
Hands-On
Object-Oriented
Programming

Mastering OOP Features for
Real-World Software Systems
Development
—
Anil Kumar Rangisetti

Hands-On
Object-Oriented
Programming

Mastering OOP Features
for Real-World Software
Systems Development

Anil Kumar Rangisetti

Hands-On Object-Oriented Programming: Mastering OOP Features for

Real-World Software Systems Development

ISBN-13 (pbk): 979-8-8688-0523-3		 ISBN-13 (electronic): 979-8-8688-0524-0
https://doi.org/10.1007/979-8-8688-0524-0

Copyright © 2024 by Anil Kumar Rangisetti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler
Copyeditor: Kim Burton

Cover designed by eStudioCalamar

Cover image by Vinicius “amnx” Amano on Unsplash (unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Anil Kumar Rangisetti
Kurnool, Andhra Pradesh, India

https://doi.org/10.1007/979-8-8688-0524-0

To my teachers, Dr. Bheemarjuna Reddy and
Shri Badrinadh Garu, for identifying my strengths,

giving me wonderful opportunities to work with them,
and guiding me to achieve my goals.

To my lovely wife, Sravani, for being a wonderful partner
and supporting me in all situations. Without her love and

support, I could not accomplish it.

v

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

Chapter 1: ��The Importance of Object-Oriented Programming���������������1

Algorithms vs. Software���2

Algorithm Characteristics���2

Write an Algorithm��3

Software���5

Software Development Challenges��6

Introduction to OOP Concepts��7

Class���7

Objects���13

Inheritance���16

Polymorphism���18

How OOP Approaches Simplify the Software Complexity������������������������������������19

Systematically Modeling Real-World Entities into Software��������������������������������21

Hands-on Activity: Online Shopping���23

Hands-on Activity: Simple Adventurous Game���33

Summary���39

Practice: Hands-on Activities���40

Table of Contents

vi

Chapter 2: ��Start Learning OOP Using C++���43

C++ OOP Constructs��44

C++ Specific Programming Constructs��45

Model Real-World Entities Using C++ Classes��64

Interacting with Objects���77

Object Access Control Modes��87

Hands-on Activity: Smart Applications���100

Summary���109

Practice: Hands-On Activities���110

Chapter 3: Systematically Starting and Stopping
Software Objects���113

Software Objects Startup and Shutdown Sequences��114

Starting a Software Application��115

Closing a Software Application���118

Constructors for Handling Startup Sequences���120

Constructors in C++���120

C++ Supporting Constructors��123

C++ Compiler Providing Constructors��128

Hands-on Activities for Practicing Constructors���130

The Importance of Destructors for Doing Graceful Shutdowns��������������������������139

Destructors in C++���139

Hands-on Destructors��143

Hands-on Activity 1: Constructors��150

Hands-on Activity 2: Destructors��162

Summary���166

Practice: Hands-on Activities���167

Table of Contents

vii

Chapter 4: ��Exploring Important C++ Features�����������������������������������169

C++ Friend Classes and Functions��170

C++ Friend Functions���171

C++ Friend Class��174

Hands-on Activity: When to Use C++ Friend Concepts��������������������������������������177

Best Practices in Passing Arguments��188

Arguments Passing Activities���190

Sharing Data of Objects Using C++ Static���200

Restricting Accidental Changes Using C++ const���208

C++ Const and Pointer Usage Activities���212

Summary���225

Practice: Hands-on Activities���225

Chapter 5: Quickly and Systematically Model Real-World
Problems into Software���227

Modeling Real-World Problems into Software Design���������������������������������������228

A Simple Gaming Application���229

Modeling Game World Entities Using C++ Classes��235

Game Implementation Using C++ Classes��244

Model Application Entities Using C++ Classes��255

Basic Tasks Related to a Shopping Application��270

Basic Customer Interactions in a Shopping Application�������������������������������274

Basic Shopkeeper Interactions in a Shopping Application���������������������������278

Simulating Shopping Application Tasks��282

Summary���288

Practice: Hands-on Activities���288

Table of Contents

viii

Chapter 6: ��Quick Software Development Using OOP�������������������������291

The Importance of Inheritance���292

Inheritance Approaches��294

Issues in Combining Inheritance Approaches���299

Access Controls and Inheritance��301

Constructors and Destructors Working Order in Inheritance Context�����������306

Practicing the Reduce and Reuse Principle���311

Building New Software Building Blocks Versions Easily������������������������������������323

Combine or Connect Objects Wisely��335

Object Composition: Special Gaming Weapon��336

Object Composition and Aggregation���342

Hands-on Activity: Inheritance and Object Association��������������������������������349

Summary���359

Practice: Hands-on Activities���359

Chapter 7: ��Easy-to-Use Software Development Using OOP���������������361

The Importance of Polymorphism��362

Function Overloading��363

Function Overriding��367

Overloading Operators to Deal with Complex Objects Computations����������������371

How to Overload Operators��372

Practice Operator Overloading Usage���374

Generic Functions and Data Structures���381

Practice with Generic Functions���383

Generic Data Structures���388

Practice Implementing a Generic Data Structure���389

Using Dynamic Polymorphism for Offering Common Interfaces������������������������395

Table of Contents

ix

The Importance of Virtual Functions���396

The Importance of Pure Virtual Functions and Abstract Classes������������������401

Practice with Dynamic Polymorphism��403

Summary���408

Practice: Hands-on Activities���409

Chapter 8: ��Design Patterns��411

Introduction to Design Patterns���412

Creational Patterns���412

Structural Patterns���413

Behavioral Patterns��414

Learning Creational Design Patterns���415

The Factory Method��418

The Singleton Pattern���423

Structural Design Patterns���428

The Facade Pattern��432

The Proxy Server Pattern��440

Behavioral Design Patterns��445

The Chain of Responsibility Pattern��450

The Template Method���458

Summary���465

Chapter 9: ��Event-Driven Programming��467

The Importance of Event-Driven Programming��468

Key Concepts��469

Advantages and Use Cases��473

Structure��474

Using C++ for Events and Event Handlers���476

Implementing Application Events and Subscribing to Classes���������������������480

Table of Contents

x

Quick Practice��483

Hands-on Activity: Design a Simulator���491

IoTSensorsHandler Events��492

SmartVehiclesHandler Custom Events���497

SmartApplication Simulation��501

Summary���504

Practice: Hands-on Activities���504

Chapter 10: ��A Brief Introduction to OOP in Python and Solidity��������507

Other Important OOP Languages��508

The Importance of Python Programming��508

The Importance of Solidity Programming���510

Python Basic Programming Constructs for OOP��511

Python Basic Programming Constructs��511

Python OOP Constructs���515

Python OOP Constructs for Inheritance��519

Python OOP Constructs for Polymorphism���521

Practicing OOP in Python���526

Using Python for Encapsulation and Data-Hiding Features��������������������������526

Using Python to Implement Inheritance���532

Using Python for Polymorphism���538

Solidity Basic Programming Constructs for OOP���541

Solidity Basics��541

Solidity Inheritance Programming��546

Solidity Polymorphism Programming���549

Practicing OOP in Solidity��552

Table of Contents

xi

Using the Remix Editor for Practicing Solidity��553

Practicing with Smart Contracts���556

Extending Smart Contracts Using Inheritance��562

Using Solidity for Polymorphism��568

Summary���573

�Index��575

Table of Contents

xiii

About the Author

Dr. Anil Kumar Rangisetti received his

PhD in computer science and engineering

from the Indian Institute of Technology (IIT)

Hyderabad. He has nearly 10 years of teaching

and research experience in computer science

and engineering. During his career, he worked

at prestigious Indian institutions such as

IIIT Dharwad, SRM-AP, and GMR, and at

software development and research labs such

as Aricent. Currently, he is an assistant professor in the CSE Department

at IIITDM, Kurnool. He trains students in OOP languages and how to use

advanced simulators (NS-3), Docker, and networking tools for developing

applications, and he has guided many undergraduate and postgraduate

students in their projects. 

Broadly, Dr. Rangisetti’s research interests include Wi-Fi technologies,

next-generation mobile networks, software-defined networking (SDN),

network functions virtualization (NFV), and cloud computing. He

also writes and reviews books on computer science technologies and

programming languages, and he is the author of Advanced Network

Simulations Simplified (Packt, 2023).

xv

Saravan Nanduri is a seasoned senior full-

stack web developer with nearly two decades

of experience in the information technology

sector, specializing in developing object-

oriented applications. Having worked with

prestigious companies such as Tech Mahindra

and Accenture, Saravan brings expertise to

every project he undertakes.

After graduating with computer science

and engineering degrees in 2005, Saravan

embarked on a remarkable journey leading him to the United States in

2015, where he worked for government agencies before assuming the role

of senior software engineer at SS&C Innovest in 2019.

With a solid foundation in computer science, Saravan is adept at

architecting and implementing both client and web-based enterprise

applications. His proficiency spans a wide spectrum of technologies,

including C++ and Microsoft .NET frameworks, such as C# and MVC.

Beyond his professional endeavors, Saravan values relationships and

camaraderie.  

About the Technical Reviewer

xvii

Acknowledgments

First, I would like to thank Apress for accepting my book idea and giving

me this wonderful opportunity. I would especially like to thank Melissa

Duffy for keenly going through the book proposal and suggesting to me

how to make the book proposal interesting and perfect. Melissa’s support

and encouragement throughout the book-writing process is highly helpful.

Melissa’s simple suggestions improved the quality of the book’s content.

I want to thank Nirmal Selvaraj for his continuous support in the entire

review and the book contents finalization process. His timely help and

support helped me to finish on time.

I thank the book’s technical reviewer, Sarvan Nanduri, for his valuable

time and suggestions in all hands-on activities and technical concepts. His

keen observations helped me correct all kinds of errors and incorporate

necessary topics to improve the book’s quality tremendously.

I would like to thank every member of the Apress for supporting me in

writing this book. I would love to work with the Apress team again.

I give my heartfelt thanks to all my students for their interest in

attending my lectures and working with me. All my students’ curiosity,

comments, and suggestions helped me to write this book.

Finally, I thank all my family members, friends, and colleagues for their

love and support.

xix

Introduction

Object-oriented programming (OOP) is an essential skill for implementing

extendible, reusable, and easy-to-use software systems. To develop any

application software or system software, learning OOP concepts and

programming is necessary. OOP basic principles help in easily handling a

wide variety of real-world software systems (games, application software,

novel systems) implementations. This book blends OOP concepts and

programming activities for active learning. All hands-on activities and

real-time scenarios are described with step-by-step procedures in terms of

designing, programming, and evaluations.

You will learn OOP features through real-world examples and

practice through C++ programming hands-on activities. You will also

learn advanced design and development skills, such as design patterns

and event-driven programming for handling novel systems design and

development. Finally, you are briefly introduced to OOP features practice

through other important OOP languages: Python and Solidity.

This book is organized into three parts. In Part 1 (Chapters 1–4), you

learn and practice OOP concepts using C++ for solving real-world software

development problems.

Part 2 (Chapters 5–7) explains how to model real-world problems

into reusable, extendible, and easy-to-use software development blocks

using OOP concepts such as inheritance, object associations, and

polymorphism.

xx

In Part 3 (Chapters 8–10), you learn how to use design patterns and

event-driven programming for handling complex software system object

creation, behavior, and interactions. Finally, you are introduced to OOP

using Python and Solidity.

By the end of this book, you will have learned how to design and

implement a variety of real-world software systems from scratch using

OOP principles, design patterns, and event-driven programming skills.

Introduction

1© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_1

CHAPTER 1

The Importance
of Object-Oriented
Programming
Object-oriented programming (OOP) is essential for handling challenges

in developing flexible, extendible, reusable, and easy-to-use software

systems. OOP approaches simplify the complexity of modeling real-world

application concepts into software building blocks.

OOP offers powerful programming constructs and principles to deal

with the complexity of software development. OOP constructs such as

classes help you to systematically map real-world entities, and it helps in

hiding the implementation details of the entities, controlling their data

access, and simplifying the software system interactions, activities, and

tasks. Moreover, OOP principles such as inheritance and polymorphism

help you to develop reusable and easy-to-use software systems.

Learning OOP helps you deal with the complexity of any software,

such as e-commerce applications, system software (e.g., device drivers,

compilers, operating systems, databases), next-generation applications

such as IoT, industrial IoT (IIoT), smart applications, and many more. To

appreciate the importance of learning OOP, this chapter discusses the

following topics.

https://doi.org/10.1007/979-8-8688-0524-0_1#DOI

2

•	 Algorithms vs. software

•	 Software development challenges

•	 Introduction to OOP concepts

•	 How OOP approaches simplify the software complexity

•	 Systematically modeling real-world entities into

software

�Algorithms vs. Software
Before exploring software, you should know how to start writing a program

for solving well-defined problems, such as mathematical, computational,

searching, and sorting problems. Solving these problems through a

program involves considering all necessary inputs and defining a logical

sequence of computational steps to get the desired results. Formally, it is

known as writing an algorithm.

This section briefly introduces the following topics.

•	 Algorithm characteristics

•	 Writing an algorithm

•	 Software characteristics

•	 Software development challenges

�Algorithm Characteristics
An algorithm defines a logical sequence of instructions or commands

to solve a problem. For instance, algorithms are highly suitable for

implementing programs to solve specific problems such as searching,

sorting, data structures accessing problems, computational problems, and

Chapter 1 The Importance of Object-Oriented Programming

3

many mathematical problems. Algorithms can be easily converted into

computer programs using basic programming constructs such as data

structures, conditional statements, loops, and functions.

•	 Simple modeling approaches such as flow charts are

helpful to write algorithms.

•	 Algorithms’ logical sequence of steps can be converted

into programs using procedural program languages

such as C.

•	 An algorithm’s success mainly depends on its

performance. Algorithm performance is usually

defined in terms of space and time complexity.

•	 Developing efficient algorithms is all about reducing

space and time complexity. For example, many sorting

algorithms have evolved to reduce time complexity

from bubble sort (O(n^2)) to quick sort (O(logn)). Here,

the time complexity is represented in Big O notation to

represent the upper bounds of algorithms.

•	 Algorithms can be developed into programs with

smaller teams or individuals.

•	 Procedural-oriented programming languages (e.g., C)

are sufficient to convert algorithms into programs.

Next, let’s look at how to write an algorithm and convert it into a

program using procedural programming language constructs.

�Write an Algorithm
Let’s solve a problem related to searching for an element from any given

list of elements.

Chapter 1 The Importance of Object-Oriented Programming

4

•	 Input: List of elements (list [0 to n]) and a searching

element (key)

•	 Output: Element found (True), Element not

found (False)

	 1.	 Index=0

	 2.	 Traverse through the list of elements until the

list ends.

Check the following conditions:

In case key presents in the list:

return True

otherwise

Go to 2:

	 3.	 If list ends:

return False

Now it can be easily converted into any procedural-oriented program

constructs such as if-else, for loop, and functions ().

For example, let’s write a C function to solve the search problem.

int search(int list [], int n, int key)

{

 int i=0;

 for (i=0;i<n;i++)

 {

 if (list[i] == key)

 return 1;

 }

 return 0;

}

Chapter 1 The Importance of Object-Oriented Programming

5

You have seen how easy it is to convert a well-defined algorithm into

a program using procedural language programming constructs. Next, let’s

quickly explore software and its characteristics.

�Software
Software is evolved to solve a variety of real-world complex problems,

which range from system software (editors, compilers, operating systems,

databases, protocol stacks, etc.) to application software (e-commerce,

online reservations, entertainment software, gaming applications, etc.)

and current trending smart applications such as drone applications, IoT,

and smart cities.

Unlike well-defined problem-solving using algorithm approaches,

software development must follow suitable systematic software

engineering procedures and models (e.g., waterfall model, iterative, spiral,

and DevOps) to ensure the following features.

•	 Verifying and validating all requirements of

stakeholders

•	 Reliable in terms of fault tolerance and zero downtime

•	 Scalable software components to meet the dynamic

demands of users

•	 Flexible software components in terms of making

necessary changes or introducing new features

•	 Extendible software components for producing new

versions of the software to meet market needs or

introducing innovative features

Besides these features, software success depends on the following.

•	 How quickly it can be developed and tested

•	 An easy-to-use interface

Chapter 1 The Importance of Object-Oriented Programming

6

•	 How quickly modifications can be made

•	 Multiple teams able to work on components in parallel

•	 Reusable and easily extendible software components

�Software Development Challenges
By following suitable software engineering principles and models, it is

possible to get all requirements from users involved in using the software.

However, translating user requirements into software design blocks is not

straightforward. For example, in e-commerce applications, a few basic

requirements are that software users should interact with the system easily

to browse items, select items into their basket, and place an order.

These requirements cannot be easily translated into software

by following algorithm design principles and procedural-oriented

programming constructs. Unlike algorithms, software development

involves a lot of ambiguity to be dealt with. It is very challenging to

completely map all real-world entities, their transactions, and all

requirements into software.

You face the following challenges when you want to develop software

using algorithm and procedural programming approaches.

•	 It is highly challenging to model all real-world entities,

requirements, and constraints in a limited number

of phases.

•	 It is highly difficult to deal with initial ambiguity

(getting ready with initial designs and models) and

define logical steps.

•	 Starting points are not evident in implementing the

system components.

Chapter 1 The Importance of Object-Oriented Programming

7

•	 It is difficult to connect software components for

integrating the complete system.

•	 It is difficult to develop scalable, flexible, and

extendible software components.

•	 It is unrealistic development and release deadlines.

•	 It is unpredictable software success.

Next, you are introduced to OOP concepts and how OOP features are

helpful for software development.

�Introduction to OOP Concepts
OOP offers excellent features to simplify software development by

converting high-level requirements and design processes into software

implementation.

•	 Class

•	 Data abstraction

•	 Encapsulation

•	 Data hiding

•	 Inheritance

•	 Polymorphism

Let’s go over OOP basic programming constructs called classes.

�Class
A class is the most important programming construct of the OOP. It

helps you easily model any real-world entity (a customer, a drone, or

any transactions) into a software block. OOP basic construct called class

Chapter 1 The Importance of Object-Oriented Programming

8

is defined with its related data (data members or fields) and member

functions for accessing its data members. This book uses “data members”

and “fields” synonymously. The class structure is shown in Figure 1-1.

Figure 1-1.  Class structure in OOP

For instance, customer entities related to an online shopping context

can be easily modeled, as shown in Figure 1-2.

Figure 1-2.  Online shopping application example class: Customer

Let’s inspect the Customer class definition carefully. The data

members section includes the customer’s name, phone number, and

address.

Under the member functions section, you define corresponding access

functions for each data member, such as get and set functions. Usually, the

“get” member functions are defined to retrieve data members’ values, and

set member functions are defined to update the values of data members.

For example, the City field of the Customer class, getCity(), is useful for

retrieving a customer entity’s city, and setCity(city) is useful for setting

or updating a customer entity’s city.

Chapter 1 The Importance of Object-Oriented Programming

9

Having the necessary set and get member functions defined in the

class, you can later easily include complex online shopping application

tasks. For instance, in online shopping applications, customer phone

verification and update tasks can be easily done using getPhone#() and

setPhone#() member functions. Similarly, other member functions are

useful for accessing the respective data of the Customer class.

Next, let’s look at another example in a gaming application context:

modeling a duck character into software as a class (see Figure 1-3).

Figure 1-3.  Gaming application example class: Duck

The Duck class includes a duck identifier (id), its location (x,y), and its

state (dead or alive). For accessing these data members corresponding set

and get member functions are defined inside the class.

Now, checking whether a duck is live or dead can be easily done by

accessing the duck state using its getState() member function. Similarly,

you can easily track duck position (x,y) using get and set location

functions.

Another interesting example of class structure is IoT sensor modeling,

as shown in Figure 1-4.

Chapter 1 The Importance of Object-Oriented Programming

10

Figure 1-4.  Smart application example class: IoT_Sensor

The IoT_sensor class includes data members related to the sensor

identifier (Id), its State (sensing, sleeping, and dead), Sensing_value, and

Battery_level. Under member functions, sections corresponding to set

and get functions are defined for accessing the data members.

Suppose you want to keep a particular sensor in a sleep state in your

IoT application. It can be easily done by accessing the sensor state using

setState(state) member function. Similarly, you can access a sensor’s

battery status using getBatLevel() and setBatLevel(level) functions.

Besides simplifying modeling real-world entities, classes are powerful

programming constructs whose definition captures the following

important OOP principles.

�Data Encapsulation

If you are an experienced C programmer, you can easily understand

structure data type helps you to combine related data elements under a

single structure variable. However, you cannot control its data and their

related accessing functions together into a structure.

The following is an example.

struct customer

{

 char name[30];

Chapter 1 The Importance of Object-Oriented Programming

11

 int phone;

 char address[30];

};

Any function can use struct customer variables to change internal

data of the customer variable as follows.

void function1 (struct customer c1)

{

/* It can access customer data */

}

void function2 (struct customer c1)

{

/* It can access customer data */

}

Passing a c1 variable to any C functions, then those functions can

change the corresponding struct customer variable's data members.

It means you are not able to combine data and their accessing functions. It

can lead to no control over the sensitive data of real-world entities.

Interestingly, OOP classes allow you to combine related data

and its member functions into a Class definition. It is known as data

encapsulation. Then, you can model a specific real-world entity from the

class by creating an object and interacting with the object through class

member functions.

You can observe their data and respective accessing functions from the

example classes—Customer, Duck, and IoT_Sensor. As discussed, tasks

related to the corresponding entities can only be done through their class

member functions. For example, the IoT_Sensor entity’s Sensing_value

access can be changed through its object and class member functions:

setSenseValue() and getSenseValue().

Chapter 1 The Importance of Object-Oriented Programming

12

�Data Abstraction

Having encapsulated data types support such as classes in OOP, accessing

variables of the complex data types also gets simplified. In your program,

you define objects (variables) for the respective Class (complex data type)

and invoke necessary member functions from the objects to access their

details. For example, to set an IoT sensor state to “sleep,” you can easily do

it with the following lines of code.

IoT_Sensor i1;

i1.setState(2); // Example, 0: Dead, 1: Sensing, 2: Sleeping.

Similarly, you can check whether the duck is alive with the following

lines of code.

Duck d1;

int state = d1.getState(); //1: Alive 2: Dead

if (state == 2)

 cout<<d1.getId()<<"is dead";

To access the IoT_sensor or Duck details, focus on their objects and

accessing functions, not their implementation details. You need not know

its internal details to access a complex data type.

By checking these examples, you can understand that OOP classes

greatly simplify accessing complex entities’ data using its related member

functions defined inside the class.

�Data Hiding

You have observed how to combine class data and its member functions

to simplify accessing its objects. Besides these features, the OOP class

offers a powerful way to control access to an object’s data.

Chapter 1 The Importance of Object-Oriented Programming

13

It means controlling objects data members access from the outside

of a class. It can be achieved by attaching access control modes

(access specifiers) with data and member functions of a class. OOP

languages generally offer three access specifiers: public, private, and

protected access.

•	 Public access: Data and member functions defined

under the public section can be accessed by any

function through the respective class objects.

•	 Private access: Data and member functions defined

under the private section are allowed to be accessed by

only member functions of the class.

•	 Protected access: Data and member functions defined

under the protected section are allowed to be accessed

by only member functions of the class and its inherited

classes.

You have just seen how to limit an object’s data access using the OOP

access specifiers. Later chapters discuss an object’s data access control

in detail. Now that you have explored the OOP basic construct class, let’s

discuss instances and variables of the class data type.

�Objects
Objects are powerful ways to create software components and implement

tasks, transactions, activities, operations, and functions. For example,

it is easier to model the real-world entities such as customers and their

transactions or related activities as objects to develop an online shopping

application.

Object is an instance of a class, it contains data members and member

functions. Hence, any interactions related to the object are done through

the class member functions.

Chapter 1 The Importance of Object-Oriented Programming

14

In OOP, for example, having a class defined for customers simplifies

online shopping customer entities as Customer objects. Then, all the

following tasks implementaion gets simplified: registering a customer,

updating customer details, and checking customer details by creating and

interacting with customer objects.

Moreover, an object’s powerful combination with its data and

accessing functions helps you easily realize several identical software

components.

The following are examples.

•	 A Drone class that creates multiple drones is nothing

but defining multiple drone objects.

•	 A Robot class that creates multiple robots is nothing but

defining multiple robot objects.

Similarly, think of real-world applications entities modelling such as

e-commerce, gaming, and system software.

�Objects Details

To understand an object, you can view it as a variable of a particular

data type. Similarly, an object is a variable of the class data type.

In OOP, objects are instances of classes. During program execution,

objects are created by allocating necessary memory space for their data

member’s access.

For example, to create a variable of int.

int a; // int is data type and a is variable

Similarly, in C++, you can create objects from the Customer class as

follows.

Customer c1, c2;

Chapter 1 The Importance of Object-Oriented Programming

15

During program execution, each of your objects (c1 and c2) memory

is allocated in a unique space, as shown in Figure 1-5. It means, one

object changes are not visible to another object. An object’s memory size

depends on its class data members’ respective data types.

Figure 1-5.  Customer objects: c1 and c2 example memory
allocation maps

Later, during program execution, with the help of a related set and get

member functions object’s data member can be accessed.

For example, in C++, to retrieve object c1’s phone number, you can

simply write the following lines of code.

phone_num = c1.getPhone#();

Similarly, you can change object c2’s city using the following lines of code.

c2.setCity ("New York");

Only the c2 object’s city will be changed in memory, as shown in

Figure 1-6.

Figure 1-6.  Customer object c2 memory changes after modifying c2
city details

Next, let’s learn how OOP inheritance principles are helpful in the

software development process for extending classes with new features to

reduce code and development time.

Chapter 1 The Importance of Object-Oriented Programming

16

�Inheritance
Following OOP inheritance principles greatly simplifies the software

development process for extending a software system with new features

and reducing time for development by reusing the existing code.

The inheritance feature of OOP allows you to write reusable and

extendible classes. For instance, you started developing a cricket players

information system. You can start by defining a Cricket_Player class as

follows for maintaining common details of any cricket player. Later, you

can easily extend the Cricket_Player class to model BatsMan, as shown in

Figure 1-7.

Figure 1-7.  The left side shows the Cricket_Player class. The right side
shows the inherited class: BatsMan from Cricket_Player.

By inheriting the BatsMan class from Cricket_Player, it gives the

following benefits.

•	 In the BatsMan class, you define the details only by

extending the Cricket_Player class.

Although you did not include Cricket_Player code

related to its data members (name, country, etc.)

and member functions (getName(), getCountry(),

etc.), your BatsMan gets inherited with Cricket_

Player data members and member functions code,

as shown in Figure 1-8.	

Chapter 1 The Importance of Object-Oriented Programming

17

Figure 1-8.  Because of inheritance features, the BatsMan class gets
inherited with Cricker_Player data members and member functions.
It means you need not write the code explicitly while defining the
BatsMan object to set the BatsMan name, jersy_number, and country.
You can utilize the inherited code from Cricket_Player.

Inheriting the BatsMan class from the Cricket_Player class means

BatsMan objects include Cricket_Player data members, and BatsMan

objects can access Cricket_Player member functions code. You can

clearly understand it regarding memory allocation for inherited objects

and member functions availability to the inherited objects.

•	 BatsMan object memory allocation includes its fields

(Total_Score, #Centuries, #HalfCenturies) and

inherited fields (name, jersy_number, and country)

of Cricket_Player.

•	 BatsMan objects are allowed to access its member

functions, such as getScore() and setScore(), and

inherited member functions, such as getName() and

setName(), of Cricket_Player.

Chapter 1 The Importance of Object-Oriented Programming

18

Inheritance principles save time in writing and testing code by reusing

the existing code. Mainly, inheritance enables easily extending existing

classes with new features for implementing a new variety of classes by

following all OOP principles. Specifically, you can use private or protected

inheritance for the restriction of extending base class features into derived

classes.

Usually, OOP languages support many inheritance approaches, such

as single-level, multilevel, multiple, and hybrid manners. You can choose a

suitable inheritance based on your requirements.

Now that you’ve discovered the importance of inheritance, let’s discuss

how to develop a system with common interfaces to simplify access.

�Polymorphism
One of the major requirements for making any software successful is

offering a minimum number of standard user-accessing interfaces to use

the software.

For example, developing a data processing application using the

same function name, such as sort(), to arrange data elements of any list

simplifies the usage of the application.

Similarly, you developed software for drone control, and you must

provide a simple and limited number of standard interfaces for interacting

with a drone, such as set_mode(), arm(), load_mission(), simple_

goto(), and take_off(). Later, you may need to handle a variety of

drones, but you should be able to support these common interfaces for

interacting with any drone.

Similarly, to make any gaming software easy to play, it should offer

only a minimum number of controls to interact with various game objects.

For instance, if a player wants to use a gun, then it must have common

interfaces such as aim(), load(), and fire() for interacting with any

sophisticated gun.

Chapter 1 The Importance of Object-Oriented Programming

19

On the other hand, if you increase many interfaces, you end up offering

a long cheat sheet for interactions. Hence, you must minimize the number

of interfaces and be able to use common popular interfaces for specialized

objects (e.g., advanced drones, sophisticated guns) and normal objects

(e.g., simple drones, guns).

To handle these challenges, you need to overload the functions of

objects. Using OOP static polymorphism and dynamic polymorphism

principles, it is possible to use one name with a variety of function

definitions. Hence, polymorphism helps you develop software with a

minimal number of interfaces to improve usability. After exploring OOP

concepts, let’s summarize how OOP concepts and approaches are helpful

in software development.

�How OOP Approaches Simplify
the Software Complexity
You can see the power of OOP approaches in the following major aspects

of software development.

•	 Simplifies modeling: Easy to model any real-world

problem entities using OOP key constructs such as

classes and objects. For instance, you can model simple

entities such as customers, users, and students and

easily model complex entities such as drones, robots,

and IoT devices. You have seen some real-world entity

modeling in previous sections.

•	 Flexible software development process: OOP

offers greater flexibility and simplicity in terms of the

software development process. Key features such as

classes, objects, and inheritance allow developers to

easily divide the complex problem into independent

Chapter 1 The Importance of Object-Oriented Programming

20

smaller problems. It enables parallel development and

independent testing, making extending and integrating

all key software building blocks easier. For example,

developing a game application can be done at a rapid

speed with multiple teams in parallel by working on

modeling and developing various users, enemies,

weapons, vehicles, and gaming environment setups.

•	 Reusable and extendible software components: It

is easier to produce reusable and extendible software

components quickly. OOP inheritance principle

enables team members to easily create reusable

and extendible software components. Inheritance

eliminates the need of writing redundant code, and

encourages reuse of the existing code. For instance, to

develop employee services applications, developers

can eliminate writing a lot of code related to managing

personal and professional details, and it also helps in

easily extending existing applications for introducing

new roles and users in the system.

•	 Simplifies integration and connecting software: OOP

association and aggregation principles greatly simplify

the integration of software blocks and connecting

dots. For example, developing an online shopping

application to model customers purchasing an item

can be easily modeled by associating the customer

and the item objects with a transaction class. On the

other hand, modeling a complex IoT device with many

sensors can be done easily by aggregating all necessary

sensor objects into IoT device classes.

Chapter 1 The Importance of Object-Oriented Programming

21

•	 Simplifies user interface design: Fundamentally,

interactions with software become complicated when

users need to remember a lot of menus, commands,

and options. Hence, developers must consider all

necessary common interfaces and minimize the

number of interfaces in software user interface design.

For example, to interact with a document editing

application, you use three well-known commands (cut,

copy, paste) to alter text, figures, images, tables, and so

forth. Similarly, you use minimal keyboard keys such

as forward, backward, left, and right arrows to interact

with gaming objects and characters. For instance,

these options help players interact and control gaming

vehicles easily.

By following polymorphism OOP principles, designing software using

minimal interfaces for user interactions is possible. Besides, it is possible

to define common interfaces for the system to easily remember system

interaction options. Knowing the importance of OOP principles, let’s start

with how to use OOP concepts for modeling real-world entities.

�Systematically Modeling Real-World
Entities into Software
Let’s examine how OOP basic constructs help you deal with the initial

ambiguity of modeling real-world problems into a software solution space.

Unlike procedural programming approaches (focus on functions), you can

systematically model entities of real-world problems into software building

blocks using the following high-level procedure.

Chapter 1 The Importance of Object-Oriented Programming

22

	 1.	 Start by defining the problem scope and context in

terms of your software system use cases.

	 2.	 Identify users involved with your software system

for various tasks and model them as objects for

interacting with your proposed software system.

	 3.	 Next, list each user’s interactions or tasks with the

proposed software system. Inspect each user’s

interactions or tasks with the real-world system in

detail to model the basic real-world entities as objects

to be considered part of your software system.

After identifying the basic objects of the proposed

software system, you can group similar objects into

respective classes.

	 4	 Finally, each class can be modeled as follows by

defining the class’s data members and member

functions.

	a.	 Identifying class data members

•	 The object’s data (attributes, fields,

characteristics, specifications, and state)

needed to carry out transactions or tasks

•	 The object’s data needed for others (users

and objects) from the system to carry out

transactions or tasks

	b.	 Identifying class member functions

•	 How others (users or objects) interact with

an object to carry out transactions, tasks, or

activities

•	 Identifying object-specific functions, tasks,

roles, and responsibilities

Chapter 1 The Importance of Object-Oriented Programming

23

�Hands-on Activity: Online Shopping
Let’s start by learning how to model various real-world entities of an online

shopping application. First, let’s define the scope of the hands-on activity.

�1. Define the Problem Scope and Context

Any user can browse your shopping application to view a variety of items.

However, to buy, cancel, or return items only registered customers can do

so. To simplify our discussions, only a cash-on-delivery option is provided

for customers.

As part of maintaining shopping items, shopkeepers can only update

stock details. All transactions performed in the shop must be registered.

After defining the our problem scope and context, identify various users

interacting with your online shopping application.

�2. Identify and Understand Users

From the problem’s description, you can quickly identify the following

users interacting with the online shopping application to do transactions

or tasks.

•	 Any user

•	 Customer

•	 Shopkeeper

�3. List all Users/actors transactions, actions, and tasks

Users will interact with an online shopping application to browse items,

and if they are interested, they register with the application to become a

customer. Hence, general interactions of a user with an online shopping

application are shown in Figure 1-9.

Chapter 1 The Importance of Object-Oriented Programming

24

Figure 1-9.  User interactions with the online shopping application

That means you should model customers as objects in the application.

Next, inspect customer’s interactions with your online application.

�Customers

Customers usually browse items, and place orders for buying items, as

shown in Figure 1-10. From the general interactions, you should understand

the necessity of modeling items and orders as objects. Then, after placing

orders, customers can view their past orders and cancel or return orders.

That means you must model canceled and returned order objects, too.

Figure 1-10.  Customer interactions with shopping applications
for browsing items, viewing past orders, canceling orders, and
returning orders

Observing user and customer interactions with the application

identifies the following objects for modeling the online application.

•	 Customer

•	 Item

•	 Order

•	 Canceled order

Chapter 1 The Importance of Object-Oriented Programming

25

Note T o simplify the discussion, canceling or returning an order is
only modeled as canceled.

Next, let’s discuss shopkeeper interactions and check for new objects

to be modeled.

�Shopkeeper

Usually, the shopkeeper’s main role is monitoring and updating item

details. Hence, you must model shopkeeper objects in the application.

Besides, he/she must check received orders and manage orders for delivery,

return, and cancellation. Delivering an order involves modeling a delivery

partner. But, to simplify the discussion, let’s assume the shopkeeper is a

delivery partner. Hence, you do not model delivery partners.

Overall, the shopkeeper interacts with item and order objects.

Figure 1-11.  Shopkeepers interact with applications for updating
stock details, and managing customer orders

You can start modeling the following basic objects by inspecting

customer and shopkeeper interactions.

•	 Customer

•	 Shopkeeper

•	 Delivery partner

Chapter 1 The Importance of Object-Oriented Programming

26

•	 Item

•	 Order

•	 Canceled order

•	 Delivered order

Next, let’s inspect each object and their interaction in detail to model

them as classes.

�4. Inspect User Interactions for Modeling Classes

Let’s start with inspecting customers and shopkeeper tasks or transactions

or activities.

�Customer Registration

In the online shopping application, customer registration creates a new

customer object. The application must maintain a customer profile with

all necessary details to deal with a customer transaction. For example, for

customer registration, the following minimum details are needed from

the customer to authenticate, place, and get orders: name, phone number,

city, country, and PIN. After successful customer registration, customers

must be assigned a unique identifier.

�Customer Class

To focus on modeling basic OOP construct classes, data type details

and syntax of member functions are not discussed here. Let’s start by

identifying a high-level definition of classes to help you easily apply your

classes in any OOP language. Now, you can quickly model a customer class

(see Figure 1-12) with all the details mentioned earlier. Data members

under the data members section define the corresponding set and get

member functions for accessing the customer object’s data.

Chapter 1 The Importance of Object-Oriented Programming

27

Figure 1-12.  Customer class with its data members and member
functions

After defining the Customer class, you can perform programming tasks

in an online shopping application using the customer objects’ set and

get member functions easily. For example, to deliver items to a customer

address you can access the specific customer object c1 and get his address

details as follows.

Customer c1; //Assume c1 is your customer

phone_num = c1.getPhone#();

city = c1.getCity();

pin = c1.getPin();

country = c1.getCountry();

Next, let’s model the Shopkeeper class.

�Shopkeeper Registration

In the online shopping application, shopkeeper registration creates a new

shopkeeper object. To deal with shopkeeper transactions, the following

minimum details are needed to authenticate and manage stock and

orders: name, phone number, city, country, and PIN. After successful

shopkeeper registration, he/she must be assigned a unique identifier.

Chapter 1 The Importance of Object-Oriented Programming

28

�Shopkeeper Class

You can model a shopkeeper class (see Figure 1-13) with all the details

under the data members section, define the corresponding set, and get

member functions for accessing the shopkeeper object’s data.

Figure 1-13.  Shopkeeper class with its data members and member
functions

After defining the Shopkeeper class in an online shopping application,

you can perform programming tasks using the shopkeeper objects’ set and

get member functions easily. For example, to allow a shopkeeper to access

stock or orders, you need to access a few important details of a shopkeeper

as follows.

Shopkeeper s1; //Assume s1 is a shopkeeper

phone_num = s1.getPhone#();

sid = s1.getSid();

Next, let’s model another class called item of your online shopping

application.

Chapter 1 The Importance of Object-Oriented Programming

29

�Browsing Items

Customers and shopkeepers usually check item details for accessing item

details and order management. That means the application must maintain

every item’s details for sharing with customers and shopkeepers to manage

stock and orders. Usually, customers view item details (name, price,

quantity, description) for placing orders, and shopkeepers update item

details (quantity, price, description) for managing orders. For example,

the following minimum item details must be maintained: Identifier (ID),

name, price, quantity, and description.

�Item Class

Let’s model item class with the item details under the data members

section, define the corresponding set and get member functions for

accessing item object data in the application (see Figure 1-14).

Figure 1-14.  Item class with its data members and member functions

After defining the Item class, you can perform programming tasks in

an online shopping application using the item objects’ set and get member

functions. For example, you can easily update an item’s quantity to handle

order transactions as follows.

Chapter 1 The Importance of Object-Oriented Programming

30

Item i1; //Assume i1 is needed item object

i1.setQty(2);

Next, let’s model the order class for recording transactions.

�Placing Orders

Customers select items and order from your online shopping application.

Your application with the following necessary details, such as order id,

customer id, item id, quantity, total cost, and date.

The application must also have an order status to maintain details such

as canceled, returned, and delivered.

After defining the Order class (see Figure 1-15), you can perform

programming tasks using the order objects’ set and get member functions.

Figure 1-15.  Order class with its data members and member
functions

Chapter 1 The Importance of Object-Oriented Programming

31

For example, to cancel an order can be done as follows.

Order o1; //Assume o1 is your order

o1.setStatus(1); //1 means cancelling the order

Next, let’s model the canceling order class for the online shopping

application development.

�Canceling an Order

When a customer changes his mind and cancels an order or returns items,

it must be handled by the application to do a refund process. It is modeled

as a canceled order and maintains the following details: order id, canceled

date, refund amount and refund date.

After defining the CancelledOrder class (see Figure 1-16), you

can perform programming tasks using its objects’ set and get member

functions.

Figure 1-16.  CancelledOrder class with its data members and
member functions

For example, you can set the possible refund amount and expected

refund date to process a canceled order.

Chapter 1 The Importance of Object-Oriented Programming

32

CancelledOrder c1; //Assume o1 is your order

c1.setRefund(10); //10 means dollar

c1.setRdate("12JAN2024"); //Assume date is string

Finally, let’s model the delivered orders class for the online shopping

application development.

�Delivering Orders

The shopkeeper checks orders and assigns a delivery partner to deliver

customers’ successful orders. It must be recorded and modeled as a

delivered order as shown in Figure 1-17.

Figure 1-17.  DeliveredOrder class with its data members and
member functions

After defining the DeliveredOrder class (see Figure 1-17), you

can perform programming tasks using its objects’ set and get member

functions.

For example, the following provides delivery partner details.

DeliveredOrder d1; //Assume o1 is your order

dpid = d1.getDpid();//You can use dpid for further process

Well done! You have modeled important classes for an online shopping

application. It helps you to quickly start developing your application using

any OOP language. To get a little more experience and explore other domains.

Let’s model a simple, adventurous game.

Chapter 1 The Importance of Object-Oriented Programming

33

�Hands-on Activity: Simple Adventurous Game
Let’s start by defining the gaming application for this hands-on activity.

�1. Define Problem Scope and Context

In the adventurous game world, a player starts from a starting location and

explores paths to reach a target location. While the player is moving toward

the target location, he faces several challenges from enemies. Moreover,

while reaching the game’s target, a player or an enemy can grab guns and

bombs at various locations and attack each other.

Next, let’s quickly identify users or gaming characters involved in our

game world and model them as the game objects.

�2. Identify and Understand Gaming Characters and 3.
Inspect all Users/actors transactions, actions, and tasks

From the problem description, you can easily identify the player and

enemy game characters.

In this simple game world, for a player or enemy to reach a target, they must

move in various directions, jump over objects, and collect guns and bombs for

attack. The only difference between the enemy and the player character is that

the game controls the enemy character, and the player character is controlled

by whoever plays the game. Hence, you see the following common interactions

(see Figure 1-18) for the player or the enemy character.

Figure 1-18.  Player or enemy interaction in the gaming application

Chapter 1 The Importance of Object-Oriented Programming

34

Two more important objects (guns and bombs) to model for game

development have been identified. The player or enemy character can

interact with bombs and guns, as shown in Figure 1-19.

Figure 1-19.  Player or enemy interactions with guns (left) and
bombs (right)

Overall, you need to model the following important objects.

•	 Player

•	 Enemy

•	 Gun

•	 Bomb

�4. Inspect Game Characters and objects Interactions
for Modeling Classes

In the game context, a player or enemy character travels through game

paths. While traveling, they can find guns, bombs, and vehicles to

complete the game. While moving a player or enemy character, their

location coordinates, speed, and direction of traveling details needed to be

maintained. Besides, as players or enemies can grab guns and bombs, you

must maintain their list of guns and bombs collected during the game.

Chapter 1 The Importance of Object-Oriented Programming

35

Note T o simplify, the game context does not model vehicles.

Hence, you must model the player or enemy character with details

such as x, y, speed, direction, guns, and bombs.

Next, let’s inspect some player and enemy character actions.

•	 Grabs gun: The player or enemy character can collect

and use guns for attack. Hence, you must maintain a

list of guns.

•	 Grabs bomb: The player or enemy character can

collect and use bombs for attacking. Hence, you must

model a list of bombs.

�Player and Enemy Classes

After identifying all the interactions of player or enemy characters in the

game world, you can model them as classes (see Figure 1-20) with all

their transactions needed as data in data members sections and define

respective set and get member functions for accessing their data.

Chapter 1 The Importance of Object-Oriented Programming

36

Figure 1-20.  Player and Enemy classes with their data members and
member functions

If you observe the Player class definition, you included a player id to

identify a player in the simple game. Similarly, you included an enemy id

in the Enemy class. After defining the Player class, you can execute the

following task in the game world: moving the player character in a specific

direction at a specified speed.

Player p1; //Assume p1 is your player

p1.setDirection(1); //1 means North

o1.setSpeed(30); // 30 m/s

Similarly, after defining the Enemy class, you can implement the

following task: an enemy character grabbing a gun.

Chapter 1 The Importance of Object-Oriented Programming

37

Enemy e1; //Assume p1 is your player

e1.setListbombs(1); //example: 1 means a new bomb grabbed

Well done! You modeled the most important classes of the game

world. You may have wondered if there is a lot of redundant code between

the Player and Enemy classes. Yes, you are right. You can avoid it using

inheritance principles.

Next, let’s inspect interactions of players or enemies related to guns

and bombs in the game to model gun and bomb classes. Let’s start with

gun interactions.

•	 Load gun: The player or enemy character can interact

with a gun to load bullets. Hence, so you must model

the number of bullets.

•	 Aim gun: The player or enemy character can aim at an

angle. Hence, you must model the angle.

•	 Fire gun: The player or enemy character can fire a gun.

It leads to a reduction in the number of bullets. Hence,

you must model the number of bullets.

Now that you’ve inspected all basic interactions between player and

enemy characters with guns, let’s model the Gun class in the simple

game world.

�Gun Class

You can model a gun class as you explore all interactions of player

or enemy characters with gun objects and which data is important

for respective interaction. In the Gun class, include all details of gun

interactions as data members define respective set and get member

functions for interacting with gun objects (see Figure 1-21).

Chapter 1 The Importance of Object-Oriented Programming

38

Figure 1-21.  Gun class with its data members and member functions

After defining the Gun class, you can execute the following task: aiming

a gun object at a specific angle.

Gun g1; //Assume g1 is your gun

g1.setAngle(30); //30 degrees

�Bomb Class

Let’s inspect interactions related to how to use bombs in the game for

modeling the Bomb class.

•	 Aim bomb: The player or enemy character can throw a

bomb at an angle. Hence, you must model the angle.

•	 Blast bomb: The player or enemy character can blast

a bomb. It leads to a change of bomb state from active

to inactive. Hence, you must model the state (active or

inactive).

As you explore all interactions of player or enemy characters with

bomb objects and which data is important for respective interaction, you

can model a bomb class. In the Bomb class, you include all details of the

bomb’s interactions as data members define the respective set and get

member functions for interacting with bomb objects (see Figure 1-22).

Chapter 1 The Importance of Object-Oriented Programming

39

Figure 1-22.  Bomb class with its data members and member
functions

After defining the Bomb class, you can implement the following task:

blasting a bomb object at a specific angle.

Bomb b1; //Assume g1 is your gun

b1.setAngle(30); //30 degrees

b1.setState(1); //1 means blast

Well done! You have completed modeling real-world entities related to

simple gaming applications.

�Summary
This chapter emphasized the importance of OOP, principles, and concepts

of OOP for developing a variety of real-world applications. Specifically, you

have learned key programming constructs called classes and objects of the

OOP. Then, you saw how to use classes for modeling sample real-world

application entities such as customers, players, animals, and IoT sensors.

Specifically, by doing hands-on activities related to modeling online

shopping and gaming applications, you have systematically modeled the

real-world entities of these applications into classes.

Now that you understand the basics of OOP, the next chapter explains

it using C++.

Chapter 1 The Importance of Object-Oriented Programming

40

�Practice: Hands-on Activities

	 1.	 Identify users and real-world entities of the

following applications.

	 a.	 An online vehicle booking application

	 b.	 An online food-ordering application

	 c.	 An online cinema booking application

	 2.	 For each of these applications

	 a.	 Identify each user and real-world entities’ interactions.

	 b.	 Identify each user and real-world entity’s characteristics/

specifications/attributes/fields/state necessary for carrying

out tasks.

	 c.	 Draw class diagrams of all users and real-world entities.

	 3.	 Identify users and real-world entities of the

following gaming applications.

	 a.	 Any racing game

	 b.	 Super Mario World game

	 c.	 Any war game

	 4.	 For each of these applications

	 a.	 Identify each user and real-world entities’ interactions.

	 b.	 Identify each user and real-world entity’s characteristics/

specifications/attributes/fields/state necessary for carrying

out tasks.

	 c.	 Draw class diagrams of all users and real-world entities.

Chapter 1 The Importance of Object-Oriented Programming

41

	 5.	 Identify users and real-world entities of the

following smart applications, which involve smart

devices such as drones and IoT sensors.

	 6.	 For any smart application

	 a.	 Identify users’ and real-world entities’ interactions.

	 b.	 Identify each user and real-world entity’s characteristics/

specifications/attributes/fields/state necessary for carrying

out tasks.

	 c.	 Draw class diagrams of all users and real-world entities.

Chapter 1 The Importance of Object-Oriented Programming

43© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_2

CHAPTER 2

Start Learning OOP
Using C++
Chapter 1 discussed OOP principles and concepts for modeling various

real-world problem solutions. As part of designing software solutions for

online shopping, gaming, and smart applications, you learned how OOP

concepts such as classes and objects are helpful to easily map their real-

world problems space entities such as customers, items, players, animals,

guns, and sensors into software. This chapter teaches C++ programming

constructs to easily implement real-world entities and their activities,

tasks, transactions, and operations.

C++ is an extension of the C language. It was invented by Bjarne

Stroustrup. It supports all C programming features and programming

constructs. A variety of popular software is developed using C++, including

operating systems, compilers, databases, embedded systems, device

drivers, simulation software, and scientific applications. C++ is well known

for its simple syntax, performance, and powerful programming constructs

for efficiently accessing computing resources such as memory and input-

output devices.

This chapter focuses on the necessary C++ programming constructs

and how to use them for developing interesting hands-on activities. Hence,

before going further in the book, you should have basic C programming

https://doi.org/10.1007/979-8-8688-0524-0_2#DOI

44

knowledge and revisit the necessary programming constructs such as data

types, structures, pointers, conditional instructions, loops, and functions.

This chapter covers the following topics.

•	 C++ OOP constructs

•	 Modeling real-world entities using C++ classes

and objects

•	 Interacting with objects

•	 Object access control modes

�C++ OOP Constructs
As C++ is an extension of C language, it supports all C language features and

programming constructs. Before going into C++ details, this book assumes

you have basic knowledge of the following C programming constructs.

•	 C keywords, variables, data types (int, unsigned,

long, char, float, double), and their ranges

•	 Comments (/* */) and input-output statements

(printf, and scanf)

•	 Expressions with the following operators: arithmetic

(+, -, *, /, %), logical (&&, ||, !), bitwise (&, |, ~),

and conditional (? :)

•	 Conditional instructions (if, else, switch) and

iterative instructions (for, while, do-while)

•	 Arrays (e.g., int a[5]) and structures

•	 Pointers (*, ->) and dynamic memory allocation

functions (malloc(), and free())

Now, let’s start learning C++ specific features and programming

constructs.

Chapter 2 Start Learning OOP Using C++

45

�C++ Specific Programming Constructs
To write any C++ program, you must know the following C++ programming

constructs.

•	 C++ specific keywords and operators

•	 Input-output statements

•	 C++ OOP basic constructs

•	 C++ built-in classes

�C++ Specific Keywords

You can quickly understand the vocabulary of C++ programming by

knowing the following.

•	 C++ classes, access specifiers, and inheritance: The

following keywords define classes, member functions,

and inherited classes in your upcoming programs.

class, public, private, protected, friend, virtual,

operator

•	 C++ dynamic memory and pointers: The following

keywords are used for dynamic memory allocation and

accessing object fields.

new, delete, this

•	 C++ specific features: The following keywords utilize

special C++ features such as macro functions, generic

functions, and handling exceptions.

inline, template, try, throw, catch

Next, let’s look at C++ specific operators.

Chapter 2 Start Learning OOP Using C++

46

�C++ Specific Operators

In this section, we will study about important operators related to

accessing classes and objects.

•	 Classes and objects related operators: (:: , . , ->)

	 scope resolution operator (::) defines class member

functions outside the class.

	 To define a getA() function outside of the Sensor class,

you can define it as follows.

void Sensor :: getA()

{

}

	 Object fields or member functions accessing operators:

. and ->

	 To access a function from the Sensor class using its

object s1 and pointer to s1 as follows.

Sensor s1;

Sensor *ptr;

ptr = &s1;

S1.getA();

Ptr->getA();

•	 Reference variables related operator: (&)

	 A reference variable is defined as an alias of another

variable. Once you define a reference variable for

a variable, then without passing the address of the

original variable, you can simply pass the reference

variable to a function for accessing the original

variable.

Chapter 2 Start Learning OOP Using C++

47

	 To define a reference variable in C++, you can do the

following.

int a=100;

int ref_a = &a;

	 Now you can access a using ref_a.

ref_a = ref_a +100; //changes a value to 200.

•	 Dynamic memory allocation and deallocation

operators: new and delete

	 The new operator used for allocating dynamic memory

allocation similar to malloc() in C programming. For

example, allocate a character buffer of size 100 bytes as

follows.

	 Syntax: datatype pointer_variable = new datatype

[size];

char *buffer; buffer = new char[100];

	 It allocates 100 bytes of memory block, and the starting

address is returned to the buffer pointer.

	 The delete operator used for releasing dynamically

allocated memory similar to free() in C programming.

Syntax: delete pointer_variable;

delete buffer;

•	 Commenting operators: (// and /* */)

	 The following are examples.

single line of code commenting:

// c= a+b;

Chapter 2 Start Learning OOP Using C++

48

Multiple lines of code commenting:

/*

 c = a;

 a = a+1;

*/

�Input-Output Statements

C++ supports the following programming constructs for handling input

and output instructions using C++ built-in input and output stream library

(iostream.h).

In C++, input and output instructions are formed using cin object with

input operator (>>), and cout object with output operator, respectively.

You can write the following input statements to read inputs into a, b,

and c integer variables.

int a, float b, char c;

cout<<"Enter values into variables\n";

cin>>a>>b>>c;

During program execution, you can observe the following.

Enter values into variables

100 10.5 a

You can write the following input statements to read inputs into a and

b variables.

int a, b;

cout<<"Enter values into variable a\n";

cin>>a;

cout<<"Enter values into variable b\n";

cin>>b;

Chapter 2 Start Learning OOP Using C++

49

During program execution, you can observe the following.

Enter values into variable a

100

Enter values into variable b

10.5

Similarly, to print values of variables (a, b, and c), you can write the

following output statements.

cout<<"value of a:"<<a<<" value of b:"<<b<<"value of c:"<<c;

During program execution, you can observe the following.

value of a:100 value of b: 10.5 value of c: a

To output values of variables (a, b, and c) onto a console, you can

write the following output statements.

cout<<"\nvalue of a:"<<a<<"\nvalue of b:"<<b<<"\nvalue

of c:"<<c;

During program execution, you can observe the following.

value of a:100

value of b: 10.5

value of c: a

Next, let’s learn C++ basic OOP constructs.

�C++ Basic OOP Constructs

This section explains the basic OOP constructs for modeling real-world

entities as classes and creating instances (objects) of classes.

•	 C++ Classes

•	 C++ Objects

Chapter 2 Start Learning OOP Using C++

50

�C++ Classes

Let’s start with learning the C++ class structure. C++ class declaration

contains the following important sections as you see in the syntax of a class:

Syntax of a class.

class Class_Name

{

 Access specifier:

 Data members section; (or internal fields)

 Access_specifier:

 Member functions section; (or access functions)

};

•	 Class: Class declaration starts with a keyword called

class followed by your class name: Class_Name. To

apply the OOP principle called data encapsulation, C++

classes allow you to define related data members and

member functions inside the class.

•	 Access specifiers: Besides OOP principle data

encapsulation, C++ classes support data hiding. To

implement data hiding, C++ classes support three types

of access specifier sections inside the class.

•	 Public access specifier: Class data members and

member functions are defined under the public section

to allow access from the class member functions and

external functions (e.g., main()).

Chapter 2 Start Learning OOP Using C++

51

•	 Private access specifier: Class data members and

member functions are defined under the private

section to only allow access from the class member

functions. It means external functions (e.g., main())

are not allowed to access the class’s private members

(data members or member functions).

•	 Protected access specifier: Class data members and

member functions are defined under protected section

to allow access from the class member functions and its

inherited classes only. It is discussed in more detail in

upcoming chapters.

•	 Data members section: Usually, a real-world entity’s

characteristics, specifications, attributes, and state are

modeled as data members (or internal fields of a class)

using necessary data types such as int, char, struct,

and so on.

•	 Examples include Customer (cid, name, phone,

etc.), Gun (model, bullets, range, etc.).

•	 To protect sensitive data members of a class, they

are defined under the private access specifier

section.

•	 To allow open access to a few class data members,

they can be defined under the public access

specifier section.

Chapter 2 Start Learning OOP Using C++

52

•	 Member functions section: Under this section,

real-world entities’ internal fields accessing member

functions, real-world entities tasks’ related functions,

interaction functions, and management or control-

related functions are defined. As part of applying

abstract data types (ADT) using classes, class member

functions play an important role in abstracting class

data members. Member functions ensure simple

interaction with the class objects from external

functions.

•	 The following are examples.

•	 Customer internal fields accessing functions:

getPhone(), setPhone(), etc.

•	 Gun interactions/control functions: load(),

aim(), fire(), etc.

•	 To protect secret or sensitive functions, they are

defined under the private access specifier section.

Private functions can be accessed by external functions

(e.g., main()) only from the class public member

functions.

•	 Under the public section, open access functions are

defined. Public functions are useful for accessing class

private members (data members or member functions)

from the external functions (e.g., main()).

•	 Member functions can be defined inside or outside of

the class.

Let’s write an example Sensor class by including sample fields and

member functions as follows:

Example of a Sensor class declaration.

Chapter 2 Start Learning OOP Using C++

53

class Sensor

{

 private:

 int sid;

 int sensing_value;

 public:

 //member function defined inside of the class

int getSid()

 {

 return sid;

 }

 //�the following functions will be defined outside of

the class

 int getSenseValue();

 void setSid(int id);

 int setSenseValue(int value);

};

After declaring your Sensor class, define its member functions outside

the class.

Syntax:

Return_type class_name::function_name(arguments)

{

}

int Sensor::getSenseValue()

{

 return sensing_value;

}

void Sensor::setSenseValue(int value)

{

 sensing_value = value;

}

Chapter 2 Start Learning OOP Using C++

54

void Sensor::setSid(int id)

{

 sid = id;

}

Let’s look at important implementation details related to the

Sensor class.

•	 It combines (encapsulated) sensor objects related data

(data members section) and their accessing functions

(member functions) inside a class called Sensor.

•	 It defines a Sensor class with its sensor id (sid) and

sensing value (sensing_value) as data members (or

internal fields).

•	 To protect and hide sid and sensing_value data

members accessing outside the class, they are defined

under the private access specifier section.

•	 To allow sensor private fields access through only the

Sensor class member functions, it defines getSid(),

setSid(), getSenseValue(), setSenseValue()

access functions. These member functions simplify

interaction with Sensor class objects.

•	 Overall, the Sensor class follows OOP principles such

as data encapsulation, data hiding, and abstracting

its data.

Next, let’s look at how to create sensor objects and access them in your

main() code.

Chapter 2 Start Learning OOP Using C++

55

�C++ Objects

Let’s start with creating a sensor object s1 in your main() code, then access

it using set functions for setting sensor id and sensing values, and finally

output sensor details using get functions as follows.

int main()

{

 //Define sensor object s1

 Sensor s1;

 //memory size of objects

 cout<<"Size of object:"<<sizeof(s1)<<"\n";

 //�Access s1 object private fields for setting values

using public set functions

 s1.setSid(100);

 s1.setSenseValue(1);

 //�Access s1 object private fields for retrieving values

using public get functions

 cout<<"Sensor Id"<<s1.getSid()<<"\n";

 cout<<"Sensor Value"<<s1.getSenseValue();

}

Before going further, let’s review a few important details about your

Sensor object s1.

•	 You define a sensor object like any other data type

variable: (Sensor s1).

•	 When your program execution starts and encounters

Sensor s1 instruction, your s1 object is created by

allocating necessary memory to provide access to all its

internal fields (sid, sensing_value).

Chapter 2 Start Learning OOP Using C++

56

•	 Next, following the OOP principles of data hiding and

data abstraction, you accessed s1 internal private fields

(data members: sid, sensing_value) using public

member functions (set and get functions).

Next, as part of modeling multiple real-world entities, let’s review how

simple it is to create multiple objects and an array of objects.

int main()

{

 //Define multiple sensor objects: s1 and s2

 Sensor s1, s2;

 //Define array of sensor objects

 Sensor s[10];

 //�To access array of objects, you can follow the simple

C array accessing rules as follows:

 for(int i=0; i<10; i++)

 {

 s[i].setSid(i+1);

 s[i].setSenseValue(i);

 }

 //�To access array of objects, you can follow the simple

C array accessing rules as follows:

 for(int i=0; i<10; i++)

 {

 cout<<"Sensor Id"<<s[i].getSid()<<"\n";

 cout<<"Sensor Value"<<s[i].getSenseValue();

 }

}

Let’s look at a few important details related to Sensor objects s1, s2,

and s[10].

Chapter 2 Start Learning OOP Using C++

57

•	 You defined two sensor objects: s1 and s2.

•	 When your program execution starts, then for s1

dedicated memory is allocated for all its internal fields

(sid, sensing_value).

•	 Similarly, for s2 dedicated memory is allocated for all

its internal fields (sid, sensing_value). However, s2

memory need not be allocated next to s1.

•	 Whereas array of objects: s[10], dedicated memory

blocks are allocated for ten objects. Moreover, all these

memory blocks are allocated in a sequential order.

Hence, the array of objects can be accessed using their

corresponding index.

•	 Hence, for accessing each object s[i] (dedicate

memory), a simple loop to set or get their internal

fields (sid, sensing_value) using s[i] object and its

member functions are used.

Next, as part of understanding how easy to use C++ classes and their

objects for various tasks, let’s get to know a few of the built-in classes.

�C++ Built-in Classes

Handling text data and dynamic arrays is important in the upcoming

hands-on activities. As part of simplifying our programming discussions

and focusing on learning OOP principles, let’s discuss the two important

C++ built-in classes: string and vector.

�C++ String Class

A string is a sequence of characters. Strings are very helpful for processing

text data in your applications. In C language, you handle strings-related

tasks with the help of character arrays. However, managing and accessing

Chapter 2 Start Learning OOP Using C++

58

character arrays is difficult when their size is dynamic. In C++, you can

use the string class available in the C++ library called string.h to simplify

text processing-related operations such as inserting characters, deleting

characters, and modifying characters. Let’s inspect the following tasks

related to the string class and its accessing functions.

Declare and initialize a string object in C++ as follows.

string buffer = "hands-on approach for learning stings";

Reading string object values using cin.

string buffer;

getline(cin,buffer);

Concatenate two strings.

string buffer1 = "Hello";

string buffer2 = " C++ programmer";

string buffer3 = buffer1+buffer2;

cout<<buffer3;

When you test these lines of code in main(), it outputs the following.

Hello C++ programmer

Insert a character at the end of a string object using its member

function push_back().

string buffer1 = "hello";

buffer1.push_back('a');

cout<<buffer1;

When you test these lines of code in main(), it outputs the following.

helloa

Delete a character from the end of the string object buffer1 using its

member function pop_back().

Chapter 2 Start Learning OOP Using C++

59

buffer1.pop_back();

cout<<buffer1;

When you test these lines of code in main(), it outputs the following.

hello

Replace a character in a string object buffer1 using its member

function replace().

Replace the first character with 'H':

buffer1.replace(0,1,'H');

cout<<buffer1;

When you test these lines of code in main(), it outputs the following.

Hello

Swap two strings using a string object swap() member function.

string buffer1 = "hello";

string buffer2 = "hai";

buffer1.swap(buffer2);

cout<<"Buffer1:"<<buffer1<<" Buffer2:"<<buffer2;

When you test these lines of code in main(), it outputs the following.

Buffer1: hai Buffer2: hello

To find the length of a string using its length() member function.

string buffer1 = "hello";

cout<<buffer1.length();

When you test these lines of code in main(), it outputs the following.

5

Chapter 2 Start Learning OOP Using C++

60

There are many useful member functions available with string class.

Next, let’s quickly check the C++ built-in vector class and its member

functions.

�C++ Vector Class

The C++ vector class helps create dynamic generic arrays of any data type

(int, char, struct, class). The vector class is available in a C++ library

called vector.h. Let’s inspect the following tasks related to vectors.

Declare a vector object vint to hold an integer element in C++ as

follows.

vector<int> vint;

Then, you can use the vector object vint in your program for inserting

and displaying values using array accessing.

vector<int> vint;

for (int i=0;i<3;i++)

{

 int input;

 cin >> input;

 vint.push_back(input);

 cin>>vint[i];

}

for (int i=0; i<vint.size(); i++)

{

 cout<<vint[i];

When you test these lines of code in main(), entering three values (10,

20, 30) into vector vint outputs the following.

10 20 30

You can also try to use the following member functions on vint.

Chapter 2 Start Learning OOP Using C++

61

Insert an element at the end of the vint object using its member

function called push_back().

vint.push_back(123);

When you test these lines of code in main(), it inserts 123 at the end

of the vector vint. You can observe that the vint object contains the

following values: 10 20 30 123.

Insert an element at the beginning of the vint object using its member

function called insert().

vint.insert(vint.begin(), 5);

When you test these lines of code in main(), it inserts 123 at the end of

the vector object vint. You can observe that the vint object contains the

following values: 5 10 20 30 123.

Delete an element from the end of the vint using its member function

called push_back().

vint.pop_back();

When you test these lines of code in main(), it deletes 123 from the end

of the vector object vint. You can observe that the vint object contains the

following values: 5 10 20 30.

Delete an element from the beginning of the vint.

vint.erase(vint.begin());Is this vint here?

When you test these lines of code in main(), it deletes 5 from the

beginning of the vector. You can observe that the vint object contains the

following values: 10 20 30.

Similarly, you can also declare vector of objects in C++ as follows.

vector<Sensor> vsen;

Insert a sensor object at end of the vsen.

Chapter 2 Start Learning OOP Using C++

62

Sensor s1;

vsen.push_back(s1);

Delete an element from the end of vsen.

vsen.pop_back();

There are many useful member functions available with vector class.

As part of a simple discussion, only the basic functions are introduced.

Moreover, there are many C++ built-in classes available for your use. I

recommend you explore these after completing the first five chapters of the

book. Table 2-1 provides information on the requirements to perform the

hands-on activities in this book.

Table 2-1.  Minimal Test Environment for Hands-on Activities

Parameter Details

Hardware configuration 8GB RAM

64-bit, i5 core

Operating System Ubuntu 20.04

Compiler g++

Editor vim

Next, let’s learn how to write a common C++ program and test it.

�C++ Program Structure

To write a simple C++ program you usually do the following steps.

•	 Include all necessary header files

•	 Declare a namespace for usage

•	 Declare your classes

Chapter 2 Start Learning OOP Using C++

63

•	 Define member functions of the classes

•	 Write your main() testing code

For example, C++ program please check the following code.

//1. Header files

#include <iostream>

#include <string>

//2. namespace declaration

Using namespce std;

//3. Class declration

class Sensor

{

 private:

 int id;

 string name;

 public:

 void setId(int sid);

 void setName(string sname);//is this string here?

 int getId();

};

//4. Define its member functions

void Sensor::setId(int sid)

{

 id = sid;

}

void Sensor::setName(string n)

{

 name = n;

}

Chapter 2 Start Learning OOP Using C++

64

int Sensor::getId()

{

 return id;

}

//5. Define your main() testing code

int main()

{

 Sensor s1;

 s1.setId(100);

 s1.setName("Temprature");

 cout<<"Your sensor id is: "<<s1.getId()<<"\n";

 return 0;

}

After writing the code, save it with a program name such as example.cc.

Then, test it using the following commands.

Compile and link your code using the following command:

g++ example.cc -o example

Execute or run your code using the following command:

./example

Your sensor id is: 100

Next, let’s practice OOP by modeling real-world entities using C++.

�Model Real-World Entities Using
C++ Classes
In this chapter, you practice implementing a variety of real-world entities

using C++ classes with data members and member functions. This helps you

follow OOP principles such as data encapsulation, hiding, and creating real-

world entities as abstract data types. This section covers the following.

Chapter 2 Start Learning OOP Using C++

65

•	 Practicing online shopping applications related to real-

world entities.

•	 Create a Customer class with all example

registration details as data members with suitable

access specifiers. Then, implement customer

objects internal fields accessing member functions

for online shopping related transactions.

•	 Model an Item class with all example item

specifications for keeping it in an online shopping

application. Then, implement item objects’ internal

fields accessing member functions for online

shopping-related transactions.

•	 Practicing gaming applications–related entities.

•	 Create an Animal class to model gaming animal

characters with necessary characteristics as data

members with suitable access specifiers. Then,

implement animal objects, such as interactions or

access functions for gaming tasks.

•	 Create a Gun class to model gaming gun objects

with necessary specifications as data members

with suitable access specifiers. Then, implement

gun objects as example interaction functions for

gaming tasks.

Let’s start with the following hands-on activity to model a customer

class related to online shopping applications.

Chapter 2 Start Learning OOP Using C++

66

MODELING A CUSTOMER CLASS

Model a Customer class related to online shopping applications to implement

customer objects and their transactions.

	1.	 Using C++ classes, declare your Customer class by including

necessary private data members (or fields, such as id, name,

phone number, and address details) for registration activities.

Then, in the public section, declare customer details accessing

functions such as get and set member functions as follows.

#include<iostream>

#include<string.h>

using namespace std;

class Customer

{

 string cid;

 string name;

 char phone[11];

 string city;

 string country;

 unsigned int pin;

 public:

 string getCid();

 void setCid(string id);

 string getName();

 void setName(string cname);

 char* getPhone();

 void setPhone(char cphone[11]);

 string getCity();

 void setCity(string ccity);

 string getCountry();

Chapter 2 Start Learning OOP Using C++

67

 void setCountry(string ccountry);

 unsigned int getPin();

 void setPin(unsigned int pin);

};

	2.	 Outside the class, create a suitable set and get public

member functions for accessing necessary private fields

of the Customer class from the external function such as

main(). Public set and get member functions help you to

access customer objects’ private fields, such as phone

and city to execute tasks related to checking and updating

customer details from external functions such as main().

string Customer::getCid()

{

 return cid;

}

void Customer::setCid(string id)

{

 cid = id;

}

string Customer::getName()

{

 return name;

}

void Customer::setName(string cname)

{

 name = cname;

}

char* Customer::getPhone()

{

 return phone;

}

Chapter 2 Start Learning OOP Using C++

68

void Customer::setPhone(char cphone[11])

{

 strcpy(phone, cphone);

}

string Customer::getCity()

{

 return city;

}

void Customer::setCity(string ccity)

{

 city = ccity;

}

string Customer::getCountry()

{

 return country;

}

void Customer::setCountry(string ccountry)

{

 country = ccountry;

}

unsigned int Customer::getPin()

{

 return pin;

}

void Customer::setPin(unsigned int cpin)

{

 pin = cpin;

}

Well done. You have successfully defined a Customer class for handling

customer registration activities in online shopping applications. Next, let’s

model an item class related to online shopping applications.

Chapter 2 Start Learning OOP Using C++

69

MODELING AN ITEM CLASS

Model another interesting class: Item related to online shopping applications

to implement item objects and their related transactions.

	1.	 Declare your Item class by including necessary private

data members (or fields) for handling tasks related to items

browsing (id, name, description, price) and stock maintenance

(quantity). Then, in the public section, declare items internal

fields accessing functions such as get and set member

functions as follows.

#include<iostream>

#include<string.h>

using namespace std;

class Item

{

 string iid;

 string name;

 unsigned int price;

 unsigned int qty;

 string descr;

 public:

 string getIid();

 void setIid(string id);

 string getName();

 void setName(string iname);

 unsigned int getPrice();

 void setPrice(unsigned int iprice);

 unsigned int getQty();

 void setQty(unsigned int iqty);

Chapter 2 Start Learning OOP Using C++

70

 string getDescr();

 void setDescr(string idescr);

};

	2.	 Outside the class, create a suitable set and get public

member functions for accessing Item objects’ private fields,

such as price and qty. It helps implement tasks related to

online shopping, such as retrieving item details, checking the

availability of items, and updating stock details from external

functions such as main().

string Item::getIid()

{

 return iid;

}

void Item::setIid(string id)

{

 iid = id;

}

string Item::getName()

{

 return name;

}

void Item::setName(string iname)

{

 name = iname;

}

unsigned int Item::getPrice()

{

 return price;

}

void Item::setPrice(unsigned int iprice)

{

Chapter 2 Start Learning OOP Using C++

71

 price = iprice;

}

unsigned int Item::getQty()

{

 return qty;

}

void Item::setQty(unsigned int iqty)

{

 qty = iqty;

}

string Item::getDescr()

{

 return descr;

}

void Item::setDescr(string idescr)

{

 descr = idescr;

}

Well done. You have created another interesting class of online shopping

applications. Similarly, you can revisit Chapter 1 and identify interesting classes.

Next, let’s model gaming application classes such as animals and guns.

MODELING AN ANIMAL CLASS

Model an interesting class Animal related to a game application to model

a variety of Animal objects and their related interactions.

	1.	 Declare your Animal class by including necessary private

data members (or fields: animal name, location of the animal,

and characteristics such as speed) and their gaming interaction

functions in the public section as follows.

Chapter 2 Start Learning OOP Using C++

72

#include<iostream>

#include<string.h>

using namespace std;

class Animal

{

 string name;

 int angle;

 int speed;

 int x,y;

 public:

 string getName();

 void setName(string aname);

 int getAngle();

 void setAngle(int aangle);

 int getSpeed();

 void setSpeed(int aspeed);

 int getX();

 void setX(int ax);

 int getY();

 void setY(int ay);

};

	2.	 Outside the class, create suitable animal interactions using

set and get public member functions for accessing animal

locations (x, y), and speed for gaming interactions. For example,

you can implement gaming tasks such as checking whether an

animal is in a location and interacting with animals to change

their speed from external functions such as main().

string Animal::getName()

{

 return name;

}

Chapter 2 Start Learning OOP Using C++

73

void Animal::setName(string aname)

{

 name = aname;

}

int Animal::getAngle()

{

 return angle;

}

void Animal::setAngle(int aangle)

{

 angle = aangle;

}

int Animal::getSpeed()

{

 return speed;

}

void Animal::setSpeed(int aspeed)

{

 speed = aspeed;

}

int Animal::getX()

{

 return x;

}

void Animal::setX(int ax)

{

 x = ax;

}

int Animal::getY()

{

 return y;

}

Chapter 2 Start Learning OOP Using C++

74

void Animal::setY(int ay)

{

 y = ay;

}

Well done. You have created an Animal class related to gaming applications.

Next, model a gaming application related to weapons such as guns.

MODELING A GUN CLASS

Model a Gun class related to a game application to model various Gun

objects and their related interactions.

	1.	 Declare your Gun class by including necessary private data

members (or fields) for keeping guns at specific locations,

identifying guns, and describing gun specifications. And declare

gun object interaction functions in the public section as

follows.

#include<iostream>

#include<string.h>

using namespace std;

class Gun

{

 string model;

 int angle;

 int bullets;

 int x,y;

 public:

 string getModel();

 void setModel(string model);

 int getAngle();

 void setAngle(int gangle);

Chapter 2 Start Learning OOP Using C++

75

 int getBullets();

 void setBullets(int gbullets);

 int getX();

 void setX(int gx);

 int getY();

 void setY(int gy);

 void fire(int angle, int speed);

};

	2.	 Outside the class, create suitable Gun object interactions

using public member functions: set and get for keeping

guns at specific locations, loading bullets, and so on. These

functions help carry out gaming application interactions, such

as attacking and firing guns from external functions such

as main().

string Gun::getModel()

{

 return model;

}

void Gun::setModel(string gmodel)

{

 model = model;

}

int Gun::getAngle()

{

 return angle;

}

void Gun::setAngle(int gangle)

{

 angle = gangle;

}

int Gun::getBullets()

Chapter 2 Start Learning OOP Using C++

76

{

 return bullets;

}

void Gun::setBullets(int gbullets)

{

 bullets = gbullets;

}

int Gun::getX()

{

 return x;

}

void Gun::setX(int gx)

{

 x = gx;

}

int Gun::getY()

{

 return y;

}

void Gun::setY(int gy)

{

 y = gy;

}

void Gun::fire (int gangle, int speed)

{

 angle = gangle;

 bullets = bullets-speed;

}

Well done. You have developed Animal and Gun classes related to gaming

applications. Similarly, you can revisit Chapter 1 and identify interesting

gaming classes.

Chapter 2 Start Learning OOP Using C++

77

Superb. You have practiced developing real-world entity classes using

C++. Next, let’s interact with objects of the respective classes to carry out

interesting tasks or activities.

�Interacting with Objects
This section describes how to interact with objects for the following

example activities.

•	 Registering customer details, then interacting with

custom objects for important transactions such as

retrieving phone numbers and updating their address.

•	 Add new items to your shopping application, then

interact with item-specific objects to check availability,

update prices, and so forth.

•	 As part of developing a game, model any animal

character and interact with them to know its location,

change its speed, and so on. Similarly, model gun

objects and interact with them for loading bullets, and

firing your gun objects.

INTERACT WITH CUSTOMER OBJECTS

	1.	 Let’s do the following example tasks to develop an online

shopping application.

	 a.	 Copy the Customer class and its member functions defined in the

previous section, and save it in a customer.cc file for implementing

and testing the following tasks.

	 b.	R egister a customer.

Chapter 2 Start Learning OOP Using C++

78

	 c.	R etrieve specific customer details such as phone number and city.

	 d.	 Update customer phone number and address details.

	2.	T o carry out these activities, you interact with Customer class

objects as follows in your main() program.

int main()

{

 �cout<<"Creating a customer object and setting all

its field with suitable values:\n";

 Customer c1;

 c1.setCid("Customer1");

 c1.setName("John");

 char phone[11];

 strcpy(phone,"9000080000");

 c1.setPhone(phone);

 c1.setCity("Delhi");

 c1.setCountry("India");

 c1.setPin(500001);

 �cout<<"Customer1 registered successfully and object

name: c1\n";

 �cout<<"Retrieve Customer1 (c1) Phone number and

City details:\n";

 �cout<<"Customer Phone Number:"<<c1.

getPhone()<<"\n";

 cout<<"Customer City:"<<c1.getCity()<<"\n";

 �cout<<"Update Customer1 (c1) Phone number and

Address details:\n";

 strcpy(phone,"9089089080");

 c1.setPhone(phone);

Chapter 2 Start Learning OOP Using C++

79

 �cout<<"Customer Updated Phone Number:"<<c1.

getPhone()<<"\n";

 cout<<"Customer Pin Number:"<<c1.getPin()<<"\n";

 c1.setPin(500002);

 �cout<<"Customer Updated Pin Number:"<<c1.

getPin()<<"\n";

 return 0;

}

	3.	T est your code using g++ compiler and observe the following.

	 a.	R egistering customer object name (c1)

	 b.	 Fetching customer (c1) details

	 c.	 Updating customer (c1) details

g++ customer.cc -o customer_obj_interactions

./customer_obj_interactions

Creating a customer object and setting all its field

with suitable values:

Customer1 registered successfully and object name: c1

Retrieve Customer1 (c1) Phone number and City details:

Customer Phone Number:9000080000

Customer City:Delhi

Update Customer1 (c1) Phone number and Address details:

Customer Updated Phone Number:9089089080

Customer Pin Number:500001

Customer Updated Pin Number:500002

Well done. You have successfully tested your Customer class by implementing

the tasks given in the hands-on activity.

Next, let’s interact with your Item class to carry out important activities

of online shopping applications.

Chapter 2 Start Learning OOP Using C++

80

INTERACT WITH ITEM OBJECTS

	1.	A s part of developing an online shopping application, let’s do

the following example tasks related to items.

	 a.	 Copy the Item class and its member functions defined in the previous

section and save it in the items.cc file for implementing and testing

the following tasks.

	 b.	A dd a new item into stock.

	 c.	 Browse item details.

	 d.	 Check item availability.

	 e.	 Update item price.

	2.	T o carry out these activities, you interact with Item class

objects as follows in your main() program.

int main()

{

 cout<<"Adding a new item:\n";

 Item i1;

 i1.setIid("Item1");

 i1.setName("Shirt");

 i1.setPrice(1000);

 i1.setQty(10);

 i1.setDescr("Fashion product");

 cout<<"New item added and its object is:i1 \n";

 cout<<"Browsing a specific item (i1) details:\n";

 cout<<"Item Name:"<<i1.getName()<<"\n";

 cout<<"Item Price:"<<i1.getPrice()<<"\n";

 cout<<"Item Qty:"<<i1.getQty()<<"\n";

Chapter 2 Start Learning OOP Using C++

81

 cout<<"Checking item availability:\n";

 if (i1.getQty() > 0)

 {

 cout<<"Item (i1) is available\n";

 }

 cout<<"Updating item (i1) price:\n";

 �cout<<"Item\'s increased Price:"<<i1.

getPrice()<<"\n";

 return 0;

}

	3.	T est your main() code and observe the following.

	 a.	N ewly added item object name

	 b.	I tem details

	 c.	I tem availability

	 d.	 Updating item price

g++ items.cc -o item_interactions

./item_interactions

Adding a new item:

New item added and its object is:i1

Browsing a specific item (i1) details:

Item Name:Shirt

Item Price:1000

Item Qty:10

Checking item availability:

Item (i1) is available

Updating item (i1) price:

Item's increased Price:1200

Well done. You have successfully tested your Item class by implementing the

tasks given in the hands-on activity.

Chapter 2 Start Learning OOP Using C++

82

Next, let’s interact with gaming application classes to develop

interesting gaming world-related activities.

INTERACT WITH ANIMAL OBJECTS

	1.	T o develop gaming world characters, let’s interact with an

animal object for the following activities.

	 a.	 Copy the Animal class and its member functions defined in the

previous section, and save it in an animal.cc file for implementing

and testing the following tasks.

	 b.	 Create an animal object (a1) for modeling the cheetah character.

	 c.	 Check a particular location to determine whether your cheetah (a1)

is there.

	 d.	I nteract with your cheetah object (a1) to check whether it can jump.

	 e.	I nteract with a cheetah object to change its running speed.

	2.	T o carry out these activities, interact with Animal class objects

as follows in your main() program.

int main()

{

 Animal a1;

 a1.setName("Cheetah");

 a1.setAngle(45);

 a1.setSpeed(50);

 a1.setX(100);

 a1.setY(100);

 cout << "Your cheetah object name a1\n";

Chapter 2 Start Learning OOP Using C++

83

 cout<<"Let's check at 0,0 any animal is there\n";

 int x=a1.getX();

 int y=a1.getY();

 if (x==0 && y==0)

 {

 cout<<"Careful there is an animal\n";

 }

 else

 {

 cout<<"No! But, near far there is an animal\n";

 }

 cout<<"Let's check Animal can jump\n";

 if (a1.getAngle()>0)

 {

 cout<<"Oh! Animal can jump over you!\n";

 }

 else

 {

 cout<<"It cannot jump. But careful!\n";

 }

 cout<<"Change animal running speed\n";

 a1.setSpeed(70);

 �cout<<"Animal is running at high speed

"<<a1.getSpeed()<<"Kmph Careful\n";

 return 0;

}

	3.	T est your Animal objects and observe the following.

	 a.	 Your cheetah character object name (a1)

	 b.	 Check a particular location to see if your cheetah (a1) is present.

Chapter 2 Start Learning OOP Using C++

84

	 c.	 Check if the cheetah (a1) can jump or not.

	 d.	 Observe the cheetah’s (a1) running speed.

g++ animal.cc -o animal_interactions

./animal_interactions

Your cheetah object name a1

Let's check at 0,0 any animal is there

No! But, near far there is an animal

Let's check Animal can jump

Oh! Animal can jump over you!

Change animal running speed

Animal is running at high speed 70Kmph Careful

Well done. You have completed your gaming application Animal class.

Next, let’s interact with another gaming application class Gun for

implementing interesting activities related to the gaming world.

INTERACT WITH GUN OBJECTS

	1.	A s part of creating a game world, you need to model various

weapons. Let’s model and interact with a Gun object.

	 a.	 Copy the Gun class and its member functions defined in the previous

section, and save it in a gun.cc file for implementing and testing the

following tasks.

	 b.	 Create a Gun object (g1), load it with 100 bullets, and keep it at

location (10,10).

	 c.	 Check a particular location. Is there any Gun?

	 d.	I f you find your Gun object g1, fire it until the bullets are there.

	 e.	 While firing, set a specific angle and speed for your Gun object (g1).

Chapter 2 Start Learning OOP Using C++

85

	2.	T o carry out these activities, you interact with Gun class objects

as follows in your main() program.

int main()

{

 �cout<<"Place a gun at 10,10 location with 100

bullets\n";

 Gun g1;

 g1.setModel("HiFi");

 g1.setX(10);

 g1.setY(10);

 g1.setBullets(100);

 �cout<<"check is there any gun at your location then

fire it at speed 10 bullets/sec\n";

 int x=g1.getX();

 int y=g1.getY();

 if (x!=0 && y!=0)

 {

 cout<<"There is a gun\n";

 while (1)

 {

 g1.fire(10,10);

 cout<<"Firing at angle 10 ...\n";

 if (g1.getBullets()<=0)

 {

 cout<<"Oh! No bullets\n";

 break;

 }

Chapter 2 Start Learning OOP Using C++

86

 }

 }

 return 0;

}

	3.	T est your Gun objects and observe the following.

	 a.	 Observe the Gun object (g1) location.

	 b.	 Check for Gun object (g1) availability.

	 c.	 Firing details.

	 d.	N o more bullets warning message.

g++ gun.cc -o gun_interactions

./gun_interactions

Place a gun at 10,10 location with 100 bullets

check is there any gun at your location then fire it at

speed 10 bullets/sec

There is a gun

Firing at angle 10 ...

Firing at angle 10 ...

Firing at angle 10 ...

..

Firing at angle 10 ...

Oh! No bullets

Well done. You have successfully developed your gaming application

Gun class.

In this section, you learned to implement real-world entities as classes

and interact with their objects.

Next, let’s learn how to hide the private data of real-world entities and

protect their objects’ access from external functions.

Chapter 2 Start Learning OOP Using C++

87

�Object Access Control Modes
In the previous section, you learned how to interact with objects to

perform application tasks. You observed that it is common to access

objects’ internal data and access functions from external functions such

as main(). That means external functions can change objects’ data and

objects behavior. When you do not control an object’s sensitive data

access, there are huge chances for corrupting or misusing the application.

Hence, you must know how to control objects’ internal data and access

functions. As part of this, class internal fields are usually defined under the

private section and accessing functions under the public section. Next,

let’s discuss the importance of public and private sections for controlling

objects’ internal details access.

C++ provides three access specifiers to control an object’s internal data

members (fields) and accessing functions.

•	 Public: Public access specifier offers open access to

class data members and member functions using

the class objects. Usually, the public section defines

member functions such as set and get functions such

as getPhone(), setPrice(), and setBullets() for

providing access to class private data members and

member functions from external functions.

•	 The public access functions definition helps you

to impose necessary constraints or conditions

to check implementation before accessing class

private data members.

•	 Under this section, you usually define only

accessing functions.

Chapter 2 Start Learning OOP Using C++

88

•	 In summary, public member functions of a class

are the gate pass to access private data members

and member functions of the class.

	 For example.

Class ABC

{

 public:

 int a;

 int getA()

 {

 return a;

 }

};

int main()

{

 ABC obj;

 obj.a = 10;

 obj.getA();

 return 0;

}

	 Here, you can observe that the main() function is

accessing public field a and getA() using the obj

of class ABC directly.

•	 Private: Data hiding is the one important principle of

OOP. You attach private access specifiers to class data

members or member functions to achieve it at class

level. Usually, all sensitive data members are defined

under the private section. For example, customers

Chapter 2 Start Learning OOP Using C++

89

phone number, item price, bullets of guns, animals

speed, and sensors sensing values. Private data

members or member functions of a class cannot be

accessed using objects of the class.

•	 Access to private data members or member

functions of a class must be through public

member functions only.

•	 C++ also supports friend functions to access a

class’s private fields or member functions. It is

discussed in upcoming chapters.

•	 Overall, accessing a class’s private data or member

functions is through only public member or friend

functions.

Class ABC

{

 private:

 int a;

 public:

 int getA()

 {

 return a;

 }

};

int main()

{

 ABC obj;

 obj.a = 10; //Not allowed

 obj.getA(); //Allowed

}

Chapter 2 Start Learning OOP Using C++

90

	 Here, you can observe that the main() function

can access the private field using only the public

access function getA() from the obj of class

ABC. However, main() cannot change the private

field a using the object obj.

•	 Protected: It is a special access specifier for inheritance

implementation in OOP. This is discussed in upcoming

chapters.

Next, let’s discuss the importance of data hiding in C++ by comparing

it with the C programming approach.

ACCESS CONTROL WITH C OBJECTS

	1.	 Let’s test whether the C structure offers access control to its

data members by doing the following activities.

	 a.	 Save the following task code in iot_sensor_def_caccess.cc.

	 b.	 Define a C structure to model IoTSensor with the important fields

such as id, sense_value, and battery_level.

	 c.	 Define a C function to change the IoTSensor structure variables

inside an external function called ChangeSensor.

#include<iostream>

#include<string>

#include<vector>

#include <bits/stdc++.h>

using namespace std;

struct cIoTSensor

{

 int id;

 float sense_value;

Chapter 2 Start Learning OOP Using C++

91

 int battery_level;

};

void ChangeSensor(cIoTSensor &cs1)

{

 cs1.id = -1;

 cs1.sense_value = 0.0;

 cs1.battery_level = -1;

}

	2.	 Define the main() testing code to do the following activities.

	 a.	 Create a cIoTSensor structure variable and assign values to its

internal fields.

	 b.	 Check configured values by printing cIoTSensor structure variable

internal fields.

	 c.	T ry to configure invalid values to the cIoTSensor variable and

print them.

int main()

{

 cIoTSensor c1;

 c1.id = 1;

 c1.sense_value = 0.01;

 c1.battery_level = 90;

 cout<<"From an external function: main()\n";

 �cout<<"Configuring valid values for data members

of IoTSensors using C structure variable\n ";

 �cout<<"Id: "<<c1.id<<" Sense Value "<<c1.

sense_value<<" Battery Level "<<c1.battery_

level<<"\n";

Chapter 2 Start Learning OOP Using C++

92

 cout<<"From an external function: ChangeSensor\n";

 �cout<<"Trying to Configure invalid values for

data members of IoTSensors using C structure

variable\n ";

 ChangeSensor(c1);

 �cout<<"Id: "<<c1.id<<" Sense Value "<<c1.

sense_value<<" Battery Level "<<c1.battery_

level<<"\n";

 return 0;

}

	3.	T est your code and observe the following.

	 a.	 Your main() code can set suitable values to the cIoTSensor variable.

	 b.	T he external function ChangeSensor successfully sets invalid values

to c structure cIoTSensor internal fields.

g++ iot_sensor_def_caccess.cc -o c_access

./c_access

From an external function: main()

Configuring valid values for data members of

IoTSensors using C structure variable

Id: 1 Sense Value 0.01 Battery Level 90

From an external function: ChangeSensor

Trying to Configure invalid values for data members

of IoTSensors using C structure variable

Id: -1 Sense Value 0 Battery Level -1

The results show that C structure internal fields can be accessed from any

external functions without any control.

Next, let’s learn how to hide private data of real-world entities and

protect their objects’ access from external functions.

Chapter 2 Start Learning OOP Using C++

93

ACCESS CONTROL WITH C++ OBJECTS

	1.	 Let’s experiment with C++ access control for protecting its

internal data members by doing the following activities.

	 a.	 Save the following task code in iot_sensor_def_cppaccess.cc.

	 b.	 Define a C++ class to model IoTSensor with the important fields

(data members) such as id, sense_value, and battery_level.

Define all data members under the private access control section.

	 c.	 Declare all necessary set and get functions under the public section

for accessing IoTSensor internal private fields.

#include<iostream>

#include<string>

#include<vector>

#include <bits/stdc++.h>

using namespace std;

class IoTSensor

{

 private:

 int id;

 float sense_value;

 int battery_level;

 void setSenseValue(float val);

 public:

 void setId(int sen_id);

 int getId();

 float getSenseValue();

 void setBatteryLevel(int level);

 int getBatteryLevel();

};

Chapter 2 Start Learning OOP Using C++

94

	 d.	 Define setId public access function for setting private field: id of

IoTSensor objects. Hence, any external function to set id of sensor

objects must call setId with only a valid range of values between 100

and 200. However, for retrieving the id of IoTSensor objects, any

external function must call getId().

void IoTSensor::setId(int sen_id)

{

 if (sen_id>=100 && sen_id<=200)

 id = sen_id;

}

int IoTSensor::getId()

{

 return id;

}

	 e.	 Define setSenseValue public access function for setting private

field: sense_value of IoTSensor objects. Hence, any external function

to set the sense_value of sensor objects must call setSenseValue

with only a valid range of values between 0.0 and 10.0. On the other

hand, for retrieving the sense_value of IoTSensor objects, any

external function must call getSensevalue().

void IoTSensor::setSenseValue(float val)

{

 if (val>=0.0 && val<=10.0)

 sense_value = val;

}

float IoTSensor::getSenseValue()

{

 return sense_value;

}

Chapter 2 Start Learning OOP Using C++

95

	 f.	 Define setBatteryLevel public access function for setting

private field:battery_level of IoTSensor objects. Hence, any

external function to set battery_level of sensor objects must call

setBatteryLevel with only a valid range of values between 1 and

100. However, for retrieving battery_level of IoTSensor objects,

any external function must call getBatteryLevel().

void IoTSensor::setBatteryLevel(int level)

{

 if (level>=0 && level<=100)

 battery_level = level;

}

int IoTSensor::getBatteryLevel()

{

 return battery_level;

}

	2.	 Define the following two external functions.

	 a.	 iChangeIoTSensor() to set invalid values into IoTSensor objects

using public access functions of the IoTSensor object.

	 b.	 vChangeIoTSensor() to set valid values into IoTSensor objects

using public access functions of the IoTSensor object.

void iChangeIoTSensor(IoTSensor &is)

{

 is.setSenseValue(-1);

}

void vChangeIoTSensor(IoTSensor &is)

{

 is.setSenseValue(1.0);

}

Chapter 2 Start Learning OOP Using C++

96

	3.	 Define the main() test code for the following activities.

	 a.	 Create an IoTSensor object is1 and, using the public access

function of the object, set valid values to its internal fields such as id,

sensing values, and battery levels.

	 b.	 Confirm the successful creation of the IoTSensor object by displaying

its values using the public access functions of the object.

	 c.	 Change the IoTSensor is1 object internal private field such as

sense_value using the object.

	 d.	 Change the IoTSensor is1 object internal private field such as

sense_value to invalid value by calling iChangeIoTSensor with

is1 object argument.

	 e.	 Change the IoTSensor is1 object internal private field such as

sense_value to valid value by calling vChangeIoTSensor with is1

object argument.

int main()

{

 IoTSensor is1;

 is1.setId(101);

 is1.setSenseValue(11.0);

 is1.setBatteryLevel(90);

 �cout<<"Configuring valid values for data members

of IoTSensor using its object public access

functions\n ";

 �cout<<"Id: "<<is1.getId()<<" Sense Value

"<<is1.getSenseValue()<<" Battery Level "<<is1.

getBatteryLevel()<<"\n";

 cout<<"From an external function: main()\n";

 �cout<<"Trying to configure private data members

of IoTSensor using its object directly \n ";

Chapter 2 Start Learning OOP Using C++

97

 is1.sense_value = -1.0;

 �cout<<"Id: "<<is1.getId()<<" Sense Value

"<<is1.getSenseValue()<<" Battery Level "<<is1.

getBatteryLevel()<<"\n";

 �cout<<"From an external function:

iChangeIoTSensor\n";

 �cout<<"Trying to configure invalid values for

private data members of IoTSensor using its

public member functions\n ";

 iChangeIoTSensor(is1);

 �cout<<"Id: "<<is1.getId()<<" Sense Value "<<is1.

getSenseValue()<<" Battery Level "<<is1.

getBatteryLevel()<<"\n";

 �cout<<"From an external function:

vChangeIoTSensor\n";

 �cout<<"Trying to configure valid values for

private data members of IoTSensors using its

public member functions\n ";

 vChangeIoTSensor(is1);

 �cout<<"Id: "<<is1.getId()<<" Sense Value "<<is1.

getSenseValue()<<" Battery Level "<<is1.

getBatteryLevel()<<"\n";

 return 0;

}

	4.	 Let’s test your code and observe the following important points.

	 a.	 When main() is attempting to change is1 object internal private

fields directly without public access functions, you observe the error

messages such as error: ‘float IoTSensor::sense_value’ is private
within this context.

Chapter 2 Start Learning OOP Using C++

98

g++ iot_sensor_def_access.cc -o cpp_access

./cpp_access

iot_sensor_def_access.cc: In function 'int main()':

iot_sensor_def_access.cc:70:6: error: 'float

IoTSensor::sense_value' is private within

this context

 70 | is1.sense_value = -1.0;

 | ^~~~~~~~~~~

iot_sensor_def_access.cc:10:8: note: declared

private here

 10 | float sense_value;

 | ^~~~~~~~~~~

iot_sensor_def_access.cc:70:6: note: field 'float

IoTSensor::sense_value' can be accessed via 'float

IoTSensor::getSenseValue()'

 70 | is1.sense_value = -1.0;

 | ^~~~~~~~~~~

 | getSenseValue()

	5.	 Comment the is1 object accessing lines of code, execute your

code again, and observe the following.

//is1.setSenseValue(11.0); //In main

//is1.sense_value = -1.0; //In main

//is.setSenseValue(-1); //In iChangeIoTSensor

//is.setSenseValue(1.0); //In vChangeIoTSensor

	 a.	 IoTSensor object is1 is successfully created and main() can set

values into its internal private fields using public access functions

such as setId().

	 b.	 main() can retrieve is1 object values using public access functions

such as getId().

Chapter 2 Start Learning OOP Using C++

99

	 c.	 iChangeIoTSensor cannot set invalid value: -1.0 (out of valid

range) for sense_value: private field of is1 object; hence, only

past valid changes are displayed.

	 d.	T he valid changes made by vChangeIoTSensor to sense_value

field of the is1 object are displayed.

./cpp_access

Configuring valid values for data members of

IoTSensor using its object public access functions

Id: 101 Sense Value 0 Battery Level 90

From an external function: iChangeIoTSensor

Trying to configure invalid values for private

data members of IoTSensor using its public member

functions

Id: 101 Sense Value 0 Battery Level 90

From an external function: vChangeIoTSensor

Trying to configure valid values for private data

members of IoTSensors using its public member

functions

Id: 101 Sense Value 1 Battery Level 90

From the results, you can observe that the private fields (sensing value,

battery level) of IoTSensor are accessed only using its public member

functions. Otherwise, access to private fields is strictly restricted.

Next, let’s practice all the OOP concepts learned in this chapter by

doing a hands-on activity.

Chapter 2 Start Learning OOP Using C++

100

�Hands-on Activity: Smart Applications
In the previous sections, using C++ you worked with classes and objects,

interacting with objects, and controlling access to objects’ internal details

(fields and member functions). As part of a hands-on activity related

to smart applications, let’s discuss how to use classes for modeling IoT

sensors. In this task, you do the following activities.

•	 Implement an IoT sensor simulating class for creating

IoT sensor objects.

•	 Create several IoT sensors and deploy them at various

locations.

•	 After deploying your IoT sensor objects, find which IoT

sensors are experiencing a low battery.

•	 Find locations of IoT sensors, which sensed higher

temperature values.

•	 Based on the locations of sensors, find the closest IoT

sensor to the given IoT sensor.

MODELING A SMART APPLICATION IOT SENSOR

	1.	I mplement the following in iot_sensor.cc.

	2.	 Define the IoTSensor class to model your smart application’s

IoTSensor behavior with the basic fields such as identifier,

deployment location (x,y), sensing values, and battery level.

#include<iostream>

#include<string>

#include<vector>

#include <bits/stdc++.h>

Chapter 2 Start Learning OOP Using C++

101

using namespace std;

class IoTSensor

{

 private:

 string id;

 int x,y;

 float sense_value;

 int battery_level;

 public:

 void setId(string sen_id);

 string getId();

 void setX(int sen_x);

 int getX();

 void setY(int sen_y);

 int getY();

 void setSenseValue(float val);

 float getSenseValue();

 void setBatteryLevel(int level);

 int getBatteryLevel();

};

	3.	I mplement suitable set and get member functions for accessing

IoTSensor objects as follows.

void IoTSensor::setId(string sen_id)

{

 id = sen_id;

}

string IoTSensor::getId()

{

 return id;

}

Chapter 2 Start Learning OOP Using C++

102

void IoTSensor::setX(int sen_x)

{

 x = sen_x;

}

int IoTSensor::getX()

{

 return x;

}

void IoTSensor::setY(int sen_y)

{

 y = sen_y;

}

int IoTSensor::getY()

{

 return y;

}

void IoTSensor::setSenseValue(float val)

{

 sense_value = val;

}

float IoTSensor::getSenseValue()

{

 return sense_value;

}

void IoTSensor::setBatteryLevel(int level)

{

 battery_level = level;

}

int IoTSensor::getBatteryLevel()

{

 return battery_level;

}

Chapter 2 Start Learning OOP Using C++

103

	4.	 Create a function called getLowBatterySensors to get

low-battery IoT sensor objects from the list of deployed IoT

sensor objects based on the given battery threshold (value).

As there may be multiple IoT sensors experiencing low battery,

hence collect them as a vector of sensor objects.

vector<IoTSensor> getLowBatterySensors(IoTSensor

isensor[10], int value)

{

 vector<IoTSensor> vs;

 for (int i=0;i<10;i++)

 {

 if (isensor[i].getBatteryLevel()<value)

 vs.push_back(isensor[i]);

 }

 return vs;

}

	5.	 Create a function called getHighTempSensors to get a list

of high-temperature observed IoT sensor objects from the list

of ten IoT sensors based on the given temperature threshold

(value) as follows.

vector<IoTSensor> getHighTempSensors(IoTSensor

isensor[10], float value)

{

 vector<IoTSensor> vs;

 for (int i=0;i<10;i++)

 {

 if (isensor[i].getSenseValue()>value)

 vs.push_back(isensor[i]);

 }

 return vs;

}

Chapter 2 Start Learning OOP Using C++

104

	6.	I mplement a function called findNearestSensorTo from

ten IoT sensor objects to a given IoT sensor object. The

distanceBetween function calculates the distance between

two IoT sensors and to get IoTSensor object based on a given

sensor id.

float distanceBetween(IoTSensor is1, IoTSensor is2)

{

 int xdisp = is1.getX()-is2.getX();

 int ydisp = is1.getY()-is2.getY();

 return sqrt((xdisp*xdisp+ydisp*ydisp));

}

int SensorIndex(IoTSensor isensor[10], string id)

{

 for (int i=0;i<10;i++)

 {

 if(id == isensor[i].getId())

 {

 return i;

 }

 }

 return -1;

}

IoTSensor findNearestSensorTo(IoTSensor isensor[10],

IoTSensor is1)

{

 IoTSensor target;

 �float min_dist = 999999.0;//Set a high value

depending on your deployment locations.

 target=is1;

 for (int i=0;i<10;i++)

 {

Chapter 2 Start Learning OOP Using C++

105

 if (distanceBetween(isensor[i], is1)<=min_dist)

 {

 �min_dist =

distanceBetween(isensor[i], is1);

 if (min_dist!=0.0)

 {

 target = isensor[i];

 }

 if (min_dist==0.0)

 {

 min_dist = 999999.0;

 }

 }

 }

 return target;

}

	7.	I mplement your testing code in main() for the following

activities.

	 a.	 Deploying ten IoT sensor objects by configuring sensor ids (sensorA,

sensorB, etc.), deployment locations ((0,0), (10,10), etc.), sensing

values such as (0.001, 0.002, etc.), and battery level such as (100/1,

100/2, etc.).

	 b.	 Display the status of your deployed IoT sensor objects.

	 c.	I nteract with a list of ten IoT sensor objects to display low-

battery experiencing sensor details such as sensor id and location.

	 d.	I nteract with a list of ten IoT sensor objects to display high-

temperature sensing sensor details such as sensor id and location.

	 e.	I nteract with ten IoT sensor objects and find closer IoT sensor objects

for each high-temperature sensing IoT sensor.

Chapter 2 Start Learning OOP Using C++

106

int main()

{

 IoTSensor isensor[10];

 for (int i=0;i<10;i++)

 {

 isensor[i].setId("sensor"+string(1,'A'+i));

 isensor[i].setX(i*10);

 isensor[i].setY(i*10);

 isensor[i].setSenseValue(i*0.001);

 isensor[i].setBatteryLevel(100/(i+1));

 }

 cout<<"IoT Sensors deployment details:\n";

 for (int i=0;i<10;i++)

 {

 cout<<isensor[i].getId()<<" "

 <<isensor[i].getX()<<" "

 <<isensor[i].getY()<<" "

 <<isensor[i].getSenseValue()<<" "

 <<isensor[i].getBatteryLevel()<<"\n";

 }

 vector<IoTSensor> lowb_sensors;

 lowb_sensors=getLowBatterySensors(isensor,20);

 �cout<<"Low battery IoT Sensors: "<<lowb_sensors.

size()<<"\n";

 for (int i=0;i<lowb_sensors.size();i++)

 {

 cout<<lowb_sensors[i].getId()<<"Location: ("

 <<lowb_sensors[i].getX()

 <<","<<lowb_sensors[i].getY()<<")"<<"\n";

 }

Chapter 2 Start Learning OOP Using C++

107

 vector<IoTSensor> high_sensors;

 float temp=0.005;

 high_sensors=getHighTempSensors(isensor,temp);

 �cout<<"High Temperature sensing IoT Sensors:

"<<high_sensors.size()<<"\n";

 for (int i=0;i<high_sensors.size();i++)

 {

 �cout<<high_sensors[i].

getId()<<"Location: ("

 �<<high_sensors[i].getX()

<<","<<high_sensors[i].

getY()<<")"<<"\n";

 }

 �cout<<"High Temperature sensing IoT Sensors:

"<<high_sensors.size()<<"\n";

 for (int i=0;i<high_sensors.size();i++)

 {

 �IoTSensor target_sensor =

findNearestSensorTo (isensor, high_

sensors[i]);

 �cout<<target_sensor.getId()<<" is the

closet IoT sensor to high temprature

"<<high_sensors[i].getSenseValue()<<"

sensing sensor :"<<high_sensors[i].

getId()<<"\n";

 }

 return 0;

}

Chapter 2 Start Learning OOP Using C++

108

	8.	T est your code and observer the following details.

	 a.	I oT sensor deployment details

	 b.	 Low-battery IoT sensors

	 c.	H igh-temperature sensing IoT sensors

	 d.	I oT sensor objects closer to the high-temperature sensing IoT sensors

g++ iot_sensor.cc -o iot_sensors

./iot_sensors

IoT Sensors deployment details:

sensorA 0 0 0 100

sensorB 10 10 0.001 50

sensorC 20 20 0.002 33

sensorD 30 30 0.003 25

sensorE 40 40 0.004 20

sensorF 50 50 0.005 16

sensorG 60 60 0.006 14

sensorH 70 70 0.007 12

sensorI 80 80 0.008 11

sensorJ 90 90 0.009 10

Low battery IoT Sensors: 5

sensorF Location: (50,50)

sensorG Location: (60,60)

sensorH Location: (70,70)

sensorI Location: (80,80)

sensorJ Location: (90,90)

High Temprature sensing IoT Sensors: 4

sensorG Location: (60,60)

sensorH Location: (70,70)

sensorI Location: (80,80)

sensorJ Location: (90,90)

High Temprature sensing IoT Sensors: 4

Chapter 2 Start Learning OOP Using C++

109

sensorH is the closet IoT sensor to high temprature

0.006 sensing sensor :sensorG

sensorI is the closet IoT sensor to high temprature

0.007 sensing sensor :sensorH

sensorJ is the closet IoT sensor to high temprature

0.008 sensing sensor :sensorI

sensorI is the closet IoT sensor to high temprature

0.009 sensing sensor :sensorJ

That’s superb. You have successfully modeled ten IoTSensor objects and

interacted with them for carrying out activities such as finding low-battery

sensors, high-temperature sensing sensors, and the closest sensors to each

high-temperature sensing sensor. I suggest you change the number of sensors

for this hands-on activity and test your own scenarios for practice.

�Summary
This chapter introduced you to C++ programming learning. You learned

how to implement real-world entities as C++ classes, and interact with

their objects for carrying out interesting tasks, activities, and transactions

as part of real-world applications. You also learned to control classes’

sensitive data using C++ access specifiers private and public. Finally, you

practiced a hands-on activity related to smart applications by modeling

IoT sensors and interacting with them to carry out different activities.

The next chapter explains the importance of constructors and

destructors for systematically executing software startup and shutdown

activities.

Chapter 2 Start Learning OOP Using C++

110

�Practice: Hands-On Activities

	 1.	 Declare suitable C++ classes for real-world entities

and online vehicle booking application users. For

each class, include the following.

	 a.	 Declare necessary private fields.

	 b.	 Declare public member functions (set and get) for accessing

private fields.

	 c.	 Declare public member functions for carrying out important

interactions.

	 d.	 Implement all necessary member functions for online vehicle

booking applications outside the class.

	 2.	 Using the online vehicle booking application

classes, implement the following interactions.

	 a.	 Register online vehicle application supporting locations.

	 b.	 Register a vehicle with driver details.

	 c.	 Register a User.

	 d.	 Check if any vehicle is available at the user’s location.

	 e.	 Find the nearest vehicle available from the user’s location.

	 f.	 Find the lowest-fare vehicle available for traveling to the

user’s location.

	 3.	 Declare suitable C++ classes for the online food

ordering application real-world entities and users.

For each class, include the following.

	 a.	 Declare necessary private fields.

Chapter 2 Start Learning OOP Using C++

111

	 b.	 Declare public member functions (set and get) for accessing

private fields.

	 c.	 Declare public member functions for carrying out important

interactions.

	 d.	 Implement all necessary classes with suitable fields and

member functions for online food ordering applications.

	 4.	 Using the online food ordering application, classes

implement the following interactions.

	 a.	 Register online vehicle application supporting restaurants

and their food items.

	 b.	 Register Users.

	 c.	 Register delivery partners.

	 d.	 Check a food item is available at a restaurant.

	 e.	 Check if any delivery partner is interested in accepting order

delivery.

	 f.	 Find the highest-rating restaurant.

Chapter 2 Start Learning OOP Using C++

113© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_3

CHAPTER 3

Systematically
Starting and Stopping
Software Objects
In Chapter 2, you began exploring OOP using C++ language to model a

variety of real-world applications and gaming applications related entities.

This chapter explains how to handle the important startup and shutdown

activities of software in a systematic approach using C++ constructors and

destructors. Constructors are special member functions of a class that are

executed automatically when objects of the class are created. Developers

use constructors for defining and conforming all major startup sequence

activities, such as initialization, configuration, resource allocation, and

startup sequence-dependent services. On the other hand, destructors are

other special member functions of a class, they get executed when class

objects get deleted. Developers use destructors for carrying out activities

such as gracefully releasing resources, closing files, and closing services.

C++ constructors and destructors greatly simplify debugging activities

related to pinpointing software startup and shutdown issues.

As part of this chapter, you start with learning the importance of

handling software objects startup and shutdown activities, then you carry

out these activities using C++ constructors and destructors. Specifically,

this chapter covers the following topics.

https://doi.org/10.1007/979-8-8688-0524-0_3#DOI

114

•	 Software objects startup and shut down sequences

•	 Constructors for handling startup sequences

•	 Destructors for doing graceful shutdowns

•	 Hands-on activity: Constructors

•	 Hands-on activity: Destructors

�Software Objects Startup and Shutdown
Sequences
Starting a software leads to initializing all its necessary components

(objects) and executing necessary activities in a sequence. Similarly,

closing a software leads to a sequence of shutdown activities for releasing

resources and stopping all component interactions. Let’s observe the

following tasks for starting and stopping software.

•	 Starting a software application

•	 Initializing and configuring software components

in a specific order

•	 Allocating computational and memory resources in

a specific order

•	 Starting and connecting with necessary services in

a specific order

•	 Closing a software application

•	 Releasing all acquired resources in a specific order

•	 Stopping and disconnecting its components and all

interactions in a specific order

Chapter 3 Systematically Starting and Stopping Software Objects

115

�Starting a Software Application
Software is a collection of components, and all its components are logically

connected to start its functioning. Hence, to ensure a graceful startup

sequence of software and its components, you must implement the

following activities for each object in a specific order.

•	 Initialization and configuration

•	 Resources allocation

•	 Connecting with necessary services

�Initialization and Configuration

It is necessary to initialize each software component with default

values and configure them. Let’s look at various real-world applications

initialization and configuration activities.

•	 Starting a software game, you can observe the

initialization of game characters, vehicles, weapons,

and animals displayed on your screen. It allows players

to easily visualize and interact with game world entities

to continue with the game.

•	 Starting an online shopping application leads to

displaying all available items for their customers. It

helps customers to browse items and place orders.

•	 Starting an online vehicle booking application leads to

displaying all nearby landmarks and available vehicles.

It helps travelers to locate their destinations and choose

a suitable vehicle.

Chapter 3 Systematically Starting and Stopping Software Objects

116

•	 Starting a smart application involves initializing all its

devices with suitable configurations such as addresses,

operating power, and channels. It helps applications

to easily connect with necessary devices and complete

user transactions.

During the startup sequence of a software application, besides

software components initialization and configuration activity, there is

another important activity called acquiring necessary computational and

memory resources to ensure the performance of a software application.

�Resources Allocation

To run a complex software application, acquiring the following

computational and memory resources from the operating system is

necessary. The following tasks are usually done as part of resource

allocation for a software application.

•	 Creating a suitable number of processes and threads

for carrying out parallel activities.

•	 Creating necessary synchronization resources such

as semaphores and mutex locks to guarantee process

execution order synchronization.

•	 Setting up interprocess communication resources such

as message queues and shared memory for exchanging

data among processes.

•	 Setting up timers for handling counting and

timing events.

•	 Allocating necessary dynamic memory for inputs or

outputs processing.

•	 Creating temporary or regular files for permanent

storage (IO devices).

Chapter 3 Systematically Starting and Stopping Software Objects

117

Acquiring all necessary resources at the start of software components

helps to avoid long or infinite waiting durations, runtime errors, and

crashes. Hence, you must identify suitable resources needed for various

software objects of your software and allocate them during the respective

object’s startup sequence.

Besides default software components configuration and acquiring all

necessary resources at the start of software, connecting with other software

components or services for executing tasks is also very important.

�Connecting with Necessary Services

Complex software usually depends on its multiple software components

startup, linking of other software components, and external services

linking. Failure of any of the subcomponents or external service

connectivity could lead to the unsuccessful start of the software. Let’s see

the following examples.

•	 Starting a typical online software application depends

on web servers, databases, external services, proxies,

and load balancers.

•	 Starting an online game software application involves

all characters, such as enemies, vehicles, weapons, and

animals. Network services are needed to allow online

users to play the game.

•	 To start a smart application, all its devices and running

services must be started and connected logically to

handle all transactions.

It means a successful startup sequence of a software application

depends on the execution order of its components and external

components. Hence, based on the needs of a software application, the

following activities need to be handled during a software object startup.

Chapter 3 Systematically Starting and Stopping Software Objects

118

•	 Creating and starting dependent objects in a

logical order

•	 Connecting with database servers

•	 Connecting with proxy servers and load balancers

•	 Connecting with any local running services

•	 Connecting with any necessary external

Internet servers

Moreover, you must carefully plan these activities with respect to each

of the objects involved in your complex software.

The importance and complexity of handling software objects’ startup

activities were covered in startup sequence discussions. Later, you learn to

use C++ constructors to systematically carry out software startup sequence

activities. Next, let’s discuss the important activities during the software

shutdown sequence.

�Closing a Software Application
After completing your tasks, you must close the software by doing the

following important activities.

•	 Releasing all acquired resources.

•	 Stopping and disconnecting all components and their

interactions.

Hence, as engineers and developers, we must take care of the

shutdown activities of our software implementation. To carry out these

activities systematically, let’s inspect them in detail.

Chapter 3 Systematically Starting and Stopping Software Objects

119

�Releasing Resources

As part of the graceful shutdown of a software application, related to every

object, you should handle the following activities during the closing of a

software.

•	 Deleting all synchronization-related resources

of objects

•	 Deleting message queues and shared memory

of objects

•	 Deleting all timers of objects

•	 Freeing or deleting the memory acquired by objects

•	 Deleting all unused files of objects

After releasing resources acquired by objects of software, you must handle

activities related to stopping all its components, services, and interactions.

�Disconnect, Stop, and Remove Services

You observed that a successful starting sequence involves creating

necessary processes or threads and connecting with other objects’ internal

and external services. On the other hand, during shutting down of a

software application involves handling the following activities.

•	 Closing database servers’ connections

•	 Closing proxy servers and load balancer connections

•	 Disconnecting from any local running services

•	 Disconnecting from any connected Internet servers

•	 Closing all open network sockets and files

•	 Stopping and removing all processes and threads

created by objects

Chapter 3 Systematically Starting and Stopping Software Objects

120

That means if you do not close your software, it can lead to system

resource misusage, leaving ongoing connections open, and system-limited

resources getting occupied unnecessarily and blocked for other necessary

usage. Forgetting any of these shutdown activities can lead to opening

doors for attackers!

Hence, during software shutdown activity implementations, you must

check and confirm releasing all resources, and closing all its components

and interactions. In C++ programming, you automatically use destructors

to carry out these activities during object deletion.

In summary, after inspecting the starting and closing of a software

application sequence, you have learned the importance of carrying out

startup sequence and shutdown activities.

Next, let’s look at how to declare and define C++ constructors and

destructors for executing startup and shutdown activities.

�Constructors for Handling
Startup Sequences
Let’s look at how C++ handles startup sequence activities using

constructors by reviewing the following topics.

•	 C++ for constructors

•	 C++ supporting constructors

•	 Hands-on activities for practicing constructors

�Constructors in C++
In C++, constructors are nothing but other member functions of a

class. To implement constructors, you must declare it inside a class by

following rules.

Chapter 3 Systematically Starting and Stopping Software Objects

121

•	 Constructors must be defined in the public section of

a class.

•	 The constructor of a class must be defined with the

same name as the class name.

•	 Constructors do not return any values.

•	 Multiple constructors with a variable number of

arguments are allowed in a class.

Let’s declare a constructor for the following example class in test_

bomb_constructor.cc.

class Bomb

{

 unsigned int id;

 int x,y;

 int state;

 public:

 Bomb();

};

Outside of the Bomb class, let’s define the Bomb() constructor for

initialization activities as follows.

Bomb::Bomb()

{

 �cout<<"Bomb object internal fields got initialized

automatically with random values\n";

 id = rand()%10000;

 x = rand()%100;

 y = rand()%100;

 state = 1;

}

Chapter 3 Systematically Starting and Stopping Software Objects

122

Then, test it by creating a Bomb object b1 in your main() code as follows.

int main()

{

 Bomb b1;

}

Finally, test its execution as follows in your main() code.

g++ test_bomb_constructor.cc -o bomb

./bomb

Bomb object internal fields were initialized automatically with

random values.

From the results, you can observe the following interesting and

important details.

•	 When your program started, the only instruction

executed was the Bomb object b1 creation.

•	 You did not call the Bomb() function explicitly. The bomb ()

constructor is called automatically.

•	 Your custom code defined in Bomb() was executed for

initializing b1 object internal fields.

•	 You can confirm it by printing b1 object details using

get functions.

It means the constructors of a class are executed as soon as its objects

are created. Hence, you can use constructors to carry out software object

initialization activities, acquire resources for the objects, and connect with

necessary services at the startup sequence of a software application. Let’s

do an interesting hands-on activity to demonstrate using constructors

for carrying out all startup sequence activities. First, let’s explore some

constructors supported by C++.

Chapter 3 Systematically Starting and Stopping Software Objects

123

�C++ Supporting Constructors
C++ supports the following constructors.

•	 Default constructors have the same name as the class

name. It does not take any arguments. When you define

a default constructor, the following points must be

considered.

•	 Only one default constructor is allowed in a class.

•	 To invoke it in your program, you must define an

object for the class without any arguments.

•	 It is executed when class objects are created

statically or dynamically without any arguments.

•	 When you define a default constructor explicitly,

the C++ compiler does not provide any default

constructor support. However, the C++ compiler

provides a default copy constructor available

for you.

Refer to test_bomb_constructor.cc for an example.

Observe the following output when you execute the code using the

following commands.

g++ test_bomb_constructor.cc -o test_constructors

./test_constructors

Bomb object internal fields were initialized automatically with

random values

This means when a b1 object is created, your custom default

constructor is executed.

Chapter 3 Systematically Starting and Stopping Software Objects

124

Next, let’s look at the role of copy constructors.

•	 Copy constructors are useful for initializing new

objects’ internal fields (or data members) with existing

objects’ internal field values. Its name is the same as

the class name, and it takes the source object as an

argument to initialize the destination object. When you

define a copy constructor, the following points must be

considered.

•	 Only one copy constructor can be defined in a class.

While copying source object fields into destination

object fields, avoid copying dynamically allocated

buffers and pointers. It helps you to easily debug

memory leaks and double freeing runtime errors.

•	 To invoke it in your program, you need to define a

class object by initializing it with another object of

the class.

•	 It is also executed when class objects are created

statically or dynamically with a source object as an

argument. Passing a source object reference as an

argument is recommended to avoid large memory

copying overhead.

•	 When you define a custom copy constructor,

the C++ compiler provides no copy and default

constructors.

•	 Moreover, when you define a copy constructor, you

must define a default constructor. Otherwise, you

cannot create objects.

Let’s copy your test_bomb_constructor.cc to test_copy_constructor.cc

and make the following changes.

Chapter 3 Systematically Starting and Stopping Software Objects

125

Declare the following copy constructor inside the Bomb class.

Bomb(const Bomb &b);

Define the following copy constructor outside the Bomb class.

Bomb::Bomb(const Bomb &b)

{

 cout<<"Copying bomb objects\n";

 id = b.id;

 x = b.x;

 y = b.y;

 state = 0;

}

In the main() code, call the copy constructors as follows.

int main()

{

 Bomb b1;

 Bomb b2(b1); //It invokes the copy constructor.

 Bomb b3=b2; //It invokes the copy constructor.

 return 0;

}

Next, test this code using the following commands.

g++ test_copy_constructor.cc -o test_copy_constructor

./test_copy_constructor

Bomb object internal fields got initialized automatically with

random values

Copying bomb objects

Copying bomb objects

Chapter 3 Systematically Starting and Stopping Software Objects

126

From the results, you can observe that copy constructors are called to

copy bomb objects. Later, when you access b1, b2, and b3 objects, you get

the same values from their internal fields, such as id, x, y, and state.

Parameterized constructors: Its name is the same as the class name

and takes arguments. These are useful for custom configuring objects by

passing suitable argument values. You can define multiple parameterized

constructors with a variable number of arguments. When you define a

parameterized constructor, the following points must be considered.

•	 Multiple constructors are allowed.

•	 To invoke it in your program, you must define a class

object by passing a suitable number of arguments.

•	 It is executed when class objects are created statically

or dynamically with a suitable number of arguments.

•	 By default, no parameterized constructors are provided

by the C++ compiler. You must define parameterized

constructors before using them.

•	 When you define a parameterized constructor, you

must define the default constructor also. Otherwise,

you cannot define objects without any arguments.

•	 However, a default copy constructor is available for you.

Example.

Copy your test_bomb_constructor.cc to test_parameter_constructor.cc

and make the following changes.

Declare the following parameterized constructors inside the

class Bomb.

Bomb(int bx, int by);

Bomb(int bid);

Declare the following functions inside the class Bomb.

Chapter 3 Systematically Starting and Stopping Software Objects

127

int getId();

void setId(int bid);

Declare the following functions outside the class Bomb.

int Bomb::getId()

{

 return id;

}

void Bomb::setId(int bid)

{

 id = bid;

}

Define the following parameterized constructors outside of the

class Bomb.

Bomb::Bomb(int bx, int by)

{

 x = bx;

 y = by;

 cout<<"Constructor1 called\n";

}

Bomb::Bomb(int bid)

{

 id = bid;

 cout<<"Constructor2 called\n";

}

In the main() code, call parameterized constructors as follows.

int main()

{

 Bomb b1(10,20); //it prints Constructor1 called

Chapter 3 Systematically Starting and Stopping Software Objects

128

 b1.setId(1000);

 Bomb b2(1000); //it prints Constructor2 called

 Bomb b3=b2; //It invokes the default copy constructor.

 cout<<"b1 Id:"<<b1.getId()<<"\n";

 cout<<"b2 Id:"<<b2.getId()<<"\n";

 cout<<"b3 Id:"<<b3.getId()<<"\n"

 return 0;

}

When you execute the code using the following commands, observe

the following output.

g++ test_parameter_constructor.cc -o parameter_constructors

./parameter_constructors

Constructor1 called

Constructor2 called

b1 Id:1000

b2 Id:1000

b3 Id:1000

From the results, you can confirm that the first parameterized

constructors were called. Then, you can observe that the default copy

constructor is executed by copying the b2 object’s internal field values into

the b3 object. Hence, the b3 object also gets the same id as the b2 object’s

id. Next, let’s check the C++ compiler providing constructors.

�C++ Compiler Providing Constructors
C++ compiler, by default, provides a no-argument constructor and a copy

constructor for creating and copying objects of a class. Hence, you must

observe the following while defining your default and copy constructors in

your code.

Chapter 3 Systematically Starting and Stopping Software Objects

129

Let’s try to better understand it by doing a simple task in test_c++_

constructors.cc.

class Bomb

{

 unsigned int id;

 int x,y;

 int state;

 public:

 int getId()

 {

 return id;

 }

 void setId(int tid)

 {

 id = tid;

 }

};

In main(), you can call copy constructors as follows.

int main()

{

 Bomb b1;

 b1.setId(1000);

 Bomb b2(b1); //default copy constructor called

 cout<<"b1 Id:"<<b1.getId();

 cout<<"b2 Id:"<<b2.getId();

 Bomb b3=b2; //default copy constructor called

 cout<<"b3 Id:"<<b3.getId();

 return 0;

}

Chapter 3 Systematically Starting and Stopping Software Objects

130

Test your code as follows.

g++ test_c++_constructors.cc -o cpp_default

./cpp_default

b1 Id:1000

b2 Id:1000

b3 Id:1000

The results show that b2 and b3 objects are getting copies of b1

object details. As you did not include any default constructor and copy

constructors in your program, C++ compiler providing constructors are

executed. Next, let’s practice constructors by doing the following hands-on

activities.

�Hands-on Activities for Practicing Constructors
As part of learning and practicing constructors for handling startup

sequence activities of software, let’s do the following activities.

	 1.	 In a war gaming context, when the game starts,

bombs get deployed at random locations. You create

this scenario using the default constructor.

	 2.	 Next, you do another interesting hands-on activity

related to gaming bomb deployment using a secret

file and passing custom locations. You create this

scenario using parameterized constructors.

	 3.	 Finally, you create a copy of gaming bombs from

existing bombs. To carry out this activity, you use

copy constructors.

Chapter 3 Systematically Starting and Stopping Software Objects

131

DEPLOY GAMING BOMBS AT RANDOM LOCATIONS

	1.	I mplement your gaming code in the bombs.cc file.

	2.	D efine the Bomb class for creating gaming Bomb objects by

declaring bomb location (x,y) and state as fields under the

private section, and under the public section, declare

location and state access get member functions. Finally, include

the Bomb() constructor declaration inside the class as

follows.

#include<iostream>

#include<cstdlib>

#include<fstream>

using namespace std;

class Bomb

{

 unsigned int id;

 int x,y;

 int state;

 public:

 int getId();

 int getX();

 int getY();

 int getState();

 Bomb();

};

Chapter 3 Systematically Starting and Stopping Software Objects

132

	3.	D efine your Bomb() constructor for assigning random

identifiers, random locations, and active states.

Bomb::Bomb()

{

 id = rand()%10000;

 x = rand()%100;

 y = rand()%100;

 state = 1;

}

	4.	D efine bomb objects (id,x,y, and state) accessing member

functions.

int Bomb::getId()

{

 return id;

}

int Bomb::getX()

{

 return x;

}

int Bomb::getY()

{

 return y;

}

int Bomb::getState()

{

 return state;

}

	5.	W rite your main() for testing Bomb() constructor execution.

Let’ create ten gaming Bomb objects for testing as follows.

Chapter 3 Systematically Starting and Stopping Software Objects

133

int main()

{

 Bomb b[10];

 for (int i=0;i<10;i++)

 {

 �cout<<b[i].getId()<<": ("<<b[i].

getX()<<","<<b[i].getY()<<")"<<"\n";

 }

}

	6.	T est your code using the following commands.

g++ bombs.cc -o random_deploy_bomb

./random_deploy_bomb

9383: (86,77)

6915: (93,35)

5386: (92,49)

1421: (62,27)

8690: (59,63)

3926: (40,26)

9172: (36,11)

5368: (67,29)

5782: (30,62)

5123: (67,35)

From the results, you can observe that all ten gaming bombs are deployed at

random locations. You have not assigned any specific locations using bomb

objects. However, every bomb was configured with a random id, location (x,y),

and specific state automatically after executing the program.

Well done. You have learned how to do automatic configuration for bomb

objects using the Bomb() constructor. Next, let’s look at how to configure

gaming bomb objects using specific parameters and load configuration

parameters from a given input (secret) file using parameterized constructors.

Chapter 3 Systematically Starting and Stopping Software Objects

134

DEPLOY GAMING BOMBS USING A SECRET FILE

	1.	 Copy your gaming bombs.cc code into bombs_deploy_
custominputs.cc.

	2.	E xtend your Bomb class by declaring and defining your

parameterized constructor for configuring Bomb objects with

custom values using arguments as follows.

Bomb::Bomb(int bid, int bx, int by, int bstate)

{

 id = bid;

 x = bx;

 y = by;

 state = bstate;

}

	3.	D eclare and define another parameterized constructor for

configuring Bomb objects by taking configuration values from a

given input file.

Bomb::Bomb(fstream &ifile)

{

 ifile>>id>>x>>y>>state;

 p = new int[10];

}

	4.	L et’s write your parameterized constructors testing code in

main() for the following activities.

	 a.	D efine ten gaming Bomb objects using dynamic memory and configure

their ids starting with 1000, locations (0,0), (20,20), and so on, and set

every bomb state to active (1). Finally, display all Bomb object details.

Chapter 3 Systematically Starting and Stopping Software Objects

135

	 b.	D efine ten gaming Bomb objects using dynamic memory and configure

their id, location (x,y), and state from an input file BombsDeploy.txt.
The file stores ten gaming Bomb object details (id, x, y, state)

line by line.

	 c.	F inally, display only active bomb details.

int main()

{

 Bomb *pb[10];

 for (int i=0;i<10;i++)

 {

 pb[i] = new Bomb(i+1000,i*20,i*20,1);

 }

 for (int i=0;i<10;i++)

 {

 �cout<<pb[i]->getId()<<": ("<<pb[i]->

getX()<<","<<pb[i]->getY()<<")"

<<"Active"<<"\n";

 }

 Bomb *fb[10];

 fstream myfile;

 myfile.open("BombsDeploy.txt",ios::in);

 for (int i=0;i<10;i++)

 {

 fb[i] = new Bomb(myfile);

 }

 for (int i=0;i<10;i++)

 {

 if (fb[i]->getState() == 1)

 �cout<<fb[i]->getId()<<":

("<<fb[i]->getX()<<","<<fb[i]-

>getY()<<")"<<"Active"<<"\n";

Chapter 3 Systematically Starting and Stopping Software Objects

136

 }

 myfile.close();

}

	5.	L et’s test your constructors by doing the following activities.

	 a.	 Check for custom gaming bomb details

	 b.	 Check for gaming bomb details configured through file input

g++ bombs_deploy_custominputs.cc -o bombs_deploy_

custominputs

cat BombsDeploy.txt

./bombs_deploy_custominputs

1000: (0,0)Active

1001: (20,20)Active

1002: (40,40)Active

1003: (60,60)Active

1004: (80,80)Active

1005: (100,100)Active

1006: (120,120)Active

1007: (140,140)Active

1008: (160,160)Active

1009: (180,180)Active

1: (10,10)Active

2: (20,10)Active

11: (11,11)Active

22: (23,10)Active

44: (16,16)Active

55: (20,10)Active

The results show that all gaming bomb objects (pb[i]) are displayed.

However, when gaming bomb objects are configured through the file, only

active bomb details are displayed. You can change the code for displaying all

bombs while reading it from fb[i] objects.

Chapter 3 Systematically Starting and Stopping Software Objects

137

COPYING BOMBS FROM EXISTING BOMBS

	1.	 Copy your gaming bombs.cc code into bombs_copy.cc.

	2.	E xtend your first Bomb class (default constructor) by defining

your copy constructor for creating Bomb objects from existing

ones. While copying, set the copied bomb object state to 0 as

follows.

Bomb::Bomb(const Bomb &b)

{

 id = b.id;

 x = b.x;

 y = b.y;

 state = 0;

}

	3.	W rite testing main()code for copying Bomb objects from

original objects. Display the original Bomb objects and copied

Bomb objects as follows.

int main()

{

 Bomb b[10];

 for (int i=0;i<10;i++)

 {

 �cout<<b[i].getId()<<": ("<<b[i].

getX()<<","<<b[i].getY()<<")"<<b[i].

getState()<<"\n";

 }

 Bomb *cb[10];

 for (int i=0;i<10;i++)

 {

Chapter 3 Systematically Starting and Stopping Software Objects

138

 cb[i] = new Bomb(b[i]);

 �cout<<cb[i]->getId()<<": ("<<cb[i]-

>getX()<<","<<cb[i]->getY()<<")"<<cb[i].

getState()<<"\n";

 }

 return 0;

}

	4.	T est your code using the following commands.

g++ bombs_copy.cc -o bombs_copy

./bombs_copy

9383: (86,77)1

6915: (93,35)1

5386: (92,49)1

1421: (62,27)1

8690: (59,63)1

3926: (40,26)1

9172: (36,11)1

5368: (67,29)1

5782: (30,62)1

5123: (67,35)1

9383: (86,77)0

6915: (93,35)0

5386: (92,49)0

1421: (62,27)0

8690: (59,63)0

3926: (40,26)0

9172: (36,11)0

5368: (67,29)0

5782: (30,62)0

5123: (67,35)0

Chapter 3 Systematically Starting and Stopping Software Objects

139

From the results, you can observe that every b[i] object details got copied

into the corresponding cb[i] object and cb[i] state set to 0. It means your

custom copy constructor copied one object’s details into another.

To confirm it’s working, let’s comment on your custom copy constructor and

test it again using the following commands.

g++ bombs_copy.cc -o bombs_copy

./bombs_copy

9383: (86,77)1

..

5123: (67,35)1

9383: (86,77)1

..

5123: (67,35)1

The results show that every b[i] object details got copied into the

corresponding cb[i] objects. It means the compiler-provided copy

constructor copied one object’s values into another object.

�The Importance of Destructors for Doing
Graceful Shutdowns
You learned the importance of and how to implement constructors in C++.

Constructors help you easily carry out software startup activities. In this

section, you learn how to execute shutdown activities using C++ destructors.

�Destructors in C++
Destructors are helpful to handle software shutdown activities systematically.

This section starts by explaining how to declare and define destructors in

C++. Then, you learn about the destructor’s execution behavior.

Chapter 3 Systematically Starting and Stopping Software Objects

140

In C++, destructors are nothing but other member functions of a

class. To implement destructors, you must declare it inside a class by

following rules.

•	 Destructors must be defined in the public section of

a class.

•	 Destructors of a class must be defined with the same

name as the class name and prefixed with the ~

operator.

•	 Destructors do not take any arguments and return

any values.

•	 Only one destructor is allowed in a class.

Let’s declare a destructor for the following example class in test_bomb_

destructor.cc.

class Bomb

{

 unsigned int id;

 int x,y;

 int state;

 char *buffer;

 public:

 Bomb();

 ~Bomb();

};

Outside of the Bomb class, let’s define the Bomb() constructor for

carrying out initialization activities and allocating a processing buffer

memory using the new operator as follows.

Chapter 3 Systematically Starting and Stopping Software Objects

141

Bomb::Bomb()

{

 �cout<<"Bomb object internal fields got initialized

automatically with random values\n";

 id = rand()%10000;

 x = rand()%100;

 y = rand()%100;

 state = 1;

 buffer = new char[100];

 printf(buffer,"Id:%d X:%d Y:%d STATE:%d \n",id,x,y,state);

}

char* Bomb::getBuffer()

{

 return buffer;

}

Next, define ~Bomb() destructor for deallocating buffer memory using

the delete operator as follows.

Bomb::~Bomb()

{

 if (buffer!=NULL)

 {

 �cout<<"Destructor called and dynamic buffer

deallocated\n";

 delete buffer;

 buffer = NULL;

 }

 else

 {

 cout<<"Nothing to do\n";

 }

}

Chapter 3 Systematically Starting and Stopping Software Objects

142

Test it by creating a Bomb object b1 in a block of your main() code.

int main()

{

 {

 cout<<"Inside the block\n";

 Bomb b1;

 }

 cout<<"Outside the block\n";

}

Finally, test its execution as follows in your main() code.

g++ test_bomb_destructor.cc -o bomb

./bomb

Inside the block

Bomb object internal fields got initialized automatically with

random values

Destructor called and dynamic buffer deallocated

Outside the block

From the results, you can observe the following interesting and

important details.

•	 When your program starts, after entering inside the

block b1 object is created, and the constructor code is

executed.

•	 As the b1 object lifetime ends outside the block, the

object gets deleted, and the destructor code is executed

automatically.

•	 Your custom code defined in ~Bomb() got executed for

deallocating dynamically allocated buffer memory.

Chapter 3 Systematically Starting and Stopping Software Objects

143

It means destructors of a class are executed as soon as the object’s

lifetime ends. So, you can use destructors to carry out software object

shutdown activities, such as releasing resources for the objects and closing

and disconnecting with other components and services. Next, you do

an interesting hands-on activity to demonstrate destructors’ usage for

shutdown activities.

�Hands-on Destructors
As part of the graceful software shutdown related to every object-acquired

resource deallocation, you should handle the following activities using

destructors.

As part of developing a game, you may create many bomb objects and

allocate their buffer memory dynamically using new operator for each bomb.

At the end of the game, you must deallocate the dynamically allocated

memory automatically. You carry out this activity using C++ destructors.

It is also common to dynamically create objects using new operators

for various activities. As part of this task, let’s discuss the importance of

deleting dynamically created objects for invoking destructors.

HANDS-ON ACTIVITY: IMPORTANCE OF DESTRUCTORS

	1.	I mplement the following in bomb_destr.cc.

	2.	M odify the Bomb class to hold a dynamic character buffer.

Define Bomb() constructor to initialize id, location (x,y), and

state, concatenate all fields, and copy it into a dynamically

allocated character buffer.

#include<iostream>

#include<cstdlib>

#include<fstream>

Chapter 3 Systematically Starting and Stopping Software Objects

144

using namespace std;

class Bomb

{

 unsigned int id;

 int x,y;

 int state;

 char *buffer;

 public:

 char *getBuffer();

 Bomb();

 ~Bomb();

};

Bomb::Bomb()

{

 id = rand()%10000;

 x = rand()%100;

 y = rand()%100;

 state = 1;

 buffer = new char[100];

 if (state == 1)

 {

 �sprintf(buffer,"Id:%d X:%d Y:%d %d

Active\n",id,x,y,state);

 }

 else

 {

 �sprintf(buffer,"Id:%d X:%d Y:%d %d Not

Active\n",id,x,y,state);

 }

}

Chapter 3 Systematically Starting and Stopping Software Objects

145

char* Bomb::getBuffer()

{

 return buffer;

}

	3.	D eclare and define ~Bomb() destructor to free dynamically

allocated buffer as follows.

Bomb::~Bomb()

{

 cout<<"Destructor called\n";

 if (buffer!=NULL)

 {

 delete buffer;

 buffer = NULL;

 }

}

	4.	L et’s write testing code to learn the importance of destructors.

	 a.	D efine a Bomb object holding pointer *b1 and start a block of code.

	 b.	I nside the block define ten Bomb objects and print its dynamically

allocated buffer contents by accessing getBuffer().

	 c.	B efore exiting the inner block, copy Bomb b[0] object into new object

b1. After exiting the block, print b[0] buffer using b1 pointer as

follows:

int main()

{

 Bomb *b1;

 {

 Bomb b[10];

 for (int i=0;i<10;i++)

 {

Chapter 3 Systematically Starting and Stopping Software Objects

146

 cout<<b[i].getBuffer();

 }

 b1 = new Bomb(b[0]);

 }

 if(b1->getBuffer()!=NULL) {

 �cout<<"\nAccessing deleted buffer using

b1:"<<b1->getBuffer()<<"\n";

 }

}

	5.	W ell done! You have completed the writing Bomb class with

destructors and testing code. Next, comment destructors code,

and then execute your test code using the following commands.

g++ bomb_destr.cc -o no_destructor

./no_destructor

Id:6915 X:93 Y:35 1 Active

Id:5386 X:92 Y:49 1 Active

Id:1421 X:62 Y:27 1 Active

Id:8690 X:59 Y:63 1 Active

Id:3926 X:40 Y:26 1 Active

Id:9172 X:36 Y:11 1 Active

Id:5368 X:67 Y:29 1 Active

Id:5782 X:30 Y:62 1 Active

Id:5123 X:67 Y:35 1 Active

Id:3929 X:2 Y:22 1 Active

Accessing deleted buffer using b1:Id:6915 X:93 Y:35

1 Active

Oh! Although local Bomb objects are deleted after their lifetime

(after leaving the block), you can still access deleted objects

dynamically allocated buffer. Because you did not delete

the dynamically allocated buffer. Hence using the buffer

address, you are able to access the buffer contents.

Chapter 3 Systematically Starting and Stopping Software Objects

147

Delete the dynamically allocated buffer of objects

automatically using destructors. Before going to the next step,

uncomment destructors code and run the following commands.

	6.	T est your updated code using the following commands.

g++ bomb_destr.cc -o with_destructor

./with_destructor

Id:9383 X:86 Y:77 1 Active

Id:6915 X:93 Y:35 1 Active

Id:5386 X:92 Y:49 1 Active

Id:1421 X:62 Y:27 1 Active

Id:8690 X:59 Y:63 1 Active

Id:3926 X:40 Y:26 1 Active

Id:9172 X:36 Y:11 1 Active

Id:5368 X:67 Y:29 1 Active

Id:5782 X:30 Y:62 1 Active

Id:5123 X:67 Y:35 1 Active

Destructor called

Destructor called

Destructor called

Destructor called

Destructor called

Destructor called

Destructor called

Destructor called

Destructor called

Destructor called

Chapter 3 Systematically Starting and Stopping Software Objects

148

Well done! Destructors are in action immediately after Bomb objects’ lifetime

expires. You can observe from the results destructors are called for all local

ten Bomb objects. However, you should observe that the destructor is not

called for a b1 object (dynamically created object). Moreover, you may observe

program termination on your computer. Next, let’s study it by creating objects

dynamically using new and working destructors.

IMPORTANCE OF DELETING DYNAMICALLY CREATED OBJECTS

	1.	 Copy bomb_destr.cc into dyn_bomb_destr.cc and do the

following.

	2.	L et’s modify your main() testing codes by creating ten Bomb

objects dynamically and printing their dynamically allocated

buffer contents as follows.

int main()

{

 Bomb *cb[10];

 for (int i=0;i<10;i++)

 {

 cb[i] = new Bomb();

 cout<<cb[i]->getBuffer();

 }

}

	3.	T est your code using the following commands.

g++ dyn_bomb_destr.cc -o dynamic_objects

./dynamic_objects

Id:9383 X:86 Y:77 1 Active

Id:6915 X:93 Y:35 1 Active

Id:5386 X:92 Y:49 1 Active

Chapter 3 Systematically Starting and Stopping Software Objects

149

Id:1421 X:62 Y:27 1 Active

Id:8690 X:59 Y:63 1 Active

Id:3926 X:40 Y:26 1 Active

Id:9172 X:36 Y:11 1 Active

Id:5368 X:67 Y:29 1 Active

Id:5782 X:30 Y:62 1 Active

Id:5123 X:67 Y:35 1 Active

From the results, you can observe that destructors were not

executed. The reason for this behavior is your dynamically

created objects were not deleted. Since Bomb objects are

created using new, you must delete them explicitly. Let’ delete

dynamically created objects as follows.

	4.	 Update your testing main() by including the following code

after the object creation code’s for loop.

for (int i=0;i<10;i++)

{

 delete cb[i];

 cb[i] = NULL;

}

	5.	 Save your code and test it using the following commands.

g++ bomb_destr.cc -o dynamic_objects

./dynamic_objects

Id:9383 X:86 Y:77 1 Active

Id:6915 X:93 Y:35 1 Active

Id:5386 X:92 Y:49 1 Active

Id:1421 X:62 Y:27 1 Active

Id:8690 X:59 Y:63 1 Active

Id:3926 X:40 Y:26 1 Active

Id:9172 X:36 Y:11 1 Active

Id:5368 X:67 Y:29 1 Active

Chapter 3 Systematically Starting and Stopping Software Objects

150

Id:5782 X:30 Y:62 1 Active

Id:5123 X:67 Y:35 1 Active

Destructor called

Destructor called

Destructor called

..

Destructor called

Destructor called

Destructor called

Destructor called

That’s great. Destructors were in action immediately after the Bomb object’s

memory was deleted.

�Hands-on Activity 1: Constructors
You have learned the importance of constructors. In this section, you do

an interesting hands-on activity related to smart application development.

Specifically, you learn how to use constructors to implement IoT sensors’

startup activities. In this task, you do the following.

•	 Implement an IoT sensor simulating class for creating

IoT sensor objects.

•	 Create several IoT sensors and deploy them at various

locations.

•	 Configure your IoT sensors for storing specific sensed

values in a given file.

•	 Connect your IoT sensors with a network server (IP

address, Port number) called iperf TCP server. Here,

you use the iperf server to demonstrate connecting

your sensor object using a TCP socket.

Chapter 3 Systematically Starting and Stopping Software Objects

151

•	 Configure your IoT sensors for sending specific sensed

values to the connected network server.

•	 Test your IoT sensors.

Note A s part of the following task, if the iperf tool is not installed,
you must install it using the apt-get install iperf command. The
iperf is helpful for quickly setting up simple TCP or UDP client-server
applications. You use iperf TCP server application to connect IoT
sensor objects to it and send sample data from objects to the iperf
TCP server.

HANDS-ON ACTIVITY: IOT SENSORS STARTUP TASKS

	1.	L et’s start with defining IoT sensors simulating class in iot_
sensor_const.cc.

	 a.	B esides all necessary fields (id, x, y, sensing_value,

battery_level), you also include a dynamically allocated buffer

for processing sensor values, a filename for storing sensed values, and

network socket descriptors for sending sensed values to connected

servers.

	 b.	A fter defining all necessary fields, under the public section, include

the corresponding set and get member functions for accessing your

sensor objects.

	 c.	F inally, declare a constructor for configuring filename, network server

IP and port number, and thresholds for writing specific values into files

and sending them to the connected server.

Chapter 3 Systematically Starting and Stopping Software Objects

152

Your class is defined as follows.

#include<iostream>

#include<netdb.h>

#include<cstdlib>

#include<arpa/inet.h>

#include<stdlib.h>

#include<sys/socket.h>

#include<unistd.h>

#include<string>

#include<bits/stdc++.h>

using namespace std;

class IoTSensor {

 private:

 string id;

 int x,y;

 int battery_level;

 float sense_value;

 float sense_thr_file;

 float sense_thr_server;

 int sockfd;

 char filename[15];

 fstream myfile;

 char *buffer;

 public:

 void setFilename(char* file);

 char* getFilename();

 void setId(string sen_id);

 string getId();

 void setX(int sen_x);

 int getX();

 void setY(int sen_y);

Chapter 3 Systematically Starting and Stopping Software Objects

153

 int getY();

 void setSenseValue(float val);

 float getSenseValue();

 void setBatteryLevel(int level);

 int getBatteryLevel();

 �IoTSensor(char *file, const char *server_

ip, unsigned int server_port, float file_

thr, float serv_thr)//add ; here

};

	2.	A fter defining your IoTsensor class, implement your

IoTsensor constructor for handling the following activities.

	 a.	 Configure threshold values for writing values and sending values to the

network server.

	 b.	 Under dynamic memory, allocate a buffer of size 100 bytes.

	 c.	 Create a sensor file for writing sensing values.

	 d.	 Create a TCP socket using socket().

	 e.	 Configure server IP address and port number using bind().

	 f.	 Connect to the iperf TCP network server with the help of a TCP

socket using connect().

IoTSensor::IoTSensor(char *file, const char *server_

ip, unsigned int server_port, float file_thr, float

serv_thr)

{

 sense_thr_file = file_thr;

 sense_thr_server = serv_thr;

 buffer = new char[100];

Chapter 3 Systematically Starting and Stopping Software Objects

154

 setFilename(file);

 myfile.open(file,ios::app); if (!myfile)

 {

 cout<<"new file created\n";

 }

 else

 {

 cout<<"opening the existing file\n";

 }

 struct sockaddr_in servaddr, cli;

 �sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if (sockfd == -1)

 {

 cout<<"socket creation failed...\n";

 }

 else

 {

 cout<<"Socket successfully created..\n";

 }

 bzero(&servaddr, sizeof(servaddr));

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = inet_addr(server_ip);

 servaddr.sin_port = htons(server_port);

 �if (connect(sockfd, (struct sockaddr*)&servaddr,

sizeof(servaddr)) != 0) {

 �cout<<"connection with the server

failed...\n";

 }

 else

 cout<<"connected to the server..\n";

}

Chapter 3 Systematically Starting and Stopping Software Objects

155

	3.	D efine a suitable set and get member functions for configuring

sensor identifier, deployment locations (x,y), battery level, and

filename for storage as follows.

void IoTSensor::setId(string sen_id)

{

 id = sen_id;

}

string IoTSensor::getId()

{

 return id;

}

void IoTSensor::setX(int sen_x)

{

 x = sen_x;

}

int IoTSensor::getX()

{

 return x;

}

void IoTSensor::setY(int sen_y)

{

 y = sen_y;

}

int IoTSensor::getY()

{

 return y;

}

void IoTSensor::setBatteryLevel(int level)

{

 battery_level = level;

}

Chapter 3 Systematically Starting and Stopping Software Objects

156

int IoTSensor::getBatteryLevel()

{

 return battery_level;

}

void IoTSensor::setFilename(char *file)

{

 strcpy(filename,file);

}

char* IoTSensor::getFilename()

{

 return filename;

}

	4.	D efine a set function for storing sensed values into the

configured files based on the threshold value (val), and

sending sensed values using TCP connected socket (sockfd)

to the connected server based on the threshold value (val).

Similarly, define a get function for accessing sensed values as

follows.

void IoTSensor::setSenseValue(float val)

{

 sense_value = val;

 sprintf(buffer,"Value is %f",val);

 if (val>sense_thr_file)

 {

 cout<<"Writing to file..\n";

 myfile<<buffer;

 }

 if (val>sense_thr_server)

 {

 cout<<"Sending to Server..\n";

Chapter 3 Systematically Starting and Stopping Software Objects

157

 write(sockfd, buffer, strlen(buffer)+1);

 }

}

float IoTSensor::getSenseValue()

{

 return sense_value;

}

	5.	W rite your main() program for testing your IoT sensor objects

as follows.

	 a.	 Create ten sensor objects dynamically.

	 b.	 Configure sensor objects sensed values storing filenames as

Sensor1.txt, Sensor2.txt, and so on.

	 c.	 Configure network server IP and port numbers 127.0.0.1 and

12345 for your IoTsensor objects.

	 d.	 Configure sample thresholds for storing into files and sending to

servers.

	 e.	 Configure sensor object identifiers as sensorA, sensorB,

and so on.

	 f.	 Configure IoTsensor objects deployment locations (x,y).

	 g.	 Configure sample sensing values for IoTsensor objects.

	 h.	 Configure sample battery values for IoTsensor objects.

int main()

{

 IoTSensor *isensor[10];

 for (int i=0;i<10;i++)

 {

 char filename[15];

Chapter 3 Systematically Starting and Stopping Software Objects

158

 sprintf(filename,"Sensor%d.txt",i+1);

 float fthr = 0.003;

 float nthr = 0.006;

 �isensor[i] = new IoTSensor(filename,"127.0.

0.1",12345,fthr,nthr);

 }

 for (int i=0;i<10;i++)

 {

 isensor[i]->setId("sensor"+string(1,'A'+i));

 isensor[i]->setX(i*10);

 isensor[i]->setY(i*10);

 isensor[i]->setSenseValue(i*0.001);

 isensor[i]->setBatteryLevel(100/(i+1));

 }

 return 0;

}

	6.	L et’s test it as follows.

	 a.	 Start the IoTSensor object without running the network server using

the following commands on your computer.

g++ iot_sensor_const.cc -o iot_sensors_start

./iot_sensors_start

Socket successfully created..

connection with the server failed...

..

You can observe all IoTSensor object connections failed.

This error is because no TCP server is running on port

number 12345.

Chapter 3 Systematically Starting and Stopping Software Objects

159

	 b.	 Check which files are created by IoTSensor objects using the

following command on your computer.

ls -rt

Sensor1.txt

Sensor2.txt

..

..

You can observe that temporary files were created, but no

data was written into them by opening files. Next, you test

the code after starting the iperf server.

	 c.	R un iperf TCP server on port number 12345 using the following

command in a new terminal.

iperf -s -p 12345

--

Server listening on TCP port 12345

TCP window size: 128 KByte (default)

--

	 d.	 Start your IoTSensor objects using the following command in another

terminal.

./iot_sensors_start

opening the existing file

Socket successfully created..

connected to the server..

opening the existing file

..

Value is 0.000000

Value is 0.001000

Value is 0.002000

Value is 0.003000

Chapter 3 Systematically Starting and Stopping Software Objects

160

Value is 0.004000

Writing to file..

Value is 0.005000

..

Value is 0.007000

Writing to file..

Sending to Server..

..

Value is 0.009000

Writing to file..

Sending to Server..

The results show that as your application starts, all IoTSensor

objects connect to the iperf TCP server. You can confirm it by

checking the iperf TCP server running on the terminal.

[4] local 127.0.0.1 port 12345 connected with 127.0.0.1

port 44194

[ID] Interval Transfer Bandwidth

[4] 0.0- 0.0 sec 0.00 Bytes 0.00 bits/sec

[7] local 127.0.0.1 port 12345 connected with

127.0.0.1 port 44198

..

[5] local 127.0.0.1 port 12345 connected with

127.0.0.1 port 44196

[5] 0.0- 0.0 sec 0.00 Bytes 0.00 bits/sec

[21] local 127.0.0.1 port 12345 connected with

127.0.0.1 port 44212 (peer 22113.27765.25888)

[21] 0.0- 0.0 sec 18.0 Bytes 1.11 Mbits/sec

..

[17] local 127.0.0.1 port 12345 connected with

127.0.0.1 port 44208 (peer 22113.27765.25888)

Chapter 3 Systematically Starting and Stopping Software Objects

161

[17] 0.0- 0.0 sec 18.0 Bytes 762 Kbits/sec

[19] local 127.0.0.1 port 12345 connected with

127.0.0.1 port 44210 (peer 22113.27765.25888)

[19] 0.0- 0.0 sec 18.0 Bytes 727 Kbits/sec

[SUM] 0.0- 0.0 sec 54.0 Bytes 2.18 Mbits/sec

The iperf TCP results show IoTSensor objects (sensed

value>0.6) send their values, and the iperf TCP server

received them.

Next, let’s check the IoTSensor-generated text files.

	 e.	O pen another terminal and give the following commands to check

Sensor.txt files and their contents.

ls -rt

Sensor1.txt

Sensor2.txt

..

Sensor5.txt

Sensor10.txt

cat Sensor1.txt

Nothing will be displayed.

cat Sensor5.txt

Value is 0.004000

cat Sensor10.txt

Value is 0.009000

From the results, you can observe that as your application starts IoTSensor

objects (sensed value >0.3) had written their sensed values into respective

Sensor.txt files. Hence, you won’t find any contents from Sensor1.txt to

Sensor2.txt files. From IoTSensor object 4 (Sensor5.txt), you can find the

sensed values.

Chapter 3 Systematically Starting and Stopping Software Objects

162

Well done. You have completed the IoTSensor objects startup sequence

hands-on activity successfully. Specifically, you learned during the startup of

your IoTSensor objects how to configure IoTSensor objects automatically

with default values, acquire dynamic memory for processing, create necessary

files for storage, and connect with external services for sending sensed values.

Next, you learn how to automatically handle shutdown activities of your

IoTSensor objects.

�Hands-on Activity 2: Destructors
During hands-on activity 1, you observed the following.

•	 When you start your application, once your IoTSensor

objects are created, they are configured with all

necessary configurations, such as filenames, network

server addresses, and thresholds.

•	 Allotted with suitable dynamic memory for buffers.

•	 For each IoTSensor object, a corresponding storage file

was created.

•	 Automatically connected with configured live network

servers.

However, you forgot to do the following important tasks as part of

closing your smart application.

•	 Releasing IoTsensor objects’ buffer memory

•	 Closing the files after completing the task

•	 Closing the network connection after sending the

sensed values

•	 Removing unnecessary files

Chapter 3 Systematically Starting and Stopping Software Objects

163

As part of this hands-on activity, do the following tasks to shut down

your application.

•	 Implement C++ destructors for automatically handling

the following tasks when IoTSensor objects are deleted.

•	 Closing the files after completing the task

•	 Closing the network connection after sending the

sensed values

•	 Removing unnecessary files

HANDS-ON ACTIVITY: IOT SENSORS SHUTDOWN TASKS

	1.	L et’s modify your IoTSensor class by including the following

line in iot_sensor_const.cc..

~IoTSensor();

	2.	D efine your IoTSensor object’s destructor for doing the

following tasks.

	 a.	D eleting allocated memory for IoTSensor object’ buffer

	 b.	 Closing IoTSensor objects opened files

	 c.	D elete the Sensor.txt if there is no content

	 d.	 Close the network socket connection with the iperf TCP

network server

IoTSensor::~IoTSensor()

{

 cout<<"Shutdown activities:\n";

 cout<<"Deleing the buffer memory!\n";

 delete buffer;

Chapter 3 Systematically Starting and Stopping Software Objects

164

 unsigned int file_size;

 file_size=myfile.tellg();

 cout<<"Closing all opened files\n";

 myfile.close();

 if (file_size==0)

 {

 �cout<<"Removing files which do not have any

data: "<<getFilename()<<"\n";

 remove(getFilename());

 }

 �cout<<"Closing IoTSensor object network

connection..\n";

 close(sockfd);

}

	3.	E xtend your main() code for deleting all dynamically created

IoT objects with the following lines of code.

for (int i=0;i<10;i++)

{

 delete isensor[i];

}

	4.	W ell done. You have updated the IoTSensor class and main()

function for handling shutdown activities. Let’s test it.

	5.	L et’s run your updated application using the following

commands after starting the iperf TCP server in a new

terminal.

./iot_sensors_start

opening the existing file

Socket successfully created..

connected to the server..

Chapter 3 Systematically Starting and Stopping Software Objects

165

Writing to file..

Sending to Server..

Writing to file..

Sending to Server..

..

Shutdown activities:

Deleting the buffer memory!

Closing all opened files

Removing files which do not have any data: Sensor1.txt

Closing IoTSensor object network connection..

Shutdown activities:

Deleting the buffer memory!

Closing all opened files

Removing files which do not have any data: Sensor2.txt

Closing IoTSensor object network connection..

Shutdown activities:

Deleting the buffer memory!

Closing all opened files

Removing files which do not have any data: Sensor3.txt

Closing IoTSensor object network connection..

Shutdown activities:

Deleting the buffer memory!

Closing all opened files

Removing files which do not have any data: Sensor4.txt

Closing IoTSensor object network connection..

..

Shutdown activities:

Deleting the buffer memory!

Closing all opened files

Closing IoTSensor object network connection..

Shutdown activities:

Chapter 3 Systematically Starting and Stopping Software Objects

166

Deleting the buffer memory!

Closing all opened files

Closing IoTSensor object network connection..

When you run your application without destructors, even after the application

closes, you observe no automatic deletion of buffer memory, closing files,

removing unnecessary files, and closing network connections.

These results show that the following shutdown activities are done

automatically using destructors: deleting the buffer memory, closing files,

removing files that do not have any data, and closing network connections.

It means when your objects get deleted, ~IoTSensor() destructor handles

all shutdown activities automatically.

After your application closes, it is highly important to release acquired

computational resources, closing its opened network connections to prevent

attacks from malicious users. Otherwise, attackers can explore open files and

half open socket connections for malicious activities.

Using destructors, all critical shutdown activities are defined in one place

and executed automatically. It helps you to easily debug and track shutdown

activities.

Well done. You have completed the shutdown activities of your smart

application IoTSensor objects.

�Summary
This chapter explained the importance of C++ constructors and

destructors for carrying out software startup and shutdown activities.

Besides, you have practiced C++ supporting constructors and destructors

using interesting hands-on activities. It helps you to systematically

implement complex software applications startup and shutdown activities.

Chapter 3 Systematically Starting and Stopping Software Objects

167

In the next chapter, you learn important C++ specific features, such as

friend classes, functions, and other important topics.

�Practice: Hands-on Activities

	 1.	 List all possible initialization activities,

configurations, and resource allocations needed for

any of your favorite games.

	 2.	 To initialize your game characters, weapons,

and vehicle locations, use suitable constructors,

implement your C++ code, and test it.

	 3.	 Initialize your game characters, weapons,

and vehicle locations using secret files using

constructors and test it in your C++ code.

	 4.	 Connect your game vehicle objects during

startup with a TCP network server and send their

locations to it. Implement it in your C++ code using

constructors and test it.

	 5.	 Close all secret files and socket connections opened

by your game using destructors. Implement your

code and test it.

Chapter 3 Systematically Starting and Stopping Software Objects

169© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_4

CHAPTER 4

Exploring Important
C++ Features
This chapter begins by exploring C++ special features such as friend

member functions and friend classes for accessing objects’ private data

and member functions. Then, hands-on activities use friend member

functions and friend classes to access the object’s secret data. Later, you

look at some ways to pass arguments to functions to communicate with

objects efficiently. As part of practice, you do activities related to passing

arguments by copying values, passing pointers, and references. These

activities help you choose the right way to pass arguments to functions.

Next, you see how to handle the sharing of data among objects of a

class using static fields (data members) and static member functions.

It helps you to handle allocating and accessing common data of objects.

You practice static fields and static member functions for handling

situations such as controlling all object’s activities and accessing their

common data.

Finally, you discover the importance of using constant pointers, a

pointer to a constant, and a constant pointer to a constant. As part of

practice activities, you learn how to restrict accidental changes to data

members of objects.

https://doi.org/10.1007/979-8-8688-0524-0_4#DOI

170

This chapter covers the following topics.

•	 C++ friend classes and functions

•	 Hands-on activity: When to use C++ friend concepts

•	 Best practices in passing arguments

•	 Sharing data of objects using C++ static

•	 Restricting accidental changes using C++ const

�C++ Friend Classes and Functions
You have already learned how to implement objects’ data-hiding features

in C++ by including the data members of the class under the private

section and the corresponding data members accessing functions under

the public section. Data hiding ensures that nonmember functions (or

any external functions) defined outside of a class can access private data

members using only public member functions of the class. However, there

are the following important scenarios in which you need to enable special

approaches for accessing a class’s private data members by external

functions and other classes.

•	 When no public member functions are available inside

the class to access certain private data members of

the class.

•	 When you are not allowed to define any more public

member functions inside the class.

•	 When you need to provide access to the class’s private

members (fields and member functions) through

specific external functions only.

Chapter 4 Exploring Important C++ Features

171

In C++, you can handle these challenges using the friend concept.

If you want to enable an external function to access a class’s private data

members and member functions, you can define the specific external

function as a friend function to the class. Similarly, if you want to enable

an external class to access a class’s private data members and member

functions, then you can define the specific external class as a friend

class to the class. Let’s start with understanding friend functions.

�C++ Friend Functions
For instance, you defined a class called class Secret and defined all its

data members and member functions as private. Afterward, your Secret

class private data and member functions were inaccessible to external

functions.

But, suppose one of the external functions needs to access Secret

objects private data members and member functions. To handle these

situations, C++ is offering friend functions. You can easily handle it by

declaring the external function as a friend function inside the Secret

class, as follows.

class Secret

{

 private:

 int secret;

 void setSecret(int id)

 {

 secret = id;

 }

 int getSecret()

 {

 return secret;

 }

Chapter 4 Exploring Important C++ Features

172

 friend void external_fun(Secret s);

};

void external_fun(Secret s)

{

 s.setSecret(100);

 cout<<s.getSecret()<<"\n";

 cout<<s.secret;

}

From these code snippets, you should observe the following.

•	 Your external function: external_fun is declared a

friend function inside the Secret class using the

friend keyword.

•	 Your external_fun is defined without the friend

keyword and outside the Secret class.

•	 Your external_fun is taking a Secret class s object as

an input argument to access the class’s private data and

member functions.

•	 Inside external_fun, Secret class private data

members and member functions access is only through

the s object.

•	 Inside external_fun, you can also observe that the

private field (secret) is accessible through Secret

member functions (getSecret() and setSecret()),

and the secret field is directly also accessible using the

s object (s.secret).

Next, Let’s test it inside the main() function as follows. Let’s save your

code snippets in secret.cc and execute it.

Chapter 4 Exploring Important C++ Features

173

int main()

{

 Secret s;

 cout<<s.getSecret();

 external_fun(s);

}

g++ secret.cc -o friend1

./friend1

secret.cc: In function 'int main()':

secret.cc:28:20: error: 'int Secret::getSecret()' is private

within this context

 28 | cout<<s.getSecret()<<"\n";

 | ^

secret.cc:12:5: note: declared private here

 12 | int getSecret()

 | ^~~~~~~~~

Your Secret class data members and member functions are

completely hidden from all external member functions except for the

external_fun. Hence, main() does not have access to Secret class

private data members and member functions.

Let’s remove the s.getSecret line of code and execute it again.

g++ secret.cc -o friend1

./friend1

100

100

From the results, you can observe that external_fun is able to set the

private field secret value to 100 and retrieve it. If you observe the code,

in the main() function external_fun is called just like any other function.

Since it is a friend function, an object of the Secret class is passed to

access the class’s private data and member functions.

Chapter 4 Exploring Important C++ Features

174

C++ friend functions help offer access to the private data of a class to

only specific external functions. However, friend functions are unsuitable

for providing private data access only to a specific class and its objects. It

means you need to increase the scope of private data members access to a

class level. Next, let’s look at how to offer access to private data members

and member functions of a class to specific classes only.

�C++ Friend Class
The C++ friend class concept helps ensure a class's private data

members and member functions access to only specific classes, their

objects, and member functions. Suppose you have a Secret class with

only private data members and member functions, and there is another

class called Authenticated to access the Secret class. Then, it is possible

to enforce that only the Authenticated class, its objects, and member

functions can access the Secret class. Using the C++ friend concept, the

Secret class private data members and member functions access can

only be provided through the Authenticated objects. It can be done by

declaring the Authenticated as a friend class inside the Secret class.

Let’s do this task by writing the following code snippets.

class Authenticated;

class Secret

{

 private:

 int secret;

 void setSecret(int id)

 {

 secret = id;

 }

Chapter 4 Exploring Important C++ Features

175

 int getSecret()

 {

 return secret;

 }

 friend class Authenticated;

};

class Authenticated

{

 int myId;

 public:

 void accessSecrets(Secret s)

 {

 myId = 100;

 s.setSecret(100);

 cout<<"Secret set to "<<s.secret;

 }

};

From these code snippets, you should observe the following.

•	 Your Authenticated class is declared as a friend class

inside the Secret class using the friend keyword. It

means the Authenticated class can access private data

members and member functions of the Secret class.

•	 The Authenticated class defines a public member

function called accessSecrets to access Secret class

private data members and member functions.

•	 You can define your main() with a Secret class object

and an Authenticated class object. Then, using the

Authenticated class object, you can access the Secret

class object’s private data and member functions.

Chapter 4 Exploring Important C++ Features

176

•	 No external functions can access Secret class object’s

private data members and member functions; only the

Authenticated class objects can access them.

•	 Important note: Although the Authenticated class is

a friend to the Secret class, the Secret class cannot

access the Authenticated class private data members

(myId) and member functions.

Let’s test it inside the main() function as follows. Let’s save your code

snippets and the following main() code snippet in authenicated.cc and

test it.

int main()

{

 Secret s;

 // s.setSecret(100);

 Authenticated aobj;

 a.accessSecrets(s);

}

In the main() function, if you try to access the Secret class private

data directly, your code execution throws the following errors.

g++ authenticated.cc

#./a.out

authenticated.cc: In function 'int main()':

authenticated.cc:33:17: error: 'void Secret::setSecret(int)' is

private within this context

 33 | s.setSecret(100);

 | ^

authenticated.cc:9:6: note: declared private here

 9 | void setSecret(int id)

Let’s comment s.setSecret() line of code and execute it.

Chapter 4 Exploring Important C++ Features

177

g++ authenticated.cc

./a.out

Secret set to 100

In the main() function, using the Authenticated class object aobj,

you are invoking its public member function called accessSecrets to

access the Secret class private data members and member functions. It

means the Secret class is accessible through only Authenticated class

objects. In this example, you saw that if class A is friend to class B, only

class A can access the private data of class B.

Next, as part of hands-on activities, you learn how to make two classes

friends with each other.

�Hands-on Activity: When to Use C++
Friend Concepts
Let’s practice using C++ friend concepts in the following important

activities.

•	 Practicing friend function usage in the context of a

sample game implementation.

•	 Suppose you need to model a Player class with

his id, location (x,y), and secret location (sx,sy) as

private data members in a game.

•	 You can provide access to the player’s location

(x,y) through public member functions. However,

you are not allowed to define any public member

function inside the player class to access the

players’ secret locations (sx,sy).

•	 You need to offer players secret location (sx,sy)

access to a specific external function only.

Chapter 4 Exploring Important C++ Features

178

•	 Practicing friend class usage in the context of a sample

game implementation scenario.

•	 In your game application, there are two groups of

players called PlayerA and PlayerB.

•	 Every player has a location (x,y).

•	 Player locations are accessible only through private

member functions.

•	 PlayerA and PlayerB are friends to each other. It

means a player from PlayerA group can access

players’ locations in the PlayerB group. Similarly,

players from PlayerB group can access the locations

of players of the PlayerA group.

•	 No other external class and functions can access

the locations of PlayerA and PlayerB groups.

Let’s start with the following hands-on activity for implementing

accessing secret locations of players through friend functions.

FRIEND FUNCTION TO ACCESS PLAYER’S SECRET LOCATIONS

	1.	 Do the following.

	 a.	 Define a player objects modeling class called Player1 with private

data members such as id, location (x,y), and secret location

(sx,sy).

	 b.	 Define a suitable public set and get member functions to access id,

x, and y.

	 c.	S et secret locations (sx,sy) inside the set functions of (x,y).

Chapter 4 Exploring Important C++ Features

179

	 d.	 Do not define any get functions for accessing sx and sy.

	 e.	 Declare a friend function called friendToPlayer inside the

Player1 class.

	2.	L et’s define your Player1 class code inside the

friendfunctions.cc as follows.

#include<iostream>

using namespace std;

class Player1

{

 int id;

 int x,y;

 int sx,sy;

 public:

 void setId(int iid)

 {

 id = iid;

 }

 int getId()

 {

 return id;

 }

 void setX(int ix)

 {

 x = ix;

 sx = x*3;

 }

 void setY(int iy)

 {

 y = iy;

Chapter 4 Exploring Important C++ Features

180

 sy = y*3;

 }

 int getX()

 {

 return x;

 }

 int getY()

 {

 return y;

 }

 friend void friendToPlayer(Player1 *p);

};

	3.	 Define your friend function to access player objects’ secret

locations through player object pointer.

void friendToPlayer(Player1 *p1)

{

 �cout<<"Player id:"<<p1->id<<" secret x "<<p1-

>sx<<" secret y "<<p1->sy;

}

	4.	 Define the main() function for testing your code by accessing

the Players secret location using the friend function.

int main()

{

 Player1 p1;

 cout<<"Secret accessing"<<p1.sx;

 p1.setId(100);

 p1.setX(10);

 p1.setY(10);

 friendToPlayer(&p1);

}

Chapter 4 Exploring Important C++ Features

181

	5.	T est your code using g++ compiler and observe the following.

	 a.	 main() is not allowed to access player object secret location sx

directly.

	 b.	 main() is allowed to access player object normal locations (x,y)

using set and get functions

	 c.	 main() is allowed to access the player object’s secret location

(sx,sy) through friendToPlayer.

g++ friendfunctions.cc -o friend1

friendfunctions.cc: In function 'int main()':

friendfunctions.cc:47:30: error: 'int Player1::sx'

is private within this context

 47 | cout<<"Secret accesing"<<p1.sx;

 | ^~

friendfunctions.cc:7:6: note: declared private here

 7 | int sx,sy;

 | ^~

There are errors due to main() trying to access the players secret location sx

directly. Let’s comment it and execute it again as follows:

g++ friendfunctions.cc -o friend1

./friend1

Player id:100 secret x 30 secret y 30

This time, main() can successfully access player object p1 secret locations

through the friend function.

Well done! You have successfully tested the friend function.

Next, let’s learn how to make two classes friends.

Chapter 4 Exploring Important C++ Features

182

FRIEND CLASSES

	1.	A s part of practicing friend classes, let’s do the following

activities.

	 a.	 Define two classes called PlayerA and PlayerB to model two groups

of player objects.

	 b.	 Define PlayerA and PlayerB classes with private data members

such as id, location (x,y).

	 c.	 Define all set and get functions as private member functions.

	 d.	A llow PlayerA objects to access PlayerB objects’ locations.

	 e.	A llow PlayerB objects to access PlayerA objects’ locations.

	 f.	A llow the main() function to access PlayerA and PlayerB private

member functions through a friend function only.

	2.	T o carry out these activities, let’s declare the PlayerA class in

friendclasses.cc.

	 a.	 Define id, x, y as private members and related set and

get functions. Next, declare a location access function:

myFriendLocation to access PlayerB location.

	 b.	 Declare an external friend function: friendtoAB to access PlayerA

and PlayerB objects data from the main().

	 c.	 Declare PlayerB as a friend to it. As PlayerA needs to access

PlayerB data members, there is a forward declaration of PlayerB

class before the PlayerA class definition.

#include<iostream>

using namespace std;

class PlayerB;

Chapter 4 Exploring Important C++ Features

183

class PlayerA

{

 private:

 int id;

 int x,y;

 void setId(int iid);

 int getId();

 void setX(int ix);

 int getX();

 void setY(int iy);

 int getY();

 void myFriendLocation(PlayerB p1);

 �friend void friendtoAB(PlayerA *pa,

PlayerB* pb);

 friend class PlayerB;

};

	3.	 Define all set and get functions for accessing PlayerA fields as

follows.

void PlayerA::setId(int iid)

{

 id = iid;

}

int PlayerA::getId()

{

 return id;

}

void PlayerA::setX(int ix)

{

 x = ix;

}

Chapter 4 Exploring Important C++ Features

184

void PlayerA::setY(int iy)

{

 y = iy;

}

int PlayerA::getX()

{

 return x;

}

int PlayerA::getY()

{

 return y;

}

	4.	 Define the PlayerB class with private data members such as

id, x, and y.

	 a.	 Declare a location access function: myFriendLocation to access

PlayerA location.

	 b.	 Declare an external friend function:friendtoAB to access PlayerA and

PlayerB objects data from the main().

	 c.	 Declare PlayerA as a friend class to the PlayerB .

class PlayerB

{

 private:

 int id;

 int x,y;

 void setId(int iid);

 int getId();

 void setX(int ix);

 int getX();

 void setY(int iy);

 int getY();

Chapter 4 Exploring Important C++ Features

185

 void myFriendLocation(PlayerA p1);

 �friend void friendtoAB(PlayerA *pa,

PlayerB* pb);

 friend class PlayerA;

};

	5.	 Define all set and get functions for accessing PlayerB fields as

follows.

void PlayerB::setId(int iid)

{

 id = iid;

}

int PlayerB::getId()

{

 return id;

}

void PlayerB::setX(int ix)

{

 x = ix;

}

void PlayerB::setY(int iy)

{

 y = iy;

}

int PlayerB::getX()

{

 return x;

}

int PlayerB::getY()

{

 return y;

}

Chapter 4 Exploring Important C++ Features

186

	6.	 Define the PlayerB function to access the PlayerA location.

void PlayerB::myFriendLocation(PlayerA p1)

{

 �cout<<"My Id is "<<getId()<<"and My friend

"<<p1.getId()<<"is located at secret location

(x,y):"<<p1.getX()<<","<<p1.getY()<<"\n";

}

	7.	 Define the PlayerA function to access the PlayerB location.

void PlayerA::myFriendLocation(PlayerB p1)

{

 �cout<<"My Id is "<<getId()<<"and My friend

"<<p1.getId()<<"is located at secret location

(x,y):"<<p1.getX()<<","<<p1.getY()<<"\n";

}

	8.	 Define an external friend function to access PlayerA and

PlayerB object’s private data from the main().

void friendtoAB(PlayerA *pa, PlayerB* pb)

{

 pa->setId(100);

 pa->setX(10);

 pa->setY(10);

 pb->setId(200);

 pb->myFriendLocation(*pa);

 pb->setX(20);

 pb->setY(20);

 pa->myFriendLocation(*pb);

}

Chapter 4 Exploring Important C++ Features

187

	9.	T est your code as follows in your main() program.

int main()

{

 PlayerA pa;

 PlayerB pb;

 friendtoAB(&pa,&pb);

}

	10.	T est your main() code using the following commands and

observe the following.

	 a.	P layerA objects can access the PlayerB object location.

	 b.	P layerB objects can access the PlayerA object location.

	 c.	 main() is accessing PlayerA and PlayerB through friendtoAB

function.

g++ friendclasses.cc -o friendclasses

./friendclasses

My Id is 200and My friend 100is located at secret

location (x,y):10,10

My Id is 100and My friend 200is located at secret

location (x,y):20,20

Well done. You completed the task and learned how to make two classes

friends with each other and how to access their private data.

Next, let’s discuss the various ways to pass arguments to functions.

Chapter 4 Exploring Important C++ Features

188

�Best Practices in Passing Arguments
It is common to pass arguments to functions for carrying out processing

tasks. You plan to do the following when you pass arguments from a source

function to a destination function.

•	 The destination function should change the values

of the original variables. In this scenario, you pass

the address of the original variable to the destination

function.

•	 The destination function is defined with pointer

arguments to hold the addresses of the source

function variables. (e.g., int *, Player *, etc.).

•	 Having the address of the source function variables,

the destination function modifies the values of

the original variables from the source function

variables’ address locations only.

•	 In C++, to change the object data (data members

values), you must pass the object’s address to the

destination function.

•	 The destination function changes should not modify

the original variables’ values. In this scenario, you pass

the copy of the original variable to the destination

function.

•	 The destination function is defined with new

variables to copy the values of the source function

variables. (e.g., int, Player, etc.). That means the

destination function creates new variables at new

locations.

Chapter 4 Exploring Important C++ Features

189

•	 Since the destination function changes the

copied values of the original variables, the source

function’s original variables are not changed.

•	 In C++, to avoid changing the object data (data

members values), you should not pass the object’s

address to the destination function. You should

pass only the object name to the destination

function.

However, a few exceptions exist when passing arrays to functions,

such as when you pass the array name from the source function to the

destination function. By default, the array starting address is passed to the

destination function. Having the starting address of the source array, the

destination function can modify the source array location values directly.

The destination function can be defined with array arguments or

pointer arguments. For instance, to pass int a[20] to a function, you can

define it as follows.

destinationFunction (int a[20]) or destinationFunction (int *a)

Similarly, to pass an array of objects of a class: Player p[20] to a

function, you can define it as follows.

destinationFunction (Player p[]) or destinationFunction

(Player *p)

In C++, another important way is called passing reference of a variable

for passing arguments to functions. Let’s first go over reference variables.

•	 Reference variables are passed to the destination

function for referencing the original variables. Hence,

the destination function can change the original

variable values. A reference variable works like a

pointer variable to change the original variable values,

but there are a few differences.

Chapter 4 Exploring Important C++ Features

190

•	 When you define a reference variable, it must be

initialized with a referencing variable. For example, int

a; int &ref = a; here, ref is referencing variable a.

You can change ref to change the variable values of a.

For example, ref = ref+1 changes the variable a value.

•	 Unlike pointers, to pass a reference of a variable no

need to pass the address of the variable. For example,

you can just pass the original variable name (int a)

from the source function to call a function: func(a);

and the destination function should be defined

with the respective reference variable argument as

fun(int &a).

•	 Reference variables need not be dereferenced like

pointer variables to access the values.

•	 Reference variables simplify the syntax compared to

pointers usage.

Next, let’s practice passing arguments.

�Arguments Passing Activities
This section covers the following concepts by doing activities.

•	 Passing objects by values, addresses, and references

•	 Passing an array of objects

•	 Passing dynamically created array of objects

Let’s start by looking at various ways to pass objects to functions.

Chapter 4 Exploring Important C++ Features

191

PASSING OBJECTS TO FUNCTIONS

	1.	T o better understand passing objects as arguments to

functions, let’s define the following example class called Item.

	 a.	S ave all the following code snippets in passingobjects.cc.

	 b.	 Define Item class with private fields id and price.

	 c.	 Define a constructor to initialize Item id and price.

	 d.	 Define id accessing set and get functions.

#include<iostream>

using namespace std;

class Item

{

 int id;

 int price;

 public:

 Item()

 {

 id = rand()/100;

 price = 100;

 }

 void setId(int i)

 {

 id = i;

 }

 int getId()

 {

 return id;

 }

};

Chapter 4 Exploring Important C++ Features

192

	2.	 Do the following.

	 a.	 Define a function called changeItem, pass the Item object as a value,

and set the id to 100.

	 b.	 Define a function called changeItemwPtr, pass the Item object

address, and set the id to 100.

	 c.	 Define a function called changeItemwRef, pass the Item object

reference, and set the id to 100.

void changeItem(Item i)

{

 i.setId(100);

}

void changeItemwPtr(Item *i)

{

 i->setId(100);

}

void changeItemwRef(Item &i)

{

 i.setId(100);

}

	3.	I mplement your main() testing code as follows and observe

the following.

	 a.	T o call the changeItem, pass the object name: i1.

	 b.	T o call the changeItemwPtr, pass the address of the object: &i1.

	 c.	T o call the changeItemwRef, pass the object name as i1.

int main()

{

 Item i1;

 changeItem(i1);

 cout<<"Item id"<<i1.getId()<<"\n";

Chapter 4 Exploring Important C++ Features

193

 changeItemwPtr(&i1);

 cout<<"Item id"<<i1.getId()<<"\n";

 changeItemwRef(i1);

 cout<<"Item id"<<i1.getId()<<"\n";

}

	4.	T est your code by executing passingobjects.cc and

observe the following.

	 a.	A lthough changeItem updated id to 100, changes are not reflected

in main(). It is because you passed the copy of the object only. Hence,

you observe a random id in main().

	 b.	 Changes done to id by changeItemwPtr are reflected in main(), it

is due to passing the actual address of the item object.

	 c.	 Changes done to id by changeItemwRef are reflected in main(), it

is due to passing the reference of the item object.

g++ passingobjects.cc -o argspassing

./argspassing

Item id18042893

Item id100

Item id100

From the results, passing either object address or reference is only helpful to

change objects’ data. Moreover, passing a reference or an address eliminates

copying the object from the source function memory space to the destination

function memory space.

On the other hand, copying an object from the source function memory space

to the destination function memory space does not help change the original

object data.

Next, let’s pass an array of objects to a function and how it works.

Chapter 4 Exploring Important C++ Features

194

PASSING ARRAY OF OBJECTS TO A FUNCTION

	1.	 Copy passingobjects.cc to arrayobjects.cc and

make the following changes.

	 a.	 Define a function called processwarray and pass an array of items

to the function for printing objects’ address and item id.

void processwarray(Item ti[COUNT])

{

 for (int i=0;i<COUNT;i++)

 {

 cout<<"Address of item "<<&ti[i]<<"\n";

 �cout<<"Item processed "<<ti[i].

getId()<<"\n";

 }

}

	 b.	 Define a function called processwptr and pass a pointer to the array

of items to the function for printing the object’s address and item id.

void processwptr(Item *p)

{

 for (int i=0;i<COUNT;i++)

 {

 cout<<"Address of item "<<&p[i]<<"\n";

 �cout<<"Item processed "<<p[i].

getId()<<"\n";

 }

}

Chapter 4 Exploring Important C++ Features

195

	2.	 Define the main() testing code for the following activities.

	 a.	 Define an array of item objects.

	 b.	P rint each item’s object address.

	 c.	 Call processwarray() by passing the array name to print the array

of item objects’ addresses and each item’s id.

	 d.	 Call processwptr() by passing the array starting address (through

array name) to print the array of item objects’ addresses and each

item’s id.

int main()

{

 Item il[COUNT];

 for (int i=0;i<COUNT;i++)

 {

 cout<<"Address of item "<<&il[i]<<"\n";

 }

 cout<<"\nSame Locations will be accessed\n";

 processwarray(il);

 cout<<"\nSame Locations will be accessed\n";

 processwptr(il);

}

	3.	T est your code using the following commands and observe the

following.

	 a.	 main(), processwarray(), and processwptr() print the same

addresses of the array of objects.

	 b.	P assing the array name itself leads to passing the starting address of

the array.

	 c.	H ence, all three functions are processing the same array of item

objects.

Chapter 4 Exploring Important C++ Features

196

g++ arrayobjects.cc -o arrayofobjs

./arrayofobjs

Address of item 0x7ffd46550ec0

Address of item 0x7ffd46550ec8

Address of item 0x7ffd46550ed0

.. few lines skipped

Same Locations will be accessed

Address of item 0x7ffd46550ec0

Item processed 18042893

Address of item 0x7ffd46550ec8

Item processed 8469308

Address of item 0x7ffd46550ed0

Item processed 16816927

.. few lines skipped

Same Locations will be accessed

Address of item 0x7ffd46550ec0

Item processed 18042893

Address of item 0x7ffd46550ec8

Item processed 8469308

Address of item 0x7ffd46550ed0

Item processed 16816927

.. few lines skipped

The results show that the addresses of item objects printed in main()

functions are the same as addresses printed through processwarray(il)

and processwptr(il) functions. It means instead of copying actual objects

to the functions, you can access the objects using their actual addresses. It

eliminates unnecessary copying of memory contents from one process space

to another. Hence, it is highly efficient for passing an array of objects to any

function.

Chapter 4 Exploring Important C++ Features

197

Another important detail note is that both functions print the same item

id values.

That means arrays are passed to a function by default with an array starting

address. Hence, functions can update array location values.

Next, let’s pass a dynamically created array of object memory blocks to

a function and how it works.

PASSING DYNAMICALLY CREATED OBJECTS MEMORY BLOCK TO A
FUNCTION

	1.	 Copy passingobjects.cc to dynobjects.cc and make the

following changes.

	 a.	 Define a function called process and pass a pointer to an array of

items to the function for printing an object’s address and item id.

void process(Item *p)

{

 if(p!=NULL)

 for (int i=0;i<COUNT;i++)

 {

 cout<<"Address of item "<<&p[i]<<"\n";

 �cout<<"Item processed "<<p[i].

getId()<<"\n";

 }

}

	 b.	R emove other external functions copied from the

passingobjects.cc.

Chapter 4 Exploring Important C++ Features

198

	2.	 Define the main() testing code for the following activities.

	 a.	 Declare a pointer to hold the Item objects.

	 b.	A llocate ten item objects memory block dynamically using the new

operator.

	 c.	P rint each item object address and id.

	 d.	 Call process() by passing the pointer of the dynamically created item

objects memory blocks to print the addresses of the item objects and

to print each item’s id.

	 e.	 Deallocate dynamically created memory.

int main()

{

 Item *il;

 il = new Item[COUNT];

 cout<<"main item details\n";

 if (il!=NULL)

 for (int i=0;i<COUNT;i++)

 {

 cout<<"Address of item "<<&il[i]<<"\n";

 �cout<<"Item processed "<<il[i].

getId()<<"\n";

 }

 cout<<"inside function item details\n";

 process(il);

 delete il;

}

Chapter 4 Exploring Important C++ Features

199

	3.	T est your code using the following commands and observe the

following.

	 a.	T he main() and process functions access the same item object

memory blocks.

	 b.	T he main() and process functions print the same item object

addresses and id details.

g++ arrayobjects.cc -o arrayofobjs

./arrayofobjs

main item details

Address of item 0x564b7a533eb0

Item processed 18042893

Address of item 0x564b7a533eb8

Item processed 8469308

Address of item 0x564b7a533ec0

Item processed 16816927

..

inside function item details

Address of item 0x564b7a533eb0

Item processed 18042893

Address of item 0x564b7a533eb8

Item processed 8469308

Address of item 0x564b7a533ec0

Item processed 16816927

From the results, you can observe that when you create an array of object

memory dynamically using a new operator, the memory block can be passed

to other functions by passing the starting address of the memory block so that

the destination function can access the original block of the object’s memory.

Next, let’s learn how to hide the private data of real-world entities and

protect their objects’ access from external functions.

Chapter 4 Exploring Important C++ Features

200

�Sharing Data of Objects Using C++ Static
Usually, objects have their own copy of data members. However, in some

contexts objects need to share data of a class. For instance, in e-commerce

applications, to count the number of customers, it is necessary to aggregate

customer registration count. Similarly, in multiplayer games, all player

objects may share group details. To handle these requirements in specific

classes, it is necessary to include sharing data members for all objects.

In C++, you can define shared data members in a class using static

data members declaration, and to access them, you must define static

member functions. Let’s look at how to declare static data members in a

class and access them.

The following is an example.

Class Registration

{

 public:

 static int count;

 static int getCount()

 {

 return count;

 }

 static void setCount(int c)

 {

 count = c;

 }

};

After declaring a static data member inside a class, it must be defined

(or initialized) outside the class as follows.

int Registration::count;

Chapter 4 Exploring Important C++ Features

201

Another important point to notice about static data members is they

must be accessed through only static member functions. For instance,

in the Registration class, static member functions such as static int

getCount() and static void setCount(int c) are defined to access static data

member count.

int main()

{

 Registration r1,r2;

 r1.setCount(10)

 cout<<r2.getCount(); //During execution it displays 10.

 cout<<Registration::getCount(); �//Another way of //calling

static member functions.

 return 0;

}

You should understand the following differences between normal data

members and static data members.

•	 Every object has a separate copy of memory allocation

for each normal data member during the program

execution.

•	 For all objects, only one copy of a static data member is

allocated in memory during the program execution.

•	 Normal data members can be accessed using normal

member functions.

•	 Static data members must be accessed through only

static member functions.

Next, let’s practice using static data members and static member

functions.

Chapter 4 Exploring Important C++ Features

202

STATIC DATA MEMBERS: USAGE 1

	1.	I n this task, you use static data members for allocating shared

data members to all objects of a class. Create a registration

class and count the number of registrations by doing the

following activities.

	 a.	S ave the following task’s code in registrations.cc.

	 b.	 Define a registration class with a private data member id.

	 c.	 Define a static private data member count.

	 d.	 Define set and get member functions for accessing id.

	 e.	 Define an update static member function for updating the count.

	 f.	 Define a getCount static member function for accessing the count.

#include<iostream>

using namespace std;

class Registration

{

 static int count;

 int id;

 public:

 void setId(int rid)

 {

 id = rid;

 }

 int getId()

 {

 return id;

 }

Chapter 4 Exploring Important C++ Features

203

 static void update()

 {

 count = count+1;

 }

 static int getCount()

 {

 return count;

 }

};

	2.	E very static data member must be defined outside of the class

as follows.

int Registration::count;

	3.	 Define the main() testing code for the following activities.

	 a.	 Create three Registration objects.

	 b.	S et each registration object id, then update the count using static

member function update.

	 c.	P rint the registration ids of each object and the total registration count.

int main()

{

 Registration r1,r2,r3;

 r1.setId(100);

 r1.update();

 r2.setId(200);

 r2.update();

 r3.setId(200);

 r3.update();

Chapter 4 Exploring Important C++ Features

204

 �cout<<"Registrations list:"<<r1.getId()<<"

"<<r2.getId()<<" "<<r3.getId()<<"\n";

 �cout<<"Total number of registrations "<<

Registration::getCount();

 return 0;

}

	4.	T est your code and observe the following.

	 a.	S ince three registration objects were created, the total count is three.

	 b.	M oreover, you can observe that static member functions can be called

using an object or class name and scope resolution operator (::).

g++ registrations.cc -o regcount

./regcount

Registrations list:100 200 200

Total number of registrations 3

The results show that all three objects shared the count data member. Hence,

as each object updates the count, it is reflected to other objects, too.

Next, let’s learn the importance of static data members for controlling

all player objects’ states using a single command.

CONTROL OBJECTS STATE USING STATIC DATA MEMBER

	1.	I n a game context, let’s learn how to enable or disable power

for all player objects by doing the following activities.

	 a.	S ave the following task’s code in playerscontrol.cc.

	 b.	 Define a player class with an example private data member

such as id.

Chapter 4 Exploring Important C++ Features

205

	 c.	 Define a player’s power as a static data member to enable or disable

with a single command.

	 d.	 Define set and get member functions for accessing player id.

	 e.	 Define static member functions for setting and accessing static data

member power.

#include<iostream>

using namespace std;

class Player

{

 static int power;

 int id;

 public:

 void setId(int rid)

 {

 id = rid;

 }

 int getId()

 {

 return id;

 }

 static void setPower(int ipower)

 {

 power = ipower;

 }

 static int getPower()

 {

 return power;

 }

};

Chapter 4 Exploring Important C++ Features

206

	2.	E very static data member must be defined outside of the class

as follows.

int Player::power;

	3.	 Define the main() testing code to do the following activities.

	 a.	 Create three player objects.

	 b.	S et each player object id.

	 c.	E nable all players’ power together using the static member function

setPower().

	 d.	P rint the power status of all player objects.

	 e.	 Disable all players’ power together using the static member function

setPower().

	 f.	P rint the power status of all player objects.

int main()

{

 enum powerstate {DISABLE,ENABLE};

 Player p1,p2,p3;

 p1.setId(100);

 p2.setId(200);

 p3.setId(300);

 �cout<<"Start with enabling power for all

players to fly\n";

 Player::setPower(ENABLE);

 if (p1.getPower() == ENABLE)

 {

 cout<<"Player1 can fly\n";

 }

 if (p2.getPower() == ENABLE)

 {

Chapter 4 Exploring Important C++ Features

207

 cout<<"Player2 can fly\n";

 }

 if (p3.getPower() == ENABLE)

 {

 cout<<"Player3 can fly\n";

 }

 cout<<"Disable flying power for all player\n";

 Player::setPower(DISABLE);

 �if (p1.getPower() == ENABLE || p2.getPower()

== ENABLE || p3.getPower() == ENABLE)

 {

 cout<<"All players can fly\n";

 }

 else

 {

 �cout<<"No player can fly! Power is

disabled.\n";

 }

 return 0;

}

	4.	T est your code and observe the following.

	 a.	 You can observe that all players’ power together is enabled when you

set power using the static member function.

	 b.	 You can also observe that all players’ power together is disabled when

you set power using the static member function.

g++ playerscontrol.cc -o controlpower

./controlpower

Start with enabling power (set to 1) for all

players to fly

Chapter 4 Exploring Important C++ Features

208

Player1 can fly

Player2 can fly

Player3 can fly

Disable flying power for all player

No player can fly! Power is disabled.

The results show that all players have been enabled and disabled successfully

using static data members and static member functions.

�Restricting Accidental Changes Using
C++ const
You have learned how to control accessing of object data members using

access specifiers such as private, and how to provide special access for

the object’s private data members through friend functions and classes.

On the other hand, you have also explored passing objects to external

functions or other object functions to carry out important tasks by

interacting with the objects. For example, when you need to access an

object’s data efficiently from a function without copying the object, you

are passing the object’s address or reference of the object to the function.

However, the destination function can modify the object’s data when you

pass an object reference or address to a function. Suppose you need to

pass objects to destination functions efficiently using pointers, but you

want to restrict destination functions not to change any data of the objects.

Then, you must learn how to use C++ to support a constant pointer, a

pointer to a constant, and a constant pointer to a constant. In C++, you can

implement these pointers using the const keyword.

The following are ways to restrict accidental changes to variables or

objects in C++.

Chapter 4 Exploring Important C++ Features

209

•	 Pointer to constant: When you need to allow a

function to read an object’s data but cannot change

or alter it, then you must use a pointer to constant.

Restricting any modification to an object’s data through

the pointer is highly helpful.

	 The following is an example.

Class ABC

{

 public:

 int a;

 int getA()

 {

 return a;

 }

};

int main()

{

 ABC obj;

 obj.a = 10;

 const ABC *p;

 p = &obj;

 p->a = 20; //It is not allowed.

 return 0;

}

	 Here, ABC *p is pointing to a constant object. Hence,

the pointer cannot alter the obj value.

Chapter 4 Exploring Important C++ Features

210

•	 Constant pointer: When you want to assign a single

object address to a pointer, you must use a constant

pointer. A constant pointer is different from a pointer to

constant.

	 a.	 A constant pointer must be initialized with a

variable address during a declaration of the

pointer. However, the pointer to const need

not be initialized during the declaration of the

pointer.

	 b.	 A constant pointer cannot be assigned with

any other address after declaration, whereas a

pointer to const can be assigned multiple times.

	 c.	 A constant pointer helps in restricting multiple

objects/variables address assignments to a

pointer.

	 d.	 A constant pointer’s pointing variable or object

data can be changed, whereas a pointer to a

constant cannot change its pointing variable or

object data.

The following is an example.

Class ABC

{

 public:

 int a;

 int getA()

 {

 return a;

 }

};

Chapter 4 Exploring Important C++ Features

211

int main()

{

 ABC obj1,obj2;

 obj1.a = 10; ABC *const cp = &obj1;

 cp->a=100; //It is allowed.

 cp = &obj2; //It is not allowed.

 return 0;

}

	 Here, you can observe that the constant pointer cp

is initialized with the obj1 address. Later, cp cannot

be initialized with the other object (obj2) address.

However, using cp, the obj1 data can be changed.

	 1.	 Constant pointer to a constant: When you want

to enforce a strict rule such as a pointer cannot

change the values of its pointing variable or object,

and once a pointer is initialized with a variable or

object address, the pointer cannot be assigned with

the addresses of other variables or objects. Then,

you must use a constant pointer to a constant for

assigning a variable or object address.

Let’s try to understand its usage by looking at the

following example.

Class ABC

{

 public:

 int a;

 int getA()

 {

 return a;

 }

};

Chapter 4 Exploring Important C++ Features

212

int main()

{

 ABC obj1,obj2;

 obj1.a = 10; const ABC *const cpc = &obj1;

 cpc->a=100; //It is not allowed.

 cpc = &obj2; //It is not allowed.

 return 0;

}

Here, you can observe that the pointer cpc is initialized with the obj1

address. Later, cpc cannot be initialized with the obj2 address, and when

using cp, the obj1 data cannot be changed.

Next, let’s practice these constants and pointers through important

activities.

�C++ Const and Pointer Usage Activities
This section explains three concepts through activities.

•	 Pointer to constant, constant pointer, constant pointer

to constant

•	 Passing a pointer to a constant of a player object for

restricting accidental changes to the player object

•	 Passing a constant pointer to a function to avoid later

changes to the pointing address in the destination

functions

Let’s start by looking at const and pointer usages.

Chapter 4 Exploring Important C++ Features

213

C++ CONST AND POINTER USAGE

	1.	L et’s do the following activities.

	 a.	 Write the following code activities in ptr2const.cc.

	 b.	 Define an integer variable and initialize its value, change its value, and

print it.

	 c.	 Declare a pointer to constant and assign the address of the integer

variable with it.

	 d.	P rint the integer variable value using the pointer.

	 e.	T ry to change the integer variable value using the pointer. During the

execution of the code, you must observe an error message related to a

read-only location.

#include<iostream>

using namespace std;

int main()

{

 int a=100;

 a=a+50;

 cout<<"a value"<<a<<"\n";

 const int *ptr=&a;

 cout<<*ptr;

 *ptr=*ptr+1;

 cout<<"Accessing a through ptr"<<*ptr<<"\n";;

 return 0;

}

Chapter 4 Exploring Important C++ Features

214

	2.	T est your ptr2const.cc using the following commands and

observe the results.

#g++ ptr2const.cc

#./a.out

ptr2const.cc: In function 'int main()':

ptr2const.cc:11:6: error: assignment of read-only

location '* ptr'

 11 | *ptr=*ptr+1;

 | ~~~~^~~~~~~

The results show that the pointer to constant (ptr) is not

allowed to change the integer variable value. You can comment

in line 11 and execute the ptr2const.cc to avoid error

messages.

	3.	L et’s look at const pointer usage by doing the following

activities.

	 a.	 Write the following code activities in constptr.cc.

	 b.	 Define two integer variables (a and b) and initialize their values.

	 c.	 Declare a constant pointer and assign the address of the integer

variable a.

	 d.	P rint the integer variable value using the pointer.

	 e.	R eassign the constant pointer with the address of variable b. During

the execution of the code, you must observe an error message related

to a read-only location.

#include<iostream>

using namespace std;

int main()

{

 int a=100;

Chapter 4 Exploring Important C++ Features

215

 int b=200;

 �int *const p=&b;�//must initialize

constant pointer

 cout<<"Accessing b through p"<<*p<<"\n";

 p=&a;

 cout<<"Accessing a through p"<<*p;

 return 0;

}

	4.	T est your constptr.cc using the following commands and

observe the results.

#g++ constptr.cc

constptr.cc: In function 'int main()':

constptr.cc:10:3: error: assignment of read-only

variable 'p'

 10 | p=&a;

 | ~^~~

From the results, you can observe that the constant pointer

(p) is not allowed to change the address pointed by it. You

can comment in line 10 and execute the code to avoid error

messages.

Next, let’s go over constant pointers to constant usage.

	5.	 Define the main() testing code for the following activities.

	 a.	L earn const pointer usage by doing the following activities.

	 b.	 Write the following code activities in constptr2const.cc.

	 c.	 Define two integer variables (b and c) and initialize their values.

	 d.	 Declare a constant pointer to const (cp2c) and assign with it the

address of the integer variable c.

Chapter 4 Exploring Important C++ Features

216

	 e.	P rint the integer variable value using the pointer.

	 f.	R eassign the constant pointer with the address of variable b.

	 g.	T ry to change the value of c using cp2c. During the execution of the

code, you must observe an error message related to a read-

only location.

#include<iostream>

using namespace std;

int main()

{

 int b=200;

 int c=300;

 const int *const cp2c=&c;//must initialize

 cout<<*cp2c;

 cp2c=&b;

 *cp2c=*cp2c+1;

 return 0;

}

g++ constptr2const.cc

./a.out

constptr2const.cc: In function 'int main()':

constptr2const.cc:11:6: error: assignment of read-

only variable 'cp2c'

 11 | cp2c=&b;

 | ~~~~^~~

constptr2const.cc:12:7: error: assignment of read-

only location '*(const int*)cp2c'

 12 | *cp2c=*cp2c+1;

 | ~~~~~^~~~~~~~

Chapter 4 Exploring Important C++ Features

217

From the results, you can observe that the pointer (cp2c) is not allowed to

change the address pointed by it, and cp2c cannot change the value of the

integer variable c. You can comment in lines 11 and 12 and execute it to avoid

error messages.

Next, let’s do an activity related to a constant pointer pointing to player

class objects.

CONSTANT POINTER TO OBJECTS

	1.	L et’s practice constant pointer to objects by doing the following

activities.

	 a.	S ave the following task’s code in constptr2objs.cc.

	 b.	 Define a Player class to model player objects with the example

private fields such as id and power.

	 c.	 Define id and power data members accessing the public set and get

member functions.

#include<iostream>

using namespace std;

class Player

{

 int power;

 int id;

 public:

 void setId(int rid)

 {

 id = rid;

 }

Chapter 4 Exploring Important C++ Features

218

 int getId()

 {

 return id;

 }

 void setPower(int ipower)

 {

 power = ipower;

 }

 int getPower()

 {

 return power;

 }

};

	2.	 Define an external function called whoispowerful to do the

following activities.

	 a.	I t takes two player object pointers (*p1,*p2) as arguments to access

two player objects.

	 b.	 Write cheating code such as changing the p1 pointer pointing player

object address to the p2 pointer pointing player object address. Set the

p1 pointing player object id to its original id (e.g.,100).

	 c.	S ince p1 is now pointing to the p2 pointing player object, the p1

pointing player object also has the same power as the p2 pointing

player object’s power.

	 d.	 Due to cheating code, this function always returns p1 as a

powerful object.

Player* whoisPowerful(Player *p1, Player *p2)

{

 p1=p2;

 p1->setId(100);

 if (p1->getPower() >= p2->getPower())

Chapter 4 Exploring Important C++ Features

219

 {

 return p1;

 }

 else

 {

 return p2;

 }

}

	3.	 Define another external function called cwhoispowerful to do

the following activities.

	 a.	I t takes two constant pointers to player objects (* const p1,*

const p2) as arguments.

	 b.	 Write cheating code such as changing the p1 pointer pointing player

object address to the p2 pointer pointing player object address.

However, during execution, it leads to a read-only-related error.

	 c.	S ince constant pointers were used, this function always returns the

correct player object with maximum power.

Player* cwhoisPowerful(Player *const p1, Player

*const p2)

{

 // p1=p2;

 if (p1->getPower() > p2->getPower())

 {

 return p1;

 }

 else

 {

 return p2;

 }

}

Chapter 4 Exploring Important C++ Features

220

	4.	 Do the following tasks in main() as follows.

	 a.	 Define two player objects (p1,p2) and set their ids and power using set

functions. While setting values, set high power to the p2 object.

	 b.	 Call whoisPowerful to determine who is a powerful player. Although

p2 is set to high power, during execution, you can observe that p1 is

more powerful because of the cheating code in whoisPowerful.

	 c.	 Call cwhoisPowerful to determine who is a powerful player. During

execution, you can observe that cheating code throws errors due to

constant pointers.

int main()

{

 Player p1,p2;

 p1.setId(100);

 p1.setPower(1);

 p2.setId(200);

 p2.setPower(2);

 Player *pa = whoisPowerful(&p1,&p2);

 cout<<pa->getId()<<" is powerful\n";

 Player *pb = cwhoisPowerful(&p1,&p2);

 cout<<pb->getId()<<" is powerful\n";

 return 0;

}

	5.	T est your code by executing the following commands and

observe the following.

	 a.	 During testing, you can observe whoisPowerful executes without

throwing any errors.

	 b.	 cwhoisPowerful throws errors until you comment in cheating code

related to changing constant pointers.

Chapter 4 Exploring Important C++ Features

221

g++ constptr2objs.cc -o powerfulplayer

./powefulplayer

constptr2objs.cc: In function 'Player*

cwhoisPowerful(Player*, Player*)':

constptr2objs.cc:44:11: error: assignment of read-

only parameter 'p1'

 44 | p1=p2;

 | ~~^~~

The results show that cwhoisPowerful is not allowed to change constant

pointer addresses. Hence, it throws errors. Comment in line 44 and comment

cwhoisPowerful function, execute the code again, and observe the results.

g++ constptr2objs.cc.cc -o powerfulplayer

./powerful

100 is powerful

The results show that whoisPowerful cheated code executed successfully

and returns the malicious results. Comment whoisPowerful and call

cwhoisPowerful and observe the results.

g++ constptr2objs.cc.cc -o powerfulplayer

./powerful

200 is powerful

The results show that cwhoisPowerful code executed successfully without

any cheated code and gave the correct results.

Next, let’s do an activity related to a pointer pointing to const player

class objects.

Chapter 4 Exploring Important C++ Features

222

POINTER TO CONST OBJECTS

	1.	L et’s practice pointer to constant objects by doing the following

activities.

	 a.	S ave the following task’s code in ptr2constobjs.cc.

	 b.	 Define a Player class to model player objects with the example public

fields such as id and power.

	 c.	 Define id and power data members accessing the public set and get

member functions.

#include<iostream>

using namespace std;

class Player

{

 public:

 int power;

 int id;

 void setId(int rid)

 {

 id = rid;

 }

 int getId()

 {

 return id;

 }

 void setPower(int ipower)

 {

 power = ipower;

 }

Chapter 4 Exploring Important C++ Features

223

 int getPower()

 {

 return power;

 }

};

	2.	 Define the main() testing code for the following activities.

	 a.	 Define a player p1 object and set its id and power directly using the

object p1.

	 b.	 Define a pointer (pptr1) to the p1 object and directly set its id and

power using the pptr1. During execution, you can observe changes to

the p1 object do not throw an error.

	 c.	 Define a player p2 object and set its id and power directly using the

object p2.

	 d.	 Define a pointer to constant (pptr2) to the p2 object and set its id and

power directly using the pptr2. During execution, pprt2 can only read

p2 object data member values, but any changes to p2 object data

member values throw errors.

int main()

{

 Player p1;

 p1.id=100;

 p1.power=1;;

 Player *pptr1;

 pptr1=&p1;

 pptr1->id = 0;

 pptr1->power = 0;

 �cout<<"Ptr changed the player id"<<pptr1->

id<<"\n";

Chapter 4 Exploring Important C++ Features

224

 Player p2;

 p2.id=200;

 p2.power=1;;

 const Player *pptr2;

 pptr2=&p2;

 cout<<"Player id"<<pptr2->id<<"\n";

 // pptr2->id=100;

 cout<<"player id"<<pptr2->id<<"\n";

 return 0;

}

	3.	T est your code using the following commands and observe the

following.

g++ ptr2constobjs.cc -o ptr2constobjs

./ptr2constobjs

ptr2constobjs.cc: In function 'int main()':

ptr2constobjs.cc:30:11: error: assignment of member

'Player::id' in read-only object

 30 | pptr2->id=100;

 | ~~~~~~~~~^~~~

The results show that pptr2 cannot change player object p2 details. It is only

allowed to read player object p2 details. Comment on pptr2 changes, execute

the code, and observe the following results.

g++ ptr2constobjs.cc -o ptr2constobjs

./ptr2constobjs

Ptr changed the player id0

Player id200

player id200

The results show that pptr1 changed the player object p1 id, but pptr2 can

only read player object p2 details.

Chapter 4 Exploring Important C++ Features

225

�Summary
This chapter explored important C++ features to handle various software

development challenges. Mainly, you experimented with friend features to

access private data members of a class through only friend functions and

classes. You practiced using static data members and functions for sharing

object data and accessing static data. Finally, you learned how to use const

and pointers for restricting accidental changes to data passed over functions.

In the next chapter, you practice OOP principles through simple game

scenarios and applications using C++.

�Practice: Hands-on Activities

	 1.	 Handle the following challenges using friend concepts.

	 a.	 Define a class called HiddenBox with private data members

such as gold, silver, and bronze coins and member functions

for accessing them (under the private section only).

	 b.	 Think of how to access coins from the main() program.

	 c.	 Think of providing access to the HiddenBox class from only

the Owner class. (Define a sample Owner class.)

	 2.	 Practice the following.

	 a.	 Define a class called Message with secret text messages and

normal text messages as data members.

	 b.	 Think of how to set a secret text message to a specific object

and access it from the object only.

	 c.	 Think of how to set a normal message by any object, and it

should be accessible for all objects of the Message class.

	 d.	 Think of how to restrict accidental changes to messages of the

objects.

Chapter 4 Exploring Important C++ Features

227© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_5

CHAPTER 5

Quickly and
Systematically Model
Real-World Problems
into Software
Chapter 1 covered OOP principles and concepts for modeling real-world

problems and solutions. As part of designing software solutions for online

shopping, gaming, and smart applications, you learned how OOP concepts

such as classes and objects are helpful to easily map their real-world

problems space entities such as customers, items, players, animals, guns,

and sensors into software.

This chapter explains how to create simple shopping and gaming

applications using C++. Specifically, you learn how to coordinate with

relevant objects of an application to implement the interactions and

transactions of users involved in realizing the application’s use cases.

Let’s start with a simple, adventurous game application using C++

classes. As part of the game application, you design a few entities of a

simple gaming world, such as players, enemies, weapons, opportunities,

and challenges. You also test gaming-world entity interactions during the

game-playing scenarios.

https://doi.org/10.1007/979-8-8688-0524-0_5#DOI

228

First, let’s practice by creating a general shopping application using

C++ classes. It includes real-world entities of the shopping context, such as

customers, shopkeepers, items, and orders. You also test shopping world

entity interactions and transactions for realizing use case scenarios. This

chapter covers the following.

•	 Model real-world problems into software design

•	 Model a game world

•	 Code a simple gaming world in C++

•	 Model a software application

•	 Code simple application in C++

�Modeling Real-World Problems into
Software Design
OOP approaches are highly useful in dealing with the ambiguity involved

in designing software. In OOP, to deal with any complex system, you can

start by modeling real-world entities of the domain as related classes. The

rest of the complexity can easily be handled by carefully implementing

classes with necessary data members and member functions for accessing

the data members. Once you realize all the basic classes of a system,

you simplify most of the complexity of dealing with ambiguity to realize

the system.

The basic classes can be used to realize subcomponents of the

complex system. Although you have not learned the complete features of

OOP, such as inheritance and polymorphism, having the basic knowledge

of OOP, such as classes, objects, data hiding, data encapsulation, and

constructors and destructors, you can start the simple application by

implementing the following.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

229

•	 All real-world entities identified in your applications

as classes

•	 Classes with all necessary data members, member

functions, constructors, and destructors

Before finalizing a class, consider how objects interact with other

objects and the complete system. Include all necessary object tasks,

actions, and accessing functions as member functions.

Besides finalizing the member functions declaration of a class, you

must decide the object’s startup and shutdown sequence as part of

implementing constructors and destructors.

Proceeding further related to every real-world application entity, list

important interactions and transactions involved in your application.

Execute interactions and transactions of your application as functions

with related class objects as arguments.

Finally, test all use cases of your application.

As part of learning and practicing, you create two simple applications.

Let’s start with learning how to deal with the ambiguity in realizing any

gaming application world.

�A Simple Gaming Application
Let’s revisit Chapter 1’s simple game application and its real-world entities

to model into software. The following lists sample gaming application

entities.

•	 Main characters related to the game, such as players

and enemies

•	 Weapons such guns

•	 Challenges such as bombs

•	 Opportunities such as valuable coins

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

230

After identifying the real-world entities of the gaming world, you

should do the following.

	 1.	 Implement the following classes to model your

gaming application real-world entities.

	 a.	 Player

	 b.	 Gun

	 c.	 Bomb

	 d.	 Coin

	 2.	 Define each class with data members and member

functions.

	 a.	 Players and enemies move in the gaming world, collect guns

and coins, and defuse bombs.

	 b.	 Guns are spread in random locations in the gaming world.

Every gun has a fixed number of bullets. Players or enemies

can collect guns.

	 c.	 Bombs are spread in random locations. Players or enemies try

to defuse the bombs.

	 d.	 Coins are spread in random locations. Players or enemies try

to collect the coins.

	 e.	 Include data members and accessing functions for carrying

out players' and enemies' activities.

	 3.	 List important actions or interactions in the gaming

world to create scenarios.

	 a.	 How a player or an enemy observes the gaming world before

doing any action

	 b.	 Player or enemy interactions/actions with the guns

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

231

	 c.	 Player or enemy interactions/actions with the bombs

	 d.	 Player or enemy interactions/actions with the coins

	 e.	 How a player or an enemy has to move to target locations by

facing challenges

	 4.	 Define a game scenario.

	 a.	 Define the number of players, enemies, guns, bombs, and

coins objects involved in the gaming world.

	 b.	 Set up the initial gaming world by configuring the necessary data

members for the players, enemies, bombs, guns, and coins.

	 c.	 Initiate players and enemy actions in the gaming setup.

	 d.	 Announce the results of the players at the end of the gaming

scenario.

In later sections, you follow a similar procedure to create a simple

gaming application using C++.

Next, let’s learn how to deal with initial ambiguity in realizing a

shopping application.

�A Simple Shopping Application

To create a simple shopping application, let’s start with real-world entities

identified as part of shopping application modeling in Chapter 1. Let’s start

with the following real-world entities related to a shopping application.

•	 Users such as customers, shopkeepers, and delivery

partners interact with shopping applications

•	 Various products available as part of shopping, such

as items

•	 Transactions to record as part of the shopping application,

such as orders, canceled orders, and delivered orders

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

232

After identifying the real-world entities of the shopping application,

you should do the following.

	 1.	 Create the following classes to model your shopping

application entities.

	 a.	 Customers

	 b.	 Shopkeeper

	 c.	 Delivery partners

	 d.	 Items

	 e.	 Orders

	 f.	 Canceled orders

	 g.	 Delivered orders

	 2.	 Define basic classes of the shopping application

with necessary data members and member

functions to implement shopping application usage

scenarios.

	 a.	 Customer registration details should be modeled as data

members in the customer class. Define necessary accessing

functions.

	 b.	 Shopkeeper registration details should be modeled as data

members in the shopkeeper class. Define necessary accessing

functions.

	 c.	 Delivery partner registration details should be modeled as

data members in the delivery partner class. Define necessary

accessing functions.

	 d.	 Items specification details should be defined as data

members in the item class. Define necessary accessing

functions.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

233

	 e.	 Customer transaction details related to purchasing items

should be modeled as data members of the order class.

Define necessary accessing functions.

	 f.	 Customer transaction details related to canceling orders

should be modeled as data members of the canceled order

class. Define necessary accessing functions.

	 g.	 Shopkeeper actions related to assigning delivery partners to

orders should be modeled as data members of the delivered

order class. Define necessary accessing functions.

	 3.	 After defining all basic classes related to the shopping

application, you can start defining the basic tasks
related to shopping applications.

	 a.	 Customer registration activities as a function to interact with

the shopping application.

	 b.	 Shopkeeper registration activities as a function to interact

with the shopping application.

	 c.	 Items update activities as a function to interact with the

shopping application.

	 d.	 Browsing items as a function to check item details of the

shopping application.

	 4.	 After defining basic interactions with a shopping

application, you should define customer
interaction with a shopping application.

	 a.	 A customer placing ordering items as a function with

necessary customer and item objects as arguments

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

234

	 b.	 A customer canceling an order as a function with necessary

customer and item objects as arguments

	 c.	 A customer and their order details checking function with

necessary customer and item objects as arguments

	 5.	 After defining customer interaction with a shopping

application, you should define shopkeeper
interactions with a shopping application.

	 a.	 Processing orders to assign delivery partners

	 b.	 Processing canceled orders to refund canceled orders to

customers

	 c.	 Browsing orders, canceled orders, delivered orders, and

refunded orders

	 6.	 Implement the following shopping applications

use cases.

	 a.	 Items, customers, shopkeeper, and delivery partners

registrations

	 b.	 Customers browse items, place orders, view orders, and

cancel orders

	 c.	 Shopkeeper browses items, orders, and canceled orders

	 d.	 Shopkeeper processes orders for delivery

	 e.	 Shopkeeper processes canceled orders for refund processing

Next, let’s start a simple gaming application.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

235

�Modeling Game World Entities Using
C++ Classes
To create a simple game application, start with the building blocks of your

game application. As the main building blocks of a game application are

players, enemies, weapons, and opportunities, let’s use them as classes.

Use the following classes to implement a simple real-world gaming

world entity.

•	 The Player class is for modeling players as well as

enemies.

•	 The Gun class is for modeling weapons.

•	 The Bomb class is for modeling challenges.

•	 The Coin class is for modeling opportunities.

Let’s start by defining a Player class.

PLAYER CLASS

Define the Player class in C++ and save it in the player.h file.

	1.	T o model gaming scenarios such as player moves, collected

guns, bombs, and coins, and the state of the player, the

following data members are defined in the private section of

the Player class.

class Player

{

 int id;

 int x;

 int y;

 int state;

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

236

 enum states {DEAD, LIVE};

 vector<Bomb> bv;

 vector<Coin> cv;

 vector<Gun> gv;

	2.	 Initialize the players id, starting position (x,y), and state: dead or

alive in the Player constructor function.

public:

Player()

{

 id = rand()%100;

 x = rand()%9;

 y = rand()%9;

 state = LIVE;

}

	3.	 Define public member functions to interact with player objects,

such as set and get functions for accessing data members for

the player objects.

void setId(int iid)

{

 id = iid;

}

int getId()

{

 return id;

}

int getX()

{

 return x;

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

237

int getY()

{

 return y;

}

int getState()

{

 return state;

}

void setState(int istate)

{

 state = istate;

}

void setBomb(Bomb *b)

{

 bv.push_back(*b);

}

void setGun(Gun *g)

{

 gv.push_back(*g);

}

void setCoin(Coin *c)

{

 cv.push_back(*c);

}

	4.	 Define the player moves function.

void walk()

{

 x = x+1;

 y = y+1;

}

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

238

	5.	 Define a function to check whether the player has a specific

gun at specific location.

bool hasGun(Gun *g)

{

 for (Gun g1: gv)

 {

 �if (g1.getX() == g->getX() && g1.getY() ==

g->getY())

 {

 return true;

 }

 }

 return false;

}

	6.	 Define the player stats function to display the player’s total

count of guns, bombs, and coins.

 void stats()

 {

 �cout<<"\nPlayer: "<<id<<" Bombs:"<<bv.size()<<"

Coins:"<<cv.size()<<" Guns:"<<gv.size()<<"\n";

 }

};

Next, let’s define the Bomb class to model challenges in the gaming world.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

239

BOMB CLASS

Let’s define the Bomb class in C++ and save it in the bomb.h file.

	1.	T o model challenging situations for players in the gaming world,

place bombs in various locations. Players can observe bomb

locations and they can act accordingly. Specifically, to defuse

a bomb, the state of the bomb is set. For the Bomb class, the

following private data members are defined.

class Bomb

{

 int x,y,state;

 enum states {DEFUSED, ACTIVE};

	2.	 In the gaming application, bomb objects should be created

and placed at random locations. To do this task, execute these

actions in the Bomb constructor function.

public:

Bomb()

{

 x = rand()%9;

 y = rand()%9;

 state = ACTIVE;

}

	3.	A pply the following set and get functions for each of the bomb

data members to determine the bomb location and state and

then defuse it.

 int getX()

 {

 return x;

 }

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

240

 int getY()

 {

 return y;

 }

 int getState()

 {

 return state;

 }

 void setState(int istate)

 {

 state = istate;

 }

};

Next, let’s use the Coin class to model opportunities in the gaming application.

COIN CLASS

Define the Coin class in C++ and save it in coin.h file.

	1.	T o offer opportunities for players in the gaming world, let’s keep

coins in random locations. Players can check for coins and

collect them. Specifically, to collect coins, the state of the coins

is set. To execute the Coin class, the following private data

members are defined.

class Coin

{

 int state;

 int x,y,value;

 enum states {COLLECTED, AVAILABLE};

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

241

	2.	 Coin objects should be created and placed at random locations.

To do this task, execute these actions in the Coin constructor

function.

public:

 Coin()

 {

 x = rand()%9+8;

 y = rand()%9+8;

 value = rand()%100;

 state = AVAILABLE;

}

	3.	T o check coin availability, collect the following set and get

functions defined for each of the coin data members.

 int getX()

 {

 return x;

 }

 int getY()

 {

 return y;

 }

 int getValue()

 {

 return value;

 }

 void setValue(int ival)

 {

 value = ival;

 }

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

242

 int getState()

 {

 return state;

 }

 void setState(int istate)

 {

 state = istate;

 }

};

Next, let’s create a Gun class to model weapons in the gaming application.

MODELING GUN CLASS

Define the Gun class in C++ and save it in the gun.h file.

	1.	 Let’s keep guns in random locations to offer weapons for

players in the gaming world. Players can check for guns and

collect them. Specifically, to grab a gun, the state of the gun

is set. To implement the Gun class, the following private data

members are defined.

#include <iostream>

using namespace std;

class Gun

{

 int state;

 int x,y,bullets;

 enum states {NOT_AVAILABLE, AVAILABLE};

	2.	 Gun objects should be created and placed at random locations.

To do this task, apply these actions in the Gun constructor

function.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

243

public:

Gun()

{

 x = rand()%9+5;

 y = rand()%9+5;

 bullets = 10;

 state = AVAILABLE;

}

	3.	T o check gun availability, the following set and get functions are

defined for each of the gun data members.

int getX()

{

 return x;

}

int getY()

{

 return y;

}

int getBullets()

{

 return bullets;

}

void setBullets(int ibullets)

{

 bullets = ibullets;

}

int getState()

{

 return state;

}

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

244

void setState(int istate)

{

 state = istate;

}

	4.	 Define a simple fire( ) simulation function so players can attack

enemies using a gun.

 void fire()

 {

 if (bullets>0)

 {

 bullets=bullets-1;

 }

 else

 cout<<"No bullets\n";

 }

};

Next, let’s create a simple game with the help of Player, Bomb, Gun, and Coin

classes.

�Game Implementation Using C++ Classes
This section covers using functions to interact with various game objects.

For instance, the player character does the following in a typical game-

playing scenario.

•	 Observes the gaming world

•	 Acts with gaming objects in a variety of ways

•	 A player jumps over a bomb or defuses a bomb.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

245

•	 A player collects, loads, and fires guns.

•	 A player collects and loses coins.

•	 Moves in various directions—jumps, flies, and so forth.

To keep things simple, let’s implement basic interaction and actions of

players to realize game scenarios. Let’s first start with player observations

in a gaming world.

PLAYER OBSERVATIONS

Implement player observation about the gaming world in game.cc.

	1.	 Include all necessary header files, gun.h, bomb.h, coin.h, and

player.h files.

#include <iostream>

#include <thread>

#include <vector>

#include <unistd.h>

#include <bits/stdc++.h>

#include <time.h>

#include "gun.h"

#include "bomb.h"

#include "coin.h"

#include "player.h"

#define COUNT 10

#define MAXSTEPS 15

using namespace std;

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

246

	2.	 Define a function for observing a player how far a bomb is to

the player.

float distanceBetween(Player *p1, Bomb *p2)

{

 int xdisp = p1->getX()-p2->getX();

 int ydisp = p1->getY()-p2->getY();

 return sqrt((xdisp*xdisp+ydisp*ydisp));

}

	3.	 Define a function for observing how far a gun is to the player.

float distanceBetween(Player *p1, Gun *p2)

{

 int xdisp = p1->getX()-p2->getX();

 int ydisp = p1->getY()-p2->getY();

 return sqrt((xdisp*xdisp+ydisp*ydisp));

}

	4.	 Define a function for observing how far a player is from a coin.

float distanceBetween(Player *p1, Coin *p2)

{

 int xdisp = p1->getX()-p2->getX();

 int ydisp = p1->getY()-p2->getY();

 return sqrt((xdisp*xdisp+ydisp*ydisp));

}

	5.	A player observes all deployed bombs, guns, and coins in a

game world. Let’s implement the following function to know

how far a gaming object is from the player.

void playerobserves(Player *p1, Bomb b[COUNT],

Gun g[COUNT], Coin c[COUNT])

{

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

247

 �cout<<"\nPlayer "<<p1->getId()<<"at"<<p1-

>getX()<<","<<p1->getY()<<"\n";

 for (int i=0;i<COUNT;i++)

 {

 �cout<<"Bomb is "<<distanceBetween(p1,&b[i])<<"

meters away\n";

 }

 for (int i=0;i<COUNT;i++)

 {

 �cout<<"Gun is "<<distanceBetween(p1,&g[i])<<

"meters away\n";

 }

 for (int i=0;i<COUNT;i++)

 {

 �cout<<"Coin is "<<distanceBetween(p1,&c[i])<<

"meters away\n";

 }

}

Next, let’s create player actions with bombs, guns, and coins.

PLAYER ACTIONS WITH BOMBS, GUNS, AND COINS

Create player actions related to the gaming world in game.cc.

	1.	T o simulate player interaction with a bomb, implement the

following player actions.

	 a.	 If a bomb is far from the player, he plans to defuse it.

	 b.	A s soon as the player reaches a safe distance from the bomb, he

defuses it.

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

248

	 c.	 Unfortunately, a player may suffer from the bomb blast.

	 d.	 Implement these actions in the following function.

void playeractbombs(Player *p1, Bomb b[COUNT])

{

 enum states {DEFUSED, ACTIVE};

 �cout<<"\nPlayer "<<p1->getId()<<"at"<<p1-

>getX()<<","<<p1->getY()<<"\n";

 float dist = 5.0;

 for (int i=0;i<COUNT;i++)

 {

 if (distanceBetween(p1,&b[i])<9.0)

 {

 �cout<<"Player is palnning to defuse the

bomb \n";

 }

 �if (distanceBetween(p1,&b[i])<4.0&&b[i].

getState()==ACTIVE)

 {

 �cout<<"Player Id: "<<p1-

>getId()<<"defused the bomb \n";

 b[i].setState(DEFUSED);

 p1->setBomb(&b[i]);

 }

 �if (distanceBetween(p1,&b[i])==0.0 && b[i].

getState()==ACTIVE)

 {

 �cout<<"Player was blasted with the bomb";

 }

 }

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

249

	2.	T o simulate player interaction with a gun, apply the following

player actions.

	 a.	 If a gun is far from the player, he runs toward it.

	 b.	A s soon as the player reaches the gun, he collects it.

	 c.	 Unfortunately, the player may miss the gun.

	 d.	T he player uses the gun to fire it.

	 e.	 Simulate all these actions in the following function.

void playeractguns(Player *p1, Gun g[10])

{

 enum states {NOT_AVAILABLE, AVAILABLE};

 �cout<<"\nPlayer "<<p1->getId()<<"at"<<p1-

>getX()<<","<<p1->getY()<<"\n";

 float dist = 5.0;

 for (int i=0;i<COUNT;i++)

 {

 if (distanceBetween(p1,&g[i])<8.0)

 {

 �cout<<"Player running towards the

Guns \n";

 }

 �if (distanceBetween(p1,&g[i])<=2.0 &&

g[i].getState()==AVAILABLE)

 {

 �cout<<"Player is collecting the

gun \n";

 g[i].setState(NOT_AVAILABLE);

 p1->setGun(&g[i]);

 }

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

250

 if (p1->hasGun(&g[i])==true)

 {

 g[i].fire();

 �cout<<"\nPlayer Id: "<<p1-

>getId()<<" is firing ..\n";

 }

 }

}

	3.	T o simulate player interaction with a coin, use the following

player actions.

	 a.	 If a coin is far from the player, he runs toward it.

	 b.	A s soon as the player reaches the coin, he collects it.

	 c.	 Unfortunately, the player may miss the coin.

	 d.	 Implement these actions in the following function.

void playeractcoins(Player *p1, Coin c[COUNT])

{

 enum states {COLLECTED, AVAILABLE};

 �cout<<"\nPlayer "<<p1->getId()<<"at"<<p1-

>getX()<<","<<p1->getY()<<"\n";

 float dist = 5.0;

 for (int i=0;i<10;i++)

 {

 if (distanceBetween(p1,&c[i])<12.0)

 {

 �cout<<"Player is running towards

coins \n";

 }

 �if (distanceBetween(p1,&c[i])<=4.0 &&

c[i].getState()==AVAILABLE)

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

251

 {

 �cout<<"Player Id:"<<p1->getId()

<<"collected a coin \n";

 c[i].setState(COLLECTED);

 p1->setCoin(&c[i]);

 }

 }

}

Next, let’s concentrate on a sample player’s plans of moving in the gaming

world to achieve game targets.

PLAYER MOVES

Implement player or enemy actions related to the gaming world using player

objects in game.cc.

	1.	 Define the following simple game plan for a player.

	 a.	T he player observes the gaming world.

	 b.	T he player first reacts to bombs.

	 c.	T he player reacts to guns.

	 d.	T he player reacts to coins.

	 e.	T hese actions are executed in the following function.

void playermoves(Player *p1, Bomb b[COUNT],

Gun g[COUNT], Coin c[COUNT])

{

 playerobserves(p1,b,g,c);

 sleep(1);

 for (int i=0;i<MAXSTEPS;i++)

 {

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

252

 playeractbombs(p1,b);

 playeractguns(p1,g);

 playeractcoins(p1,c);

 p1->walk();

 }

 p1->stats();

}

	2.	 Define the following simple game plan for an enemy as follows.

	 a.	A n enemy observes the gaming world.

	 b.	T he enemy first reacts to guns.

	3.	T he enemy reacts to coins.

	 a.	T he enemy reacts to bombs.

	 b.	T hese actions are implemented in the following function.

void enemymoves(Player *e1, Bomb b[COUNT],

Gun g[COUNT], Coin c[COUNT])

{

 playerobserves(e1,b,g,c);

 sleep(1);

 for (int i=0;i<MAXSTEPS;i++)

 {

 playeractguns(e1,g);

 playeractcoins(e1,c);

 playeractbombs(e1,b);

 e1->walk();

 }

 e1->stats();

}

Next, let’s work on a simple game scenario.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

253

MAIN GAME SCENARIO

Use the following simple game scenario in game.cc.

	1.	 Create a player and an enemy object from the Player class.

Since constructors are used, the player and the enemy are

placed at random locations in the gaming world.

	2.	 Deploy a number of guns, bombs, and coins to set up the

gaming weapons, challenges, and opportunities.

	 a.	T o do this, create a suitable number of gun objects, bomb objects, and

coin objects from the Gun, Bomb, and Coin classes.

	 b.	 Constructors in the Gun, Bomb, and Coin classes ensure guns, bombs,

and coins are placed at random locations and their state is initialized.

	3.	 Call the playermoves function with the player object to

execute a player’s game plan. Similarly, call enemymoves to

execute the game plan of an enemy.

int main()

{

 Player p; Player e;

 Bomb b[COUNT];

 Gun g[COUNT];

 Coin c[COUNT];

 playermoves(&p,b,g,c);

 enemymoves(&e,b,g,c);

 return 0;

}

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

254

	4.	 Well done! You have implemented a simple game scenario.

Let’s test it and observe the results, such as player moves and

actions, enemy moves and actions, and their stats at the end

of the game. You can execute the game using the following

commands.

g++ game.cc -o scenario1

./scenario1 > gamestats

	5.	 Check the player’s stats using the following command.

cat gamestats | grep 'Player:'

Player: 83 Bombs:3 Coins:1 Guns:2

Player: 15 Bombs:6 Coins:9 Guns:4

	6.	 Check number of coins collected by a player using the following

command.

cat gamestats | grep 'Player Id: 15 collected' |wc -l 9

cat gamestats | grep 'Player Id: 83 collected' |wc -l

	7.	 Check number of bombs defused by a player using the

following command.

cat gamestats | grep 'Player Id: 15 defused' |wc -l

6

cat gamestats | grep 'Player Id: 83 defused' |wc -l

3

Similarly, using the grep command, you can check for other game events,

such as firing and running. Next, let’s work on a simple shopping application

using C++.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

255

�Model Application Entities Using
C++ Classes
To implement a simple shopping application, let’s start with real-world

entities of a shopping context as basic classes. The following lists real-

world entities of a sample shopping application.

•	 Customer class to model registered customers of a

shopping application

•	 Shopkeeper class to model registered managers to

process all shopping transactions

•	 Delivery partner class to model delivering orders

through registered delivery partners

•	 Item class to model shopping products available for

customers

•	 Order class to model customer transactions related to

procuring items

•	 Canceled order to model customer transactions related

to canceling orders

•	 Delivered orders to model shopkeeper transactions

related to ensuring orders were delivered to the

customers

Let’s start with reusing the Customer class and Item class, which are

defined in Chapter 2.

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

256

REUSE CUSTOMER AND ITEM CLASS

	1.	 Copy customer.cc (from Chapter 2) to customer.h and

remove the main () function from the customer.h file.

	2.	 Use the Customer class to model registering a list of

customers with the shopping application design and testing.

	3.	 Copy items.cc (from Chapter 2) to item.h and remove the

main () function from the item.h file.

	4.	 Use the Item class to model registering a list of products with

the shopping application so that you can simulate customers

browsing items, checking item details, and placing order

transactions.

Next, define a Shopkeeper class related to model registered shopkeepers for

managing shopping application transactions.

SHOPKEEPER CLASS

Define a Shopkeeper class in the shopkeeper.h file.

	1.	 Using C++ classes, declare your Shopkeeper class by

including necessary private data members (or fields such as

id, name, phone number, and address details) for registration

activities. In the public section, declare shopkeeper details

accessing functions such as get and set member functions as

follows.

#include<iostream>

#include<string.h>

using namespace std;

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

257

class Shopkeeper

{

 string sid;

 string name;

 char phone[11];

 string city;

 string country;

 unsigned int pin;

 public:

 string getSid();

 void setSid(string id);

 string getName();

 void setName(string cname);

 char* getPhone();

 void setPhone(char cphone[11]);

 string getCity();

 void setCity(string ccity);

 string getCountry();

 void setCountry(string ccountry);

 unsigned int getPin();

 void setPin(unsigned int pin);

};

	2.	 Outside the class, implement a suitable set and get public

member functions for accessing necessary private fields

of the Shopkeeper class from the external function such

as main().

string Shopkeeper::getSid()

{

 return sid;

}

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

258

void Shopkeeper::setSid(string id)

{

 sid = id;

}

string Shopkeeper::getName()

{

 return name;

}

void Shopkeeper::setName(string cname)

{

 name = cname;

}

char* Shopkeeper::getPhone()

{

 return phone;

}

void Shopkeeper::setPhone(char cphone[11])

{

 strcpy(phone, cphone);

}

string Shopkeeper::getCity()

{

 return city;

}

void Shopkeeper::setCity(string ccity)

{

 city = ccity;

}

string Shopkeeper::getCountry()

{

 return country;

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

259

void Shopkeeper::setCountry(string ccountry)

{

 country = ccountry;

}

unsigned int Shopkeeper::getPin()

{

 return pin;

}

void Shopkeeper::setPin(unsigned int cpin)

{

 pin = cpin;

}

Well done. You have defined a Shopkeeper class for handling shopkeeper

registration activities in online shopping applications. Next, let’s create a

DeliveryPartner class for the shopping application.

DELIVERYPARTNER CLASS

Define a DeliveryPartner class in the deliverypartner.h file.

	1.	 Declare your DeliveryPartner class by including necessary

private data members (or fields) such as id, name, and

phone number for registration activities. In the public section,

declare DeliveryPartner details accessing functions such as get

and set member functions.

#include<iostream>

#include<string.h>

using namespace std;

class DeliveryPartner

{

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

260

 string did;

 string name;

 char phone[11];

 public:

 string getDid();

 void setDid(string id);

 string getName();

 void setName(string dname);

 char* getPhone();

 void setPhone(char dphone[11]);

};

	2.	 Outside the class, implement a suitable set and get public

member functions for accessing necessary private fields of

the DeliveryPartner class from the external function such

as main().

string DeliveryPartner::getDid()

{

 return did;

}

void DeliveryPartner::setDid(string id)

{

 did = id;

}

string DeliveryPartner::getName()

{

 return name;

}

void DeliveryPartner::setName(string dname)

{

 name = dname;

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

261

char* DeliveryPartner::getPhone()

{

 return phone;

}

void DeliveryPartner::setPhone(char dphone[11])

{

 strcpy(phone, dphone);

}

Well done. You have implemented the DeliveryPartner class to model

the registration of delivery partners to process the delivery of orders in your

shopping application. Next, let’s create the Order class to model customer

placing order transactions.

ORDER CLASS

Define an Order class in order.h file.

	1.	 Declare the Order class by including necessary private

data members to model customer-procured items, date, and

quantity.

	 a.	 Declare a status field to model order processing states such as

canceled, delivered, and refunded.

	 b.	 Model the total number of orders as a static field count in your

shopping application.

	 c.	 Declare all set and get functions for accessing order details in the

public section.

#include<iostream>

#include<string.h>

using namespace std;

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

262

class Order

{

 string oid;

 string cid;

 string iid;

 unsigned int qty;

 unsigned int cost;

 string odate;

 string status;

 static int count;

 public:

 string getOid();

 void setOid(string id);

 string getCid();

 void setCid(string id);

 string getIid();

 void setIid(string id);

 unsigned int getQty();

 void setQty(unsigned int iqty);

 unsigned int getCost();

 void setCost(unsigned int icost);

 string getOdate();

 void setOdate(string date);

 string getStatus();

 void setStatus(string istatus);

 static void updateCount();

 static int getCount();

};

	2.	 Define the static field count outside of the class as follows.

int Order::count;

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

263

	3.	 Outside the class, implement static functions for counting

the total number of orders and accessing the order count as

follows.

void Order::updateCount()

{

 count = count+1;

}

int Order::getCount()

{

 return count;

}

	4.	 Define the necessary set and get member functions for

accessing order details such as order id, customer id, item id,

date, and cost.

string Order::getOid()

{

 return oid;

}

void Order::setOid(string id)

{

 oid = id;

}

string Order::getCid()

{

 return cid;

}

void Order::setCid(string id)

{

 cid = id;

}

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

264

string Order::getIid()

{

 return iid;

}

void Order::setIid(string id)

{

 iid = id;

}

unsigned int Order::getQty()

{

 return qty;

}

void Order::setQty(unsigned int iqty)

{

 qty = iqty;

}

unsigned int Order::getCost()

{

 return cost;

}

void Order::setCost(unsigned int icost)

{

 cost = icost;

}

string Order::getOdate()

{

 return odate;

}

void Order::setOdate(string iodate)

{

 odate = iodate;

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

265

	5.	 Define the order status update and access-related functions for

modeling various states of orders such as processing, canceled,

delivered, and refunded.

string Order::getStatus()

{

 return status;

}

void Order::setStatus(string istatus)

{

 status = istatus;

}

Well done. You have implemented the Order class related to model shopping

transactions such as placing orders. Next, let’s work on another important

class to model customer transactions, such as canceling orders.

CANCELED ORDER CLASS

Define a CancelledOrder class in the cancelled.h file.

	1.	 Declare CancelledOrder class by including necessary

private data members (or fields) such as canceled order id,

date, refund amount, and expected refund date. In the public

section, declare set and get member functions for accessing

canceled order data members as follows.

#include<string.h>

using namespace std;

class CancelledOrder

{

 string coid;

 string cdate;

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

266

 unsigned int refund;

 string rdate;

 public:

 string getCoid();

 void setCoid(string id);

 string getCdate();

 void setCdate(string date);

 unsigned int getRefund();

 void setRefund(unsigned int irefund);

 string getRdate();

 void setRdate(string date);

};

	2.	 Outside the class, define all necessary set and get member

functions for processing canceled order details such as

canceled order id, date, refund amount, and refund date.

string CancelledOrder::getCoid()

{

 return coid;

}

void CancelledOrder::setCoid(string id)

{

 coid = id;

}

string CancelledOrder::getCdate()

{

 return cdate;

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

267

void CancelledOrder::setCdate(string date)

{

 cdate = date;

}

unsigned int CancelledOrder::getRefund()

{

 return refund;

}

void CancelledOrder::setRefund(unsigned int irefund)

{

 refund = irefund;

}

string CancelledOrder::getRdate()

{

 return rdate;

}

void CancelledOrder::setRdate(string irdate)

{

 rdate = irdate;

}

Well done. You have implemented a CancelledOrder class to model

shopping application transactions related to processing customer canceled

orders. Next, let’s define the DeliveredOrders class to model confirmed

order delivery in the shopping application.

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

268

DELIVERED ORDER CLASS

Define a DeliveredOrder class in deliverorder.h file.

	1.	 Declare DeliveredOrder class by including necessary

private data members (or fields) to model assigning a

delivery partner to a confirmed order, such as order id, delivery

partner id, and delivery date. Under the public section, declare

the necessary set and get member functions for accessing

delivered order details.

#include<string.h>

using namespace std;

class DeliveredOrder

{

 string d_oid;

 string dpid;

 string ddate;

 public:

 string getDoid();

 void setDoid(string id);

 string getDpid();

 void setDpid(string pid);

 string getDdate();

 void setDdate(string date);

};

	2.	 Outside the class, implement all necessary set and get

member functions for processing delivered orders, such

as assigning delivery partner id and date in your shopping

application.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

269

string DeliveredOrder::getDoid()

{

 return d_oid;

}

void DeliveredOrder::setDoid(string id)

{

 d_oid = id;

}

string DeliveredOrder::getDpid()

{

 return dpid;

}

void DeliveredOrder::setDpid(string pid)

{

 dpid = pid;

}

string DeliveredOrder::getDdate()

{

 return ddate;

}

void DeliveredOrder::setDdate(string date)

{

 ddate = date;

}

Well done. By implementing classes for all identified shopping application-

related real-world entities, you have created all basic building blocks for

shopping application transactions. Next, let’s discuss important tasks related

to simulating use cases of your shopping application, such as registering

customers, items, shopkeepers, delivery partners, and all related transactions.

Next, let’s interact with objects of the respective classes to carry out

interesting tasks or activities.

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

270

�Basic Tasks Related to a Shopping Application
After defining all basic classes related to a shopping application, you can

start defining the basic tasks related to shopping applications.

•	 Customer registration activities as a function to interact

with the shopping application.

•	 Shopkeeper registration activities as a function to

interact with the shopping application.

•	 Delivery partner registration activities as a function to

interact with the shopping application.

•	 Items update activities as a function to interact with the

shopping application.

BASIC FUNCTIONS FOR SHOPPING APPLICATION

Use the following functions in the application.cc file.

	1.	T o create a shopping application, do the following tasks

using the basic classes: Customer, ShopKeeper,

DeliveryPartner, and Item. Start by including all

necessary header files related to these classes.

#include<iostream>

#include<stdlib.h>

#include<vector>

#include"customer.h"

#include"shopkeeper.h"

#include"item.h"

#include"deliverypartner.h"

#include"order.h"

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

271

#include"cancelled.h"

#include"deliverorder.h"

using namespace std;

	2.	 Write an example customers_registration function

to insert sample customer details related to your shopping

application as follows.

void customers_register(Customer &c1, Customer &c2)

{

 c1.setCid("C001");

 c1.setName("Customer1");

 char phone[11];

 strcpy(phone,"9000000000");

 c1.setPhone(phone);

 c1.setCity("City1");

 c1.setCountry("Country1");

 c1.setPin(100001);

 �cout<<"Customer "<<c1.getCid()<<" was

registered\n";

 c2.setCid("C002");

 c2.setName("Customer2");

 char phone2[11];

 strcpy(phone2,"9000000001");

 c2.setPhone(phone);

 c2.setCity("City2");

 c2.setCountry("Country2");

 c2.setPin(100002);

 �cout<<"Customer "<<c2.getCid()<<" was

registered\n";

}

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

272

	3.	 Write an example shopkeeper_registration function to

insert a sample shopkeeper details related to your shopping

application as follows.

void shopkeeper_register(Shopkeeper &s1)

{

 s1.setSid("S001");

 s1.setName("Shopkeeper1");

 char phone[11];

 strcpy(phone,"8000000000");

 s1.setPhone(phone);

 s1.setCity("SCity1");

 s1.setCountry("SCountry1");

 s1.setPin(200001);

 �cout<<"Shopkeeper "<<s1.getSid()<<" was

registered\n";

}

	4.	 Write an example delpartner_registration function to

insert a sample delivery partner details related to your shopping

application as follows.

void delpartner_register(DeliveryPartner &d1,

DeliveryPartner &d2)

{

 d1.setDid("DP001");

 d1.setName("DPartner1");

 char phone[11];

 strcpy(phone,"7000000000");

 d1.setPhone(phone);

 �cout<<"Delivery partner "<<d1.getDid()<<" was

registered\n";

 d2.setDid("DP002");

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

273

 d2.setName("DPartner2");

 char phone2[11];

 strcpy(phone2,"7000000001");

 d2.setPhone(phone);

 �cout<<"Delivery partner "<<d2.getDid()<<" was

registered\n";

}

	5.	 Write an example item_insert function to insert sample

shopping product details related to your shopping application

as follows.

void items_insert(Item &i1,Item &i2,Item &i3, Item &i4)

{

 i1.setIid("I001");

 i1.setName("Item1");

 i1.setPrice(1000);

 i1.setQty(10);

 i1.setDescr("Fashion product");

 cout<<"Item "<<i1.getIid()<<" was entered\n";

 i2.setIid("I002");

 i2.setName("Item2");

 i2.setPrice(2000);

 i2.setQty(10);

 i2.setDescr("Entertainment product");

 cout<<"Item "<<i2.getIid()<<" was entered\n";

 i3.setIid("I003");

 i3.setName("Item3");

 i3.setPrice(3000);

 i3.setQty(10);

 i3.setDescr("Smart product");

 cout<<"Item "<<i3.getIid()<<" was entered\n";

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

274

 i4.setIid("I004");

 i4.setName("Item4");

 i4.setPrice(4000);

 i4.setQty(10);

 i4.setDescr("Electronic product");

 cout<<"Item "<<i4.getIid()<<" was entered\n";

}

You have completed basic shopping entities registration-related functions.

Next, let’s write necessary functions related to customer interactions

with the shopping application for browsing items, placing orders, and

canceling orders.

�Basic Customer Interactions in a Shopping
Application
This section discusses basic customer shopping transactions simulation

activities as functions.

	 1.	 The customer views their profile details.

	 2.	 The customer browses items of the shopping

application.

	 3.	 The customer procures items using a customer

places order function with necessary customer and

item objects as arguments.

	 4.	 The customer cancels the order using a canceling

order function with the customer and item objects

as arguments.

	 5.	 The customer checks the order using an order

browsing function with necessary object arguments.

Let’s start with customer interactions.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

275

CUSTOMER AND HIS SHOPPING INTERACTIONS

Implement the following functions in the application.cc file.

	1.	 Start by defining the customer profile view function as follows.

void customer_disp (Customer &c)

{

 �cout<<"Customer id:"<<c.getCid()<<" Phone "<<c.

getPhone()<<" City "<<c.getCity()<<"\n";

}

	2.	 Define shopping application items browsing function as follows.

void items_browsing (Item &i)

{

 �cout<<"Item id:"<<i.getIid()<<" Price "<<i.

getPrice()<<" Descr "<<i.getDescr()<<"\n";

}

	3.	 Define the following function to simulate a customer placing an

order using selected items and quantity as follows.

	 a.	 Set the customer and his procuring item id as part of this order.

	 b.	 Update customer procuring items quantity.

	 c.	 Set the total cost of the order and date.

	 d.	 Set the initial status of the order as “Processing”.

	 e.	 Update the total number of orders in the shopping application.

	 f.	A ssign a unique order id and set it to a dynamically created

order object.

Order* placeOrder(Customer &c1, Item &i1,unsigned

int qty)

{

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

276

 if (i1.getQty()>=qty)

 {

 Order *o1 = new Order();

 o1->setCid(c1.getCid());

 o1->setIid(i1.getIid());

 unsigned int cost = qty*i1.getPrice();

 i1.setQty(i1.getQty()-qty);

 o1->setCost(cost);

 o1->setOdate("ODate1");

 o1->setStatus("Processing");

 o1->updateCount();

 �o1->setOid("O001"+string(1,'A'+o1->

getCount()));

 return o1;

 }

 return NULL;

}

	4.	 Define the following function to simulate a customer canceling

one of the orders as follows.

	 a.	 Check order status is processing, then only allow the customer to

cancel the order.

	 b.	 Set order id and cancellation date.

	 c.	 Set the total refund amount.

	 d.	 Set the expected refund date.

	 e.	 Set order status to Cancelled.

CancelledOrder* cancelOrder(Customer &c1, Order *o1)

{

 if (o1->getStatus()=="Processing")

 {

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

277

 CancelledOrder *c1 = new CancelledOrder();

 c1->setCoid(o1->getOid());

 c1->setCdate("Cdate1");

 c1->setRefund(o1->getCost());

 c1->setRdate("Rdate1");

 o1->setStatus("Cancelled");

 return c1;

 }

 return NULL;

}

	5.	 Define the following function to view the customer’s orders

and status.

void browseCustOrders(Customer &c1, vector<Order*> &ov)

{

 for (Order *o: ov)

 {

 if (o->getCid() == c1.getCid())

 {

 �cout<<"Order Id"<<o->getOid()<<" date:

"<<o->getOdate()<<"cost : "<<o->getCost()

<<"status:"<<o->getStatus()<<"\n";

 }

 }

}

Well done. You have successfully implemented the customer interactions

related to the shopping application as functions.

Next, let’s create shopkeeper interaction functions with the shopping

application function to simulate processing, canceling, and delivering

customer orders.

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

278

�Basic Shopkeeper Interactions
in a Shopping Application
This section implements basic customer shopping transactions simulation

activities as functions, such as the following.

•	 Viewing and checking orders, canceling orders,

delivering orders, and refunding orders

•	 Processing confirmed orders to assign delivery partners

•	 Processing canceled order functions to refund

customers

Let’s start with shopkeeper interactions.

INTERACT WITH SHOPKEEPER OBJECTS

Use the following functions in the application.cc file.

	1.	 Implement the following function to view all orders of the

shopping application.

void browseOrders(vector<Order*> &ov)

{

 for (Order *o: ov)

 {

 �cout<<"Order Id"<<o->getOid()<<" date:"

<<o->getOdate()<<"cost : "<<o->getCost()

<<"status:"<<o->getStatus()<<"\n";

 }

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

279

	2.	A pply the following function to view all canceled orders of the

shopping application.

void browseCanOrders(vector<CancelledOrder*> &cv)

{

 for (CancelledOrder *c: cv)

 {

 �cout<<"Cancelled Order "<<c->getCoid()<<"

refund date:"<<c->getRdate()<<"total refund:

"<<c->getRefund()<<"\n";

 }

}

	3.	E xecute the following function to view all delivered orders of the

shopping application.

void browseDelOrders(vector<DeliveredOrder*> &dv)

{

 for (DeliveredOrder *d: dv)

 {

 �cout<<"Delivered Order "<<d->getDoid()<<"

Deliver date:"<<d->getDdate()<<"Delivery

Partner: "<<d->getDpid()<<"\n";

 }

}

	4.	E xecute the following function to view all refunded orders of the

shopping application.

void browseRefOrders(vector<Order*>

&ov,vector<CancelledOrder*> &cv)

{

 for (Order *c: ov)

 {

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

280

 if (c->getStatus()=="Refunded")

 {

 for (CancelledOrder *co: cv)

 {

 if (co->getCoid()==c->getOid())

 {

 �cout<<"Order Id"<<co->getCoid()

<<" date:"<<co->getRdate()

<<"Refund : "<<co->getRefund()

<<"status:"<<c->getStatus()

<<"\n";

 }

 }

 }

 }

}

	5.	 Use the following function to process the confirmed orders by

assigning delivery partners and delivery dates.

	 a.	T his function assigns confirmed orders to delivery partners.

	 b.	 For each confirmed order, an expected delivery date is assigned.

void processOrders(vector<Order*> &ov,

vector<DeliveredOrder*> &dv,DeliveryPartner &dp1,

DeliveryPartner &dp2)

{

 int count = 0;

 DeliveredOrder *d;

 for (Order *ov1: ov)

 {

 if (ov1->getStatus()=="Processing")

 { if (count%2 == 0)

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

281

 {

 d = deliverOrder(dp1,ov1);

 count = count+1;

 }

 else

 {

 d = deliverOrder(dp2,ov1);

 count = count+1;

 }

 �cout<<"Order "<<d->getDoid()<<"

will be delivered by:"<<d-

>getDdate()<<"\n";

 �cout<<"Order "<<d->getDoid()<<"

will be delivered by Delivery

Partner:"<<d->getDpid()<<"\n";

 dv.push_back(d);

 }

 }

}

	6.	A pply the following function to simulate processing the refund

for canceled orders.

	 a.	 It simulates the refund process by changing the status of the

canceled orders.

	 b.	 Since cancelledOrder already assigns the refund amount and expected

refund date, using this function shopkeeper sets the canceled order

status to Refunded.

void processCanOrders(vector<Order*>

&ov,vector<CancelledOrder*> &cv)

{

 for (CancelledOrder *c: cv)

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

282

 {

 for (Order *o: ov)

 {

 if(c->getCoid()==o->getOid())

 {

 o->setStatus("Refunded");

 }

 }

 }

}

Well done. You have successfully implemented the shopkeeper interactions

related to the shopping application as functions.

Next, simulate complete shopping application interaction in main()

and test the functions.

�Simulating Shopping Application Tasks
This section simulates the following tasks in a shopping application.

•	 Items, customers, shopkeeper, and delivery partners

registrations

•	 Customers browsing items, placing orders, viewing

their orders, and canceling orders

•	 Shopkeeper browsing items, orders, and

canceled orders

•	 Shopkeeper processing order for delivery

•	 Shopkeeper processing canceled orders for refunds

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

283

SIMULATE ALL SHOPPING APPLICATION TASKS

Implement the following tasks in main() in the application.cc file.

	1.	 Start with the registration process.

	 a.	R egister a shopkeeper.

	 b.	R egister two customers.

	 c.	R egister two delivery partners.

	 d.	R egister four shopping products.

int main()

{

 vector<Order*> ov;

 vector<CancelledOrder*> cv;

 vector<DeliveredOrder*> dv;

 Shopkeeper s1;

 shopkeeper_register(s1);

 Customer c1,c2;

 customers_register(c1,c2);

 DeliveryPartner dp1,dp2;

 delpartner_register(dp1,dp2);

 Item i1,i2,i3,i4;

 items_insert(i1,i2,i3,i4);

	2.	 Check customers and item details by calling the respective

functions.

customer_disp(c1);

customer_disp(c2);

items_browsing(i1);

items_browsing(i2);

items_browsing(i3);

items_browsing(i4);

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

284

	3.	 Create two sample orders for each customer by calling the

placeOrder function as follows.

Order *o1;

o1 = placeOrder(c1,i1,2);

ov.push_back(o1);

Order *o2;

o2 = placeOrder(c2,i2,2);

ov.push_back(o2);

Order *o3;

o3 = placeOrder(c2,i3,2);

ov.push_back(o3);

Order *o4;

o4 = placeOrder(c1,i4,2);

ov.push_back(o4);

	4.	 Simulate canceling an order (o1) from one of the customers (c1)

as follows.

CancelledOrder *co;

if (o1->getStatus()=="Processing")

{

 co = cancelOrder(c1,o1);

 cout<<"In process\n";

 �cout<<"Order "<<co->getCoid()<<" was cancelled

successfully\n";

 �cout<<"Cancelled Order "<<co->getCoid()<<" will be

refunded by:"<<co->getRdate()<<"\n";

 �cout<<"Cancelled Order "<<co->getCoid()<<" total

refund: "<<co->getRefund()<<"\n";

 cv.push_back(co);

}

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

285

	5.	 Check customers and their order details.

cout<<"Customer"<<c1.getCid()<<"orders:\n";

browseCustOrders(c1,ov);

cout<<"Customer"<<c2.getCid()<<"orders:\n";

browseCustOrders(c2,ov);

	6.	A fter completing customer transactions, the shopping

applications start simulating shopkeeper transactions, such as

checking pending and canceled orders.

cout<<"List of orders\n";

browseOrders(ov);

cout<<"List of Cancelled orders\n";

browseCanOrders(cv);

	7.	 Check the delivery partners' details to process pending orders.

cout<<"List of Delivery partners\n";

deliverp_disp (dp1);

deliverp_disp (dp2); //�Did we reference this in

deliverorder.h file?

	8.	 Simulate delivery of pending orders by assigning delivery

partners.

cout<<"List of Processing orders for delivery\n";

processOrders(ov,dv,dp1,dp2);

cout<<"List of Delivered orders\n";

browseDelOrders(dv);

	9.	P rocess the canceled orders to refund the amount to customers

and end the main().

 processCanOrders(ov,cv);

 cout<<"List of Refunded orders\n";

 browseRefOrders(ov,cv);

}

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

286

	10.	T est the complete shopping application transaction by

executing the following commands.

g++ application.cc -o shopapplication

./shopapplication

Customer C001 was registered

Customer C002 was registered

Shopkeeper S001 was registered

Delivery partner DP001 was registered

Delivery partner DP002 was registered

Item I001 was entered

Item I002 was entered

Item I003 was entered

Item I004 was entered

Customer id:C001 Phone 9000000000 City City1

Customer id:C002 Phone 9000000000 City City2

Item id:I001 Price 1000 Descr Fashion product

Item id:I002 Price 2000 Descr Entertainment product

Item id:I003 Price 3000 Descr Smart product

Item id:I004 Price 4000 Descr Electronic product

In process

Order O001B was cancelled successfully

Cancelled Order O001B will be refunded by:Rdate1

Cancelled Order O001B total refund: 2000

CustomerC001orders:

Order IdO001B date:ODate1cost : 2000status:Cancelled

Order IdO001E date:ODate1cost : 8000status:Processing

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

287

CustomerC002orders:

Order IdO001C date:ODate1cost : 4000status:Processing

Order IdO001D date:ODate1cost : 6000status:Processing

List of orders

Order IdO001B date:ODate1cost : 2000status:Cancelled

Order IdO001C date:ODate1cost : 4000status:Processing

Order IdO001D date:ODate1cost : 6000status:Processing

Order IdO001E date:ODate1cost : 8000status:Processing

List of Cancelled orders

Cancelled Order O001B refund date:Rdate1total

refund: 2000

List of Delivery partners

DeliveryPartner id:DP001 Phone 7000000000

DeliveryPartner id:DP002 Phone 7000000000

List of Processing orders for delivery

Order O001C will be delivered by:Ddate1

Order O001C will be delivered by Delivery Partner:DP001

Order O001D will be delivered by:Ddate1

Order O001D will be delivered by Delivery Partner:DP002

Order O001E will be delivered by:Ddate1

Order O001E will be delivered by Delivery Partner:DP001

List of Delivered orders

Delivered Order O001C Deliver date:Ddate1Delivery

Partner: DP001

Delivered Order O001D Deliver date:Ddate1Delivery

Partner: DP002

Delivered Order O001E Deliver date:Ddate1Delivery

Partner: DP001

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

288

List of Refunded orders

Order IdO001B date:Rdate1Refund : 2000status:Refunded

Well done. You have successfully implemented and tested example activities

related to the shopping application. You can observe transactions related to

the shopping application. For example, you can observe customer, shopkeeper,

and delivery partner registration and order-related details such as canceled

orders, delivered orders, and refunded orders.

�Summary
In this chapter, you practiced OOP features in real-world applications such

as sample games and shopping applications. Mainly, you observed how

OOP features simplify mapping real-world entities to software entities and

help implement all interactions, transactions, tasks, and functionalities of

the software.

In the next chapter, you learn about another important feature of

OOP called inheritance using C++ for developing reusable and extendible

software.

�Practice: Hands-on Activities

	 1.	 Create any simple game related to animals, birds,

and hunters.

	 a.	 Model a variety of animals, birds, and a hunter.

	 b.	 Simulate hunters try to hunt animals and birds.

	 c.	 Simulate making animals and birds friends with each other.

	 d.	 Simulate scenarios such as animals attacking hunters.

Chapter 5 �QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

289

	 e.	 Simulate scenarios such as birds watching hunters.

	 f.	 Simulate scenarios such as birds helping animals with hunter

locations.

	 2.	 Design an online vehicle booking application

classes to do the following interactions.

	 a.	 Register online vehicle application supporting locations.

	 b.	 Register a vehicle with driver details.

	 c.	 Register a user.

	 d.	 Check if any vehicle is available at the user’s location.

	 e.	 Find the nearest vehicle available from the user’s location.

	 f.	 Find the lowest-fare vehicle available for traveling to the

user’s location.

Chapter 5 QUICKLY AND SYSTEMATICALLY MODEL REAL-WORLD PROBLEMS INTO
 SOFTWARE

291© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_6

CHAPTER 6

Quick Software
Development
Using OOP
You have studied OOP basic principles and how to use these concepts to

quickly model and implement software solutions for online shopping,

gaming, and smart applications. This chapter explores inheritance

approaches to reuse code and save development time. Using C++, you

learn how to write reusable code to reduce software development time and

avoid redundant code to prevent inconsistent code.

Then, you learn the importance of object composition and aggregation

concepts for developing complex software systems. You see how to flexibly

compose or connect various classes to build new software systems. As part

of practicing inheritance, object composition, and object aggregation, you

do programming activities using C++.

Learning inheritance concepts helps you quickly handle challenges

in upgrading existing software, creating new versions of software, and

rapidly developing new software systems from existing multiple software

components.

https://doi.org/10.1007/979-8-8688-0524-0_6#DOI

292

This chapter covers the following topics.

•	 The importance of inheritance

•	 Practicing the reduce and reuse principle

•	 Building new software building block versions easily

•	 Combining or connecting objects wisely

•	 Practicing inheritance and object association

�The Importance of Inheritance
Let’s discuss inheritance in a programming context. From programming

tasks, you observed that developing a large software application involves

implementing multiple classes, and there is a chance that a lot of code

may be duplicated (repeated) across the classes. Moreover, creating newer

versions of classes can lead to more redundant code. It means developers

must organize software classes to avoid redundant and inconsistent code

across the classes. This section explains how inheritance concepts are

helpful to organize multiple classes to avoid redundant code and easier to

extend existing classes to develop new version classes.

Inheritance is a concept of designing new classes from existing classes.

Usually, you call existing classes a base class (or super class or parent class)

and new classes a derived class (or subclass or child class). This book uses

a base class (or superclass) and a derived class (or subclass) terminology

to explain the concepts. Next, let’s look at inheritance concepts and

approaches in C++.

In C++, you should use the following syntax to create a new class (e.g.,

Derived) from an existing class (e.g., Base).

Chapter 6 Quick Software Development Using OOP

293

class Base

{

 public:

 base class data members; (e.g., int base;)

 base class member functions;

 (e.g., void setBase(int b); int getBase();)

};

class Derived: public Base

{

 public:

 derived class data members;(e.g., int derived;)

 derived class member functions;

 (e.g., void setDerived(int d); int getDerived();)

};

Let’s discuss how public access inheritance helps reuse existing class

code in new version classes. Later, you see other access specifiers such as

private and protected.

Defining a Derived class from a Base class using inheritance gives the

following benefits.

•	 Base class complete code is inherited into the Derived

class. It means inside the Derived class member

functions can access all public Base class data

members and member functions.

void setDerived(int d) {

setBase(10); int v = getBase();

}

Chapter 6 Quick Software Development Using OOP

294

•	 Derived class objects can access all public data

members of the Base class.

int main() {

Derived d1; d1.base = 10; d1.derived = 200;

}

•	 Derived class objects can access all public data

member functions of the Base class.

int main() {

Derived d1; d1.setBase(10); d1.getBase();

d1.setSerived(20); d1.getDerived();

}

From these simple examples, you observed that inheritance helps

reuse the base class code by the derived class and its objects. Next, let’s

look at inheritance approaches.

�Inheritance Approaches
To handle challenges in reusing existing classes, inheritance approaches

help to combine multiple existing class features flexibly and efficiently

for creating new classes. Mainly, inheritance various approaches help in

extending existing classes for creating new version classes, and combining

existing classes in multiple ways for creating new classes. You can use the

following inheritance approaches.

•	 Single-level inheritance, multilevel inheritance

•	 Hierarchical inheritance

•	 Multiple inheritance

•	 Combining all inheritance approaches

Let’s learn how to use inheritance approaches in C++.

Chapter 6 Quick Software Development Using OOP

295

INHERITANCE APPROACHES IN C++

Let’s start with the basic inheritance approach called single-level inheritance.

	1.	 Single-level inheritance: For example, you must maintain

personal and employee-specific profiles in software. To do this

task without inheritance, you must create the following two

classes.

	 a.	T he Person class maintains personal profiles.

#include<iostream>

using namespace std;

class Person

{

 string name;

 unsigned int adhar_id;

 public:

 void setName(string n);

 void setAdhar(unsigned int aid);

 string getName();

 unsigned int getAdhar();

};

	 b.	T he Employee class maintains employee profiles.

class Employee

{

 string name;

 unsigned int adhar_id;

 int eid;

 unsigned int salary;

Chapter 6 Quick Software Development Using OOP

296

 public:

 void setName(string n);

 void setAdhar(unsigned int aid);

 string getName();

 unsigned int getAdhar();

 void setEid(int e);

 void setSalary(unsigned int s);

 int getEid();

 unsigned int getSalary();

};

	 c.	I n the Employee class, observe that there is a lot of code related to

personal profile maintenance. It is duplicate code and it can lead to

inconsistency and performance issues. Let’s refine the Employee class

by inheriting it from the Person class.

class Employee: public Person

{

 int eid;

 unsigned int salary;

 public:

 void setEid(int e);

 void setSalary(unsigned int s);

 int getEid();

 unsigned int getSalary();

};

	 d.	T here is no redundant code among the Person and Employee

classes.

Chapter 6 Quick Software Development Using OOP

297

	 e.	M oreover, you can access the Person class code from the Employee

object as follows.

void main()

{

 Employee e1;

 �// You can use the Person class code through e1

object as follows:

 e1.setName("name1");

 e1.setAdhar(12345);

 e1.getName();

 e1.getAdhar();

}

	2.	 Multilevel Inheritance: Helps you to create new version

classes from existing classes.

	 a.	F or example, using multilevel inheritance approaches, you

can create new versions of smart device codes easily as follows.

class SmartDevice

{

};

class SmartDevicev2:public SmartDevice

{

};

class SmartDevicev3:public SmartDevicev2

{

};

	 b.	 Similarly, you can extend SmartDevicev3 and create newer

versions of smart devices.

Chapter 6 Quick Software Development Using OOP

298

	3.	 Hierarchical Inheritance: Helps you to create a variety of new

classes from a single class.

	 a.	U sing an inheritance hierarchical approach, for example,

you can create various cricket players (BatsMan, Bowler)

profile maintenance classes from a Player class.

class Player

{

};

class Bowler: public Player

{

};

class BatsMan: public Player

{

};

	 b.	 Similarly, you can extend Player and create new player

classes (e.g., Keeper).

	4.	 Multiple inheritance: Helps you to bring multiple class features

and code into new classes.

	 a.	U sing a multiple inheritance approach, for example,

you can create a cricket player profile maintenance

class from BatsMan and Bowler classes as follows.

class BatsMan: public Player

{

};

class Bowler: public Player

{

};

Chapter 6 Quick Software Development Using OOP

299

class AllRounder:public Batman,Bowler

{

};

	 b.	T o create the AllRounder class, you combine multiple and

hierarchical inheritance approaches.

You have learned how to use various inheritance approaches. Next, let’s look

at handling challenges in combining multiple inheritance approaches.

�Issues in Combining Inheritance Approaches
When you combine hierarchical and multiple inheritance approaches,

the following details about inherited code from the Base classes must be

checked.

•	 Does a derived class (e.g., AllRounder) get inherited

with multiple copies of any base class code (e.g.,

Player)?

•	 Does a derived class get inherited from intermediate

base classes (such as BatsMan, Bowler, etc.) and the

intermediate base classes are inherited from the same

base class (e.g., Player)?

•	 If the answers are yes to these questions, then there is

an issue of duplicate code of base class (e.g., Player)

in derived classes (e.g., AllRounder). Let’s look at how

to handle this challenge in the following section.

Chapter 6 Quick Software Development Using OOP

300

HANDLING CHALLENGES IN THE USAGE OF
COMBINED INHERITANCE APPROACHES

	1.	 Combining multiple inheritance approaches for implementing

various classes to develop software is necessary. Let’s check

AllRounder class issues.

	 a.	A s per inheritance rules, the Player class code is inherited

into the BatsMan and Bowler classes.

	 b.	T hen, AllRounder inherits code from both BatsMan and

Bowler classes, which means the Player class code is

inherited into AllRounder class twice.

	 c.	I t leads to duplicate code of Player class existence in the

AllRounder class.

	 d.	T o avoid duplicate copies from intermediate classes, C++ language

supports a virtual way of inheritance.

	2.	I n this problem, intermediate classes (BatsMan and Bowler)

should inherit from the base class (Player) using the virtual

keyword as follows.

class Bowler: public virtual Player

{

};

class Batsman: public virtual Player

{

};

class AllRounder:public Batman,Bowler

{

};

Chapter 6 Quick Software Development Using OOP

301

Because of using virtual Player in intermediate classes, the ultimate

derived class (AllRounder) is inherited with only one copy of Player code.

It avoids duplicate code and ambiguity issues for linking Player member

functions in AllRounder classes.

From all these inheritance approaches, you can see how inheritance helps

reuse existing classes and create new version classes. You learn how to use

public, private, and protected access specifiers to define rules for accessing

inherited code from derived classes.

You have learned how to handle challenges in combining multiple inheritance

approaches. Base classes’ complete code is inherited into derived classes.

Next, you learn how to use access specifiers for inheriting base class code into

derived classes for restricting base class feature access.

�Access Controls and Inheritance
You have learned using inheritance approaches. It is possible to inherit

the code of base classes into derived classes. Now you learn how to use

access specifiers for controlling base class code (public, private, and

protected section) access in the derived classes.

•	 Public inheritance mode: Base class public section

code is inherited into the derived class public section.

Hence, the derived class and its objects can access it

without any public member functions.

•	 The base class private section code is inherited

into the derived class private section. Hence, the

derived class and its objects should access the base

class code with public member functions of the

base class only.

Chapter 6 Quick Software Development Using OOP

302

•	 Base class protected section code is inherited

into the derived class protected section. Derived

class and its objects can access the base class code

without any public member functions.

•	 Private inheritance mode: Base class every section

(public, private, or protected) code becomes

private in the derived class. Hence, you must provide

public member functions in derived classes to access

them outside the derived class.

•	 Protected inheritance mode: Base class private

section code is inherited into the derived class private

section.

•	 Base class (public and protected) becomes

protected in the derived class.

•	 Derived class and its objects can access the base
class code (public and protected) without any

public member functions.

PUBLIC, PRIVATE, AND PROTECTED RULES

	1.	L et’s define a Base class with sample code in each access

specifier section as follows.

class Base

{

 private:

 int f1;

 int getF1();

 public:

Chapter 6 Quick Software Development Using OOP

303

 int f2;

 int getF2();

 protected:

 int f3;

 int getF3();

};

	2.	I nherit the Base class code into the Derived class using the

public inheritance mode.

class Derived:public Base

{

 public:

 void accessProtectedBase()

 {

 f3=300;

 }

};

	 a.	T he Base class private section code is inherited into the private

section of the Derived class. To access private members of the Base

class, you must define public access functions related to them in the

Base class.

	 b.	T he Base class protected section code is inherited into the

protected section of the Derived class. To access protected

section code of the Base class, Derived class member functions can

access it (e.g., f3=100) directly, as shown in the class.

Chapter 6 Quick Software Development Using OOP

304

	 c.	H owever, nonmember functions (e.g., main()) cannot access

protected members of a class without public access functions.

int main()

{

 Derived d1;

 d1.accessProtectedBase();

 d1.f2=100; //public members can be accessed

 d1.getF2();//public members can be accessed

 d1.getF3() or d1.f3=300;//not allowed.

}

	3.	I nherit the Base class from the Derived class using private

inheritance mode as follows.

class Derived:private Base

{

 public:

 void accessPublicProtectedBase()

 {

 f2=300;

 cout<<f2;

 f3=300;

 cout<<f3;

 }

};

	 a.	T he Base class all sections (private, public, protected) code

is inherited into the private section of the Derived class.

	 b.	H ence, in main(), you cannot access public or protected section

codes of the Base class using a Derived object. You should define a

public access function in the Derived class as shown in the class

(e.g., accessPublicProtectedBase()) to access the Base class

public section or protected section code from main().

Chapter 6 Quick Software Development Using OOP

305

int main()

{

 Derived d1;

 d1.f2=100; //not allowed

 d1.getF2();//not allowed

 d1.getF3() or d1.f3=300;//not allowed.

 d1.accessPublicProtectedBase();

}

	4.	 let’s inherit Base class from Derived class using protected

inheritance mode as follows.

class Derived:protected Base

{

 public:

 void accessPublicProtectedBase()

 {

 f2=300;

 cout<<f2;

 f3=300;

 cout<<f3;

 }

};

	 a.	 The Base class private section code is inherited into the private

section of the Derived class. Base class public and protected

sections code are inherited into the Derived class protected

section.

	 b.	T o access inherited public and protected section codes

of the Base class from a Derived class object, you must call

accessPublicProtectedBase().

Chapter 6 Quick Software Development Using OOP

306

int main()

{

 Derived d1;

 d1.accessPublicProtectedBase();

 d1.f2=100; //not allowed

 d1.getF2();//not allowed

 d1.getF3() or d1.f3=300;//not allowed.

 }

These examples show how to restrict access to a base class inherited code

from derived classes. It helps you to choose the right access specifiers for

deriving new classes from base classes. Next, you learn how special functions,

constructors, and destructors behave in the context of inheritance.

�Constructors and Destructors Working Order
in Inheritance Context
You have learned using inheritance approaches. It is possible to inherit

the code of base classes into derived classes. In this section, you learn how

constructors and destructors are executed in the context of inheritance,

including the following.

•	 The order of the base class and derived classes’

constructor execution

•	 The order of the base class and derived classes’

destructors execution

•	 The importance of defining base classes order in

multiple inheritance approach

Chapter 6 Quick Software Development Using OOP

307

ORDER OF CONSTRUCTORS AND DESTRUCTORS EXECUTION

	1.	 Define a Basic class with sample constructor and destructor

codes and save it in the iconstdestr.cc file.

#include<iostream>

using namespace std;

class Basic

{

 public:

 Basic()

 {

 cout<<"Basic initialization\n";

 }

 ~Basic()

 {

 cout<<"Basic class shutdown activities\n";

 }

};

	2.	 Define a Special class by inheriting from the Basic class

with sample constructor and destructor codes as follows.

class Special:public Basic

{

 public:

 Special()

 {

 cout<<"Special initialization\n";

 }

 ~Special()

 {

Chapter 6 Quick Software Development Using OOP

308

 cout<<"Special class shutdown activities\n";

 }

};

	3.	T est the code in main() by creating a Special class object.

int main()

{

 Special s1;

}

	4.	O bserve the following while executing the testing code.

	 a.	T he base class’s object constructor code is executed, then the derived

class’s object constructor code is executed. It means after carrying out

base class objects initialization and startup activities then only derived

class objects initialization and activities are started.

	 b.	T he derived class’s object destructor code is executed, then the base

class’s object destructor code is executed. It means that only derived

class objects clean up and shutdown activities are started after

carrying out destructor class objects clean up and shutdown activities.

g++ iconstdestr.cc -o iconstdest

./iconstdestr

Basic initialization

Special initialization

Special class shutdown activities

Basic class shutdown activities

Chapter 6 Quick Software Development Using OOP

309

IMPORTANCE OF BASE CLASSES ORDER IN MULTIPLE INHERITANCE
APPROACH

	1.	 Define the following in baseclassorder.cc file.

	2.	 Copy the Basic class code into baseclassorder.cc.

	3.	 Define a New sample class as follows.

class New

{

 public:

 New()

 {

 cout<<"New features initialization\n";

 }

 ~New()

 {

 cout<<"New class shutdown activities\n";

 }

};

	4.	 Define a Sample class by inheriting from New and Basic

classes as follows.

class Special:public New, Basic

{

 public:

 Special()

 {

 cout<<"Special initialization\n";

 }

 ~Special()

 {

Chapter 6 Quick Software Development Using OOP

310

 cout<<"Special class shutdown activities\n";

 }

};

	5.	T est the code in main() by creating a Special class object.

int main()

{

 Special s1;

}

	6.	O bserve the following while executing the testing code.

	 a.	 Constructors are executed in the order of base classes (New followed

by Basic) inherited into the Special class

	 b.	 Destructors are executed in the reverse order of base classes (Basic

followed by New) inherited into the Special class

g++ baseclassorder.cc -o baseclassorder

./baseclassorder

New features initialization

Basic initialization

Special initialization

Special class shutdown activities

Basic class shutdown activities

New class shutdown activities

	7.	 Change the Special class inheriting base classes order as

follows.

class Special:public Basic,New

Chapter 6 Quick Software Development Using OOP

311

	8.	W hile executing the testing code, you should observe the

following.

	 a.	 Constructors are executed in the order of base classes (Basic followed

by New) inherited into the Special class

	 b.	 Destructors are executed in the reverse order of base classes (New

followed by Basic) inherited into the Special class.

g++ baseclassorder.cc -o baseclassorder

./baseclassorder

Basic initialization

New features initialization

Special initialization

Special class shutdown activities

New class shutdown activities

Basic class shutdown activities

From this simple activity, you observe the importance of the order of base

classes inherited into derived classes. As you know, object-oriented software

startup and shutdown activities depend on constructors and destructors. It is

necessary to define base class order per requirements while inheriting into

derived classes.

Next, let’s practice inheritance principles by doing relevant

programming activities.

�Practicing the Reduce and Reuse Principle
Two primary benefits of Inheritance concepts are eliminating redundant

code among classes and reusing the existing classes. These benefits are

highly important to speed up a software code development process. As

part of practicing the inheritance concepts, you do the following activities

related to developing application software.

Chapter 6 Quick Software Development Using OOP

312

•	 For example, related to software, you need to maintain

personal profiles of employees and trainees.

•	 Avoid redundant code related to maintaining common

details of employees and trainees.

•	 Reuse the existing code related to personal profiles to

maintain employee and trainee profiles.

•	 Clearly define classes to develop consistent code and

easily extend the existing classes.

Let’s start with defining a personal profiles maintenance class.

PERSONAL PROFILE

Define the personal profile maintenance class in C++ and save it in the

personal.h file.

	1.	T o maintain personal profiles of employees and trainees

consistently, define a Person class with common details of

employees and trainees.

	 a.	I nclude name, contact, and address details.

	 b.	T o access these personal details, declare necessary interfaces such as

set and get member functions inside the Person class.

#include<string.h>

using namespace std;

class Person

{

 string name;

 char phone[11];

 string city;

 string country;

Chapter 6 Quick Software Development Using OOP

313

 unsigned int pin;

 public:

 string getName();

 void setName(string cname);

 char* getPhone();

 void setPhone(char cphone[11]);

 string getCity();

 void setCity(string ccity);

 string getCountry();

 void setCountry(string ccountry);

 unsigned int getPin();

 void setPin(unsigned int pin);

};

	2.	 Define the member functions related to personal details such as

name and phone number of the Person class as follows.

string Person::getName()

{

 return name;

}

void Person::setName(string cname)

{

 name = cname;

}

char* Person::getPhone()

{

 return phone;

}

void Person::setPhone(char cphone[11])

{

 strcpy(phone, cphone);

}

Chapter 6 Quick Software Development Using OOP

314

	3.	 Define the member functions related to personal address

details such as city, country, and PIN of the Person class as

follows.

string Person::getCity()

{

 return city;

}

void Person::setCity(string ccity)

{

 city = ccity;

}

string Person::getCountry()

{

 return country;

}

void Person::setCountry(string ccountry)

{

 country = ccountry;

}

unsigned int Person::getPin()

{

 return pin;

}

void Person::setPin(unsigned int cpin)

{

 pin = cpin;

}

After saving this file with the code, let’s reuse the Person class to define the

employee profile maintenance class.

Chapter 6 Quick Software Development Using OOP

315

EMPLOYEE PROFILE

Define the employee profile maintenance class in C++ and save it in the

employee.h file.

	1.	 Define an Employee class by inheriting from the Person class

to reuse the Personal profile maintenance code.

	 a.	 setName, setPhone, setCity, setCountry, and setPin to

save or update employees’ personal profiles.

	 b.	 getName, getPhone, getCity, getCountry, and getPin to

retrieve employees’ profiles.

	2.	T o maintain specific details of employees, define the Employee

class with common details.

	 a.	I nclude the employee identifier, department, hire date, and salary.

	 b.	T o access these employee details, declare necessary interfaces such

as set and get member functions inside the Employee class.

#include<string.h>

using namespace std;

class Employee:public Person

{

 string eid;

 string did;

 string jdate;

 unsigned int salary;

 public:

 string getEid();

 void setEid(string ieid);

 string getDid();

 void setDid(string idid);

Chapter 6 Quick Software Development Using OOP

316

 string getJdate();

 void setJdate(string date);

 unsigned int getSalary();

 void setSalary(unsigned int sal);

};

	3.	 Define all member functions of the Employee class as follows

to maintain employee-specific details.

string Employee::getEid()

{

 return eid;

}

void Employee::setEid(string ieid)

{

 eid = ieid ;

}

string Employee::getDid()

{

 return did;

}

void Employee::setDid(string idid)

{

 did = idid;

}

string Employee::getJdate()

{

 return jdate;

}

void Employee::setJdate(string date)

{

 jdate = date;

Chapter 6 Quick Software Development Using OOP

317

}

unsigned int Employee::getSalary()

{

 return salary;

}

void Employee::setSalary(unsigned int sal)

{

 salary = sal;

}

	4.	O bserve that no code related to personal profile maintenance

code was defined in the Employee class.

After saving this file with the code, let’s test it in the main() code.

EMPLOYEE PROFILE ACCESS TESTING CODE

	1.	T o test the Person and Employee classes, define the following

code in emp_proile.cc.

	 a.	 You create a person object (p1) from the Person class and save an

example personal profile. Then, print the p1 details.

	 b.	N ext, you create an employee (e1) object from the Employee class

and save an example employee profile by including personal and

employee-specific details. Then, print the e1 details.

#include<iostream>

#include"personal.h"

#include"employee.h"

using namespace std;

int main()

Chapter 6 Quick Software Development Using OOP

318

{

 Person p1;

 p1.setName("Person");

 char phone[11];

 strcpy(phone,"9000080000");

 p1.setPhone(phone);

 p1.setCity("City1");

 p1.setCountry("Country1");

 p1.setPin(100001);

 cout<<"Person details:\n";

 cout<<"Name:"<<p1.getName()<<":\n";

 cout<<"Phone Number:"<<p1.getPhone()<<"\n";

 Employee e1;

 e1.setName("Employee");

 char phone1[11];

 strcpy(phone1,"9000080001");

 e1.setPhone(phone1);

 e1.setCity("City2");

 e1.setCountry("Country1");

 e1.setPin(100001);

 e1.setEid("E001");

 e1.setDid("D001");

 e1.setSalary(90000);

 cout<<"Employee details:\n";

 cout<<"EID:"<<e1.getEid()<<"\n";

 cout<<"Name:"<<e1.getName()<<"\n";

 cout<<"DID:"<<e1.getDid()<<"\n";

 cout<<"Salary:"<<e1.getSalary()<<"\n";

}

Chapter 6 Quick Software Development Using OOP

319

	2.	A fter saving the code, test emp_profile.cc code using the

following command and observe the results.

	 a.	 You can observe that employee object personal details can

be accessed using Person class interfaces (e.g., setName,

getName, etc.).

	 b.	T he Person class code is inherited into the Employee class and

accessible from Employee objects.

gcc emp_profile.cc -o emp

./emp

Person details:

Name:Person:

Phone Number:9000080000

Employee details:

EID:E001

Name:Employee

DID:D001

Salary:90000

After testing the employee profile maintenance code, let’s extend the

employee profile code to develop and maintain trainees profile.

Chapter 6 Quick Software Development Using OOP

320

DEFINE TRAINEE PROFILE BY REUSING EMPLOYEE PROFILE CODE

Define a trainee profile maintenance class in C++ and save it in the

trainee.h file.

	1.	 Define a Trainee class by inheriting from the Employee

class to reuse the personal and employee profile maintenance

code such as

	 a.	 setName, setPhone, setCity, setCountry, setPin,

getName, getPhone, getCity, getCountry, and getPin to

maintain personal profiles of trainees.

	 b.	 setEid, setDid, setSalary,getEid, getDid, and

getSalary to maintain employee profiles of trainees.

	2.	 Define the Trainee class with common trainee details.

	 a.	I nclude the training end date and grade.

	 b.	 Declare necessary interfaces such as set and get member functions

inside the Trainee class.

#include<string.h>

using namespace std;

class Trainee:public Employee

{

 string edate;

 string grade;

 public:

 string getEdate();

 void setEdate(string date);

 string getGrade();

 void setGrade(string igrade);

};

Chapter 6 Quick Software Development Using OOP

321

	3.	 Define all member functions of the Trainee class as follows to

maintain trainee-specific details.

string Trainee::getEdate()

{

 return edate;

}

void Trainee::setEdate(string date)

{

 edate = date;

}

string Trainee::getGrade()

{

 return grade;

}

void Trainee::setGrade(string igrade)

{

 grade = igrade;

}

	4.	 Save the file with the preceding code, and hen test it in the

main() code.

	5.	 Define the following code in trainee_proile.cc.

	 a.	 Create a trainee object (t1) from the Trainee class and save an

example trainee profile. Then, print the t1 details.

#include<iostream>

#include"personal.h"

#include"employee.h"

#include"trainee.h"

using namespace std;

int main()

Chapter 6 Quick Software Development Using OOP

322

{

 Trainee t1;

 t1.setName("Trainee");

 char phone1[11];

 strcpy(phone1,"9000080001");

 t1.setPhone(phone1);

 t1.setCity("City2");

 t1.setCountry("Country1");

 t1.setPin(100001);

 t1.setEid("T001");

 t1.setDid("D001");

 t1.setJdate("JDATE1");

 t1.setSalary(10000);

 cout<<"Trainee details:\n";

 cout<<"TID:"<<t1.getEid()<<"\n";

 cout<<"Name:"<<t1.getName()<<"\n";

 cout<<"DID:"<<t1.getDid()<<"\n";

 cout<<"Stipend:"<<t1.getSalary()<<"\n";

 t1.setEdate("EDATE1");

 t1.setGrade("Grade-1");

 �cout<<"Training End date:"<<t1.getEdate()<<"\n";

 cout<<"Grade:"<<t1.getGrade()<<"\n";

}

	6.	 Save the code. Test trainee_profile.cc code using the

following command and observe the results.

	 a.	O bserve that trainee object personal details can be accessed using

Person class interfaces (e.g., setName, getName).

Chapter 6 Quick Software Development Using OOP

323

	 b.	T rainee object employee details can be accessed using Employee

class interfaces (e.g., setEid, getEid).

	 c.	T he Person class and Employee code are inherited into the Trainee

class and accessible from Trainee objects.

gcc trainee_profile.cc -o trainee

#./trainee

Trainee details:

TID:T001

Name:Trainee

DID:D001

Stipend:10000

Training End date:EDATE1

Grade:Grade-1

Next, let’s extend the existing game entities for creating new versions of game

entities using inheritance.

�Building New Software Building Blocks
Versions Easily
In this section, you practice inheritance concepts to implement newer

software versions, for instance, newer versions of weapons, bombs, and

players, by extending the game entities defined in Chapter 5. Specifically,

you do the following activities to extend the game entities.

•	 Introduce a new version of guns called automatic guns

•	 Introduce a new version of bombs called time bombs

•	 Introduce a new version of players with new actions

Chapter 6 Quick Software Development Using OOP

324

•	 Set up game scenarios using older and new versions of

game entities.

•	 For instance, you should be able to deploy

automatic and older guns to set up game scenarios.

•	 For instance, you should be able to deploy normal

bombs and time bombs to set up game scenarios.

•	 For instance, you should be able to introduce new

version players as well as older version players.

Let’s start with automatic guns in the gaming world.

AUTOMATIC GUN VERSION

Define an AutoGun class by extending and reusing the Gun class and saving it

in the autogun.h file.

	1.	T o model automatic guns, define the following sample features

by extending default Gun class features.

#include <iostream>

using namespace std;

class AutoGun:public Gun

{

 unsigned int range;

 unsigned int timer;

 public:

Chapter 6 Quick Software Development Using OOP

325

	 a.	I nitialize automatic guns with a higher number of bullets and a

default timer.

 AutoGun()

 {

 setBullets(100);

 timer = 10;

}

	 b.	P rovide special interfaces to enable or disable the automatic mode

working of guns.

 void setAutomode(unsigned int time)

 {

 range = rand()%100;

 timer = time;

 }

 bool isAutoEnabled()

 {

 if (timer>0)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

	 c.	 Define a new firing procedure when automatic mode is enabled. To do

this, override the fire() member function of the Gun class.

 void fire()

 {

 int bullets = getBullets();

Chapter 6 Quick Software Development Using OOP

326

 if (timer > 0)

 {

 cout<<"Auto mode enabled\n";

 if (bullets>0)

 {

 bullets=bullets-5;

 setBullets(bullets);

 }

 else

 cout<<"No bullets\n";

 }

 else

 {

 if (bullets>0)

 {

 bullets=bullets-1;

 setBullets(bullets);

 }

 else

 cout<<"No bullets\n";

 }

 }

};

	2.	O bserve that due to inheritance features, in the AutoGun

class you can reuse Gun class member functions such as

setBullets and getBullets interfaces.

	3.	 Save this code.

Next, let’s define time bombs by extending the existing Bomb class.

Chapter 6 Quick Software Development Using OOP

327

TIME BOMB VERSION

Define a TimeBomb class by extending and reusing the Bomb class, and save

it in the timebomb.h file.

	1.	T o model time bombs, define the following sample features by

extending default Bomb class features.

#include <iostream>

using namespace std;

class TimeBomb:public Bomb

{

 int id;

 unsigned int timer;

 public:

	 a.	O verride the setState member function to enable time bombs in

game scenarios.

 void setState(int istate)

 {

 Bomb::setState(istate);

 timer = 10;

 }

	 b.	 Define time bombs with specific identifiers and access them using

setId and getId interfaces.

 void setId(int iid)

 {

 id = iid;

 }

 int getId()

 {

 return id;

 }

Chapter 6 Quick Software Development Using OOP

328

	 c.	 Define the setTimer function to set a timer for time bombs.

	 i.	 Based on the timer, activate or disable the bomb using the Bomb

class interface called setState.

 void setTimer(unsigned int time)

 {

 enum state {DIFFUSED,ACTIVE};

 timer = time;

 if (timer > 0)

 {

 Bomb::setState(ACTIVE);

 }

 else

 {

 Bomb::setState(DIFFUSED);

 }

 }

	 d.	 Define the getTimer function to get timer values of time bombs.

 unsigned int getTimer()

 {

 return timer;

 }

};

	2.	 Due to inheritance features, in the TimeBomb class, you can

reuse Bomb class member functions such as setState and

getState interfaces.

	3.	 Save this code.

Next, let’s define newer version players by extending the existing

Player class.

Chapter 6 Quick Software Development Using OOP

329

NEW VERSION PLAYER

Define a Playerv2 class by extending and reusing the Player class and

saving it in playerv2.h file.

	1.	P lease note that before defining Playerv2, change the Player

class private data members into protected ones. It helps in

accessing Player data members directly by Playerv2 member

functions.

	2.	A s part of modeling newer version players, define the following

sample features by extending default Player class features.

#include <iostream>

#include <vector>

#include <unistd.h>

#include <bits/stdc++.h>

using namespace std;

class Playerv2:public Player

{

	3.	 Define new vectors called tbv and agv to collect new versions

of guns and bombs.

 vector<TimeBomb> tbv;

 vector<AutoGun> agv;

 public:

	4.	 Define a new player action called fly.

 void fly()

 {

 cout<<"He can fly\n";

 x = x*10; y = y*10; }

Chapter 6 Quick Software Development Using OOP

330

	5.	 Define another new player action called swim.

 void swim()

 {

 cout<<"He can swim\n";

 x = x+3; y = y+3;

 }

	6.	 Define a new action to set a time bomb called setTimerBomb.

 void setTimerBomb(TimeBomb *b)

 {

 tbv.push_back(*b);

 }

	7.	 Define a new action to activate an automatic gun called

setAutoGun.

 void setAutoGun(AutoGun *g)

 {

 agv.push_back(*g);

 }

	8.	O verride the stats member function of Player to display new

weapons and other stats of players.

 void stats()

 {

 �cout<<"\nPlayer: "<<getId()<<" Time Bombs:

"<<tbv.size()<<" Auto Guns:"<<agv.size()<<"\n";

 }

};

Next, let’s set up a sample game context using new version players, weapons,

and bombs.

Chapter 6 Quick Software Development Using OOP

331

SET UP A NEW VERSION GAME CONTEXT

Let’s do the following activities to set up a new version game setup in the

game.cc file.

	1.	I nclude the following files to deploy the older and new game

entities.

#include<iostream>

#include<vector>

#include"bomb.h"

#include"gun.h"

#include"player.h"

#include"timebomb.h"

#include"autogun.h"

#include"playerv2.h"

using namespace std;

	2.	 Start main() with deploying two older version bombs and guns

and an older version player.

int main()

{

 Bomb b1,b2;

 Gun g1,g2;

 Player p1;

	3.	 Define the older version of player actions.

	 a.	A ctivating bombs and guns

	 b.	M oving forward

	 c.	F iring older guns

 p1.setBomb(&b1);

 p1.setGun(&g1);

Chapter 6 Quick Software Development Using OOP

332

 p1.walk();

 �cout<<"After walking Player1 position:

"<<p1.getX()<<" "<<p1.getY()<<"\n";

 cout<<"Player1 gun state: "<<g1.getState()<<"\n";

 �cout<<"Player1 gun's bullets:

"<<g1.getBullets()<<"\n";

 g1.fire();

 �cout<<"After firing Player1 gun's bullets:

"<<g1.getBullets()<<"\n";

 if (b1.getState() == 1)

 {

 cout<<"Player1 bomb is active\n";

 }

	4.	 Define a new version player, a time bomb, and an

automatic gun.

 Playerv2 p2;

 TimeBomb tb;

 AutoGun ag;

	5.	G ive the new version player the following actions.

	 a.	A ctivating newer version bombs and guns

 p2.setAutoGun(&ag);

 p2.setTimerBomb(&tb);

	 b.	A ctivating older version bombs and guns

 p2.setBomb(&b2);

 p2.setGun(&g2);

	 c.	M oving forward and firing guns

 p2.walk();

 �cout<<"After walking Player2 position: "<<p2.

getX()<<" "<<p2.getY()<<"\n";

Chapter 6 Quick Software Development Using OOP

333

 cout<<"Player2 gun state: "<<g2.getState()<<"\n";

 g2.fire();

 �cout<<"After firing Player2 gun's bullets: "<<g2.

getBullets()<<"\n";

 cout<<"Player2 gun state: "<<ag.getState()<<"\n";

 �cout<<"Player2 Autho gun's bullets: "<<ag.

getBullets()<<"\n";

 ag.fire();

 �cout<<"After firing Player2 Autho gun's bullets:

"<<ag.getBullets()<<"\n";

 if (b2.getState() == 1)

 {

 cout<<"Player2 bomb is active\n";

 }

 �cout<<"Player2 time bomb timer: "<<tb.

getTimer()<<"\n";

	6.	 Call the player2 new actions, such as flying and swimming.

 p2.fly();

 �cout<<"After flying Player2 position:

"<<p2.getX()<<" "<<p2.getY()<<"\n";

 p2.swim();

 �cout<<"After swimming Player2 position:

"<<p2.getX()<<" "<<p2.getY()<<"\n";

}

	7.	 Save the game.cc with the preceding code, execute it,

and observe the following.

	 a.	O lder version player objects interact with older guns

and bombs.

	 b.	O lder version player objects can walk only.

Chapter 6 Quick Software Development Using OOP

334

	 c.	N ewer version player objects can interact with both normal

guns and automatic guns.

	 d.	N ewer version player objects can interact with both normal

bombs and time bombs.

	 e.	N ewer version player objects can do new actions such as

flying and swimming.

g++ game.cc -o game

./game

After walking Player1 position: 2 6

Player1 gun state: 1

Player1 gun's bullets: 10

After firing Player1 gun's bullets: 9

Player1 bomb is active

After walking Player2 position: 6 8

Player2 gun state: 1

After firing Player2 gun's bullets: 9

Player2 gun state: 1

Player2 Autho gun's bullets: 100

Auto mode enabled

After firing Player2 Autho gun's bullets: 95

Player2 bomb is active

Player2 time bomb timer: 42

He can fly

After flying Player2 position: 60 80

He can swim

After swimming Player2 position: 63 83

From this activity, you observed that inheritance helps easily create new

version classes. It helps us to build new versions of software from existing

software easily. Next, you learn the importance of combining objects for

producing software.

Chapter 6 Quick Software Development Using OOP

335

�Combine or Connect Objects Wisely
An association of classes and integration of objects are necessary to

develop complex applications. Inheritance concepts help define classes

wisely to avoid redundant code and write reusable and extendible classes.

You have practiced inheritance approaches for writing reusable and

extendible software. This section explains how to combine or connect

objects to classes. Programmers can use objects inside a class using the

following two main approaches.

•	 Composition: Composition of objects inside a class

(external class) means tightly coupling internal objects

(defined inside the class) with the external class

objects. It results in internal object creation or deletion

depending on the class objects.

•	 You should use object composition only if it is

necessary to combine an external object with

internal objects. Otherwise, it increases object size

unnecessarily and results in performance issues for

the software.

•	 For example, in a game context, you can create

a special weapon by composing it with various

weapons.

class SpecialWeapon

{

 Gun g;

 AutoGun ag;

 Bomb b[10];

 public:

 ..

};

Chapter 6 Quick Software Development Using OOP

336

•	 Aggregation: Aggregation of objects inside a class

(external) means loosely coupling internal objects with

the class (external) objects. It means external objects

are connected with internal objects by including

references or pointers of internal objects.

•	 You should use object aggregation to connect

objects dynamically. Hence, it eliminates the

increased size of objects and results in improved

software performance.

•	 For example, you need to dynamically connect with

smart devices or IoT objects to implement smart

applications.

class SmartApplication

{

 SmartDevicev2 *s1;

 SmartDevicev3 *s2;

 IoTSensor s1;

 public:

 ..

};

Let’s start by discussing object composition and an activity related to a

gaming application.

�Object Composition: Special Gaming Weapon
Let’s revisit Chapter 5’s simple game application. You created a variety

of guns and bombs to be used in gaming scenarios. For instance, special

automatic guns from the normal Gun class were implemented using

inheritance concepts. Similarly, you have time bombs from the normal

Bomb class. You also observed that older and newer weapons can be

Chapter 6 Quick Software Development Using OOP

337

used in gaming scenarios. In this section, you create special weapons by

combining gun objects and bomb objects. Since players interacting with

a special weapon should access all its features, you want to use object

composition. Moreover, you want to ensure that deleting the special

weapon must delete all its internal weapons. Let’s work on the following

activities.

•	 Include an automatic gun object configured through

only special weapon object interfaces.

•	 Include multiple time bomb objects inside a special

weapon object, which must be configured only with

special weapon interfaces.

•	 Include normal bomb objects inside a special weapon

object, which must be configured only with special

weapon interfaces.

•	 Include a normal gun object inside a special weapon

object and must be configured through only special

weapon object interfaces.

•	 All internal weapons and bomb configurations should

be done through only special weapon objects.

GAMING APPLICATION SPECIAL WEAPONS

Define a SpecialWeapon class in specialweapon.cc file to test it.

	1.	T o compose existing game weapons objects inside the

SpecialWeapon class, include the following gaming

header files.

#include<iostream>

#include<vector>

#include"bomb.h"

Chapter 6 Quick Software Development Using OOP

338

#include"gun.h"

#include"timebomb.h"

#include"autogun.h"

using namespace std;

	2.	 Define SpecialWeapon class to compose a suitable number of

AutoGun, Gun, TimeBomb, and Bomb objects.

class SpecialWeapon

{

 AutoGun ag;

 TimeBomb tb[10];

 Bomb b[10];

 Gun g;

	3.	 Define SpecialWeapon interfaces to access the internal bomb

and time bomb objects.

 public:

 void setTimeBomb()

 {

 for(int i=0;i<10;i++)

 {

 tb[i].setState(1);

 }

 �cout<<"Special Weapon's Ten timer bombs set\n";

 }

 void setBomb()

 {

 for(int i=0;i<10;i++)

 {

 b[i].setState(1);

 }

Chapter 6 Quick Software Development Using OOP

339

 cout<<"Special Weapon's Ten bombs set\n";

 }

 void resetTimeBomb()

 {

 for(int i=0;i<10;i++)

 {

 tb[i].setState(0);

 }

 }

 void resetBomb()

 {

 for(int i=0;i<10;i++)

 {

 b[i].setState(0);

 }

 }

	4.	 Define SpecialWeapon interfaces to access the internal gun

and automatic gun objects.

 void gunFire()

 {

 g.fire();

 }

 void autoGunFire()

 {

 ag.fire();

 }

 void setGunBullets(int bullets)

 {

 g.setBullets(bullets);

 }

Chapter 6 Quick Software Development Using OOP

340

 void setAutoGunBullets(int bullets)

 {

 ag.setBullets(bullets);

 }

 int getGunBullets()

 {

 return g.getBullets();

 }

 int getAutoGunBullets()

 {

 return ag.getBullets();

 }

};

	5.	 Define main() to test special weapon objects.

	 a.	 Create a special weapon object.

	 b.	 Configure the special weapon object’s internal bombs

and time bombs.

	 c.	 Configure the special weapon object’s internal gun modes.

	 d.	T est special weapon object’s internal guns by invoking

fire functions.

int main()

{

 SpecialWeapon spw;

 spw.setTimeBomb();

 spw.setBomb();

 �cout<<"Special Weapon's Gun Bullets:"<<spw.

getGunBullets()<<"\n";

 �cout<<"Special Weapon's Auto Gun Bullets:"

<<spw.getAutoGunBullets()<<"\n";

Chapter 6 Quick Software Development Using OOP

341

 spw.gunFire();

 spw.autoGunFire();

 �cout<<"After firing Special Weapon's Gun

Bullets:"<<spw.getGunBullets()<<"\n";

 cout<<"After firing Special Weapon's Auto Gun

Bullets:"<<spw.getAutoGunBullets()<<"\n";

}

	6.	 Save the specialweapon.cc file. Test it using the following.

	 a.	T he special weapon is setting its internal time bombs.

	 b.	T he special weapon is setting its internal bombs.

	 c.	T he special weapon is loading its internal normal gun with bullets.

	 d.	T he special weapon loads its internal automatic gun with bullets.

	 e.	T he special weapon enables automatic gun mode and firing guns.

g++ specialweapon.cc -o specialweapon

./specialweapon

Special Weapon's Ten timer bombs set

Special Weapon's Ten bombs set

Special Weapon's Gun Bullets:10

Special Weapon's Auto Gun Bullets:100

Auto mode enabled

After firing Special Weapon's Gun Bullets:9

After firing Special Weapon's Auto Gun Bullets:95

Well done. You have successfully created a special weapon by composing it

with weapons and bombs. Next, let’s check the importance of multiple objects

aggregation.

Chapter 6 Quick Software Development Using OOP

342

�Object Composition and Aggregation
In the last section, you practiced the importance of multiple object

composition to create special objects. Composing objects leads to

increasing object size and performance issues. Let’s do a simple activity

to better understand when to compose objects or aggregate objects. For

example, implementing sample smart applications for smart devices and

IoT sensors.

•	 Smart applications need access to suitable smart

devices.

•	 Smart devices should have a variety of IoT sensors.

If a smart device is unavailable, all its internal IoT

sensors also should be unavailable. It means you must

use object (IoT sensor) composition to create smart

devices.

•	 Multiple smart applications should be able to access

available smart devices.

•	 Deleting or removing a smart application should not

lead to the unavailability of any of its accessing smart

devices. It means you must use objects (smart devices)

aggregation to create smart applications.

Let’s start with smart devices combined with suitable IoT sensors.

SMART DEVICE USING OBJECT COMPOSITION

Implement a SmartDevice class in the smart_device.h file.

	1.	 Define a SmartDevice class by composing it with three

IoTSensor objects. Here, let’s reuse the iot_sesnor.h file

from previous source codes.

Chapter 6 Quick Software Development Using OOP

343

#include"iot_sensor.h"

using namespace std;

class SmartDevice

{

 IoTSensor ios1;

 IoTSensor ios2;

 IoTSensor ios3;

	2.	I nitialize all three IoT sensor objects with example

configurations as part of SmartDevice constructor.

 public:

 SmartDevice()

 {

 ios1.setId("Sensor1");

 ios1.setX(0);

 ios1.setY(0);

 ios1.setBatteryLevel(100);

 ios2.setId("Sensor2");

 ios2.setX(10);

 ios2.setY(10);

 ios2.setBatteryLevel(100);

 ios3.setId("Sensor3");

 ios3.setX(5);

 ios3.setY(5);

 ios3.setBatteryLevel(100);

 }

Chapter 6 Quick Software Development Using OOP

344

	3.	 Define example interfaces for accessing each of these IoT

sensor objects.

 void configureSensor1(float value)

 {

 ios1.setSenseValue(value);

 }

 float getSensor1Value()

 {

 return ios1.getSenseValue();

 }

 void configureSensor2(float value)

 {

 ios2.setSenseValue(value);

 }

 float getSensor2Value()

 {

 return ios2.getSenseValue();

 }

 void configureSensor3(float value)

 {

 ios3.setSenseValue(value);

 }

 float getSensor3Value()

 {

 return ios3.getSenseValue();

 }

};

Next, let’s use SmartDevice objects to design a SmartApplications example.

Chapter 6 Quick Software Development Using OOP

345

SMART APPLICATION USING OBJECT AGGREGATION

Implement the SmartApplication class in the smartapplication.h file.

	1.	T o create a smart application over smart devices, let’s include

the SmartDevice header file.

#include"smart_device.h"

using namespace std;

	2.	 Define a SmartApplication initialization activities in its

constructor.

	 a.	T o start a smart application, it must be initialized with two

SmartDevice objects. Here, use the aggregation concept to link

SmartDevice objects with SmartApplication.

	 b.	T hen, it checks smart devices’ sensor values and generates

respective events.

class SmartApplication

{

 public:

 �SmartApplication(SmartDevice tsd1,

SmartDevice tsd2)

 {

 SmartDevice &sd1 = tsd1;

 SmartDevice &sd2 = tsd2;

 if (sd1.getSensor1Value()>sd2.getSensor1Value())

 {

 cout<<"Alert1\n";

 }

Chapter 6 Quick Software Development Using OOP

346

 if (sd1.getSensor2Value()<sd2.getSensor2Value())

 {

 cout<<"Alert2\n";

 }

 if (sd1.getSensor3Value()<sd2.getSensor3Value())

 {

 cout<<"Emergency Alert\n";

 }

 }

	3.	 Define a sample interface to determine the status of the smart

application.

 void SmartApplicationStatus()

 {

 cout<<"Smart Application is running";

 }

};

	4.	 Save smartapplication.h and test it in main().

TEST THE SMART APPLICATION

Define a testing code in the smartapp.cc file.

	1.	T o test the smart application, create two smart device objects

and configure their internal IoT sensors.

	2.	 Create a smart application object called s1 by initializing it with

the two smart device objects.

Chapter 6 Quick Software Development Using OOP

347

	3.	A ccess smart devices and their internal IoT sensors by printing

their sensed values.

#include"smart_application.h"

using namespace std;

int main()

{

 SmartDevice *sd1,*sd2;

 sd1 = new SmartDevice();

 sd2 = new SmartDevice();

 sd1->configureSensor1(10.2);

 sd1->configureSensor2(20.2);

 sd1->configureSensor3(30.2);

 sd2->configureSensor1(10.1);

 sd2->configureSensor2(10.2);

 sd2->configureSensor3(30.3);

 �SmartApplication *s1 = new SmartApplication

(*sd1,*sd2);

 s1->SmartApplicationStatus();

 �cout<<"SmartDevice1 access"<<sd1->getSensor1

Value()<<"\n";

 �cout<<"SmartDevice2 access"<<sd2->getSensor1

Value()<<"\n";

	4.	 Delete smart application object s1.

delete s1;

	5.	 Create another smart application object called s2 by initializing

it with two existing smart device objects.

	6.	 Check its running status.

Chapter 6 Quick Software Development Using OOP

348

	7.	A ccess smart devices and their internal IoT sensors by printing

their sensed values.

 �SmartApplication *s2 = new

SmartApplication(*sd1,*sd2);

 s1->SmartApplicationStatus();

 �cout<<"SmartDevice1 access"<<sd1->getSensor1

Value()<<"\n";

 �cout<<"SmartDevice2 access"<<sd2->getSensor1

Value()<<"\n";

}

	8.	 Save the smartapp.cc file and test it using the following

command and observe the following.

	 a.	 SmartApplication s1 starts successfully and it generates

sample events.

	 b.	W hile the smart application (s1) is active, you can access

the smart devices and their internal IoT sensor values.

	 c.	A lthough smart application (s1) was destroyed, deploying

another smart application (s2) over the existing smart devices

is possible. It is due to object aggregation concepts.

	 d.	O bserve the sample smart application (s2) is successfully

running and accessing smart devices is possible.

g++ smartapp.cc -o smartapp

./smartapp

Alert1

Emergency Alert

Smart Application is running

SmartDevice1 access10.2

SmartDevice2 access10.1

Alert1

Chapter 6 Quick Software Development Using OOP

349

Emergency Alert

Smart Application is running

SmartDevice1 access10.2

SmartDevice2 access10.1

Object composition helps create special bulky objects. Similarly, object

aggregation helps create software applications by connecting objects using

pointers or references.

Next, let’s practice using inheritance and object composition in

developing smart devices.

�Hands-on Activity: Inheritance and
Object Association
This hands-on activity uses inheritance and object association methods

to develop smart devices. For example, you create the following example

smart devices.

•	 Develop a new smart device called SmartDevicev2

with special features by reusing SmartDevice features

and including special IoTSensor features. You must

use inheritance and object composition concepts for

this task.

•	 Develop a new smart device called SmartDevicev3 with

special features by reusing SmartDevice features and

including two special IoTSensor features. You must

use inheritance and object composition concepts for

this task.

Chapter 6 Quick Software Development Using OOP

350

•	 Develop a new smart device called SmartDevicev4 by

reusing features of SmartDevicev2 and SmartDevicev3.

Here, you need to handle issues of combining

inheritance approaches using virtual to avoid

duplicate code.

NEW VERSIONS OF SMART DEVICES

Let’s create the SmartDevicev2 class by extending the SmartDevice class

for the special smart devices, which should support the following..

•	 Using objects of SmartDevicev2, all basic sensors of

SmartDevice should be accessible for implementing various

smart applications.

•	 Besides basic sensors, objects of SmartDevicev2 should also

support the usage of precision IoTSensor for implementing

smart applications.

•	 To implement the new version of smart devices, define the

SmartDevicev2 class in smartdevicev2v.h file.

•	 Include smart_device.h to reuse SmartDevice class

features. Observe that to avoid duplicated code, you are

using the virtual inheritance approach.

#include"smart_device.h"

using namespace std;

class SmartDevicev2: public virtual SmartDevice

{

Chapter 6 Quick Software Development Using OOP

351

•	 To include precision IoT sensor behavior, you define an

IoTSensor object. It means you are composing the new

IoT sensor object with the SmartDevicev2 objects.

 IoTSensor sps;

 public:

•	 To initialize SmartDevicev2 objects, configure the

precision IoTSensor object by setting its id, location (x,y),

and battery.

 SmartDevicev2()

 {

 sps.setId("HighPrecisionSensor");

 sps.setX(20);

 sps.setY(20);

 sps.setBatteryLevel(100);

 }

•	 Provide precision IoT sensor accessing interfaces to

configure and retrieve its values for implementing

application-specific activities.

 void configurePrecision(float value)

 {

 sps.setSenseValue(value);

 }

 float getPrecisionSenseVal()

 {

 return sps.getSenseValue();

 }

};

Chapter 6 Quick Software Development Using OOP

352

Let’s create another SmartDevicev3 class by extending the SmartDevice

class for implementing the special smart device, which should support the

following.

•	 Use SmartDevicev3 objects; all basic sensors of

SmartDevice should be accessible for implementing various

smart applications.

•	 Besides basic sensors, objects of SmartDevicev3 should

also support the usage of two precision IoTSensor for

implementing smart applications.

	1.	T o implement the new version of smart devices,

let’s start defining the SmartDevicev3 class in

smartdevicev3v.h file.

	 a.	 You must include smart_device.h to reuse SmartDevice

class features. Observe that to avoid duplicated code,

let’s use the virtual inheritance approach.

using namespace std;

class SmartDevicev3: public virtual SmartDevice

{

	 b.	T o include two precision IoT sensors’ behavior define two

IoTSensor objects. This means compose two new

sensor objects with the SmartDevicev3 objects.

 IoTSensor sps1;

 IoTSensor sps2;

	 c.	T o initialize SmartDevicev3 objects, configure the two precision

IoTSensor objects by setting their id, location (x,y), and battery.

 public:

 SmartDevicev3()

 {

Chapter 6 Quick Software Development Using OOP

353

 sps1.setId("HighPrecisionSensor1");

 sps1.setX(22);

 sps1.setY(22);

 sps1.setBatteryLevel(100);

 sps2.setId("HighPrecisionSensor2");

 sps2.setX(30);

 sps2.setY(30);

 sps2.setBatteryLevel(100);

 }

	 d.	 Define each precision IoT sensor accessing interfaces to configure and

retrieve their values for implementing application-specific activities.

 void configurePrecision1(float value)

 {

 sps1.setSenseValue(value);

 }

 float getPrecision1SenseVal()

 {

 return sps1.getSenseValue();

 }

 void configurePrecision2(float value)

 {

 sps2.setSenseValue(value);

 }

 float getPrecision2SenseVal()

 {

 return sps2.getSenseValue();

 }

};

Next, let’s create another smart device called SmartDevicev4, which

inherits both SmartDevicev2 and SmartDevicev3 features.

Chapter 6 Quick Software Development Using OOP

354

NEW VERSIONS OF SMART DEVICES

Let’s create the SmartDevicev4 class by inheriting features of both

SmartDevicev2 and SmartDevicev3 classes for implementing the special

smart devices, which should support the following.

•	 Using objects of SmartDevicev4, all basic sensors of

SmartDevice should be accessible to various smart

applications.

•	 To customize configurations related to basic

sensors inherited from SmartDevice, override

ConfigureSensor1 and getSensor1Value.

•	 Configuring sensor1 should result in automatically

configuring all basic sensors: sensor1, sensor2, and

sensor3 of smart devices.

•	 Accessing Sensor1 should result in getting aggregate

values of basic sensors of smart devices.

•	 Besides basic sensors, the precision sensors of

SmartDevicev2 and SmartDevicev3 are also accessible for

smart applications.

	1.	T o implement the new version of smart devices, let’s start

defining the SmartDevicev4 class in the smartdevices.

cc file.

	 a.	 You must include smartdevicev2.h and smartdevicev3.h

to reuse SmartDevice class features.

#include"smart_devicev2v.h"

#include"smart_devicev3v.h"

using namespace std;

Chapter 6 Quick Software Development Using OOP

355

class SmartDevicev4: public SmartDevicev2, public

SmartDevicev3

{

 public:

	 b.	T o customize all basic sensor configuration activities of SmartDevice,

define ConfigureSesnor1() by overriding its definition.

void configureSensor1(float value)

{

 configureSensor2(value);

 configureSensor3(value);

}

	 c.	T o retrieve basic sensors, aggregate values override

getSensor1Value()

 float getSensor1Value()

 {

 return getSensor2Value()+getSensor3Value();

 }

};

	2.	T est all newly created smart devices in main().

int main()

{

	 a.	 Create and test SmartDevicev2 objects.

	 i.	 Configure and access all basic sensors of

SmartDevice.

	 ii.	 Configure and access its precision sensor.

 SmartDevicev2 sd1;

 sd1.configureSensor1(10.2);

 sd1.configureSensor2(20.2);

Chapter 6 Quick Software Development Using OOP

356

 sd1.configureSensor3(30.2);

 �cout<<"SmartDevicev2 sensor1 access"

<<sd1.getSensor1Value()<<"\n";

 �cout<<"SmartDevicev2 sensor2 access"

<<sd1.getSensor2Value()<<"\n";

 �cout<<"SmartDevicev2 sensor3 access"

<<sd1.getSensor3Value()<<"\n";

 sd1.configurePrecision(10.999);

 �cout<<"SmartDevice2 precision sensor

access:"<<sd1.getPrecisionSenseVal()<<"\n";

	 b.	 Create and test SmartDevicev3 objects.

	 i.	 Configure and access all basic sensors of SmartDevice.

	 ii.	 Configure and access both precision sensors.

 SmartDevicev3 sd2;

 sd2.configureSensor1(10.2);

 sd2.configureSensor2(20.2);

 sd2.configureSensor3(30.2);

 �cout<<"SmartDevicev3 sensor1 access"<<sd2.

getSensor1Value()<<"\n";

 �cout<<"SmartDevicev3 sensor2 access"<<sd2.

getSensor2Value()<<"\n";

 �cout<<"SmartDevicev3 sensor3 access"<<sd2.

getSensor3Value()<<"\n";

 sd2.configurePrecision1(40.999);

 �cout<<"SmartDevice1 precision:"<<sd2.

getPrecision1SenseVal()<<"\n";

Chapter 6 Quick Software Development Using OOP

357

	 c.	 Create and test SmartDevicev4 objects.

	 i.	 Configure and access all basic sensors of SmartDevice

using newly overridden member functions.

 SmartDevicev4 sd3;

 sd3.configureSensor1(50.2);

 sd3.configureSensor2(60.2);

 sd3.configureSensor3(70.2);

 �cout<<"SmartDevicev4 access"<<sd3.getSensor1

Value()<<"\n";

 �cout<<"SmartDevicev4 access"<<sd3.getSensor2

Value()<<"\n";

 �cout<<"SmartDevicev4 access"<<sd3.getSensor3

Value()<<"\n";

	 ii.	 Configure and access all basic sensors of SmartDevice

using newly overridden member functions.

 sd3.configureSensor1(100.99999);

 �cout<<"SmartDevicev4 access"<<sd3.

getSensor1Value()<<"\n";

 �cout<<"SmartDevicev4 access"<<sd3.

getSensor2Value()<<"\n";

 �cout<<"SmartDevicev4 access"<<sd3.

getSensor3Value()<<"\n";

 �cout<<"SmartDevicev4 access"<<sd3.

getSensor1Value()<<"\n";

}

Chapter 6 Quick Software Development Using OOP

358

	3.	 Save smartdevices.cc with the preceding code, execute it,

and observe the following.

	 a.	 SmartDevicev2 objects can access basic SmartDevice sensor

features and its precision sensor features to any new smart application.

	 b.	 SmartDevicev3 objects can access basic SmartDevice sensor

features and its two precision sensor features.

	 c.	T he SmartDevicev4 object implements special behavior by inheriting

SmartDevice sensor features and overriding default behaviors.

	 i.	A lthough you configured only sensor1 using the

SmartDevicev4 object, the remaining sensors are

configured based on sensor1.

	 ii.	A ccessing the sensor1 values from SmartDevicev4 objects

results in collecting aggregate values of sensors.

g++ smartdevices.cc -o smartdevs

./smartdevs

SmartDevicev2 sensor1 access10.2

SmartDevicev2 sensor2 access20.2

SmartDevicev2 sensor3 access30.2

SmartDevice2 precision sensor access:10.999

SmartDevicev3 sensor1 access10.2

SmartDevicev3 sensor2 access20.2

SmartDevicev3 sensor3 access30.2

SmartDevice1 precision:40.999

SmartDevicev4 access130.4

SmartDevicev4 access60.2

SmartDevicev4 access70.2

SmartDevicev4 access202

Chapter 6 Quick Software Development Using OOP

359

SmartDevicev4 access101

SmartDevicev4 access101

SmartDevicev4 access202

Well done. You learned and practiced using inheritance, object aggregation,

and composition features to implement complex software classes. You also

observed when to use inheritance and objects combining features in smart

devices and applications.

�Summary
In this chapter, you learned various inheritance approaches using C++.

It helps you design software classes by eliminating redundant and

inconsistent code. From hands-on activities, you observed that combining

inheritance approaches and handling related issues is necessary for

dealing with complex software. You have also discovered the importance

of object composition and aggregation to connect existing software code

to new software. You also practiced using inheritance, object composition,

and object aggregation together.

The next chapter discusses an important OOP feature called

polymorphism to implement easy-to-use software.

�Practice: Hands-on Activities

	 1.	 Practice inheritance approaches for the following

scenarios.

	 a.	 Create sports information maintenance software

classes to maintain various sports and players. Focus

on eliminating redundant code among classes.

Chapter 6 Quick Software Development Using OOP

360

	 b.	 Design online vehicle reservation application-

related classes to maintain details about vehicles,

employees, and customers details. Focus on

eliminating redundant code among classes.

	 c.	 Develop online food ordering application-related

classes to maintain details about restaurants, food

items, staff, and customers. Focus on eliminating

redundant code among classes.

	 2.	 Practice inheritance, object aggregation, and

composition approaches for handling the following

challenges.

	 a.	 Implement example game entities of adventurous

games to set up interesting game scenarios. Start

with including basic vehicles, weapons, and players.

Then, introduce new version game entities. Focus on

eliminating redundant code among classes and do

not compose objects unnecessarily.

	 b.	 Create files and folder maintenance software with

basic features such as creating, copying, and deleting

files and folders. Focus on eliminating redundant

code among classes and do not compose objects

unnecessarily.

	 c.	 Design sample smart application software from

smart device–simulating classes. Focus on

eliminating redundant code among classes and do

not compose objects unnecessarily.

Chapter 6 Quick Software Development Using OOP

361© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_7

CHAPTER 7

Easy-to-Use Software
Development Using
OOP
Chapter 6 used OOP inheritance concepts to quickly handle challenges in

upgrading existing software, creating new versions, and rapidly developing

new software systems from existing ones. In this chapter, you learn

OOP polymorphism concepts to implement easily accessible software

with standard interfaces. Usually, it is difficult to use software with

many interfaces; for example, to play any game, the number of controls

should be minimal, then only players can enjoy the game. Similarly,

accessing any software application should offer only minimal standard

user-accessing interfaces. To use any document software, you observe

only a few interfaces, such as cut, copy, paste, and delete. From these

sample applications, you can observe that instead of creating multiple

interfaces to interact with software, defining minimal standard interfaces

simplifies usage.

This chapter describes an important concept called polymorphism

in C++ to develop minimal and standard interfaces for interacting

with similar classes and their objects. You learn different ways to apply

polymorphism concepts to handle various contexts of software usage,

https://doi.org/10.1007/979-8-8688-0524-0_7#DOI

362

including function overloading and overriding, operator overloading,

generic functions, and dynamic polymorphism approaches to handle

different scenarios of software usage.

This chapter covers the following topics.

•	 The importance of polymorphism

•	 Overloading operators to deal with complex object

computations

•	 Implementing generic functions and data structures

•	 Using dynamic polymorphism for offering common

interfaces

�The Importance of Polymorphism
To minimize the number of interfaces to interact with software, it is

necessary to use one interface for carrying out similar tasks or functions,

actions, or activities of the software. Programmers use the same function

name for various tasks or operations. In C++, programmers use the

following polymorphism concepts to handle the issues of reusing the same

interfaces for various operations, tasks, or actions.

•	 Function overloading: Use one function name

for implementing multiple similar tasks, actions,

operations, or activities related to a software

application.

•	 Example: Use search as a function name for

searching integers or real numbers or strings:

bool search(int l[10]); bool search(float

f[10]); bool search(string s[10]);

•	 Operator overloading: Use standard operators (+, -, *,

etc.) for processing standard data and class objects.

Chapter 7 Easy-to-Use Software Development Using OOP

363

•	 Example: Overload + operator to perform matrix

objects addition.

	 Matrix m1,m2,m3; m3 = m1+m2;

•	 Function overriding: Use the same member function

prototype in a base class and its derived classes for

interacting with related objects.

•	 Example: Use the fire() member function for

interacting with Gun objects. class Gun { public:

void fire() }; class AutoGun: public Gun {

public: void fire() }

•	 Dynamic polymorphism: Define standard interfaces

and use them for accessing all related Classes objects.

Here, programmers use pure virtual functions to

declare standard interfaces in a Base class. Later, all

inherited classes from the Base class can implement

the actual code for virtual functions.

•	 Example: class Phone { void call()=0;}

	 class Phonev2: public Phone {

	 void call() { printf("calling");};

The section starts by exploring how to use function overloading in C++.

�Function Overloading
Function overloading is known as the usage of static or compile-time

polymorphism. Static polymorphism means a function call is linked with

the corresponding function code at compile time, which speeds up the

program execution. For function overloading, you use the same function

name to define multiple functions.

Chapter 7 Easy-to-Use Software Development Using OOP

364

•	 Function declarations should differ in the number of

arguments they take.

•	 Example: void max(int a, int b, int c) and void

max(int a, int b)

•	 Function declarations should differ in the type of

arguments they take.

•	 Example: void max(int a, int b, int c) and void

max(float a, float b, float c)

•	 Function declarations differ because only return types

are not valid for function overloading.

•	 Not allowed: int max(int a, int b) and void max(int

a, int b)

Let’s practice the following tasks for learning about function

overloading usage.

FUNCTION OVERLOADING

Let’s define a DataAlgorithms class in a datalgos.cc file to implement a

maximum element finding function from a given data elements list.

	1.	 Define DataAlgorithms with the following three overloaded

functions.

	 a.	 int maximum(int *d,int len) returns a maximum

element from the list of integer data elements.

	 b.	 float maximum(float *d,int len) returns a

maximum element from the list of float data elements.

	 c.	 string maximum(string *d,int len) returns a maximum

length string from the list of strings.

Chapter 7 Easy-to-Use Software Development Using OOP

365

#include<iostream>

using namespace std;

class DataAlgorithms

{

 public:

 int maximum(int *d,int len)

 {

 int max;

 max = d[0];

 for (int i=0;i<len;i++)

 {

 if (d[i]>=max)

 {

 max = d[i];

 }

 }

 return max;

 }

 float maximum(float *d,int len)

 {

 float max;

 max = d[0];

 for (int i=0;i<len;i++)

 {

 if (d[i]>=max)

 {

 max = d[i];

 }

 }

 return max;

 }

Chapter 7 Easy-to-Use Software Development Using OOP

366

 string maximum(string *d,int len)

 {

 string max;

 max = d[0];

 for (int i=0;i<len;i++)

 {

 if (d[i].length()>=max.length())

 {

 max = d[i];

 }

 }

 return max;

 }

};

	2.	F rom the DataAlgorithms class, observe that all three

maximum element finding functions are defined with the same

function name called maximum().

	3.	T est DataAlgorithms overloaded member functions in

main() :

int main()

{

 int d1[10] = {10,20,40,50,90,70,60,80,30,0};

 �float d2[10] = {10.9,20.9,40.9,50.9,90.9,70.9,60.

9,80.9,30.9,0.9};

 �string d3[10] = {"abc", "abcd", "ab",

"abcdefghijk", "a","abcdefg","c","d","e","f"};

 DataAlgorithms d;

 int m1 = d.maximum(d1,10);

 cout<<"Max "<<m1<<"\n";

 float m2 = d.maximum(d2,10);

Chapter 7 Easy-to-Use Software Development Using OOP

367

 cout<<"Max "<<m2<<"\n";

 string m3 = d.maximum(d3,10);

 cout<<"Max "<<m3<<"\n";

}

	4.	A fter saving all changes in the datalagos.cc file, execute it, and

observe the following details.

	 a.	O bserve that the DataAlgorithms object invokes the same

member function with elements of different data types.

	 b.	 Based on the data type elements, the correct maximum

function is invoked.

g++ datalgos.cc -o datalgos

./datalgos

Max 90

Max 90.9

Max abcdefghijk

Next, let’s discuss using the same member function signature in Base and its

derived classes.

�Function Overriding
Function overriding is an important way of defining the same interfaces for

interacting with the base class and its derived class objects. It is different

from function overloading. In this case, you should define the same

member function signature (function name, return type, and arguments)

in both the base and derived classes. Function overriding in inheritance

redefines the member function in derived classes. Due to the inheritance

feature of reusing the base class code, in derived classes duplicate code

Chapter 7 Easy-to-Use Software Development Using OOP

368

exists. Hence, this problem is handled by postponing member function

code linkage with a function call based on the object type during runtime.

Function overriding is achieved in C++ as follows.

class Base

{

 public:

 void sample()

 {

 cout<<"base code..\n";

 }

};

class Derived: public Base

{

 public:

 void sample()

 {

 cout<<"derived code..\n";

 }

};

You should observe the following.

•	 The Derived class is inherited from the Base class.

•	 In Base and Derived classes, you defined a member

function: void sample() with the same function

signature. It is known as redefining a member function

in function overriding.

•	 It helps to reuse the same interface sample () to access

Base and Derived class objects.

Chapter 7 Easy-to-Use Software Development Using OOP

369

•	 Due to inheritance, the Derived class gets Base class

sample () code also inherited into it. To invoke the Base

class sample() in the Derived class it needs to call it as

follows: Base::sample().

Let’s practice function overriding by doing the following task.

FUNCTION OVERRIDING

	1.	 Define a base class called Phone with a sample member

function call() to access its objects.

	2.	 Define two new version classes: Phonev2 and Phonev3 from

Phone class. But, use the same interface call() to access all

Phone objects.

	3.	R edefine the call in the respective classes using the same

interface call() in Phonev2 and Phonev3.

#include<iostream>

using namespace std;

class Phone

{

 public:

 void call()

 {

 cout<<"Normal calling..\n";

 }

};

class Phonev2:public Phone

{

 public:

 void call()

Chapter 7 Easy-to-Use Software Development Using OOP

370

 {

 cout<<"Internet calling ..\n";

 }

};

class Phonev3:public Phone

{

 public:

 void call()

 {

 cout<<"Video callig ..\n";

 }

};

	4.	T est access for Phone objects in main() as follows.

int main()

{

 Phone p1;

 Phonev2 p2;

 Phonev3 p3;

 p1.call();

 p2.call();

 p3.call();

}

	5.	S ave your code in phone.cc and run it.

	 a.	O bserve from the results, based on Phone objects the

correct code for call() is getting executed.

g++ phone.cc -o phone

./phone

Normal calling..

Chapter 7 Easy-to-Use Software Development Using OOP

371

Internet calling ..

Video callig ..

From this activity, you observe that using function overriding concepts, it is

possible to use the same interface in base and derived classes to simplify

accessing the related classes’ objects.

Next, let’s discuss operator overloading to implement polymorphism concepts.

�Overloading Operators to Deal
with Complex Objects Computations
Operator overloading means giving special power and additional

responsibilities to operators. For instance, by overloading standard

arithmetic operators (+, -, *), programming can use them for performing

standard arithmetic operations and matrix addition, subtraction and

multiplication operations. In C++ programming, a few standard operators

(<<, >>) are overloaded for standard input output operations using cin

and cout objects.

In C++ most all standard operators can be overloaded except the

following operators.

•	 Ternary operator (?:) and size operator (sizeof)

•	 Class member access operator (., .*)

•	 Scope resolution operator(::)

The following are the benefits of operator overloading.

•	 It helps in writing easily understandable code.

•	 It gives more power to standard operators for doing

customized operations over objects.

Chapter 7 Easy-to-Use Software Development Using OOP

372

•	 It helps simplify access to interfaces when dealing with

complex software.

•	 It helps with developing generic functions and data

structures.

Next, let’s learn how to overload operators.

�How to Overload Operators
To overload operators in C++, programmers define public operator

member functions or friend operator functions using the operator

keyword and a specific operator symbol.

For example, you do the following to overload binary operators in

a class. If both operands of the operator are belongs to same class, the

operator function can be member functions of the class.

Sample operator+(Sample &c2)

{

 Sample c3;

 c3.value = value + c2.value;

 return c3;

}

In main you can test it as follows.

Sample c1,c2,c3;

c3=c1+c2;

or

c3 = c1.operator+(c2);

You should observe the following.

•	 You use operator+ as a member function name.

•	 You can also observe that the LHS operand of the

operator is passed as a default argument to the

operator function.

Chapter 7 Easy-to-Use Software Development Using OOP

373

•	 To overload the binary operator, you should pass the

RHS operand of the operator as another argument

to the operator member function. In the case of c3=

c1+c2; c2 is the other argument for the operator

function.

•	 Arguments can be passed as call-by-value or call-by-

reference.

On the other hand, If both operands of the operator are not belongs to

the same class or left operand type is not same as class type, then operator

function must be friend function as follows:

Declare friend function in the respective class.

class Sample

{

..

 friend Sample operator+(Sample1 &c1,Sample &c2);

};

Define friend function as follows.

Sample operator+(Sample1 &c1, Sample &c2)

{

 Sample c3;

 c3.value = c1.value + c2.value;

 return c3;

}

You should observe the following.

•	 You declared a friend function operator+ inside the

Sample class to perform operations over two different

Sample objects.

•	 To overload the binary operator, both were passed

arguments.

Chapter 7 Easy-to-Use Software Development Using OOP

374

Similarly to overload unary operators in a class, you need not define

any arguments with the operator function because the object invoking the

operator is passed as an argument to the operator function.

The following is an example.

Sample operator-()

{

 Sample c3;

 c3.value = -value;

 return c3;

}

On the other hand, to overload unary operators using the friend

operator function, you need to pass the corresponding object as an

argument.

The following is an example.

Sample operator-(Sample &s1)

{

 Sample c3;

 c3.value = -s1.value;

 return c3;

}

Next, let’s do a hands-on activity to overload operators in a class.

�Practice Operator Overloading Usage
Let’s overload a few operators for Coin class objects.

•	 Overload +: Aggregating list of coin objects for creating

a high valued coin object.

•	 For example, it is helpful to create an interesting

game scenario where players can turn their

collected coins into a magical coin with high value.

Chapter 7 Easy-to-Use Software Development Using OOP

375

•	 Overload comparison operators (<, >, ==): Overloading

comparison operators help apply general searching,

sorting, or strategic algorithms.

•	 While playing games, to apply strategies, it is

necessary to use general algorithms such as

maximum (or minimum) valued coins, checking

whether coins are in increasing or decreasing order,

and so forth.

•	 Overload ostream (<<) operator: It is helpful to display

coin objects like any other basic data type element.

•	 For example, it is helpful to inspect coin object

details.

Let’s extend the gaming Coin class with operator overloading

functions.

OVERLOAD OPERATORS FOR COIN CLASS OBJECTS

Define a new coin class in the overloadcoin.cc file.

	1.	 Copy the following Coin class definition (Chapter 5’s coin.h)

into the overloadcoin.cc file.

#include<iostream>

using namespace std;

class Coin

{

 int state;

 int x,y,value;

 enum states {COLLECTED, AVAILABLE};

 public:

 Coin()

Chapter 7 Easy-to-Use Software Development Using OOP

376

 {

 x = rand()%9+8;

 y = rand()%9+8;

 value = rand()%100;

 state = AVAILABLE;

 }

 int getX()

 {

 return x;

 }

 int getY()

 {

 return y;

 }

 int getValue()

 {

 return value;

 }

 void setValue(int ival)

 {

 value = ival;

 }

 int getState()

 {

 return state;

 }

 void setState(int istate)

 {

 state = istate;

 }

Chapter 7 Easy-to-Use Software Development Using OOP

377

	2.	 Define operator+ as a member function to overload +

operator.

	 a.	A dd two coin objects based on their internal data member

value and return results as a new coin object.

 Coin operator+(Coin &c2)

 {

 Coin c3;

 c3.value = value + c2.value;

 return c3;

 }

	3.	 Declare three friend operator functions for overloading >,

<, == operators.

 friend bool operator>(Coin &c1, Coin &c2);

 friend bool operator<(Coin &c1, Coin &c2);

 friend bool operator==(Coin &c1, Coin &c2);

	4.	 Declare another friend operator function for overloading

ostream operator <<.

 friend ostream& operator<<(ostream &o, Coin &c);

};

	5.	A fter defining the new Coin class, let’s define a friend

operator> function for comparing two Coin objects based on

their data member value.

bool operator>(Coin &c1, Coin &c2)

{

 if(c1.getValue()>c2.getValue())

 {

 return true;

 }

Chapter 7 Easy-to-Use Software Development Using OOP

378

 return false;

}

	6.	S imilarly, define a friend operator function for comparing

two Coin objects based on their data member value.

bool operator<(Coin &c1, Coin &c2)

{

 if(c1.getValue()<c2.getValue())

 {

 return true;

 }

 return false;

}

	7.	S imilarly, define a friend operator function for comparing

two Coin objects based on their data member value.

bool operator==(Coin &c1, Coin &c2)

{

 if(c1.getValue()==c2.getValue())

 {

 return true;

 }

 return false;

}

	8.	 Define operator<< function for displaying Coin objects based

on their data member value.

ostream& operator<<(ostream& o, Coin &c)

{

 o<<c.getValue();

Chapter 7 Easy-to-Use Software Development Using OOP

379

 return o;

}

	9.	T est the code in main( ) as follows.

	 a.	 Define three coin objects (c1, c2, and c3).

	 b.	 Combine two objects, c1 and c2, into c3 using +.

int main()

{

 Coin c1;

 Coin c2;

 Coin c3;

 c3 = c1+c2;

	 c.	P rint each coin object value ostream operator <<.

 cout<<"Coin1 value"<<c1<<"\n";

 cout<<"Coin2 value"<<c2<<"\n";

 cout<<"Coin3 value"<<c3<<"\n";

	 d.	 Compare coin objects using <, > and == .

 if (c1>c2)

 {

 cout<<"Coin1 is high value"<<c1<<"\n";

 }

 if (c1<c3)

 {

 cout<<"Coin3 is high value"<<c3<<"\n";

 }

 if (c1==c2)

 {

Chapter 7 Easy-to-Use Software Development Using OOP

380

 �cout<<"Coin1 and Coin 2 are having same

value"<<c1<<"\n";

 }

	 e.	 Create a magic coin from ten coin objects and print the magic

coin value.

 Coin c[10];

 Coin magic;

 for (int i=0;i<10;i++)

 {

 magic = magic+c[i];

 }

 cout<<"Magic coin value"<<magic<<"\n";

}

	10.	A fter saving all changes in overloadcoin.cc execute it and

observe the results.

	 a.	 Coin objects are added using + operator.

	 b.	 Coin objects internal values are displayed using <<.

	 c.	 Coin objects are compared using <, > , and ==.

g++ overloadcoin.cc -o overcoins

./overcoins

Coin1 value77

Coin2 value35

Coin3 value112

Coin1 is high value77

Coin3 is high value112

Magic coin value483

Next, let’s look at how to use operator overloading concepts for generic

functions and data structures.

Chapter 7 Easy-to-Use Software Development Using OOP

381

�Generic Functions and Data Structures
In a function overloading example, you saw three maximum functions

for three data types (int, float, and string). The logic of all three functions

was the same, which means you did a lot of redundant work to solve these

problems. Suppose you want to implement complex algorithms such as

sorting, searching, and data structures to work on data type elements.

Function overloading can lead to lots of redundant code. This section

discusses C++ template concepts to write generic functions and data

structures to work with data types without any redundant code.

Let’s use a generic max function in C++ with the template syntax.

template<typename T>

T maxEle(T a, T b)

{

 if (a>b)

 return a;

 else

 return b;

}

It can be tested in main() as follows.

int max1 = maxEle(10,20);

float max2 = maxEle(10.5,45.56);

You should observe the following.

•	 Template data type T was passed as an argument to the

maxEle function.

•	 In main(), actual data type elements were passed to

test maxEle.

•	 Since only one template variable was used, it passed

the same data type elements for both arguments.

Chapter 7 Easy-to-Use Software Development Using OOP

382

To pass data type elements to each argument, you should define

template function with multiple template variables as follows.

template<typename T1, typename T2, typename T3>

void sample (T1 a, T2 b, T3 c)

{

}

You can test it with the variety of data types as follows.

sample(1,2,3);

sample(1,2.5,3.6);

sample(1.3,2.5,3.6);

template<typename T1, typename T2, typename T3>

void sample (T1 a, T2 b, T3 c)

{

}

These examples should help you learn how to write generic functions

to work over standard data types such as int, float, and char. Can you use

these generic functions to work with class objects? Yes. However, you

should use suitable operator functions in the respective class to work with

generic functions or data structures.

For example, to use maxEle() over Coin class objects, you should

overload necessary operators (>) used in maxEle() inside the Coin class

as a member function or friend function.

Class Coin

{

 public:

 int v;

 bool operator>(Coin c2)

Chapter 7 Easy-to-Use Software Development Using OOP

383

 {

 if (v>c2.v)

 return true;

 else

 return false;

 }

};

Next, let’s practice a hands-on activity using generic functions over

basic data types and the Coin class.

�Practice with Generic Functions
Let’s apply the following two generic algorithms as template functions.

•	 inIncreasingOrder(): This algorithm returns a given

list of elements in ascending order or not.

•	 It should work on all basic data type elements.

•	 It should work on a list of coin elements.

•	 maxValue(): This algorithm should return a maximum

element from a given list of elements.

•	 It should work on all basic data type elements.

•	 It should work on a list of coin elements.

Next, let’s demonstrate these two generic algorithms as template

functions.

Chapter 7 Easy-to-Use Software Development Using OOP

384

GENERIC ALGORITHMS IMPLEMENTATION USING TEMPLATE FUNCTIONS

Let’s implement the following template functions in genericfunc.cc file.

	1.	I nclude the following necessary header files for the tasks.

	 a.	O bserve that you included coins.h file for testing generic

functions with a list of coins.

#include<iostream>

#include<stdlib.h>

#include"coins.h"

using namespace std;

	2.	I mplement inIncreasingOrder as template functions with

two important arguments.

	 a.	P ointer to list of elements

	 b.	S ize of list.

	 c.	I t returns true when the input list of elements is in ascending

order; otherwise, it returns false.

template<typename T>

bool inIncreasingOrder(T *c, int count)

{

 bool order=true;

 for (int i=0;i<count-1;i++)

 {

 if (c[i]>c[i+1])

 {

 order = false;

 return order;

 }

Chapter 7 Easy-to-Use Software Development Using OOP

385

 }

 return order;

}

	3.	I mplement maxValue as template functions with two important

arguments.

	 a.	P ointer to list of elements.

	 b.	S ize of list.

	 c.	I t returns the maximum value element from the input list of

elements.

template<typename T>

T maxValue(T *c, int count)

{

 T maxval = c[0];

 T max;

 for (int i=1; i<count; i++)

 {

 if (c[i]>maxval || c[i]==maxval)

 {

 maxval = c[i];

 max = c[i];

 }

 }

 return max;

}

	4.	T est the generic functions in main() with the following list of

elements.

int main()

{

Chapter 7 Easy-to-Use Software Development Using OOP

386

	 a.	L ist of integer elements

int v[10];

for (int i=0;i<10;i++)

{

 v[i] = i*20;

}

bool ret= inIncreasingOrder(v,10);

if (ret == true)

{

 cout<<"Values are in increasing order\n";

}

else

{

 �cout<<"Values are not in increasing order\n";

}

int maxint = maxValue(v,10);

cout<<"Max int value of array is "<<maxint<<

"\n";

	 b.	L ist the float elements.

float fv[10];

for (int i=0;i<10;i++)

{

 fv[i] = i*10.5;

}

ret= inIncreasingOrder(fv,10);

if (ret == true)

{

 cout<<"Values are in increasing order\n";

}

Chapter 7 Easy-to-Use Software Development Using OOP

387

else

{

 �cout<<"Values are not in increasing order\n";

}

	 c.	L ist the Coin objects.

 float maxfloat = maxValue(fv,10);

 �cout<<"Max float value of array is

"<<maxfloat<<"\n";

 Coin c[10];

 bool res= inIncreasingOrder(c,10);

 if (res == true)

 {

 cout<<"Coins are in increasing order\n";

 }

 Coin max = maxValue(c,10);

 cout<<"Max valued coin is"<<max;

}

	5.	A fter saving all changes in genericfunc.cc execute it and

observe the results.

	 a.	T he generic functions can be used over all basic data types (int,

float, etc.).

	 b.	T he generic functions can be used over only class objects (included

with suitable operator functions).

	 i.	I t works only with Coin objects.

	 ii.	I f you try with gun objects or bomb objects, these

template functions return errors.

g++ genericfunc.cc -o genfunc

./genfunc

Values are in increasing order

Chapter 7 Easy-to-Use Software Development Using OOP

388

Max int value of array is 180

Values are in increasing order

Max float value of array is 94.5

Coins are in increasing order

Max valued coin is90

Next, let’s look at a generic data structure.

�Generic Data Structures
You should learn how to write generic classes to implement generic data

structures.

First, let’s look at a generic class in C++ using the template syntax.

template<typename T>

class DataStruct

{

 T container[10];

 public:

 void search(T e);

 T getEle();

 ..

};

It can be tested in main() as follows.

DataStruct<int> intd;

DataStruct<float> reald;

Chapter 7 Easy-to-Use Software Development Using OOP

389

You should observe the following.

•	 Template data type T was passed as arguments to

define the class.

•	 In main(), actual data types were passed to create

DataStuct objects

Next, let’s practice a hands-on activity with generic functions.

�Practice Implementing a Generic Data Structure
The following generic data structure uses a template.

•	 Implement a generic data structure for creating the

following dynamically sized data containers.

•	 Basic data type elements (int, float, etc.) holding

data containers.

•	 Class objects holding data containers.

•	 For example, create coins holding data

containers.

•	 Every generic data structure should contain the

following two data members:

•	 Data elements holding container.

•	 Size of the container.

•	 The following operations should be performed over the

generic data structure holding data containers.

•	 insert: A given data element should be inserted at

the end of the given data container.

•	 search: It should return true if a given element is

present in the input data container; otherwise, it

should return false.

Chapter 7 Easy-to-Use Software Development Using OOP

390

•	 print: It prints all elements present in the data

container.

•	 getSize: It should return the number of elements

in the data container.

Next, let’s walk through a generic data structure using a template.

GENERIC DATA STRUCTURE

Create a generic data structure and save it in the gendatastruct.cc file.

	1.	I nclude the following necessary header files for the tasks.

	 a.	T he coins.h file for testing generic data structure with Coin

objects.

#include<iostream>

#include<stdlib.h>

#include"coins.h"

using namespace std;

template<typename T>

	2.	 Define the GenericDataStructure with two important data

elements: storage (Data elements holding container) and

size (size of the storage).

class GenericDataStructure

{

 T *storage;

 int size;

 public:

Chapter 7 Easy-to-Use Software Development Using OOP

391

	 a.	I nitialize GenericDataStructure objects storage default size

using the following constructor.

 GenericDataStructure()

 {

 storage = (T *) malloc(1 * sizeof(T));

 size = 1;

 }

	 b.	 Define the following destructor to clean up the memory

space allotted for storage.

 ~GenericDataStructure()

 {

 storage = NULL;

 free(storage);

 }

	 c.	 Define the insert function to insert an element at the end of the

storage.

 void insert(T e)

 {

 if (size == 1)

 {

 if (storage!=NULL)

 {

 storage[0] = e;

 size = size+1;

 }

 }

 else

 {

Chapter 7 Easy-to-Use Software Development Using OOP

392

 �storage = (T *) realloc(storage, (size+1) *

sizeof(T));

 if (storage!=NULL)

 {

 storage[size-1] = e;

 size = size+1;

 }

 }

 }

	 d.	 Define the search function to check whether a given element is

present in the storage.

 bool search(T e)

 {

 for (int i=0;i<size-1;i++)

 {

 if (storage[i] == e)

 return true;

 }

 return false;

 }

	 e.	 Define the print function to display all elements present in the

storage.

 void print()

 {

 for (int i=0;i<size-1;i++)

 {

 cout<<storage[i]<<"\n";

 }

 }

Chapter 7 Easy-to-Use Software Development Using OOP

393

	 f.	 Define the getSize function to return the number of elements present

in the storage.

 int getSize()

 {

 return size-1;

 }

};

	3.	Y ou defined the generic data structure with necessary data

members and member functions. Let’s write its testing code

in main().

	4.	T est the generic data structure using the following data type

containers.

int main()

{

	 a.	 Define integer holding data containers and test it.

 GenericDataStructure<int> gd;

 gd.insert(100);

 gd.insert(10);

 gd.insert(300);

 gd.insert(40);

 gd.insert(50);

 gd.insert(60);

 gd.insert(70);

 gd.insert(400);

 cout<<"Size of GD"<<gd.getSize()<<"\n";

 gd.print();

Chapter 7 Easy-to-Use Software Development Using OOP

394

	 b.	 Define Coin objects holding data containers and test them.

 Coin c[10];

 GenericDataStructure<Coin> gdc;

 for (int i=0;i<10;i++)

 {

 c[i].setValue(i);

 gdc.insert(c[i]);

 }

 gdc.print();

 Coin sc;

 sc.setValue(5);

 if(gdc.search(sc) == true)

 {

 cout<<"Coin found\n";

 }

 sc.setValue(6);

 if(gdc.search(sc) == true)

 {

 cout<<"Coin found\n";

 }

}

	5.	S imilarly, you can test other data type elements.

	6.	A fter saving all changes in gendatastruct.cc, execute it,

and observe the results.

	 a.	T he generic data structure can create containers for all basic data

types (int, float, etc.).

	 b.	T he generic data structure can be used over only class objects

(included with suitable operator functions).

Chapter 7 Easy-to-Use Software Development Using OOP

395

	 i.	I t works only with Coin objects.

	 ii.	I f you try with gun objects or bomb objects, these

template functions return errors.

g++ gendatastruct.cc -o gends

./gends

Size of GD8

100

10

..

0

1

..

9

Coin found

Coin found

Next, let’s look at the Coin class to model opportunities in the gaming

application.

�Using Dynamic Polymorphism for Offering
Common Interfaces
Usually, standard user-accessing interfaces must be offered to simplify

accessing any software, and the number of interfaces should be minimal.

From a C++ developer’s perspective, defining standard user interfaces for

accessing all similar objects, actions, tasks, functions, and operations is

necessary. This section discusses the dynamic polymorphism concepts

and how having standard user interfaces for a software application is

helpful.

Chapter 7 Easy-to-Use Software Development Using OOP

396

Unlike static polymorphism, dynamic polymorphism postone a

function call linking with the correct function code during runtime. To

apply dynamic polymorphism, developers must understand the following

two concepts.

•	 Virtual functions

•	 Abstract classes

Let’s start with virtual functions. For instance, to access a phone, you

use standard user interfaces: call, answer, and message as standard user

interfaces for accessing it. Similarly, to edit documents, you cut, copy, and

paste as a standard user-accessing interface. To handle these situations in

software development, virtual functions define standard user interfaces

(one function prototype) for developing common actions, functions, tasks,

and operations of related classes (base and derived classes) objects.

Using the virtual keyword before the member function prototype, you

define virtual functions in a base class public section.

If you know the default implementation of objects in a software

application, it is possible to define virtual member functions with the

default code in base classes. Later, the virtual member functions are

overridden in derived classes to create special behaviors.

In this case, users accessing standard interfaces should be defined

with base class pointer arguments. Then, it is possible to invoke a specific

object behavior by passing the object address to the base class pointer.

�The Importance of Virtual Functions
Let’s do the following activity to better understand the importance of

virtual functions.

•	 Define a Phone class with a standard user interface

function: call().

•	 Define a Phonev2 class by inheriting the Phone class and

redefine the call() with special behavior.

Chapter 7 Easy-to-Use Software Development Using OOP

397

•	 Define a Phonev3 class by inheriting the Phone class and

redefine the call() with special behavior.

•	 Create a standard user interface call() for accessing

all phones. It should take a phone object as input and

invoke the respective phone object call function.

FUNCTION OVERRIDING

Implement the function overriding activity code in the override.cc file.

	1.	S tart by defining a Phone class with a sample call function.

#include<iostream>

using namespace std;

class Phone

{

 public:

 // virtual void call()

 void call()

 {

 cout<<"Normal calling..\n";

 }

};

	2.	 Define a new version phone class Phonev2 and override the

sample call function to simulate the sample Phonev2 calling

procedure.

class Phonev2:public Phone

{

 public:

 void call()

Chapter 7 Easy-to-Use Software Development Using OOP

398

 {

 cout<<"Internet calling ..\n";

 }

};

	3.	 Define another version phone class, Phonev3, and override

the sample call function to simulate a sample Phonev3

calling procedure.

class Phonev3:public Phone

{

 public:

 void call()

 {

 cout<<"Video callig ..\n";

 }

};

	4.	 Define a standard user interface for accessing any phone as

follows.

	 a.	I t takes an input argument: Phone objects pointing pointer.

	 b.	I nside the function body, invoke phone object-related code.

void call(Phone *p)

{

 p->call();

}

	5.	T est the phone objects accessing using standard user interface

call () in main().

int main()

{

Chapter 7 Easy-to-Use Software Development Using OOP

399

	 a.	 Create an object for each phone class.

Phone p1;

Phonev2 p2;

Phonev3 p3;

	 b.	I nvoke phone calling function from each phone object.

p1.call();

p2.call();

p3.call();

	 c.	I nvoke phone calling function from a standard user interface.

 call(&p1);

 call(&p2);

 call(&p3);

}

	6.	A fter saving all changes in override.cc, execute it and

observe the results.

	 a.	I nvoking phone calling functions from the specific object is

working correctly.

	 b.	I nvoking phone calling functions from the standard user

interface leads to incorrect behavior.

	 i.	O nly the Phone class call() is invoked.

g++ override.cc -o phone

./phone

Normal calling..

Internet calling ..

Video callig ..

Chapter 7 Easy-to-Use Software Development Using OOP

400

Normal calling..

Normal calling..

Normal calling..

	 ii.	H ow do you correct this behavior?

	7.	L et’s make a Phone class call() a virtual call(). After

saving all changes in override.cc, execute it, and observe

the results.

	 a.	I nvoking phone calling functions from the specific object is

working correctly.

	 b.	I nvoking phone calling functions from the standard user

interface is working correctly.

g++ override.cc -o phone

./phone

Normal calling..

Internet calling ..

Video calling..

Normal calling..

Internet calling ..

Video calling..

It means when a class member function is redefined in derived classes, it is

necessary to make the base class member function as virtual function for

developing polymorphism behavior. Defining a virtual function in a class means

linking the correct code to the respective function call is postponed to runtime.

Then, the respective function code is executed during runtime based on the

object type. To minimize the number of interfaces of a software application

and work correctly, you must use virtual functions in base classes.

Next, you learn how to handle when base classes do not provide default

behavior for standard user-accessing interfaces.

Chapter 7 Easy-to-Use Software Development Using OOP

401

�The Importance of Pure Virtual Functions
and Abstract Classes
When the base class does not offer any default behavior for standard user

accessing interfaces, you define those standard user interfaces as pure

virtual functions.

You declare one pure virtual function in a base class for each standard

user accessing interface.

For example, to define standard user interfaces for Phone objects.

class Phone

{

 public:

 virtual void call() { print("calling");}

 virtual void answer()=0;

 virtual void message()=0;

}

The following are a few important details you must observe from

the class.

•	 From the Phone class, in the public section, you can

observe that a few function declarations are assigned

with 0. These are nothing but pure virtual functions.

•	 Pure virtual functions must be declared in the public

section and initialized with 0. Hence, it allows derived

classes to implement pure virtual functions of the

base class.

•	 Since the Phone class contains pure virtual functions,

you cannot use it for creating objects.

Chapter 7 Easy-to-Use Software Development Using OOP

402

•	 If a class contains a pure virtual function, you call it an

abstract class. From abstract classes, you cannot create

objects.

•	 Note: Besides virtual functions, it is possible to create

pure virtual functions.

In derived classes, by extending from an abstract class, these virtual

functions must be implemented to access these standards from derived

class objects.

Next, to create standard user interfaces for phone objects, you can

apply the following standard user interface functions with Base class

pointer arguments as follows.

void call(Phone *p) ;

void answer(Phone *p);

void message(Phone *p);

Since base class (e.g., Phone) pointers were passed to each of these

standard user interfaces, it is possible to pass any new derived class phone

objects as arguments to invoke the special behavior (e.g., for Phonev2,

Phonev3, .. PhonevN;).

To access new versions of phones, you need not change the user

interfaces accessing code as follows.

You can use the following simple lines of code only.

The following allows access to Phonev2.

Phonev2 p1;

call(&p1);

answer(&p1);

message(&p1);

Chapter 7 Easy-to-Use Software Development Using OOP

403

The following allows access to PhonevN.

PhonevN p2;

call(&p2);

answer(&p2);

message(&p2);

Next, let’s do a hands-on activity for learning how to use dynamic

polymorphism concepts.

�Practice with Dynamic Polymorphism
Let’s explore how to use dynamic polymorphism concepts to develop

standard interfaces for a software application by implementing a variety of

phone classes and providing standard user interfaces for simplifying any

phone usage. Specifically, let’s do the following activities.

•	 Define a Phone class with the following three standard

accessing functions as pure virtual functions: call(),

answer(), message().

•	 A Phonev2 class for simulating 2G phone functions

•	 A Phonev3 class for simulating 3G phone functions

•	 A Phonev4 class for simulating 4G phone functions

•	 Standard user interfaces for accessing any phone

(2G/3G/4G)—specifically, standard interfaces for

phone calls, answering, and messaging activities

Let’s walk through these activities using abstract classes and pure

virtual functions.

Chapter 7 Easy-to-Use Software Development Using OOP

404

DYNAMIC POLYMORPHISM

Implement dynamic polymorphism activities in the dynpolymorph.cc file.

	1.	S tart by defining the following abstract class for provisioning

standard interfaces for various phones.

	 a.	I nside the Phone class, declare phone accessing functions as pure

virtual functions.

	 b.	A ll pure virtual functions must be declared under the public

section only.

#include<iostream>

using namespace std;

class Phone

{

 public:

 virtual void call()=0;

 virtual void answer()=0;

 virtual void message()=0;

};

	2.	 Define a Phonev2 by inheriting from the Phone

abstract class.

	 a.	I mplement sample 2G phone-specific functions.

	 b.	Y ou must use all Phone accessing interfaces such as call(),

answer(), and message().

class Phonev2:public Phone

{

 public:

 void call()

 {

Chapter 7 Easy-to-Use Software Development Using OOP

405

 cout<<"2G calling ..\n";

 }

 void answer()

 {

 cout<<"2G call answering ..\n";

 }

 void message()

 {

 cout<<"Sending text message..\n";

 }

};

	3.	 Define a Phonev3 by inheriting from the Phone abstract

class to create sample 3G phone-specific functions. All

Phone accessing interfaces such as call(), answer(), and

message() should be implemented.

class Phonev3:public Phone

{

 public:

 void call()

 {

 cout<<"3G callig ..\n";

 }

 void answer()

 {

 cout<<"3G call answering ..\n";

 }

 void message()

 {

 cout<<"Internet data messaging..\n";

 }

};

Chapter 7 Easy-to-Use Software Development Using OOP

406

	4.	 Define a Phonev4 by inheriting from the Phone abstract

class to create sample 4G phone-specific functions. All

Phone accessing interfaces such as call(), answer(), and

message() should be implemented.

class Phonev4:public Phone

{

 public:

 void call()

 {

 cout<<"4G callig ..\n";

 }

 void answer()

 {

 cout<<"4G call answering ..\n";

 }

 void message()

 {

 cout<<"Internet video messaging..\n";

 }

};

	5.	A pply the following standard user interfaces for accessing any

type of phone.

void call(Phone *p)

{

 p->call();

}

void answer(Phone *p)

{

 p->answer();

}

Chapter 7 Easy-to-Use Software Development Using OOP

407

void message(Phone *p)

{

 p->message();

}

	6.	T est different phones by accessing standard user interfaces

from main( ).

	 a.	 Create respective phone objects for 2G, 3G, and 4G phone simulating

classes.

	 b.	T est each phone by accessing it using standard user interfaces:

call(), answer(), and message().

int main()

{

 Phonev2 p2;

 Phonev3 p3;

 Phonev4 p4;

 call(&p2);

 call(&p3);

 call(&p4);

 answer(&p2);

 answer(&p3);

 answer(&p4);

 message(&p2);

 message(&p3);

 message(&p4);

}

Chapter 7 Easy-to-Use Software Development Using OOP

408

	7.	A fter saving all changes in dynpolymorph.cc, execute it, and

observe the results.

	 a.	A ll phones are accessed using standard user interfaces.

	 b.	 Calling a standard user interface with a specific phone

object (e.g, 4g) invoked the right function (4g related functions).

	 c.	I t is easier to access phones with standard user interfaces.

g++ dynpolymorph.cc - stdinterfaces

./stdinterfaces

2G calling ..

3G callig ..

4G callig ..

2G call answering ..

3G call answering ..

4G call answering ..

Sending text message..

Internet data messaging..

Internet video messaging..

Well done. From the results, you can observe that passing 2G phone object

leads to 2G related functions are executed. Similarly, passing 3G or 4G objects

lead to executing respective functions.

�Summary
In this chapter, you practiced polymorphism approaches to develop

easy-to-use software with standard interfaces. For example, you have

explored when to use function overloading and template functions to

save development time. You experimented with operator overloading

and discovered its importance in creating generic functions and data

Chapter 7 Easy-to-Use Software Development Using OOP

409

structures. Finally, you practiced dynamic polymorphism constructs:

virtual functions and abstract classes for implementing standard user

interfaces to access software applications. You discovered polymorphism’s

importance in dealing with the complexity and ambiguity in designing

software interfaces.

The next chapter focuses on design patterns to reuse common

solutions for software development issues.

�Practice: Hands-on Activities

	 1.	 Implement generic functions for the following.

	 a.	 Sorting data elements

	 b.	 Binary search algorithms

	 c.	 Arranging a list of car objects in descending order

based on their price

	 d.	 Searching for a car based on registration number

in a list of objects

	 2.	 Implement generic data structures for the following.

	 a.	 A binary search tree to store data elements such

as integers, strings, and car objects (based on

registration numbers)

	 b.	 A priority queue to store data elements such

as integers, strings, and car objects (based on

registration numbers)

	 c.	 A stack to store data elements such as integers,

strings, and car objects (based on registration

numbers)

Chapter 7 Easy-to-Use Software Development Using OOP

410

	 3.	 Handle the following tasks using dynamic

polymorphism concepts.

	 a.	 Implement an abstract class to declare standard

interfaces for editing any document.

	 b.	 Define a variety of document classes and create

standard interfaces for edit operations.

	 4.	 Handle the following tasks using dynamic

polymorphism concepts.

	 a.	 Implement an abstract class to declare standard

interfaces for accessing sensors.

	 b.	 Define various sensor classes and create

standard interfaces for accessing the sensor

objects.

	 5.	 Handle the following tasks using dynamic

polymorphism concepts.

	 a.	 Implement an abstract class to declare standard

interfaces for accessing guns in a gaming context.

	 b.	 Define a variety of Gun classes and develop

standard interfaces for accessing the gun objects.

Chapter 7 Easy-to-Use Software Development Using OOP

411© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_8

CHAPTER 8

Design Patterns
You have learned important OOP concepts such as encapsulation,

data hiding, inheritance, and polymorphism for handling software

development challenges. This chapter introduces the design patterns and

how they are useful to identify general solutions for common software

development problems.

Usually, in software development, researchers observe repeated

problems and common solutions to handle a group of problems. To save

time in software development, repeatable solutions are formalized and

grouped into design patterns. A design pattern is not a directly reusable

algorithm or source code but a solution template to use in specific

problem contexts. Developers can customize a design pattern solution

template to handle specific problems.

Design patterns provide a variety of general software development

solutions, such as handling complex systems design without violating

OOP principles such as data hiding, reusing the code (inheritance), and

polymorphism. Learning design patterns helps us solve tremendous

time in handling ambiguities of software development and also helps

us develop a reusable, extensible, and flexible software system. Design

patterns are grouped into three major categories: creational patterns,

structural patterns, and behavioral patterns. For instance, creational

design patterns help handle challenges in classes and object creation;

structural design patterns help handle challenges in implementing flexible

and efficient software systems; and behavioral patterns help handle

challenges in collaboration among software building blocks.

https://doi.org/10.1007/979-8-8688-0524-0_8#DOI

412

�Introduction to Design Patterns
Design patterns are template solutions for handling challenges in class

creation, object creation, arranging classes into a hierarchy, combining

subsystems to make larger systems, and providing clean solutions for

complex object collaborations. Design pattern solutions use OOP concepts

such as encapsulation, inheritance, object association, and composition.

Design patterns are mainly classified into the following three categories.

•	 Creational design patterns

•	 Structural design patterns

•	 Behavioral design patterns

�Creational Patterns
Creational patterns provide template solutions for classes and object

creation mechanisms by ensuring the flexibility and reuse of existing

classes.

This section discusses how to use inheritance, object composition, and

aggregation to handle challenges in creating new classes or objects. Let’s

review the following creation patterns and their usage context.

•	 The factory method: It is defined in a base class to

return the final product—creating objects. It is useful to

hide the derived classes (final product) details.

•	 An abstract factory: It is defined in an abstract factory

class to include multiple factory methods.

•	 Builder: It is defined in a builder class to handle

complex objects construction process. Actual

object-implementing class details are hidden in the

builder class.

Chapter 8 Design Patterns

413

•	 Prototype: It is defined in a prototype class and

includes an object’s fields copying or cloning member

function to create user-accessing objects.

•	 Singleton: It is defined in a singleton class to ensure

that only one object is created from the singleton

class. It is also possible to restrict that from a class

number of objects to be created.

�Structural Patterns
Structural patterns help developers to combine classes and compose

objects flexibly and efficiently for developing large software systems.

Usually, structural pattern classes define references of other objects

and common interfaces for accessing the necessary objects.

•	 Adapter: It is useful to create an adapter class and a

compatible interface for collaborating incompatible

objects.

•	 Bridge: It is useful to create abstract and

implementation classes separately to enable parallel

development activities. Instead of using inheritance,

include necessary object references in abstract classes.

•	 Composite: It is useful to create a composite class to

apply tree or hierarchical approaches to composing

class objects and executing operations against the class

objects.

•	 Decorator: It is useful to create a decorator class and

includes references for class objects and standard

interfaces to dynamically change the behavior of

objects. Both the decorator class and its referring

objects define the same accessing interface.

Chapter 8 Design Patterns

414

•	 Facade: It is useful to create a facade class to provide

necessary simple interfaces to access a complex system

containing multiple subsystems.

•	 Flyweight: It is useful to create a flyweight class to store

the common state and unique state of objects separately

to save them in random access memory (RAM).

•	 Proxy: It is useful to create a proxy class with real object

references and defines the same accessing interface

of the real object. Inside the proxy accessing interface,

a request can be processed or saved for optimization

before passing the request to the original real object.

�Behavioral Patterns
Behavioral patterns help developers separate common algorithms from

objects, simplify communication among different objects, and provide

customized communication or collaboration. Let’s discuss the following

behavioral patterns and their usage.

•	 Chain of responsibility: It is useful to execute

behaviors such as processing a user request through a

series of class objects.

•	 Command: It is useful to model user requests as objects

and manages the request objects for storing requests,

delaying requests, redoing, and undoing requests.

•	 Iterator: It is useful to iterate through a list of complex

objects to access.

•	 Mediator: It is useful to handle communication

dependencies between multiple objects. Instead

of directly communicating with objects, they

communicate with a mediator object.

Chapter 8 Design Patterns

415

•	 Memento: It is useful to saves and restores an object’s

state without violating objects’ data-hiding principles.

•	 Observer: It is useful to implement events handling

applications using publish and subscribe methods.

Provides interfaces for object subscription and

publishing activities and maintains a list of subscribed

objects.

•	 State: It is useful to model state machine behavior

using related objects and their actions.

•	 Strategy: It is useful to implements algorithm as strategy

objects. It is possible to involve strategies based on the

usage context.

•	 Template: It is useful to define a system-wide algorithm

as a template of steps in a class. Then, subclasses can

use the necessary parts of the template algorithm to

override or define specific behavior.

•	 Visitor: It is useful to define additional behaviors in

specific classes of the inheritance hierarchy.

Next, let’s practice a few design patterns.

�Learning Creational Design Patterns
In the process of developing software from subsystems and their classes, it

is necessary to create objects from various classes to perform various tasks

in the software. However, it is not easy to create objects in the presence of

many classes with dependencies due to the following challenges.

•	 Object creation involves a lot of its internal data

configurations and initializations.

•	 Necessary to hide classes’ private data members and

member functions to ensure data-hiding features.

Chapter 8 Design Patterns

416

•	 Need to implement a variety of objects from the same

procedure.

•	 Copying objects should be simplified without

depending on source objects.

•	 Reduce the build time of objects and reuse the existing

objects.

•	 Strict enforcement on the number of objects to be

created.

This section explains how creational design patterns help create

suitable objects from classes by following OOP principles and flexibly

reusing them. Let’s quickly check the types of creational design patterns

and their uses.

•	 Factory method: The factory method is useful to

create final product-related objects and return them.

The factory method is declared in abstract classes,

and implementation is done in end-product classes. It

eliminates the need to reveal the specific derived class

(product) details.

•	 It is useful to hide details of actual derived classes

and their dependent classes for creating end-

product objects.

•	 It helps in easily reusing the existing objects.

•	 Abstract factory contains multiple factory methods to

hide multiple classes and their dependent class details.

•	 It is a general solution for hiding multiple end-user

objects accessing class details.

•	 Abstract factory classes are also helpful in returning

objects for end-product creation.

Chapter 8 Design Patterns

417

•	 The Builder pattern hides the complex end product

object creation process. The complex object

construction process from multiple dependent objects

is separated into a builder class.

•	 It is useful to separate the internal objects of the

end product object from the construction process.

Hence, extending or changing the end product

object creation process is easier.

•	 It is helpful in easily constructing special products

from multiple objects.

•	 It is useful to hide the complex object construction

process.

•	 The prototype pattern helps implement objects

copying code to construct prototypes without

depending on the source classes.

•	 It is helpful in easily applying proof of concept

models by customizing the object's initialization

and copying code.

•	 It is useful to eliminate unnecessary subclasses that

only differ in the configuration of constructors.

•	 The singleton pattern is useful to enforce rules on the

number of objects to be created per class. The singleton

pattern procedure enforces rules on the number of

objects created from a singleton class.

•	 Restricting your application to run with only one

shared object from a specific class is helpful.

•	 It is also helpful to restrict a specific number

of class objects available during an application

execution.

Chapter 8 Design Patterns

418

You know solutions for handling object creation challenges in

software development from the list of creational design patterns and quick

discussion. Practicing all these patterns is beyond the scope of this book.

Next, let’s start with exploring how to use the factory method creational

design using C++.

�The Factory Method
Let’s look at a use case that features drone products based on end-user

requirements. In this context, consider the following rules to design drone

classes.

•	 All manufacturers must define standard interfaces

(userControl()) for providing drone objects access

to users.

•	 All varieties of drone objects should have common

interfaces to interact with and control the drone

objects. However, the drone object and its accessing

interfaces should be hidden from the end user.

•	 All users of drones should access final drone product

objects from standard interfaces (userContol()) only.

To realize the requirement to offer access to drone objects, hiding

the actual drone object classes from the end user is necessary. Besides,

developers should offer drone sellers a variety of drone objects by

implementing the drone seller-recommended standard accessing

interfaces using factory methods.

Let’s walk through a hands-on activity using the factory method

pattern.

Chapter 8 Design Patterns

419

FACTORY METHOD

This hands-on activity uses code snippets in the factory.cc file.

	1.	T o model a variety of drones, define the following abstract

classes.

	 a.	 Define an abstract class called Drone to declare all common

controls for all varieties of drone objects.

	 b.	 Define sample control operations related to drones by declaring

pure virtual functions. We included only one control, it is possible

to include multiple control functions. These are implemented

by drone objects creating classes.

#include<iostream>

using namespace std;

class Drone

{

 public:

 virtual ~Drone() {}

 virtual void Control() const = 0;

};

	2.	 Define an example actual drone objects creating class as

following.

	 a.	 Define a base class called MonitoringDrone to create an example of

monitoring drone objects by inheriting the Drone abstract class.

	 b.	 Define the control function by using sample code.

class MonitoringDrone : public Drone

{

 public:

 void Control() const override

Chapter 8 Design Patterns

420

 {

 cout<<"Drone1 control\n";

 }

};

	3.	T o enforce the use case rule, such as not allowing end users to

access drone objects directly and allowing only through drone

seller-recommended interfaces, define the following abstract

class called DroneSeller.

	 a.	 Declare a virtual function called DroneFactory to create drone

objects. The factory method allows manufacturers to create specific

drone objects and return them to callers. It defines actual user

accessing controls (userControl). Based on requirements, we can

include multiple user controls here.

	 b.	 Define drone sellers to provide user-accessing interfaces.

class DroneSeller

{

 public:

 virtual ~DroneSeller(){};

 virtual Drone* DroneFactory() const = 0;

 void userControl() const

 {

 Drone* drone = this->DroneFactory();

 drone->Control();

 delete drone;

 }

};

Chapter 8 Design Patterns

421

	4.	 Define the following concrete class called ManufacturerA

to apply DroneFactory to return custom drone objects from

manufacturers.

	 a.	 Define DroneFactory to create an example monitoring

drone object and return it. It is the factory method to

return monitoring drone objects to sellers.

class ManufacturerA : public DroneSeller

{

 public:

 Drone* DroneFactory() const override

 {

 return new MonitoringDrone();

 }

};

	5.	 Let’s access end products called monitoring drones from

end-user code.

	 a.	 Declare a DroneSeller pointer to get monitoring drone

objects from ManufacturerA.

	 b.	A ccess monitoring drone objects from the end user code.

	 c.	T est these tasks in main().

void ClientCode(const DroneSeller& udrone)

{

 cout << "Client:";

 udrone.userControl();

}

int main()

{

 �std::cout << "Drone: Launched with the

Manufacturer\n";

Chapter 8 Design Patterns

422

 DroneSeller* udrone = new ManufacturerA;

 ClientCode(*udrone);

 std::cout << std::endl;

 delete udrone;

 return 0;

}

	6.	 Let’s execute factory.cc and observe the following.

	 a.	A drone from ManufacturerA is created.

	 b.	T he user got the drone object and accessed it from a standard

interface called userControl.

g++ factory.cc -o factory

./factory

Drone: Launched with the Manufacturer

Client:Drone1 control

Well done. You have used factory methods to return sample drone objects

and accessed them using standard interfaces. Readers can do the following

practice tasks.

�Practice Tasks

Next, do the following tasks by extending the use case to practice the

factory method and understand its importance.

•	 Introduce another variant of drone objects and

including multiple controls from another manufacturer

(Manufacturer B).

•	 Think of creating multiple drone objects and returning

them from the factory method.

Chapter 8 Design Patterns

423

•	 You can observe that new requirements can be easily

applied in new variant drone classes and manufacturer

classes.

•	 Drone sellers can easily return a user-requested drone

object from the factory returned drone objects by

different manufacturers.

•	 Moreover, end user code need not be changed to access

and control a new drone product.

Next, let’s practice another important creational design pattern called

the singleton pattern.

�The Singleton Pattern
Let’s consider creating an application where you want to have only a single

database object to execute the application task. All other objects must

share only the single database object. The following are the requirements

for the use case.

•	 The application should have only a single

database object.

•	 The application is not allowed to create multiple

database objects.

•	 There is a provision in the database object creation

class to return the necessary number of objects.

To implement the proposed application, use the singleton pattern that

lets the application have only one instance database object and provides

global access to the unique single database object.

The following hands-on activity uses the singleton pattern approach.

Chapter 8 Design Patterns

424

SINGLETON

Let’s use code snippets in the singleton.cc file.

	1.	S tart by defining a singleton pattern class. Define a DataBase

class as follows.

	 a.	 Define a private static database object pointer to hold a

dynamically created database object address.

	 b.	 Define a private field called record to insert into a sample

database object.

#include<iostream>

#include<thread>

using namespace std;

class DataBase

{

 private:

 static DataBase* dbo;

 string record;

	 c.	 Define a private constructor to initialize database record value to

avoid multiple database object creation in nonmember functions of the

DataBase class. For example, the application is not allowed to create

objects.

DataBase(const std::string value)

{

 record = value;

}

Chapter 8 Design Patterns

425

	 d.	 Disable default and copy constructors using the following lines of

the code. It also useful to avoid creating multiple database objects

inside the class member functions.

 public:

 DataBase(DataBase &other) = delete;

 void operator=(const DataBase &) = delete;

	 e.	 Define the following member functions to access database

record values.

 std::string getRecord()

 {

 return record;

 }

 void setRecord(string val)

 {

 record = val;

 }

	 f.	 Declare a unique member function: static member function to return

the globally sharable single database object.

 �static DataBase *GetInstance(std::string

value);

};

	2.	 Define and initialize static data member dbo.

DataBase* DataBase::dbo= nullptr;

	3.	I mplement the static member function to create a single
database object and set a user passed record.

	 a.	 You can observe that for the first time calling this static

function only a new database object is created.

Chapter 8 Design Patterns

426

	 b.	 Further calls to this static function return only the existing

database object address to the callers.

	 c.	 You can restrict the number of database objects created in

this static member function. For instance, you can create

a N number of database objects and return to applications.

	 d.	E xcept for this member function, no other member function

or external member function is allowed to create database objects.

DataBase *DataBase::GetInstance(std::string value)

{

 if(dbo==nullptr)

 {

 dbo = new DataBase(value);

 }

 dbo->setRecord(value);

 return dbo;

}

	4.	 Let’s test your code in main as follows.

	 a.	 Call the static member function GetInstance to get a

single database object and set a sample record. Collect

the database object pointer in db1.

	 b.	 Call GetInstance again to insert another sample record

in it. Collect the database object pointer in db2.

	 c.	P rint the database record using getRecord from db1 and db2.

int main()

{

 �DataBase* db1 = DataBase::GetInstance

("Record1");

 �DataBase* db2 = DataBase::GetInstance

("Record2");

Chapter 8 Design Patterns

427

 cout<<db1->getRecord()<<"\n";

 cout<<db2->getRecord();

 return 0;

}

	5.	 Let’s execute single.cc and observe the following.

	 a.	 Observe the attempt to create two database instances.

	 b.	 But, due to the singleton pattern there is only one

database instance.

	 c.	H ence, accessing the database anytime is printing

the latest record details only.

g++ single.cc -o single

./single

Record2

Record2

Next, let’s continue practicing.

�Practice Tasks

Next, do the following tasks by extending the use case to practice the

singleton pattern and understand its importance.

	 1.	 Change your Database class to create only a fixed

number of database objects.

	 2.	 Access the fixed number of objects from the client

code to test them.

	 3.	 Check that your application is allowed to use more

than the fixed number of objects available in your

application.

Next, let’s learn another category of design patterns called structural

design patterns.

Chapter 8 Design Patterns

428

�Structural Design Patterns
Creating larger software systems involves inheriting multiple classes,

aggregating, and composing a variety of objects. During this process,

developers may end up with lots of redundant code, introducing multiple

interfaces for interactions with the system, leading to inconsistent codes

and increasing the memory size of objects. Structural design patterns offer

important reusable solutions for handling the following challenges.

•	 Making use of existing classes and interfaces by

handling the incompatibility issues.

•	 Developing larger systems form subsystems and offer

their services access using only standard interfaces.

•	 Divide the complex or monolithic systems into

subsystems.

•	 Supporting layers approach for implementing complex

systems such as operating systems and protocol stacks.

•	 Introducing and integrating necessary services to

existing systems without changing the subsystems and

their classes.

•	 Reducing the object runtime memory size.

This section explores how structural design patterns are helpful to

combine subsystems, non-subsystem classes and objects into complex

software systems. The structural design patterns approaches make the

complex systems design and code flexible to make any extensions or

enhancements by minimizing the redundant code, reusing the common

access interfaces, and allowing the system to be easily integrated with

incompatible systems or non-subsystem services.

Chapter 8 Design Patterns

429

Let’s quickly review the types of structural design patterns and

their uses.

•	 Adapter: This pattern is helpful to integrate services

available outside the main system and access

incompatible objects’ services through the system’s

common interfaces. As part of using the adapter

pattern, create an adapter class to do the following.

•	 Use the adapter pattern to access a system or

an existing class service in case of incompatible

interfaces.

•	 It is especially useful to access a common service

of a non-subsystem or an existing class across the

many classes of the main system.

•	 If you cannot include the common service in any

of the superclasses of the main system, adapter

classes are necessary.

•	 Facade: This design pattern offers simplified interfaces

to use a set of subsystems together and eliminates the

need of complex interfaces. It also helps you to design

a complex system by combining multiple subsystems

in terms of layers. Usually, you define facade pattern

classes with multiple subsystem objects and integrate

them logically to realize the complex services.

•	 Use the facade pattern to design protocol stacks

with simplified standard interfaces for accessing

underlying subsystems or layers services.

Chapter 8 Design Patterns

https://refactoring.guru/design-patterns/facade

430

•	 Use the facade pattern to simplify the design of

complex monolithic systems.

•	 Use the facade pattern to reuse the smaller

subsystems and build a larger system.

•	 Decorator: This design pattern helps you to add new

functionalities to existing class objects, including

the object’s reference and their accessing standard

interfaces inside a decorator class. Then, you can use

the reference of objects in the decorator class to add

new functionalities for the objects at runtime.

•	 Use the decorator pattern to define runtime

functionalities to existing objects.

•	 Use the decorator pattern to dynamically add

multiple behaviors to an object.

•	 The decorator pattern is typically used when it is

not possible to use inheritance for extending object

functionalities.

•	 Composite: This design pattern helps you to compose

multiple objects in a hierarchical manner (tree-like

structure) and execute their member functions as

per the parent and child relationship defined in the

composite class. Usually, to use a composite pattern,

you define a composite class, and inside the class

objects are linked in a tree structure manner to execute

their behaviors.

•	 Use the composite pattern for a parent-child

approach to recursively connect multiple objects.

Chapter 8 Design Patterns

431

•	 Use the composite pattern when you need to get

a result from multiple objects formed as a tree to

process the input in a hierarchical manner and

return results.

•	 Use the composite pattern to recursively connect

objects and execute system behaviors.

•	 Bridge: This design pattern helps you to organize

several system classes into separate inheritance

hierarchies. Classes are organized into hierarchies,

which allows developers to work in parallel on their

respective class hierarchies. You can use necessary

object aggregation in class hierarchies to perform

coordination tasks between objects.

•	 Use the bridge pattern to divide an application into

multiple class hierarchies.

•	 Use the bridge pattern when there is a need for

parallel development of class hierarchies.

•	 Use the bridge pattern to dynamically change

objects at runtime.

•	 Proxy: This design pattern helps you to hide an original

application object and expose an alternate object

(proxy) for the original object. To use this, you define

a proxy class, and inside the class an original object

is created for handing over user requests through the

proxy object. Moreover, users interact with the original

application server and proxy server using the same

service interface.

Chapter 8 Design Patterns

432

•	 Use the proxy pattern to implement new services

before handing over the user requests to the

original application.

•	 For instance, you can use the proxy pattern to cache

user requests, responses to the requests, locally

executing the remote service, etc.

•	 You can also use the proxy objects to control the

application object lifecycle, such as automatically

cleaning up the unused server objects in

the system.

•	 Flyweight: This design pattern helps you to run

more system objects in the limited available main

memory (RAM) To execute this pattern, let’s separate

the common data members of objects’ states into

a separate shared object, and the shared object is

referenced during execution time by all objects of

the system.

•	 Use the flyweight pattern to optimally utilize the

available limited RAM.

As part of learning structural design patterns, let’s use the facade

pattern to build complex systems from the smaller subsystems.

�The Facade Pattern
The facade pattern helps you to flexibly develop a larger system with

simplified interfaces from existing subsystems. Let’s discuss using the

facade pattern to implement a protocol stack (larger system) from existing

layers (subsystems).

Chapter 8 Design Patterns

433

•	 Every layer (subsystem) can be accessed independently

with its own interfaces. For example, the networking

layer (layer 3) should provide interfaces related to

network packet transmission and reception. Similarly,

every layer should provide their unique interfaces for

transmitting and receiving respective layer packets.

•	 Every layer can be accessed individually through its

interfaces.

•	 Our sample network protocol stack should provide

simplified interfaces for end users for sending (send())

and receiving (recv()) packets through all layers of the

protocol stack based on protocol rules. That means the

end user of the protocol stack (larger system) should be

aware of only using send() and recv() interfaces.

•	 Our protocol should be easily extended with the

necessary layers. These changes should be hidden from

end users.

THE FACADE PATTERN

Let’s implement the hands-on activity using code snippets in the

facade.cc file.

	1.	 Define subsystem-related classes for creating layers objects.

	 a.	 Define a sample Layer1 class to handle bits sending and

receiving tasks.

	 b.	 Define sample functions to handle layer1 transmission and

reception tasks.

Chapter 8 Design Patterns

434

	 c.	 Define simplified codes in Layer1Send and Layer1Recv functions

for handling transmission and reception of frames, respectively.

#include<iostream>

using namespace std;

class Layer1

{

 public:

 std::string Layer1Send() const

 {

 return "Layer1: Encode and Send\n";

 }

 std::string Layer1Recv() const

 {

 return "Layer1: Decode and Recv!\n";

 }

};

	2.	 Define a sample Layer2 class to handle frames sending and

receiving tasks.

	 a.	 Define sample functions to handle layer2 frames addressing,

checking related transmission and reception tasks.

	 b.	 Define simplified codes in Layer2Send and Layer2Recv

functions for handling transmission and reception

of frames, respectively.

class Layer2

{

 public:

 std::string Layer2Send() const

 {

 �return "Layer2: Frame with Host Address

and Send!\n";

Chapter 8 Design Patterns

435

 }

 std::string Layer2Recv() const

 {

 �return "Layer2: Check address and recv

frame!\n";

 }

};

	3.	 Define a sample Layer3 class to handle network packets

sending and receiving tasks.

	 a.	 Define sample functions to handle layer 3 network addressing,

checking, routing-related transmission, and reception tasks.

	 b.	 Define simplified codes in Layer3Send and Layer3Recv functions

for handling transmission and reception of network packets,

respectively.

class Layer3

{

 public:

 std::string Layer3Send() const

 {

 �return "Layer3: Create a Packet with

Network Address and Route it!\n";

 }

 std::string Layer3Recv() const

 {

 �return "Layer3: Check Soure network

address and recv the packet!\n";

 }

};

Chapter 8 Design Patterns

436

	4.	 Define a sample protocol stack class to handle transmission

and reception of end-user data through underlying layers. It is

the facade class.

	 a.	 Define a sample protocol stack with pointers to

underlying layers (subsystem) objects.

class ProtocolStack

{

 protected:

 Layer1 *layer1;

 Layer2 *layer2;

 Layer3 *layer3;

	 b.	 Define a sample protocol stack constructor to initialize pointers with

layers (subsystem) objects.

 public:

 �ProtocolStack(Layer1 *l1,Layer2 *l2,

Layer3 *l3)

 {

 layer1 = l1;

 layer2 = l2;

 layer3 = l3;

 }

	 c.	 Define a simplified interface called Send for sending users data

through underlying protocol stack layers. End users need to know only

the Send interface for accessing the protocol stack (facade).

 std::string Send()

 {

 �std::string packet = "Packet send flow:\n";

 packet += layer3->Layer3Send();

 packet += layer2->Layer2Send();

Chapter 8 Design Patterns

437

 packet += layer1->Layer1Send();

 return packet;

 }

	 d.	 Define a simplified interface called Recv for receiving user data

through underlying protocol stack layers. End users need to know only

the Recv interface for accessing the protocol stack (facade).

 std::string Recv()

 {

 �std::string packet = "Packet recv

flow:\n";

 packet += layer1->Layer1Recv();

 packet += layer2->Layer2Recv();

 packet += layer3->Layer3Recv();

 return packet;

 }

};

	5.	T est your simplified protocol stack from end users accessing

code as follows.

	 a.	 Define client code function for sending and receiving

user data using protocol stack pointer

void ClientCode(ProtocolStack *facade)

{

 std::cout << facade->Send();

 std::cout << facade->Recv();

}

Chapter 8 Design Patterns

438

	 b.	 Define the main code as follows to construct a sample protocol stack

from underlying protocol layers. Then, pass the protocol stack pointer

to the client code executing function.

int main()

{

 Layer1 *layer1 = new Layer1;

 Layer2 *layer2 = new Layer2;

 Layer3 *layer3 = new Layer3;

 �ProtocolStack *facade = new

ProtocolStack(layer1,

layer2,layer3);

 ClientCode(facade);

 delete facade;

 return 0;

}

	6.	 Let’s execute facade.cc and observe the following.

	 a.	A sample protocol stack with three layers is created.

	 b.	A protocol stack is accessed using simple interfaces send and

recv only.

g++ facade.cc -o facade

./facade

Packet send flow:

Layer3: Create a Packet with a Network Address and

Route it!

Layer2: Frame with Host Address and Send!

Layer1: Encode and Send

Packet recv flow:

Chapter 8 Design Patterns

439

Layer1: Decode and Recv!

Layer2: Check address and recv frame!

Layer3: Check Soure network address and recv

the packet!

By following the facade pattern, you developed a protocol stack using layers

and accessed it using simple and standard interfaces. Next, let’s continue

practicing.

�Practice Tasks

Next, do the following tasks by extending the use case to practice the

facade pattern and understand its importance.

	 1.	 Introduce new layers, such as layer 4 for handling

sample transport layer tasks and layer 5 for handling

application layer tasks.

	 2.	 Integrate new layers with your protocol stack. Test

your new protocol task.

	 3.	 Observe that your changes are limited to only

the protocol stack class. In main(), you can still

interact with all layers using standard Send and Recv

interfaces.

Next, let’s learn another interesting structural pattern to extend a

system with a subsystem to offer new features without altering the existing

system accessing interfaces.

Chapter 8 Design Patterns

440

�The Proxy Server Pattern
The proxy server pattern helps you to extend a large system without

changing the existing system accessing interfaces. Let’s explore using the

proxy server pattern to extend an existing application server with new

features. As part of this activity, let’s consider the following rules.

•	 An existing application server must be accessible with

its original interfaces (e.g, Request()).

•	 Extend the application server with new features, such

as caching user requests.

•	 The new features must be available through only the

new subsystem called the proxy server.

•	 Even after extending the application server with new

features, the server must be accessible with only the

application server’s original interfaces (e.g., Request().

•	 The original and extended application servers

must be accessible to end users using the same

interface (e.g., Request()).

PROXY SERVER

The hands-on activity code snippets are executed in the proxy.cc file.

	1.	 Define an abstract class called Server to define application

servers accessing interfaces.

	 a.	 For example, declare a pure virtual function called Request as a

server accessing interface.

#include <iostream>

#include <string>

using namespace std;

Chapter 8 Design Patterns

441

class Server

{

 public:

 �virtual void Request(string request)

const = 0;

};

	2.	 Define your sample application server as follows.

	 a.	 Define a class called ApplicationServer by implementing

abstract class Server interfaces.

	 b.	 Define user request data as a private member.

	 c.	 Define a public function to access user-requested data.

class ApplicationServer : public Server

{

 string request;

 public:

 void Request(string input) const override

 {

 �std::cout << "Application server

Handling request.\n";

 }

 string getInput()

 {

 return request;

 }

};

Chapter 8 Design Patterns

442

	3.	 Define the proxy server pattern to provide special features

before accessing the application server.

	 a.	 Define a class called Proxy to create the application server

accessing function called Request().

class Proxy : public Server

{

	 b.	I mplement a special feature sample function called

cacheRequest to cache user-requested data.

 private:

 ApplicationServer *as;

 bool cacheRequest(ApplicationServer *as) const

 {

 �std::cout << "Proxy: caches requesting

details"<<as->getInput()<<"\n";

 return true;

 }

	 c.	 Define a proxy constructor to create a local application

server object. Here, you can control the lifecycle of the

local application server object.

 public:

 �Proxy(ApplicationServer *as) : as(new

ApplicationServer(*as))

 {

 }

	 d.	I mplement your virtual function Request to offer caching
service before sending the user request to the actual
application server.

Chapter 8 Design Patterns

443

 void Request(string request) const override

 {

 cacheRequest(as);

 as->Request(request);

 }

	 e.	 Define destructor to delete dynamically created local

application server objects automatically.

 ~Proxy()

 {

 delete as;

 }

};

	4.	 Define client code to test accessing the application server.

void ClientCode(const Server &ser,string input)

{

 ser.Request(input);

}

	5.	 Define the main() code to test accessing the application

server from the end user.

	 a.	 Create an application server object.

	 b.	A ccess the application server directly and test results.

	 c.	A ccess the application server through the proxy server

and test results.

int main()

{

 �std::cout << "Client: Executing the client

code with a real subject:\n";

 ApplicationServer *ras = new ApplicationServer;

Chapter 8 Design Patterns

444

 string inp;

 ClientCode(*ras,inp);

 std::cout << "\n";

 �std::cout << "Client: Executing the same

client code with a proxy:\n";

 Proxy *proxy = new Proxy(ras);

 ClientCode(*proxy,inp);

 delete ras;

 delete proxy;

 return 0;

}

	6.	 Let’s execute proxy.cc and observe the following.

	 a.	T he application server is accessible using a standard interface

(ser.Request()) only.

	 b.	 When the application server is accessed without a proxy object,

user-requested data is not cached.

	 c.	 When the application server is accessed with the proxy object,

caching user-requested data is done.

g++ proxy.cc -o proxy

#./proxy

Client: Executing the client code with a real

subject:

Application server Handling request.

Client: Executing the same client code with a proxy:

Proxy: caches requesting details

Application server Handling request.

You used the proxy pattern to extend existing application server functionalities.

Next, practice the following tasks.

Chapter 8 Design Patterns

445

�Practice Tasks

Next, do the following tasks by extending the use case to practice a proxy

pattern and understand its importance.

	 1.	 Introduce additional tasks such as authentication

check, and caching responses too.

	 2.	 Test original application server access through the

updated proxy server object.

	 3.	 Observe that your changes are limited to only the

proxy class. The user code and actual application

server classes need not be changed.

Next, let’s discuss behavioral design patterns to handle challenges

in large system object communication and carefully separate the system

algorithms into specific classes to dynamically reuse them.

�Behavioral Design Patterns
One of the complex tasks in constructing larger software systems is

providing communication and collaborating with subsystem (classes)

objects. It is helpful to quickly develop and deliver evolving requirements

of the system. This section studies interesting behavioral design patterns

to learn how to deal with complexities in designing object communication

and collaboration activities. Understanding behavioral design patterns is

helpful in carefully separating and assigning systems behaviors and objects

responsibilities.

Behavioral design patterns offer important reusable solutions for

handling the following challenges.

•	 Providing flexible ways to pass messages between

objects.

•	 Dynamically creating service chains by linking objects.

Chapter 8 Design Patterns

446

•	 Dynamically deciding services to be executed based on

objects.

•	 Providing a clean hierarchy among objects to exchange

messages.

•	 Dynamically handling the objects’ runtime-

generated events.

•	 Defining generic system-wide algorithms and

procedures.

Let’s start with behavioral design pattern roles that address

the complexity of subsystems, objects, services (algorithms), and

communication in larger systems.

•	 Chain of responsibility: The pattern allows multiple

objects to handle the request without linking the

multiple classes together. This pattern helps you to

easily create runtime service chains among multiple

objects. Let’s define a chain of responsibility pattern

using a class to link the next server object.

•	 Use this pattern to create service chains among a

variety of objects.

•	 Use this pattern to enable multiple service chains to

handle user requests.

•	 Use this pattern to eliminate the need to couple

multiple server objects together.

•	 Use this pattern to make users unaware that

multiple servers are handling their requests.

Chapter 8 Design Patterns

447

•	 Command: This design pattern helps you to convert

high-level commands into commands handling

objects. Establish one-way connections between

commands sending and receiving objects to apply a

command pattern.

•	 Use the command pattern to divide complex

command execution responsibility among specific

objects.

•	 Use the command pattern to log command history,

queue command execution, and enable the undo

and redo commands.

•	 Mediator: This pattern helps you to avoid mutual and

multiple dependencies among subclasses of a system.

It is useful to provide clean communication among

objects. It is implemented through a single object

called a mediator object to provide multiple objects for

intercommunication.

•	 Use the mediator pattern to avoid changes in

multiple class hierarchies.

•	 Use the mediator pattern when you want to reuse

components of another system.

•	 Use the mediator pattern to offer a flexible and

clean way of communicating with objects.

•	 Observer: This pattern is useful to execute event-based

applications, particularly publish and subscription

approaches.

•	 Use the observer pattern to develop an event-based

application that creates new events and handles

events dynamically.

Chapter 8 Design Patterns

448

•	 Use the observer pattern to introduce new events,

prioritize events, and schedule events of an

application in a flexible manner.

•	 Consider using the observer pattern to apply smart

application requirements.

•	 Template method: This pattern helps you to

define a common algorithm for the entire system

in superclasses and lets subclasses extend specific

algorithm steps. You implement the template pattern

by inheritance and polymorphism principles.

•	 Use this pattern to avoid a lot of redundant code

among subclasses.

•	 Use this pattern to easily introduce new objects

with specialized behavior without changing

the logical order of the system’s common

algorithm steps.

•	 Strategy: This pattern helps you pack system

algorithms into specific objects and allow subsystems

or classes to link them during runtime based on various

contexts. You apply algorithms in specific classes

and define a context of objects to link with specific

algorithms using the generic algorithm object holding

pointers.

•	 Use the strategy pattern to eliminate redundant

code of algorithms among multiple classes. It helps

provide consistent algorithm availability for all

system objects.

Chapter 8 Design Patterns

https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method

449

•	 Use the strategy pattern based on specific context to

dynamically decide the algorithm to be linked with

an object.

•	 Use the strategy pattern to eliminate many if-else or

switch case code to execute specific algorithms.

•	 State: This pattern is useful to apply the finite state

machines concept. Finite state machines are helpful

in modeling behaviors of protocols, smart devices,

automated machines, and so forth. You can implement

state machine transition behavior by linking different

objects in the system, passing messages between

objects, and changing the system's behavior.

•	 Use the state pattern to implement systems

designed based on finite state machines.

•	 State pattern helps you to reduce the redundant

code among objects by carefully moving related

code into specific objects. Transitions can execute

specific object behavior through object pointers.

•	 Use the state pattern to easily remove clumsy code,

which invokes various objects and multiple if-else

condition checks.

•	 Iterator: This design pattern is useful to traverse data

elements of any complex data structure, such as trees,

lists, and graphs, without exposing their underlying

structure.

•	 Use the iterator pattern to simplify data element

accessing of complex data structures for users.

•	 Use the iterator pattern to eliminate redundant data

elements and traversal codes.

Chapter 8 Design Patterns

450

•	 Use the iterator pattern to introduce new complex

data structures.

•	 Memento: This design pattern is useful to you save

and restore an object's state (including private data

members). It is useful to execute undo and redo

operations related to the object.

•	 Use the memento pattern when there is a need to

save snapshots of object states for applying history,

redo, and undo commands to the objects.

•	 Use the memento pattern to access and copy object

states from external functions without violating the

object’s data-hiding principles.

•	 Visitor: This pattern helps you to include additional

behavior in class hierarchies in a flexible manner.

•	 Use the visitor pattern to apply additional behaviors

in specific classes of inheritance hierarchy.

•	 Use the visitor pattern to separate the additional

tasks of the application.

Let’s practice using behavioral design patterns to handle challenges

in objects, message exchange, and common algorithms by eliminating

redundant code.

�The Chain of Responsibility Pattern
The chain of responsibility pattern is useful to implement dynamic

service chains for handling user requests. The service chain defines a list

of server objects in a specific order to handle user requests. Mainly, the

Chapter 8 Design Patterns

451

chain of responsibility eliminates the need for users to directly couple

server objects in the service chain. Let’s discover how to use the chain of

responsibility in the following tasks.

•	 There are multiple servers, such as authentication,

compression, and caching, to implement different

service chains.

•	 Server objects should not be directly coupled to allow

the creation of service chains in a flexible manner.

	 1.	 End users should define required service

chains dynamically. For example, users can

define service chains using multiple servers’

processing orders, such as authentication ➤
cache, compression ➤ cache, authentication ➤

compress ➤ cache, and so on.

	 2.	 As per the service chain order, user requests

must be processed through all the servers in the

service chain.

	 3.	 Moreover, users should submit the input

request to the system using a single common

interface (e.g., ProcessRequest()).

Chapter 8 Design Patterns

452

CHAIN OF RESPONSIBILITY

Let’s use the hands-on activity code snippets in the chainofservers.

cc file.

	1.	 Define server common interfaces in an abstract class called

RequestHandler to allow specific servers to implement the

interface in their concrete classes. This is the crucial class for

applying a chain of responsibility pattern.

	 a.	 Declare a virtual function called ProcessRequest to

allow concrete server classes to execute it.

	 b.	 Define another important virtual function called SetNextServer

to dynamically allow a server object to set its next processing

server object address.

#include<iostream>

#include<vector>

using namespace std;

class RequestHandler

{

 public:

 �virtual RequestHandler *SetNextServer

(RequestHandler *handler) = 0;

 �virtual void ProcessRequest(string

request) = 0;

};

	2.	 Defien a class called RequestHandlerImpl by inheriting from

RequestHandler to do the following. This class is useful to
realize chain of responsibility pattern tasks.

	 a.	 Declare a RequestHandler *nextServer to hold the next

server objects to process user requests in a service chain.

Chapter 8 Design Patterns

453

class RequestHandlerImpl: public RequestHandler

{

 private:

 RequestHandler *nextServer;

 public:

 RequestHandlerImpl() : nextServer(nullptr)

 {

 }

	 b.	 Define SetNextServer to allow servers to set their next servers.

RequestHandler *SetNextServer(RequestHandler

*handler)

 {

 nextServer = handler;

 return handler;

 }

	 c.	I mplement ProcessRequest to pass user requests to the target

server for processing through the service chain.

 void ProcessRequest(string request)

 {

 if (nextServer)

 {

 �nextServer->ProcessRequest

(request);

 }

 }

};

Chapter 8 Design Patterns

454

	3.	 Define server object classes.

	 a.	 For example, define AuthRequestHandler class by

inheriting from RequestHandlerImpl to implement

authentication server processing tasks. Here, sample

authentication server tasks were defined.

	 b.	A t the end of the server processing tasks, pass user

requests to a possible target server object of the service

chain using RequestHandlerImpl::ProcessRequest.

class AuthRequestHandler: public RequestHandlerImpl

{

 public:

 void ProcessRequest(string request)

 {

 cout<<"Authentication check..!\n";

 �RequestHandlerImpl::ProcessRequest

(request);

 }

};

	4.	 You can similarly define another server by creating a class

called CompressRequestHandler by inheriting from

RequestHandlerImpl.

	 a.	I mplement ProcessRequest to define compression

server tasks.

	 b.	A t the end of the server processing tasks, pass user

requests to a possible target server object of the service

chain using RequestHandlerImpl::ProcessRequest.

class CompressRequestHandler : public

RequestHandlerImpl

{

Chapter 8 Design Patterns

455

 public:

 void ProcessRequest(string request)

 {

 cout<<"Data Compressed..!\n";

 �RequestHandlerImpl::ProcessRequest

(request);

 }

};

	5.	 You can define another server class called

CacheRequestHandler by inheriting from

RequestHandlerImpl.

	 a.	I mplement ProcessRequest to define cacher server

handling tasks.

	 b.	A t the end of the server processing tasks, pass user

requests to a possible target server object of the service

chain using RequestHandlerImpl::ProcessRequest.

class CacheRequestHandler : public RequestHandlerImpl

{

 public:

 void ProcessRequest(string request)

 {

 cout<<"Request Cached..!\n";

 �RequestHandlerImpl::ProcessRequest

(request);

 }

};

Chapter 8 Design Patterns

456

	6.	 Define client testing code to test service chain execution.

void ClientCode(RequestHandler &handler)

{

 string input = "data";

 handler.ProcessRequest(input);

}

	7.	 Define your main() code to define dynamic service chains

using server objects.

	 a.	 Define all your server objects and hold their pointers in

respective server class pointers.

	 b.	 Define a sample service chain using SetNextServer().

	 c.	T est the service chain by calling client code with inputs of

one of the server objects.

int main()

{

 �AuthRequestHandler *auth = new

AuthRequestHandler;

 �CompressRequestHandler *compress = new

CompressRequestHandler;

 �CacheRequestHandler *cache = new

CacheRequestHandler;

 �auth->SetNextServer(compress)->SetNext

Server(cache);

 ClientCode(*auth);

 ClientCode(*compress);

 ClientCode(*cache);

 delete auth;

 delete compress;

Chapter 8 Design Patterns

457

 delete cache;

 return 0;

}

	8.	 Let’s test chainofresp.cc and observe the following.

	 a.	A sample service chain with three server objects is created.

	 b.	 User requests are processed through the three server

objects based on the service chain order.

	 c.	 You can set new service chain orders and test them to

observe more results.

g++ chainofresp.cc -o cor

./cor

Authentication check..!

Data Compressed..!

Request Cached..!

Data Compressed..!

Request Cached..!

Request Cached..!

The chain of responsibility pattern created a service chain using three different

server objects. Next, let’s practice the following tasks.

�Practice Tasks

Next, do the following tasks by extending the use case to practice the chain

of responsibility pattern and understand its importance.

	 1.	 Introduce a new server, such as encryption.

	 2.	 Create new service chains by including your

new server.

Chapter 8 Design Patterns

458

	 3.	 You can easily flexibly create new service chains

without affecting existing class code.

	 4.	 Client requests can be processed through new

service chains without changing the service chain

accessing the interface.

Next, let’s learn another important behavioral pattern called the

template method to define system-level common algorithms and be able

to change specific steps of the algorithm in subclasses as per requirements.

�The Template Method
Template method pattern is useful to develop system-level common

algorithms. It eliminates redundant code in general algorithm steps

among system subclasses. Moreover, this specific pattern allows various

objects to have a consistent algorithm executing steps and their own steps

for introducing specialized behavior. Let’s look at how to use the template

method pattern to apply general algorithm steps for game characters’

behaviors in a gaming world. Consider the following rules to execute the

general algorithms for gaming characters in this task.

•	 Players and enemies must be implemented as separate

classes in the gaming application.

•	 Assume players and enemies have similar plans of

action to play the game. For example, players’ or

enemies’ common plan of action steps to observe

the gaming world, explore paths, and then react to
weapons, opponents, wealth, and secrets.

•	 Players and enemies have the same observation and

exploration paths and plan of action steps.

Chapter 8 Design Patterns

459

•	 However, Players and enemies have unique
procedures to implement steps such as reacting with
weapons, opponents, wealth and secrets.

•	 Eliminate redundant code of plan of action algorithm

steps and allow gaming characters to behave their

own way.

THE TEMPLATE METHOD

Let’s use the hands-on activity code snippets in the templatemethod.

cc file.

	1.	 Define the general gaming character plan of action steps in

the following class.

	 a.	 Define an abstract class called GameCharacter to create

algorithm steps in a logical order inside PlanOfAction().

It is the template method. The steps in the method are

overridden by player and enemy gaming characters.

#include<iostream>

using namespace std;

class GameCharacter

{

 public:

 void PlanOfAction()

 {

 Observes();

 ExplorePaths();

 ReactToOpponents();

 ReacToWeapons();

Chapter 8 Design Patterns

460

 ReacToWealth();

 ReacToSecrets();

 }

	 b.	I mplement common steps in the plan of action algorithm,

such as observing, exploring paths, and actions against

opponents. It reduces redundant code in player and

enemy classes.

protected:

void Observes()

{

 �std::cout << "Observing gaming evniornment\n";

}

void ExplorePaths()

{

 �std::cout << "Exploring paths to move

forward\n";

}

void ReactToOpponents()

{

 std::cout << "Attacking..\n";

}

	 c.	 Declare the following virtual functions to allow concrete classes,

such as players and enemies. For example, define virtual functions

such as reacting to weapons, wealth, and secrets.

 virtual void ReacToWeapons() = 0;

 virtual void ReacToWealth() = 0;

 virtual void ReacToSecrets() {}

};

Chapter 8 Design Patterns

461

	2.	 Define a class called Player to implement player characters’

plan of action algorithm-specific steps. It is inherited from the

GameCharacter abstract class.

	 a.	 ReacToWeapons defines a player’s specific behavior in the

PlanOfAction algorithm.

	 b.	 ReacToWealth defines a player’s specific behavior in the

PlanOfAction algorithm.

	 c.	 ReacToSecrets defines a player’s specific behavior in the

PlanOfAction algorithm.

class Player : public GameCharacter

{

 protected:

 void ReacToWeapons()

 {

 �std::cout << "Check opponents and run

towards the weapons\n";

 }

 void ReacToWealth()

 {

 �std::cout << "Check any danger events and

run towards the wealth\n";

 }

 void ReacToSecrets()

 {

 �std::cout << "Carefully explore paths and

get the secret\n";

 }

};

Chapter 8 Design Patterns

462

	3.	 Define another class called Enemy to implement enemy

characters’ plan of action algorithm-specific steps. It is

inherited from the GameCharacter abstract class.

	 a.	 ReacToWeapons defines the enemies’ specific behaviors

in the PlanOfAction algorithm.

	 b.	 ReacToWealth defines the enemies’ specific behaviors

in the PlanOfAction algorithm.

	 c.	 ReacToSecrets defines the enemies’ specific behaviors

in the PlanOfAction algorithm.

class Enemy : public GameCharacter

{

 protected:

 void ReacToWeapons()

 {

 �std::cout << "Immediately jump and run

towards the weapons\n";

 }

 void ReacToWealth()

 {

 �std::cout << "By attacking players and

try to grab the wealth\n";

 }

};

	4.	 Define the following simple client code to execute the player or

enemy’s plan of execution.

void ClientCode(GameCharacter *gc)

{

 gc->PlanOfAction();

}

Chapter 8 Design Patterns

463

	5.	 Define the main() testing code to execute the player’s and

enemies’ game plan of action.

	 a.	 Define a player object and pass it to the client code to execute the

player’s game plan of action.

	 b.	 Define an enemy object and pass it to the client code to execute the

enemy’s game plan of action.

int main()

{

 std::cout << "Player actions:\n";

 Player *p1 = new Player;

 ClientCode(p1);

 std::cout << "\n";

 std::cout << "Enemy actions:\n";

 Enemy *e1 = new Enemy;

 ClientCode(e1);

 delete p1;

 delete e1;

 return 0;

}

	6.	 Let’s execute template.cc and observe the following.

	 a.	 Observe that player and enemy objects are created to test

their sample plan of action.

	 b.	 Observe that the player object’s plan of action is distinct

from the enemy object’s plan of action.

g++ template.cc -o template

./template

Player actions:

Observing gaming environment

Exploring paths to move forward

Chapter 8 Design Patterns

464

Attacking..

Check opponents and run toward the weapons

Check any danger events and run toward the wealth

Carefully explore paths and get the secret

Enemy actions:

Observing gaming environment

Exploring paths to move forward

Attacking..

Immediately jump and run toward the weapons

By attacking players and try to grab the wealth

The template method was used to define sample game players and enemies’

common plan of action as a game algorithm. Next, let’s continue to do tasks.

�Practice Tasks

Next, do the following tasks by extending the use case to practice the

template method pattern and understand its importance.

	 1.	 Introduce new steps in the common algorithm of

the system superclass and you can observe that new

algorithm behavior is available in subclasses.

	 2.	 Change new steps in subclasses as per your choice.

	 3.	 Observe that your code does not lead to redundancy

in the common algorithm logical steps and is

consistent across all subclasses.

	 4.	 You may also attempt to create new game characters

and reuse the common algorithm defined in the

superclass.

Chapter 8 Design Patterns

465

�Summary
In this chapter, you learned the importance of design patterns—

specifically, when and how to use them to address software development

issues. Although you have not explored every design pattern, you have

experimented with creational, structural, and behavioral patterns in

important use cases. The hands-on activities taught you the importance of

design patterns in solving software development issues without violating

OOP principles.

The next chapter discusses event-driven programming for developing

smart applications and simulators.

Chapter 8 Design Patterns

467© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_9

CHAPTER 9

Event-Driven
Programming
In past chapters, you have learned OOP principles and approaches to

easily handle ambiguities and issues with reusable, extendible, and easily

usable software. On the other hand, to deploy software applications

over the Internet, you use client-server or distributed applications

architecture. These software applications’ major challenges are handling

service failures, changing existing services, introducing new services, and

replicating existing services to handle scalability issues. However, software

must be flexible for any enhancements and extensions to handle these

challenges. Moreover, novel software such as IoT, smart applications,

gaming software, and distributed applications must be designed and

developed to meet scalability, reliability, and flexibility expectations.

To handle these challenges, it is necessary to deploy software from

decoupled software components to offer scalable, reliable, and easily

manageable services. Hence, failure of a component does not affect other

components and enables flexibility in handling requests.

To support the decoupled software components colloboration,

event-driven programming approaches use events as primary ways

for communication and carrying out the software activities and

transactions. Specifically, event-driven programming involves suitable

events management and handling, and asynchronous methods for

messages exchange. In event-driven programming, to carry out software

https://doi.org/10.1007/979-8-8688-0524-0_9#DOI

468

application transactions, interactions among software components

are modeled as publishing events, subscribing to events, and handling

suitable events. For example, placing or canceling an order can be

modeled as events in an online novel shopping application. Hence, the

shopping application events can be handled flexibly to implement new

services such as fast delivery, dynamic pricing, and allowing customers

to change their address. This chapter explores event-driven programming

approaches based on loosely coupled and decoupled components.

The chapter covers the following.

•	 The importance of event-driven programming

•	 Event-driven programming structure

•	 A quick practice of event-driven programming

•	 Design a simulator

�The Importance of Event-Driven
Programming
Over the Internet, client and server architecture are used for deploying

most of the software applications. Usually, client-server software

applications were developed to process user requests and synchronously

send responses. Mainly, these applications are facing issues in case

of delayed responses, server failures, missing request messages, error

handling, and updating services. To handle these issues, software

architecture must be flexible to introduce any changes.

Distributed application architectures have evolved to offer highly

scalable, reliable, and easily updatable software services. To support

distributed application architecture, software components must be

decoupled, components should be assigned with a single responsibility

Chapter 9 Event-Driven Programming

469

only, and easier to collaborate with other components. In recent software

development evolutions, distributed applications have been designed

based on microservices architecture. Unlike monolithic application

architecture (client and server), in microservice architecture, software

interactions are seen as exchanging messages between producers and

consumers. Complex software applications are carefully decomposed

into multiple services to implement microservice application architecture

to easily collaborate and carry out application tasks. As a producer, a

software component usually generates events with necessary data for

other components. On the other hand, consumer software components

consume data and respond to events.

Event-driven programming approaches play a key role in supporting

distributed applications and deploying microservice applications.

Basically, event-driven programming addresses the software services’

reliability, scalability, and update issues. To handle these challenges,

event-driven programming supports decoupled software components

communication and collaboration by offering publish and subscribe, and

asynchronous methods of messages exchange.

In summary, event-driven programming focuses on modeling suitable

event services, subscribing to the events, publishing events, managing

events using suitable message queues, and handling the scheduling and

executions of events.

�Key Concepts
Event-driven programming’s primary goal is to provide flexibility in

connecting decoupled software components (services or microservices)

to carry out software tasks and support scalable, reliable, and easily

updatable services. Hence, it should enable a flexible deployment

environment for distributed applications such as IoT, novel smart

applications, gaming applications, and Internet applications.

Chapter 9 Event-Driven Programming

470

To work with event programming, you must understand its key concepts.

•	 Producers and consumers

•	 Events

•	 Events management

•	 Asynchronous messaging

�Producers and Consumers

To enable the decoupling of services and offering collaboration among

services, developers can view complex application services as producer

and consumer services. An application performing an action means one

of its services (producer) produces data or events for another service to

complete the action. Here, you can observe producers publishing events

and data.

On the other hand, consumer services check for notifications to events

with suitable data to carry out the application actions. It means consumer

services either subscribe to get notifications or do polling activity to

retrieve events and inspect data for proceeding with an application action.

A service can perform both producer and consumer roles in software

tasks. Hence, in event-driven programming you usually see complex

applications services as producers/consumers. As part of handling

producer and consumer activities, you need to understand the events and

data exchanged between producer and consumer services.

�Events

Events are key to initiating actions from a software application and

carrying out tasks. Let’s discuss a few important details of events.

Usually, an application state changes, actions, transactions, and

operations are modeled as events. Events can be represented as

important messages with necessary fields to perform actions of a software

Chapter 9 Event-Driven Programming

471

application. An event carries important details such as source and

destination identifiers, type of event, priority, data, lifetime, and actions.

Based on application tasks, events can be modeled by carefully choosing

necessary fields. In event-driven programming, producers generate events,

and consumers consume events for the software’s actions. For example,

you can find the following events: clicking any GUI components, a

customer sending a request to perform a transaction, and receiving inputs

from various actors and components in a software application.

Events can be classified into the following categories based on their

characteristics.

•	 Prioritized events: Based on the priority of events,

scheduling, and execution policies are defined.

•	 Persistent or nonpersistent: Persistent events

are stored permanently. Nonpersistent events are

destroyed once they are processed.

•	 Unicast, multicast, or broadcast messages: Unicast

events are delivered to a single destination. Multicast

events are delivered to a group of destinations.

Broadcast events are delivered to all.

•	 Repeatable and nonrepeatable: Repeatable events

can be handled multiple times and nonrepeatable

events are handled only once.

From the event characteristics, you observe that events must be

managed and handled using suitable data structures.

�Events Management

In event-driven programming, queues are set up to store and manage

events. Event queues are the major resources accessed by producers,

consumers, and event handlers. Usually, all producer-generated events

Chapter 9 Event-Driven Programming

472

need to be stored in a suitable queue for further processing and consumers

should subscribe for the interested events. Hence, consumers can inspect

and pull the events from the event queues without waiting, or event

handlers can notify the event’s subscribers (consumers). Event handlers

set up event queues and apply scheduling policies to execute events,

handle failures of events, and replay events.

Standard message brokers have evolved to offer reliable, scalable, and

fault-tolerant event management. For instance, to deploy novel distributed

applications, IoT and smart applications, developers are using RabbitMQ

and Apache ActiveMQ. On the other hand, developers are using Apache

Kafka to store persistent events. It helps log all event handling, failure of

event handling, and replaying events.

�Asynchronous Methods for Message Exchange

To enable the decoupling of services and flexible ways for message

exchange, it is necessary to avoid blocking of services in sending and

receiving messages. Moreover, a decoupled service to send a request

need not assume whether destination services are running. It means a

decoupled service should be able to send requests to another service

independent of the destination service running status (active, blocked, or

stopped).

In event-driven programming to enable asynchronous methods of

message exchange, publish and subscribe policies are implemented. A

decoupled service can publish its events independent of the receiver state.

Producer services can send events to event queues and leave the rest to the

application behavior for handling events. It avoids unnecessary blocking of

producer services.

Similarly, consumers (another decoupled service) can subscribe

with an application for only interested events. Later, consumer services

can be notified about events from the event handlers. On the other hand,

Chapter 9 Event-Driven Programming

473

consumer services can poll event queues and inspect events for receiving

and handling them independently. It means consumer services need not

wait to receive events or responses from other services.

In summary, publish and subscribe policies enable producer and

consumer services to exchange messages flexibly using event queues and

offer nonblocking approaches to exchange messages. Moreover, having

suitable event queues allows storing events permanently, and handling the

events at decoupled services convenience for reliable event processing.

�Advantages and Use Cases
Before practicing event-driven programming, let’s discuss its advantages.

•	 It enables easier to change, update, and introduce new

services in software applications.

•	 It is easier to scale necessary services of software

applications.

•	 In case of failure of a service do not affect the entire

application. Event-driven programming enables

flexible event delivery options: delayed execution,

retries and replays of events.

•	 Event-driven programming offers asynchronous ways

to message between producers and consumers. Hence,

it avoids unnecessary blocking of services on waiting

responses and sending messages.

•	 It is possible to analyze events and introduce new

services quickly.

•	 It is possible to use events to update the service state

and handle any critical updates quickly.

Chapter 9 Event-Driven Programming

474

•	 Event-driven programming offers software flexibility in

terms of changes to decoupled services.

•	 Enables and supports novel distributed applications.

•	 Enables novel application architectures such as

microservices.

In summary, event-driven programming supports the following

important use cases.

•	 Distributed applications deployment

•	 Microservices based applications

•	 Serverless applications deployment

•	 Novel cloud services, such as Function as a Service

•	 Novel smart and IoT applications

•	 Future generation core networks (5G and 6G service-

based architecture)

•	 Real-time data analytics services

This section explained the importance of event-driven programming

and its concepts. Next, let’s discuss event-driven programming structures.

�Structure
This section teaches the basic programming constructs to implement

event-based applications. You learn how to connect the event

programming constructs to develop event-based applications such as

gaming applications, real-world smart applications, and simulators. In

general, event-based programming includes the following programming

constructs.

Chapter 9 Event-Driven Programming

475

•	 Events: An event is a basic programming construct

of event-based programming. Usually, an event is

associated with a unique identifier (id) and code to be

executed as a response to handling the event. Events

can be viewed as special messages to communicate

between software components (objects). In OOP,

events are implemented with the help of classes.

•	 For instance, an IoT sensor generates a warning

event for a smart application then the smart

application handles the warning event by executing

the corresponding event code.

•	 In gaming applications, characters generate

events, and the application reacts to the events by

executing the necessary action code.

•	 In network simulators, network equipment

generates events such as packet generation and

packet drop, the network simulator executes the

event corresponding code.

•	 Event handlers: To manage and handle events, event

handlers are implemented as classes. The primary task

of event handlers is to manage events received from the

objects (producers) and store them in suitable event

queues for consumers. In general, event handlers are

for subscribing to and handling events. To handle a

variety of events, use the following types of queues in

event handler classes.

•	 General queues are for handling the events

according to a first come/first serve policy.

Chapter 9 Event-Driven Programming

476

•	 Priority queues are used for handling the events

based on the event's priority.

•	 Based on application requirements, event handlers

may use multiple types of queues.

•	 Events scheduling policies: Another primary task of

event handlers is to schedule events and execute them

with destination objects.

•	 It involves accessing events from queues based on

queue principles and executing them with specific

objects (consumers).

•	 It is possible to implement custom events

scheduling policies to meet application

requirements.

•	 Event handlers schedule events from all available

event queues and execute with specific objects

(consumers).

Let’s learn basic approaches to using events and event handlers in C++.

�Using C++ for Events and Event Handlers
This section examines two important event programming constructs.

•	 Events classes in C++

•	 Events management and handling classes in C++

Chapter 9 Event-Driven Programming

477

EVENTS AND MANAGEMENT CLASSES

For example, you can use the following code snippets in the events.h file to

model application events.

	1.	 Define an event class with the following basic data members

and member functions to model application events.

	 a.	 Define event id for uniquely identifying events of the application.

	 b.	 Define the event id accessing functions.

	 c.	 Declare a virtual function to handle a variety of events and

corresponding code at runtime based on object type.

#include<iostream> #include<queue>

#include<vector>

#include<experimental/random>

using namespace std;

class Event

{

 unsigned int eventid;

 public:

 Event (unsigned int id)

 {

 eventid = id;

 }

 unsigned int getEventId()

 {

 return eventid;

 }

 virtual void handleEvent () = 0;

};

Chapter 9 Event-Driven Programming

478

	2.	 Define an example of an event management and handling
class as follows.

	 a.	 Declare an event identifier data member.

	 b.	 Declare suitable event queues for managing events, such as normal or

priority queues.

	 c.	 Declare a suitable number of event queues.

class EventHandler

{

 protected:

 unsigned int eid;

 std::priority_queue<Event*,

 std::vector<Event *, std::allocator<Event*> >,

 eventComparator> equeue1;

 std::priority_queue<Event*,

 std::vector<Event *, std::allocator<Event*> >,

 eventComparator> equeue2;

	3.	E xecute the event handler constructor to initialize necessary

data members.

public:

 EventHandler ()

 {

 eid = 0;

 }

	4.	T he following example event subscription functions can be

executed to handle the subscription of events from publishers.

	 a.	T o store or insert events into the event queue.

	 b.	 Based on event id, allow or disallow event subscriptions.

Chapter 9 Event-Driven Programming

479

	 c.	E vent handlers can select the specific event queues based on event ids

to store events.

void subscribeEvent (Event* newEvent)

{

 if (newEvent->getEventId()>=0)

 {

 cout<<"Event inserted\n";

 �cout<<"event id "<<newEvent->

getEventId()<<"\n";

 equeue1.push(newEvent);

 }

}

	5.	 Define example event schedulings and execution policies as

follows.

	 a.	 For example, design a simple policy that executes events from the

equeue1 and then executes events from the equeue2.

	 b.	A fter handling events, delete the corresponding events from the queue.

 void executeEventOnTarget()

 {

 while (! equeue1.empty ())

 {

 �Event * nextEvent =

equeue1.top ();

 equeue1.pop ();

 eid = nextEvent->getEventId();

 nextEvent->handleEvent ();

 delete nextEvent;

 }

Chapter 9 Event-Driven Programming

480

 while (! equeue2.empty ())

 {

 �Event * nextEvent =

equeue2.top ();

 equeue2.pop ();

 eid = nextEvent->getEventId();

 nextEvent->handleEvent ();

 delete nextEvent;

 }

 }

};

Well done. You have learned the basic programming constructs events and

event handlers for event-based applications.

Next, let’s discuss application events and subscribe from the interested

classes using event handlers.

�Implementing Application Events
and Subscribing to Classes
Let’s discuss how to execute application events using an event class.

SAMPLE APPLICATION EVENTS IMPLEMENTATION

Use the following code snippets in the customevents.h file.

	1.	I nclude events modeling class from events.h to implement

the following application events.

	2.	 Define an application event class, such as sampleEvent1,

by inheriting from the Event class as follows.

Chapter 9 Event-Driven Programming

481

	 a.	I n your application event constructor (sampleEvent1()), initialize all

necessary data members of sampleEvent1 and Event.

	 b.	 Implement an event-handling virtual function with necessary

actions to handle the application-specific events.

#include"events.h"

using namespace std;

class sampleEvent1 : public Event

{

 public:

 sampleEvent1 (unsigned int eid):Event(eid)

 {

 }

 void handleEvent()

 {

 cout<<"Sample event 1 handling\n";

 }

};

	3.	 Similarly, define another application event class, such as

sampleEvent2 by inheriting from the Event class as follows.

	 a.	I nitialize all necessary data members in sampleEvent2().

	 b.	I mplement an event-handling virtual function with necessary

actions to handle the application events in sampleEvent2.

class sampleEvent2 : public Event

{

 public:

 sampleEvent2 (unsigned int eid):Event(eid)

 {

 }

Chapter 9 Event-Driven Programming

482

 void handleEvent()

 {

 cout<<"Sample event 2 handling\n";

 }

};

Next, let’s learn how to subscribe and handle application events.

APPLICATION EVENTS SUBSCRIPTION HANDLING CLASS

Use the following code snippets in the subscribers.h file.

	1.	 Define sample IoT application events handling class by

inheriting from the EventHandler class as follows.

	 a.	 Define your application events handling class with all necessary data

members and member functions.

	 b.	 Define a default constructor to initialize necessary data members.

	 c.	 Define a parameter constructor to handle the subscription for

application events.

class IoTSensors: public EventHandler

{

 EventHandler ih;

 public:

 IoTSensors()

 {

 }

 IoTSensors(EventHandler &eh)

 {

Chapter 9 Event-Driven Programming

483

 �eh.subscribeEvent (new

sampleEvent1 (2));

 �eh.subscribeEvent (new

sampleEvent2 (10));

 �eh.subscribeEvent (new

sampleEvent1 (3));

 �eh.subscribeEvent (new

sampleEvent2 (20));

 }

};

	2.	 Do the following to test your event handling code.

	 a.	I nclude subscribers.h for accessing subscriber classes.

	 b.	 Define the EventHandle object to pass it to the custom class and

initiate events scheduling and execution.

	 c.	 Define necessary objects of your application classes: as defined in

subscriptions for events in constructors, event subscriptions are done

as soon as objects get created.

This section walked you through important programming constructs such as

Events and EventHandlers.

Next, let’s practice event-driven programming through simple

activities.

�Quick Practice
This section features a quick exercise for developing and testing a simple

event driver program using event-driven programming constructs.

Chapter 9 Event-Driven Programming

484

As part of this activity, you do the following tasks.

	 1.	 Define events, creating a class with necessary data

members and virtual functions.

	 2.	 Define events handling class with a priority queue

to schedule events based on the event’s id order (in

ascending order).

	 3.	 Define application events by inheriting from the

Event class.

	 4.	 Test your sample code by subscribing to sample

events of the applications in the main() code.

It helps in understanding how two decpoupled

applications events are handled to carry out

specific tasks.

Let’s start with a sample application events class and the events

handling classes.

SAMPLE APPLICATION EVENTS HANDLING CODE

Use the following code snippets in the events2.h file.

	1.	 Define an application-specific event class with the following

basic data members and member functions.

	 a.	 Define event id for uniquely identifying events of the application.

	 b.	 Define event id accessing functions.

	 c.	 Declare a virtual function to handle application events at runtime based

on object type.

#include<iostream>

#include<queue>

#include<vector>

Chapter 9 Event-Driven Programming

485

#include <experimental/random>

using namespace std;

class Event

{

 unsigned int eventid;

 public:

 Event (unsigned int id)

 {

 eventid = id;

 }

 unsigned int getEventId()

 {

 return eventid;

 }

 virtual void handleEvent () = 0;

};

	2.	 Define an example event handling class as follows.

	 a.	 Declare an event identifier data member.

	 b.	 Declare a priority queue for handling events based on the event’s

id order. The lowest id event should be executed first from the

event queue.

struct eventComparator

{

 bool operator() (Event * left, Event * right)

 {

 �return left->getEventId() > right->

getEventId();

 }

};

Chapter 9 Event-Driven Programming

486

class EventHandler

{

 protected:

 unsigned int eid;

 std::priority_queue<Event*,

 std::vector<Event *, std::allocator<Event*> >,

 eventComparator> equeue;

	3.	 Using the event handler constructor initialized necessary data

members as follows.

public:

 EventHandler ()

 {

 eid = 0;

 }

	4.	T o handle the subscription of events from producers of software

components, implement the following function.

	 a.	I nsert events into the priority queues.

	 b.	 Do not process the events with id >100.

void subscribeEvent (Event* newEvent)

{

 if (newEvent->getEventId()<= 100)

 {

 cout<<"Event inserted\n";

 �cout<<"event id "<<newEvent->

getEventId()<<"\n";

 equeue.push(newEvent);

 }

}

Chapter 9 Event-Driven Programming

487

	5.	 Define sample events scheduling and execution function as

follows.

 void executeEventOnTarget()

 {

 while (! equeue.empty ())

 {

 Event * nextEvent = equeue.top ();

 equeue.pop ();

 eid = nextEvent->getEventId();

 nextEvent->handleEvent ();

 delete nextEvent;

 }

 }

};

This activity used the base Event and EventHandler classes for

application-specific events. Next, let’s use these classes to handle events.

Next, let’s look at two sample application events to test a simple event-

handling program.

CUSTOM EVENTS SUBSCRIPTION AND TESTING

Use the following code snippets in the eventstest.cc file.

	1.	I nclude your events2.h class to execute application-

specific events.

	2.	 Define your custom event class, such as sampleEvent1 by

inheriting from the Event class as follows.

	 a.	I nitialize all necessary data members of sampleEvent1.

Chapter 9 Event-Driven Programming

488

	 b.	A pply the event handling virtual function with the necessary actions to

handle the application events.

#include"events2.h"

using namespace std;

class sampleEvent1 : public Event

{

 public:

 sampleEvent1 (unsigned int eid):Event(eid)

 {

 }

 void handleEvent()

 {

 cout<<"Sample event 1 handling\n";

 }

};

	3.	 Define another sample event class, such as sampleEvent2 by

inheriting from the Event class as follows.

	 a.	I nitialize all necessary data members of sampleEvent2.

	 b.	I mplement the event handling virtual function with necessary actions to

handle the event.

class sampleEvent2 : public Event

{

 public:

 sampleEvent2 (unsigned int eid):Event(eid)

 {

 }

 void handleEvent()

 {

 cout<<"Sample event 2 handling\n";

 }

};

Chapter 9 Event-Driven Programming

489

	4.	T o test your event-based application, do the following

in main().

	 a.	 Define an EventHandler object to subscribe for custom events.

	 b.	 Subscribe for ten sample events of each custom event using the loop.

	 i.	 Create sample application events objects by passing

event ids (e.g., sampleEvent1 id =2, sampleEvent2 id = 4).

	 ii.	P ass the sample application events objects in the member function:

subscribeEvent of EventHandler object eh.

	 c.	 Schedule the execution of events using the event handler object and its

member function. executeEventOnTarget().

using namespace std;

int main ()

{

 EventHandler eh;

 for (int i=0;i<10;i++)

 {

 cout << "Generating events " << i << '\n';

 eh.subscribeEvent (new sampleEvent1 (2));

 eh.subscribeEvent (new sampleEvent2 (4));

 }

 eh.executeEventOnTarget();

 return 0;

}

	 d.	 Let’s test the sample events-based applications and observe the

results.

g++ eventstest.cc -o eventstest

./eventstest

Generating events 0

Event inserted

Chapter 9 Event-Driven Programming

490

event id 2

Event inserted

event id 4

Generating events 1

Event inserted

event id 2

Event inserted

event id 4

..

Generating events 9

Event inserted

event id 2

Event inserted

event id 4

Sample event 1 handling

Sample event 1 handling

..

Sample event 2 handling

Sample event 2 handling

From the results, you can observe that two decoupled applications events

are handled according to their event id order in executing main tasks. Here

sample events with id 2 are executed first, then id 4 events are executed. You

should test it by changing event ids of the applications to observe event order

execution. Specifically, test results when applications events with id >100 are

subscribed to the event handler.

Next, let’s design a simple simulator using the event-based programming

constructs.

Chapter 9 Event-Driven Programming

491

�Hands-on Activity: Design a Simulator
In this hands-on activity, you learn how to implement a simple simulator

using event-driven programing constructs for simulating the behavior

of a smart application comprising two decoupled services from IoT

sensors and smart vehicles. Simplified services of IoT sensors and

smart vehicles are defined to simulate our sample smart application.

The smart application uses simplified IoTSensorsHandler and

SmartVehiclesHandler classes to realize the smart application behavior.
Let’s do the following tasks to simulate smart application behaviors.

	 1.	 The proposed simple smart application

includes IoTSensorsHandler objects and

SmartVehiclesHandler objects.

	 2.	 Define an IoTSensorsHandler class with sample

functionalities and it is useful for subscribing to

warning and emergency events.

	 a.	 Create two custom smart application events called warning

(event id = 4) and emergency (event id =2).

	 b.	 Emergency events must be handled before warning events

during the smart application execution. Hence, events must

be inserted in a priority queue.

	 c.	 Define the IoTSensorsHandler class with a sample function

to react to smart vehicle events.

	 3.	 Define a SmartVehiclesHandler class with sample

functionalities and it is useful for subscribing to

data and aggregate events.

	 a.	 Define two custom events called data (event id = 5) and

aggregate (event id = 6).

	 b.	 Data events must be handled before aggregate events during

the smart application execution. Hence, these events also

must be inserted in a priority queue.

Chapter 9 Event-Driven Programming

492

	 4.	 SmartVehiclesHandler objects are associated with

specific IoTSensorsHandler objects. After receiving

data events, a SmartVehiclesHandler generates

additional events to IoTSensorsHandler objects.

	 5.	 During smart application execution, events

are generated for IoTSensorsHandler and

SmartVehiclesHandler objects. Based on the

priority of event ids, the events should be handled.

	 6.	 Simulate all the events of the proposed smart

application and test it.

	 7.	 Further develop the proposed sample smart

application by implementing the following.

•	 A IoTSensorsHandler class to subscribe and

handle warning and emergency events

•	 A SmartVehiclesHandler class to subscribe and

handle data and aggregate events

	 8.	 Test the smart application events simulation

by creating sample IoTSensorsHandler and

SmartVehiclesHandler objects.

�IoTSensorsHandler Events
This section examines the following three concepts through related activities.

•	 Uses the events.h class to create smart application

events such as “emergency” and “warning”.

•	 Generates the smart application events as

warningEvent and emergencyEvent classes.

•	 Implements IoTSensorsHandler for subscriptions and

handling the warning and emergency events.

Chapter 9 Event-Driven Programming

493

Let’s go over inheriting an event class for a smart application warning

and emergency events.

IOT SENSORS CUSTOM EVENTS

Let’s use the following code snippets in subscribers1.h file.

	1.	 Define a warningEvent class to implement warning events.

	 a.	 Define warningEvent class by inheriting the Event class.

	 b.	 Define constructors of the warningEvent class to initialize the event

id (e.g, warning event Id = 4) and any important data members.

	 c.	I mplement sample warning event handling code to be executed on

receiving warning events.

	 d.	I nside, the warning event handling code checks the event id and

executes the code.

#include"events.h"

using namespace std;

class warningEvent : public Event

{

 public:

 warningEvent (unsigned int eid):Event(eid)

 {

 }

 void handleEvent()

 {

 if (getEventId() == 4)

 {

 �cout<<"Handle IoT sensor warning

"<<getEventId()<<"\n";

 }

Chapter 9 Event-Driven Programming

494

 else

 {

 cout<<"Handle warning \n";

 }

 }

};

	2.	 Define an emergencyEvent class to implement

emergency events.

	 a.	 Define the emergencyEvent class by inheriting the Event class.

	 b.	 Define constructors of the emergencyEvent class to initialize

the event id (e.g, emergency event Id = 2) and any important data

members.

	 c.	I mplement sample emergency event handling code to be executed on

receiving emergency events.

	 d.	I nside, the emergency event handling code checks the event id and

executes the code.

class emergencyEvent : public Event

{

 public:

 emergencyEvent (unsigned int eid):Event(eid)

 {

 }

 void handleEvent()

 {

 if (getEventId() == 2)

 {

 �cout<<"Handle IoT sensor emergency

"<<getEventId()<<"\n";

 }

Chapter 9 Event-Driven Programming

495

 else

 {

 cout<<"Handle emergency \n";

 }

 }

};

	3.	I mplement the IoTSensorsHandler event handling code as

follows.

	 a.	 Define the IoTSensorsHandler class by inheriting the

EventHandler class.

	 b.	 Define the default IoTSensorsHandler constructor to initialize its

data members.

	 c.	 Define another IoTSensorsHandler constructor with

EventHandler class object for subscribing to warning and emergency

events. Assign emergency events with high priority compared to

warning events.

class IoTSensorsHandler: public EventHandler

{

 EventHandler ih;

 public:

 IoTSensorsHandler()

 {

 }

 IoTSensorsHandler(EventHandler &eh)

 {

 �eh.subscribeEvent (new

emergencyEvent (2));

 �eh.subscribeEvent (new

emergencyEvent (2));

Chapter 9 Event-Driven Programming

496

 �eh.subscribeEvent (new

emergencyEvent (2));

 �eh.subscribeEvent (new

emergencyEvent (2));

 �eh.subscribeEvent (new

warningEvent (4));

 �eh.subscribeEvent (new

warningEvent (4));

 �eh.subscribeEvent (new

warningEvent (4));

 �eh.subscribeEvent (new

warningEvent (4));

 }

	4.	 Define another important member function in the

IoTSensorsHandler class to react to smart vehicle

data events.

	 a.	O n receiving a data event from a SmartVehiclesHandler object, the

IoTSensorsHandler object handles it as an emergency event.

 void actOnEvent()

 {

 cout<<"React to smart vehicle event\n";

 �ih.subscribeEvent (new

emergencyEvent (2));

 ih.executeEventOnTarget();

 }

};

Next, let’s define another two smart application events to be handled by

SmartVehiclesHandler objects.

Chapter 9 Event-Driven Programming

497

�SmartVehiclesHandler Custom Events
This section examines the following three concepts.

•	 Using the events.h class to create new smart application

events such as data and aggregate to be handled by

SmartVehiclesHandler

•	 Implementing the new smart application events as

dataEvent and aggregateEvent classes

•	 Implementing SmartVehiclesHandler for

subscriptions and handling the warning and

emergency events

Let’s start with custom events classes inheriting the event class.

SMART VEHICLE CUSTOM EVENTS

Use the following code snippets in the subscribers2.h file.

	1.	 Define a dataEvent class to execute smart application

data events.

	 a.	 Define the dataEvent class by inheriting the Event class.

	 b.	 Define constructors of the dataEvent class to initialize the event id

(e.g, data event Id = 5) and any important data members.

	 c.	I mplement sample data event handling code to be executed on

receiving data events.

	 d.	I nside, data event handling code inside the handleEvent

to check the event id and execute the code using a specific

IoTSensorsHandler object.

	 i.	 IoTSensorsHandler object handles it as an emergency event.

Chapter 9 Event-Driven Programming

498

using namespace std;

class dataEvent : public Event

{

 IoTSensorsHandler s1;

 public:

 �dataEvent (IoTSensorsHandler &s,unsigned int

eid):Event(eid)

 {

 s1 = s;

 }

 void handleEvent()

 {

 if (getEventId() == 5)

 {

 �cout<<"Handle Vehicle critical

sensor data "<<getEventId()<<"\n";

 s1.actOnEvent();

 }

 else

 {

 �cout<<"Handle Vehicle normal

data \n";

 }

 }

};

	2.	 Define an aggregateEvent class to implement data

aggregation events.

	 a.	 Define the aggregateEvent class by inheriting the Event class.

	 b.	 Define constructors of the aggregateEvent class to initialize

the event id (e.g, aggregate event Id = 6) and any important data

members.

Chapter 9 Event-Driven Programming

499

	 c.	I mplement sample aggregate event handling code inside the

handleEvent to be executed on receiving aggregate events.

class aggregateEvent : public Event

{

 public:

 aggregateEvent (unsigned int eid):Event(eid)

 {

 }

 void handleEvent()

 {

 if (getEventId() == 6)

 {

 �cout<<"Handle Vehicle sensors data

aggregating "<<getEventId()<<"\n";

 }

 else

 {

 �cout<<"Handle Vehicle data

checking \n”;

 }

}

};

	3.	I mplement a SmartVehiclesHandler event handling code as

follows.

	 a.	 Define the SmartVehiclesHandler class by inheriting the

EventHandler class.

	 b.	 Define the default SmartVehiclesHandler constructor to initialize

the SmartVehiclesHandler class data members, if any.

Chapter 9 Event-Driven Programming

500

	 c.	 Define another SmartVehiclesHandler constructor with an

EventHandler class object for subscribing to data (id = 5) and

aggregating (id = 6) events. Assign data events with high priority

compared to aggregate events.

	 d.	A s defined in subscribing to events code in the constructor, hence

all SmartVehiclesHandler objects subscribed to data and

aggregate events.

class SmartVehiclesHandler: public EventHandler

{

 public:

 SmartVehicle(EventHandler &eh)

 {

 IoTSensorsHandler sensor1;

 IoTSensorsHandler sensor2;

 �eh.subscribeEvent (new dataEvent

(sensor1,5));

 �eh.subscribeEvent (new dataEvent

(sensor2,5));

 �eh.subscribeEvent (new

aggregateEvent (6));

 �eh.subscribeEvent (new

aggregateEvent (200));

/

 }

};

Well done. You have implemented IoTSensorsHandler,

SmartVehiclesHandler, and smart application events.

Next, let’s simulate the sample smart application and test it.

Chapter 9 Event-Driven Programming

501

�SmartApplication Simulation
This section goes through the following activities.

•	 Using subscribers1.h and subscribers2.h to

subscribe events with IoTSensorsHandler and

SmartVehiclesHandler objects.

•	 Defining a sample number of IoTSensorsHandler

and SmartVehiclesHandler objects to simulate

sample application warning, emergency, data, and

aggregate events.

•	 Defining an EventHandle object for scheduling

and executing IoTSensorsHandler and

SmartVehiclesHandler objects generating events.

Let’s start with main().

SMART APPLICATION SIMULATION

Use the following code snippets in the smartapptest.cc file.

	1.	 Do the following tasks in main().

	 a.	 Define an EventHandling object for executing the

IoTSensorsHandler and SmartVehiclesHandler

handling events.

	 b.	 Define a suitable number of IoTSensorsHandler objects by

assigning the event handling object.

	 i.	A s defined in the event subscription in the constructor code,

sample warning and emergency events are subscribed with

IoTSensorsHandler objects.

Chapter 9 Event-Driven Programming

502

	 c.	 Define a suitable number of SmartVehiclesHandler objects by

assigning the event handling object.

	 i.	A s defined in the event subscription in the constructor code,

sample data, and aggregate events are subscribed with

SmartVehiclesHandler objects.

	 d.	 Schedule execution of all IoTSensorsHandler and

SmartVehiclesHandler handling events using

executeEventOnTarget.

#include"subscribers.h"

#include"subscribers2.h"

using namespace std;

int main ()

{

 EventHandler eh;

 IoTSensorsHandler i1(eh);

 SmartVehiclesHandler sv(eh);

 eh.executeEventOnTarget();

 return 0;

}

	2.	T est your code using the following commands and observe the

results.

g++ smartapptest.cc -o smartapp

./smartapp

Event inserted

event id 2

Event inserted

event id 2

..

event id 4

Event inserted

Chapter 9 Event-Driven Programming

503

event id 4

Event inserted

..

event id 5

Event inserted

..

Event inserted

event id 200

Handle IoT sensor emergency 2

Handle IoT sensor emergency 2

..

Handle IoT sensor warning 4

Handle IoT sensor warning 4

Handle Vehicle critical sensor data 5

Reacto to smart vehicle event

Event inserted

event id 2

Handle IoT sensor emergency 2

Handle Vehicle critical sensor data 5

Reacto to smart vehicle event

Event inserted

event id 2

Handle IoT sensor emergency 2

Handle Vehicle sensors data aggregating 6

Handle Vehicle data checking

The results show emergency events are handled first, and then warning events

are handled. Moreover, smart vehicle data events are raising emergency

events, which are handled by IoTSensorsHandler objects immediately.

These results are shown by highlighting respective messages.

Chapter 9 Event-Driven Programming

504

�Summary
This chapter explained the importance of event-driven programming for

handling challenges in novel applications and application architectures

such as microservices. You have learned important programming

constructs for event-driven applications. Specifically, you practiced

event-driven programming for implementing sample smart application

simulators. In summary, you learned about event-driven programming

activities in publish-subscribe software development, asynchronous

ways to collaborate with objects, and designing novel games and smart

applications.

The next chapter explores using Python and Solidity to implement

OOP concepts.

�Practice: Hands-on Activities

	 1.	 List the events generated in the following

applications.

	 a.	 Smart energy management

	 b.	 Smart home

	 c.	 Smart environment monitoring

	 2.	 Describe various approaches to handle

the following smart application-generated

sample events.

	 a.	 Smart energy management application

	 b.	 Smart home application

	 c.	 Smart environment monitoring application

Chapter 9 Event-Driven Programming

505

	 3.	 List possible publishers and subscribers in the

following applications.

	 a.	 Weather forecast application

	 b.	 Any social network

	 c.	 Any online shopping application

	 4.	 Simulate the following simple smart home

application.

	 a.	 Your smart home application needs to handle the

following events.

	 i.	 When a visitor comes, a surveillance camera should raise

an event.

	 ii.	 Generate warning events in case any house-hold device is

running for a longer time.

	 iii.	 Generate emergency events in case of gas leakage,

unexpected fire detection, and water leakage.

	 b.	 Simulate the necessary number of events and event handler

classes to implement a smart home application.

	 c.	 Test your smart home application by generating

sample events.

Chapter 9 Event-Driven Programming

507© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0_10

CHAPTER 10

A Brief Introduction
to OOP in Python
and Solidity
In previous chapters, you practiced OOP by doing hands-on activities related

to software application development. Mainly, you have practiced OOP

concepts through C++ language. Moreover, having a good understanding

of OOP principles and knowledge, you can easily learn any OOP language.

This chapter introduces two important OOP languages: Python and Solidity.

Specifically, you quickly learn Python and Solidity basic programming

constructs related to OOP and practice them through various hands-on

activities. Learning Python enables you to work in important computer

science fields such as data science, machine learning (ML), and artificial

intelligence (AI). On the other hand, learning Solidity helps you explore

popular decentralized applications such as blockchain.

Discussing Python and Solidity in depth is beyond the scope of this book.

However, this chapter exposes you to the growing interest in technology.

This chapter covers the following topics.

•	 Introduction to other important OOP languages

•	 Learning Python basic programming

constructs for OOP

https://doi.org/10.1007/979-8-8688-0524-0_10#DOI

508

•	 Quickly practicing Python way of OOP

•	 Learning Solidity basic programming

constructs for OOP

•	 Quickly practicing Solidity way of OOP

�Other Important OOP Languages
There are many popular OOP languages. OOP principles are primary

concepts for developing software applications in many programming

languages such as C++, C#, Java, Python, Visual Basic .NET, JavaScript,

PHP, Ruby, Emerald, and Solidity.

Python is known for its popularity in many domains, such as web

applications, data science applications, AI and ML applications, and

network applications. Hence, it helps you easily practice OOP concepts in

Python and strengthen your programming skills to advance your career in

advanced computer science fields. Moreover, Python is simple to learn.

Solidity is a primary language for developing complex distributed

applications such as blockchain. Solidity programming constructs are

discussed to explain how fundamental OOP concepts are helpful to

learning any new OOP language. Moreover, Solidity programming syntax is

similar to C++. Hence, it helps you easily learn Solidity programming.

�The Importance of Python Programming
Python is one of the most popular high-level programming languages.

Basically, it is a scripting language. Hence, to run Python programs, you

need a Python interpreter. Python programs are executed in terms of line

by line. It was invented by Guido van Rossum in 1991. Python supports

multiple programming approaches such as procedural, imperative,

Chapter 10 A Brief Introduction to OOP in Python and Solidity

509

dynamically typed, and object-oriented. Hence, writing Python scripts

is simple and easier to understand. Let’s check Python language’s few

important features.

•	 It is platform-independent. Python programs can be

deployed over Windows or Linux operating systems

using Python interpreters.

•	 It is dynamically typed. There is no need to declare data

types of variables. During runtime, the actual data type

of variables is decided.

•	 Python supports OOP features such as classes, data

encapsulation, hiding, inheritance, and polymorphism.

•	 Moreover, Pythons supports a rich set of built-in data

types and libraries for simplifying the programming

related to advanced computer science fields such as

ML, AI, data science, and networking.

•	 Python programming syntax is highly simplified and

easier to use.

Python language simplified the development activities of the following

applications.

•	 Useful for developing web applications, scientific

applications, and a variety of software applications.

•	 Python has a rich set of libraries for developing data

science and analytical applications.

•	 Python offers AI, ML, and data analysis tools.

•	 Python supports many libraries for designing

networking and security applications and tools.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

510

�The Importance of Solidity Programming
Blockchain technology and its applications have recently been primary

security solutions for many domains. Blockchain technology applies a

secured distributed ledger over peer-to-peer network nodes to carry out

and store transactions using cryptographic hashing algorithms. Blockchain

technology plays a key role in securing a wide range of applications such as

finance, healthcare, government services, IoT, and many others. Ethereum

is one of the popular decentralized blockchain platforms that offers

deployment of blockchain application transactions as smart contracts. For

example, you can implement the following transactions as smart contracts:

buying or selling products on the Internet, exchanging digital currency

between online accounts, managing digital records, and so forth.

Developers can understand a smart contract as a combination of

application state variables and programming logic to store, access, or

update state variables. C++ programmers can view smart contracts as the

implementation of classes. Gavin Wood, the co-founder of Ethereum,

invented the Solidity programming language to create smart contracts.

The smart contracts are deployed and tested using an Ethereum Virtual

Machine (EVM). To learn the development of blockchain applications

Solidity programming is highly helpful. This chapter covers the basics of

Solidity for creating smart contracts and testing them using the online

browser Remix.

You should learn Solidity for the following reasons.

•	 Solidity’s syntax is similar to C++ and JavaScript. Hence,

it is easier to explore and learn Solidity.

•	 Solidity is based on OOP principles. It supports

data encapsulation, data hiding, inheritance, and

polymorphism.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

511

•	 Solidity supports reentrancy checks, a safe math

library, a crypto library, and access control in robust

smart contracts.

•	 Solidity smart contracts can easily deployed and tested

using online tools such as Remix browser.

In summary, smart contracts are similar to C++ classes. Hence, a smart

contract can be reused, extended, and collaborated with other contracts.

The next section starts by exploring Python methods in OOP.

�Python Basic Programming
Constructs for OOP
This section briefly discusses Python programming syntax in OOP

constructs and principles. You learn the following.

•	 Basic Python programming constructs, such as

variables, conditional statements, loops, and functions

•	 Python OOP constructs, such as classes, objects,

constructors, and destructors

•	 Ways to implement inheritance and polymorphism

concepts in Python

Let’s start with learning basic Python programming constructs.

�Python Basic Programming Constructs
Let’s start with learning Python programming constructs such as variables,

conditional statements, loops, and functions.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

512

QUICK REVIEW ON PYTHON BASIC PROGRAMMING CONSTRUCTS

•	 Python 3.8.10 is the version used in this book.

•	 Python variable declarations, input, and output statements do

not end with any terminators.

•	 Python is a dynamically typed language. Hence, you need not

declare data types of variables before using them, and actual

data types of Python variables are determined during runtime

(execution).

iv = 10

fv = 10.5

sv = "abc"

lv = [10,20,30]

For example, the iv data type is an integer, the fv data type is a float, the sv

data type is a string, and the lv data type is a list.

	1.	 The input() function is used in Python for taking inputs into

variables. It converts user inputs into a string and returns the

string. Hence, you must convert the string into a suitable data

type for performing arithmetic operations using eval().

	2.	T o print values of variables, use the print() function.

iv = input("Enter integer")

iv = eval(iv)+12

print("Value:",iv)

fv = input("Enter float number")

fv = eval(fv)+12

print(fv)

	3.	T o write conditional statements, use if else blocks as follows.

	a.	 if or else statements must end with a colon.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

513

	b.	O bserve that under the if or else statements, you should

write all relevant lines of code in a block with the same
indentation (for example, a tab space).

if iv>20:

 print("iv is greater than 20")

else:

 if iv>10:

 �print("iv is greater than 10 but less

than 20")

 else:

 print("iv is lesser than 10")

 print("iv is lesser than 10..")

	4.	T o write loop statements, use for statements as follows.

	a.	I n the following loop statements, for, in, and range are

keywords.

	b.	 for statements must end with a colon.

	c.	U se range to define loop starting value, end value, and

step value.

	d.	 Write all for loop relevant lines of code in a block with the

same indentation as follows.

for i in range(0,5,1):

 print(i)

 print(i+1)

	e.	I f you use a range without a starting value, end value,

and step value, then the default start value =0 and end

value =n-1.

for i in range(5):

 print(i)

 print(i+1)

Chapter 10 A Brief Introduction to OOP in Python and Solidity

514

	f.	I f you want to iterate through a list of elements (lv), use the

following syntax.

for e in lv:

 print(e*e)

	g.	 Similarly, Python supports while loops also.

	5.	U se the def keyword to define a Python function, and its

signature must end with a colon.

	a.	I t is possible to assign default values to function arguments.

	b.	I t is possible to return multiple variables from a Python

function.

	c.	F or example, define the following maxfun with indentation

rules as follows.

def maxfun(a,b):

 if a>b:

 return a

 else:

 return b

	d.	T o call the function, use the following lines.

	 i.	A s maxfun returns a value, collect results into a suitable

python variable.

c=maxfun(20,40)

print(c)

Python is a highly popular scripting language and it offers many library

functions.

Next, let’s discuss important Python programming constructs for OOP.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

515

�Python OOP Constructs
Let’s start by learning Python programming constructs to define classes,

data members, member functions, and objects.

PYTHON OOP CONSTRUCTS

	1.	T o define a class in Python, use the class keyword followed

by the class name, and it ends with a colon.

	a.	I nside the class, it is necessary to declare data members

and initialize them with suitable values.

	b.	D efine suitable data members accessing functions. Every

member function is defined with a special argument (self).

It is similar to this pointer in C++. You should define

member functions inside of the class only.

	c.	T o access data members of objects, use self arguments

inside the member functions as shown in the following.

class Class_Name:

 field1 = None

 field2 = None

 ..

 def setField1(self,f1):

 self.field1 = f1

 def getField1(self):

 return self.field1

 def setField2(self,f2):

 self.field2 = f2

 def getField2(self):

 return self.field2

Chapter 10 A Brief Introduction to OOP in Python and Solidity

516

	2.	T o create an object from the class, use the following

syntax. You should observe object creation involves calling a

constructor of the class.

obj1 = Class_Name()

	3.	T o access an object data member, do the following.

	a.	T hrough the class member functions.

obj1.setField1(10)

iv = obj1.getField1()

	b.	D irectly accessing the data members using the object.

obj1.field1 = 10

iv = obj1.field1

	4.	I f you are accessing data members directly with the object,

what about the data-hiding feature of OOP?

	5.	P ython does not offer access specifiers such as private,

public, and protected. By default, all data members are

public. However, for hiding data members’ access to external

functions, Python supports hiding data members using special

variable names as follows.

	a.	E ach data member is declared with a variable name

prefixed with a double underscore (__). These special

variables (data members) work as private data members.

	b.	Y ou can even define member functions as private ones using

the (__) prefix with function names.

	c.	 By default, Python class data members (without __ prefix)
and member functions (without __ prefix) are publicly
accessible.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

517

class Class_Name:

 __field1 = None

 __field2 = None

 ..

 def setField1(self,f1):

 self.__field1 = f1

 def getField1(self):

 return self.__field1

	6.	A ccessing private data members of a class is possible only

through public member functions as follows.

obj1 = Class_Name()

obj1.setField1(10)

iv = obj1.getField1()

obj2 = Class_Name()

obj2.setField2(10)

iv = obj2.getField2()

Next, let’s discuss Python programming constructs for constructors and

destructors.

PYTHON PROGRAMMING CONSTRUCTS FOR
CONSTRUCTORS AND DESTRUCTORS

	1.	U nlike C++ constructors, in Python, constructors are defined

with a special name __init__(self) to initialize data

members and execute start-up activities on object creation.

	2.	T o define the default constructor for a class, use the

following syntax.

class Class_Name:

 def __init__(self):

Chapter 10 A Brief Introduction to OOP in Python and Solidity

518

 field1 = None

 field2 = None

 print("Initialized with none")

	3.	A default constructor is invoked when an object is created for

the class as follows.

obj = Class_Name()

	4.	T o define the default parameterized constructor for a class, use

the following syntax.

class Class_Name:

 def __init__(self, f1, f2):

 field1 = f1

 field2 = f2

 print("Initialized with custom values")

	5.	A parameterized constructor is invoked when an object is

created for the class as follows.

obj = Class_Name(1,2)

	6.	N ote: Python does not support multiple constructors in a
class. Moreover, constructors cannot be overloaded.

	7.	H owever, to define a destructor for a class, Python uses a

special __del__(self) function as follows.

	a.	A destructor is invoked automatically when an object is

destroyed.

	b.	O nly one destructor is allowed in a Python class.

class Class_Name:

 def __del__(self):

 print("Destructor..")

Next, let’s discuss ways to apply inheritance concepts in Python.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

519

�Python OOP Constructs for Inheritance
Let’s start with learning Python programming constructs for applying

inheritance concepts: base classes, derived classes, and inheritance

approaches.

PYTHON PROGRAMMING CONSTRUCTS FOR INHERITANCE

	1.	D efine a sample base class as follows.

class Base_Class:

 def __init__(self):

 self.field1 = None

 def setField1(self,f1):

 ..sample code

 def getField1(self):

 ..sample code

	2.	T o define a new class from an existing base class, you should

define a sample-derived class as follows.

	a.	O bserve the syntax for inheritance in class Derived_

Class(Base_Class).

class Derived_Class(Base_Class):

 def __init__(self):

 self.field2 = None

 def setField2(self,f1):

 ..sample code

 def getField2(self):

 ..sample code

Chapter 10 A Brief Introduction to OOP in Python and Solidity

520

	3.	 Similar to C++ classes, Python-derived class objects can

access and reuse the base class code as follows.

obj = Derived_Class()

obj.setField1(10) #base class code

obj.getField1() #base class code

obj.setField2(10)

obj.getField2()

Next, let’s check whether Python supports inheritance approaches.

PYTHON SUPPORTING INHERITANCE APPROACHES

	1.	P ython supports multilevel inheritance approaches as follows:

Base_Class -> Derived_Class1 -> Derived_Class2

class Base_Class:

 def __init__(self):

 self.field1 = None

class Derived_Class1(Base_Class):

 def __init__(self):

 self.field2 = None

class Derived_Class2(Derived_Class1):

 def __init__(self):

 self.field3 = None

	2.	P ython supports hierarchical inheritance approaches as

follows: Derived_Class1 <- Base_Class -> Derived_Class2

class Derived_Class1(Base_Class):

 def __init__(self):

 self.field2 = None

Chapter 10 A Brief Introduction to OOP in Python and Solidity

521

class Derived_Class2(Base_Class):

 def __init__(self):

 self.field3 = None

	3.	P ython supports multiple and hybrid inheritance approaches

as follows.

class Derived_Class1(Base_Class):

 def __init__(self):

 self.field2 = None

class Derived_Class2(Base_Class):

 def __init__(self):

 self.field3 = None

class Child_Class3(Derived_Class1,Derived_Class2):

 def __init__(self):

 self.field4 = None

Observe two combinations of inheritance approaches: Child_Class3 is

inherited from two derived classes (known as multiple inheritance), and

derived classes are inherited from a base class (known as hierarchical
inheritance).

Next, let’s discuss important Python programming constructs for

polymorphism concepts.

�Python OOP Constructs for Polymorphism
Python does not support function overloading in classes but supports the

following polymorphism methods.

•	 Operator overloading

•	 Function overriding

•	 Abstract classes and abstract methods

Chapter 10 A Brief Introduction to OOP in Python and Solidity

522

PYTHON POLYMORPHISM (OPERATOR OVERLOADING)

Python does not support function overloading concepts, but it supports

operator overloading.

	1.	P ython supports overloading all arithmetic, assignment

operators, and comparison operators.

	2.	F or example, to overload arithmetic operators such as +, -,

*, /, you need to overload the following built-in functions in

a class.

	a.	 __add__(self, other)

	b.	 __sub__(self, other)

	c.	 __mul__(self, other)

	d.	 __truediv__(self, other)

Here, observe that all these functions are taking two arguments:

self refers to the Left Hand Side (LHS) operand of the operator,

and other refers to the operator’s Right Hand Side (RHS) operand.

	3.	T o overload unary operators (e.g., +, -, ~), you must overload

the following built-in functions in a class.

	a.	 __neg__(self)

	b.	 __pos__(self)

	c.	 __invert__(self)

	4.	T o overload comparison operators (>, <, ==, etc.), you need to

overload the following built-in functions in a class.

	a.	 __lt__(self, other)

	b.	 __gt__(self, other)

	c.	 __eq__(self, other)

Chapter 10 A Brief Introduction to OOP in Python and Solidity

523

	5.	F or example, to overload < operator to compare two player

objects’ scores, you need to overload a suitable built-in function

in the Player class as follows.

class Player:

 def __init__(self,pscore):

 self.score=pscore

 def __lt__(self,other):

 if self.score < other.score:

 return self

 else:

 return other

Next, let’s learn how to override member functions in derived classes for

polymorphism concepts in Python.

MEMBER FUNCTION OVERRIDING IN PYTHON

	1.	L et’s define a fun() function in a BaseClass as follows.

class BaseClass:

 def fun(self):

 print("..")

	2.	T o override the fun() function in a DerivedClass, you can

define it as follows.

	a.	O bserve that DerivedClass is inherited from the

BaseClass.

	b.	R edefine func() in DerivedClass to override the

BaseClass definition.

class DerivedClass(BaseClass):

 def fun(self):

 print("..")

 print("..")

Chapter 10 A Brief Introduction to OOP in Python and Solidity

524

	3.	I nvolve the correct member functions from respective class

objects as follows.

ob1 = BaseClass()

ob1.fun() # it invokes base class fun()

ob2 = DerivedClass()

ob2.fun() # it invokes derived class fun()

	4.	 Suppose you want to call the BaseClass version of the

overridden function (fun()), then you can invoke it using the

Python built-in super class object: super().

class DerivedClass(BaseClass):

 def fun(self):

 super().fun() #invokes the BaseClass fun()

 print("..")

 print("..")

Next, let’s discuss abstract classes and pure virtual functions (abstract

methods) in Python that support declaring standard interfaces.

PYTHON WAY FOR ABSTRACT CLASSES AND METHODS

	1.	I n Python, you should import a module called abc to implement

abstract classes and abstract methods. The ABC module is an

Abstract Base Classes (ABC) module.

	2.	F or example, to define an abstract class called Interfaces

with suitable standard interfaces declaration for application

controls access, you should define Interfaces as follows.

	a.	O bserve that the abc module was imported.

	b.	D eclare each of the interfaces by prefixing with

@abstractmethod.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

525

	c.	N o interface code is defined (e.g., pass is no action).

from abc import ABC, abstractmethod

class Interfaces:

 @abstractmethod

 def control1(self):

 pass

 @abstractmethod

 def control2(self):

 pass

 @abstractmethod

 def control3(self):

 pass

	3.	Y ou should do the following to define Application1 with standard

interface definitions for all controls.

class Application1(Interfaces):

 def control1(self):

 print("..")

 def control2(self):

 print("..")

 def control3(self):

 print("..")

	4.	D efine another Application2 with only a few standard

interface definitions as follows.

class Application2(Interfaces):

 def control1(self):

 print("..")

 def control3(self):

 print("..")

	5.	 By creating objects for Application1 and Application2,

you can access and test their respective application interfaces.

Let’s practice how to use abstract classes in the next section.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

526

�Practicing OOP in Python
This section practices OOP concepts using Python scripts. Python is used

to implement the following.

•	 classes and objects

•	 data encapsulation and data hiding principles

•	 inheritance approaches

•	 polymorphism concepts

Let’s start by discussing classes.

�Using Python for Encapsulation and
Data-Hiding Features
This section describes how to define Python classes by following data

encapsulation and data-hiding principles.

DATA ENCAPSULATION

	1.	U se the Python 3.8.10 version for testing all activities in this

book. Use the following command; it displays a Python prompt

and then you can execute all Python commands.

python3

>>>

	2.	T o write a Python script, you can use any text editor and save

the file name with the .py extension (sample.py). Use the

following command to run the script.

#python3 sample.py

Chapter 10 A Brief Introduction to OOP in Python and Solidity

527

	3.	N ote: Follow the indentation rules while executing all the Python

scripts.

	4.	T o show how to execute Python classes by combining related

data members and member functions, do the following simple

activity in the player.py file.

	a.	D efine a Python class called Player with sample data

member’s jersey number and name.

	b.	D efine suitable member functions for accessing Player

class data members.

	c.	F or example, to access each data member, execute suitable

set and get member functions as follows.

class Player:

 jno = None

 name = None

 def setJno(self,pjno):

 if pjno>=0 and pjno<=100:

 self.jno = pjno

 def getJno(self):

 return self.jno

 def setName(self,pname):

 self.name = pname

 def getName(self):

 return self.name

	5.	A fter defining the Player class, test it by creating two objects.

	a.	F or each object, assign values to data members (jersey

number and name) and print them using member functions

of the Player class.

p1 = Player()

p1.setJno(10)

Chapter 10 A Brief Introduction to OOP in Python and Solidity

528

p1.setName("Sachin")

print("Player Jersey Number:",p1.getJno())

print("Player Name:",p1.getName(),p1.name)

p2 = Player()

p2.setJno(7)

p2.setName("Dhoni")

print("Player Jersey Number:",p2.getJno())

print("Player Name:",p2.getName())

	b.	O bserve that you can access object data members’ values

directly as follows.

p1.jno=101

p1.name="Sachin T"

print("Player Jersey Number:",p1.getJno())

print("Player Name:",p1.getName(),p1.name)

	6.	 Save player.py and execute it using the following command.

	a.	O bserve that each player object has its own data, and the

data is accessible through member functions

#python3 player.py

Player Jersey Number: 10

Player Name: Sachin Sachin

Player Jersey Number: 7

Player Name: Dhoni

	b.	O bserve that by default, all data members and member

functions are public. Hence, it is possible to access p1 object

details directly (without member functions).

Player Jersey Number: 101

Player Name: Sachin T Sachin T

Next, let’s discuss data-hiding principles in Python classes.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

529

DATA HIDING

	1.	T o show how to implement data-hiding principles, do the

following simple activity in the dh_player.py file.

	a.	D efine a Python class called Player with sample private

data member’s jersey number and name using __ variable

names such as __jno and __name.

	b.	D efine suitable public member functions for accessing

Player class private data members. Do not include __

in front of member function names such as setJno,

getJno, and so on.

class Player:

 __jno = None

 __name = None

 def setJno(self,pjno):

 if pjno>=0 and pjno<=100:

 self.__jno = pjno

 def getJno(self):

 return self.__jno

 def setName(self,pname):

 self.__name = pname

 def getName(self):

 return self.__name

	2.	A fter defining the Player class, test it by creating Player

objects p1 and p1.

	a.	A ccess values of Player object’s data members using set

and get member functions as follows.

p1 = Player()

p1.setJno(10)

p1.setName("Sachin")

Chapter 10 A Brief Introduction to OOP in Python and Solidity

530

print("Player Jersey Number:",p1.getJno())

print("Player Name:",p1.getName())

p2 = Player()

p2.setJno(7)

p2.setName("Dhoni")

print("Player Jersey Number:",p2.getJno())

print("Player Name:",p2.getName())

	b.	A ccess values of p1 object’s data members directly as

follows.

p1.__jno=101

p1.__name="Sachin T"

print(p1.__jno)

print(p1.__name)

	c.	A ccess values of p1 object’s using member functions and

test its values.

print("Player Jersey Number:",p1.getJno())

print("Player Name:",p1.getName())

	3.	 Save dh_player.py and execute it using the following command.

	a.	O bserve that player objects’ private data members are

accessed using public member functions successfully.

#python3 dh_player.py

Player Jersey Number: 10

Player Name: Sachin

Player Jersey Number: 7

Player Name: Dhoni

	b.	O bserve that player objects p1 private data members are

not updated when the external function accesses its data

members directly.

101

Sachin T

Chapter 10 A Brief Introduction to OOP in Python and Solidity

531

	c.	 p1 object holds its old details only.

Player Jersey Number: 10

Player Name: Sachin

Next, let’s practice using Python constructors and destructors.

QUICK EXPERIMENT ON PYTHON CONSTRUCTORS AND DESTRUCTORS

	1.	L et’s look at whether Python allows multiple constructors. Use

the following sample code in constdest.py.

class Player:

 def __init__(self):

 jno = None

 name = None

 print("Initialized with none")

 def __init__(self,pno,pname):

 self.jno = pno

 self.name = pname

 print("Initialized with custom values")

	2.	 Create suitable objects to invoke constructors as follows.

p1 = Player(1,"sachin")

p2 = Player() #throws error

	3.	R un the code and observe the following. If a parameter

constructor is defined in a Python class, you cannot invoke the

default constructor.

#python3 constdest.py

..

TypeError: __init__() missing 2 required positional

arguments: 'pno' and 'pname'

Chapter 10 A Brief Introduction to OOP in Python and Solidity

532

	4.	L et’s remove the parameter constructor, check the following

code, and observe the following.

	 a.	O n object creation, the constructor code gets executed

automatically.

	 b.	O n object deletion, the destructor code gets executed

automatically.

class Player:

 def __init__(self):

 jno = None

 name = None

 print("Initialized with none")

 def __del__(self):

 print("Object destroyed")

p2 = Player()

#python3 constdest.py

Initialized with none

Object destroyed

Next, let’s practice inheritance concepts in Python.

�Using Python to Implement Inheritance
Let’s do the following activity that combines various inheritance

approaches in Python.

	 1.	 Implement cricket player maintenance classes.

	 2.	 Define classes to maintain batsman, bowler, and all-

rounder player details.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

533

	 3.	 To avoid duplicate code and reuse the existing code,

use inheritance approaches.

•	 For example, all players have common details

such as jersey number and name. These details are

maintained in the player class.

•	 The Batsman class inherits from the player class to

maintain batsman-specific details.

•	 The Bowler class inherits from the player class to

maintain batsman-specific details.

•	 The Allrounder class inherits from batsman and

bowler classes to maintain the all-rounder player

details.

INHERITANCE APPROACHES IN PYTHON

	1.	L et’s go through implementing inheritance approaches. Do the

following simple activity in the inheritance_player.py file.

	a.	D efine a Python class called Player with sample private

data member’s jersey number and name using __ variable

names such as __jno and __name.

	b.	I nitialize Player class data members using a constructor.

	c.	D efine suitable public member functions for accessing

Player class private data members.

class Player:

 def __init__(self):

 self.__jno = 0

 self.name = ""

Chapter 10 A Brief Introduction to OOP in Python and Solidity

534

 def setJno(self,pjno):

 if pjno>=0 and pjno<=100:

 self.__jno = pjno

 def getJno(self):

 return self.__jno

 def setName(self,pname):

 self.name = pname

 def getName(self):

 return self.name

	2.	I nherit a Batsman class from the Player class.

	a.	D eclare and initialize Batsman class data members (runs

and centuries) using a constructor.

	b.	D efine suitable public member functions for accessing

Batsman class data members (runs and centuries).

class Batsman(Player):

 def __init__(self):

 self.runs = 0

 self.centuries = 0

 def setRuns(self,ptotal):

 if ptotal>=0:

 self.runs = ptotal

 def getRuns(self):

 return self.runs

 def setCenturies(self,pcent):

 if pcent>=0:

 self.centuries = pcent

 def getCenturies(self):

 return self.centuries

	3.	I nherit a Bowler class from the Player class.

	a.	D eclare and initialize Bowler class data members (wkts)

Chapter 10 A Brief Introduction to OOP in Python and Solidity

535

using a constructor.

	b.	D efine suitable public member functions for accessing

Bowler class data members (wkts).

class Bowler(Player):

 def __init__(self):

 self.wkts = 0

 def setWkts(self,ptotal):

 if ptotal>=0:

 self.wkts = ptotal

 def getWkts(self):

 return self.wkts

	4.	I mplement an AllRounder class by inheriting from the

BatsMan and Bowlers classes.

	a.	D efine a default constructor to initialize AllRounder class

inherited fields.

	b.	D o not implement any more member functions. Test how the

AllRounder class objects reuse existing codes of Player,

Batsman, and Bowler classes.

class AllRounder(Batsman,Bowler):

 def __init__(self):

 pass

	5.	A fter defining all classes, create objects for each class and

test them.

	a.	 Create a Batsman object (b1) and check how it is reusing

Player class code.

	b.	I nvoke Player and Batsman member functions using the

object b1 for accessing its data members (jno, name,

runs, and centuries).

b1 = Batsman()

Chapter 10 A Brief Introduction to OOP in Python and Solidity

536

b1.setJno(10)

b1.setName("Sachin")

b1.setRuns(20000)

b1.setCenturies(200)

print("Player Jersey Number:",b1.getJno())

print("Player Name:",b1.getName())

print("Player Total runs:",b1.getRuns())

print("Player Centuries:",b1.getCenturies())

	c.	 Create a Bowler object (b2) and check how it is reusing the

Player class code.

	d.	I nvoke Player and Bowler member functions using the

object b2 for accessing its data members (jno, name,

and wkts).

b2 = Bowler()

b2.setJno(6)

b2.setName("Srinath")

b2.setWkts(500)

print("Player Jersey Number:",b2.getJno())

print("Player Name:",b2.getName())

print("Player Total wickets:",b2.getWkts())

	e.	 Create an AllRounder object (a) and check how it reuses

the Player class code.

	f.	I nvoke Player, Batsman, and Bowler member functions

using the object a for accessing its data members (jno,

name, runs, centuries, and wkts).

a = AllRounder()

a.setJno(7)

a.setName("Dhone")

a.setRuns(18000)

a.setCenturies(150)

a.setWkts(50)

Chapter 10 A Brief Introduction to OOP in Python and Solidity

537

print("Player Jersey Number:",a.getJno())

print("Player Name:",a.getName())

print("Player Total runs:",a.getRuns())

print("Player Centuries:",a.getCenturies())

print("Player Total wickets:",a.getWkts())

	6.	 Save inheritance_player.py and execute it using the following

command.

	a.	T he Batsman object reuses the Player code to access the

jersey number and name.

#python3 inheritance_player.py

Player Jersey Number: 10

Player Name: Sachin

Player Total runs: 20000

Player Centuries: 200

	b.	T he Bowler object reuses the Player code to access the

jersey number and name.

Player Jersey Number: 6

Player Name: Srinath

Player Total wickets: 500

	c.	T he AllRounder object reuses the Player, Batsman, and

Bowler classes code to access jersey numbers, names,

runs, centuries, and wickets.

Player Jersey Number: 7

Player Name: Dhone

Player Total runs: 18000

Player Centuries: 150

Player Total wickets: 50

Next, let’s look at polymorphism concepts in Python.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

538

�Using Python for Polymorphism
This section explains how to create abstract classes and methods for

standard user interfaces for Python application access.

As part of this activity, implement the following.

	 1.	 A simple player class as an abstract class with three

abstract methods for declaring sample standard

accessing interfaces such as play, stop, and stats.

	 2.	 A Batsman class with suitable code for abstract

methods (play, stop, and stats)

	 3.	 A Bowler class with suitable code for abstract

methods (play, stop, and stats)

	 4.	 Test accessing these standard interfaces by all

Player objects from a sample user-defined function

called play().

POLYMORPHISM IMPLEMENTATION

	1.	D efine a Player abstract class with the following abstract

methods in the poly_player.py file.

	a.	P lay plays player (Batsman or Bowler) specific actions.

	b.	 Stop stops player (Batsman or Bowler) specific actions.

	c.	 Stat displays player (Batsman or Bowler) specific details.

from abc import ABC, abstractmethod

class Player:

 @abstractmethod

 def play(self):

 pass

 @abstractmethod

Chapter 10 A Brief Introduction to OOP in Python and Solidity

539

 def stats(self):

 pass

 @abstractmethod

 def stop(self):

 pass

	2.	D efine a Batsman class and implement batsman-specific

sample codes for play, stats, and stop as follows.

class Batsman(Player):

 def play(self):

 print("Batting")

 def stats(self):

 print("Total runs scored")

 def stop(self):

 print("Player out")

	3.	D efine a Bowler class and execute batsman-specific sample

code for play, stats, and stop as follows.

class Bowler(Player):

 def play(self):

 print("Bowling")

 def stats(self):

 print("Total wickets taken")

 def stop(self):

 print("Overs over!")

	4.	D efine a user-defined function for testing a variety of player

object controls.

def Play(p):

 p.play()

 p.stats()

 p.stop()

Chapter 10 A Brief Introduction to OOP in Python and Solidity

540

	5.	 Create a batsman object (b1) and pass it to user user-defined

Play function for testing the batsman object actions.

b1=Batsman()

Play(b1)

	6.	 Create a bowler object (b2) and pass it to user user-defined

Play function for testing the bowler object actions.

b2=Bowler()

Play(b2)

	7.	 Save poly_player.py and execute it using the following

command.

	a.	O bserve that the Batsman actions are invoked based on the

object type.

#python3 poly_player.py

Batting

Total runs scored

Player out

	b.	O bserve that the Bowler actions are invoked based on the

object type.

Bowling

Total wickets taken

Overs over!

This activity implemented the base Event and EventHandler classes

for application-specific events. Soon, you’ll use these classes to handle

application sample events.

The next section explores Solidity and OOP.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

541

�Solidity Basic Programming
Constructs for OOP
Solidity has a rich set of programming constructs for writing smart

contracts. Covering all the topics is beyond the scope of the book. This

section examines the following Solidity programming constructs for

writing basic smart contracts and the role of OOP principles.

•	 Solidity basic programming constructs

•	 Solidity smart contracts

•	 Solidity programming constructs for inheritance and

polymorphism

Let’s start with learning Solidity basics.

�Solidity Basics
Let’s start with learning the basic programming constructs of Solidity,

including the following basic syntax.

•	 Solidity data types and variables

•	 Solidity commenting styles

•	 Solidity conditional statements and loop statements

•	 Ways to define functions in Solidity

•	 Ways to define smart contracts (similar to C++ classes)

in Solidity

Chapter 10 A Brief Introduction to OOP in Python and Solidity

542

SOLIDITY BASIC PROGRAMMING CONSTRUCTS

	1.	I n Solidity, all programming statements must end with ;.

	2.	 Solidity most of the programming constructs syntax is similar to

C++ programming constructs.

	3.	 Solidity supports single-line comments as well as multiline

comments.

	a.	 // a = b+c;

	b.	 /* a =1; a=b+c; */

	4.	L ike popular languages such as C and C++, Solidity

programming also supports basic and complex data types—

such as int, unit, bool, enum, struct, string, and

mapping—to handle a variety of data elements. For example,

you can define data type variables as follows.

	a.	 int a=-10; unit b =200; string name = "abc";

	b.	T o declare structures: struct student = { int a;

bool choice; string name;};

	c.	T o declare arrays: int [5]list;

	d.	T o declare dictionaries: mapping

(unit=>string) names;

	e.	 Supports special data types.

	 i.	T o manage contracts address: address owner;

	 ii.	T o declare dynamic data types: var i=3; var

s="abc";

Chapter 10 A Brief Introduction to OOP in Python and Solidity

543

	5.	 Solidity programming conditional and loop syntax is similar to C

and C++.

	a.	 if (a>b) { max =a;} else {max=b;}

	b.	 for (i =0; i<10; i++) { a=a+i;}

	6.	 Solidity programming supports defining functions inside

contracts.

	a.	D efine a function with suitable visibility modes (public,

private, internal, and external):

function funName(int a) public returns (uint)

{

 return data1;

}

	b.	F rom this sample function definition, you should know the

following details.

	 i.	A ny function definition starts with a keyword: function

	 ii.	F unctions take arguments after the function name

inside()

	 iii.	F unction visibility modes (e.g., public, private,

internal, external) should be defined after

arguments.

	 iv.	T he type (view, pure, constant) of function can be

defined.

	 v.	F inally, the function return type should be defined using

the returns keyword.

Next, let’s learn how to write smart contracts in Solidity.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

544

Smart contracts are very similar to C++ classes and objects. The

upcoming activity discusses defining smart contracts (classes) and

creating instances (objects) to interact with smart contracts.

SOLIDITY SMART CONTRACT DEFINITION

	1.	I n Solidity programming, smart contracts can be defined

similarly to C++ classes.

	2.	U sually, a smart contract contains state variables (data

members) and functions to access state variables and carry out

transactions (member functions).

	3.	H ence, to define a smart contract the following syntax is useful.

	a.	T he Pragma line indicates Solidity compiler versions.

	b.	 contract is the keyword used to define smart contracts in

Solidity.

pragma solidity >=0.8.2 <0.9.0;

contract ContractName

{

 //sample state variables (data members)

 uint public data1;

 uint private data1;

 �//Sample state accessing functions (member

functions)

 function setData1(uint d) public

 {

 data1 = d;

 }

Chapter 10 A Brief Introduction to OOP in Python and Solidity

545

 function getData1() public view returns (uint)

 {

 return data1;

 }

}

	c.	I n Solidity, smart contracts are implemented based on data

encapsulation and data hiding principles of OOP.

	d.	F rom this sample contract definition, you must know the

following details.

	 i.	 Smart contract state variables and accessing functions

can be defined together under the contract name.

	 ii.	T o access the contract, you can create an instance as

follows.

ContractName sample = ContractName();

sample.setData1(10);

uint a = sample.getData1();

	 iii.	Y ou can observe that creating an instance of a smart

contract and accessing it is the same as C++ object

creation and accessing processes.

	e.	 Smart contract definition includes OOP data hiding principles

using visibility modes (similar to C++ visibility modes).

	 i.	I f you include public visibility with state variables or

member functions in a contract, then using the contract

instance, other contracts can access the contract’s

public data members or member functions. It is similar

to C++ public visibility only.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

546

	 ii.	I f you include private visibility data members (member

function) in a contract then other contracts can access

these private data members (member functions) using

public member functions of the contract only. It is

similar to C++ private visibility only.

	 iii.	I f you include internal visibility data members in a

contract, only inherited contacts from the contract can

access these internal data members. Internal visibility

is similar to protected visibility in C++.

Next, let’s learn Solidity programming constructs for inheritance concepts.

�Solidity Inheritance Programming
This section explores the syntax of Solidity programming for using

inheritance approaches. It discusses the importance of OOP inheritance in

reusing the existing contract and how to define a base contract and derived

contracts.

REUSE SMART CONTRACT USING SOLIDITY INHERITANCE SYNTAX

	1.	 Solidity programming supports the following OOP inheritance

approaches for reusing existing smart contracts and defining

new smart contracts.

	2.	 Single-level inheritance approach.

contract BaseContract

{

 //sample state variables (data members)

 uint public data1;

 �//Sample state accessing functions (member

functions)

Chapter 10 A Brief Introduction to OOP in Python and Solidity

547

 function setData1(uint d) public

 {

 data1 = d;

 }

 function getData1() public view returns (uint)

 {

 return data1;

 }

}

contract DerivedContract is BaseContract

{

 //sample state variables (data members)

 uint public data2;

 �//Sample state accessing functions (member

functions)

 function setData2(uint d) public

 {

 data2 = d;

 }

 function getData2() public view returns (uint)

 {

 return data2;

 }

}

	a.	O bserve that a new contract (derived contract) is created

from the base contract using is keyword.

	b.	Y ou can create instances (objects) of derived contracts and

access them as follows.

DerivedContract dc = DerivedContract();

dc.setData1(10);

dc.setData2(20);

uint a = dc.getData1(); //reuse

uint b = dc.getData2();

Chapter 10 A Brief Introduction to OOP in Python and Solidity

548

	c.	Y ou can observe that accessing derived contracts is the

same as using derived classes in C++.

	d.	T he derived contract instance can reuse the code of the

base contract.

	3.	 Similarly, in Solidity programming multilevel inheritance

approach can be implemented as follows.

contract BaseContract

{

}

contract DerivedContract1 is BaseContract

{

}

contract DerivedContract2 is DerivedContract1

{

}

	4.	 Similarly, in Solidity programming multiple inheritance

approach can be implemented as follows.

contract DerivedContract1

{

}

contract DerivedContract2

{

}

contract DerivedContract3 is DerivedContract1,

DerivedContract2

{

}

	5.	 Solidity programming allows a combination of multiple and

multilevel inheritance approaches.

Next, let’s learn Solidity programming constructs for applying polymorphism concepts.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

549

�Solidity Polymorphism Programming
Solidity supports function overloading and function overriding concepts

similar to C++. This section explains the syntax of Solidity programming

for applying polymorphism concepts. It covers the following.

•	 Abstract classes and pure virtual functions: These

constructs help define common interfaces for accessing

contracts. Later, derived contracts can apply those

interfaces in their own way.

•	 Interfaces: Solidity supports defining standard

accessing interfaces for contracts. Later, new contracts

can implement the interfaces.

SOLIDITY AND POLYMORPHISM

	1.	 Solidity supports abstract classes and virtual functions similar

to C++ with few syntax differences.

	2.	F or example, the following syntax is used to define an abstract

class with virtual functions in solidity.

abstract contract SampleContract

{

 �function sampleVirtualFun(uint n1) public virtual

returns (uint);

}

You should use the abstract keyword to declare an abstract

contract and define at least one virtual function using the

virtual keyword.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

550

Similar to C++, it is not possible to create instances from

abstract contracts. You should implement the abstract class

virtual functions in a derived contract as follows. The virtual

function must be in the derived contract using the override

keyword.

contract SampleContract is SampleImpl

{

 �function sampleVirtualFun(uint n1) override public

returns (uint)

 {

 ..

 }

}

	3.	 Solidity also supports interfaces for defining standard interfaces

for accessing contracts as follows.

interface MyInterfaces

{

 function myaccessFun1(uint) external returns (uint);

 function myaccessFun2(uint) external returns (uint);

}

You should use the interface keyword to define an interface

contract and declare the necessary number of access functions

using the external keyword. Similar to C++, it is not possible

to create instances from interface contracts. Hence, you should

use the interface access functions in a derived contract as

follows.

contract MyInterImple is MyInterfaces

{

 �function myaccessFun1(uint n1) public view

returns (uint)

 {

Chapter 10 A Brief Introduction to OOP in Python and Solidity

551

 }

 �function myaccessFun1(uint n1) public view

returns (uint)

 {

 }

}

Next, let’s discuss a few important unique Solidity programming constructs.

SOLIDITY OTHER IMPORTANT PROGRAMMING CONSTRUCTS

	1.	 Solidity also supports constructors to initialize state variables

of contract. However, solidity constructors are usually used for

initializing activities only.

	a.	O nly one constructor is allowed per contract.

	b.	I n an inheritance context, contract constructors work

similarly to C++ only.

constructor() public

{

 //initialize state variables

}

	2.	 Solidity supports a unique way of extending function

capabilities using modifier functions. Basically, modifier

functions allow you to restrict function executions based on

checking important constraints.

uint256 internal number;

modifier isAdmin

{

 require(admin == msg.sender);

 _;

}

Chapter 10 A Brief Introduction to OOP in Python and Solidity

552

	3.	 Solidity supports defining events as follows.

	a.	Y ou defined a sample event called highPrice.

	b.	I nside the priceCheck function, it raises a highPrice

event based on currentPrice input.

contract itemPricing

{

 uint8 price;

 event highPrice(bool returnValue);

 �function priceCheck(uint8 currentPrice) public

returns (bool)

 {

 if (currentPrice>=price)

 {

 highPrice(true);

 return true;

 }

 }

}

Well done. You have learned basic Solidity programming constructs for writing

smart contracts.

The next section practices writing smart contracts, deploying, and

testing using the Remix browser.

�Practicing OOP in Solidity
To practice Solidity programming, let’s use an online Remix editor. You can

access it through any Internet browser using the following link: https://

remix.ethereum.org/. The following topics are discussed in this section.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

https://remix.ethereum.org/
https://remix.ethereum.org/

553

•	 Remix editor options for executing and deploying

solidity contracts

•	 Implement smart contracts by following OOP

principles using Solidity

•	 Extend smart contracts using inheritance

•	 Practice solidity polymorphism ways

�Using the Remix Editor for Practicing Solidity
Remix offers an elegant browser with simple user interfaces. Remix allows

writing, saving, and compiling the solidity files to correct syntax errors.

It also allows you to deploy and test the successfully compiled contracts

over online Ethereum runtime environments using a variety of EVMs.

Let’s check important options of the Remix browser for implementing and

testing sample smart contracts using solidity programming.

REMIX BROWSER OPTIONS

	1.	T o access an online Remix browser, a good Internet connection

is mandatory. Open the following URL in your Internet browser.

https://remix.ethereum.org/

	2.	I t opens a Remix browser in various panels (see Figure 10-1).

	a.	T o implement smart contracts, observe the FILE EXPLORER

panel on the LHS of the Remix browser. Under FILE

EXPLORER, click on the contracts folder icon. It shows

existing sample solidity files for reference. Observe these

options in the LHS panel of Figure 10-1.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

554

	b.	T o create a new Solidity file, select the contracts folder, and

it shows options for creating a new Solidity file (Create new
file), renaming, and deleting existing files. (Observe these

options in the RHS panel of Figure 10-1.) Click the Create
new file icon to open a new solidity file.

	c.	 Save your new Solidity file (for example, you created

mycontr.sol file under the contracts folder). Observe it in

the bottom pane of Figure 10-1.

Figure 10-1.  Remix Browser and important panels to interact with it

	d.	 Write your smart contract code in mycontr.sol. It is saved

automatically.

	e.	T o compile your solidity file, just click on the green-colored

play button icon shown in the bottom panel of Figure 10-1.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

555

	f.	I f there are no compilation errors, you can deploy the smart

contract by clicking on the deploy and run option (the fifth

icon from the top) shown in the LHS panel in Figure 10-2.

	g.	O n successfully deploying your smart contract, the Remix

browser opens the DEPLOY & RUN TRANSACTIONS panel

(see RHS panel in Figure 10-2).

	h.	U nder the DEPLOY & RUN TRANSACTIONS panel, click

on the CONTRACT drop-down box to select your smart

contract (mycontr.sol) and click the Deploy button.

Under CONTRACT, all smart contracts are defined in the

Solidity file).

	i.	I t displays all publicly accessible functions of your smart

contract to interact with them (see Figure 10-2).

Figure 10-2.  Remix browser smart contract deployment options

Chapter 10 A Brief Introduction to OOP in Python and Solidity

556

	3.	U sing the Remix browser for writing, compiling, deploying, and

testing smart contracts is simple.

	4.	P ractice writing sample smart contracts using Remix.

Let’s practice by writing a smart contract using Solidity and testing

OOP principles.

�Practicing with Smart Contracts
Let’s do the following activities to learn how to execute smart contracts by

following OOP principles.

	 1.	 Implement a smart contract called MySecretData to

store and access sample secret data.

	 2.	 Access the existing smart contract (MySecretData)

from a new smart contract called MyProfile.

	 3.	 Update MySecretData with private, public and

internal state variables for understanding Solidity

visibility modes.

IMPLEMENT SMART CONTRACTS BY FOLLOWING OOP PRINCIPLES

	1.	D o the following activities using Remix in a solidity file

(mycontract.sol).

	2.	D efine MySecretData with a sample secret field (data1:state

variable) and implement publicly accessing functions for storing

and retrieving the secret field (data1).

pragma solidity >=0.8.2 <0.9.0;

contract MySecretData

{

Chapter 10 A Brief Introduction to OOP in Python and Solidity

557

 uint data1;

 function setData1(uint d) public

 {

 data1 = d;

 }

 function getData1() public view returns (uint)

 {

 return data1;

 }

}

	3.	 Compile and deploy it using the Remix browser.

	a.	T o deploy and test it, select your smart contract

(MySecretData) under the CONTRACT drop-down box and

deploy it, as shown in Figure 10-3.

Figure 10-3.  Deploying MySecretData smart contract

	b.	T est your contract (see Figure 10-4) by setting and

accessing sample secret values using public access

functions (setData1 and getData1).

Chapter 10 A Brief Introduction to OOP in Python and Solidity

558

Figure 10-4.  MySecretData smart contract test results

	4.	I n the same Solidity file, define another smart contract called

MyProfile to access the MySecretData instance.

	a.	 Create an object of MySecretData and access it in

member functions (setProfile and getProfileData) of

MyProfile.

	b.	D efine a sample state variable (profile) specific to

MyProfile.

contract MyProfile

{

 string profile;

 MySecretData ms = new MySecretData();

 function setProfile(string memory i) public

 {

 ms.setData1(200);

 profile = i;

 }

 �function getProfile() public view returns

(string memory)

 {

 return profile;

 }

Chapter 10 A Brief Introduction to OOP in Python and Solidity

559

 �function getProfileData() public view

returns (uint)

 {

 return ms.getData1();

 }

}

	5.	 Compile and deploy it using the Remix browser.

	a.	T o deploy and test it, select the smart contract (MyProfile)

under the CONTRACT drop-down box and deploy it as

follows.

	b.	T est your contract (see Figure 10-5) by setting and

accessing sample secret and profile values using public

access functions (setProfile, getProfile, and

getProfileData).

Figure 10-5.  MyProfile smart contract test results

	6.	 Modify MySecretData to learn Solidity visibility modes

(public, private, and internal).

	a.	D efine a state variable with each visibility mode.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

560

	b.	D efine publicly accessible functions for accessing all state

variables.

	c.	F or public state variables (data2), there is no need for

publicly accessible functions. But, for private (data1) and

internal state variables (data3) you should define publicly

accessible functions.

pragma solidity >=0.8.2 <0.9.0;

contract MySecretData

{

 uint internal data1;

 uint public data2;

 uint private data3;

 function setData1(uint d) public

 {

 data1 = d;

 }

 function getData1() public view returns (uint)

 {

 return data1;

 }

 function setData2(uint d) public

 {

 data2 = d;

 }

 function getData2() public view returns (uint)

 {

 return data2;

 }

 function setData3(uint d) public

 {

 data3 = d;

 }

Chapter 10 A Brief Introduction to OOP in Python and Solidity

561

 function getData3() public view returns (uint)

 {

 return data1;

 }

}

	7.	 Compile and deploy it using the Remix browser.

	a.	T o deploy and test it, select your smart contract

(MySecretData) under the CONTRACT drop-down box and

deploy it as follows.

	b.	T est your contract (see Figure 10-6) by setting and

accessing sample secret values using public access

functions (setData1,setData2, setData3,

getData1, getData2, and getData3).

	c.	O bserve that data2 (public state variable) can be

accessible without publicly accessible functions, too.

Figure 10-6.  MySecretData smart contract test results

Chapter 10 A Brief Introduction to OOP in Python and Solidity

562

This hands-on activity shows that a Solidity contract works similarly to

a C++ class. Using contract definition with visibility modes (public,

private, and internal), Solidiy offers data encapsulation and data hiding

features of OOP.

Let’s practice using inheritance principles to extend smart contracts in Solidity.

�Extending Smart Contracts Using Inheritance
Let’s do the following activities to learn to use smart contracts by following

OOP principles.

	 1.	 Implement a smart contract called MySecretProfile

from MySecretData using an inheritance approach.

	 a.	 Do not execute any code in MySecretProfile.

	 b.	 Test reusing the codes of MySecretData from the

MySecretProfile contract instance (object).

	 2.	 Change MySecretProfile to include public,

private, and internal state variables and

understand how visibility mode works in the

inheritance context.

	 3.	 Include a public constructor in the derived contract

(MySecretProfile) to initialize the state variables of

the base contract.

	 4.	 Practice function overloading and multiple

inheritance approaches by defining multiple

contracts.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

563

SOLIDITY BASICS

	1.	I mplement the following contracts in a Solidity file

(mycontract.sol).

	2.	 Create a contract called MySecretProfile from an existing

contract, MySecretData, using an inheritance approach as

follows.

	a.	O bserve that inheriting a contract from an existing

contract is done by using is keyword as follows.

	b.	N o code is used in the new contract (MySecretProfile).

But it inherits existing contract (MySecretData) code

into it. Hence, creating an instance of MySecretProfile

allows you to access all publicly accessible functions of the

MySecretData contract.

contract MySecretProfile is MySecretData

{

}

	3.	 Compile and deploy it using the Remix browser.

	a.	T o deploy and test it, select your smart contract

(MySecretProfile) under the CONTRACT drop-down box

and deploy it as follows.

	b.	O bserve that from the MySecretProfile instance (see

Figure 10-7), it is possible to access all MySecretData

public accessible state variables and functions

(data2,setData1,setData2, setData3, getData1,

getData2, and getData3).

Chapter 10 A Brief Introduction to OOP in Python and Solidity

564

Figure 10-7.  MySecretProfile smart contract test results

	4.	 Modify MySecretProfile with a new publicly accessible

function setSecretData.

	a.	I nside setSecretData, access public and internal

variables of MySecretData from the MySecretProfile.

However, private state variables cannot be accessed.

	b.	I t means internal visibility allows inheriting variables into

derived contracts only. You can relate Solidity’s internal

visibility mode with C++ protected visibility mode.

	c.	D efine a public constructor to initialize public

and internal variables of MySecretData. Unlike C++

constructors, Solidity constructors are defined using the

constructor() function. Moreover, you cannot overload

constructors in Solidity.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

565

contract MySecretProfile is MySecretData

{

 function setSecretData(uint d) public

 {

 data1 = d;

 data2 = d;

 //data3 = d;

 uint d1 = getData1()+getData2()+getData3();

 }

 constructor() public

 {

 data1 = 300;

 data2 = 200;

 }

}

	5.	P ractice function overloading and multiple inheritance

approaches.

	a.	D efine two sample secret contracts (Secrets and

Secrets2).

	b.	I n the Secrets contract, overload the mySecret function

for generating a variety of secrets.

	c.	I n the Secrets2 contract, overload the mySecret2

function for generating a variety of secrets.

	d.	D efine another contract, Secrets3, from Secrets and

Secrets2 using multiple inheritance approaches.

contract Secrets

{

 �function mySecret() public view returns

(string memory)

 {

 return "abcdef";

 }

Chapter 10 A Brief Introduction to OOP in Python and Solidity

566

 �function mySecret(uint i) public view

returns (uint)

 {

 return 100+20;

 }

 �function mySecret(int i) public view

returns (int)

 {

 return -100+i;

 }

}

contract Secrets2

{

 �function mySecret2() public view returns

(string memory)

 {

 return "abcdefghi";

 }

 �function mySecret2(uint i) public view

returns (uint)

 {

 return 100+200;

 }

 �function mySecret2(int i) public view

returns (int)

 {

 return -300+i;

 }

}

Chapter 10 A Brief Introduction to OOP in Python and Solidity

567

	6.	A fter defining Secrets and Secrets2 contracts, define a

Secrets3 contract using the multiple inheritance approach as

follows.

contract secrets3 is Secrets, Secrets2

{

}

	7.	 Compile and deploy (secrets3) using the Remix browser (see

Figure 10-8).

Figure 10-8.  Secret3 smart contract test results

Chapter 10 A Brief Introduction to OOP in Python and Solidity

568

	a.	T o deploy and test it, select your smart contract

(Secrets3) under the CONTRACT drop-down box and

deploy it as follows.

	b.	O bserve that from the Secrets3 instance (see Figure 10-8),

it is possible to access all public accessible state variables

and functions of Secrets and Secrets2 are accessible

(mySecret and mySecret2).

	c.	O bserve that mySecret and mySecret2 are displayed three

times each due to function overloading. You can test them

using sample data.

Next, let’s practice polymorphism concepts in Solidity.

�Using Solidity for Polymorphism
Let’s discuss polymorphism in Solidity using abstract classes, virtual

functions, and interfaces.

	 1.	 As you learned from C++ abstract classes, defining

base classes with virtual functions is possible. Then,

it is possible to create virtual functions in derived

classes. It helps in defining common interfaces for

application access. Solidity also supports abstract

contracts and virtual functions.

	 a.	 Learn how to execute sample abstract contracts

and virtual functions in Solidity.

	 b.	 Define virtual functions in a derived contract.

	 2.	 Solidity also supports pure virtual functions to

declare standard interfaces of future contracts. It

is possible to implement pure virtual functions in

derived contracts.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

569

	 a.	 Learn the Solidity method of defining interfaces

with pure virtual functions.

	 b.	 Design interfaces using derived contracts.

SOLIDITY ABSTRACT CONTRACT AND INTERFACES

	1.	I mplement the following contracts in a Solidity file

(mycontract.sol).

	2.	D efine a sample abstract contract (MySecrets) with a virtual

function and sample function as follows.

abstract contract MySecrets

{

 �function mySecretFunctions(uint n1) public virtual

returns (uint);

 �function mySecret() public view returns

(string memory)

 {

 return "abc";

 }

}

	3.	D efine a sample derived contract (MySecretImple) from

MySecrets and execute a virtual function as follows.

contract MySecretImpl is MySecrets {

 �function mySecretFunctions(uint n1) override public

view returns (uint)

 {

 uint n;

 n = n1*200;

 return n;

 }

}

Chapter 10 A Brief Introduction to OOP in Python and Solidity

570

	4.	 Compile and deploy (MySecretImpl) using the Remix

browser.

	a.	Y ou cannot deploy abstract classes: MySecrets.

	b.	T o deploy and test MySecretImpl, select your smart

contract (MySecretImpl)under the CONTRACT drop-down

box and deploy it as follows.

	c.	O bserve that from the MySecretImpl instance (see

Figure 10-9), it is possible to access all public accessible

functions (MySecret()) of MySecrets.

	d.	O bserve that mySecretFunctions is accessible from

MySecretImpl.

	e.	Y ou can test mySecretFunctions() and mySecret()

with sample inputs as follows.

Figure 10-9.  MySecretImpl smart contract test results

Chapter 10 A Brief Introduction to OOP in Python and Solidity

571

	5.	 let’s define a sample interface (MySecretInterfaces)

in the same solidity file as follows.

	a.	D efine two sample pure virtual functions in the interface.

interface MySecretInterfaces

{

 �function mySecFunction1(uint)

external returns (uint);

 �function mySecFunction2(uint)

external returns (uint);

}

	b.	I mplement the sample interface’s pure virtual functions by

defining a contract from the interfaces as follows.

contract MySecretInterImpl is MySecretInterfaces

{

 �function mySecFunction1(uint n1) public view

returns (uint)

 {

 n1 = n1*100;

 return n1;

 }

 �function mySecFunction2(uint n1) public view

returns (uint)

 {

 n1 = n1*200;

 return n1;

 }

}

Chapter 10 A Brief Introduction to OOP in Python and Solidity

572

	c.	D efine another sample contract for sample interfaces

as follows.

contract MySecretInterImpl2 is MySecretInterfaces

{

 �function mySecFunction1(uint n1) public view

returns (uint)

 {

 n1 = n1*300;

 return n1;

 }

 �function mySecFunction2(uint n1) public view

returns (uint)

 {

 n1 = n1*400;

 return n1;

 }

}

	6.	 Compile and deploy (MySecretInterImpl1) using the Remix

browser.

	a.	Y ou cannot deploy interfaces: MySecretInterfaces

	b.	T o deploy and test MySecretInterImpl1, select your

smart contract (MySecretInterImpl1)under the

CONTRACT drop-down box and deploy it as follows.

	c.	O bserve that from the MySecretInterImpl1 instance (see

Figure 10-10), it is possible to access mySecFunction1

and mySecFunction2.

	d.	T est these functions using sample values.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

573

Figure 10-10.  MySecretInterImpl smart contract test results

	e.	 Similarly, you can deploy MySecretInterImpl1 and

test it.

Well done. You have practiced working with important OOP concepts in Solidity.

�Summary
This chapter explored the role of OOP principles in Python and Solidity

programming. Learning Python helps you experiment with trending

computer science technologies such as AI/ML, data science, and Solidity,

which helps you explore the development of blockchain applications.

Although all features of Python and Solidity were not covered, the basics

and OOP features in this book help you start exploring these languages.

The book covered the primary concepts of OOP for developing

software systems. Unlike other books, it mainly focused on learning OOP

concepts by solving suitable real-world hands-on activities.

Thanks a lot for choosing this book to learn OOP concepts. The

concepts covered should help you learn and excel in OOP languages.

Chapter 10 A Brief Introduction to OOP in Python and Solidity

575© Anil Kumar Rangisetti 2024
A. K. Rangisetti, Hands-On Object-Oriented Programming,
https://doi.org/10.1007/979-8-8688-0524-0

Index

A
Abstract data types (ADT), 52, 64
Access specifiers, 50
ADT, see Abstract data types (ADT)

B
Behavioral design patterns

chain of responsibility
pattern, 446

CacheRequestHandler, 455
chainofresp.cc, 457
chainofservers.cc file, 452
client testing code, 456
CompressRequest

Handler, 454
dynamic service chains, 456
RequestHandlerImpl, 452
server object classes, 454
service chains, 451
tasks, 450, 457

commands handling
objects, 447

iterator pattern, 449
mediator object, 447
memento pattern, 450
observer pattern, 447

reusable solutions, 445
state pattern, 449
strategy pattern, 448
subsystems/objects/services/

communication, 446
template method

GameCharacter abstract
class, 461, 462

general algorithm steps, 458
main() testing code, 463
player/enemy gaming

characters, 459, 460
tasks, 464
template.cc, 463
templatemethod.cc file, 459
virtual functions, 460

template pattern, 448
visitor pattern, 450

Blockchain technology, 508,
510, 573

C
C++ programming

access control modes
C objects, 90–92
C++ objects, 93–99

https://doi.org/10.1007/979-8-8688-0524-0#DOI

576

external functions, 87, 95
internal data

members, 87–90
constructors/

destructors, 113–167
object interactions

activities, 77
animal objects, 82–84
customer objects, 77–79
gun objects, 84–86
item objects, 80–82

OOP programming constructs
access specifier, 50
class declaration, 50–54
data encapsulation, 50
features, 44
input/output

statements, 48, 49
keywords, 45
member functions, 52
operators, 46
program structure, 62–64
sensor objects, 55–57
string class, 57–60
vector class, 60–62

polymorphism
(see Polymorphism)

real-world entities
customer class/

transactions, 66–68
gaming applications, 65
item objects, 69–71
animal objects, 71–74

principles, 64
gun class, 74–77

smart applications
activities, 100
findNearestSensorTo()

function, 104, 105
getHighTempSensors()

function, 103
getLowBatterySensors()

function, 103
getLowBatterySensors()

function, 103
IoTSensor class, 100–109
set/get member functions,

101, 102 (see also Friend
member functions/friend
classes)

Constructors/destructors
C++ programming

Bomb() function, 121
compiler, 128–130
copy constructors, 124, 125
details, 122
main() code, 122
parameterized

constructors, 126
rules, 120
supports, 123–128

definition, 113
handling startup sequence

activities, 130
existing bombs, 137–139
gaming bombs, 130–132
secret file, 134–136

C++ programming (cont.)

INDEX

577

hands-on activity, 150, 151
IoT sensors, 151–162
Sensor.txt files, 161
startup sequence, 120

Creational design patterns
abstract factory, 416
builder class, 417
classes/objects, 412, 413
creation patterns, 412
dependencies, 415
factory method, 416

abstract class, 420
design drone classes., 418
end-user code, 421
features, 418
hands-on activity, 419–423
requirement, 418
rules, 418
tasks process, 422

prototypes, 417
singleton class, 417
singleton pattern

approach, 423–427

D
Design patterns

behavioral patterns,
414, 445–464

categories, 412
creational patterns (see

Creational design patterns)
learning design patterns, 411

software development
solutions, 411

structural design
patterns, 428–445

structural patterns, 413, 414
Destructors

activities, 143
Bomb class, 140, 142
definition, 113
deleting dynamical

objects, 148–150
details, 142
hands-on activity, 143–148,

162, 163
IoTSensor class, 163–166
member functions, 140
shutdown activities, 139
smart application, 162 (see also

Constructors/destructors)

E
Ethereum Virtual Machine

(EVM), 510
Event-driven programming

advantages, 473, 474
application events class/events

handling classes, 484–487
application events

implementation, 480–482
asynchronous methods,

472, 473
characteristics, 471

INDEX

578

components, 467
design/simulator

emergency events, 494
IoTSensorsHandler

events, 492–496
smart application, 491
warning events, 493

distributed application
architectures, 468, 469

events, 470, 471
features, 483
key concepts, 470
management events, 472
message exchange, 472
producer/consumer

services, 470
scheduling and execution

function, 487
SmartApplication

simulation, 501–503
SmartVehiclesHandler

events, 497–500
software applications, 467
structure

application events, 480–483
event handlers, 475
management/handling

classes, 476–480
model application

events, 477
programming

constructs, 474
schedule events, 476

subscription handling class,
482, 483

testing code, 487–490
EVM, see Ethereum Virtual

Machine (EVM)

F
Friend member functions/

friend classes
access secret locations, 178–181
Authenticated objects, 174
class concept, 174–177
concepts, 177
constant

external/object
functions, 208

pointers, 169, 212–224
variables/objects, 208–212

external functions/classes, 170
features, 170
friend classes, 182–187
game implementation, 177
main() function, 172
pass arguments

activities, 190
arrays, 189, 193–197
destination function,

188, 189
memory blocks, 197–199
objects to functions, 190–192
reference variables, 189

pointers
activities, 212–217

Event-driven programming (cont.)

INDEX

579

class objects, 221–224
concepts, 212
error message, 214
player class objects, 217–221
set and get member

functions, 222
Secret class, 171–174
static data member

activities, 201–204
class declaration, 200
contexts objects, 200
control objects

state, 204–208
getCount()/setCount(), 201
normal/static data

members, 201

G, H
Gaming application

actions/interactions, 230
C++ classes

Bomb class, 238–240
building blocks, 235
coin class, 240–242
gun class, 242–244
player class, 235–238

data members/member
functions, 230

implementation
bombs/guns/coins, 247–251
game-playing scenario, 244
main game

scenario, 252–254

moving players, 251, 252
player observation, 245–247

real-world entities, 229, 230
scenario, 231

I, J, K, L
Inheritances

access controls, 301–306
aggregation

object aggregation, 344–346
smart applications, 342
smart devices/object

composition, 342–344
testing code, 346–349

approaches, 294
base classes, 293, 299
benefits, 293
combine/connect objects

aggregation, 336
approaches, 335
composition, 335

constructors/destructors
base classes, 306, 309–311
iconstdestr.cc file, 307
Special class, 307
testing code, 308

existing classes, 292
handling approaches, 299–301
hierarchical approach, 298
multilevel inheritance, 297
multiple class, 298
object association methods

smart devices, 349–353

INDEX

580

versions, 354–360
object composition

aggregation, 342–349
automatic gun

objects, 337–342
gaming header files, 337
gun object, 337
internal bomb/time bomb

objects, 338
SpecialWeapon class, 338
specialweapon.cc file, 341
weapon objects, 340

object composition/aggregation
concepts, 291

reduce/reuse principle
application software, 311
benefits, 311
employee profile, 315–318
personal profile, 312–314
testing code, 317–319
trainee profile, 320–324

redundant/inconsistent
code, 292

single-level
inheritance, 295–300

software versions
activities, 323
automatic guns, 324–326
Bomb version, 326–328
scenarios, 324
version game

context, 331–335
version players, 328–330

M, N
Model application entities

CancelledOrder class, 265–267
customer/item classes, 255, 256
DeliveredOrder class, 268–270
DeliveryPartner class, 259–261
features, 228, 229
gaming application (see Gaming

application)
principles/concepts, 227
order class, 261–265
real-world entities, 255
Shopkeeper class, 256–259
shopping application (see

Shopping application)
software design, 228

O
Object-oriented programming

(OOP), 1
adventurous game, 33

bomb class, 38, 39
characters, 33
grabs bomb, 35
gun objects, 37
player/enemy

interactions, 33–36
problem scope/context, 33

algorithm vs. software
definition, 2
elements, 3–5
features, 5

Inheritances (cont.)

INDEX

581

problem-solving, 5
procedural-oriented

program, 4
procedural programming

approaches, 6, 7
programming constructs, 3
requirements, 6
system software, 5, 6

C++ (see C++ programming)
classes

abstraction, 12
access specifiers, 13
class structure, 8
customer entities, 8
data hiding, 12, 13
definition, 7
encapsulation, 10, 11
gaming application

context, 9
IoT sensor modeling, 9, 10
member functions, 8

design pattern (see Design
pattern)

event-driven
programming, 467–505

inheritance, 16–18
integration/connecting dots, 20
interface design, 21
learning process, 1
objects

components, 13
details, 14, 15
memory allocation maps, 15

operators, 46–48

polymorphism, 19, 20, 362 (see
also Polymorphism)

primary concepts, 508
Python (see Python

programming)
real-world entities

browsing item details, 29
canceling order, 31, 32
customer classes, 26, 27
customers, 24, 25
data members/member

functions, 22, 27
delivering order, 32
hands-on activity, 23
high-level procedure, 21
interactions/tasks, 22
item class, 29, 30
order class, 30, 31
problem scope/context, 23
registration, 26
shopkeeper interacts, 25, 26
shopkeeper registration/

class, 27, 28
transactions/tasks, 23
user interactions, 23

real-world problems (see Model
application entities)

requirements and design
processes, 7

reusable/extendible software
components, 20

simplifies modeling, 19
software development (see

Inheritances)

INDEX

582

software development
process, 19

Solidity (see Solidity
programming)

transaction class, 20 (see also
C++ programming)

OOP, see Object-oriented
programming (OOP)

P, Q
Polymorphism

definition, 362
dynamic polymorphism, 363
function overriding, 363
generic functions/data

structures
data structures, 388, 389
data types, 381, 382
gendatastruct.cc file, 390
member function/friend

function, 382
template, 389–395
template functions, 383–388
template syntax, 381

operations/tasks/actions, 362
operator overloading, 362

benefits, 371
binary operators, 372, 373
coin class objects, 374–380
friend function, 373
object computation, 371

operators, 371
overloadcoin.cc file, 375
unary operators, 374

overloading function, 362
DataAlgorithms

class, 364–366
datalagos.cc file, 367
member functions, 366
static/compile-time, 363

overriding function, 367–371
user interfaces

abstract classes, 401–403
concepts, 395
dynamic concepts, 403–408
overriding function, 397
virtual functions, 396–400

virtual functions
abstract classes, 401–403
definition, 396
override.cc file, 397–401
Phone objects, 401
pointer arguments, 402

Python programming
concepts, 526
constructors/destructors,

531, 532
constructs

access specifiers, 516
class keyword, 515
conditional statements, 512
destructors, 517, 518
input() function, 512
loop statements, 513
member functions, 516

Object-oriented programming
(OOP) (cont.)

INDEX

583

principles, 511
public member

functions, 517
variables/conditional

statements/loops/
functions, 511–514

development activities, 509
encapsulation, 526–528
features, 509
hiding principles, 528–531
inheritance

approaches, 532, 533
base class, 519
BatsMan class, 534, 535
Bowler class, 534, 535
constructs, 519, 520
derived class, 519, 520
hierarchical approaches, 520
multilevel approaches, 520
multiple/hybrid

approaches, 521
player.py file, 533, 534, 537

meaning, 508
polymorphism methods,

521, 538–540
abstract classes/methods,

524, 525
built-in functions, 522
overloading concepts,

522, 523
override member functions,

523, 524

R
RAM, see Random access

memory (RAM)
Random access memory (RAM),

414, 432

S, T, U, V, W, X, Y, Z
Shopping applications

classes, 233
customer interaction, 234
functions, 270–274
identification, 232
interaction functions

application.cc file, 275
browsing function, 275
canceling customer, 276
customer

interactions, 274–277
items/quantity, 275
simulation activities, 274

implementation, 234
interactions, 233
placeOrder function, 284
real-world entities, 231
registration process, 283
respective functions, 283
scenarios, 232
shopkeeper interactions

application.cc file, 278–282
delivery partners/dates, 280
functions, 278

INDEX

584

tasks, 270
task simulation, 282–288

Solidity programming
basic programming

constructs, 541
blockchain technology, 510
constructs, 541
data type variables, 542
inheritance

approaches, 546–548
MySecretProfile, 563, 564
multilevel, 548
overloading, 565
principles, 562
Remix browser, 563, 567
setSecretData function, 564

meaning, 508
multilevel inheritance

approach, 548
polymorphism

concepts, 549
abstract classes/pure virtual

functions, 549, 568–575
constructs, 551, 552
derived contracts, 568
implementation, 568
interfaces, 549
override keyword, 550
Remix browser, 570, 572
standard interfaces, 550
virtual functions, 549, 569

Remix editor, 553–556
Internet browser, 552

single-level inheritance
approach, 546

single-line comments, 542
smart contracts, 510

definition, 544–546
inheritance, 562–568
MySecretData instance, 558
MySecretData deployment,

557, 558
principles, 556
Remix browser, 559, 561
storing and retrieving, 556
test results, 561
visibility modes, 559

visibility modes, 543
Starting/stopping software

applications, 114
closing application

activities, 118
disconnect/stop/remove

services, 119, 120
releasing resources, 119

components, 115
constructors/destructors (see

Constructors/destructors)
initialization/configuration,

115, 116
resource allocation, 116
software object startup, 117
subcomponents/external service

connectivity, 117, 118
Structural design patterns

adapter pattern, 429
bridge pattern, 431

Shopping applications (cont.)

INDEX

585

composite class, 430
decorator class, 430
facade pattern

classes, 429
every layer, 433
implementation, 433–439
protocol stack, 432

simplified interface, 436
tasks, 439

flyweight pattern, 432
proxy server pattern,

432, 440–445
reusable solutions, 428
types, 429

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Importance of Object-Oriented Programming
	Algorithms vs. Software
	Algorithm Characteristics
	Write an Algorithm
	Software
	Software Development Challenges

	Introduction to OOP Concepts
	Class
	Data Encapsulation
	Data Abstraction
	Data Hiding

	Objects
	Objects Details

	Inheritance
	Polymorphism

	How OOP Approaches Simplify the Software Complexity
	Systematically Modeling Real-World Entities into Software
	Hands-on Activity: Online Shopping
	1. Define the Problem Scope and Context
	2. Identify and Understand Users
	3. List all Users/actors transactions, actions, and tasks
	Customers
	Shopkeeper

	4. Inspect User Interactions for Modeling Classes
	Customer Registration
	Customer Class
	Shopkeeper Registration
	Shopkeeper Class
	Browsing Items
	Item Class
	Placing Orders
	Canceling an Order
	Delivering Orders

	Hands-on Activity: Simple Adventurous Game
	1. Define Problem Scope and Context
	2. Identify and Understand Gaming Characters and 3. Inspect all Users/actors transactions, actions, and tasks
	4. Inspect Game Characters and objects Interactions for Modeling Classes
	Player and Enemy Classes
	Gun Class
	Bomb Class

	Summary
	Practice: Hands-on Activities

	Chapter 2: Start Learning OOP Using C++
	C++ OOP Constructs
	C++ Specific Programming Constructs
	C++ Specific Keywords
	C++ Specific Operators
	Input-Output Statements
	C++ Basic OOP Constructs
	C++ Classes
	C++ Objects

	C++ Built-in Classes
	C++ String Class
	C++ Vector Class

	C++ Program Structure

	Model Real-World Entities Using C++ Classes
	Interacting with Objects
	Object Access Control Modes
	Hands-on Activity: Smart Applications
	Summary
	Practice: Hands-On Activities

	Chapter 3: Systematically Starting and Stopping Software Objects
	Software Objects Startup and Shutdown Sequences
	Starting a Software Application
	Initialization and Configuration
	Resources Allocation
	Connecting with Necessary Services

	Closing a Software Application
	Releasing Resources
	Disconnect, Stop, and Remove Services

	Constructors for Handling Startup Sequences
	Constructors in C++
	C++ Supporting Constructors
	C++ Compiler Providing Constructors
	Hands-on Activities for Practicing Constructors

	The Importance of Destructors for Doing Graceful Shutdowns
	Destructors in C++
	Hands-on Destructors

	Hands-on Activity 1: Constructors
	Hands-on Activity 2: Destructors
	Summary
	Practice: Hands-on Activities

	Chapter 4: Exploring Important C++ Features
	C++ Friend Classes and Functions
	C++ Friend Functions
	C++ Friend Class

	Hands-on Activity: When to Use C++ Friend Concepts
	Best Practices in Passing Arguments
	Arguments Passing Activities

	Sharing Data of Objects Using C++ Static
	Restricting Accidental Changes Using C++ const
	C++ Const and Pointer Usage Activities

	Summary
	Practice: Hands-on Activities

	Chapter 5: Quickly and Systematically Model Real-World Problems into Software
	Modeling Real-World Problems into Software Design
	A Simple Gaming Application
	A Simple Shopping Application

	Modeling Game World Entities Using C++ Classes
	Game Implementation Using C++ Classes
	Model Application Entities Using C++ Classes
	Basic Tasks Related to a Shopping Application
	Basic Customer Interactions in a Shopping Application
	Basic Shopkeeper Interactions in a Shopping Application
	Simulating Shopping Application Tasks

	Summary
	Practice: Hands-on Activities

	Chapter 6: Quick Software Development Using OOP
	The Importance of Inheritance
	Inheritance Approaches
	Issues in Combining Inheritance Approaches
	Access Controls and Inheritance
	Constructors and Destructors Working Order in Inheritance Context

	Practicing the Reduce and Reuse Principle
	Building New Software Building Blocks Versions Easily
	Combine or Connect Objects Wisely
	Object Composition: Special Gaming Weapon
	Object Composition and Aggregation
	Hands-on Activity: Inheritance and Object Association

	Summary
	Practice: Hands-on Activities

	Chapter 7: Easy-to-Use Software Development Using OOP
	The Importance of Polymorphism
	Function Overloading
	Function Overriding

	Overloading Operators to Deal with Complex Objects Computations
	How to Overload Operators
	Practice Operator Overloading Usage

	Generic Functions and Data Structures
	Practice with Generic Functions
	Generic Data Structures
	Practice Implementing a Generic Data Structure

	Using Dynamic Polymorphism for Offering Common Interfaces
	The Importance of Virtual Functions
	The Importance of Pure Virtual Functions and Abstract Classes
	Practice with Dynamic Polymorphism

	Summary
	Practice: Hands-on Activities

	Chapter 8: Design Patterns
	Introduction to Design Patterns
	Creational Patterns
	Structural Patterns
	Behavioral Patterns

	Learning Creational Design Patterns
	The Factory Method
	Practice Tasks

	The Singleton Pattern
	Practice Tasks

	Structural Design Patterns
	The Facade Pattern
	Practice Tasks

	The Proxy Server Pattern
	Practice Tasks

	Behavioral Design Patterns
	The Chain of Responsibility Pattern
	Practice Tasks

	The Template Method
	Practice Tasks

	Summary

	Chapter 9: Event-Driven Programming
	The Importance of Event-Driven Programming
	Key Concepts
	Producers and Consumers
	Events
	Events Management
	Asynchronous Methods for Message Exchange

	Advantages and Use Cases

	Structure
	Using C++ for Events and Event Handlers
	Implementing Application Events and Subscribing to Classes

	Quick Practice
	Hands-on Activity: Design a Simulator
	IoTSensorsHandler Events
	SmartVehiclesHandler Custom Events
	SmartApplication Simulation

	Summary
	Practice: Hands-on Activities

	Chapter 10: A Brief Introduction to OOP in Python and Solidity
	Other Important OOP Languages
	The Importance of Python Programming
	The Importance of Solidity Programming

	Python Basic Programming Constructs for OOP
	Python Basic Programming Constructs
	Python OOP Constructs
	Python OOP Constructs for Inheritance
	Python OOP Constructs for Polymorphism

	Practicing OOP in Python
	Using Python for Encapsulation and Data-Hiding Features
	Using Python to Implement Inheritance
	Using Python for Polymorphism

	Solidity Basic Programming Constructs for OOP
	Solidity Basics
	Solidity Inheritance Programming
	Solidity Polymorphism Programming

	Practicing OOP in Solidity
	Using the Remix Editor for Practicing Solidity
	Practicing with Smart Contracts
	Extending Smart Contracts Using Inheritance
	Using Solidity for Polymorphism

	Summary

	Index

