

inside front cover

This book uses std::cin, std::cout, std::vector, and
std::string in many places. These should be old, familiar
C++ features. By counting other features from the standard
namespace in the code with this book, we can form a word
cloud. The larger the word, the more often we use it. See if you
recognize any, and look back when you have finished the book
to remind yourself what you have learned.

Learn C++ by Example

Covers versions 11 to 23

Frances Buontempo

Foreword by Matt Godbolt

To comment go to liveBook

Manning

https://livebook.manning.com/#!/book/_______________/discussion

Shelter Island

For more information on this and other Manning titles go to
www.manning.com

https://www.manning.com/

Copyright

For online information and ordering of these and other

Manning books, please visit www.manning.com. The

publisher offers discounts on these books when ordered in

quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2024 by Manning Publications Co. All rights

reserved.

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means

electronic, mechanical, photocopying, or otherwise, without

prior written permission of the publisher.

Many of the designations used by manufacturers and sellers

to distinguish their products are claimed as trademarks.

Where those designations appear in the book, and Manning

https://www.manning.com/
mailto:orders@manning.com

Publications was aware of a trademark claim, the

designations have been printed in initial caps or all caps.

♾ Recognizing the importance of preserving what has been

written, it is Manning’s policy to have the books we publish

printed on acid-free paper, and we exert our best efforts to

that end. Recognizing also our responsibility to conserve the

resources of our planet, Manning books are printed on

paper that is at least 15 percent recycled and processed

without the use of elemental chlorine.

Manning Publications Co.

20 Baldwin Road Technical

PO Box 761

Shelter Island, NY 11964

Development editor: Doug Rudder

Review editor: Adriana Sabo/Dunja Nikitović

Technical editor: Timothy Jaap van Deurzen

Production editor: Keri Hales

Copy editor: Lana Todorovic-Arndt

Proofreader: Melody Dolab

Typesetter and cover designer: Marija Tudor

ISBN: 9781633438330

dedication
To my husband, Steve Love, for supporting me and chatting about

possible examples and approaches used in this book when he wasn’t busy

writing his own.

contents
Front matter

foreword
preface
acknowledgments
about this book
about the author
about the cover illustration

1 Hello again, C++!
1.1 Why does C++ matter?
1.2 When should you use C++?
1.3 Why read this book?
1.4 How does this book teach C++?

Who this book is for

Hello, again, C++!
What you’ll learn from reading this book

1.5 Some pro tips
2 Containers, iterators, and ranges

2.1 Creating and displaying a vector
2.2 Creating and displaying Pascal’s triangle

A reminder of Pascal’s triangle
Coding Pascal’s triangle

Move semantics and perfect forwarding
Using ranges to display the vector

Using format to display output

2.3 Properties of the triangle
Checking the first and last elements of each row

Checking the number of elements in each row
Checking the sum of the elements in a row

How many rows can we generate correctly?
Checking whether each row is symmetric

Highlighting odd numbers in a row

3 Input of strings and numbers
3.1 Guessing a predetermined number

Accepting user input the hard way

Accepting optional numeric input
Validation and feedback using std::function and lambdas

3.2 Guessing a random number
Setting up a random number generator
Using the random number generator

3.3 Guessing a prime number
Checking whether the number is prime
Checking properties with static_assert

Generating a random prime number
Deciding which digits are correct

Providing different clues using std::function

4 Time points, duration, and literals

4.1 How long until the last day of the year?
4.2 Understanding durations in detail

Ratios
Durations

Literal suffixes and operator / for readable code
Requirements and concepts

How many days until the last day of the year?
Using last to find how long to payday

Writing testable code

4.3 Input, output, and formatting
Parsing a date

Formatting time points and durations

4.4 Time zones
5 Creating and using objects and arrays

5.1 Creating a deck of playing cards
Defining a card type using a scoped enum for the suit

Defining a card type using a strong type for the face value
Constructors and default values

Displaying playing cards
Using an array to make a deck of cards

Using generate to fill the array
Comparison operators and defaults

5.2 Higher-or-lower card game
Shuffling the deck
Building the game

Using std::variant to support cards or jokers
Building the game with an extended deck of cards

6 Smart pointers and polymorphism

6.1 A class hierarchy
An abstract base class
A concrete class

Warming up for a race
Using type traits to check for special member functions

6.2 Writing and using derived classes in a vector
A blob moving randomly
Smart pointers

Race!
Some design considerations

7 Associative containers and files
7.1 Hardcoded answer smash

Creating and using an std::map
Pairs, tuples, and structured bindings

A simple answer smash game

7.2 Associative containers
The map type in more detail

Using lower and upper bound to find a key more efficiently
Multimaps

7.3 File-based answer smash
Loading data from a file
Picking a word randomly using std::sample

Answer smash

8 Unordered maps and coroutines

8.1 Randomly generated matching pennies
8.2 Matching pennies using an unordered_map

Unordered containers and std::hash
Using an unordered_ map to make a prediction

The mind reader game

8.3 Coroutines
How to make a coroutine

A coroutine function
The coroutine’s return object

RAII and the rule of zero
Filling in the promise_type

Filling in the Task type
A coroutine mind reader

9 Parameter packs and std::visit
9.1 The triangle numbers

Testing our triangle numbers with algorithms
Execution policies for algorithms

Mutable lambdas
More properties of the triangle numbers

9.2 A simple slot machine
Revision of constexpr and std::format
Using std::rotate to spin the reels

The simple slot machine

9.3 A better slot machine
Parameter packs and fold expressions

Using a parameter pack to find frequencies
A fairer payout

Allowing holds, nudges, or spins
Spinning reels with std::visit and std::views::zip

appendix Further resources
index

Front matter

foreword
C++ is an ever-improving language used in almost every

corner of computing, from embedded systems, operating

systems, browsers, games, and trading systems to the

ebook reader you may be using to read this book. A new

C++ standard comes out every three years, and compiler

vendors are quick to pick up on the latest features. I’ve

been writing C++ professionally for over 20 years in the

seemingly disparate games and finance industries. I have

mostly worried about the performance of my code, which

led to me creating Compiler Explorer, and not about every

little change to the language.

All the while, at the back of my mind, I was concerned I

was missing something. When I heard Fran was writing this

book, I was excited to have the opportunity to catch up on

the newer parts of the language I’d been ignoring for so

long.

I first met Fran at the C++ on Sea conference. She was

running the lightning talks—each speaker gets 5 minutes to

present, one after another in rapid succession. As the

compère of the talks, Fran had to cover while one person

got up on stage and the previous left, and in doing so, she

invited the audience to play various guessing games, such

the higher-or-lower card game or smash quiz, getting us to

guess various conference speaker names mixed up with

C++ keywords. Little did we know she was trying out some

of the games she uses as examples in this book!

In this book, Fran covers many of the latest C++ features,

including smart pointers, ranges, optional types, variant

types, improved string formatting, constexpr, concepts, and

coroutines. If any of those sound unfamiliar to you, then

you’re in for a treat. As I mentioned, I haven’t always kept

up to date with the newer features, and reading this book

was a fun way of picking them up. And I finally learned the

difference between aggregate initializers and initializer lists!

The continued evolution of the language means C++ today

is not the bug-prone tangle of memory leaks you might

remember from the 1990s and 2000s. Unfortunately, online

resources are slow to catch up and often show the old,

deprecated ways of doing things. This book clears up a lot

of misconceptions and will set you up on the right track.

The examples are playful and fun but show real-world

nontrivial code. Each section shows the journey of

development, iterating on the code as Fran introduces new

concepts one by one. I encourage you to play along and

compile and run the code as you read each section. At least

for me, learning by doing works better than just reading

alone, and by tinkering with the code, you can get a better

sense of how easy it is to make changes.

Along the way, there’s great general development advice on

the tradeoffs we all have to make when writing code. There

are tests that explore the edge cases and how to handle

them, and even examples of how to write code that won’t

compile if used incorrectly, with helpful error messages.

Each section has relevant links to online resources such as

blog posts, reference sites, and online tools (not just

Compiler Explorer) that can help you understand the matter

more deeply. The links complement the book perfectly, not

distracting from the flow of the examples but giving you an

opportunity to explore further if you’re so inclined.

Learn C++ by Example is a fun and pragmatic way to learn

the newest features of C++. If, like me, you’ve been

worrying you’re missing out, or if you’re returning to C++

after an absence, then let Fran take you on a journey of

what’s possible with modern C++ and learn how to code

your way out of a paper bag too!

—Matt Godbolt

preface
I first encountered C++ when asked to write a C++ parser

to emulate code for an embedded device on a PC back in

the 1990s. I only knew C at the time, so this was a baptism

by fire. The C++ was predominantly C with classes, like

many early versions of C++ were. Over time, I learned

more and fell in love with the language. As a long-standing

member of ACCU (https://accu.org/), I volunteered to

become editor of its Overload magazine, which means I

have to write an editorial every other month, as well as

https://accu.org/

encourage people to write and collate feedback from the

review team. Overload has a mix of articles from

newcomers and seasoned professionals, covering C++ in

depth, as well as broader programming topics, so as the

editor, I need to try to keep up to date with everything. This

is a challenge, and I still have lots to learn.

I have used C++ for personal projects, and you can find

many of my talks on YouTube. I have also used C++

professionally, predominantly in investment banks and other

financial institutions. I know other languages too, and often

act as an intermediary between the quant teams writing

C++ libraries and the frontend teams using them. I do

understand a lot of the under-the-hood mathematics that

rocket scientists use in their coding. To be honest, I’ve only

worked with two rocket scientists, but you can do clever

things with C++. The important part is understanding what

you are doing and knowing how to test your code.

C++ is an evolving language, so I will never be up to date

with all the changes. However, being aware of what I don’t

know means I can pick specific parts to practice. In this

book, I share various small projects designed to help you

learn a variety of newer C++ features. Over the years, I

have met many people who used to know C++ but stepped

away to use another language for a while, and they were

overwhelmed by the number of new features and

approaches when they considered picking up C++ again.

It’s disheartening to spend time learning something and

then find it difficult to reacquaint oneself. I want to

encourage anyone in such a situation to focus on key

elements to get back up to speed. I hope this book fills that

need.

This book does not cover everything that has changed from

C++11 onward. As I wrote this book, C++23 was finalized,

so I have included a few of the newest features at the time

of writing. C++ will continue to change, but having a few

small projects to play with means you can use them for

practice as the language continues to evolve. For instance,

this book uses various containers, from std::vector to

std::unordered_ map, and more. The containers have

been a fundamental part of C++ for a long time, but recent

changes make them easier to use. This book uses a variety

of new features, without trying to be a reference book for

the whole language. The “About this book” section gives

further details.

acknowledgments
This book has been fun and challenging to write. I’ve

learned loads as I’ve tried to explain various aspects of

C++. I frequently asked others for help or ideas, while

aiming to find simple but correct ways to describe the

language. Thanks to everyone who argued with me to

ensure I was correct.

I would like to thank Matt Godbolt for writing a foreword for

me. I’m delighted you enjoyed reading this book.

At Manning, I’d like to thank my development editor Doug

Rudder and my technical editor Tim van Deurzen for their

feedback, help, and encouragement while writing this book.

In addition, thanks to the entire staff who helped produce

this book.

I would also like to thank everyone who has taken the time

to give me feedback, in particular Howard Hinnant, Andreas

Fertig, Nina Ranns, Silas Brown, and Seb Rose, who all took

time out of their busy schedules to comment in detail on

various chapters, calling me out where I was unclear or

incorrect. I’m also grateful to ACCU and those in the general

email group who explained interesting edge cases I

discovered as I wrote. Any remaining mistakes are my own.

I thank everyone involved in C++, including Matt Godbolt

for his Compiler Explorer, Andreas Fertig for C++ Insights,

and all those who spend time and money on developing

new standards or engaging in various discussion groups.

Finally, thanks to all the reviewers: Amit Lamba, Arun Saha,

Aryan Maurya, Balbir Singh, Clifford Thurber, David Racey,

Frédéric Flayol, Jean-François Morin, Johannes Lochmann,

John Donoghue, Jonathan R. Choate, Jonathan Reeves,

Joseph Perenia, Juan José Durillo Barrionuevo, Keith Kim,

Kent Spillner, Matteo Battista, Mattia Antonino Di Gangi,

Maurizio Tomasi, Michael Kolesidis, Mitchell Fox, Partha

Pratim Mukherjee, Patrick Regan, Raushan Jha, Rich Yonts,

Samson Hailu, Satej Kumar Sahu, Srikar Vedantam, Sriram

Macharla, Timothy Moore, Vimal Upadhyay, and William

Walsh. Your suggestions helped make this a better book.

about this book
C++ has changed a lot over the last decade or so. Some

people who used to know the language well might now be

put off by how many new things they will have to learn. It

doesn’t have to be so hard. Getting up to speed now will

make it easier to keep track as C++ continues to change

and evolve. This book focuses on small projects using

various parts of C++, rather than an exposition of the

entire language. You will try out some ideas and learn

language features on the journey, rather than plow through

each part of the language’s syntax and standard libraries

using one-line examples. The first chapter is an

introduction, and from chapter 2 until the last chapter, you

will create small projects and games to help you learn. You

might even have fun!

Who should read this book

If you have used C++ before but have failed to keep up

with recent changes, this book is for you. If you used to be

an expert, but your knowledge has gone hazy, and you

want to get back up to speed, this book will help you. If you

have never been an expert but have previously used some

C++ and want to learn more, in particular newer

approaches and features, this book will also be valuable.

How this book is organized: A road map

This book has nine chapters. The first chapter provides an

introduction, and the remaining chapters focus on a puzzle

or game to code. In some cases, we make a simplified

version first before improving the game. In all cases, we

focus on one or more main features of C++ and learn a

variety of other ideas and approaches on the way:

Chapter 1 provides background on C++, showing why it

is relevant and useful and introducing some recent

changes.

Chapter 2 uses an std::vector to create Pascal’s

triangle. It also covers move semantics, using

std::format, ranges, and lambdas.

Chapter 3 uses random numbers to make a number-

guessing game. It also introduces std::optional,

std::function, and handling user input.

Chapter 4 uses time points and duration from

std::chrono to write a countdown. We also meet user

literals and learn about std::ratio.

Chapter 5 covers writing classes to build a deck of cards

and play the higher-or-lower card game. It also covers

scoped enums, std::array, the three-way

comparison operator, and std::variant.

Chapter 6 uses classes again to make some blobs race

out of a paper bag, this time revising inheritance and

detailing the new special member functions now

available in C++. In addition, it covers the rule of zero,

type traits, and smart pointers.

Chapter 7 uses std::map and std::multimap to

build a game of answer smash. These containers are

not new, but we see how to use std::pair and

std::tuple with structured bindings, allowing us to

query the maps neatly. Furthermore, we also read data

from a file.

Chapter 8 uses the newer std::unordered_map and

describes std::hash to build a mind-reading machine,

or at least a program that guesses if you will pick heads

or tails based on previous outcomes. It also shows how

to turn the mind-reading machine into a coroutine.

Chapter 9 rounds things out by going into detail on

parameter packs and std::visit, showing us how to

make a slot machine game. The chapter encourages

you to practice more with various algorithms,

std::format, and lambdas.

Start by reading the first chapter, and then get your chosen

compiler ready. You can read the chapters in any order;

however, they build on each other to some extent, even

though each creates a self-contained project. When a

feature is used again, the first mention is signposted, so

you can skip back if you need to. Reading the chapters in

order might be easier, though, as you gradually add new

approaches to your repertoire. However you decide to read

this book, do stop and try out some code. Then play the

games you created, or play with the projects. Keep your

brain in gear, ask questions, experiment, and above all,

have fun!

About the code

This book contains many examples of source code, both in

numbered listings and in line with normal text. In both

cases, the source code is formatted in a fixed-width font to

separate it from ordinary text. Sometimes, code is also in

bold to highlight code that has changed from previous steps

in the chapter, such as when a new feature adds to an

existing line of code.

In many cases, the original source code has been

reformatted; we’ve added line breaks and reworked

indentation to accommodate the available page space in the

book. Additionally, comments in the source code have often

been removed from the listings when the code is described

in the text. Code annotations accompany many of the

listings, highlighting important concepts.

This book has code in all nine chapters. The code is all in

the book but can be cloned from

https://github.com/doctorlove/BootstrapCpp.git. The first

chapter is a short main function used to discuss modern

approaches in C++, while the fun and games start from

chapter 2. You will need a compiler, and

https://isocpp.org/get-started provides links to several good

https://github.com/doctorlove/BootstrapCpp.git
https://isocpp.org/get-started

free ones. Some features, such as std::format, are not

supported on all compilers, but the book calls this out, and

the source code has comments showing what to do instead.

You can get executable snippets of code from the liveBook

(online) version of this book at

https://livebook.manning.com/book/learn-c-plus-plus-by-

example. The complete code for the examples in the book is

available for download from the Manning website at

https://www.manning.com/books/learn-c-plus-plus-by-

example.

liveBook discussion forum

Purchase of Learn C++ by Example includes free access to

liveBook, Manning’s online reading platform. Using

liveBook’s exclusive discussion features, you can attach

comments to the book globally or to specific sections or

paragraphs. It’s a snap to make notes for yourself, ask and

answer technical questions, and receive help from the

author and other users. To access the forum, go to

https://livebook.manning.com/book/learn-c-plus-plus-by-

example/discussion. You can also learn more about

Manning’s forums and the rules of conduct at

https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue

where a meaningful dialogue between individual readers

and between readers and the author can take place. It is

not a commitment to any specific amount of participation on

the part of the author, whose contribution to the forum

https://livebook.manning.com/book/learn-c-plus-plus-by-example
https://livebook.manning.com/book/learn-c-plus-plus-by-example
https://www.manning.com/books/learn-c-plus-plus-by-example
https://www.manning.com/books/learn-c-plus-plus-by-example
https://livebook.manning.com/book/learn-c-plus-plus-by-example/discussion
https://livebook.manning.com/book/learn-c-plus-plus-by-example/discussion
https://livebook.manning.com/discussion

remains voluntary (and unpaid). We suggest you try asking

the author some challenging questions lest their interest

stray! The forum and the archives of previous discussions

will be accessible from the publisher’s website as long as

the book is in print.

Other resources

Each chapter mentions further resources, and these are

collated into an appendix at the end of this book, so you

can easily look back without having to keep notes.

about the author
Frances Buontempo has many years of C++ experience.

She has worked as a programmer at various companies,

mostly in London, with a focus on finance. She enjoys

testing and deleting code and tries to keep on learning. She

has given talks on C++ and more, which you can find on

YouTube. She is the editor of ACCU’s Overload magazine

and will happily consider articles from readers who want to

share what they learned from this book.

about the cover illustration
The figure on the cover of Learn C++ by Example is

“Femme de l’Isle de Lemnos,” or “Woman of Lemnos

Island,” taken from a collection by Jacques Grasset de

Saint-Sauveur, published in 1788. Each illustration is finely

drawn and colored by hand.

In those days, it was easy to identify where people lived

and what their trade or station in life was just by their

dress. Manning celebrates the inventiveness and initiative of

the computer business with book covers based on the rich

diversity of regional culture centuries ago, brought back to

life by pictures from collections such as this one.

1 Hello again, C++!

This chapter covers

Why C++ is relevant
When C++ is useful
What you need to know before reading this book
How this book will bootstrap your knowledge of C++
What you’ll learn in this book

C++ is an old but evolving language. In programming, you

can use it for almost anything and will find its application in

many places. In fact, C++’s inventor, Bjarne Stroustrup,

described it as the invisible foundation of everything.

Sometimes, C++ might be present deep inside a library of

another language because it can be used for performance-

critical paths. Furthermore, it can run in small, embedded

systems, or it can power video games. Even your browser

might be using the language. C++ is almost everywhere.

The language is compiled and targeted at specific

architectures such as a PC, mainframe, embedded devices,

bespoke hardware, or anything else you can think of. If you

need your code to run on different types of machines, you

need to recompile it. This has pros and cons. Different

configurations give you more to maintain, but compiling to

a specific architecture gets you down to the metal, allowing

the speed advantage. Whatever platform you target, you

will need a compiler. You will also need an editor or

integrated development environment (IDE) to write code in

C++.

C++ stems from C, which has similar advantages but is a

lower-level language. If you recognize ++ as the increment

operator, you’ll realize that the language’s very name

suggests it is a successor to C. You can avoid the depths of

pointers and memory allocations with C++ by writing

higher-level code. You can equally drop down to C or even

assembly language in C++ code. Although C++ was never

intended to take over the world or even replace C, it does

provide many new ways to approach coding. For example,

you can do a surprising number of things at compile time,

using type-safe features rather than preprocessor macros

often used in C.

This language underpins diverse technologies, including

compilers or interpreters for other languages, and even

C++ compilers themselves. You can develop libraries for

use in other languages, write games, price financial

instruments, and do much more. If you ever typed make at

a prompt, you were probably using C++ without knowing it.

C++ may power your browser or e-reader if you are

reading this book in digital form, or it may have been used

to write device drivers for your machine.

This book will give you a firm grounding in a handful of C++

language and library features. Each chapter walks through a

small, self-contained project, focusing on one area. Along

with each chapter’s main feature, other parts of the

language will be covered. For example, if you fill a

container, such as a vector or an array, you may also want a

way to display and manipulate its contents. Thus, the next

chapter focuses on vectors but also introduces ranges and

lambdas, as well as using format to display output. By

gradually building up your repertoire, you will gain

confidence, which will allow you to rediscover the joy of

C++. This book will focus on several fundamental parts,

showing you various ways in which the language is easier

now than it used to be. You will end up with a firm

grounding, ready to use and learn more C++.

1.1 Why does C++ matter?
C++ is designed by a committee. Some languages are

introduced and developed by a company or an individual.

C++ is not. Originally invented by Bjarne Stroustrup,

Working Group 21 (WG21) of the International Organization

for Standardization (ISO) is now responsible for its new

versions. You can find more details at

https://isocpp.org/std. There’s been a new ratified standard

every three years since 2011, each adding new features and

sometimes simplifying ways of doing things. This means

there is a lot to learn. Some documentation and

descriptions sound as if they were written in legalese, which

can be overwhelming. This book will use a few precise

definitions to help you get the hang of parsing such

explanations. Members of the committee make suggestions,

write papers to explain their ideas, and demonstrate how to

implement new features or small improvements, which

https://isocpp.org/std

leads to innovations that influence other programming

languages too. For example, Java and C# would not have

generics if C++ hadn’t introduced templates. Ideas do flow

in both directions. C++ also takes on board ideas from

other languages, including functional programming idioms,

such as lambdas.

These recent standards injected new life into C++, causing

lots of excitement. Companies that have been using C++

for years may previously have relied on in-house libraries to

support features that are now part of the core language.

Upgrading to a newer standard can be hard work, but it

means more people will be able to work on the code base

without spending time getting up to speed with a niche

implementation. In addition to changes in the technology

stack in businesses, there are now several conferences

devoted to C++, along with podcasts and blogs, as a new

cohort gets involved. C++ has a reputation for being very

hard-core, with geeks arguing about difficult stuff and being

mean to newbies (and each other). This is partially unfair,

but the IncludeCpp group (https://www.includecpp.org/)

tries to be inclusive and welcoming. They have a discord

group and tend to have a stall at C++ conferences, so if

you go alone, you can head straight to them and say hi.

Recent changes have made several parts of C++ easier to

explain and use but have introduced more edge cases and

complications. This book will tend to stick with commonly

available features that make your life easier, but it’s worth

knowing a bit about some new, less widely supported

features.

https://www.includecpp.org/

If you knew C++ before C++11, you might be intimidated

by the changes. In fact, if you spent time catching up and

blinked, you've still missed a lot. Fear not. Although C++

may resemble riding a bicycle (it hurts if you fall off), C++

doesn’t have to be painful. This book will stop you from

falling down the rabbit hole. You can have fun and learn

many approaches and paradigms, from object-oriented

programming to functional approaches. A grounding in C++

will make other languages and approaches easier to

understand too. Furthermore, C++ is so pervasive that it

will never go away, so it’s useful to understand a little. You’ll

never know all of it. Even Bjarne himself is reputed to have

said he’d rate himself at seven out of ten on C++

knowledge, so fear not. To be a good programmer, you

don’t have to know every detail of the language. Knowing

enough as a basis to learn more is important. If you

bootstrap your understanding now, you will also find it

easier to keep up.

C++ has grown over time. Initially, C++ was C with classes,

introducing the keyword new (along with delete and

class) and the idea of constructors and destructors. These

are functions that run automatically when an object is

created and when it goes out of scope or is deleted. Unlike

garbage-collected languages, such as C# and Java, you

have control over an object’s lifetime. Proponents of

garbage-collected languages sometimes deride C++,

claiming it’s all too easy to end up with memory leaks. Now,

you don’t need to use new and delete, and C++ has

smart pointers to help with memory management. The

language evolved over time, adding various new features. It

still remains relatively compact, although it has grown since

it began. The language, like all others, is what you make of

it. You can write terrible code in any language. You can also

write beautiful code in any language, but you need to learn

how. By trying out code as you read this book, you will end

up with some small programs to play with. They will cover

various aspects of the language, giving you a firm

grounding. You will see how C++ can be awesome.

There are many rivals to C++, yet C++ has staying power.

It consistently remains at the top of the TIOBE index

(https://www.tiobe.com/tiobe-index/#2022) and was

ranked among the top three in 2022. You could use C

instead, but you will see stars (pointers being represented

with an * character). If you want a data structure beyond

an array, you’ll have to roll your own. You could use High

Performance Fortran for extremely fast computation. The

UK Met Office uses Fortran for their weather modeling

because they have a vast amount of data to crunch in a

very short time. Fortran also loiters in many academic

institutions, so you may have seen or used it if you are an

academic or student. However, it is a little niche. You are

more likely to come across some C++ code in the wider

world.

Various new languages have been invented, aiming to deal

with C++ defects or annoyances. D feels similar to C++

because of the C-like syntax and high-level constructs, and

it was invented to deal with the aspects of C++ the creators

didn’t like. Meanwhile, C++ continues to evolve, but it

always aims to remain backward compatible, so it is

constrained by historical decisions. New languages don’t

have a legacy and thus have more freedom. Go, Objective

C, Swift, Rust, and recently Carbon also rival C++ in some

areas. That’s fine, and learning several languages and

thinking about what might make a programmer’s life easier

is a good thing. Many times, new ideas introduced into the

latest C++ standards are based on insights from other

languages. As new languages have been introduced, C++

still remains prevalent and often takes on board any

challenges they present. C++ isn’t going away anytime

soon. You can get involved and submit bug reports or

suggestions too if you like. The committee consists of

volunteers, who work hard to improve the language.

ISOCpp provides details on how to get involved

(https://isocpp.org/std/meetings-and-participation).

If you learn C++, you will have a solid foundation for other

languages. The similarity to other languages can help you

quickly pick up how to use them. You will get familiar with

some data structures and algorithms, as well as various

paradigms ranging from functional programming to object-

oriented code. Even if you don’t end up on the standards

committee or inventing your own programming language,

you will be well placed to continue a journey of lifelong

learning and understand what is happening under the hood.

https://isocpp.org/std/meetings-and-participation

1.2 When should you use C++?
You can use C++ for anything, but some use cases are

more sensible than others. To prototype some machine

learning or run a statistics calculation, it might be quickest

to start in Python and use existing libraries. Of course,

those libraries may include some C++. If you feel confident

enough to look at the source for a library to figure out why

a bug happens, you have a head start on other

programmers. If someone needs a program with a frontend,

be that a website or local program with a graphical user

interface (GUI), you could build the whole thing in C++, but

it might be easier to split up the software. C++ doesn’t

support GUIs in the core language, unlike, say, C#, so the

frontend would require an external library, such as the

cross-platform C++ library Qt (https://www.qt.io/). You

could also write the frontend in something completely

different and call the C++ code as a service or library. So,

given that you might start in another language to try out an

idea or build part of your application in another tool chain,

when should you use C++?

If you want a first-person shooter-style game, you could try

to write it in JavaScript, but using a language that compiles

to the hardware is more sensible. An interpreted language

will be slower than a compiled language. C++ is therefore

frequently used to write the game engine, render the

graphics, work out the physics, detect collisions, and

provide sound and artificial intelligence for bots. A scripting

language might call into this engine, but the engine’s power

https://www.qt.io/

and speed often come from C++, squeezing every inch of

power out of a top-end graphics card or another component

of an expensive gaming rig. This also makes C++ suitable

for high-performance computing (HPC), financial

applications, embedded devices, and robotics.

Because C++ takes you close to the metal, you can break

things. It’s possible to brick an embedded device if you are

not careful, rendering the machine inoperable. You’re

unlikely to manage that if you write a program to run on

your laptop or computer. It might crash, proudly

announcing a segmentation fault or similar on the way out.

An embedded device without an operating system is

different. If it’s only running one program without an

operating system, and that goes wrong, bad things can

happen. That’s okay too. Bjarne Stroustrup once said, “If

you never fail, you aren't trying hard enough”

(https://www.stroustrup.com/quotes.xhtml). Although the

language allows you to use raw pointers and potentially

step over memory bounds or invoke undefined behavior,

this book will steer you away from danger. Just remember,

it has been said that with great power comes great

responsibility. With enough of a solid foundation, you can

program responsibly, learn lots, and have fun.

Although C++ doesn’t support several things natively, such

as unit testing, GUI coding, or even networking (that nearly

made it into C++23 and might make it into a future

standard), you can do these things using a suitable third-

party library. What the core C++ language does provide is a

large and thought-through standard library. If you were

https://www.stroustrup.com/quotes.xhtml

using C and wanted a normal distribution of random

numbers, you’d need to dust off a mathematics book or

read what Donald Knuth has to say on the matter. If you

need a lookup table, you can use C++’s standard map. In

C, you’d have to write your own. In fact, you get stacks,

queues, heaps, and almost every data structure you can

think of in C++ out of the box, along with a vast number of

algorithms. This means learning C++ provides a solid

foundation for understanding other languages.

If you need to do a lot of number crunching quickly, C++ is

a great choice. Modern language versions also support a

variety of random number distributions, as you will see in

this book, making it relatively easy to set up a variety of

complicated simulations. Even without using the latest and

greatest parts of the language, you can build some serious

applications in C++. For example, the MRC Centre for

Global Infectious Disease Analysis, affiliated with Imperial

College in the United Kingdom, open sourced their COVID-

19 simulation model (https://github.com/mrc-ide/covid-

sim). These models were used to decide public policy in the

United Kingdom during the pandemic. C++ does the heavy

lifting, and some scripts, written in R, are provided to

display the results.

C++ is often described as a multi-paradigm language. It

supports object-oriented programming, but you are allowed

to write free functions too. You can write low-level

procedural code if you want, but you can also use generics

(i.e., templates) and functional-style programming. You can

even do template meta-programming (TMP), making the

https://github.com/mrc-ide/covid-sim
https://github.com/mrc-ide/covid-sim

compiler do calculations for you. This was an accidental

discovery, presented by Erwin Unruh at a C++ committee

meeting in 1994. He demonstrated a program that didn’t

compile but rather printed out the prime numbers in the

compiler error messages. Playing with TMP can be fun to

explore and push to extremes, but simpler cases can give

faster runtimes with type-safe, compiler-evaluated

constants. If you learn how to use some C++, you will have

a stable foundation for many other languages and know a

great variety of different programming paradigms.

1.3 Why read this book?
As the language evolves, people are writing books for each

new standard and more general-purpose style guides. The

style guides won’t make any sense if you don’t know the

new features, and the new features build on previous

changes, so the full details can be overwhelming. Where do

you start in the face of a moving target? Where you are.

You need a way to bootstrap your learning. This book will

take you through some central changes via small projects

so you have something to experiment with. By using some

of the new features, you’ll be better able to recognize what

modern C++ code is doing and know where to keep an eye

out for further changes and developments.

Instead of reading a list of all the changes you may have

missed, the ISOCpp website has a FAQ section

(https://isocpp.org/wiki/faq) that provides an overview of

some recent changes and big-picture questions. This

https://isocpp.org/wiki/faq

website is run by the Standard C++ Foundation, a not-for-

profit organization whose purpose is to support the C++

software developer community and promote the

understanding and use of modern Standard C++. The site

even has a section for people with a background in other

languages who want to learn C++. It doesn’t have a section

for “Learning C++ if you already knew C++ a while ago.”

This book plugs that gap. You don’t need a long list of every

feature that’s been introduced over the years. You need just

enough to get your confidence back.

You can keep an eye on the myriad and excellent resources

online to stay aware of what has been and is changing in

the language. ISOCpp will help you do this. However, you

do need to stop and try things out to learn. Spending time

experimenting will pay off, and this book will guide you

through some useful experiments. Trying out features in

bite-sized chunks will help you crystalize ideas and

concepts. You will see alternative approaches from time to

time. By seeing two ways to put items in a vector, you will

learn a new feature (the emplace methods) and recall an

old feature (push_back). This will help you read other

people’s code and not be wrong-footed by unfamiliar

approaches. You will learn how to think through

alternatives, becoming aware of advice from different

places, which sometimes conflicts. This book will take a

pragmatic approach while encouraging you to think about

alternatives.

1.4 How does this book teach C++?
This book covers a subset of features introduced into C++,

from C++11 onward. At the time of writing, C++23 is in

feature-freeze, making it ready for a new standard. Each

chapter focuses on one main feature, although it introduces

and uses other modern features and idioms as well. Some

people who used to know C++ well are put off by how

many new things they will have to learn to start using it

again, and beginners often get frightened off quickly. It

doesn’t have to be so hard. Getting up to speed now will

make it easier to keep track as C++ continues to change

and evolve. If you haven’t used C++ for a long time and

have seen other books going through an extensive list of all

the new features and idioms, but you don’t know where to

start or how to use them, this book will help you focus on

some important parts, enabling you to dive into gnarly edge

cases and thorough explanations elsewhere afterward.

This book focuses on self-contained projects using various

parts of C++. You will try out some ideas and learn

language features on the ride, rather than plow through

each part of the language’s syntax and standard libraries

using one-line examples. If you have gone rusty, this book

will give you a chance to practice and rediscover the joy of

using C++. As you probably realize, writing a whole

program gives you more practice than playing around with

one or two lines. This book will therefore help you teach

yourself.

1.4.1 Who this book is for

This book is aimed at people who have used a little, or even

a lot, of the language and lost track of recent changes. If

you recognize the syntax and want to try to learn more, you

will gain something from this book. If you know what int x

= 5; int & y=x; do, have used an std::vector<int>

before, and recognize std::cout << x, you will be able to

follow. If you’ve seen int x{1}; before, you’re part way

there. If not, don’t panic. The curly braces are a new way to

initialize almost everything, which you’ll soon get the hang

of. If you used to know all the gnarly edge cases and quote

chapter and verse of a previous standard, this book will help

you focus on a handful of new features to get you back in

the driving seat. Once you’ve finished reading this book,

you will know where to get an up-to-date compiler and how

to keep an eye on upcoming changes, and you’ll be able to

read and write modern C++. Let’s look at some code now to

get a feel for a few new ways of writing the language.

1.4.2 Hello, again, C++!

It’s conventional to start learning a language with a “Hello,

World!” program, so let’s do just that. The following code

prints a greeting onscreen.

Listing 1.1 Hello, World

#include <iostream> ❶

auto main() -> int { ❷

 std::cout << "Hello, world!\n"; ❸
}

❶ Includes a header
❷ Trailing return type

❸ Operators :: and <<

If you save this to a file called hello_world.cpp, you can

compile it. For example, using the GNU compiler collection

(gcc; see https://gcc.gnu.org/), use g++ supporting C++11

with

g++ hello_world.cpp -o ./hello.out

This book assumes you recognize the include statement,

the scope resolution operator::, and the stream insertion

operator <<. The code inserts the greeting to standard

(std) cout inside the main function, the usual entry point

for executable code. You knew that, however, the trailing

return type -> at the end of a function name may be

unfamiliar, together with the keyword auto at the start of

the line. You can write int main() here instead, as you

always used to, but when C++11 introduced this feature,

many people started using it everywhere for consistency. It

becomes useful when you want to deduce the type a

function returns. Our hello program doesn’t need the

trailing return. Furthermore, main is special in that it

returns 0 by default, so it does not need a return statement

even though it returns an int. Without a trailing return

type, some template functions can be very tricky to specify.

Let’s consider an example that uses a template function.

https://gcc.gnu.org/

You can use the + operator easily enough to add numbers.

For example, auto x = 1 + 1.23. There’s our friend

auto again. We’re trying to sum an integer (1) and a

double (1.23), so the result is a double due to integer

promotion. If you want a general-purpose addition function,

you could attempt to write overloads for every possible pair

of parameters or, more sensibly, write a template function.

Even better, you can use one that is already written for you.

The functional header includes a definition of plus. In

fact, this header contains two definitions, one of which

sums two parameters of the same type, which we create by

saying std::plus<int> to add two integers. Since

C++14, a version that deduces the template argument

types was introduced. Using std::plus<> picks the new

specialization, which works out the types for us. If you try

the first version, 1.23 gets converted to an int, so you get

1 + 1, which some compilers warn about, whereas the

second version adds the int 1 and the double 1.23 to get

2.23. Try it out!

Listing 1.2 Adding two numbers

#include <iostream>

#include <functional>

auto main() -> int {

 std::cout << std::plus<int>{}(1, 1.23) << '\n'; ❶
 std::cout << std::plus<>{}(1, 1.23) << '\n'; ❷
}

❶ Enforces a sum of two ints, so returns 2
❷ Figures out the different types

You are used to functions starting with the return type and

then having a name and parameters, such as int main().

The return type is given first. To specify the return type,

plus needs to express the addition operation of the two

function arguments. This is much easier to do with

parameter names, but those are not visible to the usual

return type. The trailing return type makes using parameter

names to specify the return type possible. You need to say

auto at the start and indicate what type is returned after

the trailing ->.

Let’s look at a simplified version of the operator() for the

plus<> specialization. Remember, we want to declare a

function that takes two things and returns the sum of them.

We’re going to use a template with two typenames, allowing

two different types to be summed. The addition itself is the

easy part and simply uses the + operator. The declaration

has auto at the start and a type at the end.

Listing 1.3 A function to add two different types

template<typename T, typename U>

auto simple_plus(T lhs, U rhs) -> decltype(lhs + rhs)

{

 return lhs + rhs;

}

The operator function is a template using two different

types, T and U, for the left-hand side (lhs) and right-hand

side (rhs) of the binary operation, respectively. The return

type is declared using decltype specifier and the

expression lhs + rhs. If you squint, you can see how

that’s similar to the syntax for the main function we saw

earlier. Put them side by side and have a look:

auto main() -> int

auto simple_plus(T& lhs, U& rhs) -> decltype(lhs + rhs)

You can see the auto followed by the function name and

parameters, then the arrow and the trailing return type in

both cases. When we add 1 and 1.23, the parameter types

are deduced to be an integer and a double. The trailing

return type uses the expression (1 + 1.23) to get the return

type of a double.

If you already recognize these new features, great. There

are plenty more new things to learn. If you’ve never seen

any of them before, concentrate on the main point here,

which you saw when you tried out “Hello, World!”: the

trailing return type. You’ve learned something already.

1.4.3 What you’ll learn from reading this
book

You’ll learn how to use some new elements of the language,

from ranges to random numbers, and learn several other

simpler ways of doing things on the journey. This book

starts with a vector and builds up from there. Vectors are a

good way to revise and then learn new features, including

ranges, views, functors, and lambdas. Once you’re

comfortable filling, displaying, querying, and manipulating a

vector using ranges and algorithms, you’ll be ready to use

other parts of the standard library, including time

(chrono), random numbers, and, finally, coroutines.

Range-based for loops introduced in C++11 made the

language simpler. You can use them to walk over a

container without needing to dive into iterators first. Over

time, full-blown ranges have become standard too,

providing convenience and avoiding the direct use of

iterators, as well as offering more unified lookup and extra

safety. Previously, it was possible to pass the start of one

container and the end of another to an algorithm and not

realize this until something horrible happened at runtime.

Ranges avoid that problem. You’ll become familiar with

using ranges to view and copy the contents of a container.

You’ll find out how and why you don’t need so much

boilerplate code in a class by using the default keyword

for constructors and operators. You’ll learn how to use the

new random number distributions. If you’re used to calling

C’s rand function, the new approach might seem

complicated at first, but it’s powerful, and when used

properly, it helps you avoid mistakes people often make, for

example, when simulating rolling dice or shuffling a deck of

cards.

By using self-contained projects in each chapter, you’ll get

the chance to use all kinds of new and old features. You’ll

get to the point where you understand new features,

knowing when and why to use them in an idiomatic way.

Sometimes opinions on the best way to do things differ. You

saw the trailing return type early: auto main() -> int.

Some people love it and use it everywhere, but some

people hate it. The language’s evolution has taken us

beyond arguing about brace placement (sorry in advance if

you don’t like my approach) and given us lots more to

argue about. This book will give alternatives, firmly sitting

on the fence when it comes to such discussions so that you

can concentrate on trying to write some code and

experiment with new ways of expressing yourself.

1.5 Some pro tips
It’s possible to get lost or overwhelmed when learning,

especially if you are trying to tackle a big topic. If you bear

in mind the following few tips, you’ll be able to find your

way.

First, many of the new features are syntactic sugar, and

second, many elements of code use punctuation, which is

hard to look up. If you wanted to find out what the ->

symbol was doing in the main function given previously,

where would you start? One very useful tool is Andreas

Fertig’s C++ Insights (https://cppinsights.io/) website. C++

Insights transforms code to show the details behind some

newer C++ features. It is based on Clang

(https://clang.llvm.org/) and Andreas’ understanding of

C++ (https://cppinsights.io/about.xhtml). If you type in the

plus code we looked at in listing 1.2, C++ Insights will

transform the code for you.

https://cppinsights.io/
https://clang.llvm.org/
https://cppinsights.io/about.xhtml

Listing 1.4 C++ Insights output

#include <iostream>

#include <functional>

int main() ❶
{

 std::operator<<

 (

 std::cout.operator<<

 (

 std::plus<int>{{}}.operator()(1, static_cast<const int>(1.23))

),

 '\n'

); ❷
 std::operator<<

 (

 std::cout.operator<<

 (

 std::plus<void>{}.operator()(1, 1.23)

),

 '\n'

); ❸
 return 0; ❹
}

❶ The trailing return has been rewritten.

❷ Spelling out << and () are operators and convert 1.23 to an int.
❸ Spelling out << and () are operators.

❹ We didn’t explicitly return 0, but it happens for us.

Try it out directly (https://cppinsights.io/s/508b2063). The

insight may show lots of details, and the generated code is

based on Clang, so it may not always work on other

compilers, but listing 1.4 shows the transformed trailing

return symbol ->, along with the std::plus<int> and

std::plus<void> structures being used. If you can’t

understand a function you come across, try out C++

Insights for clues.

https://cppinsights.io/s/508b2063

The next thing to bear in mind is that not all compilers

support all the new features, so you might need more than

one. At the very least, you might need to use the option

/std:c++latest in Visual Studio or --std=c++20 for

g++. If you can’t face having to set up another tool, you

can always try out C++ code in various compilers online via

Matt Godbolt’s Compiler Explorer (https://godbolt.org/). It

supports a huge variety of different compilers, allowing you

to see how each behaves. This book will try to stick to

common parts, but if you want to explore more, this is a

great resource, along with C++ Insights. Each has a link to

the other, so why not use both? Before spending time

getting a toolchain setup, CppReference has a list of

compiler support for each of the new features

(https://en.cppreference.com/w/cpp/compiler_support) to

help you decide which version you need. This is another

great resource for checking function signatures or simply

finding which standard header file you need to include to

use a feature.

Finally, if you get stuck, don’t panic. The compiler may well

still give you several errors if you forget a semicolon deep

inside some template code. Newer compilers might pinpoint

the actual problem, though, rather than giving pages of

errors to wade through. Most modern compilers do try to be

slightly more helpful, so if you had pain previously and gave

up, things might be easier now. Nonetheless, you will get

incomprehensible errors from time to time. If you can’t

figure them out, ask someone for help or try starting at the

first error. If that doesn’t work, try starting at the last error,

https://godbolt.org/
https://en.cppreference.com/w/cpp/compiler_support

or at least find one pointing at your code, rather than library

code. If that doesn’t work either, comment it all out and add

your code back in slowly. Or, even better, consider using

version control and reverting to what worked. This book

won’t take you through all the details of how to set up a

sensible working environment but will point you to useful

tools and things to consider along the way.

Summary
C++ is everywhere and can be used for almost

anything.

C++ is evolving, with a new standard every three

years, decided on by WG21 of ISO.

C++ is a multi-paradigm language.

You need a compiler that supports your chosen

platform.

Other similar languages are available, but C++ gives

you a solid grounding in a variety of techniques and

idioms.

No single compiler currently supports every feature of

the latest version of the language, but you can use

Godbolt and C++ Insights to try out short snippets to

check whether they compile.

Coding a whole program is a great way to learn, and

you’ll do just that in the rest of this book.

2 Containers, iterators, and ranges

This chapter covers

Filling and using containers, with a focus on a vector of numbers
Range-based for loops and auto
Using a container with standard algorithms
Using format to display output
Ranges, views, and lambdas

Containers and algorithms have been a fundamental part of

C++ for a long time. Containers have included sequences

(e.g., vector), associative containers (e.g., map), and,

since C++ 11, unordered associative containers (e.g.,

unordered_map). The containers manage the storage for

their elements. The separation of data structures and

algorithms offers great flexibility, allowing one algorithm to

be applied to various containers. The addition of ranges to

the core language provides simplified ways to access and

manipulate containers. To explore these features, in this

chapter, we are going to construct Pascal’s triangle, which is

made by adding up adjacent numbers from the preceding

row, starting with a single 1 in the first row. The entries can

be used to count the number of event combinations and

more. We will use vectors to store the values, starting with

the first row, to practice using a vector and writing out to

the screen. We’ll then generate and display more rows,

learning how to use vectors differently. Finally, we’ll discuss

some of the triangle’s properties. This will help us think

about testing our code later.

You’ll need a compiler and editor or an IDE if you want to

code along. A list of free resources is available at

https://isocpp.org/get-started. I’m using a mixture of Vim

with GNU Compiler Collection (GCC) in the Windows

Subsystem for Linux (WSL) and Visual Studio 2022

community edition, with /std:c++latest in the C++

command line properties.

2.1 Creating and displaying a vector
First, we will create a vector containing a single number and

display it. This will be the first row of the triangle. Vectors

are the most commonly used containers, so starting with

them is handy. We can then practice putting different

elements in vectors, including other vectors, and using them

with algorithms. We will also employ several other C++

features as we code.

It’s a good idea to keep your code outside the main entry

point function so you can add tests easily or build a library

to make reusing the code straightforward. That said, we’ll

put everything in one file, called main.cpp, to keep things

simple, and we’ll make a function that we’ll call from main.

We start by making a vector containing a number and

displaying the contents as follows.

Listing 2.1 Filling and displaying a container

https://isocpp.org/get-started

#include <iostream> ❶
#include <vector> ❶

void generate_triangle()

{

 std::vector<int> data{ 1 }; ❷
 for (auto number : data) ❸
 {

 std::cout << number << ' ';

 }

 std::cout << '\n';

}

int main()

{

 generate_triangle();

}

❶ Includes headers for output and the vector itself
❷ Defines a vector, initialized with a single number 1

❸ Uses a range-based for loop to walk over the vector

If you’re playing along, compile and run your code. For the

GCC tools, compile like this:

g++ -Wall --std=c++2a -o main.out main.cpp

We don’t need to say which std we are using here, as long

as the compiler supports at least C++11, and we are

checking for any warnings, with all to the warning flag -W.

The -o flag names our output, which we can run by typing

./main.out once it has built the single main.cpp file. If

you are using an IDE, find your Build button, and then find

the Run button. You should get a single digit on your screen.

The code contains a few newer C++ features. At the top,

we’ve included two headers: iostream for input and output

streams and vector. This should be familiar. We then have

a function to generate and display the first line of our

triangle using a vector for storage. The vector is

initialized with the single number 1:

std::vector<int> data{ 1 };

Notice we’re using curly braces, called the uniform

initialization syntax. If we say

std::vector<int> data(1);

instead, we get a vector with one value, which is 0. A vector

has various constructors. The second version using (1)

treats the number 1 as a count of elements. The first

version, using curly braces {1}, is using an initializer list.

The list can have more than one item, and the vector is

created with the contents of the initializer list. Trying to use

an initializer list of {1, 2.3} would generate a compiler

error. This requires a narrowing conversion because 2.3 is a

double, and we want a vector of int. We can even use {}

to initialize a single number: int x{ 42 }. As the brace

initialization can be used in many places, it is called uniform

initialization. ISOCpp suggests preferring brace initialization

(http://mng.bz/n1m5) because it avoids narrowing and

allows consistency. Initialization is a big topic and can get

complicated. For example, Nicolai Josuttis has talked about

“The Nightmare of Initialization in C++”

(https://www.youtube.com/watch?v=7DTlWPgX6zs). The

http://mng.bz/n1m5
https://www.youtube.com/watch?v=7DTlWPgX6zs

important thing to note here is that we can use an initializer

list to construct a vector.

Armed with our container of data, we can show its contents

on the standard output stream (cout). We employ a range-

based for loop to walk over the container, using the

insertion operator << to stream out elements from the

container. Generally, a range-based for loop has the for,

parentheses, and a colon, as we saw in listing 2.1:

for (auto number : data)

This is a more succinct syntax than traditional for loops. On

the left side of the colon, there are a type and a variable

name. We can be lazy and get the compiler to figure out the

type by using auto. To the right of the colon, there is a

container, array, or similar. We can think of the range-based

for loop as syntactic sugar to make our lives easier. We do

not need to spell out the stopping conditions or how to step

through the items. The range-based for loop does this for

us.

If we try the code out in C++ Insights

(https://cppinsights.io/), we see the loop transformed into a

traditional C-style for loop with three parts: a beginning, a

stopping condition, and an increment. Every container has a

beginning and an end, and the range-based for loop uses

these to walk through the elements. C++ Insights shows all

the gory details but gives code equivalent to

https://cppinsights.io/

for (auto position = data.begin(); position!=data.end(); ++position)

With the C-style for loop, we use a position that is an

iterator into the vector, which we need to dereference, using

operator *, when we want to print the value:

std::cout << *position << ' ';

The range-based for loop is much easier to use and means

we can code at a higher level without having to think about

iterators.

Let’s look at auto in more detail. The keyword tells the

compiler to deduce the type. If you’re using an IDE, a mouse

hover over the word auto might tell you the number’s

deduced type. Visual Studio says it’s using

std::vector<int>>::iterator::value_ type, which

is int. Typing int instead of auto makes little apparent

difference in our case, but there are advantages to almost

always using auto (AAA). This phrase was coined by Herb

Sutter on his Guru of the Week blog (http://mng.bz/vPpp).

In more complicated cases, auto will save a lot of typing,

while tending to keep the code type safe. If we change the

container’s type to use double instead, we do not need to

change the loop as well, so the code is less brittle when we

use auto. Using auto can also pick up subtleties that can

be easily missed. If we make the data constant

const std::vector<int> data{ 1 };

http://mng.bz/vPpp

the loop variable’s type automatically changes to a

const_iterator, so we do not need to remember to make

the change there. In fact, we can even declare our container

using auto:

auto data = std::vector<int>{ 1 };

Because data is a vector of int constructed with an

initializer list containing an int, it is deduced to be

vector<int>.

More significantly, auto can help us avoid implicit

conversions, including narrowing conversions, and force us

to initialize our variables. We can say auto variable =

init, or if we want a specific type, we can say auto

variable = type{init}. In both cases, we are forced to

spell out how to initialize the variable. We cannot say auto

variable; because we will get a compiler error. If we try

something like auto x = int{ 1.5 }, we will also get a

compiler error because we are trying to use a narrowing

conversion. If we say int x = 1.5 instead, we might get a

warning, but some people ignore warnings. Not a good idea,

but it happens. Using auto would stop the potential error.

Back to our vector. We can make one more small change to

how we create our vector. We told the compiler to put an

integer in the vector, so surely it can figure out the type of

the elements in the vector. Yes, it can now. Since C++17,

we can simply say std:: vector data{ 1 }. Notice we

haven’t specified the template type. Instead, we are relying

on class template argument deduction (CTAD). If we decided

to use auto (almost) everywhere, we could even change

our declaration to auto data = std::vector{ 1 }. Now, if

we want an empty vector, the type cannot be deduced

because auto data = std:: vector{} does not have a

way to deduce the type of the elements, so it fails to

compile. CTAD is another new feature that saves us some

typing.

We can now display the first row of Pascal’s triangle. This

may seem like a small step, but we have seen a handful of

C++ features and can build on this. Next, we will add more

rows to the triangle and learn more C++ along the way.

2.2 Creating and displaying Pascal’s
triangle

We now have the first row and will use it to make the next

few rows, displaying what we get. We will use C++20’s

range library to print out the results. Ranges are one of the

bigger features introduced in C++20 that go beyond shorter

syntax. Once we have several rows, we will then think about

some properties of Pascal’s triangle, which will help us test

our code and practice using our vectors. Let’s start with a

recap of how to build Pascal’s triangle.

2.2.1 A reminder of Pascal’s triangle

Pascal’s triangle contains several useful number sequences.

One common use is to find the number of ways events can

combine. If you toss a coin once, you can get either heads

or tails. If you toss it twice, you can get heads twice, tails

twice, or one of each, in two ways: heads and then tails or

tails and then heads. For three tosses, you might get all

heads, two heads, one heads, or none, but how many

combinations are there for a given number of heads?

Pascal’s triangle will tell us.

The triangle starts with a number 1, by definition. If we are

looking for the number of possible combinations when

tossing a coin, there is one result for zero coin tosses. Each

subsequent row then starts and ends with 1, by definition.

This corresponds to the combination of events. For one coin

toss, we can get a single heads in one way or a single tails,

again in one way. The second row is therefore two 1s. For

the third row, again, we start and end with a 1 because we

can get all heads in one way or all tails in one way. The next

number is the sum of the two numbers in the preceding row,

laying out the rows as shown in figure 2.1.

Figure 2.1 The figure shows the first few rows of Pascal’s
triangle.

To generate the fourth row, we start with a 1, then sum the

first two numbers from the last row, getting 1 + 2 = 3; next,

we sum the second and the third number, getting 2 + 1 = 3.

We have used up the previous row, so we add a final 1. For

three coin tosses, the fourth row is telling us how many

combinations we can have: 1, 3, 3, 1. In other words, there

is one way to get all heads; three ways to get two heads

(HHT, HTH, THH); three ways to get one heads (HTT, THT,

TTH); and finally, one way to get no heads (TTT).

We continue with the next row, starting with 1, adding

adjacent pairs in the previous row, and ending with a final 1.

We could do this forever on paper, but code is a different

matter. An integer will have a maximum value, which will

vary between machines and compilers. If we include the

numeric header, we can find out what a platform gives by

calling std::numeric_limits<int>::max(). I get

2,147,483,647, which is 1 less than 2 to the power of 31, 2
31

- 1. That’s plenty of space for a few rows.

2.2.2 Coding Pascal’s triangle

There are several equivalent ways to generate the triangle;

however, let’s write code based on the definition we just

looked at. We saw how to build a new row using numbers

from the previous row, so let’s build a function taking the

last row and returning the next row. In the last section, we

sent data straight to the screen, but that made code difficult

to test, so it makes sense to return the data instead and

write a separate display function. Single-responsibility

functions are sensible after all. We made a vector of

integers for the first row, so we will continue using a

vector<int> for each row. The next listing shows our

function, adding a 1 at the start and end of the next row and

doing some adding in between.

Listing 2.2 The next row of Pascal’s triangle using the previous
row

std::vector<int> get_next_row(const std::vector<int> & last_row)

{

 std::vector next_row{ 1 }; ❶
 if (last_row.empty())

 {

 return next_row;

 }

 for (size_t idx = 0; idx+1 < last_row.size(); ++idx)

 {

 next_row.emplace_back(last_row[idx] + last_row[idx + 1]); ❷
 }

 next_row.emplace_back(1);

 return next_row;

}

❶ CTAD used to deduce that our template contains integers
❷ Stores the sum of the two numbers in the row above

We initialized our first row using curly braces because there

was a specific value. Now we want to calculate values and

add them to a vector. There is more than one way to do

this. To add to the end of the vector, we can use push_back

or emplace_back. To add items inside elsewhere, we can

use insert or emplace. The emplace versions send in

data to create the item in place, while push_back or

insert take a fully formed item that they copy, as

illustrated in figure 2.2.

Figure 2.2 emplace (left) takes parameters to construct an item
in place, while push_back takes a fully constructed item
copied into the vector.

For our integers, both methods amount to the same.

Sometimes, the emplace version is quicker because it

constructs the element directly in place in the vector;

however, push_back can be safer sometimes. The

emplace version will find a constructor for us, which might

not be what we would have chosen ourselves. Jason Turner

discusses the pros and cons on C++ Weekly

(https://www.youtube.com/watch?v=jKS9dSHkAZY). The

bottom line is that we are likely to see both being used.

We can now calculate the values in each row, but we need to

store them somewhere. A vector is a sensible choice, giving

us an std::vector<std::vector<int>>. That’s a

mouthful, and the compiler can figure this out for us. This

means we can use auto as the return type when we write a

function to create the triangle to save typing out

std::vector<std::vector<int>> in full. For a more

complicated function, we might need to help the compiler

figure out what type is being returned, but the compiler can

cope in this example. How many rows do we want? We can

postpone that decision if we accept the required number as

a parameter. All we need to do is call our get_next_row

function to populate the vector we return, starting with an

empty data row.

Listing 2.3 Generating several rows of Pascal’s triangle

auto generate_triangle(int rows) ❶
{

 std::vector<int> data;

 std::vector<std::vector<int>> triangle;

 for (int row = 0; row < rows; ++row)

 {

 data = get_next_row(data); ❷
 triangle.push_back(data); ❸
 }

https://www.youtube.com/watch?v=jKS9dSHkAZY

 return triangle;

}

❶ auto shorthand for deduced return type
❷ Generates the next row from the previous row

❸ Adds it to the triangle

We could stop here, display our triangle, and move on to a

new chapter. However, this approach is not particularly

efficient. We can do better.

2.2.3 Move semantics and perfect forwarding

A vector has many different constructors. We used the

version taking an initializer list in listing 2.1 when we made

the first row of our triangle:

std::vector<int> data{ 1 };

To generate the triangle, we default construct each data row

as

std::vector<int> data;

and assign it after the function call:

data = get_next_row(data);

We then push the data to the back of the triangle:

triangle.push_back(data);

This is not as efficient as it could be. We create the row

data, and a copy is pushed back to the vector of vectors. If

we make a couple of small changes, in effect by using a

different constructor, we can avoid the copy. Let’s see how to

do this using what is referred to as perfect forwarding.

We saw earlier that vector supports push_back and

emplace_back. The former takes a fully formed item,

which we have here, while the latter constructs an object in

place. There are two versions of push_back. The first takes

an item by reference:

void push_back(const T& value);

That version will be called by our code. It takes our data

and makes a copy at the end of the triangle. We can avoid

that copy if we use the second overload of push_back. The

signature uses && to indicate an rvalue reference:

void push_back(T&& value);

What is an rvalue reference? Any expression has a value

category, such as an rvalue or an lvalue. There are other

categories too, but we will not go into all of them here.

Instead, we will concentrate on avoiding the copy.

CppReference gives the full details (http://mng.bz/468R) in

case you want to take a deeper dive.

C uses the idea of lvalues and rvalues. If we say

int x = 42;

http://mng.bz/468R

the variable x is on the left of an expression and is therefore

called an lvalue, whereas 42 is on the right and is called an

rvalue. The lvalue has a name, while the rvalue does not.

When we call get_next_row, we have an rvalue. This is a

temporary unnamed vector, which we copied previously to

the lvalue data. This is wasteful. Rather than keeping a

copy of the data, we can use the back method to get the

last row of the triangle. Thus, we need to initialize the

triangle with the first row so that there is an element at the

back. We can now write our function as shown in the next

listing.

Listing 2.4 Moving a temporary

auto generate_triangle(int rows)

{

 std::vector<std::vector<int>> triangle{ {1} }; ❶
 for (int row = 1; row < rows; ++row) ❷
 {

 triangle.push_back(get_next_row(triangle.back()));

 }

 return triangle;

}

❶ Adds first row so we can call back
❷ Starts at 1 because we already have a row

We no longer have a copy of data. The push_back(const

T& value) version initializes a new element with a copy

of the value, but the version taking an rvalue reference,

push_back(T&& value), can move the temporary into

the triangle for us, avoiding the copy. The vector has various

constructors, including one taking an rvalue reference, called

a move constructor. Its signature has the && we saw earlier:

vector(vector&& other);

The push_back method taking T && value can utilize this

constructor by calling std::move, referred to as move

semantics. The push_back && overload can be, and often

is, implemented as

void push_back(T&& value) {

 emplace_back(std::move(value));

}

Inside the push_back method, the rvalue has a name

(value), so it becomes an lvalue. By calling

std::move(value), the value is cast back to an rvalue so

that the rvalue constructor is picked. In effect, C++’s move

operation does not actually move anything. It casts a value

to an rvalue. This allows an overload taking an rvalue to be

called, referred to as perfect forwarding. Once move has

been called and an rvalue passed to a function, the value is

in a valid but unspecified state. Since it’s been moved, it’s

not of much use to us anymore. Without the move, the other

vector would be passed as an lvalue, and the copy

constructor would be called. This involves unnecessary

copies, so it would forward the value imperfectly.

Move semantics and perfect forwarding are big topics, and

we have only scratched the surface. Thomas Becker wrote

an excellent blog post back in 2013 that walks through the

details (http://mng.bz/QRE6). An rvalue reference, &&,

might be an lvalue

http://mng.bz/QRE6

or an rvalue. If it has a name, it is an lvalue, but calling

std::move casts it to an rvalue, allowing perfect

forwarding. In fact, we could call emplace_back directly

ourselves with the rvalue or temporary:

triangle.emplace_back(get_next_row(triangle.back()));

How does the move constructor avoid a copy? A vector

stores items contiguously, so we can access elements using

iterators as well as indexing. We don’t need to know the

number of elements at compile time because a vector can

resize dynamically. When a vector runs out of space, it

allocates more memory. We can think of it as a container

pointing to some items, as shown in figure 2.3.

Figure 2.3 A vector is pointing to its elements.

There’s more to a vector than a pointer to its elements, but

focusing on this will reveal how the move constructor avoids

copying. A copy constructor or assignment will need to copy

over each element, so we would have the original vector of,

say, four elements, as shown in figure 2.3, along with an

identical copy, also pointing at four elements. A move

constructor can effectively steal the elements from the

rvalue by pointing to the rvalue’s items, rather than

allocating copies, as shown in figure 2.4.

Figure 2.4 A move-constructed vector can steal the rvalue’s
elements.

Nothing else can try to use the nameless temporary’s

elements afterwards, so this is fine. Furthermore, nothing

has actually moved, but rather, the move constructor took

ownership of the temporary’s data, and no elements needed

copying.

We’ve seen two ways to generate the vector. The second

version is more efficient because it doesn’t make

unnecessary copies. We now need a way to display our

triangle.

2.2.4 Using ranges to display the vector

Previously, we sent our vector with a single element straight

to the screen, but if we write something more general, we

can send it to a file or any other stream. We do this by

overloading the operator << for our triangle. We have a

row, which is a vector, which contains a vector of

integers. Rather than writing a for loop within a for loop to

write out each element, we can use the ranges library to

copy the elements to the provided stream. If your compiler

doesn’t support ranges::copy yet, you can use

std::copy instead. We can use an output stream iterator

(std::ostream_iterator) to copy to and indicate we

want a space between each number; otherwise, they will be

unreadable. Include <algorithm> for std::copy and the

<iterator> header for std::ostream_ iterator.

Then add a new function as indicated in the following listing.

Listing 2.5 Sending the contents to a stream

#include <algorithm> ❶
#include <iterator>

template<typename T>

std::ostream& operator << (std::ostream & s, ❷
 const std::vector<std::vector<T>>& triangle)

{

 for (const auto& row : triangle) ❸
 {

 std::ranges::copy(row, std::ostream_iterator<T>(s, " ")); ❹
 s << '\n';

 }

 return s;

}

❶ Includes algorithm to use ranges::copy

❷ Allows a choice of stream

❸ Uses the constant reference to avoid a copy
❹ Sends the row to the output stream

Note we are now using a constant reference to each row in

the triangle by using const auto& row in the for loop.

This should be familiar. If we used auto row: v instead, we

would copy the entire contents of the row into data. The

reference avoids the copy, and const means we cannot

change the contents. The CPP core guidelines

(http://mng.bz/Xqn9) encourage us not to make expensive

copies of a loop variable in a range based for loop, as

pointed out in the expressions and statements (ES) section,

“ES.71: Prefer a range-for-statement to a for-statement

when there is a choice.” These guidelines are curated by

Bjarne Stroustrup and Herb Sutter, along with many other

contributors, and contain lots of sensible advice. You will see

more of them from time to time in this book.

The for loop gives us a reference to each row. We send this

to the stream using a range algorithm. As with the range-

based for loop we used in listing 2.1, the range’s copy

figures out where to start and end from our data vector. A

range is conceptually anything that allows iteration by

providing a start iterator and end sentinel. The older

algorithms took a begin and an end of the same type. A

sentinel is a recent addition generalizing the idea of the end

iterator, similar to the idea of using a null character to

indicate the end of a char array. We could write our own

sentinel to stop when a negative number is encountered or

http://mng.bz/Xqn9

any other custom logic. However, our vector has a begin

and end, which is all we need here. We could use the non-

range copy algorithm from the same header, but we’d need

to specify begin and end ourselves:

std::copy(data.begin(), data.end(), std::ostream_iterator<T>(s, " "));

Either version of copy is fine, but the range version is a little

less wordy. This is one of many range versions of standard

algorithms. Ranges provide considerably more than succinct

syntax. We can also take views of ranges, allowing

composition and filtering without copying data. Views are

evaluated on demand; in other words, they support lazy

evaluation. We will use a few more ranges later in this

chapter.

Now we can call our code to generate the triangle and see

what we get. If we ask for a large number of rows, it won’t

fit on the screen, and we might overflow our int, so let’s try

16.

Listing 2.6 Main code to generate and display the triangle

int main()

{

 auto triangle = generate_triangle(16);

 std::cout << triangle;

}

The << operator finds our new function and generates a left-

justified triangle, as shown in figure 2.5.

Figure 2.5 The first few rows of Pascal’s triangle

WARNING Defining operator << for common types, such as
vector<vector< int>>, is generally a bad idea because a large
system may end up with clashes if two different libraries or
components try to do the same thing. It’s okay for your own classes.
Writing a named function is better. We’ll do that shortly.

If we try generating many rows, say, 36, the last few rows

won’t fit on the screen, and we’ll start seeing the integer

wrap around and become negative. Printing each row out

starting at the left was easy enough, but it gives us an

unconventional output. We can do better if we center-justify

the output. This also gives us the opportunity to learn about

the new format library.

2.2.5 Using format to display output

When we saw how to generate the triangle, figure 2.1

showed the rows center-justified, which is the conventional

way to show the triangle. Sticking with 16 rows gives

numbers up to four digits long, so if we center each number

in six spaces and add enough spaces at the start of each

line, we will have what we want. We can use the

std::format tools to do this by including the format

header. format started life as the Victor Zverovich’s open

source fmt library (https://fmt.dev/latest/index.xhtml).

Some compilers do not fully support format yet, so you

may need to use this library instead. There are various ways

to install the library, but the simplest is to download from

the main page and unzip the download. Instead of including

the standard format header in the code that follows, use

fmt/core.h; it is simplest to use the header only:

#define FMT_HEADER_ONLY

#include <fmt/core.h>

You also need to use fmt::format instead of

std::format in the code, and you need to tell the compiler

the additional include path, using the -I switch:

-I/[path_to_unzipped_fmt_download]/include

At the time of writing, the open source library contained

more features than currently supported in standard C++,

but we will stick with commonly supported features here.

https://fmt.dev/latest/index.xhtml

TIP If your compiler doesn’t support format yet, you can use the open
source fmt library (https://fmt.dev/latest/index.xhtml). Alternatively, the
fmt library includes a link to Godbolt (https://godbolt.org/z/Eq5763),
which includes the fmt library so you can try out code in the compiler
explorer.

The format library is similar to C’s printf function but is

often faster, simpler, and safer to use. The syntax uses curly

braces inside a string as placeholders. The placeholder can

be empty, take a format specifier (such as d for decimal), or

give the index of an argument from the values. If we don’t

specify which value to use where via an index, they are

placed in order. The format specifiers are very similar to

Python’s. If we asked for a number with the d format

specifier but passed a string

auto does_not_compile = std::format("I am not a number {:d}", "ten");

we would get a compiler error, making format safer to use

than printf. For numbers, we might want a plus or minus

signs shown, so we can indicate that after the colon by using

{:+d}. If we don’t specify it, we get the default of a minus

sign for negative numbers and no sign otherwise. After the

colon, we say if we want decimal (d), binary (b), and so

on.

Looking back at figure 2.5, the largest number in the last

row is 6435. Because our numbers are therefore no more

than four digits long, we can center each element in a block

of six, giving at least one space on each side. The specifier

https://fmt.dev/latest/index.xhtml
https://godbolt.org/z/Eq5763

for center is ^, for left is <, and for right is >, so we format

the elements using

std::format("{: ^6}", element);

Notice the placeholder {} with a colon. We aren’t using an

index, so put nothing before the colon. We then have " ^6",

meaning pad with spaces to a length of 6, and center the

value. In fact, we could vary the length by adding more curly

braces inside the placeholder to send the 6 to, inside the

placeholder, like this:

std::format("{: ^{}}", element, 6);

This gives us a nested replacement field. This way, we can

calculate how much space each number needs. We will not

do that here, but take time to experiment with format.

We also need spaces at the start of each row to get a

symmetric triangle. If we work out how long the last row is,

we can halve its length to determine where to put the 1 from

the first row. Let’s think this through for a couple of rows.

We noted that the largest number on the last row is 6435,

and it has four digits. If we add a space on each side, we

need a block of six for each number. The second row will

require two blocks of 6, giving twelve characters. To place

our first number in the middle, we need three spaces at the

start to make the first block sit on the two numbers in the

next row. Because we told format to center the values, the

first one will be in the middle of that block. Figure 2.6 shows

this for the first two rows, using 1234 to indicate any four

digits.

Figure 2.6 If we add three spaces at the start of the first row, as
indicated by the dashes, we can make the triangle more
symmetrical.

Calling back().size() on the vector of rows tells us how

many blocks of six we will use for a final row. To put the first

row in the middle, we need three spaces per row that we

add; thus, we need padding of three times back().size()

initially. For each row, we also shrink our padding by three at

each step to make the triangle shape.

Pulling together our format and spaces calculation, we can

write the following function to display our triangle.

Listing 2.7 Center-justified output

void show_vectors(std::ostream& s,

 const std::vector<std::vector<int>>& v)

{

 size_t final_row_size = v.back().size();

 std::string spaces(final_row_size * 3, ' '); ❶
 for (const auto& row : v)

 {

 s << spaces;

 if (spaces.size() > 3)

 spaces.resize(spaces.size()-3); ❷
 for (const auto& data : row)

 {

 s << std::format("{: ^{}}", data, 6); ❸
 }

 s << '\n';

 }

}

❶ Three spaces per row

❷ Shrinks the spaces by three for each row
❸ Center-aligns each number in a block of six

We can then call our new function instead of our previous

operator in the main function.

Listing 2.8 main function to generate and display the triangle

int main()

{

 auto triangle = generate_triangle(16);

 show_vectors(std::cout, triangle); ❶
}

❶ Swaps the operator << from listing 2.6 to show_vectors

This generates and displays our triangle center-justified, as

shown in figure 2.7. The output looks about right, but we

need to think about how to test our results. We will learn

more C++ on the way.

Figure 2.7 A center-justified triangle

2.3 Properties of the triangle
We have already seen some patterns in the triangle. We

know each row starts and ends with a 1, so we can start by

adding a check for this property. We will then consider the

number of elements we expect in each row, as well as the

sum of the elements. Finally, we will see how many rows we

can safely generate before the numbers get too big to fit

into an integer. We will build these properties into a suite of

tests.

Unfortunately, C++ does not come with a testing framework.

Rather than spending time setting up and learning such a

framework, we will use the assert function defined in the

cassert header. The letter c at the start tells us we are

pulling in code from the C standard library. assert is a

macro, so the preprocessor copies the contents verbatim. It

will abort our program if the expression in the assertion is

false. Some setups only use the assert in a debug build by

determining whether the NDEBUG macro is defined. Without

it, the assertions do something, but if NDEBUG is defined,

they do nothing. Check your setup. The simplest way is to

check whether assert(0) halts the program.

Listing 2.9 Starting with a failing test

#include <cassert>

#include <vector>

void check_properties(const std::vector<std::vector<int>> & triangle)

{

 assert(0); ❶
}

int main()

{

 check_properties({}); ❷
}

❶ Forces an assertion failure on line 5
❷ Calls function with empty vector

Using g++ in Ubuntu on the WSL, we see the message

Aborted along with a line number, function name, and the

message

test.out: main_assert.cpp:5: void check_properties(const

std::vector<std::vector<int> >&): Assertion `0' failed.

Aborted

If we run this from Visual Studio, we get a dialog box, with

details including the line number where the assertion failed.

Beginning with a failing test is a good way to start testing

code. At the very least, it proves we will get some feedback

if an assertion fails. This means we are ready to test our

triangle generation.

NOTE Using assert and checking properties from main is a pragmatic
way to start testing; however, it’s worth taking time to learn a proper
unit-testing framework. Several C++ testing frameworks, including
Catch2, Google Test, and Boost, are available.

Now we have a function to add properties to. Remove the

assert(0), and we are ready to add properties to check

whether we have the right numbers in our triangle.

2.3.1 Checking the first and last elements of
each row

We know the first and last numbers in each row must be 1,

so we will test that first. We need to add two assertions to

our properties function to test our expectations, passing

in the rows as in the following listing.

Listing 2.10 Ensuring the first and last elements are 1

#include <cassert> ❶
void check_properties(

 const std::vector<std::vector<int>>& triangle ❷
)

{

 for (const auto & row : triangle) ❸
 {

 assert(row.front() == 1); ❹
 assert(row.back() == 1); ❺
 }

}

❶ Includes the assert marco

❷ A new function taking the triangle as a constant reference
❸ Uses a range-based for loop to check each row

❹ Checks whether the first element is 1
❺ Checks whether the last element is 1

We can call this from main after we have generated the

triangle. Our single test was successful, so we are ready to

add more. Be warned: because a failing assert calls abort,

if one thing fails, we will not check any further properties.

You can avoid this by stacking up failure messages and

asserting the error messages are empty. Try this out, or

even better, try to write the tests in a proper framework.

2.3.2 Checking the number of elements in
each row

Pascal’s triangle has several other properties. The n-th row

has n numbers. Why? We know the first row is a solitary 1.

The second row is two 1s. The third starts with 1, then sums

the 1s from the previous row to get the number 2, then has

another 1 at the end, giving us three numbers. There are

four numbers in the fourth row, and this pattern continues.

Look back at the triangle in figure 2.5 if you are not

convinced. We can add another assert to check this if we

keep track of the row number.

Listing 2.11 Ensuring each row has the expected number of
elements

size_t row_number = 1; ❶
for (const auto & row : triangle)

{

 assert(row.front() == 1);

 assert(row.back() == 1);

 assert(row.size() == row_number++); ❷
}

❶ Tracks the row number with a variable
❷ Checks whether each row has the expected size

We should now check the contents. If we check each entry,

we need to find another way to generate each number in the

row; otherwise, we will duplicate the code we are trying to

test. This trap is all too easy to fall into, and trying to think

in terms of properties can help us avoid such problems.

2.3.3 Checking the sum of the elements in a
row

The sum of the numbers in each row also follows a pattern.

Table 2.1 demonstrates that these are powers of 2, starting

with 0. Remember, anything to the power of 0 is 1. This

gives us another property to check.

Table 2.1 The sum of the numbers in each row of the triangle is a
power of 2.

Row numbers Sum Power of 2
1 1 0

1+1 2 1

1+2+1 4 2

1+3+3+1 8 3

1+4+6+4+1 16 4

We need to find the sum for the numbers in each row to

check this property. Rather than writing out a for loop, we

can use the standard template library (STL). Herb Sutter

and Andrei Alexandrescu suggested preferring algorithm

calls to handwritten loops in their book C++ Coding

Standard: 101 Rules, Guidelines and Best Practices

(Addison-Wesley Professional, 2004). The STL also contains

many algorithms for use with generic containers, including

an accumulate method that lives in the numeric header,

which is exactly what we need. We noted earlier that some

algorithms support ranges, but some, including

accumulate, do not. We, therefore, need to explicitly find

begin and end ourselves.

The accumulate function has two versions. They both take

a first and last iterator of some range or container, along

with an initial value. The first version applies the

operator+ to each element and the current accumulation

value, starting with the provided initial value. If we use an

initial value of 0, we will obtain the sum of all the elements,

which is exactly what we need. The second version allows us

to provide our own binary operator. That can be any function

taking two arguments. The first argument starts with the

given initial value, so it must be of the same type, or the

initial value must be convertible to the type of this

parameter. The second parameter takes the values from the

iterator; thus, it also needs to be of a suitable type.

CppReference (http://mng.bz/yZGp) gives full details,

including the signatures. For the first version, which we will

use, we have

template< class InputIt, class T >

T accumulate(InputIt first, InputIt last, T init);

Notice the initial value, init, has type T. So does the return

value. If we use an int, we will get an int back, even for a

container of doubles. Our container has ints, so we are

fine, but we would need to use 0.0 if we were to use

doubles. The accumulate function is very flexible. The

second version takes a binary operator:

template< class InputIt, class T, class BinaryOperation >

T accumulate(InputIt first, InputIt last, T init, BinaryOperation op);

We could use operator* to find the product of all our

numbers, provided we start with an initial value of 1. The

more general second form is sometimes called a left fold. If

you want to revise algorithms, looking through what is in the

algorithm and numeric headers is a good starting point.

http://mng.bz/yZGp

Now we can include the check for the sum of the rows in our

property test function. Starting with an expected total of 1

and doubling each time, we can check that the sum of a row

is the power of 2 we expect. Adding the expected total to

our properties function and using the accumulate function,

along with the numeric header, we have the following new

check.

Listing 2.12 Ensuring each row has the expected sum of
elements

int expected_total = 1; ❶
for (const auto & row : triangle)

{

 assert(std::accumulate(row.begin(),

 row.end(),

 0) == expected_total); ❷
 expected_total *= 2; ❸
}

❶ Our expected total starts at 1.

❷ Checks the total
❸ The expected total doubles with each iteration.

If we run our code, all the assertions pass. These properties

do not prove we are correct, but they do give us some

confidence in the generation code. We will now look at one

final property of the triangle and then round off with another

pattern, just for fun. Again, we will practice more C++ on

the way.

2.3.4 How many rows can we generate
correctly?

As each number is the sum of two previous numbers and we

started with positive numbers, we should never get negative

numbers. To the uninitiated and mathematicians, adding

positive numbers should always give positive numbers.

However, numbers do surprising and sometimes annoying

things on computers, such as overflowing. We will start by

setting up a test and then see if we can break it. If we keep

adding ints, we will eventually overflow the maximum

possible size. The standard tells us this is undefined

behavior:

If during the evaluation of an expression, the result is not mathematically

defined or not in the range of representable values for its type, the

behavior is undefined. (https://eel.is/c++draft/expr)

We could do some mathematics to find the maximum

number of rows we can fit into our chosen numeric type.

However, if we see what happens when we try to keep

adding rows, we can learn some more C++ on the way.

Although we are relying on undefined behavior, in Visual

Studio, an integer wraps around so we can find the

maximum number of rows we can safely generate.

There are various ways to check that the values are not

negative. We can check whether every number is positive or

try to find any negative numbers. We could write our checks

in a for loop, but we will heed the advice to use algorithms

where we can. In fact, we will try a few approaches, getting

https://eel.is/c++draft/expr

a bit more practice with algorithms, and we will learn more

about ranges too.

The algorithm header provides several non-modifying

sequence operations. Many of these find or search for

elements. We can use all_of to check that all elements are

positive. We could also use either none_of or any_of,

which do what we might expect. All three take a unary

predicate, which is a function that takes a value and returns

a bool. The values come from a container or range.

We want to check that all our numbers are greater than

zero. This seems more positive than saying none of them are

negative. We could write a function, but we can also use an

anonymous function, known as a lambda. The syntax looks

very much like a normal function, but it has no name and

has a capture list at the start indicated by square brackets:

[]. This allows us to capture local variables by reference or

as a copy. We would say [&] to capture anything used in the

body of the lambda expression by reference, and [=] to

capture anything used by value. We could also specify

specific variables by saying [=, &x], so that x is captured

as a reference, and anything else is captured by value. We

could also explicitly name y as captured by value, in which

case, we do not need the equals sign: [y, &x]. We don’t

need to capture anything in our case. We only need to check

whether any integer is greater than or equal to zero:

[](int x) { return x >= 0; }

A named function would look like this:

bool non_negative(int x){ return x >= 0; }

The syntax for each is similar, with a parameter list and the

body in curly braces. The named function must specify a

return type. The lambda can use a trailing return type, which

we saw in chapter 1, but the return type is deduced if none

is provided. Lambda expressions construct closures,

borrowing a term from functional programming. We will look

at this in more detail in the next chapter.

We use our lambda in std::all_of like this:

std::all_of(row.begin(), row.end(), [](int x) { return x >= 0; })

Using a named function is absolutely fine too, but for small

functions, it can be easier to see what is happening if

everything is in one place. Now, we have explicitly stated

int as the parameter type. We know our vector contains

integers. However, we were told to almost always use auto

earlier, and we can do that here too:

std::all_of(row.begin(), row.end(), [](auto x) { return x >= 0; })

If we were to change the type contained in the vector, we

wouldn’t need to change this code as well. In fact, we can

also use a range to check all the rows like the following:

assert(std::ranges::all_of(row, [](auto x) { return x >= 0; }));

We’ve used a range-based for loop several times now and

used ranges::copy in listing 2.5 to send a row to the

screen. We know some of the standard algorithms, such as

all_of, have a ranges equivalent, although not all of the

algorithms have equivalents. Where they do exist, they save

us from typing out begin and end. Ranges offer far more,

though. Containers and algorithms are a part of the STL. The

two abstractions are useful but rely on iterators. Writing

your own can be cumbersome, and if you want to compose

algorithms, you need to track where the end is after each

call. Notoriously, the remove_if algorithm does not remove

anything. Instead, it shunts the elements you do not want

removed to the start of the collection and returns an iterator

to the first of the unneeded elements, which you can use

instead of end if you want to do something further without

these elements. The following code shows what happens if

we forget to track the new end.

Listing 2.13 Using remove_if

auto v = std::vector{ 0, 1, 2, 3, 4, 5 };

auto new_end = std::remove_if(v.begin(), v.end(),

 [](int i) { return i < 3; }); ❶
std::cout << '\n';

for (int n : v) { ❷
 std::cout << n << ' ';

}

for (auto it = v.begin(); it != new_end; ++it) { ❸
 std::cout << *it << ' '; ❹
}

❶ Removes elements less than 3

❷ Displays the whole container
❸ Using the new end

❹ Dereferences the iterator with * to get each element

The first loop prints out 3, 4, 5, 3, 4, 5 in Visual Studio

because the elements less than 3 have been removed. Other

compilers might give different results. However, we now

have three elements beyond the new end. The second loop

displays 3, 4, 5 as required. Things get out of hand quickly

if you need to filter and transform several times over.

Ranges avoid this problem. They allow us to take a read-

only view of a container and filter or transform the

elements in the view, without needing to keep track of

iterators. We can access the ranges view using

std::view. This is a convenient shorthand for

std::ranges::views, defined in the ranges header. If

we want to skip over initial elements less than 3, we can use

drop_while, which may be familiar from various other

programming languages:

for (int n : std::views::drop_while(v, [](int i) { return i < 3; })) {

 std::cout << n << ' ';

}

If your compiler does not support ranges yet, try this out on

the Compiler Explorer (https://godbolt.org/z/YrnsTGbfx). We

can also use the pipe character '|' to apply drop_while

to our container. The pipe character is an operator allowing

us to chain together multiple algorithms, which is neat and

powerful. If we want to compose several views, the first

approach would end up with several calls nested deeply

inside brackets, whereas separating the steps with the pipe

https://godbolt.org/z/YrnsTGbfx

operator makes code easier to read. You may be familiar

with the pipe characters used in Unix to send the output

from one command to another. We only want one filter for

this example. We can rewrite the version sending the vector

to the drop_while function using the pipe operator like

this:

for (int n : v | std::views::drop_while([](int i) { return i < 3; })) {

 std::cout << n << ' ';

}

If we run it, we see 3, 4, 5 without having to concentrate

on remembering which iterator is pointing where.

We can use views to make sure that we have no negative

numbers in our triangle’s rows. Rather than skipping initial

elements using drop_while, we want to filter out any

negative numbers, so we use the filter function.

Listing 2.14 Making sure there are no negative numbers by using
a view

auto negative = [](int x) { return x < 0; }; ❶
auto negatives = row | std::views::filter(negative); ❷
assert(negatives.empty()); ❸

❶ A predicate to determine whether a number is negative
❷ Filters the row for negative numbers

❸ Checks whether negatives is empty

As with the drop_while example, we have the form

v | function(lambda)

which gives us a view of our container.

We can add this check to our tests for negative numbers.

Everything is fine if we stick with generating 16 rows. If we

try 35 rows, however, the assertion fails. When we learned

how to generate rows in the triangle, we noted that we

would run out of numbers eventually. We found our largest

possible entry using std::numeric_limits<int>

::max(), which is likely to be 2,147,483,647, depending on

your compiler. The maximum value in the 34
th
 row is

1,166,803,110. We then get double this amount in the next

row because we add adjacent values, which would give

2,333,606,220. This number overflows an int, and the

behavior is undefined by the standard as we saw. On some

systems, this wraps around to the minimum value,

-2147483648, and then counts up again. That is why our

test fails. An unsigned would give us more space: it would

still wrap around after 4,294,967,295, but to 0. This would

make the error harder to spot.

The core guidelines tell us we should not try to avoid

negative values by using unsigned (http://mng.bz/M9VQ).

We can assign a negative value to an unsigned, for example,

unsigned int u1 = -2. Annoyingly, this compiles and gives

us a large positive number. With a signed integer, we can

check that the value is not negative. With an unsigned

integer, we cannot check anymore. We know how many rows

we can safely generate. Let’s test one final property of the

triangle.

http://mng.bz/M9VQ

2.3.5 Checking whether each row is
symmetric

Every row is symmetric. The first and last numbers are both

1s, which is symmetric, and we checked this. We can go

further and check all the entries for symmetry. This is like

checking that a word is a palindrome, meaning that it reads

the same backward as forward. CppReference uses checking

for palindromes as an example of ranges’ equal method

(http://mng.bz/amej). We can repurpose this to check our

vector. We need to make sure that the first half of a row

matches the second half reversed. Ranges provide a view of

a container. Views have a take method, which walks over as

many elements as we ask for. We need the first half, that is,

v.size()/2. We compare this with the second half,

reversed, using ranges::equal method.

Listing 2.15 Checking for symmetry

bool is_palindrome(const std::vector<int>& v)

{

 auto forward = v | std::views::take(v.size() / 2); ❶
 auto backward = v | std::views::reverse ❷
 | std::views::take(v.size() / 2); ❸
 return std::ranges::equal(forward, backward); ❹
}

❶ A forward view of the first half
❷ A reversed view

❸ Using the second half, chained with |
❹ Checking whether these are equal

http://mng.bz/amej

Note that we have chained together views with the pipe

operator and do not need to focus on which iterators are

needed where. We can add one final assertion to our tests

using the palindrome function:

assert(is_palindrome(row));

We now have a useful set of tests and have used a handful

of methods in the ranges’ library. There are many other

patterns in the triangle, but as this chapter is nearly done,

we will only look at one more pattern to pull together what

we’ve learned.

2.3.6 Highlighting odd numbers in a row

If we highlight the odd numbers in the triangle, we will see

another pattern. Looking back at our code to show the

triangle in listing 2.7, we can transform each row before we

print it using another tool from the ranges library. Every

odd number is one more than a multiple of two, so we can

check x % 2 to find odd numbers. We will display them with

a star to see the pattern. Otherwise, we display a single

space. We will use the view’s transform method to apply

action to each row:

auto odds = row |

 std::views::transform([](int x) { return x % 2 ? '*' : ' '; });

We can use our transformation code to give something

similar to listing 2.7, where we showed the actual values in

the triangle. Figure 2.8 illustrates the resulting pattern.

Figure 2.8 An approximation to the Sierpinski triangle obtained
by printing an * for an odd number and a blank space for an
even number

Listing 2.16 Showing odd numbers as stars

void show_view(std::ostream& s,

 const std::vector<std::vector<int>>& v)

{

 std::string spaces(v.back().size(), ' ');

 for (const auto& row : v)

 {

 s << spaces;

 if (spaces.size())

 spaces.resize(spaces.size() - 1);

 auto odds = row | std::views::transform([](int x)

 { return x % 2 ? '*' : ' '; });

 for (const auto& data : odds)

 {

 s << data << ' ';

 }

 s << '\n';

 }

}

We expected the symmetry. The repeating triangles might

be a nice surprise. This approximates the Sierpinski triangle,

which is a triangle shape recursively divided into smaller

triangles. If we made an equilateral triangle, folded the

corners over each other, and drew lines where we made the

folds, we would get the blank triangle in the middle of figure

2.6, along with a triangle at the top, one on the bottom left,

and one on the bottom right. We can then do the same with

the three triangles on the corners. This triangle is fractal

because it repeats as you zoom in. We could keep dividing

up the triangles forever in theory, showing this fractal

property. We could also try out even numbers instead or a

different modulus, and we would see other patterns.

In this chapter, we have learned a fair bit about how to use

vectors. We have not covered everything, but we have done

enough to recognize various C++ features and test our

code.

Summary
Containers are part of the STL, and the compiler can

sometimes deduce the type of expressions for us.

We can initialize objects using an initializer list

{value1, value2, ...} when we want to provide

values directly.

We can use emplace_back or emplace when we want

to create an object in place directly in a container, or

push_back or insert when we already have an object.

The range-based for loop is a common way to walk

over a container, avoiding iterators or indices.

Use auto almost always, including relying on class

template argument deduction when using containers.

std::move casts a value to an rvalue, allowing perfect

forwarding.

Some versions of standard algorithms take begin and

end, while others in the std::ranges namespace now

support ranges.

Views and filters can be chained with the pipe operator.

Lambdas are unnamed functions that can capture

variables and form closures.

Use format to align text or set the width or precision of

numbers for speed and type safety.

3 Input of strings and numbers

This chapter covers

Input of numbers and strings
Using optional when we may not have a value
Working with random numbers
Further practice with lambdas and std::function

In this chapter, we will write a number-guessing game to

practice taking inputs by using strings and numbers. We

need to generate a random number to guess, accept input

from a player, and report whether the player’s guess is

correct. We will ensure the guess is actually a number, so

we will learn about working with strings and numbers. We

will give clues if the guess is wrong, starting with “too big”

or “too small,” and then add more clues, such as how many

digits are correct. The brief introduction to random numbers

will give us a foundation for later chapters, and we will learn

several more C++ features along the way.

3.1 Guessing a predetermined number
We will start with a constant number to guess. Guessing a

number that never changes is not much of a game, but it

means we can concentrate on dealing with user input. If we

put the predetermined number in a function, we can change

it later.

Listing 3.1 A number to guess

unsigned some_const_number()

{

 return 42;

}

Feel free to pick another number. We don’t need an entire

function for this, but it might make the guessing-game code

clearer than sending in a hard-coded or magic number. We

will switch this out for a random number later. For now, all

we need to do is take some user input and see if it matches.

3.1.1 Accepting user input the hard way

We used the stream insertion operator << to send values

to the screen in the last chapter. The iostream header also

provides input via the stream extraction operator >>. We

can use this operator to send input into a variable like this:

unsigned number;

std::cin >> number;

It’s defined for all standard C++ types, as is operator<<.

We are trying to stream anything typed into an unsigned

because our number to guess is unsigned. If the user

types in digits followed by Enter, the variable might contain

a number. In the last chapter, we saw that we can assign a

negative number to an unsigned. For a signed number,

the high order bit indicates the sign of the number, whereas

an unsigned number uses this bit as part of the value, so

we can say unsigned int number = -2, and it will

compile, but the number will have a large positive value,

4294967294, in Visual Studio 2022. Furthermore, the input

might not be a number or might even be too big to fit into

our chosen numeric type. This suggests streaming straight

into an unsigned is a bad idea, but we can persuade it to

behave relatively well with some extra effort. We will try

alternative approaches in the next section.

Let us see how far we can get if we stick with direct input to

an unsigned. The operator skips over any initial

whitespace and then consumes characters until Enter is

pressed, as shown in figure 3.1. If there is only initial

whitespace and a few digits, everything is fine. The

whitespace is ignored, and the digits are transformed into a

value stored in the unsigned variable. However, if the

input is not suitable for an unsigned, two things happen:

the input stream is in an error state, and it has unused

characters that need clearing up.

Figure 3.1 Streaming into an unsigned skips over initial
whitespace, accepts as many digits as fit into the unsigned,
and then ignores anything else, leaving the unused characters
in the stream.

As soon as an unsuitable character is encountered, a flag is

set, which we could check directly by calling std::cin

.fail(). We can also use the operator’s explicit

conversion to a bool by checking whether (std::cin >>

number) is true. The stream’s conversion happens via an

explicit operator bool, which means it can be

explicitly converted to a bool. CppReference

(http://mng.bz/W164) describes this check as idiomatic.

The operator is marked as explicit, so we need to be in

a context that expects a bool, such as an if or while,

meaning we cannot accidentally convert the stream to a

bool. If something fails, we need to clear the failed flag

and mop up the bad characters using the ignore function.

The function takes two parameters: the number of

http://mng.bz/W164

characters to extract and a delimiting character to stop at,

so we want the maximum possible number of characters

and to stop at a new line character, '\n'. Then we can loop

until the user enters something sensible. Pulling this

together and including the limits and iostream headers

gives us the following.

Listing 3.2 Reading a number from standard input

unsigned input()

{

 unsigned number;

 while (!(std::cin >> number)) ❶
 {

 std::cin.clear(); ❷
 std::cin.ignore(

 std::numeric_limits<std::streamsize>::max(), '\n'); ❸
 std::cout << "Please enter a number.\n>";

 }

 return number; ❹
}

❶ Streams characters in and checks nothing failed

❷ Clears the fail flag
❸ Mops up invalid input

❹ Returns a number if we escape the loop

Armed with our initial predetermined number from listing

3.1, we can use the input function from listing 3.2 and

create a guessing game.

Listing 3.3 A first attempt at a number-guessing game

void guess_number(unsigned number)

{

 std::cout << "Guess the number.\n>";

 unsigned guess = input();

 while (guess != number) ❶

 {

 std::cout << guess << " is wrong. Try again\n>";

 guess = input();

 }

 std::cout << "Well done.\n"; ❷
}

int main()

{

 guess_ number(some_const_number()); ❸
}

❶ Loops while the guess is wrong
❷ Only exits the loop for a correct guess

❸ Calls our guessing function with our predetermined number

We can play the game, but we can also make several

improvements. We are ensuring a number is entered. If we

try some gibberish, we get told off over and over again until

we enter a number, as shown in figure 3.2.

Figure 3.2 We get stuck in a loop if we do not enter a number.

Now try a negative number, for example, -1. Figure 3.3

shows what happens.

Figure 3.3 Guessing a negative number doesn’t work as
expected.

We know why this happened; when we assign -1 to an

unsigned, it wraps around. We can fix this by changing

the type to int. As shown in figure 3.4, if we try a few

other nonnegative numbers and end with our not-very-

random number, 42, we win.

Figure 3.4 Provided we avoid bad input, we can play a rather
predictable game.

We have a semblance of a number-guessing game, but it

would be nice to give the user a way to indicate they give

up. By changing the input function, we can make numeric

input optional so the user can stop the game more easily.

3.1.2 Accepting optional numeric input

The c in cin stands for character. Instead of streaming

directly into a numeric type, we could stream the characters

into a string. If we include the string header, we can

accept input this way:

std::string in;

std::cin >> in;

The string will contain the user input, but cin will stop on

whitespace. If we type “Hello, World!,” the string will only

contain “Hello,” leaving the remaining input behind to

stream into another string or ignore. We can get the

entire line instead like this:

std::string in;

std::getline(std::cin, in);

This will collect every character, including whitespace until

the end of the line, leaving the characters before the end

line for us in the std::string in. We can then choose

what to do with the entire line.

Because we want to compare the input with a number, we

will need to do something to convert the input. If we write

an appropriate function, called read_number, taking a

stream, we process the string we got from getline after

including the sstream header:

std::istringstream in_stream(in);

auto number = read_number(in_stream);

How do we implement this read_number function? There

are various ways to try to parse an integer from a string or

stream. Working with IOStreams can get very gnarly very

quickly. Angelika Langer and Klaus Kreft wrote a book called

Standard C++ IOStreams and Locales: Advanced

Programmer’s Guide and Reference (Addison-Wesley

Professional; 2000), which gives in-depth coverage. It is a

huge book, which reflects the complexity of this topic. To

keep things simple, we will use std::optional here,

which will make our life easier.

The optional type was introduced in C++17 and lives in

the optional header. It is sometimes described as a

vocabulary type, along with std::any and

std::variant. They are templates, so take a type as a

parameter. After the response we saw in figure 3.3, we

know we should use integers rather than unsigned integers,

so we will use a signed integer for the template type:

std::optional<int> value;

This has no value. We can see if an optional has a value

by checking the has_value() member function explicitly

or using the explicit operator bool; in other words,

using the optional in an if or while expression or

similar. This is similar semantics to the stream used earlier.

It’s worth noticing patterns in the C++ language and

library. They can inform our own code by showing us

sensible approaches. Having no value might be legitimate,

but we can initialize the value with an integer instead

std::optional<int> value = 101;

or change the value:

value = -2;

This allows optional to possibly contain a value. Some

functional programming languages have the idea of a

maybe type. We don’t have to reserve values to indicate a

variable is unset if we use an optional type. The operator

bool will return true if the value is set. If we want to use

the value, we call the value function:

int actual_value = value.value();

If the optional doesn’t contain a value, we will get an

exception. If it does, we get a number.

We can now write a function to read a number from a

stream. We can either use getline outside the function to

form a stream, having read the whole line of input, or tidy

up nonnumeric input in our read_number function. If we

do the latter, we don’t need to remember to do this when

we call the function. Our new function looks like this.

Listing 3.4 Taking optional input

std::optional<int> read_number(std::istream& in)

{

 int result{}; ❶
 if (in >> result) { ❷
 return result; ❸
 }

 in.clear(); ❹
 in.ignore(std::numeric_limits<std::streamsize>::max(), '\n'); ❹
 return {}; ❺
}

❶ Zero initializes the int.
❷ Tries to read a number

❸ Returns the int (as an optional)
❹ Tidies up

❺ Otherwise returns an empty optional

Notice we are returning an empty optional on the

penultimate line. If we return the result, we are returning

an int, so the optional will have a value, defeating the

point of using the optional to indicate that the user

wanted to stop guessing.

We have given ourselves options by sending the stream into

the reading function, rather than pinning it down to

standard input. For example, we could get the whole line of

input using std::stringstream in_stream(in)

outside the function and send that in instead. This would

mean we still know what the user typed. We decided to

clear the stream if it didn’t contain a number, so we have

lost the input if cin is sent in directly. That is good enough

for our game, but we can see that we have choices here.

If the user enters a number, our new function will return an

optional with a value; otherwise, an empty optional is

returned. We can check for an empty optional in the while

loop with

while (guess = read_number(std::cin))

so we can drop out of the loop and stop asking for guesses

if the player doesn’t enter a number. Note that a few

compilers may issue a warning when we use the result of

the assignment as a condition, especially if using clang or

GCC with the warning flag -Wparentheses. Using a

second set of parentheses indicates we do intend to check

the value assigned and stops the warning:

while ((guess = read_number(std::cin)))

We could even say what the number is if the player gives

up. Pulling this together, we have code for a slightly better

game.

Listing 3.5 Allowing giving up

void guess_number_or_give_up(int number)

{

 std::cout << "Guess the number.\n>";

 std::optional<int> guess;

 while (guess = read_number(std::cin)) ❶
 {

 if (guess.value() == number)

 {

 std::cout << "Well done.";

 return; ❷
 }

 std::cout << guess.value() << " is wrong. Try again\n>";

 }

 std::cout << "The number was " << number << "\n"; ❸
}

int main()

{

 guess_number_or_give_up(some_const_number());

}

❶ Drops out of the loop if input is not a number
❷ Stops if the guess is correct

❸ Tells the player the number

If we play the game now, we can give up, by typing either

“Give up” or any input other than a number (figure 3.5).

Figure 3.5 The player can now give up and find out the number.

Our game works, but it would be nice to give the player

clues when they are wrong. Once we have that in place, we

will be ready to dive into using random numbers.

3.1.3 Validation and feedback using
std::function and lambdas

If the guess is wrong, it is either too big or too small. We

could check that in place, but using a validation function

gives us more flexibility. Although we will only report if a

number is too big or too small here, we will add various

other feedback in our final section when we create a prime

number-guessing game. We will use a lambda again and

see how to send it to our guessing game.

We want to change our function signature to say something

like this:

void guess_number_or_give_up(int number, lambda message)

However, there is no lambda keyword. Every lambda has a

unique type, so we need another way to express that we

have something we can call, like a function or a lambda,

known as a callable, as our second parameter. We could use

a template:

template<typename T>

void guess_number_or_give_up(int number, T message)

However, this does not express that the message is callable.

We could use a concept to constrain the template type,

giving an alternative approach that we will look at in the

next chapter. For now, we will use std::function. This

will help us understand lambdas better.

std::function is a template providing a general-purpose

wrapper for lambdas, named functions, or any callable

object. We need to specify the return and parameter types

in the template. For our game, we have a number and a

guess, which are our inputs for the message function, and

we want to return a message to display, which can be a

string. For a named function, the signature would look

like this:

std::string message(int, int);

The return type comes first, followed by the function name

and the parameters (two ints in our case). To create an

std::function, we include the functional header and

declare a function wrapper with the same signature:

std::function<std::string(int, int)> callable;

The template parameters, std::string(int, int), look

like the named function, but without a name. We call

callable as we would any function:

auto message = callable(1, 2);

Because we haven’t specified what the callable should

do, it is an empty function, so it throws an exception. This

mirrors the behavior of optional. We can initialize

callable with a lambda:

std::function<std::string(int, int)> callable = [](int number, int guess) {

 return std::format("Your guess was too {}\n",

 (guess < number ? "small" : "big"));

};

The function is no longer empty, and we can safely call it.

Notice we are using std::format again. Section 2.2.5

gave instructions on how to use the fmt library instead if

your compiler does not support std::format yet. Don’t

forget that you will need to change std::format to

fmt::format and include the fmt/core.h header

instead of the standard format header. We can now add an

extra parameter for a message function to our game so we

can give the player clues if their guess is wrong.

Listing 3.6 Providing clues if the guess is wrong

void guess_number_with_clues(unsigned number,

 std::function<std::string(int, int)> message)

{

 std::cout << "Guess the number.\n>";

 std::optional<int> guess;

 while (guess = read_number(std::cin))

 {

 if (guess.value() == number)

 {

 std::cout << "Well done.";

 return;

 }

 std::cout << message(number, guess.value()); ❶
 std::cout << '>'; ❷
 }

 std::cout << std::format("The number was {}\n", number);

}

❶ Shows a message if the guess is wrong

❷ Adds a prompt after the message

We also need to change our main function, providing the

message via a lambda function. We can either send it in

directly or declare the lambda on a separate line using

auto.

Listing 3.7 Improved number-guessing game

int main()

{

 auto make_message = [](int number, int guess) {

 return std::format("Your guess was too {}\n",

 (guess < number ? "small" : "big"));

 };

 guess_number_with_clues(some_const_number(), make_message);

}

Why do we declare the message as auto rather than

specifying std::function<std:: string(int,

int)>? Although it is less typing, there is an important

point to note here as well. The type of the lambda or

closure is unnamable by us, but auto infers the exact type

for us. Two lambdas taking the same parameters and

having the same return type actually have different types.

However, both lambdas could be assigned to the same

std::function. This is useful for our purposes but has

drawbacks. A lambda can be inlined, avoiding the overhead

of a function call. If we copy a lambda into an

std::function, it can no longer be inlined, so calling it

might be slower. Copying our lambda to an

std::function might also involve dynamic memory

allocation. Scott Meyers gives full details in “Item 5: Prefer

auto to explicit type declarations” in his book Effective

Modern C++ (O’Reilly Media, 2014), and we already know

we should almost always use auto. If we declare the

lambda as auto, we avoid the overheads, although it will

be copied to an std::function in the method call. We

could actually change the function signature in listing 3.6 to

use auto as well:

void guess_number_with_clues(unsigned number, auto message);

We now have another reason to almost always use auto.

We have lost the idea of the message generator being an

invocable function, though. Once we know a bit about

concepts, we can fix that. For the impatient, we can include

the concepts header and say

void guess_number_with_clues(unsigned number,

 std::invocable<int, int> auto message)

to get helpful compiler errors if we pass something that is

not able to be invoked with two integers. We will see more

concepts in the next chapter. For the patient, there is a

proposal to introduce an std::function_ref as an

alternative to std::function, overcoming the

performance problems (http://mng.bz/wjgg). C++ is

continuing to evolve to make our lives easier. However we

make our messages, we now get clues when we try to

guess the number (figure 3.6).

http://mng.bz/wjgg

Figure 3.6 The game now gives clues and allows the player to
give up.

We now have a functioning, if somewhat boring, number-

guessing game. We can improve on that by picking a

random number to guess.

3.2 Guessing a random number
C++11 introduced a random number library. It takes a bit

more effort to use than C’s rand function but provides lots

of different ways to generate random numbers with various

useful properties. This section will show how to get a

random number from one of the many distributions. We

need to pick a seed and choose an engine, as well as decide

which distribution to use. We will look at the distributions in

more detail in chapter 6. This section sets the groundwork.

3.2.1 Setting up a random number generator

For our guessing game, we want a random integer. Picking

the random number from an interval would be nice, and any

number should be equally likely, so we will use the uniform

integer distribution, called uniform_int_distribution.

This distribution is suitable for simulating dice rolling, which

needs a number between one and six for each roll without

bias toward any outcome. It is useful for any situation

requiring equally likely whole numbers, such as picking a

number for us to guess in our game.

Each distribution is a template taking a type of number to

generate. The uniform_int_distribution is

constrained to whole number types. There is a similar

uniform_real_distribution for floats or doubles. We

will use an integer and request numbers between 1 and

100 inclusive:

std::uniform_int_distribution<int> dist(1, 100);

The C rand function does not support intervals, which we

often want with random numbers. For example, a dice roll

needs a number between 1 and 6, or picking a card from a

deck needs a number between 1 and 52. C++ helps us out

here, allowing us to be explicit.

To provide numbers, the distribution needs an engine or

generator. The engine provides random numbers. Yes, to

generate random numbers, the distribution needs to be

provided with random numbers. The distribution uses

probability functions to ensure the numbers are uniform or

follow whichever distribution is requested. For a uniform

number in a range, the distribution squashes or transforms

the numbers the engine provides to the requested interval.

If we used C’s rand instead, we would have to squash the

numbers to the interval ourselves.

We cannot generate a genuinely random number from a

function because a function returning a different value

every time it is called would usually be regarded as a bug.

So how can a random number engine work? What we can

do is generate a pseudo-random number by writing a

function that starts with a seed and does some arithmetic to

generate a new number, while remembering that new

number for the next call. Eventually, the numbers will start

repeating if the number matches the original seed. Many

pseudo-random number generators use a polynomial

function combined with some modulo arithmetic. We could

write a generator ourselves.

Listing 3.8 A terrible random number generator

int random_number(int seed = 0)

{

 static int x = 0; ❶
 if (seed)

 x = seed;

 x = ++x % 2; ❷
 return x;

}

❶ Static storage holding the number for the next call
❷ Makes a new value from the last value

This is a terrible random number generator because it will

only return 0 or 1, and these values alternate. We either

get 0, 1, 0, 1, ... or 1, 0, 1, 0, ... depending on

the seed. As it repeats every two numbers, it has a period

of two. Fortunately, C++ provides several engines that do a

much better job, including the tersely named mt19937

engine. The mt stands for Mersenne Twister. These

generators use prime numbers that are one less than a

power of two, called Mersenne primes, in their modulus part

and have a much better calculation step than our

increment, ++x. This engine provides a period of 2
19937

 - 1.

We could also use the std::default_random_engine,

which may well be the mt19937 engine.

There are various ways to seed the random number engine.

If we stick with a specific number, we will get the same

sequence of random numbers for each run. The ability to

regenerate a sequence of pseudo-random numbers by

supplying the same seed is useful for simulations and for

testing, as the outcomes are then identical for each run. We

could use the current time to get different numbers on each

run, but we haven’t learned about time in C++ yet. We will

do that in the next chapter. The random header provides a

random_device, which is itself a random number

generator, producing non-deterministic random numbers.

CppReference points out that it may generate the same

number sequence every time it is called

(http://mng.bz/84RZ). Some older implementations always

returned 0, so it is worth checking whether you get a

different number if you call it a few times running. The

random device might be using the state of your hard drive,

or similar physical component, to generate a number.

http://mng.bz/84RZ

CppReference also warns us that even though it generates

random numbers, it is designed to generate a seed because

calling it repeatedly may start generating the same

numbers over and over.

After including the random header, we use the random

device to seed our random number generator:

std::random_device rd;

std::mt19937 engine(rd());

This gives us the engine or generator we need to use a

distribution.

3.2.2 Using the random number generator

Armed with a seed and engine, we can now draw a single

number from the distribution. We do this by calling the

distribution’s operator().

Listing 3.9 Generating a single random number

int some_random_number()

{

 std::random_device rd; ❶
 std::mt19937 engine(rd()); ❷
 std::uniform_int_distribution<int> dist(1, 100); ❸
 return dist(engine); ❹
}

❶ A device to get a random number
❷ An engine seeded with the device

❸ A distribution to pick a number
❹ Our actual random number

That is quite a bit of code to generate one number, but we

need a seed, an engine, and a distribution before we can

request a random number. We cannot get away with less

code here. We will use random numbers in future chapters

too, so we will get more practice. Now, if we want several

random numbers, we could make a class and set up the

seed and distribution in a constructor, calling

dist(engine) from a member function each time we

need a new number. We will create a class in chapter 5 and

only need one number here, so the function suits our

needs.

Notice that C++ has given us more control than the C

function. The engine can be switched out to another that

repeats less often, although the mt19937 is fine here

because we only need one number. We have also specified

the range the random number should come from. The first

three lines are set up, which we only have to do once. If we

wanted another random number, we would call

dist(engine) again without the setup. If we called this

several times and recorded the results, we would see the

numbers for 0 to 100 generated in approximately equal or

uniform proportions.

We can now make our game slightly more challenging by

calling the new function instead of some_const_number in

main function, leaving everything else the same.

Listing 3.10 A random number guessing game

int main()

{

 auto message = [](int number, int guess) {

 return std::format("Your guess was too {}\n",

 (guess < number ? "small" : "big"));

 };

 guess_number_with_clues(some_random_number(), message); ❶
}

❶ Possibly not 42 for a change

We could change the message to give different clues (e.g.,

whether the number is odd or even, or we could keep track

of guesses to remind the user if they have already tried a

number). We will not do that here, but we can see how

passing in the message keeps the code relatively flexible.

What we will do is generate a prime number to guess. We

will therefore learn how to generate a random number with

a required property, in this case, a prime number, and will

provide clues if the number is wrong.

3.3 Guessing a prime number
For more practice with random numbers, we will generate a

prime number to guess. If the player gets it wrong, we will

say which digits are correct. That will give us a bit more

practice with the lambdas for our messages too.

3.3.1 Checking whether the number is prime

We need to adapt our function generating the number to

guess if we want a prime number. Instead of returning

dist(engine) immediately like we did in listing 3.9, we

can first check if the number is prime. If so, we return it;

otherwise, we try another random number until we get

something suitable. How do we check if a number is prime?

Prime numbers have two factors. One only has one factor,

so we can special case this and return false. 2 is 1 × 2 (or 2

× 1), so it has precisely two factors. This is the first prime.

3 is the next prime, so we can return true immediately for

either of these numbers. Any multiples of 2 or 3 after that

are not prime. For example, 6 is divisible by 2 and 3 and is

also divisible by 1 and 6. We can therefore check for these

using operator%.

The number 4 gets caught in the check for multiples of 2.

We therefore only need to check if the number is a multiple

of any number from 5 upwards since we covered 2, 3, and

4. We could keep track of the primes we find, rather than

only considering multiples of 2 or 3, and build what is

known as the sieve of Eratosthenes. This would be more

efficient, but it means we would need to keep track of the

primes. We can stop checking at the square root of our

number to save a bit of time. There is no point in checking

beyond that. For example, the number 35 is 5 × 7. Starting

to check from 5, we immediately find a factor, so we can

say 35 is not prime. We found this before the square root of

35, something slightly less than 6. Having found the first

factor, we do not need to check the 7 because we found the

5 already and returned. If a factor is larger than the square

root, there will always be another factor smaller than the

square root, which we will find first. We pull our checks for

factors together into a function as follows.

Listing 3.11 Function to check whether a number is prime

bool is_prime(int n)

{

 if (n == 2 || n == 3) ❶
 return true;

 if (n <= 1 || n % 2 == 0 || n % 3 == 0) ❷
 return false;

 for (int i = 5; i * i <= n; ++i) ❸
 {

 if (n % i == 0)

 return false; ❹
 }

 return true; ❺
}

❶ 2 and 3 are prime.
❷ 1 and any multiple of 2 or 3 are not prime.

❸ Checks if 5 upwards is a factor
❹ We found a factor, so the number is not prime.

❺ If we get here, we have a prime.

We could make other optimizations to make the function

faster, but this is quick enough for our game. We have a

way to check if a number is prime, but before we use it, we

will add some tests for this function.

3.3.2 Checking properties with static_assert

We will add a function to test whether our is_prime

function works. We can hard-code a few numbers for the

test. This means we are not using any runtime input, so we

can run our checks at compile time. We indicate that by

adding the keyword constexpr, short for constant

expression, at the start of our function signature:

constexpr bool is_prime(int n)

Saying a function or variable is a constexpr means it can

be evaluated at compile time, in theory. It might not be. A

constexpr variable is const, meaning we can’t change its

value. For a constexpr function, the arguments have to

be constant expressions too. If they don’t get set until

runtime, for example, via user input, evaluation cannot

happen at compile time. So constexpr indicates that a

value, or return value, is both constant and computed at

compile time, when possible. Using constexpr can

therefore allow us to evaluate variables or functions at

compile time. Let’s see how.

We can still call our function at runtime, but we can now

check the code at compile time too. Instead of using C’s

assert function like we did in the last chapter, we can use

static_assert in a test function:

void check_properties()

{

 static_assert(is_prime(2));

}

The static_assert can be used in other places too, such

as a namespace (see http://mng.bz/E97o), but making a

function for our tests makes them easy to find. The

static_assert needs a constant expression, such as our

http://mng.bz/E97o

constexpr function, and generates a compiler error if the

expression is false. We can add a call to the

check_properties function at the start of the main

function, and our single assertion passes at compile time,

leaving nothing to do at runtime. If we use a non-prime

number, such as 4, instead of 2, we get a compile error:

main.cpp(108,24): error C2607: static assertion failed

Finding and catching errors early is always a good thing.

Furthermore, evaluation at compile time can speed up

runtime. Both static_assert and constexpr were

introduced back in C++11. The latter was made more

flexible over time, allowing local variables and loops. Prior

to that, we needed to use recursion. C++20 then

introduced the specifiers consteval and constinit.

consteval is applied to functions to ensure they are being

evaluated at compile time, whereas a constexpr may or

may not be evaluated at compile time. constinit is

applied to variables, ensuring initialization at compile time.

A consteval function is also called an immediate function,

and we get a compile error if it cannot be evaluated at

compile time.

We can also see variables declared as constexpr:

constexpr int x = 41 + 1;

constexpr bool x_prime = is_prime(42);

This makes the variables constant as well as calculated at

compile time, so we cannot change them. Trying to do so by

saying x = 43 results in a compile error. Compile time

evaluation is a powerful tool. The important point for now is

that constexpr function can run at compile time or

runtime.

Now that we know how to test if a number is prime, we can

use the check to generate a prime number to guess in our

game.

3.3.3 Generating a random prime number

We saw how to generate a random number in listing 3.9.

We used random_device to seed an engine and a

distribution to pick a random number from a range. There

aren’t so many prime numbers between 1 and 100, so we

will increase the range to 99,999, giving us more possible

prime numbers and up to five digits. Instead of returning

the first number generated, we need to check to see if it

fulfills our requirements. We use our is_prime function

and keep trying until we get a suitable number in an empty

while loop. Let’s use {} to initialize everything to remind

ourselves about uniform initialization.

Listing 3.12 Generating a prime number

int some_prime_number()

{

 std::random_device rd;

 std::mt19937 engine{ rd() };

 std::uniform_int_distribution<int> dist{1, 99999}; ❶

 int n{}; ❷
 while (!is_prime(n)) ❸
 {

 n = dist(engine); ❸
 }

 return n;

}

❶ Uses a larger interval
❷ Default initializes n, using {}

❸ Keeps on until we get a prime

Filtering out random numbers that do not fulfill a criterion is

known as rejection sampling. It’s a simple way to generate

random numbers that fulfill a property. Many of the

distributions provide random numbers with properties

required for simulations and games, but when the

distribution is hard to encode mathematically, rejection

sampling works well.

We can now amend our guessing game, using a randomly

generated prime number, and adapting the call to the

guessing game in listing 3.10 appropriately:

guess_number_with_clues(some_prime_number(), message);

This is all very well, but we can generate better clues. We

could report if any of the digits are correct with a bit of

thought. There are only 10 digits, so we could make two

guesses with different digits. If a new clue tells us which are

in the number, we know which digits to use. We may get

them in the wrong place, and some may repeat, but it

should be much easier to guess the number.

3.3.4 Deciding which digits are correct

We will use the character ^ to indicate a digit in the wrong

place, * for a digit in the right place, and a dot for a digit

that isn’t present. If the number is 12347 and we guessed

23471, we have guessed all the digits, but they are in the

wrong place. We would indicate this by displaying "^^^^^".

If the number is 78737 and we guess 87739, we would

display "^^**". Displaying this under the guess would give

87739

^^**.

The second 7 and the 3 are in the right place, so they get

an *. The 7 and 8 at the start are in the wrong place, so

each gets a ^. The final digit, 9, is wrong, so it gets a dot.

To create the clue, we need a function taking the number

and the guess and returning a string. If we convert the

numbers to a string, we can check the digits one at a time.

There are various ways to do this, and we will use format.

We want to add leading zeros, so the number itself and the

guess are both five digits long. We used the format specifier

"{: ^6}" in the last chapter to pad a number with spaces

ensuring it was six characters long. The ^ means center-

justified. This time, we want right-justified, so use >, and

we want 0 instead of space, giving us "{:0>5}". If we set

up a string filled with five dots, std::string

matches(5, '.'), and put stars where the digits are

correct, we are partway there.

Listing 3.13 Start of a function indicating which digits are
correct

std::string check_which_digits_correct(int number, int guess)

{

 auto ns = std::format("{:0>5}", (number)); ❶
 auto gs = std::format("{:0>5}", (guess)); ❶
 std::string matches(5, '.'); ❷
 for (size_t i = 0, stop = gs.length(); i < stop; ++i)

 {

 char guess_char = gs[i];

 if (i < ns.length() && guess_char == ns[i])

 {

 matches[i] = '*'; ❸
 }

 }

 return matches;

}

❶ Converts numbers to strings
❷ Starts with five dots

❸ Indicates correct digits with a star

Now we need to find whether there are any digits in the

wrong place. If the number is 78737 and we guess 87739,

we have two 7s. One is correct, so it got an *, and the

other is wrong. If we change the middle 7 in the number to

an *, we won’t use it in our check for misplaced digits. We

can do that in the first loop; then we find digits that are in

the wrong place in a second loop, indicating this with a ^.

Once we have counted a digit as misplaced, we will change

that to a ^ as well, so we don’t report two misplaced digits

when only one is in the number. For example, if the number

is 12347 and the guess is 11779, both 7s are wrong, but we

want to indicate we have one misplaced 7, rather than two:

11779

*.^..

If both 7s were to get the ^, indicating they are misplaced,

that suggests the number contains two 7s. Our feedback

makes it clear there is only one 7 in the number.

An std::string has a find method, which returns npos if

there is no position matching. Some compilers also now

support a contains function, which is more succinct, but

we need the position if the digit is found to avoid using it

again, so we need to use find. The find function takes a

character to find and a starting position and returns an

index. Because we want to search from the start, we need

to use starting position 0. If we get npos back, this means

the character isn’t there. We can do this in one if

statement, using the if statements with initializer:

if (size_t idx = ns.find(guess_char, 0); idx != std::string::npos)

This was introduced in C++17. It looks like a normal if,

but has an initialization followed by a semi-colon and then a

condition: if (init; condition). Without this, we

would have to find the index and then check the value in

separate statements. Either way is fine, but if statements

with an initializer can keep code tighter, particularly by

keeping the scope of the variable smaller because the

variable is only in scope inside the if block. Adding the

check for misplaced digits to the previous listing gives us

the following.

Listing 3.14 Showing misplaced digits

std::string check_which_digits_correct(int number, int guess)

{

 auto ns = std::format("{:0>5}", (number));

 auto gs = std::format("{:0>5}", (guess));

 std::string matches(5, '.');

 for (size_t i = 0, stop = gs.length(); i < stop; ++i)

 {

 char guess_char = gs[i];

 if (i < ns.length() && guess_char == ns[i])

 {

 matches[i] = '*';

 ns[i] = '*'; ❶
 }

 }

 for (size_t i = 0, stop = gs.length(); i < stop; ++i) ❷
 {

 char guess_char = gs[i];

 if (i < ns.length() && matches[i] != '*')

 {

 if (size_t idx = ns.find(guess_char, 0);

 idx != std::string::npos) ❸
 {

 matches[i] = '^';

 ns[idx] = '^'; ❹
 } ❺
 }

 }

 return matches;

}

❶ Don’t double count this digit.
❷ Now checks guesses that don’t match

❸ Looks for the guess character
❹ Don’t reuse this digit either.

❺ idx has now gone out of scope.

We can and should add tests to our properties function. For

example, after including the cassert header, we can add a

check:

assert(check_which_digits_correct(12347, 23471) == "^^^^^");

The code provided with this book has several tests in the

properties function, covering repeated and missing digits,

omitted here for brevity.

We can now use our function to create a clue in the

guessing game and call our properties test from main.

While we are making that change, we will return the

number formatted to five digits. This way, shorter numbers

get leading zeros, so the ^ looks like it is pointing at any

misplaced digits. For example, if the number is 17231 and

we guess 1723, we would see

01723

.^^^^

This isn’t required, but it will remind a player they can use a

zero. The following listing shows what we have when we put

things together.

Listing 3.15 A much better number-guessing game

void guess_number_with_clues(int number, auto message)

{

 std::cout << "Guess the number.\n";

 std::optional<int> guess;

 while (guess = read_number(std::cin))

 {

 if (guess.value() == number)

 {

 std::cout << "Well done.";

 return;

 }

 std::cout << guess.value() << " is wrong. Try again\n";

 std::cout << message(number, guess.value()); ❶
 }

 std::cout <<

 std::format("The number was {:0>5}\n", (number)); ❷
}

int main()

{

 check_properties(); ❸
 auto message = [](int number, int guess) {

 return std::format("{}\n",

 check_which_digits_correct(number, guess));

 }; ❹
 guess_number_with_clues(some_prime_number(), message); ❺
}

❶ Displays clues

❷ Shows the correct number as five digits
❸ Calls the tests

❹ Messages saying which digits are correct
❺ Plays the game

If we play the game, we can start with two prime numbers

with different digits to narrow down possible numbers.

12347 and 56809 cover all the digits, so they are good

starting guesses (figure 3.7).

Figure 3.7 Start with two prime numbers with different digits to
narrow down possible numbers.

3.3.5 Providing different clues using
std::function

Now, 90113, guessed in figure 3.7, is not a prime number.

We can add this check to our message easily enough.

Listing 3.16 A longer message

auto get_message = [](int number, int guess) {

 return std::format("{}\n{}\n",

 is_prime(guess) ? "Prime" : "Not prime", ❶
 check_which_digits_correct(number, guess)); ❷
};

guess_number_with_clues(some_prime_number(), get_message);

❶ Is the guess prime?
❷ Which digits are correct?

We could extend this further, but adding lots of separate

checks into the single lambda is a bad idea. Lambdas are

good when we need a small function, but we should not let

them get unwieldy. We need a different approach. We can

add a check for the length as well because the number will

not be more than five digits. We are therefore trying to

check three things and return a message in each case. We

can check the length and whether a number is prime with

two separate lambdas, taking the guess and returning a

string.

Listing 3.17 Check the length and whether the number is prime

auto check_prime = [](int guess) {

 return std::string((is_prime(guess)) ? "" : "Not prime\n");

};

auto check_length = [](int guess) {

 return std::string((guess < 100000) ? "" : "Too long\n");

};

Listing 3.14 gave clues about which digits were correct, but

it requires the number as well as the guess. We can use the

closure aspect of lambdas to make an anonymous function

taking a single integer if we capture the number to guess.

We saw [=] and [&] for captures by value and by

reference in section 2.3 when we first met lambdas. We can

say [number] to mean capture the variable number by

value since we don’t use the = sign when we capture a

specific variable by value. We could use [&number] to

mean capture number by reference. Either way, we have

enclosed our function, taking two numbers with the number

to guess to make a new function.

Listing 3.18 Capturing the number

int number = some_prime_number();

auto check_digits = [number](int guess) { ❶
 return std::format("{}\n",

 check_which_digits_correct(number, guess));

};

❶ Captures the number by copy

We now have three lambdas that take an integer and return

a string. It would be nice to put them in a container, like a

vector, so the game can walk through the clues and

possibly add more checks. What type would the vector

contain, though? We know that each lambda has a different

type, but we can wrestle them into an std::function

and put them in a container if we include the functional

and vector headers. The guessing game can then check

the clues and show the first one only. If we check whether

the number is prime first, we can enforce that the guess is

prime and avoid giving further clues until another guess is

made. We therefore need a slight change to our guessing

function to call the messages.

Listing 3.19 Using all the clues

void guess_number_with_more_clues(int number, auto messages)

{

 std::cout << "Guess the number.\n>";

 std::optional<int> guess;

 while (guess = read_number(std::cin))

 {

 if (guess.value() == number)

 {

 std::cout << "Well done.";

 return;

 }

 std::cout << std::format("{:0>5} is wrong. Try again\n",

 guess.value());

 for (auto message : messages) ❶
 {

 auto clue = message(guess.value());

 if (clue.length()) ❷
 { ❷
 std::cout << clue; ❷
 break; ❷
 }

 }

 }

 std::cout << std::format("The number was {:0>5}\n", (number));

}

❶ Gets messages

❷ Only displays first clue

Now we can call our game after we call our test code in the

main function.

Listing 3.20 Pulling it all together

int main()

{

 check_properties();

 auto check_prime = [](int guess) {

 return std::string((is_prime(guess)) ? "" : "Not prime\n");

 };

 auto check_length = [](int guess) {

 return std::string((guess < 100000) ? "" : "Too long\n");

 };

 const int number = some_prime_number();

 auto check_digits = [number](int guess) {

 return std::format("{}\n",

 check_which_digits_correct(number, guess));

 };

 std::vector<

 std::function<std::string(int)>

 > messages ❶
 {

 check_length,

 check_prime,

 check_digits

 };

 guess_number_with_more_clues(number, messages); ❷
}

❶ Lines up checks and clues

❷ Plays the game

Having a handful of prime numbers to start off with will

make playing easier. Try 12347 and 56809, as they use all

the digits. We are free to ignore any clues, so we can try to

find out which five digits we need first.

Wrestling the lambda into an std::function is not ideal,

as we saw in section 3.1.3, because it can no longer be

inlined. We will see another approach when we learn about

parameter packs for templates in the final chapter. For now,

we have learned about input and output, as well as strings,

integers, and vectors. We can also generate random

numbers. We will learn about handling time next and

continue to build up our C++ knowledge.

Summary
Character input comes from std::cin and can be

streamed into specific types, but we need to check for

errors and clean up unused input.

Use std::getline to get an entire line of text,

including whitespace.

std::optional can be used for a value that may be

unset.

Both std::cin and std::optional have an

explicit operator bool, allowing us to check for

errors or missing values easily.

Look for common patterns in the language and libraries

to inform your own code.

Random numbers in C++ require both an engine and a

distribution.

A random number engine can be seeded with

std::random_device.

Rejection sampling is a quick way to select random

numbers fulfilling properties if a suitable distribution is

not available.

Some expressions can be calculated at compile time, so

marking them with constexpr is a good idea.

Use static_assert to check expressions at compile

time.

A lambda can be stored in std::function, but this

may make code larger and slower.

4 Time points, duration, and literals

This chapter covers

Using std::chrono time points and durations
Using ratios
Using literal suffixes
Using the overloaded operator/ to create dates
Input and output of time points and durations
Using different time zones

In this chapter, we will make a short program to create a

countdown to an event. To do this, we will use time points

and durations from the chrono header. This feature was

introduced in C++11, and although the essence has

remained the same, several useful additions have been

made over time. Howard Hinnant is the main author and

designer of this feature. In his Meeting C++ talk in 2019, he

gave a lot of background to its design

(https://www.youtube.com/watch?v=adSAN282YIw). As we

use chrono, we will learn several important idioms and

approaches applicable to many other situations.

We will build a simple countdown in the first section and

then dig deeper into the types we used. We will discover how

to use the ratio templates so that we can understand

durations. We’ll then learn how to read dates in so we can

count down to any event and print out countdowns in

various units. We will learn about literal suffixes to specify

https://www.youtube.com/watch?v=adSAN282YIw

days, months, and so on and why they are useful. We will

also encounter the idea of requirements and touch on

concepts. Having covered these newer C++ features, we’ll

finish with a countdown using a zoned time.

4.1 How long until the last day of the
year?

We will start by finding out how long it is until the end of a

specific year to get a basic countdown. We only need a small

amount of code, so this chapter’s project is small in terms of

lines of code. However, we will expand our knowledge as we

code.

To find how far off a date is, such as New Year’s Eve, we

need to know the current time. The chrono header gives us

a way to do this, providing us with date and time:

std::chrono::time_point now = std::chrono::system_clock::now();

Several details are hiding in there, which we will unpack

further in this chapter. The time_point is a class template,

using a clock and a duration. We have a choice of clocks,

each able to work out the time and date for us. We will look

at the duration details in the next section, but at a high

level, it specifies the units of time, such as seconds or days.

We have applied class template argument deduction (CTAD)

to avoid specifying these template parameters, so we need

to use at least C++17. Without it, we would need to spell

out the full type,

std::chrono::time_point<std::chrono::

system_clock> or just use auto.

What is a clock? The system_clock we are using is based

on the operating system’s time. Now, an administrator can

change the system’s time, so calling now might appear to go

back in time if the system time gets changed. That is not a

problem, but it’s worth knowing. Each clock provides a

member variable called is_steady, which tells us if this

might happen. We could use a steady_clock instead,

although that is better suited for timing intervals. There are

other clocks as well, for example, the high_

resolution_clock, which provides the finest grain tick.

Be warned that despite the name, this clock might be a

system_clock or steady_clock, rather than a clock with

a super-small tick size. There is also a file_clock for use

with timestamps on files. Different file systems support

different resolutions, so this provides a consistent way to

access such information, regardless of the resolution used by

the file system. We will stick with the system_clock in this

chapter. It provides a systemwide real-time wall clock based

on coordinated universal time (UTC) and maps easily to C’s

time_t, allowing us to interact with a C library if required.

Armed with another time point, we can find the difference

between each to get a time interval or duration. For

example, if we create a time point at the last day of the

year, we can find how long it is until the last day of the year.

New Year’s Eve is always on the 31st of December, so we

can specify a specific year, month, and day using C++20’s

std::chrono::year_month_day.

Listing 4.1 Creating a specific date

auto new_years_eve = std::chrono::year_month_day(

 std::chrono::year(2022),

 std::chrono::month(12),

 std::chrono::day(31)

);

We will see how to get the year from the time_point now

shortly so we can write a more general and useful

countdown. First, we will find the difference between the

fixed date in listing 4.1 and the current time_point. Before

we find the difference between our two dates, notice that

year_month_day uses the whole value idiom. The whole

value idiom has roots in Ward Cunningham’s CHECKS

pattern language (http://c2.com/ppr/checks.xhtml), which

mentions whole values to represent the meaningful

quantities and is further explored by Martin Fowler’s quantity

pattern (https://martinfowler.com/eaaDev/Quantity.xhtml)

that represents dimensioned values with both their amount

and unit. Rather than using integers for each parameter and

trying to remember which order the constructor parameters

are in, even though there is a big clue in the name, we have

to explicitly pass an std::chrono::year to the year

parameter and so on. The whole value idiom creates

lightweight types to ensure parameters are passed correctly.

A compiler error will ensue if we try to pass a month where a

day is required, pinpointing a problem early and precisely.

http://c2.com/ppr/checks.xhtml
https://martinfowler.com/eaaDev/Quantity.xhtml

To compare the new_years_eve with the current date

time, we need to convert the date to another time_point.

We only have days without a time, so we specify days as the

duration of the time_point for the conversion:

auto event = std::chrono::time_point<std::chrono::system_clock,

 std::chrono::days>(new_years_eve);

We could use one of two type aliases from chrono to make

our event definition more succinct. First, whenever we need

a time point based on a system clock, we can use sys_time

and specify the duration. Thus, we could say

auto event = std::chrono::sys_time<std::chrono::days>(new_years_eve);

Second, if we need days specifically, we can use sys_days

as a shorthand:

auto event = std::chrono::sys_days(new_years_eve);

Either way, we now have two time_points, so we can

subtract them to find the difference and stream the value

out, using chrono’s operator<<, which was introduced in

C++20.

Listing 4.2 Duration between two time points

#include <chrono>

#include <iostream>

void duration_to_end_of_year()

{

 std::chrono::time_point now = std::chrono::system_clock::now();

 constexpr auto year = 2022; ❶
 auto new_years_eve = std::chrono::year_month_day(

 std::chrono::year(year),

 std::chrono::month(12),

 std::chrono::day(31)

);

 auto event = std::chrono::sys_days(new_years_eve); ❷
 std::chrono::duration dur = event - now; ❸
 std::cout << dur << " until event\n"; ❹
}

int main()

{

 duration_to_end_of_year();

}

❶ Hardcodes a year for now
❷ Converts to a time point

❸ Finds the difference
❹ Finds operator<< for duration

If you have an older compiler that does not support

operator<< for durations yet, you can use the count

method to send a value to cout in the last line of the

function:

std::cout << dur.count() << " until event\n";

Alternatively, you can clone Howard Hinnant’s date library

(https://github.com/HowardHinnant/date) somewhere

sensible:

git clone https://github.com/HowardHinnant/date.git

Include "date/date.h" from the library and add

using date::operator<<;

https://github.com/HowardHinnant/date

when you need to use the stream insertion operator. When

you build your code, don’t forget to use the -I switch to

point to the date/include directory.

The exact output will depend on when we run listing 4.2, but

we get a number and some units. Using Visual Studio 2022

gave

69579189669221[1/10000000]s until event

The number is in fractions of a second, indicated by

[1/10000000]s in the output. Using the Compiler Explorer

and either GCC 12.2 (https://godbolt.org/z/8Gj345e3d) or

Clang 15.0 (https://godbolt.org/z/9zGvqfhPs), we get

-1508892372000803ns until event

It would be nice to decide the granularity for ourselves and

use the actual year, rather than hardcoding 2022. We will

take a deeper dive into durations in the next section to

achieve this.

Let’s take a moment to remind ourselves precisely what we

have used so far. If we try the code on C++ Insights,

mentioned in the first chapter

(https://cppinsights.io/s/7a85b40e), we can see the full

types spelled out. Your compiler may use slightly different

types and values, but the insight gives an idea of how much

is happening in the code. The insight for the two lines

auto event = std::chrono::sys_days(new_years_eve);

std::chrono::duration dur = event - now;

https://godbolt.org/z/8Gj345e3d
https://godbolt.org/z/9zGvqfhPs
https://cppinsights.io/s/7a85b40e

near the end of the function in listing 4.2 is as follows.

Listing 4.3 C++ Insights showing the full types

std::chrono::time_point<std::chrono::system_clock, ❶
 std::chrono::duration<long, std::ratio<86400, 1> > > ❷
 event = std::chrono::time_point<std::chrono::system_clock,

 std::chrono::duration<long, std::ratio<86400, 1> > >

 (new_years_eve.operator time_point()); ❸
std::chrono::duration<long, std::ratio<1, 1000000000> > dur = ❹
 std::chrono::operator-(event, now); ❺

❶ Time point using a system clock
❷ A duration of 60*60*24 seconds

❸ Conversion to sys_days i.e. time_point in days
❹ Insight uses a long and nanoseconds.

❺ Overload for operator- on time points

We can see from the C++ Insights output that durations are

using ratios, so we need to start with ratios; then we can

unpack durations in more detail.

4.2 Understanding durations in detail
We obtained a time interval or duration when we

subtracted two time points, and we displayed the value. A

duration counts ticks, either as whole numbers or floating-

point numbers, in a unit, such as microseconds. A

duration is therefore defined as a template taking two

types, one for each part:

template<class Rep,class Period = std::ratio<1> > class duration;

The representation, Rep, will be a numeric type such as an

integer or a float. The Period is a ratio telling us

how to convert the ticks to seconds. It’s worth taking a

moment to understand the ratio type in more detail; then

we will be better prepared to work with various durations.

4.2.1 Ratios

A minute has 60 seconds. We could divide seconds by 60

whenever we need minutes, but littering code with magic

numbers is asking for trouble. We might not find every place

they are used if we decide we want hours instead. We could

write a utility function to do the conversion, or we could rely

on something more generic. A ratio of 60:1 would be very

useful. Fortunately, C++ provides exactly what we need in

the ratio header. A ratio can be used to represent any

rational number, so it needs two numbers: a numerator and

a denominator. C++ defines this as a template using the

two numbers:

template<std::intmax_t Num, std::intmax_t Denom = 1> class ratio;

The intmax_t is the largest signed integer type, which can

vary between implementations. Using a template allows

arithmetic with ratios to happen at compile time. Notice that

the numerator and denominator are both nontype template

parameters; in this case, numbers rather than types. We

could create a ratio of 3:6 using std::ratio<3, 6>. If we

look at the numerator and denominator

std::cout << std::ratio<3, 6>::num << '/' << std::ratio<3, 6>::den << '\n';

we find that the ratio has been reduced to the simplest form,

1/2. In fact, the helper method ratio_equal tells us the

two ratios are equivalent:

bool same = std::ratio_equal<std::ratio<3, 6>, std::ratio<1, 2>>::value;

The ratio header also provides arithmetic functions, such

as ratio_add, allowing us to perform compile-time

arithmetic with fractions such as

using fract = std::ratio_add< std::ratio<3, 6>, std::ratio<1, 2>>;

std::cout << fract::num << '/' << fract::den << '\n';

which gives 1/1.

The default duration we saw at the start of this section uses

a ratio of 1:1, Period = std::ratio<1>, equating to 1

second per tick. The chrono header provides various

periods, from nanoseconds to years, each based on

definitions in the ratio header. A nanosecond is

1/1,000,000,000 seconds. Counting how many zeros there

are in such a number is error prone. Fortunately, the ratio

header defines std::nano for us as

std::ratio<1, 1000000000>

We can use this instead of creating our own constant. The

ratio header also defines milli-, kilo-, and other

International System of Units (SI) ratios.

In listing 4.3, we saw C++ Insights using a duration with a

long for the representation and a period of

std::ratio<1, 1000000000>. The representation and

period used for a system_clock can vary between

compilers, but that does not matter. Whatever is in use, we

can ask for seconds between time points or any other

duration. We can now change our countdown to provide the

duration in whatever units we choose.

4.2.2 Durations

Our countdown was in fractions of a second, but we might

want to report it in days or minutes instead. So how do we

convert between durations? To get a duration in minutes, we

employ std::chrono::minutes, which uses a ratio of

60:1. Various periods are available. Hours use 3,600:1,

milliseconds 1:1,000, and microseconds 1:1,000,000.

C++20 introduced days, weeks, months, and years as well.

Days and weeks are straightforward enough, but how many

days are there in a month or a year? It depends. C++20

uses 365.2425 days for a year and 30.436875 days, exactly

1/12 of a year, for a month. The civil calendar models the

solar system approximately, and chrono models the civil

calendar precisely. We could even write our own calendars

that can interoperate with chrono. Howard Hinnant gives

examples including the Julian and Islamic calendars on his

GitHub pages (http://mng.bz/A89Q).

We can switch between durations implicitly or explicitly.

Assigning a finer-grained interval from a coarser-grained one

http://mng.bz/A89Q

will not round, so an implicit cast works:

std::chrono::milliseconds ms = std::chrono::hours(2);

Getting back to the finer-grained milliseconds may involve

rounding, so we need to use a named cast:

auto two_hours_from_ms = duration_cast<hours>(ms);

This example will give us back the original 2 hours. In most

cases, going from milliseconds to hours might lose some

precision. Two hours is 7,200,000 milliseconds. If we only

had 7,199,999 milliseconds, we would be a millisecond

under 2 hours, so we would get 1 hour instead of 2.

Similarly, 23 hours is nearly a day, but transforming this into

a day will round toward zero, so we get 0 hours if we round

trip.

Let’s try this out. We will add a using directive so we no

longer need to fully qualify the types and functions in

std::chrono. However, be wary of doing this thoughtlessly

and never do this in a header file. ISOCpp’s core guideline

SF.7 tells us not to write using namespace at global scope

in a header file (see http://mng.bz/xjR6). Doing so might

bring two names into scope and cause ambiguity. In our

case, we have a small function, so we will not introduce

naming collisions.

So how many days is 23 hours? We need a duration_cast

to find out.

http://mng.bz/xjR6

Listing 4.4 Using duration to move to a coarser
representation

void durations()

{

 using namespace std::chrono;

 auto nearly_a_day = hours{23}; ❶
 days a_day = duration_cast<days>(nearly_a_day); ❷
 hours round_trip = a_day; ❸
 std::cout << nearly_a_day << " cast to " << a_day

 << " and cast back to " << round_trip << '\n';

}

❶ Starts with almost a day
❷ Casts to days

❸ Gets 0 hours back

Call durations from main to see

23h cast to 0d and cast back 0h

The operator<< reports 0d, meaning 0 days, which is 0h,

or 0 hours. Don’t forget you can use the duration’s count

method instead or using date::operator<< if you need

to. A value in days can be assigned to hours without an

explicit cast because we do not drop precision. So given one

whole day a_day{1}, we can assign

hours n_hours = a_day;

and check that they are the same:

assert(a_day == n_hours);

We could use an explicit duration_cast instead of the

direct assignment, but reserving the use of

duration_cast for only those conversions that lose

precision is a good approach. This makes it easy to find such

lossy conversions in our code if we suspect a lossy

conversion is the source of an error. Needing to use a

duration_cast when we might lose precision is a good

thing because the cast makes the potential loss explicit, as

figure 4.1 shows.

Figure 4.1 Transforming 23 hours to days loses precision, so it
needs a duration_cast.

We can even write our own duration; for example, a

century. We need to provide a type for the period. A century

has 100 times as many seconds as a year, so we need the

ratio 1:100, or std::hecto. We can then use

ratio_multiply from the ratio header to get the type

we need. The multiply function calculates the appropriate

numerator and denominator for us, so we can define

centuries using a type alias, with the keyword using:

using centuries = std::chrono::duration<long long,

 std::ratio_multiply<std::chrono::years::period, std::hecto>>;

The using statement works like a generalization of

typedef, and we will see more details in chapter 8. We can

use our century duration just like any of the chrono

durations; for example, converting centuries to seconds,

hours, or days. Seconds and hours can be converted without

a cast, but to get days, we need a duration_cast. This

might be surprising because a century is 100 years, and a

year has either 365 or 366 whole days. However, C++

defines a year as 365.2425 days, so one century is

36,524.25, which has a partial day. We therefore need the

explicit duration_cast.

Listing 4.5 Defining a duration

void defining_a_duration()

{

 using namespace std::chrono;

 using centuries = duration<long long,

 std::ratio_multiply<years::period, std::hecto>>; ❶
 centuries two_hundred_years = centuries(2); ❶
 seconds sec = two_hundred_years; ❷
 hours hrs = two_hundred_years; ❷
 days day_count = duration_cast<days>(two_hundred_years); ❸
 std::cout << "Two centuries is approximately " << day_count << '\n';

}

❶ Defines and uses a duration
❷ Converts to seconds or hours

❸ Casts for days

If we run this code, we see

Two centuries is approximately 73048d

The predefined convenience durations are sufficient for

counting down to an event, but the careful design of this

library allows us so much flexibility. In fact, there is even

more in the library to make our lives easier. We do not need

to spell out std::chrono::month(12) in full because the

durations and other types support literal suffixes. Let’s look

at the literal suffixes in more detail.

4.2.3 Literal suffixes and operator / for
readable code

We noted that trying to read numbers with many zeros, such

as 1000000000, can be error prone, but adding a digit

separator, such as 1,000,000,000, helps. C++ now supports

a digit separator, but a comma is an operator, so we use a

single quote instead:

int readable_nano = 1'000'000'000;

This is a small but useful addition to the language. In listing

4.4, we used

auto nearly_a_day = hours{23};

which is perfectly readable, but chrono supports literal

suffixes too. By adding h for hours, we can also write

auto nearly_a_day = 23h;

The literal suffix of 'h' for hours is quite intuitive. Either

approach is fine. How does this work? The seemingly magic

'h' is using the operator""h from chrono. The operator

takes a number and returns the stronger type of hours,

implemented along these lines:

hours operator""h(long long _Val) {

 return hours(_Val);

}

When 23h is encountered, this function is called, giving us

the hours we wanted. We need to be using a suitable

namespace for this to work. We have a choice here. We can

either use one of the namespaces

std::literals,

std::chrono_literals,

std::literals::chrono_literals,

or, more simply, use std::chrono, which makes

chrono_literals visible via the directive:

using namespace std::literals::chrono_literals

The operator""h is an example of a user-defined literal,

providing a conversion to hours when we use an 'h' as a

suffix on a number. Other literals are supported, including

minutes with 'min' and seconds with 's'. These were

introduced in C++11, and C++14 added milli-, micro- and

nanoseconds. This gives us two ways to define durations, as

shown in table 4.1.

Table 4.1 Two ways to define a specific duration

Duration Literals example
hours{12} 12h

minutes{34} 34min

seconds{1} 1s

millisecond{1} 1ms

microsecond{1} 1us

nanosecond{1} 1ns

There are no literals to help construct the durations days,

months, or years. However, there are literals for a day,

month, or year in a calendar. Notice that all the predefined

chrono::duration types are plural, while the calendar

types are singular. They behave differently. We can add

months but cannot add January and December. To specify a

month, we can spell out the name of the month in full; for

example, using the named constant December. A

conversion from a numeric type would mean arguing over

whether to start at 0 or 1. As it happens, C++20 uses 1 for

January, but if we type January in full, we don’t need to

remember where to start. Day, month, and year are

calendrical specifiers, and they can also be defined in two

ways, as shown in table 4.2.

Table 4.2 Two ways to define a specific day, month, or year

Civil calendar Literals example
year{2023} 2023y

month{1} January

day{23} 23d

User-defined literals extend the idea of writing 1u to mean

an unsigned or 1.0f to mean a float. The C++ standard

library provides literals for time, which we just saw. We also

have 'i' for complex numbers; for example, 2 + 3i, or

's' for std::string. Yes, that is another operator""s,

which is in the string_literals namespace, but it takes

a const char*, while chrono’s seconds literal takes a

numeric type, so they are unambiguous. The string literal is

useful. If we initialize a variable with "Hello", we are using

a char array. If we use "Hello"s instead, we have an

std::string directly. We are allowed to define our own

literals too by providing an appropriate operator; however,

we have to begin our suffix with an underscore to avoid

potentially clashing with standard literal operators.

At the beginning of this chapter, in listing 4.1, we created a

date explicitly stating the year, month, and day without

using these literals:

year_month_day(year(2022), month(12), day(31));

We could rewrite this as

year_month_day{2022y, December, 31d};

In fact, we have a further option. Another trick the chrono

library uses for readable code is overloading the operator

/ to create a year, month, and day. CppReference

(http://mng.bz/rjRj) lists about 40 overloads to create a

variety of different dates. We want a full year, month, and

day, so we can spell out the month in English, use the 'y'

suffix to specify a year, and give the day separated with

'/'. For example:

auto new_years_eve = 2022y / December / 31;

The 31
st
 does not need a 'd' at the end because it must be

the day once the year and month have been specified. A

year_month_day can be constructed in a vast number of

ways, but three orders work for a full date:

Year/month/day

Month/day/year

Day/month/year

We will use this shortly to find out how many days until the

end of the current year. Before we do that, we will revisit the

time_point used at the start of the chapter. We know a

time_point is defined by a clock and a duration. We

saw a few different clocks, and we now know how durations

work. Although we have enough knowledge to finish our

small countdown project, the documentation for chrono

http://mng.bz/rjRj

uses C++ features that crop up in many places. In

particular, requirements are mentioned, and the innocuous-

seeming phrase as if is used. What do they mean?

4.2.4 Requirements and concepts

We started this chapter by finding out the current time using

std::chrono::time_point now = std::chrono::system_clock::now();

The time_point is a class template comprising two types,

a clock and a duration:

template<

 class Clock,

 class Duration = typename Clock::duration

> class time_point;

When we found the current time, we used a

system_clock, and the duration defaulted to that clock’s

duration.

CppReference

(https://en.cppreference.com/w/cpp/chrono/time_point)

says time_point is implemented as if it stores a value of

type duration indicating the time interval from the start of

the Clock’s epoch. We haven’t seen the word epoch yet. If

you have used C’s time_t before, you will be familiar with

the idea of counting ticks since the start of a given moment,

or epoch, such as the start of January 1970. Other systems

start at different instants. For example, Excel for Windows

https://en.cppreference.com/w/cpp/chrono/time_point

uses the start of January 1900 (http://mng.bz/ddl1). More

importantly, notice the phrase as if, which crops up

frequently in C++. The as if rule allows the compiler to

reorder instructions or completely remove them under some

circumstances, provided the observable behavior of the

program will not differ. For a clock, the actual

implementation can store whatever it likes, as long as it

behaves as if it stores a duration. The compiler can also

reorder or remove instructions under other circumstances

too. If a program reads an uninitialized variable, the

compiler can also do anything because this is undefined

behavior, usually shortened to UB. Ovle Maudel wrote a

short piece called “Demons may fly out of your nose” a while

ago (http://mng.bz/BAjl), referencing the phrase “nasal

demons” (from the Usenet group comp.std.c) used to

mean “unexpected behavior of a C compiler on encountering

an undefined construct.” No one has ever reported demons

flying out of their nose because of undefined behavior, but

strange things do happen. Sometimes the as if rule means

the compiler can optimize our code, which is a good thing,

while sometimes it means we have undefined behavior,

which is a bad thing. In either case, notice as if in the

documentation.

The time_point also uses a Clock class, and

CppReference says this must meet the requirements for

Clock. Now it is down to us to ensure the clock we use does

this; otherwise, we might end up with nasal demons. Some

of the operations could work if a “not-quite-clock” is used, so

http://mng.bz/ddl1
http://mng.bz/BAjl

this requirement will be dropped by C++23

(http://mng.bz/lVBR).

The word requirements also crops up frequently and forms

part of the concepts language feature. We saw the

separation between containers, such as a vector and

algorithms, back in chapter 2. The separation is possible

through templates. The algorithms are generic and therefore

able to be used for different types, operating on a range of

elements. Templates allow a form of duck typing, a phrase

often applied to dynamic languages, but equally applicable

when we use templates at compile time in C++. Stack

Overflow (http://mng.bz/D95g) gives a splendid example

template <typename T> void f(T x) { x.Quack(); }

to illustrate the phrase “If it looks like a duck and quacks like

a duck, it’s a duck,” hence the name duck typing. If we try

to pass an object without a Quack function, we get a

compiler error, which may or may not be helpful. If we had a

way to specify that the object requires a Quack function,

along the lines of

template <typename T>

T must have a Quack function

void f(T x) { x.Quack(); }

the compiler could stop immediately and let us know if the

object used had no Quack method.

Using a clearer function name than f, if we have

http://mng.bz/lVBR
http://mng.bz/D95g

template<typename T>

void might_be_a_duck(T x) { x.Quack(); }

and call it like this

might_be_a_duck(42);

we will get an error. According to Visual Studio 2022, "left

of '.Quack' must have class/struct/union". In this

case, it isn’t so hard to track down what the problem is, but

a requirement, specified by using a requires clause, will

make the problem clearer. To specify that the Quack

function must exist, we can write a concept, giving a name

to our requirement and adding it to the function signature.

Listing 4.6 Writing and using a concept

template<typename T>

concept Quacks = requires(T t) ❶
{

 t.Quack(); ❷
};

template<typename T>

requires Quacks<T> ❸
void must_be_a_duck(T x)

{

 x.Quack();

}

❶ Names our requirement
❷ Specifies what we require

❸ States T must Quack

The concept names the idea “T must have a Quack function”

we wanted. When we use it, we do not need to spell out

template<typename T> requires Quacks<t>

in full. We can be more succinct if we use auto:

void also_must_be_a_duck(Quacks auto x)

{

 x.Quack();

}

In either case, must_be_a_duck(42) and

also_must_be_a_duck(42) still cause an error, but this

time, Visual Studio 2022 says

no matching overloaded function found, could be 'void must_be_a_duck(T)',

the associated constraints are not satisfied

The message is much more helpful. Let’s get back to times

and countdowns.

C++20 introduced several named requirements in the

concepts header. To satisfy the clock requirements, the

following four types must be defined

rep

period

duration

time_point

and the clock must also support is_steady and now().

chrono provides a type trait called is_clock to check

whether the requirements are met. Traits describe properties

of a type, and we will revisit them in chapter 6. The

is_clock trait has a Boolean member called value, which

reports if a type satisfies the requirements. If we apply this

to an int

std::chrono::is_clock<int>::value

the value is false because int is not a clock. Although the

time_point itself does not enforce the requirement, other

functions using time_points might. When the

requirements are used, the compiler can indicate the

problem with a message such as 'Clock type required'

exactly where the wrong type is used. The clock

requirements can therefore give clearer compiler error

messages.

More generally, requirements and concepts help to give

better diagnostics when code using templates does not

compile. In the last chapter, we used auto in listing 3.15 to

pass a message provider:

void guess_number_with_clues(int number, auto message)

We started with an std::function but needed something

more general. The function tries to call or invoke the

message parameter. If we passed something that is not

invocable, we would get an error when the message is used,

a distance from where we passed something inappropriate.

For example, calling

guess_number_with_clues(number, "Help!");

from main would complain inside the function. Visual Studio

2022 says, "term does not evaluate to a

function taking two arguments"; the term being

“Help!” We can add invocable from the concept header

to the function signature, stating the message should be

callable with two ints:

void guess_number_with_clues(int number,

 std::invocable<int, int> auto message)

With this addition, the compiler pinpoints the problem more

precisely. Visual Studio 2022 says, "message :

'guess_number_with_clues': the associated

constraints are not satisfied". Rather than just

telling us a term is wrong, it has stated which parameter is

wrong and why.

We have only scratched the surface here. Watch out for the

word requirements, try out some of the other concepts, and

try writing your own. Now that we have a better

understanding of clocks and durations, we will improve our

countdown to the last day of the year by reporting back the

duration in various units.

4.2.5 How many days until the last day of the
year?

In listing 4.2, we found the current time and used a

year_month_day, hardcoding each value, including the

year, to calculate

std::chrono::duration dur = event - now;

We printed out the value, but we got a huge number in

fractions of a second.

We can now convert this to a duration in days and also use

the current year instead of hardcoding 2022. Starting with

the current time_point from system_clock’s now

method gives us a date and time. We cannot assign this

directly to a year_month_day because this would lose the

time part. We can explicitly truncate the time part by

flooring now first; then we can create another

year_month_day object and find out the current year.

Pulling this together, we can find out how many days there

are until the last day of the year.

Listing 4.7 Finding how many days there are until the last day of
the year

void countdown()

{

 using namespace std::chrono;

 time_point now = system_clock::now();

 const auto ymd = year_month_day{

 floor<days>(now) ❶

 };

 auto this_year = ymd.year(); ❷
 auto new_years_eve = this_year / December / 31; ❷

 auto event = sys_days(new_years_eve);

 duration dur = event - now;

 std::cout << duration_cast<days>(dur) ❸
 << " until event \n ";

}

int main()

{

 countdown();

}

❶ Floors now to days
❷ Uses the current year

❸ Converts to days

Running this code tells us how many days there are until the

last day of the year:

343d until event

Calling the stream insertion operator<< adds a 'd'suffix

to the number. As we noted earlier, just after listing 4.2,

some older compilers do not support the operator <<, so

we would either need to use the date library instead or call

count and spell out the units ourselves:

std::cout << std::chrono::duration_cast<std::chrono::days>(dur).count()

 << " days\n";

We have our countdown to the last day of the year, but there

is still more to learn. We can now write a different

countdown, using the last operator from chrono, to find

the last Friday in a month. Maybe you get paid then, so

finding out how many days to payday could be useful.

4.2.6 Using last to find how long to payday

December always has 31 days, but we could use last

instead:

auto new_years_eve = 2023y / std::chrono::December / std::chrono::last;

This is useful if we want to find the last day of February,

which could be the 28
th
 or 29

th
. We could try to work this out

ourselves, but chrono does the work for us. last was

introduced in C++20. It is an instance of a very simple

struct, known as a tag type (http://mng.bz/NVax):

struct last_spec

{

 explicit last_spec() = default;

};

inline constexpr last_spec last{};

Tag types are used to help pick overloads of functions.

Operator slash—operator/—has many overloads, including

several taking a last_spec. For example:

constexpr year_month_day_last operator/(const year_month& ym, last_spec);

Each operator/ takes two parameters. We had a year,

month, and last, so

this_year / std::chrono::December / std::chrono::last;

http://mng.bz/NVax

is using the operator twice:

(this_year / std::chrono::December) / std::chrono::last;

First, we combine the year and month to get a

year_month, and that value is used with the last struct to

create a year_month_day_last. We can use C++ Insights

again to hint at what’s hiding under the hood when we use

auto new_years_eve = 2023y / std::chrono::December / std::chrono::last;

The insight generated is

std::chrono::year_month_day_last new_years_eve =

 operator/

 (operator/(std::operator""y(2023ULL), std::chrono::December),

 std::chrono::last_spec(std::chrono::last));

(See https://cppinsights.io/s/84b34f6d.) The two

operator/ calls are made obvious, and they give us a

year_month_day_last type. C++ Insights has a link to

the Compiler Explorer, which will show us more

(https://godbolt.org/z/qroM6xoT1). In figure 4.2, we can

see that the value of the day has not been calculated.

https://cppinsights.io/s/84b34f6d
https://godbolt.org/z/qroM6xoT1

Figure 4.2 Output for GCC 12.2 on the Compiler Explorer

We can see instructions on the left and operands on the

right. The actual instructions vary between dialects. In figure

4.2, move, spelled mov, moves data between a register and

memory, so mov rbp, rsp moves what was pushed to rbp

to rsp. eax is another register, used for returned values.

push pushes operands onto the stack. pop pops them. The

instruction ret returns from a function. Jason Turner’s C++

Weekly episode 34 introduces reading assembly language, if

you want more details (see

https://www.youtube.com/watch?v=my39Gpt6bvY). You

don’t need to be able to read assembly code to see that we

have a 2023 and a 12, but no 31. The value 31 is not

required when year_month_day_last is created. Until we

try to find out the day or stream this out, we do not care.

The chrono library makes a huge effort to be as efficient as

possible.

Having looked briefly under the hood for a few more details

on how to create a date, we will now use last a bit more

https://www.youtube.com/watch?v=my39Gpt6bvY

for practice. The last struct will tell us the date of the

last day of February, as we noted:

auto end_of_feb = 2023y / std::chrono::February / std::chrono::last;

The 28
th
 or 29

th
 is not calculated unless used. We can use

last in other ways too. Chrono also provides a

weekday_last, which can be used in conjunction with a

weekday_indexed. We can use these directly or use the

operator[] (http://mng.bz/E96D) to find the first Monday

of the year or the last Friday of a month. To find the last

Friday, or indeed any specific day of a month, we say

auto last_friday_in_year = this_year / December / Friday[last];

If we stream this out, we get

2023/Dec/Fri[last]

Again, the last is used to pick an appropriate overload and

does no calculations. We still need to say the month because

last applies to days or weekdays. We could also say

Friday[1] to find the first Friday. A weekday_indexed

takes a value in the range[1, 5] to mean the first, second,

third, fourth, or fifth weekday of some month, so it is 1

rather than 0 based.

Let’s write another countdown. Suppose you get paid on the

last Friday of the month. How many days until payday? We

have all the parts we need. Armed with the current time and

http://mng.bz/E96D

the last Friday of the current month, we can use sys_days

like we did before to make a date and then find the duration.

Listing 4.8 Days until payday

void pay_day()

{

 using namespace std::chrono;

 time_point now = system_clock::now();

 const auto ymd = year_month_day{

 floor<days>(now)

 }; ❶

 auto pay_day = ymd.year() / ymd.month() / Friday[last]; ❷
 auto event = sys_days(pay_day);

 duration dur = event - now; ❸
 std::cout << duration_cast<days>(dur) ❸
 << " until pay_day \n";

}

int main()

{

 pay_day();

}

❶ Current year, month, day
❷ Last Friday of the current month

❸ Subtract to find the days until payday.

Five days to go at the time of writing, and possibly a few

hours, but we rounded down by using duration_cast. We

have two countdowns and have covered a lot of ground. We

haven’t written any tests, though. Let’s pause to think about

how to test code using times and dates.

4.2.7 Writing testable code

We could stop here, as we have the countdown we set out to

make and more. However, this code writes the output

straight to the screen, which makes it hard to test. It also

uses the current date and time directly, which often causes

problems in tests. We can do better. Once we have improved

the code, we will call it in a loop to watch time ticking down

to the end of the year.

If we return the duration, the calling code can do what it

wants with the value, and this makes testing the code easier.

If we also pass in the value of now, we can vary the time for

tests. Calling the current time inside a function makes it

notoriously hard to test. At the extreme, I watched someone

write a test that they claimed would take 24 hours to run

because they wanted to check the difference between results

over a day in a financial calculation. I suggested passing in

the required times, rather than calling now and waiting for a

day. You probably have similar stories too.

Our testable countdown will return the duration. In addition,

if we mark the function as constexpr, we can use a static

assert in some tests. Let’s use last instead of 31 this time

for practice. Apart from sending in the current date-time,

the code is similar to the code in listing 4.7, but more

flexible.

Listing 4.9 A testable countdown

constexpr ❶
std::chrono::system_clock::duration countdown(std::chrono::system_clock::time_point

start) ❷
{

 using namespace std::chrono;

 auto days_only = floor<days>(start);

 const auto ymd = year_month_day{days_only};

 auto this_year = ymd.year();

 auto new_years_eve = this_year / December / last;

 auto event = sys_days(new_years_eve);

 return event - start; ❸
}

int main()

{

 std::cout << countdown(std::chrono::system_clock::now())

 << " until event \n";

}

❶ Possible at compile time
❷ Passes in a time point

❸ Returns a duration

We can now test our function more easily and even use

static_assert to provoke compile time errors like we

have done before.

Listing 4.10 Checking the countdown function

void check_properties()

{

 using namespace std::chrono;

 constexpr auto new_years_eve = 2022y / December / last; ❶
 constexpr auto one_day_away = sys_days{ new_years_eve } - 24h; ❶
 constexpr auto result = countdown(one_day_away); ❶
 static_assert(duration_cast< days>(result) == days{ 1 }); ❷
}

int main()

{

 check_properties();

}

❶ Uses constexpr for compile time expressions

❷ Uses static_assert to test at compile time

We have covered several central C++ ideas so far. We can

sit back and watch some time tick by if we call our

countdown on a loop and show seconds instead of days. If

we include the thread header, we can sleep for a while

between each call, using the chrono literals to specify how

long for (e.g., 5000ms). That’s quite nice, don’t you think?

Try it out!

Listing 4.11 Calling the countdown in a loop

#include <thread>

int main()

{

 using namespace std::chrono; ❶
 for (int i = 0; i < 5; ++i)

 {

 std::this_thread::sleep_for(5000ms); ❶
 auto dur = countdown(system_clock::now());

 std::cout << duration_cast<seconds>(dur) << ❷
 " until event\n";

 }

}

❶ Uses ms from std::chrono

❷ Shows how many seconds

If we run this, we see seconds until the end of the year tick

down for a while:

4343635s until event

4343630s until event

4343625s until event

4343620s until event

4343615s until event

We hardcoded New Year’s Eve, initially with a fixed year, and

then learned how to generalize to the current year. We also

saw how to find how long it is until the last Friday of a

month. We haven’t read in a date yet, though.

4.3 Input, output, and formatting
If we input an event date, we can make our countdown more

general. How do we read a date from a stream?

4.3.1 Parsing a date

We can use the parse method from chrono to read a date.

This is supported in Visual Studio 2022, but the latest Clang

and GCC do not support the method, so you will need to use

the date library mentioned at the end of section 4.1. Again,

include "date/date.h" from the library and change

std::chrono::parse to date::parse in what follows.

Don’t forget to use the -I switch to point to your cloned

date/include directory.

We can choose the format required; for example, %Y-%m-%d

for a hyphen-separated four-digit year, month, and day:

std::chrono::year_month_day date;

std::cin >> std::chrono::parse("%Y-%m-%d", date);

If the format entered does not match the expected format,

the stream is in error, which we can check for.

We could also use the from_stream method, which takes

the stream as a parameter, like this:

std::chrono::from_stream(std::cin, "%Y-%m-%d", date);

There are several overloads for parse and from_stream to

cover times, including sys_time, and the year, a month, a

day, and so on. In essence, each overload of parse maps to

a corresponding from_stream, so you can use whichever

suits you.

We can add a function using the parse method to allow a

user to enter an event date and report back how long until

this happens. The input might be invalid, so we need a way

to deal with that situation. In listing 3.4, we wrote a function

called read_number, taking an std::istream and

returning an std::optional<int> to handle invalid input.

We can use a similar pattern here, clearing invalid input if

something goes wrong. While we have literals fresh in our

mind, we will use the operator""s to make the format an

std::string. We do not need to do this because a format

specifier of "%Y-%m-%d" works, but it’s worth knowing how

to make a string directly. This operator lives in the

std::string_literals namespace in the string

header, so we need to include this header. We also need to

include the optional header so we can write the following

function to read a date.

Listing 4.12 Reading a date

#include <optional>

#include <string>

std::optional<std::chrono::year_month_day> read_date(std::istream& in)

{

 using namespace std::string_literals; ❶
 auto format_str = "%Y-%m-%d"s; ❶
 std::chrono::year_month_day date;

 if (in >> std::chrono::parse(format_str, date)) ❷
 {

 return date; ❸
 }

 in.clear(); ❹
 std::cout << "Invalid format. Expected " <<

 format_str << '\n';

 return {}; ❺
}

❶ Uses ""s to create a string
❷ Is the input valid?

❸ Returns a valid date
❹ Clears invalid input

❺ Returns optional with no value

In listing 4.9, we used a hardcoded event date in the

countdown function, so we need a new function that takes

the date a user provides. If you are using the date library

instead of chrono, switch the using namespace in the next

listing to

using namespace date;

instead. Pass in the chosen date as a second parameter.

Listing 4.13 Countdown to any event

constexpr std::chrono::system_clock::duration

countdown_to(std::chrono::system_clock::time_point now,

 std::chrono::year_month_day date)

{

 using namespace std::chrono;

 auto event = sys_days(date);

 return event - now;

}

By reading in a date, we can make a general-purpose

countdown. We should think about how we want to display

the output because this gives us another opportunity to use

format.

4.3.2 Formatting time points and durations

We can call the countdown from listing 4.13 from main once

we have read in the chosen event date. If we get input into

a string, we don’t need to mop up any invalid characters, as

they have been read into the string. Because we get an

optional value back, we check that this is okay before calling

our countdown. If we want the output in days, we need to

cast the duration to days.

Listing 4.14 A general-purpose countdown

int main()

{

 using namespace std::chrono;

 std::cout << "Enter a date\n>";

 std::string str;

 std::cin >> str; ❶
 std::istringstream in(str);

 std::optional<std::chrono::year_month_day> event_date = read_date(in);

 if (event_date) ❷
 {

 auto dur = countdown_to(system_clock::now(),event_date.value());

 std::cout << duration_cast<days>(dur) << ❸
 " until " << event_date.value() << "\n";

 }

}

❶ Reads all input into a string

❷ Checks that we got a valid date
❸ Casts to days

Of course, we could use any other time period. Furthermore,

we can use std::format instead of a duration or

time_point. This gives us a choice about how to report the

duration, as well as how to display the date. If we want the

duration in seconds, we use :%S, and for a four-digit year,

followed by a month, then a day, we can either use :%Y-

%m-%d or the shortcut :%F:

std::cout << std::format("{:%S} until {:%F}\n", dur, date);

Several format strings are available for durations and time

points (see http://mng.bz/84gW). If you can’t find what you

need, you can drop back to the duration casts we initially

used or pull out parts of the date you need from a time

point. The chrono library is powerful and flexible, and there

is usually more than one way to do what you need.

We have a countdown; in fact, we have a few countdowns.

Now, it’s all very well reporting how many seconds until an

event; however, if daylight savings happens between now

and then, our output will be incorrect. The system clock

works in coordinated universal time (UTC), so we need to

use a time zone to take local time into account.

http://mng.bz/84gW

4.4 Time zones
British Summer Time (BST) began at 2 a.m. on March 27 in

2022. If we call our general countdown_to method to find

out how many hours there are between 3 a.m. on 27
th
 and

the next day

auto got = countdown_to(sys_days{ 2022y / March / 27 } + 3h,

 { 2022y / March / 28 });

auto got_hours_bst = duration_cast<hours>(got);

we get 21 hours, 3 hours less than a full 24-hour day. On

the face of it, this is fine; however, our countdown is taking

the current time in UTC. In BST, it would be 4 a.m., and so

there would only be 20 hours left. C++20 introduced time

zones, but they are not widely supported. Visual Studio 2022

and GCC 13.2.0 do support them, but at the time of writing,

Clang does not as yet. If you cloned the date library earlier,

you need to use the tz.cpp file from the library to use the

time zones. We have only used features in the header file so

far, but the time zones need this source file too. Rainer

Grimm’s website has instructions for compiling and using the

library (http://mng.bz/9Qe0), as do Howard Hinnant’s

GitHub pages (http://mng.bz/K9XE). You also need to use

namespace date instead of chrono.

We can convert a system time to a zoned_time using a

time zone and calling get_local_time. We can choose a

time zone by name and pair that with a time point to make a

zoned time:

http://mng.bz/9Qe0
http://mng.bz/K9XE

zoned_time("Europe/London", when).get_local_time();

The names come from the Internet Assigned Numbers

Authority (IANA) time zone (tz) database

(https://www.iana.org/time-zones). If the location does not

exist, we get an exception. Alternatively, we can use

current_zone() to get the local time for the current time

zone. If we stick with a function taking a system time and

event date, and returning a duration like we had in listing

4.13, we need to convert the event to a zoned_time and

find the difference in sys_time. Arithmetic with

local_time ignores time shifts. For example, if we have a

meeting at 9 a.m. local time every day, then adding one day

in local_time gives 9 a.m. local the next day, even if

there is an intervening UTC offset shift. We want to know the

physical difference in time, so we use sys_time. The return

type has the precision of the difference between the event

and now, which is system_clock::duration:.

Listing 4.15 Countdown in local time

std::chrono::system_clock::duration

countdown_in_local_time(std::chrono::system_clock::time_point now,

 std::chrono::year_month_day date)

{

 using namespace std::chrono;

 auto sys_event = zoned_time(current_zone(),

 local_days{ date }).get_sys_time(); ❶
 return sys_event - now; ❷
}

❶ Event in local time converted to sys_time
❷ Difference in physical time

https://www.iana.org/time-zones

This countdown takes daylight savings into account.

We have only scratched the surface of chrono. Howard

Hinnant has written a list of examples (http://mng.bz/0lnW)

if you need to work out how to do something not covered

here.

We practiced reading input and using format for output.

We also used the literal suffix. One thing we have not done

yet is written our own class, so we will do that in the next

chapter, creating a deck of playing cards to make another

game.

Summary
There are various clocks, each supporting a now method

that returns a time_point.

The system clock is not steady, so it might go backward

if the system time is changed.

Use a year_month_day to access year, month, or

date fields and turn it into a time_point using

sys_days.

Durations are defined by a numeric type and a ratio,

telling us which units they are in. An std::ratio<1>

means seconds, while std::ratio<60> means

minutes.

http://mng.bz/0lnW

Durations can be implicitly converted if the conversion

will not lose precision; otherwise, we must use a

duration_cast.

We can define our own durations.

chrono provides literal suffixes, such as operator""s

for seconds.

We can use operator/ to form a year_month_day

using the literals to create dates, such as 2022y /

December / last.

A time point consists of a clock and a duration.

Requirements can be used for templates to help provide

clearer diagnostic messages when template code fails to

compile.

A concept is a named set of requirements.

We can write dates and durations to streams using

operator<<. Durations append the literal for their

units; for example, 'd' for days.

Use parse or from_stream to read a date or time.

The format library also supports time_point and

duration.

System times can be converted to local zones using

current_zone() or a named time zone and take

daylight savings into account.

5 Creating and using objects and
arrays

This chapter covers

Writing a class or structure
Scoped enums
Using an array instead of a vector when we know how
many elements we need
Writing a comparison operator
Defaulted functions
Using std::variant

In this chapter, we will create a deck of cards and write a

higher-or-lower card game for guessing whether the next

card from a deck is higher or lower. We will create a class

for a card and store a deck of cards in an array. We need

to consider how to define comparison operators for our

cards, as well as how to write constructors and other

member functions. We’ll need to use a random shuffle too.

We will then extend the game to include jokers and learn

how to use std::variant. By the end of the chapter, we

will have a working card game and be ready to do more

with classes.

5.1 Creating a deck of playing cards
We will start by defining a card class. We can declare a card

using either the keyword class or struct. If we use a

struct, everything is public by default, which is a simple

starting point. A card has a suit and a value. There are four

suits and 13 possible values per suit: 1, or ace; 2 up to 10;

and three court cards. We will also need to display and

compare cards, as well as a way to create a whole deck. We

will start with the cards themselves.

Up to now, we have put all our code in a main.cpp file. For

this chapter, we will make a header file, called

playing_cards.h, and include it in our main.cpp. As we

add functions, most of them will go into a

playing_cards.cpp source file. Let’s take a moment to

remind ourselves of the basics of using source and header

files. When we use header files, we always need an include

guard. This stops a header file from being included more

than once in the same source file, which can lead to

problems, including violation of the one definition rule.

Without the guard, including the same header twice, which

can easily happen indirectly if one header includes another,

means enums, structures, and so on will be defined twice,

which is not allowed. This is nothing new. CppReference

provides more details on this topic (http://mng.bz/z0Rg).

Some people still use macros for include or header guards,

picking a unique name.

Listing 5.1 Macro-style include guards

http://mng.bz/z0Rg

#ifndef PLAYING_CARDS_HEADER

#define PLAYING_CARDS_HEADER

...

#endif

However, the pragma directive once is now widely

supported. If this directive does not work on your compiler,

it's fine to use the macro version. Let’s create a namespace

for our cards, keeping structures and functions in the

namespace scope.

Listing 5.2 playing_cards header file

#pragma once ❶

namespace cards ❷
{

}

❶ Include guard

❷ Namespace for subsequent declarations

Finally, we include this header in main.cpp, using

quotation marks, "", rather than angle brackets, <>, which

indicate it is ours rather than a library header. The specifics

of where the search for an included header file is conducted

are implementation defined, but the quoted version

searches where the angled-bracket version would if its

initial search fails. People often use angled brackets for

standard library headers and quotation marks for their own

headers. Our main function doesn’t do much yet, but we

now have places to put our code.

Listing 5.3 Including the header file

#include "playing_cards.h" ❶

int main()

{

}

❶ Includes our header

We are now ready to create some playing cards for our

game.

5.1.1 Defining a card type using a scoped
enum for the suit

We know we need a suit and a value for each playing card.

We can use integers for the value initially, and although we

could use an integer for the suit too, using an enum is

clearer. C++11 introduced scoped enumerations, which look

very similar to the old unscoped enum but have the word

class, or, equivalently, struct, between the enum

keyword and the name. Add an enum to the

playing_cards.h file, with one enumerator per suit,

inside the namespace.

Listing 5.4 Scope enum for suits

#pragma once ❶

namespace cards ❷
{

 enum class Suit { ❸
 Hearts,

 Diamonds,

 Clubs,

 Spades

 };

}

❶ Include guard
❷ Namespace

❸ Notice the word class.

The small addition of the word class makes a big

difference. Without it, we have an old-style enum and could

use Hearts or any of the other values, or enumerators,

without qualification. This means we can compare values

from different enums by mistake. If two different enums are

used to indicate whether a function succeeds, they might

both designate success with OK and a failure with one of

many values. It then becomes possible to check whether a

result is OK, conflating the two different enums. To use our

suit, we need to say Suit::Hearts, making potential

unintended comparisons impossible.

There is no implicit conversion from the values of a scoped

enumerator to integral types, which was possible with the

old enums. We need to explicitly use a cast if we want to

use the value as a number. Scoped enums are safer.

We begin with a struct to hold value and suit for an initial

card type inside the namespace in the header file.

Listing 5.5 A card structure

struct Card

{

 int value;

 Suit suit;

};

We can then create a card with a value and a suit in main,

provided we include our header and use the cards

namespace. We will use aggregate initialization, which looks

remarkably like the uniform initialization using an initializer

list. We used this in chapter 2 to make the first row of

Pascal’s triangle: std::vector<int> data{1}.

Aggregate initialization is different, though. The initializer

list is a list of values of the same type, but our aggregate

initialization uses a list of different types. Our Card struct

has an int data member, followed by a Suit, so we

provide these in that order to instantiate a Card.

Listing 5.6 Using the Card struct

#include "playing_cards.h" ❶
using namespace cards; ❷

int main()

{

 Card card{2, Suit::Clubs}; ❸
}

❶ Includes our header
❷ Uses the namespace

❸ Creates a card with a value and Suit

We can just specify the value, Card card{2}, and the suit

will be default initialized to the first enum value. However,

we cannot say Card card{Suit::Clubs}. We can leave

out initializers toward the end but not at the start.

Had we not used a scoped enum for the suit, we would be

using two ints to make a card and would have to

remember which was which. Using card{2,

Suit::Clubs} is much clearer and less error prone than

card{2, 3}. As it stands, though, we could use 0 or 14 for

the face value of a card. We learned about the whole value

idiom in the last chapter when we used a

year_month_day. We can employ the same idea now by

making a type for the card’s value and also ensuring only

values from 1 to 13 are used. In addition to validating the

value used, we will see how to use the type to display the

cards easily later on.

5.1.2 Defining a card type using a strong
type for the face value

The face value needs to take an int and store it, providing

a getter function, so code can use the value if needed. In

the last chapter, we considered the whole-value idiom to

create lightweight types to ensure parameters are passed

correctly. If we make a FaceValue class with an

explicit constructor, we can’t pass an int where a

function requires a face value. For example, if we have a

function with signature

void do_something_with_face_value(const cards::FaceValue & value);

we cannot call it with an int. Instead, we need to create a

face value:

do_something_with_face_value(cards::FaceValue{ 5 });

An int cannot be implicitly converted to our new type

because the constructor is explicit.

We will throw an exception if the value used is invalid. An

std::invalid_argument exception from the

stdexcept header makes sense.

Listing 5.7 A type for a face value

#include <stdexcept>

namespace cards

{

 class FaceValue

 {

 public:

 explicit FaceValue(int value) : value_(value) ❶
 {

 if (value_ < 1 || value_ > 13)

 {

 throw std::invalid_argument(

 "Face value invalid"

); ❷
 }

 }

 int value() const

 {

 return value_;

 }

 private:

 int value_;

 };

 ...

}

❶ Explicit constructor
❷ Validates the value

We can then change the type in the Card definition from

int value to FaceValue value. To create a card like

we did in listing 5.6, we have to explicitly make a

FaceValue, Card card{ FaceValue(2),

Suit::Clubs}, rather than being able to say Card

card{2, Suit::Clubs}. We will have to make a tiny bit

more effort when we construct a card, but we will get a suit

and a valid value for a card if we construct one properly.

Before we start using the FaceValue, we should think

slightly more about how we make cards. Things can still go

wrong. Let’s revisit our card type, ensuring we only make

useful playing cards.

5.1.3 Constructors and default values

Before we use our FaceValue, consider our Card type

defined in listing 5.5. Our struct has two members, an int

value and a Suit. We can create a card without a value or

suit:

Card dangerous_card;

However, the two member fields will not be initialized. If we

try to read those fields, we have undefined behavior. In

Visual Studio 2022, I happen to get a value of -858993460

and a suit of -858993460 as well in the Debug build. In a

release build, I might get different garbage values. The

compiler can do as it pleases with such code, so you are

likely to get different behavior with another compiler. If we

use brace initialization

Card less_dangerous_card{};

the members are default initialized. We have seen brace or

uniform initialization before, and remembering to initialize

variables is a good habit to get into. We could try to be very

careful not to use the uninitialized values, but it’s safer to

ensure we cannot create dangerous playing cards in the

first place. We can adopt a variety of approaches to avoid

the uninitialized member variables.

The simplest approach is to use default values to initialize

the value and suit. Since C++11, we can use default

member initializers, giving a default value directly to any

members we want to initialize. An integer default initializes

to 0, and an enum to the first value.

Listing 5.8 A card structure

struct Card

{

 int value{}; ❶
 Suit suit{}; ❶
};

❶ Initializes members with defaults

Our previously dangerous card now has values, which we

can safely read, giving us a 0 of hearts: a very unlikely

playing card but with no undefined behavior. If we now use

the FaceValue instead, we can’t make a card with a value

of 0, so we need to choose an acceptable value, say, 1.

Listing 5.9 A card structure

struct Card

{

 FaceValue value{1}; ❶
 Suit suit{};

};

❶ Initializes FaceValue with a viable default

We could use this definition for our game, but let’s consider

an alternative approach first because we still have potential

problems. A struct’s members are public by default,

which means we can use them directly. We can therefore

easily change their values, which might not be a good idea.

We can either flag them as private or use the word class

instead of struct because the members of a class are

private by default then. In either case, we need a way to

set the values; otherwise, every card will have the same

value. We can add a public constructor, taking a value and a

suit, and store them. If we need these values from outside

the class or struct, we will need to add getters as well.

These should be flagged as const, as they do not change

the Card member values. This allows them to be called by

a card variable, regardless of whether or not it is const.

We can either change the name of the original structure or

remove it and make a new, improved type in the header file

in the namespace.

Listing 5.10 A card class

class Card

{

public:

 Card(FaceValue value, Suit suit): ❶
 value_(value), ❷
 suit_(suit) ❷
 {

 }

 FaceValue value() const { return value_; } ❸
 Suit suit() const { return suit_; } ❸
private:

 FaceValue value_; ❹
 Suit suit_; ❹
};

❶ Constructor taking value and suit
❷ Stores the value and suit

❸ Getters, flagged as const
❹ Private members

We can no longer default construct a card. Having written

our own constructor taking parameters, we no longer get a

default constructor generated for us. The dangerous card

we created before is now impossible. Trying

Card impossible_card;

will not compile. This should also be familiar if you have

used C++ before.

We need to default construct cards when we use an

std::array to build a deck of cards. C++11 introduced a

way to default default constructors. If we add

Card() = default;

to the class in listing 5.10, our impossible_card then

becomes possible. The compiler defines a default

constructor, even though we wrote another constructor. We

should still add default member initializers for the value and

suit like we did before so the default constructor initializes

these.

Listing 5.11 A default constructible card

class Card

{

public:

 Card() = default; ❶
 Card(FaceValue value, Suit suit):

 value_(value),

 suit_(suit)

 {

 }

 FaceValue value() const { return value_; }

 Suit suit() const { return suit_; }

private:

 FaceValue value_{1}; ❷
 Suit suit_{}; ❷
};

❶ Default constructor
❷ Member initializers

We can also mark a constructor as deleted with = delete.

This will stop the constructor from being generated. We can

do this for any special member function, such as copy or

move constructors, assignment operators, or the destructor.

Prior to C++11, we often made the functions we wanted to

hide private to avoid them being used. Being able to say a

function is deleted is much simpler and makes our

intentions clear. We will look at the special member

functions in more detail in the next chapter. For now, we

have a robust card type. We need a way to display a card;

then we can move on to create a deck of cards and write

our game.

5.1.4 Displaying playing cards

To display a card, we want to be able to write

std::cout << card << '\n';

Therefore, we need to provide a stream insertion operator

for our Card type. We wrote a stream insertion operator in

listing 2.5. We need an overload taking a reference to an

std::ostream as the first parameter and a constant

reference to a Card as the second:

std::ostream& operator<<(std::ostream & os, const Card & card);

We return a reference to the stream so calls can be chained

together:

std::cout << card << ', ' another_card << '\n';

The std::ostream lives in the iostream header, so we

include that and add the declaration of our operator to our

header file in the namespace.

Listing 5.12 Declaring operator<< for a card

#pragma once

#include <iostream> ❶

namespace cards

{

 ...

 std::ostream& operator<<(std::ostream & os, const Card & card); ❷
}

❶ Includes the header we use

❷ Declares our function

We have two data members to stream out. The FaceValue

member has a getter called value that we can use to

stream out the underlying int. A card’s value will show as

a number, even if it’s an ace or court card. We’ll improve on

that later. The suit is a scoped enum, which we can also

stream out as an int for now. By default, scoped enums

use ints for the enumerators, so we can cast the suit to an

int, using static_ cast, and stream that out too. Our

header file promised a function in a namespace, so we

define the function inside namespace cards in the source

file called playing_ cards.cpp.

Listing 5.13 Defining operator << for a card

#include "playing_cards.h" ❶

namespace cards ❷
{

 std::ostream& operator<<(std::ostream& os, const Card& card) ❸
 {

 os << card.value().value() ❹
 << " of " << static_cast<int>(card.suit()); ❺
 return os;

 }

}

❶ Includes our header
❷ Adds codes inside a namespace

❸ Defines the function

❹ Gets the FaceValue’s value
❺ Casts the enum to an int

If you are building this from a prompt, you need to state

both cpp files for your build command:

clang++ --std=c++20 main.cpp playing_cards.cpp -o ./main.out -Wall

Armed with Card card{FaceValue(2),

Suit::Clubs}, we can now write

std::cout << card << '\n';

and get 2 of 2. Clubs is the third element in the enum, so

using a zero-based index does give us 2 for clubs, but

seeing 2 of Clubs would be nicer.

We could update the stream operator for a card, but we

may have situations where we only want to show the face

value or suit. We could write a stream operator for each, or

we could write a to_string method. C++11 added

to_string methods for numeric types. These functions

live in the string header.

We can write our own to_string overloads, one for a

Suit and one for a FaceValue. The declaration for the

Suit takes a Suit and returns a string:

std::string to_string(Suit suit);

As with the other declarations, it belongs in the header file.

We also include the string header in our header because

we are using an std::string. So much for the

declaration. How do we define the function? In the last

chapter, we noted we can use the operator ""s from

std::literals to make an std::string. "Hearts"s

creates an std::string, while "Hearts" is a char array.

This is not a big deal, but we are returning a string, so let’s

create a string. The simplest approach possible for our

to_string function is to use a switch statement, pairing

up enumerators and suits. We add a default to silence

potential warnings about a code path without a return

statement.

Listing 5.14 Turning an enum value into a string

std::string to_string(const Suit & suit)

{

 using namespace std::literals; ❶
 switch (suit)

 {

 case Suit::Hearts:

 return "Hearts"s; ❷
 case Suit::Diamonds:

 return "Diamonds"s; ❷
 case Suit::Clubs:

 return "Clubs"s; ❷
 case Suit::Spades:

 return "Spades"s; ❷
 default:

 return "?"s;

 }

 }

❶ For operator ""s
❷ Creates std::strings directly

We could throw an exception at the end rather than

returning a question mark. There are options, but this

simple approach is good enough.

NOTE Java and C# enums support a ToString method, but C++
does not. If C++ had reflection, we could convert an enum value to a
string. However, C++ does not support reflection yet, but there is a
technical specification (called TS for short; see
https://www.iso.org/deliverables-all.xhtml) for compile time, or static,
reflection (http://mng.bz/G9n8). Potential C++ features sometimes
have example implementations, and some compilers also offer
experimental headers, for example, <experimental/reflect> (see
http://mng.bz/YRMQ). There is more than one reflection proposal
(http://mng.bz/OPjO), so time will tell which approach C++ ends up
taking.

We can now get 2 of Clubs when we display the card we

created. However, court cards and aces will be displayed as

numbers as it stands. Because we created a FaceValue

type, we can write another to_string overload, with

special cases for court cards and an ace. Any other value

will use the std::to_string method for ints. As usual,

we declare the function in the header and define it inside

our namespace in the playing cards source file.

Listing 5.15 Converting card value to a string

std::string to_string(const FaceValue & value)

{

 using namespace std::literals; ❶
 switch (value.value())

 {

 case 1:

https://www.iso.org/deliverables-all.xhtml
http://mng.bz/G9n8
http://mng.bz/YRMQ
http://mng.bz/OPjO

 return "Ace"s; ❷
 case 11:

 return "Jack"s; ❷
 case 12:

 return "Queen"s; ❷
 case 13:

 return "King"s; ❷
 default:

 return std::to_string(value.value()); ❸
 }

}

❶ For operator ""s
❷ Creates std::strings directly

❸ 2 to 9 as strings

We can now update our stream insertion operator to use

our overloaded to_string functions

Listing 5.16 Showing ace, jack, queen, king, or number

std::ostream& operator<<(std::ostream& os, const Card& card)

{

 os << to_string(card.value()) ❶
 << " of " << to_string(card.suit()); ❶
 return os;

}

❶ Uses our new functions

If we stream out a special value card

std::cout << Card{ FaceValue(1), Suit::Hearts } << '\n';

we see Ace of Hearts. We can make individual cards, so

now we need to make a deck of cards.

5.1.5 Using an array to make a deck of cards

We previously used a vector when we wanted a collection

of elements. The vector is great when we have an

unknown number of elements, but we know we need 52

cards for a full deck. C++11 introduced the array type

(https://en.cppreference.com/w/cpp/container/array) for a

fixed-size array. It lives in the array header and is defined

with a type and a size:

template<class T, std::size_t N> struct array;

The vector took the type of elements, T, but array also

needs a compile time size, N. A vector can resize

dynamically, but the array size is fixed at compile time to

the chosen size. The array has a very small overhead for

housekeeping and can be placed on the stack rather than

the heap. This is illustrated in figure 5.1.

https://en.cppreference.com/w/cpp/container/array

Figure 5.1 A vector has more overhead, places elements on the
heap, and can change size dynamically, while an array has a
smaller overhead and fixed size.

Our deck of cards can therefore be declared as

std::array<Card, 52> deck;

We could use a C-style array, Card deck[52], instead, but

the std::array keeps us safer because we always know

the size of the array. In both cases, we get 52 default

constructed cards. With a vector, we would push_back

or emplace any new cards we needed, and the vector

would grow. We can initialize some or all of the cards using

aggregate initialization. Thus

std::array<Card, 52> deck{Card{FaceValue(2), Suit::Hearts}};

puts a 2 of hearts at the start and uses the default

constructor for the remaining 51 cards. We can access

specific elements like we would in a vector or a C-style

array, using operator[], so deck[0] is the first card. If

we need to pass our array to a function taking a pointer to

the array type (e.g., in a C library function), we can call the

data member function to obtain a pointer to the underlying

data.

Let’s write a function to create a deck of cards. We need to

include the array header, declare the function in our

header, and then define it in the source file. We need 13

values for each of the four suits. Unfortunately, we cannot

simply iterate over the Suit enumeration. Nothing forces

the values to be contiguous, even though they are in our

case. Using operator++ might therefore use an invalid

enum value in the general case. What we can do instead is

put the values into an initializer_list. We used brace

initialization in chapter 2 when we discussed the uniform

initialization syntax. By making an initializer list of the suits

{Suit::Hearts, Suit::Diamonds, Suit::Clubs, Suit::Spades}

we have an array-like object we can use in a loop. We need

to cycle through the 13 face values for each suit. Starting

with an iterator at the beginning of the array, we can set

its contents using *card and move to the next card using

++card each time around the loop.

Listing 5.17 Building a deck of cards

std::array<Card, 52> create_deck()

{

 std::array<Card, 52> deck;

 auto card = deck.begin(); ❶
 for (auto suit :

 {Suit::Hearts, Suit::Diamonds, Suit::Clubs, Suit::Spades}) ❷
 {

 for (int value = 1; value <= 13; value++) ❸
 {

 *card = Card{ FaceValue(value), suit }; ❹
 ++card; ❺
 }

 }

 return deck;

}

❶ Iterator starting with the first card
❷ Initializer list of suits

❸ Cycles round values
❹ Sets the card’s values

❺ Moves to next card

We could use what we have so far to make a card game,

but we noted the encouragement to avoid raw loops and

prefer algorithms in chapter 2. We can refactor the function

in listing 5.17 to create a deck of cards using algorithms

instead. We haven’t seen any tests in this chapter, but the

GitHub code includes a check_properties function,

similar to the test functions we wrote in previous chapters.

Think about what we should test before we refactor the

code. Do we get an exception for a card with face value 0?

Do we really have 52 distinct cards?

5.1.6 Using generate to fill the array

The algorithm header includes a method called

generate, which assigns successive values generated by a

function object to a range [first, last). C++20

introduced newer versions, including overloads that apply to

ranges, so we can use the std::array<Card, 52> deck

directly, without finding begin and end ourselves. We can

use a lambda as the function object to generate the values:

std::ranges::generate(deck, []() { return Card{value, suit}; });

We want to cycle through values from 1 to 13, with one of

each value per suit. We noted there is no operator++ for

an enum, since that might use an invalid enum value;

therefore, we used an initializer list in listing 5.17 to loop

over each enumerator. Let’s consider an alternative and

learn a little more about scoped enums. In our case, the

enum values are contiguous, and in fact, when we get to

the last suit, we could start back at the beginning, allowing

us to use an array of 104 cards to get two decks of cards if

we wanted. We can cast the enum value to an int using

static_cast because we noted that a scoped enum has

an underlying type, which will be an int by default. We

declared our enum like this

enum class Suit

in listing 5.4. We can also specify a type if we want to; for

example:

enum class Suit: short

This might save a bit of space if we do not need an integer,

and we can even use a char if we have very few values.

Alternatively, we could use a long long if we needed a

very long list of enumerators. Rather than casting to int,

we can use underlying_type to decide what to cast to in

the general case. We can then pick the next suit and go

back to the start when we reach the end.

Listing 5.18 Incrementing our enum

Suit& operator++(Suit & suit)

{

 using IntType = typename std::underlying_type<Suit>::type; ❶
 if (suit == Suit::Spades)

 suit = Suit::Hearts; ❷
 else

 suit = static_cast<Suit>(static_cast<IntType>(suit) + 1); ❸
 return suit;

}

❶ Underlying enum type
❷ Back to first suit

❸ Increments using a cast

This code is relying on contiguous enumerator values, and

changing the order of the enumerators would break the

code. However, it’s worth being aware of the

underlying_type of a scoped enum.

As with all the code for our cards, we put the function in the

playing card source file and declare it in the header file. We

can now generate the values needed for our array.

Whether we use the ranges version of generate or the

begin/end version, we need to include the algorithm

header. We start with a card value of one, incrementing for

each card generated. If the value is greater than 13, we

drop back to one and increment the suit. All of this happens

in a lambda, so we capture the value and suit by reference,

using [&value, &suit]. The generate function calls the

lambda once per item in the deck, assigning the generated

card to each element.

Listing 5.19 Generating the deck of cards

#include <algorithm>

std::array<Card, 52> create_deck()

{

 std::array<Card, 52> deck;

 int value = 1; ❶
 Suit suit = Suit::Hearts; ❶
 std::ranges::generate(deck, [&value, &suit]() { ❷
 if (value > 13)

 {

 value = 1; ❸
 ++suit; ❸
 }

 return Card{FaceValue(value++), suit}; ❹
 });

 return deck;

}

❶ Starts with ace of hearts
❷ Captures by ref

❸ Resets value and increments suit
❹ Lambda returns a Card and increments value

We have a full deck of playing cards, so we are nearly ready

to build our game. First, we need to be able to compare two

cards to decide if one is higher or lower than the other.

5.1.7 Comparison operators and defaults

There are six possible comparisons for a type:

Equal (==)

Not equal (!=)

Less than (<)

Greater than (>)

Less than or equal (<=)

Greater than or equal (>=)

C++ has allowed us to write our own comparison operators

for a long time. For example, we can implement a less-than

operator inline in the class definition.

Listing 5.20 Less-than operator for a Card

bool operator<(const Card& other) const

{

 return value < other.value.value() && suit < other.suit;

}

We can then compare two cards:

Card{FaceValue(2), Hearts} < Card{FaceValue(3), Hearts}

Whether we want to include the suit in the comparison

might be a discussion point because some card games treat

one suit as more valuable than another. More importantly,

we would expect greater than or equal (operator >=) to

return the opposite. However

Card{FaceValue(2), Hearts} >= Card{FaceValue(3), Hearts}

doesn’t compile. If we write a less-than operator, the other

comparisons are not generated for us. We could write all the

comparison operators ourselves, but this is tedious and

error prone. C++20 introduced operator<=>, sometimes

called the spaceship operator because it looks somewhat

like a spaceship, to make our lives easier. The spaceship

operator gives one of three possible values and is therefore

also known as a three-way comparison operator:

x <=> y < 0 if x < y

x <=> y > 0 if x > y

x <=> y == 0 if x is equal y

The return type is an order category type. The full details

are involved, but for an integral type, such as an int or our

Suit enum, we get an std::strong_ordering back,

defined in the compare header (see http://mng.bz/p1D0).

We can use the keyword auto, rather than looking up

which specific return type we need to use. This result can in

turn be transformed automatically into one of the six two-

way comparison operators. Now, we could implement the

spaceship operator ourselves, but we can also mark it with

http://mng.bz/p1D0

the keyword default. If we do this, the compiler

generates all the comparisons for us. The default

comparison operators will use the fields in the order defined

in the class, so both the value and the suit are compared.

The fields, therefore, need to be comparable, so we also

need a spaceship operator in our FaceValue. The default

version will then be able to compare the values of two

FaceValues, using the value_ member, which is exactly

what we require.

We need to add the compare header first, which works out

the return type and synthesizes the comparison operators

for us. We then add a single line to both our FaceValue

and Card definitions and, finally, have what we need.

Listing 5.21 Default three-way comparison operator

#include <compare>

namespace cards

{

 ...

 class FaceValue

 {

 public:

 ...

 auto operator<=>(const FaceValue&) const = default; ❶
 private:

 int value_; ❷
 };

 class Card

 {

 public:

 auto operator<=>(const Card&) = default; ❸
 private:

 FaceValue value_{1}; ❹

 Suit suit_{}; ❹
 };

};

❶ Generates default comparison

❷ Value used in comparison
❸ Generates default comparison

❹ Value and suit used in comparison

That took very little effort to add six comparison operators

to both of our types. As we used 1 for an ace, this defaulted

operator means aces are the lowest card. We could write

our own comparison instead, or use the values 2 to 14,

making 14 the ace and therefore the card with the highest

value. Feel free to do that instead for extra practice. Armed

with a deck of cards and a way to compare cards, we can

now create a card game of higher or lower.

5.2 Higher-or-lower card game
When we create our deck of cards, they run in order, so we

can work out what comes next. Randomizing the order

would make the game more interesting, so we need a way

to shuffle the cards.

5.2.1 Shuffling the deck

We’ve used random numbers before; however, we now want

a random shuffle, rather than a sequence of random

numbers. The algorithm header has the method we need.

If we look at CppReference (http://mng.bz/eEjZ), we see

http://mng.bz/eEjZ

random_shuffle and shuffle methods. Each of the

random_shuffle versions has been deprecated or

removed. One version used C’s rand function, which is

likely to be deprecated at some point. We have seen how

much better the C++ random number generators are. Using

rand can depend on the global state, which causes

problems for multithreaded code. Some naïve

implementations of random_shuffle also used rand() %

i for an index i to swap elements. Whenever we use a

modulus for a random number, we are in danger of skewing

a distribution. Stephan Lavavej gave a talk back in 2013

titled “rand() Considered Harmful” (see

http://mng.bz/g7Dn), explaining why we should avoid using

rand in conjunction with %. If we wanted to simulate a dice

roll, using rand() % 6 would not give us a uniform

distribution because MAX_INT is not a multiple of six. Lower

dice rolls will therefore be slightly more likely. Try it.

Avoiding the deprecated shuffles leaves us with

std::shuffle. This requires items to shuffle and a

random number generator. We can either pass begin and

end to std::shuffle or use the range variant,

std::ranges::shuffle, on our deck of cards directly.

We will use random_device to seed an mt19937

generator, like we have done before. We need to include the

algorithm and random headers for shuffle and a

random generator, respectively. We need to pass the deck

by reference so we can change it.

http://mng.bz/g7Dn

Listing 5.22 Shuffling the cards

#include <algorithm>

#include <random>

void shuffle_deck(std::array<Card, 52> & deck) ❶
{

 std::random_device rd;

 std::mt19937 gen{ rd() }; ❷
 std::ranges::shuffle(deck, gen); ❸
}

❶ Passes deck by reference

❷ Seeds the random number generator
❸ Shuffles the deck

For a card game that requires several shuffles, it would be

sensible to have a class with a shuffle method, setting up

the generator in the constructor. Nonetheless, the simple

approach in listing 5.22 is sufficient for our higher-or-lower

card game. We now have a way to shuffle a deck of cards,

so we can build our game.

5.2.2 Building the game

We will show the first card in the deck and ask the player

whether the next card will be higher or lower, and we will

continue until we run out of cards or the player is wrong.

We can use a single character, 'h' for higher or 'l' for

lower, so the player doesn’t need to type much:

char c;

std::cin >> c;

We compare the current card and the next card, relying on

the automatically generated operator< and operator>

given by default from the three-way comparison in listing

5.21 to see whether the guess is correct.

Listing 5.23 Checking whether the guess is correct

bool is_guess_correct(char guess, const Card & current, const Card & next)

{

 return (guess == 'h' && next > current)

 || (guess == 'l' && next < current);

}

The game starts with the first card in the deck. We can find

the first card in the array in various ways, but it might be

nice to keep track of how many guesses are correct and

report this when the game is over. We can use this count to

index into the array, as we would with a C-style array, and

the index will tell us how far we are through the deck. We’ll

run through all the cards in the deck but stop if an incorrect

guess is made. Pulling this together gives us our higher-or-

lower card game function.

Listing 5.24 Higher-or-lower card game

void higher_lower()

{

 auto deck = create_deck();

 shuffle_deck(deck);

 size_t index = 0;

 while (index + 1 < deck.size()) ❶
 {

 std::cout << deck[index] ❷
 << ": Next card higher (h) or lower (l)?\n>";

 char c;

 std::cin >> c; ❸
 bool ok = guess_correct(c, deck[index], deck[index + 1]); ❹

 if (!ok)

 {

 std::cout << "Next card was " << deck[index + 1] << '\n';

 break; ❺
 }

 ++index;

 }

 std::cout << "You got " << index << " correct\n"; ❻
}

❶ Loops around remaining 51 cards

❷ Shows current card
❸ Higher or lower

❹ Checks the guess
❺ Drops out of loop if wrong

❻ Shows how many are correct

Again, we’ll define this in the playing card source file and

declare it in our header file. We then call it from main.

Listing 5.25 Our game

#include "playing_cards.h"

int main()

{

 cards::higher_lower();

}

Don’t forget, aces are the lowest value, and the suits have

an order too. It is difficult to get more than a handful

correct. A typical game might play out like this:

9 of Spades: Next card higher (h) or lower (l)?

>l

4 of Hearts: Next card higher (h) or lower (l)?

>h

Next card was Ace of Hearts

You got 1 correct

We have a working card game. We created a simple

structure and used it in an array. We let C++ do most of the

work for us, generating the comparison we needed to

decide if a card was higher or lower. We could stop here,

but some card games use jokers as well. A joker does not

have a suit or value, so how can we add jokers to our deck

of cards?

5.2.3 Using std::variant to support cards or
jokers

The simplest way to define a joker is as an empty struct.

Listing 5.26 A joker

struct Joker

{

};

That is all we need.

We know how to make a deck of 52 playing cards:

std::array<Card, 52> cards = create_deck();

How do we add two jokers? We can’t add jokers to this deck

because they are a different type. We could make a

common base type and use pointers for dynamic

polymorphism, but that seems over the top. A much simpler

approach would be an array of one of two types: cards or

jokers. The std::variant, introduced in C++17, makes

this possible. It lives in the variant header and behaves

like a union, but it is safer. C’s union type has a sequence

of possible members.

Listing 5.27 A union

union CardOrJoker

{

 Card card;

 Joker joker;

};

The union is big enough to hold the largest type used. To

access a Card from this union, you use the card member,

and for a Joker, use the joker member, but you need to

track which type is in use. In contrast, a variant knows

which type it currently holds, so the variant is often

described as a type-safe union.

We declare a variant by stating which types it can hold:

std::variant<Card, Joker>

The variant is a class template defined as a variadic

template. We will look at these in more detail in the last

chapter, but for now, notice the three dots in the definition:

template <class... Types>

class variant;

The dots are called a parameter pack, allowing us to use

zero or more template arguments. This allows us to define a

variant with the two types we need. We used

std::optional in chapter 3 to handle input, which only

needed one type. Declaring an optional without assigning

a value

std::optional<Card> card;

has no value. If we use this card in a Boolean context, it will

evaluate to false, so we could make an optional work,

but the code might be hard to follow. We’d need to

remember that if(!card) meant we had a joker. How do

we use a variant, then?

A variant is initialized to the first of the alternative types,

provided that type can be default constructed. If it can’t, we

get a compile error. Both of our types can be default

constructed, so that won’t happen here. So using

std::variant<Card, Joker> card;

gives us a default constructed Card because that’s the first

type. We could also create a Joker instead:

std::variant<Card, Joker> joker{ Joker{} };

In fact, there are various ways to create a variant. We can

avoid making a temporary Joker{} to construct the

variant using the std::in_place_index function. For a

Joker, we want index 1 and do not have any arguments

for the joker’s constructor, so we’ll use

std::in_place_index with value 1:

std::variant<Card, Joker> joker2(std::in_place_index<1>);

For a Card, we use the zero index and pass the value and

suit to the Card constructor:

std::variant<Card, Joker> two_of_clubs(std::in_place_index<0>,

 FaceValue(2), Suit::Clubs);

For further details, see http://mng.bz/amzY.

We can determine whether we have a joker by checking the

variant’s type:

bool is_joker = std::holds_alternative<Joker>(two_of_clubs);

There are various ways to retrieve the values. For example,

we can use get with an index:

Card from_variant = std::get<0>(two_of_clubs);

If we try to get a Joker instead

Joker from_variant = std::get<1>(two_of_clubs);

an std::bad_variant_access is thrown. Alternatively,

we can use get_if to avoid the exception. Rather than an

index, we can use a type, std::get<Card>

(two_of_clubs), which saves having to remember the

order of the types. CppReference gives all the details

(https://en.cppreference.com/w/cpp/utility/variant), but we

now know enough to make a deck of cards with jokers.

http://mng.bz/amzY
https://en.cppreference.com/w/cpp/utility/variant

We have used optional and have met variant. There is

a third type, called std::any, which lives in the any

header. All three types were introduced in C++17 and offer

slightly different alternatives to similar problems. As the

name suggests, we can use any for almost anything,

specifically any copy-constructible type. An any variable can

be switched to other types as needed:

std::any some_card = Joker();

some_card = Card{ 2, Suit::Club };

We need to use the any_cast method to get the value

back. If we have a Card rather than a Joker, calling

std::any_cast<Joker>(some_card);

would throw an std::bad_any_cast.

We could therefore use any; however, using variant is

clearer because we will either have a Card or a Joker. We

could even employ optional, using a variable with no

value to indicate a Joker, but the intent is clearer when we

use a variant.

5.2.4 Building the game with an extended
deck of cards

Let's make an extended deck. First, we need to add jokers

to the deck. We can do this in many ways. We met array

and noted we can initialize some or all of the elements

using aggregate initialization. We can therefore make the

first two elements Jokers like this:

std::array<std::variant<Card, Joker>, 54> deck{ Joker{} , Joker{} };

We can also make the usual 52 cards like we have done

before:

std::array<Card, 52> cards = create_deck();

If we copy these 52 cards over, we will have a deck of cards

with two jokers. We’ve used copy before in chapter 2.

There are several variants of copy, which all live in the

algorithm header. In chapter 2, we met the

ranges::copy version. We have two jokers at the start of

the deck, so we want to copy cards after the two jokers.

Therefore, we need to start copying at begin + 2, as

shown in figure 5.2.

Figure 5.2 With two jokers at the start of our array, we copy
cards to begin + 2.

In code, we write

std::ranges::copy(cards, deck.begin() + 2);

We could use std::copy instead, using the begin and

end member functions:

std::copy(cards.begin(), cards.end(),deck.begin() + 2);

We can even use the begin and end free functions:

std::copy(std::begin(cards), std::end(cards), std::begin(new_deck)+2);

Some things, like a C-style array, can be iterated but do not

have a begin or end method, in which case these free

functions can be used instead. If we use the free functions

when member functions are available, they call the member

functions for us, so it won’t make any difference for us in

this case.

We need to include the variant header in our header and

declare the function. Using the ranges version, we can

create an extended deck in the playing card source file.

Listing 5.28 Creating an extended deck

std::array<std::variant<Card, Joker>, 54> create_extended_deck()

{

 std::array<std::variant<Card, Joker>, 54> deck{Joker{}, Joker{}}; ❶
 std::array<Card, 52> cards = create_deck();

 std::ranges::copy(cards, deck.begin() + 2); ❷
 return deck;

}

❶ Starts with two jokers

❷ Copies a normal deck after the two jokers

We need to shuffle the extended deck of cards. Our original

function worked for an array of 52 cards. We now have an

array of variants holding either a Joker or a card, so we

can declare an overloaded function in our header:

void shuffle_deck(std::array<std::variant<Card, Joker>, 54>& deck);

We can then define the new function.

Listing 5.29 Shufflling an extended deck

void shuffle_deck(std::array<std::variant<Card, Joker>, 54>& deck)

{

 std::random_device rd;

 std::mt19937 gen{ rd() };

 std::ranges::shuffle(deck, gen);

}

The only difference between this shuffle and the previous

version in listing 5.22 is the type of deck. We could write a

function template instead to save the duplication. Try it out!

We need two additions to make our higher-or-lower card

game work with the extended deck. First, we need to decide

if a guess involving a Joker is correct. If we say the guess

is correct if either card is a joker, the player in effect gets a

free turn. We’ll use the

std::holds_alternative<Joker> function to see

whether we have a joker and return true in that case.

Otherwise, we have two non-jokers, so we can call our

original function, using std::get<Card> to obtain cards

from the variants.

Listing 5.30 Checking whether the guess is correct for an
extended deck

bool is_guess_correct(char c,

 const std::variant<Card, Joker>& current,

 const std::variant<Card, Joker>& next)

{

 if (std::holds_alternative<Joker>(current) ||

 std::holds_alternative<Joker>(next))

 return true; ❶
 Card current_card = std::get<Card>(current); ❷
 Card next_card = std::get<Card>(next); ❷
 return is_guess_correct(c, current_card, next_card); ❸
}

❶ Returns true if either card is a joker
❷ Gets cards from the variants

❸ Otherwise calls the original function

We potentially need to display jokers, so we need an

overload of the stream insertion operator for our variant.

Again, we use holds_alternative to see if we have a

joker, in which case we send "JOKER" to the stream;

otherwise, we call our original function.

Listing 5.31 Streaming out cards and jokers

std::ostream& operator<<(std::ostream& os, const std::variant<Card, Joker>& card)

{

 if (std::holds_alternative<Joker>(card)) ❶
 os << "JOKER";

 else

 os << std::get<Card>(card); ❷
 return os;

}

❶ A Joker
❷ Streams the card

We can now write a new game using an extended deck. The

code is identical to our original game from listing 5.24,

except for the creation of an extended deck.

Listing 5.32 Higher-or-lower card game with jokers

void higher_lower_with_jokers()

{

 auto deck = create_extended_deck(); ❶
 shuffle_deck(deck);

 size_t index = 0;

 while (index + 1 < deck.size())

 {

 std::cout << deck[index]

 << ": Next card higher (h) or lower (l)?\n>";

 char c;

 std::cin >> c;

 bool ok = is_guess_correct(c, deck[index], deck[index + 1]);

 if (!ok)

 {

 std::cout << "Next card was " << deck[index + 1] << '\n';

 break;

 }

 ++index;

 }

 std::cout << "You got " << index << " correct\n";

}

❶ Creates a deck with jokers

We are relatively unlikely to get a joker, but it could

happen. A typical game might look like this:

8 of Hearts: Next card higher (h) or lower (l)?

>l

3 of Hearts: Next card higher (h) or lower (l)?

>h

5 of Hearts: Next card higher (h) or lower (l)?

>h

5 of Diamonds: Next card higher (h) or lower (l)?

>h

Next card was Ace of Clubs

You got 3 correct

We have built our own type and more. However, we haven’t

tried object-oriented programming yet. In the next chapter,

we will write another class and provide virtual functions to

learn more about classes.

Summary
Headers need an include guard, and the pragma

directive once is now widely supported.

Use a scoped enum in preference to a C-style enum.

Certain functions can be flagged as defaulted or

deleted.

The string header provides a to_string method for

numeric values.

Use std::array for a container when the size is

known at compile time.

The three-way comparison (operator <=>) was

introduced in C++20 and can be marked as default,

generating comparisons for us.

Use std::shuffle to shuffle a collection, passing an

appropriately seeded random number generator.

Use std::variant if an object is one of a limited

number of unrelated types.

Use std::any if you need one of any possible copy-

constructible types.

Many containers have begin and end member

functions, but these are available as free functions too

for more general use.

6 Smart pointers and polymorphism

This chapter covers

Using inheritance for dynamic polymorphism
Special member functions
Type traits
Using smart pointers
Random number distributions

In this chapter, we will work with classes again, but this time

using inheritance. We will create various "Blob" classes.

Our blobs will be able to move forward and backward. If we

get our blobs in a line at the bottom of a virtual paper bag,

we can set them off racing and see which blob escapes the

paper bag first. Separately from practicing with classes, we

can then claim and furthermore prove that we can code our

way out of a paper bag, a skill all programmers should aim

for.

We will start with a simple class hierarchy and create a blob

that takes a step at a time. We will consider which special

member functions we need when we use inheritance and use

type traits to interrogate various member functions. We will

use random numbers again, using various distributions to

decide how big a step a blob takes. The randomness will

make the race more exciting. By storing a blob in a smart

pointer, we can keep various types of blobs in a vector.

Their behavior will vary depending on the type of blob,

giving us dynamic polymorphism. They can then race, and

we can sit back, watch, and congratulate ourselves on

coding our way out of a paper bag.

6.1 A class hierarchy
We will represent a blob with an asterisk, *, and leave a trail

of asterisks to show the path taken. We can indicate the

sides of the bag with a | character and the bottom with a -

character. All blobs will start at the bottom of a bag and then

move a step or so at a time. We might see something like

this:

 *

| * * |

| * * * |

| * * * * |

To race blobs out of a paper bag, we need to define a Blob

type. We could give each blob an x and y coordinate, but we

will not vary x, so need only track y. If we store blobs in a

vector, we can use the vector’s index to indicate the x

coordinate. For our first race, we will have one type of blob

that always moves forward by the same amount. Later, we

can add a second type of Blob that takes a random step to

add some variety.

6.1.1 An abstract base class

We’ll create a base class for our blobs and make derived

classes later. We know each blob needs to take a step, so we

need a step function. We will also want to know the total

number of steps taken so we can display the right number of

asterisks. The step function changes the instance,

increasing the total number of steps, but the total_

steps function does not change the instance, so the latter

can be marked const. Therefore, we need two member

functions but keep them abstract, indicated by = 0 after the

declaration. Derived classes can implement their own

versions of these functions, giving us the polymorphism we

need. Both of the abstract functions need to be marked

virtual. Virtual methods are implemented via a table of

virtual function pointers called a v-table. When we call a

virtual method via a pointer or reference, the v-table is used

to look up which overridden virtual function to invoke.

Virtual methods, therefore, allow us to create different

derived classes with different step functions. The abstract

base class (ABC) can live in a header file, called Race.h,

inside a namespace called Race. The class doesn’t need

much code.

Listing 6.1 A first attempt at a base class

namespace Race

{

 class Blob

 {

 public:

 virtual void step() = 0; ❶

 virtual int total_steps() const = 0; ❷
 };

}

❶ Abstract function to take a step

❷ Abstract function returning total steps

We can’t create an instance of this Blob because it has

abstract functions. If we write some derived classes,

implementing both abstract functions, we can make various

blobs and race them. However, we haven’t declared a

destructor for our base class. In fact, we haven’t added any

of the special member functions:

A default constructor—X()

A copy constructor—X(const X&)

A copy assignment—operator = (const X&)

A move constructor—X(X&&)

A move assignment—operator = (X&&)

A destructor —~X()

This means all six functions are defaulted because we

haven’t defined any of them. Writing no code and therefore

accepting the six defaults is often called the rule of zero.

This is perfect for many situations. The core guidelines even

tell us to avoid defining defaults if possible

(http://mng.bz/M9Km); after all, less code usually means

fewer bugs. Sometimes we do need to write some code,

though. If we are managing memory or handles to

resources, we need to ensure the right thing happens;

otherwise, we could get memory leaks. We are not

http://mng.bz/M9Km

managing memory or handles in our class, but we need

polymorphism, and therefore, we do have a problem.

Consider what happens when we have a derived class.

Our Blob has default implementations of all six special

member functions, including a destructor. Any derived class

will call a base class’ destructor automatically. This has

always been the case in C++. We need derived classes,

filling in the implementation of the two abstract functions, so

we can race blobs. If we use pointers or references to

various types of blobs, we can call the virtual methods, and

the override for the derived class will be used, allowing

different step implementations. We can define a derived

class and assign a derived instance to a pointer to the base

class:

Blob * blob = new DerivedBlob();

We can call

blob->step();

The step taken will depend on the type of blob because the

step function is virtual. However, when we are done, if we

call

delete blob;

only the Blob’s destructor gets called, not the

DerivedBlob’s. That’s asking for trouble. If we delete

polymorphically without a virtual destructor, we have

undefined behavior. We need each destructor to be called. If

we made a DerivedBlob pointer instead

DerivedBlob * blob = new DerivedBlob();

both destructors would be called. This time, blob is a

DerivedBlob, so the DerivedBlob’s destructor is called,

followed by the base class’ destructor. The defaulted

destructor is not virtual, so it is not in the v-table, as

illustrated in figure 6.1.

Figure 6.1 Virtual functions in the v-table, but not the destructor:
a Base pointer calls the Base destructor, and a Derived
pointer calls the Derived destructor, but a Base pointer to the
Derived class does the wrong thing.

We want to be able to use a pointer to the base Blob class

so we can have various derived classes to make an

interesting race. In fact, we won’t use raw pointers; we’ll

find out how to be smarter. Either way, we need one small

change to fix the problem. If we flag the destructor as

virtual, it goes in the v-table, and the right destructors

are called for a Base pointer. While we are making this

change, we can mark the copy constructor and assignment

as deleted because we don’t need to copy blobs, and we’ll

add a default constructor because a base class needs an

appropriate constructor.

Listing 6.2 A better base class

#pragma once

namespace Race

{

 class Blob

 {

 public:

 virtual ~Blob() = default; ❶
 Blob() = default; ❷
 Blob(Blob const&) = delete; ❸
 Blob& operator=(Blob const&) = delete; ❸

 virtual void step() = 0;

 virtual int total_steps() const = 0;

 };

}

❶ Virtual default destructor

❷ Default constructor
❸ Deletes copies that are not needed

We can now safely make a concrete class deriving from

Blob.

6.1.2 A concrete class

Let’s make a new type of Blob that will take two steps

forward whenever it moves. This new type can derive

publicly from Blob, so the base class’ public methods

remain public, and the protected members remain

protected, but any private members in the base class are

inaccessible to the derived class. For a reminder of how

public, protected, and private access modifiers behave, see

CppReference

(https://en.cppreference.com/w/cpp/language/access). We

have three public methods, so these remain public, and we

have nothing else to consider.

We need to implement the abstract functions to make a

concrete class. We can define these inline in the class

because they both need only a single line of code. For larger

functions, we would use a separate source file and put the

definitions there.

To implement the functions, we override them by writing a

function with the exact same signature. The base class’s

member functions must be virtual; otherwise, we are hiding

rather than overriding a function. This has always been the

case in C++. If you’ve forgotten the details, see Item 33:

Avoid hiding inherited names in Scott Meyers’ book Effective

C++ (Addison-Wesley Professional, 2005; 3rd edition).

C++11 introduced the override specifier, which we can

add to the end of the declaration of a member function to

make clear we are overriding a function. This means the

compiler can tell us if we fail to write the signature correctly.

For example, it’s very easy to forget the word const and

end up with two different functions. We can also use the

keyword final if we don't want any further derived classes

to override the virtual method.

https://en.cppreference.com/w/cpp/language/access

Both the step and total_steps functions use the number

of steps so far. The former will add to the total steps, and

the latter will report the total steps. Our new type of blob

will take two steps at a time, so it needs to increase the total

number of steps by two. We can remember the number of

steps taken so far in an int called y, indicating the y

coordinate of a blob. Nothing else should use the variable, so

we make it private. Our stepper class goes in the Race

header file inside the namespace, implementing the two

virtual functions inline.

Listing 6.3 A blob taking constant-sized steps

class StepperBlob : public Blob

{

 int y = 0; ❶
public:

 void step() override ❷
 {

 y += 2;

 }

 int total_steps() const override ❸
 {

 return y;

 }

};

❶ Private int to keep track of steps
❷ Two steps forward

❸ Total number of steps so far

We can now create a stepper blob:

Race::StepperBlob blob;

In fact, we can add a check_properties function like we

have done before and use asserts to check what our code

does. If we put this in main.cpp, we can check that a step

moves us forward by two.

Listing 6.4 Checking that steps move a blob forward

#include <cassert>

#include "Race.h"

void check_properties()

{

 Race::StepperBlob blob;

 blob.step();

 assert(blob.total_steps() == 2);

}

int main()

{

 check_properties();

}

We can now build a race. We only have one type of concrete

blob, so we know in advance there will be no winners or

losers, but it gives us a simple warm-up race. We need to

decide how to represent the blobs and how to draw the bag.

6.1.3 Warming up for a race

We can put a few StepperBlobs in a virtual paper bag and

let them walk up the screen. We will use the abstract base

class later when we introduce a new type of blob. For this

section, we will concentrate on representing the

StepperBlobs in the race. If we used a proper graphics

library, we could build a magnificent display; however, we

have lots more to learn about C++. The SFML (Simple and

Fast Multimedia Library; see https://www.sfml-

dev.org/index.php) is relatively easy to get up and running if

you want to give it a try. We’ll stick with using the console

here.

First of all, we need a paper bag. We decided to represent

the paper bag using | and - for the edges and a trail of *s

for a blob.

 *

| * * |

| * * * |

| * * * * |

We’ll make the bag three rows high and build up the display

using strings for each row. Each row starts with either a '|'

and a space, or two spaces if we are above the bag, and

then two spaces, or " *", per blob, and a final '|'. The

final row consists of '-' characters for the bottom of the

bag.

Let’s write a drawing function, taking the vector of

StepperBlobs, so we can draw the blobs along with the

paper bag. We can put four such blobs in a vector

std::vector<Race::StepperBlob> blobs(4);

and pass this to the function, allowing us to vary the number

of blobs. We could use an std::array instead if we

wanted, but std::vector means we could vary the

number at run time if we wanted to. As we sweep through

https://www.sfml-dev.org/index.php
https://www.sfml-dev.org/index.php

each row, we can check the current y coordinate against

each blob’s total steps. If the y position is higher than a

blob, we show two spaces; otherwise, we use a space and

then an *. We made the steps function constant because it

doesn’t change a blob, so we can pass a const reference to

a vector to the drawing function. We'll put the new

function in a Race.cpp file, remembering to add the

declaration to the header file. We need the iostream and

string headers too.

Listing 6.5 Drawing each blob’s current position

#include <iostream>

#include <string>

#include "Race.h"

void Race::draw_blobs(const

 std::vector<Race::StepperBlob> & blobs)

{

 const int bag_height = 3;

 const int race_height = 8;

 for (int y = race_height; y >= 0; --y)

 {

 std::string output =

 y >= bag_height ? " " : "| "; ❶
 for (const auto& blob : blobs)

 {

 if (blob.total_steps() >= y)

 {

 output += "* "; ❷
 }

 else

 {

 output += " "; ❸
 }

 }

 output += y >= bag_height ? ' ' : '|'; ❹
 std::cout << output << '\n';

 }

 const int edges = 3;

 std::cout <<

 std::string(blobs.size() * 2 + edges, '-')

 << '\n'; ❺
}

❶ Left side of bag

❷ Blob leaving a trail
❸ No blob here

❹ Right side of bag
❺ Bottom of bag

We want the blobs to step, so we need another function,

move_blobs. Because the blobs change state when they

step, we pass our vector by non-const reference. Again, we

will use StepperBlob here and build up to using different

types of Blob in the next section. We need to add the

signature to the header and include the vector header too.

Listing 6.6 Declarations in the header file

#include <vector>

namespace Race

{

... ❶

 void move_blobs(std::vector<Race::StepperBlob>& blobs); ❷
 void draw_blobs(

 const std::vector<Race::StepperBlob>& blobs

); ❷
}

❶ Blob and stepper like before
❷ Function signatures

We then define the function in the Race.cpp file. We can

use a range-based for loop to let each blob take a step.

Listing 6.7 Moving all the blobs

void Race::move_blobs(

 std::vector<Race::StepperBlob> & blobs

) ❶
{

 for (auto& blob : blobs) ❷
 {

 blob.step(); ❸
 }

}

❶ Pass by reference

❷ Reference to each blob
❸ Makes blob step

If we call these functions in a loop, we’ll have a race. We can

clear the screen and sleep for a little while between updates.

We’ve used the thread’s sleep_for previously in our

countdown in listing 4.11, so pausing is straightforward. If

we include the thread header, we can pause using chrono

literals, such as 1000ms:

using namespace std::chrono;

std::this_thread::sleep_for(1000ms);

Now, there is no platform-independent way to clear a screen

in C++. Sometimes C++ is used for embedded devices

without screens, so that makes sense. However, using

specific control characters usually works on Linux, Windows,

or macOS:

std::cout << "\x1B[2J\x1B[H";

The \x1B introduces a control character, [2J clears the

screen, and [H moves the cursor to the top left. If it doesn’t

work on your setup, just print a new line character '\n'

instead, and you’ll get each frame shown down the screen.

Again, we add the signature

void race(std::vector<Race::StepperBlob>& blobs);

to the header file and put the implementation in the source

file. The race calls our draw_blobs and move_blobs

functions for a while, pausing and clearing the screen

between each call.

Listing 6.8 A somewhat predictable race

#include <thread>

...

void Race::race(std::vector<Race::StepperBlob>& blobs)

{

 using namespace std::chrono;

 const int max = 3;

 std::cout << "\x1B[2J\x1B[H"; ❶
 for (int i = 0; i < max; ++i)

 {

 draw_blobs(blobs);

 move_blobs(blobs);

 std::this_thread::sleep_for(1000ms); ❷
 std::cout << "\x1B[2J\x1B[H"; ❶
 }

 draw_blobs(blobs);

}

❶ Clears screen or changes to '\n' if needed

❷ Pauses

We need to call this from main with a vector of blobs.

Don’t forget to include the Race.cpp in your build.

Listing 6.9 A warm-up race

#include "Race.h"

int main()

{

 check_properties();

 std::vector<Race::StepperBlob> blobs(4);

 Race::race(blobs);

}

When we run this, the blobs move in lockstep, so they all

escape together.

 |

|

 |

|

 | *

* * * |

 | *

* * * |

 | *

* * * |

 | *

* * * |

 *

* * *

 *

* * *

 | *

* * * |

 | *

* * * |

 | *

* * * |

 *

* * *

 *

* * *

 *

* * *

 *

* * *

 | *

* * * |

 | *

* * * |

 | *

* * * |

It is not much of a race but is a simple demonstration of how

to code our way out of a paper bag. We’re almost ready to

make different types of blobs. Before we do, let’s think a bit

more about the six special member functions that classes

might have. Pausing to check which functions are present

and absent will help cement the six special functions in our

minds.

6.1.4 Using type traits to check for special
member functions

Before C++11, we had the rule of three: defining a

destructor, a copy constructor, or a copy assignment

operator for a class almost certainly requires all three to be

defined. If any one of these functions needed to do

something special, like clone a resource, the others would

need to do something appropriate too. Since C++11, we

must consider move construction and move assignment too,

leading to what is known as the rule of five. In fact, we

noted that a class can have six possible special member

functions. The compiler will generate all six operations if we

do not define any of them. We added a virtual destructor to

the base class to allow polymorphic use. So do we know

which of the other functions are still implicitly defined for us?

Do we care? Maybe. If the moves are not available for a

type, an optimization opportunity may be missed.

Remember, we considered two versions of push_back for a

vector in chapter 2:

constexpr void push_back(const T& value);

constexpr void push_back(T&& value);

The first version makes a copy of the value at the end of the

vector, while the second version avoids the copy by moving

the value. If the type cannot be moved, the first version will

be used.

Our Blob class is abstract, so we can’t make one and try to

copy or move it. How do we test such a class? At the very

least, we need the base class to be virtually destructible and

not able to be constructed. We can try to find out which

functions a Blob has if we use type traits. They live in the

type_traits header, introduced in C++11. The traits

make various operations discoverable via template structs,

which take a type and populate a Boolean member called

value, telling us whether the operation or trait is supported

(see http://mng.bz/yZDE). We can query

std::is_constructible<Blob>::value

and discover the Blob is not constructible. Rather than

spelling out value, we can use _v instead:

std::is_constructible_v<Blob>

Various helper templates ending with _v equating to the

value member were introduced in C++17. In either case,

we provide the type we are concerned about to the template

and receive a Boolean. Reassuringly, Blob is not

constructible.

In fact, the is_constructible trait can check for various

ways to construct an object. CppReference (see

http://mng.bz/XqyM) shows us the declaration

template<class T, class... Args >

struct is_constructible;

We met the three dots or parameter pack in the last chapter

when we used std:: variant. We can try other types to

http://mng.bz/XqyM

see if we can make a Blob from them. For example, we can

verify that a Blob cannot be constructed with an int by

checking whether

std::is_constructible_v<Blob, int>

is false. We can also use is_default_constructible_v

to specifically check for a default constructor.

Type traits cover more than construction. We briefly met

concepts in chapter 4 and considered using invocable

from the concepts header to ensure a template parameter

was invocable or callable. The type_traits header has an

is_invocable trait to discover if the concept applies to a

type. We can check a variety of other traits too. Have a look

through the type_traits header. Traits operate on a type

at compile time, so they are part of the metaprogramming

library, along with the ratio header we met in chapter 4,

as well as integer sequences, which we haven’t looked at

yet.

Let’s see if we can check which of the six member functions

our base class has and ensure the destructor is virtual as

well. The traits are constexpr, so we can use

static_assert in the check_properties function we

made in listing 6.4.

Listing 6.10 Type traits to check for special member functions

#include <type_traits>

void check_properties()

{

 ... ❶
 static_assert(

 !std::is_default_constructible_v<Race::Blob>

); ❷
 static_assert(

 std::is_destructible_v<Race::Blob>

); ❷
 static_assert(

 !std::is_copy_constructible_v<Race::Blob>

); ❷
 static_assert(

 !std::is_copy_assignable_v<Race::Blob>

); ❷
 static_assert(

 !std::is_move_constructible_v<Race::Blob>

); ❷
 static_assert(

 !std::is_move_assignable_v<Race::Blob>

); ❷
 static_assert(

 std::has_virtual_destructor_v<Race::Blob>

); ❸
}

❶ Previous checks

❷ Checks six member functions
❸ Checks destructor is virtual

Some values are true, and some are false. We can’t

construct a blob at all, even via copies or moves, because

Blob is an abstract class with pure virtual member

functions, but we do have a virtual destructor. However, the

move construction and move assignment checks might be

misleading. The is_move_constructible trait tells us if a

type can be constructed from an rvalue reference. Our blob

isn’t constructible, so it can’t be move constructed at all. The

move-constructible trait is not checking for the presence of a

move constructor; rather, it is checking to see if a type can

be constructed from an rvalue of the same type. The

is_move_assignable tells us if a type can be assigned

from an rvalue, and that can mean a function taking a

const lvalue, because a const lvalue reference can bind to

rvalues. The trait is not checking for the presence of a move

assignment operator. Do we have the move special

functions?

In fact, adding our own destructor blocks implicit moves (see

http://mng.bz/QR6e). The type traits are telling us if we can

assign from a temporary, or rvalue, but we are likely to get

copies rather than moves. Because we disabled copies, we

can’t move or copy a blob. Failing to provide a move

constructor and move assignment operator is not an error,

but we are missing an optimization opportunity, as we noted

when we considered the two versions of push_back for a

vector. In Item 17 of Effective Modern C++ (O’Reilly

Media, Incorporated, 2014), Scott Meyers points out that

moves are requests. If a type is not move enabled, any

"moves" are actually copies. Furthermore, he tells us that

C++ does not generate move operations for a class with a

user-declared destructor. The simplest solution is to declare

the move special functions using =default. When we do

this, the copy functions will be disabled! We deleted them

because we don’t need them. We can declare them if we

think we need them. This is often referred to as the rule of

five. Either stick with the rule of zero, accepting the defaults,

or declare or delete all five of the special members along

with the constructors according to your needs.

http://mng.bz/QR6e

Now, if we delete a single special member function, the

move-assignment and all the other special member functions

are implicitly deleted. Peter Sommerlad suggests deleting

the move assignment if a destructor is defined. He calls this

pattern DesDeMovA: Destructor => Delete Move Assignment

(for an overview, see http://mng.bz/46Eg). Disabling copies

of polymorphic classes can be sensible. We’ll examine this

along with other design considerations at the end of the

chapter. Keep in mind that adding a destructor or other

special-member function may disable others, so you may

need to explicitly add a function if you need it. The

type_traits can be used to check which functions you

have.

This is a big topic. Howard Hinnant talks about it in

“Everything You Ever Wanted to Know About Move

Semantics,” if you want to learn more (ee

https://www.youtube.com/watch?v=vLinb2fgkHk). He has

also said, “I don’t follow a ‘rule of 5.’ After all, there are 6

special members.” (See

http://howardhinnant.github.io/classdecl.xhtml.) This article

provides a neat table showing which of the special members

are default or blocked when we define one of the other

functions. He suggests being explicit about what you do and

do not want in your class.

Our Blob class from listing 6.2 works well enough for our

race. We made one concrete class derived from the Blob.

We even had a warm-up race. Let’s make another type of

blob so we can have a proper race.

http://mng.bz/46Eg
https://www.youtube.com/watch?v=vLinb2fgkHk
http://howardhinnant.github.io/classdecl.xhtml

6.2 Writing and using derived classes
in a vector

Let’s make another stepper that takes a varying number of

steps each time, using random numbers. The StepperBlob

always takes two steps. Creating a new type of Blob taking

two steps on average but possibly fewer or more seems like

a suitable racing opponent. Either is likely to win. We can

use a uniform distribution to generate a whole number of

steps from 0 to 4 using

std::uniform_int_distribution distribution{0, 4};

We need a seeded engine, which we’ve seen before. We can

use random_device for the seed

std::random_device rd;

std::default_random_engine engine{ rd() };

and pass the engine to the distribution to get a number:

int step = distribution(engine);

Without the seed, the engine will use a default value and

give the same sequence each time we run the code. The

default_random_engine is usually a Mersenne Twister,

the mt19937. This class has two constructors we can use to

seed the engine. We’ve used the version taking a single

number. The second version takes a seed sequence,

seed_seq:

std::random_device rd;

std::seed_seq seeder{rd()};

std::default_random_engine engine{ seeder };

In theory, the seed_seq can give a greater variety of

outcomes each time we run the program, and it does allow

us to provide a few seeds in a sequence. If the seeds

themselves are all random too, we get even more variety.

Either approach is fine for when we only need tens,

hundreds, or thousands of random outcomes, and the

simplest approach using a single number is fine for the

simple games we have written. If we ever need millions or

billions of different possible sequences of numbers, we’ll

need to put in more thought. There is a proposal to extend

C++11’s random number generators (see

https://wg21.link/P1932), which gives further details on the

limits of the current engines. C++11’s random library is

completely fine for the games we are making in this book.

Problems will only arise if you want to run huge Monte-Carlo

simulations or need cryptographic random numbers.

6.2.1 A blob moving randomly

We could build a new class, containing a

uniform_int_distribution and a generator, giving us a

new type of blob. We would use these in the step function,

adding the random number obtained to the current steps:

y += distribution(generator);

https://wg21.link/P1932

If we wanted to use each of the distributions in C++, we

would end up writing 20 different classes. That feels

repetitive.

The distributions do not have a common base class, but they

all have an operator() taking a generator, which they use

to create the next random number fitting the distribution.

We can therefore write a class template taking a generator

and distribution as types. We need a generator and a

distribution member of the type specified in the template.

We’ll pass both into a constructor, which means we can pass

anything, including some mocked generators for testing,

provided they have the operator we need for the step

function.

The new class, RandomBlob, needs to derive publicly from

Blob, like the StepperBlob did. The total_steps

function still returns the total number of steps y. The step

function uses the generator and distribution to obtain a

random step. Some of the distributions return a double or

float rather than an integer, so we can use a static_ cast

to obtain an integer.

Listing 6.11 A general-purpose random blob

template <typename T, typename U> ❶
class RandomBlob : public Blob

{

 int y = 0;

 T generator; ❶
 U distribution; ❶
public:

 RandomBlob(T gen, U dis) ❶
 : generator(gen), distribution(dis)

 {

 }

 void step() override

 {

 y += static_cast<int>(distribution(generator)); ❷
 }

 int total_steps() const override

 {

 return y;

 }

};

❶ Generator and distribution types
❷ Adds a random step

We make a RandomBlob using an engine and distribution.

We can use a uniform distribution taking between zero and

four steps:

 std::random_device rd;

 Race::RandomBlob rnd_blob{

 std::default_random_engine{ rd() },

 std::uniform_int_distribution{ 0, 4 }

 };

We can change the distribution parameter to get a blob that

behaves differently. We can use a normal distribution, with

mean 2.0 and a standard deviation of 1.0, indicating how

likely numbers are to deviate from the mean. Bigger means

more extreme values are likely:

 Race::RandomBlob another_rnd_blob{

 std::default_random_engine{ rd() },

 std::normal_distribution{2.0, 1.0}

 };

The parameters 2.0 and 1.0 mean something very different

for this distribution. They no longer tell us the minimum and

maximum values. Each distribution has different parameters

specific to the underlying distribution function.

C++11’s random library supports various distributions (see

https://en.cppreference.com/w/cpp/header/random):

Uniform ints and reals—Suitable for picking a number in

a range with equal likelihood.

Bernoulli and related binomial distributions—Useful for

modeling the number of successes or failures.

Poisson distribution—Modeling how many times an event

might happen in a period of time; for example, how

many buses might turn up in the next few minutes.

Normal related distributions—Producing real (rather than

integer) values. This group has six distributions: normal,

lognormal, Chi-squared, Cauchy, Fisher, and student.

These can be used for a huge variety of models, but the

normal is commonly used for people’s heights and other

situations where most values tend to be nearer the

mean, or average, but extreme values are possible.

Sampling distributions—Similar to the uniform

distributions but allow us to make specific values or

ranges of values more likely by providing a weighting.

In each case, the distribution uses a probability function to

smear out numbers provided by the engine to give the

required properties of the distribution. For a uniform

distribution, each number must be equally likely. For a

normal distribution, values near the mean are more likely

than extreme values. Lots of interesting mathematics are

lurking behind this, but generating a plot of probability

https://en.cppreference.com/w/cpp/header/random

functions used gives us an idea of how many steps are likely.

CppReference gives the function used for each distribution.

Comparing the uniform_int_distribution and

normal_distribution we considered, we get plots as

shown in figure 6.2.

Figure 6.2 Random uniform steps on [0, 4] and normally
distributed steps with mean 2.0 and standard deviation of 1.0

On average, we expect two steps from either of these

distributions. The normal distribution might take many more

or even go backwards, while the uniform steps are never

negative. We can use any other distributions we want. We

can even use a fake for testing. The template-head we used

template <typename T, typename U>

has no constraints at all, so the T and U can be anything. We

learn about requirements and concepts in chapter 4, noting

we can constrain parameters with concepts, such as

invocable

void guess_number_with_clues(int number,

 std::invocable<int, int> auto message)

to ensure only a function taking two integers is passed as

the message parameter to our number-guessing game. Our

RandomBlob needs an invocable generator taking no

parameters, written as std::invocable<>. The named

requirement lives in the concepts header, so if we include

the header, we can swap the typename keyword to the

constraint

 template <std::invocable<> T, typename U>

 class RandomBlob : public Blob

to be more specific and get better error messages if we use

an unsuitable type. In fact, CppReference gives named

requirements for random numbers (see

https://en.cppreference.com/w/cpp/named_req), including a

RandomNumberEngine and a

RandomNumberDistribution. These named requirements

would allow us to be more precise; however, only some of

the requirements listed were formalized in the C++20

concepts library. Constraining the generator to be

invocable is good enough for our simple game.

https://en.cppreference.com/w/cpp/named_req

Another important thing we can do is add tests for our code,

using a lambda for the generator and engine, with very little

effort. Returning 0 instead of a random number often helps

to find bugs since the mathematics with zeros is often easy

to do in our heads. We can make a “generator” that always

returns 0 and call it in a “distribution” lambda to pass that 0

back.

Listing 6.12 Testing with random generators and distributions

void check_properties()

{

 Race::RandomBlob random_blob(

 []() { return 0; }, ❶
 [](auto gen) { return gen(); }); ❷
 random_blob.step(); ❸
 assert(random_blob.total_steps() == 0); ❹
}

❶ Generates 0 every time
❷ Passes on the 0

❸ Takes a random step
❹ 0 total steps

We can make all kinds of different random blobs now. The

warm-up race used a vector of StepperBlobs. We could

make a vector of RandomBlobs, but how can we make

the stepper and random blobs compete? They are different

types, but they do share a common base type. We could put

raw pointers in a vector:

std::vector<Blob*>

Our virtual methods support the polymorphism we need for

a race, provided we use a pointer or reference to a Blob.

Ensuring references don’t go out of scope when we still need

them is hard work, so pointers are better. However, we

would have to delete the blob pointers by hand when we

were done or if anything threw an exception. C++11

introduced smart pointers to address these challenges,

which make our life easier.

6.2.2 Smart pointers

The destructors we’ve written don’t do anything. They don’t

need to. However, one place where C++ shines is by

allowing us to do the setup in the constructor and tidying up

in the destructor. This is known as resource acquisition is

initialization (RAII). The STL frequently uses RAII. For

example, we know a vector creates objects for us on the

heap. When the vector goes out of scope, the allocated

objects are deleted. We don’t have to remember to tidy up,

because the vector is an RAII class. If we put raw pointers

in a vector, though, the pointers will be cleaned up, rather

than what they point to.

Smart pointers are another RAII class, managing raw

pointers. We can put smart pointers in a vector. When the

vector goes out of scope, each contained element’s

destructor is called. In turn, the smart pointer’s destructor

clears up the raw pointer. Smart pointers come in different

types, but all allow us to write code as presented in the

following listing.

Listing 6.13 Using smart pointers in a vector

void very_smart()

{

 std::vector<SmartPointer<Blob>> blobs;

 blobs.emplace_back(make_smart_pointer<StepperBlob>()); ❶
} ❷

❶ Puts some blobs in a vector
❷ End of scope, so vector calls smart pointers’ destructors

The memory header lists four smart pointers:

unique_ptr

shared_ptr

weak_ptr

auto_ptr

The last smart pointer has unusual copy semantics (see

https://en.cppreference.com/w/cpp/memory/auto_ptr). A

copy would steal the pointer, meaning these smart pointers

could not be used in vectors or other containers. If a

vector resizes, the elements need to be copied or moved,

so something with unusual copy semantics causes problems.

The auto_ptr was deprecated in C++11 and removed in

C++17. The remaining three types are much easier to use.

A unique_ptr manages a raw pointer. The unique_ptr

owns the underlying pointer, so copying is disabled, but

moving is allowed. After all, if something is unique, you

shouldn’t be able to make copies of it. In contrast, a

shared_ptr also manages a raw pointer, but several

https://en.cppreference.com/w/cpp/memory/auto_ptr

shared_ptr can own the same object. The owned object is

destroyed, and its memory is deallocated when all the

shared_ptr owning the underlying object go out of scope

or are reset to point to something else. Shared pointers,

therefore, have a shared count, held in what’s referred to as

a control block. We can specify what happens when the

unique or shared pointers go out of scope, but they both call

delete by default. This information is also stored in the

control block. Now, the sharing means you might end up

with a circular dependency and a potential resource leak, so

there is a weak_ptr as well. The weak_ptr is like a

shared_ptr but acts more like a passive observer,

monitoring the control block. The watched shared_ptr can

delete the underlying resource, so the weak_ptr needs to

check to see if the underlying resource has been deleted

before trying to use the underlying pointer. See

https://www.modernescpp.com/index.php/std-weak-ptr for

further details. The relationship among these three types of

smart pointers is shown in figure 6.3.

https://www.modernescpp.com/index.php/std-weak-ptr

Figure 6.3 A unique pointer owns a pointer, shared pointers
share a pointer and a reference count, and a weak pointer
watches the shared pointer control block.

These three types of pointers cover a variety of use cases;

however, the unique_ptr is sufficient for our needs.

Nothing needs to share or observe the underlying raw

pointer. Furthermore, Herb Sutter suggested using a

unique_ptr by default (see http://mng.bz/n1D8). The

shared_ptr is more complicated because it needs the

control block, which makes it more heavyweight. Switching

to a shared_ptr from a unique_ptr is straightforward,

so starting with a unique_ptr makes sense.

http://mng.bz/n1D8

We, therefore, need to create a vector of

std::unique_ptr<Blob>. We can then populate the

vector with any classes deriving from the base class and

make them race. We can make a unique_ptr in a couple of

ways, either by using new explicitly

std::unique_ptr<Blob> blob(new StepperBlob);

or by using the make_unique method:

std::unique_ptr<Blob> blob = std::make_unique<StepperBlob>();

The latter approach is better. First, Herb Sutter’s post tells

us to avoid using new. Using new means we may have to

handle raw pointers directly, which requires a lot of care.

When we pass the new StepperBlob to the smart pointer,

memory is allocated, and the constructor is called. If the

constructor were to throw an exception, the unique_ptr

itself wouldn’t be constructed, so its destructor wouldn’t get

called, and the StepperBlob memory would leak. If the

allocation and construction happens inside the

make_unique call, everything is dealt with for us. There is

a make_shared function for similar reasons.

6.2.3 Race!

We are now able to make a vector of various types of blobs

and set them racing. We need a new race function, taking an

std::vector<std::unique_ptr<Blob>>, and new

move_blobs and draw_blobs functions also taking a

vector of smart pointers. The declaration goes in the

header, inside the namespace, and we need to include the

memory header for the unique_ptr.

Listing 6.14 Adding overloaded methods to the header

#include <memory>

namespace Race

{

... ❶
 void race(std::vector<std::unique_ptr<Blob>>& blob); ❷
 void move_blobs(

 std::vector<std::unique_ptr<Blob>>& blobs ❷
);

 void draw_blobs(

 const std::vector<std::unique_ptr<Blob>>& blobs ❷
);

}

❶ Everything as before
❷ Overloads for polymorphic blobs

We now need to define the functions. The race function is

identical to listing 6.8, apart from the type of the blobs

parameter. In listing 6.8, we had a vector of

StepperBlobs. Now we can have various blobs in the

vector.

Listing 6.15 A less predictable race

void Race::race(std::vector<std::unique_ptr<Blob>>& blobs)

{

 using namespace std::chrono;

 const int max = 3;

 std::cout << "\x1B[2J\x1B[H";

 for (int i = 0; i < max; ++i)

 {

 draw_blobs(blobs);

 move_blobs(blobs);

 std::this_thread::sleep_for(1000ms);

 std::cout << "\x1B[2J\x1B[H";

 }

 draw_blobs(blobs);

}

We need to implement the move and draw functions too.

When we moved the blobs in listing 6.7, we called

blob.step();

for each blob. Now the blobs are unique pointers to blobs, so

we need to use the operator-> to call a member function

on the underlying pointer. Apart from that, the function is

very similar.

Listing 6.16 Moving all the blobs

void Race::move_blobs(std::vector<std::unique_ptr<Race::Blob>>& blobs)

{

 for (auto& blob : blobs)

 {

 blob->step(); ❶
 }

}

❶ -> to call an underlying pointer’s method

Finally, we need to implement the overloaded draw_blobs

method. Again, this is very like the previous draw method in

listing 6.5, but we use operator-> to find a blob’s current

steps.

Listing 6.17 Drawing each blob's current position

void Race::draw_blobs(const std::vector<std::unique_ptr<Race::Blob>>& blobs)

{

 const int bag_height = 3;

 for (int y = 8; y >= 0; --y)

 {

 std::string output = y > 2 ? " " : "| ";

 for (const auto& blob : blobs)

 {

 if (blob->total_steps() >= y) ❶
 output += "* ";

 else

 output += " ";

 }

 output += y >= bag_height ? ' ' : '|';

 std::cout << output << '\n';

 }

 std::cout << std::string(blobs.size() * 2 + 3, '-') << '\n';

}

❶ -> to call an underlying pointer’s method

Armed with the new methods, we can finally have a proper

race. We need some blobs, and some steppers racing some

random blobs would be good. Since the steppers move two

steps at a time, using a uniform distribution of integers

between 0 and 4 gives random blobs averaging two steps

overall. We realized that gives both types a fair chance. We

can make a unique_ptr to a StepperBlob and then a

unique_ptr to a RandomBlob in a loop, so run half the

number requested, adding two Blobs each time. Each

RandomBlob needs an engine and a distribution. The engine

needs seeding, so we’ll use random_device as usual.

Finally, we’ll make the distribution range from 0 to 4, using

uniform_int_distribution{0, 4}.

Listing 6.18 Creating blobs for a proper race

std::vector<std::unique_ptr<Race::Blob>>

create_blobs(int number) ❶
{

 using namespace Race;

 std::vector<std::unique_ptr<Blob>> blobs;

 std::random_device rd;

 for (int i = 0; i < number/2; ++i) ❷
 {

 blobs.emplace_back(std::make_unique<StepperBlob>()); ❸
 blobs.emplace_back(

 std::make_unique<

 RandomBlob<std::default_random_engine,

 std::uniform_int_distribution<int>>

 > ❹
 (

 std::default_random_engine{ rd() }, ❹
 std::uniform_int_distribution{ 0, 4 } ❹
)

);

 }

 return blobs;

}

❶ Chooses how many of each blob types
❷ Loops to half the number, adding two blobs each time

❸ Stepper is default constructed.
❹ RandomBlob needs an engine and a distribution.

We can now create our blobs in main and race them. Let’s

try four of each kind of blob, giving us eight to race.

Listing 6.19 A proper race

int main()

{

 auto blobs = create_blobs(8);

 Race::race(blobs);

}

The random blobs might win, but the steppers can beat

them. To start with, the blobs are in the bottom of the bag,

raring to go.

| |

| |

| * * * * * * * * |

They move, and some random blobs may take the lead.

 *

 * * *

| * * * * * * * * |

| * * * * * * * * |

| * * * * * * * * |

The steppers might catch up a bit at the next move.

 * *

 * * * * * * * *

 * * * * * * * *

| * * * * * * * * |

| * * * * * * * * |

| * * * * * * * * |

And finally, some random blobs win, but one is left behind on

this run.

 * *

 * * *

 * * * * * * *

 * * * * * * * *

 * * * * * * * *

 * * * * * * * *

| * * * * * * * * |

| * * * * * * * * |

| * * * * * * * * |

A second run can give a different outcome. We have raced

our way out of a paper bag. Don’t forget, we considered

other distributions too. Try this out with a normal

distribution, and see if any go backward.

6.2.4 Some design considerations

We disabled moves and copies on our base class. If we had

left the copies, we could make a new derived type:

class DerivedStepper : public StepperBlob { };

Admittedly, the derived type doesn’t do much, but maybe we

need it to do something else for the virtual member

functions. Nothing is stopping us from writing a function

using a StepperBlob:

void bogus(StepperBlob blob)

{

// ...

}

Inside this function, we have a StepperBlob, even if we

call it with the derived type:

bogus(DerivedStepper());

Inside the bogus function, the blob is a StepperBlob

because we passed it by value, and it was copied. This is

known as slicing. We’ve sliced the derived class down to the

StepperBlob class, and the wrong virtual functions get

called. The core guidelines (http://mng.bz/orDj) suggest

http://mng.bz/orDj

making the copy and move operations deleted using

=delete to avoid slicing (http://mng.bz/6nr5). The

DesDeMovA approach would have the same effect. If all

these operations go, we can add a clone method if we need

to enable copying. Alternatively, just marking the copies as

deleted in the base Blob class means the call to the bogus

function with the derived class no longer compiles.

Fortunately, we did this in our base class. We could even

stop a derived class from being written using the keyword

final that we met earlier. We can mark functions as

override or final, but we can also mark a whole class

final:

class StepperBlob final : public Blob

A final class cannot be used as a base class, so the

derived class itself does not compile.

Object-oriented programming (OOP) can get very

complicated. When we show the race, all we really need are

the total steps so far per blob. Using an std::vector

<int> to collect the steps would work. We could accumulate

the total steps for each blob without any need for OOP. We

could have done that at the outset but would then have

missed the opportunity to learn a lot of C++. In fact,

remember when we tested the RandomStepper in listing

6.12? We took 0 steps using

Race::RandomBlob random_blob(

 []() { return 0; },

http://mng.bz/6nr5

 [](auto gen) { return gen(); });

The StepperBlob takes 2 steps, so we could use a fake

generator returning 2 instead of 0

Race::RandomBlob random_blob(

 []() { return 2; },

 [](auto gen) { return gen(); });

to make a blob taking 2 steps. Again, we wouldn’t need OOP.

Templates give us compile-time or static polymorphism. OOP

has its place, but C++ allows us to work in a variety of

paradigms.

We’ve used vector several times now and considered an

array as an alternative when we know how many items we

need at compile time. We haven’t built anything needing a

lookup table yet. In the next chapter, we will use some

associative containers to make dictionaries.

Summary
Always declare a virtual destructor in a base class and

mark pure virtual functions with =0.

The rule of zero means the six special member functions

are provided if we do not declare any of them. If only a

constructor is declared, the remaining five special

member functions are provided.

Add the keyword override to an overridden method to

ensure you have the signature correct, and use the

keyword final to stop further overrides.

Use type_traits to find traits for a type; for example,

std::is_ constructible_v.

Adding a destructor blocks the compiler from implicitly

supplying the move special member functions.

The rule of five means any class requiring move

semantics needs to declare all five special member

functions, possibly along with constructors, if there is a

user-declared destructor, copy constructor, or copy

assignment operator.

Using an std::seed_seq can generate a greater

variety of random numbers, but just using

std::random_device is often good enough for simple

games.

Use smart pointers rather than raw pointers, and prefer

the simpler unique_ptr by default.

Use the operator-> of a smart pointer to call a

member function on the referenced object.

7 Associative containers and files

This chapter covers

Filling and using associative containers
Pairs and tuples
Reading from files
Random samples

We have used vectors several times now but haven’t used an

associative container yet. An associative container holds

key-value pairs, giving us a lookup table or dictionary. In

this chapter, we will use dictionaries to create a game of

answer smash. We’ll provide two clues, each a definition of a

word. The end of the first word will overlap with the start of

the next word, giving the answer. For example, a vector is a

“sequential container supporting dynamic resizing,” and a

torch could be defined as a “lit stick carried in one’s hand,”

so smashing together the words vector and torch gives the

answer vectorch.

We’ll start by storing a dictionary in an std::map defined in

the map header, which existed before C++11, and then

consider other types of associative containers too. We will

use the newer std::unordered_map in the next chapter,

so using std::map in this chapter will be a useful revision,

and we will learn about an std::pair and the more

general std::tuple on the way. We will start with

hardcoded dictionaries and read data from a file afterward

using a random sample to create variety when we play the

game.

7.1 Hardcoded answer smash
We’ll begin by hardcoding the words and definitions. We can

put these directly into a dictionary or map. A map allows us

to store values against keys. If a key already exists, we can

replace the existing entry, but we cannot have two entries

with the same key. Now, a language dictionary can have

multiple definitions for the same word, so we will need a

data structure allowing more than one value per key when

we use a proper dictionary. We will start with one definition

per word, but the map header also provides a multimap,

which does support multiple entries, so we can have several

definitions later. Let’s start with the old-school std::map

using one value per key.

7.1.1 Creating and using an std::map

As with all containers, the map is a class template, so we

need to state the type of key and value. Both will be strings,

so we need a map of strings to strings:

std::map<std::string, std::string> dictionary;

We can use operator[] to both query and insert key-value

pairs. To add or overwrite an entry, we say

dictionary["assume"] = "take for granted, take to be the case";

We then have one item in the dictionary, with the key

"assume" and value "take for granted, take to be

the case". We can look up a string using the same

operator; for example:

std::string new_value = dictionary["fictional"];

When we do this, the new_value is a defaulted string, as

"fictional" was not in the dictionary. After the call to

operator[], the new key "fictional" and defaulted

string value end up in the dictionary, which might not be

our intention. Let’s make a map and prove this to ourselves.

We’ll create a map of string keys to string values and

stream the contents to std::cout, so we need to include

the map, string, and iostream headers. When we

streamed out a vector, we used a range-based for loop

along the lines of

for(auto item: my_vector)

We can do the same with a map, and we will use a const

reference to avoid copies. Each map item comprises two

strings bundled together as an std::pair, which has a

first and second method to access each element. We’ll

look at this in a bit more detail shortly. For now, we can try

to query a map for a nonexistent element and see what

happens.

Listing 7.1 Creating and displaying a map

#include <iostream>

#include <map>

#include <string>

void warm_up()

{

 std::map<std::string, std::string> dictionary; ❶
 dictionary["assume"] = "take for granted, take to be the case"; ❷
 std::string new_value = dictionary["fictional"]; ❸
 for (const auto & item : dictionary) ❹
 {

 std::cout << item.first << " : " << item.second << '\n'; ❺
 }

}

int main()

{

 warm_up();

}

❶ Declares dictionary
❷ Adds an item

❸ Queries nonexistent item
❹ const auto & to avoid copies

❺ Displays pairs

When we run this code, we can see the query for

"fictional" has added an empty string to the dictionary:

assume : take for granted, take to be the case

fictional :

This behavior is unintuitive and can cause problems. We

have deliberately used a const reference to containers

when we pass them as parameters to functions. We want

references, so we do not copy the entire container, but we

often only want to query rather than change the elements,

so flag the parameter as const. If we try to do the same

with a map

void unexpected(const std::map<std::string, std::string> & lookup)

{

 auto value = lookup["cheese"];

}

we get a compile error, telling us there is no operator[]

taking a const map. Instead, we can call the at method,

which is a const member function:

auto value = lookup.at("cheese");

If the key does not exist, an std::out_of_range

exception is thrown. Using this alternative method allows us

to pass a map by const reference, which will come in

handy.

The operator[] will also replace an existing entry because

a map only has one value per key. If we say

dictionary["fictional"] = "made up";

the fictional entry then has the value "made up". We can

avoid overwriting existing entries if we use the insert

method instead. There are various overloads of insert (see

http://mng.bz/5oEq), but the simplest version returns two

http://mng.bz/5oEq

things, an iterator and a bool, also bundled as an

std::pair. When we try to insert a new item, we can pass

an initializer list for the key and value:

auto result = dictionary.insert({ "insert", "place inside" });

The result’s second item is true because the new entry

was added. The first item holds an iterator to the newly

added item. If we try to overwrite an existing item

auto next_result = dictionary.insert({ "fictional", "not factual" });

the next_result’s second item is false, and the first item

holds an iterator to the existing item, which allows us to see

the existing value.

We can now make a dictionary, which is a useful start.

Before building our answer smash game, let’s pause to

consider the std::pair, which has cropped up several

times now, in a bit more detail.

7.1.2 Pairs, tuples, and structured bindings

The std::pair lives in the utility header and is defined

by a class template, based on two types:

template<typename T1, typename T2> struct pair;

We’ve used the member variables first and second

already. The utility header also provides a helper

function, called make_pair, which creates the pair we want

and also deduces the type for us. If we say

auto two_words = std::make_pair("Hello,", "world!");

we get a pair of const char *s. We could use the string

literal operator ""s to obtain a pair of std::strings

instead:

using namespace std::string_literals;

auto two_words = std::make_pair("Hello,"s, "world!"s);

Rather than using auto, we can say std::pair and use an

initializer list:

std::pair two_words{"Hello,"s, "world!"s};

We don’t need to spell out the type of the pair of items, as

CTAD deduces an std::string for each item. The types do

not need to be identical, so we can have a pair of two

different types if we want. For example

std::pair two_numbers{1, 1.23};

is std::pair holding an int and a double.

Now, a pair holds two elements, but C++11 introduced a

generalization called a tuple, which can hold any number

of items. Nobody agrees on how to pronounce tuple, so

choose one of “two-pel,” “tupp-ell,” or “chewple.” The tuple

lives in the tuple header and is defined using the

parameter pack (three dots) we have met before:

template<typename... Types> class tuple;

There’s a make_tuple function to create a tuple, so we can

make a tuple holding three strings like this:

auto three_words = std::make_tuple("Hello "s, "again, "s, "World!"s);

However, we can equally say

std::tuple three_words = {"Hello "s, "again, "s, "World!"s};

and CTAD will kick in, deducing we have a tuple of three

std::strings. As with the std::pair, we can have

various types in a tuple, so

std::tuple three_numbers{ 1, 1.23, 4.5f };

is an std::tuple of int, double, and float.

Now, std::pair has first and second members to

access either element, but std::tuple might not hold two

elements. We used a variant in chapter 5 when we had a

card or a joker and used std::get to access the elements.

The tuple header has an overload of std::get that we

can use to retrieve a tuple element, stating the index of

the item we want. For example, calling

auto first = std::get<0>(three_words);

will return the first string.

In listing 7.1, we used an std::pair when we displayed

the dictionary, hiding behind the auto in

for (const auto & item : dictionary)

The item is actually a pair of strings, so we needed to call

first and second to display the dictionary entries. We can

do something neater. C++17 introduced structured bindings,

allowing us to bind names to pairs, tuples, and more (see

http://mng.bz/g7De). If we want our three numbers

std::tuple three_numbers{ 1, 1.23, 4.5f };

unpacked into three variables, we could get each element

ourselves:

int x = std::get<0>(three_numbers);

double y = std::get<1>(three_numbers);

float z = std::get<2>(three_numbers);

Structured binding allows us to get all three items in one

line:

auto [x, y, z] = three_numbers;

We have to use auto, followed by the variable names we

want in the []. In effect, the structured binding is syntactic

sugar for the handwritten unpacking, but it makes a copy of

http://mng.bz/g7De

a hidden tuple or pair. Using C++ Insights (see

https://cppinsights.io/s/0579bdbb) for our three numbers,

we see a copy of the tuple, with a made-up name

__three_numbers6 and three named variables referring to

the three elements:

std::tuple<int, double, float> three_numbers =

 std::tuple<int, double, float>{1, 1.23, 4.5F};

std::tuple<int, double, float> __three_numbers6 =

 std::tuple<int, double, float>(three_numbers);

int && x =

 std::get<0UL>(static_cast<std::tuple<int, double, float> &&>(__three_numbers6));

double && y =

 std::get<1UL>(static_cast<std::tuple<int, double, float> &&>(__three_numbers6));

float && z =

 std::get<2UL>(static_cast<std::tuple<int, double, float> &&>(__three_numbers6));

We’ve met the rvalue reference && before in chapter 2. We

can avoid the copy if we use references instead:

auto &[x, y, z] = three_numbers;

The hidden __three_numbers6 is then a reference, giving

us a reference for each number because the && is subject to

reference collapsing, so it happily binds to references.

We can bind to arrays and even a structure’s nonstatic

members too. For example, given

struct DataObject { int x{ 0 }; double y{ 1.23 }; };

we can write

DataObject data {};

auto [x, y] = data;

https://cppinsights.io/s/0579bdbb

In each case, we use auto and bind to an existing object.

The technical editor for this book, Tim van Deurzen, gave a

great lightning talk on structured bindings at Meeting C++ in

2019, if you want to know more (see

https://www.youtube.com/watch?v=YC_ TMAbHyQU)).

We were considering how we used an std::pair when we

displayed the dictionary in listing 7.1. We can now bind

the dictionary’s key-value pair to two names, writing

for (const auto & [key, value] : dictionary)

so we can use the key and value directly, without having

to call first and second on the pair.

Listing 7.2 Using structure bindings to access map items

#include <iostream>

#include <map>

#include <string>

void structure_bindings()

{

 std::map<std::string, std::string> dictionary;

 dictionary["assume"] = "presume, take for granted";

 std::string new_word = dictionary["fictional"];

 for (const auto & [key, value] : dictionary) ❶
 {

 std::cout << key << " : " << value << '\n'; ❷
 }

}

❶ Binds the structure to key and value

❷ Displays key and value

Similarly, if we use insert, we can use a structured binding

to hold the result:

https://www.youtube.com/watch?v=YC_TMAbHyQU)

auto [it, result] = dictionary.insert({ "insert", "place inside" })

We can then use the iterator it and the bool result

directly, rather than using first to get the iterator and

second to get the result.

The pair and tuple can be used in a variety of situations,

including returning more than one value from a function, as

we saw when we considered the map’s insert function. The

structured binding also allows us to write clearer code when

we use the returned values. Armed with the basics of map

and pair, we can now make a simple answer smash game.

7.1.3 A simple answer smash game

We will create two dictionaries to play answer smash. One

will have C++ keywords and types along with their

definitions, so we can revise a bit when we play. The second

will have English words and definitions. We can use

operator[] to make the dictionary of keywords.

Listing 7.3 Using operator [] to populate a map

std::map<std::string, std::string> keywords; ❶
keywords["char"] = "type for character representation which can be"

 " most efficiently processed on the target system"; ❷
keywords["class"] = "user defined type with private members by default";

keywords["struct"] = "user defined type with public members by default";

keywords["vector"] = "sequential container supporting dynamic resizing";

keywords["template"] = "family of classes or functions parameterized"

 " by one or more parameters";

❶ Constructs dictionary

❷ Fills dictionary

To use operator[], we need a mutable rather than const

map, but once we have set up the dictionaries, we won’t

need to change them. Now, we noticed we can pass an

initializer list for the key and value to insert earlier:

dictionary.insert({ "insert", "place inside" });

Likewise, we can use an initializer list of pairs, or even an

initializer list of initializer lists comprising two strings to

construct our dictionary.

Listing 7.4 Using initializer lists to populate a map

const std::map<std::string, std::string> dictionary{ ❶
 {"assume", "take for granted, take to be the case"}, ❷
 {"harsh", "coarse, large-grained or rough to the touch"},

 {"table", "piece of furniture"},

 {"tease", "mock, make fun of"},

 {"torch", "lit stick carried in one's hand"},

};

❶ Constructs dictionary

❷ Fills it with pairs of initializer lists

The second approach means we can mark the dictionary as

const to ensure we don’t accidentally change its contents

later.

We can iterate over the keywords, using a structured binding

to the key and value by const reference to avoid copying

the strings:

for (const auto & [word, definition] : keywords)

For each keyword, we need a word from the dictionary that

overlaps so we can smash the keyword and dictionary word

together. Given the word "char", we could look for

something in the dictionary starting with "char", but the

whole word could get swallowed rather than overlapping.

That is fine, but it might be more fun to avoid this. Instead,

we could try to find something starting with "har".

Therefore, we need to start with the substring beginning at

the second character, or index 1, and make a stem or start

of the word to look up:

size_t offset = 1;

auto stem = word.substr(offset);

We can then go through the dictionary looking for words

starting with that stem. We need to check if a key's

substring starting at index 0 of length stem.size() is

equal to the stem "har", so we would find "harsh" in our

dictionary. In the worst case, this does mean we will plod

through each key and may not find a word. We'll see a more

efficient way to look up keys in a map shortly.

If nothing matches the stem "har", we can try again

starting at the next letter, so we use "ar". There happens

to be a match for "har", so we have a suitable word and

don’t need to check further. Some words, like "struct",

need more searching. We drop the initial 's' and search for

the stem "truct". However, nothing in the dictionary starts

with "truct", so we could then try "ruct" and keep

trying until we try to match the single letter "t". We need

at least one overlapping letter to smash two words together.

Some words may have no match at all, so we can indicate

this with an empty string. We could return an optional

instead or even a tuple with a Boolean to indicate we

cannot find a suitable word, but an empty string works too.

Try these different approaches for extra practice.

Writing the search in a separate function means we can test

it. We can put the function in a new source file, called

Smash.cpp, and use a namespace along with a header file,

Smash.h, to declare the functions we need. The search

function takes the word we want to match and a dictionary

to search. We need to return a key from the dictionary if we

find a word or an empty string otherwise. If we return the

offset used too, the calling code can smash together the two

words without having to rediscover where the overlap is. As

we have seen, a simple way to return two values from a

function is via an std::pair, so we can do that here,

putting the code in Smash.cpp and declaring the function in

the corresponding header.

Listing 7.5 Finding an overlapping word

#include <map>

#include <string>

#include <utility>

#include "Smash.h"

std::pair<std::string, int> find_overlapping_word(std::string word,

 const std::map<std::string, std::string>& dictionary)

{

 size_t offset = 1; ❶
 while (offset < word.size())

 {

 auto stem = word.substr(offset);

 for (const auto & [k, v] : dictionary) ❷
 { ❷
 auto key_stem = k.substr(0, stem.size()); ❷
 if (key_stem == stem) ❸
 { ❸
 return { k, offset }; ❸
 }

 }

 ++offset; ❹
 } ❹
 return { "", -1 }; ❹
}

❶ Starts at the second letter of the word

❷ Considers the start of each key
❸ Finds a match

❹ Did not find a match

Although we are potentially checking all the keys, the

overlap function is good enough for a first attempt at answer

smash. We need a function taking the two dictionaries, one

of keywords and one of more general words, both with

definitions to use as clues. For each keyword, we’ll try to

find an overlapping word, and if we do find a word, we will

display both definitions as clues. If we don’t, we get an

empty string and offset of -1 back, so we will continue to

the next keyword. If we find a suitable word, the correct

answer is the start of the keyword concatenated with the

second word. We can create the answer using operator+:

word.substr(0, offset) + second_word

Now, the substring creates a temporary string, and the

concatenation then creates another string, so this approach

is not very efficient. We do not need to copy the substring.

C++17 introduced a string_view in the string_view

header, which provides a view rather than a copy of a string.

The std::string_view gives us read-only access to an

existing string, which means the existing string needs to

remain in scope for the view to be valid. We can take a view

of the first part of the first word, avoiding a copy, and use

std::format, which we saw in chapter 2, to make the

answer. We can therefore say

std::string answer = std::format("{}{}",

 std::string_view(word).substr(0, offset), second_word);

and avoid the temporary copy of the substring. For further

details, see http://mng.bz/amzj. Using a string_view is

often more efficient, but as it is a view of another object, we

need to be careful not to use the view after the original

string has gone out of scope. We’ll stick with operator+ in

this example for simplicity. It’s useful to be aware that we

are making an extra copy and don’t need to, though.

We can use std::getline to read the guess. The player

can simply press Enter to give up. We can compare the

response with the answer to determine whether the guess is

correct or not, again putting code in Smash.cpp and

declaring the function in Smash.h.

Listing 7.6 A simple answer smash game

#include <iostream>

#include <map>

#include <string>

http://mng.bz/amzj

#include "Smash.h"

void simple_answer_smash(

 const std::map<std::string, std::string> &keywords,

 const std::map<std::string, std::string> &dictionary)

{

 for (const auto & [word, definition] : keywords) ❶
 {

 auto [second_word, offset] = find_overlapping_word(word,

 dictionary); ❷
 if (offset == -1) ❸
 { ❸
 std::cout << "Not match for " << word << '\n'; ❸
 continue; ❸
 }

 std::string second_definition =

 dictionary.at(second_word); ❹
 std::cout << definition << "\nAND\n"

 << second_definition << '\n'; ❺

 std::string answer =

 word.substr(0, offset) + second_word; ❻
 std::string response; ❼
 std::getline(std::cin, response); ❼
 if (response == answer) ❽
 {

 std::cout << "CORRECT!!!!!!!!!\n";

 }

 else

 {

 std::cout << answer << '\n';

 }

 std::cout << word << ' ' << second_word << "\n\n\n";

 }

}

❶ For each keyword
❷ Finds an overlap

❸ Checks we have a suitable word
❹ Uses at for a const map rather than operator[]

❺ Displays both definitions
❻ Smashes the two words together

❼ Gets the response

❽ Sees whether the guess is correct

We can call this from main and play our game.

Listing 7.7 Playing the first version of answer smash

#include "Smash.h" ❶
int main()

{

 const std::map<std::string, std::string> keywords{

 {"char", "type for character representation which can be most"

 "efficiently processed on the target system"},

 {"class", "user defined type with private members by default"},

 {"struct", "user defined type with public members by default"},

 {"vector", "sequential container supporting dynamic resizing"},

 {"template", "used for generic code"},

 }; ❷
 const std::map<std::string, std::string> dictionary{

 {"assume", "take for granted, take to be the case"},

 {"harsh", "coarse, large-grained or rough to the touch"},

 {"table", "piece of furniture"},

 {"tease", "mock, make fun of"},

 {"torch", "lit stick carried in one's hand"},

 }; ❸
 simple_answer_smash(keywords, dictionary); ❹
}

❶ Includes header declaring simple_answer_smash
❷ Sets up keywords

❸ Sets up dictionary
❹ Plays the game

We thought about the first keyword, "char", and the

dictionary word "harsh". For this combination, we see the

clue

type for character representation which can be most efficiently processed on the

target system

AND

coarse, large-grained or rough to the touch

We can either try a guess or just press Enter and see the

answer:

charsh

char harsh

We have a simple game. If we take a deeper dive into the

map and other associative containers, we will see how to

make the search for an overlap more efficient and learn

more C++ too.

7.2 Associative containers
We’ve used the std::map to build a hardcoded game. If we

learn about what is going on inside the structure, we will be

able to make some slight performance improvements. With

these in hand, we need a related data structure, the

std::multimap, to allow storage of a proper language

dictionary, which lets us have more than one value per key.

After all, words sometimes have more than one definition, so

when we use a proper dictionary in the final section of this

chapter, we may need to store several values for a single

key.

7.2.1 The map type in more detail

We know both a vector and array store their elements

contiguously, and we can dynamically resize a vector but

not the array. If we search for an item in a vector, we

might have to iterate over all the elements before finding

what we need, potentially getting to the end without finding

the item. If we have n elements in a vector, we may need

to check all n elements, which is described as O(n), or

linear complexity. We’ve seen that we can dynamically add

pairs to a map, but we haven’t thought about how elements

are stored, so we don’t know how a search works.

A map is designed so we can search for items more quickly.

Rather than storing the elements next to each other, the

map stores them in a binary tree. A binary tree has nodes,

storing elements and pointers to other child nodes, like

branches in a tree, and has at most two branches at any

node; hence the name binary. The nodes are ordered, giving

us a binary search tree, with smaller elements going to the

left and larger elements going to the right. For a map, our

elements are a key and value, and the key is used to decide

whether an item goes to the left or right.

If we put {1:a}, {3:c}, and {5:e} in a map, we start with

a single node {1:a} and then add {3:c}. As the key 3 is

larger than 1, the new element {3:c} goes to the right, as

shown in figure 7.1.

Figure 7.1 Map with two nodes: the first node {1:a} at the top
and the next larger node {3:c} to the right

When we add the final element {5:e}, two things happen.

First, the new node is larger than {3:c}, so it would go

below and to the right, but adding a child node here means

the tree is unbalanced. In effect, we have a chain of {1:a},

{3:c}, and {5:e} rather than a balanced tree, as we have

lots of right branches and no left branches. Pulling {3:c} up

to be the top node rebalances the tree, keeping smaller

elements on the left and larger elements on the right, giving

the layout as shown in figure 7.2.

Figure 7.2 Three elements in a balanced binary search tree:
nodes with smaller keys go on the left and larger keys on the
right.

Having put elements in a map, we can now search it. If we

want to know if {2:b} is in the map, we start with the top

node, {3:c}, and since the key is 2, which is less than 3,

we move down to the left node {1:a}. That is not equal to

2 and furthermore is a leaf or terminating node, so our

search is done. We only considered half of the tree. Because

the tree is a balanced binary tree, we will either search a left

or a right branch, so we have logarithmic complexity,

O(log(n)). In fact, search, removal, and insertion

operations all have logarithmic complexity. If we double the

number of elements, we only need one extra set of

comparisons when we search. For the vector, searching is

O(n). If we double the number of elements, we might

double the number of comparisons when we search. We

might get lucky and find an element at the start, but in the

worst case, we must check all the items. Figure 7.3 shows

the worst case for constant big-O, O(n), and logarithmic,

O(log(n)), big-O.

Figure 7.3 Constant time complexity: O(n) grows much faster
than logarithmic complexity, O(log(n)), as the number of
elements is increased.

The rebalancing keeps searching efficient. C++ maps are

usually implemented as red-black trees. The color is extra

information on each node, used when insertions or deletions

take place. To keep the searches to O(log(n)), the tree

needs to be balanced. If there are many more nodes down

one branch than another, searching through the largest side

takes longer. A classic resource for tree data structures and

algorithms is Donald Knuth’s The Art of Computer

Programming, Volume 3 (Addison-Wesley Professional,

1998).

If we look at CppReference (see

https://en.cppreference.com/w/cpp/container/map), we are

told that a map is a sorted associative container. C++11

introduced unordered containers, which we will look at in the

next chapter. We had to specify the key and value types for

our maps, but a map also takes a comparison type, used to

place nodes in the tree. The comparison defaults to

std::less<Key>. For the std::string, we get a default

of std::less<std::string>, which equates to

operator< for std::string. We can specify other ways

to compare. For example, we may want to make all our

strings lowercase first. For a user-defined type, we might

need to write a comparison operator or define the spaceship

operator to use our type in a map. If we have a user-defined

type, even a simple struct such as

struct Stuff { int x; };

https://en.cppreference.com/w/cpp/container/map

we get a compile error if we try to use Stuff in a map as

the key:

std::map<Stuff, int> lookup;

lookup[Stuff{ 1 }] = 1;

All we need to do is add the spaceship operator to the struct

friend auto operator <=> (const Stuff &, const Stuff&) = default;

and we can then use it in the lookup.

The C++ standard often tells us the complexity of operations

on a container, helping us make sensible choices when we

code. The big-O or complexity is the worst case. For

example, a search described as O(n) may only look at one

element if the first element inspected is a match. At worst,

all the elements will be compared. The complexity is a

guideline to how many operations might happen, not a

guarantee of efficiency. We might still need to benchmark

our code to see how fast it is, and a profiler can help us find

bottlenecks.

Now, when we built our simple answer smash in listing 7.6,

we manually checked the keys, so we potentially compared

our stem word against all n keys, giving us O(n). Without

profiling, we can improve on this, using other facilities

offered by the std::map.

7.2.2 Using lower and upper bound to find a
key more efficiently

The std::map has a lower_bound and an upper_bound

function, which help us query the map more effectively. Both

functions find the position at which an element would be

inserted. The lower_bound finds the first element greater

than or equal to the queried element, while the

upper_bound finds the position of an element with a

greater value. Nicolai Josuttis’ book The C++ Standard

Library, Second Edition (Addison-Wesley Professional, 2012),

is an excellent reference book for further details. The

std::set and std::multiset also support these

functions. We haven’t used these containers yet. A set

allows us to keep a collection of unique values, like a map

but with keys only, and the multiset allows us to have

duplicate keys.

There are free functions, std::lower_bound and

std::upper_bound, as well, which can be used on other

containers, provided the elements are ordered by

operator<. We could therefore use these functions on a

sorted vector:

const std::vector<int> data{ 1, 2, 4, 5, 6, 7 };

auto lower = std::lower_bound(data.begin(), data.end(), 3);

auto upper = std::upper_bound(data.begin(), data.end(), 3);

This might be quicker than iterating through the elements

trying to find 3. The upper and lower bound both point to

the third element, 4, as shown in figure 7.4.

Figure 7.4 The lower bound, lb, and upper bound, ub, of 3 in a
sorted vector

When the lower and upper bound match, the item is not

present. If we insert 3 and run the query again,

lower_bound would then return an iterator to the 3, and

upper_bound would still return an iterator to the value 4.

Because the positions do not match, we have found the

value 3. The lower bound is greater than or equal to the

element, and the upper bound is always greater than the

element, so matching bounds mean they are both greater,

whereas different bounds mean the lower bound is at the

first such element.

We can also find the lower and upper bounds in one call to

equal_range. This returns an std::pair of iterators, so

we can use structured bindings again to obtain the lower and

upper bounds:

auto [lb, ub] = std::equal_range(data.begin(), data.end(), 3);

The std::map, along with other containers mentioned, has

member functions behaving the same way. We sometimes

find containers have specialized versions of general functions

for performance reasons.

We can rewrite our find overlap function using the

lower_bound and upper_bound member functions,

thereby avoiding potentially checking through all the keys.

Previously, in listing 7.5, we iterated over all the keys,

dropping out of the loop if we found a match to the stem.

Now, we can use equal_range instead to find the lower

and upper bound of the stem, as this function bundles the

results of lower_bound and upper_bound into an

std::pair. The lower bound finds the insertion point if the

word isn’t there, so we could be at the end of the dictionary

or at a nonmatching word. We need to check that the lower

bound isn’t at the end of the dictionary before comparing the

stem with the first part of the lower bound’s key

lb->first.substr(0, stem.size())

to discover whether we have found a suitable word. Pulling

this together gives us the following function.

Listing 7.8 Finding an overlapping word more efficiently

std::pair<std::string, int> find_overlapping_word(std::string word,

 const std::map<std::string, std::string>& dictionary)

{

 size_t offset = 1;

 while (offset < word.size())

 {

 auto stem = word.substr(offset);

 auto [lb, ub] = dictionary.equal_range(stem); ❶
 if (lb != dictionary.end() &&

 stem == lb->first.substr(0, stem.size())) ❷
 {

 return {lb->first, offset}; ❸
 }

 ++offset;

 }

 return {"", -1};

}

❶ No for loop any more
❷ Have we found a suitable overlap?

❸ Returns word and offset

We can use this function in our game instead of the original

version we wrote in listing 7.5.

We will only find the first matching word when we call

find_overlapping_word, which we can improve on.

There might be more than one word that overlaps, and

furthermore, a proper dictionary might have more than one

entry for a word. We can make a random choice when we

have more than one suitable word, which will add some

variety to our game. We can also use an std::multimap

to support more than one entry per key. While we are

thinking about associative containers, let’s learn about

multimaps, and then we will be ready to make a new version

of our game using a proper dictionary.

7.2.3 Multimaps

An std::multimap also lives in the map header and uses a

key and value; for example:

std::multimap<std::string, std::string> dictionary;

The multimap supports multiple values for the same key

and behaves like an std::map but with a vector of values

per key.

To insert items, we can use insert:

dictionary.insert({ key, value });

or emplace:

dictionary.emplace(key, value);

As we saw for a vector in chapter 2, insert needs an

element, so we would use std::pair for the multimap

version, while emplace constructs the element from the

provided arguments. The key-value pairs still live in nodes in

a tree, but we can have several to search through, as figure

7.5 shows.

Figure 7.5 A multimap with multiple values for a given key

To retrieve values, we need to cope with potentially having

more than one value per key. Furthermore, the

std::multimap has no operator[] or at function, so we

need to do something else. Fortunately, using lower_bound

and upper_bound or equal_range gives us what we

need, allowing us to find all values corresponding to a given

key. These functions return iterators, letting us use all the

values corresponding to a key if there are any.

Let’s consider the following example. Using namespace

literals, we can make a multimap matching figure 7.5:

std::multimap<int, std::string> mm{

 {1,"a"s}, {1,"a"s}, {3,"c"s}, {3,"g"s}, {5,"e"s}, {5,"h"s},

};

If we search for mm.equal_range(2), we get an iterator

to the node with element 3:c for both the lower and upper

bound. This means an element with key 2 would be inserted

there. If we search for mm.equal_range(3) instead, the

lower bound is 3:c, being the first element not less than the

key 3, and the upper bound is 5:e, being the first element

greater than the key 3. We then have a pair of iterators to

use to walk over all the elements with key 3.

We need to find a word starting with a stem so we can find

the lower bound

auto stem = word.substr(offset);

auto lb = dictionary.lower_bound(stem);

when the dictionary is a multimap. The upper bound we

need is any word after the stem. If we copy the stem

auto beyond_stem = stem;

we can add a character after a 'z' to get beyond the

possible stems of words

beyond_stem += ('z' + 1);

and use this to find the upper bound:

auto ub = dictionary.upper_bound(beyond_stem);

We then get the start and end of a range of words if there

are matches. We will use the multimap to build a better

game, randomly choosing a suitable word from this range.

7.3 File-based answer smash
We made a simple answer smash game using hardcoded

keywords and a tiny dictionary. We can make a more

interesting game by loading data from a file. The code

provided with this book has two csv files in the folder for

this chapter. One has a selection of C++ keywords, using

definitions based on CppReference (see

https://en.cppreference.com/w/cpp/keyword), and the

second has various English words based on a subset of

Wordnetcode (see http://mng.bz/M9KQ).

7.3.1 Loading data from a file

We haven’t used files yet, but we have used streams, such

as std::cout and std::cin, and C++ treats files as

streams. Files live in the fstream header. We can open an

input file, ifstream, using a filename

std::ifstream infile{ filename };

and use the stream in a Boolean context to see whether it is

open:

if (infile)

// all good

A file is automatically closed when the variable goes out of

scope, so the file streams use resource acquisition is

initialization (RAII), which we met in the last chapter.

https://en.cppreference.com/w/cpp/keyword
http://mng.bz/M9KQ

Files can be written in text or binary, so we can specify the

mode in the constructor (see http://mng.bz/yZDp). Our

dictionary is text, so the default text mode works for us. If

we want to write to a file, we use an output file stream,

ofstream. An output file stream can be text or binary as

well, but we might also want to truncate an existing file or

append at the end. We can specify open for output and

append using bitwise OR (|) of the input output stream

(ios) openmodes out and app

std::ofstream f1("test.txt", std::ios::out | std::ios::app);

and so on (see http://mng.bz/Xqy9). To read from a file, we

can either use operator>> or std::getline, which we

used with std::cin in chapter 3. For the output stream,

we would use operator<<.

The words in our file are stored in mixed case, but we don’t

want Int and int to be treated as different words. We

should, therefore, make the keys lowercase so we can

compare directly with lowercased input. We need to write

something ourselves, so guided by CppReference, we can

transform a string, making each character lowercase. We

can use transform from the algorithm header and C’s

tolower function from the cctype header (see

https://shortener.manning.com/QR66). The tolower

function operates on ints, rather than chars, so we must

be careful. We need to treat each character as an unsigned

char because the behavior of std::tolower is undefined

http://mng.bz/yZDp
http://mng.bz/Xqy9
https://shortener.manning.com/QR66

if the argument’s value is neither an end of file (EOF) nor

representable as an unsigned char. We therefore use a

lambda taking an unsigned char in the transformation.

Listing 7.9 Transforming a string to lowercase

#include <algorithm>

#include <cctype>

std::string str_tolower(std::string s) {

 std::transform(s.begin(), s.end(), s.begin(),

 [](unsigned char c) { return std::tolower(c); }

);

 return s;

}

We can now write a function to load a dictionary from a file.

Each line will have a word, a comma, and a definition:

struct,user defined type with public members by default

We can walk through the file one line at a time and try to

find the first comma:

size_t position = line.find(',');

If the position is std::string::npos, we have an

invalid line, which we can log and ignore. Otherwise, we can

split the line into a key and value. The key is the substring

up to the comma’s position

std::string key{ line.substr(0, position) };

and the definition is the substring starting after the comma’s

position up to the end of the line:

std::string value{ line.substr(position + 1) };

If we use an std::string for the filename, we can write a

function returning a multimap to use in our improved

game. The multimap allows more than one definition per

word.

Listing 7.10 Loading a file into a multimap

#include <fstream>

#include <iostream>

#include <map>

#include <string>

std::multimap<std::string, std::string>

 load_dictionary(const std::string& filename)

{

 std::multimap<std::string, std::string> dictionary;

 std::ifstream infile{ filename }; ❶
 if (infile) ❶
 {

 std::string line;

 while (std::getline(infile, line)) ❷
 {

 size_t position = line.find(','); ❸
 if (position != std::string::npos)

 {

 std::string key{ line.substr(0, position) }; ❹
 key = str_tolower(key); ❹
 std::string value{ line.substr(position + 1) };

 dictionary.emplace(key, value); ❺
 }

 else

 {

 std::cout << "***Invalid line\n" << line

 << "\nin " << filename << "***\n\n";

 }

 }

 }

 else

 {

 std::cout << "Failed to open " << filename << '\n';

 }

 return dictionary;

}

❶ Creates and opens a file for reading
❷ Reads each line

❸ Splits on the comma
❹ Lowercases the key

❺ Adds key-value pair to multimap

We can use this function to load the keywords and the

dictionary. File paths have backslashes on some operating

systems, so something like "c:\" might cause problems in

code because the backslash is also used to escape a special

character. We can use raw strings, introduced in C++11,

indicated with R() around a string. If we keep the files in

the working directory, we don’t need to use a raw string, but

it’s another new feature that’s worth being aware of:

const auto dictionary = load_dictionary(R"(dictionary.csv)");

const auto keywords = load_dictionary(R"(keywords.csv)");

There is more to raw strings, but we will stick with the

string filename here. We need to remember that the code

needs to be run from a directory containing the files;

otherwise, the code won’t find the input files.

Raw strings and the filesystem type

We can use various start and stop characters beyond the brackets '(' and ')' in
raw strings (see http://mng.bz/46ER). We could even use the filesystem path
introduced in C++17 (see https://en.cppreference.com/w/cpp/filesystem/path) to
represent file paths.

http://mng.bz/46ER
https://en.cppreference.com/w/cpp/filesystem/path

7.3.2 Picking a word randomly using
std::sample

Rather than using all the keywords, we can randomly pick a

few to play the game. We can also pick one of several

overlapping words from the dictionary. C++17 introduced a

sample function, which allows us to choose some items

from a range without replacement. Each item is equally

likely. The std::sample function lives in the algorithm

header. It takes a first and last iterator, an output iterator to

write the samples to, how many samples to pick, and a

random number generator. We can therefore include the

random header to make a generator

std::mt19937 gen{ std::random_device{}() };

and find the entries matching the stem of a word. The lower

bound matches the stem:

auto stem = word.substr(offset);

auto lb = dictionary.lower_bound(stem);

The lower bound may or may not match the stem we want.

For the upper bound, we want one beyond the stem:

auto beyond_stem = stem;

beyond_stem += ('z' + 1);

auto ub = dictionary.upper_bound(beyond_stem);

Going beyond the stem ensures we find any word whose first

few letters match. If we are looking for "pet", we want to

include "petal", and any other words starting with "pet"

as well.

If the lower and upper bounds, lb and ub, are equal, we

cannot find a suitable word; otherwise, we can sample one

item from the range into a vector:

std::vector<std::pair<std::string, std::string>> dest;

std::sample(lb, ub, std::back_inserter(dest), 1, gen);

Back in chapter 2, we discovered that Pascal’s triangle told

us how many combinations we can have for tossing a coin

or, in this case, selecting an entry from a dictionary.

Selecting a single item isn’t difficult, but picking more than

one is more complicated, so C++ is doing the hard work for

us. C++20 introduced a ranges version of the sample

algorithm, which we can use to pick a few of the keywords.

If we load the keywords using listing 7.10, we can pick 5

using sample:

std::vector<std::pair<std::string, std::string>> first_words;

std::ranges::sample(keywords, std::back_inserter(first_words), 5, gen);

Now we have all the parts we need to create an answer

smash game based on words and definitions in files.

7.3.3 Answer smash

First, we need a function to select an overlapping word in a

multimap. Because we may get more than one matching

word or a matching word with two different definitions, we

will select one using the random sample function we just

met. If we make a function template, we can send in a

sample function, which makes testing easier. We can use a

lambda instead to either perform a random sample or always

pick the first or last item and so on for testing. Using a

template means we should put the function in a header file,

so we use our Smash.h header.

In listing 7.8, we found an overlapping word and reported

the overlap. We could return the definition as well to save

the extra lookup, so we can use a tuple to return the word,

definition, and offset using

std::tuple<std::string, std::string, int>

We’ll need several headers: map, string, tuple, and

vector. Then we can write our function.

Listing 7.11 Selecting a word from a multimap

template <typename T>

std::tuple<std::string, std::string, int>

 select_overlapping_word_from_dictionary(std::string word,

 const std::multimap<std::string, std::string>& dictionary,

 T select_function)

{

 size_t offset = 1;

 while (offset < word.size())

 {

 auto stem = word.substr(offset);

 auto lb = dictionary.lower_bound(stem); ❶
 auto beyond_stem = stem; ❶
 beyond_stem += ('z' + 1); ❶
 auto ub = dictionary.upper_bound(beyond_stem); ❶
 if (lb != dictionary.end() && ❷
 lb != ub) ❷
 {

 std::vector<std::pair<std::string, std::string>> dest; ❸
 select_function(lb, ub, std::back_inserter(dest)); ❸
 auto found = dest[0].first; ❸
 auto definition = dest[0].second; ❸
 return { found, definition, offset };

 }

 ++offset; ❹
 }

 return {"", "", - 1}; ❺
}

❶ Finds suitable words
❷ Checks whether we found suitable words

❸ Picks a dictionary entry
❹ Didn’t find a word, so try again

❺ None found

We can test this function. In listing 6.12, we used a fake

generator and distribution, but here we use only a single

lambda to pick an item. We can always pick the first or last

item for testing. The first item is the lower bound

auto select_first = [](auto lb, auto ub, auto dest) {

 *dest = *lb;

};

and the last item is one before the upper bound:

auto select_last = [](auto lb, auto ub, auto dest) {

 *dest = *(--ub);

};

We can test our

select_overlapping_word_from_dictionary

function in a check_properties function using the

assert function again.

Listing 7.12 Testing properties

#include <cassert>

void check_properties()

{

 auto select_first = [](auto lb, auto ub, auto dest) {

 *dest = *lb;

 };

 auto [no_word, no_definition, no_offset] =

 select_overlapping_word_from_dictionary(

 "class", {}, select_first

); ❶
 assert(no_word == ""); ❷
 assert(no_offset == -1); ❷
}

❶ Uses empty multimap and lambda

❷ No suitable word found

Finally, we need a new answer smash function taking two

multimaps. This is very similar to the hardcoded version with

maps we built in listing 7.6, but it now samples one item

from the dictionary using a lambda:

std::mt19937 gen{ std::random_device{}() };

auto select_one = [&gen](auto lb, auto ub, auto dest) {

 std::sample(lb, ub, dest, 1, gen);

};

Five keywords are sampled, and overlapping items from the

dictionary are found, giving a tuple with a word,

definition, and offset to save the extra lookup for the

clue.

Listing 7.13 A better answer smash game

#include <algorithm>

#include <random>

void answer_smash(

 const std::multimap<std::string, std::string>& keywords,

 const std::multimap<std::string, std::string>& dictionary)

{

 std::mt19937 gen{ std::random_device{}() }; ❶
 auto select_one = [&gen](auto lb, auto ub, auto dest) { ❶
 std::sample(lb, ub, dest, 1, gen); ❶
 }; ❶
 const int count = 5; ❷
 std::vector< ❷
 std::pair<std::string, std::string> ❷
 > first_words; ❷
 std::ranges::sample(❷
 keywords,

 std::back_inserter(first_words),

 count,

 gen

);

 for (const auto& [word, definition] : first_words)

 {

 auto [second_word, second_definition, offset] = ❸
 select_overlapping_word_from_dictionary(word,

 dictionary,

 select_one);

 if (second_word == "")

 {

 continue; ❹
 }

 std::cout << definition << "\nAND\n" <<

 second_definition << '\n'; ❺
 std::string answer = word.substr(0, offset)

 + second_word; ❻
 std::string response; ❻
 std::getline(std::cin, response); ❻
 if (str_tolower(response) == answer) ❻
 {

 std::cout << "CORRECT!!!!!!!!!\n";

 }

 else

 {

 std::cout << answer << '\n';

 }

 std::cout << word << ' ' << second_word << "\n\n\n";

 }

}

❶ Wraps std::sample in a lambda

❷ Samples five keywords

❸ Looks for a suitable word
❹ None found, so try again

❺ Displays clues
❻ Checks lowercased response

We can call the game from main and see how well we do.

Listing 7.14 A proper answer smash game

#include "Smash.h"

int main()

{

 using namespace smashing;

 const auto dictionary = load_dictionary(R"(dictionary.csv)");

 const auto keywords = load_dictionary(R"(keywords.csv)");

 answer_smash(keywords, dictionary);

}

Don’t forget to include a Smash.cpp file in your build, and

the code needs to be run from a directory containing the

dictionary and keyword files or the path changed in the

code.

You should get various clues when you play the game. Some

are quite pleasing. For example, the clue

is a prvalue expression whose value is the address of the implicit object parameter

AND

discipline that interprets past events

smashed "this" and "history" together to give

"thistory".

We’ve built the answer smash game we set out to create and

revised using the std::map and std::multimap along

the way. We noted that C++ introduced unordered maps, so

we will look at these in more detail in the next chapter.

Summary
Associative containers are part of the standard template

library (STL).

An std::pair holds two values of any type, and we

use first and second to access the values.

The std::tuple is a generalization of an std::pair,

and we use std::get to access values.

We can use structured bindings to bind pairs, tuples, and

more directly into variables.

The std::map’s operator[] can be used to query and

insert elements, so use the at function instead to query

if you don’t want to add an element by accident.

An std::string_view can be used to avoid copies of

strings, but care must be taken over lifetimes.

The std::map search, removal, and insertion

operations have logarithmic complexity.

An std::map key must be supported by the

std::less operator, so we might need to add the

spaceship operator to a user defined type to use it as a

dictionary key.

The std::map, std::multimap, and std::set are

ordered associative containers, often implemented as

red-black trees.

An std::multimap supports non-unique keys.

Use the lower and upper bound member functions of the

ordered associative containers for efficiency.

Files are streams, so they support operator<< and

operator>>. We can also use std::getline to read

a whole line from an input file stream.

The std::sample function selects a sample of k items

from a range without replacement.

8 Unordered maps and coroutines

This chapter covers

Unordered maps
Hashes
Coroutines

In this chapter, we will make a matching-pennies game. The

game has two players: us and the computer. We each have

a coin and choose heads or tails. If the computer matches

our choice, we lose. If the computer’s choice differs, we

win. We can use a random distribution for the computer’s

guess, so we don’t need much code for the first game.

Once we have the initial matching-pennies game working,

we’ll see whether the computer can predict our guess by

building a mind-reading machine. To be honest, the

computer won’t really be able to read our minds. Claude E.

Shannon wrote a short paper in 1953 called “A Mind-

Reading (?) Machine” (see http://mng.bz/vPDp). The

question mark in the title is deliberate. The game has been

used for thought experiments in game theory and for

psychology research. The mind reader needs to keep track

of what has previously happened, so we’ll use the

std::unordered_map to track the state. In chapter 7, we

used an std::map. In this chapter, we’ll use an

std::unordered_map for further practice. As we noted in

http://mng.bz/vPDp

chapter 7, the std::map needs an operator< defined for

its keys. The std::unordered_map requires a hash and

an equality operator, so we’ll learn about std::hash too.

The computer will use the state to predict our next choice.

When we’re done, we’ll wrap the code in a coroutine for

extra practice.

8.1 Randomly generated matching
pennies

To get started, we will make the computer randomly

generate a 0 or 1, representing heads or tails, using an

std::uniform_int_distribution. We also need user

input. In chapter 3, we read numbers for the number-

guessing game, so we need code similar to the function in

listing 3.4. That function tried to extract a number from a

stream and returned an std::optional. In this case, we

only want to accept 0 or 1. Any other input means the

player has given up. If we get the whole input as a string,

we can compare the input with "0" or "1" and return an

appropriate optional<int>. Any input other than 0 or 1

returns an empty optional to indicate that the player

wants to stop.

Listing 8.1 Reading an optional 0 or 1

#include <iostream>

#include <optional>

#include <string>

std::optional<int> read_number(std::istream& in)

{

 std::string line;

 std::getline(in, line);

 if (line == "0") {

 return { 0 }; ❶
 }

 else if (line == "1") {

 return { 1 }; ❷
 }

 return {}; ❸
}

❶ 0
❷ 1

❸ Empty optional to indicate stopping

To build our pennies game, we need the computer to pick a

random 0 or 1, so we need a generator and a distribution:

std::mt19937 gen{ std::random_device{}() };

std::uniform_int_distribution dist(0, 1);

To get the computer choice, we call dist(gen). We

compare the player and computer turns to decide who won.

If we keep track of how many times the player wins and

how many turns are taken, we can report some stats once

the play stops. Pulling this together gives us a pennies

game.

Listing 8.2 A pennies game

#include <random>

void pennies_game()

{

 int player_wins = 0; ❶
 int turns = 0; ❶
 std::mt19937 gen{ std::random_device{}() }; ❷

 std::uniform_int_distribution dist(0, 1); ❷

 std::cout << "Select 0 or 1 at random and press enter.\n"; ❷
 std::cout << "If the computer predicts your guess it wins.\n"; ❷
 while (true) ❷
 { ❷
 const int prediction = dist(gen); ❷

 auto input = read_number(std::cin); ❸
 if (!input) ❹
 { ❹
 break; ❹
 }

 const int player_choice = input.value();

 ++turns; ❺
 std::cout << "You pressed " << player_choice ❺
 << ", I guessed " << prediction << '\n'; ❺

 if (player_choice != prediction) ❺
 { ❺
 ++player_wins; ❺
 }

 }

 std::cout << "you win " << player_wins << '\n'

 << "I win " << turns - player_wins << '\n';

}

❶ Track stats
❷ Computer’s turn

❸ Player’s turn
❹ Stops if 0 or 1 is not chosen

❺ Updates stats

We need to call the pennies_game function from a main

function, and then we can play the game. The computer

might win half the time on average. As it stands, this game

isn’t that interesting. If two human opponents play, they will

try to outsmart each other by being unpredictable. If the

computer tracks our choices, we have more of a challenge.

Let’s extend the game by allowing the computer to think, or

at least base the prediction on previous moves. Can we

manage to behave randomly and outdo the computer?

8.2 Matching pennies using an
unordered_map

Shannon tracked the state when a person played against his

machine. Rather than tracking both the computer and

player’s exact choices, he tracked whether a win or loss

resulted in a change and whether that change resulted in a

subsequent win or loss. For example, the person could lose,

choose the same, and then lose again. This gives eight

possible states, as shown in table 8.1.

Table 8.1 The eight possible states in the pennies game

Penultimate
outcome

Choice Last outcome

Lose Same Lose

Lose Same Win

Lose Change Lose

Lose Change Win

Win Same Lose

Win Same Win

Win Change Lose

Win Change Win

For each state, Shannon tracked the last two choices made

by the player, noting whether they changed their turn or

stuck with the same choice. If the two choices match, they

form the prediction. If not, the mind reader makes a

random choice. We could track every choice from the start

of the game, but using the last two choices works well. Let’s

think through what happens as we track the choices for

each state. We will build up a pair of choices against state

and use these to make a prediction if they match.

Imagine we always choose heads, so we never change our

minds. Can Shannon’s strategy figure out what we are

doing? Over time, regardless of whether we win or lose, the

choice in the middle of the table will always be Same, so

only four rows get populated. Because we always play

heads, the two last choices will eventually always be Same,

leading to the Outcome column as shown in table 8.2.

Table 8.2 The states and corresponding outcomes if we always
choose heads

State Basis of
prediction

Penultimate
outcome

Choice Last outcome Outcome

Lose Same Lose Same, Same

Lose Same Win Same, Same

Lose Change Lose

Lose Change Win

Win Same Lose Same, Same

Win Same Win Same, Same

Win Change Lose

Win Change Win

Any subsequent turn must correspond to one of the four

populated rows because the choice will never change. The

machine will find two matching outcomes of Same and

predict that the player will choose the same, so it has

seemingly read our minds. Were we to change our choice

every time instead, the other four rows of the state table

would eventually be populated with a pair of Changes, and

again, the machine would predict correctly.

It does take a while to populate the state table. Initially,

none of the eight states has any entries, so the computer

picks at random. Comparing this with the player’s choice

tells us if the outcome is a win or a lose. We remember this

outcome because it gives the first part of the state

corresponding to the value for the first column. For the

second turn, we still do not have any entries against the

eight states to use for a prediction, so again, the computer

picks at random, and the player takes a turn. We

remembered the penultimate outcome and now know

whether the player changed their mind and then won or

lost. The extra information on this turn corresponds to the

last two columns of the state:

{penultimate outcome, choice, last outcome}.

Now that we have a full current state, we are ready to add

the first of the corresponding choices on the next turn.

Again, the computer plays at random, but now we know

whether the player sticks with the same choice or changes

it. We record this as the first outcome against the previous

state and then update the state that is ready for next time.

In theory, the state might be the same as before, so on the

next turn, we have a full pair for one row; otherwise, we

have the start of a pair in another row. Over time, we will

start filling in pairs of choices, meaning the computer may

have matching outcomes against state and be able to make

a prediction. The mind reader checks whether there is a

matching pair in the state table for the current state. If so,

the prediction is the value in the pair; otherwise, a random

choice is made. The player makes their choice too, winning

or losing. The state can then be updated, and the latest

choice can be stored in the corresponding value.

We noted that always switching or always choosing the

same outcome would be detected by the machine. With a

less obvious strategy, the eight states tracking the last two

moves are too much to keep in our heads, so it’s hard to

figure out what the machine is up to. The best way to

outsmart the mind reader is by tracking the state ourselves

so we know what it will predict and do the opposite. The

mind reader is not reading the player’s mind, but it is

difficult to track what it is doing, so it might give the

impression of mind-reading or perhaps willfulness. Like

many appearances of machine intelligence, what’s really

going on is pattern matching or some kind of statistical

analysis.

Rather than using the last two states, we could keep every

choice and use a majority, moving average, or other

statistic to make a prediction. Shannon used a pair to keep

the circuit he built small and simple but effective. Using the

last two choices to make a prediction works surprisingly

well, so let’s stick with Shannon’s original idea.

We can store the eight states in an associative container,

using an std::tuple for the three-part key and an

std::pair for the two outcomes. The tuple needs a win or

lose, a choice of same or change, and another win or lose.

A class enum would be a good way to represent these. We

met scoped enumerations in chapter 5 when we made suits

for our card game. An enumeration is often clearer than a

magic number because we can use a name to indicate the

value, and a class enum is strongly typed, so it cannot be

implicitly converted to an integer by mistake. The choice

and outcome will be unknown initially, so we can use Shrug

and Unset for these values. We only need to add the

keyword class after enum to make scoped enums.

Listing 8.3 Three possible choices and outcomes

enum class Choice

{

 Same,

 Change,

 Shrug,

};

enum class Outcome

{

 Lose,

 Win,

 Unset,

};

The key for our state will be a tuple of an Outcome, a

Choice, and another Outcome, indicating one of the rows

from table 8.1, and the value will be a pair of Choices, so

we need to include the utility and tuple headers. We

could typedef the key and value to save typing

std::tuple<Outcome, Choice, Outcome>, and

std::pair<Choice, Choice> each time we use them.

We can do better than typedef. C++11 introduced an

alias declaration, allowing us to say using to introduce an

alias for an existing type. We saw this in section 4.2.2 when

we defined centuries and said using centuries. We can

write

using state_t = std::tuple<Outcome, Choice, Outcome>;

using last_choices_t = std::pair<Choice, Choice>;

The alias declaration can be used for families of templates,

so it is more general than a typedef, but they are

equivalent if we specify all the template parameters. We will

have further practice with the using declaration in the next

chapter. For now, remember to prefer using to typedef.

We have a key and value type for our state but need a

container. We learned about the std::map in the last

chapter and could use that again here. However, C++11

introduced unordered containers, which we can also use for

a lookup table, so let’s find out how these containers work.

8.2.1 Unordered containers and std::hash

The std::map and std::multimap, along with

std::set and std::multiset, are ordered associative

containers using std::less as the default comparison for

the ordering. As we learned in the last chapter, the

elements are arranged in a balanced binary tree, so

searching is O(log(n)). The unordered containers use an

alternative data structure, called a hash table, which stores

elements in slots or buckets. Let’s take a moment to learn

about hash tables.

A hash table uses a hash function to calculate the index of

an element, indicating which bucket it belongs to. The index

allows us to jump straight to the bucket where an element

belongs without having to walk down part of a tree, so

searching a hash table might be even quicker than

searching an std::map or other tree-based structure.

Now, two different elements might give the same hash

value, known as a collision, so we may end up with more

than one element in a specific bucket. A search then needs

to check each element in the bucket to find a specific

element, which slows things down slightly. For a good hash,

we won’t get many collisions and will usually go straight to

a bucket with a single element, but sometimes we might

have to check a few elements in a bucket. In the worst

case, we might have all our elements in a single bucket, so

we would have complexity O(n). However, for a decent

hash function, we would expect one item per bucket, so the

search is O(1) on average. In formal terms, we say the

big-O or complexity is amortized constant time. Sometimes,

the standard tells us the worst-case complexity for an

operation, but sometimes it tells us the average or

amortized time.

Let’s visualize a hash table by mapping single characters’

keys to integer values. If we use the ASCII value of the

lowercase version of the key for the hash, lower- and

uppercase versions of the same letter will end up in the

same bucket. If we add two elements, with keys 'c' and

'd', we do not have a clash, so we have at most one ele-

ment in a bucket. However, if we then add an element with

key 'D', we have a clash because elements with key 'd'

and 'D' go in the same bucket, as shown in figure 8.1.

Figure 8.1 Two hash tables, one without a collision and the
second with a collision, meaning a bucket contains more than
one element

To search for an element with a key of 'd', we need to

check both elements in the second table. Now, a collision is

not a disaster. We can still find the elements but get better

performance with a better hash function.

C++11’s unordered containers are hash tables using

std::hash, defined in the functional header, for the

hash function. C++ provides specializations of std::hash

for various types, including numeric types, as well as

std::string and more (see

https://en.cppreference.com/w/cpp/utility/hash). If we

https://en.cppreference.com/w/cpp/utility/hash

want to put a type without a hash in an unordered

container, we need to provide one. The type must support

equality comparison too in case of hash collisions.

Let’s use an std::unordered_map from the

unordered_map header for our state table. As with an

std::map, this takes a key and a value type but also

needs a Hash and a KeyEqual type. These default to

std::hash and std::equal_to, along the lines of

template<class Key, class Value,

 class Hash = std::hash<Key>,

 class KeyEqual = std::equal_to<Key>

> class unordered_map;

Our key is an std::tuple, which supports

std::equal_to. This was introduced in C++14 and

defaults to a function object calling operator== on the

given type. Comparing tuples works out of the box. Given

two tuples

std::tuple t1 = {Outcome::Lose, Choice::Shrug, Outcome::Lose};

std::tuple t2 = {Outcome::Lose, Choice::Shrug, Outcome::Lose};

we can check for equality:

bool match = t1 == t2;

This is equivalent to

bool match = std::equal_to{}.operator(t1, t2);

First, we make an std::equal_to instance using {}, and

then std::equal_to’s call operator invokes operator==

by default. The default KeyEqual in the unordered_map

class template therefore works for our key. However,

std::tuple does not have a hash implementation, so we

need to write our own. We can specialize the struct

template<class Key>

struct hash;

for our tuple. By itself, the struct doesn’t do much.

However, there are several specializations in the

functional header providing an operator() const,

taking a Key, and returning a size_t. Many of the

operators are marked noexcept because they will not

throw an exception. We will implement a specialization for

the state_t. CppReference tells us we are allowed to

inject a custom specialization of std::hash into the

standard namespace (see

https://en.cppreference.com/w/cpp/utility/hash). We

usually add code to our namespaces rather than namespace

std to avoid clashing with standard code. Defining

std::hash for a specific type is an exception. This means

the unordered_map will find the specialization of

std::hash for our key.

To specialize a template, we state the types we are special-

casing. The hash only takes one type, template<class

https://en.cppreference.com/w/cpp/utility/hash

Key>, so we only have one type to special-case. We drop

the class Key from the template head, leaving

template<>, and we specify the type after the name in

angle brackets, which gives us

template<>

struct std::hash<state_t>

Our specialization needs an operator taking a key and

returning a size_t. It needs to be const, and we can flag

it as noexcept:

std::size_t operator()(state_t const& k) const noexcept

Our tuple has three enums, and the standard library

provides specializations of std::hash for enumerations.

We can write a hash function combining the individual

elements’ hash values to provide the specialization for

std::hash<state_t>. It would be nice to find a way to

combine the hashes so we avoid a collision. Summing the

hash values for

{Outcome::Lose, Choice::Shrug, Outcome::Win}

would map to the same hash as

{Outcome::Win, Choice::Shrug, Outcome::Lose}

causing a collision. We can do better if we can shift the

hashes for each element using operator<<. We’ve used

the stream insertion operator<< several times. The built-

in arithmetic operator<< applies to numbers rather than

streams, shifting the bits left (see http://mng.bz/n1D5).

Shifting the binary number 1, 1 << 1 gives 10 in binary

because the one shifts left. If we then shift that once more,

2 << 1, we have 100 in binary. By not shifting the first

elements, shifting the second element by one and shifting

the last element by two, and then summing the three

shifted hashes, we happen to avoid clashes for our keys.

Our approach is no good in general. The more elements we

try to combine, the greater chance of a collision, and the

further left we shift, the more likely we are to end up with

zeros. However, for our small number of Outcomes and

Choices, this approach does work.

We need to include the functional header for

std::hash. The specialization for our tuple works as

follows.

Listing 8.4 Specializing std::hash for our state tuple

#include <functional>

template<> ❶
struct std::hash<state_t> ❶
{

 std::size_t operator()(state_t const& state) const noexcept ❷
 {

 std::size_t h1 = std::hash<Outcome>{}(std::get<0>(state)); ❸
 std::size_t h2 = std::hash<Choice>{}(std::get<1>(state)); ❸
 std::size_t h3 = std::hash<Outcome>{}(std::get<2>(state)); ❸
 return h1 + (h2 << 1) + (h3 << 2); ❹
 }

};

http://mng.bz/n1D5

❶ Specializes std::hash for state_t

❷ Implements operator()
❸ Gets each element’s hash

❹ Shifts and sums

This will work for our specific-use case. WG21 has discussed

hash combination functions (see http://mng.bz/orDZ) and

says that implementing a good hash function is not trivial.

If we needed a more general way to combine fields into a

suitable hash, the Boost library has a hash_combine

method (see http://mng.bz/6nre). Boost is a free peer-

reviewed library for C++ that has been around for a very

long time. Many new C++ features started life in Boost,

including smart pointers and the optional, any, and

variant types. The library still includes many features that

are not supported in C++ yet but might be adopted one

day. It’s big but worth having a look at if you’ve not seen it

before.

Armed with a hash function, we are ready to keep the state

for our mind-reading machine in an unordered_map. After

including the unordered_map header, we can write a

function returning the initial state. The eight keys from

table 8.1 are represented in our state_t tuple. The tuple

elements indicate a loss or win, followed by the player’s

choice of Same or Swap, resulting in a win or lose. The

corresponding values are a pair storing how the player

chose on the last two occasions the state happened.

Initially, there are no player choices to store, so we flag the

state as unset, using a pair of Shrugs:

http://mng.bz/orDZ
http://mng.bz/6nre

const auto unset = std::pair<Choice, Choice>{Choice::Shrug,Choice::Shrug};

We can initialize the std::unordered_map using

initializer lists like we did for the std::map in the last

chapter.

Listing 8.5 An initial state table

#include <unordered_map>

std::unordered_map<state_t, last_choices_t> initial_state()

{

 const auto unset = std::pair<Choice, Choice>{Choice::Shrug,

 Choice::Shrug };

 return {

 { {Outcome::Lose, Choice::Same, Outcome::Lose}, unset },

 { {Outcome::Lose, Choice::Same, Outcome::Win}, unset },

 { {Outcome::Lose, Choice::Change, Outcome::Lose}, unset },

 { {Outcome::Lose, Choice::Change, Outcome::Win}, unset },

 { {Outcome::Win, Choice::Same, Outcome::Lose}, unset },

 { {Outcome::Win, Choice::Same, Outcome::Win}, unset },

 { {Outcome::Win, Choice::Change, Outcome::Lose}, unset },

 { {Outcome::Win, Choice::Change, Outcome::Win}, unset },

 };

}

We tried to ensure we do not get hash collisions. For our

eight states, a collision won’t noticeably slow the game

down, but we can check that each bucket has at most one

element. The std::unordered_map provides a

bucket_count, which tells us how many buckets we have

in total, and bucket_size function, which tells us how

many items are in a specific bucket. We can write a

check_properties function using assert to verify that

we don’t have any clashes.

Listing 8.6 Checking that we have no hash collisions

#include <cassert>

void check_properties()

{

 std::unordered_map<

 state_t,

 last_choices_t

 > states = initial_state();

 for (size_t bucket = 0;

 bucket < states.bucket_count();

 bucket++)

 {

 assert(states.bucket_size(bucket) <= 1); ❶
 }

}

❶ At most one item per bucket

The test passes, but our handcrafted hash function would

potentially break if we added more states. Writing a hash

function can be difficult.

We can now start making predictions as a player makes a

choice. Keeping the state separated from the mind-reading

game means we can test our code more easily.

8.2.2 Using an unordered_map to make a
prediction

The mind reader either predicts a player’s choice based on

the state table or makes a random choice. We’ll keep the

state table in a class, providing a getter function and an

update function, to use after each turn. We can use a

private state table initialized with the initial_state

function from listing 8.5.

Listing 8.7 Class to track the game’s state

class State

{

 std::unordered_map<state_t,last_choices_t> state_lookup

 = initial_state(); ❶

public:

 last_choices_t choices(const state_t& key) const; ❷
 void update(const state_t& key,

 const Choice& turn_changed); ❸
};

❶ Private state
❷ Gets choices for a given state

❸ Updates values when a turn is taken

We have eight valid states but need some warmup before

we have a valid state_t to look up. For example, we will

start with no turns and so have state

{Outcome::Unset, Choice::Shrug, Outcome::Unset}

That state isn’t in table 8.1, so we’ll make the choices

function return a pair of Shrugs in that case. We try to find

a key in the lookup. The find method returns the end of

the unordered_map if the element is not found, so we

have an invalid state. If it is found, we return the

corresponding value.

Listing 8.8 Find the choices or return two Shrugs

last_choices_t choices(const state_t& key) const

{

 if (auto it = state_lookup.find(key);

 it!=state_lookup.end()) ❶

 { ❶
 return it->second; ❶
 }

 else

 {

 return { Choice::Shrug, Choice::Shrug }; ❷
 }

}

❶ Tries to find the key

❷ In the warmup phase, so Shrug

To update the state, we also need to be mindful of initial

state_t not being in our state table. Again, we try to find

the key:

if (auto it = state_lookup.find(key); it != state_lookup.end())

If we have a valid state, we obtain the previous two choices

from the iterator:

const auto [prev2, prev1] = it->second;

We can then update the key with the new pair:

last_choices_t value{ prev1, turn_changed };

it->second = value;

In effect, updating the state ignores invalid states from the

first few turns and only updates valid states.

Listing 8.9 Updating choices for valid keys

void update(const state_t& key, const Choice& turn_changed)

{

 if (auto it = state_lookup.find(key);

 it != state_lookup.end()) ❶

 {

 const auto [prev2, prev1] = it->second; ❷
 last_choices_t value{ prev1, turn_changed }; ❷
 it->second = value; ❸
 }

}

❶ Checks whether key exists
❷ Forms new pair of choices

❸ Updates lookup

We can use the last_choices_t returned by the

choices to make a prediction, even for an initial invalid

state. If the two elements match, we return that value;

otherwise, we return Choice::Shrug to mean we cannot

make a prediction. We returned a pair of Shrugs for an

invalid state deliberately. Because they match, a Shrug is

returned for an invalid state, so the mind reader knows to

make a random choice.

Listing 8.10 Choice from state

Choice prediction_method(const last_choices_t& choices)

{

 if (choices.first == choices.second) ❶
 { ❶
 return choices.first; ❶
 }

 else

 {

 return Choice::Shrug; ❷
 }

}

❶ Matching, so return either value

❷ Nonmatching, so can’t make a prediction

We are now ready to build a mind reader. It will use our

State class to make a prediction. The mind reader makes a

prediction, and the player makes their choice. We then

update the state table, ready to make a new prediction.

8.2.3 The mind reader game

We can create a mind reader class using the State class

we made in listing 8.7. We need a random flip for some

states. We’ve used random numbers several times now

using a generator and distribution. We can make a template

class, taking these types so we can fake them in tests.

When we tested our random blobs in listing 6.12, we used a

lambda that always returned 0 for the generator

[]() { return 0; }

and can do the same here. For the actual game, we use a

proper generator and a distribution returning a 0 or 1:

std::mt19937 gen{ std::random_device{}() };

std::uniform_int_distribution dist{ 0, 1 };

Using the distribution and generator allows the mind reader

to generate a random 0 or 1:

int flip() { return dist(gen); }

We can use that function to initialize a prediction variable:

int prediction = flip();

The mind reader’s prediction will update after the player

takes their turn, using the current state, so we need a

state variable initialized with

{Outcome::Unset, Choice::Shrug, Outcome::Unset}

We will define the update function shortly. If it returns a

bool, indicating a flip rather than a prediction, we can track

how many guesses the mind reader made as we play the

game. Our mind-reading class looks like this.

Listing 8.11 A mind-reading class

template <std::invocable<> T, typename U>

class MindReader {

 State state_table;

 T generator;

 U distribution;

 int prediction = flip(); ❶
 state_t state{ ❶
 Outcome::Unset, ❶
 Choice::Shrug, ❶
 Outcome::Unset ❶
 }; ❶❷
 int previous_go = -1; ❶❷
 int flip() ❶
 { ❶
 return distribution(generator); ❶
 }

public:

 MindReader(T gen, U dis)

 : generator(gen), distribution(dis)

 {

 }

 int get_prediction() const

 {

 return prediction;

 }

 bool update(int player_choice);

};

❶ Initially makes a random choice
❷ Stores state and player’s turn

When a player takes their turn, we update the mind reader,

letting it know the player’s choice. First, the player’s choice

either changed or not, so it can be used to update the

current state using the function shown in listing 8.9. We

work out if the turn changed or not

const Choice turn_changed = player_choice == previous_go ?

 Choice::Same : Choice::Change;

and then update the state table accordingly:

state_table.update(state, turn_changed);

We can then store the current player_choice in

previous_go to be ready for next time.

The current state has now changed, and a new prediction

can be made, ready for the next turn. We update the state,

shunting the previous win or lose to the front of the tuple

and noting whether or not this turn was a change and

whether or not it won:

state = {std::get<2>(state), turn_changed,

 (player_choice != prediction) ? Outcome::Win : Outcome::Lose};

We look that state up in the table,

state_table.choices(state), and use the pair to

decide a prediction method employing the function from

listing 8.10. We get a Choice back. For a Shrug, we flip

the coin. For a Change, we want to switch a 0 with a 1 or

vice versa so we can use the bitwise operator^, with 1,

which calculates xor of the choice with 1, giving the

opposite. If the prediction is Same, we know what the

player chose this turn, so we update our prediction

accordingly. We can do this in a new function in the

MindReader.

Listing 8.12 Updating the prediction

bool update_prediction(int player_choice)

{

 bool guessing = false;

 Choice option = prediction_method(state_table.choices(state));

 switch (option)

 {

 case Choice::Shrug:

 prediction = flip();

 guessing = true;

 break;

 case Choice::Change:

 prediction = player_choice ^ 1;

 break;

 case Choice::Same:

 prediction = player_choice;

 break;

 }

 return guessing;

}

The update function uses update_prediction after

updating the state table and current state.

Listing 8.13 The mind reader’s update method

bool update(int player_choice)

{

 const Choice turn_changed = player_choice == previous_go ?

 Choice::Same : Choice::Change;

 state_table.update(state, turn_changed); ❶

 previous_go = player_choice;

 state = {std::get<2>(state),

 turn_changed,

 (player_choice != prediction) ?

 Outcome::Win : Outcome::Lose}; ❷

 return update_prediction(player_choice); ❸
}

❶ Updates the state table
❷ Updates state

❸ Makes next prediction

The game itself is now very like the pennies game we

started with in listing 8.2. Rather than picking a random 0

or 1 in the main game loop, we need to consult the mind

reader for a prediction. We will also track how many

guesses there are and report that when the player stops.

Listing 8.14 A mind-reading game

void mind_reader()

{

 int turns = 0;

 int player_wins = 0;

 int guessing = 0;

 std::mt19937 gen{ std::random_device{}() };

 std::uniform_int_distribution dist{ 0, 1 };

 MindReader mr(gen, dist);

 std::cout << "Select 0 or 1 at random and press enter.\n";

 std::cout << "If the computer predicts your guess it wins\n";

 std::cout << "and it can now read your mind.\n";

 while (true)

 {

 const int prediction = mr.get_prediction(); ❶

 auto input = read_number(std::cin);

 if (!input)

 {

 break;

 }

 const int player_choice = input.value();

 ++turns;

 std::cout << "You pressed " << player_choice

 << ", I guessed " << prediction << '\n';

 if (player_choice != prediction)

 {

 ++player_wins;

 }

 if (mr.update(player_choice)) ❷
 {

 ++guessing;

 }

 }

 std::cout << "you win " << player_wins << '\n'

 << "machine guessed " << guessing << " times" << '\n' ❸
 << "machine won " << (turns - player_wins) << '\n';

}

❶ Consults the mind reader

❷ Updates the mind reader
❸ Reports guesses

Call this from main, and see if you can outsmart the mind

reader. If you track the state yourself, you can see what it

will predict and win, but without pen and paper, you are

likely to forget. It turns out it is very difficult to behave

randomly.

We have a mind reader, and we can pack it up in a

coroutine to learn about another new C++ feature.

8.3 Coroutines
Coroutines were invented in the 1950s, and Melvin Conway

coined the term in 1958. Later, in 1978, Tony Hoare

described a type of coroutine called communicating

sequential processes (CSP) in a paper in Communications of

the ACM (see

https://dl.acm.org/doi/10.1145/359576.359585) and

subsequently wrote a book of the same title in 1985. He

developed a concurrent programming language using

sequential processes communicating through message

passing. His approach avoids some common problems in

concurrent code, such as deadlocks. His formal language

allowed mathematical proof that such problems would not

happen. At a very high level, the processes are functions

with inputs and outputs. By wiring together inputs and

outputs, several functions can run simultaneously without

the need to protect shared memory.

C++20 introduced Coroutines (see http://mng.bz/5oEO).

The support is relatively low level, so C++ coroutines often

require a fair amount of boilerplate code. We can write a

coroutine to yield the player’s choice and predictions. This

will neither change the game nor harness the full power of

asynchronous code, but we’ll discover what is required to

build a coroutine and revise the rule of zero we learned

about in chapter 6. It’s worth having an overview of the

building blocks needed even if we don’t use coroutines’ full

potential.

https://dl.acm.org/doi/10.1145/359576.359585
http://mng.bz/5oEO

Coroutines are powerful and flexible. Suspending and

resuming work, possibly on different threads, provides a

type of parallelism. Lewis Baker wrote a series of blog posts

going into a lot of detail (see http://mng.bz/mjda), and

there are a lot of talks and blog posts on the internet about

C++ coroutines because they are a big new feature that can

be used in a variety of ways. Let’s learn the basics.

8.3.1 How to make a coroutine

A coroutine is a function containing one or more of the

three keywords: co_yield, co_await, or co_return.

Yield returns a value and pauses the function. The state of

the coroutine is packaged up, allowing the suspended

execution to continue later. An await expression calls an

asynchronous operation and resumes when that completes.

A return completes the function. Unlike a normal function, a

coroutine’s lifetime is not tied to the caller. For example, the

resumption can happen on a different thread. We won’t use

that feature here but instead learn what we require to make

a normal function into a coroutine. A coroutine function

returns an object providing the required boilerplate, which

allows the compiler to generate the coroutine code.

In most cases, we need to write code for the returned

object, although C++23 introduced std::generator

(http://mng.bz/7vmv), which provides a concrete type to

return from a simple generator coroutine. CppReference

gives sample code to output the letters of the alphabet from

a coroutine called letters. The letters function is a

http://mng.bz/mjda
http://mng.bz/7vmv

coroutine because it uses co_yield. The function returns

an std::generator, which provides what is required to

wire up the initialization of the coroutine and handle the

co_yield. The function has no co_return, which we

noted completes a coroutine, so letters potentially

generates an infinite sequence. We can call it as many times

as we like. For example, we can use range’s views to

obtain the first 26 letters via the take function.

Unfortunately, std::generator isn’t widely supported

yet, but Visual Studio 2022 does provide an

experimental version in the

experimental/generator header.

Listing 8.15 Using std::generator

#include <experimental/generator> ❶
#include <ranges>

std::experimental::generator<char> letters(char first) ❷
{

 for (;; co_yield first++); ❸
}

void generator_experiment()

{

 for (const char ch : letters('a') | std::views::take(26)) ❹
 std::cout << ch << ' ';

 std::cout << '\n';

}

❶ Uses experimental header
❷ Coroutine returning a generator

❸ co_yield makes this function a coroutine.
❹ Calls the coroutine as often as we want

Over time, we will probably see more concrete return

objects for coroutines supported by the standard. For now,

we usually have to write the boilerplate code ourselves,

unless the std::generator is supported by our chosen

compiler and works for our use case.

We will write a coroutine that co_yields a player’s input

along with the mind reader’s prediction. The calling code

will obtain and display the results. A coroutine version of

our game is unnecessary, but understanding how to use this

new C++ feature will be informative. We will gradually build

up the code required for a coroutine. So far, we have

discovered that a coroutine

Is a function containing co_yield, co_await, or

co_return

Returns an object providing the required boilerplate

Listing 8.15 has a co_yield, and the generator provides

the required boilerplate. To make our game into a coroutine,

we will

Write a function containing co_yield and co_return

(section 8.3.2)

Return a user defined class called Task, although any

other name can be used (section 8.3.3)

Implement a promise_type, which must be called

that just because the compiler expects it (section 8.3.3)

The Task and promise_type start, stop, and yield data

from the coroutine function, so we will add details:

Creation and destruction of the Task and

promise_type (section 8.3.4)

Starting and stopping the coroutine and how to

co_yield data or co_return (section 8.3.5)

To the Task itself, allowing the calling code to resume

the coroutine after it has suspended until the game is

done (section 8.3.6)

We end with calling code using the Task, which gives us a

new version of the game.

8.3.2 A coroutine function

In listing 8.14, we wrote a mind_reader function, handling

user input, obtaining a prediction, and displaying outcomes.

We will pull out the user input and predictions to form a

coroutine. We need to include the coroutine header, and

our new function will return an object that provides the

boilerplate needed for a coroutine. Let’s call it a Task and

implement it in the next section. We’ll start with the

coroutine itself.

Like before, we create a MindReader object and loop while

the user wants to play. Our coroutine will stop using

co_return if the player gives up. Otherwise, we

co_yield the player’s choice and the mind reader’s

prediction. Adding co_return or co_yield to a function

and returning a suitable object makes a coroutine.

Listing 8.16 Our first coroutine

#include <coroutine>

struct Task; ❶
Task coroutine_game() ❷
{

 std::mt19937 gen{ std::random_device{}() };

 std::uniform_int_distribution dist{ 0, 1 };

 MindReader mr(gen, dist);

 while (true)

 {

 auto input = read_number(std::cin);

 if (!input)

 {

 co_return; ❸
 }

 int player_choice = input.value();

 co_yield{ player_choice , mr.get_prediction() }; ❹
 mr.update(player_choice);

 }

}

❶ Forward-declares the Task we will implement shortly
❷ Coroutine function returning a suitable object

❸ Stops if player gives up
❹ Yields player’s turn and mind reader’s prediction

The compiler uses functions from the returned Task to wire

up what’s needed for the yields and return, as well as

making a coroutine frame. This packages up the function,

allowing it to suspend when it hits a co_XXX function.

When we yield a choice and a prediction, the coroutine is

suspended until resumed. The coroutine then picks up on

the next line, with the same state as when it was paused,

updating the mind reader. If we debug the coroutine, we

will seem to teleport into the middle of the while loop

when we resume.

The coroutine state is usually dynamically allocated, so it is

often described as stackless. In effect, a coroutine is a

function bundled up as a dynamic object so that it can be

paused (suspended) and resumed until completed. A

coroutine can even be resumed on a different thread. The

control passes between the caller and the coroutine, as

figure 8.2 shows.

Figure 8.2 A coroutine can be suspended and resumed as
needed.

We forward-declared a Task to return from our coroutine,

so let’s implement it next.

8.3.3 The coroutine’s return object

A coroutine’s return object is often described as a promise

or task, but we are free to use any name we like. We’ll need

to add several functions for our coroutine to work. The

requirements vary, depending on each coroutine, but we

always see two things. First, a promise object, which is

used to send results or report exceptions to code outside

the coroutine, and second, a coroutine handle, which is

used inside the coroutine to resume execution or destroy

the coroutine frame when finished.

Let’s gradually build up our Task. The compiler requires

something called promise_type inside our Task. We can

either define a class separately and add a using

declaration to the task, or we can define a class inline as a

nested class in Task. We’ll use a nested class, so our Task

returned by the coroutine starts like this.

Listing 8.17 Structure to wire up coroutine

#include <coroutine>

struct Task ❶
{

 struct promise_type ❷
 {

 };

};

❶ Task returned by listing 8.16
❷ Required structure

The compiler uses the Task, which we returned from the

coroutine_game in listing 8.16, and its promise_type

to generate code. We need several more details in the

promise_type and Task to make our coroutine_game

compile. We could use any name for our return type,

although Task is a commonly used name; however, we

must have an associated class called promise_type. The

Task and promise_type allow the coroutine to start,

stop, and yield data. Let’s fill in the details.

8.3.4 RAII and the rule of zero

In listing 8.16, we wrote a coroutine returning the Task we

just started creating. The code generated by a compiler for

a coroutine gets a Task from the promise_type by calling

a get_return_object function, something along the

lines of this pseudocode:

promise_type promise;

auto task = promise.get_return_object();

We don’t create a Task directly. Only the promise_type

does this in the get_return_ object function. As it

stands, we could add a function to the promise_type:

Task get_return_object() { return Task{}; }

However, we can still create Tasks anywhere, which aren’t

of much use to anything other than the compiler. If we give

Task a private constructor, the promise_type can make a

task because we made it an inner class, but nothing else

can.

In addition, we noted the promise object sends results or

reports exceptions to code outside the coroutine, and we

use a coroutine handle to resume execution or destroy the

coroutine frame when finished. Coroutines provide a

from_promise method to obtain an

std::coroutine_handle, so if we store a pointer to the

promise_ type in Task

promise_type * promise;

we can contain a handle when needed with

auto handle = std::coroutine_handle<promise_type>::from_promise(*promise);

Now, raw pointers are often troublesome. We don’t need to

delete the pointer because the compiler deals with the

coroutine’s lifetime for us, but we should call the destroy

method when we’re done. If we add a destructor to Task,

we can perform the necessary tidy-up using RAII. In the

destructor, we could make a handle from the promise and

call

handle.destroy()

However, chapter 6 told us that adding our own destructor

blocks implicit moves but leaves copy operations available.

Copying a Task is a potential resource leak. We can either

explicitly delete the copies and default the moves or use a

smart pointer for the promise pointer. Using a smart pointer

means we no longer need a destructor to tidy up for us.

In chapter 6, we met std::unique_ptr. We accepted the

default "delete" there because we had raw pointers we

wanted to be deleted. Now we want something different to

happen. Smart pointers take a type and a deleter, which

defaults to calling delete:

template<class T, class Deleter = std::default_delete<T>> class unique_ptr

Our deleter needs to call destroy on a handle obtained

from_promise with our promise_type pointer. We can

write a more general function for any promise type using a

class template.

Listing 8.18 Custom "deleter"

template<typename Promise> ❶
struct coro_deleter ❶
{ ❶
 void operator()(Promise* promise) const noexcept ❶
 {

 auto handle =

 std::coroutine_handle<Promise>::from_promise(

 *promise

); ❷
 if (handle) ❸
 handle.destroy(); ❸
 }

};

❶ Template function for any promise type

❷ Gets handle from promise
❸ Calls destroy if there is a handle

We can then declare a family of templates utilizing the

deleter with the using statement we met earlier. We use

an std::unique_ptr of any type, T, with a coro_

deleter<T>:

template<typename T>

using promise_ptr = std::unique_ptr<T, coro_deleter<T>>;

We can now use a promise_ptr in the Task and rely on

the rule of zero. There are no copies to delete or moves to

default because we don’t have to define a destructor

anymore, as the std::unique_ptr will do the tidying up

for us.

We can now fill in a few more functions in Task. First, we

add a private constructor taking a promise_type pointer

and store that in a promise_ptr. We can then add a

get_return_object function to the promise_type

returning a Task.

Listing 8.19 Structure to wire up coroutine

#include <coroutine>

#include <memory>

struct Task

{

 struct promise_type

 {

 Task get_return_object() ❶
 {

 return Task(this);

 }

 };

private:

 promise_ptr<promise_type> promise; ❷
 Task(promise_type* p) : promise(p) {} ❸
};

❶ Task only created by the promise_type
❷ A smart pointer for RAII

❸ Private constructor

We’ve written enough for a Task to be created and a

coroutine handle destroyed when we’re done. We still need

to add a few more functions to deal with what happens

between creation and destruction. Let’s fill in the details to

make the co_yield and co_return used in listing 8.16

work.

8.3.5 Filling in the promise_type

Let’s begin with the promise_type. The compiler injects

code based on functions in this class. We always need to

define three functions stating what happens in the following

cases:

1. When we first start the coroutine

2. If an exception is thrown

3. When the coroutine stops

Any uncaught exception in the body of the coroutine

invokes an unhandled_ exception method. The

simplest implementation does nothing:

void unhandled_exception() {}

Alternatively, we could log the problem and even call

terminate.

We also need methods called initial_suspend and

final_suspend to indicate whether to suspend. As part of

coroutines support, C++20 introduced two helper classes,

suspend_always and suspend_never, to suspend or

not, respectively. We want our coroutine to get the user

input and prediction ready for the calling code, so we use

suspend_never to indicate it should run initially:

std::suspend_never initial_suspend() noexcept { return {}; }

Notice the noexcept we met in section 8.2.1 when we

wrote a hash function. Never suspending is sometimes

called a hot start, whereas pausing the coroutine initially is

a cold start. When we’re finished, we always suspend to flag

we are done:

std::suspend_always final_suspend() noexcept { return {}; }

This sets a flag on the coroutine handle so the Task can

see if the coroutine has finished.

We have dealt with the start and end of the coroutine but

have not provided code to handle co_await, co_yield,

or co_return yet. Our coroutine in listing 8.16 yields a

choice from the player and a prediction:

co_yield { player_choice , mr.get_prediction()};

The compiler therefore hunts for a yield_value method

returning a pair of ints in our promise_type. If we didn’t

use co_yield, we would not need this method. We can

store the std::pair of ints in the promise so the Task

can access them and return them to the code outside the

coroutine.

After a yield, we suspend the coroutine and indicate this by

returning suspend_ always from the yield_value

method:

std::suspend_always yield_value(std::pair<int, int> got)

{

 choice_and_prediction = got;

 return {};

}

Control then returns to the calling code.

We called co_return when a player gives up, so we need

to add another function to the promise_type. The

co_return can either be void or followed by an expression

to return. Ours is void, so we need a return_void

method:

void return_void() {}

If we wanted to return a value, we would need a

return_value function instead. Our complete promise

type is as follows.

Listing 8.20 Complete promise type

struct promise_type

{

 std::pair<int, int> choice_and_prediction; ❶

 Task get_return_object() ❷
 {

 return Task(this);

 }

 std::suspend_never initial_suspend() noexcept ❸
 {

 return {};

 }

 std::suspend_always final_suspend() noexcept ❹
 {

 return {};

 }

 void unhandled_exception() {} ❺
 std::suspend_always yield_value(std::pair<int, int> got) ❻
 {

 choice_and_prediction = got;

 return {};

 }

 void return_void() { } ❼
};

❶ Data

❷ Creates a Task
❸ Starts up

❹ Stops
❺ Exception handling

❻ Called by Task’s co_yield
❼ Called by Task’s co_return

We are nearly done. The promise_type now has all the

methods needed by the coroutine. The Task returned by

the coroutine gives us a place to indicate the data in the

promise and will resume the coroutine until it’s done. Let’s

fill in these missing pieces.

8.3.6 Filling in the Task type

To return the choice and prediction from the Task, we

provide a getter function, obtaining the std::pair of data

from the promise_ptr:

std::pair<int, int> choice_and_prediction() const

{

 return promise->choice_and_prediction;

}

We can check if the coroutine is finished by calling the

handle’s done method. This flag is set to true when the

promise_type's final_suspend method is called and

returns a suspend_always. We use the from_promise

method to get the handle and then see if we’re done:

bool done() const

{

 auto handle =

 std::coroutine_handle<promise_type>::from_promise(*promise);

 return handle.done();

}

When we used co_yield in listing 8.16, the coroutine

paused. The calling code then does what it wants with the

player’s choice and mind reader’s prediction, but it needs a

way to resume the coroutine to get the next pair. We

resume the coroutine by calling the handle’s operator()

(). We can add a function to our Task called next,

resuming the coroutine:

void next()

{

 auto handle =

 std::coroutine_handle<promise_type>::from_promise(*promise);

 handle();

}

The calling code can then call next when it’s used the

previous choice and prediction. Adding these new methods

to Task, we have the following.

Listing 8.21 The coroutine's Task and promise_type

struct Task ❶
{

 struct promise_type ❷
 {

 // ...

 };

 std::pair<int, int> choice_and_prediction() ❸
 {

 return promise->choice_and_prediction;

 }

 bool done() const ❹
 {

 auto handle =

 std::coroutine_handle<promise_type>::from_promise(*promise);

 return handle.done();

 }

 void next() ❺
 {

 auto handle =

 std::coroutine_handle<promise_type>::from_promise(*promise);

 return handle ();

 }

private:

 promise_ptr<promise_type> promise; ❻
 Task(promise_type* p) : promise(p) {} ❼
};

❶ Task returned by coroutine in listing 8.16
❷ promise_type from listing 8.20

❸ Lets calling code get data from promise
❹ Lets calling code know if we’re done

❺ Resumes coroutine
❻ Smart pointer for RAII

❼ Private constructor visible by promise_type

Our Task is now complete, and we can use the coroutine.

8.3.7 A coroutine mind reader

To use our coroutine, we can use code similar to the original

game in listing 8.14, but the MindReader and user input

are now bundled inside the coroutine_game. We call the

coroutine using

Task game = coroutine_game();

We use the Task to control the coroutine. We loop until

done, getting the player’s choice and prediction at each

turn. This pauses the coroutine at the co_yield. Our

calling code then gets control back and displays the results.

By calling next on the Task, control then returns to the

coroutine, and it picks up where it left off. Our calling code

looks like this.

Listing 8.22 A coroutine version of a mind reader

void coroutine_minder_reader()

{

 int turns = 0;

 int player_wins = 0;

 std::cout << "Select 0 or 1 at random and press enter.\n";

 std::cout << "If the computer predicts your guess it wins\n"

 "and it can now read your mind.\n";

 Task game = coroutine_game(); ❶

 while (!game.done()) ❷
 {

 auto [player_choice, prediction] =

 game.choice_and_prediction(); ❸
 ++turns;

 std::cout << "You pressed " << player_choice

 << ", I guessed " << prediction << '\n';

 if (player_choice != prediction)

 {

 ++player_wins;

 }

 game.next(); ❹
 }

 std::cout << "you win " << player_wins << '\n'

 << "machine won " << (turns - player_wins) << '\n';

}

❶ Gets the coroutine

❷ Sees if the user stopped
❸ Gets data from coroutine

❹ Lets coroutine resume

Using a coroutine makes no difference to our mind reader,

but we have used a frequently discussed feature from

C++20. We could extend this and write another coroutine to

co_await input from std::cin, a function returning a

random flip, or even another mind reader.

Coroutines can be used in a variety of places, including

asynchronous operations waiting on input or other

resources. Andreas Fertig’s book Programming with C++20:

Concepts, Coroutines, Ranges, and More (Fertig

Publications, 2021) has a chapter devoted to parsing a byte

stream with coroutines. He published an overview in

Overload in 2022 (see

https://accu.org/journals/overload/30/168/fertig/). Rayner

Grimm lists several possible use cases on his blog, including

event-driven programming and cooperative multitasking

(see http://mng.bz/qjPr). If a coroutine is suspended,

https://accu.org/journals/overload/30/168/fertig/
http://mng.bz/qjPr

another part of the program can then run instead, so

coroutines offer a constrained concurrency model.

We’ve been through many C++ features, and we are nearly

done. We have used templates with parameter packs

several times now, but we have not looked into how they

work. Let’s round off our learning with a final chapter

exploring templates further.

Summary
We can alias a declaration with the keyword using,

including families of templates.

C++’s unordered containers use hash tables.

Hash tables store elements in buckets and use a hash

function to locate a bucket.

An std::unordered_map uses std::hash and

std::equal_to for the keys by default.

We can inject a hash function into namespace std to

support a user-defined type in an

std::unordered_map.

A C++ coroutine is a function containing one or more of

the following three keywords: co_yield, co_await,

or co_return.

A coroutine can be suspended and resumed.

The return type of a coroutine is usually a user-defined

type, containing functions required to start and stop the

coroutine, as well as functions backing co_yield and

co_await as needed.

C++23 introduced an std::generator for use as the

return type of a coroutine, providing a potentially

infinite sequence, but for other uses, we currently have

to write our own promise or task, providing the required

boilerplate code.

We used a custom deleter for std::unique_ptr to

allow us to use the rule of zero.

9 Parameter packs and std::visit

This chapter covers

Practicing with algorithms and execution policies
Template parameter packs
The std::visit method and Overload pattern
Mutable lambdas
Extra practice with variants, std::format, and ranges

We have used parameter packs (the three dots in a

template) several times now, but we have not paused to

understand how they work. In the final chapter, we will fill in

the dots, as well as practice many things we have learned so

far. We will generate triangle numbers and briefly consider

some of their properties. Triangle numbers crop up in

various places (e.g., counting how many handshakes would

happen in a group of people if everyone shakes hands).

Because we started with Pascal’s triangle, returning to a

number sequence feels like a good way to round off.

We’ll discover we can create triangle numbers in a couple of

lines of code using numeric algorithms, and then we will

build a slot machine using the first few triangle numbers. We

will build a simple machine first, which only spins the reels.

We will then improve the game, allowing holds, nudges, or

spins. To implement these options, we will learn about

std::visit and the Overload pattern. We will practice

what we have learned in previous chapters, which will help

us write more C++ using new features, being confident we

can keep up to date with any future changes.

9.1 The triangle numbers
The triangle numbers are 1, 3, 6, 10, and so forth, formed

by summing 1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, and so

forth. If we racked up that many snooker balls, we could

make a triangle. Hence the name. To add another row to the

five shown in figure 9.1, we use six more snooker balls. A

further row would add seven and so on.

Figure 9.1 Snooker balls racked up, forming a triangle with 15 =
1 + 2 + 3 + 4 + 5 balls

We will use the first few triangle numbers in this chapter, so

let’s make a function called make_ triangle_numbers.

We will take a count and return a vector of ints.

std::vector and std::string have supported

constexpr since C++20 (see http://mng.bz/wjDP), so we

can mark the function as constexpr, which we first saw in

chapter 3 when we learned how to use static_assert for

testing. We will be able to perform similar checks here too.

Our new function starts with the following signature:

constexpr std::vector<int> make_triangle_numbers(int count)

Let’s add the details. If we start with the numbers 1, 2, 3,

and so on, we can then sum these to obtain the triangle

numbers. C++11 introduced the iota function in the

numeric header, which fills a container with sequentially

increasing values, starting with a chosen value. If we make a

vector with space for 20 numbers

std::vector<int> numbers(20);

we can then call iota, starting with the value 1, to create

the numbers 1, 2, 3, and so on:

std::iota(numbers.begin(),numbers.end(), 1);

Alternatively, we can use the ranges version, introduced in

C++23:

std::ranges::iota(numbers, 1);

http://mng.bz/wjDP

C++23 isn’t widely supported yet, so you might have to wait

until your compiler offers the ranges’ version. In either case,

this fills the vector with numbers starting at 1 and

increasing by 1 each time. This gives us 1, 2, 3,...20. The

iota function came from the APL programming language

and was proposed before C++11, but it was not included

until later. It’s a small but useful function.

If we find the partial or cumulative sums of these numbers

(1, 1 + 2, etc.), we obtain the triangle numbers. To do this,

we can use the function std::partial_sum from the

numeric header:

std::partial_sum(numbers.begin(),numbers.end(),numbers.begin());

We then have the triangle numbers we wanted (1, 3, 6, 10,

15,...210).

Listing 9.1 Making the first few triangle numbers

#include <numeric>

#include <vector>

constexpr std::vector<int> make_triangle_numbers(int count)

{

 std::vector<int> numbers(count); ❶
 std::iota(numbers.begin(), numbers.end(), 1); ❷
 std::partial_sum(numbers.begin(), numbers.end(), numbers.begin()); ❸
 return numbers;

}

❶ Container for default initialized ints
❷ Fills with 1, 2,...

❸ Sums 1, 1 + 2, 1 + 2 + 3,...

We’ve used an older C++ function, std::partial_sum, as

well as the newer std::iota function from the numeric

header. There are many other algorithms we haven’t had a

chance to use in this book. Have a look through the

algorithm and numeric headers, and try one you haven’t

used before, or even implement one yourself. This is a great

way to keep practicing.

9.1.1 Testing our triangle numbers with
algorithms

We should test our triangle numbers and can use a few more

algorithms to do so. We can undo the partial_sum, using

adjacent_difference, which gives the difference

between adjacent elements in a container. If we make a

vector for the differences, we can compare these with the

integers from 1 to 20 created by iota, and we can assert

that they match.

Listing 9.2 Testing our triangle numbers

#include <cassert>

void check_properties()

{

 const int count = 20;

 const auto triangle_numbers = make_triangle_numbers(count);

 std::vector<int> diffs(count);

 std::adjacent_difference(triangle_numbers.begin(),

 triangle_numbers.end(),

 diffs.begin()); ❶
 std::vector<int> numbers(count);

 std::iota(numbers.begin(), numbers.end(), 1); ❷
 assert(numbers == diffs); ❷
}

❶ Finds the differences

❷ Compares with 1, 2,...

Let’s spend a little time adding a few more asserts to our

test function. If we find the adjacent_difference a

second time, we should obtain a vector of 1s. We can

check this using the all_of algorithm with a lambda:

#include <algorithm>

std::adjacent_difference(diffs.begin(), diffs.end(), diffs.begin());

assert(std::all_of(diffs.begin(), diffs.end(),

 [](int x) { return x == 1; }));

We can count the 1s to check that we have the number we

started with using std::coun:

assert(std::count(diffs.begin(), diffs.end(), 1) == count);

We have a small handful of tests and will add another

shortly. Before we do, it’s worth filling in a few more dots.

Most algorithms have various overloads. For example,

std::count has three versions (see

https://en.cppreference.com/w/cpp/algorithm/count). We

used the first version. The second is marked constexpr, so

it could be used at compile time, and the third uses an

execution policy, allowing parallel execution of an algorithm.

9.1.2 Execution policies for algorithms

C++17 introduced several execution type policies that live in

the execution header. By default, a sequenced_policy,

https://en.cppreference.com/w/cpp/algorithm/count

std::execution::seq, is used, which causes the

algorithm to operate in sequence, one item at a time. We

can also use std::execution:: par or

std::execution::par_unseq and C++20’s

std::execution::unseq. The latter three allow parallel

execution, and the unsequenced policies may cause

execution to happen in any order. They indicate the

algorithm can be parallelized, so it is a permission rather

than a requirement. These policies fall back to a sequential

policy if the implementation cannot be parallelized, and even

if it can, the code might end up being slower (see Bartlomiej

Filipek’s blog at http://mng.bz/JdGV). The parallel versions

give us a simple way to indicate that work can be fired off to

different threads, but they are not guaranteed to speed our

code up. They might, but setting up work on new threads

can have an overhead.

If we add std::execution::par as the first parameter,

we use the overload for parallel execution:

#include <execution>

assert(std::count(std::execution::par, diffs.begin(), diffs.end(), 1)

 == count);

Requesting parallel execution is straightforward and may

speed up your code. Experiment and measure to see what

happens. Threading and parallel execution is a big topic.

Anthony Williams’s book C++ Concurrency in Action

(Manning Publications, 2019; see http://mng.bz/PR5n) is an

excellent resource, and you can find many of his talks on the

internet.

http://mng.bz/JdGV
http://mng.bz/PR5n

9.1.3 Mutable lambdas

Our tests so far are necessary but not sufficient. There is a

closed-form formula for the triangle numbers, calculating the

n
th
 number directly as

We can use this relationship to make our tests sufficient, at

least for the first few numbers, by checking that each value

matches the equation’s value.

Listing 9.3 Checking each value

for (size_t i=0; i< triangle_numbers.size(); ++i)

{

 const int n = i + 1;

 assert(triangle_numbers[i] == n*(n+1)/2);

}

We have seen that we can often use an algorithm instead of

a for loop, and because we want to check the relationship

holds for all of the numbers, std::all_of will work.

However, when we switch to the algorithm, we no longer

have the variable i to use in the calculation. We can declare

a variable in a lambda’s square brackets [] and flag the

lambda as mutable, which allows us to increment the

variable. Without the mutable keyword, we get a compiler

error, telling us a by-copy capture cannot be modified in a

nonmutable lambda.

In addition, mutable allows the lambda to modify the

objects captured by copy and to call non-const member

functions of by-copy-captured objects. Using std::all_of

instead of the for loop from listing 9.3 with a mutable

lambda gives us the following code.

Listing 9.4 Checking each value with a mutable lambda

assert(std::all_of(triangle_numbers.begin(), triangle_numbers.end(),

 [n = 0](int x) mutable ❶
 { ❶
 ++n; ❶
 return x == n * (n + 1) / 2;

 }

));

❶ n set to 0 and mutable because n is incremented

We have the triangle numbers and some tests. If we pause

to look at more properties, we can get a bit more practice

with algorithms. We will also discover a useful property

making the triangle numbers suitable for use in our slot

machine.

9.1.4 More properties of the triangle numbers

First, let’s consider whether the triangle numbers are odd or

even. Then, we will find another pattern we can use for our

slot machine. We will also get a bit more practice with

algorithms and the std::map as we investigate. The first

two triangle numbers, 1 and 3, are odd, and then we get

two even numbers, 6 and 10. Does this pattern continue?

We will find out if we transform our vector, flagging odd

numbers with a dot ('.') and even numbers with an

asterisk ('*').

We can declare another vector to hold the transformation.

We’ve used the std::transform algorithm from the

algorithm header in chapter 7 to make the characters in

an std::string lowercase. There are various overloads,

but each applies a function to an input range and stores the

results in an output. The original version took a pair of input

iterators, first and last, an output iterator, and a unary

function: a function taking one input, like our lambda.

C++20 introduced a ranges’ version, which takes an input

source, rather than a pair of iterators, along with the output

iterator and unary function. There is also a version taking

two input ranges and a binary function to create the output,

as well as a version taking execution policies.

Let’s write a function called demo_further_properties.

We will use a single character for each number, so we can

use a vector of char to store the results:

std::vector<char> odd_or_even

We can write a lambda for the transforming function, taking

an int and returning the appropriate character to indicate

the parity of a number:

[](int i) { return i%2? '.':'*'; }

If i%2 is nonzero, we have an odd number, so we return

'.'; otherwise, we return '*'. We use this in the

transformation, with a back_inserter to grow the output

as needed:

std::vector<char> odd_or_even;

std::ranges::transform(triangle_numbers,

 std::back_inserter(odd_or_even),

 [](int i) { return i%2? '.':'*'; });

We could use a range-based for loop to display the parity of

the numbers, but back in chapter 2, we noted that we can

use std::copy or the ranges’ version to insert the contents

of a container into a stream. The first parameter is the

container, or its begin and end, and the second is an

std::ostream_iterator constructed with a stream (in

our case, std::cout) and a delimiter (say, a space). We

can then stream out the odd or even markers in one line of

code once we include the iostream header:

std::ranges::copy(odd_or_even, std::ostream_iterator<char>(std::cout, " "));

Our further properties function looks like this.

Listing 9.5 Checking whether the numbers are odd or even

#include <algorithm>

#include <iostream>

#include <iterator>

void demo_further_properties()

{

 const int count = 20;

 const auto triangle_numbers = make_triangle_numbers(count);

 std::vector<char> odd_or_even; ❶

 std::ranges::transform(triangle_numbers,

 std::back_inserter(odd_or_even),

 [](int i) { return i % 2 ? '.' : '*'; }); ❷
 std::ranges::copy(odd_or_even,

 std::ostream_iterator<char>(std::cout, " ")); ❸
 std::cout << '\n';

}

❶ Vector for results
❷ Lambda to check parity

❸ Copies to cout

If we call this from main and look at the output, we see

. . * * . . * * . . * * . . * * . .

It appears that we do get two odd numbers followed by two

even numbers, over and over. Stack Exchange’s math site

explains why this happens (see http://mng.bz/1JBj).

We found one neat pattern. To build a slot machine, we want

a selection of items to display on some reels. If some items

match, the slot machine will pay out. The final digits of the

triangle numbers have another pattern. Some digits occur

more frequently than others, so we can use the final digits of

triangle numbers for our slot machine. The less frequent

digits will give a higher pay out. By keeping a tally in an

std::map and calculating % 10 rather than % 2, we will

see how often each digit occurs. We need to map the last

digit, which is an int, to a count, so after including the map

header, we can use

std::map<int, size_t> last_digits;

http://mng.bz/1JBj

in our demo_further_properties function. We can base

the payout of our slot machine on the likelihood of the digits.

We’ll use a raw loop to find the last digit of each triangle

number. We need to look up the number % 10 using

operator[] and increment the value we obtain. We

learned that operator[] will insert a key-value pair into a

map if the key does not exist in chapter 7 when we built the

answer smash game. The corresponding value is the default

for the value’s type, in our case, a size_t of 0. This is what

we need. We create tallies of the last digits as follows:

for (int number: triangle_numbers)

{

 ++last_digits[number % 10];

}

We can stream out the tallies so we know which digits

happen most frequently:

for (const auto& [key, value] : last_digits)

{

 std::cout << key << " : " << value << '\n';

}

Pulling this into the function gives us the following.

Listing 9.6 Adding tallies of digits to further properties

#include <map>

void demo_further_properties()

{

 const int count = 20;

 const auto triangle_numbers = make_triangle_numbers(count);

 // ... as before

 std::map<int, size_t> last_digits; ❶
 for (int number: triangle_numbers)

 {

 ++last_digits[number % 10]; ❷
 }

 std::cout <<

 "Tallies of the final digits of the first 20 triangle numbers\n";

 for (const auto& [key, value] : last_digits) ❸
 { ❸
 std::cout << key << " : " << value << '\n'; ❸
 }

}

❶ Uses a map to store tallies
❷ Counts the final digits

❸ Streams out results

Calling this from main, we see

0 : 4

1 : 4

3 : 2

5 : 4

6 : 4

8 : 2

8s and 3s are unlikely; 0, 1, 5, and 6 are twice as likely. In

fact, the final digits repeat the pattern

13605186556815063100

over and over. If we pick any three triangle numbers, we are

unlikely to get three 3s or 8s as final digits, so such an

outcome could be a jackpot in a game.

Let’s build a slot machine using three reels of triangle

numbers. We need to make three reels, putting the numbers

in random order. We also want to display the reels and make

them spin for each turn, deciding whether to pay out.

9.2 A simple slot machine
We need three reels of numbers to spin. We will show the

numbers on the current row, along with the numbers on the

rows above and below. We can indicate the current row with

a '-' sign like this:

 28 91 153

- 45 120 45-

 36 1 3

We will start by spinning the reels on each turn. If two of the

final digits match, we pay out, and if all three match, we pay

out more. Once we have a working game, we will extend it

in section 9.3, awarding a jackpot if we get three 3s or 8s.

9.2.1 Revision of constexpr and std::format

Listing 9.1 generates triangle numbers as an

std::vector<int>. If we utilize the using statement we

met in the previous chapter, we won’t need to spell out

std:: vector<int> each time we refer to the reels:

using Reel = std::vector<int>;

This can live near the top of the main.cpp file. We can now

make three reels for our slot machine, with 20 numbers in

each in a new function called make_reels:

constexpr int numbers = 20;

constexpr size_t number_of_reels = 3u;

std::vector<Reel> reels(number_of_reels, make_triangle_numbers(numbers));

The numbers should be shuffled for the game. We can use

std::shuffle directly on a reel:

std::shuffle(reel.begin(),

 reel.end(),std::mt19937(std::random_device{}()));

However, we know testing code with random behavior can

be difficult. If we use a template with an invocable function

rather than a random number generator, we can swap out

the generator for testing. The invocable function takes two

iterators into a vector of Reels, so we use

std::invocable<std::vector<Reel>::iterator,

 std::vector<Reel>::iterator>

instead of the keyword typename in the template head:

template<std::invocable<std::vector<Reel>::iterator,

 std::vector<Reel>::iterator> T>

We would get away with

template<typename T>

but using a concept instead of the raw typenames means we

are likely to get clearer diagnostics if we don’t provide a

suitable type for T.

We need to include the concepts header, and we can flag

the function as constexpr. Our make_reels function

looks like this.

Listing 9.7 Seting up reels

#include <concepts>

template<std::invocable<std::vector<Reel>::iterator,

 std::vector<Reel>::iterator> T> ❶
constexpr std::vector<Reel> make_reels(int numbers, ❶
 int number_of_reels, ❶
 T shuffle) ❶
{

 std::vector<Reel> reels(number_of_reels,

 make_triangle_numbers(numbers)); ❷

 for (auto& reel : reels)

 {

 shuffle(reel.begin(), reel.end()); ❸
 }

 return reels;

}

❶ Passes in shuffle to allow testing

❷ Makes the reels
❸ Shuffles the reels

We can call this code in two ways. To use the function in our

game, which we will create shortly, we need a seeded

generator

std::random_device rd;

std::mt19937 gen{ rd() };

and capture this generator by reference in a lambda:

auto shuffle = [&gen](auto begin, auto end)

 { std::shuffle(begin, end, gen); };

We can then call make_reels using our lambda:

std::vector<Reel> reels = make_reels(numbers, number_of_reels, shuffle);

In addition, as the function is constexpr, we can use

static_assert in the check_ properties function we

started in listing 9.2, mocking out the random behavior with

a no-op lambda:

constexpr auto no_op = [](auto begin, auto end) { };

static_assert(make_reels(1, 1, no_op).size() == 1);

This doesn’t test much but indicates what’s possible.

Armed with three shuffled reels, we need to display the

numbers on each. We will show the previous row, the

current row, and the next row, indicating the current row

with a '-'. We used std::format back in chapter 2, so

let’s use it again for practice. If your compiler doesn’t

support std::format, look back to chapter 2 for

instructions on using the fmt library instead. The numbers

will be up to three digits long, so we right align them over

three characters, padding with spaces. We put a format

specifier after a colon, using > for right alignment and 3 for

the number of spaces, giving {:>3}. We pass in reels, along

with the stream, so we can test our code.

Listing 9.8 Displaying reels

#include <format>

void show_reels(std::ostream& s,

 const std::vector<int>& left,

 const std::vector<int>& middle,

 const std::vector<int>& right)

{

 s << std::format(" {:>3} {:>3} {:>3}\n",

 left.back(), middle.back(), right.back()); ❶
 s << std::format("-{:>3} {:>3} {:>3}-\n",

 left[0], middle[0], right[0]); ❷
 s << std::format(" {:>3} {:>3} {:>3}\n",

 left[1], middle[1], right[1]); ❸
}

❶ Previous row

❷ Current row indicated with -
❸ Next row

We’ve set up the reels and can now display them. To make a

game, we need to decide if the current row deserves some

kind of payout, and then we need to spin the reels. We also

want a way to stop the game. We can use getline like we

have done before:

std::string response;

std::getline(std::cin, response);

If the response is anything other than Enter being pressed,

we will quit. Let’s spin the reels first and then build the

game.

9.2.2 Using std::rotate to spin the reels

The algorithm header provides an std::rotate function

we can use for the spin. This function performs a left

rotation on the elements. Given some elements

std::vector v{1, 2, 3, 4, 5}

we can visualize them as a reel, as shown in figure 9.2.

Figure 9.2 Elements arranged on a reel we can spin or rotate

We can perform a left rotation of the elements by stating a

begin, middle (say, the number 4, which is three from

begin), and end:

std::rotate(v.begin(), v.begin() + 3, v.end());

Using v.begin() + 3 as the middle moves the number 4 to

the beginning, and the elements before that move to the

end, so we get

4, 5, 1, 2, 3

as if the reel of numbers has spun. Arranged as a reel, the

numbers would have rotated left, as shown in figure 9.3.

Figure 9.3 Rotating left spins the chosen middle to the
beginning.

Initially, we had 1, 2, 3, 4, and 5. We picked a middle of

begin + 3, moving 4 to the front. 1 is now at begin + 2, so

we can rotate again, using the position of the 1

std::rotate(v.begin(), v.begin() + 2, v.end());

and the elements end up back where they started.

We want to spin the slot machine reels at random, varying

the middle used. The parameters are iterators, so we can

add a random number to the beginning of a reel to pick

which middle to use. We have a random number generator,

which we used for the initial shuffle. We now need a

distribution too. We want each number on a reel to be

possible, but also want the reels to move, so we need to run

from the second element to the last element. We can use a

distribution of 1 up to and including the size of the reel − 1

to generate an offset to add to begin:

std::uniform_int_distribution dist(1, numbers - 1);

If we allowed 0, the reel would not move. We can then spin

all three of the reels:

for (auto& reel : reels)

{

 std::rotate(reel.begin(), reel.begin() + dist(gen), reel.end());

}

We will use this directly in the simple slot machine function

in the next section.

The rotate function has been in C++ for a very long time. If

we look at CppReference (http://mng.bz/27E0), we notice a

version taking an execution policy, introduced in C++17, and

a constexpr version, introduced in C++20, along with a

link to a ranges’ version. We are used to these new features

now and will see them frequently when we look up an

algorithm. We need one more function to calculate a payout.

Then we can create our game.

http://mng.bz/27E0

9.2.3 The simple slot machine

To decide on a payout, we need to check whether any of the

last digits match. All three matching deserves more than

just two matching, while none matching receives nothing, so

for now, we will award a payout of 2 for three matches and 1

for two matches.

Listing 9.9 Calculating payout

int calculate_payout(int left, int middle, int right)

{

 int payout = 0;

 if (left == middle && middle == right) ❶
 {

 payout = 2;

 }

 else if (left == middle

 || middle == right

 || left == right) ❷
 {

 payout = 1;

 }

 return payout;

}

❶ Three matches
❷ Two matches

Now, if we want to give higher payouts for 3s or 8s, which

are less likely, we are in danger of ending up with a snaky

mess of ifs and elses. We will revisit this later when we

add more features to our game. For now, we have all the

parts we need to make a simple slot machine.

We set up the reels, show the numbers, and award a payout

if a line wins. The player can press Enter to continue or

anything else to quit. If they continue, we spin the reels and

show the numbers again.

Listing 9.10 A simple slot machine

#include <iostream>

#include <random>

#include <string>

#include <vector>

void triangle_machine_spins_only()

{

 constexpr int numbers = 20;

 constexpr size_t number_of_reels = 3u;

 std::random_device rd;

 std::mt19937 gen{ rd() };

 auto shuffle = [&gen](auto begin, auto end)

 { std::shuffle(begin, end, gen); };

 std::vector<Reel> reels = make_reels(numbers,

 number_of_reels,

 shuffle); ❶

 std::uniform_int_distribution dist(1, numbers - 1); ❷
 int credit = 1; ❸
 while (true)

 {

 show_reels(std::cout, reels[0], reels[1], reels[2]);

 const int payout = calculate_payout(reels[0][0]%10,

 reels[1][0]%10,

 reels[2][0]%10);

 --credit;

 credit += payout;

 std::cout << "won " << payout

 << " credit = " << credit << '\n';

 std::string response; ❹
 std::getline(std::cin, response); ❹
 if (response != "") ❹
 { ❹
 break; ❹
 }

 for (auto& reel : reels) ❺
 {

 std::rotate(reel.begin(),

 reel.begin() + dist(gen), ❻
 reel.end());

 }

 }

}

❶ Setup

❷ Random int to spin reels
❸ Tracks credit

❹ Allows player to quit
❺ Spins reels

❻ Random int to spin reels

If we call this from main, we can play our game. We

probably won’t win very often, so watch our credit draining

away. A typical output might look like this:

 15 1 36

-136 78 91-

 6 3 15

won 0 credit = 0

 210 3 45

- 45 6 66-

 10 153 105

won 1 credit = 0

 36 210 171

- 1 171 153-

 15 190 28

won 1 credit = 0

 3 1 190

-210 78 6-

 45 3 171

won 0 credit = -1

 78 78 171

- 66 3 153-

 21 6 28

won 1 credit = -1

The payout is not very fair because two or three matching

final digits are not very likely. We can give a fairer payout. If

we also allow a reel to be held or nudged by one, we have a

greater chance of winning. We can use more new C++

features, including std::visit, to achieve this. Let’s build

a better slot machine.

9.3 A better slot machine
We will make two changes. First, we will improve the payout,

and then we will allow holds or nudges. Let’s deal with the

payout first. The payout is based on the last digit of left,

middle, and right numbers. We know that 3 or 8 only

happen twice out of the first 20 triangle numbers, so each

has a 1/10 chance of appearing. Getting three 3s therefore

has a probability of 1/10×1/10×1/10 = 1/1000, as does

getting three 8s. The other digits are more likely. Let’s also

charge two credits per game this time. Without doing a full

analysis, let’s give 250 credits for three 3s or 8s and 15 for

any other three matching digits. Two matching digits are

more likely, so let’s give 15 credits for two 3s or two 8s and

just 1 for the others.

9.3.1 Parameter packs and fold expressions

When we calculated the payout before, we didn’t use a

weighting and noted we were in danger of needing several

ifs and elses if we added more conditions. Let’s take a

different approach. If we find the frequencies of our final

digits, we can then pick the most frequent digit to calculate

the payout. We are using three reels, so we want a function

taking three digits and returning a map from digits to

frequencies:

#include <map>

std::map<int, size_t> counter = frequencies(left, middle, right);

Rather than writing a function taking three numbers, we can

do something more general. We’ve used several classes from

the STL taking various numbers of parameters, including a

variant. Back in chapter 5, we noted its definition:

template <class... Types>

class variant;

For a variant, we use a type. We can also use nontype

template parameters. For example, we met std::ratio in

chapter 4, using ints to form fractions such as

std::ratio<3, 6>. We accepted that the three dots or

ellipsis in the variant mean a parameter pack, allowing us

to state as many types as we want. We can use a parameter

pack in a function template, as well as a class, and use

nontype template parameter packs too. We can use a

function with a nontype template parameter pack to find the

frequencies. We will need to unpack the parameters to find

the frequencies.

In general, a variadic template is a template with at least

one parameter pack. These were introduced in C++11 but

have become easier to use as the language has evolved. In

C++11, we needed to use recursion to unpack the

arguments, using one item and then calling the function

again with the remaining items. C++17 introduced fold

expression (see

https://en.cppreference.com/w/cpp/language/fold), avoiding

the need for recursion.

Let’s try an example. We can write a fold expression to sum

up one or more items. Afterwards, we will be able to use a

variadic template to find the frequencies we want for the

improved slot machine payout. We need to pay attention to

the parameter pack in three places. First, we say

typename... Ts to indicate zero or more parameters:

template <typename... Ts>

It’s common to use Ts here rather than T to draw attention

to there being potentially several Ts. We are free to use

whatever name we want. We can use class or typename,

followed by the ellipsis and then our name Ts. Next, the

function’s parameter is a tail of type Ts.... Notice the

ellipsis has switched to appear after the Ts now. Finally, in

the implementation, we again use three dots in conjunction

with operator+ to find the sum. The return type depends

on the parameters, so we can use auto, and the compiler

works it out for us.

Listing 9.11 Fold example

template<typename... Ts> ❶
auto add(const Ts&... tail) ❷
{

https://en.cppreference.com/w/cpp/language/fold

 return (... + tail); ❸
}

❶ Dots in the template head
❷ Dots in the function signature

❸ Unpacks the dots in the function

The ... + unpacks the tail and is called a fold

expression. Such an expression tells the compiler to repeat

the operator for each element in a variadic parameter pack.

We could use operator- instead, or any other operator

that applies to the parameters. We can also unpack using

return (tail + ...);

We can check the value for a few numbers:

assert(6==add(1, 2, 3));

The arguments 1, 2, and 3 are unpacked by ... + tail to a

left-associative expression:

((1 + 2) + 3)

If we had the dots on the right instead, we would have the

right-associative expression:

(1 + (2 + 3))

For addition of numbers, the side makes no difference.

Subtraction would matter because

((1 - 2) - 3) = -1 -3 = -4

whereas

(1 - (2 - 3)) = 1 - (-1) = 2

We can also use a single number:

assert(1 == add(1));

Our function does not compile for no numbers. If we try

assert(0 == add());

we are told that a unary fold expression over + must have a

nonempty expansion. A unary fold has the pack and

operator, either a right fold

tail operator ...

or a left fold:

... operator tail

A unary fold does not work for an empty pack. We can use a

binary fold instead, providing an initial value init either a

right fold, with the initial value on the right

tail operator ... operator init

or a left fold, with the initial value on the left:

init operator ... operator tail

We could change the return statement to use a binary fold

instead, providing an initial value of 0:

return (0 + ... + tail);

We would then need to be able to add the values in the tail

to 0.

Sticking with the unary fold, we can add other types

supporting operator+ as well; for example, some strings:

using namespace std::literals;

assert(add("Hello"s, "again"s, "world"s)=="Helloagainworld"s);

Be aware that without using a concept to constrain the

template, we will get a lot of compiler errors if the type does

not have the appropriate operator+. Furthermore, we now

have three instantiations of add, as we have three calls, one

using one int and one with three ints:

auto add<int>(int)

auto add<int, int, int>(int, int, int)

and one using three strings for the parameter pack:

auto add<std::string, std::string, std::string>(std::string, std:: string, std::

string)

Fold expressions are powerful, and we have only scratched

the surface. For further examples, see

https://www.foonathan.net/2020/05/fold-tricks/.

https://www.foonathan.net/2020/05/fold-tricks/

9.3.2 Using a parameter pack to find
frequencies

Back to our game. Let’s write a function to find the

frequencies of the digits for the payout so we can find which

digits appear most often on the current line. We used an

std::map<int, size_t> to find how often each last digit

appeared in the triangle numbers in section 9.1.2. We can

do something similar now using another variadic template.

Rather than calculating the last digits in the new function,

we will write a general-purpose frequencies function. Our

game will send in the last digits, like we did when we called

our previous calculate_payout function in listing 9.9.

We want a function that takes a varying number of numbers.

We will only call it with three numbers but can write a

general-purpose function for practice. For a variadic

template, we noted we put three dots after typename and

then put the dots before the parameters in the function

signature:

template<typename... Ts>

std::map<int, size_t> frequencies(Ts... numbers)

We can then call the function with as many numbers as we

like, which means we could generalize our machine to have

more than three reels if we so wished. Recall that we can

also use auto rather than the template head:

std::map<int, size_t> frequencies(auto... numbers)

Before we implement the function, we should ensure the

numbers are actually numbers, using a concept. We didn’t

do that with add, so we could concentrate on the dots but

noted we might get a lot of compiler errors without a

concept. We are making a tally, so we want an integer or

something convertible to an integer to tally, and

std::convertible_to<int> does what we want. We add

the requirement before auto as follows:

#include <concepts>

std::map<int, size_t> frequencies(std::convertible_to<int> auto... numbers)

Now we can implement the function. We have some

numbers, or at least elements convertible to ints using

static_cast<int>. We used operators with dots to

unpack the parameters in the last section. We can also

unpack parameters into an initializer list:

{ static_cast<int>(numbers)... }

We can then use the initializer list in a range based for loop

to populate a map of frequencies.

Listing 9.12 Finding frequencies using a parameter pack

#include <map>

std::map<int, size_t> frequencies(std::convertible_to<int> auto... numbers)

{

 std::map<int, size_t> counter{};

 for (int i : { static_cast<int>(numbers)... }) ❶
 {

 counter[i]++; ❷
 }

 return counter;

}

❶ Unpacks parameters into an initializer list
❷ Keeps tally

We can use the frequencies function for different numbers of

numbers:

auto tally_of_3 = frequencies(1, 3, 5);

auto tally_of_4 = frequencies(1, 3, 5, 999);

We obtain a map showing how often each number occurs.

Our slot machine will send in the left, middle, and right

digits, like we did when we calculated the payout in listing

9.9. We will write a new function to calculate a fairer payout,

which takes the final digit from each reel as before:

int calculate_payout(int left, int middle, int right)

We can then count how often each digit appears in the

current row

std::map<int, size_t> counter = frequencies(left, middle, right);

and use these counts to decide a payout. We can give a

fairer payout based on the likelihood of each outcome rather

than our previous approach of 2 for three matches and 1 for

two matches.

9.3.3 A fairer payout

We have three reels, so a final digit appears one, two, or

three times. If we find the digit with the greatest frequency,

we can use that to decide a payout. The algorithm header

defines std::max_element, which finds the greatest

element in a range using operator< for ordering by

default. Our frequencies contain key-value pairs, and we

want the element with the largest value. The key is the first

element of the pair, and the value is the second, so we use

the second element for comparison in a lambda:

auto it = std::max_element(counter.begin(), counter.end(),

 [](auto it1, auto it2) { return it1.second < it2.second; });

Provided the counter is not empty, we get an iterator to an

element and award an appropriate payout. We will now

charge 2 credits per go. As we noted, 3s and 8s are less

likely. The jackpot is three matching final digits of 3s or 8s,

so we award this with 250 credits. Three other matching

final digits get 15. Two 3s or 8s can have 10 credits, and any

other matching pair gets 1 credit. If the final digit is a 3 or

8, we can use an std::array with the right payout at the

index corresponding to the frequency:

constexpr std::array value = {0, 0, 10, 250};

Zero or one gives 0, while two gives a credit of 10, and

three gives the jackpot of 250. Similarly, for the more likely

digits, we can use

constexpr std::array value = {0, 0, 1, 15};

to give a payout of 1 or 15.

Listing 9.13 A fairer payout

#include <array>

int calculate_payout(int left, int middle, int right)

{

 std::map<int, size_t> counter = frequencies(left,

 middle,

 right);

 auto it = std::max_element(counter.begin(),

 counter.end(),

 [](auto it1, auto it2) {

 return it1.second < it2.second;

 });

 if (it != counter.end())

 {

 int digit = it->first;

 size_t count = it->second;

 if (digit == 8 || digit == 3)

 {

 constexpr std::array value = { 0, 0, 10, 250 };

 return value[count];

 }

 else

 {

 constexpr std::array value = { 0, 0, 1, 15 };

 return value[count];

 }

 }

 return 0;

}

We now have a much better payout function and have

learned even more C++. If we add holds and nudges to the

spins, we will have an even better game and can use

another new C++ feature.

9.3.4 Allowing holds, nudges, or spins

Our initial game only offered spins. We will do one of two

things in our improved game. If a player wins, they can

either quit or let the reels spin on the next turn. Otherwise,

they have three options per reel. In the output for the

simple slot machine, the first spin gave

 210 3 45

- 45 6 66-

 10 153 105

won 1 credit = 0

Had we been allowed to hold the 45, spin the middle reel,

and nudge the right reel to move 105 up, we would have

two numbers ending in a 5, so we would have won some

credit. For example, we might end up with

 210 210 66

- 45 171 105-

 10 190 15

The middle reel spun, so it could be anything, but we were

bound to have 45 on the left and 105 on the right, giving at

least two last matching digits.

We can use empty structs to indicate how to move each

reel and hold one of these in a variant. We have used a

variant before, so some extra practice is useful. We

include the variant header and name our variant with

the using directive. It can be one of three empty structs.

Listing 9.14 Allowing more options

#include <variant>

struct Hold {};

struct Nudge {};

struct Spin {};

using options = std::variant<Hold, Nudge, Spin>;

If the player won last time, they can quit or press Enter to

spin all three reels. We can indicate this with a vector of

options:

std::vector<options>{Spin{}, Spin{}, Spin{}}

We can use std::getline like we did in the simple slot

machine in listing 9.10 to populate an std::string:

std::string response;

std::getline(std::cin, response);

If the response is Enter, we get an empty string, and the

game should then spin all three reels. We can put the

parsing in a function. An optional is a suitable return type.

We can also mark the function as constexpr, allowing us

to use it in a static_assert.

Listing 9.15 Three spins for Enter

#include <optional>

#include <string>

#include <vector>

constexpr std::optional<std::vector<options>>

 parse_enter(const std::string& response)

{

 if(response.empty()) ❶
 { ❶

 return std::vector<options>{ ❶
 Spin{}, ❶
 Spin{}, ❶
 Spin{}}; ❶
 }

 else

 {

 return {}; ❷
 }

}

❶ Enter pressed, so three spins are returned
❷ Something else pressed, so empty optional is returned

We should check whether a player really wants to quit if they

type something. We’ll ask, giving the opportunity to press

Enter to continue playing.

Listing 9.16 Checking for Enter pressed

std::optional<std::vector<options>> get_enter()

{

 std::cout << "Enter to play\n";

 std::string response;

 std::getline(std::cin, response);

 auto got = parse_enter(response); ❶
 if (!got) ❷
 { ❷
 std::cout << "Are you sure you want to quit? " ❷
 "Press Enter to keep playing\n"; ❷
 std::getline(std::cin, response); ❷
 got = parse_enter(response); ❷
 }

 return got;

}

❶ Three spins for enter

❷ Checks whether the player really wants to quit

If a player doesn’t win, they can hold, nudge, or spin each

reel. We can get the response like we did before and check

the characters one at a time to see what the player wants to

do with each reel. We can use 'h', 'n', or 's' for hold,

nudge, or spin, respectively. Pressing Enter can mean spin

all three, like it does after a win. Anything else indicates the

player wishes to stop. First, we want to map a character to

one of our structs, so we use a constexpr function and

return an optional.

Listing 9.17 Mapping a character to an action

#include <optional>

constexpr std::optional<options> map_input(char c)

{

 switch (c)

 {

 case 'h':

 return Hold{};

 break;

 case 'n':

 return Nudge{};

 break;

 case 's':

 return Spin{};

 break;

 }

 return {};

}

We decided to accept Enter for three spins to save the player

a few key presses. We map each letter, putting the

corresponding option in a vector. Again, we use

constexpr and return an optional.

Listing 9.18 Checking for holds, nudges, or spins

constexpr std::optional<std::vector<options>>

 parse_input(const std::string & response)

{

 std::vector<options> choice;

 for (char c : response)

 {

 auto first = map_input(c);

 if (first)

 {

 choice.push_back(first.value());

 }

 else

 {

 return {};

 }

 }

 return choice.empty() ?

 std::vector<options>{Spin{}, Spin{}, Spin{}} : choice;

}

We can now check for the player’s options if they didn’t win

on the last go using our parsing function. If the input is

invalid, either empty or too long, we’ll check to see if they

want to quit.

Listing 9.19 Checking for options

std::optional<std::vector<options>> get_input(size_t expected_length)

{

 std::cout << "Hold (h), spin(s), nudge(n) or Enter for spins\n";

 std::string response;

 std::getline(std::cin, response;

 auto got = parse_input(response); ❶
 if (!got || response.length()>expected_length) ❷
 { ❷
 std::cout << "Are you sure you want to quit?\n"; ❷
 std::getline(std::cin, response); ❷
 got = parse_input(response); ❷
 }

 return got;

}

❶ Parses the input

❷ Checks whether they want to quit

In our original game in listing 9.10, we checked the

response in the main game to see whether to spin or quit.

This time, we will call the appropriate function, depending on

whether the player won:

std::optional<std::vector<options>> choice = won ?

 get_enter() : get_input();

We now need to move the reels appropriately. Previously, we

used std::rotate to spin all three reels. We now need to

take the appropriate action based on the player’s choice.

Using a variant for the options allows us to use another

helpful C++ feature, which is a fortuitous choice.

9.3.5 Spinning reels with std::visit and
std::views::zip

We used an std::variant in chapter 5 when we wanted

to add jokers to our deck of cards, and we also used

std::holds_alternative to detect a joker. We now

have one of three possible types. The variant header

includes a method called std::visit that lets us supply a

callable that accepts each possible type in the variant (see

http://mng.bz/RmoK). We could build something ourselves

using lots of ifs and elses, based on

std::holds_alternative, but it is easy to forget to add

a branch for one of the types in the variant. Using

std::visit instead means we get a compile error if we

miss an alternative. The function applies a callable to one or

more variants:

http://mng.bz/RmoK

template <class R, class Visitor, class... Variants>

constexpr R visit(Visitor&& vis, Variants&&... vars);

The return value R can be void. The variants, vars, are

one or more variants in a parameter pack. The visitor, vis,

is any callable that can be invoked with the types from the

variants. The callable could be a struct, with an

overloaded operator() per type.

Listing 9.20 One way to provide callables for std::visit

struct RollMethod

{

 void operator()(Hold)

 void operator()(Nudge)

 void operator()(Spin)

};

Given a player’s option, opt, we could then call

std::visit(RollMethod{}, opt);

and the appropriate operator() would be invoked. This is

cleaner than building one long function checking

std::holds_alternative, and we get a compiler error if

we forget the overload for a type.

We can also use lambdas in conjunction with another

variadic template for more practice. Lambdas are callable

and therefore have an operator(). By creating a class

template deriving from a lambda, we can expose the

operator() for that lambda with a using statement.

Listing 9.21 Bring operator() into scope in a class

template <typename T>

struct Overload : T { ❶
 using T::operator(); ❶
};

❶ Derives from T and brings operator() into scope

In C++17 and versions of Clang before v17, we need to

provide a template deduction guide, which tells the compiler

how to deduce the template parameters. The guide shows

how to interpret a set of constructor arguments into

template parameters for a class, so for our type T, we want

an Overload(T) to deduce Overload<T>. Thus, we write

template<typename T>

Overload(T) -> Overload<T>;

Since C++20, we no longer need the additional deduction

guide. The struct allows us to create an Overload with a

lambda and call the lambda. For example, we can add an

assert to the check_properties function:

auto overload = Overload{ []() { return 0; } };

assert(overload() == 0);

By itself, an overload of a single type is not much use

because we only have one function. It is simpler to use the

lambda directly, but we can use a parameter pack to group

several lambdas together. This will bring each lambda’s

operator() into scope. Again, we may need a deduction

guide, and as we noted earlier, we have to think about the

ellipsis for a parameter pack in three places.

Listing 9.22 The Overload pattern

template <typename... Ts> ❶
struct Overload : Ts... { ❷
 using Ts::operator()...; ❸
};

template<typename... Ts>

Overload(Ts...) -> Overload<Ts...>; ❹

❶ Dots in the template head
❷ Dots in the struct’s base

❸ Unpacks the dots to use each operator()
❹ Deduction guide for C++17 (and Clang before v17)

We can then create a roll method that does the right thing

for each reel, using the Overload from listing 9.22 with

three lambdas. Hold does nothing, and nudge moves a reel

one place. Spin, like before, spins by a random amount,

provided by the function random_fn. Both nudge and spin

need to capture the reel used by reference.

Listing 9.23 A hold, nudge, or spin Overload

auto RollMethod = Overload{

 [](Hold) {

 },

 [&reel](Nudge) {

 std::rotate(reel.begin(),

 reel.begin() + 1,

 reel.end());

 },

 [&reel, &random_fn](Spin) {

 std::rotate(reel.begin(),

 reel.begin() + random_fn(),

 reel.end());

 },

};

Now std::visit can use the appropriate function from

RollMethod.

Listing 9.24 Moving the reels

template<typename T>

void move_reel(std::vector<int>& reel, options opt, T random_fn)

{

 auto RollMethod = Overload{

 [](Hold) {

 },

 [&reel](Nudge) {

 std::rotate(reel.begin(),

 reel.begin() + 1,

 reel.end());

 },

 [&reel, &random_fn](Spin) {

 std::rotate(reel.begin(),

 reel.begin() + random_fn(),

 reel.end());

 },

 };

 std::visit(RollMethod, opt);

}

We can now move a specific reel using the player’s option.

We have three reels, so we want to pair up a player’s choices

with the reels. We have a vector of reels and another

vector of options. We could use an index in a for loop,

but we can use one last new feature, ranges’ zip view,

instead. The std::views::zip was introduced in C++23,

so some compilers don’t support it yet, but you can use the

Range-v3 library instead (see

https://ericniebler.github.io/range-v3/) or a for loop:

https://ericniebler.github.io/range-v3/

for (size_t i = 0; i < reels.size(); ++i)

{

 move_reel(reels[i], choice.value()[i], random_fn);

}

We met ranges’ view, std::view, when we first used

ranges in chapter 2. We used drop_while and filter to

take a view of a single collection. After including the ranges

header, we can zip up the two vectors using

std::views::zip(reels, choice.value())

The zip view gives us tuples of items from each vector,

without making copies. If we zip two containers and iterate,

the tuple moves over both vectors, giving us an item from

each vector. The vectors are not joined, but rather, the

iterator moves over each input collection, as shown in figure

9.4.

Figure 9.4 Iterating a zip view for two collections shows us a pair
of items.

We can zip up more than two collections if we want.

Iterating the zipped view of reels and choices gives us a

tuple of two references, which we can use in a loop to move

the reels. We can use structured bindings to name the two

items in the tuple and move the reel appropriately, using the

move_reel method from listing 9.24:

for (auto [reel, option] : std::views::zip(reels, choice.value()))

{

 move_reel(reel, option, random_fn);

}

Pulling this all together gives our final game.

Listing 9.25 An improved triangle number machine

void triangle_machine()

{

 constexpr int numbers = 20; ❶
 constexpr size_t number_of_reels = 3u; ❶
 std::random_device rd; ❶
 std::mt19937 gen{ rd() }; ❶
 auto shuffle = [&gen](auto begin, auto end) { ❶
 std::shuffle(begin, end, gen); ❶
 }; ❶
 std::vector<Reel> reels = make_reels(numbers, ❶
 number_of_reels, ❶
 shuffle); ❶

 std::uniform_int_distribution dist(1, numbers - 1);

 auto random_fn = [&gen, &dist]() { return dist(gen); };

 int credit = 2;

 while (true)

 {

 show_reels(std::cout, reels[0], reels[1], reels[2]); ❷
 const int won = calculate_payout(reels[0][0] % 10,

 reels[1][0] % 10,

 reels[2][0] % 10); ❸
 credit -= 2; ❹
 credit += won;

 std::cout << "won " << won << " credit = " << credit << '\n';

 std::optional<std::vector<options>> choice = won ?

 get_enter() : get_input(number_of_reels); ❺
 if (!choice) ❺
 { ❺
 break; ❺
 } ❺

 for (auto [reel, option] : ❺
 std::views::zip(reels, choice.value())) ❺
 {

 move_reel(reel, option, random_fn); ❻
 }

 }

}

❶ Setup as before
❷ Shows reels as before

❸ An improved payout
❹ Charges more for this game

❺ Enter for a win; otherwise hold, nudge, or spin
❻ Moves reels appropriately

We call our new game from main and have a greater chance

of gaining some credit. An example game may start with no

matching rows:

 28 21 171

-105 3 36-

 153 136 45

won 0 credit = 0

Hold (h), spin(s), nudge(n) or Enter for spins

If we hold the 105, spin the middle reel, and nudge the last

reel to move up the 45, we will have at least two matching

last digits, so we win at least 1 credit, although we have to

pay 2 for the turn:

hsn

 28 36 36

-105 120 45-

 153 45 1

won 1 credit = -1

Enter to play

We then have to let all the reels spin because we just won

something:

 66 136 153

- 1 66 10-

 6 105 21

won 0 credit = -3

Hold (h), spin(s), nudge(n) or Enter for spins

Our credit ticks down, but again we can hold, spin, and

nudge:

hsn

 66 21 10

- 1 3 21-

 6 136 91

won 1 credit = -4

Enter to play

We have a better chance of winning, so the game is more

engaging. We also learned even more C++.

We haven’t covered every new feature in C++, and as the

language continues to evolve, there will always be more to

learn. Starting with a vector and finding some small games

and projects gave us plenty of practice. We now are in a

good place to keep our skills up to date. Use CppReference,

and help others by adding missing examples you spot.

Experiment with the Compiler Explorer and C++ Insights.

Watch the ISOCpp website for recent news, articles, and

podcasts. Keep learning and practicing, and above all, have

fun!

Summary
Use std::iota to fill a container with sequentially

increasing values, starting with a chosen value.

Many algorithms support an execution policy, giving a

straightforward way to request parallelization. This is a

request, which may not be possible, and in such cases,

execution falls back to a sequential policy.

We can flag a lambda as mutable to allow it to modify

the objects captured by copy and to call their non-const

member functions.

Using a concept instead of the raw typenames in a

template means we are likely to get clearer diagnostics if

we don’t provide a suitable type when we use the

template.

We can use constexpr for almost anything, including

std::vector and std::string, since C++20.

Evaluation might happen at compile time but does not

need to. We can test constexpr code with a

static_assert.

A variadic template is a template with at least one

parameter pack, indicated by an ellipsis.

We unpack parameter packs using ellipsis again. We

used (... + tail) in listing 9.11 to unpack the tail,

and we can also put a parameter pack into an initializer

list, which we did in listing 9.12 using {

static_cast<int>(numbers)... }.

We can use std::visit to call a function for an

std::variant, which ensures we have an appropriate

overload for any possible type held.

One way to employ std::visit is the Overload

pattern, which uses a parameter pack to bring

operator() into scope, allowing us to package up

lambdas for each type in an std::variant.

Finally, we used std::views::zip from the ranges

library to pair up two collections. We can zip more than

two collections and can then iterate over the tuple of

elements in the view.

Keep learning and practicing, and above all, have fun!

appendix. Further resources
This appendix contains a list of resources mentioned in each

chapter for ease of reference.

Chapter 1
Some details on Working Group 21 (WG21) of the

International Organization for Standardization (ISO) are

available at https://isocpp.org/std.

The IncludeCpp group has a discord server and often

holds a stall at conferences

(https://www.includecpp.org/).

The ISOCpp website has an FAQ section

(https://isocpp.org/wiki/faq) that provides an overview

of some recent C++ changes and big-picture questions.

C++ Insights (https://cppinsights.io/) transforms code,

making things the compiler does for us visible.

Matt Godbolt’s Compiler Explorer (https://godbolt.org/)

supports a huge variety of different compilers, allowing

us to see how each behaves without the need to install

them.

CppReference has a list of compiler support for each of

the new features

(https://en.cppreference.com/w/cpp/compiler_support).

https://isocpp.org/std
https://www.includecpp.org/
https://isocpp.org/wiki/faq
https://cppinsights.io/
https://godbolt.org/
https://en.cppreference.com/w/cpp/compiler_support

Chapter 2
A good list of free C++ compilers is available at

https://isocpp.org/get-started.

We used std::format, but you might need to use the

ftm library (https://fmt.dev/latest/index.xhtml) if your

compiler does not support that format yet.

We used {} to initialize variables, but initialization is a

big topic and can get complicated. Nicolai Josuttis’ talk

“The Nightmare of Initialization in C++” goes into detail

(see https://www.youtube.com/watch?

v=7DTlWPgX6zs).

In his Guru of the Week problems, Herb Sutter told us

to almost always use auto

(https://herbsutter.com/2013/08/12/gotw-94-solution-

aaa-style -almost-always-auto/).

Jason Turner discussed the pros and cons of emplace

versus push_back on C++ Weekly

(https://www.youtube.com/watch?v=jKS9dSHkAZY).

Thomas Becker blogged about rvalue references back in

2013

(http://thbecker.net/articles/rvalue_references/section_

01.xhtml).

You can experiment with the fmt library directly in

Godbolt using https://godbolt.org/z/Eq5763.

https://isocpp.org/get-started
https://fmt.dev/latest/index.xhtml
https://www.youtube.com/watch?v=7DTlWPgX6zs
https://www.youtube.com/watch?v=7DTlWPgX6zs
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://www.youtube.com/watch?v=jKS9dSHkAZY
http://thbecker.net/articles/rvalue_references/section_01.xhtml
http://thbecker.net/articles/rvalue_references/section_01.xhtml
https://godbolt.org/z/Eq5763

Herb Sutter and Andrei Alexandrescu suggested

preferring algorithm calls to handwritten loops in their

book C++ Coding Standard: 101 Rules, Guidelines and

Best Practices (Addison-Wesley Professional, 2004).

If your compiler doesn’t support ranges fully, you can

experiment at https://godbolt.org/z/YrnsTGbfx.

We looked briefly at the core guidelines, which suggest

we should not try to avoid negative values by using

unsigned

(https://isocpp.github.io/CppCoreGuidelines/CppCoreGu

idelines#Res-nonnegative).

https://godbolt.org/z/YrnsTGbfx
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nonnegative
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nonnegative

Chapter 3
We used random_device to seed random number

engines

(https://en.cppreference.com/w/cpp/numeric/random/r

andom_device)

Angelika Langer and Klaus Kreft wrote a book titled

Standard C++ IOStreams and Locales: Advanced

Programmer’s Guide and Reference (Addison-Wesley

Professional, 2000).

Copying a lambda to an std::function can be

inefficient. Scott Meyers gives full details in “Item 5:

Prefer auto to explicit type declarations” in his book

Effective Modern C++ (O'Reilly Media, Incorporated,

2014).

We mentioned a proposal to introduce an

std::function_ref as an alternative to

std::function, overcoming the performance

problems (https://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2022/p0792r10.xh

tml). The Open Standards group collects various

proposals and papers relevant to C++ in the WG21

directory.

https://en.cppreference.com/w/cpp/numeric/random/random_device
https://en.cppreference.com/w/cpp/numeric/random/random_device
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0792r10.xhtml
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0792r10.xhtml
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0792r10.xhtml

Chapter 4
Howard Hinnant’s “Meeting C++” talk from 2019 gives

background for the design of std::chrono

(https://www.youtube.com/watch?v=adSAN282YIw).

The whole-value idiom has roots in Ward Cunningham’s

CHECKS pattern language

(http://c2.com/ppr/checks.xhtml) and is further

explored by Martin Fowler’s Quantity pattern

(https://martinfowler.com/eaaDev/Quantity.xhtml).

If your compiler does not fully support the C++20

chrono features, clone Howard Hinannt’s date library

(https://github.com/HowardHinnant/date) to include its

date.h and use its definitions instead (e.g., using

date::operator<<;).

ISOCpp’s core guideline SF.7 tells us not to write using

namespace at global scope in a header file

(http://isocpp.github.io/CppCoreGuidelines/CppCoreGui

delines#Rs-using-directive).

Jason Turner’s C++ Weekly episode 34 gives an

introduction to reading assembly language

(https://www.youtube.com/watch?v=my39Gpt6bvY).

https://www.youtube.com/watch?v=adSAN282YIw
http://c2.com/ppr/checks.xhtml
https://martinfowler.com/eaaDev/Quantity.xhtml
https://github.com/HowardHinnant/date
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive
https://www.youtube.com/watch?v=my39Gpt6bvY

Rainer Grimm’s website has instructions for compiling

and using the date library

(https://www.modernescpp.com/index.php/calendar-

and-time-zone-in-c-20-time-zones), which you might

need for time zones, as do Howard Hinnant’s GitHub

pages

(https://howardhinnant.github.io/date/tz.xhtml#Installa

tion).

Howard Hinnant has written a list of examples and

recipes for chrono

(https://github.com/HowardHinnant/date/wiki/Example

s-and-Recipes).

https://www.modernescpp.com/index.php/calendar-and-time-zone-in-c-20-time-zones
https://www.modernescpp.com/index.php/calendar-and-time-zone-in-c-20-time-zones
https://howardhinnant.github.io/date/tz.xhtml#Installation
https://howardhinnant.github.io/date/tz.xhtml#Installation
https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes
https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes

Chapter 5
For details on ISO deliverables, including C++ technical

specifications (TS), see

https://www.iso.org/deliverables-all.xhtml.

There is a TS for compile time, or static, reflection (see

https://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2020/n4856.pdf).

It is on its way, and you can vote for it in Visual Studio

via

https://developercommunity.visualstudio.com/t/implem

ent-the-c-reflection-ts/826632.

For extra details on creating a variant, optional, or

any variable, see

https://www.cppstories.com/2018/07/in-place-cpp17/.

Stephan T. Lavavej explains that when you need a

random number, you should not call rand(), and

especially do not say rand() % 100

(https://learn.micro soft.com/en-

us/events/goingnative-2013/rand-considered-harmful).

https://www.iso.org/deliverables-all.xhtml
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4856.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4856.pdf
https://developercommunity.visualstudio.com/t/implement-the-c-reflection-ts/826632
https://developercommunity.visualstudio.com/t/implement-the-c-reflection-ts/826632
https://www.cppstories.com/2018/07/in-place-cpp17/
https://learn.microsoft.com/en-us/events/goingnative-2013/rand-considered-harmful
https://learn.microsoft.com/en-us/events/goingnative-2013/rand-considered-harmful

Chapter 6
For a recap on hiding, see “Item 33: Avoid hiding

inherited names” in Scott Meyers’ book Effective C++

(Addison-Wesley Professional, 2005).

We met the rule of zero for when we do not user declare

or define any of the six member functions

(http://isocpp.github.io/CppCoreGuidelines/CppCore

Guidelines#Rc-zero).

For a reminder of how the public, protected, and private

access modifiers behave, see CppReference

(https://en.cppreference.com/w/cpp/language/access).

The Simple and Fast Multimedia Library (SFML) is

relatively easy to use for multimedia (https://www.sfml-

dev.org/index.php).

The rule of zero means avoiding user declaring any of

the special member functions, and the core guidelines

even tell us to avoid defining defaults if possible

(http://isocpp.github.io/CppCoreGuidelines/CppCoreGui

delines#Rc-zero).

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
https://en.cppreference.com/w/cpp/language/access
https://www.sfml-dev.org/index.php
https://www.sfml-dev.org/index.php
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero

Peter Sommerlad suggests deleting the move

assignment if a destructor is defined. He calls this

pattern DesDeMovA: Destructor => Delete Move

Assignment (see https://www.youtube.com/watch?

v=fs4lIN3_IlA for his talk or

https://github.com/boostcon/cppnow_presentations_20

19/blob/master/lightning_talks/Rule_of_DesDeMovA__P

eter_Sommerlad__cppnow_05062019.pdf for an

overview).

Howard Hinnant has given a talk titled “Everything You

Ever Wanted to Know About Move Semantics”

(https://www.youtube.com/watch?v=vLinb2fgkHk), and

http://howardhinnant.github.io/classdecl.xhtml offers a

succinct overview.

There is a proposal to extend C++11’s random number

generators (see https://wg21.link/P1932), which gives

further details on the limits of the current engines.

See https://www.modernescpp.com/index.php/std-

weak-ptr for further details on std::weak_ptr.

https://www.youtube.com/watch?v=fs4lIN3_IlA
https://www.youtube.com/watch?v=fs4lIN3_IlA
https://github.com/boostcon/cppnow_presentations_2019/blob/master/lightning_talks/Rule_of_DesDeMovA__Peter_Sommerlad__cppnow_05062019.pdf
https://github.com/boostcon/cppnow_presentations_2019/blob/master/lightning_talks/Rule_of_DesDeMovA__Peter_Sommerlad__cppnow_05062019.pdf
https://github.com/boostcon/cppnow_presentations_2019/blob/master/lightning_talks/Rule_of_DesDeMovA__Peter_Sommerlad__cppnow_05062019.pdf
https://www.youtube.com/watch?v=vLinb2fgkHk
http://howardhinnant.github.io/classdecl.xhtml
https://wg21.link/P1932
https://www.modernescpp.com/index.php/std-weak-ptr
https://www.modernescpp.com/index.php/std-weak-ptr

Chapter 7
Tim van Deurzen’s gave a lightning talk on structured

bindings at Meeting C++ in 2019 (see

https://www.youtube.com/watch?v=YC_TMAbHyQU)).

For further details on std::string_view, see

https://www.modernescpp.com/index.php/c-17-avoid-

copying-with-std-string-view.

Nico Josuttis’ book The Standard Library, Second Edition

(Addison-Wesley Professional, 2005) is an excellent

reference book to find out more about containers and

algorithms and more.

Donald Knuth’s book The Art of Computer Programming,

Volume 3 (Addison-Wesley Professional, 2008), gives

thorough details on rebalancing binary trees.

https://www.youtube.com/watch?v=YC_TMAbHyQU)
https://www.modernescpp.com/index.php/c-17-avoid-copying-with-std-string-view
https://www.modernescpp.com/index.php/c-17-avoid-copying-with-std-string-view

Chapter 8
The boost library has many useful features, including

hash_combine

(https://www.boost.org/doc/libs/1_55_0/doc/html/hash

/combine.xhtml).

WG21 has discussed hash combination functions (see

https://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2014/n3876.pdf).

For more details on coroutines, see

https://lewissbaker.github.io/2017/09/25/coroutine-

theory.

Andreas Fertig’s book Programming with C++20:

Concepts, Coroutines, Ranges, and More (Fertig

Publications, 2021) has a chapter devoted to parsing a

byte stream with coroutines. He published an overview

in Overload in 2022 (see

https://accu.org/journals/overload/30/168/fertig/).

https://www.boost.org/doc/libs/1_55_0/doc/html/hash/combine.xhtml
https://www.boost.org/doc/libs/1_55_0/doc/html/hash/combine.xhtml
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3876.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3876.pdf
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://accu.org/journals/overload/30/168/fertig/

Chapter 9
For more practice with algorithms, see

https://en.cppreference.com/w/cpp/algorithm.

Anthony Williams’ book C++ Concurrency in Action

(Manning, 2012; https://www.manning.com/books/c-

plus-plus-concurrency-in-action-second-edition) is an

excellent resource if you want to learn more about

parallel algorithms and concurrency in general, and you

can find many of his talks on the internet.

Bartlomiej Filipek wrote a detailed blog about the use

and limitations of constexpr vectors and strings

(https://www.cppstories.com/2021/constexpr-vecstr-

cpp20/).

For further details on fold expressions, see

https://www.foonathan.net/2020/05/fold-tricks/.

https://en.cppreference.com/w/cpp/algorithm
https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
https://www.cppstories.com/2021/constexpr-vecstr-cpp20/
https://www.cppstories.com/2021/constexpr-vecstr-cpp20/
https://www.foonathan.net/2020/05/fold-tricks/

index

Symbols
-> symbol 10
+ operator 8 – 9
– character 108
| character 108

A
ABC (abstract base class) 108
abort function 28
accumulate function 29
adjacent_difference 186 – 187
aggregate initialization 86
algorithm header 31, 95 – 96, 99, 103, 186, 189
alias declaration 162
all_of algorithm 187
amortized constant time 163
answer smash game, hardcoding 133 – 142

creating 138 – 142
creating and using std::map 133 – 135
pairs, tuples, and structured bindings 135 – 137

any header 103
any type 166
any_cast method 103
array header 93 – 94
arrays

creating deck of playing cards 84 – 98
comparison operators and defaults 96 – 98
constructors and default values 87 – 90
defining card type using scoped enum for suit 85
defining card type using strong type for face value 86
displaying playing cards 90 – 93
using array to make deck of cards 93 – 95
using generate method to fill array 95 – 96

higher-or-lower card game 98 – 106
building 99
building with extended deck of cards 103 – 106
shuffling deck 99
using std::variant to support cards or jokers 101 – 103

Art of Computer Programming, The (Knuth) 144
assert function 27, 50, 186
associative containers 143 – 148

and files 132
finding keys more efficiently 145 – 147
hardcoding answer smash game 133 – 142
map type 143 – 145
multimaps 147

at function 134, 148
auto keyword 8, 97
await expression 173

B
back method 20
balanced trees 144
base class 109

Base destructor 110
Base pointer 110

Base pointer 110
begin free function 104
begin member function 104
begin method 95
big-O 145
binary operator 29
binary tree 143
Blob 109 – 111, 114, 116, 119
bucket_count 166
bucket_size function 166

C
C++

Hello, World program 7 – 9
importance of 3 – 4
learning from 10
when to use 5 – 6

callable 44
capture list 31
card 94
Card struct 86
Card type 87, 90, 97
cassert header 27, 54
check_properties function 50, 95, 112, 117, 166
choices function 168
chrono 61
chrono header 59
chrono library 78
chrono literals 114
class keyword 89, 162

class template argument deduction. See CTAD
classes

abstract base class 108 – 111
class hierarchy 108 – 119
concrete class 111
using type traits to check for special member functions 116 – 119
warming up for race 112 – 116

closures 31, 45
co_await keyword 173
co_return keyword 173
co_yield keyword 173 – 174
collision 163
compare header 97
concepts header 72, 117
const 139
const lvalue 118
const reference 113
consteval specifier 51
constexpr 50, 204 – 205
constinit specifier 51
containers 13

Pascal’s triangle 17 – 26
code for 18 – 19
move semantics and perfect forwarding 19 – 22
overview of 17
using format to display output 24 – 26
using ranges to display vectors 22 – 24

vectors, creating and displaying 14 – 17
contains function 53
coordinated universal time (UTC) 60
copy constructor 90
copy functions 118
coroutine

done method 181
coroutine_game 182
coroutines 173 – 183

coroutine frame 176
coroutine function 175
coroutine header 175
coroutine return object 176
filling in promise_type 179
filling in Task type 180
making 173 – 175
mind reader 182
RAII and rule of zero 177 – 179
unordered_map 159 – 173
mind reader game 169 – 173
unordered containers and std::hash 163
using to make predictions 167 – 169

count 185

count method 62, 65
countdown function 79
countdown to end of year 60 – 63
countdown_to method 81
CSP (communicating sequential processes) 173
CTAD (class template argument deduction) 17, 60
current_zone() function 81

D
data member function 94
date library 79
date namespace 81
date/date.h 78
date/include directory 62, 78
date/parse 78
deck of playing cards, creating 84 – 98

comparison operators and defaults 96 – 98
constructors and default values 87 – 90
defining card type
using scoped enum for suit 85
using strong type for face value 86

displaying playing cards 90 – 93
using array to make deck of cards 93 – 95
using generate to fill array 95 – 96

decltype specifier 9
default keyword 10, 97
default member initializers 88
deleted constructor 90
demo_further_properties function 189 – 190
dereference operator 16
derived class 109 – 110

Derived destructor 110
Derived pointer 110

destroy function 178
Destructor => Delete Move Assignment (DesDeMovA) 119
draw_blobs function 115
drop_while function 32, 209
duck typing 70
durations 60, 63 – 78, 80 – 81

converting between 64 – 67
finding days until last day of year 73
formatting time points and durations 80
literal suffixes and operator / 67 – 69
parsing date 78 – 80

ratios 63
requirements and concepts 69 – 73
using last to find how long to payday 74 – 76

writing testable code 76 – 78
dynamic polymorphism 108

E
Effective Modern C++ (Meyers) 45
emplace method 7, 18 – 19, 94, 147
emplace_back method 20
end free function 104
end member function 104
end method 95, 168
enum keyword 85
enumerator 85
equal method 34
equal_range 146, 148
event definition 61
execution header 187
execution policy 187
experimental/generator header 174
explicit constructor 86
explicit operator bool 39

F
FaceValue 87 – 88, 97
FaceValue class 86
FaceValue member 91
FaceValue type 92
file_clock 60
files 149 – 150
filter function 33, 209
final keyword 111
final_suspend method 179, 181
find function 53
find method 168
find_overlapping_word 147
first method 133
fmt library 44, 193
fold expression 198 – 200
for loop 10, 13, 32, 114, 133, 188, 209
format 2, 13, 82
format library 24
format specifier 52
formatting 78 – 81

parsing date 78 – 80
time points and durations 80

from_promise method 177, 181

from_stream method 78
functional header 8, 44, 56, 164 – 165

G
generate function 96
get_next_row function 19
get_return_object function 177 – 178
getter function 167

H
hardcoded answer smash 133 – 142

creating and using std::map 133 – 135
creating simple answer smash game 138 – 142
pairs, tuples, and structured bindings 135 – 137

has_value() member function 41
hash function 163, 166 – 167, 179
Hash type 164
hash value 163
hash_combine method 166
high_resolution_clock 60
higher-or-lower card game 98 – 106

building 99
building with extended deck of cards 103 – 106
shuffling deck 99
using std::variant to support cards or jokers 101 – 103

holds_alternative function 105
HPC (high-performance computing) 5

I
– I switch 62, 78
IANA (Internet Assigned Numbers Authority) 81
IDE (integrated development environment) 2
if statement 53
ignore function 39
immediate function 51
impossible_card 89
include guard 84
include statement 8
increment operator 2
initial_state function 167
initial_suspend method 179
initializer_list 94
input 78 – 82

formatting time points and durations 80
of numbers and strings 37 – 46
accepting optional numeric input 40 – 43
accepting user input 38 – 40
validation and feedback using std::function and lambdas 43 – 46

parsing date 78 – 80
insert method 18, 135
int 111, 189
integer promotion 8
Internet Assigned Numbers Authority. See IANA
invocable 117
iostream 189
iostream header 38, 90, 113, 133
iota function 185
is_clock trait 72
is_constructible trait 117
is_default_constructible_v function 117
is_invocable trait 117
is_move_assignable trait 118
is_move_constructible trait 118
is_prime function 50 – 51
is_steady member variable 60
ISOCpp website 6
iterators 13

Pascal’s triangle 17 – 26
code for 18 – 19
overview of 17
using format to display output 24 – 26
using ranges to display vectors 22 – 24

vectors, creating and displaying 14 – 17

J
Josuttis, Nico 145

K
key type 164
KeyEqual type 164
keys, finding more efficiently 145 – 147
Knuth, Donald 144

L
lambdas 31, 43 – 46
last_choices_t 169

leaf 144
left fold 29
letter coroutine generator 174
linear complexity 143
literal suffixes 67 – 69
local_time 81
lower_bound function 145 – 148

M
main function 8, 14, 45, 48, 50, 159
main.cpp file 84
make_pair function 135
make_reels function 192
make_triangle_numbers function 185
make_tuple function 136
map header 133, 190
map type 143 – 145
matching pennies

mind reader game 169 – 173
unordered containers and std::hash 163
unordered_map 159 – 173
using to make predictions 167 – 169

MAX_INT 99
maybe type 41
metaprogramming library 117
Meyers, Scott 45
mind reader 182
mind_reader function 175
MindReader class 170
MindReader object 175
move constructor 20
move copy constructor 90
move operation 21
move semantics 19, 21 – 22
move_blobs function 114 – 115
move_reel method 210
mt19937 engine 47, 99
multimaps 133, 147
mutable keyword 188

N
namespace scope 84
narrowing conversion 15
NDEBUG macro 27
nested replacement field 25

new_years_eve 61
next function 181
noexcept 179
non-deterministic random numbers 47
non-modifying sequence operations 31
nontype template parameters 64
numbers

guessing prime numbers 49 – 58
checking properties with static_assert 50
checking whether number is prime 49
deciding which digits are correct 52 – 55
generating random prime numbers 51
providing different clues using std::function 55 – 58

input of 37 – 46
accepting optional numeric input 40 – 43
accepting user input 38 – 40
validation and feedback using std::function and lambdas 43 – 46

numeric header 30, 185 – 186

O
-o flag 15
objects

and arrays 83
creating deck of playing cards 84 – 98
comparison operators and defaults 96 – 98
constructors and default values 87 – 90
defining card type using scoped enum for suit 85
defining card type using strong type for face value 86
displaying playing cards 90 – 93
using array to make deck of cards 93 – 95
using generate to fill array 95 – 96

higher-or-lower card game 98 – 106
building 99
building with extended deck of cards 103 – 106
shuffling deck 99
using std::variant to support cards or jokers 101 – 103

one definition rule 84
operator 79, 91, 135
operator() 207 – 208
operator() const 164
operator() function 9
operator()() function 181
operator* 29
operator^ 171
operator++ 94 – 95
operator< 99, 145
operator<< 61, 165
operator<> 202

operator== 164
operator> 99
optional header 41, 79
optional type 41, 166
optional<int> 158
order category type 97
output 78 – 81

formatting time points and durations 80
parsing date 78 – 80

Overload pattern 208
override specifier 111

P
parameter packs 102, 117, 184

slot machine example 191 – 212
fairer payout 202
finding frequencies 201
fold expressions 198 – 200
holds, nudges, or spins 203 – 207
revision of constexpr and std::format 192 – 194
spinning reels with std::visit and std::views::zip 198 – 212
using std::rotate to spin reels 194

parse method 78 – 79
parsing date 78 – 80
partial_sum 186
Pascal’s triangle

code for 18 – 19
creating and displaying 17 – 26
move semantics and perfect forwarding 19 – 22
overview of 17
properties of 26 – 35
checking first and last elements of each row 27
checking number of elements in each row 28
checking number of rows we can generate correctly 30 – 33
checking sum of elements in row 28 – 30
checking whether each row is symmetric 34
highlighting odd numbers in row 34

using format to display output 24 – 26
using ranges to display vectors 22 – 24

pennies_game function 159
perfect forwarding 19 – 22
player_choice 170
playing_cards.cpp file 84
playing_cards.h file 84 – 85
plus code 10
plus function 9
plus<> specialization 9
polymorphism 108 – 119

abstract base class 108 – 111
concrete class 111
using type traits to check for special member functions 116 – 119
warming up for race 112 – 116

pragma once directive 84
predictions, using unordered_map to make 167 – 169
printf function 24
promise object 176
promise_ptr 180
promise_type 174, 176, 179
properties function 27
pseudo-random number 47
push_back 7, 18 – 21, 94, 116, 118

R
Race header file 111
Race.cpp file 113 – 114
Race.h header file 108
RAII (Resource Acquisition Is Initialization) 177 – 179
rand function 10, 99
random header 47 – 48, 99
random numbers

generating random numbers 46 – 49
guessing random numbers 46 – 49

random_device 47 – 48, 51, 99, 119, 127
random_fn function 208
random_shuffle method 99
randomly generated matching pennies 158
range-based for loop 15
ranges header 32
ranges library 34
ranges, displaying vectors using 22 – 24
ratio header 117
ratios 63
read_number function 41 – 42, 79
red – black trees 144
reference collapsing 137
rejection sampling 52
remove_if algorithm 32
requirements 60
requires clause 71
return_value function 180
return_void method 180
RollMothod function 209
rule of five 116
rule of three 116
rule of zero 109
rvalue reference 20

S
scope resolution operator 8
scoped enums 85
second method 133
sequenced_policy, std::execution::seq 187
SFML (Simple and Fast Multimedia Library) 112
Shrug value 162
shuffle method 99
SI (International System of Units) 64
sieve of Eratosthenes 49
sleep_for function 114
slot machine example 198 – 212

fairer payout 202
finding frequencies 201
fold expressions 198 – 200
holds, nudges, or spins 203 – 207
spinning reels with std::visit and std::views::zip 207 – 212

smart pointers and polymorphism 107 – 119
abstract base class 108 – 111
concrete class 111
using type traits to check for special member functions 116 – 119
warming up for race 112 – 116

Smash.cpp 140 – 141
Smash.h 140 – 141
some_const_number function 48
sorted associative container 145
spaceship operator 97
sstream header 41
stackless coroutine 176
Standard C++ IOStreams and Locales: Advanced Programmer’s Guide and Reference, The

(Langer and Kreft) 41
Standard Library, The (Josuttis) 145
standard template library (STL) 29
State class 169
state variable 169
state_t 164, 166
state_table.choices method 171
static_assert 50, 185, 204
static_cast 91, 95, 201
std::all_of function 188
std::any 103
std::array 89, 94 – 95, 113, 202
/std::c++latest option 11
std::chrono::year 61
std::cin 40
std::copy 104
std::count function 187
std::default_random_engine 47

std::equal_to 164
std::execution::par 187
std::execution::par_unseq 187
std::execution::unseq 187
std::format 80
std::function 37, 43 – 44, 55 – 58
std::function_ref 45
std::generator 174
std::get 136
std::get<Card> function 105
std::getline function 204
std::hash 163 – 164
std::holds_alternative 207
std::holds_alternative<Joker> function 105
std::invalid_argument exception 87
std::iota function 186
std::istream 79
std::less 163
std::less<Key> 145
std::less<std::string> 145
std::literals 91
std::lower_bound 145
std::map 133 – 135, 143, 145, 147, 189 – 190
std::max_element function 202
std::multimap 147 – 148, 163
std::multiset 145, 163
std::nano 64
std::numeric_limits<int>::max() function 18
std::optional 41, 102, 158
std::optional<int> 79
std::ostream_iterator 189
std::out_of_range 134
std::pair 133, 135 – 137, 162, 180
std::parse 78
std::partial_sum function 186
std::ranges::shuffle 99
std::ranges::views 32
std::rotate function 194
std::set 145, 163
std::shuffle 99
std::string 79, 91, 145, 185, 189, 204
std::string_literals namespace 79
std::string_view 141
std::strong_ordering 97
std::to_string method 92
std::transform function 189
std::tuple 133, 162, 164
std::uniform_int_distribution 158
std::unique_ptr 177 – 178
std::unordered_map 133, 166

std::upper_bound 145
std::variant 101 – 103, 207
std::vector 113, 185
std::view 32, 209
std::views::zip 209
std::visit

slot machine example 191 – 198
fold expressions 198
revision of constexpr and std::format 192 – 194
using std::rotate to spin reels 194

triangle numbers 185 – 191
execution policies for algorithms 187
mutable lambdas 188
properties of 188 – 191

std::visit function 184, 207, 209
—std=c++20 option 11
stdexcept header 87
steady_clock 60
step function 108 – 109, 111
StepperBlobs 112, 114
steps function 113
STL (standard template library) 29
stream insertion operator 8
string header 79, 91, 113
string_literals namespace 69
string_view header 141
strong types 86
struct 85, 208
structured bindings 135 – 137
Suit enumeration 94
suspend_always class 179
suspend_never class 179
switch statement 91
syntactic sugar 10
sys_days 61, 76
sys_time 61, 79
system_clock 60

T
tag type 74
take function 34, 174
Task 175
Task type 180
technical specification (TS) 92
template deduction guide 208
terminating node 144
thread header 78, 114
three-way comparison operator 97

time points, durations and literals 63 – 78
converting between durations 64 – 67
countdown to end of year 60 – 63
finding days until last day of year 73
input, output, and formatting 78 – 81
parsing date 78 – 80

literal suffixes and operator / 67 – 69
requirements and concepts 69 – 73
using last to find how long to payday 74 – 76
writing testable code 76 – 78

time zones 81
time_point 60, 80
TMP (template meta-programming) 6
to_string 91, 93
ToString method 92
total_steps function 108, 111
trailing return type 8
triangle numbers 185 – 191

execution policies for algorithms 187
mutable lambdas 188
properties of 188 – 191
testing with algorithms 186

TS (technical specification) 92
tuple header 135 – 136, 162
tuples 135 – 137
type alias 66
type traits 72, 116 – 119
type-safe union 101
typename 201
tz.cpp file 81

U
unary fold expression 200
unary predicate 31
underlying_type 95 – 96
unhandled_exception method 179
uniform initialization syntax 15
uniform_int_distribution 46
union type 101
unordered containers 145, 162 – 163
unordered maps, randomly generated matching pennies 158
unordered_map 14, 159 – 173

class template 164
header 164, 166
mind reader game 169 – 173
unordered containers and std::hash 163
using to make predictions 167 – 169

Unset value 162

update_prediction method 171
upper_bound function 145 – 148
user-defined literal 68
using keyword 162
using namespace 79
using statement 66, 178, 192, 204
UTC (coordinated universal time) 60
utility header 135, 162

V
v-table 108
value function 41
value getter 91
value member 117
value type 164
variadic template 102, 198
variant 198, 204
variant header 101, 104
variant type 166
vector 93 – 94, 143, 186 – 187, 209

creating and displaying 14 – 17
vector class 7
vector header 56, 114
vector of ints 185
vocabulary type 41

W
-W warning flag 15
while loop 51
whole value idiom 61
WSL (Windows Subsystem for Linux) 14

Y
y coordinate 111, 113
year_month_day 61
year_month_day_last type 75
yield_value method 179

Z
zoned_time 81

	inside front cover
	Learn C++ by Example
	Copyright
	dedication
	contents
	Front matter
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum
	Other resources

	about the author
	about the cover illustration

	1 Hello again, C++!
	1.1 Why does C++ matter?
	1.2 When should you use C++?
	1.3 Why read this book?
	1.4 How does this book teach C++?
	1.4.1 Who this book is for
	1.4.2 Hello, again, C++!
	1.4.3 What you’ll learn from reading this book

	1.5 Some pro tips
	Summary

	2 Containers, iterators, and ranges
	2.1 Creating and displaying a vector
	2.2 Creating and displaying Pascal’s triangle
	2.2.1 A reminder of Pascal’s triangle
	2.2.2 Coding Pascal’s triangle
	2.2.3 Move semantics and perfect forwarding
	2.2.4 Using ranges to display the vector
	2.2.5 Using format to display output

	2.3 Properties of the triangle
	2.3.1 Checking the first and last elements of each row
	2.3.2 Checking the number of elements in each row
	2.3.3 Checking the sum of the elements in a row
	2.3.4 How many rows can we generate correctly?
	2.3.5 Checking whether each row is symmetric
	2.3.6 Highlighting odd numbers in a row

	Summary

	3 Input of strings and numbers
	3.1 Guessing a predetermined number
	3.1.1 Accepting user input the hard way
	3.1.2 Accepting optional numeric input
	3.1.3 Validation and feedback using std::function and lambdas

	3.2 Guessing a random number
	3.2.1 Setting up a random number generator
	3.2.2 Using the random number generator

	3.3 Guessing a prime number
	3.3.1 Checking whether the number is prime
	3.3.2 Checking properties with static_assert
	3.3.3 Generating a random prime number
	3.3.4 Deciding which digits are correct
	3.3.5 Providing different clues using std::function

	Summary

	4 Time points, duration, and literals
	4.1 How long until the last day of the year?
	4.2 Understanding durations in detail
	4.2.1 Ratios
	4.2.2 Durations
	4.2.3 Literal suffixes and operator / for readable code
	4.2.4 Requirements and concepts
	4.2.5 How many days until the last day of the year?
	4.2.6 Using last to find how long to payday
	4.2.7 Writing testable code

	4.3 Input, output, and formatting
	4.3.1 Parsing a date
	4.3.2 Formatting time points and durations

	4.4 Time zones
	Summary

	5 Creating and using objects and arrays
	5.1 Creating a deck of playing cards
	5.1.1 Defining a card type using a scoped enum for the suit
	5.1.2 Defining a card type using a strong type for the face value
	5.1.3 Constructors and default values
	5.1.4 Displaying playing cards
	5.1.5 Using an array to make a deck of cards
	5.1.6 Using generate to fill the array
	5.1.7 Comparison operators and defaults

	5.2 Higher-or-lower card game
	5.2.1 Shuffling the deck
	5.2.2 Building the game
	5.2.3 Using std::variant to support cards or jokers
	5.2.4 Building the game with an extended deck of cards

	Summary

	6 Smart pointers and polymorphism
	6.1 A class hierarchy
	6.1.1 An abstract base class
	6.1.2 A concrete class
	6.1.3 Warming up for a race
	6.1.4 Using type traits to check for special member functions

	6.2 Writing and using derived classes in a vector
	6.2.1 A blob moving randomly
	6.2.2 Smart pointers
	6.2.3 Race!
	6.2.4 Some design considerations

	Summary

	7 Associative containers and files
	7.1 Hardcoded answer smash
	7.1.1 Creating and using an std::map
	7.1.2 Pairs, tuples, and structured bindings
	7.1.3 A simple answer smash game

	7.2 Associative containers
	7.2.1 The map type in more detail
	7.2.2 Using lower and upper bound to find a key more efficiently
	7.2.3 Multimaps

	7.3 File-based answer smash
	7.3.1 Loading data from a file
	7.3.2 Picking a word randomly using std::sample
	7.3.3 Answer smash

	Summary

	8 Unordered maps and coroutines
	8.1 Randomly generated matching pennies
	8.2 Matching pennies using an unordered_map
	8.2.1 Unordered containers and std::hash
	8.2.2 Using an unordered_map to make a prediction
	8.2.3 The mind reader game

	8.3 Coroutines
	8.3.1 How to make a coroutine
	8.3.2 A coroutine function
	8.3.3 The coroutine’s return object
	8.3.4 RAII and the rule of zero
	8.3.5 Filling in the promise_type
	8.3.6 Filling in the Task type
	8.3.7 A coroutine mind reader

	Summary

	9 Parameter packs and std::visit
	9.1 The triangle numbers
	9.1.1 Testing our triangle numbers with algorithms
	9.1.2 Execution policies for algorithms
	9.1.3 Mutable lambdas
	9.1.4 More properties of the triangle numbers

	9.2 A simple slot machine
	9.2.1 Revision of constexpr and std::format
	9.2.2 Using std::rotate to spin the reels
	9.2.3 The simple slot machine

	9.3 A better slot machine
	9.3.1 Parameter packs and fold expressions
	9.3.2 Using a parameter pack to find frequencies
	9.3.3 A fairer payout
	9.3.4 Allowing holds, nudges, or spins
	9.3.5 Spinning reels with std::visit and std::views::zip

	Summary

	appendix. Further resources
	index

