter.maxProfit(22));

Let’s run the memoized version and ensure the maximum profit reported is the
same as in the previous version.

10
44

The profit is consistent between the versions, but the execution speeds are a
world apart. The memoized version took less than 0.05 seconds, compared to
many minutes for the previous version. With this memoized version, we can
easily bump up our rod lengths to large values and still take only a fraction of
a second to get the results. For example, a length of 500" makes no dent in the
execution time; it’s blazingly fast.

In this chapter we used lambda expressions and infinite Streams to implement
TCO and memoization. The examples show us how the features in Java can
come together to create powerful solutions. You can use similar techniques to
create nifty solutions to your own complex problems.

Wrapping Up

Recursions are a valuable tool in programming, but a simple
implementation of recursion is often not useful for practical problems.
Functional interfaces, lambda expressions, and infinite Streams can help us
design tail-call optimization to make recursions feasible in such cases. We
can also combine recursions and memoization to make the execution of
overlapping recursions fast.

In the next chapter we’ll explore a practical example that employs lambda
expressions, and then we’ll parallelize it with little effort.

Footnotes

[L3] http://en.wikipedia.org/wiki/Cutting_stock_problem

Copyright © 2023, The Pragmatic Bookshelf.

http://en.wikipedia.org/wiki/Cutting_stock_problem

Chapter 9

Composing Functions with
Lambda Expressions

With Java we have two powerful tools: the object-oriented approach and the
functional style. They aren’t mutually exclusive; they can work together for
the greater good.

In OOP we often mutate state. If we combine OOP with the functional style,
we can instead transform objects by passing lightweight objects through a
series of cohesive functions. This can help us create code that’s easier to
extend—to produce a different result we simply alter the way the functions
are composed. We can use the functions, in addition to the objects, as
components to program with.

In this chapter we look into function composition. Then we use that to
create a practical working example of the popular MapReduce pattern,
where we scatter independent calculations, and gather the results to create
the solution. As a final step, we parallelize those calculations almost
effortlessly, thanks to the ubiquitous JDK library.

Using Function Composition

The OOP paradigm helps us realize abstraction, encapsulation, and
polymorphism; inheritance is the weakest link in the paradigm. When
programming in the functional style, we compose higher-order functions, and
as much as possible, promote immutability and functions. We can leverage our
experience with OOP, and, at the same time, intermix the elegant functional
style in Java.

Let’s get a feel for object transformation. Suppose we need change, and we
ask a friend to break a $10 bill. We don’t expect our buddy to tear up the bill
and return the pieces. Instead, we’d like the bill to disappear into our friend’s
pocket and some smaller bills to appear. Mixing OOP and functional style is
like that; we send lightweight objects to functions and expect other objects to
emerge.

In this combined approach, to achieve a task, we chain a series of appropriate
functions. As objects pass through the functions in the series, they transform
into new objects to produce the desired result. We can see the difference
between a pure OOP and a mixed OOP-functional style in the following
figure. In pure OOP, at least the way it’s used in Java, over time an object’s
state goes through transitions. In the combined approach, we see lightweight
objects transform into other objects rather than the state of the objects
transitioning.

Object's state is mutated and goes through state transition

Time — %

Let’s work with an example to get a better feel for this. We’ll start with a list
of ticker symbols and, from it, create a sorted list, with each item’s
corresponding stock valued over $100. In the habitual approach, we’d walk
through the list using an external iterator and update a mutable collection.
Instead, we’ll transform objects. We’ll filter the tickers list into a list of tickers
priced over $100, then sort the list, and finally report.

We need a sample list of ticker symbols, so let’s start with that.

applying/fpij/Tickers.java

public class Tickers {
public static final List<String> symbols = Arrays.asList(
"AMD", "HPQ", "IBM", "TXN", "VMW", "XRX", "AAPL", "ADBE",
"AMZN", "CRAY", "CSco", "SNE", "GooGc", "INTC", "INTU",
"MSFT", "ORCL", "TIBX", "VRSN", "RIVN");
}

We have some twenty symbols in this sample list. We need to determine the
price for each stock. We saw the code to fetch the latest price from a web
service in [ntegrating with a Web Service. That service works only for a few
tickers when the hardcoded api_token 1s used. If you’d like to use that service
for fetching prices for any ticker symbol, you’ll have to get your own token.
Instead of going through that effort, we’ll create a function in this chapter to
return some fake prices for tickers. Here’s the code for that:

http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/Tickers.java

applying/fpij/FinanceData.java

public class FinanceData {
public static BigDecimal getPrice(final String ticker) {
Map<String, String> fakePrices = new HashMap<>() {
{
put("AMD", "81"); put("HPQ", "33"); put("IBM", "135");
put("TXN", "150"); put(VMW", "116"); put("XRX", "15");
put("AAPL", "131"); put("ADBE", "360"); put("AMZN", "106");
put("CRAY", "130"); put("CSCO", "43"); put("SNE", "72");
put("G00G", "2157"); put("INTC", "36"); put("INTU", "369");
put("MSFT", "247"); put("ORCL", "67"); put("TIBX", "24");
put("VRSN", "157"); put("RIVN", "26");
}
b

try { Thread.sleep(200); } catch(Exception ex) {} //simulate a call delay

return new BigDecimal(fakePrices.get(ticker));

}
}

The getPrice method returns some fake price for a given ticker symbol. Since
we’re looking for only stocks valued over $100, we can use Stream’s filter
method to trim down the list. Once we get the short list, we can sort it easily
using Stream’s sorted method. Finally, we can concatenate the symbols to print.
These are all operations we’ve seen before, coming together here to help with
this task. Let’s look at the code.

applying/fpij/Stocks100.java
final BigDecimal HUNDRED = new BigDecimal("100");

System.out.println("Stocks priced over $100 are:");

System.out.println(
Tickers.symbols
.stream()
filter(
symbol -> FinanceData.getPrice(symbol).compareTo(HUNDRED) > 0)
.sorted()
.collect(joining(", ")));

http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/FinanceData.java
http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/Stocks100.java

The series of operations flows nicely in a chain. The operations are
associative; the stream of ticker symbols is filtered, sorted, and concatenated.
As we move through the composed functions, the original list of symbols is
left unmodified, and we first create a filtered stream of symbols from it, and
then a stream of sorted symbols. We finally join the symbols in this last stream
for printing. If instead of sorting we want to pick a particular symbol, let’s say
the first, we only have to slightly alter the chain; we can reuse most of the
functions. Let’s visit our fake stock market to see which stocks in the list are
valued at over $100.

Stocks priced over $100 are:
AAPL, ADBE, AMZN, CRAY, GOOG, IBM, INTU, MSFT, TXN, VMW, VRSN

The ability to compose functions into a chain of operations is powerful and
has a few benefits. It makes the code easier to understand. The lack of
mutability reduces the chance of errors and makes it easier to parallelize the
code. We can alter a few links in the chain and also easily alter the behavior
along the way. We’ll see these benefits come to life in the next examples.

Using MapReduce

In the MapReduce pattern we express two sets of operations: one to perform
on each element in a collection and one to combine these results to arrive at a
final result. This pattern is gaining attention due to its simplicity and power to
exploit multicore processors.

The JVM is all geared up to utilize multicore processors. To fully benefit from
the true power of the JVM and multicore processors, we have to change the
way we code. In this section we’ll explore the MapReduce pattern with an
example, and in the next section we’ll build on that example to parallelize it.

Let’s continue with the example we’ve been using. Given a list of ticker
symbols, let’s pick the highest-priced stock whose value is less than $500.
Let’s work this example first using the imperative style and quickly evolve it
to the functional style. This will help us see the difference in style and how to
transition from the familiar style to the functional style in a more of a real-
world scenario.

Preparing the Computations

To start we need some utility functions to get the prices, compare them, and so
forth. Let’s cover those first.

To help easily work with the stock names and prices, let’s create a class with
immutable fields.

applying/fpij/Stockinfo.java

public class StockInfo {
public final String ticker;
public final BigDecimal price;

public StockInfo(final String symbol, final BigDecimal thePrice) {
ticker = symbol;
price = thePrice;

}

http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/StockInfo.java

public String toString() {
return String.format("ticker: %s price: %g", ticker, price);

}
}
The Stockinfo is simply a value object; it holds a ticker symbol and its price.
Given a ticker, we need a function to create an instance of Stockinfo with the
price information filled in. We’ll reuse the fake FinanceData’s getPrice method in
the implementation of this function.

applying/fpij/StockUtil.java

public class StockUtil {
public static StockInfo getPrice(final String ticker) {
return new StockInfo(ticker, FinanceData.getPrice(ticker));

}
Y/
}

The getPrice method is simply a wrapper, a convenience method.

We need a method to tell us if the price is less than the desired amount, so let’s
create that.

applying/Ffpij/StockuUtil.java

public static Predicate<StockInfo> isPriceLessThan(final int price) {
return
stockInfo -> stockInfo.price.compareTo(BigDecimal.valueOf(price)) < 0;

}

This is a higher-order method. It takes a price value and returns a Predicate that
can be evaluated later to check if a given instance of Stockinfo is less than the
price value cached in the lambda expression.

The last convenience method will help us pick the highest-priced stock from a
pair.

applying/fpij/StockuUtil.java

http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/StockUtil.java
http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/StockUtil.java
http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/StockUtil.java

public static StockInfo pickHigh(
final StockInfo stockl, final StockInfo stock2) {
return stockl.price.compareTo(stock2.price) > 0@ ? stockl : stock2;

}

pickHigh simply returns an instance of Stockinfo with the highest price from the

pair of instances given to it. We’ve created the functions we need and we’re all
set to put them to work. Let’s create the imperative version of the code to get
the highest-priced stock in the range.

Moving from the Imperative Style...

We’re accustomed to imperative programming, but as we’ll see here, it can be
a lot of work.

applying/fpij/PickStockimperative.java
final List<StockInfo> stocks = new ArraylList<>();

for(String symbol : Tickers.symbols) {
stocks.add(StockUtil.getPrice(symbol));

}

final Predicate<StockInfo> isPricelLessThan500 = StockUtil.isPricelLessThan(500);
final List<StockInfo> stocksPricedUnder500 = new ArraylList<>();

for(StockInfo stock : stocks) {
1f(isPriceLessThan500.test(stock))
stocksPricedUnder500.add(stock);

StockInfo highPriced = new StockInfo("", BigDecimal.ZERO);

for(StockInfo stock : stocksPricedUnder500) {
highPriced = StockUtil.pickHigh(highPriced, stock);
}

"

System.out.println("High priced under $500 is " + highPriced);

We created three loops. In the first one, we made a list of Stockinfo filled with

the price for each of the symbols. In the second loop, we made a trimmed-
down list of stock info, restricting it to stocks under $500. In the final loop, we

http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/PickStockImperative.java

picked the highest-priced stock from among the candidates. Let’s see which
stock gets picked.

High priced under $500 is ticker: INTU price: 369.000

In that code, we see three distinct steps: from symbols to stocks, then to
selected stocks, and finally to the highest-priced stocks from among the
selected ones. We can combine the operations all into one loop if we like.
Here’s the clubbed imperative version:

applying/fpij/PickStockimperativeClubbed.java

StockInfo highPriced = new StockInfo("", BigDecimal.ZERO);
final Predicate<StockInfo> isPricelLessThan500 = StockUtil.isPriceLessThan(500);

for(String symbol : Tickers.symbols) {
StockInfo stockInfo = StockUtil.getPrice(symbol);

1f(isPriceLessThan500.test(stockInfo))
highPriced = StockUtil.pickHigh(highPriced, stockInfo);
}

"

System.out.println("High priced under $500 is " + highPriced);

With this step, we gained some and lost some. We reduced the code and
removed a few loops; less code is better. But we’re still being imperative,
mutating variables. Furthermore, if we want to change the logic—say we want
to pick the highest-priced stock under $1,000—we have to modify this code.
No part of it is reusable. Going back to our three-step version of the code, we
could modularize each part into a function for reuse. Rather than combining
the steps, if we keep them as distinct steps we can convert them easily from
the imperative style to the functional style, as we’ll see next.

... To the Functional Style

We used three different loops in the imperative version, but the JDK provides
specialized functional-style methods for each of those steps. We can easily use
those convenience methods and we won’t have to manually create any internal
iterators to program the logic in the functional style. Let’s refactor the code

http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/PickStockImperativeClubbed.java

into the functional style; this version is declarative, preserves immutability, is
concise, and uses function composition.

applying/fpij/PickStockFunctional.java

public static void findHighPriced(final Stream<String> symbols) {
final StockInfo highPriced =
symbols.map(StockUtil: :getPrice)
.filter(StockUtil.isPriceLessThan(500))
.reduce(StockUtil::pickHigh)
.get();

System.out.println("High priced under $500 is " + highPriced);
}

In the method findHighPriced, we employ method chaining and transform
objects. We start with a Stream of symbols and flow into streams of stocks. We
first map the symbols into stocks filled with prices. Following the map
operation, we trim down the list and reduce it to a single value. The reduce

function gives us some extra control, but if we simply want to pick the highest
value, we could instead use the max method on the Stream.

This version has about half as many lines as the multistep imperative version.
It has about the same number of lines as the clubbed imperative version. In
addition to being concise, this code has a few benefits. The biggest gain is that
the ability to parallelize this code comes for free, as we’ll see in the next
section. We derive this benefit by using function composition and higher-order
functions, and avoiding mutability. This version of code is easier to understand
—the symbols are mapped into Stockinfo, then filtered to the desired range, and
finally reduced to a single object containing the highest value and the
corresponding ticker symbol.

We need to convert from the List of symbols, in Tickers, to a Stream of symbols
before we call the findHighPriced method.

applying/fpij/PickStockFunctional.java

findHighPriced(Tickers.symbols.stream());

http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/PickStockFunctional.java
http://media.pragprog.com/titles/vsjava2e/code/applying/fpij/PickStockFunctional.java

Let’s run the code and ensure the result is the same as the imperative version.
High priced under $500 is ticker: INTU price: 369.000

The code is concise, and this version picked the same stock, at the same price
as the previous version.

Let’s take a minute to visualize, in the following figure, the operations we
performed in this example.

e
/ eumbaii ’, Stock { Stock
| Sy I Infos) Infos)
/
\ - \ \ -

|
|
|
|
|
i
}
1
I
1
I
I
I
I
!
|
I
|
|
1
1
1
I
1
1

filter reduce

D —— getPrice D — price <500 @ —— pickHigh

In the figure, we see the map operation applies the function to fetch the stock
prices on each element in the symbols collection. This gives us the stream of
Stockinfo instances, which we then filter to select stocks, and finally we apply
the reduce operation to distill this to one Stockinfo object. The layout of the
operations in the figure shows the potential for parallelization. We’ll dig into
that next.

I
|
|
|
|
I
[}
]
I
1
I
I
I
I
I
|
|
|
|
1
1
1
i
1
1

Taking a Leap to Parallelize

In the previous example, we fetched the prices for many stock symbols.
Whether we use a simulated time delay to generate fake data, as in the
example, or make a network call to get real data from a service, fetching
data for each symbol will take some non-trivial amount of time. The more
symbols we deal with, the longer it will take to run the code sequentially.
Even though we executed the function to fetch the price sequentially, in the
previous diagram we showed these calls stacked vertically. That helps to
visualize that the functions, instead of being run one after the other, may be
run in parallel. That is, we don’t have to wait for the fetch of the price for
one symbol to complete before we start the fetch of the next symbol in the
list. Running the functions to fetch the prices in parallel will greatly reduce
the execution time. Thanks to the functional programming capabilities of
Java and the stream API, we can ,easily parallelize the previous example to
speed up the execution.

Let’s take a closer look at the code before we make any changes. We send
the tickers through the map method, which sequentially invokes the attached
function to get the price from our fake service. Once all the prices arrive,
we sequentially trim the list to stocks within the desired price range. In the
last step, which is also sequential, we pick the highest-priced stock from
among them.

Of these three operations, the first is the slowest. It involves a call to the
web service, incurs a network delay, and has to perform the operation 20
times—once for each ticker symbol. The remaining operations involve light
arithmetic and hardly take any time. Thankfully, in this problem, the
slowest parts are independent of each other and can be performed all at
once.

We don’t have to wait for the (fake) web service to respond to the price for
one ticker symbol before we send out the request for the next. Web services
are capable of handling multiple requests concurrently, barring any limits
imposed by a particular vendor to set free-of-charge or basic service apart
from premium services they may sell.

Let’s run the previous version once more to see how long it took to pick the
highest-priced stock valued under $500. The following output was produced
by running the program with the UNIX-based time utility.

High priced under $500 is ticker: INTU price: 369.000

real Om4.147s
user Om0O.058s
sys OmO.019s

If we were using a real web service to fetch the stock prices, the time it
takes to run would vary, depending on the quality of the network connection
and the time for the service to respond. Since we’re using a fake service in
this example, we’ll incur only the simulated delays. The program took
about 4 seconds for the functional, sequential version to pick the
appropriate stock. Let’s parallelize the code and see how that fares.

Making code concurrent is a big topic—where do we start and how do we
proceed? We have to distribute the tasks onto multiple threads, then collect
the results, and then move on to the sequential steps. While we’re at it, we
must ensure there are no race conditions; we don’t want threads to collide
with other threads’ updates and mess up the data.

There are two concerns here: one is how to do it and the other is how to do
it properly. For the first concern, we can seek the help of libraries to manage
threads. The responsibility for doing it right falls on us. Race conditions
arise largely from shared mutability. If multiple threads try to update an
object or a variable at the same time, we have to ensure thread safety. This

concern disappears if we follow good functional style and honor
immutability.

Surprisingly, with the design we created, the code is only one step away
from running parallel rather than sequentially. We need to switch only one
call, from this:

findHighPriced(Tickers.symbols.stream());
to this:

findHighPriced(Tickers.symbols.parallelStream());

stream and parallelStream have the same return type, but the instances they
return are different. parallelStream’s returned instance runs methods like map
and filter in parallel across multiple threads, managed by a thread pool
under the hood. The benefit is that we can easily switch between sequential
and concurrent versions, and methods like findHighPriced can be oblivious to
parallelism.

Let’s run the parallelized version of the code and look at the time it takes to
run. Again, [produced the following output using the time utility.

High priced under $500 is ticker: INTU price: 369.000

real Om0.470s
user Om0.076s
sys OmO.023s

The first bit of good news is that this version picked the same stock as the
sequential version. After all, there’s no point running really fast to get some
wrong results. The second bit of good news is the speed of execution. The
parallelized version took about 0.4 seconds, which 1s much less than the
time taken by the sequential versions.

When deciding whether to call stream or parallelStream, we have to consider
a few issues. First, do we want to run the lambda expressions concurrently?
Second, the code should be able to run independently without causing any
side effects or race conditions. Third, the correctness of the solution
shouldn’t depend on the order of execution of the lambda expressions that
are scheduled to run concurrently. For example, it wouldn’t make sense to
parallelize calls to the forEach method and print results from within the
lambda expression we provide. Since the order of execution isn’t
predictable, the order of output might be confusing. On the other hand,
methods like map and Filter that can perform computations and forward their
results for further processing are good candidates; see the following sidebar.

My

:,_F

Should We Choose Parallel Streams?

The library makes it easy to go parallel, but sometimes that’s not the right choice. It depends
on your data and your computation. Sometimes a parallel computation may be slower than its
sequential counterpart.

We often look to concurrency to speed up execution. But there is a cost—execution time—to
make things concurrent. We have to evaluate to make sure that the time saving far outweighs
the cost of using concurrency.

For small collections, if the tasks per element are fairly short and quick, the sequential
execution may beat any concurrent solution. The benefits of concurrency will shine only if
the tasks are time-consuming and the collection is fairly large.

Even though parallel streams in Java make it pretty easy to make code concurrent, we still
have to evaluate the problem at hand and the data size to determine whether there’s an
execution-time saving.

The change from sequential to parallel was effortless, but we did a number
of things to make this possible. First, we avoided mutability and kept the
functions pure, with no side effects. We avoided race conditions and thread-
safety issues, which is critical for correctness—there’s no point in being fast

and incorrect. We should take extreme care to ensure that lambda
expressions passed to stream operations are free of side effects.

Second, the way we composed the functions helped. The decision to run
sequentially or in parallel was made upstream, when we transformed the List
to a Stream. The rest of the code in the findHighPriced method didn’t change;
the two versions share it in common. Going from sequential to parallel was
as simple as toggling a switch.

Wrapping Up

Lambda expressions help compose functions into a chain of operations,
which lets us put problems into an associative series of object
transformations. In addition, by preserving immutability and avoiding side
effects we can easily parallelize the execution of parts of the chain’s
operations and gain speed.

So far, we’ve discussed features that show how amazing the functional
programming capabilities of Java are. Next, we’ll see an exception to that,
the gnarly topic of exception handling.

Copyright © 2023, The Pragmatic Bookshelf.

Chapter 10

Error Handling

Murphy’s law says that if something can fail it will. Software systems will
fail; errors are inevitable. The code we write should anticipate and properly
react to errors that may happen at runtime. Error handling should not be an
afterthought. The way you handle errors should depend on the application
requirements and the code should align with those expectations. Whether
we code in the imperative style or the functional style, proper error handling
1s our responsibility.

Functional style code is amazing, concise, less complex, and easy to work
with...until we hit exception handling. Exception handling is fundamentally
an imperative style of programming idea. Throwing exceptions is
incompatible with functional programming. But we still have to deal with
failures in code written using the functional programming paradigm.

When programming with the functional pipeline we don’t have the luxury
of throwing an exception as we do in the imperative style of programming.
This is one area where the imperative style may have an upper hand
compared to functional programming.

You’re not allowed to throw a checked exception from the functional
pipeline. Don’t throw a runtime exception either. Sure, the compiler doesn’t
stop you from doing so, but you’ll abruptly end the functional pipeline
processing and the previously processed data may be lost. Throwing
exceptions in a functional pipeline is simply not an option.

In this chapter we’ll take a close look, using concrete examples, at why
exception handling isn’t always the right choice in functional programming.
To illustrate this, we’ll first start with the familiar imperative style where
throwing exceptions is the norm. We’ll then convert the code to the
functional style to reap the benefits of this paradigm, but as you’ll see, we’ll
quickly run into issues with exceptions. We’ll then, instead of throwing
exceptions, treat errors as forms of data and deal with the failure
downstream. By the end of this chapter, you’ll have a good sense of how to
program to deal with failures, and you’ll be able to apply those ideas to
your own projects that use the functional style.

Taking a Holistic View of Error Handling

Before we dive into code we need to step back and think about handling
errors. We’ll discuss an example application here and use that to drive the
discussions on error handling in the rest of this chapter.

Suppose we’re asked to write a program to print the names of the airports
given a list of IATA codes. The happy path is simple to visualize—given the
list, map it to the names, and print. But there are a few things that could go
wrong in the process. We may run into a network error when accessing the
details from a remote web service that provides the mapping of IATA codes
to airport names. It’s also possible that one or more of the given IATA codes
are not valid or not recognized by the web service.

As programmers, we may quickly recognize the possible failures, but what
we do about them isn’t in our hands. The business and the requirements
should decide that. Should we gracefully fail the entire program if the
request for the name of one of the IATA codes runs into a failure? Should
we ignore the failures and report only the names of the IATA to name
mappings that mapped successfully? Should we report the names and the
failures all in sequences? Should we organize the names into one group and
the failures into another group? Those are all good options in different
circumstances, but the implementation has to align with what the business
wants.

Suppose we approach the business for clarification, and they suggest to
print the names when successful and print error details upon failures; we
can design for that. But, if they change their mind, we want our design to
accommodate that with as little change to the code as possible. For this
reason, the place where the error happens is often not the right place to deal
with the errors. Most of our code may have to propagate the result and
failures to the calling code, and let the code at the edge deal with the

display of results or the proper handling of errors, based on the
requirements.

Next, we’re going to write a small program that uses imperative style code
to deal with exceptions.

Exception Handling and Imperative Style

Your users don’t care what programming style you use. Whether you
implement code using the imperative style or the functional style, the result
should be the same. Your programs have to handle failures gracefully, no
matter which paradigm you chose. In this section, we’ll start with imperative
style code that takes us directly into the heart of dealing with failures. Once
we see how the code handles exceptions and the output of the program, we’ll
look at options to turn that code into the functional style and verify that the
output matches that of the imperative style code.

We’re going to work with the requirements from the previous section: given a
list of airport IATA codes, retrieve and print the names of the airports, and
print the error details for the names that can’t be found. Let’s start with the
code that retrieves the name of an airport when given its IATA code:

exceptionhandling/fpij/Airportinfo.java
package fpij;

import java.util.Scanner;
import java.net.URL;
import java.io.IOException;

public class AirportInfo {
public static String getNameOfAirport(String iata)
throws IOException, AirportInfoException {

var url = "https://soa.smext. faa.gov/asws/api/airport/status/" + iata;

try(var scanner = new Scanner(new URL(url).openStream())) {
var response = scanner.nextLine();

if(!response.contains("Name")) {
throw new AirportInfoException("Invalid airport code

}

n

+ iata);

return response.split("|"")[3]; //a bruteforce way to get the Name

}

http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/AirportInfo.java

}
}

The getNameOFfAirport method takes an IATA code for an airport, talks to a web
service to get information about that airport, and extracts the name of the
airport from the response. Due to the nature of the code—there may be
failures accessing the remote web service or the service may not recognize the
given code—failures are inevitable.

The getNameOFfAirport method isn’t the right place to handle any errors. If the
call to the service fails, we merely propagate the 10Exception from the URL to
the caller of getNameOFfAirport. If, on the other hand, the service call succeeded
but we didn’t get the airport details we’re looking for, the getNameOFAirport
method throws a domain-specific checked exception AirportinfoException,
which is defined as shown next:

exceptionhandling/fpij/AirportinfoException.java
package fpij;

public class AirportInfoException extends Exception {
public AirportInfoException(String message) {
super(message);

}

public AirportInfoException(Throwable cause) {
super(cause);

}

public AirportInfoException(String message, Throwable cause) {
super(message, cause);
}
}

Now that we have the code for getting the name of an airport given its IATA
code, let’s focus on the next higher-level function. We want to get the names
of all the airports in a given list of IATA codes. Let’s look at how we’d write
the code in the imperative style first—after that, we’ll see how to do the same
thing in the functional style.

http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/AirportInfoException.java

The getNamesOFAirports method takes a list of airports, calls the
getNameOFAirport method of the Airportinfo class, and returns a list of names.

That will take care of the happy path, but we also need to consider the
possibility of failures. Programmers are often tempted to throw or propagate
an exception in the case of a failure. That may work if we have a stop-the-
show requirement, but it’s not a solution when the users want to see the
results, both for successes and failures. We need to capture both successful
results and details of failures and pass them to the caller.

Here’s the implementation of the getNamesOFfAirports method in a new
AirportNames class:

exceptionhandling/fpij/AirportNames.java

public class AirportNames {
public static List<DataOrException<String>> getNamesOfAirports(
List<String> iataCodes) {

List<DataOrException<String>> result = new ArraylList<>();

for(var iataCode: iataCodes) {

try {
result.add(DataOrException.of(
AirportInfo.getNameOfAirport(iataCode).toUpperCase()));

} catch(IOException | AirportInfoException ex) {
result.add(DataOrException.of(ex));

return result;

}

In the previous code, a DataOrException serves as a wrapper of the result—a
String for an airport name or an Exception in case of a failure. The
getNamesOFAirports of AirportNames iterates, imperatively, through a list of IATA

codes, and fetches the name of the airport from the service using the
getNameOFAirport method we wrote previously. If the call succeeds, the method

converts the obtained name to upper case, wraps it into an instance of

http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/AirportNames.java

DataOrException, and adds that to the result list. If the call fails, the method

instead adds the details of the failure, wrapped into an instance of
DataOrException, to the result list in the catch block. The imperative style, even

though it’s verbose, 1s rather good at handling exceptions, and we took
advantage of that here. Let’s take a quick look at the DataOrException interface

that’s used to wrap the data or the Exception:

exceptionhandling/fpij/DataOrException.java
package fpij;

public sealed interface DataOrException<T> {
public default boolean isDataPresent() { return true; }

public default T getDataOrThrow() {
throw new RuntimeException("No data");

}

public default Exception getExceptionOrThrow() {
throw new RuntimeException("No Exception");

}

public static <T> DataOrException<T> of (T data) {
return new Data<T>(data);

}

public static <T> DataOrException<T> of(Exception exception) {
return new TheException<T>(exception);

}
}

record Data<T>(T data) implements DataOrException<T> {
public T getDataOrThrow() { return data; }

}

record TheException<T>(Exception exception) implements DataOrException<T> {
public boolean isDataPresent() { return false; }

public Exception getExceptionOrThrow() { return exception; }

3

http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/DataOrException.java

The first overloaded of static method of DataOrException returns a wrapper
instance that carries the given data. The second overloaded version of the
method returns a wrapper instance that carries the exception. Using this we
can conveniently transport data or exceptions between functions.

Let’s call the getNamesOFfAirports method from a main method, providing a few
[ATA codes for airports in my favorite Lone Star state of Texas:

exceptionhandling/fpij/AirportNames.java

public static void main(String[] args) {
var iataCodes = List.of ("AUS", "DFW", "HOU", "IHA", "SAT");

for(var result: getNamesOfAirports(iataCodes)) {
if(result.isDataPresent()) {
System.out.println(result.getDataOrThrow());
} else {
System.out.println("Error:
result.getExceptionOrThrow().getMessage());

"

+

}
3

Let’s take that code for a short flight and see how it works.

AUSTIN-BERGSTROM INTL
DALLAS-FORT WORTH INTL

WILLIAM P HOBBY

Error: Invalid airport code IHA
SAN ANTONIO INTL

The output shows the names of the airports for IATA codes that were valid.
Instead of 1AH, I had typed in IHA, and it turns out there is no airport with that
code. No worries, the code handled that gracefully, told us politely what had
happened, and moved on to display the name for the next airport in the list.

The main method, being the edge function, can decide how to deal with the
exceptions based on the requirements. It can evolve based on the change to the
requirements: to print only the successful names, to print only the errors, to
group them separately, and so on. From the design point of view, this solution

http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/AirportNames.java

is easier to extend. For example, in the future, if one caller to
getNamesOFAirports wants all the results and failures but another caller wants to
fail fast upon the first exception, we can modify the getNamesOFAirports so that
it can return a full list of successes/failures or only the first failure based on
the caller’s preference, which could be passed in as a parameter.

The previous code was in the imperative style, but what about the functional
style, you may wonder? We know that functional style code is elegant
compared to imperative style, but it should also be graceful in handling errors.
Let’s see how the efforts to refactor the code to the functional style turn out
next.

Checked Exceptions and Functional Style with
Streams

If we don’t consider the exceptions for a moment, refactoring the
imperative style code to functional style code 1s easy. We have a list of
IATA codes, we can invoke the stream method on the list, call map to get the
name for a given [ATA code, and then call map again to convert the name to
uppercase, and finally use the toList method to place the result in a list.
Code, like life, is easy when we don’t have to deal with errors. But fun
without the risk of failure isn’t an option.

Using the stream API with code that throws exceptions poses some serious
challenges. Let’s use the functional style to rewrite the imperative solution
and see what issues pop up:

public static List<String> getNamesOfAirports(List<String> iataCodes) {
return iataCodes.stream()
.map(iataCode -> AirportInfo.getNameOfAirport(iataCode))
.map(String::toUpperCase)
.tolList();
//ERROR: This code will not compile

}

As one would expect from the functional style, the code is beautiful,
elegant, concise, reads well to convey the intent, and...it doesn’t work,
sadly. Go ahead and compile, and you’ll see the following error:

fpij/AirportNames.java:10: error:
unreported exception IOException; must be caught or declared to be thrown
.map(iataCode -> AirportInfo.getNameOfAirport(iataCode))

N

1 error

The error is from the lambda expression we’re passing to the map method.
The parameter of Stream’s map method takes Function<T, R> as its parameter.

The abstract method of that functional interface, R apply(T) doesn’t have any
throws clause. Thus, the lambda expression or method reference that will be
used as an argument to map isn’t allowed to throw any checked exceptions.

That seems like a serious limitation at first glance. Some developers have
complained about it. Some have even taken the extreme measure of forking
the JDK code and adding the throws clause. But the folks behind the Java

language have done what is right—it’s not an oversight. Let’s see why.

Exception Handling vs. Functional Style

It’s worth reiterating:

Exception Handling

== _""\._

Exception handling is fundamentally an imperative style of
programming idea. Exception handling and functional
programming are incompatible.

Some programmers think the issue with the Stream API and exception
handling is the fact that the functional interfaces used by methods like filter,
map, and so on don’t deal with checked exceptions. This leads them towards
a poor solution of throwing an unchecked exception that wraps the
underlying checked exceptions. This may provide a temporary relief by
quieting the compiler from complaining that the exception should be caught
or thrown. But this doesn’t address the fundamental issue of how the error
is handled by the program.

Let’s try out the often-attempted bad solution by refactoring the previous
code to eliminate the compiler error. Then we’ll discuss why this is a
terrible idea.

In the lambda expression passed to the map method, we wrap the checked
exception within a RuntimeException. Here’s the code—please don’t try this
at the office or anywhere in public for that matter.

public static List<String> getNamesOfAirports(List<String> iataCodes) {
return iataCodes.stream()
.map(iataCode -> { //Bad idea
try {
return AirportInfo.getNameOfAirport(iataCode);
} catch(Exception ex) {
throw new RuntimeException(ex);

3]

.map(String::toUpperCase)
.tolList();
}

If Airport’s getNameOFAirport method returns an airport name, we forward
that to the next map method for transformation to uppercase. But if there is a
failure, the code blows up with an unchecked exception.

Throwing an exception from the middle of a functional pipeline is a terrible
idea for a few reasons. The functional pipelines are executed either lazily or
in parallel. The exception in the pipeline might have been thrown from
another thread if the stream is executed in parallel. Also, the lambda
expression passed to any function in the pipeline, like filter, map, and so on
may be executed lazily. In either case, the caller may not be in the control
flow to properly receive the exception.

What if the entire pipeline along with the terminal operation is fully
embedded within a function and the execution of the stream is sequential,
you may ask? In the previous code, the exception blows up the call stack. If
you carefully examine the code, you’ll see we’re not catching the exception
anywhere. So, it will result in the abrupt termination of the program. You
may be tempted to put a try-catch within the getNamesOFAirports method,
moving the current body of the method into the try block. That may help
catch the exception, but by then you will be out of the functional pipeline,
and you’ll have no way to continue processing for any remaining IATA
code or gathering the results for the previously successful IATA codes. All
is lost, and nothing is gained, as you see in the output:

Exception in thread "main" java.lang.RuntimeException:
fpij.AirportInfoException: Invalid airport code IHA

The output of this code is far different from the output of the imperative
style code. Let’s think through the fundamental issue that caused this.

In functional programming, and especially in using the Stream API, we’re
working with a functional pipeline of functions. Blowing up in the middle
of the pipeline doesn’t make much sense if we want to gracefully handle the
failure and continue processing for other elements in the collection.

Don’t Blow Up
Don’t raise or propagate exceptions from within a functional
pipeline.

Imagine a friend calls you frantically and says they have a flat tire while
driving on the middle lane of a major freeway. The worst advice you may
give, especially if you don’t want to abruptly end that friendship: "Blow up
and start driving in reverse." Now, you’d never do that... right? You’d most
likely suggest: "Carefully drive forward, exit the freeway or pull over to the
shoulder, and deal with it downstream."

That’s right, deal with it downstream.

Dealing with It Downstream

Ideally, the operations we perform in the functional pipeline are pure
operations with no side-effects. The data flows in harmony as it gets
transformed from one stage of the functional pipeline to the next. In reality,
things go wrong, Murphy’s law intervenes, and we have to gracefully deal
with the messes we may run into.

A good strategy to deal with errors and exceptions in functional programming
is to treat an error as a form of data, move it down the pipeline, and deal with
it downstream.

Wrap the Exception Received into an Object

Treat errors and exceptions as forms of data. Wrap the details in
an object and move it downstream.

To treat an error as a form of data, we need to capture and encapsulate the
result or the error into an object. In short, we need a Union Type."*®! A Union
Type is a data structure that can hold one of many different types of data, but
an instance of it can hold data of only one of the expected types at runtime. In
our case, we need objects of a Union Type that hold only one of two types:
either the result or an error. In functional programming, the Union Type is
often referred to as an Either monad since it carries either the data or an error
through the stages of the functional pipeline.

Incidentally, we already went this route earlier in this chapter when we created
the DataOrException wrapper to carry data or an error in the imperative style
code. Now, in the context of functional programming, we need more
operations on a wrapper as it flows through the functional pipeline, and we
carry forward that idea of using a Union Type. In the spirit of such solutions in
languages like Scala™? and libraries like Vavr,"¥! we’ll call our new
implementation Try.

Our Try may exist in one of two forms: a Success, which carries data or a result,
or a Failure, which carries an exception in the form of Throwable. We’ll build

our functional pipeline so that each stage in the pipeline will process the result
that’s carried in the Try given to it. In response, each stage will create another

Try. This Try will contain the result of that stage if successful or an error
otherwise. If a stage in the pipeline receives a Failure instead of receiving a
Success, the function in that stage will merely pass along that failure
downstream without processing.

Instead of data flowing through a Stream API, we’ll model it so that either
data or an error, captured into a Success or Failure, is passed down the pipeline,

as shown in the following figure.

R R R output
o GO
E E _J E \

Extract Result or

Generate Result Transform Result Error message
or Error or Pass on Error
Function R Try (Union)
— Inthe R-Result
Pipeline E E-Exception

In this design, the pipeline starts with the collection of data given as input. As
each element is processed, an instance of Try, in the form of Success or Failure,
is passed down the chain. The final stage in the pipeline extracts the result
from the success it receives or the details of the error if it receives a Failure.

Let’s rewrite the getNamesOFfAirports method to use this approach, using the yet-
to-be-written Try interface and Success, and Failure classes.

public static List<Try<String>> getNamesOfAirports(List<String> iataCodes) {
return iataCodes.stream()
.map(iataCode -> Try.of(() -> AirportInfo.getNameOfAirport(iataCode)))

.map(name -> name.map(String::toUpperCase))
.tolList();
}

Structurally, this version of getNamesOFfAirports is the same as the first

functional style version we wrote. Whereas the first version ran into
compilation errors, in this version we’re better equipped to deal with
exceptions.

We take a collection of IATA codes and, using the StreamAPI, process each
element through the pipeline. In the first map method call, in the lambda
expression passed as an argument, we invoke the Airportinfo’s getNameOFAirport
method, passing the given IATA code. This method, as you know, may return a
name of an airport or throw an exception.

We wrap the call to getNameOFAirport in another lambda expression and pass
that to the yet-to-be- written Try’s of method. Since this lambda expression will

return a name, it appears that a suitable functional interface to represent this
would be a Supplier<T>. But the abstract method get of that interface doesn’t

permit any exceptions. Instead, the good old callable<T> interface in
java.util.concurrent will work great here—other than method names, the main
difference between Callable and Supplier is that the former will permit
exceptions to be thrown from its call method implementation whereas the latter
won’t allow any such thing from its get method implementation.

The result of the first map call is a Try, but in reality, it may be Success, which
carries an airport name, or Failure, which carries the details of what went
wrong. Thus, both Success and Failure are classes that implement the Try
interface.

The lambda expression passed as an argument to the second map call, in the
functional pipeline, transforms the name to uppercase if the received Try is a
Success Or passes on Failure as is in case of an error. This is done using the map
method of Try. In the final step of the functional pipeline, we return a list of Try

instances to the caller. This way the caller of the getNamesOFAirports has control
over what to do with data and exceptions, based on the overall system
requirements.

For the previous code to work, we need to create the Try, Success, and Failure.
We have a couple of different options to create these. If the version of Java
you’re using supports sealed classes, you can follow along with the code given
here. If you’re using an older version of Java, then leave out the sealed and
permits clause from the definition of Try.

Let’s implement the Try interface which represents either a success or a failure.

exceptionhandling/fpij/Try.java
package fpij;

import java.util.concurrent.Callable;
import java.util.function.Function;

public sealed interface Try<T> permits Success, Failure {
T getResult();
Throwable getError();

static <T> Try<T> of(Callable<T> code) {
try {
return new Success<T>(code.call());
} catch(Throwable throwable) {
return new Failure<T>(throwable);
}
}

default <R> Try<R> map(Function<T, R> mapper) {
if(this instanceof Success<T>) {
return of (() -> mapper.apply(getResult()));
} else {
return new Failure<R>(getError());

}
}
}

http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/Try.java

The interface has two abstract methods: one static factory method and one
default method. The getResult is for fetching the result, if present. On the other
hand, the getError 1s to get the exception if there is a failure.

The of static method acts as a factory method to return an instance of Success if
the given Callable’s call method returns a result. Otherwise, it captures the
generated exception and passes it on as an instance of Failure. Both Success and
Failure conform to the Try interface.

The last method in the Try interface 1s the map method which transforms the

result, if present, using the Function given as an argument. If the Try holds an
error instead of the result, that is, if it’s a Failure, then the map method simply
passes on the failure without applying the given function.

All the necessary logic is in the Try interface. The implementing classes of this
interface are merely holders of results or errors. Let’s write Success as a record:

exceptionhandling/Ffpij/Success.java
package fpij;

public record Success<T>(T result) implements Try<T> {
@0verride
public T getResult() { return result; }

@verride
public Throwable getError() {
throw new RuntimeException("Invalid invocation");

}
3

There isn’t much to this record—it is merely a carrier of data and conforms to
the Try interface.

Similarly, the Failure class is pretty straightforward:

exceptionhandling/fpij/Failure.java

http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/Success.java
http://media.pragprog.com/titles/vsjava2e/code/exceptionhandling/fpij/Failure.java

package fpij;

public record Failure<T>(Throwable throwable) implements Try<T> {
@override
public T getResult() { throw new RuntimeException("Invalid invocation"); }

@Override
public Throwable getError() { return throwable; }
}

Success 1S a carrier of results and Failure 1s a carrier of bad news. Take another
look at the getNamesOFAirports method to see how these classes are used.

As a final step, let’s see how the functional style implementation of the
getNamesOFfAirports can be used:

public static void main(String[] args) {
var iataCodes = List.of ("4AUS", "DFW", "HoOU", "IHA", "SAT");

getNamesOfAirports(iataCodes).stream()
.map(name -> switch(name) {
case Success(String result) -> result;
case Failure(Throwable throwable) -> "Error:

1))
.forEach(System.out::println);

"

+ throwable.getMessage();

}

We’ve pushed the error handling all the way to the edge where we can align
the code to the business requirements. By preserving all the information in a
strongly typed form, we can gracefully evolve the program as the
requirements change. The main method gets a list of Try instances from the

getNamesOfAirports method and iterates over it using the stream internal iterator.
In the map call, we extract the result from the Try if it is a success; otherwise,
we extract the error details.

We’re using the amazing feature of the switch expression of Java. If you’re
using an older version of Java, you may use the traditional if-else instead—the
code will be a tad verbose but will get the job done.

Run the code and take a look at the output:

AUSTIN-BERGSTROM INTL
DALLAS-FORT WORTH INTL

WILLIAM P HOBBY

Error: Invalid airport code IHA
SAN ANTONIO INTL

It worked...and the output is exactly the same as the output of the imperative
style version. Phew!

Before we end this chapter, let’s bring together everything we’ve covered on
handling errors in functional style code.

Handling Failures in Functional Programming

When programming with the functional style and the Stream API, treat
errors as forms of data. If a lower-level function called in one of the stages
of the pipeline throws an exception, capture and wrap that into a failure
object. Instead of writing your pipeline so that it moves only data, design it
to move a union object that may carry either data or an error. This is a good
way to deal with errors in a functional pipeline, but there are consequences
to this approach.

If none of the stages in a functional pipeline may have errors, then the
functions can nicely focus on dealing with data. But, if errors are possible in
any stage of the pipeline, then the stages downstream have to be written to
work with the union object and take actions to transform data upon success
or push the error downstream upon failure. This makes the functions in the
pipeline less cohesive. They can’t focus only on data transformation, they
need to also process the error or at least move that along downstream.

If you have to deal with errors, you have to choose between using the
imperative style or functional style. If complex error handling is needed, the
imperative style may be a better option. If you want to use the functional
style, the code will have to be designed to pass the union objects and not
merely the data, and that takes more effort than simply writing a pipeline to
deal with data. Evaluate your options, prototype, and get a feel to see if
using the imperative style or the functional style is better for your use case.

Wrapping Up

Dealing with failure is hard, both in life and in programming. Exception
handling is fundamentally an imperative style of programming idea, and we
can’t mix exceptions and functional style code. One way to deal with
failures is to treat errors as forms of data. In this chapter we took a close
look at how to do this with a practical example. The solution is effective in
handling errors but makes the code a tad complex and less cohesive. Use
caution in how you deal with errors when writing functional style code.

In the next chapter we’ll apply our learnings by taking some legacy code
written using the imperative style and turning it into functional style.

Footnotes

[*)}

[16] https://en.wikipedia.org/wiki/Union_type

E

https://www.scala-lang.org/api/2.13.6/scala/util/Try.xhtml

—

|
e}

—_

https://www.javadoc.io/doc/io.vavr/vavr/0.9.2/io/vavr/control/Try.xhtml

Copyright © 2023, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Union_type
https://www.scala-lang.org/api/2.13.6/scala/util/Try.xhtml
https://www.javadoc.io/doc/io.vavr/vavr/0.9.2/io/vavr/control/Try.xhtml

Chapter 11

Refactoring to Functional Style

In the past, Java programmers could only write object-oriented code using
the imperative style of programming. Today they can write object-oriented
code using either the imperative style or the functional style. It’s nice to
have such choices when writing code. Functional style code may not be
ideal all the time, for example, to deal with side-effects or exceptions as we
saw in the previous chapter. But it does win over the imperative style by
reducing accidental complexity and making code easier to read and
understand.

When we sit down to write new code, we can reach out to our functional
programming skills. But many enterprise applications aren’t greenfield.
We’re often thrown into a codebase that has been around for years and
written by someone who’s not around in the company anymore.

There’s a lot of imperative style Java code in the world. There are two main
reasons for that. First, the imperative style was the way of life in Java, and
most programmers are very familiar with that style since that was the only
option for a long time. Second, even though functional programming has
been possible in Java since version 8, it’s natural for us to fall back on the
ways we’re comfortable with and highly used to because they’re familiar.
It’s unrealistic to expect that we wake up one morning and write functional
style code with as much ease as we did imperative style code the night

before. Thus, more new imperative style code has been written in the past
years.

The code works, so you may wonder why bother refactoring to functional
style. The simplest reasons are to reduce accidental complexity, make the
code easier to understand, and above all, for it to be more obviously correct.
With the functional style, the accidental complexity is tucked away, out of
our sight into the underlying library of code, and our code appears to read
more like the problem statement. This reduces the impedance mismatch and
the cost of maintaining the code. That sounds great, but does that mean we
have to refactor all the existing code? Certainly not.

It’s not practical—and I certainly don’t suggest—that you change all
existing imperative style code to functional style code. Don’t go out on a
mission to change code for the sake of changing. There are a few
opportunities when we can, and should, refactor imperative style code to
functional style code. We benefit by being pragmatic instead of being
dogmatic.

Modules of code that have no other reasons to change aren’t worth spending
time refactoring from imperative to functional. However complex that code
may be, no one is touching it, so it’s wise to spend our time and effort
elsewhere.

In applications that have been around for a while, when you touch a piece
of code—whether making an enhancement to an existing feature, adding a
new feature, or fixing a bug—is a great time to refactor. The code you’re
changing is likely to continue to change and deserves to be less complex,
easier to read, and cost-effective to maintain.

When writing new code, both in greenfield and existing applications, we
may be tempted to write code in the imperative style because it’s familiar.
That’s quite fine. We’re not in a competition—don’t let anyone, especially
yourself, ridicule you for writing code in the imperative style. I’'m a big fan

of the mantra "Make it work, then make it better real soon." If you find it
easier to express your ideas in the imperative style, so be it. Once you have
the code working, with good tests around it, refactor the new code to the
functional style and verify that the tests are passing. You captured the logic
and then reduced the complexity, that’s noble. As you gain experience with
the functional style, you’ll find yourself gradually writing code in that style
first rather than having to write in the imperative style and then refactor it.
Give yourself and your colleagues the time to make that transition.

As you may have realized already, writing code in the functional style isn’t
about learning a particular set of syntax. It’s a paradigm shift that takes
changing the way we think and involves exploring, trying out ideas,
prototyping, and patience. Refactoring code from the imperative style to the
functional style is one of the best ways to get that practice.

In this chapter, we’ll refactor code for a number of common programming
tasks that we run into every day, from the imperative style to the functional
style. Working through the refactoring steps for these tasks will help you to
think through the ways to program in the functional style. As you look at
each of the problems, try out the code and rework the solution in the
functional style. Then resume reading to compare your line of thinking with
the details outlined and the resulting code.

Before we dive into the first refactoring task, let’s discuss a key step that’s
essential for refactoring—having a set of automated tests.

Creating a Safety Net for Refactoring

Refactoring should make the internals of code better without affecting its
external behavior. We’re often eager to reap the benefits of refactoring but
have to be mindful of the risks as well. It’s reasonable to worry about the
code behaving differently after the change. Due to the hidden complexity in
the code, it’s possible that we haven’t fully understood the code we set out
to change. Irrespective of how charming the functional style code may look,
it’s no good if it doesn’t produce the same results as the imperative style
code it’s replacing. Automated tests serve as a safety net for refactoring.

Once we have passing tests, with each change we can quickly verify that
the code that worked before continues to work the same way. When writing
new code, whether in the imperative or functional style, write tests. Even if
we write code in the functional style in the first place, we’re sure to find
ways to improve the design and quality of code. The tests will give a great
deal of confidence that the refactoring didn’t break the existing
functionality.

Legacy code poses additional challenges as it may not contain automated
tests to verify the behavior. If possible, write automated unit tests on the
code before refactoring. If that’s not possible, identify integration tests that
touch the code you plan to refactor. If none of those options exist, rely on
manual tests that verify the code’s behavior. Once you identify tests that
provide the feedback as quickly and reliably as possible, then set out to
refactor the code.

For each example in this chapter, we’ll start with an imperative style code
for a task along with a set of unit tests that verify the code’s behavior. As
you practice along, key in both the code and the accompanying tests, and
verify the tests pass. Then refactor the code to the functional style. Finally,
verify that the tests still pass to confirm that the functional style code
produces the same result as the imperative style code it replaces.

Let’s start with our first refactoring task—we’ll begin with a relatively
simple problem to warm up.

Refactoring the Traditional for Loop

Existing codebases are littered with for loops. We use them to iterate over
collections of data but also over a range of indexes. To illustrate how we can
refactor the traditional imperative for loop into functional style code, we’ll
look at using a for loop to compute the factorial of numbers in a range. But, of
course, we’ll start with a test to provide the safety net we just discussed.

refactoring/fpij/FactorialTest.java

public class FactorialTest {
Factorial factorial;

@BeforeEach
public void init() {
factorial = new Factorial();

}

@Test
public void computeFactorial() {
assertAll(
() -> assertEquals(BigInteger.ONE, factorial.compute(1)),
() -> assertEquals(BigInteger.TWO, factorial.compute(2)),
() -> assertEquals(BigInteger.valueOf(6), factorial.compute(3)),
() -> assertEquals(BigInteger.valueOf(120), factorial.compute(5))
)
}
}

The test verifies that the yet-to-be-seen Factorial class’s compute method returns
proper factorial values for the given upper limit of values. Let’s now take a
look at the Factorial class where the compute method is implemented in the
imperative style:

refactoring/fpij/Factorial.java

public class Factorial {
public BigInteger compute(long upTo) {
BigInteger result = BigInteger.ONE;

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/FactorialTest.java
http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/Factorial.java

for(int 1 = 1; 1 <= upTo; i++) {
result = result.multiply(BigInteger.valueOf(i));
}

return result;

}
}

Much like the traditional use of for to loop, we’re iterating over a range from 1
to the value in the variable upTo. Your mission: pause reading, run the test, and
verify it passes. Then refactor the compute method to the functional style.

Verify the tests pass and then read on. We’ll refer to these steps in the sections
that follow as:

Pause, refactor, and continue.

Now that you’re back, let’s compare the steps you took to those I suggest here.
It’s not always clear where to start and how to proceed when trying to refactor
from the imperative to the functional style. One technique that’s helpful is to
think declaratively and then program functionally.

As we discussed before, the imperative style is where we tell the code what to
do and also how to do it. In the declarative style we focus on the what and
delegate the how to underlying libraries.

Functional style == declarative style + the use of higher-order functions

One of the key strengths of the functional style of programming is its
declarative nature. Before jumping into the functional style, take some time to
think declaratively—it can help you identify some key elements in how to
implement the code differently from the imperative style. Rather than focusing
on how each step is carried out, think of the problem as a series of high-level
steps that transform the data from the given input to the desired output. Let’s
dive into the problem at hand to see how this approach can help.

To compute the factorial, we work with a range of values from 1 to the given
number as the upper limit. For each number in the range, we need its Biginteger
representation. Finally, we accumulate the product of the Biginteger values—

that’s a reduce operation. The problem at hand appears as the series or
pipeline: range => map => reduce. We can refactor the code to bring those
ideas to fruition.

As the first step, we need to get a range of long values from 1 to a given
number. A quick search through the JDK shows that the LongStream interface
has a static method named rangeClosed that will generate a LongStream to iterate
through the values in the specified range. Once we have a LongStream, we want
to transform the values in the range to values that are a Biginteger
representation of the values. We can’t use the map method because it expects
to transform a LongStream to another LongStream, not a Stream<Biglnteger>, SO
we’ll use the mapToobj method. As the final step, we can use the reduce
operation. Let’s put those steps together in code:

public BigInteger compute(long upTo) {
return LongStream.rangeClosed(1, upTo)
.mapToObj(BigInteger: :valueOf)
.reduce(BigInteger.ONE, BigInteger::multiply);

}

In addition to using the stream API, we also used method references instead of
creating lambda expressions, making the code more concise and expressive.
No explicit mutability, less clutter, more expressive—these are all benefits that
we can expect from the functional style.

Next, let’s look at a problem that has a tad more complexity.

Refactoring More Complex Loops

Traditional for loops allow us to increment or decrement the range by different
step values. Let’s take a look at a countFrom1900 method of a LeapYears class
that computes the number of leap years since 1900 to a given year.

Let’s start with the test first:

refactoring/fpij/LeapYearsTest.java

public class LeapYearsTest {
LeapYears leapYears;

@eforeEach
public void init() {
leapYears = new LeapYears();

}

@Test
public void countFrom1900() {
assertAll(
() -> assertEquals(25, leapYears.countFrom1900(2000)),
() -> assertEquals(27, leapYears.countFrom1900(2010)),
() -> assertEquals(31, leapYears.countFrom1900(2025)),
() -> assertEquals(49, leapYears.countFrom1900(2100)),
() -> assertEquals(0, leapYears.countFrom1900(1800))
)
}
}

The tests verify that the countFrom1900 method is returning the correct result
for different years passed as arguments.

Let’s now take a look at the imperative style code that we’d like to refactor:

refactoring/fpij/LeapYears.java

public class LeapYears {
public int countFrom1900(int upTo) {
int numberOfLeapYears = 0;

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/LeapYearsTest.java
http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/LeapYears.java

for(int 1 = 1900; i1 <= upTo; 1 += 4) {
if(Year.isLeap(i)) {
numberOfLeapYears++;

}
}

return numberOfLeapYears;

}
}

Since leap years occur at most once every four years, the for loop steps over
the index in increments of 4. It then uses the isLeap method from the JDK
library to check if a year is a leap year and increments a count accordingly.

Pause, refactor, and continue.

We need to find a functional style equivalent for the for loop that steps over in
arbitrary increments. Let’s take a closer look at the for statement, but with
functional eyes:

for(int 1 = 1900; 1 <= upTo; 1 += 4) {
reads like
for(seedValue, predicate to check upper limit, step function)

The for loop starts with an initial value, and it can use a Predicate to check if

the loop should continue and a function to increment an index value. Now we
need to look for such a function in the JDK. It turns out that the IntStream has

exactly what we’re looking for—the iterate function. Let’s rethink, once again,
how the for loop will look in the functional style, using the iterate function:

iterate(1900, year -> year <= upto, year -> year + 4)

The loop can start at the value of 1900. The second argument, a Predicate can

check if the year as it progresses through the iteration is within the limits of
the value in upTo. The third argument, a Function can increase the value of year

by the desired step value of 4. The iterate function will generate a stream of

numbers, starting at the seed value and stepping by the given increments up to
the value checked in the Predicate. We can use this stream to refactor the

imperative style code:

public int countFrom1900(int upTo) {
return (int) IntStream.iterate(
1900, year -> year <= upTo, year -> year + 4)
.filter(Year::isLeap)
.count();

3

Once we arrive at the functional equivalent of the for, the rest of the steps are
fairly straightforward. The more complex loop of the imperative style turned
into an elegant functional pipeline. Next, we’ll refactor an unbounded
imperative style loop into another elegant functional style iteration.

Refactoring Unbounded Loops

The traditional for loops, albeit complex, are quite versatile. Specifying no
upper bounds is a nice capability that makes it easier to execute a loop until a
condition is met. Let’s take a look at a variation of the countFrom1900 method

that makes use of this capability. Oh, yeah, test first, of course.

refactoring/fpij/LeapYearsUnboundedTest.java

public class LeapYearsUnboundedTest {
LeapYearsUnbounded leapYearsUnbounded;

@BeforeEach
public void init() {
leapYearsUnbounded = new LeapYearsUnbounded();

}

@Test
public void count() {
assertAll(
() -> assertEquals(25,
leapYearsUnbounded.countFrom1900(year -> year <= 2000)),
() -> assertEquals(27,
leapYearsUnbounded.countFrom1900(year -> year <= 2010)),
() -> assertEquals(31,
leapYearsUnbounded.countFrom1900(year -> year <
() -> assertEquals(49,
leapYearsUnbounded.countFrom1900(year -> year <
() -> assertEquals(0,
leapYearsUnbounded.countFrom1900(year -> year <

2025)),

2100)),

1800))
)s
}
}

Instead of passing an upper bound for a year to the countFrom1900 method, the
tests pass a lambda that checks a given year to determine if the upper limit has
been reached. Let’s take a look at the imperative style version that is a
candidate for refactoring:

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/LeapYearsUnboundedTest.java

refactoring/fpij/LeapYearsUnbounded.java

interface Continue {
boolean check(int year);

}

public class LeapYearsUnbounded {
public int countFrom1900(Continue shouldContinue) {
int numberOfLeapYears = 0;

for(int 1 = 1900;; 1 += 4) {
if(!shouldContinue.check(i)) {
break;

}

if(Year.isLeap(i)) {
numberOfLeapYears++;

}
}

return numberQflLeapYears;

}
}

The method uses an interface named Continue with a check method, and
countFrom1900 receives an instance that implements that interface as the

parameter. Within the method, the loop is unbounded and uses the passed-in
Continue to determine if the loop should continue or break out.

Pause, refactor, and continue.

As the first refactoring opportunity, we can replace the custom Continue
interface with the functional interface Predicate of the JDK.

The functional style equivalent of the unbounded for loop won’t need a
Predicate since it doesn’t have to check for an upper bound. The creators of the
iterate method of IntStream anticipated this use and provided an overloaded
version of the method that takes two parameters, without the Predicate, instead
of three parameters.

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/LeapYearsUnbounded.java

The imperative style for loop uses the break statement to exit out of the loop. In
functional programming there is no break, but, we have takewhile—see
lerminating Iterations. We can refactor the imperative-style unbounded loop
by chaining the call to iterate with a call to takewhile, like so:

public int countFrom1900(Predicate<Integer> shouldContinue) {
return (int) IntStream.iterate(1900, year -> year + 4)
.takeWhile(shouldContinue::test)
.filter(Year::isLeap)
.count();

}

We have one less interface, and the method became concise and expressive.
Refactoring for the win. In the next task, we’ll refactor an imperative style
code that uses the for-each loop to the functional style.

Refactoring for-each

As Java programmers, we’ve come to like and extensively use the so-called
for-each syntax, which is of the form For(Type variable: iterable). It’s a lot simpler

than the traditional for loop when we don’t need the index and care only about
the elements in a collection. But it’s not uncommon to use break and continue
with both versions of for. The result is verbose code that takes effort to
maintain in the long run. Let’s take a stab at refactoring code that uses for-each
to functional style.

Keeping up with our tradition, let’s start with the tests:

refactoring/fpij/AgencyTest.java

public class AgencyTest {
Agency agency;

@BeforeEach
public void init() {
agency = new Agency();

}

@Test
public void isChaperoneRequired() {
assertAll(
() -> assertTrue(agency.isChaperoneRequired(
Set.of(new Person("Jake", 12)))),
() -> assertTrue(agency.isChaperoneRequired(
Set.of(new Person("Jake", 12), new Person("Pam”, 14)))),
() -> assertTrue(agency.isChaperoneRequired(
Set.of(new Person("Shiv", 8),
new Person("Sam”, 9), new Person("Jill", 11)))),
() -> assertFalse(agency.isChaperoneRequired(
Set.of(new Person("Jake", 12), new Person("Pam”, 18)))),
() -> assertFalse(agency.isChaperoneRequired(Set.of()))
)
}

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/AgencyTest.java

The test makes use of a Person which can be implemented as a record (or a
class in older versions of Java).

refactoring/fpij/Person.java

public record Person(String name, int age) {}

An agency is responsible for deciding if a chaperone is required for trips taken
by a group of people. The logic to make that decision is in the Agency class’s

isChaperoneRequired method:

refactoring/fpij/Agency.java

public class Agency {
public boolean isChaperoneRequired(Set<Person> people) {
boolean required = true;

if(people.size() == 0) {
required = false;
} else {
for(var person: people) {
if(person.age() >= 18) {
required = false;
break;
}
}
}

return required;

}
}

What the method does is rather simple, but it does it with a lot of noise. If
anyone in the group is 18 years or older or the group is empty, then no
chaperone 1s needed. This code can use some refactoring to reduce clutter and
remove mutability.

Pause, refactor, and continue.

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/Person.java
http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/Agency.java

We know that instead of using for-each we can iterate over a collection using
the stream method. Given a collection of people, we want to know if anyone in
the list 1s older than 17, to decide if a chaperone is needed. We can use the
noneMatch of Stream for that, like so:

public boolean isChaperoneRequired(Set<Person> people) {
return people.size() > 0 &&
people.stream()
.noneMatch(person -> person.age() >= 18);

}

The conciseness of this code is hard to match. In the refactoring examples
we’ve seen so far, we’ve managed to keep the logic the same while converting
from the imperative to the functional style. That may not be possible all the
time and, sometimes, we may have to rework the algorithm or the logic, as
we’ll see next.

Refactoring to Rework the Logic

Sometimes when refactoring to the functional style, we may have to step back
and rethink the logic or the algorithm instead of merely trying to map from the
imperative to functional style. If we don’t take an alternative approach in such

cases, either we may have issues creating functional style code or the

refactored version may be complex and leave us wanting for a better solution.
We’ll look at one such problem in this section—this was raised by a developer

who was interested in solving this problem and was having a hard time
creating a functional equivalent.

Given a string, we want to find the first letter that’s repeated anywhere else in
the string. For example, in the string hellothere, the first letter that’s repeated is

h, even though the letters | and e are also repeated. When dealing with such

problems, and especially when we desire to refactor the code, tests are one of
the best ways to clarify the details and resolve any ambiguity. Here are some

tests for this problem:

refactoring/fpij/FirstRepeatedLetterTest.java

public class FirstRepeatedLetterTest {
FirstRepeatedlLetter firstRepeatedLetter;

@BeforeEach
public void init() {
firstRepeatedLetter = new FirstRepeatedLetter();

}
@Test
public void findFirstRepeating() {
assertAll(
() -> assertEquals('l’, firstRepeatedLetter.findIn("hello")),
() -> assertEquals('h’, firstRepeatedlLetter.findIn("hellothere")),
() -> assertEquals('a’, firstRepeatedLetter.findIn("magicalguru")),
() -> assertEquals('|@', firstRepeatedLetter.findIn("once")),
() -> assertEquals('|@', firstRepeatedLetter.findIn(""))
)

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/FirstRepeatedLetterTest.java

}

Let’s look at the imperative style code that passes the previous tests:

refactoring/fpij/FirstRepeatedLetter.java

public class FirstRepeatedLetter {
public char findIn(String word) {
char[] letters = word.toCharArray();

for(char candidate: letters) {
int count = 0;

for(char letter: letters) {
if(candidate == letter) {
count++;

}
}

if(count > 1) {
return candidate;

}
}

return '|0’;
}
}

We iterate over the letters in the given word in the outer loop. In the inner loop,
we check the number of times a letter picked in the outer loop occurs among
the letters of the given word. As soon as we realize that a letter has been
repeated, we return it as the result. The code 1s verbose, noisy, and hard to
read, but once we see the logic hidden in it, we can agree that it’s fairly
straightforward. Of course, we want the code to be easier to read and
understand, so we want to refactor it to the functional style. Let’s give that a
shot.

Pause, refactor, and continue.

If we directly try to translate the two loops into the functional style equivalent,
it will be rather messy at the best. Instead, we can step back and rethink the

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/FirstRepeatedLetter.java

approach to solving this problem. Along the way, we can leverage the lazy
evaluation capabilities of the functional pipeline.

A letter is repeated if the position of its last occurrence in the given word is
greater than the position of its first occurrence. If it’s not repeated, its last
occurrence position will be the same as its first occurrence position. From the
given word, we can filter out letters that are repeated. At first thought, that
appears to be rather inefficient. Why bother getting all of them when we need
only the first one? But, thanks to lazy evaluation (see Chapter 7, Being Lazy),
the computation can stop as soon as the first repeated letter is found, and the
letters that follow don’t have to be processed. We can achieve this by using the
findFirst method. Let’s refactor the code by applying these ideas.

public char findIn(String word) {
return Stream.of(word.split(""))
.filter(letter -> word.lastIndexOf(letter) > word.indexOf(letter))
findFirst()
.map(letter -> letter.charAt(0))
.orElse('|0");
}

Once again the code is expressive, concise, and easy to read. If you prefer, you
can move the lambda expression into a separate function, named isDuplicated,

to make the code a tad more readable.

The stream API can be readily used to process a collection of data in memory.
Next, we’ll see how to deal with data that’s in a file.

Refactoring File Processing

Reading data from a file is a common operation in programming and I’m sure
you’ve done that countless number of times. But the code to perform that
operation was rather verbose and messy in the past. Let’s take a look at a
function that reads the contents of a file and counts the number of occurrences
of a word in it. Then we’ll refactor to use the functional style.

Let’s start with a small set of tests to verify that a countinFile function works as
expected:

refactoring/fpij/WordCountTest.java

public class WordCountTest {
WordCount wordCount;

@BeforeEach
public void init() {
wordCount = new WordCount();

}

@Test
public void count() {
assertAll(
() -> assertEquals(2,
wordCount.countInFile("public"”, "fpij/WordCount.java")),
() -> assertEquals(1,
wordCount.countInFile("package"”, "fpij/WordCount. java"))

);
}
}

The tests illustrate that the method under test takes a search word and the path
to the file to search in. Here’s the imperative style code that’s crying to be
refactored:

refactoring/fpij/WordCount.java

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/WordCountTest.java
http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/WordCount.java

public class WordCount {
public long countInFile(
String searchWord, String filePath) throws IOException {

long count = 0;

BufferedReader bufferedReader =
new BufferedReader(new FileReader(filePath));

String line = null;

while((line = bufferedReader.readLine()) != null) {
String[] words = line.split("” ");

for(String word: words) {
if(word.equals(searchWord)) {
count++;

}
}
}

return count;

}
3

The function checks if there are more lines to read from the file by checking
the content read against null—eek, that’s rather unsightly. We need easier ways
to read and process the contents of files and thankfully the JDK has newer
functions that bring forward the charm of functional style for that.

Pause, refactor, and continue.

Given the contents of a file, we want to look for the number of occurrences of
a word 1n it. we can use the Ffilter operation to check if each word is what we’re

looking for, followed by a reduce operation to count the number of

appearances. But, to take those steps, we need a stream of the contents of the
file. The Files class in the JDK’s java.nio.file package has the right function for

it. The lines method returns a Stream<String>, and we can apply our favorite
Stream operations to process the contents of the file. Let’s use that function to
refactor the countinFile method:

public long countInFile(
String searchWord, String filePath) throws IOException {

return Files.lines(Paths.get(filePath))
.flatMap(line -> Stream.of(line.split("” ")))
.filter(word -> word.equals(searchWord))
.count();

The lines method creates an internal iterator to work with one line of file
contents at a time. But we need to work with the words in the file and not just
the lines. We can call split to break a line into words so that we can perform
further processing on the words. Since splitting a line into words is a one-to-
many mapping, we have to use flatMap instead of map to transform the data
from a stream of lines to a stream of words—see When to Use map vs. flatMap
. Once we get the stream of words, we can filter and then finally count.

In addition to concise and expressive code, as a bonus, we don’t have to mess
with null and that’s a big win in itself.

Next, we’ll work with an example where the data is in a Map.

Refactoring Data Grouping Operations

Grouping data based on some criteria is a common operation in business
applications. We may want to group employees based on their work location,
projects based on their business units, products based on their latest revenues,
and so on. Creating a Map for the group and adding values for its keys can get
verbose in the imperative style and may also involve some inefficiencies.
You’ll see a stark contrast between the imperative style version of code that
does such processing and its equivalent functional style code.

To gain insight into refactoring code that does grouping operations, we’ll take
a collection of hypothetical scores from a game, provided as key-value pairs of
player names and scores. Let’s start with some tests that verify that a function
namesForScores groups the data based on the scores and creates a list of names

associated with for each store.

refactoring/fpij/ScoresTest.java

public class ScoresTest {
Scores scores;

@eforeEach
public void init() {
scores = new Scores();

@Test
public void namesForScores() {
assertAll(
() -> assertEquals(Map.of(), scores.namesForScores(Map.of())),
() -> assertEquals(
Map.of(1, Set.of("Jill")), scores.namesForScores(Map.of("Jill", 1))),
() -> assertEquals(
Map.of(1, Set.of("Jill"), 2, Set.of("Paul")),
scores.namesForScores(Map.of("Jill", 1, "Paul”, 2))),
() -> assertEquals(
Map.of(1, Set.of("Jill", "Kate"), 2, Set.of("Paul")),
scores.namesForScores(Map.of("Jill", 1, "Paul", 2, "Kate", 1)))

);

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/ScoresTest.java

}
}

To group the data based on the scores, we’ll have to iterate over the given
Map’s key set. For each player, we check if their score value is already in the
destination map. If it is, we add the name to the existing key’s value set. If the
score isn’t already present as a key, then we create a new set with the name of
the player and add the set as a value for the new key in the destination map.
Here’s the code that does those mundane operations:

refactoring/fpij/Scores.java

public class Scores {
public Map<Integer, Set<String>> namesForScores(
Map<String, Integer> scores) {

Map<Integer, Set<String>> namesForScores = new HashMap<>();

for(String name : scores.keySet()) {
int score = scores.get(name);

Set<String> names = new HashSet<>();
if(namesForScores.containsKey(score)) {
names = namesForScores.get(score);

names.add(name);
namesForScores.put(score, names);

return namesForScores;

}
}

Lots of garbage variables, explicit mutation, low-level operations, and the list
goes on—shudder.

Pause, refactor, and continue.

The entire body of the namesForScores method can be refactored to literally
three lines of code:

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/Scores.java

public Map<Integer, Set<String>> namesForScores(
Map<String, Integer> scores) {

return scores.keySet()
.stream()
.collect(groupingBy(scores::get, toSet()));
}

We iterate over the key set using the stream method and ask the values to be
grouped based on the value of the score for each name. We then ask the names
to be placed into a set, by providing the Collector returned by toSet to the
groupingBy function. The code is shockingly potent.

Through each example, we’ve worked with increasing complexity, and each
example has given a few new ideas to consider when refactoring to functional
style. The next example, the last one in this refactoring series of tasks, has a
nice added complexity and brings along a powerful set of solutions—Iet’s take
a look.

Refactoring Nested Loops

The imperative style code you see in this section was sent to me by a
developer who was interested in applying functional programming and was
curious to learn how to refactor it into the functional style. The code creates
Pythagorean triples™ of positive numbers (a, b, c) which satisfy the condition
a’>+b>=c%

Let’s start with a few tests to verify the results of the compute method of a

PythagoreanTriples class:

refactoring/fpij/PythagoreanTriplesTest.java

public class PythagoreanTriplesTest {
PythagoreanTriples pythagoreanTriples;

@eforeEach
public void init() {

pythagoreanTriples = new PythagoreanTriples();
}

@Test
public void compute() {
assertAll(
() -> assertEquals(List.of(), pythagoreanTriples.compute(0)),
() -> assertEquals(List.of(triple(3, 4, 5)),
pythagoreanTriples.compute(1)),
() -> assertEquals(
List.of (triple(3, 4, 5), triple(8, 6, 10), triple(5, 12, 13)),
pythagoreanTriples.compute(3)),
() -> assertEquals(
List.of (triple(3, 4, 5), triple(8, 6, 10),
triple(5, 12, 13), triple(15, 8, 17),
triple(12, 16, 20)),
pythagoreanTriples.compute(5))
)
}
}

Next, an implementation of the compute method using the imperative style:

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/PythagoreanTriplesTest.java

refactoring/fpij/PythagoreanTriples.java

record Triple(int a, int b, int c) {
public static Triple triple(int a, int b, int c) {
return new Triple(a, b, c);

}

public String toString() { return String.format("%d %d %d", a, b, c); }
}

public class PythagoreanTriples {
public Triple getTripleEuclidsWay(int m, int n) {
inta=m*m-n *n;
intb=2%*m*n;

intc=m*m+n * n;

return triple(a, b, c);

}

public List<Triple> compute(int numberOfValues) {
if(numberOfvValues == 0) {
return List.of();

}

List<Triple> triples = new ArraylList<>();
int count = 1;

for(int m = 2; ; m++) {
for(int n = 1; n < m; n++) {
triples.add(getTripleEuclidsWay(m, n));
count++;

if(count > numberOfValues)
break;

if(count > numberOfValues)
break;

return triples;

}
}

http://media.pragprog.com/titles/vsjava2e/code/refactoring/fpij/PythagoreanTriples.java

We store the Pythagorean triple values into a tuple represented by the Java
Record named Triple. A static method triple of the record is provided to help

create an instance using triple(...) instead of new Triple(...), for the sake of a little
fluency.

The getTripleEuclidsway method uses Euclid’s algorithm to create a Pythagorean
triple for the given positive values of m and n, where m > n.

The compute method takes as a parameter the number of triple values we
expect to be created. It then iterates over a value of m from 2 onwards. For
values of n from 1 to m -1, it uses the getTripleEuclidsway method to compute the
desired number of triples.

In addition to the verbosity, the really smelly parts of the code are the two
checks to see if the desired number of values has been computed.

Pause, refactor, and continue.

For every value of m we create many values of the triples. You got it; it’s a

one-to-many problem, and from our discussions in When to Use map vs.
flatMap, you know it’s a problem that will benefit from flatMap. Let’s use that

to refactor the code to the functional style:

public List<Triple> compute(int numberOfValues) {
return Stream.iterate(2, e -> e + 1)
.flatMap(m -> IntStream.range(1, m)
.mapToObj(n -> getTripleEuclidsWay(m, n)))
.limit(numberOfvalues)
.toList();
}

Sweet.

We create an unbounded/infinite stream of values for m, starting with 2. For
each value of m, we then create a series of m- 1 triples. We finally ask the

stream to limit the number of values to the desired value in the parameter
numberOFfValues and package the values into a list.

The biggest challenge in this code is recognizing it as a flatMap problem. Once
we’ve done that, the rest is relatively simple to put in place.

Speaking of recognizing, let’s discuss some common patterns we can lean on
when refactoring real-world code.

Real-World Refactoring

The examples you’ve seen in this chapter may give you the confidence to
refactor your own code in the applications you’re working on. Code that we
have to deal with in the real world, unfortunately, rarely appears as an
amiable candidate for refactoring. The journey to refactor the code can be
daunting and, at times, dissuading. The frustrations may lead us to feel
hopeless and tempt us to throw in the towel. But remember that it doesn’t
have to be an all-or-nothing effort.

Big-bang refactoring may result in a big-bang failure. Instead, refactor
incrementally. You can start by converting imperative loops into functional
iterations using internal iterators like Stream, IntStream, and so on. The if
conditions may be refactored into Filter(), and the operations inside the loops
may be refactored into map(). Such changes may help us to reduce some
complexity in code, make it more readable, and move us further towards
more functional style code. That may be still worth it, even if the code
might not have transformed into the most elegant and fully functional style
code, yet.

When you refactor code to functional style, look for some common patterns
for refactoring. When you know the common patterns to map to, you can
quickly identify suitable functions to use. See the table for some functional
style alternatives to common imperative style code constructs.

Imperative Style Functional Alternative
Regular for loop range() or rangeClosed() of IntStream,
LongStream, and so on

Irregular for loops iterate() of Stream, IntStream, and so on
break from a loop takeWhile()

for-each loop Stream’s of() or Collection’s stream()

Imperative Style Functional Alternative

Nested loop Stream’s flatMap()
if block with continue Stream’s Filter()
Accumulation of data reduce(), collect, or a suitable specialized

reduce like sum(), average(), and so on

Get a select number of limit() with Filter()

matching values

Get a matching value findFirst with filter() and optional use of skip()
or dropWhile()

Short-circuiting loop with anyMatch(), allMatch(), noneMatch()
boolean result

Use the table as a reference when refactoring code. As you move along, if
you find other such patterns emerge from your code, jot them down and
share them with your team to sweeten their journey.

We’ve covered a lot of ground refactoring common tasks. Each problem
gave you the opportunity to explore a bit deeper into writing code using the
functional style. Take a break; review and reflect on the examples before
moving ahead to the next chapter.

Wrapping Up

We looked at a number of examples written in the imperative style and
refactored them to the functional style. The first step in that journey is to
think declaratively and then look for functions to realize the series of
transformations into the functional style. Once you get a handle on the steps
to take, look for functions (in the JDK) that you can delegate those steps to.
Sometimes we’ll have to step back and rethink the algorithm before
refactoring code to the functional style. With practice, you’ll get better and
more comfortable and be on your way to reducing accidental complexity in
legacy code.

In the next chapter we’ll discuss several ways to write better-quality
functional style code.

Footnotes

[19] https://en.wikipedia.org/wiki/Pythagorean_triple

Copyright © 2023, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Pythagorean_triple

Chapter 12

Functional Programming Idioms

Cranking out code is easy, but creating maintainable code takes effort,
discipline, diligence, and continuous review and refactoring. That’s true for
any paradigm, including functional programming.

Developers don’t write bad code because they derive pleasure in seeing the
team suffer. A few different forces influence poor practices.

Sometimes developers write code that’s hard to maintain because they
haven’t developed a true sense of quality. They might have learned from
poor examples and lacked much-needed peer reviews that would help them
correct their course. Bad practices sadly may turn into patterns of
programming for a team, and, although they suffer the consequences of
poor code, they may not be able to recognize and change the habits that
have been ingrained in them.

Other times developers write bad code because they may have a weak grasp
of the actual, often vague, requirements. In that situation, they may quickly
settle on solutions that they believe will deliver results but actually fall
short of meeting the overall requirements. As a better understanding of the
requirements gradually emerges, the developers have to continually keep
fixing the code, which has already turned into cruft, a technical debt that
will haunt them for a long time.

In this chapter we’ll look at a few dos and don’ts for writing functional style
code. We’ll start with recommendations on how to properly write lambda
expressions, and then we’ll look at when to prefer method references
instead of lambda expressions. We’ll also properly structure functional
pipelines, use good parameter names, use type inference, and avoid side
effects in functional style code.

Some of the practices that I encourage in this chapter are cosmetic and
impact the readability and maintainability of code. The effects of other
practices are far-reaching and may affect the correctness of code.

Use the recommendations in this chapter as guidelines to examine your own
code. Then use these to guide your team towards creating better quality
code that’s easier to maintain.

Don’t Write Dense Lambda Expressions

It’s easy to get carried away when writing code and lose sight of code
quality. It’s often not our fault. We’re trying to understand the requirements,
figure out possible solutions, try out different ideas, and sometimes struggle
to get things working the way we want. After all, programming involves a
series of mini-experiments where we turn a bunch of unknowns into
knowns. In doing so, we’re relieved to see that the code works, but we often
forget the next step in the journey: taking the time to refactor in order to
improve the quality of code.

A common poor practice among several developers is to write multiline
lambda expressions. Avoid that as much as possible and make sincere
efforts to refactor immediately if you find multiline lambda expressions.

Java provides a concise syntax for lambda expressions with a single-line
body. It also permits us to write multiple lines for the body by placing them
within the bounds of {}. Just because the compiler allows this, it doesn’t

mean we should allow such coding. Our wisdom should override here.

Functional style code’s elegance, readability, and ease of understanding are
all benefits that are lost when we write multiline lambda expressions.

Let’s take a look at an example that illustrates this issue. Quick, take a
glance at the next code and jot down what it does and how much time you
take to figure that out:

return LongStream.rangeClosed(1, number)
filter(1 -> { //Bad Code, don't do this
long factor = 0;

for(int j = 1; j < 1; j++) {
if(1 % j==0){
factor += j;

}

}

return factor == 1i;

1)
.boxed()

.toList();

We’re iterating over a range of numbers starting from 1 and picking...what?!
Oh!

That delayed "Oh!" is a sign of poor quality code. The density of code
within the lambda expression disrupted the flow and took our eyes away
from the processing of the pipeline.

It’s reasonable to wonder if the issue with the code is the embedded
imperative style code, and if that were refactored to functional style, maybe
it would be OK. Let’s give that a shot.

return LongStream.range(1, number)
.filter(i -> LongStream.range(1, i) //Not good
filter(j -> 1% j == 0)
sum() == 1)
.boxed()
.toList();

Treat lambda expressions as glue code. Two lines may be too many.

That’s less clutter now, but the details within the filter still disrupted the
flow. That’s not good enough. Let’s rework the code to improve the flow:

return LongStream.rangeClosed(1, number)
.filter(i -> sumOfFactors(i) == 1)
.boxed()
.tolList();

Within the lambda expression passed to the filter method, we have a single
line of code that invokes a sumOfFactors—the name of the method quickly

reveals the intention, and you can move on to the next step. You can retain
focus on the big picture—the flow through the pipeline.

In addition to improving the flow, giving a name for the calculation makes
the code modular and helps it to adhere to the Single Level of Abstraction
Principle (SLAP). The reader of the code can think about what the sum of
factors means without having to read the implementation of the calculation
code. There is another benefit of extracting the calculation code into a
separate method, sumOfFactors, instead of embedding it into code that needs
the result of its calculation. The calculation code can now be tested and
validated directly for correctness without dealing with the code where the
result of the calculation was used.

If the lambda expression disrupts the flow of thought or can be extracted
into a method for better readability and reasoning, refactor it and move the
body to a separate function. Keep the lambda expressions as a one-liner.
Make sure that the code doesn’t require the readers’ excessive concentration
or attention.

As a quick exercise, take a moment to revisit the code that computed the
Pythagorean triples in Refactoring Nested Loops and refactor the functional
style code to make the lambda expression adhere to the guideline we just
discussed.

In addition to improving the quality of code, keeping the lambda
expressions short may also help to rework them into a method reference,
especially if they turn into lambdas that only pass through their parameters.
Let’s explore that next.

Prefer Method References

Short lambda expressions are great, but they still require human eyes to
parse through them to find out what they’re doing. If we can replace a
lambda expression, where possible, with a method reference, the code
becomes ultimately more readable and concise—see Using Method
References. The method names make the overall functional pipeline clearer
from the context than the corresponding lambdas. Using method references
makes it easier to look at the code and be confident about its intent, and
takes less mental effort to maintain the code.

Prefer method references over lambda expressions where it’s possible to
replace the latter with the former. The following code uses lambda
expressions in each stage of the Stream pipeline:

drivers.stream()
.filter(driver -> driver.getAge() > 21)
.filter(driver -> driver.isDriverslLicenseValid())
.map(driver -> driver.getPrimaryCar())
.map(car -> car.getRegistration())
.forEach(registration -> System.out.println(registration));

The lambda expressions are short one-liners, but we can replace the
lambdas that merely pass through their parameters with method references.
On each line, we have a small change and a resulting small benefit to the
reader of the code. But when multiple lines of code are involved, the small
benefits add up, as we see in this refactored code:

drivers.stream()
.filter(driver -> driver.getAge() > 21)
.filter(Driver::isDriversLicenseValid)
.map(Driver::getPrimaryCar)
.map(Car::getRegistration)
.forEach(System.out::println);

The method references version is certainly clearer, less noisy, easier to read,
and easier to think about, demanding less mental effort compared to the
version that uses lambda expressions.

Don’t go out of your way to bring in method references. For example, we
leave the lambda expression passed to the first filter as i1s. There is no real
benefit to rolling that into a function and then passing a reference to it. But,
if a lambda is merely passing through the parameters and can possibly be
replaced with a method reference, grab that opportunity.

Properly Structure the Functional Pipeline

In the projects that you’ve worked on, have you ever seen code written like
the following?

//Please don't do this

names.stream().filter(name -> name.length() ==
4).map(String::toUpperCase)...

I ask that question in the classes I teach for professional software
developers and sadly I get a rather high percentage of "yes" answers.

Encourage your developers to change that practice. If you place multiple
functions (like filter and map) on the same line, it increases the cognitive
load. It makes the code hard to read and hard to understand. And, if we have
to make changes, it takes more effort as well.

Ask your fellow developers to line up dots vertically, like so:

names.stream()
.filter(name -> name.length() == 4)
.map(String: :toUpperCase)
.forEach(System.out::println);

With this structure it’s easy to get a good glimpse at the big picture of the
overall steps taken by the pipeline. It’s also effortless to make changes to
any single stage in the pipeline. This structure also makes it a lot easier to
add or remove a stage from the pipeline compared to the previous poorly
structured code.

Vertically aligning the dots is the preferred convention for Java code, and
IDEs have settings that support this structure. Make sure to configure your
IDE to follow this structure and use the IDE shortcuts to easily format your
code appropriately.

Keep Separate Conditions in Separate Filters

A common question | hear from developers is "should I write multiple
filters with one condition each or one filter with multiple conditions?" The
short and quick answer is to use multiple filter calls with one condition

each.

Consider the following code:

drivers.stream()
filter(driver -> driver.getAge() > 21 && driver.isDriversLicenseValid())
//Please don't code like the previous line
.map(driver -> driver.getPrimaryCar())
.map(car -> car.getRegistration())
.forEach(registration -> System.out.println(registration));

The lambda expression passed to the filter method does two separate
checks: if the driver is more than 21 years old and if the driver has a valid

driver’s license. Two conditions in one Filter.

Many programmers are tempted to code that way with the perception that
somehow merging the conditions into one will give a significant
performance gain; it doesn’t. In [ntermediate and Terminal Operations we
discussed that methods like filter are intermediate operations, and they

aren’t executed right away. Internally, the intermediate stages in the
functional pipeline are fused together into one operation under the hood and
evaluated only when a terminal operation 1s invoked. Thus, whether we
write the conditions into one call to filter or into multiple calls with one
condition each, the real optimization happens under the hood and isn’t
based on the way we write the function. We don’t gain any performance
benefit by writing multiple conditions in one lambda expression.

Let’s take the previous code and rewrite it using two filter calls instead of
one:

drivers.stream()
.filter(driver -> driver.getAge() > 21)
.filter(Driver::isDriversLicenseValid)
.map(Driver::getPrimaryCar)
.map(Car::getRegistration)
.forEach(System.out::println);

That looks a lot better than the previous version. Also, we managed to use a
method reference in the second Filter.

The version with multiple filter calls with one condition each has some
serious benefits. First, it doesn’t have any issues with performance, so we
can set aside that fear. Second, the code is less noisy and much easier to
read than the other version. Each line of code is very cohesive, does only
one thing, and focuses on one condition. It’s much easier to add a new
condition—add a filte—without having to mess with one large condition. If
we want to try out different behaviors by changing conditions, it’s as trivial
as commenting a Ffilter line. It’s also really easy to remove a condition.
Finally, keeping the conditions small increases the opportunities to use
method references, which can further improve readability.

Let’s summarize the reasons to keep the conditions separate:

e The code is as performant as if we combined the conditions

e The code is less noisy

e The code is easier to read

e The code is easier to maintain

e [t’s easier to use method references to further improve readability
e [t provides opportunities for further simplification

The code version with multiple Ffilter calls with one condition is cohesive,

easy to write, easy to read, easy to add or remove conditions, and overall
much better compared to the other option, and it is the preferred way.

Provide Good Domain-Specific Parameter Names

We write code once but read and change it many times, sometimes
thousands of times. The considerations for the ease and cost of reading the
code should outweigh those for writing the code the first time.

You’ve probably seen your share of poor names for lambda parameters. For
some reason, x seems to be one of the most favorite bad names for
parameters. Other poor choices seem to include p, k, and so on, with the
worst offender being |—is it the number 1 or the letter I, the reader may

wonder. It’s likely that programmers picked up such practices from an
example in a presentation, a book (such as this one), or a blog post.
Whereas these short, cryptic names may be suitable for a quick example,
unfortunately, such names don’t help a team maintain production code.

A team who’s in the practice of using meaningless variable names may
create code like the following:

drivers.stream()
filter(x -> x.getAge() > 21) //Please avoid meaningless parameter names
filter(x -> x.isDriversLicenseValid())
.map(x -> x.getPrimaryCar())
.map(c -> c.getRegistration())
.forEach(r -> System.out.println(r));

I have a theory about how these poor names creep into the code: maybe it’s
not the programmers who key them in. When they’re momentarily
distracted, their kitten pounces on the keyboard. How would anyone have
the heart to change the variable names so purr-fectly chosen by Kitty?

Poor variables make the code hard to understand, which makes fixing the
code rather an unpleasant and frustrating experience at the critical moments
of fixing errors.

Resist the urge to give single-letter, meaningless variables. Instead, give
domain-specific names for lambda parameters. The goal isn’t to give
lengthy names—they’re as bad as the cryptic ones. Instead, choose a short
name that clearly conveys what that variable represents. For example,
instead of using x, d, ¢, and so on, we can write the previous code with

descriptive names, like so:

drivers.stream()
.filter(driver -> driver.getAge() > 21)
.filter(driver -> driver.isDriverslLicenseValid())
.map(driver -> driver.getPrimaryCar())
.map(car -> car.getRegistration())
.forEach(registration -> System.out.println(registration));

Make giving good names a habit. Help your team refactor code that has
poor names for parameters of lambda expressions. Cajole and coach them
until they naturally start writing good parameter names. Continue to keep
an eye on the names during code reviews.

Use Type Inference for Parameters

Traditionally, in Java we’re used to specifying the types of parameters.
Starting with version 8, the language has been leaning more toward type
inference. The Java compiler is smart enough to determine the type of the
lambda expression parameters in most situations. That means less typing on
the keyboard but without compromising type safety in code.

Many programmers who’ve been coding in Java for a long time, and
especially those who mostly don’t program in other languages as well, are
often reluctant to use type inference. They feel comfortable when the types
of the lambda expression parameters are specified and get frustrated reading
code where the types aren’t specified.

You can leverage the type inference capability of Java. The context in
which the code is written often provides enough details about the type of
the parameters. Combining that with good domain-specific names for the
parameters often makes it easier to understand the code.

Suppose a programmer is comfortable writing the following code:
.filter((Driver x) -> x.getAge() > 21)

Encourage them to give a better name to the parameter and drop the type.
As a bonus, you can drop the parentheses around the parameter as well if
the lambda expression takes only one parameter.

.filter(driver -> driver.getAge() > 21)

Get used to using type inference for lambda expression parameters and
provide domain-specific names for parameter names. If the code reads

equally well or better without the type, but with well-chosen parameter
names, leave the type out.

Side Effects in Functional Pipelines

A common mistake many programmers make is mutating shared variables
from the functional pipeline. That’s a big no-no.

Purely functional programming languages, like Haskell, don’t permit
mutability. The compilers of such languages will disallow writing code, let
alone lambda expressions that mutate data. Java is a hybrid language and
the functional programming capabilities were added almost two decades
after the language was created. Thus, the compiler for the most part won’t
complain if it finds impure lambda expressions—but we should.

A programmer once emailed me a snippet of code that had been working
fine, but its behavior had become rather unpredictable after the most recent
change they had made. They wanted another pair of eyes to look into the
issue. A quick glance through the code revealed the culprit. In the last step
of the functional pipeline, in the forEach, they added the result to a collection
defined outside the functional pipeline. The code seemed OK until the last
change where they converted the call to stream to a call to parallelStream
instead. In the multithreaded scenario, the code was running into race
conditions and some data was missing from the result.

A lambda expression is impure if it modifies an externally visible variable.
It’s also impure if it depends on an external variable that may possibly
change. In other words, a pure lambda expression does no evil—that is
mutate—and also sees no evil.

Parallel execution isn’t the only situation that will run into issues with
impure lambda expressions. Even sequential execution will cause confusion
due to lazy evaluation. Let’s dig into this to see the issue in action.

Suppose we have a lambda expression that depends on a field in a class.
The field 1sn’t defined final and, furthermore, it’s modified in the run

method. Let’s take a look at the code:

public class Impure {
private int factor = 2;

public void run() {
var numbers = List.of(1, 2, 3);

var stream = numbers.stream()
.map(number -> number * factor);

factor = 0;

stream.forEach(System.out::println);

}

public static void main(String[] args) {
new Impure().run();
}
}

In the run method we iterate over a list of numbers and, using the Stream
pipeline, transform the data into a product of the number and the value in
the factor field. Then, before the execution of the final step in the stream, we
set the value of the factor variable to 0.

Show the code to different colleagues and ask them what the output will be.
There 1s a large chance that the responses may not be consistent. Some may
say the output will be the double of the values in the list. Some may say the
result will be all zeros. Some may protest that they have no clue. The
answer depends on the language and the semantics of the functional
pipeline as implemented in that language. Thus, the confusion by some
programmers is justified, they’re probably polyglot programmers.

The result produced by the previous Java code is:

0
0
0

The transformation in the lambda expression passed to the map method isn’t
executed until the terminal operation, forEach, 1s invoked. By that time, the
value of the field factor has been modified. Thus the transformation isn’t
based on the value at the time the control passes over that stage, but it is
based on the state at the time of execution. At best this can be confusing and
at worst the results can be unpredictable and hard to debug.

Functional programming relies on lazy evaluation for efficiency and makes
it incredibly easy to parallelize code. Both lazy evaluation and parallel
execution rely on the purity of lambda expressions, with no side effects, for
correctness.

Thoroughly review code and make sure lambdas are pure. Purity helps you
think about what the code does.

Wrapping Up

In spite of the elegant, concise, and fluent nature of the functional style,
some developers often write code that’s hard to understand. The result of
that 1s counter to what the paradigm is intended for.

As a fellow developer, take the time to encourage your team to practice
good coding habits. In this chapter we discussed multiple things we have to
keep an eye on as a team to make sure the functional style code is both less
error-prone and easier to understand, read, analyze, and maintain. Show
your empathy to fellow developers and follow these idioms to get the most
out of this amazing programming paradigm.

In the next chapter we wrap up with a discussion about making good use of
the functional style and address some limitations.

Copyright © 2023, The Pragmatic Bookshelf.

Chapter 13

Bringing It All Together

We explored Java lambda expressions throughout this book, using them to
iterate over collections, achieve better lightweight design, and easily
compose and parallelize code. In this final chapter we’ll bring it all
together. We’ll review the practices we have to hone to fully benefit from
the functional style, then discuss the performance impact of this style, and
conclude with some recommendations on how we can successfully adopt
the functional style.

Essential Practices to Succeed with the Functional
Style

The functional features in Java don’t just change the syntax we type. To benefit
fully from these features and create highly concise and lightweight
applications, we need to change the designs, the code, and our thinking; it’s
different from the imperative and object-oriented paradigm we’re used to in
Java. Let’s go over some of the fundamental ways we have to change how we
develop applications and the benefits we’ll receive in return.

More Declarative, Less Imperative

We have to raise the level of abstraction. Rather than imperatively focusing on
the steps to take, we have to think and express declaratively the bigger goals
we want to achieve. For example, instead of commanding the computer to step
through each element in a collection, we ask it to filter out the elements we
want or to map or transform one collection into yet another collection. This can
help take the “Tell, Don’t Ask” principle further and make the code more
concise and expressive.24

For example, let’s say we’re given a list of stock prices and asked to pick the
maximum value. From experience, our first instinct may be to write it
imperatively like this:

int max = 0;
for(int price : prices) {
if(max < price) max = price;

}

Instead, let’s think declaratively. We’ll tell the program to pick the max rather
than ask it to walk through each step:

final int max = prices.stream()
.reduce(0@, Math::max);

The benefits go far beyond having fewer lines of code. We have fewer chances
to introduce errors—the code we don’t write has the fewest bugs. Having fewer
lines of understandable code is simpler than many lines of fluffy code.

Imperative code is primitive and involves more mutability. On the other hand,
declarative code raises the level of abstraction and reduces the need for
mutable variables. This also lowers the chances of errors in code.

Favor Immutability

Mutable variables are in poor taste, and shared mutable variables are pure evil.
We often get confused or overlook changes to variables. As a result, code with
more mutable variables tends to have more errors. Code with shared mutable
variables is hard to parallelize correctly. One way to reduce errors is simply to
avoid mutability where possible, and the functional style makes that easier.

Purely functional languages have only values: write-once variables that can’t
change after initialization. Since Java doesn’t enforce immutability, the onus is
on us to favor immutability. When we encounter mutable variables, we can
examine the libraries to see if there’s a functional-style equivalent that will
eliminate them.

Reduce Side Effects

A function with no side effects neither affects nor is affected by anything
outside of its bounds. Functions or methods with side effects are hard to
understand, hard to maintain, more error-prone, and difficult to parallelize.

If we remove side effects, then as long as the input to a function remains
unchanged, the output will always be the same. This makes it easier to
understand the code and makes us need fewer test cases to ensure the proper
behavior.

Having no side effects is critical for referential transparency, which means an
invocation or a call to a function can be replaced by its result value without

affecting a program’s correctness. The functional style greatly favors creating
functions with no side effects, and the benefits are far-reaching.

The javac compiler and the JVM just-in-time compiler can easily optimize calls

to functions with no side effects. Functions that have side effects impose

ordering and restrict optimization. On the other hand, calls to functions with no

side effects can be moved around and reordered more freely. For example, in

the following figure, F; and F, are two independent function calls. The compiler

can change the order of their sequential execution or even schedule them to run

concurrently on multiple cores thanks to their referential transparent behavior.

N ™
N p—_—
= F1__F2__ '_'_F2 _F1-

called sequentially

|
|
|
|
|
|
|
|
S~ | S~
|
|
|
|
called sequentially :
|

R
O@=0

called concurrently

Time

When working with lambda expressions, we should ensure that the code is
without side effects. Doing so not only reduces the chance of errors but also
helps us easily parallelize the code, as we saw in Taking a Leap to Parallelize.
It’s critical to eliminate side effects if we want to use techniques like the tail-

call optimization we saw in Using Tail-Call Optimization.

Prefer Expressions over Statements

Both expressions and statements are commands we write in programs to
instruct the computer to perform some action or do some work. Statements
perform actions but don’t return anything, whereas expressions perform actions
and return a result. When programming with lambda expressions, we can reap
benefits by leaning toward creating expressions more than statements.

First, since statements don’t return anything, they have to cause side effects
and mutate memory to fulfill their purpose. Expressions, on the other hand, can
be designed to favor referential transparency, giving us the benefits we
discussed previously.

The other benefit is that, unlike statements, expressions can be composed. This
can help us use a powerful pattern in the functional style of programming—
function chaining. We can create a chain of functions so the results of
computations flow smoothly from one function into the next. The code begins
to read like the problem statement, making it easier to follow.

We saw a benefit of this in ... 7o the Functional Style, where we sent a list of
stock-ticker symbols through a chain of functions to determine the highest-
priced stock and its price. This pattern can also help us create fluent interfaces,
as we saw in Creating Fluent Interfaces Using Lambda Expressions.

Design with Higher-Order Functions

In Java, one of the biggest changes we have to make is to design with higher-
order functions. We’re used to passing objects to methods, but now we also
have the ability to pass functions as arguments. This gives us more concise
code: anywhere we passed anonymous inner classes to single-method
interfaces, we can now pass lambda expressions or method references.

For example, to register a simple event handler for a Swing button, we had to
jump through hoops before, as in the next example.

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
JOptionPane.showMessageDialog(frame, "you clicked!");

}

1)
We can trade such clunky code in for more concise code, like this:

button.addActionListener(event ->
JOptionPane.showMessageDialog(frame, "you clicked!"));

The ceremony and the clutter are gone, leaving behind just the essence. Not
only did we write fewer lines of code here but also needed fewer imports in the
code. That’s because we no longer have to refer to the ActionListener interface
by name, and the reference to ActionEvent is optional since we used type

inference.

Once we get used to lambda expressions, they will have a lot of impact on our
designs. We can design our methods to receive functional interfaces as
parameters. This will enable the callers to pass in either lambda expressions or
method references as arguments, which will help us take a lightweight
approach to separating concerns from methods and classes, as we discussed in
Chapter 5, Designing with Lambda Expressions. The common, familiar design
patterns are more approachable when we design with lambda expressions; we
need fewer lines of code, classes, and interfaces, and far less ceremony to
implement our designs.

Performance Concerns

Java has come a long way and is used in a vast number of enterprise
applications where performance is critical. It’s reasonable to ask whether
the functional features will affect performance. The answer is yes, and
mostly for the better!

Before we dig into that, let’s recall Donald Knuth’s wise words: “We should
forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.”#] With that in mind, we should boldly
try out the new style where it makes sense. If the performance we get is
adequate for the needs of the application, we can move on. Otherwise, we
have to critically evaluate the design and profile the code to figure out the
real bottlenecks.

The Java specification provides a great amount of flexibility to facilitate
compiler optimizations. In addition, to provide better support for lambda
expressions, the JVM bytecode instruction set has been enhanced with

invokedynamic pseudocode (see Brian Goetz’s JavaOne 2012 presentation

“Lambda: A Peek under the Hood”")"* that efficiently handles method call
dispatching. This eliminates the need to create anonymous inner classes,
and invocations of lambda expressions turn into mere method call
invocations—see A4 Little Sugar to Sweeten. This can make calls using
lambda expressions fast and also eases the burden on garbage collection.
Let’s examine the performance improvements we can achieve.

Here’s the imperative code to count the number of primes in a collection of
numbers.

long primesCount = 0;
for(long number : numbers) {
if(isPrime(number)) primesCount += 1;

}

We’re using the habitual for loop to invoke a method isPrime to determine if

each number in the collection is prime. If a number is prime, we increment
the primesCount mutable variable. Let’s measure the time to run this code for

a large collection, say 100,000 numbers.
0.0250944 seconds

That took about 0.02 seconds, but the code 1s in the style we want to curtail;
let’s see if the new style we want to adopt will stand up to this performance.
Let’s refactor that code to our favorite functional style: code that’s
declarative, is created in favor of immutability, has no side effects, and is
composed of higher-order functions chained together.

final long primesCount =
numbers.stream()
.filter(number -> isPrime(number))
.count();

We transformed the collection into a Stream and then used the Ffilter method
to pick only primes from the collection. Then we got the size of the filtered
collection. In essence, we asked the code to filter out just the primes in the
collection. Let’s see how much time this version takes to run on the same
collection the previous version ran on.

0.0253816 seconds

From the output we see that the performance using lambda expression is
about the same; we didn’t lose anything, but we’ve gained quite a bit. It’s
trivial to parallelize the functional-style version. To parallelize the
imperative version, on the other hand, we have to...um...that’s a slippery
slope we want to avoid.

Let’s waste no time. Here’s the parallelized functional-style version:

final long primesCount =
numbers.parallelStream()
.filter(number -> isPrime(number))

.count();
That was hardly any effort. Let’s see the gain in speed by running the code.
0.00649266 seconds

The parallelized version, running on a quad-core processor, took about
0.006 seconds.

Before we run off to celebrate this glorious performance, let’s admit that a
large number of performance metrics are contrived, and we can’t blindly
rely on them. If nothing else, this example simply shows that using lambda
expressions and the functional style doesn’t have to mean poor
performance. When creating real code for enterprise applications, we have
to keep an eye on performance and address concerns where they arise.

Adopting the Functional Style

Picking up new syntax is relatively easy, but changing the way we design
and think takes more effort. Programming in the functional style in Java is a
paradigm shift, and we’ve seen examples that show this change is good.
Here are a few ways in which we can make an easy and successful
transition to this exciting functional world in Java.

Following a few practices we discussed in Essential Practices to Succeed
with the Functional Style, will help us get better at functional-style coding.
Java is now a mixed-paradigm language with support for imperative,
object-oriented, and functional programming. We have to judiciously
balance them, but the ability to do so comes from experience, trying out
designs, and evaluating the trade-offs.

At the beginning of the transition to this paradigm, it’s quite natural to
continue to think in the most familiar ways. That’s fine; we can implement
and quickly refactor the code; “Make it work, then make it better real soon”
is a good mantra to follow. With experience, the need for these refactoring
efforts will diminish and more functional-style code will flow more
naturally.

To get better at what we do, we have to be willing to change our ways. This
means we have to fearlessly try out our ideas and then improve them based
on feedback from our colleagues. We can benefit a great deal from tactical
code reviews, pair-programming sessions, and brown-bag sessions at work.
Outside of work, special-interest groups like local Java user groups are
great places for us to expand our knowledge. We can participate in local
study groups or help organize one if none exist.

Java and lambda expressions have improved and will continue to improve
the way we develop software. These powerful features have breathed new

life into today’s most popular language. It’s an exciting time to be a
programmer.

Program well, and in style.

Footnotes

(201 http://pragprog.com/articles/tell-dont-ask

(211 http://c2.com/cgi/wiki?PrematureOptimization

[22] https://www.youtube.com/watch?v=C_QbkGU _1qY

Copyright © 2023, The Pragmatic Bookshelf.

http://pragprog.com/articles/tell-dont-ask
http://c2.com/cgi/wiki?PrematureOptimization
https://www.youtube.com/watch?v=C_QbkGU_lqY

Appendix 1

Starter Set of Functional Interfaces

The JDK has a number of functional interfaces. Here we review the starter
set—the interfaces we frequently encounter and need to get familiar with.
All the interfaces we see here are part of the java.util.Function package.

Consumer<T>

Description Represents an operation that will accept an input and
returns nothing. For this to be useful, it’1l have to
cause side effects.

Abstract method accept
default method(s) andThen
Popular usage As a parameter to the forEach method

Primitive IntConsumer, LongConsumer, DoubleConsumer. ..
specializations

Supplier<T>

Description A factory that’s expected to return either a new
instance or a pre-created instance
Abstract method get

default method(s) —

Popular usage To create lazy infinite Streams and as the parameter
to the Optional class’s orElseGet method

Primitive IntSupplier, LongSupplier, DoubleSupplier...

specializations

Predicate<T>

Description Useful for checking if an input argument satisfies
some condition

Abstract method test

default method(s) and, negate, and or

Popular usage As a parameter to Stream’s methods, like filter and
anyMatch

Primitive IntPredicate, LongPredicate, DoublePredicate. ..

specializations

Function<T, R>

Description

Abstract method
default method(s)
Popular usage
Primitive
specializations

A transformational interface that represents an
operation intended to take in an argument and return
an appropriate result

apply
andThen, compose
As a parameter to Stream’s map method

IntFunction, LongFunction, DoubleFunction,

IntToDoubleFunction, DoubleTolntFunction...

Copyright © 2023, The Pragmatic Bookshelf.

Appendix 2

Syntax Overview

We’ve played with the new syntax for functional interfaces, lambda
expressions, method references, and constructor references throughout this
book. This appendix is a quick reference for syntax, using sample code
selected from various parts of the book.

Defining a Functional Interface

@FunctionallInterface
public interface TailCall<T> {

TailCall<T> apply();

default boolean isComplete() { return false; }
/).
}

A functional interface must have one abstract—unimplemented—method. It
may have zero or more default or implemented methods. It may also have
static methods.

Creating No-Parameter Lambda Expressions

lazyEvaluator(() -> evaluate(1l), () -> evaluate(2));

The parentheses () around the empty parameters list are required if the
lambda expression takes no parameters. The -> separates the parameters
from the body of a lambda expression.

Creating a Single-Parameter Lambda Expression

friends.forEach((final String name) -> System.out.println(name));

The Java compiler can infer the type of lambda expression based on the
context. In some situations where the context isn’t adequate for it to infer or
we want better clarity, we can specify the type in front of the parameter
names.

Inferring a Lambda Expression’s Parameter Type

friends.forEach((name) -> System.out.println(name));

The Java compiler will try to infer the types for parameters if we don’t
provide them. Using inferred types is less noisy and requires less effort, but
if we specify the type for one parameter, we have to specify it for all
parameters in a lambda expression.

Dropping Parentheses for a Single-Parameter
Inferred Type

friends.forEach(name -> System.out.println(name));

The parentheses () around the parameter are optional if the lambda

expression takes only one parameter and its type is inferred. We could write
name ->... OT (name) ->...; lean toward using the first since it’s less noisy.

Creating a Multi-Parameter Lambda Expression

friends.stream()
.reduce((namel, name2) ->
namel.length() >= name2.length() ? namel : name2);

The parentheses () around the parameter list are required if the lambda
expression takes multiple parameters or no parameters.

Calling a Method with Mixed Parameters

friends.stream()
.reduce("Steve”, (namel, name2) ->
namel.length() >= name2.length() ? namel : name2);

Methods can have a mixture of regular classes, primitive types, and
functional interfaces as parameters. Any parameter of a method may be a
functional interface, and we can send a lambda expression or a method
reference as an argument in its place.

Storing a Lambda Expression

final Predicate<String> startsWithN = name -> name.startsWith("nN");

To aid reuse and avoid duplication, we often want to store lambda
expressions in variables.

Creating a Multiline Lambda Expression

FileWriterEAM.use("eam2. txt", writerEAM -> {
writerEAM.writeStuff("how");
writerEAM.writeStuff("sweet");

s

We should keep the lambda expressions short, but it’s easy to sneak in a few
lines of code. We have to pay penance by using curly braces {}, and the

return keyword is required if the lambda expression is expected to return a
value.

Returning a Lambda Expression

public static Predicate<String> checkIfStartsWith(final String letter) {
return name -> name.startsWith(letter);

}

If a method’s return type is a functional interface, we can return a lambda
expression from within its implementation.

Returning a Lambda Expression from a Lambda
Expression

final Function<String, Predicate<String>> startsWithLetter =
letter -> name -> name.startsWith(letter);

We can build lambda expressions that themselves return lambda
expressions. The implementation of the Function interface here takes in a

String letter and returns a lambda expression that conforms to the Predicate
interface.

Lexical Scoping in Closures

public static Predicate<String> checkIfStartsWith(final String letter) {
return name -> name.startsWith(letter);

}

From within a lambda expression, we can access variables that are in the
enclosing method’s scope. For example, the variable letter in the

checkifstartswith is accessed within the lambda expression. Lambda
expressions that bind to variables in enclosing scopes are called closures.

Passing a Method Reference of an Instance
Method

friends.stream()
.map(String: :toUpperCase);

We can replace a lambda expression with a method reference if it directly
routes the parameter as a target to a simple method call. The preceding
sample code is equivalent to this:

friends.stream()
.map(name -> name.toUpperCase());

Passing a Method Reference to a static Method

str.chars()
.filter(Character::isDigit);

We can replace a lambda expression with a method reference if it directly
routes the parameter as an argument to a static method. The preceding

sample code is equivalent to this:

str.chars()
.filter(ch -> Character.isDigit(ch));

Passing a Method Reference to a Method on
Another Instance

str.chars()
.forEach(System.out::println);

We can replace a lambda expression with a method reference if it directly
routes the parameter as an argument to a method on another instance; for
example, println on System.out. The preceding sample code is equivalent to

this:

str.chars()
.forEach(ch -> System.out.println(ch));

Passing a Reference of a Method That Takes
Parameters

people.stream()
.sorted(Person: :ageDifference)

We can replace a lambda expression with a method reference if it directly
routes the first parameter as a target of a method call and the remaining
parameters as this method’s arguments. The preceding sample code is
equivalent to this:

people.stream()
.sorted((personl, person2) -> personl.ageDifference(person2))

Using a Constructor Reference

Supplier<Heavy> supplier = Heavy::new;

Instead of invoking a constructor, we can ask the Java compiler to create the
calls to the appropriate constructor from the concise constructor-reference
syntax. These work much like method references, except they refer to a
constructor and result in object instantiation. The preceding sample code is
equivalent to this:

Supplier<Heavy> supplier = () -> new Heavy();

Function Composition

symbols.map(StockUtil: :getPrice)
.filter(StockUtil.isPriceLessThan(500))
.reduce(StockUtil: :pickHigh)
.get();

We can compose functions to transform objects through a series of
operations like in this example. In the functional style of programming,
function composition or chaining is a powerful construct to implement
associative operations.

Copyright © 2023, The Pragmatic Bookshelf.

Appendix 3

Web Resources

Cutting-stock problem
http://en.wikipedia.org/wiki/Cutting_stock _problem
An optimization problem that can use the memoization technique.

Dependency inversion principle

Describes a way to realize extensibility by coupling a class to an
abstraction (interface) rather than to its implementation.

Don’t Repeat Yourself
http://c2.com/cgi/wiki?DontRepeatYourself

I’11 let the reader refer to that URL, in the spirit of DRY.

Execute around method pattern
http://c2.com/cgi/wiki? ExecuteAroundMethod

Describes a pattern to control the flow of logic through pre- and
post-operations.

“Lambda: A Peek under the Hood”
https://www.youtube.com/watch?v=C_QbkGU_IqY
A presentation by Brian Goetz.

Loan pattern
https://wiki.scala-lang.org/display/SYGN/Loan
A discussion of the loan pattern in Scala.

http://en.wikipedia.org/wiki/Cutting_stock_problem
http://c2.com/cgi/wiki?DependencyInversionPrinciple
http://c2.com/cgi/wiki?DontRepeatYourself
http://c2.com/cgi/wiki?ExecuteAroundMethod
https://www.youtube.com/watch?v=C_QbkGU_lqY
https://wiki.scala-lang.org/display/SYGN/Loan

MapReduce

http://research.google.com/archive/mapreduce.xhtml
“MapReduce: Simplified Data Processing on Large Clusters”™—a
paper by Jeffrey Dean and Sanjay Ghemawat that discusses this
programming model.

Open/closed principle

Describes Bertrand Meyer’s open/closed principle, which states that
software modules must be open for extension, but without having to
go through a code change.

Premature optimization
http://c2.com/cgi/wiki? PrematureOptimization

A web page that discusses the perils of premature optimization.

Tell, Don’t Ask
http://pragprog.com/articles/tell-dont-ask
A column that discusses the “Tell, Don’t Ask” principle.

“Test Driving Multithreaded Code”
http://tinyurl.com/abSup2w

Code samples from a presentation on unit testing for thread safety.
The direct URL is
https://www.agiledeveloper.com/presentations/TestDrivingMulti Thr
cadedCode.zip.

Web page for this book
http:/www.pragprog.com/titles/vsjava2e
This book’s web page, with full source-code listings.

Copyright © 2023, The Pragmatic Bookshelf.

http://research.google.com/archive/mapreduce.xhtml
http://en.wikipedia.org/wiki/Open/closed_principle
http://c2.com/cgi/wiki?PrematureOptimization
http://pragprog.com/articles/tell-dont-ask
http://tinyurl.com/ab5up2w
https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip
https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip
http://www.pragprog.com/titles/vsjava2e

Bibliography

[AS96] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation
of Computer Programs. MIT Press, Cambridge, MA, 2nd, 1996.

[Blo18] Joshua Bloch. Effective Java, Third Edition. Addison-Wesley, Boston,
MA, 2018.

[GHIV9S] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, MA, 1995.

|Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley, Boston,
MA, 2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley, Boston, MA, 2000.

[Subil] Venkat Subramaniam. Programming Concurrency on the JVM. The
Pragmatic Bookshelf, Dallas, TX, 2011.

[Zin01] William Zinsser. On Writing Well, 25th Anniversary: The Classic

Guide to Writing Nonfiction. HarperResource, New York, NY, 2001.

Copyright © 2023, The Pragmatic Bookshelf.
Thank you!
We hope you enjoyed this book and that you’re already thinking about what you w:
learn next. To help make that decision easier, we’re offering you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2023 to save 30% on your next ebook. Offer is void where prohibi
or restricted. This offer does not apply to any edition of the The Pragmatic Prograr
ebook.

And if you’d like to share your own expertise with the world, why not propose a w
idea to us? After all, many of our best authors started off as our readers, just like yc

https://pragprog.com/

You May Be Interested In...

Select a cover for more information

Programming Kotlin

_ Programmers don’t just use Kotlin, they
Kotine, ¢ | love it. Even Google has adopted it as a
] fj first-class language for Android
A development. With Kotlin, you can intermix
imperative, functional, and object-oriented
styles of programming and benefit from the
S approach that’s most suitable for the
problem at hand. Learn to use the many
features of this highly concise, fluent, elegant, and expressive
statically typed language with easy-to-understand examples. Learn
to write maintainable, high-performing JVM and Android
applications, create DSLs, program asynchronously, and much
more.

B ET
i

Venkat Subramaniam

(460 pages) ISBN: 9781680506358 $51.95

Pragmatic Scala

Our industry is moving toward functional programming, but your
object-oriented experience is still valuable. Scala combines the
power of OO and functional programming, and Pragmatic Scala
shows you how to work effectively with both. Updated to Scala
2.11, with in-depth coverage of new features such as Akka actors,

http://pragmaticprogrammer.com/titles/vskotlin
http://pragmaticprogrammer.com/titles/vskotlin

| 5 | w parallel collections, and tail call

optimization, this book will show you how

Pragimatjc

cala to create stellar applications.
i Venkat Subramaniam
.. I I | ﬂ

(286 pages) ISBN: 9781680500547 $36

Functional Programming Patterns in Scala and Clojure

[Solve real-life programming problems with
Ptingonal. a fraction of the code that pure object-
-;""i-"'""!“:-_ oriented programming requires. Use Scala
' and Clojure to solve in-depth problems and
b see how familiar object-oriented patterns
% can become more concise with functional
. programming and patterns. Your code will
be more declarative, with fewer bugs and

lower maintenance costs.
Michael Bevilacqua-Linn

(256 pages) ISBN: 9781937785475 $36

Agile Web Development with Rails 7

Rails 7 completely redefines what it means to produce fantastic user
experiences and provides a way to achieve all the benefits of single-
page applications — at a fraction of the complexity. Rails 7 integrates
the Hotwire frameworks of Stimulus and Turbo directly as the new
defaults, together with that hot newness of import maps. The result
is a toolkit so powerful that it allows a single individual to create

http://pragmaticprogrammer.com/titles/vsscala2
http://pragmaticprogrammer.com/titles/vsscala2
http://pragmaticprogrammer.com/titles/mbfpp
http://pragmaticprogrammer.com/titles/mbfpp

T

AgileWeb
Developrent
with Rails 7

modern applications upon which they can
build a competitive business. The way it
used to be.

Sam Ruby

(474 pages) ISBN: 9781680509298 $59.95

Creating Software with Modern Diagramming

Techniques
| S |

Creating Soltware
with Modern
Diagramimiing
Techniques

Diagrams communicate relationships more
directly and clearly than words ever can.
Using only text-based markup, create
meaningful and attractive diagrams to
document your domain, visualize user
flows, reveal system architecture at any
desired level, or refactor your code. With the
tools and techniques this book will give you,

you’ll create a wide variety of diagrams in minutes, share them with
others, and revise and update them immediately on the basis of
feedback. Adding diagrams to your professional vocabulary will
enable you to work through your ideas quickly when working on
your own code or discussing a proposal with colleagues.

Ashley Peacock

(156 pages) ISBN: 9781680509830 $29.95

Mockito Made Clear

http://pragmaticprogrammer.com/titles/rails7
http://pragmaticprogrammer.com/titles/rails7
http://pragmaticprogrammer.com/titles/apdiag
http://pragmaticprogrammer.com/titles/apdiag

Mockito is the most popular framework in
the Java world for automating unit testing
with dependencies. Learn the Mockito API
and how and when to use stubs, mocks, and
spies. On a deeper level, discover why the
framework does what it does and how it can
simplify unit testing in Java. Using Mockito,
you’ll be able to isolate the code you want
to test from the behavior or state of external dependencies without
coding details of the dependency. You’ll gain insights into the
Mockito API, save time when unit testing, and have confidence in
your Java programs.

Mockito Mole

Ken Kousen

(87 pages) ISBN: 9781680509670 $14.99

Designing Data Governance from the Ground Up

Businesses own more data than ever before,
Designing Diala . .
Covernanes [rorm but it’s of no value if you don’t know how to

the Grovnd Up ;

use it. Data governance manages the people,
processes, and strategy needed for
deploying data projects to production. But
doing it well 1s far from easy: Less than one
fourth of business leaders say their
organizations are data driven. In Designing
Data Governance from the Ground Up, you’ll build a cross-
functional strategy to create roadmaps and stewardship for data-
focused projects, embed data governance into your engineering
practice, and put processes in place to monitor data after
deployment.

http://pragmaticprogrammer.com/titles/mockito
http://pragmaticprogrammer.com/titles/mockito
http://pragmaticprogrammer.com/titles/lmmlops
http://pragmaticprogrammer.com/titles/lmmlops

Lauren Maftfeo

(100 pages) ISBN: 9781680509809 $29.95

Building Table Views with Phoenix LiveView

Data is at the core of every business, but it is
useless if nobody can access and analyze it.
Learn how to generate business value by
making your data accessible with advanced
table Uls. This definitive guide teaches you
how to bring your data to the fingertips of
nontechnical users with advanced features
like pagination, sorting, filtering, and

infinity scrolling. Build reactive and reuseable table components by
leveraging Phoenix LiveView, schemaless changesets, and Ecto
query composition. Table Uls are the bread and butter for every web
developer, so it is time to learn how to build them right.

Peter Ullrich

(65 pages) ISBN: 9781680509731 $14.99

Numerical Brain Teasers

Challenge your brain with math! Using
nothing more than basic arithmetic and
logic, you’ll be thrilled as answers slot into
place. Whether purely for fun or to test your
knowledge, you’ll sharpen your problem-
solving skills and flex your mental muscles.
All you need is logical thought, a little

http://pragmaticprogrammer.com/titles/puphoe
http://pragmaticprogrammer.com/titles/puphoe
http://pragmaticprogrammer.com/titles/esbrain
http://pragmaticprogrammer.com/titles/esbrain

patience, and a clear mind. There are no gotchas here. These puzzles
are the perfect introduction to or refresher for math concepts you
may have only just learned or long since forgotten. Get ready to
have more fun with numbers than you’ve ever had before.

Erica Sadun

(186 pages) ISBN: 9781680509748 $18.95

Exploring Graphs with Elixir

s i

Data is everywhere—it’s just not very well
win e %+ connected, which makes it super hard to
i relate dataset to dataset. Using graphs as the
underlying glue, you can readily join data
together and create navigation paths across
diverse sets of data. Add Elixir, with its
awesome power of concurrency, and you’ll
soon be mastering data networks. Learn how
different graph models can be accessed and used from within Elixir
and how you can build a robust semantics overlay on top of graph
data structures. We’ll start from the basics and examine the main
graph paradigms. Get ready to embrace the world of connected data!

Tony Hammond

(294 pages) ISBN: 9781680508406 $47.95

http://pragmaticprogrammer.com/titles/thgraphs
http://pragmaticprogrammer.com/titles/thgraphs

	Foreword to the First Edition
	Acknowledgments
	Preface
	Who’s This Book For
	What’s in This Book
	Java Version Used in This Book
	How to Read the Code Examples
	Online Resources

	1. Hello, Lambda Expressions!
	Change the Way You Think
	The Big Gains of Functional-Style Code
	Why Code in the Functional Style?
	Evolution, Not Revolution
	A Little Sugar to Sweeten
	Wrapping Up

	2. Using Collections
	Iterating through a List
	Transforming a List
	Finding Elements
	Skipping Values
	Terminating Iterations
	Reusing Lambda Expressions
	Using Lexical Scoping and Closures
	Picking an Element
	Reducing a Collection to a Single Value
	Joining Elements
	Wrapping Up

	3. Strings, Comparators, and Filters
	Iterating a String
	Implementing the Comparator Interface
	Multiple and Fluent Comparisons
	Using the collect Method and the Collectors Class
	Listing All Files in a Directory
	Listing Select Files in a Directory
	Listing Immediate Subdirectories Using flatMap
	Watching a File Change
	Wrapping Up

	4. Transforming Data
	Computing Statistics
	When to Use map vs. flatMap
	Checking for Criteria
	Partitioning a Collection
	Counting Occurrences
	Summing Values
	Using flatMapping and filtering
	Teeing Operations
	Wrapping Up

	5. Designing with Lambda Expressions
	Separating Concerns Using Lambda Expressions
	Delegating Using Lambda Expressions
	Decorating Using Lambda Expressions
	A Peek into the default Methods
	Creating Fluent Interfaces Using Lambda Expressions
	Wrapping Up

	6. Working with Resources
	Cleaning Up Resources
	Using the Execute Around Method Pattern to Clean Up Resources
	Managing Locks
	Creating Concise Exception Tests
	Wrapping Up

	7. Being Lazy
	Delayed Initialization
	Lazy Evaluations
	Leveraging the Laziness of Streams
	Creating Infinite, Lazy Collections
	Wrapping Up

	8. Optimizing Recursions
	Using Tail-Call Optimization
	Speeding Up with Memoization
	Wrapping Up

	9. Composing Functions with Lambda Expressions
	Using Function Composition
	Using MapReduce
	Taking a Leap to Parallelize
	Wrapping Up

	10. Error Handling
	Taking a Holistic View of Error Handling
	Exception Handling and Imperative Style
	Checked Exceptions and Functional Style with Streams
	Exception Handling vs. Functional Style
	Dealing with It Downstream
	Handling Failures in Functional Programming
	Wrapping Up

	11. Refactoring to Functional Style
	Creating a Safety Net for Refactoring
	Refactoring the Traditional for Loop
	Refactoring More Complex Loops
	Refactoring Unbounded Loops
	Refactoring for-each
	Refactoring to Rework the Logic
	Refactoring File Processing
	Refactoring Data Grouping Operations
	Refactoring Nested Loops
	Real-World Refactoring
	Wrapping Up

	12. Functional Programming Idioms
	Don’t Write Dense Lambda Expressions
	Prefer Method References
	Properly Structure the Functional Pipeline
	Keep Separate Conditions in Separate Filters
	Provide Good Domain-Specific Parameter Names
	Use Type Inference for Parameters
	Side Effects in Functional Pipelines
	Wrapping Up

	13. Bringing It All Together
	Essential Practices to Succeed with the Functional Style
	Performance Concerns
	Adopting the Functional Style

	A1. Starter Set of Functional Interfaces
	A2. Syntax Overview
	A3. Web Resources
	Bibliography

