Modern
Programming:
Object Oriented
Programming and
Best Practices

Modern Programming: Object Oriented Programming and Best
Practices
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or

reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this
book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this

book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
Author: Graham Lee

Managing Editor: Aditya Shah

Acquisitions Editor: Bridget Neale

Production Editor: Samita Warang

Editorial Board: David Barnes, Mayank Bhardwaj, Ewan Buckingham, Simon Cox, Mahesh Dhyani, Taabish Khan, Manasa

Kumar, Alex Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur, and Jonathan Wray
First Published: June 2019

Production Reference: 1270619

ISBN: 978-1-83898-618-6

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface

Part One — OOP The Easy Way

Chapter 1: Antithesis
Telling an Object What to Do

Designing an Object

Drawing an Object

Unified Modeling Language

Class-Responsibility-Collaborator

Jelly Donuts and Soccer Balls

Opposing Functional Programming

Messages Are Just Requests

An Object's Boundary is Just a Function

That Function-Like Boundary? Actually, a Closure Over the
Constructor Arguments

Capturing Elements of Reusable Design

Finding a Method to Run

Building Objects

Conclusion to Part One

Chapter 2: Thesis

Objects Are Independent Programs

The Open-Closed Nature of Independent Objects

The Correctness of Independent Objects

The Design of Independent Objects

Constructing Independent Objects

Working with Independent Objects

Conclusion to Part Two

Chapter 3: Synthesis
Objects Are Independent Programs

An Object's Behavior Can Be Described in A Contract

Objects Can Be Written, Inspected, And Changed in Context

Put That All Together

Speed
Tailoring
Propriety
Security

Multiprocessing

Usability

Conclusion to Part Three

Part Two — APPropriate Behavior

Chapter 4: Tools That Support Software Development

Introduction

Version Control/Source Code Management

On Version Control and Collaboration

Distributed Version Control

Continuous Integration and Deployment

Why Use CI?

CI On Real Teams

Build Management

Convention or Configuration

Build Systems That Generate Other Build Systems

Bug and work tracking

What Goes in And When?

How Precisely to Track?

Integrated Development Environment

Static Analysis

Code Generation

Writing Your Own Generator Shouldn't Be A First Resort

When the Generator Won't Be Used by A Programmer

Chapter S: Coding Practices

Introduction

Test-Driven Development

The point of TDD

The Software I'm Writing Can't Be Tested

So Is Test-Driven Development A Silver Bullet?

Domain-Driven Design

Behavior-Driven Development

xDD
Design by Contract

Development by Specification

Pair programming

Back-Seat Driving Is Not Pair Programming

Being A Silent Partner Is Not Pair Programming

So, Is Pair Programming Just The Balance Between Those Things?

Pair Programming As Programming

Pairing As A Coaching Practice

But Does It Work?

Code Reviews

Programming Paradigms And Their Applicability

Object-Oriented Programming

Aspect-Oriented Programming

Functional Programming

Chapter 6: Testing

Introduction

A Philosophy of Testing

Black and White Boxes

Shining Light on The Black-Box

Test Case Design

Code-Directed Tests

Testing For Non-Functional Requirements

Automate All The Things

Getting Someone Else In

Other Benefits Of Testing

Accessibility

Structure

Chapter 7: Architecture

Introduction

Non-Functional Requirements Are Essential

When Should I Think About the NFRs?

Performance in Low—Fidelity Prototypes

Security in Low-Fidelity Prototypes

Reliability in Low-Fidelity Prototypes

Defer When Appropriate; Commit When Necessary

Justify Your Decisions

When to Fix and When to Replace

Know When to Nitpick, And When to Leave It

Support, Don't Control

What Does A Software Architect Do?

What A Software Architect Doesn't Do

In one sentence

Chapter 8: Documentation

Introduction

Documentation Is More Useful Than You Might Think

The Up-To-Dateness Problem

Automatically Generated Documentation

Analysis Paralysis

How to Document

Coding Standards

Code Comments

Literate Programming

Comment Documentation

Uml Diagrams

Summary

Chapter 9: Requirements Engineering

Study People
Decide The Model

You Shouldn't Necessarily Build What The Client Asks For

Avoid Asking What You Want To Hear

Understand The Problem Domain

Uncover Tacit Requirements

You Shouldn't Build What Your Client Wants

Human Factors In Software Systems

Economics

Politics

Prioritizing Requirements

Is It Really ""Engineering''?

Chapter 10: Learning

Introduction

Do as Much as You Can

Don't Stick to Your Own Discipline

Put it into Practice

Collaborate and Share what you Learn

Opportunities to L.earn

Rediscovering Lost Knowledge

The Teaching Of Software Creation

Reflective Learning

Chapter 11: Critical Analysis
Introduction

Criticism Is Often Uncritical

How to Form an Argument?

Forms Of Fallacy

Post Hoc, Ergo Propter Hoc

Fundamental Attribution Error

Argument from Fallacy

Continuum Fallacy

Begging the Question

Appeal to Novelty

Appeal to the Person

Further Reading on Arguments

Debates and Programmers

Software as Essays

Chapter 12: Business
Introduction

Evaluate Risks Dispassionately

Project Risks

Business Risks

Operational Risks

Other External Risks

Career Risks

Dealing with Risks

Find Out What You Need to Know, And How You Can Know It

What You Discover May Not Be to Your Liking

Personal Experience

How to Interview A Programmer?

Bear the Goal in Mind

The Interview's There for Both of You

What If You Could Avoid Hypothetical Questions?

Don't Try to Prove the Other Person Is Stupid

Personal Experience

Be Transparent and Honest with Your Business Partners

Choose Appropriate Technology

Manipulation and Inspiration

Worked Example: An App Store Sale

You Don't Need to Be A Founder to Be A Programmer

Chapter 13: Teamwork

Introduction

Focus versus Interruption

Working Environment

Prioritizing Work

Tell Experts What Needs to Be Done

Working with Junior Programmers

Working with Managers

Patterns of Software Project Management

Waterfall
Scrum

Lean Software

Anchoring Bias and Project Management

Bias bias

Negotiation

Empathy

The Effect of Mood on Collaboration

Language and Introversion

Knowing What L evel to Talk and To Listen At

Shared Language and Shiny Buzzwords

Chapter 14: Ethics

Introduction

Examples of Ethical Codes

Application of The Ethical Code

Ethical Ambiguities

Respecting Privacy

Epilogue

Chapter 15: Philosophy

Introduction

Software as A Pursuit

An Economic Philosophy of Software

Direct Economic Factors

Externalities

Traditional Supply-And-Demand Economics

A Management Philosophy of Software

A Social Philosophy of Software
A Pedagogic Philosophy of Software

What Does It Mean to Be ""Good" At Making Software?

Conclusion

Preface
About

This section briefly introduces the author and coverage of the book.

About the Book

Your experience and knowledge always influence the approach you take and the tools you use to write your programs. With a
sound understanding of how to approach your goal and what software paradigms to use, you can create high-performing

applications quickly and efficiently.

In this two-part book, you'll discover the untapped features of object-oriented programming and use it with other software tools to
code fast and efficient applications. The first part of the book begins with a discussion on how OOP is used today and moves on to
analyze the ideas and problems that OOP doesn't address. It continues by deconstructing the complexity of OOP, showing you its

fundamentally simple core. You'll see that, by using the distinctive elements of OOP, you can learn to build your applications more

easily.

The next part of this book talks about acquiring the skills to become a better programmer. You'll get an overview of how various
tools, such as version control and build management, help make your life easier. This book also discusses the pros and cons of
other programming paradigms, such as aspect-oriented programming and functional programming, and helps to select the correct
approach for your projects. It ends by talking about the philosophy behind designing software and what it means to be a "good"

developer.

By the end of this two-part book, you will have learned that OOP is not always complex, and you will know how you can evolve

into a better programmer by learning about ethics, teamwork, and documentation.

About the Author

Graham Lee is an experienced programmer and writer. He has written books including Professional Cocoa Application Security,
Test-Driven iOS Development, APPropriate Behaviour, and APPosite Concerns. He is a developer who's been doing this stuff for
long enough to want to start telling other people about the mistakes he's made, in the hope that they'll avoid repeating them. In his
case, this means having worked for about 12 years as a professional. His first programming experience can hardly be called
professional at all: that was done in BASIC on a Dragon 32 microcomputer. He's been paid for software written in Perl, Python,

Bash, LISP, Pascal, C, Objective-C, Java, Applescript, Ruby, C++, JavaScript, and probably some other things.

Please find me on Twitter (https:/twitter.com/iwasleeg), quitter (https:/quitter.se/leeg), or my blog (https:/sicpers.info) to

comment or query anything here.

Learning Objectives
o Untangle the complexity of OOP by breaking it down to its essential building blocks.
o Realize the full potential of OOP to design efficient, maintainable programs.

o Utilize coding best practices, including Test-Driven Development (TDD), pair programming, and code reviews, to

improve your work.

https://twitter.com/iwasleeg
https://quitter.se/leeg
https://quitter.se/leeg

o Use tools, such as source control and IDEs, to work more efficiently.
o Learn how to most productively work with other developers.

o Build your own software development philosophy.

Audience

This book is ideal for programmers who want to understand the philosophy behind creating software and what it means to be
"good" at designing software. Programmers who want to deconstruct the OOP paradigm and see how it can be reconstructed in a
clear, straightforward way will also find this book useful. To understand the ideas expressed in this book, you must be an

experienced programmer who wants to evolve their practice.

Approach

This book takes an autobiographical approach to explain the various concepts. The information in this book is based on the
author's opinions and desired future directions. The author introduces key ideas and concepts, before going on to explain them in

detail, outline their pros and cons, and guide you in how to most effectively use them in your own development.

Acknowledgements

This book is the result of a long-running research activity, and I hope that any work I have built upon is appropriately cited.
Nonetheless, the ideas here are not mine alone (that distinction is reserved for the mistakes), and many conversations online, at
conferences, and with colleagues have shaped the way I think about objects. A complete list would be impossible to construct, and

an incomplete list would be unfair. So, I'll just say thank you.

Part One — OOP The Easy Way

What is object-oriented programming? My guess is that object-oriented programming will be in the 1980’s what structured
programming was in the 1970's. Everyone will be in favor of it. Every manufacturer will promote his products as supporting it.

Every manager will pay lip service to it. Every programmer will practice it (differently). And no one will know just what it is.

Tim Rentsch, Object oriented programming—https://dl.acm.org/citation.cfm?id=947961

Object-Oriented Programming (OOP) has its beginnings in the simulation-focused features of the Simula programming
language but was famously developed and evangelized by the Smalltalk team at Xerox’s Palo Alto Research Center. They
designed a computing system intended to be personal, with a programming environment accessible to children who could learn

about the world and about the computer simultaneously by modeling real-world problems on their computer.

I recently researched the propagation and extension of OOP from PARC to the wider software engineering community, which
formed the background to my dissertation We Need to (Small)Talk: object-oriented programming with graphical code browsers—

https://www.academia.edu/34882629/We need_to_Small talk object-oriented programming_with_graphical_code_browsers.

What I found confused me: how had this simple design language for children to construct computer programs become so
complicated and troublesome that professional software engineers struggled to understand it before declaring it a failure and

reaching for other paradigms?

A textbook on my shelf, “A Touch of Class,” by Bertrand Meyer, claims to be “a revolutionary introductory programming
textbook that makes learning programming fun and rewarding.” At 876 pages, it makes it a good workout, too: not for the

schoolchild, but for the “entering-computer-science student” at degree level.

Digging further showed that the field of object thinking, object technology, OOP, or whatever you would like to call it had been

subject to two forces:

o Additive complexity. Consultants, academics, and architects keen to make their mark on the world had extended basic
underlying ideas to provide their own, unique, marketable contributions. While potentially valuable in isolation, the
aggregation of these additions (and they were, as we shall see, deliberately aggregated in some cases) yields a rat’s nest of

complexity.

o Structured on-ramps. To make OOP appear easier and more accessible, people developed “object-oriented” extensions to
existing programming tools and processes. While this made it easy to access the observable features of OOP, it made it
ironically more difficult to access the mental shift needed to take full advantage of what is fundamentally a thought process
and problem-solving technique. By fitting the object model into existing systems, technologists doomed it to stay within

existing mindsets.

About the Example Code

In this part of the book, I have consciously chosen to use “mainstream,” popular programming languages wherever possible. |
have not stuck to any one language, but have used things that most experienced programmers should be able to understand at a
glance: Ruby, Python, and JavaScript will be common. Where I’ve used other languages, I’ve done so to express a particular
historical context (Smalltalk, Erlang, and Eiffel will be prevalent here) or to show ideas from certain communities (Haskell or

Lisp).

One of the points of this part of the book is that as a cognitive tool, OOP is not specific to any programming language, and indeed

many of the languages that are billed as object-oriented languages make what (or at least large parts of what) harder. Picking any

https://dl.acm.org/citation.cfm?id=947961
https://www.academia.edu/34882629/We_need_to_Small_talk_object-oriented_programming_with_graphical_code_browsers

one language for the sample code would then mean only presenting a subset of OOP.

Chapter 1
Antithesis
Telling an Object What to Do

The big idea is "messaging" — that is, what the kernal [sic] of Smalltalk/Squeak is all about (and it's something that was never quite
completed in our Xerox PARC phase). The Japanese have a small word — ma — for "that which is in between" — perhaps the nearest
English equivalent is "interstitial.” The key in making great and growable systems is much more to design how its modules

communicate rather than what their internal properties and behaviors should be.

Alan Kay, (squeak-dev mailing list — http:/lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html)

A huge amount of complexity is wrapped up in that most common of operations: invoking an object's method. In many
programming languages — C++, Java, Python, and others — this takes the form anObject .methodName (), which means "there
will be a method on the class that anObject is an instance of, or some antecedent class, where the method is called
methodName, please find it and run it, with the sel £ or this value aliased to anObject." So, for example, in Java we would

expect to find a (non-abstract) public void methodName () { /* ... */ } somewherein anObject's class or parent.
This guarantee introduces a lot of coupling between the caller and the object that holds the method:

1. The caller knows that the object is an instance of some class (there are so many issues bound up with inheritance that it gets

its own chapter, later).
2. The caller knows that the object's class, or some ancestor of it, provides a method with the given name.

3. The method will run to completion in this context, then give control back to the caller (this is not particularly evident from

the syntax in isolation, but nonetheless is assumed).

What would it mean to lift those assumptions? It would make the object a truly independent computer program, communicating
from a distance over an agreed protocol based on message passing. What that object does, how it does it, even what programming
language it's implemented in, are all private to the object. Does it collaborate with a class to find out how to respond to the

message? Does that class have one parent or multiple parents?

The idea behind message-passing is exactly that arms-length separation of concerns, but even programming languages that are
based on the message-passing scheme usually treat it as a special case of "look up a method," to be followed only if the usual
method-resolution fails. These languages typically have a particular named method that will be run when the requested method isn't
found. In Smalltalk, it's called doesNotUnderstand:, while in Ruby it's called method_missing (). Each one receives the
selector (that is, the unique name of the method the caller was hoping to invoke) to decide what to do with it. This gets us a higher
level of decoupling: objects can send messages to one another without having to peek at the others' implementations to discover

whether they implement a method matching the message.

Why is that decoupling valuable? It lets us build our objects as truly standalone programs, considering only what their contract is
with the outside world and how their implementation supports that contract. By requiring, for example, that an object will only
receive a message if it is an instance of a class that contains a Java function of the same name that can be pushed onto the call stack,
even if via a Java interface (a list of methods that a Java class can provide), we adopt a lot of assumptions about the implementation

of the message receiver, turning them into constraints that the programmer must deal with when building the sender. We do not have

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

independent, decoupled programs collaborating over a message interface, but a rigid system with a limited amount of modularity.

Understanding one object means pulling in information about other parts of the system.

This is not merely an academic distinction, as it constrains the design of real systems. Consider an application to visualize some
information about a company's staff, which is located in a key-value store. If I need every object between the view and the store to
know about all of the available methods, then I either duplicate my data schema everywhere in the app by defining methods like
salary () or payrollNumber (), or [provide meaningless generic interfaces like getValue (String key) that remove

the useful information that I'm working with representations of people in the company.

Conversely, I could say to my Employee object "if you get a message you do not recognize, but it looks like a key in the key-
value store, reply with the value you find for that key." I could say to my view object "if you get a message you do not recognize,
but the Employee gives you a value in response to it, prepare that value for display and use the selector name as the label for that
value." The behavior — looking up arbitrary values in the key-value store — remains the same but the message network tells us more

about why the application is doing what it does.

By providing lazy resolution paths like method_missing, systems like Ruby partially lift these assumptions and provide tools to
enable greater decoupling and independence of objects in the network. To fully take advantage of this, we must change the language

used and the way we think about these features.

A guide to OOP in Ruby will probably tell you that methods are looked up by name, but if that fails, the class can optionally
implement method _missing to supply custom behavior. This is exactly backwards: saying that objects are bags of named

methods until that stops working, when they gain some autonomy.

Flip this language: an object is responsible for deciding how it handles messages, and one particular convenience is that they
automatically run methods that match a received selector without any extra processing. Now your object truly is an autonomous

actor responding to messages, rather than a place to store particular named routines in a procedural program.

There are object systems that expose this way of thinking about objects, a good example being the CMU Mach system. Mach is an
operating system kernel that supplies communication between threads (in the same or different tasks) using message passing. A
sender need know nothing about the receiver other than its port (the place to put outgoing messages) and how to arrange a message
to be put in the port. The receiver knows nothing about the sender; just that a message has appeared on its port and can be acted on.
The two could be in the same task, or not even on the same computer. They do not even need to be written in the same language,

they just need to know what the messages are and how to put them on a port.

In the world of service-oriented architecture, a microservice is an independent program that collaborates with peers over a loosely
coupled interface comprised of messages sent over some implementation-independent transport mechanism — often HTTPS or
protocol buffers. This sounds a lot like OOP.

Microservice adopters are able to implement different services in different technologies, to think about changes to a given service
only in terms of how they satisfy the message contract, and to independently replace individual services without disrupting the

whole system. This, too, sounds a lot like OOP.

Designing an Object

The object-oriented approach attempts to manage the complexity inherent in real-world problems by abstracting out knowledge and

encapsulating it within objects. Finding or creating these objects is a problem of structuring knowledge and activities.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener, Designing Object-Oriented Software

An early goal of OOP was to simplify the work of software system design by reducing the big problem "design this large system to
solve these problems" into the small problems "design these small systems" and "combine these small systems such that they solve
these problems in concert". Brad Cox, an object technologist who built the Objective-C language and cofounded a company to
exploit it, wrote an article "What if there's a Silver Bullet...And the Competition Gets It First?" in which he asserted that OOP

represented a significant reduction in software complexity.

In the broadest sense, "object-oriented" refers to the war and not the weapons, the ends and not the means, an objective rather than
technologies for achieving it. It means orienting on objects rather than on processes for building them; wielding all the tools

programmers can muster, from well-proven antiques like Cobol to as-yet missing ones like specification/testing languages, to enable
software consumers, letting them reason about software products with the common-sense skills we all use to understand the tangible

objects of everyday experience.

It means relinquishing the traditional process-centered paradigm with the programmer-machine relationship at the center of the

software universe in favor of a product-centered paradigm with the producer-consumer relationship at the center.

Nonetheless, many "object-oriented" design techniques still rely on considering the system as a whole, building artisanal, bespoke
objects from scratch that will comprise the system that satisfies the customer's needs. In this sense, Cox's vision has not come to
pass: he hoped for the "software industrial revolution" in which standardized components (software-ICs, analogous with integrated
circuits in electronics design) could be specified based on their externally visible behavior and composed into a system relevant to
the task at hand. Rather, we still have a craft industry, but now the application-specific components we build every time are called

"objects."

This approach — designing a whole system as a single software product but calling the bits "objects" — goes under the name of
Object-Oriented Analysis and Design. Typically, it is expressed as a way to decompose big problems according to the data used
to solve the problem, so that OOP becomes an "alternative" to functional programming, in which the big problem is decomposed
according to the operations used in its solution. An uncaptioned table in "Using Functions for Easier Programming" by Neil Savage
— https:/dl.acm.org/citation.cfm?id=3193776 from 2018 describes the term Object-Oriented:

The central mode for abstraction is the data itself; thus the value of a term isn't always predetermined by the input (stateful

approach).
The term Functional programming is described as:

The central mode for abstraction is the function, not the data structure, thus the value of a term is always predetermined by the

input (stateless approach).

Never mind that "functional" languages like Haskell have mechanisms designed for handling state, or that plenty of problems we

might want to solve in the world have both stateful and stateless aspects!

This idea of objects-as-data does have its roots in the OOP movement. In his textbook "4 Touch of Class" from 2009, in Section 2.3

"What is an object?", Bertrand Meyer uses the following definition:
An object is a software machine allowing programs to access and modify a collection of data.

This is in exact opposition to the usual goals of "encapsulation" or "data hiding" that we have heard about, in which we try to forbid
programs from accessing and modifying our data! In this view, we have the object as a "software machine," which is good as it
suggests some kind of independent, autonomous function, but unfortunately, we get the idea that the purpose of this machine is to

look after some slice of our data from the overall collection used throughout the program.

It is this mindset that leads to objects as "active structures," like this typical example in C#:

https://dl.acm.org/citation.cfm?id=3193776

class SomeClass

{

private int field;
public int Field => field;

}

This satisfies our requirement for encapsulation (the field is private), and our requirement that an object allows programs to access

and modity a collection of data. What we have ended up with is no different from a plain old data structure:

struct SomeClass

{

int Field;
}

The exception is that the C# example requires a function call on each access of the field. There is no real encapsulation; objects
with their own fields can make no guesses about the status of those fields, and a system including such objects can only be
understood by considering the whole system. The hoped-for advantage that we could turn our big problem into a composition of

small problems has been lost.

A contributor to this objects-as-data approach seems to have been the attempt to square object-oriented programming with Software
Engineering, a field of interest launched in 1968 that aimed to bring product design and construction skills to computer scientists
by having very clever computer scientists think about what product design and construction might be like and not ask anybody.
Process-heavy and design-artefact-heavy systems, approaches, and "methodologies" (a word that used to mean "the study of
method" until highfalutin software engineers took it to mean "method, but a longer word") recommended deciding on the objects,
their methods, and properties; the data involved; and the presentation and storage of that data in excruciating detail, all in the name

of satistying a Use Case, which is Software Engineering speak for "a thing somebody might want to do."

The inside cover of "Applying UML and Patterns" by Craig Larman (1997) has 22 detailed steps to follow before Construction

when constructing a product.

Objects can be thought of as simulations of some part of the problem we're trying to solve, and a great way to learn from a
simulation is to interact with it. If our objects are just active structures that hold some data on behalf of a program, then we don't get
that benefit: we can't interact with the simulation without building out all of the rest of the program. And indeed that is the goal
behind a lot of the "engineering" processes that use objects: while they may pay lip service to iterative and incremental
development, they still talk about building a system at once, with each object being a jigsaw puzzle piece that satisfactorily fits its

given gap in the puzzle.
So, let's go back to Bertrand Meyer's definition, and remove the problematic bit about letting a program access an object's data:
An object is a software machine

A machine is a useful analogy. It's a device (so something that was built by people) that uses energy to produce some effect. Notice
the absence of any statement about #ow the machine produces that effect, how the machine consumes its materials, or sow the
machine's output is supplied. We've got a thing that does a thing, but if we're going to compose these things together to do other
things, we're going to need to know how to do that composition. Adding a constraint takes us from "it's a machine" to "it's a

machine that we can use like this".

An object is a software machine that can collaborate with other software machines by sending and receiving messages.

Now we've got things that do things and can be used together. We don't restrict the level of complexity of the things that are done by
each machine (so booking a flight and representing a number are both things that we could build machines to do); just how we
would combine them. This has parallels with Brad Cox's software ICs analogy, too. An "integrated circuit" could be anything from a
NAND gate to an UltraSPARC T2. We can use any of the IC's together, of any size, if we just know how to deal with their inputs

and outputs: what voltage should appear on each pin and what that represents.

This analogy tells us that our software system is like a big machine that does something useful by composing, powering, and
employing smaller component machines. It tells us to worry about whether the things coming out of one machine are useful as
inputs to another machine, but not to worry about what's going on inside each machine except in the restricted context of the
maintenance of those machines. It tells us to consider at each point whether the machine we have is more useful than not having that

machine, rather than tracking the progress toward the construction of some all-powerful supermachine.

It even tells us that building an assembly line in which input of a certain type is transformed into output of a certain type is a thing

we might want to do; something that, otherwise, we might believe is solely the domain of the functional programmer.

Drawing an Object
1 see a red door and I want to paint it black. No colors any more [want them to turn black.
Rolling Stones, Paint it Black

If object-oriented programming is the activity of modelling a problem in software, then the kinds of diagrams (and verbal
descriptions) that software teams use to convey the features and behavior of those objects are metamodeling — the modeling of

models. The rules, for example, the constraints implied when using CRC cards—https://dl.acm.org/citation.cfm?id=74879, are then

metametamodels: the models that describe how the models of the models of the problems will work.

Unified Modeling Language

Plenty of such systems (I will avoid the word metametamodels from now on) have been used over time to describe object
systems. The UML (Unified Modeling Language) is the result of combining three prior techniques: the three Elven Kings, Grady
Booch, Ivar Jacobson, and James Rumbaugh bent their rings of power (respectively, the Booch Method, Object-Oriented
Software Engineering, and the Object Modelling Technique — the latter mostly recognized today because the majority of

diagrams in the famous Design Patterns book are drawn to its rules) to the One Rational Ring, wielded by Mike Devlin.

As an aside, Rational started as a company making better Ada applications and tools for other Ada programmers to make better
Ada applications, including the R1000 workstation, optimized for running Ada programs and featuring an integrated development
environment. The R1000 did not take off but the idea of an IDE did, and through a couple of iterations of their Rose product (as
well as the UML and Rational Unified Process), made significant inroads into changing the way organizations planned, designed,

and built software.

The UML and, to differing extents, its precursor modelling techniques, represent a completist approach to object modelling in
which all aspects of the implementation can be represented diagrammatically. Indeed, tools exist to "round-trip" convert UML into

compatible languages like Java and back again into the UML representation.

The model you create that both encapsulates enough of the "business" aspects of the system to demonstrate that you have solved a

problem and enough of the implementation aspects to generate the executable program is not really a model, it is the program

https://dl.acm.org/citation.cfm?id=74879

source. In shooting for completeness, the UML family of modelling tools have missed "modelling" completely and simply

introduced another implementation language.

If the goal of message-passing is to solve our big problem through the concerted operation of lots of small, independent computer
programs loosely coupled by the communications protocol, then we should be able to look at each object through one of two lenses:

internal or external. In fact, the boundary itself deserves special consideration, so there are three views:

1. The "external" lens: What messages can I send to this object? What do I need to arrange in order to send them? What can |

expect as a result?
2. The "internal" lens: What does this object do in response to its messages?
3. The "boundary" lens: Does the behavior of this object satisfy the external expectations?

The final two of these things are closely intertwingled. Indeed some popular implementation disciplines, such as Test-Driven
Development lead you to implement the object internals only through the boundary lens, by saying "I need this to happen when this

message is received," then arranging the object's internals so that it does, indeed, happen.

The first is separated from the others, though. From the outside of an object I only need to know what I can ask it to do; if I also

need to know how it does it or what goes on inside, then I have not decomposed my big problem into independent, small problems.

UML class diagrams include all class features at all levels of visibility: public, package, protected, and private; simultaneously.
Either they show a lot of redundant information (which is not to a diagram's benefit) or they expect the modeler to take the
completist approach and solve the whole big problem at once, using the word "objects" to give some of that 1980s high-technology
feel to their solution. This is a downhill development from Booch's earlier method, in which objects and classes were represented as
fluffy cloud-shaped things, supporting the idea that there's probably some dynamism and complexity inside there but that it's not

relevant right now.

Interestingly, as with Bertrand Meyer's statement that "an object is a software machine allowing programs to access and modify a
collection of data," explored in the section on analysis and design, we can find the point at which Grady Booch overshot the world

of modelling tools in a single sentence in Chapter One of his 1991 book Object-Oriented Design with Applications.

Note

Perhaps there is a general principle in which the left half of a sentence about making software is always more valuable than the

right half. If so, then the (Agile Manifesto — htip://agilemanifesto.org/) is the most insightfully-designed document in our history.

The sentence runs thus:

Object-oriented design's underlying concept is that one should model software systems as collections of cooperating objects...
So far, so good.

... treating individual objects as instances of a class ...

I would suggest that this is not necessary, and that classes, and particularly inheritance, deserve their own section in this part of the
book (see Finding a Method to Run section).

... within a hierarchy of classes.

And here we just diverge completely. By situating his objects within "a hierarchy of classes," Booch is encouraging us to think

about the whole system, relating objects taxonomically and defining shared features. This comes from a good intention —

http://agilemanifesto.org/

inheritance was long seen as the object-oriented way to achieve reuse — but promotes thinking about reuse over thinking about use.

Class-Responsibility-Collaborator

Just as the UML represents a snapshot in the development of a way of describing objects, so do CRC cards, introduced by Kent
Beck and Ward Cunningham in 1989, and propagated by Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener in their
textbook Designing Object-Oriented Software.

The CRC card describes three aspects of an object, none of which is a cyclic redundancy check:
o The Class names
o The Responsibilities of the object
o The Collaborators that the object will need to work with

Not only does this school of design focus on the messaging aspect of objects (the responsibilities will be things I can ask it to do
and the collaborators will be other objects it asks to do things), but it introduces a fun bit of anthropomorphism. You and I can each
pick up a card and "play object," having a conversation to solve a problem, and letting that drive our understanding of what

messages will be exchanged.

David West, in his 2004 book, Object Thinking, presents the object cube, which extends the CRC card into three dimensions by

adding five more faces:
o A textual description of instances of the class

o Alist of named contracts (these are supposed to indicate "the intent of the class creator as to who should be able to send

particular messages," and in his examples are all either "public" or "private")
o The "knowledge required" by an object and an indication of where it will get that knowledge
o The message protocol is a list of messages the object will respond to
o Events generated by the objects

Some bad news: you can't make a cube out of 3x5 index cards; and you can't buy 5x5 index cards. But that's just an aside. Again, as
with using the UML, we've got to record the internals and externals of our object in the same place, and now we need to use large

shelves rather than index boxes to store them.

With both of these techniques, the evolution seems to have been one of additive complexity. Yes, you can draw out the network of

objects and messages, oh and while you're here you can also...

And rationally, each part of each of these metamodels seems to make sense. Of course, at some point, I need to think about the
internals of this object; at some point, I need to consider its instance variables; and at some point, I need to plan the events emitted

by the object. Yes, but not at the same point, so they don't need to be visible at the same time on the same model.

Jelly Donuts and Soccer Balls

Ironically, there is a form of object diagram that makes this separation between the externals and internals clear, though I have only
seen it in one place: The NeXT (and subsequently Apple) jelly-donut model —
http://www.cilinder.be/docs/next/NeX TStep/3.3/nd/Concepts/ObjectiveC/1 _OOP/OOP.htmld/index.html This isn't a tool that

programmers use for designing objects, though: it's an analogy used in some documentation.

http://www.cilinder.be/docs/next/NeXTStep/3.3/nd/Concepts/ObjectiveC/1_OOP/OOP.htmld/index.html

It's an analogy that some authors disagree with. In Object Thinking, David West says that the jelly donut model (which he calls the
soccer-ball model, after Ken Auer) is the model of choice of the "traditional developer," while "an object thinker" would represent

an object anthropomorphically, using a person.

West may well argue that the jelly donut/soccer ball model represents traditional thinking because it reflects the Meyer-ish view that
your system is designed by working out what data it needs and then carving that up between different objects. Ironically, Bertrand
Meyer would probably also reject the soccer ball model, for an unrelated reason: Eiffel follows the Principle of Uniform
Reference, in which an object field or a member function (method) is accessed using the same notation. To an Eiffel programmer,
the idea that the data is "surrounded" by the methods is superfluous; the jelly donut indicates the use of a broken language that

allows the sweet jelly to escape and make everything else sticky.

Opposing Functional Programming

[An] important aspect of functional programming is that functions do not change the data with which they work [...] Object-

oriented imperative languages such as C, Java, or Python change their state as they run.

Neil Savage, (Using Functions for Easier Programming — https://dl.acm.org/citation.cfm?id=3193776)

Many programmers define themselves through their tools, and therefore define themselves as against certain other tools. If you are
a .NET programmer, then you do not use Java. If you are a native mobile programmer, then you do not use JavaScript. If you are a

React programmer, then you do not use Angular. An affiliation with one tool automatically means a disaffiliation with others.

Such partisanship is a confirming example of Sayre's law: the arguments are so fierce because the stakes are so low. For people who
supposedly work in a field of rationality and science, we're really good at getting emotionally brittle when somebody wants to use a

different library, language, text editor, or whitespace symbol than the one we have chosen.

This fierce disagreement over strongly defended similarities extends to the programming paradigm, too. If you are an object-

oriented programmer, then your mortal enemy is the functional programmer—http://www.sicpers.info/2015/03/inspired-by-swift/,

and vice versa.

Messages Are Just Requests

Not so fast! Recall the working definition of objects I have used throughout the antithesis: an object is an isolated, independent
computer program that communicates with other programs by passing messages. This tells us nothing about zow to build those
isolated, independent computer programs. Particularly, there is no mandate to have mutable state anywhere. The following interface

works as a messaging interface for a time-varying list:

public interface MutableList<T> {

void setElements (T[] elements);

void appendObject (T element);

void removeObject (int index) throws OutOfBoundsException;

void replaceObject (int index, T element) throws OutOfBoundsException;
int count () ;

T at (int index);

i

https://dl.acm.org/citation.cfm?id=3193776
http://www.sicpers.info/2015/03/inspired-by-swift/

And so, does this one:

public interface TemporalList<T> {

void setInitialState (T[] elements);

void appendObject (T element, Time when);

void removeObject (int index, Time when) throws InconsistentHistoryException;

void replaceObject (int index, T element, Time when) throws

InconsistentHistoryException;

void revertMostRecentChange (Time beforeNow) ;

int count (Time when) ;

T at(int index, Time when);

i
In the first, time in the list's lifespan is modeled using successive states of the computer memory. In the second, time in the list's
lifespan is modeled explicitly, and the history of the list is preserved. Another option is to model evolution using different objects,
turning time into space:

public interface ImmutableList<T> {

ImmutableList<T> addObject (T element) ;

ImmutableList<T> removeObject (int index) throws OutOfBoundsException;

ImmutableList<T> replaceObject (int index, T element) throws OutOfBoundsException;

int count () ;

T at(int index);

}
Now the list looks a lot like a sort of a functional programming list. But it's still an object. In each case, we have defined what
messages the object responds to but, remembering the section on 7Telling an Object What to Do, we have not said anything about
what methods exist on that object, and certainly not how they are implemented. The MutableList and TemporalList
interfaces use Bertrand Meyer's principle of Command-Query Separation, in which a message either instructs an object to do
something (like add an element to a list) or asks the object for information (like the number of elements in a list), but never does

both. This does not automatically imply that the commands act on local mutable state though. They could execute Datalog

programs, or SQL programs, or be stored as a chain of events that is replayed when a query message is received.

In the ImmutableList interface, commands are replaced by transforms, which ask for a new list that reflects the result of
applying a change to the existing list. Again, no restriction on Zow you implement those transforms is stated (I could imagine
building addObject () by having a new list that delegates every call to the original list, adding 1 to the result of count () and
supplying its own value for at (originalCount); or I could just build a new list with all of the existing elements and the new

element), but in this case, it's clear to see that every method can be a pure function based on the content of the object and the

message parameters.

We can see that "pure function based on the content of the object and the message parameters" is the same as "pure function" more

clearly by rewriting the interface in Python syntax (skipping the implementations):

class ImmutablelList:

def addObject (this, element):

pass

def removeObject (this, index):

pass

def replaceObject (this, index, element) :
pass

def count (this):

pass

def at(this, index):

pass

It's now easier to see that each of these methods is a pure function in its parameters, where this/self is a parameter that's

automatically prepared in other languages (or a part of the method's environment that's automatically closed over in others).

Nothing about message-passing says, "please do not use functional programming techniques."

An Object's Boundary is Just a Function

The following subsections were deeply informed by the article Objects as Closures: abstract semantics of object-oriented languages

— https:/dl.acm.org/citation.cfm?id=62721, which builds this view of objects much more rigorously.

The interface to an object is the collection of messages it responds to. In many cases, this is backed by a collection of methods, each
with the same name as the message selector that will invoke it. Not only is this the easiest thing to do, it's also an implementation
constraint in many programming languages. The preceding Python implementation of ImmutableList can be visualized in this

table:

Message Selector ~ Method to Invoke

addObject ImmutableList.addObject
removeObject Immutablelist.removeObject
replaceObject ImmutableList.replaceObject
count Immutablelist.count

at ImmutablelList.at

Figure 3.1: Visualization of ImmutableList after implementation

This table can equivalently be replaced by a pure function of type Message Selector->Method to Invoke. A trivial
implementation of the function would look up its input in the left-hand column of the table and return the value it finds in the same
row in the right-hand column. An implementation of ImmutableList doesn't need to have any methods at all, choosing

functions based on the message selector:

class ImmutableList:

def _ init (this, elements):

https://dl.acm.org/citation.cfm?id=62721

this.elements = elements

def getattr (this, name):

if name == "count":

return lambda: len(this.elements)

elif name == "at":

return lambda index: this.elements[index]

#
Using this object works the same way as using an object where the methods were defined in the usual way:

>>> il = ImmutableList ([1,2,3])
>>> il.count ()
3

>>> il.at (0)

>>>

So, whichever way you write out an object, its methods are functions that have access to (close over) the object's internals, and its

message interface is one such function that uses the message selector to choose which method to invoke.

Freed from the fetters of the language's idea of where methods live, we see that the function to look up implementations from
selectors can use any information available to it. If the object knows about another object, it can send the message on to the other
object, send a different method in its place, or it could compile a new function and use that. The important idea is that an object is a

function for finding other functions.

That Function-Like Boundary? Actually, a Closure Over the
Constructor Arguments

Our ImmutableList has a constructor method called __init _, which sets up the initial state of the object using its
arguments, and then the message-finding __getattr_ _ function, which chooses functions to respond to the messages that are

sent to the object.

An equivalent way to arrange this is to have the constructor function return the message-finding function as a closure over the
constructor's arguments (and any transformation implied in "setting up the initial state of the object" can be arranged using local
variables that are captured in the closure, too). So, all in all, an object is a single higher-order function: a function that captures its

arguments and returns a closure over those arguments that accept messages and then chooses a method to execute the code:
(constructor arguments) -> message -> (method arguments) -> method return type
Sticking with Python, and using this insight, ImmutableList is reduced to a single expression:

def ImmutablelList (elements) :
return type ('Immutablelist',

(object,),

{' getattr ':

(lambda this, name:

(lambda: len(elements)) 1if name=="count"

else (lambda index: elements[index]) 1f name=="at"
else False)

1O

By the way, this demonstrates why so many object-oriented languages don't seem to have a type system. If "everything is an
object," then even in the most stringent of type systems, everything is a message->method function, so everything has the same

type, and everything type checks.

The preceding definition of ImmutableList does escape the "everything is an object" type scheme by ending with the phrase
else False, meaning "if | didn't find a method, return something that isn't callable, so the user gets a TypeError." A more
complete object system would have the object send itself a doesNotRespond message here, and no breaking out into Python's

usual world of computation would occur.

Capturing Elements of Reusable Design

A pattern for increased monitoring for intellectual property theft by departing insiders

Title of (an article in the Proceedings of the 18th Conference of Pattern Languages of Programs — https://dl.acm.org/citation.cfm?

1d=2579157), PLoP'l1

Christopher Alexander, while evidently seminal in the field of built architecture, seems pretty lazy as architects go. Why? Because
rather than designing a building or even a town himself, he expects the people who will live, work, shop, and play there to do that

for him, and even to build its prototype.

In fact, this has little to do with laziness; it's because he believes that they are the best people to do the designing as they are the
people who best know the uses to which the structure will be put and the problems it will solve. What does he know about that? Not
much; what he knows is the expertise architects have gained in solving problems that crop up when designing and constructing

towns and buildings.

In 4 Pattern Language: Towns, Buildings and Construction, Alexander and his coauthors and reviewers sought to encapsulate that
professional knowledge in a grammar that would allow a user to solve their own construction problems by taking advantage of the
solutions known to work by the expert architects. Each pattern describes the problem it solves, the context in which it solves it, and
the advantages and limitations of the solution. Some represent instant decisions to be made — the placement of columns in a building
construction; others represent experiences to be nurtured gradually — the opening of street cafes to facilitate relaxed interaction
between people and their environment. The grammar developed in A Pattern Language is additive, so each pattern develops ideas
that have been introduced previously without depending on patterns that will be seen later, and there are no cyclic references. Each

pattern is hyperlinked (old-school and using page numbers) to the preceding patterns it builds upon.

We could expect that, in taking inspiration from A Pattern Language, software designers and builders would create a pattern
language that allowed users of computers to design and build their own software, by elucidating the problems the users are facing
and expressing known approaches to solving those problems. And indeed, that is exactly what happened when Kent Beck and Ward

Cunningham published Using Pattern Languages for Object-Oriented Programs — http://c2.com/doc/oopsla87.html. The five

Smalltalk UI patterns listed in that report are like a microcosm of a Human Interface Guidelines document, written for the people

who will use the interface.

https://dl.acm.org/citation.cfm?id=2579157
https://dl.acm.org/citation.cfm?id=2579157
http://c2.com/doc/oopsla87.html

However, what most of us will find when looking for examples of a pattern language for software construction are the 23 patterns in
the 1994 "Gang of Four" book Design Patterns.: Elements of Reusable Design by Gamma, Helm, Johnson, and Vlissides. Compared
with the 253 architectural design patterns documented by Alexander et al., the software pattern language seems positively anemic.

Compared with practice, the situation looks even worse. Here are the three patterns that see regular use in modern development:

o Iterator: You won't have implemented the Iterator pattern yourself; it's the one that programming language designers

have worked out how to supply for you, via the for (element in collection) construct.

o Singleton: You'll have only built Singleton so that you could write that blog post about why Singleton is "Considered

Harmful."
o Abstract Factory: The butt of all jokes about Java frameworks by people who haven't used Java frameworks.

Here's the thing: the Gang of Four book is actually very good, and the patterns are genuinely repeatable patterns that can be
identified in software design and that solve common problems. But as Brian Marick argued in Patterns Failed. Why? Should we

care?—https://www.deconstructconf.com/2017/brian-marick-patterns-failed-why-should-we-care, the 23 patterns discussed therein

are implementation patterns, and software implementors (that's us) don't want repeatable patterns; we want abstraction. Don't tell
p p > p P p 5

me "Oh, I've seen that before, what you do is..."; tell me "Oh, I've seen that before, here's the npm module I wrote."

The big winner for software reuse was not information that could be passed from one programmer to another, but information that
could be passed from one lawyer to another, which allowed other information to be passed from one programmer to another's
program. The free software license (particularly, due to the conservative nature of technologists in business, the non-copyleft free
software licenses like the MIT or BSD) permitted some programmers to publish libraries to CTAN and its spiritual successors, and

permitted a whole lot of other programmers to incorporate those libraries into their works.

In that sense, the end situation for software reuse has been incredibly similar to the "software ICs" that Brad Cox described, for
example, in Object-Oriented Programming: An Evolutionary Approach. He proposed that we would browse the catalogue (the npm
repository) for software ICs that look like they do what we want, compare their data sheets (the README . md or Swagger docs),

then pick one and download it for integration into our applications (npm install).

Anyway, back to design patterns. Marick suggested that the way we work means that we can't benefit from implementation patterns
because we don't rely on repeated practice in implementation. Some programmers do participate in Code Kata —
http://codekata.com/, a technique for instilling repeated practice in programming, but by and large we try to either incorporate an

existing solution or try something new, not find existing solutions and solve problems in similar ways.

Indeed, we could vastly shrink the Gang of Four book by introducing Strategy (315) and describing all of the other problems in its
terms. Abstract Factory? A Strategy (315) for creating objects. Factory Method? The same. Adapter? A Strategy (315) for choosing
integration technologies. State? A Strategy (315) for dealing with time. But we don't do that, because we think of these as different

problems, so describe them in different terms and look for different solutions.

So, abstraction has to stop somewhere. Particularly, it has to stop by the time we're talking to the product owners or sponsors, as
we're typically building specific software tools to support specific tasks. Built architecture has techniques for designing residences,
offices, shops, and hotels, rather than "buildings," A house for a young single worker is different from a house for a retired widow,
although both are residences with one occupant. So, this points us, as Brian Marick concludes, to having design patterns in our
software's problem domain, telling us how domain experts address the problems they encounter. We might have good abstractions
for stateful software, or desktop application widgets, or microservice-based service architecture, but we have to put them to specific

ends, and the people who know the field know the problems they're trying to solve.

And indeed, that is one of the modern goals of the Pattern Language of Programming conference series and the software patterns

community. I expected that, on first reading, the pull quote chosen for this section ("A pattern for increased monitoring for

https://www.deconstructconf.com/2017/brian-marick-patterns-failed-why-should-we-care
http://codekata.com/

intellectual property theft by departing insiders") would raise a few cynical laughs: "Wow, the patterns folks are so far down the
rabbit hole that they're writing patterns for that?" Well, yes, they are, because it's a problem that is encountered multiple times by
multiple people and where knowledge of the common aspects of the solution can help designers. Any enterprise IT architect, CISO,
or small company HR person is going to know that leavers, particularly those who left due to disagreements with management or
being poached by competitors, represent an increased risk of IP theft and will want a way to solve that problem. Here, the pattern

language shows the important dimensions of the problem, the facets of the solution, and the benefits and drawbacks of the solution.
A quote from the pattern description is revealing:
The authors are unaware of any implementation of the pattern in a production environment.

This means that, while the solution does (presumably and hopefully) capture expert knowledge about the problem and how to solve
it, it is not tested. The design patterns from the Beck and Cunningham paper (and Beck's later Smalltalk Best Practice Patterns), and
indeed the Gang of Four book, were all based on observation of how problems had commonly been solved. There were not lots of
C++ or Smalltalk programs that all had classes called AbstractFactory, but there were lots of C++ or Smalltalk programs that

solved the "We need to create families of related or dependent objects without specifying their concrete classes" problem.

On the other hand, there is nobody outside of an SEI lab who has used "Increased Monitoring for Intellectual Property Theft by

Departing Insiders" as their solution to, well, that. So, perhaps patterns have gotten out of hand.

Finding a Method to Run

Don't go out of your way to justify stuff that's obviously cool. Don't ridicule ideas merely because they're not the latest and greatest.

Pick your own fashions. Don't let someone else tell you what you should like.

Larry Wall, (Perl, the first postmodern computer language—https://www.perl.com/pub/1999/03/pm.html/)

The Perl community has a mantra: TIMTOWTDI (pronounced "Tim Toady"). It stands for "There Is More Than One Way to Do It"
and reflects the design principle that the language should enable its users to write programs in the way in which they are thinking
and not in the way that the language designer thought about it. Of course, TIMTOWTDI is not the only way to do it, and the Zen of
Python—nhttp://wiki.c2.com/?PythonPhilosophy takes a different (though not incompatible) tack:

There should be one-- and preferably only one --obvious way to do it.

So, how is a method found? There is more than one way to do it. The first, and easiest to understand, is that an object has a method
with the same name as the message selector, and the language assumes that when you send that message, it's because you want to

invoke that method. That's how this looks in Javascript:

const foo = {
doAThing: () => { console.log("I'm doing a thing!"); }
}

foo.doAThing () ;

The next way is the most general, and doesn't exist in all languages and is made difficult to use in some. The idea is to have the

object itself decide what to do in response to a message. In Javascript that looks like this:
const foo = new Proxy ({}, {
get: (target, prop, receiver) => (() => {

console.log("I'm doing my own thing!");

https://www.perl.com/pub/1999/03/pm.html/
http://wiki.c2.com/?PythonPhilosophy

1)y
1)

foo.doAThing () ;

While there are many languages that don't have syntax for finding methods in this way, it's actually very easy to write yourself. We
saw in the section on functional programming that an object is just a function that turns a message into a method, and so any
language that lets you write functions returning functions will let you write objects that work the way you want them to. This
argument is also pursued in the talk Object-Oriented Programming in Functional Programming in Swift—

https://www.dotconferences.com/2018/01/graham-lee-object-oriented-programming-in-functional-programming-in-swift.

Almost all programming languages that have objects have a fall-through mechanism, in which an object that does not have a
method matching the message selector will look by default at another object to find the method. In Javascript, fully bought into the
worldview of Tim Toady, there are two ways to do this (remember that this is already the third way to find methods in Javascript).

The first, classic, original recipe Javascript way, is to look at the object's prototype:
function Foo() {};

Foo.prototype.doAThing = () => { console.log("Doing my prototype's thing!"™); };

new Foo () .doAThing () ;
And the second way, which in some other languages is the on/y way to define a method, is to have the object look at its class:

class Foo {
doAThing () { console.log("Doing my class's thing!"); }
}

new Foo () .doAThing () ;

A little bit of honesty at the expense of clarity here: these last two are actually just different syntax for the same thing; the method

ends up being defined on the object's prototype and is found there. The mental model is different, and that's what is important.

But we can't stop there. What if that object can't find the method? In the prototype case, the answer is clear: it could look at its
prototype, and so on, until the method is found, or we run out of prototypes. To an external user of an object, it looks like the object
has all of the behavior of its prototype and the things it defines (which may be other, distinct features, or they may be replacements

for things that the prototype already did). We could say that the object inherits the behavior of its prototype.

The situation with inheritance when it comes to classes is muddier. If my object's class doesn't implement a method to respond to a
message, where do we look next? A common approach, used in early object environments such as Simula and Smalltalk, and in
Objective-C, Java, C#, and others, is to say that a class is a refinement of a single other class, often called the superclass, and to
have instances of a class inherit the behavior defined for instances of the superclass, and its superclass, until we run out of

superclasses.

But that's quite limiting. What if there are two different classes of object that one object can be seen as a refinement of? Or two
different classes that describe distinct behaviors it would make sense for this object to inherit? Python, C++, and others allow a
class to inherit from multiple other classes. When a message is sent to an object, it will look for a method implementation in its

class, then in...

...and now we get confused. It could look breadth-first up the tree, considering each of its parents, then each of their parents, and so

on. Or it could look depth-first, considering its first superclass, and its first superclass, and so on. If there are multiple methods that

https://www.dotconferences.com/2018/01/graham-lee-object-oriented-programming-in-functional-programming-in-swift

match a single selector, then which is found will depend on the search strategy. And of course, if there are two matching methods

but with different behavior, then the presence of one may break features that depend on the behavior of the other.

Attempts have been made to get the benefits of multiple inheritance without the confusion. Mixins—

https://dl.acm.org/citation.cfm?id=97982 represent "abstract subclasses," which can be attached to any superclass. This turns a

single-superclass inheritance system into one that's capable of supporting a limited form of multiple inheritance, by delegating

messages to the superclass and any mixins.

However, this does not address the problem that conflicts will arise if multiple mixins, or a superclass and a mixin, supply the same
method. A refinement to the idea of mixins, called traits, introduces additional rules that avoid the conflicts. Each trait exposes the
features it provides, and the features it requires, on the class into which it is mixed. If the same feature is provided by two traits, it

must either be renamed in one or be removed from both and turned into a requirement. In other words, the programmer can choose

to resolve the conflict themselves by building a method that does what both of the traits need to do.

So, inheritance is a great tool for code reuse, allowing one object to borrow features from another to complete its task. In

"Smalltalk-80: The Language and its Implementation," that is the justification for inheritance:

Lack of intersection in class membership is a limitation on design in an object-oriented system since it does not allow any sharing

between class descriptions. We might want two objects to be substantially similar, but to differ in some particular way.

Over time, inheritance came to have stronger implications for the intention of the designer. While there was always an "is-a"
relationship between an instance and its class (as in, an instance of the OrderedCollection class is an
OrderedCollection), there came to be a subset relationship between a class and its subclasses (as in, SmallIntegeris a
subclass of Number, so any instance of SmallInteger is also an instance of Number). This then evolved into a subtype
relationship (as in, you have only used inheritance correctly if any program that expects an instance of a class also works correctly
when given an instance of any subclass of that class), which led to the restrictions that tied object-oriented developers in knots and
led to "favor composition over inheritance": you can only get reuse through inheritance if you also conform to these other, unrelated
requirements. The rules around subtypes are perfectly clear, and mathematically sound, but the premise that a subclass must be a

subtype does not need to be upheld.

Indeed, there's another assumption commonly made that implies a lot of design intent: the existence of classes. We have seen that
Javascript gets on fine without classes, and when classes were added to the language, they were implemented in such a way that
there is really no "class-ness" at all, with classes being turned into prototypes behind the scenes. But the presence of classes in the
design of a system implies, well, the presence of classes: that there is some set of objects that share common features and are

defined in a particular way.

But what if your object truly is a hand-crafted, artisanal one-off? Well, the class design community has a solution for that: Singleton
— the design pattern that says, "class of one." But why have a class at all? At this point, it's just additional work, when all you want
is an object. Your class is now responsible for three aspects of the system's behavior: the object's work, the work of making the
object, and the work of making sure that there is only one of those objects. This is a less cohesive design than if you just made one

object that did the work.

If it were possible (as it is in Javascript) to first make an object, then make another, similar object, then more, then notice the
similarities and differences and encapsulate that knowledge in the design of a class that encompasses all of those objects, then that
one-off object would not need to be anything more than an object that was designed once and used multiple times. There would be
no need to make a class of all objects that are similar to that one, only to constrain class membership again to ensure that the

singleton instance cannot be joined by any compatriots.

But as you've probably experienced, most programming languages only give you one kind of inheritance, and that is often the

"single inheritance, which we also assume to mean subtyping" variety. It's easy to construct situations where multiple inheritance

https://dl.acm.org/citation.cfm?id=97982

makes sense (a book is both a publication that can be catalogued and shelved and it is a product that can be priced and sold);
situations where single inheritance makes sense (a bag has all the operations of a sez, but adding the same object twice means it's in
the bag twice); and situations where customizing a prototype makes sense (our hypothesis is that simplifying the Checkout
interaction by applying a fixed shipping cost instead of letting the customer choose from a range of options will increase completion
among customers attempting to check out). It's easy to consider situations in which all three of those cases would simultaneously
apply (an online bookstore could easily represent books, bags, and checkouts in a single system), so why is it difficult to model all

of those in the same object system?

When it comes down to it, inheritance is just a particular way to introduce delegation — one object finding another to forward a
message on to. The fact that inheritance is constrained to specific forms doesn't stop us from delegating messages to whatever

objects we like, but it does stop us from making the reasons for doing so obvious in our designs.

Building Objects

What then is a personal computer? One would hope that it would be both a medium for containing and expressing arbitrary
symbolic notions, and also a collection of useful tools for manipulating these structures, with ways to add new tools to the

repertoire.
Alan C. Kay, "A Personal Computer for Children of All Ages"

Smalltalk is both a very personal and a very live system. This affected the experience of using, building, and sharing objects built in
the system, which were all done in a way very different from the edit-compile-assemble-link-run workflow associated with COBOL

and later languages.

As an aside, I'm mostly using "Smalltalk" here to mean "Smalltalk-80 and later things that derived from it without changing the
experience much." Anything that looks and feels "quite a lot like" a Smalltalk environment, such as Pharo or Squeak, is included.
Things that involve a clearly more traditional workflow, like Java or Objective-C, are excluded. Where to draw the line is left

intentionally ambiguous: try out GNU Smalltalk—nhttp://smalltalk.gnu.org/) and decide whether you think it is "a Smalltalk" or not.

A Smalltalk environment is composed of two parts: the virtual machine can execute Smalltalk bytecode, and the image contains

Smalltalk sources, bytecode, and the definitions of classes and objects.

So, the image is both personal and universal. Personal in the sense that it is unique to me, containing the objects that I have created
or acquired from others; universal in the sense that it contains the whole system: there are no private frameworks, no executables

that contain the Directory Services objects but not the GUI objects, and no libraries to link before I can use networking.

This makes it very easy to build things: I make the objects I need, and I find and use the objects that I can already take advantage of.
On the other hand, it makes sharing quite fraught: if I need to make a change to a system object for some reason, you cannot take in
my change without considering the impact that change will have on everything else in your image. If you want to add my class to
your image, you have to make sure that you don't already have a class with that name. We cannot both use the same key on the

Smalltalk dictionary for different purposes.

It's also live, in that the way you modify the image is by interacting with it. Methods are implemented as Smalltalk bytecode
(though that bytecode may simply be a request to execute a "primitive method" stored on the virtual machine) by writing the
method into a text field and sending a message to the compiler object asking it to compile the method. Classes are added by sending

a message to an existing class, asking it to create a subclass. Objects are created by sending a new message to a class.

While there is editing, compilation and debugging, this all takes place within the image. This makes for a very rapid prototype and
feedback experience (unsurprising, as one vision behind Smalltalk was to let children explore the world and computers in tandem

— https://mprove.de/diplom/gui/kay72.html. Any change you make affects the system you are using, and its effects can be seen

http://smalltalk.gnu.org/
https://mprove.de/diplom/gui/kay72.html

without rebuilding or quitting an application to launch it again. Similarly, the system you are using affects the changes you are
making: if an object encounters a message to which it does not respond or an assertion is not satisfied, then the debugger is brought

up, so you can correct your code and carry on.

The fast feedback afforded by building Uls out of the objects that represent Ul widgets was used by lots of Rapid Application
Development tools, such as NeXT's Interface Builder, Borland's Delphi and Microsoft's Visual Basic. These tools otherwise took a

very different position to the trade-offs described previously.

While an IDE like Eclipse might be made out of Java, a Java developer using Eclipse is not writing Java that modifies the Eclipse
environment, even where the Java package they are writing is an Eclipse plugin. Instead, they use the IDE to host tools that produce

another program containing their code, along with references to other packages and libraries needed for the code to work.

This approach is generic rather than personal (anyone with the same collection of packages and libraries can make the standalone
code work without any step integrating things into their image) and specific rather than universal (the resulting program — mistakes

aside — contains only the things needed by that program).

This one key difference — that there is a "build phase" separating the thing you're making from the thing you're making it in — is the
big distinction between the two ways of building objects, and one of the ways in which the transfer of ideas in either direction

remains imperfect.

Those Rapid Application Development tools with their GUI builders let you set up the UI widgets from the vendor framework and
configure their properties, by working with live objects rather than writing static code to construct a UL In practice, the limitations

on being able to do so are:

o To understand the quality of a UI, you need to work with the real information and workflows the interface exposes, and that
is all in the program source that's sat around in the editor panes and code browsers, waiting to be compiled and integrated

with the UI layout into the (currently dormant) application.

o Changes outside the capability of the Ul editor tool cannot be reflected within it. Changing the font on a label is easily tested;

writing a new text transform to be applied to the label's contents is not.

o The bits of a UI that you can test within a UI builder are usually well-defined by the platform's interface guidelines anyway,

so you never want to change the font on a label.
In practice, even with a Ul builder you still have an edit-build-debug workflow.

A similar partial transfer of ideas can be seen in test-driven development. A quick summary (obviously, if you want the long

version, you could always buy my book—https://qualitycoding.org/test-driven-ios-development-book/) is that you create an object

incrementally by thinking of the messages you want to send it, then what it should do in response, then you send those messages
and record whether you get the expected responses. You probably do not get the expected response, as you have not told the object
how to behave yet, so you add the bit of behavior that yields the correct response and move on to the next message, after doing a bit

of tidying up.

In the world of Smalltalk, we have already seen that something unexpected happening leaves you in the debugger, where you can
patch up the thing that's broken. So, the whole of the preceding process can be resummarised as "think of a message, type it in, hit

do it, edit the source until the debugger stops showing up," and now you have an increment of working software in your image.

In the world of Java, even though the same person wrote both the SUnit and JUnit testing tools, the process is (assuming you

already have a test project with the relevant artefacts):

1. Write the code to send the message

https://qualitycoding.org/test-driven-ios-development-book/

2. Appease the compiler

3. Build and run the test target

4. Use the output to guide changes, back in the editor
5. Repeat 3 and 4 until the test passes

So, there's a much longer feedback loop. That applies to any kind of feedback, from acceptance testing to correctness testing. You

can't build the thing you're building from within itself, so there's always a pause as you and your computer switch context.

The reason for this context switch is only partly due to technology: in 2003, when Apple introduced Xcode, they made a big deal of
"fix and continue," a facility also available in Java environments, amongst others: when the source code is changed, within certain
limits, the associated object file can be rebuilt and injected into the running application without having to terminate and re-link it.
However, that is typically not how programmers think about their activities. The worldview that lends us words like "toolchain" and
"pipeline" is one of sequential activities, where a program may end up "in production" but certainly doesn't start there. People using

the programs happens at the end, when the fun is over.

Conclusion to Part One

We have seen that Object-Oriented Programming is indeed, as many detractors suggest, a complex paradigm with many moving
parts. We have also seen that this complexity is not essential: at its core is a single idea that a problem can be modeled as lots of
distinct, interacting agents, and that each of those agents can be modeled as a small, isolated computer program. The solution to the

original problem is found in the interaction between those agents, which is mediated by message passing.

Some of the incidental complexity seems to have been added by people wanting to make their mark: the proliferation in design
patterns appears to have occurred because it is always easier to add a new pattern than to consolidate existing ones; however much
some people might like to erase Singleton from history. Objects are not "just" decomposition and message-passing, they are that and

providing access to a program's data, or that and a hierarchy of classes.

Much of the complexity associated with objects comes from another source: trying to treat object-oriented programming as much
like the structured, procedural, imperative processes that came before, and map its terminology onto the thought structures and
workflows of the established ways of writing software. This is the "structured on-ramp" of this section's introduction, in which OOP
is seen as an extension to existing ideas, and programs are made "better" by adding objects in the same way that food is made
"better" by sprinkling paprika on top. Thus, it is that Ann Weintz could say that "A NeXT Object is simply a piece of C code" in
Writing NeXT Applications. Thus, object-oriented software engineering is about building complex software systems by careful, top-
down analysis of the procedures (or bottom-up analysis of the data and its manipulations), while also as a side activity creating a

hierarchy of classes with particular relationships.

If objects are something you do as well as writing software, then no wonder it is harder than not using the objects! OOP seems to

have failed, but it may not even have been attempted.

Chapter 2
Thesis

Objects Are Independent Programs

The thread running through a lot of different presentations is that objects are isolated computer programs that communicate by
sending and receiving messages. Often, there is an and, but the second clause differs greatly. Let’s ignore it and focus on that first

clause.

For example, in Smalltalk-80 and (most of) its descendants, objects could be described as isolated computer programs that
communicate by sending and receiving messages and are instances of classes that are organized in a tree structure. The second
part here, the part about classes, weakens the first part by reducing the scope of isolation. Why is it required that both the sender
and recipient of a message are instances of a class, and that both classes are members of the same tree structure? It is not, so let’s

strengthen the idea of isolated programs by removing the constraint on inheritance.

An existing example of an OOP environment with this form of isolation is COM (yes, the Microsoft Component Object Model,
that COM). When you receive an object, you know nothing about it but that it responds to the messages defined in the [lUnknown

—https://docs.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown interface, which let you keep a reference

to the object, relinquish that reference, or find out what other interfaces it supports. It tells you nothing about where that object
came from, whether it inherited from another object, or whether it has fresh, hand-crafted, artisanal implementations of each of its

methods.

An inference you can make about both COM objects and Smalltalk objects is that they exist in the same process, that is, the
same blob of memory and execution context, as the thing sending them the message. Maybe they internally forward their
messages over some IPC (inter-process communication) or RPC (remote procedure call) mechanism, but there is at least part
of the object that needs to be in your part of the computer. If it crashes that process, or accesses memory beyond its own instance

variables, that impacts the other objects around it. If a Smalltalk object hogs the CPU, other objects do not get to run.

So, while Smalltalk objects approximate the isolated computer programs concept, the approximation is inexact. Meanwhile,
on Mach, the only thing a sender knows about an object is a “port,” a number that the kernel can use to work out what object is
being messaged. An object could be on a different thread, on the same thread, in a different process, or (at least in theory) on a
different computer, and sending it a message works in the same way. The receiver and the sender could share all of their code,
inherit from a common ancestor, or be written in different programming languages and running on CPUs that store numbers in a

different way, but they can still send each other a message.

Between the extreme of Smalltalk (all objects are the same sort of objects and are related to each other) and Mach there is the

concept of the MetaObject—http://wiki.c2.com/?MetaObjectProtocol. As the objects in a software system define how the

system models some problem, the metaobjects define how the software system expresses the behavior of its objects. The

MetaObject protocol exposes messages that change the meaning of the object model inside the system.

A MetaObject protocol, in other words, lets a programmer choose different rules for their programming environment for
different sections of their program. Consider method lookup, for example: in Part One, we saw how any of prototypical
inheritance, single inheritance and multiple inheritance, have benefits and drawbacks, and each impose different constraints on the
design of an object system. Why not have all of these inheritance tools — and indeed any others, and other forms of delegation — to

hand at the same time? With a MetaObject protocol, that’s possible.

https://docs.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
http://wiki.c2.com/?MetaObjectProtocol

The Open-Closed Nature of Independent Objects

In his book Object-Oriented Software Construction, Bertrand Meyer introduced the Open-Closed Principle. This principle may be
one of the most confusingly stated ideas in all of computing and has led to a whole sub-industry of articles and podcasts
explaining how a ShapeRenderer can draw Squares and Circles (of course, I have also partaken of such, and will

continue here).

The Open-Closed Principle says that a module (an object, in our case) should be open to extension — it should be possible to
extend its behavior for new purposes — and yet closed to modification — you should not need to change it. This design principle
comes with a cost, as you need to design your objects to support extensibility along lines that are not yet known (or at least, to
make it clear which lines are or are not going to be fruitful) in return for the benefit that maintainers and users of the objects know

that they are going to be stable and will not introduce breakages into a system through unexpected changes.

The nature of objects explored above, their treatment as completely independent programs, supports the Open-Closed Principle by
keeping each object at arm’s length from the others. Their only point of contact is their messaging interface, even to their parent

classes (remembering, of course, that they may not have any).

Therefore, to be open and closed, an object also needs to be ignorant: it should know as little as possible about its context. It
knows what to do when it receives messages, and it knows when to send messages, but should otherwise remain uninformed as to
what is happening around it. An ignorant object can be used in multiple contexts — open to extensions of its use — due to the fact

that it cannot distinguish these contexts. It requires no contextual changes, and thus is closed to modification.

The Correctness of Independent Objects

When each object is its own separate program, then we turn the problem of “does this big system work” into two separate

problems:
o Do these independent objects work?
o Are these independent objects communicating correctly?

Each of these problems has been solved repeatedly in software engineering, and particularly in OOP. An object’s message
interface makes a natural boundary between “this unit” and “everything else”, for the purposes of defining unit tests. Kent Beck’s
Test-Driven Development approach sees developers designing objects from the message boundary inwards, by asking themselves
what messages they would like to send to the object and what outcomes they would expect. This answers the question “do these

independent objects work?” by considering each of the objects as a separate system under test.

The London School of TDD, exemplified by the book Growing Object-Oriented Sofiware, Guided by Tests, takes an extreme
interpretation of the message-boundary-as-system-boundary rule, by using mock objects—

http://xunitpatterns.com/Mock%200bject.html as stand-ins for all collaborators of the object under test. 7his object (the one being

tested) needs to send a message to that object (some collaborator), but there’s no reason to know anything about that object other
than that it will respond to the message. In this way, the London School promotes the ignorance described above as supporting the

Open-Closed Principle.

With the Eiffel programming language, Bertrand Meyer also addressed the question of whether each object works by allowing
developers to associate a contract with each class. The contract is based on work Edsger Dijkstra and others had done on using
mathematical induction to prove statements about programs, using the object’s message interface as the natural outer edge of the
program. The contract explains what an object requires to be true before handling a given message (the preconditions), what an

object will arrange to be true after executing its method (the postconditions), and the things that will always be true when the

http://xunitpatterns.com/Mock%20Object.html

object is not executing a method (the invariants). These contracts are then run as checks whenever the objects are used, unlike unit

tests which are only executed with the inputs and outputs that the test author originally thought of.

Contracts have turned up in a limited way in the traditional software development approach in the form of property-based testing

—http://blog.jessitron.com/2013/04/property-based-testing-what-is-it.html, embodied in Haskell’s QuickCheck, Scala’s

ScalaCheck, and other tools. In Eiffel, the contract is part of the system being constructed and describes how an object is to be
used when combined with other objects. Property-based tests encapsulate the contract as an external verifier of the object under
test by using the contract as a test oracle from which any number of automated tests can be constructed. A contract might say “if
you supply a list of e-mail messages, each of which has a unique identifier, this method will return a list containing the same
messages, sorted by sent date and then by identifier if the dates are equal”. A property-based test might say “for all lists of e-mail
messages with unique identifiers, the result of calling this method is...”. A developer may generate a hundred or a thousand tests of
that form, checking for no counter-examples as part of their release pipeline.

The second part of the problem — are these independent objects communicating correctly? — can also be approached in multiple
ways. It is addressed in a contract world such as Eiffel by ensuring that at each point where an object sends a message to a

collaborator, the preconditions for that collaborator are satisfied. For everybody else, there are integration tests.

If a unit test reports the behavior of a single object, then an integration test is trivially any test of an assembly containing more
than one object. Borrowing Brad Cox’s Software ICs metaphor, a unit test tells you that a chip works, an integration test tells you
that a circuit works. A special case of the integration test is the system test, which integrates all of the objects needed to solve

some particular problem: it tells you that the whole board does what it ought to.

The Design of Independent Objects

It is appropriate to digress into a discussion of design here, because the activities of testing and design are closely related. Eric
Evans’s book Domain-Driven Design discusses a form of what was previously called object-oriented analysis: finding the objects
needed to solve a problem by interpreting a description of the problem. The process is straightforward. Take a description of the
problem, and the things that do things are objects, the things they do are methods, and the things they fell or ask other things are

messages. Evans proposes having a single “ubiquitous” language across the whole development team, so that the words used by

the person who has the problem — the Goal Donor—nhttp://wiki.c2.com/?GoalDonor are the same words as those used by the
people building the solution. Borrowing an idea from Christopher Alexander, it is the ubiquitous language of the problem and
solution domain in which one would expect to find a pattern language, as common aspects of problems become addressed in

similar ways.

Behavior-Driven Development marries the technical process of Test-Driven Development with the design concept of the
ubiquitous language by encouraging developers to collaborate with the rest of their team on defining statements of desired
behavior in the ubiquitous language and using those to drive the design and implementation of the objects in the solution domain.
In that way, the statement of what the Goal Donor needs is also the statement of sufficiency and correctness — that is, the
description of the problem that needs solving is also the description of a working solution. This ends up looking tautological

enough not to be surprising.

Constructing Independent Objects

The theme running through this is that sufficiency is sufficient. When an object has been identified as part of the solution to a
problem and contributes to that solution to the extent needed (even if for now that extent is “demonstrate that a solution is
viable”), then it is ready to use. There is no need to situate the object in a taxonomy of inherited classes, but if that helps to solve

the problem, then by all means do it. There is no need to show that various objects demonstrate a strict subtype relationship and

http://blog.jessitron.com/2013/04/property-based-testing-what-is-it.html
http://wiki.c2.com/?GoalDonor

can be used interchangeably, unless solving your problem requires that they be used interchangeably. There is no need for an
object to make its data available to the rest of the program, unless the problem can be better solved (or cheaper solved, or some

other desirable property) by doing so.

I made quite a big deal earlier of the Open-Closed Principle, and its suggestion that the objects we build be “open to
modification.” Doesn’t that mean that anticipating the ways in which a system will change and making it possible for the objects

to flex in those ways?

To some extent, yes, and indeed that consideration can be valuable. If your problem is working out how much to bill snooker
players for their time on the tables in your local snooker hall, then it is indeed possible that your solution will be used in the same
hall on the pool tables, or in a different snooker hall. But which of those will happen first? Will either happen soon? Those are

questions to work with the Goal Donor and the Gold Owner—http://wiki.c2.com/?GoldOwner, the person paying for the solution)

on answering. Is it worth paying to solve this related problem now, or not?

Regardless of the answer, the fact is that the objects are still ready to go to work as soon as they address the problem you have
now. And there are other ways to address related problems anyway, which don’t require “future-proofing” the object designs to
anticipate the uses to which they may be put. Perhaps your SnookerTable isn’t open to the extension of representing a pool
table too, but the rest of the objects in your solution can send messages to a PoolPlayer in its stead. As the variant on the

Open-Closed Principle showed, these other objects could be ignorant of the game played on the table.

Some amount of planning is always helpful, whether or not the plan turns out to be. The goal at every turn should be to understand
how we get to what we now want from what we have now, not to already have that which we will probably want sometime. Maybe

the easiest thing to do is to start afresh: so, do that.

Working with Independent Objects

The traditional way of writing and changing software has led to Continuous Deployment, a principle of automating the pipeline
between writing source code and deploying the production artifact in a live environment, with a goal of reducing the time taken

for changes to flow through the pipeline while maintaining a high level of quality.

Environments such as Pharo—https://pharo.org/, SqueakJS

(https://squeak.js.org/run/furl=https://freudenbergs.de/bert/squeakjs&zip=[Squeak5.0-15113.zip,Squeak V50.sources.zip], or even

in their limited ways Swift Playgrounds—https://www.apple.com/swift/playgrounds/ and Project Jupyter—https:/jupyter.org/

show that this pipeline can be zero length, and that software can be written directly in the environment it is intended for. The result
of a test failure does not need to be a log file served by Jenkins that must be pored over so a fix can be hypothesized in “local
dev”, it can be an opportunity to correct the program running in the live environment and continue (or, at worst, restart) the

operation that failed.

This liveness property is not restricted to Smalltalk-like environments or REPLs. Consider the Mach microkernel operating
system; any server that is registered to the name server (or, in the case of the HURD, as a translator on the filesystem) is a “live
object” that can receive messages from the rest of the system and participate in its behavior. They are also tasks that can be

inspected, debugged, changed, restarted, or replaced.

A server application composed of microservices presents similar properties. The “objects” (the running instances of the services)
find each other by URL: whatever service is configured to receive HTTP requests at a given route “responds” to the “messages”.

Each of these services can be independently inspected, debugged, edited, or replaced.

http://wiki.c2.com/?GoldOwner
https://pharo.org/
https://squeak.js.org/run/#url=https://freudenbergs.de/bert/squeakjs&zip=[Squeak5.0-15113.zip,SqueakV50.sources.zip]
https://www.apple.com/swift/playgrounds/
https://jupyter.org/

Conclusion to Part Two

When the additional complexity, and the attempts to appeal to traditional software delivery techniques, are removed, Object-
Oriented Programming is an attempt to represent complicated problems through a network of small, independent programs that
each model one (simpler) aspect of the problem. These programs can be independently written, verified, deployed, changed, and
used. They should ideally be ignorant of each other as much as possible, relying only on the knowledge that they should respond

to certain messages and can send other messages to other objects.

Chapter 3
Synthesis

In Chapter 2, Thesis, we saw that the core benefits of OOP can be achieved with a small number of considerations:
o Objects are independent programs, ignorant of context to the largest possible extent
o Objects communicate by sending messages
o Objects behave in ways described in contracts expressing their responses to messages
o Objects can be written, changed, inspected, and adapted in context

There is no system currently available that supports all of these requirements simultaneously. Ironically, while OOP has become
overcomplicated, as demonstrated in Chapter 1, Antithesis, it has also remained incomplete. In the final part of this book, let's

consider what such a system would look like.

Objects Are Independent Programs

The easiest problem to solve is allowing developers to independently design objects without expressing constraints that inhibit the
developers' design freedoms. One way is to provide a MetaObject protocol that allows developers to adapt the rules of a
language to fit a particular context. An even easier way (both to create and to use) is to make the primitive parts of the message

system available to developers, to combine as needed to fulfill their design goals.

This is easier to create because any more complex system would need these primitives anyway. It is easier to use because it allows
the developers to construct solutions to problems as they encounter them, rather than trying to work out how to adapt existing
rules onto the models they have for their solutions. That adaptation was one of the difficulties with using OOP we explored in
Chapter 1, Antithesis: if what you've got is Java inheritance, you need to solve your problem using Java inheritance, even if your

problem doesn't seem like it fits with Java inheritance.

The primitives needed are small in number. Here is a worked example in Python that is based on the functional programming view

of objects explored in Chapter 1, Antithesis.

A selector type. This is a type that can be used to name messages, and thus it must be comparable: the receiver needs to know
which selector was named in a message so it can decide what to do. Python's string type is sufficient as a selector type, though

many OO languages use an interned string type (Ruby's symbols, for example) to make comparison cheaper.

A lookup function. This is a way, given a message, to decide what code to run. Python already usesa__getattr__ () function
to do this, both for its object.attribute syntax and to implement the getattr (object, attribute) function, and

conveniently, it expects the attribute's name to be a string, so this works with the message selectors.

A way to send a message. This will let the object find the appropriate method implementation using its own lookup function, then

execute that method with the arguments supplied in the message. It looks like this:
def msg send(obj, name, *args):
message arguments = [obj]

message arguments.extend(args)

return getattr (obj,name) (*message arguments)

Notice the convention that the first argument to any message is the receiving object. This allows the object to recursively message
itself, even if the method being invoked was not found on the receiver but on a delegated object that would otherwise be ignorant

of the receiver.

A recursive case for message lookup. If an object does not know how to implement a given message, it can ask a different object.

This is delegation. It looks like this:

def delegate (other, name):

return getattr (other, name)

A base case for message lookup. Eventually, an object will need a way to say "sorry, I was sent a message that I do not
understand". The doesNotUnderstand function provides that behavior (in our case, raising an error), and we'll also supply a

Base type that uses doesNotUnderstand and can terminate any delegation chain:

def doesNotUnderstand (obj, name) :

raise ValueError ("object {} does not respond to selector {}".format (obj, name))
Base = type('Base', (), {

' getattr ': (lambda this, name:

(lambda myself: myself) if name=="this"

else (lambda myself: doesNotUnderstand (myself, name)))

})

Due to the message-sending convention, myself is the object that received the message, while this is the object that is

handling the message on its behalf: these could be, but do not have to be, the same.

Now these 13 lines of Python (found in objective-py at https:/gitlab.labrary.online/lecg/objective-py) are sufficient to build any

form of object-oriented delegation, including the common forms of inheritance.
An object can inherit from a prototype by delegating all unknown messages to it.

A class is an object that implements methods on behalf of its instances. A created instance of a class contains all of its own data,

but delegates all messages to the class object.

The class can have no parents (it does not delegate unknown messages), one parent (it delegates all unknown messages to a single
parent class object) or multiple parents (it delegates unknown messages to any of a list of parent class objects). It can also support

traits or mixins, again by adding them to the list of objects to search for method implementations in.

A class could even have a metaclass: a class object to which it delegates messages that it has received itself. That metaclass

could have a metametaclass, if desired.

Any, or multiple, of these schemes can be used within the same system, because the objects are ignorant of each other and how
they are constructed. They simply know that they can use msg_send () to send each other messages, and that they can use

delegate to have another object respond to messages on their behalf.

But, Python being Python, these objects all run synchronously on the same thread, in the same process. They are not truly

independent programs yet.

https://gitlab.labrary.online/leeg/objective-py

Sticking with Python, it is easy to separate our objects out into separate processes by using a different Python interpreter for each

object via the execnet—https://codespeak.net/execnet/index.html module.

A quick, but important, aside

The example here (and available at https://gitlab.labrary.online/leeg/objactive-py) focuses on demonstrating the possibility of

running isolated objects, and is not really appropriate for using in a real application or system. The lack of production systems

based around the simple object-oriented principles described in this book is the motivation for writing the book in the first place!

Each object can live in its own module. Creating an object involves creating a new Python interpreter and telling it to run this

module:

def create object():

my module = inspect.getmodule (create object)
gw = execnet.makegateway ()

channel = gw.remote exec(my module)

return channel

When execnet runs a module, it has a special name that we can use to store the receiving channel and install the message
handler. In this code, the receiver is stored in a global variable; as this is running in its own Python interpreter in a separate process

from the rest of our system, that global is in fact unique to the receiving object:

if name == "' channelexec ':
global receiver

receiver = channel
channel.setcallback (handler)

channel.waitclose ()

The handler function is our object's message dispatch function: it inspects the message selector and decides what code to run.
This can work in exactly the same way as in previous examples—in other words, it can work however we want. Once an object

receives a message, it should be up to that object to decide what to do with it, and how to act in response.

An Object's Behavior Can Be Described in A Contract

While it is up to any one object to decide how it responds to messages, we need to know whether that object represents a useful

addition to our system. In other words, we want to know what the object will do in response to what messages.

As seen in Chapter 2, Thesis, the Eiffel language encapsulates this knowledge about an object in the form of a contract, describing
the preconditions and postconditions for each method along with the invariants that hold when the object has been created and

whenever it is not executing a method.

This contract is, as the language in Object-Oriented Software Construction implies, a useful design tool: describe your object in

terms of the messages it receives, what it expects when it receives those messages, and what the sender can expect in return.

Eiffel also demonstrates that the contract is an effective correctness testing tool, because the assertions contained in an object's

contract can be checked whenever appropriate, whether the object is being used in a test or a production system. In principle, the

https://codespeak.net/execnet/index.html
https://gitlab.labrary.online/leeg/objactive-py

contract could even be used to generate tests in the style of property-based testing; what is "for all (expected input structure) ->
(assertions that some properties hold of results)" other than a statement of preconditions and postconditions? In practice, this

integration does not yet exist.

As the contract describes what an object can do, what must be true for the object to do it, and what will be true after the object has
done it, it's also a great candidate for the position of standard documentation structure for each object. We already see in the world

of HTTP APIs that the Open API Specification (formerly Swagger, https:/swagger.io/specification) is a machine and human-

readable description of what operations an API supports, its parameters and responses. An approach like this could easily be
adopted for individual objects; after all, an object represents a model of a small, isolated computer program and so its message

boundary is an API supporting particular operations.

Objects Can Be Written, Inspected, And Changed in Context

David West describes objects as actors on the computer stage, and even the meta-acting of programmers picking up the CRC card
representing an object and role-playing its part in the system, explaining what data they're using and what messages they're
sending to the other objects. Objects are fundamentally a live, interactive way of thinking about sofiware, so they would be best

supported by a live, interactive way of turning thought into software.

The Smalltalk environments, including modern ones such as Phare and Amber—https://www.amber-lang.net/, demonstrate that

such tools are possible. Pharo in particular features novel additions to the developer experience, one of the bullet points on the
project's About page (https://pharo.org/about) tells us that "yes, we code in the debugger."

Distributing the software that is made with such an environment, currently, can be suboptimal. With Pharo, you either export
specific classes into a package that somebody else who already has Pharo set up can use, or you write the state of your whole
Pharo environment to an image file, and give the Pharo VM and the image file to the person who will use your software. Amber
works like this too, but in the background is using the popular Bower package manager for JavaScript and its image contains just a
few classes that implement JavaScript functions. Additionally, many JavaScript developers do not distribute their software in the

conventional sense, as it is either served as needed to the browser or run by the developers themselves in a Node.js service.

Such live interaction is not confined to the Smalltalk world. I am writing this section of the book using the GNU Emacs—

https://www.gnu.org/software/emacs/ text editor, which is really an Emacs Lisp interpreter with a dynamic text-centric user

interface. At any time, I can type some Emacs Lisp in and evaluate it, including defining new functions or redefining existing

functions. For example, given a paragraph containing the following:
(defun words () (interactive) (shell-command (concat "wc -w " buffer-file-name)))

I can move my cursor to the end of the paragraph, run the Emacs Lisp eval-last-sexp function, and then have a new words
function that returns 1909, the number of words (at the time of writing) in this part of the manuscript. If it didn't do that, if I had
accidentally counted characters instead of words, I could edit the function, re-evaluate it, and carry on using the fixed version.

There's no need to quit Emacs while I re-build it, because I'm editing the code in the same environment that it runs in.

Put That All Together

All of the parts explored here exist, but not in the same place. Putting these together is a significant undertaking; building message
passing and delegation between objects in separate processes may only take a few source lines, design-by-contract is a judicious
application of the assert () statement, but a whole interactive environment to allow live development and debugging of such a
system is a much bigger undertaking. So why consider it?

https://swagger.io/specification
https://www.amber-lang.net/
https://pharo.org/about
https://www.gnu.org/software/emacs/

Speed

When the development environment and the deployment environment are the same, developers get a higher fidelity experience
that makes turnaround time on development lower by reducing the likelihood that a change will "break in CI" (or even in

production) due to differences in the environments.

The people using the software can have higher confidence too, because they know that the developer has built the thing in the
same environment it will be used in. Additionally, the use of contracts in this proposed development system increases confidence,
because the software is stated (and demonstrated) to work for al/l satisfactory inputs rather than merely a few test cases thought of

by the developer.

Such fidelity is typically provided to developers at the expense of speed. Programmers connect over the network to a production-
like server or wait for virtual machine or container images to be constructed on their local system. This time gets added to the
typical steps, such as compiling or linking that come from separating development and deployment, giving us time to get

distracted and lose our thread of concentration while getting validation of our work so far.

Ultimately, though, the speed comes from experimentation. When development is close to deployment, it's easier to ask questions
such as "what if I change this to be like that?" and to answer them. When systems are decomposed into small, isolated,

independent objects, it's easier to change or even discard and replace objects that need improvement or adaptation.

While there is value in designing by contract, there is also value in progressively adding details to an object's contract as more
properties of the system being simulated become known, and confidence in the shape of the objects increases. Contracts are great
for documentation and for confidence in the behavior of an object, but those benefits need not come at the expense of forcing a
developer's train of thought to call at particular stations in a prescribed order. As we saw in Chapter 1, Antithesis, a lot of
complexity in object-oriented programming to date came from requiring that software teams consider their use cases, or their class
hierarchies, or their data sharing, or other properties of the system at particular points in an object-oriented software engineering

process.

It's far better to say, "here are the tools, use them when it makes sense," so that the developer experience is not on rails. If that
means taking time designing the developer system so that use, construction, documentation, testing, and configuration of the thing

being developed can happen in any order, then so be it.

Tailoring

Such experimentation also lends itself to adaptation. A frequent call for the industrialization of software involves the
standardization of components and the ability for end users to plug those components together as required. Brad Cox's Software

ICs, Sal Soghoian's AppleScript dictionaries, and even the NPM repository represent approaches to designing reuse by defining
the boundary between "things that are reused" and "contexts in which they are reused."

In all of these situations, though, the distinction is arbitrary: a Software IC could implement a whole application, or the innards of
a Mac app could be written in AppleScript. In a live development environment, the distinction is erased, and any part is available
for extension, modification, or replacement. There is a famous story about Dan Ingalls adding smooth scrolling to a running

Smalltalk system (http://www.righto.com/2017/10/the-xerox-alto-smalltalk-and-rewriting.html) during a demo for a team from

Apple Computer that included Steve Jobs. At that moment, Dan Ingalls' Alto computer had smooth scrolling, and nobody else's

did. He didn't need to recompile his Smalltalk machine and take the computer down to redeploy it, it just started working that way.

My assertion is that the addition of contracts to a live programming environment enables experimentation, customization, and

adaptation by increasing confidence in the replacement parts. Many object-oriented programmers already design their objects to

http://www.righto.com/2017/10/the-xerox-alto-smalltalk-and-rewriting.html

adhere to the Liskov Substitution Principle, which says (roughly) that one object can act as a replacement for another if its

preconditions are at most as strict as the other object's, and its postconditions are at least as strict.

In current environments, however, this idea of substitutability is unnecessarily coupled to the type system and to inheritance. In the
proposed system, an object's inheritance or lack thereof is its own business, so we ask a simpler question: is this object's contract
compatible with that use of an object? If it is, then they can be swapped and we know that things will work (at least to the extent
that the contract is sufficient, anyway). If it is not, then we know what will not work, and what adaptation is required to hook

things up.

Propriety

"But how will we make money?" has been a rallying cry for developers who don't want to use a new tool or technique for decades.
We said we couldn't make money when free and open source software made our source code available to our users, then started

running GNU/Linux servers that our users connect to so they can download our JavaScript source code.

The system described here involves combining the development and deployment environments, so how could we possibly make

money? Couldn't users extract our code and run it themselves for free, or give it to their friends, or sell it to their friends?

Each object on the system is an independent program running in its own process, and its interface is the loosely coupled
abstraction of message-sending. Any particular object could be a compiled executable based on a proprietary algorithm,
distributed without its source code. Or it could be running on the developer's own server, handling messages remotely, or it could
be deployed as a dApp to Ethereum or NEO. In each case, the developer avoids having to deploy their source code to the end

user, and while that means that the user can't inspect or adapt the object, it does not stop them from replacing it.

It is interesting to consider how the economics of software delivery might change under such a system. At the moment, paid-
outright applications, regular subscription fees, and free applications with paid-for content or components are all common, as are
free (zero cost) applications and components. Other models do exist: some API providers charge per use, and blockchain dApps
also cost money (albeit indirectly via tokens) to execute the distributed functions. An app or a web service has a clear brand,
visible via the defined entry point for the user (their web address, or home screen icon). How might software businesses charge for
the fulfilment of a programmatic contract, or for parts of an application that are augmented by other objects, or even replaced after

deployment?

Security

It was mentioned when discussing the propriety of objects that each object is hidden behind the loosely coupled message-sending

abstraction. Implications on the security of such a system are as follows:

o For an object to trust the content of a message, it must have sufficient information to make a trust decision and the
confidence that the message it has received is as intended with no modifications. Using operating system IPC, the messages

sent between objects are mediated by the kernel, which can enforce any access restrictions.

o "Sufficient information" may include metadata that would be supplied by the messaging broker, for example, information

about the context of the sender or the chain of events that led to this message being sent.

o The form in which the object receives the message does not have to be the form in which it was transmitted; for example,
the messaging layer could encrypt the message and add an authentication code on sending that is checked on receipt before
allowing the object to handle the message. Developers who work on web applications will be familiar with this anyway, as

their requests involve HTTP verbs such as GET or POST and readable data such as JSON, but are then sent in a compressed

format over encrypted, authenticated TLS channels. There is no reason such measures need to be limited to the network
edges of an application nor (as evinced with a microservices architecture) for the network edge and the physical edge of the

system to be in the same place.

Multiprocessing

Computers have not been getting faster, in terms of single-task instructions per second, for a very long time. Nonetheless, they still

are significantly faster than the memory from which they are loading their code and data.

This hypothesis needs verifying, but my prediction is that small, independent objects communicating via message passing are a
better fit for today's multi-core hardware architectures, as each object is a small self-contained program that should do a better job

of fitting within the cache near to a CPU core than a monolithic application process.

Modern high-performance computing architectures are already massively parallel systems that run separate instances of the
workload that synchronize, share data, and communicate results via message sending, typically based on the MPI standard. Many
of the processor designs used in HPC are even slower in terms of instruction frequency than those used in desktop or server

applications, but have many more cores in a single package and higher memory bandwidth.

The idea of breaking down an application to separate, independent objects is compatible with the observation that we don't need a
fast program, but a fast system comprising multiple programs. As with cloud computing architectures, such systems can get faster
by scaling. We don't necessarily need to make a faster widget if we can run tens of copies of the same widget and share the work

out between them.

Usability

All of this discussion focuses on the benefits (observed or hypothesized) of the approach to writing software that has been
developed in this book. We need to be realistic, though, and admit that working in the way described here is untested and is a

significant departure from the way programmers currently work.

Smalltalk programmers already love their Smalltalk, but then C++ programmers love their C++ too, so there isn't a one-size-fits-
all solution to the happiness of programmers, even if it could be shown that for some supposed objective property of the software

construction process or the resulting software, one tool or technique had an advantage over others.

Some people may take a "better the devil you know" outlook, while others may try this way (assuming such a system even gets
built!) and decide that it isn't for them. Still others may even fall in love with the idea of working in this way, though we could
find that it slows them down or makes lower quality output than their current way of working! Experimentation and study will be

needed to find out what's working, for whom, and how it could be improved.

This could turn out to be the biggest area of innovation in the whole system. Developer experiences are typically extremely
conservative. "Modern" projects use the edit-compile-link-run-debug workflow that arose to satisfy technical, not experiential,
constraints decades ago. They are driven from a DEC VT-100 emulator. Weirdly, that is never the interface of choice for consumer

products delivered by teams staffed with designers and user experience experts.

Conclusion to Part Three

The story of this book has been one of deconstruction and reconstruction. The enormous complexity of three decades of OOP was
deconstructed, to find a simple core, and an object-oriented programming experience was reconstructed around that core. The
reconstruction contains all of the distinctive and important elements of the paradigm, while shedding the complexity borne of

additive consultancy and capitulation to existing processes.

Importantly, this new reconstruction still takes lessons from the two schools of thought in computing, which I call the laboratory

school and the library school.
The Laboratory School

The Laboratory School is the experimental approach. Go out, make a thing, and adapt, refine, or reject it based on your
observations of how it performs. Don't worry about making the right thing, or making the thing right, just ensure it is made. You

can adapt it later.

Extreme Programming (XP) and the Lean Startup movement both exhibit influences of the laboratory school. Both schemes
advocate experimentation and fast feedback. Both recommend starting small and simple — XP with its Ya Ain't Gonna Need It

principle and the Lean Startup with its minimum viable product — and then rapidly iterating based on feedback.

The Smalltalk style of object-oriented programming also evinces the laboratory way of thinking. Loose coupling via message-
sending lets programmers replace the collaborating objects in a system with other objects easily and quickly. Integrated

development and deployment environments enable a style called Debugger-Driven Design—https://medium.com/concerning-

pharo/pharo-50c66685913c: find the thing that breaks the system because you haven't built it yet, build it, then let the system carry

on with its new behavior.
The Library School

The library school is the research-driven approach. Understand your problem, discover the properties of a solution that

appropriately addresses the problem, implement the solution with those properties.

The disciplines related to object-oriented sofiware engineering show associations with the library school. While the Rational
Unified Process, as one example, does promote iterative and incremental development, the increments tend to be additive rather
than exploratory: build the walking skeleton, then design, implement, and test this use case, then that use case. Add more use cases

until the funding runs out. Make sure that at each step you retain your carefully-considered hierarchy of class relationships.

The if'it type checks, it works principle in programming appears to come from the library school. A type system is a machine for
constructing proofs about the software that uses types from that system. Design your software with consistent application of those

types and you get theorems for free (https://ecee.colorado.edu/ecen5533/fallll/reading/free.pdf) about the behavior of the

software.

Design by contract demonstrates library-school thinking applied to OOP. The principle characteristic of an object is not its named
type, but its shape: the messages it responds to and the things it does in response to those messages. Taking the mathematical
proof tools from formal methods and applying them to the shape of objects, you end up with the contract: a mathematical

statement about the messages an object responds to and the behavior resulting from receiving those messages.

The Labrary

https://medium.com/concerning-pharo/pharo-50c66685913c
https://medium.com/concerning-pharo/pharo-50c66685913c
https://ecee.colorado.edu/ecen5533/fall11/reading/free.pdf

There are lessons to be learned from each of these schools of thought, and rather than siding with either one, the system described
here adopts details from both. Not in an additive let's do all the things these people do, and add all the things these people do way,
but in a synthetic let's see what ideas these people promote and how they can be combined way. We have contracts from the

library, but don't require design by contract: they are part of a live, experimental system from the laboratory that can be added and

removed at any time.

There is of course, one big problem with this environment, produced by the synthetic "Labrary" school of thought. That problem is

that the environment doesn't exist. Yet. To the Labrary!

Part Two — APPropriate Behavior

One of the key things that motivated me to write this part was picking up my copy of Code Complete, 2nd Edition—

http://www.cc2e.com. I’ve had a copy of either this or the first edition of the book for most of my developer career. I hadn’t read it

in a while, though, so I flicked through the table of contents looking for an interesting section to re-read.

The only parts that caught my eye were the sections at the back on the personality of a developer and on self-improvement. I find
this odd; Code Complete is widely recommended as a comprehensive book on the craft of writing software. Rightly so; it’s helped

lots of programmers (myself included) to introspect the way they practice their work, to understand and improve it.

Code Complete is certainly thick enough to be considered comprehensive. Why, then, when it has so much content on row code

should be written, has it so little to say on the people doing the writing?

I’m now in a position to answer the question that titles this section; this part is about the things that go into being a programmer
that aren’t specifically the programming. Coder Complete, if you will. It starts fairly close to home, with chapters on working with
other coders, on supporting your own programming needs, and on other “software engineering” practices (I’'m currently not sure
whether I think software is an engineering discipline, nor, for people interested in that movement, a craftsmanship—the term is
commonly encountered so I’ll use it anyway) that programmers should understand and make use of. But as we go through this part
of the book, we’ll be talking about psychology and metacognition—about understanding how you, the programmer, function and
how to improve that functioning. My hope is that thinking about these things will help to formulate a philosophy of making
software; a coherent argument that describes what’s good and worthwhile and desirable about making software, what isn’t, and

how the things discussed throughout this part, fit into that philosophy.

A very small amount of this part of the book has appeared before on my blog—https://sicpers.info. More was destined for my blog
but was incorporated here instead. Still more would never have been written if I hadn’t planned out the table of contents of the

empty sections of my head.

http://www.cc2e.com/
https://sicpers.info/

Chapter 4
Tools That Support Software Development
Introduction

Yes, there are loads of different tools. Yes, everybody has their favorite. No, there's no reason to look down on people who use
different tools than yours. Yes, people who like vi are weird. In this chapter, I'm not going to recommend specific tools, but maybe

certain classes of tools and ways I've found of working with them that help me.

If you're new to programming — perhaps you've just taken a few classes or worked through some books — this chapter should tell
you something about what programmers do beyond typing public static wvoid into text editors. If you're more experienced,

you may still find the odd useful nugget here.

Version Control/Source Code Management

I imagine many readers are currently thinking that the battle over version control must surely be over by now, and that all
developers are using some system. This is, unfortunately, demonstrably untrue. Let me start with an anecdote. It's 2004, and I've just
started working as a systems manager in a university computing lab. My job is partly to maintain the computers in the lab, partly to
teach programming and numerical computing to physics undergraduates, and partly to write software that will assist in said
teaching. As part of this work, I started using version control, both for my source code and for some of the configuration files in
/etc on the servers. A more experienced colleague saw me doing this and told me that I was just generating work for myself; that

this wasn't necessary for the small things I was maintaining.

Move on now to 2010, and I'm working in a big scientific facility in the UK. Using software and a /ot of computers, we've got
something that used to take an entire PhD to finish down to somewhere between 1 and 8 hours. I'm on the software team and, yes,
we're using version control to track changes to the software and to understand what version is released. Well, kind of, anyway. The
"core" of the files/source code is in version control, but one of its main features is to provide a scripting environment and DSL in
which scientists at the "lab benches," if you will, can write up scripts that automate their experiments. These scripts are not
(necessarily) version controlled. Worse, the source code is deployed to experimental stations so someone who discovers a bug in the

core can fix it locally without the change being tracked in version control.

So, a group does an experiment at this facility, and produces some interesting results. You try to replicate this later, and you get
different results. It could be software-related, right? All you need to do is to use the same software as the original group used...

Unfortunately, you can't. It's vanished.

That's an example of how scientists failing to use the tools from software development could be compromising their science.
There's a lot of snake oil in the software field, both from people wanting you to use their tools/methodologies because you'll pay
them for it, and from people who have decided that "their" way of working is correct and that any other way is incorrect. You need
to be able to cut through all of that nonsense to find out how particular tools and techniques impact the actual work you're trying to
do. Philosophy of science currently places a high value on reproducibility and auditing. Version control supports that, so it would be

beneficial for programmers working in science to use version control. But they aren't; not consistently, anyway.

In its simplest guise - the one that I was using in 2004 - version control is a big undo stack. Only, unlike a series of undo and redo
commands, you can leave messages explaining who made each change and why. Even if you're working on your own, this is a great
facility to have — if you try something that gets confusing or doesn't work out, you can easily roll back to a working version and

take things from there.

Once you're more familiar with the capabilities of a version control system, it can become a powerful tool for configuration
management. Work on different features and bugfixes for the same product can proceed in parallel, with work being integrated
when it's ready into one or more releases of the product. Discussing this workflow in detail is more than I'm willing to cover here: I
recommend the Pragmatic Programmer books on version control such as Pragmatic Version Control Using Git—

http://pragprog.com/book/tsgit/pragmatic-version-control-using-git by Travis Swicegood.

On Version Control and Collaboration

Version control is no more of a collaboration tool than other document management systems, such as SharePoint. Integrating (or
merging) related work by different people is hard and requires knowledge of the meaning of the code and how changes interact.
Version control systems don't have that knowledge, and as a result cannot simplify this merging process in any but the most trivial

cases. It does let you defer the problem until you want to face it, but that's about it.

Some tools - for example, GitHub — http://www.github.com — provide social features around a core version control system.

However, the problems of knowing what to integrate from whom, and when, and resolving conflicts all still exist. The social

features give you somewhere to talk about those problems.

Distributed Version Control

I've used a good few version control systems over the years, from simple tools that work with the local filesystem to hugely
expensive commercial products. My favored way of working now is with a DVCS (Distributed Version Control System) (though,
as promised earlier, I'm not going to suggest that you choose a particular one; with the exception of dares, they all work in much

the same way).

With a DVCS, it's very easy to get a local project into version control, so even toy projects and prototypes can be versioned. A
feature that makes them great for this, over earlier systems that version local files, such as RCS (Reaction Control System) and
SCCS (Source Code Control System), is that the whole repository (that is, all of the files that comprise the versioned project) is
treated atomically. In other words, the repository can be at one version or another, but never in an in-between state where some files

are at an earlier revision than others.

Earlier systems, like RCS, do not impose this restriction. With RCS, every file is versioned independently so each can be checked
out on a different version. While this is more flexible, it does introduce certain problems. For example, consider the files in the
following figure. One of the files contains a function that's used in code in the other file. You need to make a change to the

function's signature, to add a new parameter. This means changing all three files.

http://pragprog.com/book/tsgit/pragmatic-version-control-using-git
http://www.github.com/

foo.h

/
int foo(int bar):
A
foo.c main.c
#include “foo.h” #include “foo.h”

int foo(int bar) L B A
e

return foo(3);

Lot

! }
b 4 b -

Figure 4.1: A dependency that crosses multiple files

In an atomic version control system, the files can either both be checked out at the revision with one parameter or both be checked
out at the revision with two parameters. A per-file versioning system will allow any combination of versions to be checked out,

despite the fact that half of the possible combinations do not make sense.

Once you've got a project that's locally versioned in a DVCS repository, sharing it with others is simple and can be done in

numerous ways. If you want to back up or share the repository on a hosted service like BitBucket—http://www.bitbucket.org, you

set that up as a remote repository and push your content. A collaborator can then clone the repository from the remote version and
start working on the code. If they're on the same network as you, then you can just share the folder containing the repository without

setting up a remote service.

Personal Experience

In some situations, a combination of these approaches is required. The DVCS tools that I've used all support that. On one recent
project, everything was hosted on a remote service but there were hundreds of megabytes of assets stored in the repository. It made
sense for the computers in the office to not only clone the remote repository, but also to peer with each other to reduce the time and

bandwidth used when the assets changed. The situation looked like the following figure.

http://www.bitbucket.org/

Server
Repository

A

Developer #3
Repository

Developer #1
Repository

Y

Developer #2
Repository

Figure 4.2: A DVCS configuration can break out of the "star" topology required by

centralized systems

Doing this with a centralized version control system would've been possible, but ugly. One of the developers would've needed to
fully synchronize their working copy with the server, then fully copy the repository and its metadata to all of the other developer
systems. This is less efficient than just copying the differences between the repositories. Some centralized version control systems

wouldn't even support that way of working, because they track which files they think you have checked out on the server.

Another benefit brought by DVCS — as much due to improved algorithms as their distributed nature — is the ease with which you
can create and destroy branches. When I mainly worked with centralized version control (primarily Subversion and Perforce),
branches were created for particular tasks, such as new releases, and the teams I worked on invented workflows for deciding when

code migrated from one branch to another.

With DVCSes, I often create a branch every hour or so. If I want to start some new work, I create a branch in my local version of
the repository. After a while, I'm either done, and the branch gets merged and deleted; convinced that the idea was wrong - in which
case, it's just deleted; or I want someone else to have a look, and I push that branch without merging it. All of this was possible with

centralized VCS, though much slower — and you needed network access to even create the branch.

Continuous Integration and Deployment

Having just discussed version control, it's time to announce which VCS mistake I see more often than any other - the mistake that's

made by everyone (myself included), regardless of their experience or expertise. And the winner is...
Adding new files to a project but forgetting to add them to the repository.

I don't do this very often - maybe less than once per month. But whenever I do, when the other developers on the team synchronize

their repositories, we're left in a situation where everything works for me, but they can't build.

If we're lucky, the error will report that the file wasn't found, and we can quickly resolve the problem. If not, there'll be some other

error about a missing symbol or something that will take time to track down before discovering the root cause.

If only we had some form of robot that would see every check-in, grab the source code, and try to build the product. If it couldn't do

that, it'd be great if it came over and complained to the person who made the change that broke the build.

It turns out that we've been living in the future for quite a while now, and that robot already exists. It goes by the name of

Continuous Integration, or CI.

Why Use CI?

Finding those missing files isn't the only thing CI is good for. If you have automated tests (see the Chapter 5, Coding Practices), a
CI system can run the tests on every change and report any problems. My team's CI server is configured to run the analysis tool
(discussed in this chapter) and consider a build failed if that tool discovers any problems. Some projects automatically generate API

documentation and publish it to a web server.

It can even make the build available for people to install once it's passed all of the tests. This is related to the idea of Continuous
Deployment: if a version of the software seems good enough to use (that is, it doesn't fail any test you put it through), then start
using it. You may still find problems that weren't exposed by the automated tests, but you'll do so earlier than if you didn't deploy

right away.

A final benefit to CI - one that's quite subtle but very useful — is that it forces you to set your project up so that it can be checked out
of version control and built automatically. This means that even when a human programmer is working with the project, it's easy for
them to get set up with the source and start being productive. That person could be you, when you get a new laptop. It could be a
contractor or a new employee joining the team. Either way, if there's a single step to fetch the project and build it, then they'll be up

to speed quickly, rather than asking you how to fetch some library or configure some plugin.

Cl1 On Real Teams

Some teams I've worked on have been so heavily invested in using CI that they've employed someone to maintain the CI
infrastructure (it's not a full-time occupation, so they usually look after other supporting tools and consult on their use). In other

teams, it's been up to the developers to keep it running.

The difficulty in that second case is in knowing when to look after the CI versus doing project work. As an example, in the month
before this section was written, I had to migrate my team's CI system onto different hardware. Despite trying to ensure that the

configuration of the system didn't change between the two environments, the tests in one of the projects would no longer run.

The thing is, the tests worked fine in the IDEs on all of the developer machines. Is it really important to take more time away from

adding value to the products our clients are paying for to handhold some confused robot?

I consider running without CI to be proceeding at risk these days. Yes, I could avoid all problems without it. Yes, it's possible that
nothing will go wrong. But why take the chance? Why not spend that little extra to ensure I discover problems as early as possible?
It's spending a little now to potentially save a lot in the future. I therefore try to find the time to maintain the CI service when it's

necessary.

Build Management

I wrote in the previous section that a benefit of adopting CI is that it forces you to simplify the building of your project (by which I
mean compiling sources, translating assets, creating packages, and anything else that takes the inputs created by the project team
and converts them into a product that will be used by customers). Indeed, to use CI you will have to condense the build down until

an automated process can complete it given any revision of your source code.

There's no need to write a script or an other program to do this work, because plenty of build management tools already exist. At a
high level, they all do the same thing: they take a collection of input files, a collection of output files, and some information about

the transformations needed to get from one to the other. How they do that, of course, varies from product to product.

Convention or Configuration

Some build systems, like make and ant, need the developer to tell them nearly everything about a project before they can do
anything. As an example, while make has an implicit rule for converting C source files into object files, it won't actually execute

that rule until you tell it that you need the object file for something.

Conversely, other tools (including Maven) make certain assumptions about a project. Maven assumes that every . java file in a

folder called sre/main/java must be compiled into a class that will be part of the product.

The configuration approach has the advantage that it's discoverable even to someone who knows little about the system. Someone
armed with a collection of source files, grep, and a little patience could work out from a Makefile or Xcode project which files
were built as which targets, and how. Because there's a full (or near full) specification of how everything's built, you can find what

you need to change to make it act differently, too.

The downside to that discoverability is that you /iave to specify all that stuff. You can't just tell Xcode that any .m file in a folder
called Classes should be passed to the Objective-C compiler; you have to give it a big list of all of them. Add a new file, and you

must change the list.

With a convention-based build system, this situation is exactly reversed. If you follow the conventions, everything's automatic.
However, if you don't know the conventions, they can be hard to discover. I once had a situation on a Rails project where the folder
that static resources (such as images) were saved in changed between two releases. On launching the app, none of my images were
being used and it wasn't clear why. Of course, for someone who does know the conventions, there's no learning curve associated

with transferring between different projects.

On balance, I'd prefer a convention-led approach, provided the conventions are well-documented somewhere so it's easy to find out
what's going on and how to override it if you need to. The benefit of reduced effort and increased consistency, for me, outweighs the

occasional surprise that's encountered.

Build Systems That Generate Other Build Systems

Some build procedures get so complicated that they spawn another build system that configures the build environment for the target
system before building. An archetypal example is GNU Autotools, — which actually has a three-level build system. Typically,
developers will run autoconf£, a tool that examines a project to find out what questions the subsequent step should ask and
generates a script called configure. The user downloads the source package and runs configure, which inspects the
compilation environment and uses a collection of macros to create a Makefile. The Makefile can then compile the source code to

(finally!) create the product.

As argued by Poul-Henning Kamp—http://queuc.acm.org/detail.cfm?id=2349257), this is a bad architecture that adds layers of cruft

to work around code that has not been written to be portable to the environments it will be used in. Software written to be built with

tools like these is hard to read, because you must read multiple languages just to understand how one line of code works.

Consider a bug reported in a particular C function in your project. You open that function to find two different implementations,
chosen by a #ifdef/#else/#endif preprocessor block. You search for the macro used by that block and find it in config.h,
so you must read the configure script to find out how it's set. To discover whether that test is doing the right thing, you need to

look at the configure. ac file to find out how the test is generated.

About the only justification for using such a convoluted process is that it's thought of as conventional and expected by your target
users, but even then, I'd question whether that expectation is driven by a technical need or by Stockholm syndrome —

http://en.wikipedia.org/wiki/Stockholm_syndrome. If your product doesn't need to be portable, then there's no need to add all that

http://queue.acm.org/detail.cfm?id=2349257
http://en.wikipedia.org/wiki/Stockholm_syndrome

complexity — and even if it does, there may be better ways to solve the problem that'll work for your product. One obvious approach

is to target a portable platform such as Mono or Python.

Bug and work tracking

For most of their history, computers have excelled at doing things one at a time. Even a single client or customer can parallelize

much better than that and will think of (and make) multiple requests while you're still working on one thing.

It's really useful to write all of these requests down, and keep track of where you and your colleagues are on each of them so that
you don't all try to solve the same problem, and can let the client know which of them you've fixed. Bug trackers (sometimes more

generally called issue trackers or work trackers) are designed to solve that problem.

What Goes in And When?

I've worked on projects where the bug tracker gets populated with all of the project's feature requests at the beginning (this
discussion overlaps slightly with the treatment of software project management patterns, in Chapter 13, Teamwork). This introduces
a couple of problems. One is that the Big List needs a lot of grooming and editing to stay relevant as features are added and
removed, split between multiple developers, or found to be dependent on other work. The second is psychological: for a long time,
members of the project team will be looking at a soul-destroying list of things that still haven't been done, like Sisyphus standing

with his rock looking up from the base of the hill. The project will seem like a death march from the beginning.

My preference is to attack the work tracker with an iterative approach. When it's decided what will go into the next build, add those
tasks to the work tracker. As they're done, mark them as closed. The only things that stay in the tracker from one iteration to the next
are those things that don't get completed in the build when they were scheduled to. Now, the big list of items in the tracker is always
the big list of what we've already completed, not the big list of things still remaining. This is something akin to the Kanban system,
where a team will have a fixed "capacity" of pending work. As they pull work from the pending bucket to start working on it, they

can request that the bucket get topped up—but never past its capacity.

My approach to reporting bugs is different. Unless it's something trivial in the code I'm working on now, so that I can fix the
problem in under a couple of minutes and move on, I'll always report it straight away. This means I won't forget about the problem;
the fix is implicitly planned for the next iteration, following the Joel Test rule of fixing bugs before adding new code, and we can
see how many bugs are being discovered in each build of the product. (Now that I reflect on the Joel Test, I realize that this chapter
covers a lot of points that are included in the test. Perhaps you should just measure your team's performance with respect to the Joel

test's 12 points and fix any that you answer "no" to—http://www.joelonsoftware.com/articles/fog0000000043.html.).

How Precisely to Track?

So, you managed to fix that bug in 2 hours. But, was it actually 2 hours, or was it 125 minutes? Did you spend those 2 hours solely

fixing the bug, or did you answer that email about the engineers-versus-sales whist drive during that time?

Being able to compare estimated time versus actual time can be useful. I'm not sure that "velocity" — the ratio between the estimated
time and the actual time spent on tasks — is particularly helpful, because in my experience estimates are not consistently wrong by a
constant factor. It's knowing what work you're bad at estimating that's helpful. Do you fail to appreciate the risks involved in adding

new features, or do you tend to assume all bug fixes are trivially simple?

So, precise measurements are not particularly helpful, which is useful to know, because the accuracy probably doesn't exist to back

up that precision. I usually just look at my watch when I start work and when I end work, and round to the nearest quarter or half

http://www.joelonsoftware.com/articles/fog0000000043.html

hour. That means my time records include all those interruptions and little tasks I did while fixing the bug — which is fine because

they slowed me down and that needs recording.

Estimates aren't even that accurate. The game I play with my team goes like this: every developer on the team (and no one else)
independently writes down an estimate of how long the tasks we're planning will take. They're allowed to pick one of these: 1 hour,
2 hours, 4 hours, 8 hours, or don't know. If we think a task will take longer than 8 hours, we break it down and estimate smaller
chunks of the task.

For each task, everyone presents their estimates. If they're roughly the same, then we just pick the highest number and go with that.
If there's a spread of opinion — maybe one developer thinks something will take an hour when someone else thinks it'll take a day —
we'll discuss that. Probably, one (or more) of the team is relying on tacit knowledge that needs to be brought into the open. It's

usually possible to resolve such differences quickly and move on to the next thing.

Integrated Development Environment

Well, really, I suppose your environment doesn't need to be fully integrated. For a long time, my toolset was a combination of
Project Builder, Interface Builder, WebObjects Builder, EOModeler, and Edit. It does need to make you more efficient than the

simple "text editor and make" combo of yore.

What's the big problem? Why so harsh on the text editor? Any time you have to stop making software to deal with your tools,
there's a chance you'll lose concentration, forget what you were doing, and have to spend a few minutes reacquainting yourself with
the problem. Losing a couple of minutes doesn't sound like too big a deal, but if you're doing it a couple of times an hour every

working day, it quickly adds up to a frustrating drop in productivity.

You're going to be using your IDE for most of your working day, every working day, for the next few years. You should invest
heavily in it. That means spending a bit of money on a good one that's better than the free alternatives. It means training yourself in
the tricks and shortcuts so you can do them without thinking, saving the occasional second and (more importantly) keeping you
focused on the work. It can even mean writing plugins, if your environment supports them, so you can do more without context-

switching.

In some plugin-rich environments, you could go a whole day without ever leaving the IDE. For example, Eclipse now includes the

Mylyn (http://eclipse.org/mylyn/start/) task-focused plugin, so you can interact with your bug tracker inside the IDE. It'll also let

you focus your views on only those files related to the task you're currently working on.

Not only do you need to go deep on your chosen IDE, you need to go broad on alternatives. A future version of your favorite tool
might change things so much that you'd be more efficient switching to a different app. Or you might start working on a project
where your preferred IDE isn't available; for example, you can't (easily) write a Mono app in Xcode, or an Eclipse RCP application

in Visual Studio.

This restriction of development environments to particular platforms, whether done for technological or business reasons, is
unfortunate. This is where the "just use a text editor" crowd has a point: you can learn emacs just once and whatever language you
end up programming in, you don't need to learn how to use the editor again just to write code. As you're going to spend your whole
working life in one of these environments, every change to features you already know how to use represents horrendous

inefficiency.

Notice that all of the aforementioned IDEs follow the same common pattern. When people have the "which IDE is best?" argument,
what they're actually discussing is "which slightly souped-up monospace text editor with a build button do you like using?" Eclipse,
Xcode, IntelliJ, Visual Studio... All of these tools riff on the same design—Ietting you see the source code and change the source

code. As secondary effects, you can also do things like build the source code, run the built product, and debug it.

http://eclipse.org/mylyn/start/

The most successful IDE in the world, I would contend (and then wave my hands unconvincingly when anyone asks for data), is
one that's not designed like that at all. It's the one that is used by more non-software specialists than any of those already mentioned.
The one that doesn't require you to practice being an IDE user for years before you get any good. The one that business analysts,
office assistants, accountants, and project managers alike all turn to when they need their computer to run through some custom

algorithm. The most successful IDE in the world is Excel.

In a spreadsheet, it's the inputs and results that are front-and-center in the presentation, not the intermediate stuff that gets you from
one to the other. You can test your "code" by typing in a different input and watching the results change in front of you. You can see
intermediate results, not by breaking and stepping through, or putting in a log statement then switching to the log view, but by
breaking the algorithm up into smaller steps (or functions or procedures, if you want to call them that). You can then visualize how

these intermediate results change right alongside the inputs and outputs. That's quicker feedback than even REPLs can offer.

Many spreadsheet users naturally adopt a "test-first" approach; they create inputs for which they know what the results should be
and make successively better attempts to build a formula that achieves those results. And, of course, interesting visualizations such
as graphs are available (though the quality does vary between products). Drawing a graph in Xcode is... challenging. Indeed, you
can't do it at all, but you can get Xcode to create an application that can itself generate a graph. The results are a significant distance

away from the tools.

Static Analysis

In the Chapter 5, Coding Practices, there's a section on Code Reviews. Knowing that reviewers will find and fixate upon the
simplest problems they can find, wouldn't it be great to remove all the trivial problems so that they're forced to look for something

more substantial?

This is what static analysis does. It finds problems in code that can be automatically discovered without running the product, but
that are either off-topic for compiler warnings or take too long to discover for the compiler to be an appropriate tool to search for

them.

What are off-topic problems? Typically, those that require knowledge of the semantics of the functions or methods you're using —
knowledge that's beyond the scope of the compiler. For example, consider a C++ destroyObject<T> (T t) function that
deletes its parameter. Calling that function twice with the same argument would be an error — but the compiler doesn't know that if
it's just inspecting the function signature. Others are a matter of style. For example, Apple's C APIs have a naming convention
related to their memory management rules: a function name contains Create when the caller owns the returned object or Get
when the callee does. It's not a mistake to use C language to mix those up, so the compiler won't tell you about it, but an analyzer

can.

There is basically no reason to avoid using a static analyzer (if your reason is that there isn't one for your
language/framework/whatever yet, you might have chosen a language/framework/whatever that isn't ready yet. There's a section
about that in Chapter 12, Business). It'll discover easily fixable bugs for you and quickly train you into not making those mistakes

in the first place.

Code Generation

There are, in many applications, plenty of features that are trivial to implement but must be done over and over. Perhaps it's taking
an array of model objects and preparing a list view, creating classes from database schemata, or creating a list of compile-time

constants from a text file.

These situations can usually be automated by generating code. The idea is to express the problem in a succinct representation, then

translate that into something that can be incorporated into your program. This is pretty much what a compiler does; though many

programming languages are far from succinct, they're still much less unwieldy than the machine's native instruction code.

Writing Your Own Generator Shouldn't Be A First Resort

Just as a code generator makes it easier to create a product, it makes it harder to debug. For a concrete example, consider the
autotools build system discussed earlier in this chapter. Imagine that a developer is looking into a reported problem in which
one of the tests fails (a problem that I had to deal with today). The log file tells them what the C program was that encapsulated the
test, but the developer cannot just modify that program. They must discover where the configure script is generating that
program, and what it's trying to achieve by doing so. They must then find out where in configure. ac that section of the shell

script is generated and work out a change to the m4 macros that will result in the desired change to the C program, two steps later.

In short, if your target environment offers facilities to solve your problem natively, such a solution will require less reverse
engineering when diagnosing later problems. It's only if such a solution is overly expensive or error-prone that code generation is a

reasonable alternative.

Many of the cases given at the beginning of this section were data-driven, like the situation deriving class descriptions from a
database schema for some Object-Relational Mapping (ORM) system. This is a case where some programming languages give
you the ability to solve this problem without generating code in their language. If you can resolve messages sent to an object at
runtime, then you can tell that object which table its object is in and it can decide whether any message corresponds to a column in
that table. If you can add classes and methods at runtime, then you can generate all of the ORM classes when the app connects to
the database.

The existence and applicability of such features depends very much on the environment you're targeting but look for and consider

them before diving into writing a generator.

When the Generator Won't Be Used by A Programmer

If the target "customer" for this facility isn't going to be another developer, then a generator can often be a better choice than a full-

featured programming language, despite the increase in implementation complexity.

A solution that's often explored in this context is a Domain-Specific Language (DSL), a very limited programming language that
exposes grammar and features much closer to the problem that the customer understands than to computer science concepts. Many
projects that I've been involved with have used DSLs, because they offer a nice trade-off between letting the customer modify the

system as they see fit and avoiding complex configuration mechanisms.

Case study

The "customer" using the application doesn't need to be the end user of the finished product. On one project I worked on, I created
a DSL to give to the client so that they could define achievements used in the project's gamification feature. A parser app told them
about any inconsistencies in their definitions, such as missing or duplicate properties, and also generated a collection of objects

that would implement the rules for those achievements in the app. It could also generate a script that connected to the app store to

tell it what the achievements were.

Chapter 5
Coding Practices
Introduction

If you learned programming by studying a book or an online course, you probably sat at your computer with a text editor or IDE,
solving each problem completely as it came. Most software teams have two additional problems to contend with—the applications
they're writing are much larger, and there's more than one of them working on the product at once. In this chapter, I'll look at some
common ways to set about the task of programming on a larger project (though, teamwork plays such a big part in this that it has

its own chapter later in the book).

Most of this chapter will act as a quick reference, with an inline reading list and a few opinions thrown in for good measure. The
reason is that the concepts are too large to cover in detail in a single section of a novel-length book like this.

Test-Driven Development

TDD (Test-Driven Development) is such a big topic, plenty of books have been written about it. Indeed, one of those books was

written by me: Test-Driven iOS Development (http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000444373). So, I

won't go into too much detail here. If you've never come across test-driven development before, or the phrase "red-green-refactor,"

I recommend Growing Object-Oriented Software, Guided By Tests (http://www.growing-object-oriented-software.com/)

(unless you're focusing on iOS, of course).

The point of TDD

People talk about test-driven development as a way to ensure high test coverage. It does that, for sure. But its main utility is as a
design tool. You can construct an executable specification of a module or class, based on how you need to use that class in your

product. Often, I'll create some tests while I'm designing a class, but remove them as the code changes and they become obsolete.

I've delegated classes to other developers before by writing a suite of tests and asking them to fill in the implementation. I've left
myself a failing test on a Friday evening, so I know what I'm supposed to be doing on Monday morning (the #error C
preprocessor command, which inserts a compiler error with a custom message, is also useful for this). TDD has plenty of utilities

beyond generating automated regression tests.

Notice that TDD only helps you with your design when you limit yourself to designs that can be (easily) achieved by doing TDD.
That's no bad thing, as it means that everything will be designed in similar, understandable ways. It's like a magazine having a tone

and style guide, so readers have a base level of expectations of any article.

Particular constraints, or at least suggestions, derived from allowing TDD to elicit design choices include that your design will
probably be loosely coupled (that is, each module will not depend greatly on other modules in the system) with interchangeable

dependencies injected from the outside. If your response to that is "great - that's what I'd want," then you'll have no problem.

The Software I'm Writing Can't Be Tested

Actually, it probably can. Apart from the sample code from the afore-mentioned book, there's code in every project I've written

that hasn't been tested. In most cases, it probably can be tested. Let's look at some of the real reasons the tests haven't been written.

http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000444373
http://www.growing-object-oriented-software.com/

I've already written the code without tests, and can't work out how to retroactively test it

This is a common complaint. Don't let a TDD proponent smugly say "well, you should have written tests in the first place" — that's
dogmatic and unhelpful. Besides, it's too late. Instead, you should decide whether you want to (and can) spend the time changing

the code to make it amenable to testing.

It's not just time, of course; there's a risk associated with any change to software. — As mentioned elsewhere in this book, any code
you write is a liability, not an asset. The decision regarding whether or not you adapt the code to support tests' adaptation should
consider not only the cost of doing the work, but the potential risk of doing it. (I'm deliberately calling this work "adaptation"
rather than "refactoring." Refactoring means to change the structure of a module without affecting its behavior. Until you have the
tests in place, you cannot guarantee that the behavior is unchanged.) These need to be balanced against the potential benefits of

having the code under test, and the opportunity cost of not getting the code into shape when you get the chance.

If you decide you do want to go ahead with the changes, you should plan your approach so that the work done to support the tests
is not too invasive. You don't want to change the behavior of the software until you can see whether such changes reflect your
expectations. A great resource for this is Michael Feathers' Working Effectively With Legacy Code (https:/c2.com/cgi/wiki?
WorkingEffectivelyWithLegacyCode).

1 don't know how to test that APl/design/whatever

Often, "this can't be tested" comes down to "I don't know how this could be tested." Sometimes, it's actually true that some
particular API doesn't lend itself to being used in isolation. A good example is low-level graphics code, which often expects that
some context exists into which you're drawing. It can be very hard (if indeed it's possible at all) to reproduce this context in a way

that allows a test harness to capture and inspect the drawing commands.

You can provide such an inspection capability by wrapping the problematic API in an interface of your own design. Then, you can
swap that out for a testable implementation — or for an alternative AP, if that becomes desirable. OK, the adaptor class you wrote

probably can't be tested still, but it should be thin enough for that to be a low risk.

In other cases, there is a way to test the code that can be brought out with a bit of thought. I'm often told that an app with a lot of
GUI code can't be tested. Why not?

What's in a GUI app? For a start, there are a load of data models and "business" logic that would be the same in any other context
and can easily be tested. Then, there's the interaction with the UI: the "controller" layer in the MVC world. That's code that reacts
to events coming from the Ul by triggering changes in the model and reacts to events coming from the model by updating the
view. That's easy to test too, by simulating the events and ensuring that the controller responds to them correctly; mocking the

"other end" of the interaction.

This just leaves any custom drawing code in the view layer. This can indeed be both difficult (see above) and irrelevant —
sometimes, what's important about graphics isn't their "correctness" but their aesthetic qualities. You can't really derive an

automated test for that.

If your app really is mainly custom drawing code, then: (i) I might be willing to concede that most of it can't be tested; (ii) you

may need to rethink your architecture.
1 don't have time right now

There! There's a real answer to "why aren't there tests for this?" It genuinely can be quicker and/or cheaper to write code without

tests than to create both, particularly if working out how to test the feature needs to be factored in. As I said earlier though, a full

https://c2.com/cgi/wiki?WorkingEffectivelyWithLegacyCode
https://c2.com/cgi/wiki?WorkingEffectivelyWithLegacyCode

cost analysis of the testing effort should include the potential costs of not having the tests. And, as we know, trying to predict how

many bugs will be present in untested code is hard.

So Is Test-Driven Development A Silver Bullet?

As you will see later in this chapter, it is not believed that there is a silver bullet to making software. Plenty of people are happy
with the results they get from TDD. Other people are happy with the results they get from other practices. My opinion is that if
you are making something that solves problems and can demonstrate with high confidence that what you are doing is solving
those problems, then you are making a valuable contribution. Personally, I am currently happy with TDD as a way to show which

parts of a problem I have solved with software.

Domain-Driven Design

Domain-Driven Design (DDD) is a term introduced in the 2004 book of the same name—

http://domaindrivendesign.org/books/evans 2003, though most of its principles have been around quite a bit longer among

practitioners of object-oriented analysis and design. Indeed, the core of DDD can be thought of as deriving from the simulation

techniques employed in Simula 67 — a language that influenced the design of C++.

Simply put, much software (particularly "enterprise" software) is created as a solution to a particular problem. Therefore, software
should be designed by software experts in conjunction with domain experts. They should use a shared model of the problem

domain, so that it's clear the whole team is trying to solve the same problem.

In an attempt to reduce communication problems, a "ubiquitous language" is defined — a common glossary of terms that's used
throughout the documentation and the software. This includes the source code — classes and methods are named using the

ubiquitous language to reflect the parts of the problem they address.

I think it was learning some of the principles of domain-driven design that finally made Object-Oriented programming (OOP)
"click" with me (there's more on OOP later in this chapter). I'd been doing C and Pascal programming for a long time when [
started to approach languages such as C++ and Java. While I could see that methods belonged to classes, in much the same way
that modules work, deciding what should be an object, where its boundaries were, and how it interacted with other objects took me

a long time to get to grips with.

At some point, [went on a training course that talked about domain modelling — and made it very simple. The core of it went
something like this: listen to a domain expert describing a problem. Whenever they describe a concept in the problem domain with
a noun, that's a candidate class, or maybe an attribute of a class. Whenever something's described as a verb, that's a candidate for a
method.

That short description of how to translate a problem specification into objects and actions was a huge eye-opener for me; [can't

think about OOP in any other way.

Behavior-Driven Development

I found it hard to decide whether to put BDD in this chapter or to discuss it with teamwork, because it's really an exercise in
communication masquerading as a coding practice. But it's here, so there you go. Indeed, many of the sections in this chapter will

skirt that boundary between coding and communication, because programming is a collaborative activity.

BDD is really an amalgamation of other techniques. It relies heavily on DDD ideas like the ubiquitous language and combines

them with test-driven development. The main innovation is applying test-first principles at the feature level. Using the ubiquitous

http://domaindrivendesign.org/books/evans_2003

language as a Domain-Specific Language (http://martinfowler.com/books/dsl.html), the team works with the customer to express

the specifications for features in an executable form, as an automated acceptance test. Then, the developers work to satisfy the

conditions expressed in the acceptance tests.

My own experience has been that BDD tends to stay at the conversation level, not the implementation level. It's easy for an agile
team (which includes its customers) to collaborate on the acceptance criteria for a story, and then for the technical members of the
team to implement tests that evaluate the system according to those criteria. It's hard — — for the team — and I've never seen it
happen — to collaborate on the authorship of automated tests whose outcomes convince the customer that the user story has been
correctly built.

xDD

It seems like every time there's a developer conference, there's a new (something)-Driven Development buzzword introduced.

TDD; BDD; Acceptance Test-Driven Development—(http://www.methodsandtools.com/archive/archive.php?id=72); Model

Driven Development (https://social. msdn.microsoft.com/Forums/azure/en-US/d9fa0158-d9¢7-4a88-8ba6-a36a242e2542/model-

driven-development-net?forum=dslvsarchx). Some people think it's too much—http://scottberkun.com/2007/asshole-driven-

development/.

Many of the new terms are introduced by people hoping to carve out their niche as a trainer or consultant in the field they just
defined. Many are just catchy names that encompass existing practices. — Indeed, TDD is really a codification of the test-first
practices popularized by Extreme Programming. This doesn't mean that they are devoid of value though; sometimes, the part
that's truly original is indeed novel and worth knowing about. And often, the communities that congregate around these techniques

have their own customs and ways of working that are worth exploring.

Design by Contract

A little confession about one of my most recent software projects: it has a lot of unit tests in it. But for every test assertion, there

are more than three assertions in the code itself.

These have proven invaluable for documenting my assumptions about how the code is put together. While unit tests show that
each method or class works as expected in isolation, these assertions are about ensuring that the boundaries respect the

assumptions that are made within the methods — that is, they act as a form of integration test.

The assertions I've written mainly fall into three categories — testing that expectations are met when the method is entered, that its
results are what I expected before it was returned, and that certain transformations done during the method yield results
conforming to particular conditions. In developer builds, whenever one of these assumptions is not met, the app crashes at the

failing assertion. I can then decide whether the method needs to be changed, or whether the way it's being used is wrong.

In designing the Eiffel language (http://docs.eiffel.com/book/method/object-oriented-software-construction-2nd-edition) in 1988,

Bertrand Meyer formalized a "contract" comprising three distinct types of test that are similar to the assertions described above:
o preconditions should be true on function entry
o postconditions should be true on function exit

o invariants remain true at all "stable" times — immediately after the constructor exits, and at any time that one of the object's

methods is not being executed.

http://martinfowler.com/books/dsl.html
http://www.methodsandtools.com/archive/archive.php?id=72
https://social.msdn.microsoft.com/Forums/azure/en-US/d9fa0158-d9c7-4a88-8ba6-a36a242e2542/model-driven-development-net?forum=dslvsarchx
https://social.msdn.microsoft.com/Forums/azure/en-US/d9fa0158-d9c7-4a88-8ba6-a36a242e2542/model-driven-development-net?forum=dslvsarchx
http://scottberkun.com/2007/asshole-driven-development/
http://scottberkun.com/2007/asshole-driven-development/
http://docs.eiffel.com/book/method/object-oriented-software-construction-2nd-edition

Rather than codifying these conditions as assertions, in Eiffel they're actually part of a method definition. The contracts formalize
the relationship between the caller of a method and its implementor: the caller is required to ensure that preconditions are met
before calling the method. In return, the callee promises to satisfy the postconditions. These conditions can be inserted into the
code by the compiler as assertions to verify that classes are behaving correctly at runtime. You could also imagine pointing an

automated checker like Klee (http:/klee.github.io/getting-started/), at a class; it could check all the code paths of a method and

report on those that, even though they start with the preconditions and invariants satisfied, do not end up meeting the

postconditions or invariants.

Meyer coined the term Design by Contract to refer to this practice of including preconditions, postconditions, and invariants in
method definitions in Eiffel. The term is in fact a trademark that his company owns; implementations for other languages are

called contract programming or contract coding (thankfully, not contract-driven development...).

As we've seen, | tend to use a poor replacement of contract programming even when I don't have language support for the
capability. I see these contract-style assertions fail in development much more frequently than I see unit test failures; to me,

contract programming is a better early warning system for bugs than TDD.

Development by Specification

This is, as far as I'm aware, not a common development practice currently. But as a natural progression from Test-Driven

Development, I think it deserves a mention and consideration.

Unit tests, even when used as part of TDD, are employed in a craft way — as a bespoke specification for our one-of-a-kind classes.
We could benefit from more use of these tests, substituting the static, error-prone type tests used in many APIs for dynamic

specification tests.

A table view, for example, does not need something that merely responds to the data source selectors; it needs something that
behaves like a data source. So, let's create some tests that any data source should satisfy, and bundle them up as a specification that
can be tested at runtime. Notice that these aren't quite unit tests, in that we're not testing our data source — we're testing any data

source.

A table view needs to know how many rows there are, and the content of each row. So, you can see that a dynamic test of a table
view's data source would not simply test each of these methods in isolation; it would test that the data source could supply as
many values as it said there were rows. You could imagine that, in languages that support design-by-contract, such as Eiffel, the

specification of a collaborator could be part of the contract of a class.

These specifications would be tested by objects at the point their collaborators are supplied, rather than waiting for something to
fail during execution. Yes, this is slower than doing the error-prone type hierarchy or conformance tests that usually occur in a

method's precondition. No, that's not a problem: we want to make it right before making it fast.

Treating test fixtures as specifications for collaboration between objects, rather than (or in addition to) one-off tests for one-off
classes, opens up new routes for collaboration between the developers of the objects. Framework vendors can supply
specifications as enhanced documentation. Framework consumers can supply specifications of how they're using the frameworks
as bug reports or support questions; vendors can add those specifications to a regression testing arsenal. Application authors can
create specifications to send to contractors or vendors as acceptance tests. Vendors can demonstrate that their code is "a drop-in

replacement" for some other code by demonstrating that both pass the same specification.

Pair programming

http://klee.github.io/getting-started/

I've pair-programmed a lot during my career, though it has only accounted for the minority of my time. I've also watched other

people pair programming; the interactions between partners can make for very interesting viewing.

Before diving into what I think makes good pair programming, I'm going to describe what makes bad pair programming.

Back-Seat Driving Is Not Pair Programming

Because I've been doing TDD for a while, I'm used to deliberately letting my code go through a little bit of a worthless phase
before it gets good enough to integrate. Maybe I'll leave out handling a failure condition until I see it fail or add that in at the end.

Perhaps I can't think of what to call a method so will name it DoTheThing () until I've got a clearer image.

What I have to remember is that my partner might not work the same way. Yes, it's annoying to see an unhandled condition, or a
variable that isn't named according to my preferred convention, but is that the most urgent problem right at this moment? Probably
not; the problem that the driver is currently working on has their attention and talking about something else is just a distraction. I

should help them work on that and bring up other issues when it's appropriate.

A more extreme form of this problem: stealing the keyboard is not pair programming.

Being A Silent Partner Is Not Pair Programming

The situation in which I most frequently see this happen is when the navigator (for want of a better, more general word to describe
the person who isn't driving — though not "passenger," for obvious reasons) feels either inferior to or intimidated by the driver.
They feel afraid of contributing or unqualified to contribute, because they don't want to appear stupid or fear the response to their

contribution.

This section is not for the driver in such circumstances — I'll come on to that; it's for the navigator. If you can't see how the code

does what it ought, maybe it doesn't do it. If you ask about it to your partner, one of two things will happen:
o You'll find a bug, which will get fixed
o That bug won't exist, but you'll find out how the code addresses that issue

(Technically, there's a third option, which is that the driver will tell you to shut up. At that point, you want a book about human

resources, not being a developer.)
If you don't ask, one of two things happen:
o The bug will exist, and won't get fixed
o The bug won't exist, and you won't find out how the code works

In short, there's a higher chance that the bug will remain in the code if you don't ask about it, so you should consider it your

professional duty to ask.

So, Is Pair Programming Just The Balance Between Those Things?

That's an over-simplistic view of things, but yes. Pair programming works best when both people are involved; otherwise, one of
them is redundant, even if they happen to be acting as a typist. How to do pair programming well depends on what you're trying to

use it for.

Pair Programming As Programming

The few times I've used pair programming as a means to get code into an app, I've found that the simple rule to make sure both
people are involved is nothing can happen until both people agree. This allows the driver to moderate back-seat driving: "That's a

good point, but let's put it to one side until we've finished this bit." It also requires the driver to involve the silent partner.

Something I'm guilty of when navigating in pair programming is taking the helm: "Let me just show you what I mean." The both
people rule is as much a rule for me as for other people, as it requires me to find better ways to describe what I'm thinking of than

by destroying the partnership. Having a whiteboard available really helps.

If the goal is to write production code, pairing works best with two people of roughly the same skill level in the target

environment, who can take turns at driving. When there's an imbalance between their abilities, it turns into...

Pairing As A Coaching Practice

Pairing is great as a teaching exercise. The same rule about not writing code until both people agree still applies, ensuring that the

student discusses any issues with the tutor, who has the opportunity to guide the process.

I think pair coaching works best when the coach takes the navigator's seat. Their role is to encourage the student to ask questions,

and then to be the petulant toddler who answers every question with another question.

Seriously. The best way I've found to help someone through a problem is to identify and raise the questions they should be asking

themselves. It uncovers hidden assumptions, makes people come up with verbal arguments to support (or sometimes leads them to
change) their position, and they end up trying to guess which questions will come next, meaning they have answers before they're

asked. This technique is even useful when you have no knowledge of the subject you're coaching on — but for now, we'll assume

that the coach programmer is the more accomplished programmer.

When the student is staring at a blank file in the IDE, questions can be very high-level. What does the code we're about to write
interface with, and what constraints does that impose? Do we have a choice of the APIs we use, and if so, which shall we go with?

The occasional "why?" helps to tease out the student's train of thought.

Action has a place in the learning process, and so sometimes the appropriate response is not a question but "well, let's try that."
Even if your student hasn't hit upon what you think is the best solution, making a start is a quick way to find out which one of you

is wrong about what's going to happen.

But Does It Work?

Is pair programming actually beneficial? It certainly appears to be in the context of programming classes

(http://dl.acm.org/citation.cfm?id=563353), where pair programmers produce better software than sole programmers and are more

likely to get higher grades (http://portal.acm.org/citation.cfm?doid=611892.612006). Whether these results can be generalized to

all programmers is questionable; it'd be interesting to find out why these subjects do better when they're pairing and discover

whether those conditions apply to more skilled programmers.

Code Reviews

Another thing it's safe to say that pair programming is not is a code review exercise; they have different goals. A code review

should be conducted to discuss and improve existing code. Pair programming is about two people constructing some code de

http://dl.acm.org/citation.cfm?id=563353
http://portal.acm.org/citation.cfm?doid=611892.612006

novo. If your pair programming is about one person writing code and one person saying they've done it wrong, you need to rethink

your practices (or your partnership).

Mind you, that's true of code review when it's going badly, too. One problem with code reviews is that it's much easier to spot
code that satisfies "I wouldn't have written it like that" than it is to spot code that satisfies "it should've been written to consider
these things." This often gets in the way of getting useful information out of code reviews, because the reviewer gets frustrated

with the tabs/spaces/variable names/other degenerate properties of the code.

It's problems like this that make me prefer asynchronous, distributed code reviews over face-to-face reviews. We frequently see

that people (http:/programmers.stackexchange.com/questions/80469/how-to-stand-ground-when-colleagues-are-neglecting-the-

process) don't understand the motivations (http://thedailywtf.com) of their colleagues. Let the reviewer work out that initial

frustration and anger on their own — preferably, without the author present as a punching bag. The reviewer gets a chance to calm
down, to acquaint themselves with the requirements, and to study the code in detail... This is not true of in-person reviews, where

there's someone else in the room, waiting for the first gem of wisdom to be granted.

On the subject of face-to-face reviews, be wary of people citing the "classics" in this field. People espousing the benefits of code

reviews will often cite Fagan's paper on code inspections (http://iceexplore.icee.org/xpls/abs_all.jsp?arnumber=5388080),

claiming that it shows a reduction in the cost of developing software after introducing code reviews. Well, it does. But not in any

way you'd recognize from modern software development.

The code inspections performed in Fagan's group would, by and large, uncover problems that, today, would be reported by a
modern IDE before you even compile the code. Indeed, Fagan specifically describes code being inspected after a product is
written, but before it's submitted to the compiler. Think back to the last time you completely wrote an application before you tried

building it. For most developers working today, that hasn't ever happened.

Fagan's reviews would've discovered things such as missing semicolons or spelling mistakes before a deck of punchcards was
submitted to a batch compiler. That was, indeed, a valuable saving in terms of lost computer time and rework. For a modern code
review, though, to be valuable, it has to save time elsewhere. The reviewer should be encouraged to focus on real issues at higher
levels. Does the code represent a good abstraction? Is there an opportunity to reuse components of it elsewhere? Does it accurately

solve the problem at hand?

The tool I've found most useful for achieving this is a checklist. A short collection of things the reviewer should focus on directs
the review away from trivial questions about style and naming practice. Further, it also directs the author to think about these
problems while writing code, which should make the actual review itself fairly short. After using the same checklist a few times,
its effectiveness will be reduced, as everyone on the team will have a shared approach to dealing with the problems that appear on
it. Therefore, the items on the checklist should be swapped in and out as old items become irrelevant and the importance of other

problems increases.

Usually, the teams I'm working on do code reviews when integrating a piece of work into a release. This has worked better than
scheduled reviews (the code is rarely baked, leading to the reviewer focusing on known rough edges) or reviews upon request
(developers just don't ask). This is supported in tools like GitHub by "pull requests"—when the author wants to merge some code
into an upstream branch or repository, they send a request, which is a chance to do the review. Other tools, such as gerrit

(http://code.google.com/p/gerrit/), provide similar capabilities.

Code reviews should ideally be treated as learning activities. The author should learn why the reviewer is suggesting particular
changes, what the problems are, and why the proposed changes address those problems in ways that the code, as submitted to the
review, did not. The reviewer should be learning too: there are opportunities to learn from the submitted code and practice your

rhetorical skills by coming up with convincing arguments for why your changes should be accepted arguments that aren't "because

http://programmers.stackexchange.com/questions/80469/how-to-stand-ground-when-colleagues-are-neglecting-the-process
http://programmers.stackexchange.com/questions/80469/how-to-stand-ground-when-colleagues-are-neglecting-the-process
http://thedailywtf.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388086
http://code.google.com/p/gerrit/

I know best." For this to work, the outcome of a code review must be a discussion, even if it's a comment thread in a review tool.

Making some additional fixes and accepting the fixed changes without discussion loses a lot of the benefit of having the review.

Programming Paradigms And Their Applicability

On one (theoretically correct, though practically unpleasing) level, all software is just comprised of loads, stores, mathematics, and
jumps, so any application can be written using any tool that permits the correct ordering of those basic operations. A key theme
running through this book though, is the idea of software's interpersonal nature, and here, we have a concrete example of that: the

application source code as a source of mutual understanding between the programmers who work on it.

Before exploring that though, a little diversion into history, to make an idea explicit so that we can leave it behind. This is the idea
of successive layers of abstraction allowing people to build on what came before. Yes, all software is built out of the basic
operations described above but thinking about your problem in terms of the computer's operations is hard. Within a few years of
stored-program computers being invented, EDSAC programmers created an assembler that translated mnemonic operation names
(such as 4 for add) into the operation codes used by the computer. Programmers could then worry just about the fact that they
were adding things, not about which number the processor used to represent addition in this particular addressing mode (on

computers that have more than one).

Other work, including that on macro assemblers and Grace Hopper's work on A-1 and other compilers, let programmers move a
level away from computer operations (even with "friendly" names) and express what they want to happen in a way that can be
translated into low-level instructions. For example, a loop over some code with an index variable taking even values from 2 to 20
can be expressed as FOR I=2 TO 20 STEP 2:..:NEXT I rather than the initialization, test, branch, and update steps the

computer actually needs to execute.

So, when someone solves a problem in software once, others can (legality, compatibility, and availability permitting) build other
software on top of that solution. This applies to the discussion that follows objects can be built out of other objects and functions
can be built out of other functions. Functions can be built out of objects and objects out of functions, too. This is not that story.
This is the story of stories being built out of functions and objects; of choosing programming paradigms as ways to think about

software and to describe thoughts about software to other programmers.

Object-Oriented Programming

When it first became a popular technique in the middle of the 1980s, some people tried to position OOP as the solution to all of
the software industry's ills (whether those ills existed in the forms described is probably a discussion for another time). Fred
Brooks, a manager on IBM's infamous System/360 project, had told programmers that there is no silver bullet—

http://www.cs.nott.ac.uk/~cah/G511SS/Documents/NoSilverBullet.html; that the problems faced by the software industry are hard

and no technology solution would make it any easier. Brad Cox asked rhetorically in response, what if there is a silver bullet—

http://dl.acm.org/citation.cfm?id=132388 (that is, object technology), and your competitors are already using it?

As Cox saw it (or at least positioned it in marketing his company), object-oriented programming was the cultural shift that would
move software construction from a cottage industry of separate one-off craft pieces to a true engineering discipline, by introducing
the object as an interchangeable component with a standard interface, just like the pozidrive screw or the four-by-two plank.
(Software-ICs: another metaphor Cox used, particularly in his book Object-Oriented Programming: An Evolutionary Approach—
http://books.google.co.uk/books/about/Object_Oriented Programming.html?id=deZQAAAAMAAJ&redir_esc=y, was that of the

Software Integrated Circuit. Just as the development of computer hardware had accelerated by moving from assembling
computers out of discrete components to connecting together standard ICs, he envisaged a sort of software Moore's Law arising

from the successive development of applications assembled from standard objects or Software ICs.)

http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html
http://dl.acm.org/citation.cfm?id=132388
http://books.google.co.uk/books/about/Object_Oriented_Programming.html?id=deZQAAAAMAAJ&redir_esc=y

Software manufacturing companies could build these standard parts and make them available to an object marketplace. This
would be the software equivalent of the trade store, where blue-collar tradesmen and do-it-yourself computer users could buy

objects off the shelf and assemble them into the applications they needed.

As it happens, Brooks had already pointed out that there were two classes of problem associated with building software: the
essential problems that arise from it being a complex activity and the accidental problems related to the current processes or
technology and their flaws. Object-oriented programming did not solve the essential problems and replaced some accidental

problems with others.

Anyway, all of this history may be of some interest but what is object-oriented programming? The problem we need to look at is
not one of manipulating data or of instructing the computer, but one of organizing that data and those instructions to aid (human)

comprehension.

The property of object-oriented software that distinguishes it from other techniques is the interrelated organization of code and the
data that code acts on into autonomous units (the eponymous objects) that interact by sending each other messages. The argument
in favor of this approach is that a programmer working on one such unit need only understand the interface of its collaborating
units—the messages they understand along with the preconditions and results of those messages; not the implementation—how
those units do what they do. A large program comprising many instructions is thus split into multiple independent entities that can

be developed in isolation.

Plenty of programming languages that predate object-oriented programming already allow the organization of code into modules,
each module having its own functions and data. Such modules can be restricted to communicating with each other only using
particular interface functions. What OOP brings on top of this is the idea of the automaton, of the self-contained package of code
and data that is independent both from unrelated parts of the software system and from other instances of things like itself. So,
while a multiplayer game written in Modula-2 might have a module that controls the player characters and hides their details away
from the rest of the game, were it written in an object-oriented language like Oberon-2, it might have an object representing each

of the player characters that hides its internals from the rest of the game and from each other player object.

Given this desire to make a system of autonomous agents that communicate via messages (cpp-messages), some readers may take
umbridge at the statement that OOP involves message sending, using languages such as C++ with its member functions as counter
examples. Suffice it to say that the mental model of objects sending messages to each other is still useful, however the language
actually implements it. Now, some other readers are going to dig up quotes by Alan Kay to assert that only languages with
message-sending can be considered object-oriented. (If you dig hard enough, you'll find that, in Smalltalk, the phrase "object-
oriented" was sometimes used to refer to the memory management paradigm; in other words, to the garbage collector. The
programming model was called "message-passing." So, perhaps C++ with the Boechm-Demers-Weiser garbage collector truly is
"object-oriented" as purists would understand it. Whatever. If you take issue with it, please find someone else to email.) The
largest problem (if not the problem; the question being the only one introduced by adopting OOP) is choosing which objects are
responsible for which actions. This is a difficult problem to solve; I remember getting it very wrong on the first object-oriented
systems I created and still want to improve nearly a decade later. Programmers in all fields have written about heuristics for
decomposing systems into component objects, and some people have developed tools to evaluate software in relation to those

heuristics and to automatically change the composition.

Those heuristics range from woolly concepts (the open-closed principle, the single responsibility principle, and others) to precisely
defined mathematical rules (the Liskov substitution principle, the Law of Demeter, and others). Most (or maybe all) of these have
the high-level goal of increasing the autonomy of objects in the system, reducing the extent to which they depend on the rest of the
system. The stated benefits of doing this are: the increased reusability of objects across different systems, and the reduced

likelihood that a given object will need changing in reaction to a change elsewhere in the system.

Researchers have also found that object-oriented software is harder to review—nhttp://dl.acm.org/citation.cfm?id=337343 than

structured software. The desirable design properties that lead to a connected system of loosely coupled objects also produce a
system where it's difficult to discover the flow of execution; you can't easily see where control goes as a result of any particular
message. Tools do exist that aim to address this by providing multiple related views of an object-oriented system, such as Code
Bubbles and Eclipse Mylyn. These are not (yet) mainstream. Then, of course, there are the documents that describe object-oriented
software at a high level, often expressed diagrammatically using a notation such as UML. The value of these documents is

described in the Chapter 8, Documentation.

I find that the most interesting reading on object-oriented programming is that written when it was new; new to the commercial
programmer anyway. It's that material that attempts to persuade you of the benefits of OOP, and to explain the reasoning behind
the paradigm. Specific practices have changed significantly in the intervening few decades, but modern books assume that you
know why you want to do OOP, and often even that you know what it is.

I'd recommend that even readers who consider themselves experienced object-oriented programmers read Object-Oriented

Programming: An Evolutionary Approach—http://books.google.co.uk/books/about/Object_oriented programming html?

1d=U8AgAQAAIAA]&redir_esc=y) and Object-Oriented Software Construction—http://books.google.co.uk/books?

1d=vIYZAQAAIAA]&source=gbs_similarbooks. These books not only tell you about particular languages (Objective-C and

Eiffel, respectively) but also on the problems that those languages are supposed to solve.

What you may learn from these and other foundational texts in the field is that the reason OOP did not succeed is not because it
failed, but because it was not attempted. Keen to make OOP accessible, the Object Technology companies made it clear that what
you were already doing was already OOP. If you know how to write sequential statements in C, you'll love writing sequential

statements in Java, and then you'll be doing OOP.

Aspect-Oriented Programming

An extension to object-oriented programming that so far has not reached the same level of application and currency, aspect-
oriented programming sets out to solve a particular problem in the construction of object-oriented systems. More specifically, the

problem exists in class-based object-oriented systems with single inheritance.

The previous section described the existence of many heuristics, created to guide the organization of code in object-based systems.
One of these heuristics was the Single Responsibility Principle, which says that the code in one class should be responsible for just
one thing. Imagine, then, a database application for a human resources department (almost the canonical OOP example, if recipe
managers are ignored). One class might represent an employee, having a name, salary, manager, and so on. Not everyone should
be able to change an employee's salary, so some access control will be needed. It could also be useful for auditing and debugging

purposes to be able to log any change to an employee's salary.

There are then three responsibilities: updating the database, access control, and auditing. The Single Responsibility Principle
means that we should avoid putting all the responsibilities in the Employee class. Indeed, that would lead to a lot of duplication
because the access control and auditing facilities would be needed elsewhere in the application too. They are cross-cutting

concerns, where the same facilities must be provided by many, otherwise different, classes.

While there are other ways to build these cross-cutting concerns into an application, aspect-oriented programming opens up
configurable join points in an object-oriented system. These join points include method entry or exit, the transfer of execution to
exception handlers, and fields being read or changed. An aspect defines the predicate a join point must satisfy for this aspect to be

relevant (called a pointcut) and the code that is run at that join point (sometimes called advice).

http://dl.acm.org/citation.cfm?id=337343
http://books.google.co.uk/books/about/Object_oriented_programming.html?id=U8AgAQAAIAAJ&redir_esc=y
http://books.google.co.uk/books/about/Object_oriented_programming.html?id=U8AgAQAAIAAJ&redir_esc=y
http://books.google.co.uk/books?id=v1YZAQAAIAAJ&source=gbs_similarbooks
http://books.google.co.uk/books?id=v1YZAQAAIAAJ&source=gbs_similarbooks

(http://sourceforge.net/projects/aspectsharp/) for .NET), but as previously mentioned, the style is not widely used. It adds further

to the problem OOP already suffers from, in that it's hard to work out exactly what code is executed in response to a given event.

Other systems, such as Ruby and Self (and C++), have "traits" or "mix-ins," which take the position of aspects but not the name.

Functional Programming

Something that's even less new—though needed a bit of rediscovery—than object-oriented programming is functional
programming. As the name suggests, functional programming is all about functions; in this case, functions in the mathematical
sense of operations that can be applied to some input domain and produce output in a corresponding range. Whereas object-
oriented systems describe the imperative commands the computer must execute, a functional program describes the functions that

are applied to given input.

This distinction leads to some interesting departures from imperative systems (though these departures can be modelled in OO
code, they are prevalent in FP). Parts of functional systems can be lazily evaluated; in other words, the computer, seeing that an
x"2 result is required, can defer the computation of that result until it's actually used, or the CPU is quiescent. That's not so
interesting for calculating a square but can lead to tricks like working with a list of all integers. In imperative code, a list of all
integers would need computing when it was created, which is impossible to do. Functional software can define something that

evaluates to a list of all integers, then lazily evaluate only those entries that are actually accessed.

Similarly, results can be memorized: the result x times x for x==2 is always 4; we know it doesn't depend on anything else, such as
the state of a database or what keys a user presses on the keyboard, so having calculated 2 times 2=4 once, we can always

remember it and use the answer 4 again.

Recursion is a weapon frequently wielded in functional programs. How might we build a list of all integers? Let's restrict

ourselves to a list of positive integers. Define the £ (x) function such that:
o Ifxisatthe head of alist 1, £ (x) =1
o Otherwise, £ (x)=1+f (previous entry)
Then, for a list with one entry, the result of applying £ is 1. With two entries, it becomes 1+£ (single-entry) =2, and so on.

Recursion and lazy evaluation are both useful properties, but neither is intrinsic to a functional style of programming; they are
merely frequently found being employed in such fields. A more essential part of the program-as-function model is the absence of

side effects.

Because mathematical functions have no side effects, the output of a function depends only on its input. Evangelists of functional
programming say that this makes software easier to understand (nothing "magic" can happen), and that it makes for a good
approach to building multi-threaded software as there can be no race conditions; if the input to a function can be prepared, the
function can produce its output. If a function works well with a number as its input, it will work equally well with the (numeric)

output of another function as its input; its execution depends only on what it receives.

Of course, many software systems have requirements to produce side effects such as drawing images on a display or modifying
the saved state of a database. Different functional programming languages then provide different techniques for encapsulating —
not completely removing — mutable state. For example, stateful components of a software system written in Haskell will be
expressed as data types that are the results of functions and can themselves be executed to produce the required side effects; in this
way, stateful parts can act as sinks or sources to the functional program.

http://www.eclipse.org/aspectj/
http://sourceforge.net/projects/aspectsharp/

Functional programming has gained a lot of popularity in the commercial sector in the last couple of years, primarily with the
availability of functional languages that interface with existing (object-oriented) code; examples being Clojure (http://clojure.org)
on the Java Virtual Machine (JVM) and F# (https:/fsharp.org/learn.html) on the .Net VM. The principles though are a lot older

—LISP was first described in 1958—Nhttp://www-formal.stanford.edu/jmc/recursive.html but based on mathematical concepts that

predate the programmable computer—http://www.jstor.org/stable/1968337. A great reference on the how and why of functional

programming is Structure and Interpretation of Computer Programs (https://web.mit.edu/alexmv/6.037/sicp.pdf), even though

recent versions of this book use the not-at-first-glance functional language, Python.

http://clojure.org/
https://fsharp.org/learn.html
http://www-formal.stanford.edu/jmc/recursive.html
http://www.jstor.org/stable/1968337
https://web.mit.edu/alexmv/6.037/sicp.pdf

Chapter 6
Testing
Introduction

One of my earliest jobs in IT was in software testing. I discovered that developers and testers have separate communities, with
separate techniques and bodies of knowledge. I also found that, in some companies, the developers had an antagonistic relationship
with the testers: developers resented testers for being proud of poking holes in their hard work. In return, testers resented the
slapdash and inconsistent way in which the developers had written and released the software. Of course, neither of these extremist

positions was actually grounded in reality.

This chapter lays out a way of thinking about making software that puts developers and testers in the same position: that of wanting
to make a valuable product. It then includes an introduction to the field of systematic software testing, as understood by software

testers, and as apparently given little attention by developers.

A Philosophy of Testing

Imagine plotting the various dimensions of your software: the functionality, performance, user interface, and so on, on a
multidimensional chart (for the diagrams in this section, I'll stick to two dimensions; even if you're viewing them on some mad

future reader, my graphics tool doesn't support more than that).

The first thing to notice is that you can't draw a point on Figure 6.1 that represents the "target" product to develop. The most
important reason is that the target may not exist. Depending on your philosophical approach to software, there may not be a true
collection of requirements that is universally understood to be the correct thing to build. Consider the people who are using the
software as part of the system the software is supporting, so the "right thing" depends on those people and their interactions with
each other. The thing you "should" build depends on the context and varies with time. (Manny Lehman wrote a more complete
description of this philosophy, in which he describes software systems embedded in real-world interactions and processes as "E-
type" systems (E for Evolving). In exploring the properties of E-type systems, he formulated eight laws of software evolution—

http://en.wikipedia.org/wiki/Lehman's_laws_of software evolution. I find it ironic that these came to be described as laws as if

they were intrinsic to nature, when the lesson is that there are no universal truths when it comes to software.)

What you could graph are many fuzzy blobs representing various perceptions of the software: what customers think it does, what
customers think it should do, and what various members of the project team thinks it does. Then there's another blob, representing

what the software actually does.

http://en.wikipedia.org/wiki/Lehman%E2%80%99s_laws_of_software_evolution

Figure 6.1: Software behavior Venn diagram

The behavior of a software system and the opinions different people have of what that behavior is or should be are different regions

in the space of possible behaviors. Software testing is the practice of identifying these differences so they can be reconciled.

The various practices that comprise software testing can be seen, alongside some marketing and requirements gathering activities,
as part of the effort to catalog these perceptions and the gaps between them. The effort to reconcile these different perceptions and
to close the gaps is then not solely a debugging effort, implying that testers will find problems the developers missed. It's a whole-
team effort where debugging is just one of the reconciliation activities. Marketing (changing the customers' perceptions to match the
capability of the software), extra-sales engineering (changing the deployment environment to match that expected by the software),

and other techniques are all ways to close these gaps.

With this mindset, testers are not working to "show up" developers; everybody is working to create both a valuable software system,
and a common understanding of what that system does. The goal of testing is to identify opportunities for the project team to

exploit.

Black and White Boxes

One thing that I've found can infuriate developers is when a problem report is written from a black-box perspective — the tester has
reported a bug with no other information than what can be discovered through the user interface: "I tried this and it didn't work." 1

know it's infuriating, because I've been on the receiving end of these reports.

From the perspective outlined in the previous section, though, black-box test reports are the most valuable reports. (Here, "black-
box" refers to the format of the test report, where the inputs to the software are described along with the difference between the
expected and the actual output. In test planning, testers use the phrases "black-box" and "white-box" to refer to whether the
software's source code was used in designing the tests; such tests are still likely to be executed via the software's interfaces.)
Anything that doesn't work as expected via the UI represents one of the gaps that was described: a gap between the customer's

perception of what the software does and the capability it actually demonstrates.

The reason it's often frustrating to receive this kind of report is that it can be incredibly difficult and time-consuming to replicate the
reported issue and to isolate the cause. Often, this process takes longer than fixing the problem when it's been located; why are the
testers giving you so much extra work when they could be using white-box techniques, using internal knowledge of the software, to

test components in isolation and go straight to where the bug is?

This is another example of one of those perception gaps. Because we spend all of our time working with methods and functions that
group instructions into sequences of 10 or so, the natural view the programmer has of the system is in terms of those instructions
and methods. Black-box problem reports bear a strong resemblance to the old puzzle game of black-box, where you shine a light
from one edge and see that it gets absorbed or deflected. You want to be thinking about mirrors and other features of the box's

innards, but you're forced to infer them from what happens to the light beams.

The tester, meanwhile, is acting on behalf of the customer and therefore has no emotional attachment toward the guts of the system.
The customers will think "I have this problem, and I believe the software can help me to solve it if [do that" — a naturally black-box
view that only interacts with the external interface of the software. In other words, they (and the testers on their behalf) have no
opinion on whether a particular method returns true or f£alse when the parameter is 3; they care whether the software's output is
a useful solution to the problem expressed as its input. Remember that the tester is trying to find differences between the expected
and the actual behavior; discovering their causes is something that only needs to be done once the team has decided a code fix is

appropriate.

Shining Light on The Black-Box

Evidently then, if the effort of locating and diagnosing a code problem is only needed when it's decided that the code must be fixed,
it's the programmer and not the tester who needs to go from a black-box problem definition to a root cause. Like it or not, it's the

developer's responsibility to isolate the fault — whether or not the testers are able to help out.

Obviously, it would be possible to isolate the fault by going through the reproduction steps in the problem report, stepping through
the code in a debugger from start to finish until the problem shows itself. That's neither very fast, nor very enjoyable though. It'd be
much quicker to diagnose problems if you could hypothesize the likely cause and rapidly demonstrate whether or not that

hypothesis is valid.

This is where component and integration testing become useful, but as part of a larger picture: knowing (or being able to find out)
the conditions under which the various modules that comprise the whole system work successfully, and whether those conditions

are being satisfied for each of the modules taking part in the buggy behavior.

Help in constructing these hypotheses can come from the software's behavior. A common device used in problem diagnosis is a
configurable level of logging output: messages are tagged with differing levels of severity and users choose what levels get recorded
in the logs. When reproducing a bug, the logging is set to show everything, giving a clearer view of the flow of the code. The
downsides to this approach depend on the specific application but can include noise from unrelated parts of the software, and

changes to the overall behavior if the problem is timing related.

Problem diagnosis also benefits from having a scriptable interface onto an application; for example, a command-line or AppleScript
interface. The first benefit is that it gives you a second Ul onto the same functionality, making it possible to quickly determine
whether a problem is in the UI or the application logic. Secondly, it gives you a repeatable and storable test that can be added to a
regression test suite. Finally, such interfaces are usually much simpler than GUISs, so only the code that's relevant to the problem is

exercised, making isolation a quicker task.

Otherwise, going from observable behavior to likely cause is largely still a matter of intuition and system-specific knowledge.
Knowing which modules are responsible for which parts of the application's external behavior (or being able to find out — see

Chapter 8, Documentation) and reasoning about which is most likely to have caused the problem cuts down debugging time greatly.

I therefore prefer to organize my projects along those lines, so that all of the code that goes into one feature is in one group or

folder, and is only broken out into another folder when it gets shared with another feature. Eclipse's Mylyn task manager—

http://eclipse.org/mylyn/start/ is a richer way of providing a problem-specific view of your project.

Test Case Design

Random, undirected testing (otherwise known as playing about with the user interface) is an inefficient way to test software. A long-
established technique (documented in Myer's The Art of Software Testing—

http://books.google.co.uk/books/about/The_art_of software_testing.html?id=86rz6UExDEEC&redir_esc=y) seeks to cover all

possible conditions with the minimum number of tests. For each input variable or state, the tester discovers the ranges of values that

represent distinct conditions in the software. As an example, an age field may have the following ranges:
o [0,18[: child
o [18,150[: adult
o 0f : too small
o [150 : too large
o NaN : not a number

The tester then tabulates these various ranges for all the inputs and creates the minimum number of tests required to exercise all of
them. This is called equivalence partitioning: the behavior at age 36 and the behavior at age 38 are probably the same, so it's
reasonable to expect that if you test one of them, the residual risk associated with not testing the other is small — specifically,

smaller than the cost of also having that test.

In fact, testers will not quite produce the minimum number of tests; they will probably choose to pay extra attention to boundary
values (maybe writing tests that use the ages 17, 18, and 19). Boundaries are likely to be a fecund source of ambiguity: did
everybody understand the phrases "up to 18" and "over 18" to mean the same thing? Does the software use a rounding scheme

appropriate to age in years?

Such a technique was first created with the assumption that the "true" behavior of a software system was to be found in its
functional specification; that all tests could be derived by applying the above analysis to the functional specification; and that any
difference between observed behavior and the specification is a bug. According to the philosophy of testing described at the
beginning of the chapter, these assumptions are not valid: even if a functional specification exists, it is as much an incomplete and
ambiguous description of the software system as any other. The technique described here is still useful, as ferreting out these
ambiguities and misunderstandings is a part of the value testers bring to a project. It just means that their role has grown from

verification to include being a (verbal) language lawyer.

Code-Directed Tests

Remembering that the phrase "white-box testing" has contextual meaning, I've chosen to refer to code-directed tests. This means

tests that are designed with reference to the application's source code, however they're run.

When testers design these tests, they typically have one of two goals: either ensuring 100% statement coverage or 100% branch

coverage. Maximizing branch coverage will yield more tests. Consider this function:

void f (int x)

{

http://eclipse.org/mylyn/start/
http://books.google.co.uk/books/about/The_art_of_software_testing.html?id=86rz6UExDEEC&redir_esc=y

if (x>3)

{

// do some work...
}
}

A tester who wants to execute every statement need only test the case where x is greater than 3; a tester who wants to execute every
branch will need to consider the other case too (and a diligent tester will try to discover what people think will happen when x is

equal to 3).

Because the tests are derived from the source code, which by definition is a format suitable for manipulation by software tools, tool
support is right for code-directed test design. Plenty of platforms have tools for measuring and reporting the code coverage. There
are even automatic test-case generators that can ensure 100% branch coverage; a good example is the Klee—http://klee.llvm.org/,

symbolic virtual machine.

Testing For Non-Functional Requirements

In principle, testing the non-functional properties of a system should be the same as testing its functional behavior. You find out
what the system does, what various parties think it should do, and compare those. In practice, non-functional requirements can be
tacit (someone might want the system to work in a particular way, but they either doesn't know how to say that or considers it too

obvious to make explicit) or defined in ambiguous terms ("the system must be fast").

The first step in addressing these problems is to get them into discussion, so testing these aspects of the software and reporting the
results is a good idea. As an example, the customer might not have expressed any system requirements because they don't know it's
important; a report saying "the application doesn't run properly on 32-bit systems and requires at least Service Pack 2" will uncover

whether or not that's an issue, leading to a better mutual understanding of the system.

Automate All The Things

Testing software and writing software share the following property in common: it's not doing them that's beneficial, it's having done
them. Having access to finished, working software is a useful thing, so a project that's in progress is only as valuable as one that
hasn't started (although the in-progress one has already cost more). Therefore, as much of the testing procedure itself should be

automated as possible to let testers get on with the more creative tasks of defining tests and discovering/reporting issues.

This automation starts with setting up the test environment into a known, initial state. Virtual machines are increasingly being used
for this task (at least in server and desktop environments) because they offer a quick way to create an environment of known
configuration into which the test harness and the software it's testing can be deployed. At the end of a test run, the state of the virtual

machine is reset and it's ready to start again.

Automated driving of the software under test can be done through dedicated scripting interfaces, as already described, but these do
not test the behavior of the Ul buttons and widgets. Developers tend not to like automatic GUI driving tests as there's a finite chance
the test will fail due to unimportant properties of the GUI changing, such as the location or design of a control. There are two things

to notice here:

o The location and design of a control are important; if a test driver cannot find the same control between two versions of the

software, there's a likelihood that customers won't be able to either.

http://klee.llvm.org/

o While there's a risk of such tests failing due to innocuous changes, if you drop the tests completely, then there's a risk that
you'll ship undetected problems with the GUI. These conflicting risks must be resolved. The impact of the test failure
scenario is that, on those occasions, when the GUI is updated, there will be a brief flurry of false negatives from the test suite
until someone realizes what's happened and spends some time updating the tests. The impact of the broken GUI scenario is
that your software definitely won't do what your customers expect, which will lead to dissatisfaction, low reviews, maybe loss
of revenue, and someone will have to spend some time releasing a fixed version of the software. The second scenario seems a

lot less desirable than the first, so accepting the cost of keeping the tests up to date is the better choice.

Automation is particularly helpful if you have a "smoke test" procedure for determining whether a build is stable enough to be
subjected to further testing or treated as a release candidate. Going through the smoke test suite is almost the definition of repetitive
drudgery, so give it to a computer to do. Then, developers can go back to planning and working on the next build, and testers can
work on providing valuable tests. Additionally, automated smoke test suites will be faster than manual smoke tests, so the build can
be subjected to greater rigor. You could go as far as to add all automatic tests to the smoke test battery, so that each build contains

no known regressions over previous builds.

Some teams allow a build to be deployed automatically—nhttps://github.com/blog/1241-deploying-at-github as soon as it passes the

automatic tests.

Getting Someone Else In

Much of the literature on testing makes reference to the fact that an external tester has less emotional attachment to the software
under test than the developer, will be more dispassionate in their evaluation of that software, and therefore will uncover more
problems. The fact is that a developer can systematically test their own software, but the inclination to do so is often lacking
(particularly as we tend to see writing code as the valuable thing we do, and everything else as overhead). Getting some form of
external input, whether it's a third-party tester or a consultant to examine whether our own testing covered the relevant cases, is a

valuable check on our work.

Notice that beta testers are not likely to provide such systematic reviews. Typically, a beta tester is an interested user who can be
given access to the software for free while it's still under development. They are likely to approach testing in a random fashion, and
to only use the parts of the software that are of interest to them. Beta testing is useful for discovering the gap between how you
think software will be used and how you expect it to be used, but statistical techniques must be employed in analyzing reports from
beta testers. The temptation to change something reported by one beta tester because "the customer is always right" is high but

remember that the other n-1 testers did not report the same problem, and that none of them has tested the alternative.

On one project I worked on, the thing we called "beta testing" was really customer environment testing. We gave the software to
customers in the hope that their setups would be different from ours and might uncover problems that were configuration specific.
Being large businesses, those customers did not actually test the beta versions on their real networks but in "different" environments

set up expressly for testing. Therefore, the team still did not know whether the software worked in the customers' setups.

Getting external involvement is also useful when the testing procedures require specialized knowledge. Security testing,

performance testing, and testing localized versions of the software are situations where this applies.

Other Benefits Of Testing

I have shown throughout this chapter that software testing has an important role to play in identifying the gaps between your
software's actual behavior, apparent behavior, and expected behavior among the various people who interact with it. Additionally,
I've described the benefits of using automated tests as a regression suite, so that a problem fixed once will be detected if it's

accidentally reintroduced. There are other benefits that result from investing in testing your software, too.

https://github.com/blog/1241-deploying-at-github

Accessibility

Traditionally, in the world of software, accessibility (or ally, after the eleven letters that have been elided) refers to making a
software's interface usable by people with certain disabilities or impairments. Often, it's narrowly applied to considerations for just

the visually impaired.

Indeed, an automated user interface test suite can improve the accessibility of an application. Some UI test frameworks (including
Apple's UL Automation—

http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UTAutomationRef/ _index.html and Microsoft's

UI Automation—http://msdn.microsoft.com/en-us/library/ms747327.aspx) use the metadata supplied for screen readers and other

assistive devices to find and operate the controls on an application's display. Testing at this level ensures that the tests can still find
controls that have had their labels changed or have been moved on the screen, which image-detection-based test frameworks have

difficulty coping with.

Some developers who have difficulty arguing for making their products accessible on other ally-grounds find that testing is a
handy device for doing it anyway. In my experience, first the ethical approach is taken ("it's the right thing to do"), then the legal
approach ("are we bound by the Disability Discrimination Act?"), then the financial approach ("we'd get more customers — ones that
our competitors probably aren't selling to"). Even vociferous promoters of accessible software

(http://mattgemmell.com/2010/12/19/accessibility-for-iphone-and-ipad-apps/) admit that the financial justification is shaky: I'm not

going to try to make a convincing commercial argument for supporting accessibility; I'm not even sure that I could—

http://mattgemmell.com/2012/10/26/ios-accessibility-heroes-and-villains/). Managers tend to love reduced cost and risk: automating

user interface tests, then keeping them as part of a regression battery can provide these two reductions.

Structure

From unit tests to system tests, whatever level your tests are operating at, the object under test must be extractable from your
application to execute in the test harness. This requirement enforces a separation of concerns: at each level, modules must be
capable of operating in isolation or with external dependencies substituted. It also strongly suggests a single responsibility for each
module: if you want to find the tests for the logging facility, it's easier to look in the "Logging Tests" fixture than the "Amortization

Calculation (also does logging, BTW)" fixture.

Admittedly, such a rigorous separation of concerns is not a/ways the appropriate solution, but it usually is until you discover
otherwise. It will simplify many aspects of development: particularly the assignment of work to different developers. If each
problem is solved in an entirely separate module, then different programmers need only agree on the interfaces between those
modules and can build the internals as they see fit. If they need combining for some reason later, then the fact that you /iave tested
them as separate standalone components lends confidence to their integration, even if you have to remove some of the regression

tests to get everything to work.

I've seen this case primarily in optimization for performance. As I was writing the visualization for a particular feature, another
developer wrote the functionality. Those pieces each worked in isolation, but the interface made them too slow. We took the
decision to couple them together, which made them fast but introduced tight dependencies between the modules. Certain things that
could previously be tested in isolation then required the other parts to be present; but we had tested them in isolation, so had some

idea of how they worked and what was assumed.

http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/_index.html
http://msdn.microsoft.com/en-us/library/ms747327.aspx
http://mattgemmell.com/2010/12/19/accessibility-for-iphone-and-ipad-apps/
http://mattgemmell.com/2012/10/26/ios-accessibility-heroes-and-villains/

Chapter 7
Architecture
Introduction

The term "software architect" has become sadly maligned of late, probably as a result of developers working with architecture

astronauts—http://www.joelonsoftware.com/items/2005/10/21.html who communicate through PowerPoint-Driven Development.

Simon Brown has written a book called Software Architecture for Developers—https:/leanpub.com/software-architecture-for-

developers; check it out for a complete discussion of the responsibility of a software architect. The focus of this chapter is on the
incremental differences between thinking about a problem as code and as architecture that supports the code. It's also about some
of the things to think about as you're designing your application, when to think about them, and how to communicate the results of

such considerations to other people on the team.

Non-Functional Requirements Are Essential

I'd almost go as far as to say that the primary indicator of success for an application architecture is whether it supports the non-
functional requirements the customer has described. Anyone can, given enough patience and stubbornness, carry on gluing
features together arbitrarily until all of the required functionality is present. However, making it do that coherently, in a way that
combines desired attributes from the customer side (the NFRs) and the developer side (adaptability, readability, and the like) is

where the art form of software architecture comes in.

So, what are these non-functional requirements? It's common to say that these are the "-ility" statements made about the software.

It takes a bit of squinting to accept that, but it's roughly true:

o Performance: How is this an -ility? Is it speedability? Velocitility? Well, something like that anyway. It's important to
understand what's meant by performance, as it has many different aspects. It could refer to the software's behavior with
restricted resources, or large datasets. If we're talking "speed," that could be about the rate at which requests are processed,
or the time to process any one request (measured in wall time or clock cycles, depending on which is more important). It
could be an average, or under peak conditions. If it's an average, over what time is it measured? And is it the mean time or

another average? Perhaps the median?

I worked on one project where the performance requirements were described thus: the time and memory required to
complete certain operations should be within 105% of the previous versions of the sofiware. That's easy to measure, and

whether the software has succeeded is unambiguous.

o Compatibility: What operating systems will the software have to run on? What versions? What other software components

will it communicate with? Are there reasons to choose particular languages, environments, or third-party components?

o Reliability: What happens when there's some problem? Is there a failure, a recovery, or some restricted mode of operation?
How much downtime can be accepted, over what period? Or maybe there are limits on how many users may be affected

simultaneously?

o Legal or regulatory requirements: These can be requirements not to do things (such as don't give customer data to third

parties) or mandates that the software must do something (such as keeping a record of any request from data).

http://www.joelonsoftware.com/items/2005/10/21.html
https://leanpub.com/software-architecture-for-developers
https://leanpub.com/software-architecture-for-developers

o Security: Such a wide topic that many books have been written, including one of my own. Now, I'm sure security experts
will get annoyed that I've lumped security in with "other" NFRs, but that's what it is. For most software, security is not
functionality that the customer wants but a property of how they want that functionality to be delivered. Notice that while
security isn't directly related to other requirements, such as compliance, it can be a prerequisite to ensure that other

requirements are still satisfied in the face of subversion.

o Usability: This can cover a wide range of requirements: ease of use, obviously; but also what (human) languages should be
supported, accessibility, design aesthetics, and so on. I mentioned usability, but usability by whom? The people who will be
using it, of course; but is there anyone else who needs to be considered? Who will be deploying, installing, testing,

configuring, and supporting the software? What usability requirements do those people have?

o Adaptability: What are the most likely variations in the execution environment or the (human) system that the software's
supporting? There's no need to support those things now, of course, but an architecture that makes it easier to make those

changes (without causing unacceptable costs now, of course) could be beneficial.

With a list like that, we can come up with a less hand-wavy definition of non-functional requirements: they're the constraints

within which the product needs to provide its functionality — not the things it does, but the ways in which it must do them.

That's why a successful architecture must support satisfaction of the non-functional requirements. If the software doesn't remain
within the constraints of its operation, customers may not be able to use it at all; in which case, the software would be a failure. To
support these requirements, the software architecture needs to provide a coherent, high-level structure into which developers can
build the app's features. The architecture should make it clear how each feature is supposed to fit, and what limitations are
imposed onto the implementation of each component. In other words, the architecture should guide developers such that the most
obvious implementation of a feature is one that conforms to the NFRs. Ideally, whenever a developer has a question along the
lines of "where would I add this?" or "how should I make this change?", the architect (or even the architecture) should already

have an answer.

When Should I Think About the NFRs?

The above discussion probably makes it seem that you need to get the architecture in place before any of the features are built,
because the feature implementation must be constrained by the architecture. That's more or less true, though often you'll find that

requirements for the app's functionality feed back into architecture decisions.

I find this iteration is best handled by a series of successively high-fidelity prototypes. ("Fidelity" here refers to the technical
accuracy and functional completeness of prototypes; these are for architectural evaluation, after all. I'm not talking about the

prototypes' applicability to Ul testing, which is a whole separate issue—http://dl.acm.org/citation.cfm?id=223514.) The

architecture is roughly defined and some of the features are roughly implemented; any identified problems are resolved and the

design is refined slightly. This carries on until everything stabilizes, by which time the product is ready to ship.

There's a discussion on project methodologies in Chapter 13, Teamwork. Those who have read that, or a similar discussion, will

realize that this sounds somewhat similar to the spiral model of software development— http://dl.acm.org/citation.cfm?

doid=12944.12948, proposed by Boehm in 1986. The difference between that proposition and prototyping in stages as I practice it

is the length of each iteration: days or weeks rather than the months to years Boehm was considering.

People who believe in the "build one to throw away" line are at this point picking up their mortified jaws from the floor. The
problem with that line is actually getting around to throwing away the one to throw away. You intend to throw the first one away,

but somehow it manages to hang around and end up in production. You may as well accept from the beginning that this is going to

http://dl.acm.org/citation.cfm?id=223514
http://dl.acm.org/citation.cfm?doid=12944.12948
http://dl.acm.org/citation.cfm?doid=12944.12948

happen and write a prototype that isn't ready yet but will be at some time, supported by documentation that helps the team

understand the gap between the prototype and production-readiness.

Performance in Low—Fidelity Prototypes

Tools for measuring the performance of an application are among some of the most capable developer tools available. Time
profilers, memory managers, network packet inspectors, and others all help you to discover the performance characteristics of

your application. But how do you do that when it isn't written yet?

You write simulations that have the expected performance characteristics. If, for example, you estimated that an operation
requested over the network would take about 0.1+0.01s to complete, using about 4 MB of heap memory, you could write a
simulation that allocates about 4 MB then sleeps for the appropriate amount of time. How many of those requests can the app's
architecture support at once? Is the latency to complete any one operation acceptable? Remember to consider both the normal

and saturated cases—http:/queuc.acm.org/detail.cfm?id=2413037 in testing.

This form of simulation will not be new to many developers. Just as mock objects are simulations designed to test functionality

when integrating two modules, these simulations are the performance equivalent.

Security in Low-Fidelity Prototypes

Retrofitting a security model to an existing architecture can be intensely problematic. Finding all of the points where access
control is needed (This is a key use case for aspect-oriented programming; access control can be inserted at the "join points" of the
application's code), or where data should be inspected for different abuses is difficult when the data flow was designed without
those aspects being considered. For critical security concerns, including access control and data protection, it's best to incorporate

them in the design from the start.

That doesn't necessarily mean completely polishing their implementation; it just means making sure that even the early prototypes
are capable of (even prototypical) protection. As an example, on one project I was involved in, we knew that the application
needed to encrypt documents that were written to disk. The early versions of the app used a Caesar cipher—

http://en.wikipedia.org/wiki/Caesar_cipher to do this — far from cryptographically sound, but sufficient for showing which files

were being protected and whether anything was being written through another route. You can imagine doing the same for

authorization, by ensuring that even stub functionality cannot be used by unauthorized people.

Reliability in Low-Fidelity Prototypes

You can easily explore how an architecture responds to failures by injecting those failures and observing what happens. In the
Performance section in this chapter, I talked about having a stub network module that simulates the memory and time
requirements of real network requests. Similarly, you could arrange for it to fail every so often and observe how the rest of the
system copes with that failure. Some companies even inject random failures in production—

https://github.com/Netflix/SimianArmy/wiki) to ensure that their systems are capable of coping.

Defer When Appropriate; Commit When Necessary

Working with successively refined prototypes means that the architecture becomes iteratively more complete; therefore, certain
decisions become more "baked in" and difficult to change. Remember the notion presented earlier: that the architecture should

always be ready to answer developer questions. This means that whatever the developers work on first are the things that should

http://queue.acm.org/detail.cfm?id=2413037
http://en.wikipedia.org/wiki/Caesar_cipher
https://github.com/Netflix/SimianArmy/wiki

be solved first. But that's a tautological statement, because you can probably arrange the development work to track the

architectural changes.

The best things to start with are the riskiest things. They might be the exploratory aspects of the product that aren't similar to
anything the team has worked on before, they could be the parts that interface with other software or other organizations, or they
could be the aspects that will potentially have the highest cost. These are the aspects of the application that will most likely
change, and where change will be expensive. Dealing with these issues first means a high rate of change, early on in the project
before the schedule and costs have become too well-established, rather than at the end, when people have expectations about when

everything will be ready. In addition, changes made before much code has been written mean less code to rework.

There's an expectation management issue here. During the exploratory and experimental work, you have to be able to convince
clients, managers, and anyone else who asks that the answer to "how long will it take?" is "I don't know; we're not sure what it is
yet" and any progress that has been made so far is illusory. It might /ook like you've made a lot of progress, but most of it will be
simulation code that doesn't really do what it looks like it does. On two separate projects I've led the development of, we've run
into trouble where a stakeholder has based assumptions about the project's progress on seeing a prototype. It's not their fault; it's

my responsibility to provide a realistic appraisal of the project's status on which they can base their judgements on how to proceed.

Justify Your Decisions

So, you've chosen the technology that will be used in a particular aspect of your application. Was that because it will lead to
satisfying the customer's requirements with the least effort, or because it's the new shiny thing you've wanted to use since you

went to that conference?

When someone asks why the team is using a particular language, framework, or pattern, a shrug of the shoulders accompanied by
the phrase "right tool for the job" isn't going to be a very satisfactory answer. What is it that makes that tool right for the job? Does
it satisfy some requirement, such as compatibility, that other alternatives don't? Is it cheaper than the alternatives? (Remember that
cost is calculated holistically: a commercial tool can be cheaper than a free one if it significantly reduces effort and the likelihood

of introducing bugs.)

You need to convince other people that the solution you're choosing is appropriate for the task at hand. Before brushing up on your
rhetoric skills (which are indeed useful — there's a section on negotiation in Chapter 13, Teamwork, and a whole chapter on critical
thinking), the first thing to do is to make sure that it is an appropriate tool for the job. Think about the different considerations

people will have:

o The customers: Will this technology let you build something that satisfies all of the requirements? Will you, or someone

else, be able to adapt the solution as our needs change? Can we afford it? Is it compatible with our existing environment?

o The developers: Do I already know this, or will I have to learn it? Will it be interesting to learn? Is using this technology

consistent with my career plans?

o Management: Is this cost-effective? Is it actually the best solution for this project, or is it just something you've always

wanted to learn? What's the bus factor—http://en.wikipedia.org/wiki/Bus_factor going to be? Can we sell this to other

customers? Can we buy support from the vendor? Does it fit well with the capabilities and goals of the company?

If you can answer those questions honestly and your chosen technology still comes out looking like the best answer, well, I'm not

going to say you won't need your skills of persuasion and negotiation — just that you'll make it easier to employ them.

But remember that negotiation is one of those tangos that requires two people. In Metaphors we Live By—

http:/theliterarylink.com/metaphors.html, Lakoff and Johnson propose that the way we think about argument is colored by our use

http://en.wikipedia.org/wiki/Bus_factor
http://theliterarylink.com/metaphors.html

of combat metaphors. Well, destroying your opponent with a deft collection of rhetorical thrusts is fine for the school debating
society, but we all need to remember that we win at software by building the best thing, not by steamrollering dissenting
arguments. It can be hard, especially under pressure, to put ego to one side and accept criticism as a way of collaborating on
building better things. But it's important to do so: look back to the list of different concerns people have, think of any others I've

forgotten to add, and realize that your opinion of what's best for the project only covers a part of the story.

When to Fix and When to Replace

A particular decision you often have to justify as a software architect is the choice of whether to continue using some existing
code, or whether to throw it away and replace it with something else. Well, you rarely have to justify the decision to keep what

you already have; you often have to justify its replacement.

This is as it should be. While it's satisfying — even calming — to think of leaving all that legacy cruft behind and starting on a
greenfield implementation, there are good reasons to avoid doing so. The existing code may seem buggy and hard to understand,
but your team has existing experience with it and probably knows where the problems and limitations are. The same cannot be

said of the as-yet nonexistent replacement, which will probably bring its own difficulties and bugs.

It's important to realize now that this argument is not the same as the sunk-cost fallacy. That would be to argue that you shouldn't
throw away existing code because of the time and resources that have already been spent on it; I'm saying that you should consider

carefully whether the cost of developing something new is really lower than the cost of carrying on with what you've got.

It probably isn't in many cases. Here's a question: how many bugs will your replacement implementation have? What will those
bugs be? How long will they take to fix? If you could predict that, you probably wouldn't leave those problems in, and you could
also predict how long it'd take to fix the bugs in the existing implementation and compare the two. Experience has taught us,
though, that predicting the quality of a piece of development work is really difficult. There is thus a probability that, while your
new implementation will fix some bugs in the original (because you're conscious of those problems when you're developing it), it
will introduce new problems, including regressions where the earlier version worked better than its replacement. You've got to

factor that risk into your decision.

A significant shift in the economics of this situation occurs when the replacement is not something, you're going to build in-house
but is an open source or commercial module you can use. In those cases, the cost of acquiring the software will be well-known,
and the fitness for purpose could probably be investigated by examining the bug database or asking the community or vendor. The
cost of integration, and the extent to which you'll be responsible for fixing problems (and the costs you'll incur if you aren't) are

the remaining costs to consider.

Another thought on rewrites: while they're not clearly an advantage for the developers, they certainly aren't a benefit to customers.
I've seen a number of applications where a new version is touted as being "a complete rewrite" and, as Danny Greg from GitHub
said, this is not a good thing. If the new version of the software is a complete rewrite, then, to me as a customer, all it shares with

the previous version is the name and the icon.

There's a risk that things I relied on in the previous version won't work as well, or at all, in the rewritten version. This is an

excellent opportunity for me to evaluate competing products.

You're faced with a known, and well-understood code module, with some known problems. Using this is free, but you might have
to spend some time fixing some of the problems to extend it to cope with your new project. The alternative is to spend a while
building something that does the same work but has an unknown collection of problems. Your team doesn't have the same

experience with it, though it might better conform to your team's idea of what well-designed code should look like... this month.

Given the choice between those two things, and the principle that my code is a liability not an asset, I conclude that I'd rather

choose the devil I know than the devil I don't.

Know When to Nitpick, And When to Leave It

One of the attributes of a good developer is being able to pick apart the small details of a problem. Developers are good at that
because computers demand it; computers are really bad at inference, so you have to predict every little case that could happen, no
matter how rare, and tell the computer what to do with them. Unfortunately, this attribute, if carried too far, turns programmers

into lousy conversationalists—http:/tirania.org/blog/archive/2011/Feb-17.html in all other fields, including other areas of

software creation.

When you or someone else is designing the architecture for a software system, think of it as a low-fidelity proposal for the shape
of the solution, not the actual solution. The answer to the question "how does this solve X?" is almost certainly "it doesn't — this is
an early-stage prototype," so there's not even any point asking the question. You could demonstrate the answer by building the
solution into the proposed architecture: if it works, you've built a feature; if it doesn't work, you've found something important.

But often, you'll start by thinking that something isn't going to work and find out that it actually does.

Similarly, "why did you do it like that?" is not a useful question. If the person who did it like that didn't think that doing it like that
was a good idea, they wouldn't have done it like that. Many developers don't like reading other programmers' code, and I think it's

because developers aren't taught how to critically analyze code well—http://blog.securemacprogramming.com/2012/12/can-code-

be-readable/. If you can't turn "what is that?" into a specific question about the proposed solution, don't ask.

This is not to say that criticism is bad or unwanted. Of course it's wanted — the architecture will benefit from the input of multiple

people. But the feedback has to be at the same level of abstraction as the architecture itself.

In other words, the feedback must be in terms of the constraints placed on the solution and whether they can be met while
providing the required features. Problems like "I can't see how errors from the frobulator interface would get into the audit
component" are fine. Questions like "how does this degrade under ongoing saturation?" are fine. Suggestions like "if we use this
pattern, then the database plugin can be interchangeable without much additional effort" are welcome. Comments along the lines
of "this is useless — it doesn't handle the filesystem reporting a recursive link problem when you open a named pipe" can be
deferred.

Support, Don't Control

Given the definition that architecture serves to support the application's features within the constraints of its non-functional

requirements, we can describe the role of architect in similar terms.

What Does A Software Architect Do?

A software architect is there to identify risks that affect the technical implementation of the software product and address those

risks. Preferably, before they stop or impede the development of the product.

That could mean doing tests to investigate the feasibility or attributes of a proposed solution. It could mean evangelizing the
developers to the clients or managers to avoid those people interrupting the development work. It could mean giving a junior
developer a tutorial on a certain technology — or getting that developer to tutor the rest of the team on the thing that person is an

expert on.

http://tirania.org/blog/archive/2011/Feb-17.html
http://blog.securemacprogramming.com/2012/12/can-code-be-readable/
http://blog.securemacprogramming.com/2012/12/can-code-be-readable/

What A Software Architect Doesn't Do

A software architect doesn't micromanage the developers who work with them. An architect doesn't rule by memos and UML
diagrams. The architect doesn't prognosticate on things they have no experience of. Perhaps confusingly, the role of software
architect bears very little resemblance to the profession after which it's named. If you want analogies with civil engineering, all

developers are like architects. If you want to see the software analog to the builder, that's work done by the compiler and IDE.

Architects don't make decisions where none is necessary. They don't ignore or belittle suggestions that come from people who

aren't architects either.

In one sentence

A software architect is there to make it easier for developers to develop.

Chapter 8
Documentation

Introduction

The amount of documentation produced as part of a software project varies dramatically. Before digging in to when and how it's

appropriate to document your code, I'll first define how I'm using the term.

Documentation in the context of this chapter means things that are produced to help other developers understand the software
product and code, but that aren't the executable code or any of the other resources that go into the product itself. Comments in the
code, not being executable, are part of the documentation. Unit tests, while executable, don't go into the product—they would be
documentation, except that I cover automated testing in Chapter 5, Coding Practices. UML diagrams, developer wikis, commit
messages, descriptions in bug reports, whiteboard meetings: these all fulfil the goal of explaining to other developers — not to the

computer — what the code does, how, and why.

On the other hand, documentation prepared for other stakeholders, like user manuals, online help, and marketing material for your
users, or project schedules and overviews for managers, will not be considered here. That's all important too, and if you need to
produce it then you need to do a good job of it. But charity begins at home and saving someone time by helping them understand

the code they're working on is definitely a charitable act.

Documentation Is More Useful Than You Might Think

A common reason given for not documenting code is that the source code is accurate documentation—

http://www.codinghorror.com/blog/2012/04/learn-to-read-the-source-luke.html; that, while documentation can be created with

errors in it or can become inaccurate as the software changes, the source is guaranteed to be both an exactly accurate and exactly

precise description of what the software does.

If you assume that framework and compiler bugs don't exist, then this idea is correct: the source is complete and exact

documentation of the software's behavior. The problem is, it's not always the most appropriate documentation to read.

Sure, source code is entirely accurate, but it's also at the lowest possible level of abstraction. If you've just been brought onto a
project and need to get to grips with the unfamiliar software, reading each operation in sequence (once you've even worked out the

correct sequence) is not the easiest way to proceed.

Even if you leave this point aside, there are still problems with using source code as your only source of information about the
software. It does indeed tell you exactly what the product does. Given a bit of time studying, you can discover zow it does it, too.
But will the programming language instructions tell you why the software does what it does? Is that weird i £ statement there to
fix a bug reported by a customer? Maybe it's there to work around a problem in the APIs? Maybe the original developer just

couldn't work out a different way to solve the problem.

So, good documentation should tell you why the code does what it does, and also let you quickly discover how. It should provide
the context at the expense of the details, whereas the source provides all of the details at the expense of making the context hard to
discover. In other words, where the source code represents an exact plan to the virtual world you're creating, your documentation

should be the tourist's guide—http://www.infoq.com/presentations/The-Frustrated-Architect (This idea was first presented, to my

knowledge, by Simon Brown—nhttp://www.codingthearchitecture.com), with maps, recommendations of places to go (and to

avoid), and information about world history.

http://www.codinghorror.com/blog/2012/04/learn-to-read-the-source-luke.html
http://www.infoq.com/presentations/The-Frustrated-Architect
http://www.codingthearchitecture.com/

The Up-To-Dateness Problem

The other primary complaint about creating documentation other than source code is that, unless the docs are maintained
alongside the source, they'll quickly go out of date; that reading documentation that's obsolete is worse than reading no

documentation; and that effort that doesn't go into working code is effort wasted.

I'll address the second point first. The point of producing any form of developer documentation is to make it easier for developers
to work with the software. Therefore, the cost of creating the documentation should really be weighed against the opportunity cost
of not producing it. If the effort saved by letting developers get straight on with their work is greater than the time spent creating
and maintaining the documentation, then it's worth doing. Conversely, if the trade-off doesn't work out, you need to decide

whether to give up on that form of documentation for something more valuable or find a quicker way to produce it.

But what about the other issue — that obsolete docs are worse than no docs? There's some truth to that, in that being led in the
wrong direction won't help someone find their way. It'll probably take much longer than you think, though, for this to become
important. Remember that the documentation captures the high-level features: why (and to some extent, how) the code does what
it does. Imagine you've got some documentation that is, whatever its completeness, current. Your very next commit isn't likely to
change the frameworks used by your product, or the type of database it connects to, or even how it authenticates to a remote

component. The product, at a high level, remains the same.

Just as city guides are still useful if a handful of shops or restaurants change what they offer, the tourist guide to your code can still
be helpful when some of the methods have changed their behavior a little. The risk that documentation really is uselessly out of

date is one that plays out over years, not days.

Automatically Generated Documentation

I talked in the last section about an economic trade-off associated with producing documentation: whether the cost of production is
lower than the opportunity cost of not having that documentation available later. The balance can be tipped in favor of producing

documentation in two ways: either by decreasing the cost of production or by increasing the value of the documentation.

The automatic generation of documentation from code—often called reverse engineering the documentation—is a tactic used to
drive down the cost of production. The idea is simple: if developers can always create the docs at a moment's notice from the

source code, they can always avail themselves of up-to-the-minute descriptions of how that code works.

Reverse engineering tools, which usually produce UML diagrams, a particular format of documentation discussed later in the
chapter (To be clear, I'm not talking about tools that extract documentation embedded in code comments; you still have to write
that form of documentation yourself), are good at providing high-level overviews of a project with some or all of the details
elided. As an example, given a class definition such as a . jawva class or Objective-C . h and .m files, a reverse-engineering tool

can highlight just the API methods and properties, as shown in the following figure:

StackOverflowCommunicator
- delegate : StackOverflowCommunicatorDelegate
fetchingJRAL : NSURL
fetchingConnection : NSURLConnection
receivedData : NShutableData
- errorHandler : Block
- successHandler : Block
+ searchForQuestionsWith Tag:{tag : N5String)
+ downloadinformationForQuestionWithlD:{identifier : NSinteger)
+ downloadAnswersToCQuestionWith|D:(identifier : NSInteger)
+ cancelAndDiscard URLConnection
+ delegate ! id <StackOverflowCommunicatorDelegate=
+ setDelegate (delegate | id <StackOverflowCommunicatorDelegates)
+ dealloc
- fetchContentAtURL successHandler:errorHandler: (url : NSURL, errorBlock : Block, successBlock : Block)
- launchConnectionForRequest: (reguest | NSURLRequest)

Figure 8.1: A UML class diagram

They say there isn't any such thing as a free lunch (some people say TANSTAAFL), and this is correct. On the one hand, it costs
almost nothing to produce that class diagram. If you understand UML class diagrams (You also need to understand how I've
chosen to bend the UML to make it better at representing Objective-C — the U stands for Unified, not Universal), it certainly
gives a better overview of the class's API than diving through the source code and picking out all the methods. But because the
diagram was produced from the source, and the source doesn't tell us why it is the way it is, this diagram can't enlighten its readers

as to the whys behind this class.

Why does the API use delegate callbacks in one place and block callbacks elsewhere? Why use NSURLConnection rather than
another class for downloading the content? Why are some of the instance variables protected, rather than private? You can't tell

from this diagram.

In addition, you don't get much of an idea of sow. Does it matter in what order the methods are called? Is it OK to call the

cancellation method when nothing's in progress? Can the delegate property be nil? The diagram doesn't say.

So, yes, the automatic documentation was cheap. It removed information that was in the code but didn't provide anything
additional. Having that brief overview is useful but it's unlikely that reverse-engineered documentation will solve all of your

problems.

Analysis Paralysis

Taking what you learned about generated documentation, it might be tempting to turn the controls the other way round. If
documentation with zero input effort doesn't provide much additional value, then maybe the more you increase the effort spent on

creating documentation, the more useful it becomes.

Perhaps, to a point, this is true. However, the incremental value of adding documentation is asymptotic. In fact, no — it's worse
than that. Create too much documentation and people can't even work out how to use that without some guide — some meta-

documentation. Shovel too much in and it becomes harder to use the docs than if they didn't exist at all.

Notice that analysis paralysis (http://c2.com/cgi/wiki?AnalysisParalysis) isn't directly related to writing documentation; it's
actually a flawed design methods. The interaction with docs comes when you dig into the problem. Analysis paralysis occurs when

you're afraid to move away from designing a solution toward building it. Have you thought of all the edge cases? Is every

exceptional condition handled? Is there a use case you haven't thought of? You don't know—and you don't want to start building

until you find out.

Polishing your architecture documentation or class diagram is basically a complete waste of time. The best way you can find these
edge cases is by building the thing and seeing what doesn't work—especially if you're writing unit tests to cover the corners of the
APIL. You'll discover that a use case is missing by giving the software to your customer.

So, analysis paralysis, then, isn't a problem that falls out of creating documentation; it occurs when you focus on the
documentation. Remember, at the beginning of the chapter, I said the docs were there to support the development of the code by

helping the programmers. Your goal is your product: the thing your customers want to be using.

How to Document

The first couple of sections in this chapter were about the whys of documenting, what the benefits are, and why you might be in
trouble if you do too little or too much. Now it's time to discuss the #ow, some of the forms of documentation that exist, how they

can be useful (or otherwise), and how to go about making them.

Coding Standards

Most organizations with more than a couple of developers working together have a style guide or coding standard. This document
explains the minutiae of writing code to create a "company style": where to put the brackets, how to name variables, how many
spaces to indent by, and so on. If you haven't seen one before, the GNU coding standard—

http://www.gnu.org/prep/standards/standards.html is very comprehensive. Indeed, one company I worked at required their code to

conform to the GNU standard rather than writing their own: it already existed, covered most issues, and was easy to conform to.

Coding standards are great for ensuring that developers new to the project will write consistent code—particularly very novice
programmers who may not yet appreciate the value of a single approach to layout, variable and method naming, and the like. (The
value is that you're not surprised by the names of the variables, placement of expressions, and so on. The organization of the code
gets out of the way so you can focus on the meaning of the code — perhaps in addition to why, how, and what, I should've added
where.) For developers who are comfortable with the language they're using and its idioms, a coding standards document is a
waste of time: they'll be able to see how you lay out your brackets from the code; they'll be able to adapt to your house style
automatically, or at the very least configure their IDE to do it for them. As Herb Sutter and Alexei Alexandrescu put it in C++
Coding Standards:

Issues that are really just personal taste and don't affect correctness or readability don't belong in a coding standard. Any

professional programmer can easily read and write code that is formatted a little differently than they're used to.
Sadly, many coding standards documents do not progress beyond those superficial features.

The parts of a coding standard that don't specifically describe how to lay out code are not useful. They're busy work for people
who want to be in control of what other people are writing. Telling a developer "ensure all exceptions are caught" or "handle all
errors” is not something that they'll take to heart unless it's part of how they work anyway. If what you want to do is to ensure
programmers are catching exceptions or handling errors, then you need to find those who don't and mentor them on making it part
of how they think about their work. Writing an edict in some document handed to them on day one isn't going to stay with them,

even into day two.

An experienced developer who hasn't yet learned to handle all errors won't start just because a wiki page tells them to. An

experienced developer who has learned to handle all errors, except the one they don't know about, won't discover that error

http://www.gnu.org/prep/standards/standards.html

through reading a document on coding standards. A novice developer who doesn't know how the error conditions arise is left none

the wiser.

High-level goals such as "handle all errors," "log all assertion failures" (Which is probably the entry after "assert all preconditions
and postconditions"), and so on are great for code review checklists. They're even better for automated code analysis rules. They
don't belong in standards documents: no one will make those things a "standard" just because they read a bullet point demanding

them.

Coding Standards And Me

As previously mentioned, I've worked at a company that used the GNU standards. I've also created coding standards for a

developer team, at a time when all team members (myself included) were inexperienced at the language we were using.

In the last 4 years or so, despite working for and contracting at a number of different companies, none has had documented
coding standards. I haven't really missed it — the "standard" layout becomes "whatever the IDE does out of the box," and

everything else is done by automated or manual review.

So, would I recommend writing a coding standard? Only if the lack of a standard is proving problematic. Actually, it might be just
as easy—though more passive-aggressive—to write a pre-commit hook that reformats code before it gets into your repository.

Some IDEs (those from JetBrains, for example) offer this feature already.

Code Comments

There are a couple of platitudes that get trotted out whenever comments are mentioned:

Real programmers don't comment their code. If it was hard to write, it should be hard to understand and even harder to modify

(from Real Programmers Don't Write Specs—http://ifaq.wap.org/computers/realprogrammers.html)

Any code should be self-documenting. (found all over the internet; in this case, on Stack Overflow—

http://stackoverflow.com/questions/209015/what-is-self-documenting-code-and-can-it-replace-well-documented-code)

It should be obvious that the first quote is a joke, and if it isn't, read the referenced article. The second quote is not a joke, just

sorely misguided.

At the time that you write any code, you're in the zone, mentally speaking. You're likely focused on that problem to the exclusion
of all (or at least to the exclusion of many) others. You've been working on that particular problem for a short while, and on
problems in that domain for quite a bit longer. So, of course, you don't think the code needs any comments. When you read the

code, it fires off all those synaptic connections that remind you why you wrote it and what it's supposed to be doing.

Nobody else has the benefit of those connections. Even you, when you come back to the code later, do not have that benefit:

memories that are not reinforced will decay over time—Nhttp://www.simplypsychology.org/forgetting.html. According to that link,

memories fade from long-term recollection if they aren't consolidated.

With this in mind, comments are among the best form of documentation you can create because they provide a connection
between two distinct forms of information. The information is the code and the prose comment, and the connection is proximate:
you see both in the same place (that is, the source code editor in your IDE). If one doesn't remind you what you were thinking

about when you produced it, its connection with the other will trigger some memories.

Recalling (pun somewhat intentional) the discussion from the beginning of this chapter, code tells you very quickly what software

does, and with a little work tells you how it does it. There's no need for comments to retread that ground—you're already looking

http://ifaq.wap.org/computers/realprogrammers.html
http://stackoverflow.com/questions/209015/what-is-self-documenting-code-and-can-it-replace-well-documented-code
http://www.simplypsychology.org/forgetting.html

at something that gives you that information. (A quick reminder of how the code works can save an amount of reading, though. Or,
as Fraser Hess put it by paraphrasing Frank Westheimer, 4 month in the lab can save an hour in the library—

https://twitter.com/fraserhess/status/299261317892685824.) Comments should therefore focus on why.

Many people are put off comments by reading code that looks something like this:

//add 1 to i
i++;

When you're experienced enough at programming to know what the various operators in your language do, a comment like that is
redundant line noise. If all comments were similar to this example, then there would be little point in competent developers
reading comments—a situation in which it would indeed be hard to justify them writing comments. Obviously, not all comments

are like that; indeed, the ones you write don't need to be.

If you find it hard to believe that anyone could ever need reminding what the ++ operator does, you probably don't remember

learning programming, and haven't had to teach it either. The Teaching H.E. Programming blog—

http://teachingheprogramming.blogspot.co.uk is a good overview of just how hard that thing you do every day is for people who

don't do it every day.

The thing is that redundant comments are simply redundant. You read them, realize they don't help, and move on. This doesn't
waste much time. It's worse to read comments that are mentally jarring: ones that actively stop you thinking about the code and

make you think about the comment.

That joke that seems really funny in your head — don't write it down. It might work well on Twitter or in the company chatroom,
but not in a code comment. Even if the person reading it thinks it's funny the first time, they probably won't if they have to stop

grokking code every day for the rest of their career while they read that joke over and over.

While I was writing this book, someone asked on a Q&A website whether there's empirical evidence for the value of comments in

code—http://programmers.stackexchange.com/questions/187722/are-there-any-empirical-studies-about-the-effects-of-

commenting-source-code-on-s. More usefully, someone answered that question with references. One of the papers, The effect of

modularization and comments on program comprehension—http://portal.acm.org/ft gateway.cfm?
1d=802534&type=pdf&coll=DL&dI=GUIDE&CFID=278950761&CFTOKEN=48982755, is worth looking into in more detail.

Your first reaction may be to look at the date of this paper—March 1981—and decide that it can't possibly say anything relevant to
modern programmers. But wait up. The article investigates how people (who haven't changed much in three decades) read (which
also hasn't changed much) comments (written in English, which hasn't changed much) and code that is organized along different
lines of modularity. Only the way we write code has changed, and really not by very much. This paper investigates code written in
FORTRAN, a language that's still in use and not too dissimilar from C. It investigates code written with different approaches to
modularity, a variation that's observed in modern code whether written using procedural or object-oriented languages. There's

really no reason to dismiss this article based on age.

What they did was to implement a few different code solutions to one problem: a monolithic program, a modularized program, an
over-modularized program (each "module" consisted of 3-15 lines), and one organized around an abstract data type. They
produced two different versions of each; one had comments describing each module's functionality and the other did not.
Interestingly, to remove other hints as to the operation of the programs, they made all variable names nondescriptive and removed

any formatting hints.

Whether this represents as good a control as, for example, using a consistent (meaningful) naming and formatting strategy

throughout all examples would be worth exploring. Forty-eight programmers were each given one version of the code and a quiz

https://twitter.com/fraserhess/status/299261317892685824
http://teachingheprogramming.blogspot.co.uk/
http://programmers.stackexchange.com/questions/187722/are-there-any-empirical-studies-about-the-effects-of-commenting-source-code-on-s
http://programmers.stackexchange.com/questions/187722/are-there-any-empirical-studies-about-the-effects-of-commenting-source-code-on-s
http://portal.acm.org/ft_gateway.cfm?id=802534&type=pdf&coll=DL&dl=GUIDE&CFID=278950761&CFTOKEN=48982755
http://portal.acm.org/ft_gateway.cfm?id=802534&type=pdf&coll=DL&dl=GUIDE&CFID=278950761&CFTOKEN=48982755

about its operation. They summarized their results as follows:

The comment results seem to imply that the comprehension of a program can be significantly improved with the addition of short
phrases which summarize the function that a module is to perform. Contrary to the original hypothesis, it was concluded that
comments were not significantly beneficial to logical module identification. Those working with the uncommented monolithic
version seemed able to comprehend the program and understand the interaction of the parts as well as those working with the
commented monolithic version. However, it seems that those working with the uncommented modularized programs found it more
difficult to understand the function of a module and how it fit into the context of the program than those who were given the

commented modularized versions.

This does not say "comments are good" or "comments are bad." It does say that a particular type of comment can help people to
understand a modular program. Notice that it also says that uncommented modular programs are harder to understand than
uncommented monolithic programs. Could this result have any relevance to the Dunsmore et al. study in Chapter 5, Coding

Practices? Remember that they found object-oriented programs hard to understand:

The desirable design properties that lead to a connected system of loosely coupled objects also produce a system where it's

difficult to discover the flow of execution, you can't easily see where control goes as a result of any particular message.

Literate Programming

Donald Knuth took the idea of comments recalling the programmer's thought processes much further with his idea of Literate

Programming (http://www.literateprogramming.com). In a literate programming environment, programs are written as "webs" in

which prose and code can be intermingled.

Programmers are encouraged to explain the thought processes behind the code they create, including the code implementation as
part of the documentation. A hyperlinked tree of code references in the web is used to generate a source-only view of the web (via
a tool called tangle), which can then be fed into the usual compiler or interpreter. Another tool, weave, converts the web into a

pretty-printed readable document.

The purpose of this hyperlinked graph is to separate the structure required by the programming language (for example, the classes
and methods in an OOP language) from the structure of your thoughts. If you're thinking about two different classes and how

they'll interact, you can write the parts of the code as you think of them and tell the compiler how they should be ordered later.

Reading the web back later, the person who wrote it will remember why they made the decisions they did as the organization of
the code matches their thought processes. Other readers will get insight into how the code evolved and why certain decisions were

made: the key reasons for writing documentation.

I'm not sure whether literate programming is a style to adopt — I haven't yet built any large projects as webs. I've kicked the tires
on LP tools though and it is a fun way to write software (but then I like writing prose anyway, as you can probably tell). I'm not
convinced it would scale — not necessarily to large projects. If I'd known about CWEB when I wrote Test-Driven iOS

Development—nhttp:/blog.securemacprogramming.com/2012/04/test-driven-ios-development/, I would have got it done quicker

and with fewer errors. When the authors of The Pragmatic Programmer—http://pragprog.com/the-pragmatic-programmer/

wrote that book, they effectively re-implemented bits of LP to keep their manuscript in sync with their code.

The scaling I wonder about is scaling to multiple developers. If you find reading someone else's code style irksome, then wait until

you have to read their unproofed prose. Of course, there's one way to find out.

Comment Documentation

http://www.literateprogramming.com/
http://blog.securemacprogramming.com/2012/04/test-driven-ios-development/
http://pragprog.com/the-pragmatic-programmer/

While literate programming webs focus on the structure of your thoughts and documentation, letting the code fit into that flow,
many other tools exist that retain the code's structure but extract and pretty-print comments into hyperlinked API documentation.
(Doesn't comment documentation come under "comments," discussed above? Not precisely, as the formality and intention are very
different.)

These tools—including Doxygen, Headerdoc, and friends—retain the proximity of the code with its documentation. As you're

making changes to a method, you can see that its comment is right above, inviting an update to remain consistent.

I find it helpful to produce comment documentation for classes and interfaces that I believe other people are going to use. I don't
normally generate pretty output, but that's something people can do if they want. I certainly appreciate that option where it exists

and use the formatted documentation for another programmers' API.

Some static analysis tools, notably Microsoft's, warn about undocumented methods, classes, and fields. This leads to comments for
the sake of their presence, without necessarily leading to a better standard of documentation. Well-formatted comments explaining

that a method's purpose is "banana" and its return value is "banana" are rife.

Much of what is specified in comment documentation often includes restrictions on input values to methods ("the index
argument must be greater than 0 but less than count"), when to call them ("it is an error to call this method before you have
called configure () "), or expectations about the return value ("the object returned will have a size less than 2*count").
These are candidates for being expressed as assertions (usually in addition to, rather than instead of, the documentation), or you

could use a language that supports contracts.

Uml Diagrams

UML is a huge topic. Several books have been written on the subject. I'm not even going to try to replicate all of that, so here's the

potted version, which also lets you draw analogies with other diagramming techniques:

A UML diagram is a view of some aspect of your code expressed in a manner that conforms to the rules of the UML. Any
developer that understands those rules will derive the same information (Provided the diagram actually expresses enough

information to be unambiguous, of course) from the diagram.
This means you can consider CRC cards, data flow diagrams, and other techniques to be covered by this section.

The first thing to notice is that it's possible to understand UML diagrams even if you don't know the UML. It's just boxes and
lines, though sometimes the meaning of "box" is more precise than "thing" and the meaning of "line" is more precise than "joined
to this other thing." Don't be put off by the idea that it's some complicated language with lots of rules you need to learn. That's

only true if you want it to be.

Diagrams like these can appear in many contexts. I usually create them as quick sketches, on whiteboards or with paper and pencil
(or their modern equivalent — the iPad and stylus). In these cases, the rules are not foo important, but do increase the likelihood
that another reader will understand the details on my diagram and that I'll create the same diagram twice if documenting the same

thing.

It may be clear that diagrams produced in this way are for the moment, not forever. They might be captured via an iPhone photo
"just in case," but the likelihood is that they'll never be looked at again. There's certainly no expectation that they'll go into some
"Project X Artefacts" folder to be kept indefinitely.

The more effort you put into this sort of graphic, the more likely you are to want to keep it around. For something like a blog post

or a diagram in a book, I'll usually use Omnigraffle—http://www.omnigroup.com/products/omnigraffle/), dia—

https://live.gnome.org/Dia/, or something else that lets me use the shapes and lines from the UML but doesn't care about the rules.

http://www.omnigroup.com/products/omnigraffle/
https://live.gnome.org/Dia/

I have also used tools that do care about the rules. One company I worked at had a site license for Enterprise Architect—

http://www.sparxsystems.com.au), a tool that requires you to construct conforming diagrams and supports "round-trips" through

the code. A round-trip means that it can both generate the diagram from the code (discussed earlier) and also generate stub code

from the diagram. It could also respect existing code, not trampling over existing methods when adding new features to a class.

A few of the other teams made use of this extensively, maintaining the design of their components or applications in UML and
implementing the behavior in generated C++ or Java classes. My team couldn't make use of it because the tool didn't (and, to my
knowledge, still doesn't) support Objective-C. I therefore feel underqualified to talk about whether this is a good idea: my gut
feeling is that it could be a good idea, because it forces you to think at a high level (the features exposed in the diagram) while
designing, without getting bogged down in implementation details. On the other hand, different languages have different idioms
and preferred ways of doing things, and those aren't readily expressed in a UML model. There's also some overhead associated
with configuring the code generator to your team's liking—you still have to read its code, even if you don't have to write it.

Summary

Documentation is a good thing to have, at those times when you need it. It's useful for telling you why and how software does

what it does, when the code can only tell you what it does with a little bit of zow mixed in.

Maintaining documentation incurs additional cost and carries the risk that the documentation and the code could become
unsynchronized. There are various ways to document code, and the preferred trade-off between effort and benefit can be found by

experimentation.

http://www.sparxsystems.com.au/

Chapter 9

Requirements Engineering

There may have been roughly an equivalent amount of thought over the last few decades into how to know you're building the
right software as there has been into how to build software better. The software engineering techniques of the period 1960s-1980s
explained how to construct requirements specifications, how to verify that the software delivered satisfied the specifications, and

how to allow discoveries made while building and testing the software to feed back into the specification.

In the 1990s, methodologies arose that favored closer interaction between the users of the software and its builders. Rapid
Application Development dropped "big upfront" planning in favor of quickly iterated prototypes that customers could explore
and give feedback on. Extreme Programming took this idea further and involves the customer or a representative of the customer
not only in appraising the product during development but in prioritizing and planning the project as it proceeds. (It's a bit of a
simplification to call these 1990s ideas. Many of the concepts behind RAD and other methodologies had been around since at least

the 1970s, and a systematic literature review could pin the ideas more precisely onto the calendar.

Nonetheless, it was the 1990s in which the ideas were synthesized into proposed systems for building software, and it was also the

1990s in which development teams started to use the systems and vendors created products to exploit their needs.)

In parallel with that story, the history of how software applications are presented to their users has also been evolving. The success
of this presentation is evident in the way that successive generations of practitioners have distanced themselves from the
terminology used by the previous generation. If attempts to make software usable had been seen to work, then people would be
happy to associate themselves with the field. Instead, Human-Computer Interaction has fallen out of favor, as have Human
Interface Design, Computer-Supported Collaborative Working, Interaction Design, User Interface Design, and so on. It'll

soon be the turn of User Experience to become one of history's résumé keywords.

If the whole point of building software is to make it easier for people to do things, we should investigate what it is that people are
trying to do and how to support that. Along the way, we can find out how to understand what we do, which can help us improve

our own work (maybe even by writing software to do so).

Study People

Software applications do not exist in a vacuum. They are used by people; a system of people with existing goals, ideas, values, and
interactions with each other (and yes, programmers, existing technology). The introduction of a new software product into this
system will undoubtedly change the system. Will it support the existing goals and values or replace them with new ones? Will it

simplify existing interactions, or introduce friction?

To answer these questions, we must have a way to measure that system of people. To do that, we must understand what questions

we should ask about that system in order to support the things we want to learn and discover what it is we should measure.

Decide The Model

In Chapter 6, Testing, 1 had to start by deciding that the requirements of a software system did not arise as some fundamental truth
about the universe but were based on the way the people who used the system worked with the world and with each other. Now
imagine that you're trying to understand the requirements of an application such as Excel. Will you consider the needs of each of

the millions of users individually? While this could lead to a higher-quality product (or products, if you resolve conflicting needs

by producing different solutions), there are few, if any, companies that could afford to undertake the research involved, and even if

they could, it would be difficult to profit from the resulting software.

It's much cheaper to pick a small number of representative users and design the software for them. Some teams pick actual
customers, while others create "personas" based on hypothetical customers, or on market research. Whichever way it's done, the
product will come to represent the real or imagined needs of those real or imagined people

User personas give the impression of designing for users, when in fact the product team has merely externalized their impression
of what they want the software to be. It's easy to go from "I want this feature" to "Bob would want this feature" when Bob is a
stock photo pinned to a whiteboard; Bob won't join in with the discussion, so he won't tell you otherwise. The key thing is to get
inside the fictitious Bob's head and ask "why" he'd want that feature. Sometimes, teams that I've been on where personas were
used nominated someone to be their advocate during discussions. This gave that person license to challenge attempts to put words

in the persona's mouth; not quite the same as having a real customer involved but still useful.

At first glance, the situation seems much better for builders of in-house or "enterprise" software; find the people who are going to
use the software and build it for them. There are still some important questions about this model of the software's environment.
One clear problem is where you're going to stop. Does the team you're building for represent an isolated unit in the company with
clear inputs and outputs, or do you treat the interactions between members of this and other teams as part of the system? How
about the interactions with customers, partners, and other external parties? The article Three Schools of Thought on Enterprise

Architecture—http://iceexplore.icee.org/lpdocs/epic03/wrapper.htm?arnumber=6109219 explores the effects of these boundaries

on considering the systems involved.

Having decided on the scope of the system, are you designing for the specific people who currently comprise it or for more
abstract concepts such as the roles that are occupied by those people? In either case, be aware of political biases entering into your
model. Software designed according to a collaborative model of the interaction between a manager and their reports will differ
from that modelled on the struggle between the oppressed workers and the exploitative bourgeoisie. Because the software will end

up changing the system it's deployed into, such decisions will affect the way people work with each other.

You Shouldn't Necessarily Build What The Client Asks For

Discovering the requirements for any software application is hard, even if the people building it are going to be the people using it.
In Chapter 6, Testing, 1 explored the notion that everybody has their own idea of what the software should do, and in Chapter 7,
Architecture, the fact that some requirements are not made explicit. So, if you just asked everyone for a list of things the software

should do and built that, it'd be rife with conflicts and probably wouldn't do everything that any one person wanted from it.

While it's an inaccurate way of finding out what software should do, asking people is one of the easiest and most accessible
methods. You can interview people with either a directed questionnaire or an open-ended discussion, finding out what they think
of the system of interest and hopefully teasing out some of those tacit requirements. You can also get a group of people together, as
a round-table discussion or a focus group, to collectively discuss their needs and problems. Even when people are being helpful
and answering your questions to the best of their abilities, there will be problems that come up with interpreting their answers. The
thing they do is likely a specialist activity, and so is making software. Each of these disciplines will have its jargon and its
accepted "common sense" knowledge; translating between those will be difficult. Everyone has their own version of what

"everybody" who does their job knows and will probably not think to tell you about those things.

So, there's an art (or maybe a science; I don't think the industry has made its mind up yet) to looking past the direct answers to
your direct questions, to find out both what questions you should have asked and what answers you would never have been given.

This is where bespoke software (particularly so called "enterprise" software) has a chance to provide a much better experience

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6109219

than off-the-shelf software; you have the opportunity to observe what your users really do and to provide software that supports

that, rather than offering something that supports their stated needs.

You need to remember too that you are the software expert, and your client is the expert at solving whatever problem it is that they
solve. When they talk about the problem they are having, there is more information about how it should be solved than when they
tell you about the solution they envisage. That's not to say that you shouldn't accept their suggestions; but you should remember
that their expertise lies elsewhere and that your team probably has more experience of designing software. Obviously, if you're a

start-up working on a developer tool, your team probably has /ess experience than your customers.

Avoid Asking What You Want To Hear

If you've got a pet feature, it's all too easy to drop it into a discussion of the proposed system when conducting interviews and
focus groups with prospective users. The problem you then face is that it's easy for people to agree that said feature would be a

good idea, even if it really wouldn't.

Firstly, you have to separate things that people think they would use from things that people do use. Consider whatever word
processing software you use and think about all the features it has that you've never touched. When you bought the software, were
you swayed by any of the discussions of those features in the marketing material? (The idea that word processors have more
features than people use has been investigated by human-computer interaction researchers—

https://www.cs.ubc.ca/~joanna/papers/GI12000_McGrenere Bloat.pdf and while they found that some features go unused by some

users, the users still know that those features are there and have some familiarity with their function. So, saying that these extra
features are entirely without value is clearly a stretch; nonetheless, the default choice on whether we "should" incorporate a feature
into a product is usually "yes" due to the feature matrix marketing described here.) Do you think the majority of other users do
make use of those features? Would the software be worth as much if it didn't have those features? Given the choice between an
application that does a thing and one that doesn't, people will often choose the one that does it even if they don't see a need for that
right now. Particularly as, when you're gathering requirements, there's no other information to go on; without being able to see the
two (currently hypothetical) applications, prospective users can't compare their usability, speed, quality, or other features, so the

options really do boil down to "with" or "without."

Bear in mind, too, the tendency for people without a strong view on a statement to agree with it. This is known in psychological
circles as the acquiescence response bias and needs to be taken into account when evaluating the results of questionnaires. An
example is in order. Imagine that you wanted to build a "clean coder" IDE, but you want to find out whether anyone would use it

first. You create a questionnaire asking respondents to rate how strongly they agree or disagree with these statements:
o A professional programmer writes unit tests.
o A good method has minimal loops and branches.
o Long, descriptive variable names are better.

Someone else wants to write a "stripped-down" IDE, harking back to the times when "real programmers didn't eat quiche" and just
got their jobs done. (This is a tongue-in-cheek reference to the article Real Programmers Don't Use Pascal—

http://www.ee.ryerson.ca/~elf/hack/realmen.html, which was itself a tongue-in-cheek reference to the book Real Men Don't Eat

Quiche—https:/bit.ly/2XjLjxw. That was itself satirical, but I've run out of cheeks into which I am willing to insert my tongue.)

They create a questionnaire in which respondents rate their agreement with these statements:
o Time spent writing tests is time spent not adding value.

o A good method has as many loops and branches as necessary to provide a simple interface onto complex work.

https://www.cs.ubc.ca/~joanna/papers/GI2000_McGrenere_Bloat.pdf
http://www.ee.ryerson.ca/~elf/hack/realmen.html
https://bit.ly/2XjLjxw

o Typing is not the focus of programming; terseness is a virtue.

These questionnaires will yield different results; not necessarily entirely in opposition to one another but certainly each revealing a
bias in favor of the higher end of their respective scales. This is the acquiescence response bias; each has asked what they wanted
to hear and the respondents in each case have tended to agree with it. The two researchers should have each chosen a mix of
questions from both lists to get a more representative survey.

Finally, bear in mind that telling your client "I think we should do it like #Ais" will predispose them to that approach, due to a

cognitive bias called anchoring—https://www.sciencedaily.com/terms/anchoring.htm). Having anchored a particular feature or

workflow in their mind, they'll prefer options that contain that feature or workflow even if it rationally appears worse than an
unrelated alternative. You could end up privileging a suboptimal or costly design just because it was the first thing you thought of
and blurted it out to your clients. It's best to leave options open early on so that you don't pit your own customers against better

designs you create later on.

Understand The Problem Domain

As mentioned earlier, you and your team are the experts in making software, and the customers are the experts in the thing that the
software will do. I've cautioned against using that distinction to build the software you want rather than the software that the
customers need; should this be taken to mean that the software people stick to software and the customers stick to their problem

domain?
No.

You need to know what you're building for, so you need to have some understanding of the problem domain. Yes, this is
asymmetric. That's because the situation is asymmetric — you're building the software to solve a problem; the problem hasn't been
created so that you can write some software. That's just the way it is, and compromises must come more from the software makers
than from the people we're working for. The better you understand the problem you're trying to solve, the more you can synthesize
ideas from that domain and the software domain to create interesting solutions. In other words, you can write better software if

you understand what it is that software will do. That's hopefully not a controversial idea.

There are different levels on which this understanding can be implemented, relevant to different amounts of interaction with
customers. Chapter 5, Coding Practices, described Domain-Driven Design and the ubiquitous language: the glossary of terms
that defines concepts in the problem domain and should be used to name parts in the software domain, too. Needless to say,
everyone working on the software should be familiar with the ubiquitous language and using it in the same way — it's not
ubiquitous otherwise! The point of the ubiquitous language is to ensure that everyone—customers and software makers—means
the same thing when they use technical or jargon terms. Therefore, it prefers jargon to be from the problem domain, so that non-
software people don't have to learn software terminology, and it's expected that the terms pervade the software design and

implementation and are not just used in customer meetings.

The ubiquitous language should be considered a starting point. Some methodologies, including Extreme Programming, require
that the development team have a customer representative on hand to ensure that the development work is always adding value.
These discussions need to be had at the level of the business, that is, at the level of the problem domain. (This is one of the reasons
that programmers often get frustrated that the business doesn't schedule time for refactoring, development infrastructure, or
"paying off" technical debt. The problem is that bringing these things up in the context of a business discussion is a mistake; these
are internal details of what we do and how we work with each other and have nothing to do with business value or how we work
with customers. If some refactoring work is going to make it easier to work on the software, then just do it and let the business see
the results in terms of reduced costs.) This in turn means that at least one person is going to need to be capable of having a peer

discussion about the problem at hand with the customer representative.

https://www.sciencedaily.com/terms/anchoring.htm

Uncover Tacit Requirements

This chapter has already covered the idea that you need to find out what customers need from their software that they're not

talking about. But it's worth bringing up again, because the ubiquitous language may have ubiquitous holes.

Think of all the times you've been surprised at a question someone from outside the software field has asked about an application
you're writing. Well, no, of course the app we made for the seven-inch tablet won't work on the three-inch phone. It's such a basic

thing, it's not even worth mentioning, so why would someone ask it?

Now think about flipping that situation. What are the things that people in your problem domain think so basic that they'd never
mention them? The things that a professor told them were "obvious" in a first-year lecture and they haven't questioned since? How

are you going to get anyone to tell you about them?

As with pair coaching, this is a situation where acting like a petulant toddler can be to your advantage. Domain experts are likely
to have particular ways of doing things; finding out w#y is what's going to uncover the stuff they didn't think to tell you. It'll be
frustrating. Some things we don't have real reasons for doing; they're just "best" practice or the way it gets done. Probing those
things will set up a cognitive dissonance, which can lead people to get defensive; it's important to let them know that you're asking
because you're aware how much of an expert they are at this stuff and that you just need to understand the basics in order to do a

good job by them.

Why the cognitive dissonance? Well, sometimes we just do things because "that's how they're done," rather than because there's
any known value to that technique. We can find examples of this in the field of making software. Many developers (though, far
from all) use version control. What are the benefits of doing so? Surprisingly, no study can be found—

http://www.neverworkintheory.org/?p=451 that investigates that. However, many developers, myself included, will tell you that

version control is important, you should be doing it, and can come up with benefits. Tell us "but there's no evidence for those
benefits, so why not just stop?" and we'll get confused and angry, trying more vociferously to defend our position despite the

problems with the argument.

You Shouldn't Build What Your Client Wants

At least, you probably shouldn't, anyway. Most of the time, they won't represent the majority of users, or even any of the users.

This happens in pretty much every field of software:

o In-house software is usually commissioned by the IT department, but will be used by sales, engineers, finance, and other

departments.

o Commercial software is usually driven by a product manager but will be sold to thousands (or more) of people. Even where
you have a dedicated customer representative, they represent only one of many users. And, as with in-house software, the

"representative” may still not be the ultimate user of the application.

o Even in a case where you're building bespoke software for a small team of people who are involved in the decision-making,
a disproportionate number of suggestions will come from the more senior or more vocal users; with the worst case being
that specific requests get filtered through the understanding of a senior manager before being summarized and presented to

the development team.

What this means is that, in almost all situations, what your client wants is at best only a rough approximation to what would be in
the best interests of the product (and therefore its user base, and presumably your bottom line). The trick to managing this is, of

course, political rather than technical; you probably don't want to offend the people who are giving you input into the software

http://www.neverworkintheory.org/?p=451

requirements, especially if they're paying the bills. That means flipping the Bozo Bit—http://c2.com/cgi/wiki?SetTheBozoBit is

out of the question. But if something's a bad idea, you probably don't want it in your app.

But what makes you sure it's a bad idea? Even if you are the user of the software you're writing, it's still one not-quite-
representative user versus another. Yes, you may have more of an idea about platform norms and expected behavior, but that could

also mean that you're conservative about brand new ideas because no other app works this way.

Resolving this conflict can be achieved with data. I discussed A/B testing and user acceptance testing in Chapter 6, Testing; those
tools can be put to use here in discovering whether any given suggestion improves the software. It doesn't have to be expensive; in
that, you don't have to build the whole feature before you can find out whether anyone wants it. You could try out a prototype on a
whiteboard to see how people get on with it or build a very basic version of the feature to see how popular it is. Be cautious about
trying to poll users to find out how popular a feature would be though: answering "yes" or "no" takes the same effort, but in one
case they get a higher chance of getting a new shiny thing, whether they'd use it or not. The risk/reward calculation in responding
to a feature poll is biased toward affirming the request, and we've already seen acquiescence bias means people tend to agree with

whatever statement is presented to them.

When you've got the data, the conversation can start "that was a nice idea, but it looks like the customers aren't ready for it" rather
than "I'm not building your bad feature." That's a much easier way to have an ongoing relationship with your clients.
Unfortunately, it's not always an option; plenty of software is still built in secrecy, with no user engagement until 1.0 is nearly
ready (or even later). In these cases, your imperfect customer proxies are all you've got and, like it or not, you have only their
suggestions and your opinions to work with. You can still frame discussion around hypothetical other users (often called personae)
to defuse any emotional feelings about challenging "personal" feature requests, but that's an imperfect rhetorical tool rather than
an imperfect requirements tool. Application telemetry in the 1.0 release can tell you how people really use the features and help
you prioritize future development, but that's too late for discussions about the initial release; and remember that it's the initial

release that costs money while it's not paying for itself.

Human Factors In Software Systems

The thing about software requirements is that they don't exist. Or at least, they don't exist in isolation. The standard model of
particle physics is based on the idea that there are fundamental particles called quarks, and that these combine into systems called
hadrons (heavyweight particles including protons and neutrons) and mesons (middleweight particles important in high-energy
interactions). Quarks are bound into these systems by gluons, the particles that carry the strong force. This model is generally

accepted, even though no one has ever seen a quark or a gluon in isolation; they're always part of a hadron or meson.

Just as quarks and gluons have no existence on their own, so software on its own without users is meaningless, and software users
without software have nothing to do. The whole represents a socio-technical system and it is this system that we are constructing
and modifying with our software-building efforts. So, no view on software requirements is complete without a view of the effect
the software will have on the politics, economics, social structure, and psychology of the people who will interact with it, and of

how those people will affect the software.

I've had a theoretical grasp on this point for years. It was finally emotionally reified for me by Robert Annett—

https://twitter.com/robert_annett during a talk he gave on legacy sofiware systems. The anecdote he told involved him walking

through an office at the company he was deploying a new system at, talking with one of the people he'd be working with. As they
left a room where around 20 data entry clerks were working, his new colleague said quietly "it's a shame really — when your new

system comes online, we'll have to fire them."

Sometimes, the pattern of sigils and words you feed to the compiler can have a real impact on real people, good or bad.

http://c2.com/cgi/wiki?SetTheBozoBit
https://twitter.com/robert_annett

Economics

The economic side of this interaction is covered well by Barry Boehm in his 1981 book Software Engineering Economics—

http://books.google.co.uk/books/about/Software_engineering_economics.html?id=VphQAAAAMAAJ&redir_esc=y. His model

for estimating the costs of software projects has not been generally adopted in the industry, but it does include what he calls
"human relations factors," which can affect the cost of a software system and the benefits derived. It includes the "modified golden

rule" for working with other people:
Do unto others as you would have others do unto you — if you were like them.

The point of the conditional clause is to remind programmers that not everyone wants to be treated like they enjoy solving
software problems and can understand computer science concepts. Boehm argues that the costs and benefits of usability, of
satisfying human needs, and of allowing users to fulfil their potential need to be considered in economic terms for a software

project.

While surely better (or at least, more complete) than not reasoning at all about these factors, trying to find a dollar value for them
is an early stage in their consideration. What I infer from it, and from similar arguments in information security and other fields
(remember the discussion on the economic value of accessibility, in the Chapter 6, Testing) is that we either can't see or can't
Justify an intrinsic benefit of those properties, but would still like to include them in our decision-making. The fact that we're not
willing to ignore them leads me toward the second explanation: we know that these things are valuable but don't have an argument

to support that.

That's not to say that these defenses for human factors aren't useful; just that they aren't the apotheosis of debate. You can see how
usability might be economically justified in terms of cost; more effort in designing usable software can pay off in making its users
more efficient, and more satisfied. Satisfaction (linked to another of the factors — fulfilment of human potential) can lead to greater

engagement with their work and higher levels of staff retention, reducing the HR costs of the organization. Satisfying human

needs is what Herzberg—http://www.businessballs.com/herzberg.htm deems a hygiene factor: people must have their basic needs

met before they can be motivated to pursue other goals.

Sometimes the trade-off in goals cannot reasonably be cast in economic terms. A good example is a game: if it had great usability,
it'd be really simple so people would complete it quickly and then get back to work — an economic win. But people don't play
games that are straightforward; they play games that offer them a challenge, whether that challenge be mental, dexterous, or
something else. Therefore, the player's desire to be challenged, or to lose themselves in the game world, takes precedence,

although it is difficult to see how to assign a monetary value to that desire.

o 0
Politics
The political side of software development can have an impact on how people think they are recognized, supported, empowered,
and valued by the system in which the software is used and the wider system of interacting systems. Let's start this section by
looking at a case study: a shared calendar application used in a business. On one team, everyone can schedule events on their own

calendar, and the manager can see everyone's calendars. Additionally, the manager has a personal assistant who can schedule

events for the manager in the manager's calendar.

The manager feels in a position of power, because they can see where everyone is and can strategically walk past their desks to see
what they're up to at times when their reports should be there, because they don't have any meetings recorded. Additionally, the
manager feels empowered because the mechanical work of updating the calendar software has been delegated to someone else,

and delegation is a key activity for managers.

http://books.google.co.uk/books/about/Software_engineering_economics.html?id=VphQAAAAMAAJ&redir_esc=y
http://www.businessballs.com/herzberg.htm

On the other hand, the other members of the team feel empowered because they can control the manager through the calendar
software. If they do not want to be disturbed, they can create themselves a "meeting" and find somewhere quiet to work. They can
work with the personal assistant to arrange for the manager to be in a meeting at a time when they want to have a team discussion

without the manager's involvement.

This discussion about calendar software depends on an underlying model of the politics in the group using the calendar: I wrote it
to rely on a Marxist model, exposing the struggle between the manager (playing the part of the capitalist) and the workers. Each
group is represented by their own goals, which are, according to the model, inevitably in conflict. Stability is achieved by ensuring
that conflicting goals do not come into direct opposition over a single issue.

Whether the people participating in this system are really engaged in the conflict presented in this model of the system — and
whether individual participants would recognize that conflict or have a different perception of the system, is not captured within

this model. It's an internally consistent story that has nothing to tell us about its own accuracy or applicability.

In designing software to be used by multiple people, the real politics of the system of people and our model of those politics will
both shape the interactions facilitated by the software. Will the software support an existing distribution of power or will it
empower one group at the expense of others? Is the political structure modeled on a coarse level (as in the managers/workers case
above) or are the different needs and expectations of every individual in the system captured? Will the software enable any new
relationships or break some existing relationships? Will it even out inequalities, reinforce existing inequalities, or introduce new

ones?

These are complex questions to address but it is necessary to answer them for the impact of collaborative software on its users to
be fully understood. As the anecdote earlier in this section shows, software systems can have a real impact on real people: the
management of a large business may be pleased to reduce their headcount after deploying new software, to recoup development
costs, and see it as the responsibility of those who are made redundant to find alternative employment. A charity with a remit to
support local people by providing work may prefer to retain the workers and reject the software. Only by understanding the

political environment can you be sure that your software is a good social fit for its potential users and customers.

Prioritizing Requirements

This section really reiterates what came before: you should be building software that your users need in preference to what they

want. That's the ideology, anyway. Reality has this annoying habit of chipping in with a "well, actually" at this point.

It's much easier to sel/ the thing the buyer wants than the thing they really need. Selling things is a good opportunity to take, as it
allows you to fund other activities: perhaps including the development of the thing that the customers still needs. But, well,

actually...

...good marketing efforts can convince the customer that the thing they actually need is something they do in fact want. You can
then shortcut all of the above discussion by making the thing people should be buying and convincing them to buy it. This is one
of those high-risk, high-reward situations: yes, selling people a faster horse—

http://blogs.hbr.org/cs/2011/08/henry_ford never said the fast.html is easier but the margins will not be as high and the success

not as long-lived as if you invent the motorcar industry. As they say, profit is a prize for taking a risk.

So, how you prioritize building the software really depends on your comfortable risk level. You could get incremental low-margin

gains by finding the things that people are definitely willing to buy and building those. This is the Lean Start-up approach, where
you start with nothing and rapidly iterate towards what the data is telling you people want to buy. Or you could take the risk: build
the thing you know people need, then convince them that it's worth the money. This is the approach that bears most resemblance to

Steve Jobs' famous position: It's not up to customers to know what they want.

http://blogs.hbr.org/cs/2011/08/henry_ford_never_said_the_fast.html

Is It Really "Engineering''?

There's an old quote that says anything where people feel the need to include the word "science" isn't a science. And, yes, the
original author was talking about computer science. But perhaps we should be wary of the attribution of "engineering" to
requirements engineering. Engineering is, after all, the application of science to the manufacture of artifacts, while requirements
engineering is the application of social science (the warning is firing again!) to the business of improving a social system. Really,
it's a transformation of some fields of social science (politics, economics, anthropology, ethnography, and geography) to other
fields of social science (sociology and business studies) with some software created to effect the transformation. (Shortly after I
finished writing this section, Paul Ralph submitted a paper to ArXiv describing the rational and alternative paradigms—

http://arxiv.org/abs/1303.5938v 1 of software design. The rational paradigm is basically the intuition-based version of requirements

engineering: the software requirements exist as a fundamental truth to the universe and can be derived from careful thought. The
alternative paradigm is the empirical one: the requirements arise as a result of the interactions between people and can only be
understood through observation. Ralph's paper does a good job of explaining these two paradigms and putting them in context in
the history of software design.)

This isn't to say that the phrase "requirements engineering" needs to be retired, because people know what it means and use it as a
placeholder for the real meaning of the discipline. But maybe we need to think of this as a generational thing; that while to us it's
called "requirements engineering," we remember to give it a different term with the people we teach; something like "social

software".

http://arxiv.org/abs/1303.5938v1

Chapter 10

Learning

Introduction

When you started doing this stuff, whether "this stuff" is writing iPhone apps, UNIX minicomputer software, or whatever future
programming you meals-in-pill-form types get up to, you didn't know how to do it; you had to learn. Maybe you took a training
course, or a computer science degree. Perhaps you read a book or two. However you did it, you started with no information and

ended with... some.
It doesn't stop there. As Lewis Carroll said:
It takes all the running you can do, to keep in the same place.

He was talking about the Red Queen's race, but I'm talking about learning and personal development. If you stopped when you had
read that first book, you might have been OK as beginner programmers go, but if the woman next to you in the library read

another book, then she would have been a step ahead.

We live in what is often called a knowledge economy. Francis Bacon said, "knowledge is power." If you're not learning, and
improving yourself based on the things you learn, then you're falling behind the people who are. Your education is like the race of

the Red Queen, constantly running to keep in the same place.

Do as Much as You Can

There's no such thing as too much learning (though the real problem of "not enough working" can sometimes be found in
proximity to a /ot of learning). Not all education comes through formal settings such as training or university courses. (Indeed,
much material from university-level computer science programs is now available for free through schemes such as iTunes U and
Coursera. That can make for some interesting lunchtime reading, but I find I learn better when I've got the structure of a taught
course and the pressure of a submission deadline. That said, you're not me and you might benefit from a more relaxed learning
environment.) Reading a book, magazine article, or blog post in your lunch break can be very helpful, as can going to birds-of-a-

feather developer meetings.

Bigger items such as training courses and conferences obviously involve a larger time commitment. There is, obviously, such a
thing as "not enough working," and that's a balance you'll need to address. If you're self-employed, then you need to balance the
opportunity cost (How much work will you be turning down by attending the course?) and financial cost against the benefits (How
much better will you be after taking the course? How much extra work will you be able to get? What good contacts will you meet

at the conference?).

Of course, if you're employed, this decision may be made for you by your manager. You can help the decision along if you know
how the training course fits with the company's direction... But I'll leave that to the chapters 12 and 13 Business on and Teamwork

respectively.

Don't Stick to Your Own Discipline

Every field has its champions and superheroes: the people with tens of thousands of followers, whose blog posts are always read

and quoted and who speak at all the conferences. People look to these champions to analyze and direct the way their community

works. Often, the leaders in one field will be contrasted with "them," the leaders in a different field: that iPhone programmer is

one of "us," and the Android programmer giving a talk in the other room is talking to "them."

This definition of "us" and "them" is meaningless. It needs to be, in order to remain fluid enough that a new "them" can always be
found. Looking through my little corner of history, I can see a few distinctions that have come and gone over time: Cocoa versus
Carbon; CodeWarrior versus Project Builder; Mach-O versus CFM; iPhone versus Android; Windows versus Mac; UNIX versus
VMS; BSD versus System V; SuSE versus Red Hat; RPM versus dpkg; KDE versus GNOME; Java versus Objective-C; Browser

versus native; BitKeeper versus Monotone; Dots versus brackets.

Sometimes, it takes an idea from a different field to give you a fresh perspective on your own work. As an example, I've found lots
of new ideas on writing object-oriented code by listening to people in the functional programming community. You might find that

the converse it true, or that you can find new ways to write Java code by listening to some C# programmers.

You could even find that leaving the programmers behind altogether for a bit and doing some learning in another field inspires you
— or at least lets you relax and come back to the coding afresh later. The point is that, if you focus on your narrow discipline to the

exclusion of all others, you'll end up excluding a lot of clever people and ideas from your experience.

Put it into Practice

At various points in history, I've learned a collection of languages, of the inter-human and computer programming varieties. The

only ones I can remember anything about are the ones I use all the time.

I expect the same's true for you. The reason I expect this is not that I believe everyone's like me, but that there's basis for it in

theory. The Kolb learning cycle—nhttp://www.businessballs.com/kolblearningstyles.htm says that there are four processes that

form the practice of learning:
o Concrete Experience: Actually doing a thing.
o Reflective Observation: Analyzing how you (or someone else) did a thing.
o Abstract Conceptualization: Building a model of how things should be done.
o Active Experimentation: Just playing with the plasticine and seeing what comes out.

Not everybody goes through all of the items in the cycle, but most people start out somewhere and progress through at least a
couple of the points, probably in the order presented (acknowledging that, as a cycle, it should be, well, cyclic). Therefore, almost
everyone who learns something goes through either an experimentation or building experience: it's very hard to learn something

without trying it out.

Perhaps more importantly, it's hard to adapt what you've learned to fit everything else you do if you don't try it out. An idea on its
own doesn't really do anything useful; when it's put into practice, it becomes combined with other ideas and techniques and adds
something valuable.

Collaborate and Share what you Learn

There are numerous benefits to sharing the things that you learn. The first is that everybody you share with will have had different
experiences and can tell you how what you've learned applies (or doesn't) to their context. That insight can give you a more

complete picture of what you learned, especially of where it might be limited. Conference talks and books are often delivered with
a spin on being persuasive—not because the author is being disingenuous, but because the material will be more successful if you

go away wanting to apply what you've learned.

http://www.businessballs.com/kolblearningstyles.htm

Listening to other people who've found that what you want to do does (or doesn't) work in particular situations, then, can give you
a more complete picture of a concept and its applications than just relying on the first source you discovered. In return, you'll

probably tell the person you're talking to about your experiences and problems, so you both get to learn.

That's the real reason I'm keen on shared learning—everyone benefits. That includes the teacher, if you're collaborating in a formal
learning environment such as a training course or a class. Even if you've got a lot less experience than the teacher, you'll have

unique insight and ideas that are more useful out in the open than being kept quiet.

Publications such as Communications of the ACM frequently cover problems associated with teaching computing. Indeed, in the

issue that was current at the time of writing, two articles— http://cacm.acm.org/magazines/2012/11/156579-learning-to-teach-

computer-science/fulltext articles—http://cacm.acm.org/blogs/blog-cacm/15653 1 -why-isnt-there-more-computer-science-in-us-

high-schools/fulltext discuss a shortage of computer science teaching. I believe that to address such problems, we need to get
feedback not from experts (who managed to make it through the initial learning phase — no matter how shoddy the resources
available) but from neophytes. We need to get more feedback on what's currently making it hard for beginners to make progress, if

we're to scale the industry and allow new colleagues to quickly get to the point of doing better than we do.

Of course, listening to newbies will work best if the newbies are talking to us; specifically, telling us what's going well and what's
going wrong. A great way to encourage that is to lead by example. Unfortunately, it doesn't seem like this is popular. In the world
of Objective-C programming, two great aggregators of blog content are the Cocoa Literature List—http://cocoalit.com and iOS

Dev Weekly—http://iosdevweekly.com/issues/. Maybe I'm just getting jaded, but it seems like a lot of the content on both of those

sites comprises tutorials and guides. These either rehash topics covered in the first-party documentation or demonstrate some

wrapper class the author has created without going into much depth on the tribulations of getting there.

What we really need to understand, from neophytes to experienced developers alike, is actually closer to the content of Stack

Overflow—http://www.stackoverflow.com than the content of the blogosphere. If lots of inexperienced programmers are having

trouble working out how two objects communicate (and plenty do—nhttp://stackoverflow.com/questions/6494055/set-object-in-

another-class), then maybe OOP isn't an appropriate paradigm for people new to programming; or perhaps the way that it's taught

needs changing.

So, this is a bit of a request for people who want to improve the field of programming to mine Stack Overflow and related sites to
find out what the common problems are—trying to decide the experience level of any individual user can be difficult so
organizing problems into "newbie problems" versus "expert problems" would be difficult. It's also a request for people who are

having trouble to post more Stack Overflow questions. The reasons?

o Usually, in the process of crafting a good question, you end up working out what the answer is anyway. The effort isn't
wasted on Stack Overflow; you can answer your own question when you post it, then everyone can see the problem and

how you solved it.

o The reputation system (to a first approximation) rewards good questions and answers, so the chances that you'll get a useful

answer to the question are high.
o Such questions and answers can then be mined as discussed above.
There are downsides, of course:

o Duplicate questions cannot easily be measured, because they're usually closed, and often deleted. Or people will find
existing questions that cover the same ground (as they're supposed to, within the "rules") and not ask their duplicate. The

voting system and view count have to be used as proxies to the "popularity" of a question; an inexact system.

http://cacm.acm.org/magazines/2012/11/156579-learning-to-teach-computer-science/fulltext%20articles%E2%80%94http://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-there-more-computer-science-in-us-high-schools/fulltext
http://cacm.acm.org/magazines/2012/11/156579-learning-to-teach-computer-science/fulltext%20articles%E2%80%94http://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-there-more-computer-science-in-us-high-schools/fulltext
http://cacm.acm.org/magazines/2012/11/156579-learning-to-teach-computer-science/fulltext%20articles%E2%80%94http://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-there-more-computer-science-in-us-high-schools/fulltext
http://cacm.acm.org/magazines/2012/11/156579-learning-to-teach-computer-science/fulltext%20articles%E2%80%94http://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-there-more-computer-science-in-us-high-schools/fulltext
http://cacm.acm.org/magazines/2012/11/156579-learning-to-teach-computer-science/fulltext%20articles%E2%80%94http://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-there-more-computer-science-in-us-high-schools/fulltext
http://cocoalit.com/
http://iosdevweekly.com/issues/
http://www.stackoverflow.com/
http://stackoverflow.com/questions/6494055/set-object-in-another-class
http://stackoverflow.com/questions/6494055/set-object-in-another-class

o The voting system tends to reward received dogma over novel ideas or technical accuracy; upvoted answers are "popular,"

which is not the same as being "correct."

A better system for teaching programming would base its content on the total collection of all feedback received by instructors at
programming classes ever. But we're unlikely to get that. In the meantime, Stack Overflow's pretty good. What I'm saying is that
you shouldn't just share what you learn, you should share what you're stuck on too.

Opportunities to Learn

So, your training budgets used up, the conference you like was last month and won't be around for another year; is that it? When

else are you going to get a chance to get yourself into the learning frame of mind?
All the time. Here are a couple of examples of how I squeeze a little extra study into life:
o I drive about an hour each way on my commute. That's two podcast episodes per day, ten per week.

o Once a week, my developer team has "code club," an hour-long meeting in which one member makes a presentation or

leads a discussion. Everybody else is invited to ask questions or share their experiences.
o There's a little time at lunch to read some articles.
o I goto one or two local developer groups a month.

You don't necessarily need to deep-dive into some information in order to make use of it. Just knowing that it's out there and that
you can find it again is enough to give it a space in your mental pigeonhole. When you've got a related problem in the future,
you'll likely remember that you read about it in #his article or made that note in Evernote. Then, you can go back and find the

actual data you need.

Of course, conferences and training courses are great places to learn a lot. One reason is that you can (to some extent, anyway) put

aside everything else and concentrate on what's being delivered.

Ranty aside

One of the saddest things to see at a conference is someone who's doing some work on their laptop instead of focusing on the
session. They're missing out—not just on the content, but on the shared experience to talk about it with other delegates during the
next break. It's not a good environment to work in because of the noise and the projected images, and they don't get anything out

of the sessions either.

Rediscovering Lost Knowledge

You might think that, with software being such a fast-moving field, everything we're doing now is based on everything we were
doing last year, with induction proving that there's a continuous unbroken history linking current practice to the "ENIAC girls" and
Colossus wrens of the 1940s. In fact, the truth is pretty much the exact opposite of that; practices seen as out of date are just as

likely to be rejected and forgotten as to be synthesized into modern practice.

As an example, I present my own experience with programming. I was born into the microcomputer revolution, and the first
generation of home computers. Programming taught on these machines was based on either the BASIC language of the 1960s or
using assemblers. The advances made by structured programming, object-oriented programming, procedural programming, and

functional programming were all either ignored or thought of as advanced topics inappropriate to microprogramming. It wasn't

until much later that I was introduced to "new" concepts such as 1973's C and had to come to grips with any form of code

organization or modularity.

Armed with a history book, or a collection of contemporary literature, on computer programming, it's easy to see that I'm not
alone in ignoring or losing earlier results in the discipline. After all, what is agile programming's "self-organizing team" but a

reinvention of Weinberg's adaptive programming—http://dl.acm.org/citation.cfm?id=61465? Is there a clear lineage, or has the

concept been reinvented? Is the "new" field of UX really so different from the "human-relations aspects" of Boehm's software

engineering economics—https://dl.acm.org/citation.cfm?id=944370? As described in Chapter 8, Documentation, many

developers no longer use UML; how long until UML is invented to replace it?

The Teaching Of Software Creation

My mitigation for the rediscovery problem outlined above could be that you undertake the heroic effort of discovering what's out
there from nearly 70 years of literature, identify the relevant parts, and synthesize a view on software creation from that. That

would be crazy. But in the short term, that's probably the only route available.

Like many people, I learned programming by experimentation, and by studying books and magazines of varying quality. This
means that, like many programmers, my formative experiences were not guided (or tainted, depending on your position) by a
consistent theory of the pedagogy of programming. Indeed, I don't think that one exists. Programming is taught differently by
professional trainers and by university departments; indeed, it's taught differently by different departments in the same university
(as I discovered, when I was teaching it in one of them).

There's no consistent body of knowledge that's applied or even referred to, and different courses will teach very different things.
I'm not talking about differences at the idiomatic level, which are true across all types of teaching; you could learn the same

programming language from two different teachers and discover two disjoint sets of concepts.

This is consistent with the idea of programming being merely a tool to solve problems; different courses will be written with
solving different problems in mind. But it means there isn't a shared collection of experiences and knowledge among neophyte

programmers; we're doomed to spend the first few years of our careers repeating everyone else's mistakes.

Unfortunately, I don't have a quick solution to this: all I can do is make you aware that there's likely to be loads of experience in
the industry that you haven't even been able to make secondary use of. The effort to which you go to discover, understand, and
share this experience is up to you, but hopefully this chapter has convinced you that the more you share knowledge with the

community, the better your work and that of the community as a whole will be.

The particular material I learned from was long on descriptions of how operators work and how to use the keywords of the
language, but short on organization, on planning, and on readability (There's an essay on what it means for code to be readable in
Chapter 11, Critical Analysis); that is, on everything that's beyond writing code and goes into writing usable code. Yes, I learned
how to use GOSUB, but not when to use GOSUB.

There's a lot of good material out there on these other aspects of coding. When it comes to organization, for example, even back
when I was teaching myself programming, there were books out there that explained this stuff and made a good job of it: The

Structure and Interpretation of Computer Programs—http://mitpress.mit.edu/sicp/full-text/book/book.html; Object-Oriented

Programming: an evolutionary approach—http://books.google.co.uk/books/about/Object_oriented programming.html?
1d=USAgAQAAIAA]&redir_esc=y; Object-Oriented Software Construction—nhttp://docs.eiffel.com/book/method/object-

oriented-software-construction-2nd-edition. The problem then was not that the information did not exist, but that I did not know I

needed to learn it. It was, if you like, an unknown unknown.

http://dl.acm.org/citation.cfm?id=61465
https://dl.acm.org/citation.cfm?id=944370
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://books.google.co.uk/books/about/Object_oriented_programming.html?id=U8AgAQAAIAAJ&redir_esc=y
http://books.google.co.uk/books/about/Object_oriented_programming.html?id=U8AgAQAAIAAJ&redir_esc=y
http://docs.eiffel.com/book/method/object-oriented-software-construction-2nd-edition
http://docs.eiffel.com/book/method/object-oriented-software-construction-2nd-edition

You could argue that the organization of code is an intermediate or advanced topic, beyond the scope of an introductory book or
training course. Or you could argue that while it is something a beginner should know, putting it in the same book as the "this is

how you use the + operator" material would make things look overwhelmingly complex, and could put people off.

Firstly, let me put forward the position that neither of these is true. I argue from analogy with Roger Penrose's book The Road to
Reality—http://books.google.co.uk/books/about/The Road to Reality.html?id=ykV8cZxZ80MC, which starts from fundamental

math's (Pythagoras' theorem, geometry, and so on) and ends up at quantum gravity and cosmology. Each chapter is challenging,
more so than the previous one, but can be understood, given an understanding of what came before. People (I included) have been
known to spend years working through the book — working through the exercises at the end of each chapter before starting the

next. And yet, it's a single book, barely more than 1,100 pages long.

Could the same be done for computing? Could a "The Road to Virtual Reality" take people from an introduction to programming

to a comprehensive overview of software creation? I'll say this: the field is much smaller than theoretical physics.

Now, here's a different argument. I'll accept the idea that the field is either too big or too complex to all go into a single place, even
for a strongly motivated learner. What's needed in this case is a curriculum: a guide to how the different parts of software creation

are related, which build on the others, and a proposed order in which to learn them.

Such curricula exist, of course. In the UK, A-level computing—

http://www.cie.org.uk/qualifications/academic/uppersec/alevel/subject?assdef id=738 doesn't just teach programming, but how to

identify a problem that can be solved by a computer, design, and build that solution, and document it. Now where do you go from
there? Being able to estimate the cost and risk associated with building the solution would be helpful; working on solutions built
by more than one person; maintaining existing software; testing the proposed solution... These are all things that build on the
presented topics. They're covered by Postgraduate courses in sofiware engineering—

http://www.cs.ox.ac.uk/softeng/courses/subjects.html; there's some kind of gap in between learning how to program and

improving as a professional programmer, where you're on your own.

And these curricula are only designed for taught courses. Need the self-taught programmer be left out? (Some in the field would
say, yes; that programming should be a professional discipline open only to professionals—or at least that there should be a
designated title available only to those in the know, in the way that anybody can be a nutritionist but only the qualified may call
themselves dieticians. Some of these people call themselves "software engineers" and think that software should be an exclusive
profession, like an engineering discipline; others call themselves "software craftsmen" and use the mediaeval trade guilds as their
models for exclusivity. I will leave my appraisal of those positions for later. But for now, it's worth reflecting on the implicit

baggage that comes with any description of our work.)

There are numerous series of books on programming: the Kent Beck signature series—

http://www.informit.com/imprint/series_detail.aspx?ser=2175138 on management methodologies and approaches to testing, for

example, or the Spring Into—http://www.informit.com/imprint/series _detail.aspx?st=61172 series of short introductions.

These published series are often clustered around either the beginner level or are deep and focus on experienced developers
looking for information on specific tasks. There's no clear route from one to the other, whether editorially curated by some
publisher or as an external resource. Try a web search for "what programming books to read" and you'll get more than one result

for every programmer who has opined on the topic—as Jeff Atwood has written about it more than once.

Building a curriculum is hard — harder than building a list of books you've read, and you'd like to pretend you'd read, then telling
people they can't be a programmer until they read them. You need to decide what's really relevant and what to leave aside. You
need to work out whether different material fits with a consistent theory of learning; whether people who get value from one book

would derive anything from another. You need to decide where people need to get more experience, need to try things out before

http://books.google.co.uk/books/about/The_Road_to_Reality.html?id=ykV8cZxZ80MC
http://www.cie.org.uk/qualifications/academic/uppersec/alevel/subject?assdef_id=738
http://www.cs.ox.ac.uk/softeng/courses/subjects.html
http://www.informit.com/imprint/series_detail.aspx?ser=2175138
http://www.informit.com/imprint/series_detail.aspx?st=61172

proceeding, and how appropriate it is for their curriculum to tell them to do that. You need to accept that different people learn in

different ways and be ready for the fact that your curriculum won't work for everyone.

What all of this means is that there is still, despite 45 years of systematic computer science education, room for multiple curricula
on the teaching of making software; that the possibility to help the next generation of programmers avoid the minefields that we
(and the people before us, and the people before them) blundered into is open; that the "heroic effort" of rediscovery described at

the beginning of this section needs be done, but only a small number of times.

Reflective Learning

Many higher education institutions promote the concept of reflective learning analyzing what you're learning introspectively and
retrospectively, deciding what's gone well and what hasn't, and planning changes to favor the good parts over the bad. Bearing in
mind what we've seen in this chapter — that there are manifold sources of information and that different people learn well from

different media, reflective learning is a good way to sort through all of this information and decide what works for you.

This is far from being a novel idea. In his book The Psychology of Computer Programming—

http://www.geraldmweinberg.com/Site/Home.html, Gerald M. Weinberg describes how some programmers will learn well from

lectures, some from books, and some from audio recordings. Some will—as we saw when discussing the Kolb cycle—want to
start out with experimentation, whereas others will want to start with the theory. As he tells us to try these things out and discover
which we benefit from most, he's telling us to reflect on our learning experiences and use that reflection to improve those

experiences.

Reflective learning is also a good way to derive lessons from your everyday experiences. I have a small notebook here in which,
about 4 years ago, [wrote a paragraph every day based on the work I did that day. I thought about the problems I'd seen, and
whether I could do anything to address them. I also thought about what had gone well and whether I could derive anything general

from those successes. Here's an example entry:

Delegated review of our code inspection process to [colleague]. Did I give him enough information, and explain why I gave him
the task? Discovered a common problem in code I write, there have been multiple crashes due to inserting nil into a collection.
In much ObjC, the nil object can be used as normal but not in collections, and I already knew this. Why do I miss this out when
writing code? Concentrate on ensuring failure conditions are handled in future code & get help to see them in code reviews.
Chasing a problem with [product] which turned out to be something 1'd already fixed on trunk & hadn't integrated into my work
branch. What could I have done to identify that earlier? Frequent integrations of fixes from trunk onto my branch would have

obviated the issue.

You don't necessarily have to write your reflections down, although I find that keeping a journal or a blog does make me structure
my thoughts more than entirely internal reflection does. In a way, this very book is a reflective learning exercise for me. I'm
thinking about what I've had to do in my programming life that isn't directly about writing code, and documenting that. Along the
way, I'm deciding that some things warrant further investigation, discovering more about them, and writing about those

discoveries.

http://www.geraldmweinberg.com/Site/Home.html

Chapter 11
Critical Analysis
Introduction

During your professional career, people will tell you things that aren't true. Sometimes they're lies, intended to manipulate or
deceive; sometimes they're things that the speaker believes (or perhaps wants to believe), but on closer inspection don't pass

muster; sometimes people will tell you things that are true, but irrelevant or of limited use, to persuade you of their position.

Who will be telling you these things? You've probably already thought of marketing and salespeople, desperate to get you or your
company to take their product and win the commission. Speakers at conferences could do it too, trying to convince you that the
technique, style, or strategy they're promoting is applicable to your situation in addition to theirs. The website for that new
language you want to try out may be making exaggerated claims. Your manager or teammates may be trying a little too hard to sell

you on their way of thinking.

There will also be plenty of occasions on which people tell you things that are true. Some of these could be surprising, especially

if common sense—http:/rationalwiki.org/wiki/Common_sense tells you the opposite is true; some of these could be suspicious;

some you might be willing to accept without debate. Though there's no harm in questioning the truthiness—

http://en.wikipedia.org/wiki/Truthiness of things, even when they are indeed true.

Critical analysis is about studying arguments to determine their well-formedness. In this context, an "argument" is a collection of
statements affirming a particular position; it isn't a verbal sparring match between two people. An argument is well-formed if it
contains some premises and reaches a conclusion logically derivable from those premises. Notice that such an argument is well-
formed, not correct: the argument could rely on contested knowledge or the premises could be unsound for some other reason.
Nonetheless, uncovering the rhetorical techniques and fallacies, if any, present in an argument can help you to understand the
arguer's position and why they want you to agree with their conclusion, in addition to helping you decide whether you can agree

with that conclusion.

Criticism Is Often Uncritical

"You're wrong." I hope that even without the information presented in the rest of this chapter, it's clear that the statement at the
beginning of this chapter is not a well-formed argument. A fragment of a conclusion is presented (I'm wrong, but about what? This
argument? Everything? Something in between? Is it my position that's wrong, or am I ethically abhorrent?), with no premises or

deduction.

Criticism has come to mean expressing a negative opinion on some matter, but that's not the sense in which it's used here. The
phrase "critical analysis" uses a more academic definition of the word critical. In this context, to be critical means to analyze both
the pros and cons of an argument, to understand it in terms of the particular rules of argument formation, and to discover whether
you find the conclusion to be agreeable. Many online discussions can be found that are entirely uncritical; the people taking part
have decided on their positions in advance and are trying to find ways to more forcefully present their case and undermine the

other.

Being faced with this sort of response can be frustrating. There's no value to be had from reading the counter argument; it's not
critical, so it doesn't tell you why the other person disagrees with you. It's easy to take such responses personally though (on

which, more later), and to get upset or angry at the person (or imagined person behind an online pseudonym). It's these factors that

http://rationalwiki.org/wiki/Common_sense
http://en.wikipedia.org/wiki/Truthiness

have led a minority of bloggers to switch off comments on their sites. It's easier to present an uninformed or uncritical argument

than a well-thought-out one, therefore a large number of comments on the internet are of this unhelpful type.

Please do not be part of that problem. Read to understand, not to reply. If you're left with problems, try to formulate a rational
explanation of why the argument presented did not discuss those problems. If it's still unclear after doing that, then by all means
post your explanation. Both of you can probably learn from it.

How to Form an Argument?

Rather than describe how to analyze an argument, I'll explain how to construct one. It follows that critical analysis is the
exploration of whether an argument contains high-quality versions of the features described here, linked coherently to support the

conclusion or conclusions of the argument.

Though they need not be presented at the beginning of an argument (and indeed may not be explicit at all), any argument depends
on a collection of assumptions or premises. These are statements accepted as true for the purpose of exploring the subject of the
argument. The validity of any assumption depends on the context; in any field, some things are considered uncontested knowledge
while others are contested. An example of uncontested knowledge in computing could be the features and operation of a universal
Turing machine; the facts were documented and proven mathematically in the 1930s and are generally agreed to represent a sound
base on which the rest of computer science is built. The assumption "Java is a useful language to teach beginners" would be

considered contested knowledge, being far from universally accepted.

Such a contested assumption would need to be supported by external evidence that readers or listeners could evaluate to decide the
validity of the assumption. In academic fields, acceptable evidence is usually restricted to reviewed literature. Indeed, it's possible
to find papers that support the Java assertion made in the previous paragraph. In an academic argument, uncontested knowledge is

roughly equivalent to "statements that are found in textbooks."

Almost tautologically, software creation practiced outside universities is not an academic discipline. There's little dependence on
the formalities of academia and great reliance on personal or shared experiences. As a result, argument based on authority
("Martin Fowler says...") or on personal opinion ("I have found...") is often used to justify contested knowledge. In the latter
case, the assumption could be presented as an intermediate conclusion: it follows from its own set of premises and is then used as
input into a successive argument. Arguments outside those used in critical analysis textbooks are frequently built on chains of

intermediate conclusions, combined with other premises to reach the eventual goal.

Arguments based on opinion or experience are easily, though not particularly usefully, undermined by the existence of people with
differing opinions and experiences. Where these bases are used, the scope of the experience and the reasons for drawing particular

opinions should be given as justification for reaching the stated conclusion.

The conclusion itself should be a position taken as a result of reasoning from the assumptions and intermediate conclusions. That
is to say, it should be related to the premises; if you feel the need to confuse matters by introducing unrelated facts, then your
argument is not particularly strong. The logical process of going from the premises to the conclusion, though potentially complex,
should ideally be mechanistic; a "leap of faith" is inappropriate, and any lateral or otherwise devious steps should be explicit.
Essay-style arguments are usually expected to reach their conclusions via deductive rather than inductive reasoning; appeals to
analogy for example would be considered inappropriate. Practically speaking, as a programmer, you're more likely to be

examining a sales pitch or a request from a customer than an academic essay, so the "rules" will be a lot looser.

The conclusion doesn't need to be the final part of the argument's presentation. Some writers open with the conclusion, to
challenge the readers and get them thinking about how the argument might proceed, a technique also used in oral presentations of

arguments. Occasionally, the conclusion comes after a bare-bones form of the argument, then further support is given to make the

conclusion more compelling. In any case, the conclusion is often reiterated at the end of the argument; after all, it's the part you

want to stick most in the minds of the readers or listeners.

Forms Of Fallacy

This section takes the form of a catalog, of sorts. It's not going to be complete and won't take a formal approach to describing the
catalog in the same way that, for example, Design Patterns deals with its catalogue; a complete catalogue of fallacies would be at

least as long as the rest of this book. A formal and consistent catalog would require planning.

Post Hoc, Ergo Propter Hoc

Translated, this means "After this, therefore because of this." Given two events, X and Y, the argument goes:
First X, then Y. Y was therefore caused by X.

This is a form of inductive reasoning that does not necessarily hold. Here's an absurd example:

The light turned red, and the car came to a halt. Red photons exert a strong retarding effect on cars.

In this case, there could be a causative relationship, but it is not as direct as the argument proposes.

Fundamental Attribution Error

Person P did X. Therefore, P is a moron.

This is also called correspondence bias. People often understand the situational basis for actions they take, but ascribe actions
taken by others to their innate personalities. Here's a good example for coders to consider: if / take a shortcut, I'm being pragmatic,
because of the pressures of the current project/iteration/whatever. If you were to take the same shortcut, it's because you don't
understand sound software development principles.

Argument from Fallacy

This is a subtle one, but one that's quite easy to find in online discussions once you know about it:
Argument A says that X follows Y. Argument A is fallacious. Therefore, X does not follow Y.

Just because an argument contains a fallacy, it does not necessarily follow that its conclusion is incorrect. Consider this concrete

example:

Isaac Newton's law of gravitation says that when I drop an object, it will fall to Earth because of a force called gravity. Einstein
showed that gravity is in fact caused by the curvature of space-time. Newton was incorrect; therefore, the object will not fall to

Earth when I drop it.

In fact, for pretty much every situation where Newton's law of gravity would predict that an object would fall to earth, so would
Einstein's general relativity; and the object would indeed fall to Earth. Neither of these models would be in use if their predictions
were not valid in certain scenarios, even though the reasons they give for the results they predict may not be what actually

happens.

Continuum Fallacy

The continuum fallacy is one of the more frequently encountered fallacies in online arguments, particularly on media like Twitter,
where the length of any statement is limited. The fallacy is to declare an argument incorrect because it is not satisfied in a
particular condition. Going back to the example of gravitational theories, a continuum fallacy counterargument to Newton would
be "Newton's Law of Gravitation does not predict the precession of Mercury's perihelion, therefore no result of Newton's Law
has any value." In fact, within human-scale interactions, Newton's Law is very valuable; it gives reasonably accurate answers that
are easy to compute. Einstein's theory is more general, giving answers consistent with Newton (and observation) at human scales

and successfully predicting Mercury's motion. But Newton's significant baby need not be thrown out with the bathwater.

Here's a theory I have on the prevalence of the continuum fallacy in programmer discussions: our programming activities train us
to look for and cover edge cases. Computers are, in the ways that most programmers use them most of the time, incapable of
inductive reasoning. When dealing with a computer, then, a programmer must look for any situation that has not been discussed
and explicitly state the results of meeting that situation. This training can lead to continuum fallacies in human interactions, where
the programmer applies the same keen sense of edge-case detection to statements made by other people that were implicitly

scoped or otherwise depended on induction in their correctness.

Slippery Slope
If X, then Y. Y, then Z. Z, then dogs and cats living together, mass hysteria.

A slippery slope retort is a popular rhetorical device for undermining an argument. If it's well-constructed, then the individual
steps will each look plausible, though they actually represent successive continuum fallacies, or subtle straw-man variants on what

was actually proposed. The end result will be absurd or, to the arguer's mind anyway, highly undesirable.

Begging the Question

This term has a specific meaning in the jargon of critical thinking, which is separate from its casual use as "an argument that raises
an obvious question." Formally, an argument begs the question if it is made valid by accepting the conclusion as an implicit
assumption: X, therefore X. Theological arguments sometimes beg the question; consider this argument—

http://rationalwiki.org/wiki/Begging_the question):

The order and magnificence of the world is evidence of God's Creation. Therefore, God exists.

The first statement is only true if you assume that God exists to have created the "order and magnificence of the world"; so, the

argument is simply "God exists because God exists."

Appeal to Novelty

This is also called "argumentum ad novitatem" and says that something that's newer is better just because of its novelty. It's
common to see in discussions of which technology is "better," particularly in vendor marketing material: our product is newer than
the competitor's product, which means it must be better (This fallacy underpins the completely rewritten from the ground up—

http://blog.securemacprogramming.com/2013/04/on-rewriting-your-application/ software product marketing position).

It doesn't take more than a few seconds of thought to construct questions that circumvent ad novitatem fallacies: just think about
what would actually make one of the options a better choice. If you need relational, table-based storage, then a new NoSQL

database would be worse than an RDBMS, despite being newer, for example.

Appeal to the Person

http://rationalwiki.org/wiki/Begging_the_question
http://blog.securemacprogramming.com/2013/04/on-rewriting-your-application/

More commonly known by its Latin name, argumentum ad hominem, this fallacy takes the following form:
Psays X. Pis [an idiot, a communist, a fascist, smelly, or some other undesirable property]. Therefore, not X.

Leaving aside interpersonal arguments, it's common to see ad hominem arguments deployed in software architecture justifications.

"We're not using that, because it's from [Google, Apple, Microsoft, Apache, and so on]" is the tech-industry version.

Is there any substance underlying this position? "We're not using that, because it's from Apple and Apple don't offer the support

terms we need" could be a good argument. "We're not using that, because it's from Apple and I don't like them" might not be.

Further Reading on Arguments

This has been a brief overview of the critical analysis of arguments, telling you first why I think it's important, then giving a little
information about what's involved. Many more eloquent writers than I have bent themselves to this task, so there are good

resources to recommend for exploring this topic further.

Rational Wiki—http://rationalwiki.org/wiki/Main Page is mainly a website for debunking pseudoscience, crank claims, and

biased presentation of the news. It has a comprehensive section on logic, argument, and fallacies. Less Wrong—

http://lesswrong.com has a similar scope, and finally, the Skeptics Stack Exchange—http:/skeptics.stackexchange.com Q&A site

features community-scored arguments in support or refutation of a wide variety of positions on different topics. (Refutation means
constructing an argument against a presented point of view; repudiation means to deny the truth of an opposing argument without
justification. However, both words are commonly used to mean repudiation, and depending on the historical meanings of words

this is itself a form of equivocation—nhttp://en.wikipedia.org/wiki/Etymological fallacy.)

Debates and Programmers

Having just concluded the previous section with a footnote on the dangers of the etymological fallacy, it's time for another "there's
a specific meaning to this word" section. While debating is commonly taken to mean two or more people expressing different
views on the same topic, debates usually have rules dictating the forms in which arguments are presented and either a way of

choosing a "winner" or of reaching a consensus view on the topic.

A specific example of a debating system with rules (which also has the benefit that I'm familiar with it) is the Oxford-style debate.
The debate's topic is defined by a motion, in the form "this house moves to [X]." The audience votes on whether they are for or
against the motion (or they can abstain). Two speakers, or teams of speakers, then present arguments, one in favor of and one in

opposition of the motion. Unlike essay-style arguments, rhetoric and appeal to emotion are important parts of the presentations.

After the two presentations, a moderator directs a question-and-answer session with questions asked by the audience. After this,
speakers give short closing presentations, then the audience votes again. The debate is "won" by the side that swings the vote in its
favor (so, if 5% of the audience opposed the motion before the debate and 7% opposed it afterward, the opposition could win

despite the majority either abstaining or being for the motion).

The skills practiced in a competitive debate are of course mainly the construction of persuasive arguments, with the interesting
twist that you could be required to debate the position you don't agree with. That's not easy, but it does lead to a deep exploration

of the topic and questioning the reasons that you disagree with the assigned position.

As explored in The Leprechauns of Software Engineering—https://leanpub.com/leprechauns, a lot of programming practice is

based on folk knowledge (or common sense) that turns out to have a shaky evidential basis. Now, we know from research in

human-computer interaction that a satisficient—http://www.interaction-design.org/encyclopedia/satisficing.html! solution—one

http://rationalwiki.org/wiki/Main_Page
http://lesswrong.com/
http://skeptics.stackexchange.com/
http://en.wikipedia.org/wiki/Etymological_fallacy
https://leanpub.com/leprechauns
http://www.interaction-design.org/encyclopedia/satisficing.html

that isn't optimal but is "good enough" to get by—allows us to get our work done. Isn't it worth questioning these satisficing

approaches to building software, and trying to find optimal approaches instead?

Debates would be good vehicles for such questioning, because of the equal weight given to supporting and countering a motion.
Someone would be responsible for identifying problems or weaknesses in the folk knowledge and presenting a compelling
argument to knock it down. As a gedankenexperiment, could you construct an argument opposing the motion "this house moves to

make version control mandatory—http://www.neverworkintheory.org/?p=457 on all software projects"?

Software as Essays

Remember, in Chapter 8, Documentation, that I said code only tells you what the software is doing; it's hard to use it to interpret
how it's doing it and impossible to discover why without some supporting material. You also have to think about who is doing the
interpreting; understanding the written word, executable, or otherwise, is a subjective process that depends on the skills and

experiences of the reader.

You could imagine an interpretation in the form of an appeal to satisfaction: who was the author writing for, and how does the
work achieve the aim of satisfying those people? What themes was the author exploring, and how does the work achieve the goal
of conveying those themes? These questions were, until the modern rise of literary theory, keyways in which literary criticism

analyzed texts.

Let's take these ideas and apply them to programming. We find that we ask of our programmers not "can you please write readable
code?" but "can you consider what the themes and audience of this code are, and write in a way that promotes the themes among
members of that audience?" The themes are the problems you're trying to solve, and the constraints on solving them. The audience
is, well, it's the audience; it's the collection of people who will subsequently have to read and understand the code. This group can
be considered to be somewhat exclusive; just as there's no point writing code for features you don't need, there's no point writing it

for an audience who won't read it.

We also find that we can no longer ask the objective-sounding question "did this coder write good code?" Nor can we ask, "is this
code readable?" Instead, we ask "how does this code convey its themes to its audience?" The mark of readable code is not merely
how the code is structured; it's how the code is interpreted by the reader. It's whether the code convinces the reader of the author's

implicit argument, "this is what the code should do."

In conclusion, then, a sound approach to writing readable code requires authors and readers to meet in the middle. Authors must
decide who will read the code, and how to convey the important information to those readers. Readers must analyze the code in

terms of how it satisfies this goal of conveyance, not whether they enjoyed the indentation strategy or dislike dots in principle.

Source code is not software written in a human-readable notation. It's an essay, written in executable notation. The argument is
that the code as presented is the solution to its problem. But the code must both solve this problem and justify the solution with

coherent and rational explanations.

http://www.neverworkintheory.org/?p=457

Chapter 12

Business

Introduction

This chapter is a bit like the Roman god, Janus. Janus was the gatekeeper of heaven and had two faces. One of Janus' faces looked
forward and the other backward; his name survives in the month January — looking forward to the new year and backward to the

year that has passed.

This chapter similarly has two faces: one looks outward, from the perspective of a developer to the business that this person finds
themselves interacting with; the other looks inward, from the perspective of the business to the developer. To keep things exciting,

the narrative changes between these positions more than once.

"But I'm self-employed," I hear some of you saying. You still engage in business activities. You might have to justify your work to

your client rather than your manager, but the concepts remain the same.

Even if you're a junior developer with plenty of levels of management above you, it still pays to understand the business you're in
and how your work fits into the company's goals. Reasons for this begin with the cynical: you'll probably be expected to take a
"bigger picture" or strategic view of your work to progress up the pay scale. But it's also going to be helpful; if you know what the

business pressures are, you can understand why management is coming up with the suggestions and rules that they are.

If you are a junior programmer, this is likely to be the biggest change that helps your career progression (and, unfortunately, was
one I learned the hard way). If all you see is the code, then all you see in management decisions is people getting in the way of
writing code. They actually have different pressures, different inputs, and different experiences, so it's unsurprising that those
people have come up with different priorities. Understanding that is the first step towards empathizing with their position and

becoming a more valuable member of the team.

Evaluate Risks Dispassionately

On any project, there are things that could go wrong. Are you being realistic about them? What are the things that save gone
wrong on projects you've worked on before? Did you consider the risk of those going wrong this time around? Did you think

about how you might control the things that led to them going wrong?

According to some researchers in the field of disaster response, there are five considerations in risk estimation, leading to five

different ways to get risk management wrong:
o Incorrect evaluation of probability (usually presented as optimism bias — the false belief that nothing can go wrong)
o Incorrect evaluation of impact (again, usually assuming, optimistically, that the damage won't be too great)

o Statistical neglect (ignoring existing real data in forecasting future outcomes, usually in favor of folklore or other

questionable heuristics)
o Solution neglect (not considering all options for risk reduction, thus failing to identify the optimal solution)

o External risk neglect, in which you fail to consider factors outside the direct scope of the project that could nonetheless have

an impact

Project Risks

Reminiscence of my experience making—and then failing to meet—estimates leads me to believe that ignoring risks leads to
unmet schedule expectations more often than underestimating the time required to do the work. In other words, "oh I thought this
would take 3 days but it took me 5" does happen, but less frequently than "oh I thought this would take 3 days and it did but I was
taken off the project for 2 days by this other thing."

Techniques such as the velocity factor—https://resources.collab.net/agile-101/agile-scrum-velocity and evidence-based

scheduling—http://www.joelonsoftware.com/items/2007/10/26.html) try to account for both of these impacts by comparing

estimated completion time with actuals and providing a "fudge factor" by which to multiply subsequent estimates.

Assuming that both scheduling failures and external interruptions follow a Poisson distribution, that fudge factor should be
roughly correct (given infinite prior data as input, which might be tricky to arrange). But then if that assumption's valid, you could

just build a Poisson model (such as, as Spolsky suggests in the above link, a Monte Carlo simulation) to guess how the project will

go.

Business Risks

At time of writing, the world of the Twitter client author has just been changed by updates to Twitter's Developer Rules of the

Road—https:/developer.twitter.com/en/developer-terms/agreement-and-policy.html. The company is limiting the number of client

tokens any app can have before discussing their case with Twitter. They're also strongly discouraging (as they have done before)

the standard "Twitter client" product category, suggesting that developers avoid developing that sort of product.

It's clear that, for a Twitter client app, Twitter is a single point of failure. Indeed, at a technical level, the service still occasionally
suffers from short outages. But it's also a single point of failure at the business level—if they don't want to support what you want
to do, there's little chance of it happening on their platform. It's not like you can point to how much you've paid them and would

continue to pay them; the platform is free to developers and users alike.

Are there any companies or platforms that could similarly pull the rug out from under your business? What's the likelihood of that
happening, and what will you do either to avoid or to react to it? What competitors do you have, and how does their behavior
affect your plans? What patents might your work infringe on? And, in these days of cloud computing, how important is the San

Andreas Fault or an Atlantic hurricane to your business?

Operational Risks

Operational risks are defined as risks arising from the potential for an organization's internal processes to fail. Perhaps your data
recovery plan isn't resilient to losing your main office: that might be an operational risk. A salesperson failing to store a customer's

information in the CRM, leading to a missed follow-up call and therefore a lost sales opportunity, is also an operational risk.

Of course, some level of operational risk is acceptable. Internal processes do not generate any profit, so gold-plating them means
sinking a lot of cost in return for smaller losses rather than greater income. This is, in my experience, the ultimate end for utility
and commodity companies, where getting something wrong is a bigger danger than any external factors. Internal processes will

ossify as operational risks are removed, pushing costs up as reduced prices squeeze the margins from the other side.

Bad management decisions can also be classed as operational risks, as they represent internal processes of a sort.

Other External Risks

https://resources.collab.net/agile-101/agile-scrum-velocity
http://www.joelonsoftware.com/items/2007/10/26.html
https://developer.twitter.com/en/developer-terms/agreement-and-policy.html

Are there regulatory risks to your business? Many software companies, particularly those in social networks and mobile apps, are

starting to find that California's Online Privacy Protection Act—http://www.pcworld.com/article/2018966/california-sues-delta-

airlines-over-app-privacy-policy.html is relevant to their work, even though they aren't necessarily based in California (Apple and

Google, their exclusive distributors, are based in California).

Which rules or laws could change that would affect what your company does? Are those changes likely to happen? How would

you have to modify what you do to take the new regulations into account, and are you prepared for that?

Is your pricing correct? If you reduced your price, you would increase unit sales; if you increased your price, you would increase
revenue per sale. Which is the best route to take? Is your current price optimal? Michael Jurewitz, then of Black Pixel, wrote a

series of detailed posts on this topic, using one particular model of software pricing:

o http:/jury.me/blog/2013/3/3 1/understanding-app-store-pricing-part- 1

o http:/jury.me/blog/2013/3/31/understanding-app-store-pricing-part-2

o http://jury.me/blog/2013/3/31/understanding-app-store-pricing-part-3

o http://jury.me/blog/2013/3/31/understanding-app-store-pricing-part-4

o http:/jury.me/blog/2013/4/1/understanding-app-store-pricing-part-5-pricing-kaleidoscope

Career Risks

That thing you're doing now. Yes, that thing. Eww, no, not that thing; the other thing. Will you still be doing it in 10 years?
Here's a hint: the answer's probably "no." Not definitely no, but probably no. Here's what I was doing in 2002:

o Learning condensed matter physics and particle physics

o Waiting for the success of desktop Linux

o Teaching myself Objective-C programming

o Coding in Perl and Pascal

Of those, it's only really Objective-C that's at all relevant to what I do now; maybe I pull Perl out once a year or less. (Of course,
many people are still waiting for desktop Linux, so maybe I just quit too easily.) So, of the things you're doing now, which will

still be around in 10 years? Which will be recognizably the same as they currently are?

And what are you doing about that? Of course, education is part of the solution; there's Chapter 10, Learning, in this book. But
this section's about dispassionately evaluating risks, and that's important too: put aside what you want to be doing in 10 years'
time. Sure, you could focus on writing i0S apps in Objective-C in 2022, just as you could be focused on writing Mac Carbon

software or Palm Treo apps in 2012.

Will what you're doing now still be important then? Will it have been replaced by something else? If so, will it be from the same
vendor? Even if it still exists, will there still be enough money in it for you to support yourself? And if the answers are no: what

will you do before it happens?

Dealing with Risks

http://www.pcworld.com/article/2018966/california-sues-delta-airlines-over-app-privacy-policy.html
http://www.pcworld.com/article/2018966/california-sues-delta-airlines-over-app-privacy-policy.html
http://jury.me/blog/2013/3/31/understanding-app-store-pricing-part-1
http://jury.me/blog/2013/3/31/understanding-app-store-pricing-part-2
http://jury.me/blog/2013/3/31/understanding-app-store-pricing-part-3
http://jury.me/blog/2013/3/31/understanding-app-store-pricing-part-4
http://jury.me/blog/2013/4/1/understanding-app-store-pricing-part-5-pricing-kaleidoscope

It's possible to get paralyzed by indecision: should we proceed before we have understood and controlled @/l the risks that could be

faced by the company? That mentality won't be very profitable; essentially, profit can be seen as a return on taking risks.

You can decide what risks are important by evaluating their likely costs. Some people do this in a currency unit (that is, dollars it'll
cost to recover from this happening times the probability of it happening in a given time period); others do it in abstract units such
as high/medium/low likelihood and impact. Either way, the outcome is a list of risks ranked by importance, and it's easy to choose

a low watermark, below which you just accept any risks.
Acceptance (or "sucking it up") is a very cheap way to deal with a risk. Other ways include:

o Withdrawal: Remove any likelihood and impact of a risky event occurring by refusing to participate in the risky activity.
Withdrawing from the activity certainly mitigates any risk very reliably, but it also means no possibility of gaining the

reward associated with participation.

o Transference: You can opt to transfer the risk to another party, usually for a fee: this basically means taking out insurance.
This doesn't affect the probability that our risky event will come to pass but means that someone else is liable for the

damages.

o Countermeasures: Finding some technical or process approach to reduce the risk. This means, of course, one or more of
limiting its likelihood or the expected damage. But think about deploying these countermeasures: you've now made your
business or your application a bit more complex. Have you introduced new risks? Have you increased the potential damage
from some risks by reducing others? And, of course, is your countermeasure cost-effective? You don't want to spend $1,000
to save $100.

Personal Experience

Being mainly experienced in writing iOS apps, Apple is of course a single point of failure in my work. If they change the
platform in ways I can't adapt to, I'll be out of luck: but I don't think that's very likely. They've shown (and said at their

developer conferences) that they plan to iterate on their current platform for the foreseeable future.

On the other hand, they can and do reject applications that are inconsistent with their submission guidelines. My approach
here has been twofold: firstly, to use the process countermeasure of planning apps that aren't obviously inconsistent with the
guidelines. Secondly, transference: I don't sell any of the software I make myself, but sell development services (Whether as
an employee, consultant, or contractor) to people who themselves take on the risks associated with getting the products to

market.

Find Out What You Need to Know, And How You Can Know It

True story: I thought about opening this segment with the Donald Rumsfeld "there are the known knowns" quote. It didn't take
long to find that he wasn't the first person to say that: here's Ibn Yamin, taken from the Wikipedia entry for the Rumsfeld speech—

http://en.wikipedia.org/wiki/There are known_ knowns:

One who knows and knows that he knows... His horse of wisdom will reach the skies.
One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.

One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!

http://en.wikipedia.org/wiki/There_are_known_knowns

The thing is that, had I not looked this up, I could've confidently attributed that idea to Rumsfeld. "Aha," thinks I, "I've shown an
example of thinking I know what I'm doing when I really don't. This is classic Dunning-Kruger Effect—

http:/rationalwiki.org/wiki/Dunning-Kruger_effect."

Then, of course, ready to find and cite their Ig Nobel-winning paper, I spied the Darwin quote at the linked rationalwiki page:
Ignorance more frequently begets confidence than does knowledge
In each of these cases, armed with an idea of what I wanted to say, it only took one web search to find:

o A claim (that I could verify) that the idea was earlier than I imagined; which also served as...

o ...areminder that I don't know everything about what I'm writing.

It's really that easy to go from "thinking you know what you're talking about" to "realizing you don't know very much." That
means it's probably best to assume that you don't know very much; particularly, if you're facing a new challenge you haven't dealt

with before.

The way I like to help along this realization when I'm planning is to spend about 5 minutes with an outline tool such as
OmniOutliner or iThoughts HD, just writing down questions that are relevant to the problem at hand. Even that small amount of

work gives me a plan for later research, and the humility needed to follow it up.

What You Discover May Not Be to Your Liking

Sometimes, you'll look at the results of the research you've done and realize that things don't look promising.

Perhaps there aren't as many customers for your product as you first assumed, development is going to be harder, or you've found
a competing product you didn't know about before. Perhaps the task you estimated would take 2 days is going to take longer than a

week.

You need to decide what you're going to do about that. The worst way to do this is by ignoring the problem: you're relying on luck

or on faith to get you through. You're cleverer than that; you can think of a plan to overcome the problem.

Personal Experience

One of the first software projects I worked on had a team of three developers, none of whom had much experience with the

technology we were using, and two of whom (myself included) didn't really have much experience of anything.

As we progressed with the project, we found that it was taking us longer than we planned to deliver each build and that the builds
were very buggy. We convinced ourselves that we could make up for it in the next build each time, even though this would mean
coming in under schedule (something we hadn't demonstrated we could do), and at sufficient quality (ditto), and finding time to

fix all the existing bugs.

Eventually, our manager had to stop us and point out that for every day of new work we were doing, we were adding 3 days of

bugfix work. In other words, the project would never be finished if we didn't change what we were doing.

Contrast that with a project I worked on very recently. Looking at the plan, it was clear that some parts of the software would put
significant computational load on the target hardware, and there was a real risk that the full functionality couldn't be delivered

because it wouldn't run at an acceptable speed.

http://rationalwiki.org/wiki/Dunning-Kruger_effect

I therefore wrote these parts of the application first, leaving the standard data-handling parts until later. Sure enough, within 3
weeks, we'd found that there were observable performance problems and we couldn't continue until we'd found a way to address

them.

It worked out that this pushed the schedule out by over a week — in other words, the project was delayed. But because we'd been
open about this being a potential problem, had identified it, and addressed it as early as possible, this impact could be handled and

didn't cause any great friction.

Other books have covered this ground; a good place to go for an alternative discussion is the pivot or persevere section in Chapter

8, The Lean Startup by Eric Ries—nhttp://theleanstartup.com/book.

How to Interview A Programmer?

I've been on both sides of job interviews for technical positions. I've seen both success and failure (on both sides: my own success
rate is currently at around 2/3, where I count a job that I left after 2 months as a failure). This isn't the definitive guide to running
an interview, or to being interviewed, but it's a good guide to what interviewers should be looking for. As a result, it's also a good

guide to what interviewees can assume interviewers are looking for. How meta!

Bear the Goal in Mind

The goal of an interview is to find out—often in only an hour or so—whether you could work with the person you're talking to
daily without one of the two of you going insane. Some people phrase this as whether you could spend 8 hours trapped in an

airport with just the interviewee to talk to. Imagine that, but 5 days a week for the next 2 years.

Find out enough about their technical skills to decide whether they were lying on their CV. You don't need to probe them on the
depth of their skills beyond that; if you didn't think their CV expressed enough relevant experience for them to be good at the role,

you wouldn't have invited them in for an interview.

This focus on the interpersonal side is especially true of interviews for interns, graduates, and other positions where you don't
expect applicants to bring much experience to the table. In these cases, you can't rely on technical questions to carry the interview
—almost by definition, the best candidate will probably be unable to provide many answers. Rather than making candidates
uncomfortable by showing how much more you know than them, make them comfortable and find out whether they'll be good

people to work with.

The Interview's There for Both of You

When I was a fresh graduate, I assumed that the purpose of a job interview was to put on my best suit (My only suit, at the time)
and convince other people to let me work for them. I now know this not to be true, though I still encounter people who behave in
this way. | feel that either the real purpose of an interview is being kept secret or careers services don't think people need to be told

about it.

The real purpose of an interview is to find out whether you want to work for that company. Is the interviewer—who will most
likely be your colleague or supervisor—someone you'd want to work with? Is the job actually what was advertised? Does it still
seem interesting? Do they mention all sorts of extra responsibilities that weren't in the advert? Are the people you're talking to
enthusiastic about the company? Where is the business going over the time you envisage being there, and beyond? Do you like

that direction? Will you get the freedom and/or supervision that you need?

http://theleanstartup.com/book

If you treat the interview as an advert for your ability to fit in with the hirer's needs, then they'll end up with someone who doesn't

actually work as they claimed in the interview, and you'll end up with a job you don't know much about.

What If You Could Avoid Hypothetical Questions?

Whichever side of the interview you're on, avoid questions that investigate what would happen if some conjectural situation came

to pass. The answer is always the same.

Q: What would you do if you had a tight deadline?

A: Whatever the perfect employee would do.

Q: What would you do if a colleague came to you needing help?

A: Whatever the perfect employee would do.

Or, from the other position:

Q: What would you do if Google moved into this business?

A: Whatever the perfect company would do.

Q: What would you do if your main competitor suddenly introduced a huge killer feature?
A: Whatever the perfect company would do.

You will not find out anything useful by asking these questions. You'll discover how the person opposite you pictures the land of
milk and honey; this may be interesting if you're into armchair psychology but is ultimately not going to tell you what would

actually happen in such situations.

Instead, try to discover what did happen when those situations occurred.

QO: What did you do the last time you had a tight deadline?

A: 1 shouted at my colleagues, told my manager everything was fine, and quit work the day before the build was due.
Q: How did the company react when Google brought out a similar product?

A: The executive team cashed in their stock options. Then they closed R&D to focus on our core business.

Admittedly, these answers are not as pleasant as the first ones. But they're more specific, more indicative of real behavior, and

therefore of what would likely happen should these situations ever arise again. Ultimately, these are better things to discover.

Don't Try to Prove the Other Person Is Stupid

If you've ever been in the Q&A period at the end of a conference talk, you know that it attracts a certain type of person. There'll
always be a question that goes—though this wording is changed to make it sound like a question—"1 know more about this than
you." This is poisonous to the atmosphere of the gathering: the asker looks rude, the answerer is wrong-footed, and the audience

learns nothing from the interaction — apart from maybe to avoid working with the person who asked the question.

Now consider what happens if you're in an interview and manage to teach the other people in the room not to work with you.

You'll potentially miss out on either a good job or a good candidate, depending on which side of the desk you're sitting.

It's fine—nay, required—that different people on a team think and know different things. If you have two people on a team who
both bring exactly the same knowledge and opinions, one of them is redundant. This was told to me by a former manager of mine.

Needless to say, I disagreed in order to remain employable.

You may know something the other person in the interview doesn't, but you shouldn't crow about it. Instead, you should discover
what the other person does when faced with a lack of information. There will be more on this topic in the section on working with

business partners.

Personal Experience

My first job out of university included, among other things, managing a heterogeneous Unix network. When I started in that job, 1
asked my manager, John, for feedback about the interview (you should always do this, whether or not you were offered the job).

The interview was a setup that's turned out to be quite common in my experience: I sit on one side of a desk with a few people (the
hiring manager, an HR person, and a technical expert) across the way. A "novel" feature was a UNLX workstation sat between us,

which had two monitors and two keyboards.

Apparently, the one feature of my interview that stuck in the panel's mind was when [was asked a question that I didn't know the
answer to. None of the other candidates knew either, I don't remember the exact question, but it had something to do with getting

a list ordered by time of all of the hard links to a particular file on a filesystem.

When I said I didn't know how to do it, the technical guy could've easily rushed to demonstrate how much better at UNLX he was
than me, but he didn't. He, like the other interviewers, did nothing. While I mumbled something [was thinking about and sweated

into my shirt collar, I pulled the stunt that made my interview memorable and helped me to get the job.

I typed man 1s into the Terminal. The interviewers could see that I typed man 1s into the terminal, because they had a monitor
on the workstation too. They could see that I didn't know what I was doing. They could also see that I wanted to know what I was

doing, and I knew how to attack this problem.

The interview moved on before I solved the problem, but the interviewers discovered what they wanted because they didn't stop to

point out how clever they were.

Be Transparent and Honest with Your Business Partners

I don't just mean "business partners" as people with whom you entered into business, or even other companies with whom you
have a partnership arrangement. I mean everybody you work with in order to get the project completed: you should treat all of
these people as peers, whose help you need, and who need your help in order to deliver a quality product to your customers. If you

want their respect, honesty, and help you need to be respectful, honest, and helpful to them.

Currently, this sounds like the sort of hackneyed non-lesson in working with others that has remained unchanged for the last few

thousand years: "do as you would be done by." But bear with me; there's more science to it than that.

Have you ever described someone, or heard someone described, as "clueless"? They "just don't get it"? You've probably

experienced the correspondence effect—http://en.wikipedia.org/wiki/Fundamental attribution_error, a well-studied effect in

social psychology. If you make a suboptimal decision, it's because of the deadline pressure, compromises to incorporate other
people's requirements, and other local problems. If someone else makes a suboptimal decision, it's because they're an idiot.
Interestingly, they believe that their mistakes are due to the situation they find themselves in, and that your mistakes come about

because you are the idiot.

http://en.wikipedia.org/wiki/Fundamental_attribution_error

Perhaps neither of you is the idiot. Perhaps both of you are trying to do your best at reconciling conflicting needs and pressures.
Perhaps your opinions on what to do next differ because you have different information about the problem, not because one of you

is a genius and the other a moron.

That's why transparency is key. If you proclaim "we should do this" or even "we wil/ do this" with no supporting information, you
leave the other people in the conversation free to conclude why you think that — free to get it wrong. Alternatively, you could say
"here's the problem as I see it, this is what we want to get out of solving it, and here is the solution." Now your colleagues and
partners are left in no doubt as to why you believe in the approach you present, and you've set a precedent for how they should
present their views if they still disagree. The conversation can focus on the problems facing the project, not the imbeciles around
the table.

An Aside On Persuasion

Framing an argument in this way is a well-known rhetorical technique. First, people identify themselves as facing the problem you
describe, so that when you describe the benefits of a solution, your audience agrees that it would help. When you finally present
your proposed solution, people already know that they want it. Nancy Duarte's talk at TEDxEast—

https://www.duarte.com/presentation-skills-resources/nancys-talk-from-tedxeast-you-can-change-the-world/ goes into more depth

on this theme.

Of course, people may still disagree with your conclusions and the reasons you reached them. Listen to their arguments. Ask why
(if they didn't already tell you). Remember that this is software development, not a high school debating club: you "win" by

creating a great product that satisfies a business problem, not by ensuring that your argument is accepted over all others.

Choose Appropriate Technology

As the last sentence of the previous section says, the goal here is to satisfy a business need. If that business need isn't aligned with
your current favorite platform or shiny toy, you have to decide which you want to pursue. The best choice for the business — and,
therefore, for your role in it as a developer — is the one that achieves the goal with least effort and fewest difficulties or

compromises.

Of course, "effort" can include training — a short (and usually fixed length) effort needed to get developers and others up to speed
with some new technology. But then "effort" also includes maintenance and support — ongoing costs that build up over the lifetime
of the product in the field. This is sometimes ignored when estimating a project's cost, as the project ends on the ship date, so
maintenance is somebody else's problem. That's a false economy though; the maintenance cost of a project is very much the

problem of the project team.

Aside: Opportunity Cost

No cost analysis is complete without a measure of "opportunity cost." The opportunity cost of an activity can be thought of as the

answer to the question "what will we miss out on doing if we're doing this thing instead?"

So, the actual cost of an activity includes the direct costs (equipment, staff, and so on required) and the opportunity costs; there

may also be other negative aspects that are considered "costs."”

On the flip side, the benefit includes more than simply the money made from a sale. It can include "defended income"—existing
customers who do not switch to a competitor as a result of doing the work you're planning. Other benefits can include improved

reputation or market position.

https://www.duarte.com/presentation-skills-resources/nancys-talk-from-tedxeast-you-can-change-the-world/

This has all been a bit Economics 101, but for people who work with exact numbers all day, it's important to remember that a full

cost/benefit analysis does not simply involve subtracting money out from money in.

Factoring opportunity costs into maintenance work causes multiple hits. There's the direct cost of fixing the problems; there's the
opportunity cost to your development team, as you must take on less new project work while you're fixing the maintenance
problems; and then there's the opportunity cost to the customers, who lose time working around the problems and deploying the
maintenance fixes. I'll stop short of quoting sow much more expensive maintenance fixes are; /'ve made that mistake before—

http://blog.securemacprogramming.com/2012/09/an-apology-to-readers-of-test-driven-ios-development/.

Another way to look at this technology choice consideration is a quote I heard from Jonathan "Wolf" Rentzsch, though he

certainly isn't the original source:
All code you write is a liability, not an asset.

There's a good discussion of the quote at Eric Lee's blog on MSDN—nhttp://blogs.msdn.com/b/elee/archive/2009/03/11/source-

code-is-a-liability-not-an-asset.aspx. If your favorite platform would mean writing more code to solve the problem than using

some other, then selecting that platform would mean taking on a greater liability. We have a phrase to describe the problem of
doing work to solve a problem that's already been solved, one that we use mainly when other people are guilty of this: Not

Invented Here.

All of this means that, to some extent, you have to put your personal preferences aside when designing a software system and

choosing the technology that will go into it. But that isn't a bad thing; it's a chance to learn even more.

Manipulation and Inspiration

In the previous section, I touched on rhetoric and persuasion. As in any collaborative activity, these are great tools when used

judiciously and dangerous weapons at all other times.

My opinions on business issues are all based on a philosophy of playing a long game. That's why I argue for choosing the right
technology even if that means retraining or going slower in the short term for other reasons. If the end result is a better product,

you'll have a more satisfied team, happier customers, and more repeat business and referrals.

In relation to persuasion, the long game is epitomized by inspiring people to follow your path, not manipulating them to do what
you want. What's the difference? To me, inspiration is about showing people that what you propose is the best option.

Manipulation is pejorative, convincing people to follow some course despite the shortcomings to them or to others.

Manipulation often means running the risk of getting "caught out," as your mark discovers the true reason behind your ruse or the
pitfalls it entails. You then end up having to hide or play down these issues, until your manipulative example becomes degenerate

with or even more expensive than doing the right thing.

Worked Example: An App Store Sale

Let's look at this distinction between manipulation and inspiration by examining the case of selling an app in one of the mobile

app stores.

The usual approach to selling apps is to charge a one-off cost on initial purchase, as is the case with boxed software. This could
suggest a manipulative approach to sales; we want to get someone as far as buying the app, but don't care what they do after that.
Indeed, updates to the software are usually distributed for free, so perhaps we'd prefer it if they never used the software after

purchase.

http://blog.duarte.com/2011/03/nancy%E2%80%99s-talk-from-tedxeast-you-can-change-the-world/
http://blogs.msdn.com/b/elee/archive/2009/03/11/source-code-is-a-liability-not-an-asset.aspx
http://blogs.msdn.com/b/elee/archive/2009/03/11/source-code-is-a-liability-not-an-asset.aspx

The manipulative take, then, would be to put minimal effort into building the product, and more work into describing its features
and benefits on the product page. People will see our effusive description of the app and will be all too happy to pay for the
download. By the time they've realized that the product page is a lie and the app isn't as good as we claimed, we won't care

because we've got their money.

One big problem with the above approach is that it only works for a short while. In the longer term, customers will talk to each
other. They'll read the reviews of the app in the store and on other websites, and they'll discover that the app isn't all that we

claim. We're going to have to convince the reviewers to write good things about the app.

We could try paying them off ("astroturfing” — the practice of creating fake grass-roots support) but that doesn't scale well;

besides, it still leaves the possibility that unwanted "honest" reviews outside our control will be published.

Another way to get good reviews is to create a good product. If people genuinely enjoy using the thing, then they'll gladly tell
other people how good it is. Now our victims"Wpotential customers will see the reviews left by other happy customers and will

want a piece of the action. Success! We've tricked people into buying our app, and all we had to do was... make a great app.

It's not just in interactions with customers that this tension between short- and long-term benefits can arise — in fact, it will happen
anywhere and everywhere in life. It's good to keep your trade-off thermostat somewhere towards the long-term end of the scale,

because (hopefully!) your career will long outlast your current project.

It's with this in mind that I come back to the subject of this section: favoring inspiration over manipulation. You don't want your
reputation as you go into your next challenge to be based on the sour taste people experience as they remember working with you

on this one.

But you do need people to see the project and its challenges from your perspective, and you do need the help of other people to get
everything done. This is where the inspiration comes in. Inspiration should really be about stimulating other people, not about
cajoling them. If what you want to do is beneficial for everyone involved, it shouldn't take any special tricks to make other people

want to do it too. The details on how to do that are best left to Chapter 13, Teamwork.

You Don't Need to Be A Founder to Be A Programmer

Thanks to Rob Rhyne—http:/twitter.com/capttaco and Saul Mora—http:/twitter.com/casademora for inspiring this section in
their NSBrief interview.

As software developers, we live in a great time to start your own business. One person, working with a few freelancers and using
some online services, can get an app out in a few months with very little outlay. Success stories abound of programmers who've

quit working for "the man" to "go indie" — in other words, to start their own software company.

An aside on confirmation bias

One reason that there are so many success stories from small business founders is that the failures don't get invited to give talks.

In fact, some people claim that 9 out of 10 new businesses fail within a year—hiip.://www.gardnerbusiness.com/failures.htm, a

number corroborated by my accountant. Because that's not news, and not interesting, it doesn't get reported, so, we only hear

about the successes. There's more on biases and fallacies in Chapter 11, Critical Analysis.

But it's not for everyone. Some people (myself included) prefer to let other people find the customers and do the marketing, and to
get on with writing the software. It's not just the greater focus of salaried development that can be appealing. A well-run company
can offer a more structured environment, with clearly defined goals and rewards. Some people thrive on the chaos of running a

business, while others want observable progress in becoming a better programmer.

http://twitter.com/capttaco
http://twitter.com/casademora
http://www.gardnerbusiness.com/failures.htm

There are plenty of jobs around, in many countries, for people who want to write software for a company. Even through recent
recessions, people were still hiring programmers. The opportunities—and rewards—are there for those who don't want to start

their own business.

My story

I've been doing this development thing for a while, now. I've worked for large and small companies, been self-employed as a
contractor, and run my own consultancy business. Both of these independent ventures were "successful,” in that I made enough

money to support my lifestyle and got both new and repeat business. Once 1'd tasted the indie life, why did I go back?

1t's at least partially for the reason of structure explained above. I like knowing what's expected of me and working to improve
myself against that standard. I found that running my own business, the goals (at least in the first year, which is as far as I got on
each occasion) are too short-term: either find a customer or complete their project. I just didn't know what I was doing well

enough to set and work towards long-term goals.

Another reason is that I'm too gregarious. I really enjoy working with other people — both of the indie jobs I tried involved a lot of
working at home or telecommuting, which didn't provide the human contact I needed. It's possible when you're self-employed to

hire other people or rent office space in a shared environment to solve this problem. I couldn't afford to do that in my city.

So, if you want to start your own business, that's cool — you should give it a go. Good luck! But if you don't, or if you try it and it

isn't for you, there's no problem with that. Many people (again, I include myself here) are happy being career programmers.

Chapter 13

Teamwork

Introduction

Unless I've completely failed at writing convincingly for the last hundred-and-something pages, you should have the impression
that software is a social activity. We work with other people to produce software, and the value system that we share as makers of
software shapes the software we make. We give (or sell) our software to other people to use, and that shapes the way they see
themselves and work with each other. Software can reinforce existing bonds or create new ones, but it can also destroy or reduce the
importance of existing connections. Professionally speaking, the bonds our software has influence over that are closest to our

experiences when writing code are with the team that we interact with every day.

This chapter discusses these bonds: how we work as a team, how our colleagues work with us, and the benefits and tensions that

can occur.

Focus versus Interruption

We've heard the clarion call. We've heard how programmers need to get in the zone—

http://www.joelonsoftware.com/articles/fog0000000068.html in order to get their best work done, and that it's hard to enter the

zone. We've heard that a simple phone call or chat from a friend is all it takes to exit the zone, but that getting back in can take 15
minutes. So why doesn't everyone work from home? If having other humans around is so poisonous to productivity, why does any

business even bother with the capital expenditure of an office?

Because, while a good person works well on their own, two people working together can be awesome. Let me describe the day I had
prior to writing this paragraph. I didn't really get much done in the morning, because a colleague asked me about memory leaks in

the code he was working on and I helped him with that. This solved his problem much faster than he would've solved it on his own.

So, I only really got about an hour of time "in the zone" before lunch, and it didn't go so well. I made a bit of progress on my
problem, but then hit a problem where a simple change to add new behavior broke the stuff that already existed. I couldn't work out
why that was. Anyway, it was then lunchtime, so we went to get a sandwich and I described the problem to my colleague. Before
we got to the sandwich shop, we'd already agreed what the problem was and what I should do to solve it, which worked first time

when I got back to my desk.

The point of this anecdote is that, had we both been left "in the zone," we could undoubtedly have worked faster: up to the point
where we could not individually solve our problems. We would've more efficiently failed at our jobs. As it was, having the
possibility to work together let us pool our knowledge, even though it meant each of us getting taken out of "the zone" at some

point.

I've worked in various environments. In my first job, I had an office to myself—albeit one where one of the walls was the lift shaft
and the whole shebang was underground. (In fact, this office had previously been the bunk room for on-site Digital Equipment
Corporation engineers maintaining the computer that came a few before the systems I was responsible for. Either they were very
heavy sleepers, or they turned the lifts off during the night shifts.) Since then, I've worked in cubicle spaces, open-plan spaces, and
in my house. I know what it's like to be "in the zone": but I also know what it's like to be banging your head up against a wall when
you can't solve a problem and have no one to ask about it. I know what it's like to work for 10 hours straight on a really interesting

problem, and what it's like to be told after 5 minutes that the company already has a solution you could use. I know what it's like

http://www.joelonsoftware.com/articles/fog0000000068.html

when the guitars over in the corner are beckoning, and what it's like to feed off the energy of a handful of other engrossed and

motivated people sat nearby.

The fact is that "the zone" is not always relevant, as the case example above shows. You may want to enter "the zone" to do some
research from books or the internet, but then it'd probably be helpful to get some input from other people to compare their
experiences and opinions with what you learned. "The zone" is helpful while you're coding, but only if you know or can work out

what you're supposed to be doing. If the problem is at all difficult, talking it over with other people will be more helpful.

A final point here: humans are "an intensely social species"—https://thoughteconomics.com/ and the best environments for entering

"the zone"—working from home or in a secluded area—are the worst for having shared social experiences with our colleagues.
Some of us are lucky enough to be able to fill our social requirements with interactions among friends or family outside of work,
but for more extroverted people who prize continual social contact, working in solitude can have a negative impact on mental
health.

So, working alone in conditions conducive to solitary work is sometimes useful but can be emotionally unstimulating. Working with
other people can be rewarding and beneficial, but also distracting and frustrating. How do we balance these two aspects? An
approach that's commonly employed is the "headphones rule." Headphones on: I'm concentrating. Headphones off: feel free to talk
to me. A variant of the headphones rule is the duck of productivity—https://www.youtube.com/watch?
v=oBw_cKdnUgw&index=11&list=PLKMpKKmHd2SvY9DLg_Lozb06M2MLcNImz&t=38s).

In my experience, enforcing the headphones or duck of productivity rule is difficult: people on both sides of the headphones feel it's
rude to ignore friends and colleagues regardless of headphone status. Changing the social rules of the whole team can be hard. One

group I worked in came up with a much simpler rule that's easier to work with: if I'm in the office, then I'm here to talk to everyone

else and get some collaboration done. If I'm anywhere else (the canteen, a meeting room, at home, a coffee shop nearby), then I'm

getting work done on my own.

Where the balance needs to be drawn varies based on the individual; therefore, the optimum approach for a team to take depends on
the people who comprise the team. More gregarious people will want to spend more time working with others, so having a policy

where people who want to work uninterrupted stay at home will isolate them.

One of the more general zone-related techniques I've come across is based on very lightweight time tracking. This calls for a
kitchen timer (or an app — or, if you're in a hotel and enjoy annoying receptionists, wake-up calls) to be set for 25 minutes. During
those 25 minutes, focus on your problem. If someone wants help, ask if you can get back to them after the time's up. At the end of
those 25 minutes, take a short break, answer any interruptions that came up, and plan to enter the next 25 minutes. If you absolutely
need to work on something else, it's suggested that you abort (rather than pause) the work period and start again when the

opportunity arises.

An important observation regarding this technique is that it's OK to not be in a timed stretch if you're taking a break or helping
someone else: both important parts of your working day. You might only manage one or two 25-minute bursts on some days, but at

least you get to control the trade-off between "the zone" and all the other things you have to do.

I've only used this technique for a short while, but I've found that it does help to improve focus. Initially, I was surprised by how
long a 25-minute stretch can seem to last! As I write that, it seems absurd, but it shows how much I was allowing distractions such

as social networks to get in the way of my focus.

Remaining focused even for as long as 25 minutes needs support from both your environment (the subject of the next section) and
your tools. One iPad app that I worked on could only be tested on tethered iPads, as a third-party library was not supplied for the
simulator. It took about 30 seconds to "Build and Run" or to launch any unit tests — plenty of time for me to be distracted by email
or Twitter. I also found that my ability to stay disciplined tails off after lunch; I still get work done, but I'm much more likely to

carry on working into the breaks or stop in the middle of a stretch.

https://thoughteconomics.com/
https://www.youtube.com/watch?v=oBw_cKdnUgw&index=11&list=PLKMpKKmHd2SvY9DLg_Lozb06M2MLcNImz&t=38s
https://www.youtube.com/watch?v=oBw_cKdnUgw&index=11&list=PLKMpKKmHd2SvY9DLg_Lozb06M2MLcNImz&t=38s

Working Environment

Your interactions with your colleagues are a small portion of the collection of experiences and inputs that make up your entire
working environment. Unsurprisingly, the best environment is no less personal than the best trade-off between solitary and team
working; the best I can do here is describe what's worked for me and some of the things you could consider to reflect on your own

environment.

Firstly, if you're working somewhere that expects a "standard" desk layout with no decoration or personalization, that's just not a
very healthy environment at all. People like to decorate their environments to express their individuality—

https://www.colorado.edu/cmci/academics/communication. A homogeneous workspace may be good for ensuring the facilities

manager's magnolia paint does not get stained but does not allow employees any creative freedom. Constraining the creativity of

our software makers is not good for making creative software.

The 1999 edition of Peopleware—https://books.google.co.uk/books/about/Peopleware.html?id=cAIPAAAAMAAJ&redir_esc=y

has a lot to say about working conditions. I arrived into working life too late to see the full-height cubicle farms they complain

about (though I have, of course, seen Tron and Office Space), but other aspects of their discussion of office setups are still relevant.

A couple of places I've worked in have had those huge Voice-over-IP desk phones with all the buttons, redirect options, switches,
and so-on that the conn in Star Trek first introduced to human-machine interaction. An early discovery of mine was that no one
knows how to operate those phones, which means that you have plausible deniability for any of your actions, should you need it.
Find the manual online and locate the one mute/divert button you need, then work peacefully. When someone complains that they

were trying to phone you:
1. Apologize for having hit the wrong button when you were trying to divert calls to your mobile phone.
2. Suggest that email or some other asynchronous communication is a better way to reach you.

Two important features of work environments for me are bookshelves and whiteboards. Even when I work from home, I have a
whiteboard and marker to hand for quick diagramming — quite a small one that I can hold up to the Skype camera if I need to. Not
having a whiteboard can have a deleterious effect on the rest of the workspace. One office I worked in only had whiteboards in the
meeting rooms, so we grabbed dry markers and drew diagrams all over the (cheap, white, fibreboard) bookshelves. We soon found
that the ink was really hard to clean off; but having ruined the bookshelves there was no reason to look back. Diagrams quickly

became palimpsests as new "art" was drawn over the older stuff that couldn't be erased.

I mentioned earlier that my first office was underground. A literature review of the effects of natural light on building occupants—

http://indoorenvironment.org/effects-of-natural-light-on-building-occupants/ found that people feel better and, as a result, perform

better in environments with natural lighting. This result doesn't just apply to workers; students and even shoppers are affected. As
DeMarco and Lister observe, there's no excuse for building a work environment where some people don't have access to a window.

People who think it's impossible to give everyone a window need to look at the way hotels are designed.

Prioritizing Work

Most people who make software will have more than one thing they are working on at any time. The choice could be between
different tasks on one project, tasks on different projects, and other work such as preparing presentations, responding to emails, and

SO on.

Some people like to capture all of these tasks in a big review system such as GTD (http:/www.davidco.com/) so that, at any time,

they can review the outstanding tasks in their current context and choose one to work on next. A much simpler approach I was

https://www.colorado.edu/cmci/academics/communication
https://books.google.co.uk/books/about/Peopleware.html?id=eA9PAAAAMAAJ&redir_esc=y
http://indoorenvironment.org/effects-of-natural-light-on-building-occupants/
http://www.davidco.com/

taught by the human resources department at Sophes (http://www.sophos.com), who got it from President Eisenhower, was to draw

four quadrants indicating the urgency and importance of tasks.

Urgency

Importance

L

Figure 13.1: The Eisenhower Matrix

Now think about the tasks that are currently pending and put them into these quadrants. Anything in the top-right quadrant is both
important and urgent, so probably needs to be done soon. Anything that's important but not urgent doesn't need to be done yet, and

anything that's urgent but not important doesn't need to be done at all — or at least not by you.

A large amount of a programmer's work is prioritized by other agents anyway, which means that, much of the time, it's clear what
you should be working on next. Later in this chapter, we'll examine some software development methodologies designed to allow
the whole team to decide what they're working on. (In one of my rare rages against the establishment, I'm going to call them
"patterns for software project management" rather than "methodologies." The latter word is used—alongside "paradigm"—in so
many contexts as to be ambiguous. | saw Barbara Liskov give a talk reflecting on her work on data types where she used
"methodology" to mean an overall software design approach: so object-oriented, structured, procedural, and so on are all

"methodologies" at the same time that Waterfall, Scrum, and so on are.)

Tell Experts What Needs to Be Done

In other words, don't tell experts what to do. The more cynical of them will do what you tell them. That doesn't sound so bad, until
you realize that they are the expert and are doing it out of spite. Neal Stephenson expanded upon this idea in his novel

Cryptonomicon—https://books.google.co.uk/books/about/Cryptonomicon.html?id=L w-00wTgBy8C&redir_esc=y:

The extreme formality with which he addresses these officers carries an important subtext: your problem, sir, is deciding what you
want me to do, and my problem, sir, is doing it. My gung-ho posture says that once you give the order I'm not going to bother you
with any of the details—and your half of the bargain is you had better stay on your side of the line, sir, and not bother me with any
of the chickenshit politics that you have to deal with for a living. The implied responsibility placed upon the officer's shoulders by
the subordinate's unhesitating willingness to follow orders is a withering burden to any officer with half a brain, and Shaftoe has
more than once seen seasoned noncoms reduce green lieutenants to quivering blobs simply by standing before them and agreeing,

cheerfully, to carry out their orders.

And it's not just fictional military figures who talk about this. General George S. Patton:

http://www.sophos.com/
https://books.google.co.uk/books/about/Cryptonomicon.html?id=Lw-00wTgBy8C&redir_esc=y

Never tell people how to do things. Tell them what to do, and they will surprise you with their ingenuity.

There are two sides to this. One is that the other person probably knows more about what you're asking than you do: OK, so you're a
great programmer, but when it comes to graphic design, user interaction, documentation, translation, marketing, or any of the other
things that go into building software, there are likely to be people out there who can handle it better than you. Your best option is to
find one of them, outline the goal, and leave them to it.

The other issue to be aware of is that leaving someone else to it is a /ot easier than taking control, because there's a lot less work
involved. Once you get into the officer-marine relationship described in Cryptonomicon, you have to give every order because it
becomes an expected part of the interaction that you will give every order. It's a lot quicker, and you get better results, to just say

"this is the problem that needs solving" and let someone who's good at solving that problem assume responsibility.

So, the central trick to delegation is relinquishing control of the delegated task. That means the fundamental thing to learn is trust;
not so much trusting the other person not to have messed it up but trusting yourself to have found the person who won't mess it up

and to have communicated the problem to them clearly.

Working with Junior Programmers

Less-experienced programmers are just a special case of experts — they're experts-in-training. The above rules about dealing with

experts apply, so let them know what needs doing, make sure you did that clearly, and let them get on with it.

The clarification aspect is the part that needs the most examination. Remembering Chapter 10, Learning, you'll find that different
people learn in different ways. Some approach a new problem via experimentation, some by reading about concepts. Diagrams help
a lot of learners. In my experience working as the senior developer on a team, it's important not to accidentally invert the expert-
customer relationship, because then you get back into a micromanagement situation. Let the junior ask questions; indeed, encourage

them to ask questions, but act as an oracle and not as a lecturer.

Having made yourself available while they're working, have a little retrospective when they've done the task. Try to avoid "I
wouldn't have done it like that"—that's just an offensive statement of the obvious. No matter how experienced or skilled the other
person is, you would've done it differently. The key question is not whether they've done your work but whether they've done good
work. Find the things that work and call them out. Ask why the junior did them like that and reinforce those decisions. Find the
things that don't work, ask why they did them like that, and discuss the issues. Focus on the issues; don't talk about the quality of the
work (or the integrity of the worker). Your role as a teacher is to help the learner to build a generalized mental model of what they

want to do.

A little aside on the subject of different ways of learning: I once found that body language gives you some great clues about how
people think about their problems. I was working with a junior programmer and felt that I was not communicating very well. This

programmer would solve the problems I posed, but often with some details missed out or not in the way I (thought 1) had described.

Then, in one discussion, it struck me. When I'm describing a software system, I describe it spatially: my hands make boxes and
circle shapes and I move these shapes around as messages or data flowing through the software. When the other programmer
described them, his hands stayed flat and moved from top to bottom as he explained the steps. I was drawing diagrams, he was
listening for lists! I switched to explaining problems by listing the features and found that details stopped disappearing between the
two of us.

Working with Managers

There are two (almost opposing) interpretations of the word "manager" as it applies to the work context. The conservative view is of

the manager as the controlling force in charge of a group of people. This manager's position is seen as ensuring that their reports do

the work expected by the business, and by extension, don't do anything unexpected.

The liberal view is the manager as leader or enabler. This manager's role is to ensure that their reports have the resources they need

to get their work done, free from distractions that the rest of the business (or its customers and suppliers, and so on) might impose.

In this section, I'm going to leave the political models aside and discuss the general idea of working with the person you have to
report to. If you're a self-employed programmer, you don't have an explicit manager. You may still find, from time to time, that
certain people fill similar roles; I know some independent developers who contract "business mentors" to act in a coaching and
advisory capacity. In some cases, the social structure in which you work as a consultant or contractor may see you reporting to a

specific person in the business you're supplying to. "Manager" will do as shorthand for all of these people.

Take a look back over what I've said about working with experts: you should tell them what needs doing, not zow to do it. You
should expect your manager to know and understand this, and in return, of course, you should act like the professional expert that
you are. Really, the manager's task is as an adaptor. In one direction, they're taking the business goals and strategies and adapting
them into factics — into things that can be done now to improve the strategic position. In the other direction, they're taking your

problems and concerns and adapting them into things the business can do to alleviate or remove those problems.

The best managers I've worked with seem like they could do the second part of that context-free. It's about coaching; not about
taking on the hard parts of your work. By countering every question, we ask with a question of their own, they force us to
introspect, to diagnose our own problems, to suggest, and to evaluate our own solutions. They don't remove our responsibility to

tackle the problems ourselves, even if they do accept the responsibility (and the authority) for implementing the solutions at times.

That appearance of context-free management may not be entirely realistic. In a questionnaire completed by about 80 developers,

Jeremy Leipzig—http://arxiv.org/abs/1303.2646v1 discovered that developers felt their relationship with their manager was easier if

the manager came from a technical, rather than a business, background.

My hypothesis is that this is a communication issue, and thus has an effect on the first part of management (adapting the business's
needs into things we need to do). Every group has its specific language, its argot of jargon and slang terms. Computing is certainly
no stranger to that (I imagine an Ubuntu forum and Mumsnet would react very differently to discussions about "zombie children,"
for example). It can be hard to see when you're immersed in it, but this language creates a social inequality: the in-crowd who
understand the jargon and the out-crowd who don't. If your manager is not part of the in-crowd, it's possible that you both struggle

for terms in which to explain things and identify them on some level as "not one of us."

In Chapter 9, Requirements Engineering, | identified how the use of a ubiquitous language can help everyone to understand how the
software you're writing solves the problems that the customers need it to. Now, we find that a ubiquitous language has political
benefits, too: it makes you all part of the same team. (One company I worked in managed to create silos of employees by devising a
project code name. Often, these are fun little names chosen to both describe the whole project in shorthand, and to give everyone a
sense of belonging, like having a team name. In this instance, the company didn't provide a central glossary of what all the projects
were named and what they did. This reinforced the feeling of "us and them" inside the company: you either were a member of the
elite group who knew what "Merlot" meant or you were not.) Consider it your responsibility to find some linguistic common
ground with your manager, even if you have a computer science background and they have an MBA. You'll find it easier to

remember that you're both on the same team that way.

A final thought on working with managers that's really about professional ethics: over the last few years, I've found that managers
don't like hearing bad news. It's a whole lot worse though if they don't hear the bad news and discover it for themselves, later. Being
honest and alerting people to things going wrong early leads to some awkward conversations, but ultimately, you'll be respected
more than if you pretend everything's going well up until the moment of disaster. I shouldn't have let myself get into a position of

experience on this one, but I have, so you don't have to.

http://arxiv.org/abs/1303.2646v1

Patterns of Software Project Management

Over the last five decades, there have been numerous different ways to run a software project proposed and practiced. Over the last
decade, I've been exposed to a few of them. Which will work for you depends on the team you're working with and the expectations

of the people you're working for.

Waterfall

My first experience of a "death march" was on a waterfall project. The product manager wrote a document explaining the
requirements of the new product. These were prioritized using 1-3 (with 1 being "we'll probably finish these in time," and 2-3 taking
up space on the page). Then, the lead developer wrote a functional specification, explaining what each of the controls in the product

would be and how each of them would fulfil a requirement from the first document.

Given the functional specification, the lead developer (not necessarily the same one as mentioned previously) would estimate how
long it'd take to build, and the lead tester would estimate how long it'd take to test. Then, the ship date was the day after that work
ended! Having built and tested the thing, documentation could write a manual, translation could translate the whole lot, then it'd be
beta tested, and finally, marketing could write a new website and it would all get launched with beer and nibbles in the office

atrium.

I should stress that the death march was not a result of following the waterfall process. The death march was the result of an
inexperienced team, poor communication and collaboration, and an unclear vision of what the business or the customers thought the

product should be.

The waterfall process did make it harder to react to these problems, though. Limited visibility in the usual running of the project
meant that most people involved had an idealized view of how the project should be progressing and treated that as reality. They
didn't have a view of how the project was progressing because that feedback was neither requested nor provided: come back when
you're ready to enter the testing phase. The expensive change-control procedure, involving sign-off from senior managers who
weren't involved with the usual running of the project, made it hard or even undesirable to react to eleventh-hour feedback.

Unfortunately, the twelfth hour resembles the twelfth much more than it does the first.

In Test-Driven iOS Development section in Chapter 5, Coding Practices, 1 tried to paint the waterfall as a historical quirk that
doesn't hold any relevance for modern developers. This isn't really true. If you're doing contract or agency work, the customer will

often have a mental model that goes something like:
1. I tell you what app I want.
2. You build the app.

3. Maybe we have a phone call every week, so I know you're still alive. If you send me a prototype, I might suggest moving a

button or changing a word.
4. You put the app on the store.
5. I retire to a cocaine-soaked mountain complex.

You can dispel that myth. In fact, you probably should: if you get more feedback from your client, they'll feel more engaged, and
enjoy the process more. They'll also end up with the product they wanted, not the one they asked for months ago. And if you ask for

feedback from the client, they'll give you that feedback instead of the stuff about the buttons and words.

Scrum

I've seen multiple projects run in multiple ways all named "Scrum," which is why I call these things patterns rather than rules. Most

have had the following in common:
o Short iteration lengths with work planned only for the upcoming iteration
o Frequent feedback to the whole team on how work is progressing on the current iteration
o Acceptance or rejection of the previous iteration's work at the end
o Some form of retrospective on what to learn from the previous iteration

None of these things is in itself contentious and looking at the problems identified with my waterfall project above, we can see the
benefit of frequent feedback, measurement of quality, and particularly of learning from our mistakes as quickly as possible. But the

implementation often leaves people scratching their heads or updating their CVs.

Take the "frequent feedback" point as an example. This is often embodied in the stand-up meeting. Does everyone actually stand
up? If someone's late, do we wait or proceed without them? How long is it going to take (my record being an hour and a half, in a
team with 16 developers who obviously only took 5 minutes each)? Do I actually need to know everything that comes up in the
meeting? Why are you asking every day whether I've finished the thing I told you would take a week? (Actually, this one's my fault.
I don't think that estimates are worth anything if they represent more than half a day of work. If I think something's going to take
more than that, then I probably don't know what's involved and should find out before you start relying on my guesses.) Are minutes

taken? If I want clarification on something do I ask now or after we've disbanded?

The thing is, despite these differences in approach, things tend to actually happen. Stuff gets done and you can see it getting done
because you've got a feel for what everyone is doing. I tend to think of Scrum as the closest thing you'll get to Agile software

development—nhttp:/www.agilemanifesto.org/ in an organization that still wants close managerial oversight, though in most

situations I've encountered it doesn't quite match the principles—http://www.agilemanifesto.org/principles.html.

Lean Software

Lean software isn't really a way to run a software project, so much as a description of a principle of organizing software projects

with some Japanese words thrown in to help sell the MBA textbooks. Indeed, it's one of the 12 agile principles linked above:
Simplicity--the art of maximizing the amount of work not done--is essential.

That's really all that Lean is (plus the textbooks). Focus on doing the valuable thing (solving the customer's problem) and not on

doing the invaluable things. Work out what you're doing that doesn't have value and stop doing it.

Interestingly, and probably because we enjoy doing it, we sometimes forget that writing software doesn't have value. Yes, having
software that has been written does, but actually writing it costs money. Maybe we should be focusing more on reusing software or
even on finding the thing that already exists that our customers could be using instead of a new bespoke product. The community of

people promoting the lean idea have created five principles—nhttp://www.lean.org/WhatsLean/Principles.cfm:

o Identify value to the customer

o Eliminate any steps in the business chain that aren't adding value

o Create a smooth flow of the remaining steps, ending in delivering value to the customer
o Each step should pull its valuable input as needed from the upstream step

o Iterate over the above

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/principles.html
http://www.lean.org/WhatsLean/Principles.cfm

So far, so reasonable, although I know that I (along with a lot of you, I imagine) think it sounds a bit too businessy-MBAey. Therein
lies the danger. This collection of values is actually at an appropriate level of abstraction, and it's us who are thinking too much
about what we currently do, rather than whether it's useful. If you try to recast the above in terms of writing code, you get

something like:
o Identify that writing code is valuable
o Eliminate the meetings and other things that stop us writing code
o Write a load of automation stuff so that code is automatically delivered to the next people in the chain

o Manage a Kanban board—https:/en.wikipedia.org/wiki/Kanban_board

o Iterate over the above

This is useful for improving the efficiency of writing code, which will almost certainly make developers happier and incrementally
improve processes. But it doesn't help identify whether the most valuable thing to do is to write code; in fact, it actively hinders
that.

Anchoring Bias and Project Management

A last thought on running a software project for this chapter. The previous section explained that if we think about a process too
much in terms of what we already do, it becomes harder to question whether #hat is worth doing at all. It turns out there are other

problems associated with thinking about things — not that I'm suggesting anyone should stop.

There's a factor in decision-making called anchoring—nhttp://www.skepdic.com/anchoring.html, in which people tend to fixate on a

piece of information presented early in making later judgements. Anchoring is the reason infomercials ask you "How much would
you pay for this? $100?" before telling you the price is $10. You probably don't expect the price to be $100, but it's given you an

anchor that will set your further expectations.

Related to this is the social anchoring—http:/dictionary-psychology.com/index.php?

a=term&d=Dictionary+oftpsychology&t=Social+anchoring factor. People are inclined to vote the same way as the herd. There's a

great demonstration of this, devised by Solomon Asch (1951)—http://www.simplypsychology.org/asch-conformity.html. Eight

"participants" are asked which of three lines is the longest; the first seven are stooges who all choose the wrong answer. Asch found

that only 25% of the (actual) participants never conformed to the group and gave the wrong answer.

This is a genuine question, because I don't think it's been researched: what effect do these anchoring biases have on software
projects, and what can we do to correct for them? Does giving people wireframes or other prototypes anchor their expectations and
make them desire products that are like the prototypes? Do games like Planning Poker inadvertently anchor estimates to the number
thought of by the first person to reveal? Might we accidentally bias estimates by discussing unrelated numbers in meetings ("I hope

we can get this done in 45 minutes... Now, how many story points is this feature")?

Bias bias

An unfortunate phenomenon is the Bias Blind Spot—nhttps://dataspace.princeton.edu/jspui/handle/88435/dsp013j333232r, in which

we more readily report biases in another people's reasoning than in our own. A problem with drawing attention to cognitive biases
such as the anchoring bias above is that, being aware of the bias, we're now in a position to identify other people relying on the bias,
and to believe that we are immune from it because we know about it. This is not true. Being aware of it will not stop us from
applying the bias: analyzing, detecting, and correcting for the bias in our own work and decisions will do that. There is Chapter 11,

Critical Analysis, in this book.

https://en.wikipedia.org/wiki/Kanban_board
http://www.skepdic.com/anchoring.html
http://dictionary-psychology.com/index.php?a=term&d=Dictionary+of+psychology&t=Social+anchoring
http://dictionary-psychology.com/index.php?a=term&d=Dictionary+of+psychology&t=Social+anchoring
http://www.simplypsychology.org/asch-conformity.html
https://dataspace.princeton.edu/jspui/handle/88435/dsp013j333232r

Negotiation

You need to negotiate with other people. OK, if you're selling a consumer app, you probably don't negotiate with your customers:
you set a price and they either pay it or go elsewhere. But that doesn't mean negotiation is limited to people dealing with terrorists
and kidnappers. You might want to convince the rest of your team that it's worth rewriting some component, or that a feature you
want to build should go into the product. You might want to ask your manager for more responsibility. Perhaps you want a vendor to
fix a bug in their software, or a supplier to give you a preferential discount. In any of these cases, you'll need to negotiate. (L looked
up the etymology of "negotiate" in the Oxford American Dictionary. Apparently, it comes from the Latin "otium" meaning leisure,
s0 "neg-otium" is "not leisure" or, in other words, business. That's got nothing to do with this book but it's really interesting, so I

wanted to share it.)

A sure-fire way to lose at negotiation is to ignore the other person's position. So, you want time to rewrite that server component in
FluffyMochaGerbilScript, and your manager is saying no. Is that because your manager is a bozo who just doesn't get it? Are you

the only person who can see the world as it really is?

No. That's the fundamental attribution error again (refer Chapter 12, Business). It's a common enough problem, but if you find
yourself thinking that you're talking to an idiot, you're probably just talking to someone with different problems to solve. Perhaps
they're worried about a rewrite introducing regressions: what can you do to prove that won't happen? Maybe they know that the

company will be taking on some extra work soon, and the time you think you've got for the rewrite doesn't really exist.

The most reliable way to find out what the other person's concerns are is to ask, because the fundamental attribution error works
both ways. While you're thinking that they just don't get clean code or craftsmanship or this week's buzzword, they're thinking that
you don't get that this is a business that needs to make money and can't support the whims of a highly-strung developer. One of the
two (or more) of you will need to be the one to break the stalemate by sharing what they know and asking what the other person

knows. It could be you.

I find it's easy to get too emotional in the first discussion, particularly when it's a change to a project I've been working on for
months and exhaustion has set in. For me, the best thing to do is to take a break, think about how we could meet in the middle, and
come back to the discussion later. Just introspecting and wondering what the other person's position is goes some way to

reconciliation, but the empathy gap—nhttp:/en.wikipedia.org/wiki/Empathy_gap means that isn't foolproof. I'm likely to assume

that the other person is being rational, underestimating the importance of emotional factors in their decision. But wait, I stepped
back from the conversation because I was getting too emotional. It's likely that the other person is making decisions based on

visceral factors too.

Empathy

The previous section made it clear that successful negotiation relies largely on empathy: being able to see what's driving the people
you're talking to and identifying how to present your proposed solution in a way that addresses their concerns and satisfies their

needs and desires. Let's look in more depth at how that works.

The Effect of Mood on Collaboration

You can probably anecdotally describe the effect that your mood has on how you work with others. I know that when I get grumpy,
I value isolation and will bark at people who interrupt me, trying to avoid getting into conversations. This probably means I'm less
likely to listen to other opinions and to either contribute meaningfully to discussions or to learn how to do my own job better. I'd

rather do the wrong thing on my own than accept help when I'm in that mood.

http://en.wikipedia.org/wiki/Empathy_gap

In a column called "Mood"—http://cacm.acm.org/magazines/2012/12/157887-moods/fulltext in Communications of the ACM,

Peter J. Denning investigates the ways that mood can affect our interactions with each other, even transmitting mood socially
between members of a team. He notes that when everybody is positive, collaboration is easy; when everybody is negative, the

outcome is likely to be bad so it's best to avoid what will most likely become confrontational.

It's when people are in mixed moods that outcomes are hardest to predict. Will the negative person or people feed off the optimism

of others, or will they resent it? How can you best help to improve the mood of negative people?

There are some high-level patterns in the overall moods of groups. Bruce Tuckman described four stages of development in the

establishment of a team:

o Forming: The team does not exist yet; it is a collection of individuals. Each is seeking acceptance, so the team does not

tackle any big or divisive problems. People work independently for the most part.

o Storming: The individual preferences and opinions of each member of the team come into conflict. The team learns what the
differences and similarities between its members are, which it is willing to accept, and which cause problems. The group

begins to discover where it is willing to be led and how.

o Norming: Through a combination of agreements and compromises, the team decides how to resolve its conflicts, what its

goals are, and how it will work towards them.

o Performing: Having collectively agreed upon the team's norms, the members become more efficient at working within the

team framework.

You can often work out someone's mood by the language they use. An example from Denning's column involves asking team

members why they think a recent release of their product was poorly received. One person exhibits a sense of wonder and curiosity:

..I would love to interview our customers and find out what was behind their reactions. I am certain I will learn something that will

help improve our software.
Other shows signs of confusion and resentment:
1 also don't know what the heck is going on. But I do know those customers are jerks...

Language cues can provide information about what mood someone's in, which can inform your choice on how to engage with them.

Language and Introversion

Language also tells you about someone's personality. One scale along which psychologists often grade personalities is how
introverted or extroverted someone is. Introverts gain energy from being alone, finding interaction with other people tiring or

overwhelming. Extroverts gain energy from being with other people.

Introverts use more concrete phrases—http://www.bps-research-digest.blogspot.co.uk/2012/11/introverts-use-more-concrete-

language.html, and less abstraction, than extroverts. In describing photos of people interacting, introverts were more likely to stick
to facts ("the woman is pointing to the right, and has her mouth open"), whereas extroverts were more likely to infer reasons for

what the photos depicted ("the woman is angry and is shouting at the man").

Being able to detect features of someone's personality can go a long way toward empathizing with them, as you can start to predict
how they might react to situations or events. Language is a useful tool for this; and one it's easier to get people to engage with than a

psychometric test like the Myers-Briggs Type Indicators.

http://cacm.acm.org/magazines/2012/12/157887-moods/fulltext
http://www.bps-research-digest.blogspot.co.uk/2012/11/introverts-use-more-concrete-language.html
http://www.bps-research-digest.blogspot.co.uk/2012/11/introverts-use-more-concrete-language.html

Knowing What Level to Talk and To Listen At

So, extroverts are more likely to use abstract language than introverts, but there are other reasons people may discuss issues at

differing levels of abstraction. You need to bear these in mind too, to get the most out of interactions with your team.

What role does the person you're talking to have? If you're discussing a bug with a fellow coder, then the weird thing you saw
where the property was set on the view but then it didn't update because it was reset by a different thread is totally on topic. It's
likely to interest your colleague, they'll have relevant experience to bring to bear, and they'll want to learn what the problem was in

case they see a similar thing in the future.

If you're talking to the business development manager at your client's company, they may not be so interested. Of course, that's not
necessarily true... but it's likely. They're probably more interested in whether the bug has been fixed, when they'll receive the fix,

and whether the bug will impact anything else in the product.

As a courtesy to you, the business development manager probably isn't going to go into the intricacies of their contract with your
company and the gnarly clause about how your boss has to fax them a copy of the company's business insurance policy every year.
They expect the same courtesy in return. Similarly, your customer wants to hear about why they might want to buy your thing, not

about how you completely rewrote it in SuperFluffyAwesomeSquirrelNode.

Even in discussions with fellow developers, there are times when the details matter and times when they don't. As we've seen, your
colleague's mood can have an effect on their receptiveness: maybe don't go into a discussion about how much better your approach

to database retrieval is than theirs when they're feeling apathetic or resigned.

Situation has as much (or more) of a role to play than personality or emotion, too: if someone's in the exalted "Zone" working on a
complex problem, they probably don't want to listen to your opinions on the relative merits of the pre-increment and post-
increment operators, fascinating though they may be. (If you actually save opinions on the relative merits of the pre-

increment and post-increment operators and want to share them, please do send them to /dev/null.)

Shared Language and Shiny Buzzwords

Any social group has its argot — its special words and phrases that speed up communication between the cognoscenti. (Argot has
another meaning: the secret language used by groups to protect their conversations from eavesdropping. In this sense, cants and
rhyming slang/back slang are argots. We'll stick with the jargon sense for this book.) Think about what the word "tree" means; now

think about what it means in a computer science context. That meaning is part of the argot of computer scientists.

In a sense, jargon terms define group boundaries because they're exclusive. If you haven't learned the buzzwords in one context, you
aren't included in the conversation among people who have. So, while jargon facilitates conversation among those in the know, it

also keeps people who aren't in the know from understanding that conversation; it's a cause of inequality and division.

It's important to realize that, sometimes, subsectors, companies, or even teams within companies develop their own slang phrases
that are slightly divergent from even the slang used within their industry or sector. One company I worked at used "train" to
describe a collection of semi-independent projects that were all due to be released together, where other project managers might use

the word "program" instead.

My first few months working in the telecoms sector involved being bombarded with three letter acronyms (TLAs). When I asked
what they meant, people would usually expand the acronym... when I asked what they meant they'd look at me as if I'd wondered
just what these "phone" things we're selling are for. Immersed in the world where your argot is spoken, a new hire will quickly pick
up the lingo. A customer or supplier may not have the capacity or desire to do so, however, so may just be confused or misinformed

when you use them.

Confused or misinformed suppliers and customers should be avoided. Suppliers and customers (along with colleagues) should not
feel excluded either, but jargon use can have that effect. If you realize which parts of your language are slang developed in your

industry, field, or team, you can know when using them will help discussions and when it will hinder conversation.

Chapter 14
Ethics
Introduction

The movement of developers — neophytes and experienced alike — to the iPhone with the launch of its app store has been /ikened

to a gold rush—http://www.adweek.com/news/technology/inside-iphone-app-gold-rush-98856. Few people would hold the

California gold rush of 1849 up as a shining example of humans behaving with humanity, though.

Selfish drive for profit broke up existing communities: three-quarters of adult men in San Francisco left the city during the rush,
excited to find new deposits of gold to exploit. They even destroyed other communities, coming into conflict with the Native
Americans in the region as they dug up the land the indigenous people inhabited. Paranoid self-protection led to rule of the mob
and uncommonly harsh punishments for crimes of property: hanging was a common consequence for those thought to have stolen

gold from another.

So, is the gold rush an acceptable model for today's programmers? Are we free to seek the highest financial income, whatever the
cost to others — friends and strangers alike? Should we be every coder for themselves, or do we need to work together with fellow

programmers and non-programmers alike? Is mob rule acceptable or is there a code of conduct we should be expected to follow?

Examples of Ethical Codes

Plenty of professions have their codes of ethics (The discussion of whether programming is a "profession" will take place in the

next chapter). Indeed, the Online Ethics Center (http://www.onlineethics.org) has plenty of examples, case studies, and

discussions. Rather than trawl through those, I'll focus on a couple from the computing field.

The Association of Computing Machinery's code of ethics and professional conduct— http://www.acm.org/about/code-of-ethics

is a short document, comprising 24 ethical imperatives members are expected to follow: one of which is that membership of the

Association is contingent on abiding by the other imperatives.

The code is both technology and practice agnostic, as it should be written at the level of abstraction of an entire industry's career

lifetimes. Briefly, the four sections say:
o Respect other people and their property, do no harm, work to make humanity better

o Be up to date with what's going on in the profession, help others to stay up to date, and work to what the profession

currently believes to be the highest standards and best practices
o Ensure that others in and affected by your organization are protected by these same standards
o Abide by and promote the code

Unsurprisingly, the British Computer Society—http://www.bcs.org/category/6030 has very similar ethical principles. Though their

code is organized differently, it covers all the same points that the ACM's does.

I don't feel the need to add anything to either code; each sets out some principles that the organization aspires to and would like to
see in its members. Discussing whether something should be added or removed is a big topic, but let's leave these codes as they

are for now. The questions remaining are: how should we interpret these codes, and should we apply them?

http://www.adweek.com/news/technology/inside-iphone-app-gold-rush-98856
http://www.onlineethics.org/
http://www.acm.org/about/code-of-ethics
http://www.bcs.org/category/6030

Application of The Ethical Code

Abiding by some code of ethics is more expensive than ignoring it. The ACM code tells us to "Honor property rights including
copyrights and patent": obviously, it's cheaper to steal someone else's copyrighted work than to build an equivalent work.

Examples could be found for the other moral imperatives in the code.

Legal systems work, broadly speaking, by introducing a cost of non-compliance so that rational actors should also be abiding
actors. This is an example of removing an externality, discussed in Chapter 15, Philosophy, of this book. If stealing the

copyrighted work is going to cost the thief in legal fees, damages, and lost reputation, the other route becomes attractive.

For most of us making software, the legal framework we operate in doesn't directly apply to our actions. Laws exist covering data
protection, and certain fields are strongly regulated (principally, life-critical systems such as control software for medical devices).
For the most part, software makers are free to act as we please, subject to market forces. This is largely the result, ironically, of

groups including the ACM lobbying for self-regulation in the software sector. They want an ethical code but wouldn't like it if the

courts could enforce it.

Also, for the most part, software makers are not members of bodies such as the BCS (British Computer Society) so don't have
the threat of expulsion for failing to comply with the ethical code. And finally, it's not obvious that ethics or morality enter into the
hiring process either (though, once you're working for a company, their human resources department should be charged with
ensuring that the whole company acts according to that company's ethical principles). I have certainly never been asked in an
interview whether I've ever acted unethically. I've been asked what I know of Perl, and how I interact with other people on a team,

but never whether I've failed to respect the privacy of others.
So, where does the obligation to behave ethically come from, if it's going to introduce additional costs?

One answer is that there are costs associated with acting unethically, albeit not direct financial ones. Acting outside of one's

principles exerts an emotional cost, of which individuals can only pay so much.

This concept of emotional cost is already used in relation to network security policies. It's well understood that when users are
asked to comply with security policies, the tasks usually involve additional mental effort—nhttp://hal.archives-

ouvertes.fr/docs/00/69/18/18/PDF/Besnard-Arief-2004--Computer-security-impaired-legal-users.pdf beyond taking the easy, but

insecure, approach. If this mental cost gets too great, then users might decide not to pay it, taking the easier, non-compliant route.
This still has some mental effort in terms of the anguish involved in knowing that they are violating their employers' trust, and the
fear that they might get caught out. This anxiety could cause distractions in their other work or they could even leave their job

rather than work against their own principles.

There are, additionally, reputation costs to unethical actions, as suppliers or customers may choose not to do business with
companies or people they perceive to be unethical and may prefer to do business with those whose values align closely to their
own. As described above, this is not really an overt input into the way the software marketplace works; that doesn't mean it's not a

factor at all.

This reputation factor is a large input into the golden rule (here, supplied in Boehm's modified version): do unto others as you
would have them do unto you if you were like them. This can build into a reciprocal and valuable network of people and
organizations acting in support of their mutual values and interests. And that can make working ethically more efficient and easier

than the alternatives.

Ethical Ambiguities

http://hal.archives-ouvertes.fr/docs/00/69/18/18/PDF/Besnard-Arief-2004--Computer-security-impaired-legal-users.pdf
http://hal.archives-ouvertes.fr/docs/00/69/18/18/PDF/Besnard-Arief-2004--Computer-security-impaired-legal-users.pdf

It's always easier to model the world as a system of exclusive choices: this is good, that is bad; this is right, that is wrong; this is
fast, that is slow. Unfortunately, such a model can quickly be found to have too many limitations. Different ethical principles all-
too-readily come into conflict. Part of our responsibility as members of society is to identify and resolve these conflicts (after all,

if ethics were a simple application of rules, we would've got a computer to do it by now).

Let me provide an example from my own experience. | was offering advice to another programmer about applying and
interviewing for new jobs, when this person told me about an interview they had attended. They described feeling that the
interview had been discriminatory on the basis of candidates' ethnicities, which is clearly in breach of any professional ethics
system. Referring to the ACM's code, this breaks imperative 1.4: Be fair and take action not to discriminate.

Some people would react to this by suggesting that I "blow the whistle," calling out the company's discriminatory practices
publicly and moving, if their employees are members of a professional body, to have them black-balled by that association. Not so
fast, though! To do so would mean applying my own unfair standards: privileging one side of a story without hearing and
evaluating the other. It would also mean going public with the tale of the interview that I had been told in confidence, which

breaks the ethical imperatives to respect privacy and confidentiality (1.7 and 1.8 in ACM's code).

In the end, I decided to recommend to the person who'd told me about this that they should lodge a complaint about the interview,
and that [would support them in that. Regardless of whether you agree with that specific outcome, you can see that situations exist
in which there is no clear "ethical" way to behave. Having an ethical code that you are aware of, can describe (even if only to
yourself), and can relate to what you do is important. Looking to others for guidance and assimilating their advice is important.

Knowing the "one true way" to act is best left to Taoism.

In fact, there really is no one true way. Ethical imperatives are normative: they arise from the shared beliefs and values of the
people interacting together, defining actions they consider acceptable (appropriate behavior, if you will) and those they do not.
What's ethical now may not be considered so in the future, and vice versa. What's ethical to one group of people may not be

considered so to another group.

This change in ethical norms over time can be seen in the practice of psychology. After the post-WW2 war crimes trials disclosed
the cruel experiments carried out on prisoners by the Nazi regime, psychologists accepted the need for a professional set of ethics
and code of practice to govern their experiments. The first such rules were published as the Nuremberg Code—

https://history.nih.gov/research/downloads/nuremberg.pdf in 1949.

Notice that the code says nothing about child subjects (or "participants" as modern psychologists would say). Indeed, the question
of child participation has been answered in different ways in different countries and at different times. When Albert Bandura

conducted his famous Bobo doll experiment—http://www.simplypsychology.org/bobo-doll.html into childhood imitation of

aggression, the parents involved would've known that their children were involved in an experiment, but the children could not
have known. In modern experiments, it is likely that the children themselves would need to be made aware that they are

participating in an experiment. Indeed, even primate research—http:/digitaljournal.com/article/343702 can involve voluntary

participation — considerations not made when the Nuremberg Code was created.

Respecting Privacy

A problem that's been at the forefront of ethical debates in the software industry for at least the last couple of decades, and will
likely remain at the forefront for at least another decade, is the use or misuse of personal data. In a quest to drive adoption, many
software vendors have ended up distributing their software below cost and gaining revenue by collecting data about their users to

sell to advertisers and other aggregators.

https://history.nih.gov/research/downloads/nuremberg.pdf
http://www.simplypsychology.org/bobo-doll.html
http://digitaljournal.com/article/343702

This practice of selling user data could be seen as unethical, as it may break the imperative to honor the privacy of others. This is
especially true if the user did not give informed consent to sharing the data; if the user is a child who did not understand the

implications of sharing the data; or if the information gathered is more than the minimum required to support the sharing activity.

Because this is such a large and immediate problem that is continually being raised and discussed both in the tech press and the
corridors of power, I applied the privacy imperative to personal data sharing and came up with the "Don't Be a Dick" guide to data

privacy (Wil Wheaton deserves credit for popularizing the phrase "Don't be a dick," known in some circles as Wheaton's Law):
o The only things you are entitled to know are those things that the user told you.
o The only things you are entitled to share are those things that the user permitted you to share.
o The only entities with which you may share are those entities with which the user permitted you to share.
o The only reason for sharing a user's things is that the user wants to do something that requires the sharing of those things.

It's simple, which makes for a good user experience. It's explicit, which means culturally situated ideas of acceptable implicit

sharing do not muddy the issue.

It's also general. One problem I've seen with privacy discussions is that different people have specific ideas of what the absolutely
biggest privacy issue that must be solved now is. For many people, it's location; they don't like the idea that an organization
(public or private) can see where they are at any time. For others, it's unique identifiers that would allow an entity to form an
aggregate view of their data across multiple functions. For others still, it's conversations they have with their boss, mistress,

whistle-blower, or others.

Because the guide mentions none of these, it covers all of these — and more. Who knows what sensors and capabilities will exist in
future smartphone kits? They might use mesh networks that can accurately position users in a crowd with respect to other
members. They could include automatic person recognition to alert when your friends are nearby. A handset might include a blood
sugar monitor. The fact is that, by not stopping to cover any particular form of data, the above guideline covers all of these and any
others that I didn't think of.

There's one thing it doesn't address: just because a user wants to share something, should the app allow it? This is particularly a
question that makers of apps for children should ask themselves. However, children also deserve impartial guidance on what it is a
good or a bad idea to share with the innerwebs at large, and that should be baked into the app experience. "Please check with a

responsible adult before pressing this button" does not cut it: just don't give them the button.

Epilogue

Of course, the picture I drew of the gold rush at the beginning of the chapter was deliberately one-sided. As people realized that
they could only make tiny amounts of easily obtainable gold from single-person techniques such as panning, they started to work
together. This collaboration — with the new social structures and rules attendant — led to technological advances in hydraulic

mining, extracting both gold and useful minerals.

Chapter 15
Philosophy
Introduction

As the manuscript for this book came together, I realized that a lot of the content was based on a limited and naive philosophy of
software creation. I was outlining this philosophy as it applied to each chapter, then explaining what the various relevant tasks

were and how they fit into that philosophy. Here it is, written explicitly and separately from other considerations in the book:

Our role as people who make software is to "solve problems," and only incidentally to make software. Making software for its own
sake is at best a benign waste of time and money, or at worst detrimental to those exposed to it. Our leading considerations at all

times must be the people whose problems we are solving, and the problems themselves.

If this were the 1970s, you might call that new age claptrap. These days, you'd probably just think of it as the kind of nonsense you
get in those self-help books about becoming a better manager; perhaps I should've left software behind for management

consultancy by now. But it's only by agreeing on the philosophy of a discipline that we can decide what work represents a valuable
contribution. Consider how the philosophy of science has changed over the millennia (The discussion here is based on a talk given

by my first manager, John Ward, at Oxford University's Department of Physics.).

In ancient Greek civilization, any conclusion that you could construct a logical argument for could be accepted as scientific fact.
So, women had fewer teeth than men, and wood could combust because it was made of heavy earth and light fire, and the fire
wanted to escape to the heavens. These things were accepted as true because people thought about them and decided that they

were true.

Over the next few centuries, the face of science changed. Richard P. Feynman was likely paraphrasing the French philosopher-
priest Buridan when he expressed the belief that "the test of all knowledge is experiment"; a viewpoint that, by Feynman's time,
had already spent centuries working its way into society's philosophy of science. At the time of the foundation of the Royal
Society, if a respectable person presented evidence for something in the correct circles, then it was true: this is how we knew that
sea monsters existed, because gentlemen had sailed to the Americas and reported seeing them. If someone of repute had seen

something, then it must be there.

In the twentieth century, Karl Popper argued for a falsification philosophy of science: rather than looking for evidence that a
theory is true, accept it weakly and look for evidence that it is false. This is the approach that scientists take today. All of this is not
some grand history presented to show progress toward our current, enlightened state. The accepted philosophy of science could
change again at any time. The reason for presenting this anecdote is to show that what's considered good science, or bad science,
or worthwhile science, is situated within the prevailing philosophical view (in addition to other considerations, including ethics).
By analogy, if anyone wants to argue that there is such a thing as good programming practice, or bad practice, or worthwhile

practice, they must do it, whether explicitly or implicitly, with reference to a particular philosophy and system of values.

In this concluding chapter, I want to bring the whole book together by examining the role of and inputs into a holistic philosophy

of software construction.

Software as A Pursuit

Is making software (for money — we'll leave hobby aside) a profession? Is it a craft? Is it a science? An engineering discipline? An

art form? A social science?

It's easy to refute the idea of professional programmers. Professions are marked by an educational barrier to entry: you can't be a
self-taught lawyer or architect, for example. The education ensures that (prospective) practitioners are aware of the institutional
body of knowledge and code of ethics — things that are absent from the "profession" of programming. Certain organizations, such
as the Chartered Institute for IT—http://www.bcs.org/ and the Association for Computing Machinery—http://www.acm.org are

trying to cast it as such but represent a minority of practitioners.

We have professional-style conferences; these cater to a small minority of practitioners, frequently featuring sales rhetoric and
self-promotion alongside (or instead of) problem-solving workshops and technical presentations. There is no professional closure:
you cannot be disbarred from writing software if you disregard the ethics of doing so. The ethics of programming were discussed

in Chapter 14, Ethics, and were found to be largely absent.

A further difficulty with organizing software as a profession: as I described in the Chapter 10, Learning, the teaching of
programming is far too haphazard to represent the transference of a core body of knowledge. In recommending a curriculum for

university computing courses back in 1968, the ACM drew a thick line between academic computer science and computing as

practiced in the wild. Even in the latest version of the curriculum—nhttp://ai.stanford.edu/users/sahami/CS2013/, professional
standards and ethical implications are only a small part of the training a Computer Science course would offer. (At time of writing,
curriculum 13 was still in draft status.) People who complete CS degrees undoubtedly have good knowledge of the workings of a

computer, but one could argue that this is a necessary, though insufficient, input to be a novice programmer.

The extent to which software practitioners treat our work as a profession has, then, always been varied. It is also largely a la carte.
The practice of writing software is not a profession and would not survive professionalization over a short timescale. Almost
everyone who currently calls themselves a programmer would be excluded from the profession until they had taken some
appropriate training, unless there were some way to get "grandfathered" in, which would undermine the value of being a member
of a recognized profession. The sudden collapse in the availability of "licensed" programmers would either cripple businesses or
see them using existing, unlicensed practitioners legally or otherwise. Imagine, for example, that the BCS managed to secure
protected nomination for the profession in the UK. Would UK-based companies wait until their programmers were chartered
professionals before proceeding with their IT projects, or would they sack the now-underqualified employees and outsource their

work abroad?

Could programming, then, be an art form, or a craft or trade that combines artisanal capability with some technical knowledge? In
the book The Computer Boys Take Over, Nathan Ensmenger makes a compelling argument for this position. He observes that,
while there is a significant corpus of technical knowledge and computer science that can go into programming, many
programmers have only a partial understanding of this corpus. They augment their technical knowledge with self-taught patterns —
things that experience tells them have worked before and will work again. Any programmer or team of programmers builds up a

local domain of craft knowledge, with the result that the craft of programming varies from context to context.

Ensmenger also notices that the programmer is responsible for mediating "between the technological and social architectures of
the organization." He concludes that this combination of artisanal craft with scientific knowledge and social integration makes the
programmer not a professional, but a technician. He also observes that the rhetoric of professional programmers is one of fluid
boundaries: programmers will talk about their work as science, engineering, or art, depending on who is listening. Bear this in
mind throughout this discussion — both to appraise the various positions that are described and to analyze my own conclusions for

signs of Humpty-Dumptyism:

"When I use a word," Humpty Dumpty said in rather a scornful tone, 'it means just what I choose it to mean—neither more nor

less.’

The Software Craftsmanship movement—http://manifesto.softwarecraftsmanship.org/ uses language that's firmly rooted in

mediaeval trade schools. Adherents talk of apprenticeships and journeymen (and, to carry on an earlier reference, of shoes and

http://www.bcs.org/
http://www.acm.org/
http://ai.stanford.edu/users/sahami/CS2013/
http://manifesto.softwarecraftsmanship.org/

ships and sealing-wax; of cabbages and kings.), though parallels with the guilds of middle-age Europe (and the exclusivity they
practiced, on a par with professional institutes) tend not to be drawn. Focus is on community interaction, on learning from the

experiences of others and synthesizing a new approach to the craft by combining those experiences.

While it appeals to centuries of tradition, software craftsmanship is very clearly a direct response to and retreat from the
profession of "software engineering," or maybe from a straw man idea of it. The foreword to Pete McBreen's Sofiware

Craftsmanship asks:

Is software engineering appropriate for projects of less than 100 developer-years? Is the specialization inherent in software

engineering a good idea? Can software development even be expressed in engineering terms?

The answer, as far as McBreen is concerned, of course turns out to be "no"; apprenticeship, practice, and self-organized teams are
preferred here. Software engineering may be suitable for building space shuttle software, McBreen tells us, but fails the producer
of shrink-wrap commercial software or in-house line of business applications. Such applications need the personal touch, and a
good programmer would understand not only the technical details of software construction, but the artistry required to make a

bespoke piece.

What that doesn't address, though, is whether the software craftsmanship movement actually promotes software making as a craft,
or whether it's as much a straw man as the version of engineering discussed in software engineering. The image of the mediaeval
craft is as much one of exclusivity and division as that of the professional trade. Master craftsmen would be members of a guild
that controlled the practice of the craft (and the dissemination of its secret techniques) in a given region. Other than the guild
members, only the apprentices would be allowed to practice (and then only in the limited fashions enabled by their masters).
Anyone who had finished their apprenticeship would be booted out to become a "journeyman," taking odd jobs as they traveled to
find a town that wasn't already under guild control, where they could set up shop, or until they could submit a "masterpiece" and

become a member of the guild.

That members of the craftsmanship movement in software see this exclusivity as appealing is evident. The Software

Craftsmanship Manifesto—http://manifesto.softwarecraftsmanship.org makes this point in both explicit ways:

we have come to value [...] a community of professionals.
...and implicit ways:
we have come to value [...] well-crafted software.

The second example is quite subtle, but what is "well-crafted software"? It's such a woolly phrase that the only way to get a

definition would be by joining the guild of professionals; that is, by submitting to the masters.

Robert C. Martin likes to take this divisive approach to the language of software by defining "professionals" as those who exhibit

desirable qualities, and "unprofessional” as those who do not:

o Legacy code is not inevitable when programmers behave professionally—

https://twitter.com/unclebobmartin/status/298762801164451840

o Here is a minimal list of the things that every software professional should be conversant with (from The Clean Coder—

http://www.amazon.com/The-Clean-Coder-Professional-Programmers/dp/0137081073, Chapter 1, emphasis original)

o Professionals know they are arrogant and are not falsely humble. A professional knows their job and takes pride in their
work. A professional is confident in their abilities and takes bold and calculated risks based on that confidence. A

professional is not timid. (7he Clean Coder, Chapter 1)

http://manifesto.softwarecraftsmanship.org/
https://twitter.com/unclebobmartin/status/298762801164451840
http://www.amazon.com/The-Clean-Coder-Professional-Programmers/dp/0137081073

The language used here automatically creates a division among programmers: those who conform to Martin's ideal are
"professional," and everybody else is, well, something else. Unprofessional? Amateurish? Not a programmer? It also creates a
division between professional programmers and those they work with. Managers and customers had best not dare question how
we're working — we're working professionally. (Brad Cox, in his book Superdistribution: Objects as property on the electronic

Sfrontier—http://virtualschool.edu/mon/Superdistribution/, makes the same point about the division between programmers and non-

programmers, so it already existed when he was writing in 1996. He says, tongue in cheek, "The role of customers, and especially
of managers, is to stand out of the way, checkbook in hand, admiring the brilliance of this programmer's skill and devotion to his

craft.")

The craftsmanship movement asks whether software is really a professional engineering discipline, and in answering "no"

promotes many of the same ideals and divisions as the software engineering movement or of any regulated profession.

I would like to pose a different question: is programming really a social science? To what extent should a programmer know the
social, interpersonal side of software construction? Much of the content of this book has focused on the collaborative nature of
programming: documentation, management, teamwork, and requirements engineering are all examples of things programmers do
that are for or with other people. I would argue, then, that there are few situations in which a programmer can get away without
those skills. The remaining sections in this chapter look at the practice of making software through the lenses of various branches

of the social sciences.

An Economic Philosophy of Software

Direct Economic Factors

Software products are often created or extended as fixed-duration projects. The estimated cost of the project is compared against
the estimated revenue generated, and if the balance is favorable then the project is given the go-ahead. Advanced project funders
will consider protected revenue (how many customers will not jump to a competing product if this feature is added) and

opportunity cost (what work could we be doing if we decline this work), factoring those into the decisions about the project.

I mentioned Barry W. Boehm and his book, Software Engineering Economics—

http://books.google.co.uk/books/about/Software_engineering_economics.html?id=mpZQAAAAMAAJ&redir_esc=y in Chapter

9, Requirements Engineering. He introduced the idea of human economic factors; assigning a dollar value to the satisfaction (or
otherwise) the software would bring to its users, for example. I'll come back to that in the next section, on Externalities, but for the

moment, bear in mind that the expected human economic factors are considered in the project cost.

So, strangely enough, the maintenance costs are considered a part of the project economics in Boehm's COCOMO model.
Remember from Lehman's Laws of E-type software that the deployment environment evolves, and the software system must

evolve to keep up with it. In Boechm's model, this evolution is accounted for in an entry in the project's costs.

This maintenance costs fudge seems to be an indicator that something is wrong with the way we're budgeting for software. Some
evolutionary changes (feature additions) must be accounted for as explicit projects, their costs explicitly calculated and balanced
against projected income. Other evolutionary changes (maintenance fixes) are just considered a necessary risk of writing software,

the costs of which are absorbed into the calculations of writing new features.

Are new features always bigger and more expensive than bug fixes? No. Do bug fixes always cost us money, and never attract or
protect income? No. Are new features sometimes snuck into maintenance? Yes. Are bug fixes sometimes held off until new project

releases? Yes. Then why aren't they budgeted together?

http://virtualschool.edu/mon/Superdistribution/
http://books.google.co.uk/books/about/Software_engineering_economics.html?id=mpZQAAAAMAAJ&redir_esc=y

It could be for ethical reasons: perhaps programmers feel that maintenance problems are mistakes they should own up to and
correct free of charge. But remember that one of Lehman's Laws says that the satisfaction derived from software will decay as the
social environment involves. Not all bugs were bugs at the time of writing! You cannot be apologetic for work you did correctly

before a change in the environment.

To me, this suggests a need for a nimbler economic model; one that treats any change equally regardless of whether it's a bug fix,
feature addition, or internal quality cleanup. Forget what we've already spent and made on this product (for that way lies the sunk-
cost fallacy), what will the proposed change cost? What will it get us? How risky is it? What else could we be doing instead? What

alternatives do we have?

Externalities

The above questions only consider the direct economic impact of making software. There are other factors; factors that have some
form of cost or benefit but that don't have a tangible effect on the price or revenue of the work. In economics, these are called

externalities.

Externalities can be positive or negative, but they can also be personal rather than relating to a company and its work. Software
making as a career has all sorts of externalities, in terms of benefits and costs, to being a programmer that aren't reflected in our

salaries. Let's consider externalities that affect both the individual as well as the business.

Open source software is a positive externality for many businesses. Many companies in the software industry take components or
systems that have been published freely and incorporate them into their own products or provide "value-added" services such as
support. These companies receive value from the open source software without having to pay for creating that software. As an
example of open source software as an externality, the cost of writing OpenSSH doesn't factor into the price of macOS X,

although OpenSSH is a component of that system.

The picture for individual programmers is less clear. Leaving aside micro-ISV developers for a moment, who's personal and
business goals are often tightly coupled, a career programmer applying for a job might be asked to produce a portfolio of open
source projects that they have created or contributed to. I infer from this that having created open source software has a positive
effect: it improves our reputation and the likelihood that we will be hired. On the other hand, the act of creating open source
software can be negative: if you don't do it as part of your job, then you're effectively increasing the amount of work you do

without any direct compensation.

Bugs are negative externalities. Software companies often either price their work according to market forces if they're selling to
consumers or based on a day-rate for the initial project if they're selling to a client business. In neither case is the subsequent cost
of maintenance factored into the selling price; it's going to be a reduction in profit compared to the same product requiring no
maintenance. Customers themselves do not factor bugs into the (economic or psychological) cost of using software. As argued by

David Rice in Geekonomics: the real price of insecure software—Nhttp://books.google.co.uk/books/about/Geekonomics.html?

id=k6cRhfp2aWgC, customers often only have the feature checklist to go on when evaluating a software product and cannot tell
anything about its quality. But the quality costs; you pay testers, you triage bug reports, you monitor support channels for

problems, and you work on the fixes.

Some organizations run hackathons or hack days, in which people usually form teams to produce a software-based solution to
some challenge, with the winners getting a prize. These hack days can have a positive career effect in that some employers might
value contributing to hack days as evidence of community involvement, and they give the opportunity to "sharpen the saw" and try
new skills or tools. On the other hand, spending even more time working (especially the all-nighters required at some hack days)

will have a bad effect on your health, which is a negative effect.

http://books.google.co.uk/books/about/Geekonomics.html?id=k6cRhfp2aWgC
http://books.google.co.uk/books/about/Geekonomics.html?id=k6cRhfp2aWgC

Finally, consider whether all of the work that goes into making a software product is even reflected in the label price. If you
double the amount you spend on producing a user guide, does the price go up? Probably not. The same goes for localization: you
get a larger pool of potential customers, but for the most part you wouldn't be able to raise the price. That shows that, to your

customers, localization is an externality: a benefit of localized software but not one that changes how much they pay.

Companies can factor the value they place on externalities into their decisions by internally charging for them or even passing the
costs or savings onto customers: a simple example is that some agency companies will charge less for a project if they're allowed
to co-brand the resulting product. The association of the agency's brand with the product and the possibility of that driving future
work is a positive externality. Passing savings onto customers—that is, reducing costs when there are positive externalities—is

obviously more palatable to them than passing on charges for negative externalities, but the latter can be done. Think of the price

premiums on organic foods—https://www.mint.com/blog/trends/organic-food-07082010/, which are greater than the cost

differences in production (which can, in some cases, be lower than for non-organic foods, due to subsidies—another way to reify

an externality). By convincing purchasers that there are real benefits to organic foods, suppliers can command a premium price.

Traditional Supply-And-Demand Economics

Many economics textbooks will start with a discussion of supply and demand as the key influences on market price: when demand
is high or supply is low, prices go up; they go down when demand is low, or supply is high. The problem with applying this
economic structure to software pricing is that supply is infinite: there's no "unit cost," so once the software is made, it can be
copied over and over until everybody who wants a copy has one. So how can software be sold at all without prices instantly

plummeting to zero?

In the face of evidence, some people don't believe it can. That's what Digital Rights Management is about: trying to reinsert the
scarcity of physical goods into the economics of software (and other digital goods) distribution. But people do successfully sell
software, music, documents (such as this one), and so on without DRM. Rather than noticing the infinite supply "issue" and trying

to limit supply, we need to try to understand the market that does exist, is sustainable, but that doesn't match long-standing models.

I'll start with a hypothesis: that what's being traded is not the software itself, but capability first, and time second. Given the desire,
but inability, to do something as a problem, anything that solves the problem by enabling that thing is valued. This is what

economist Herbert Simon described as bounded rationality, or satisficing—http://www.economist.com/node/13350892. So, a first

solution discovered, whether ideal or not, is still valued. This already explains why the infinite supply "problem" is not real: on
discovering that a product can be purchased that meets their needs, a consumer is likely to settle for making the purchase as a
satisficing solution—many will not spend extra time on researching a pirated version of the app. (For some people, using a pirated
version of an application does cost, in terms of anxiety. Any decision, however rational, that runs counter to a person's ethics
exerts a mental cost. This is understood by the information security sector as one of the limiting factors of controlling security via
policy.)

Having found that the problem can indeed be solved, the customer is then able to spend a little effort on thinking about how to
improve that solution. That's where the time-saving part comes in. Now that they know what they are capable of, it's possible to
improve that capability so that they've got more free time for other things: that's also worth money, as Benjamin Franklin made
clear. (This argument applies, in a modified form, to games. Just reverse the two factors. Given that I have time available, can you

supply the capability for me to enjoy its passage?)

In this model, software itself has no value, compatible with the infinite supply problem in traditional economics. But the
customer's time and abilities are in limited supply, and software can be used as a tool to unlock these. In this sense, paying for
software is similar to paying for education: it is not the teaching that you want, it is the having been taught. We can then say of
software that it is not creating the solution to the problem that customers value, but the problem having been solved. Because of

the nature of satisfaction, customers will pay for a solution if the cost and the capability are "good enough."

https://www.mint.com/blog/trends/organic-food-07082010/
http://www.economist.com/node/13350892

Looking back to the second paragraph in this chapter, we see that this economic model is just the same philosophy, expressed in
economic terms. Our role as people who make software is to solve problems—we provide a valuable service to our customers by

solving problems.

A Management Philosophy of Software

Imagine a world in which programmers are valued similar to middle managers. But first, disabuse yourself of the idea that

managers are inherently useless and evil, and let me explain what a manager is.

Managers typically don't get paid for doing work; they typically get paid according to how well their team does work, and how

much work their team does. Lots of work done badly isn't very good, but not enough work done well isn't desirable either.

That usually means that they avoid doing work. Given some work to do, their usual action is to find the person on their team most
capable of doing the work, and to get them to do the work. They will make that person responsible for doing the work, and (if
they're any good) give them the authority to do it.

But they're not paid for telling the person how to do the work, or for the task of delegating responsibility or authority. In fact, if the
work isn't done, or isn't done well, it's the manager that the rest of the company will hold responsible. They're paid for the work

having been done.

Now, imagine a world in which programmers are valued similar to middle managers: a world in which the programmer is the
manager and the computers report to the programmer. The programmer is not paid for writing software — for explaining to the
computer what work needs to be done. The programmer is paid for the computers having done the work that was assigned, both in

sufficient quantity and to sufficient quality. If the computers don't do the work, it's the programmer who will be held responsible.

Again, this is just a restatement of the position taken at the beginning of the chapter. While the restatement in the previous section
told us what the people who buy software value, this one tells us what should be considered valuable in someone who makes

"o

software. We see that "number of lines of code written," "number of story points completed," "number of features added," and
"number of bugs fixed" are not, in themselves, valuable things, but perhaps we can see the extent to which each is a useful proxy

of our work.

A Social Philosophy of Software

In Chapter 9, Requirements Engineering, you saw that software does not stand on its own but is embedded in the social system in
which it's used. Much of the rest of this book has discussed a different social system: the system in which software is developed. A
lot of software is made by more than one person. Even in the rare cases where a single person does all the production (the coding,
the design, the UI text, the marketing, the sales, and so on), there will likely be some customer input, even if that just takes the

form of support emails.

So, how are these two social systems accounted for in the field? The typical image of a programmer is of someone (typically a
white male in his 20s), working on his own, staring at a monitor. If the outside world is acknowledged at all, it is through its
exclusion: the programmer wears his headphones to avoid distractions as he cuts his code. (At the time of writing, and for my

account, the results of @ Google Images search for "programmer"— https://www.google.co.uk/search?

g=programmer&aq=f&um=1&ie=UTF-
8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=4J2TUbOrOZSVOQWI7YHABQ&biw=2560&bih=1368&sei=452TUcKIFo
1400XmjIDYCQ supported this description of the "typical" image.)

We automatically see all sorts of problems here. The person making the software is a programmer, not any of the other specialists

involved. He is male, not female or trans*. He is white, not of any other ethnicity. He is young, not old. He is alone, not working

https://www.google.co.uk/search?q=programmer&aq=f&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=4J2TUbOrOZSV0QWI7YHABQ&biw=2560&bih=1368&sei=452TUcKIFoi40QXmjIDYCQ
https://www.google.co.uk/search?q=programmer&aq=f&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=4J2TUbOrOZSV0QWI7YHABQ&biw=2560&bih=1368&sei=452TUcKIFoi40QXmjIDYCQ
https://www.google.co.uk/search?q=programmer&aq=f&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=4J2TUbOrOZSV0QWI7YHABQ&biw=2560&bih=1368&sei=452TUcKIFoi40QXmjIDYCQ
https://www.google.co.uk/search?q=programmer&aq=f&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=4J2TUbOrOZSV0QWI7YHABQ&biw=2560&bih=1368&sei=452TUcKIFoi40QXmjIDYCQ

with others. All of these inequalities exist in the depiction of software makers. All of which fail to capture the diversity and the
complexity of the social systems surrounding software systems. Many of these inequalities exist in the depiction of software

makers because they exist in the reality of software making.

Social scientists ask two high-level questions of any social system they investigate: How is the society made and repaired? What
divisions and inequalities does it support? By examining the "conventional" view of a programmer, we have seen some of the

inequalities currently supported by the software industry.

We could potentially find more. Shanley Kane examined the language used by Silicon Valley start-ups—

http://blog.prettylittlestatemachine.com/blog/2013/02/20/what-your-culture-really-says looking for the underlying biases, for

example:

We don't have a vacation policy

What your culture might actually be saying is... We fool ourselves into thinking we have a better work/life balance when really
people take even less vacation than they would when they had a vacation policy. Social pressure and addiction to work has

replaced policy as a regulator of vacation time.

If true, this implies that those able to work longer hours and take fewer holidays are in a position of relative power within the

system. This is turn privileges certain classes of people: those who are younger and do not have children, for example.

So, that's the social system where software is made. What about that in which software is used? There are inequalities and
divisions there, too. Commercial software systems (and even free software systems that run on commercial platforms) are only

accessible to those who can afford to buy them.

In the UK, the Office of National Statistics estimates that over 7 million people have never used the internet. They identify
correlations between ability to access the internet and demographic status, so online services are (for example) less likely to be
available to people over 75 and to disabled people (This lack of accessibility is before we even consider whether specific services

have "accessibility" features as commonly understood by developers.)

Other inequalities can be found. Many applications have been created to only support the English language, and where they can be
localized, they don't handle non-Gregorian calendars, right-to-left writing systems, characters with diacritic modifiers, and other

"non-English" (or non-American) locale features.

Knowing that these inequalities exist (others do, too) and reporting them is one thing, but probably isn't novel. What are we to do

with that awareness?

Which inequalities you feel are unjust probably depends on your political views, though the ethics documents described in the

previous chapter give us a handy guide. From the ACM code of ethics— http://www.acm.org/about/code-of-ethics:

Inequities between different groups of people may result from the use or misuse of information and technology. In a fair society, all
individuals would have equal opportunity to participate in, or benefit from, the use of computer resources regardless of race, sex,
religion, age, disability, national origin or other such similar factors. However, these ideals do not justify unauthorized use of

computer resources nor do they provide an adequate basis for violation of any other ethical imperatives of this code.

That's quite explicit. The behavior the ACM expects from its members is that of no discrimination whatsoever within the limits of
the rest of the ethical code — as ever, potential ethical conflicts exist. Stealing computer resources from privileged parties for the
use of disadvantaged parties (I hereby dub this "Robin Hood scheduling") would be one example of such a conflict.

http://blog.prettylittlestatemachine.com/blog/2013/02/20/what-your-culture-really-says
http://www.acm.org/about/code-of-ethics

An important factor to be aware of in discrimination is othering. Social psychologists differentiate between marked and

unmarked identities—http://cak400.wordpress.com/2012/10/01/marked-and-unmarked-identities-and-social-hierarchy/. An

"unmarked" identity is what's accepted to be normal, and other identities are differentiated ("marked") by being different from this
benchmark. People who talk about immigrants are marking some people as immigrants, and by extension implicitly defining

natives as normal. People who talk about women are marking some people as women, and implicitly defining men as normal.

The important aspect with regard to Othering is the asymmetric nature of this distinction: it is between those who are "normal" and
those who are "not like us." It's important to realize that we do this, that it's how our minds work, to identify when we're doing it
and to consciously correct for it. As Mike Lee put it—nhttps://twitter.com/bmf/status/333960606837272577:

We put those qualities into the other that we reject in ourselves. But that blinds us to the reality.

So, next time you think "normal people wouldn't want that feature," or "no one with an ounce of common sense would use it that
way," ask whether you really think "people who aren't like me wouldn't want that," then consider whether you're making software

for the small number of people who are like you, or for everyone.

A Pedagogic Philosophy of Software

This is the most technical and low-level part of the philosophy chapter, and the one I'm least qualified to talk about. I've done a
couple of years of teaching programming at a university but as one of the most obvious features of university teaching is that no

one trains you before you start, I'm not sure whether that counts.

It's easy to find assertions that academic computer science bears no relation to practice—nhttp://shape-of-code.coding-

guidelines.com/2013/05/15/wot-apply-academic-work-in-industry/ and that computer science is not adequate preparation for a

career in software. Is this a problem? If it is, what is the cause? What alternatives are there?

The divergence between commercial and academic software practices began early in the history of computing. The first version of

the ACM curriculum described in Sofiware as a pursuit was Curriculum 68—nhttp://dl.acm.org/citation.cfm?id=362976. In the

introduction to this curriculum, the authors make it clear that the academic computer science course is not appropriate for training

professional IT staff:

For example, these recommendations are not directed to the training of computer operators, coders, and other service personnel.
Training for such positions, as well as for many programming positions, can probably be supplied best by applied technology
programs, vocational institutes, or junior colleges. It is also likely that the majority of applications programmers in such areas as
business data processing, scientific research, and engineering analysis will continue to be specialists educated in the related

subject matter areas, although such students can undoubtedly profit by taking a number of computer science courses.

So, the curriculum was created with the knowledge that it would not apply directly to those who wish to be professional
programmers. While vocational courses do exist, it's very common to meet capable self-taught programmers who had no formal
introduction to the field — myself included. There's a /ot of information about how to make software out in the world, which the
self-taught must discover somehow: ultimately, much will be learned by trial and error. The Software Engineering Body of

Knowledge—https://www.computer.org/education/bodies-of-knowledge/software-engineering can be thought of as a guide to

what to learn from the published literature on software engineering. When formatted as a book, the guide is longer than this text.
Like this book, the guide itself is not at the level of "this is how software is made" but at the level of "these are the things you
should bear in mind while making software." So, we have a 200-page guide to 13 "knowledge areas," which comprise lists of
things you should know, with some references to available literature. The knowledge areas, the topics chosen in each, and the

currency and validity of the references are all (as you could probably expect from this field) contentious, so the SWEBOK

http://cak400.wordpress.com/2012/10/01/marked-and-unmarked-identities-and-social-hierarchy/
https://twitter.com/bmf/status/333960606837272577
http://shape-of-code.coding-guidelines.com/2013/05/15/wot-apply-academic-work-in-industry/
http://shape-of-code.coding-guidelines.com/2013/05/15/wot-apply-academic-work-in-industry/
http://dl.acm.org/citation.cfm?id=362976
https://www.computer.org/education/bodies-of-knowledge/software-engineering

(Software Engineering Body of Knowledge) represents a conservative selection of ideas that have definitely become broadly

applied.

How can the self-taught programmer get up to speed on this huge and evolving body of knowledge? Supporters of "software as a
profession" would say that they can't; that it's up to professional bodies to teach and maintain the body of knowledge and to ensure
that only those who are up to speed may be considered programmers. Supporters of "software as a craft" would also say that they
can't: that they need the expert guidance that comes from apprenticeship, then the period of self-searching that comes from being a

journeyman.

But, reflecting on Chapter 10, Learning, 1 have to ask: is the SWEBOK anything other than a curriculum for learning, whether
taught or self-directed? It's presented at quite an abstract level (and in a very dry style), so may work better for instructors to

decide what to teach than for beginners trying to find out what to learn.

That content — not necessarily the SWEBOK itself, but something akin to it — could easily be adapted into a guide for self-
learning. The pattern I find most appropriate for this is the competency matrix: I have evaluated my own knowledge of computer

science against the Programmer Competency Matrix—http://www.starling-software.com/employment/programmer-

competency-matrix.html over the last few years, and in the course of writing this text created the Programmer Courtesy Matrix

—http://blog.securemacprogramming.com/2013/04/rebooting-the-programmer-competency-matrix/ to summarize the material.

Where the matrix succeeds is that it gives learners a handy way to evaluate their own progress (whether through reflection, or
discussion with evaluators or educators) and to understand what's needed to advance in any particular row of the matrix. The

columnar layout provides guidance on what's "next" and what can be left to "later."

This ordering is something I struggled with early in my career. I was working at a large company that had progression through
technical roles: software engineer, senior software engineer, principal software engineer, and software architect. I was hired at the
first level but quickly got promoted to senior software engineer. Because I focused on the next level, I tried to learn about the
responsibilities of the principal engineer before consolidating and extending my understanding of the senior role. I therefore didn't

make a particularly good senior engineer: a prerequisite for moving onward.

Where the matrix fails is at the part the SWEBOK does well: giving you references to material at each level, so the learner knows
where to find the information to progress. That part of a curriculum is much more contextual: a curriculum for self-learning might
point to books, articles, conference presentations, or websites for where to learn; a curriculum for directed learning might suggest
particular training or university courses, or a problem set to be assessed by an educator. The point is that there's no reason a self-
taught programmer can't, with awareness of the field and their own capabilities, provided by a competency matrix, progress as a

career programmer — maybe at a different pace to a taught or master-bound programmer, but progressing, nonetheless.

Referring this discussion (and Chapter 10, Learning) back to the position statement at the beginning of this chapter, the teaching
of software makers should really be considered the teaching of problem identification and solution within the context of software
systems. From this view, the goals of teaching in the academic and commercial fields are compatible; it's just the choice of
problems to solve (and hence the focus on particular areas of the body of knowledge, equivalent to particular rows in the

competency matrix) that are different.

For novice programmers, the self-taught, apprenticed, and educated (Beware of reading a false dichotomy in this sentence; self-
taught and apprenticed programmers are not "uneducated," they just did not learn how to make software from an educator) alike,
the course from hobbyist to professional software making — whatever the context in which that software is made, and whatever the
specific definition of "professional" we choose — starts with awareness of software as a means to solve problems, not as an end in
itself. The next step is awareness of the gap between their novice competence and the current state of the art. How they choose to

close that gap is less important than awareness of the gap's existence.

http://www.starling-software.com/employment/programmer-competency-matrix.html
http://www.starling-software.com/employment/programmer-competency-matrix.html
http://blog.securemacprogramming.com/2013/04/rebooting-the-programmer-competency-matrix/

What Does It Mean to Be ""Good" At Making Software?

Statements abound about the productivity of people who make software. Many people claim that some programmers are 10x more

productive than others—http://www.johndcook.com/blog/2011/01/10/some-programmers-really-are-10x-more-productive/. What

does that mean?

Presumably, to come up with a quantity, even a relative one like "10x," we have some quantitative measure that can be applied to
people who make software in different contexts. What is that quantity? The number of significant lines of code written? If so,

should we sack programmers who write -2000 lines of code in a day—nhttp://folklore.org/Story View.py?

story=Negative 2000_Lines_Of Code.txt?

How about the time taken to fix a bug, the measure originally applied (to a small number of programmers) to discover the 10x
figure? Maybe the programmers aren't more productive, but we caught them on a good day? What about the programmer who

spent more time ensuring the bug wasn't present in the first place? Is that person more diligent or wasting time gold-plating?

If you accept the view of software making presented here, then the amount of sofiware one can write is, regardless of the way you
measure it, irrelevant to the question of how good the maker is. The relevant question is how many problems the software maker

removed from (or introduced into) the system in which their customers are working.

One of the most effective demonstrations of this measure of productivity came from a friend who was asked by a potential client to
design a mobile app to solve a particular issue the client's business had. Having met with the client and discussed their problems,
this person observed that a spreadsheet was a better solution than the mobile app. They thus declined the opportunity to waste the
client's money creating a suboptimal solution. That person could get their spreadsheet written, and the software maker could turn

their attention to more appropriate uses of their skills.

Unfortunately, the question of whether software's net effect in a system has been to solve or to introduce problems is unanswered,

and is perhaps unanswerable, as systems get large. For example, until the 1980s, many offices in Western organizations employed

a largely female typing pool, albeit on low wages and in noisy environments. After the introduction of the desktop computer, those
typists were replaced by people in traditionally higher-status jobs preparing their own documents with word-processing

applications. Those applications and the computers they ran on were supported by a predominantly male IT support workforce.

To the businesses in which those changes occurred, was the IT support department more or less cost-effective than the typing
pool? Was typing in a word processor a better use of an executive's time than handwriting a manuscript for a typist? Do desktop

computers and office printers cause fewer problems than a few dozen typewriters, or more problems?

At a social level, have the unemployed typists been freed from the tyranny of the typing pool, or have they been excluded from the
workforce? Has the computer been good or bad for gender equality? Has software opened up more opportunities than it has

removed?

These are complicated questions, and I'm going to finish without answering them. Suffice it to say that, while our new metric for
productivity is better philosophically than things like lines of code, it's a lot harder to apply.

Conclusion

I wrote this book to reflect on what I knew about making software and to understand what I didn't know about making software. |
published it so that you could take advantage of what I've found over the decade I've been doing this for a living, and to trigger

your own reflections on your experiences (with the hope that you would share these with us, just as I have).

http://www.johndcook.com/blog/2011/01/10/some-programmers-really-are-10x-more-productive/
http://folklore.org/StoryView.py?story=Negative_2000_Lines_Of_Code.txt
http://folklore.org/StoryView.py?story=Negative_2000_Lines_Of_Code.txt

I started by looking at the things we do when we're at the coal face: the tools and practices we use to convert ideas into software.
Then I looked at how we work with other people: how we document what we've done; how we find out what software needs
writing; how we take advantage of opportunities to learn from other people, interpret other people's arguments, and work with
them in the context of a team or a business. Finally, I tried to construct a high-level model in which to situate all of that work, by
considering the ethics and philosophy of making software, and how to move our knowledge forward by teaching this generation's

novices.

Through this process, I found that, while computer science may be able to tell us something about the compilers and languages we
use on computers, software products can't be isolated from the social systems in which they're made and used. Psychology,
sociology, ethnography, and economics: all of the social sciences have wisdom to impart that can help us use our skills as software

makers to solve problems for people.

Unfortunately, this work closed on a quandary: while different bodies of software makers have identified the ethical imperative to
avoid discrimination, we cannot unequivocally say that our industry has not caused new divisions and inequalities in the societies
it has affected. Questions of whether to use web or native technologies, or whether functional or object-oriented programming
styles are "better" will either be answered, become irrelevant, or both. The question of whether our work removes or strengthens

divisions between people will never go away and will be the measure by which history judges what we do.

Modern
Programming:
Object Oriented
Programming and
Best Practices

Deconstruct object-oriented programming and use it with other
programming paradigms to build applications

	Preface
	About the Book
	About the Author
	Learning Objectives
	Audience
	Approach
	Acknowledgements

	Part One – OOP The Easy Way
	About the Example Code

	Chapter 1
	Antithesis
	Telling an Object What to Do
	Designing an Object
	Drawing an Object
	Unified Modeling Language
	Class-Responsibility-Collaborator
	Jelly Donuts and Soccer Balls

	Opposing Functional Programming
	Messages Are Just Requests
	An Object's Boundary is Just a Function
	That Function-Like Boundary? Actually, a Closure Over the Constructor Arguments

	Capturing Elements of Reusable Design
	Finding a Method to Run
	Building Objects
	Conclusion to Part One

	Chapter 2
	Thesis
	Objects Are Independent Programs
	The Open-Closed Nature of Independent Objects
	The Correctness of Independent Objects

	The Design of Independent Objects
	Constructing Independent Objects
	Working with Independent Objects
	Conclusion to Part Two

	Chapter 3
	Synthesis
	Objects Are Independent Programs
	An Object's Behavior Can Be Described in A Contract

	Objects Can Be Written, Inspected, And Changed in Context
	Put That All Together
	Speed
	Tailoring
	Propriety
	Security
	Multiprocessing
	Usability

	Conclusion to Part Three

	Part Two – APPropriate Behavior
	Chapter 4
	Tools That Support Software Development
	Introduction
	Version Control/Source Code Management
	On Version Control and Collaboration
	Distributed Version Control

	Continuous Integration and Deployment
	Why Use CI?
	CI On Real Teams

	Build Management
	Convention or Configuration
	Build Systems That Generate Other Build Systems

	Bug and work tracking
	What Goes in And When?
	How Precisely to Track?

	Integrated Development Environment
	Static Analysis
	Code Generation
	Writing Your Own Generator Shouldn't Be A First Resort
	When the Generator Won't Be Used by A Programmer

	Chapter 5
	Coding Practices
	Introduction
	Test-Driven Development
	The point of TDD
	The Software I'm Writing Can't Be Tested
	So Is Test-Driven Development A Silver Bullet?

	Domain-Driven Design
	Behavior-Driven Development
	xDD
	Design by Contract
	Development by Specification
	Pair programming
	Back-Seat Driving Is Not Pair Programming
	Being A Silent Partner Is Not Pair Programming
	So, Is Pair Programming Just The Balance Between Those Things?
	Pair Programming As Programming
	Pairing As A Coaching Practice
	But Does It Work?

	Code Reviews
	Programming Paradigms And Their Applicability
	Object-Oriented Programming
	Aspect-Oriented Programming
	Functional Programming

	Chapter 6
	Testing
	Introduction
	A Philosophy of Testing
	Black and White Boxes
	Shining Light on The Black-Box

	Test Case Design
	Code-Directed Tests
	Testing For Non-Functional Requirements

	Automate All The Things
	Getting Someone Else In
	Other Benefits Of Testing
	Accessibility
	Structure

	Chapter 7
	Architecture
	Introduction
	Non-Functional Requirements Are Essential
	When Should I Think About the NFRs?
	Performance in Low–Fidelity Prototypes
	Security in Low-Fidelity Prototypes
	Reliability in Low-Fidelity Prototypes

	Defer When Appropriate; Commit When Necessary
	Justify Your Decisions
	When to Fix and When to Replace
	Know When to Nitpick, And When to Leave It
	Support, Don't Control
	What Does A Software Architect Do?
	What A Software Architect Doesn't Do
	In one sentence

	Chapter 8
	Documentation
	Introduction
	Documentation Is More Useful Than You Might Think
	The Up-To-Dateness Problem
	Automatically Generated Documentation
	Analysis Paralysis
	How to Document
	Coding Standards
	Code Comments
	Literate Programming
	Comment Documentation
	Uml Diagrams

	Summary

	Chapter 9
	Requirements Engineering
	Study People
	Decide The Model

	You Shouldn't Necessarily Build What The Client Asks For
	Avoid Asking What You Want To Hear
	Understand The Problem Domain
	Uncover Tacit Requirements
	You Shouldn't Build What Your Client Wants
	Human Factors In Software Systems
	Economics
	Politics

	Prioritizing Requirements
	Is It Really "Engineering"?

	Chapter 10
	Learning
	Introduction
	Do as Much as You Can
	Don't Stick to Your Own Discipline
	Put it into Practice
	Collaborate and Share what you Learn
	Opportunities to Learn
	Rediscovering Lost Knowledge
	The Teaching Of Software Creation
	Reflective Learning

	Chapter 11
	Critical Analysis
	Introduction
	Criticism Is Often Uncritical
	How to Form an Argument?
	Forms Of Fallacy
	Post Hoc, Ergo Propter Hoc
	Fundamental Attribution Error
	Argument from Fallacy
	Continuum Fallacy
	Slippery Slope
	Begging the Question
	Appeal to Novelty
	Appeal to the Person

	Further Reading on Arguments
	Debates and Programmers
	Software as Essays

	Chapter 12
	Business
	Introduction
	Evaluate Risks Dispassionately
	Project Risks
	Business Risks
	Operational Risks
	Other External Risks
	Career Risks
	Dealing with Risks

	Find Out What You Need to Know, And How You Can Know It
	What You Discover May Not Be to Your Liking
	Personal Experience

	How to Interview A Programmer?
	Bear the Goal in Mind
	The Interview's There for Both of You
	What If You Could Avoid Hypothetical Questions?
	Don't Try to Prove the Other Person Is Stupid
	Personal Experience

	Be Transparent and Honest with Your Business Partners
	Choose Appropriate Technology
	Manipulation and Inspiration
	Worked Example: An App Store Sale

	You Don't Need to Be A Founder to Be A Programmer

	Chapter 13
	Teamwork
	Introduction
	Focus versus Interruption
	Working Environment
	Prioritizing Work
	Tell Experts What Needs to Be Done
	Working with Junior Programmers
	Working with Managers
	Patterns of Software Project Management
	Waterfall
	Scrum
	Lean Software
	Anchoring Bias and Project Management
	Bias bias

	Negotiation
	Empathy
	The Effect of Mood on Collaboration
	Language and Introversion
	Knowing What Level to Talk and To Listen At

	Shared Language and Shiny Buzzwords

	Chapter 14
	Ethics
	Introduction
	Examples of Ethical Codes
	Application of The Ethical Code
	Ethical Ambiguities
	Respecting Privacy
	Epilogue

	Chapter 15
	Philosophy
	Introduction
	Software as A Pursuit
	An Economic Philosophy of Software
	Direct Economic Factors
	Externalities
	Traditional Supply-And-Demand Economics

	A Management Philosophy of Software
	A Social Philosophy of Software
	A Pedagogic Philosophy of Software
	What Does It Mean to Be "Good" At Making Software?
	Conclusion

