

CONTENTS IN DETAIL

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR AND ABOUT THE TECHNICAL
REVIEWERS

ACKNOWLEDGMENTS

INTRODUCTION
Who This Book Is For
Why PHP?
What You Will Learn
Online Resources

PART I: LANGUAGE FUNDAMENTALS
1
PHP PROGRAM BASICS
Two Methods to Run PHP

The Replit Online Coding Environment
A Local PHP Installation

Template Text vs. PHP Code
Comments
Variables

Creating Variables
Using Variables
Naming Variables

Constants

Operators and Operands
Arithmetic Operators
Combined Arithmetic Assignment Operators
Increment and Decrement Operators

Summary
Exercises

2
DATA TYPES
PHP Data Types

Scalar Data Types
The Special NULL Type
Functions to Test for a Data Type

Type Juggling
Numeric Contexts
String Contexts
Comparative Contexts
Logical and Other Contexts

Type Casting
Summary
Exercises

3
STRINGS AND STRING FUNCTIONS
Whitespace
Single-Quoted Strings
Joining Strings: Concatenation
Double-Quoted Strings

Handling the Character After a Variable Name
Incorporating Unicode Characters

Heredocs
Escape Sequences
Indention

Nowdocs
Built-in String Functions

Converting to Upper- and Lowercase
Searching and Counting
Extracting and Replacing Substrings
Trimming Whitespace
Removing All Unnecessary Whitespace
Repeating and Padding

Summary
Exercises

4
CONDITIONALS
Conditions Are True or False
if Statements

if...else Statements
Nested if...else Statements
if...elseif...else Statements
Alternative Syntax

Logical Operators
NOT
AND
OR
XOR

switch Statements
match Statements
The Ternary Operator
The Null-Coalescing Operator
Summary
Exercises

5
CUSTOM FUNCTIONS
Separating Code into Multiple Files

Reading in and Executing Another Script
Creating Absolute Filepaths

Declaring and Calling a Function
Parameters vs. Arguments
Errors from Incorrect Function Calls
Type Juggling

Functions Without Explicit Return Values
Returning NULL
Exiting a Function Early

Calling Functions from Within Functions
Functions with Multiple Return and Parameter Types

Nullable Types
Union Types

Optional Parameters
Positional vs. Named Arguments
Skipped Parameters

Pass-by-Value vs. Pass-by-Reference
Summary
Exercises

PART II: WORKING WITH DATA

6
LOOPS
while Loops

do...while Loops
Boolean Flags
break Statements

for Loops
Using the Counter in the Loop
Skipping Loop Statements
Handling the Last Iteration Differently

Alternative Loop Syntax
Avoiding Infinite Loops
Summary
Exercises

7
SIMPLE ARRAYS
Creating an Array and Accessing Its Values
Updating an Array

Appending an Element
Adding an Element with a Specific Key
Appending Multiple Elements
Removing the Last Element

Retrieving Information About an Array
Looping Through an Array

Using a foreach Loop
Accessing Keys and Values
Imploding an Array

Functions with a Variable Number of Arguments
Array Copies vs. Array References
Treating Strings as Arrays of Characters
Other Array Functions
Summary
Exercises

8
SOPHISTICATED ARRAYS
Declaring Array Keys Explicitly
Arrays with Strings as Keys
Multidimensional Arrays
More Array Operations

Removing Any Element from an Array
Combining and Comparing Arrays
Destructuring an Array into Multiple Variables

Callback Functions and Arrays
Summary
Exercises

9
FILES AND DIRECTORIES
Reading a File into a String

Confirming That a File Exists
“Touching” a File
Ensuring That a Directory Exists

Writing a String to a Text File
Managing Files and Directories
Reading a File into an Array
Using Lower-Level File Functions
Processing Multiple Files
JSON and Other File Types
Summary
Exercises

PART III: PROGRAMMING WEB
APPLICATIONS
10
CLIENT/SERVER COMMUNICATION AND WEB
DEVELOPMENT BASICS
The HTTP Request-Response Cycle

Response Status Codes
An Example GET Request

How Servers Operate
Simple Web Servers for File Retrieval
Dynamic Web Servers for Processing Data
The Routing Process

Templating
PHP Tags
Short Echo Tags

The Model-View-Controller Architecture
Structuring a PHP Web Development Project
Summary
Exercises

11
CREATING AND PROCESSING WEB FORMS

Basic Client/Server Communication for Web Forms
GET vs. POST Requests
A Simple Example

The filter_input() Function
Other Ways to Send Data

Sending Noneditable Data Along with Form Variables
Processing Mixed Query-String and POST Variables
Offering Multiple Submit Buttons
Encoding Data in Hyperlinks

Other Form Input Types
Radio Buttons
Checkboxes
Single-Selection Lists
Multiple-Selection Lists

Summary
Exercises

12
VALIDATING FORM DATA
Writing Custom Validation Logic

Managing Multiple Validation Errors
Testing for a Valid Zero Value

Displaying and Validating Forms in a Single Postback Script
Simple Validation Logic
Array-Based Validation Logic

Summary
Exercises

13
ORGANIZING A WEB APPLICATION
Front Controllers and the MVC Architecture
Separating Display and Logic Files

Creating the Front Controller
Writing the Display Scripts

Moving Website Logic into Functions
Designing a Secure Folder Structure
Simplifying the Front-Controller Script
Writing the Functions

Generalizing the Front-Controller Structure
Distinguishing Between Requested Pages
Building a Multipage Application

Summary
Exercises

PART IV: STORING USER DATA WITH
BROWSER SESSIONS
14
WORKING WITH SESSIONS
A Web Browser Session
The session_start() and session_id() Functions
The $_SESSION Superglobal Array

Updating a Stored Value
Unsetting a Value
Destroying the Session and Emptying the Session Array

Summary
Exercises

15
IMPLEMENTING A SHOPPING CART
The Shopping Cart File Structure
Defining the Product List

Creating the Products Array
Adding CSS
Displaying the Star Ratings
Creating the Template Script
Updating the Index Script

Designing the Shopping Cart
Creating the Front Controller
Managing the Product and Cart Arrays
Streamlining the Index Script
Creating a Header Template
Creating the Cart Display Template

Interacting with the Session
Updating the Cart-Retrieval Function
Implementing Cart-Manipulation Functions
Creating the Empty Cart Template

Finalizing the Front Controller
Adding Display Functions
Writing the switch Statement

Summary
Exercises

16
AUTHENTICATION AND AUTHORIZATION
A Simple Login Form

Creating a Site with a Login Form
Defining the File Structure
Creating the Shared Page Content
Designing the Page Templates
Developing the Login Form
Writing the Front Controller
Implementing the Logic Functions
Creating the Error Page Template

Storing Login Data with Sessions
Updating the Front Controller
Writing the Login Function
Updating the Header Template
Updating the Banking Page Template

Offering a Logout Feature
Adding the Logout Function
Updating the Front Controller
Displaying the Logout Link

Displaying the Logged-in Username
Retrieving the Username
Updating the Navigation Bar
Updating the CSS

Summary
Exercises

PART V: OBJECT-ORIENTED PHP
17
INTRODUCTION TO OBJECT-ORIENTED
PROGRAMMING
Classes and Objects
Creating Relationships Between Objects
Encapsulation and Information Hiding
Superclasses, Inheritance, and Overriding
The Flow of Control for Object-Oriented Systems
An Example Class Declaration
Summary
Exercises

18
DECLARING CLASSES AND CREATING OBJECTS
Declaring a Class
Creating an Object
Private Properties with Public Accessor Methods

Getting and Setting Private Properties
Screening for Invalid Data

Overriding Default Class Behavior with Magic Methods
Initializing Values with a Constructor Method
Converting Objects to Strings

Object Variables as References
Handling Missing Objects
Custom Methods and Virtual Attributes
Summary
Exercises

19
INHERITANCE
Inheritance as Generalization

Creating Objects from Subclasses
Using Multiple Levels of Inheritance

Protected Visibility
Abstract Classes
Overriding Inherited Methods
Augmenting Inherited Behavior
Preventing Subclassing and Overriding

Declaring a Class final
Declaring a Method final

Summary
Exercises

20
MANAGING CLASSES AND NAMESPACES WITH
COMPOSER
Namespaces

Declaring a Class’s Namespace
Using a Namespaced Class
Referencing Namespaces in Class Declarations

Composer
Installing and Testing Composer
Creating the composer.json Configuration File
Creating an Autoloader
Adding Third-Party Libraries to a Project

Where to Find PHP Libraries
Summary
Exercises

21
EFFICIENT TEMPLATE DESIGN WITH TWIG

The Twig Templating Library
How Twig Works
A Simple Example

Manipulating Objects and Arrays in Twig Templates
Twig Control Structures
Creating a Multipage Website with Twig

The File Structure and Dependencies
The Application Class
The Twig Templates
Twig Features to Improve Efficiency
Improved Page Styling with CSS

Summary
Exercises

22
STRUCTURING AN OBJECT-ORIENTED WEB
APPLICATION
Separating Display and Front-Controller Logic
Using Multiple Controller Classes
Sharing Controller Features Through Inheritance
Summary
Exercises

23
ERROR HANDLING WITH EXCEPTIONS
The Basics of Exceptions

Throwing an Exception
Catching an Exception
Ending with a finally Statement

Using Multiple Exception Classes
Other Built-in Exception Classes
Custom Exception Classes

Call-Stack Bubbling
Summary
Exercises

24
LOGGING EVENTS, MESSAGES, AND TRANSACTIONS
Built-in PHP Resources for Logging

Predefined Constants for Severity Levels
Logging Functions

The Monolog Logging Library
Organizing Logs with Channels
Managing Logs According to Severity

Logging Exceptions
Logging to the Cloud
Summary
Exercises

25
STATIC METHODS, PROPERTIES, AND ENUMERATIONS
Storing Class-Wide Information
Static Properties vs. Class Constants
Utility Classes with Static Members
Sharing Resources Across an Application
Saving Resources with the Singleton Pattern
Enumerations

Backed Enums
An Array of All Cases

Summary
Exercises

26
ABSTRACT METHODS, INTERFACES, AND TRAITS
From Inheritance to Interfaces

Inheriting a Fully Implemented Method from a Superclass
Inheriting an Abstract Method
Requiring Method Implementations with Interfaces

Real-World Applications of Interfaces
Caching Approach 1: Using an Array
Caching Approach 2: Using a JSON File
Caching Approach 3: Creating a Cacheable Interface

Traits
Declaring Traits
Inserting Traits
Resolving Trait Conflicts

What to Use When?
Summary
Exercises

PART VI: DATABASE-DRIVEN APPLICATION
DEVELOPMENT
27
INTRODUCTION TO DATABASES
Relational Database Basics

Database Management Systems
Structured Query Language

Databases and Web Application Architecture
Object-Oriented Programming
The Model-View-Controller Pattern

Summary
Exercises

28
DATABASE PROGRAMMING WITH THE PDO LIBRARY
The PDO Library
A Simple Database-Driven Web Application

Setting Up the Database Schema
Writing the PHP Classes
Switching from MySQL to SQLite

A Multipage Database-Driven Web Application
Managing the Product Information
Implementing the Controller Logic
Designing the Templates

Summary
Exercises

29
PROGRAMMING CRUD OPERATIONS
Deleting Data

Deleting Everything from a Table
Deleting Individual Items by ID

Creating New Database Entries
Adding Products Through a Web Form
Highlighting the Newly Created Product

Updating a Database Entry
Avoiding Double Form Submission with Redirects
Summary
Exercises

30
ORM LIBRARIES AND DATABASE SECURITY
Simplifying Database Code with an ORM Library

Adding an ORM Library to a Project
Moving Database Credentials to a .env File
Relegating Product Operations to the ORM Library
Adding a New Database Table

Security Best Practices
Storing Hashed Passwords

Verifying Hashed Passwords at Login
Securing Database Credentials

The Doctrine ORM Library
Removing the Previous ORM Library
Adding Doctrine
Verifying That Doctrine Is Working
Creating Database Tables
Adding Records to a Table
Integrating Doctrine into the Application Code
Creating Foreign-Key Relationships

Summary
Exercises

31
WORKING WITH DATES AND TIMES
The ISO 8601 Standard
Creating Dates and Times

Formatting the Date-Time Information
Using DateTimeImmutable vs. DateTime

Manipulating Dates and Times
Using Date-Time Intervals
Looping at Regular Intervals

Time Zones
Daylight Saving Time
Epochs and Unix Time
Date-Time Information in a Web Application

The Application Class
The Supporting Classes
The Templates

MySQL Dates
Summary
Exercises

A
INSTALLING PHP
macOS
Linux
Windows
AMP Installations

B
DATABASE SETUP
MySQL

macOS and Windows

Linux
SQLite
Confirming the MySQL and SQLite Extensions

C
REPLIT CONFIGURATION
Changing the PHP Version
Adding the Composer Tool
Using the SQLite Database System
Serving Pages from the public Directory

INDEX

PHP CRASH COURSE

The Complete, Modern, Hands-on
Guide

by Matt Smith

San Francisco

PHP CRASH COURSE. Copyright © 2025 by Matt Smith.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing

28 27 26 25 24 1 2 3 4 5

ISBN-13: 978-1-7185-0252-9 (print)
ISBN-13: 978-1-7185-0253-6 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Sydney Cromwell
Developmental Editor: Nathan Heidelberger
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewers: Ryan Weaver and Eoghan Ó hUallacháin
Copyeditor: Sharon Wilkey
Proofreader: Daniel Wolff

Figure 28-1 is reproduced with permission from https://xkcd.com/327/.

Library of Congress Cataloging-in-Publication Data

Name: Smith, Matt, 1967-author.

Title: PHP Crash Course : The Complete, Modern, Hands-on Guide / by Matt Smith.

Description: San Francisco : No Starch Press, 2025. | Includes index.

Identifiers: LCCN 2024028603 (print) | LCCN 2024028604 (ebook) | ISBN 9781718502529

(print) | ISBN 9781718502536 (ebook)

Subjects: LCSH: PHP (Computer program language) | Internet programming—Computer

programs. | Computer programming.

Classification: LCC QA76.73.P224 S566 2025 (print) | LCC QA76.73.P224 (ebook) | DDC

005.13/3—dc23/eng20241007

LC record available at https://lccn.loc.gov/2024028603

LC ebook record available at https://lccn.loc.gov/2024028604

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this
work: rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

https://xkcd.com/327/

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

[E]

I dedicate this book to Ryan Weaver.

Having this book reviewed by someone of your experience and expertise
has been a fantastic privilege. Working with a core Symfony developer has
helped ensure that the content is accurate and reflects professional PHP best
practices. Quite simply, the book is better than it would have been without

your input.

My sincere thanks and best wishes to you and your family.

About the Author
Dr. Matt Smith is senior lecturer in computing at Technological University
(TU) Dublin, Ireland, specializing in interactive multimedia instruction
including web applications, extended reality (XR), and e-learning systems.
He holds a bachelor’s degree in business computing (University of
Huddersfield, UK), a master’s in artificial intelligence (University of
Aberdeen, Scotland), and a PhD in computational musicology (Open
University, UK). He has been teaching for over 30 years, holding full-time
positions at the University of Winchester and London’s Middlesex
University prior to TU Dublin.

Smith introduced Unity-based 3D game development and interactive
virtual environments to his computing and digital media students. In the
mid-2000s, at the request of his students, he switched the focus of his web
development courses from Java to PHP, and he’s been a fan of PHP and the
Symfony open source web framework ever since.

Smith has a first-degree black belt in Taekwondo and has taught and
competed in that martial art, though when his daughter switched to
Shotokan karate, so did he, and he hopes to earn his first-degree karate
black belt at about the time this book is published. While at school in the
1980s, Smith wrote the lyrics for, and his band played the music on, the B-
side of the audio cassette carrying the computer game Confuzion by
Incentive Software; the game has a Wikipedia page. He also sang some of
the backup vocals, for which he apologizes.

About the Technical Reviewers
Ryan Weaver is a member of the Symfony core team and a writer for
SymfonyCasts. He has contributed to and created numerous open source
PHP packages. He lives in Grand Rapids, Michigan, with his wife, Leanna,
and son, Beckett.

Eoghan Ó hUallacháin is the founder and CEO of Glorsoft, a software
engineering company specializing in architecting and developing high-
availability, high-volume, multiuser, speed-critical systems. He has over 30
years of experience delivering highly scalable systems for clients in e-
commerce, telecoms, finance, government, and other sectors. He’s been
writing PHP code since 1999 and uses it for user interface and automation
work. He holds a BS in computer applications from Dublin City University
and an MS in advanced software engineering from University College
Dublin.

ACKNOWLEDGMENTS

To the students who encouraged me to learn (and then teach) PHP for our
web development degree stream, thank you. It has become my favorite
programming language.

I’m very grateful to the team at No Starch Press, most especially to
Nathan, Jill, Sydney, Sharon, and Sabrina. Of all the books I’ve worked on
over the years, this book (my first with No Starch Press) has been the most
enjoyable to write. Many thanks for putting up with the slow pace at times,
and for all of your constructive feedback and editorial comments.

Many thanks to Eoghan Ó hUallacháin for helping me get the book
over the finish line (and to many more beer-and-pizza coding events).

To my parents, thanks for everything. Here’s another thick computing
book for your shelves. And thanks to Sinéad, Charlotte, and Luke for
putting up with me writing another book. No more books for a while, I
promise!

INTRODUCTION

PHP is one of the engines that drive the
internet: it plays a role both in what the

user sees on web pages and in what happens behind
the scenes, such as processing form submissions,
talking to other websites, and interacting with
databases. The language was first released in 1995,
but it wasn’t until the late 2000s, when my
computing students encouraged me to introduce PHP
into their web programming classes, that I began
working with it in earnest. They wanted to improve
their skill profiles for the job market, since they felt
the internet was going to continue to grow in
importance in the work of computing. Clearly, they
were right.

Who This Book Is For
PHP Crash Course is for anyone wanting to learn PHP programming in a
practical, hands-on way, regardless of whether you have previous
programming experience. Since most PHP programs are web applications,
knowing about the HyperText Markup Language (HTML) and Cascading
Style Sheets (CSS) languages used to represent the content and visual style
of web pages might prove helpful, but you don’t need to know any web
programming, such as JavaScript.

Why PHP?
PHP is currently in its eighth major version, so as well as being tried and
tested, it’s faster and more secure than ever before. It’s a free, open source,
and well-maintained language. While other popular web programming
languages are available, about 70 percent of the web is run by PHP
programs, including Etsy, Facebook (using its dialect of PHP, called Hack),
Spotify, Wikipedia, and WordPress.

PHP also has a relatively shallow learning curve. We’ll start off with
just a few lines of code, and once you’re comfortable with the basics, we’ll
move on to larger, more structured web application systems.

NOTE
The original version of the language was released as Personal Home Page
Tools (PHP Tools). These days, however, PHP is a recursive acronym that
stands for PHP: Hypertext Preprocessor.

What You Will Learn
In this book, you’ll learn to program in PHP, from short, simple scripts to
multi-file, database-driven, login-secured, object-oriented web applications.

In Part I, Language Fundamentals, you’ll start writing small PHP
program scripts. This part introduces some fundamentals of the language,
including storing different types of values in named variables, working with
text, and writing decision-based logic.

Chapter 1: PHP Program Basics Introduces writing and executing
PHP scripts in both an online coding environment and an editor on

your computer.
Chapter 2: Data Types Discusses the different types of data and how
PHP automatically converts between them.
Chapter 3: Strings and String Functions Covers working with text,
both in your own code and in some of the built-in text functions that
the language offers.
Chapter 4: Conditionals Explores conditional elements of the
language, like if...else, switch, and match, and offers guidelines for
when each is most appropriate. You’ll also learn about operators, such
as logical comparisons, that assist in the implementation of decision-
making logic.
Chapter 5: Custom Functions Introduces functions, which are
reusable, self-contained sequences of code to accomplish tasks.
In Part II, Working with Data, you’ll work with loops to repeat actions

and learn about more sophisticated data structures such as arrays and files.
Chapter 6: Loops Covers adding flexibility and avoiding code
duplication through structures to repeat actions.
Chapter 7: Simple Arrays Introduces arrays, a mechanism for
storing and manipulating multiple data items under a single variable
name.
Chapter 8: Sophisticated Arrays Moves beyond the previous
chapter into more sophisticated key-value maps and multidimensional
arrays.
Chapter 9: Files and Directories Explores how and when to use
functions to interact with files in your PHP scripts.
In Part III, Programming Web Applications, you’ll begin creating web

applications, including receiving and validating data submitted through
forms.

Chapter 10: Client/Server Communication and Web Development
Basics Introduces important concepts about clients, servers, and how
PHP-driven web applications work.
Chapter 11: Creating and Processing Web Forms Covers how to
design web forms and how to write PHP scripts that process the data

submitted through those forms.
Chapter 12: Validating Form Data Explores ways to validate
received data and covers some typical decision logic to take
appropriate actions depending on the correctness of the values received
or missing.
Chapter 13: Organizing a Web Application Progressively explores
the model-view-controller (MVC) software architectural approach,
which divides up the responsibilities for maintaining an application
among various scripts, allowing the application to grow without
becoming unmanageable.
Part IV, Storing User Data with Browser Sessions, introduces sessions,

which allow websites to remember data across page requests; this is useful
for shopping carts and logins.

Chapter 14: Working with Sessions Introduces the PHP features that
allow web applications to remember information over time.
Chapter 15: Implementing a Shopping Cart Covers how to add
items to a shopping cart and how to remember the items until the user
is ready to check out and pay.
Chapter 16: Authentication and Authorization Implements security
authentication (determining the identity of the person using the
computer system) and authorization (deciding whether the user is
permitted to access a particular part of the system).
In Part V, Object-Oriented PHP, you’ll learn about the powerful

technique of object-oriented programming (OOP).
Chapter 17: Introduction to Object-Oriented Programming
Discusses the motivation for moving from functions to an OOP
approach and the differences between these options.
Chapter 18: Declaring Classes and Creating Objects Covers the
core OOP features of classes and objects.
Chapter 19: Inheritance Describes the powerful OOP concept of
inheritance and how to implement it in code.
Chapter 20: Managing Classes and Namespaces with Composer
Covers key mechanisms for implementing OOP solutions in the PHP

programming language and shows how the Composer command line
tool can help.
Chapter 21: Efficient Template Design with Twig Explores the
Twig library’s inheritance-based system for developing page templates,
which simplifies the process of “decorating” application data with
HTML to be returned to the user.
Chapter 22: Structuring an Object-Oriented Web Application
Introduces a commonly used, scalable web application software
architecture.
Chapter 23: Error Handling with Exceptions Discusses the error-
handling mechanism of exceptions, a feature of many programming
languages.
Chapter 24: Logging Events, Messages, and Transactions Shows
how to maintain a system log, including outputting to a logfile or to an
external, cloud-based logging service, as is common for large-scale
web applications.
Chapter 25: Static Methods, Properties, and Enumerations Covers
the OOP features of class-level, static members. Also covers
enumerations, the special category of class making it easy to offer a
fixed set of possible values.
Chapter 26: Abstract Methods, Interfaces, and Traits Explores
ways to share methods among multiple classes without the normal
process of inheritance.
Part VI, Database-Driven Application Development, walks through

writing programs that communicate with database systems. It ends with a
discussion about working with dates and times, both in your program code
and stored in databases.

Chapter 27: Introduction to Databases Introduces databases and
their relationship with web applications.
Chapter 28: Database Programming with the PDO Library
Discusses writing code to communicate with databases.
Chapter 29: Programming CRUD Operations Shows how to
introduce database CRUD (create, read, update, delete) features to a
web application.

Chapter 30: ORM Libraries and Database Security Describes the
benefits of automating the relationship between code and database
structures through object-relational mapping (ORM) libraries, and
outlines several best practices for secure, database-driven web
development.
Chapter 31: Working with Dates and Times Covers ways to work
with temporal information, including how to handle ambiguities like
time zones and daylight saving time.
Finally, the appendixes cover how to set up the tools you’ll need to get

started with PHP.
Appendix A: Installing PHP Goes through the steps to install PHP
for macOS, Linux, and Windows computer systems.
Appendix B: Database Setup Covers how to make sure the MySQL
and SQLite database management systems are set up on a local
computer.
Appendix C: Replit Configuration Discusses how to reconfigure
more advanced Replit projects to work with tools such as the
Composer dependency manager and a database management system.

Online Resources
The code listings from this book and my suggested exercise solutions are
available to download at https://github.com/dr-matt-smith/php-crash-
course.

Exercises are included at the end of each chapter. I recommend first
attempting these yourself before looking at my solutions.

For updates and other information about the book, see
https://nostarch.com/php-crash-course.

https://github.com/dr-matt-smith/php-crash-course
https://github.com/dr-matt-smith/php-crash-course
https://nostarch.com/php-crash-course

PART I
LANGUAGE FUNDAMENTALS

1
PHP PROGRAM BASICS

In this chapter, you’ll learn two ways to
create and run PHP programs: using an

online coding environment and using an editor
installed locally on your own computer. We’ll try
both techniques to practice key programming tasks
like printing out text messages, assigning values to
variables, and working with data of different types.
We’ll also explore core PHP language features
including comments, constants, and expressions.

Two Methods to Run PHP
Often the easiest way to learn a programming language is to use an online
environment that has everything already set up for you. This lets you start
coding right away and see the results instantly, without having to install and
configure language engines, code editors, web servers, or other tools. On
the other hand, some prefer the customization and control that comes from
working in a programming environment installed on their own machine.

In this section, you’ll get to explore both approaches as you write your
first PHP programs. You can then use either method to follow along with

the examples throughout this book.

The Replit Online Coding Environment
Several online sites facilitate interactive PHP development and can run PHP
web servers for you. We’ll focus on Replit (https://replit.com), a popular
service that’s free to use for starter projects. To try it out, go to the Replit
website and create an account.

NOTE
Replit is named for the read-evaluate-print loop (REPL), a type of computer
environment where the programmer enters an expression and the system
immediately executes it, prints out the response, and waits for the next
input. A command line terminal, where you enter single-line commands and
the terminal executes those commands, is a type of REPL.

Replit features two official, preconfigured templates for creating PHP
projects: PHP CLI (short for command line interface) and PHP Web Server.
The former is appropriate for projects that simply output text in a command
line terminal window or work with data files, while the latter is for web
development. Let’s take a look at each of these templates so you can learn a
bit about how PHP programs work in the process.

Creating a Command Line Interface Project
To create a PHP command line interface project, go to the home screen of
your Replit account and click Create Repl. This will launch a pop-up
window where you can search for project templates. Enter PHP into the
search box. The results should include the PHP CLI and PHP Web Server
templates from Replit. (Below these official Replit templates, you may also
see other templates created by Replit users and tagged for the PHP
language.) Choose PHP CLI and enter a name for your project, or take the
random-words default name offered. Then click Create Repl to launch the
project.

The website will take a short while to set up your new project,
including creating its file and folder structure and starting up a cloud virtual
machine to run it. When the project loads, you’ll be presented with the
three-column screen shown in Figure 1-1.

https://replit.com/

Figure 1-1: The new PHP CLI project screen, with the default “Hello, world!” script

The left column lists the project’s files and folders, the middle column
is an online code editor, and the right column is the command line terminal
output (called Console) and an interactive terminal (called Shell) for the
virtual computer that Replit has created. The Run button at the top of the
screen runs the project, at which point any output will be displayed in the
console.

A typical PHP project includes one or more files, called scripts, saved
with the.php file extension. In this case, the Replit PHP CLI project
automatically starts with a prewritten file called main.php. The file contains
PHP code to output the message Hello, world! in the console. Writing a
program that displays this message is a tradition when learning a new
language. Besides being fun, it provides an opportunity to learn how to
name the text files containing your programs, how to write valid statements
in your language of choice, and how to execute a program. What’s more, a
“Hello, world!” script serves as a basic test of the language tools on the
computer system: if the program runs and successfully outputs the Hello,
world! message, that means PHP is working.

Listing 1-1 shows the boilerplate “Hello, world!” script that Replit
provides in main.php.

<?php

echo "Hello, world!\n";

Listing 1-1: The “Hello, world!” program in main.php

The <?php at the start of the script is an opening PHP tag. This tag
signals that what follows is PHP code. In this case, the code uses the echo
command to print out the text Hello, world! in the console, followed by a

line break denoted with a newline character (\n). Notice that the text to be
printed is enclosed in double quotation marks. These quotes indicate that
the text is a string, a type of data consisting of a sequence of characters.
We’ll discuss strings and special characters like \n in detail in Chapter 3.

The echo line of code is an example of a statement, a single command
directing the computer to perform a task (in this case, to display some text).
Every PHP statement must end with a semicolon (;) to indicate the
command is over, as this echo statement does. Think of the semicolon as
the period at the end of a sentence; without it, the statement is considered
incomplete.

Running the main.php Script
Click the green Run button to run the main.php script. You should see the
Hello, world! message printed to the console. Congratulations, you’ve
just run your first PHP program! But what actually happened when you
clicked Run?

PHP is a scripted programming language. This means a program called
an interpreter translates the contents of a PHP file into machine code as the
file is being executed. Other scripted languages include Python and
JavaScript. Scripted languages are different from compiled programming
languages like C, C++, and Swift, in which the translation happens in a
separate step prior to execution. During this extra step, all program files are
compiled and optimized into one or more executable files.

The interpreter that translates PHP scripts into executable code is
usually called the PHP engine. When you click Replit’s Run button to run
the main.php file, Replit invokes the PHP engine, which then reads the
contents of the file and interprets and executes the lines of code inside it.
For simple PHP scripts (such as our Replit main.php) that consist of just
one or more statements meant to be executed in order, this is a
straightforward process. Almost all programs involve more complex
decision logic, however, performing tests so the code can respond
dynamically to events and determine which statements to execute and in
which order. The way the PHP engine decides what to do next is referred to
as the flow of control. We’ll explore this concept further when we discuss
conditionals and loops in Chapters 4 and 6.

Hitting Replit’s Run button isn’t the only way to run a PHP script. You
can also invoke the PHP engine from the command line by using the php
command followed by the name of the script you want to execute. To try it
out, switch over from the Console tab to the Shell tab in the right-hand
column of your Replit project to bring up an interactive command line
terminal. Then enter the following after the $ prompt:

$ php main.php

Hello, world!

The php main.php command instructs the PHP engine to execute the
main.php script. As before, this outputs the Hello, world! message. You
can use this same technique to execute PHP files from the command line on
your local machine, where you won’t necessarily have Replit’s convenient
Run button.

Creating a Web Server Project
PHP is primarily used for developing web applications, so let’s now try
creating a basic web-based PHP project by using Replit’s PHP Web Server
template. Go back to your Replit account home page and create a new
project, this time choosing the PHP Web Server template after entering
PHP into the template search box. Your new project should look like Figure
1-2.

Figure 1-2: The new PHP Web Server template project screen

The only file shown in the left column is a boilerplate index.php file.
An index file such as this has special significance: it represents the default
file served up when you visit the home page of a website. (We’ll discuss
how this works in more detail when we explore web programming in Part
III.) The file’s contents are shown in the middle column. In the right column
are the Console and Shell tabs, and this is also where a Webview tab will
appear when we run the web server to show the rendered web page.

The index.php file should contain the code shown in Listing 1-2.

<html>

 <head>

 <title>PHP Test</title>

 </head>

 <body>

 ❶ <?php echo '<p>Hello World</p>'; ?>

</html>

Listing 1-2: The web server script in index.php

The bulk of this file isn’t PHP code but rather the HyperText Markup
Language (HTML) needed to create a generic web page, as indicated by the
opening <html> and closing </html> tags at the beginning and end of the
file, respectively. As we’ll discuss further in “Template Text vs. PHP Code”
on page 13, many PHP scripts mix dynamic PHP code meant to be
interpreted and executed on the fly with static text in a language like
HTML. In this case, the only PHP code is an echo statement to display the
text Hello World ❶. The text is wrapped in HTML <p> tags, meaning it
will be rendered on the resulting web page as a body paragraph, and the
entire echo statement is enclosed in PHP tags (the opening <?php tag and
the closing ?> tag) to indicate that it’s actual PHP code, unlike the
surrounding HTML.

Running the Web Server Project
Click the Run button, and Replit will launch a web server hosting the
index.php file and running the PHP engine needed to interpret the PHP code
in the file. This time, instead of seeing text appear in a Console tab, you

should see Hello World displayed as a basic web page in the Webview tab
(see Figure 1-3).

Figure 1-3: Viewing the index.php script output in the Replit Webview panel

When running the web server, Replit publishes temporary pages to its
replit.dev domain. This means it provides publicly served web pages you
can view and interact with in a separate web browser tab rather than just
through the Replit site itself. To try this, click the green {...}.replit.dev URL
address bar in the Webview panel. Then copy the URL shown in the pop-up
window and paste it into a new tab in your web browser. You should see the
same Hello World message rendered as its own web page, separate from
the Replit interface. Congratulations, you’ve just published your first PHP
website!

NOTE
If you choose to use Replit to follow along with this book, you’ll have to do
extra configuration to work on some of the more sophisticated projects in
later chapters. See Appendix C for details.

A Local PHP Installation
Online editors like Replit can be fantastic, but they may be slow and
restricted on free plans, and they require a reliable, fast internet connection.
Many developers instead prefer to work locally on their own machine. To
do this, the first step is to install PHP on your computer. If you haven’t
already done so, follow the guidelines in Appendix A to install the latest
version of PHP for your operating system.

Once PHP is installed, you’ll need an integrated development
environment (IDE) where you can write your code. An IDE is a powerful
text editor that includes useful programming tools like a terminal,
sophisticated search-and-replace functions, code spelling correction, and
even automatic code generation for common tasks.

In this section, we’ll focus on local PHP development with PhpStorm, a
popular IDE from JetBrains. Anyone can use it free for 30 days, and from
there many people (such as students, teachers, and those in coding
bootcamps, user groups, and open source projects) can get a free license.
Visit https://www.jetbrains.com/phpstorm/ to download PhpStorm and
follow the installation instructions.

NOTE
If you don’t want to use PhpStorm, other free IDEs offer plug-ins to assist
your PHP coding, including Visual Studio Code, Eclipse, and Apache
NetBeans.

Creating “Hello, world!” with PhpStorm
Let’s create a “Hello, world!” project with PhpStorm, similar to the default
script that comes with Replit’s PHP CLI template. Open the PhpStorm IDE,
click New Project, and choose PHP Empty Project from the list of
possible templates. Select a location for the project and change the untitled
default name to your desired project name. Make sure to include a forward
slash before your project’s name in the location path, as in /program1. Then
click Create.

PhpStorm will set up a new folder with your chosen project name in
the desired location. All the files for the project will be contained in this
folder; more complex projects might also have subfolders to organize data,
program files, configuration files, and so on. With the folder created,
PhpStorm will load into the project-editing view shown in Figure 1-4.

https://www.jetbrains.com/phpstorm/

Figure 1-4: The three main PhpStorm panels

The top-left panel in PhpStorm shows the project folder and its
contents. The top-right panel is where you edit your code and data files.
Click the Terminal (>_) icon in the left-hand column of the application
window to open a command line terminal at the bottom of the application
window, where you can enter commands and see the text output of your
programs. This terminal automatically opens at the project folder location.

We’re ready to add a basic “Hello, world!” script to the project. Select
your project folder in the top-left panel of the application window and then
choose File ▸ New ▸ PHP File from the top menu. Enter hello for the
filename (PhpStorm will add the .php file extension for you) and click OK.
You should see this new hello.php file appear in the project contents panel,
and the file should be opened for editing in the code-editing panel, already
containing the opening PHP tag (<?php) needed to designate the file’s
contents as PHP code. Now edit the file so it matches the code in Listing 1-
3.

<?php

print "Hello, world!\n";

Listing 1-3: Our “Hello, world!” program in hello.php

As in our Replit command line program, this code simply prints out the
text Hello, world! followed by a newline character (\n). Notice that this
time the statement uses print rather than echo to display the text. The two
are largely interchangeable; see the following “print or echo?” box for
more information.

PRINT OR ECHO?

In PHP, you can use either print or echo to display text. The two have subtle
differences, but they aren’t relevant to beginning PHP programming, so for our
purposes we can consider print and echo statements to be essentially equivalent.
Which you use comes down to personal preference. Personally, I think the word print
is a closer match to the intent behind such program statements, so I’ll use print
throughout this book. On the other hand, older PHP programs (or new code written
by older PHP programmers) tend to use echo, since print was a later addition to the
language.

In many programming languages, the equivalent of print or echo is considered a
function, and therefore the text to be output must be provided inside a set of
parentheses after the function name. In PHP, however, print and echo aren’t
functions but rather language constructs. The technical distinction isn’t important,
except to say that you don’t need to enclose the text being output by a print or echo
statement in parentheses (although you can if you want).

To run your script, open the Terminal panel (if you haven’t already
done so) and enter the following at the command line:

% php hello.php

Hello, world!

You should see the Hello, world! message appear on the next line in the
terminal.

A second way to run your script in PhpStorm is to click the green Run
button (next to the green “bug” button) at the top right of the application

window. This should execute the file currently being edited. If clicking the
button opens a drop-down menu offering a choice of PHP and JS
(JavaScript) ways to run the script, choose the PHP option.

If you execute the script this way, a Run panel should open at the
bottom of the screen showing the PHP engine you’re using and the location
of the script being executed. This information is useful if you have multiple
versions of the PHP engine on a single computer so that you can test scripts
for compatibility with the different engines. Below this should be the output
of running the program, followed by an exit code of 0 indicating the
program successfully completed execution.

Running a PHP Web Server Locally
When you install PHP, it comes with a built-in web server for testing web
development projects locally on your system. You can see information
about this web server (and verify that it’s working) by using the phpinfo()
function. This function generates a long string of HTML text reporting
details about the current PHP installation. Running a script that calls this
function is a useful first step when testing any PHP system for web
development, whether on your local machine computer or on a hosted web
server.

Using PhpStorm (or another IDE of your choice), create a new project
in a folder named web_project_1. Then create a new file for the project
called index.php. As mentioned, the name index indicates this will be the
default file that the web server hosting the project will return. Edit the file
to match the contents of Listing 1-4.

<?php

phpinfo();

Listing 1-4: Our info web application in index.php

After the obligatory opening PHP tag, you use the statement print
phpinfo(); to display the report that results from calling the phpinfo()
function. You can view this report as a nicely formatted web page by
executing the script in a web browser. In PhpStorm, choose View ▸ Open

in Browser ▸ Built-in Preview, or click the PhpStorm icon when your
mouse is in the file-editing panel (see Figure 1-5).

Figure 1-5: Using the PhpStorm web preview

Launching the built-in preview should run the PHP web server and
display the results of the index.php script in a sample browser window
within PhpStorm, as shown in Figure 1-6.

Figure 1-6: The output of the phpinfo() function in the PhpStorm preview

You may wish to scroll through this web page to learn more about your
system’s PHP setup. You’ll find the version of the PHP engine, the location

of the php.ini configuration file, information about what database
extensions (if any) are enabled, the names of key contributors to the PHP
language, and more.

You can also view the result of your index.php script in a real web
browser like Google Chrome or Mozilla Firefox rather than within
PhpStorm. (If you’re using a different IDE, this may be your only option.)
First, open the IDE’s terminal and enter the following command:

% php -S localhost:8000

This tells PHP to launch its built-in web server and make the current
project available at localhost:8000. Here, localhost refers to your local
computer system, and 8000 sets the port number. Each application that
needs to send and receive messages over the internet needs a unique port
number; you can think of these ports as different mailboxes at the same
location. Web servers for testing purposes usually use port number 8000 or
8080, whereas production (live) web servers usually run at port 80.
Personally, I always use 8000 when developing locally.

With the web server running, open a web browser and enter
localhost:8000 in the address bar. You should see your PHP script’s output
as before. When you’re done, go back to the terminal and press CTRL-C to
terminate the web server.

Note that to view a script that isn’t named index.php in the browser,
you’ll have to append the script’s filename to the end of the URL in the
browser address bar. For example, to view the hello.php script from Listing
1-3 as a web page, you would first run the PHP web server with the php -S
localhost:8000 command, then navigate to localhost:8000/hello.php in
your browser.

TROUBLESHOOTING: STARTING THE WEB SERVER

If you try to start your web server on port 8000 and get an error stating that the port
is already in use, one solution is to try an alternative port number, such as 8001,
8080, or 8888. However, you also may want to find out which application is already
running at port 8000, since your computer might already be running a web server in
the background that you don’t know about.

Although running several web servers on your computer is perfectly possible,
you’ll almost always be testing only one web application project at a time, so if
several servers are running, you could end up testing the server responses to a
different application from the one you’re working on. Personally, if I get a message
that I can’t start a web server on port 8000 because it’s already in use, I track down
and kill that process (or just reboot the computer) to ensure that I can test the project
I’m working on with just one server running on port 8000.

Template Text vs. PHP Code
PHP is a popular language for web development because of how easy it is
for PHP scripts to output HTML (or CSS or JavaScript) for display in a web
browser. Some parts of the output are typically unchanging template text,
while other parts are dynamically generated through the execution of PHP
program statements. This combination of static template text and dynamic,
code-generated text is the backbone of just about any interactive website.

As an example, think about viewing a shopping cart at an online retail
site. The web designer doesn’t need to write a separate script for displaying
every possible configuration of items in a shopping cart. They just have to
write one script that mixes the generic template text for the elements that
would appear in any shopping cart (the hidden HTML head elements, a
navigation bar, the company logo, and the like) with the PHP code needed
to dynamically fill in the name, price, quantity, and other details of each
specific cart item.

The ability to mix template text with PHP code is why we’ve needed
the opening <?php tag in our scripts so far, and why we sometimes need the
closing ?> tag as well. Anything outside these tags is treated as template
text and will be output verbatim; anything inside these tags is interpreted as
PHP code and executed accordingly. If the script consists entirely of PHP
code, as in Listings 1-1, 1-3, and 1-4, then only the opening <?php is
needed; if the PHP code is followed by template text, as in Listing 1-2, the
closing ?> tag is needed as well.

To clarify the difference between template text and PHP code, let’s
write an example script that combines the two. Create a new project (either
online with Replit or locally with PhpStorm), and inside this project create a
new file called hello2.php. Edit the file to match the contents of Listing 1-5
exactly.

I am template text, not PHP code.

print "Hello, world!\n";

I am more template text.

Listing 1-5: The hello2.php script, featuring template text with no PHP code-block tags

The first and third lines of this script are template text and are meant to
be output directly when the script is executed. The middle line is PHP code
to output the phrase Hello, world! followed by a line break. Or is it? Try
running this script by entering php hello2.php in a command line terminal.
Here’s the result:

% php hello2.php

I am template text, not PHP code.

print "Hello, world!\n";

I am more template text.%

The output reproduces all three lines of text verbatim, just as they
appear in the file. In particular, the middle line includes PHP code elements
like the print keyword, quotation marks, and semicolon that weren’t meant
to be seen. The problem is that we haven’t included any opening or closing
tags to designate the middle line as PHP code, so the entire script has been
interpreted as template text and output directly.

Notice also that the last line of output ends with a new terminal prompt
(in this case, a percent symbol). This is because spaces, tabs, and newline
characters are copied exactly as they’re written when they appear outside
the PHP script tags as template text. The terminal then picks up right away
with a new prompt wherever the output leaves off, without adding an extra
line break. Had we included a blank line at the end of the hello2.php script,
the new terminal prompt would appear on its own line.

Let’s update our script to fix both of these problems. Listing 1-6 shows
a revised version of hello2.php, with the changes bolded.

I am template text, not PHP code.

<?php

print "Hello, world!\n";

?>

I am more template text.

Listing 1-6: Fixing hello2.php to distinguish template text from PHP code

We’ve added an opening <?php tag before the print statement and a
closing ?> tag after it. This tells the PHP interpreter that what falls between
the tags should be interpreted and executed as PHP code. We’ve also added
a blank line to the end of the script.

If you rerun this script, the PHP engine should now find the starting
and ending PHP program tags wrapped around the print "Hello,
world!\n"; statement, and so, as well as outputting template text outside
those tags, it will execute that line of code to print out Hello, world! and a
newline character. Here’s the result of executing the script again:

% php hello2.php

I am template text, not PHP code.

Hello, world!

I am more template text.

%

This time, notice that the first and last lines of the script have been
output verbatim as template text, while the middle line contains only the
Hello, world! message, indicating it has successfully been interpreted as
PHP code. The new terminal prompt now also appears on its own line, since
we included a blank line at the end of the script in Listing 1-6.

Comments
Comments are a useful feature of any programming language. They’re a
way to tell the PHP engine to ignore some text written within a PHP code
block, so the text will neither be output nor be interpreted as code that
should be executed.

Comments can play several roles in a computer program. First, they’re
a way to embed human-readable notes in the code, such as an explanation
of how something works, why you’ve done something the way you have, or
a reminder about something you still need to do. Second, turning one or

more lines of code into a comment is a great way to temporarily disable that
code while debugging or trying an alternative way of doing something,
without having to delete the code altogether. Finally, comments can also
contain special content for preprocessing tools such as documentation
generators or code-testing utilities.

As with most languages, PHP provides several ways to define
comments. A single-line comment begins with two forward slashes (//) and
looks like this:

// I am a comment and will be ignored.

Everything on the line after the two slashes is treated as a comment and
ignored when the code is executed. This means you can place a comment
after a program statement on the same line, and the program statement itself
will still be executed, like so:

print 2 + 2; // Should print 4

Here print 2 + 2 will be executed, resulting in an output of 4, but the
PHP engine will ignore the // Should print 4 comment at the end of the
line.

A comment that starts with /* and ends with */ can span multiple lines.
Listing 1-7 illustrates this multiline comment syntax.

/*

I

am

a multiline

comment.

*/

Listing 1-7: A multiline comment example

This style of comment is especially useful if you have a longer block of
code that you want to temporarily disable, or comment out.

NOTE

You may also meet the older shell-style single-line comment, which begins
with the # character rather than two slashes, if you work with or have to
maintain legacy code written many years ago. While these shell-style
comments are still valid in PHP programs, the // syntax is the preferred
style of single-line comment in modern PHP programming.

Variables
A distinguishing feature of computer programs is that they are dynamic,
meaning their behavior can change each time they’re executed based on
different data and events. Fundamental to this is the use of variables, named
values or references to data within code. Variables allow you to store values
and refer to them with a meaningful name (an identifier).

They’re called variables because the value they refer to can change
each time a program is executed. For example, a variable might refer to the
current date or time, and a program might have logic to do something
special based on the value of this variable. Perhaps it will display a greeting
on the user’s birthday or trigger an alarm each day at 6 AM. Another
variable might represent the size of a logfile, and the program might
automatically back up the contents of this file and start a new one whenever
the size exceeds a certain threshold.

The values of variables don’t just change from one run of a program to
another; they can also change during the course of a program’s execution.
For example, a variable representing the total value of an online shopping
cart will start at 0 and then update as items are added or removed. A
variable holding the number of simultaneous users logged into a system
would also change as a program runs. At busy times, if the value is very
high, more memory or disk space may need to be added to the system.

Creating Variables
You create a PHP variable by giving it a name and assigning it a value.
Here, for example, we create a variable called $age and assign it a value of
21:

$age = 21;

PHP variable names must begin with a dollar sign ($), something that
distinguishes PHP code from almost all other programming languages.
Assigning a value to a variable hinges around an equal sign (=), known in
this context as the assignment operator. The variable name goes on the left
of the equal sign and its value on the right. Since setting a variable’s value
is a type of statement, the whole thing ends with a semicolon.

The code to the right of the assignment operator is an expression. An
expression is something that yields a single value or can be evaluated into a
single value. The simplest expression is simply a literal value, like the
number 21 in this example. A literal is a value that is expressed as itself.
Examples are 21 (the whole number twenty-one), 3.5 (the floating-point
number three-point-five), true (the truth value true), and "Matt Smith"
(the text string Matt Smith).

Other expressions are more complex. They might involve mathematical
calculations, incorporate other variables, or even, as you’ll see in Chapter 5,
feature a call to a function. In these cases, the expression must be evaluated,
meaning its resulting value is determined, before that value is assigned to
the variable. Listing 1-8 illustrates some examples of assignment
statements.

<?php

$username = "matt"; // A string literal

$total = 3 + 5; // A calculated expression

$numSlices = $numPizzas * 8; // A calculation with another

variable

$timestamp = time(); // A function that returns a

value

Listing 1-8: Examples of assigning the value of an expression to a variable

We first assign the $username variable the value "matt", a string
literal. Variables can hold values representing many types of data, as we’ll
discuss in detail in Chapter 2. We next assign the $total variable the value
of the calculation 3 + 5. This variable will therefore hold the number 8. For
the value of the $numSlices variable, we multiply the value of another
variable, $numPizzas, by 8 (the * symbol denotes multiplication in PHP).

Finally, we set the $timestamp variable to the value that results from calling
the time() function. (You’ll learn more about how to get values out of
functions in Chapter 5.)

If you try to execute the code in Listing 1-8, it won’t quite work. PHP
will produce a warning message like the following:

PHP Warning: Undefined variable $numPizzas in main.php on li

ne 4

The problem here is that the $numPizzas variable is undefined,
meaning it hasn’t been given a value. It’s important to always assign a value
to a variable before you first make use of it.

Using Variables
Once you’ve created a variable, you can use its name anywhere you need to
reference that variable’s value. For example, Listing 1-9 shows a program
illustrating how to use variables to calculate and print the total number of
pizza slices, given a number of pizzas. Create a pizza.php file containing the
contents of this listing.

<?php

$numPizzas = 1;

$numSlices = $numPizzas * 8;

print $numSlices;

print "\n";

$numPizzas = 3;

$numSlices = $numPizzas * 8;

print $numSlices;

print "\n";

Listing 1-9: Working with variables in pizza.php

First, we assign the numeric value 1 to the $numPizzas variable. Then
we multiply the value of $numPizzas by 8 to assign the value of the
$numSlices variable. Remember, variables must be written starting with a
dollar sign; you’ll get used to this very quickly as you write more PHP. We

next use a print statement to show the value inside $numSlices, followed
by another print statement with the \n newline character to create a line
break.

As mentioned, the value of a variable can change while a program is
running, so we next update the value inside the $numPizzas variable from 1
to 3. Then we update the value of $numSlices by again multiplying
$numPizzas by 8, and we print out the new value. Here’s the result of
executing this program at the command line:

% php pizza.php

8

24

Notice that the value of $numSlices changes from 8 to 24 over the
course of the program. These values, in turn, are calculated based on the
changing values of $numPizzas. Try changing the number inside the
variable $numPizzas yourself to get a different number of slices.

Naming Variables
A few rules and conventions exist for naming variables in PHP. First and
foremost, as we’ve already discussed, all variable names must start with a
dollar sign. If you forget the dollar sign when referencing a variable, PHP
will usually report an undefined constant fatal error, and the program will
crash. (We’ll discuss constants in the next section.)

The next character in a variable name after the dollar sign must be a
letter of the alphabet (or in certain cases, an underscore). By convention,
this letter should be lowercase. While a capital letter is technically
permitted, an initial capital is usually reserved for class names rather than
variable names. (You’ll begin learning about classes and object-oriented
programming in Part V.) The remaining symbols in a variable name can be
letters, numerals, or underscores.

Single-word variable names should typically be all lowercase, as in
$name or $total. For variable names with multiple words, we follow two
common conventions. One is snake case : everything is lowercase, and the
words are separated by underscores, as in $game_lives_remaining or

$customer_number. The other is lower camel case: the first word is all
lowercase, and subsequent words start with a capital letter, as in
$gameLivesRemaining or $customerNumber.

The most important rules of thumb are to be consistent in whatever
naming convention you choose, to follow PHP’s style recommendations
when possible, and above all, to choose names that clearly communicate
what the variable represents. A name like $customerNumber is clearer than
something abbreviated like $custNo and certainly clearer than a
meaningless variable name like $x or $variable.

Keep in mind that PHP variable names are case sensitive, so identifiers
like $username and $userName will be treated as separate variables. If you
get the capitalization wrong when you reference a variable (or otherwise
type the variable name incorrectly), PHP won’t know what you mean.
Listing 1-10 shows an example.

<?php

$username = "matt";

print $userName;

Listing 1-10: Misspelling a variable name

We assign the value "matt" to the $username variable, then attempt to
print the value of this variable. Because of the incorrect capitalization in
$userName, however, executing this script at the command line will result in
a warning message like the following:

PHP Warning: Undefined variable $userName in main.php on li

ne 3

Because PHP variables are case sensitive, the PHP engine interprets
$userName as a reference to a completely different variable that hasn’t
previously been given a value. In PHP’s eyes, this is therefore the same
problem as trying to use the $numPizzas variable without first defining it in
Listing 1-8.

Keep in mind that while some aspects of PHP, like variable names, are
case sensitive, other aspects of the language are case insensitive, meaning

capitalization doesn’t matter. These include keywords like if, for, switch,
and print; data types such as int and string; values such as true and
false; and function and method names. That said, it’s common practice to
use lowercase for language keywords and data types, and lower camel case
for function and method names. The exercises at the end of the chapter
suggest a coding style guide that can help you learn more about these
conventions.

VARIABLE NAMES TO AVOID

You must avoid certain names when defining your own PHP variables, since they
correspond to variables that are already built into the language. These variables
serve special purposes, such as retrieving data from HyperText Transfer Protocol
(HTTP) requests or user sessions in the browser. You’ll learn about some of these
built-in variables in later chapters. For now, it’s important to know that the following
variable names are off-limits: $GLOBALS, $_SERVER, $_GET, $_POST, $_FILES, $_REQUEST,
$_SESSION, $_ENV, $_COOKIE, $php_errormsg, $http_response_header, $argc, and $argv.
Since most of these don’t follow the convention of starting a variable name with a
lowercase letter, avoiding them should be easy.

The name $this is also off-limits for a user-defined variable, since $this carries
special meaning in object-oriented programming. We’ll see a lot of $this beginning in
Part V of this book.

Constants
Some values never change, such as the value of π (always 3.14) or the
neutral value on the pH scale (always 7). When referencing such values in
code, it’s best to use a constant rather than a variable. Unlike a variable,
once a constant is defined, its value can’t be updated. By convention, the
names of constants are written in upper snake case, with all capital letters
and underscores between words, as in MAX_PROJECTS or NEUTRAL_PH. Unlike
variables, constants don’t start with a dollar sign.

Some constants are built into the PHP language. Table 1-1 lists a few
examples.

Table 1-1: Examples of Built-in PHP Constants
Constant Description Value

M_PI π, the ratio of a circle’s circumference to
its diameter

3.1415926535898

M_E e, Euler’s number 2.718281828459

PHP_INT_MAX The largest integer that can be
supported by the installed PHP system

Usually 9223372036854775807 for
64-bit systems

You can also create your own custom constants by using the define()
function. The script in Listing 1-11 shows an example.

<?php

define("MAX_PROJECTS", 99);

print "The maximum number of projects is: ";

print MAX_PROJECTS;

print "\n";

Listing 1-11: Defining and printing a constant

We call the define() function to create a constant named
MAX_PROJECTS with the value 99. This makes the constant available for use
anywhere in the code. We then print out the value of the constant as part of
a message. (Multiple print statements in a row will output to the same line
if they don’t contain any line breaks; the final print "\n" adds a newline to
ensure that the next output—in this case, the next command line prompt—
will appear on its own line.) The output of running this script should be as
follows:

The maximum number of projects is: 99

Notice that the constant’s name must be enclosed in quotation marks
when we create it with the define() function. Without these quotation
marks, creating the constant wouldn’t work. For example, if you were to
write define(MAX_PROJECTS, 99) without quotes, PHP would interpret MAX
_PROJECTS as a reference to a previously defined constant and would report

an error. Once you’ve defined a constant, however, you don’t need the
quotation marks when you reference it.

NOTE
The PHP documentation rather confusingly refers to numeric and Boolean
literals as constants, although it also uses the term string literals. When
reading that documentation, it’s therefore useful to distinguish between
simple constants (literal values themselves) and named constants (such as
those created with the define() function).

Operators and Operands
Operators are the programming language symbols we use to manipulate
data, such as the plus sign (+) for numeric addition and the equal sign (=)
for assigning a value to a variable. Operands are the values (literals,
variables, or complex expressions) that an operator works on. For example,
the numeric addition operator expects two operands: one number to the left
of the plus sign and another number to the right, as in 2 + 2 or $price +
$salesTax.

PHP has different operators for working with different types of data. In
this section, we’ll focus primarily on operators for numeric values. In later
chapters, we’ll consider other operators as well, such as operators for
comparing values (Chapter 2) and for manipulating logical true/false values
(Chapter 4).

Arithmetic Operators
PHP has arithmetic operators for basic mathematical calculations, such as
addition (+), subtraction (-), multiplication (*), and division (/). These are
all binary operators, meaning they require two operands. PHP also has the
** operator for raising a number to a given power and the modulo operator
(%), which divides one number by another and reports the remainder. Table
1-2 summarizes these operators.

Table 1-2: The Six Binary (Two-Operand) Arithmetic Operators

Operator Description
Example
expression

Expression
value

Addition Returns the sum of the two
operands

3 + 1 4

Subtraction Returns the difference of the two
operands

10 - 2 8

Multiplication Returns the product of the two
operands

2 * 3 6

Division Returns the quotient of the two
operands

8 / 2 4

Modulo Returns the remainder of the first
operand divided by the second

8 % 3 2

Exponentiation Returns the first operand raised to
the power of the second

2 ** 3 8

As in mathematics, these operators have an order of precedence that
controls the way an expression is evaluated when it contains multiple
operations. The arithmetic operators for multiplication, division, and
modulo have higher precedence, while the operators for addition and
subtraction have lower precedence. Therefore, in the arithmetic expression
1 + 2 * 3, the 2 * 3 component will first be evaluated to 6, and then 1 +
6 will be evaluated, so the whole expression evaluates to 7. You can use
parentheses to force precedence; for example, the expression (1 + 2) * 3
evaluates to 9 rather than 7 since the parentheses force the addition
component to be evaluated to 3 before the multiplication component.

NOTE
See the PHP documentation at
https://www.php.net/manual/en/language.operators.precedence.php for a
complete list of the order of precedence for all PHP’s operators.

https://www.php.net/manual/en/language.operators.precedence.php

Combined Arithmetic Assignment Operators
We’ve already discussed how the basic = assignment operator takes a value
and assigns it to a variable. Other assignment operators, such as += and -=,
combine assignment with arithmetic. These combined operators exist
because it’s common to want to take the value in a variable, perform a
calculation with it, and store the result back in the same variable, replacing
the previous value.

To illustrate, say we have a $total variable for keeping track of the
total cost of the items in an online shopping cart. Every time the user adds
or removes an item from the cart, we’d want to change $total by the cost
of that item. We could do this with the regular = operator by writing
something like $total = $total + 25 or $total = $total - 15. With
combined arithmetic assignment operators, however, we can accomplish the
same task by using more concise syntax: $total += 25 or $total -= 15.
These statements instruct the PHP engine to update the value of the $total
variable by adding 25 or subtracting 15 from its previous value.

Similar arithmetic assignment operators are used for the other
arithmetic operations. For instance, the *= operator multiplies a variable by
a given value. The others, /=, %=, and **= for division, modulo, and
exponentiation, respectively, are used much less often.

Increment and Decrement Operators
Numbers can also be incremented (increased by 1) or decremented
(decreased by 1) using special operators: a double plus sign (++) for
incrementing and a double minus sign (--) for decrementing. As with the
combined arithmetic assignment operators, ++ and -- provide a more
concise syntax for a common programming task. For example, to add 1 to
the existing value of the $age variable, we could use the basic assignment
operator and write $age = $age + 1, or use an arithmetic assignment
operator and write $age += 1. With the increment operator, however, we
simply write $age++. Likewise, $age-- subtracts 1 from the value of $age.
These are examples of unary operators, meaning they expect only a single
operand.

When you want to use the result of an increment or decrement
operation in an expression, the placement of the operator before or after the
value it operates on matters. Say $age contains an integer value of 21. The
expression $age++ yields the current value of $age (21) and then increments
the variable. On the other end, ++$age will first apply the increment and
then yield the variable’s newly incremented value (22). Listing 1-12
illustrates this distinction.

<?php

$person1Age = 21;

print "Person 1 age = ";

❶ print ++$person1Age;

print "\nPerson 1 age (after increment) = ";

print $person1Age;

$person2Age = 21;

print "\nPerson 2 age = ";

❷ print $person2Age++;

print "\nPerson 2 age (after increment) = ";

print $person2Age;

Listing 1-12: Demonstrating the difference between pre- and post-increment operators

Here we set both $person1Age and $person2Age to 21, then use ++ to
increment each person’s age. However, since we use ++$person1Age in one
case ❶ and $person2Age++ in the other ❷, the printed results are different,
as the script’s output shows:

Person 1 age = 22

Person 1 age (after increment) = 22

❶ Person 2 age = 21

Person 2 age (after increment) = 22

Both times we print $person1Age, we see 22 in the output. This is
because placing the ++ operator before the variable ensures that its value is
incremented from 21 to 22 before it’s first printed. By contrast, placing the
++ operator after $person2Age allows us to first see its original value of 21

❶, since it forces the increment operation to take place after the variable’s
value is used in the expression.

To avoid confusion about whether the pre- and post-increment value
will be used, many programmers opt to use two separate lines of code: one
with a statement incrementing a variable’s value, and another with a
statement to make use of that new value, as in Listing 1-13.

$person1Age = 21;

$person1Age++;

print $person1Age;

Listing 1-13: Separating the increment operation from the print statement

Here we use one statement to only increment $person1Age and another
statement to only print the variable’s value. This unambiguously ensures
that the resulting output will be 22.

Summary
We’ve covered some important PHP programming basics in this chapter.
We looked at two ways to create and run PHP programs: using the Replit
online environment and using the PhpStorm IDE on your local computer.
We covered statements, expressions, variables, constants, and operators,
which are all key building blocks of computer programs, and we discussed
how to use comments to help make code more readable for humans and to
temporarily disable blocks of code when developing and debugging
programs. We also took a first look at how to interweave PHP program
statements with unchanging template text, a fundamental technique for
creating web applications that can dynamically customize the web pages
returned to users.

Exercises
1. Visit the PHP website, https://www.php.net, and get to know the layout

of the language’s documentation pages. They will be a great reference
when you’re programming in PHP.

2. Visit another handy online PHP resource, PHP the Right Way
(https://phptherightway.com). This website is a collection of best

https://www.php.net/
https://phptherightway.com/

practices in the PHP programming community. Almost everyone in the
community now follows the same code-styling guidelines, which makes
PHP code from different programmers easy to read, understand, and
contribute to. You can read about these guidelines at
https://phptherightway.com/#code_style_guide, where you’ll also find
links to specific style recommendations from the PHP Framework
Interop Group (PHP-FIG), the unofficial group of international PHP
professionals driving the language’s coding standards.

3. Use comments to disable some of the lines in the following listing so
that only Cat, Dog, and Helicopter are printed:

<?php

print "Cat\n";

print "Elephant\n";

print "Dog\n";

print "Helicopter\n";

print "Bus\n";

print "Spacecraft\n";

4. Write a script that creates a $name variable containing your name and
uses that variable to print out the message My name is your name
followed by a newline character.

https://phptherightway.com/#code_style_guide

2
DATA TYPES

In this chapter, we’ll explore the data
types available in PHP. We’ll also

consider how to force a value into a specified data
type (type casting), as well as situations where PHP
automatically attempts to convert data types to make
the various parts of expressions work together (type
juggling).

A data type is a categorization of a value in a program that specifies
how the PHP engine is to interpret that value and therefore which
operations can be applied to it. For example, if a value is an integer, the
PHP engine knows that operations such as addition and multiplication are
permitted and that the outcomes of those operations are themselves
integers; meanwhile, the PHP engine knows that the outcome of division on
an integer might be another integer or a floating-point (decimal) number.

Understanding which data types are available—and knowing when and
how a value’s data type can change—is essential as you work with inputs,
perform calculations, and output data. If you don’t know the type of data
you’re manipulating or how that data responds to various operations, you
might get unexpected results.

PHP Data Types
In Chapter 1, we stored the word "matt" in a variable and assigned the
number 99 to a constant. These values are of different data types: one is a
string, and the other an integer. In all, PHP has 10 built-in data types
divided into three categories, as shown in Figure 2-1.

Figure 2-1: PHP data types

For now, we’ll mostly focus on the four scalar data types, which can
hold only one value at a time. We’ll also pay some attention to the special
NULL data type. In later chapters, you’ll learn about two of the compound
data types, array (in Chapters 8 and 9) and object (in Part V), which can
store and manipulate collections of multiple values. The resource special
type and the callable and iterable compound types are used only in
complex and special cases and won’t be considered in this book.

Scalar Data Types
The four scalar (single-value) data types are string, int, float, and bool.
The string type is for text, the int type is for whole numbers (integers),
the float type is for floating-point (decimal) numbers, and the bool type is
for Boolean true/false values.

Let’s use PHP’s interactive mode to explore the scalar data types. This
mode allows you to enter individual PHP statements at the command line
and immediately see the results. We’ll use interactive mode in the coming
chapters to quickly demonstrate basic concepts and get instant feedback,
instead of having to write full PHP scripts. Enter php -a at the command
line to turn on interactive mode and then enter the following:

php > $username = "matt";

php > print gettype($username);

string

Here we once again assign the value "matt" to the $username variable.
We then use PHP’s built-in gettype() function to print out the variable’s
type. The output confirms that $username contains a string.

If you’ve previously seen or written code in strongly typed languages
like Java or C#, you may have noticed that you don’t have to specify the
data type when assigning a value to a variable. PHP is a loosely typed
language, meaning that the same variable can store values of different data
types at different times and that the PHP engine will automatically infer the
data type of an expression.

NOTE
We can also explicitly declare data types in PHP, something we’ll do
starting in Chapter 5 when we begin writing functions. For now, though, as
we work with simple variables, we’ll let the interpreter infer data types.

In the case of the $username variable, the value "matt" is inferred to be
a string. We can similarly assign variables numeric values with or without
decimals, and PHP will interpret them as integers or floats as appropriate:

php > $age = 21;

php > print gettype($age);

integer

php > $price = 9.99;

php > print gettype($price);

double

Here we see that $age, with its whole-number value, has been
interpreted as an integer, and $price, whose value includes a decimal, has
been interpreted as ... a double? Although the documentation refers to
floating-point values as being of the float data type, for historical reasons
(PHP is an old language!) the function gettype() returns double when
used on floats—a reference to the double-precision format for storing
floating-point values. PHP has only one kind of floating-point data type,
however, so while other programming languages may have different
precision and memory representations for floats, doubles, reals, and so on,
all floating-point values in PHP are of the float data type (no matter what
the gettype() function says).

Let’s try creating a variable of the bool type next. Enter the following:

php > $isDutyFree = true;

php > print gettype($isDutyFree);

boolean

php > print $isDutyFree;

1

When we use gettype() on the $isDutyFree variable, we see boolean
displayed. This is an alias for bool in PHP; the two are mostly
interchangeable, but to avoid some cases where aliases don’t work, always
write bool in your code (and I’ll do so in this book).

More curiously, notice that when we try to print the value of
$isDutyFree, we see the number 1 rather than true in the output. This isn’t
an error. It’s related to the way bool values are converted, or juggled, into
strings. The print command expects a string, so whatever we provide after
the keyword print is automatically converted into a string expression by

the PHP engine. For the bool type, true is converted to the string "1", and
false is converted to an empty string (that is, a string with no content,
denoted by a set of quotation marks with nothing in between: ""). We’ll
discuss conversion to another data type through manual casting and
automatic type juggling in more detail later in the chapter.

To see the actual Boolean value of $isDutyFree, use the built-in
var_dump() function instead of print. This useful function outputs
information about a variable. It’s helpful when learning PHP and for
debugging purposes to know the value of a variable at a certain point in the
execution of your code:

php > $isDutyFree = true;

php > var_dump($isDutyFree);

bool(true)

The output from var_dump() confirms that the data type of
$isDutyFree is bool and that its value is true.

The Special NULL Type
PHP has a special data type represented in code by the constant NULL or
null (it’s case insensitive). A variable is NULL in three situations. In the first,
a variable has never been assigned a value, as shown here:

php > var_dump($lastName);

Warning: Undefined variable $lastName in php shell code on l

ine 1

NULL

When we try var_dump() on $lastName without giving the variable a
value, we first get a warning that $lastName is undefined. Then we see that
the variable, not having been given a value, evaluates to NULL.

Second, a variable is NULL if it’s been explicitly assigned the constant
NULL as its value:

php > $firstName = NULL;

php > var_dump($firstName);

NULL

Here we see an important difference between a variable never having
been given a value, as in the previous example, and a variable containing
the value NULL. In the first case, var_dump() produces a warning, whereas
in this case we don’t get a warning; we just see the variable’s value (NULL)
printed out. Assigning a variable the value NULL is fine, just like assigning a
variable another value.

Finally, a variable will be NULL if it has been unset, or cleared of its
value, with the built-in unset() function:

php > $lastName = "Smith"

php > var_dump($lastName);

string(5) "Smith"

php > unset($lastName);

php > var_dump($lastName);

Warning: Undefined variable $lastName in php shell code on l

ine 1

NULL

Here we give $lastName a value and then use unset() to get rid of that
value. When we try to use var_dump() on $lastName after unsetting it, we
get the same warning as before and see that it evaluates to NULL. Unsetting a
variable is the same as never having given it a value in the first place.

When working with variables and data items in more complex
programs, you’ll sometimes need to design logic to handle encounters with
NULL. For example, if you’re creating a connection to a database but have a
problem connecting, the connection variable will be set to NULL. In another
example, if you expect to be passed a reference to an object (such as the
logged-in user) but no such object exists, then a variable will be NULL. We’ll
explore these kinds of situations in Parts V and VI, when we discuss object-
oriented programming and databases.

Functions to Test for a Data Type
PHP has many functions that produce true or false based on whether the
provided variable or expression is of a certain data type. These include
is_string(), is_int(), is_float(), is_bool(), and is_null(). Such
functions are useful if you need to confirm that a variable is of a particular
type before trying to work with it or, conversely, if you need to check that a
variable isn’t NULL. Here are some examples of these functions in action:

php > $gpa = 3.5;

php > var_dump(is_string($gpa));

bool(false)

php > var_dump(is_int($gpa));

bool(false)

php > var_dump(is_float($gpa));

bool(true)

php > $middleName = NULL;

php > var_dump(is_bool($middleName));

bool(false)

php > var_dump(is_null($middleName));

bool(true)

Our variable $gpa contains a decimal value, so only is_float() is
true for it. Similarly, $middleName contains NULL, so passing it to
is_null() yields true.

Some of PHP’s type-checking functions are true for broader categories
of data types. For example, the is_numeric() function is true for variables
of type int or float:

php > $gpa = 3.5;

php > $age = 21;

php > var_dump(is_numeric($gpa));

bool(true)

php > var_dump(is_numeric($age));

bool(true)

Here we see both the decimal value 3.5 and the whole-number value
21 pass the is_numeric() test. The same function is also true for strings
that contain only numeric characters, but not if non-numeric characters are
mixed in:

php > $price = "9.99";

php > var_dump(is_numeric($price));

bool(true)

php > $price = "9.99 dollars";

php > var_dump(is_numeric($price));

bool(false)

When $price contains the string "9.99", is_numeric() is true. When
we add the word dollars to the end of the string, however, is_numeric()
becomes false.

Type Juggling
In some situations, the PHP engine automatically converts a value from one
data type to another. This is known as type juggling. Consider this example:

php > $answer = "1" + 3;

php > var_dump($answer);

int(4)

Here we try to add the string "1" and the integer 3. When the PHP
engine evaluates this expression and stores the result in $answer, it will see
the plus-sign operator (+) and assume that numeric addition is meant to take
place. The PHP engine will therefore examine the two operands (the values
on either side of the plus sign) and try to interpret them as numbers (floats
or integers). The 3 is already an integer, but the string "1" will be converted
(juggled) into an integer to allow the addition to take place. In the end, we
get the integer 4 as an answer.

In six kinds of situations, PHP automatically juggles expressions into
different types: numeric contexts, string contexts, comparative contexts,

logic contexts, function contexts, and bitwise (integral and string) contexts.
We’ll consider some of these contexts next.

Numeric Contexts
When an expression includes an arithmetic operator, PHP will try to juggle
the operands to integers or floats. This often happens when one or more of
the operands are strings, as in the "1" + 3 example we just looked at. We’ll
see an example of this in action when function parameters are coerced into
integers in Chapter 5. Boolean values can also be juggled into integers;
true becomes the integer 1, and false becomes the integer 0.

Two important questions arise when juggling in numeric contexts: Will
the result become an int or a float, and what happens when a string
includes both numeric and non-numeric characters?

Integer vs. Float
If either operand in an arithmetic expression is a float (or isn’t interpretable
as an integer), both values will be juggled into floats, and a float operation
is performed. Otherwise, both values will be juggled into integers, and an
integer operation is performed. For example, when both operands are
integers, the result is an integer:

php > $answer = (1 + 1);

php > var_dump($answer);

int(2)

When one operand is an integer, and the other is a numeric string that
evaluates to an integer, both operators become integers. The result is also an
integer:

php > $answer = (1 + "1");

php > var_dump($answer);

int(2)

Leading and trailing whitespace is ignored when strings are juggled
into numbers, so we’ll get the same result if we add spaces at either end of
the string:

php > $answer = (1 + " 1 ");

php > var_dump($answer);

int(2)

Notice that the extra spaces in the string before and after the 1 character
make no difference. The string is still juggled to the integer 1.

When both operands are numbers and one of the operands is a float,
both operands become floats. The result is also a float:

php > $answer = (1.5 + 1);

php > var_dump($answer);

float(2.5)

To arrive at this result of 2.5, the integer 1 is juggled to a float behind the
scenes, before the addition operation is performed. The same process occurs
when one operand is an integer and the other is a numeric string that
evaluates to a float. Both operands become floats, and the result is a float:

php > $answer = (1 + "9.9");

php > var_dump($answer);

float(10.9)

In short, if float arithmetic is needed, PHP uses float arithmetic.
Otherwise, it uses integer arithmetic.

Numeric, Leading Numeric, and Non-numeric Strings
PHP differentiates between numeric strings, whose entire contents evaluate
to an integer or a float, and leading numeric strings, which begin with
numeric characters but also include non-numeric characters such as letters
or special symbols. When a leading numeric string is juggled to an integer
or float, everything from the first non-numeric character on is dropped. If a
string starts with a non-numeric character, however, the entire string is
considered non-numeric, even if it also contains numbers, and it can’t be
juggled to a number.

NOTE

The exception to this rule about non-numeric characters at the start of a
string is the special case of a string beginning with spaces, followed by
numeric characters. Such a string will be treated as a numeric string, since
leading (or trailing) spaces are ignored.

Let’s try numeric addition with a leading numeric string that evaluates
to an integer:

php > $answer = (1 + "1 dollar");

Warning: A non-numeric value encountered in php shell code

on line 1

php > var_dump($answer);

int(2)

Here "1 dollar" is a leading numeric string. When used in an
arithmetic expression, the "1" at the beginning is juggled to an integer,
while the " dollar" at the end is ignored. Notice that PHP raises a warning
about this but goes ahead with the type conversion anyway. Since both
operands can be juggled into integers, the result is an integer.

Addition with a leading numeric string that evaluates to a float works
the same way:

php > $answer = (1 + "9.99 dollars");

Warning: A non-numeric value encountered in php shell code

on line 1

php > var_dump($answer);

int(10.99)

In this case, "9.99 dollars" is a leading numeric string whose
beginning evaluates to the float 9.99. Since both operands can be juggled
into floats, the result is a float. Again, PHP raises a warning because of the
leading numeric string.

By contrast, if you try to use a non-numeric string in an arithmetic
expression, you’ll get a TypeError, meaning the operation can’t be
performed with the given data types. This halts the execution of the code.
Here’s an example:

php > $answer = (1 + "April 1");

Warning: Uncaught TypeError: Unsupported operand types: int

+ string in

php shell code:1

Stack trace:

#0 {main}

 thrown in php shell code on line 1

Here "April 1" is a non-numeric string because it starts with letters,
not numbers. The string can’t be evaluated as a number, so it triggers an
error. The same error happens if we use an empty string (""):

php > $answer = (1 + "");

Warning: Uncaught TypeError: Unsupported operand types: int

+ string in

php shell code:1

Stack trace:

#0 {main}

 thrown in php shell code on line 1

An empty string does not evaluate to 0 as it does in some other
languages. It’s a non-numeric string, so it leads to a TypeError in arithmetic
expressions.

String Contexts
In a few cases, PHP automatically juggles values into strings. First,
expressions involving print or echo statements are juggled to strings, since
these commands expect anything that follows to be a string. You’ve already
seen, for example, that values of type bool are juggled to the string "1" (for
true) or "" (for false) when they’re part of a print statement. Similarly,
numbers are juggled to their string equivalents.

Second, expressions involving the string concatenation operator (.) are
also juggled to strings, as are expressions whose values are being parsed
inside strings. We’ll discuss these topics in Chapter 3.

Comparative Contexts
Type juggling also occurs when comparing two values of different data
types. Comparative expressions evaluate to a Boolean true or false, which
you then typically use for decision-making logic (as we’ll discuss in
Chapter 4). The PHP engine knows an expression is comparative when it
sees a comparison operator, such as == for equal or > for greater than. PHP
has rules that determine how these expressions are juggled and evaluated,
depending on the data types involved.

Identical vs. Equal Values
PHP makes an important distinction between values that are identical and
values that are equal. Two expressions are considered identical only if
(before any type juggling) they’re of the same data type and contain the
same value. By contrast, two expressions are considered equal if they
contain the same value after type juggling.

We use different operators to test for identity and equality. The triple
equal sign (===) is the identical operator, while the double equal sign (==)
is the equal operator. Consider these examples comparing the string "1"
and the integer 1:

php > var_dump("1" === 1);

bool(false)

php > var_dump("1" == 1);

bool(true)

First, we try the comparison with the identical operator. This evaluates
to false, since the operands are of different data types. Next, we try the
comparison with the equal operator. This time it evaluates to true, since
PHP juggles the string "1" into an integer before making the comparison.

PHP also has operators for not-identical (!==) and not-equal (!=).
Consider these comparisons between an integer and a float:

php > var_dump(1 !== 1.0);

bool(true)

php > var_dump(1 != 1.0);

bool(false)

Using the not-identical operator, the comparison is true, since the
values are of different data types. Using the not-equal operator, the numbers
are first juggled to the same type. This gives them the same value, so the
not-equal comparison is false.

NOTE
The PHP <> operator is equivalent to the != operator; both mean “not
equal.” Personally, I always use the != operator, since an exclamation
mark (!) by itself means “not” in other contexts too.

Strings vs. Numbers
Since PHP 8.0, when comparing a string with a number, a numeric
comparison is made if the string is a numeric string. Otherwise, a string
comparison is made. We saw a numeric comparison when we tested the
equality of the integer 1 and the numeric string "1". If we try the same
comparison with a leading numeric string, the result will be false:

php > var_dump(1 == "1 dollar");

bool(false)

Though "1 dollar" starts with a number, it isn’t a fully numeric string.
As such, PHP juggles the integer 1 to the string "1" and makes a string
comparison. The strings aren’t equal, so we get false.

Two important implications of using only numeric comparisons for
fully numeric strings are that any leading or trailing spaces are ignored and
that an empty string is not considered a numeric string and so is not equal to
a numeric 0, as shown here:

php > var_dump(0 == "");

bool(false)

In this comparison, since the empty string isn’t numeric, the integer 0 is
juggled into the string "0". Then strings "0" and "" are compared and found
to be not equal.

Less Than and Greater Than
When working with numbers, using the less-than (<), greater-than (>), less-
than-or-equal-to (<=), or greater-than-or-equal-to (>=) operators is
straightforward, since it’s very clear whether one number is less than, equal
to, or greater than another. Here are some examples:

php > var_dump(1 < 2);

bool(true)

php > var_dump(1 <= 1.01)

bool(true)

php > var_dump(2 >= 2);

bool(true)

php > var_dump(2 > 2);

bool(false)

You can also use these operators with non-numeric data types, in which
case PHP has a variety of rules for evaluating the comparisons. For
example, the Boolean true is considered greater than false and also
greater than NULL:

php > var_dump(true > false);

bool(true)

php > var_dump(true > NULL);

bool(true)

Strings are compared with each other one character at a time, with later
letters in the alphabet considered greater than earlier letters:

php > var_dump("abc" < "acb");

bool(true)

Lowercase letters are considered greater than capital letters, however:

php > var_dump("a" > "B");

bool(true)

Strings are typically considered greater than any number, as in these
cases:

php > var_dump("abc" > 123);

bool(true)

php > var_dump("one" > 1000000);

bool(true)

Exceptions to such general rules of thumb exist, however. As we’ve
already discussed, when a fully numeric string is compared to a number, the
string is first juggled to a number and then a numeric comparison is made.
Here, for example, the string "15" becomes the integer 15 for the purposes
of comparison:

php > var_dump("15" < 19);

bool(true)

Another exception is strings beginning with a special character such as
these: ! # $ % & ' () * + , - . /. Such a string is always considered
less than a number:

php > var_dump("*77" < 5);

bool(true)

If a number is compared with a leading numeric string (one that starts
with numbers but contains other characters), the number is juggled to a
string, and the strings are compared character by character:

php > var_dump("1a" > 10);

bool(true)

php > var_dump("1a" > 20);

bool(false)

In the first case, the integer 10 is converted to the string "10" before
comparison with the string "1a". The first characters are the same, but the
character a (a letter) is considered greater than the character 0 (a number).
In the second case, the 2 in the string "20" (after juggling) is considered
greater than the 1 in the string "1a", so the expression is false.

Knowing these string-number and Boolean comparison rules is useful,
but relying on them can be dangerous. It’s safer to use validation logic to
convert strings to numbers first and then make simple numeric
comparisons. For example, we’ll test that the price received from a web
form is numeric in Chapter 12.

The Spaceship Operator
A relatively new addition to the PHP language is the spaceship operator
(<=>). Instead of true or false, this operator gives an integer value of 0, 1,
or -1 depending on the two expressions being compared. If both
expressions are the same (after any type juggling), the operator gives a 0; if
the first expression is greater than the second, it gives a 1; or if the second
expression is greater than the first, it gives a -1. For example:

php > var_dump(11 <=> 22);

int(-1)

php > var_dump(55 <=> 22);

int(1)

php > var_dump("22" <=> 22);

int(0)

In the first case, we see -1 as the output, since 11 is less than 22. In the
second case, we see 1 as the output, since 55 is greater than 22. In the last
case, we see 0 as the output, since "22" is the same as 22 after type
juggling.

The spaceship operator may seem like a strange amalgam of the less-
than, greater-than, and equal-to operators. However, it’s particularly useful
when sorting collections of data into a desired sequence, since certain
sorting functions require exactly this 0, 1, or -1 encoding scheme.

Logical and Other Contexts
When a logical value of true or false is expected, PHP will juggle values
of other types to the bool type. The three logical type-juggling contexts are
as follows:

Logical operators, such as AND (&&) and OR (||)
The ternary operator (?)
Conditional statements such as if and switch

We’ll cover all of these logic contexts in Chapter 4.
Type juggling also may occur in function contexts and bitwise contexts.

We’ll explore the function context (when arguments are evaluated against
function signatures) in Chapter 5. The bitwise context is rarely used in web
applications and is beyond the scope of this book.

Type Casting
Type casting refers to explicitly converting an expression or variable to a
desired data type. Manual type casting stands in contrast to the type
juggling performed automatically by the PHP engine. To cast the value of
an expression to a particular type, provide the new data type in parentheses
before the expression. For instance, (float)21 ensures that the value 21
will be treated as a float instead of an integer. Here are some examples of
casting various scalar data types:

php > $age = (int)20.5;

php > var_dump($age);

❶ int(20)

php > $price = (string)9.99;

php > var_dump($price);

string(4) "9.99";

php > $inventory = (bool)0;

php > var_dump($inventory);

❷ bool(false)

Notice that casting from a float to an integer truncates anything after
the decimal point, effectively rounding down to the nearest whole number

❶. When casting from a number to a Boolean, 0 becomes false ❷, while
any other numeric value (including negative numbers!) becomes true.

Type casting is one of the lesser-used features of PHP. One example of
its use could be to easily obtain the integer part of a float, such as the whole
number of seconds when comparing two timestamps.

Summary
This chapter introduced you to PHP’s four scalar data types, as well as the
special NULL type. You saw the difference between variables containing
NULL and variables evaluating to NULL by virtue of being undefined or unset,
and you practiced testing whether a variable is of a particular type by using
functions like is_int() and is_null(). Later, this will help you write code
that carefully tests values to manage situations that may occur when
receiving input from users or external data sources such as databases.

This chapter also showed you how an expression’s data type can
change, either automatically through juggling or manually through casting.
You learned about the contexts where type juggling can occur and rules for
evaluating expressions with different data types. Understanding when and
how types are juggled will help you avoid unexpected results when working
with data of mixed types.

Exercises
1. Write a script to use integer casting to round down a float. Do the

following:
a. Create a $scoreFloat variable containing 55.9.
b. Create a second variable, $scoreInt, containing the value of

$scoreFloat cast into an integer.
c. Print out the type of $scoreFloat, then its value, then a newline

character.
d. Print out the type of $scoreInt, then its value, then a newline

character.
Your program output should look as follows:

double scoreFloat = 55.9

integer scoreInt = 55

2. Assign the $age variable the integer 21, and var_dump its value. Then
assign NULL to this variable, and var_dump it again. Finally, unset the
variable and var_dump it once more. Note that the output differs when
the variable is assigned NULL and when it’s unset.

3
STRINGS AND STRING FUNCTIONS

In this chapter, we’ll take a close look
at strings, including how to create them,

how to combine them, and how to search, transform,
and otherwise manipulate them with PHP’s many
built-in string functions. Almost every PHP program
and web application involves text, so it’s important to
understand how to create and work with strings.

The chapter introduces PHP’s four styles for writing strings: inside
single quotation marks or double quotation marks, or in longer, multiline
spans as heredocs or nowdocs. These styles come with different features,
such as the ability to incorporate variables or represent special symbols.
Despite these differences, they all end up with the same result: a value of
the string data type, which is to say, a sequence of characters.

Whitespace
Before we consider strings with characters that you can see, such as letters
and numerals, a word about whitespace, the characters you can’t see. These
are characters that won’t use any ink when printing (for example, the space
character, the tab character, the newline character, and so on). Sometimes

it’s useful to distinguish between horizontal whitespace, such as spaces and
tabs, and vertical whitespace, such as newline characters and vertical tabs.

When you write code, the details of the whitespace you use are often
unimportant to the execution of the code. As long as you have a minimum
of one whitespace character (such as a space or newline) between
expressions, it doesn’t matter whether you have additional whitespace
characters (such as extra spaces or tabs). For example, the PHP engine will
interpret all four of the following statements as exactly the same, ignoring
multiple spaces, tabs, and newlines around the variable name and equal
sign, and on either side of the string:

$lastName = 'Smith';

 $lastName = 'Smith';

 $lastName = 'Smith' ;

$lastName

=

 'Smith'

;

When you’re declaring or manipulating the contents in string
expressions, however, you have to be precise about your use of whitespace.
Otherwise, words may end up stuck together with no space between them,
or some text may end up on a different line. For example, the strings in
these four statements are all different, since the extra whitespace is inside
the quotation marks:

$lastName = 'Smith';

$lastName = ' Smith';

$lastName = 'Smith ';

$lastName = ' Smith ';

Whitespace doesn’t come just from the code you write. It can also be
introduced when you take a string as input from a user or an external
software system such as an application programming interface (API). In this
case, you often need to validate that input and trim any unwanted
whitespace at its beginning and end. Likewise, you may want to replace any

tabs or newline characters inside a string with single spaces (sometimes
users press function keys by accident while typing, adding unintended,
invisible whitespace characters to their input). You’ll learn to do all these
things in this chapter (for example, see “Removing All Unnecessary
Whitespace” on page 60).

Single-Quoted Strings
The simplest type of string in PHP is enclosed in single quotation marks,
such as 'matt smith'. Almost everything that appears inside the single
quotes is treated literally, meaning it will be reproduced exactly as written,
character for character, if the string is printed out.

PHP has just two special cases for single-quoted strings. First, since
single quotes serve to delimit the string, there must be a mechanism for
including a single quotation mark inside the string itself. Otherwise, the
single quote will be interpreted as the end of the string. The solution is to
put a backslash in front of the single quote (\'), as in 'matt smith\'s
string'. When this string prints, the single quote will show up, but not the
backslash, as you can see here in PHP’s interactive mode:

php > print 'matt smith\'s string';

matt smith's string

This technique of having a special sequence of characters in a string
that PHP will interpret as a certain character is known as escaping. Since
the backslash is needed to escape single quotation marks, there must also be
a way to specify a backslash character in a single-quoted string. For that,
write two backslashes: \\.

The \' and \\ escape sequences are the only characters that the PHP
engine will interpret to mean something else in a single-quoted string. Other
escape sequences you might know from other programming languages,
such as \n for newline, aren’t recognized in single-quoted strings.

That doesn’t mean you can’t include newlines in single-quoted strings,
however. For that, simply add line breaks wherever you want them in the
string, and PHP will reproduce the line breaks exactly as you’ve written
them. In fact, one reason PHP requires a semicolon to declare the end of a

statement is to allow a single statement to be written over several lines.
Listing 3-1 illustrates a string broken across multiple lines.

<?php

print 'the

cat

sat on

the mat!

';

Listing 3-1: A script with a string containing line breaks

This script includes a single print statement for a string that contains
several line breaks. Here’s the output of running this script at the command
line:

the

cat

sat on

the mat!

The output includes all the newlines that were written into the string.

Joining Strings: Concatenation
Often you’ll need to combine several strings, variables, or constants to form
a single string expression. You can do this with PHP’s string concatenation
operator, represented by a period (.). Consider this example using PHP’s
interactive mode:

php > $name = 'Matt Smith';

php > print 'my name is ' . $name;

my name is Matt Smith

We declare the $name variable whose value is the string 'Matt Smith'.
Then we use the string concatenation operator to combine the value of this
variable with another string, and we print the resulting longer string. Note
the extra space in the string 'my name is ' before the closing single quote.

The concatenation operator doesn’t add any spaces between the strings it’s
joining, so this extra space is to prevent something like isMatt from being
printed.

When concatenating strings on a single line, it’s good programming
practice to make the statement more readable by adding a space on each
side of the period, as in the preceding example. You can also spread such
statements over several lines, which can help make long string expressions
more readable, as shown in the script in Listing 3-2. This shows my
personal preference of indenting each subsequent line of the statement and
beginning each line with the concatenation operator, so it’s clear that each
line is appending more to the string expression.

<?php

$name = 'Matt Smith';

print 'my name is '

 . $name

 . ', I\'m pleased to meet you!'

 . PHP_EOL;

Listing 3-2: A script to concatenate and print out several strings

This script prints out a string formed by concatenating four shorter
strings together, including the two from the previous example. Notice that
we’ve escaped a single quote to create the apostrophe in the word I'm in the
third string.

The fourth string at the end of the expression is the special string
constant PHP_EOL, short for end of line. This is a string containing the
system-appropriate character (or characters) to move the cursor to the
beginning of the next line in a command line terminal (the same as hitting
ENTER). Such a special constant used to be needed since different operating
systems used slightly different ways to specify the end of a line. It’s not
such an issue now since applications for most operating systems generally
know how to work with each other’s files these days, but the constant is still
handy for ensuring that the next terminal prompt after a single-quoted string
starts on a new line. Here’s the output when this script is run at the
command line:

% php multi_line.php

my name is Matt Smith, I'm pleased to meet you!

%

I saved the script from Listing 3-2 in a file named multi_line.php.
Running the script concatenates the strings and prints the result on a single
line. Notice that the next terminal prompt (in this case, the percent
character, %) appears on the next line, thanks to the PHP_EOL constant.

WHY NOT A PLUS SIGN?

Most programming languages are strongly typed, so the plus sign (+) can be used for
both mathematical addition and string concatenation. The compiler knows which
operation to implement since it knows whether the variables on either side of the
operator are numbers or strings. By contrast, since PHP is loosely typed, the plus
sign is used only for mathematical addition. A different character had to be selected
for string concatenation, and the period (.) was chosen.

In most object-oriented languages, the period has a different meaning: it allows
access to an object’s methods and properties. PHP didn’t initially support object-
oriented programming, however. When this capability was eventually added, the
period was already reserved for string concatenation, so PHP had to choose another
character sequence for object access. You’ll meet this object access operator (->) in
Part V, when we discuss object-oriented programming.

The use of dollar signs for variables, periods for string concatenation, and -> for
object access makes PHP’s syntax a little strange for programmers used to other
languages. Once you’ve been programming in PHP for a while, though, this will all
become second nature.

If a variable already contains a string, we can use the concatenating
assignment operator (.=) to append another string expression to the end of
that variable. Here’s an example using PHP’s interactive mode:

php > $name = 'Matt';

php > $name .= ' Smith';

php > print $name;

Matt Smith

First, we initialize the $name variable to the string 'Matt'. Then we use
the concatenating assignment operator to append ' Smith' to the end of the
contents of $name. When we print out the variable, we can see that it now
contains Matt Smith.

Double-Quoted Strings
The second type of PHP string is enclosed in double quotes, as in "Matt
Smith". Double-quoted strings differ from their single-quoted counterparts
in that they are parsed, or processed, by the PHP engine, which means they
can include PHP variables. When you write a variable (beginning with a
dollar sign) in a double-quoted string, the PHP engine will look up the value
of the variable and insert it into the string before printing. This is often
more convenient than using a period to concatenate single-quoted strings
with the contents of variables, as we did in the previous section. Here’s an
example using PHP’s interactive mode:

php > $name = 'Matt Smith';

php > print "My name is $name \nI'm pleased to meet you";

My name is Matt Smith

I'm pleased to meet you

First, we assign the string 'Matt Smith' to the $name variable, as
before. Note that we could have used double quotes for this string, but most
PHP programmers use them only for strings that will need parsing. Next,
we print a double-quoted string that includes the $name variable. The output
shows that PHP has successfully parsed this string by inserting Matt Smith
in place of the variable.

Notice that the double-quoted string includes a single-quote character
in the contraction I'm. This is perfectly valid in a double-quoted string and
doesn’t require escaping. Our double-quoted string also includes the escape
sequence \n to create a newline in the middle of the output. This is one of
several escape sequences available for use in double-quoted strings. Table
3-1 lists some of the most common.

Table 3-1: Common Escape Sequences in Double-Quoted Strings
Escape sequence Description

\\ Backslash

\" Double-quote

\$ Dollar sign

\n Newline

\t Tab

Notice in particular that since a dollar sign will make the PHP engine
parse for a variable, you must use \$ to include an actual dollar sign in a
double-quoted string. You also need to use \" to include a double quotation
mark.

You can’t include constants in double-quoted strings, since the PHP
engine can’t tell the difference between characters that are part of the string
and the name of the constant. (Recall from Chapter 1 that constants don’t
start with a dollar sign.) One side effect is that you can’t include the
PHP_EOL constant in a double-quoted string to create a newline at the end of
the string. Instead, use the \n newline escape sequence.

NOTE
On the rare occasions when you need the operating system–independent
PHP_EOL constant with a double-quoted string, you can use the string
concatenation operator to add the constant to the string, much as you saw
in Listing 3-2. This situation might arise when a script needs to precisely
output the appropriate newline and cursor-to-beginning-of-line character
sequence for the system the PHP engine is running on (for example, to
ensure that a system file has the correct line endings).

Handling the Character After a Variable Name
When you have a variable name followed by a space in a double-quoted
string, such as "my name is $name \nI'm pleased to meet you", the
PHP engine can easily identify the variable ($name) and recognize that a
space should be present after its value. Even punctuation marks such as

periods, commas, and colons are fine when they immediately follow a
variable, and so are escape sequences, since these aren’t valid characters to
have in variable names. Here, for example, using a comma immediately
after the $name variable is perfectly fine:

php > $name = 'Matt Smith';

php > print "my name is $name, and I'm pleased to meet you";

my name is Matt Smith, and I'm pleased to meet you

If you want other characters to be part of the string immediately after a
variable, however, the situation becomes a little more difficult. After its first
letter (or underscore character), the characters of a variable name can be
letters, numbers and underscores, so if any of these are written immediately
after a variable name in a double-quoted string, the PHP engine treats them
as part of the variable name. For example, if we have a $weight variable
and we want its value to be followed immediately by kg, as in 80kg, we
can’t write something like this:

print "$weightkg";

The PHP engine would complain, saying there’s no variable named
$weightkg. The solution for these more complex double-quoted-string
parsing tasks is to enclose the variable name in curly brackets (braces):

php > $weight = 80;

php > print "my weight is {$weight}kg";

my weight is 80kg

Thanks to the curly brackets, PHP has no problem printing the
characters kg immediately after the value of $weight. Note that this is an
example of the string context of type juggling, as introduced in Chapter 2.
When the string "my weight is {$weight}kg" is parsed, the value of
$weight will be juggled from the integer 80 into the string '80' for
insertion into the final string.

Incorporating Unicode Characters
Not all characters are available to type directly from your keyboard or are
part of the current language settings of your computer system, but that
doesn’t mean you can’t include them in double-quoted strings. Unicode is
an international standard for declaring and working with a wide range of
characters and symbols, including ordinary English letters, emojis, letters
from other alphabets, and more. Each Unicode character is defined by a
unique hexadecimal code. For example, the code 1F60A corresponds to one
of several smiling emojis.

To use a Unicode character in a double-quoted string, start with the
escape sequence \u, then provide the character’s hexadecimal code in curly
brackets. Listing 3-3 shows code to declare and print several Unicode
characters.

<?php

$smiley = "\u{1F60A}";

$elephant = "\u{1F418}";

$cherokeeTSV = "\u{13E8}";

print "this is a smiley unicode character\n$smiley\n";

print "followed by some elephants of course\n$elephant $elep

hant $elephant\n";

print "Cherokee letter TSV\n$cherokeeTSV\n";

Listing 3-3: A script to display various Unicode characters

First, we declare the variables $smiley, $elephant, and $cherokeeTSV
to contain double-quoted strings with the Unicode characters for their
respective smiley face and elephant emojis, and the Cherokee TSV symbol.
Then we print some double-quoted strings that include those variables.
Here’s the result:

Note that we could have included the Unicode character escape
sequences directly in the double-quoted strings being printed rather than
assigning them to variables first. Having them in variables makes it easier
to reuse them throughout the script—for example, to print three elephants
instead of just one. (The PHP community has a thing for elephants.) For a
complete list of Unicode characters and their corresponding hexadecimal
codes, visit https://home.unicode.org.

Heredocs
Heredocs are an alternative to double-quoted strings. They’re just like
double-quoted strings in that they’re parsed and so can contain variables,
but they differ in that heredocs typically span multiple lines. Although
double-quoted strings can span multiple lines too, many programmers
prefer heredocs for multiline strings since their syntax makes them stand
out more obviously from the surrounding code.

To declare a heredoc, start with the heredoc operator (<<<), followed by
a sequence of characters of your choice that will serve as a delimiter. Then,
on a new line, start typing your string. When you get to the end of the
string, repeat your chosen delimiter on its own line, followed by a
semicolon to end the statement.

The most commonly used delimiter for heredocs is EOT (short for end
of text), but which delimiter you choose doesn’t really matter, as long as
that character sequence doesn’t appear in the string being declared and as
long as the delimiters at the beginning and end of the heredoc match. It
makes code more readable to either always use EOT or choose something
meaningful to the heredoc’s contents, such as SQL if it contains a SQL
statement or HTML if it contains HTML. Listing 3-4 shows a script with an
example heredoc.

https://home.unicode.org/

<?php

$age = 22;

$weight = 80;

❶ $message = <<<EOT

my age is $age

my weight is {$weight}kg

❷ EOT;

print $message;

Listing 3-4: A heredoc string declared and printed with the EOT delimiter

This code creates the variables $age and $weight containing 22 and 80,
respectively. Then we assign a heredoc expression into the $message
variable ❶. The heredoc starts with <<<EOT, and its content is everything
from the next line until a newline character and the EOT; at the end ❷.
Finally, we print the contents of $message. Here’s the result:

% php heredoc.php

my age is 22

my weight is 80kg

%

I saved the script as heredoc.php and ran it at the command line. Notice
that the variables $age and $weight were successfully parsed within the
heredoc, including when we used curly brackets to allow characters to be
output immediately following a variable. Notice also that the next command
line prompt starts on its own line. This is because of the blank line in the
heredoc before the closing delimiter; heredocs can contain newlines.

Escape Sequences
You can’t use the \" escape sequence to write a double quotation mark in a
heredoc. If you write \" inside a heredoc, the backslash will become an
ordinary character in the string, just like the double quote. You won’t need
this escape sequence in heredocs anyway: since you’re no longer using

double quotes to delimit the string, using them within the string won’t cause
confusion.

You can include other escape sequences in heredocs, such as \t for
tabs and \n for newlines. These, too, aren’t strictly necessary, however,
since you can just use the TAB and ENTER keys when writing the heredoc’s
contents. You can also type Unicode characters directly into a heredoc
(assuming your editor supports Unicode, that is). Listing 3-5 shows an
example.

Listing 3-5: A script with Unicode characters declared in a heredoc string

We declare this heredoc by using UNICODE as the delimiter. The code
features Unicode characters typed directly into the string, rather than
created via escape sequences. The output of running this script is identical
to the output from Listing 3-3.

Indention
An occasionally useful feature of heredocs is that if indention (spaces or
tabs) appears before the closing delimiter, the PHP engine will attempt to
remove that same amount of indention from all lines of the heredoc. In
Listing 3-6, for example, we declare and print a heredoc string that has each
of its lines, including the line with the ending TEXT delimiter, indented four
spaces.

<?php

$message = <<<TEXT

 If the closing delimiter is indented

 then that amount of indention

 is removed from the lines of the string

 TEXT;

print $message;

Listing 3-6: A script with an indented heredoc

Since every line of this heredoc has the same indention as the closing
delimiter line, all indention will be removed from all lines when the string
is printed. Here’s the output:

If the closing delimiter is indented

then that amount of indention

is removed from the lines of the string

If any lines in a heredoc have more indention than the line with the
closing delimiter, that extra bit of indention will remain in the output.
Listing 3-7 shows an example.

<?php

$message = <<<END

 I'm the same indention as the ending delimiter (4 space

s)

 I have 2 extra spaces

 So have I!

 I'm back to 4 spaces again

 END;

print $message;

Listing 3-7: A script that retains extra indention in a heredoc

The first and last lines of the heredoc are indented four spaces, as is the
closing delimiter. The middle two lines of the heredoc have two extra
spaces of indention. In the output, four spaces will be stripped away from
the start of each line, leaving two spaces of indention for the middle two
lines, as shown here:

I'm the same indentation as the ending delimiter (4 spaces)

 I have 2 extra spaces

 So have I!

I'm back to 4 spaces again

This feature of removing indentation from a heredoc is primarily useful
when the heredoc is declared as part of a function’s body, where it’s
customary for all code to have some level of indention. This way, you can
write cleaner-looking heredocs that adhere to the indention conventions of
the code around them. We’ll meet functions in Chapter 5.

NOTE
If any lines in a heredoc have less indention than the closing delimiter, or if
they have a different kind of indention (such as a tab character instead of
spaces), an error will occur at runtime.

Nowdocs
The last style of PHP string is the nowdoc, an unparsed string written with
the <<< operator and delimiters. Essentially, the nowdoc is to unparsed
single-quoted strings what the heredoc is to parsed double-quoted strings.
The only difference between declaring a nowdoc and a heredoc is that the
opening delimiter for the nowdoc must be enclosed in single quotes, as in
<<<'EOL'. The closing delimiter isn’t written with single quotes.

One use of nowdocs is for printing out PHP code. Since nowdocs are
unparsed, any code, including variable names, will be reproduced literally
in the string expression. Listing 3-8 shows an example.

<?php

❶ $name = "Matt Smith";

❷ $codeSample = <<<'PHP'

 $message = "hello \n world \n on 3 lines!";

 $age = 21;

 ❸ print $name;

 print $age;

 PHP;

print $codeSample;

Listing 3-8: A script declaring a nowdoc that contains unparsed PHP code

First, we declare a $name variable ❶. Then we declare a nowdoc by
using the delimiter PHP and assign it to the $codeSample variable ❷.
(Notice that the starting delimiter is enclosed in single quotes, but the
ending delimiter isn’t.) The nowdoc contains statements such as a variable
declaration ($age), strings with escaped characters, and a reference to our
$name variable ❸. All of this goes unparsed when we print the nowdoc, as
you can see in the output:

$message = "hello \n world \n on 3 lines!";

$age = 21;

print $name;

print $age;

The entire nowdoc has been printed verbatim, including the escape
sequences and the characters $name. No program statements within the
nowdoc were executed; they just became part of the declared nowdoc
string. Notice, however, that the indention in the nowdoc has been stripped
away, since it matches the indention of the closing delimiter. This works
just as with heredocs.

We’ve finished our overview of the four styles of strings. Deciding
which to use is often a matter of personal preference. In general, single
quotes are best for short strings that don’t include variables that require
parsing. For longer, multiline strings with no parsing, consider using

nowdocs. If you need to incorporate parsed variables, use double quotes for
shorter strings or heredocs for longer, multiline strings.

Built-in String Functions
PHP has more than 100 built-in functions for manipulating and analyzing
strings, ranging from standard tasks like toggling between uppercase and
lowercase letters to more specialized tasks such as implementing hash
algorithms. We’ll look at a few of the most commonly used string functions
in this section.

If you’re coming to PHP from another language, you may be used to
seeing these kinds of operations as methods that are called directly on the
strings themselves. Since PHP wasn’t originally object-oriented, however,
the operations instead exist as stand-alone functions.

NOTE
For a complete list of PHP’s string functions, see
https://www.php.net/manual/ref.strings.php.

Converting to Upper- and Lowercase
When working with user input, you’ll often need to standardize strings by
ensuring that they all follow the same capitalization rules. This makes it
easier to compare strings, or to store text in a database or send it to an API
using a consistent format. To that end, PHP has functions for adjusting the
capitalization of a string. The strtolower() and strtoupper() functions
convert all the letters to lowercase or uppercase, respectively. Here are
some examples illustrated using PHP’s interactive mode:

php > $myString = 'the CAT sat on the Mat';

php > print strtolower($myString);

the cat sat on the mat

php > print strtoupper($myString);

THE CAT SAT ON THE MAT

We declare a string with a mix of uppercase and lowercase letters.
Passing the string to the strtolower() function converts everything to

https://www.php.net/manual/ref.strings.php

lowercase, while passing it to strtoupper() converts everything to
uppercase.

PHP’s ucfirst() function capitalizes just the first letter of a string, if it
isn’t capitalized already. This is useful when creating messages to be output
to the user; capitalizing the first letter helps make the messages look like
grammatically correct sentences:

php > $badGrammar = 'some people don\'t type with capital le

tters.';

php > print ucfirst($badGrammar);

Some people don't type with capital letters.

The related function lcfirst() lowercases just the first letter of a
string:

php > $worseGrammar = 'SOME PEOPLE TYPE WITH ALL CAPS.';

php > print lcfirst($worseGrammar);

sOME PEOPLE TYPE WITH ALL CAPS.

Often this isn’t much of a grammatical improvement, but it can be
useful, for example, if you’re writing a script to output code. In this case, to
follow the naming conventions of the programming language (such as for
variables), it can be important to ensure that the first character of a string is
lowercase.

The ucwords() function capitalizes the first letter of every word in a
string. PHP can distinguish between the different words if they’re separated
by whitespace:

php > $mixedCaps = 'some peoPLE use CAPS spoRADically.';

php > print ucwords($mixedCaps);

Some PeoPLE Use CAPS SpoRADically.

Notice that if any subsequent letters in a word are capitalized, they
remain so. Only the first letter of each word is affected. PHP doesn’t have
an equivalent function for lowercasing the first letter of each word.

Searching and Counting
Several of PHP’s built-in string functions serve analytical purposes, such as
reporting the length of a string, searching for a character or substring within
a string, or counting the number of occurrences of a character or substring
within a string. (A substring is a portion of a larger string.) Before we
examine these functions, though, it’s important to distinguish between the
number of characters in a string and the position of each character within
that string.

Take the string 'cat scat' as an example. It consists of eight
characters (the space in the middle counts), but character positions in PHP
are numbered starting from zero. Thus, the character at position 0 is c, at
position 1 is a, and so on up to the final t at position 7. This counting from
zero is called zero-based indexing and is common in computer
programming. Using this system, we can say that the substring 'cat'
occurs twice in the string, starting at position 0 for the first occurrence and
at position 5 for the second:

cat scat

01234567

cat cat

With this in mind, let’s try out some analytical string functions on the
string 'cat scat'. First, the strlen() function reports the length of a
string, as shown here in PHP’s interactive mode:

php > $myString = 'cat scat';

php > print strlen($myString);

8

As expected, this tells us that 'cat scat' is eight characters long.
The substr_count() function counts the number of times a substring

appears within a string. Here, for example, we count the instances of the
substring 'cat':

php > $myString = 'cat scat';

php > print substr_count($myString, 'cat');

2

We pass two strings to the substr_count() function. The first is the
string we want to search in, which here we’re providing as the $myString
variable. The second is the string we want to search for: in this case, 'cat'.
In computer search terminology, these two strings are often referred to as
the haystack and the needle, respectively, after the expression “looking for a
needle in a haystack.”

NOTE
The items entered within the parentheses of a function, such as $myString
and 'cat' in the preceding example, are called arguments. They’re pieces
of data that the function needs to do its job. We’ll discuss functions in detail
in Chapter 5.

Most PHP functions that involve searching within a string, including
substr_count(), are case sensitive, so it’s important to be careful about
capitalization. If we try searching 'cat scat' for the substring 'Cat'
instead of 'cat', for example, we’ll end up with a count of 0:

php > $myString = 'cat scat';

php > print substr_count($myString, 'Cat');

0

The strpos() function reports the starting position (counting from
zero) of a substring within a string. If the substring occurs multiple times,
only the position of the first occurrence is given. Here we search for the
first occurrence of the substring 'cat':

php > $myString = 'cat scat';

php > print strpos($myString, 'cat');

0

As with substr_count(), we provide two strings to the strpos() function
as arguments, first the haystack and then the needle. The function reports
the first occurrence of 'cat' at position 0.

Optionally, you can provide an offset to the strpos() function as an
additional argument, a number that tells it to start searching for the
substring from a different position, rather than from the beginning of the
string. Here we tell the function to start searching from position 2 onward:

php > $myString = 'cat scat';

php > print strpos($myString, 'cat', 2);

5

This time, since the function isn’t searching from the beginning of the
string, it identifies the second occurrence of 'cat' at position 5. If the
function can’t find any occurrences of the needle within the haystack, it
reports false.

The count_chars() function analyzes which characters are, and are
not, included in a string. It’s a powerful string analysis function that you
might use when evaluating the complexity of a password or perhaps for
data encryption and decryption tasks. It has a few modes, which you specify
as a number when the function is called. In the following example, we use
mode 3, which generates a new string consisting of all the unique characters
used in the string being analyzed:

php > $myString = 'cat scat';

php > print count_chars($myString, 3);

acst

We call the count_chars() function on $myString, specifying mode 3.
The resulting string features one instance of each character from 'cat
scat', arranged in alphabetical order. It shows us that 'cat scat' includes
only the letters a, c, s, and t.

NOTE

The count_chars() function has other modes that count the number of
occurrences of each character, but the result is reported as an array, so we
won’t consider those modes here. We’ll discuss arrays in Chapters 7 and 8.

Extracting and Replacing Substrings
Other PHP functions manipulate strings by extracting a portion of the string
or replacing a portion with something else. For example, the substr()
function extracts part of a string, starting from a given position. Here’s how
it works:

php > $warning = 'do not enter';

php > print substr($warning, 7);

enter

We declare a variable with the string 'do not enter', then pass it to
the substr() function. The number 7 tells the function to extract all the
characters from position 7 to the end, giving us enter as a result.

If you use a negative number instead, the function makes the extraction
counting from the end of the string. For example, here we use -2 to get just
the last two characters:

php > $warning = 'do not enter';

php > print substr($warning, -2);

er

You can optionally include a second number in the function call to
specify a length for the extraction. Here, for example, we extract just three
characters from the string, starting from position 7:

php > $warning = 'do not enter';

php > print substr($warning, 7, 3);

ent

The strstr() function provides another technique for extracting part
of a string. By default, it searches for the first occurrence of a substring
within a string and extracts the contents of the string from that substring on.

Here, for example, we search for the substring '@' to extract just the
domain name and extension from an email address:

php > $email = 'the.cat@aol.com';

php > print strstr($email, '@');

@aol.com

The function searches for the first occurrence of an @ sign and reports
everything in the string from that point on, including the @ sign itself. We
can also use strstr() to extract everything in the string before the first
occurrence of the substring. For that, add true to the end of the function
call, like this:

php > $email = 'the.cat@aol.com';

php > print strstr($email, '@', true);

the.cat

Again, we search the string for the first occurrence of an @ sign, but
this time, thanks to the added true, the function reports the contents of the
string up to but not including the @ sign. This gives us just the username
from the email address.

NOTE
The strstr() function is case sensitive, but PHP provides a case-
insensitive version called stristr().

The str_replace() function finds all occurrences of a substring within
a string and replaces them with a different substring. The result of the
replacement is reported as a new string, meaning the original string itself
isn’t modified. Here’s an example:

php > $foodchain = 'dogs eat cats, cats eat mice, mice eat c

heese';

php > print str_replace('eat', 'help', $foodchain);

dogs help cats, cats help mice, mice help cheese

php > print $foodchain;

dogs eat cats, cats eat mice, mice eat cheese

When we call str_replace(), we need to provide three strings. The
first is the substring to search for (in this case, 'eat'). The second is the
substring to replace it with (in this case, 'help'). The third is the string to
search in, which we’ve assigned to the $foodchain variable. The function
generates a new string by replacing all instances of 'eat' with 'help'.
Then we print the value of $foodchain to confirm that it wasn’t affected by
the function call.

To make the replacement somewhat permanent, store the result of
calling str_replace() in a new variable, like this:

php > $foodchain = 'dogs eat cats, cats eat mice, mice eat c

heese';

❶ php > $friendchain = str_replace('eat', 'help', $foodchain);

php > print $foodchain;

❷ dogs eat cats, cats eat mice, mice eat cheese

php > print $friendchain;

dogs help cats, cats help mice, mice help cheese

This time when we call str_replace(), we assign the result to
$friendchain ❶. The original $foodchain variable is still unaffected by
the replacement operation ❷, but at least now we have the modified string
available in a variable for later use.

Another replacement function is substr_replace(). Rather than
specifying a substring that should be replaced, this function lets you specify
the position in the string at which the replacement should occur. Here’s an
example:

php > $foodchain = 'dogs eat cats, cats eat mice, mice eat c

heese';

php > print substr_replace($foodchain, 'help', 5, 3);

dogs help cats, cats eat mice, mice eat cheese

When we call the substr_replace() function, we first provide the
original string (in $foodchain) and the replacement string ('help'). Then
we provide two numbers as additional arguments. The first, 5, is the
position in the original string where the replacement should begin. The
second, 3, is the number of characters in the original string that should be
replaced, starting from the specified position. This has the effect of
replacing the first instance of the word eat (which is three characters long
and starts at position 5) with the word help, while leaving the rest of the
string as is.

By setting the replacement length to 0, we can use substr_replace()
to insert a substring into a string without otherwise altering it, like so:

php > $foodchain = 'dogs eat cats, cats eat mice, mice eat c

heese';

php > print substr_replace($foodchain, 'don\'t ', 5, 0);

dogs don't eat cats, cats eat mice, mice eat cheese

This inserts the word don’t into the $foodchain string starting at position 5,
without replacing any characters.

Trimming Whitespace
Often it’s necessary to remove whitespace from the beginning or end of a
string, a task known as trimming. PHP provides three trimming functions:

trim() Removes whitespace from the beginning and end of a string
ltrim() Removes whitespace from the beginning of a string (l is for
left)
rtrim() Removes whitespace the from end of a string (r is for right)
All three functions work in the same way: given a string, they remove

any space, tab, vertical tab, newline, carriage return, or American Standard
Code for Information Interchange (ASCII) null-byte characters, up to the
first non-whitespace character and/or after the last non-whitespace character
in the string. Here, for example, we use trim() to remove the spaces and
newline characters at the start and end of a string:

php > $tooSpacey = " \n\nCAT\nDOG\n\n";

php > print trim($tooSpacey);

CAT

DOG

The output shows that the newlines and the beginning and end of the
string have been trimmed, but notice that a newline still remains between
the words CAT and DOG. The trim functions have no effect on any
whitespace in the middle of a string.

You can optionally control which whitespace characters are trimmed by
specifying them in a separate double-quoted string when calling the
function. Here’s an example:

php > $evenSpacier = "\n\n CAT\nDOG\n\n";

php > print ltrim($evenSpacier, ❶ "\n");

 CAT

DOG

❷
php >

This time we use the string "\n" ❶ to specify that only newline
characters should be trimmed. In the output, notice that the spaces before
the word CAT have been preserved, since the function ignored all but
newline characters. The blank line ❷ before the next prompt also indicates
that the newlines at the end of the string were left in place, since the
ltrim() function affects only the start of the string.

Removing All Unnecessary Whitespace
To remove whitespace from throughout a string, not just the edges, use
str_replace() to find all instances of a particular whitespace character and
replace them with empty strings. For example, here we use this technique to
get rid of all the tab characters in a string:

php > $tooTabby = "\tCat \tDog \t\tMouse";

php > print $tooTabby;

 Cat Dog Mouse

php > print str_replace("\t", '', $tooTabby);

Cat Dog Mouse

The string assigned to $tooTabby contains several tab characters.
Replacing each instance of "\t" with '' (an empty string) gets rid of the
tabs while preserving the regular spaces between each word.

Listing 3-9 pushes this technique even further, repeatedly using
str_replace() to remove any whitespace from a string except for a single
space character between words. This includes getting rid of tabs, newlines,
and multiple space characters in a row.

<?php

❶ $string1 = <<<EOT

the

 cat sat

 \t\t on the

mat

EOT;

❷ $noTabs = str_replace("\t", ' ', $string1);

$noNewlines = str_replace("\n", ' ', $noTabs);

❸ $output = str_replace(' ', ' ', $noNewlines);

$output = str_replace(' ', ' ', $output);

$output = str_replace(' ', ' ', $output);

$output = trim($output);

print "[$output]";

Listing 3-9: Replacing all whitespace (except single space characters) in a string

We use a heredoc to declare the $string1 variable, which contains
tabs, newline characters, and multiple spaces in a row between words ❶.
Then we use the str_replace() function twice, first to replace all tabs with
a single space, and a second time to replace all newline characters with a

single space ❷. (We don’t replace them with empty strings in case a tab or
newline is the only character between two words.)

Next, we repeatedly use str_replace() to replace any instances of two
space characters with a single space ❸. It takes three function calls before
only single spaces are left. (In Chapter 6, we’ll delve into loops, which
provide a more efficient way to repeat the same code several times, or until
a particular condition is satisfied.) For good measure, we use trim() to
remove any lingering whitespace at the start or end of the string before
printing out the resulting string, enclosed in square brackets so it’s easier to
see where it starts and ends. Here’s the output of running this script:

[the cat sat on the mat]

The final string has no whitespace before or after it and only single
spaces between each word. All the extra whitespace has been removed.

Repeating and Padding
Some PHP string functions work by repeating a character or substring to
generate a longer string. For example, to create a new string by repeating a
string a given number of times, use str_repeat(), like this:

php > $lonely = 'Cat';

php > print str_repeat($lonely, 5);

CatCatCatCatCat

This gives our lonely string some company by repeating 'Cat' five times.
Closely related to repeating is padding: a character or substring is

repeatedly added to the beginning or end of a string until the string reaches
a desired length. Padding is useful, for example, if you’re displaying
multiple numbers of different lengths and you want their digits to line up
nicely. In that case, you might add spaces or zeros as padding in front of the
numbers, as shown here:

 12 // padded with spaces

 1099

000001 // padded with zeros

000855

PHP has a str_pad() function for such padding tasks. Here, for
example, we pad the string 'Cat' with hyphens (-) until it’s 20 characters
long:

php > $tooShort = 'Cat';

php > print str_pad($tooShort, 20, '-');

Cat-----------------

We call str_pad(), providing the original string ($tooShort), the
desired length (20), and the string to use as padding ('-'). By default, PHP
adds the padding to the right of the original string, but you can add the
constants STR_PAD_LEFT or STR_PAD_BOTH to the function call to place the
padding on the left or to pad both sides equally instead. Here are some
examples:

php > $tooShort = 'Cat';

php > print str_pad($tooShort, 20, '-', STR_PAD_LEFT);

-----------------Cat

php > print str_pad($tooShort, 20, '-', STR_PAD_BOTH);

--------Cat---------

In each case, the function adds hyphens until the resulting string is 20
characters long.

Summary
Strings are a core data type that you’ll probably use in every web
application you create. In this chapter, you learned about the four ways to
declare strings: single-quoted strings, double-quoted strings, heredocs, and
nowdocs. You saw how double-quoted strings and heredocs are parsed and
so can incorporate variables, while single-quoted strings and nowdocs are
not. You also tried out PHP’s built-in functions for working with strings,
and you learned how to combine strings by using the . and .= operators.

Exercises
1. Write a script that declares a $name variable containing your name as a

single-quoted string. Then include a print statement that uses the string
concatenation operator (.) to combine the contents of $name with the
string ' is learning PHP'. When you run your script, the output
should look something like this:

Matt is learning PHP

2. In a script, create a $fruit variable containing the string 'apple'. Then
use a double-quoted string and a print statement to output the
following message:

apple juice is made from apples.

Change your script so that $fruit contains orange, leading to the
following output:

orange juice is made from oranges.

Hint: You’ll need to use curly brackets to create the plural fruit
names from the $fruit variable.

3. Write a script that declares a heredoc string variable $happyMessage
containing the following (including the newlines):

Print out the contents of the $happyMessage variable.
4. In a script, create an $appleJuice variable containing the string 'apple

juice is made from apples.' Then use the str_replace() function
to create a new string variable, $grapefruitJuice, containing the string
'grapefruit juice is made from grapefruits.' Try using other
PHP functions to further transform the string. For example, capitalize

the first letter of the string so it looks like a grammatically correct
sentence.

4
CONDITIONALS

In this chapter, you’ll learn about
conditional elements of the PHP

language, including if...else statements, switch
statements, and match statements. These structures,
along with language features such as the ternary
operator, the null-coalescing operator, and logical
operators, make it possible to write dynamic code
that decides what to do based on a set of conditions.
The conditions might depend on certain inputs (for
example, from a user or from a software system such
as a database or API) or on other varying data (such
as the current date or time, or whether a file exists).

Conditions Are True or False
At the core of any decision-making logic is a Boolean expression, or code
that is either true or false. The simplest Boolean expression is a literal
value of true or false. In almost all cases, though, we instead write an

expression containing some kind of test. The test might examine the values
of variables, or perhaps call a function and check the value it returns. Either
way, the test ultimately evaluates to true or false. Examples of tests
include the following:

Does a variable contain a particular value?
Does a variable have any value assigned at all?
Does a file or folder exist?
Is the value in one variable greater or less than another value?
Does a function return true or false based on the arguments provided?
Is the length of a string greater than a certain minimum?
Does a variable contain a value of a particular data type?
Are two expressions both true, or just one, or neither?

Tests such as these all evaluate to true or false. They form the
conditions of the choice statements you can use in your code.

if Statements
Perhaps the most common conditional statement in any programming
language is the if statement. It allows you to execute a statement only if a
certain condition is true. Otherwise, that statement is simply skipped. In
PHP, if statements are written in the following format:

if (condition) statementToPerform;

Start with the if keyword, followed in parentheses by the condition
you want to check. This condition is the Boolean expression that evaluates
to true or false. It’s common practice to add a space after the if keyword,
before the opening parenthesis. Next comes the statement that should be
executed if the condition is true.

Listing 4-1 shows an example of an if statement. It prints the message
Good morning if the hour of the day is before 12 (assuming a 24-hour
clock).

<?php

$hourNumber = 10;

if ($hourNumber < 12) print 'Good morning';

Listing 4-1: An if statement

First, we set the $hourNumber variable to 10. Then we use an if
statement to test our condition: whether the value in $hourNumber is less
than 12. Since 10 is less than 12, the condition is true, so the statement
after the condition is executed, printing out the message Good morning.

In this example, we had only one statement that we wanted to execute
if the condition was true. But what if we want to execute multiple
statements? We need a way to group the statements so it’s clear that they’re
all part of the if statement. For this, enclose the sequence of statements in
curly brackets (braces) immediately after the condition. The curly brackets
delineate a statement group, a PHP construction that can contain zero, one,
or many statements, and that PHP treats as a single statement. Listing 4-2
shows an example of a conditional with a statement group.

<?php

$hourNumber = 10;

if ($hourNumber < 12) {

 print 'Good';

 print ' morning';

}

Listing 4-2: A refactored if statement featuring a statement group

This if statement produces the same result as Listing 4-1, but we’ve
rewritten it to consist of multiple print statements, one for each word in the
message. The statements are enclosed in curly brackets to group them
together. It’s customary to write the opening bracket on the same line as the
condition, followed on separate lines by each statement in the group,
followed by the closing bracket, also on a separate line. By convention,
each statement in the statement group is indented.

NOTE

Even if you have only a single conditional statement to be executed,
enclosing that statement in curly brackets to form a statement group is
common practice. This way, all if statements follow the same style, no
matter how many statements are involved.

if...else Statements
Many situations require a program to perform one set of actions if a
condition is true or another set of actions if the condition is false. For
these situations, use an if...else statement. Listing 4-3 shows an example
where we choose between printing Good morning and Good day.

<?php

$hourNumber = 14;

if ($hourNumber < 12) {

 print 'Good morning';

} else {

 print 'Good day';

}

Listing 4-3: An if...else statement

This code once again checks whether the value of $hourNumber is less
than 12. If it is, the condition is true, so we execute the if branch of the
statement, printing Good morning as before. If the condition is false,
however, and $hourNumber isn’t less than 12, we execute the else branch of
the statement instead, printing the message Good day. Notice that the else
keyword appears after the closing curly bracket of the if branch’s statement
group. Then the else branch is given its own statement group enclosed in
curly brackets.

In this case, $hourNumber is 14 (2 PM), so the condition evaluates to
false and the else branch’s statement is executed.

Nested if...else Statements
An if...else statement chooses between two courses of action. If you
have more than two courses of action to choose from, you have a few
options. One is to nest further if...else statements inside the original

else branch. Listing 4-4 shows an example. This script encodes the logic
that if the hour is before 12, we print Good morning; if the hour is between
12 and 17 (5 PM), we print Good afternoon; or otherwise, we print Good
day.

<?php

$hourNumber = 14;

❶ if ($hourNumber < 12) {

 print 'Good morning';

} else {

 ❷ if ($hourNumber < 17) {

 print 'Good afternoon';

 } else {

 print 'Good day';

 }

}

Listing 4-4: Nested if...else statements

First, we have an if statement testing whether the hour is less than 12
❶. If this condition isn’t true, the else statement will be executed. The
statement group for the else statement is a second (nested) if...else
statement. The condition for this second if...else statement is whether
the hour is less than 17 ❷. (If we’re at this point, we’ve already determined
that the hour isn’t less than 12, so in effect we’re testing whether the hour is
between 12 and 17.) If this new test passes, Good afternoon will be
printed. Otherwise, we get to the else portion of the nested if...else
statement, where Good day is printed. Try playing with different values of
$hourNumber to see how it affects the output of the script.

if...elseif...else Statements
Choosing between three or more actions is such a common pattern in
programming that PHP provides a simpler syntax for it that avoids the need
for nesting: between an if statement and its else statement, place one or
more elseif statements. The PHP engine will first test the condition for the
if statement. If the statement is false, the engine will then test the

condition for the first elseif statement, then the next elseif statement,
and so on. When PHP finds a true condition, that branch’s statements are
executed, and the remaining condition checks are skipped. If none of the if
or elseif conditions are true, the else statement at the end will be
executed, if there is one.

Listing 4-5 shows the same logic from Listing 4-4, but it’s rewritten
using if...elseif...else.

<?php

$hourNumber = 14;

if ($hourNumber < 12) {

 print 'Good morning';

❶ } elseif ($hourNumber < 17) {

 print 'Good afternoon';

} else {

 print 'Good day';

}

Listing 4-5: Simplifying the nested if...else statements with if...elseif...else

Our second condition now appears in sequence as an elseif statement
❶ after the if statement, rather than having to be nested inside the else
statement. You can add as many elseif statements as you want between the
if and the else.

Alternative Syntax
PHP offers an alternative syntax for if, if...else, and
if...elseif...else statements that uses colons rather than curly brackets
to set off the various parts of the code. This syntax is illustrated in Listing
4-6, which reproduces the if...else statement from Listing 4-3.

<?php

$hourNumber = 14;

if ($hourNumber < 12):

 print 'Good morning';

else:

 print 'Good day';

endif;

Listing 4-6: The alternative syntax for conditional statements

In this alternative syntax, the condition for the if statement is followed
by a colon (:). This line acts like an opening curly bracket, so any
statements between it and the else (or elseif) keyword are considered part
of the statement group to be executed if the condition is true. The else
keyword is similarly followed by a colon rather than an opening curly
bracket. The statement group for the else branch ends with the endif
keyword signaling that the whole if...else structure is over.

This alternative syntax is particularly useful for web applications,
where HTML template text could appear between the if statement and the
else statement, and the use of indented curly brackets could be hard to
follow in the code. Likewise, the endif keyword clearly indicates that the
overall conditional is ending.

Logical Operators
PHP’s logical operators manipulate or combine Boolean expressions,
producing a single true or false value. This way, you can write more
sophisticated tests for conditional statements than simply comparing two
values, as we’ve done so far (for example, testing whether two conditions
are true). These logical operators perform operations such as AND, OR,
and NOT. The operators are summarized in Table 4-1.
Table 4-1: PHP Logical Operators
Name Operator Example Description

NOT ! !$a true if $a is false

AND and

&&

$a and $b

$a && $b

true if both $a and $b are true

OR or

||

$a or $b

$a || $b

true if either $a or $b is true, or if both are true

XOR xor $a xor $b true if either $a or $b, but not both, is true

Notice that AND and OR operations can be written two ways: with
words (and or or) or with symbols (&& or ||). The two versions perform the
same function, but the symbol versions have a higher precedence than the
word versions when an expression is evaluated. (We discussed operator
order of precedence in Chapter 1, in the context of arithmetic operators.)

NOT
An exclamation mark (!) represents the NOT operator. This operator
negates a Boolean expression or tests whether the expression is not true.
For example, Listing 4-7 uses the NOT operator to test a driver’s age. In
Ireland, you have to be at least 17 years old to drive a car.

<?php

$age = 15;

if (!($age >= 17)) {

 print 'Sorry, you are too young to drive a car in Irelan

d.';

}

Listing 4-7: An if statement using the NOT (!) operator

The if statement checks whether it is not true that the value of $age is
greater than or equal to 17. Since 15 is not 17 or more, you should see the
following message printed out when you run the script:

Sorry, you are too young to drive a car in Ireland.

Notice that we’ve placed $age >= 17 in parentheses to separate it from
the NOT operator. This is because the NOT operator normally takes higher
precedence than the >= operator, but we want to check whether $age is
greater than or equal to 17 before using ! to negate that result. If we had
written if (!$age >= 17) instead, without the inner parentheses, PHP
would try to evaluate !$age first. The NOT operator requires a Boolean
operand, so the value of 15 inside $age would be juggled to true (as would
any other nonzero value). Then, since !true is false, we would have the
expression false >= 17.

Next, PHP would try to evaluate the >= comparison, and since one of
the operands is a Boolean, it would try to make the second operand a
Boolean too. The integer 17 would thus be juggled to true (since it’s
nonzero), giving us the expression false >= true, which evaluates to
false. Ultimately, without those extra parentheses, !$age >= 17 would
evaluate to false for any nonzero integer value of $age.

To avoid all this type juggling and potential for error due to missing
parentheses, I often create a temporary Boolean variable for use in an if
statement before introducing the NOT operator. For example, Listing 4-8
shows an alternate version of the code from Listing 4-7, with an extra
variable to avoid any chance of mixing integers and Booleans.

<?php

$age = 15;

$seventeenAndOlder = ($age >= 17);

if (!$seventeenAndOlder) {

 print 'Sorry, you are too young to drive a car in Irelan

d.';

}

Listing 4-8: A cleaner version of Listing 4-7, with an extra Boolean variable

We use the $seventeenAndOlder variable to store the true or false
value of the $age >= 17 test. Then the if statement uses the NOT operator
to test whether $seventeenAndOlder is not true. While this adds an extra
line of code compared to Listing 4-7, it’s much clearer to understand since
we’ve separated the age test Boolean expression from the if statement
condition.

NOTE
Placing expressions like $age >= 17 inside parentheses isn’t necessary
when assigning their value to a variable. Listing 4-8 uses parentheses to
help make the code clearer to read.

AND
An expression with the AND operator is true when both operands are true.
You can use either the keyword and or a double ampersand (&&) to create an
AND operation. For example, the if...else statement in Listing 4-9 uses
the AND operator to determine whether a driver meets both conditions to be
allowed to take a driving test. In Ireland, you have to pass a theory test and
hold a learner’s license for at least six months before you’re allowed to
apply for a driving test.

<?php

$passedTheoryTest = true;

$monthsHeldLearnersLicense = 10;

$heldLearnersLicenseEnough = ($monthsHeldLearnersLicense >=

6);

if ($passedTheoryTest and $heldLearnersLicenseEnough) {

 print 'You may apply for a driving test.';

} else {

 print "Sorry, you don't meet all conditions to take a dr

iver's test.";

}

Listing 4-9: An if...else statement using the AND operator

We declare the $passedTheoryTest variable as true, and
$monthsHeldLearnersLicense with value 10. Then we test whether
$monthsHeldLearnersLicense is greater than or equal to 6 and store the
resulting Boolean (true, in this case) in the $heldLearnersLicenseEnough
variable. Next, we declare an if...else statement with the condition
$passedTheoryTest and $heldLearnersLicenseEnough. Since both
values are true, the AND operation is true as well, so the message You
may apply for a driving test will be printed out.

Try changing $passedTheoryTest to false or setting
$monthsHeldLearnersLicense to a value less than 6. The AND operation
should then evaluate as false, and the message in the else branch of the
statement should print out.

OR
An OR operation is true when either or both operands are true. You can
use either the keyword or or a double vertical pipe (||) to write an OR
operation. Listing 4-10 illustrates an if statement that uses the OR operator
to determine whether a password fails basic security rules (by including the
string 'password' or being less than six characters long).

<?php

$password = '1234';

$passwordContainsPassword = str_contains($password, 'passwor

d');

$passwordTooShort = (strlen($password) < 6);

❶ if ($passwordContainsPassword || $passwordTooShort) {

 print 'Your password does not meet minimal security requ

irements.';

}

Listing 4-10: An if statement using the OR operator

We declare the $password variable storing the string '1234'. Then we
declare two Boolean variables to help with our test. First,
$passwordContainsPassword is assigned the result of passing variable
$password and string 'password' to the built-in str_contains() function.
This function returns true if the second string argument (the “needle”) is
found anywhere inside the first string argument (the “haystack”), or false
otherwise. Since in this case the $password variable doesn’t contain the
string 'password', $passwordContainsPassword will contain false. The
other Boolean variable, $passwordTooShort, will be true if the length of
$password is less than 6, tested with the built-in strlen() function. Since
the string '1234' in $password is less than six characters long, this variable
will be assigned the value true.

Finally, we declare an if statement, using the OR operator (||) to
create the condition based on the two Boolean variables ❶. Since at least
one of the variables is true, the if statement condition passes, and a
message prints indicating the password is insecure:

Your password does not meet minimal security requirements.

Try changing the value of $password to be a string six characters or
longer (other than 'password')—for example, "red$99poppy". Then
neither $passwordContainsPassword nor $passwordTooShort will be true,
so the logical OR test in the if statement will be false and no message will
be printed out.

XOR
An XOR operation (short for exclusive OR) is true when only one of the
operands is true but not both. We use keyword xor to create an XOR
expression. Listing 4-11 illustrates an if...else statement using an XOR
operation. The code determines whether a dessert is creamy but not too
creamy. (Custard and ice cream would be too much!)

<?php

$containsIceCream = true;

$containsCustard = false;

if ($containsIceCream xor $containsCustard) {

 print 'a nice creamy dessert';

} else {

 print 'either too creamy or not creamy enough!';

}

Listing 4-11: An if...else statement with the xor operator

We declare two Boolean variables, $containsIceCream and
$containsCustard, setting one to true and the other to false. Then we
declare an if...else statement with the condition $containsIceCream
xor $containsCustard. Thanks to the XOR operator, if one but not both of
these variables is true, the condition will evaluate to true, and a nice
creamy dessert will be printed out. If neither variable is true, or if both
variables are true, then the XOR expression will be false, and either too
creamy or not creamy enough! will be printed instead.

In this example, since only one variable is true, we should get the nice
creamy dessert message. Try playing with the values of the two Boolean

variables and see how the result of the XOR expression is affected.

switch Statements
A switch statement is a conditional structure that tests a variable against
several possible values, or cases. Each case has one or more statements to
be executed if its value matches the variable’s (after type juggling, so it
performs equality tests like ==). You can also provide a default case if none
of the values match. If you need to choose from three or more possible
paths, a switch statement is a convenient alternative to an
if...elseif...else statement, as long as the decision hinges on the value
of a single variable.

Listing 4-12 shows a switch statement that prints an appropriate
message about the local currency based on the value of the $country
variable.

<?php

$country = 'Ireland';

❶ switch ($country) {

 ❷ case 'UK':

 print "The pound is the currency of $country\n";

 break;

 ❸ case 'Ireland':

 case 'France':

 case 'Spain':

 ❹ print "The euro is the currency of $country\n";

 break;

 case 'USA':

 print "The dollar is the currency of $country\n";

 break;

 ❺ default:

 print "(country '$country' not recognized)\n";

}

Listing 4-12: Using a switch statement to print the currency based on the value of $country

First, we assign $country the value 'Ireland'. Then we begin a
switch statement with the keyword switch followed by the variable to be
tested in parentheses ($country) ❶. The remainder of the switch
statement is enclosed in a set of curly brackets. Within the switch
statement, we declare the values of $country to check, each in its own
indented case clause. Each case clause is defined using the keyword case,
followed by the value to be tested, followed by a colon (:). Then come the
statements to execute if that case is a match on new, further indented lines.
For example, if the value of $country is 'UK' ❷, the message The pound
is the currency of UK will print.

If you want the same set of actions to apply to multiple cases, list those
cases one after the other, followed just once by the statement(s) to execute.
For example, Ireland, France, and Spain all use the euro, so we’ve listed
those cases in sequence ❸. The print statement after those cases ❹ will
apply to any of them; you don’t need to repeat it for each case.

Our script features an additional case for when $country has the value
'USA'. Then the final part of the switch statement declares a default case
using the default keyword rather than case ❺. This default will be
executed if none of the other cases match the variable being tested. Given
that we set $country to 'Ireland', the script should output the message
The euro is the currency of Ireland.

Notice that we’ve included the break keyword in each case’s statement
group, after each print statement. This interrupts, or breaks out of, the
switch statement, preventing any further code in that statement from being
executed. The role of break statements is essential to understand. Once a
matching case has been found, all remaining statements in the body of the
switch statement are executed, even statements from other, nonmatching
cases, unless a break statement is encountered to interrupt the execution. If
we removed all the break statements from Listing 4-12, for example, we’d
end up with the following output:

The euro is the currency of Ireland

The dollar is the currency of Ireland

(country 'Ireland' not recognized)

The value of $country is 'Ireland', not 'UK', so the first case isn’t a
match, and the first print statement is skipped. Once we encounter the
'Ireland' case, however, the remaining three print statements execute,
since there aren’t any break statements to interrupt the switch statement.
This is rarely the behavior you’ll want from a switch statement, so in
almost every situation, you’ll need to add a break statement to the end of
each case (or set of cases), as we’ve done in Listing 4-12.

match Statements
A match statement chooses a value for a variable based on the value of
another variable. You could accomplish the same task with a switch
statement, but match statements are written much more compactly. Also,
match statements rely on strict comparisons (the equivalent to testing for
identity with ===), whereas switch statements make comparisons after any
relevant type juggling (the equivalent to testing for equality with ==).
Therefore, the time to use a match statement over a switch statement is
when a variable needs to be tested against multiple values of the same type,
and when the action to perform based on that test is to assign a value to a
variable.

Listing 4-13 shows the same logic as Listing 4-12’s switch statement,
implemented with a match statement instead.

<?php

$country = 'Ireland';

❶ $currency = match ($country) {

 'UK' => 'pound',

 'Ireland' => 'euro',

 'France' => 'euro',

 'Spain' => 'euro',

 'USA' => 'dollar',

 ❷ default => '(country not recognized)'

};

print "The currency of $country is the $currency";

Listing 4-13: Using a match statement to set $currency based on the value of $country

We write the match statement as part of the assignment of the
$currency variable ❶. It consists of the match keyword, followed by the
variable to check in parentheses, followed by a comma-separated sequence
of arms enclosed in curly brackets. Each arm is written in the form x => y,
where y is the value to assign to $currency if the value of $country
matches x. As with the switch statement, we provide a default arm in case
none of the values match ❷. After the match statement, we print out a
message including the values of $country and $currency.

Compared to the switch statement in Listing 4-12, this match
statement is more concise. After assigning a value to $currency, we have to
write only a single print statement, as opposed to including a separate
print statement for each case of the switch statement. We also no longer
need all the break statements; with a match statement, once a match has
been found, the rest of the statement is ignored.

The match statement is a relative newcomer to the PHP language.
Many experienced programmers still use switch where match would be
more efficient. (I’m guilty of this myself sometimes.) In general, if you’re
testing a variable against multiple values, I recommend trying a match
statement first. Only if that solution is found inadequate should you change
to a switch statement.

The Ternary Operator
PHP’s ternary operator (or three-part operator) selects one of two values,
depending on whether a test is true or false. The operator consists of two
separate symbols, a question mark (?) and a colon (:), and is written in the
following form:

booleanExpression ? valueIfTrue : valueIfFalse

To the left of the question mark, you write a Boolean expression that
evaluates to true or false (for example, comparing two values). To the
right of the question mark, you write two values separated by a colon. If the
Boolean expression is true, the value to the left of the colon is chosen

(valueIfTrue). If the Boolean expression is false, the value to the right of
the colon is chosen (valueIfFalse). Usually, the result is assigned to a
variable.

Essentially, the ternary operator provides a more succinct way to write
an if...else statement, as long as the purpose of the if...else statement
is to assign a value to a variable (as opposed to performing another
sequence of actions). To illustrate, Listing 4-14 shows two ways to choose
between two values for $currency based on the value of $region: first
using an if...else statement and then using the ternary operator.

<?php

$region = 'Europe';

❶ if ($region == 'Europe') {

 $currency = 'euro';

} else {

 $currency = 'dollar';

}

print "The currency of $region is the $currency (from if...e

lse statement)\n";

$region = 'USA';

❷ $currency = ($region == 'Europe') ? 'euro' : 'dollar';

print "The currency of $region is the $currency (from ternar

y operator statement)\n";

Listing 4-14: Comparing if...else and ternary operator statements

We assign $region the value 'Europe'. Then we declare an if...else
statement that sets the value of $currency to 'euro' if the region is
'Europe' or to 'dollar' otherwise ❶. We print out a message to verify the
result. Next, we change $region to 'USA' and reassign $currency by using
the ternary operator ❷. The ternary operator expression follows the same
logic as the if...else statement: if $region equals 'Europe', the code sets
$currency to 'euro', and if not, the code sets $currency to 'dollar'.

Again, we print a message to check the result. Here’s the output of running
the script:

The currency of Europe is the euro (from if...else statemen

t)

The currency of USA is the dollar (from ternary operator sta

tement)

The second line shows that the ternary operator has worked as
expected, assigning 'dollar' as the value of $currency because the value
in $region wasn’t 'Europe'. As you can see, in a case like this that requires
a straightforward decision between two possible values, the ternary operator
is concise, using just one line of code compared to the four lines of the
if...else statement.

The Null-Coalescing Operator
Another operator that chooses between two values is the null-coalescing
operator, indicated with a double question mark (??). This operator makes
its choice depending on whether a variable is NULL. The general form of an
expression using the null-coalescing operator is as follows:

$variable = value ?? valueIfNull

First, the null-coalescing operator checks value, the expression on the
left of the ?? operator. This could be a variable, or perhaps a function that
returns a value. If this expression isn’t NULL, then value is assigned to
$variable. Otherwise, the value to the right of the null-coalescing operator
(valueIfNull) is assigned to the variable instead. This provides a fallback
in case a variable hasn’t been defined (or contains NULL), without raising a
warning or error. This mechanism is especially useful when you’re
expecting a value from a user but none has been provided, or when you’re
looking for a record in a database and the record doesn’t exist.

Listing 4-15 shows the null-coalescing operator in action. We use it to
test the $lastname_from_user variable twice, first before it’s been assigned

any value (and therefore is NULL), then a second time after it’s been given a
value.

<?php

❶ $lastname = $lastname_from_user ?? 'Anonymous';

print "Hello Mr. $lastname\n";

$lastname_from_user = 'Smith';

❷ $lastname = $lastname_from_user ?? 'Anonymous';

print "Hello Mr. $lastname\n";

Listing 4-15: Testing for NULL with the null-coalescing operator

First, we use the null-coalescing operator to set the value of $lastname
❶. The operator tests the $lastname_from_user variable, which hasn’t
been assigned a value yet, and so is NULL. Therefore, $lastname should be
assigned the value to the right of the ?? operator (the string 'Anonymous').
We print out a message to check the result. Then, after assigning a value to
$lastname_from_user, we use the same null-coalescing operator
expression to again set the value of $lastname ❷. This time, since
$lastname_from_user contains a non-NULL value, that value should be
passed along to $lastname. Here’s the result:

Hello Mr. Anonymous

Hello Mr. Smith

The first line shows that, since variable $lastname_from_user is NULL,
$lastname is assigned the string 'Anonymous'. The second time around,
however, the string 'Smith' inside $lastname_from_user is successfully
stored in the $lastname variable and printed out.

Summary
In this chapter, you’ve learned about the keywords and operators for writing
code that makes decisions. Much of the power of computers and
programming languages is built upon the kinds of operators and choice
statements we’ve discussed. You saw how if and if...else statements

make a choice based on a single test, although that test may itself combine
Boolean expressions with logical operators such as AND or OR. You also
saw how to incorporate multiple tests by adding elseif branches between
the if and the else. Then you learned about other conditional structures,
including switch and match statements, that test a variable for different
possible values. These structures let you define one or more statements to
be executed when a particular value is found. Closely related to these are
the ternary and null-coalescing operators, which both choose between two
possible values.

Exercises
1. Write a script that assigns a name to the $name variable and then prints

the message That is a short name if the length of the string is less
than four characters.

2. Write a script that determines the size of the machine you need for your
laundry. The script should check the value of the $laundryWeightKg
variable and print Fits in standard machine if the value is less than
9, or print Needs medium to large machine otherwise.

3. Use a switch statement or a match statement to test the value of the
$vehicle variable and print an appropriate message based on that value.
Use the following value/message combinations:

bus "Beep beep"
train "Runs on tracks"
car "Has at least three wheels"
helicopter "Can fly"
bicycle "You never forget once you've learned"
(None of the above) "You've chosen the road less traveled"

4. Write a script that prints the message You are now logged in if both
$userNameCorrect and $passwordCorrect are true. Otherwise, print
Invalid credentials, please try again.

5
CUSTOM FUNCTIONS

In this chapter, you’ll learn how to
declare and use your own functions,

which are named, self-contained sequences of code
that accomplish a particular task. You’ll see how
functions promote code reusability, since putting
code in a function is much more efficient than having
to rewrite the same sequence of code every time you
need to perform that function’s task. Functions also
let you write programs that achieve a lot with a small
number of statements, since each statement can
invoke the complex logic hidden within one of your
functions.

Custom functions are typically declared in a separate file from the main
program statements that an application will execute. This stems from the
PHP Standards Recommendations (PSRs), a list of guidelines and best
practices for PHP programming. According to PSR-1, a file should either
declare symbols (such as functions) or cause side effects, but not both. A

side effect is a concrete outcome of executing a piece of code, such as
outputting text, updating a global variable, changing the contents of a file,
and so on.

While functions themselves can cause side effects such as these,
declaring a function (defining what the function will do) isn’t the same as
calling the function (having the function actually do that thing). Therefore,
functions should be declared in one file and called in another. To adhere to
this guideline, this chapter first touches on the basics of how to work with
code spread across multiple files before we turn our attention to functions.
We’ll revisit the topic of working with files in more detail in Chapter 9.

Separating Code into Multiple Files
Even if we set aside the best practice of declaring functions in a separate
file, it’s still standard to break up an application’s code across multiple files.
Consider that a sophisticated application might consist of tens of thousands
of lines of code. If all that code were in a single large text file, navigating
that file and locating a particular section of code to work on would be
difficult. Organizing code into different files makes a project much more
manageable.

Using multiple files also promotes code reusability. Once you start
writing your own functions, you’ll see how declaring those functions in
separate files makes it easy to reuse the function in different parts of a
project or in different projects altogether. To give another example,
multipage web applications often include the same elements, such as
HTML headers, footers, and navigation lists on many pages. Rather than
repeating that code for each page that needs it, the common code can be
written once in its own file. This way, if you need to change something
about it (for example, updating the image reference for a web logo), you
need to make the change in only one place instead of tracking down and
updating every instance of the repeated code. Software engineers call this
the don’t repeat yourself (DRY) principle.

Once you start spreading an application’s code across multiple files,
you need a way to access one file’s code from within another file. In this
section, we’ll look at some PHP language features that make this possible.

Reading in and Executing Another Script
PHP’s require_once command reads the code in another file and executes
it. To see how this command works, we’ll create two scripts. One, the main
script, will use require_once to access the code from the other script. First,
create a main.php file containing the code shown in Listing 5-1.

<?php

print "I'm in main.php\n";

require_once 'file2.php';

print "I'm back in main.php\n";

Listing 5-1: A main script to read in and execute code from a different script

In this script, we print out two messages indicating that we’re in the
main application file. In between, we use the require_once command to
read in and execute the contents of the file2.php script. The filename is
specified as a string immediately after the command. Since we haven’t
specified a directory path along with the filename (for example,
Users/matt/file2.php), it’s understood that the file is in the same folder as
this current script. This is known as a relative path: the file’s location is
determined relative to the location of the current script.

Now create file2.php containing the code shown in Listing 5-2. Be sure
to save this file in the same location as main.php.

<?php

print "\t I'm printing from file2.php\n";

print "\t I'm also printing from file2.php\n";

Listing 5-2: The contents of file2.php to be read in and executed from another script

This script has two print statements, printing out messages saying
they’re from file2.php. Notice that each message begins with a tab escape
character (\t). This way, these messages will be indented, whereas the
messages printed from our main script won’t be, a visual clue that the
messages are coming from separate scripts.

Now enter php main.php at the command line to run the main script.
Here’s the output:

I'm in main.php

 I'm printing from file2.php

 I'm also printing from file2.php

I'm back in main.php

We see the first message from the main script, followed by the two
indented messages from file2.php. This confirms that the contents of
file2.php were read in and executed thanks to the require_once statement
in our main script. Finally, the program flow of control returns back to the
main script after the require_once statement, and we see the final printed
message from the main script.

NOTE
Besides require_once, PHP provides three other commands for reading in
and executing code declared in a separate file: require, include, and
include_once. They all work similarly; you can read about the differences
in the PHP documentation. In 99.99 percent of the web applications I write,
I use require_once.

Creating Absolute Filepaths
The constant __DIR__ will always refer to the absolute filepath to the script
currently being executed, meaning the complete filepath, starting from the
root directory. This is one of PHP’s magic constants, built-in constants
whose value changes depending on the context. In the case of __DIR__, the
value varies based on the location of the file in which __DIR__ is being
evaluated.

It’s best to use __DIR__ whenever possible when writing require_once
statements: simply concatenate the value of __DIR__ with any remaining
relative path information to access the file you’re trying to read in and
execute. This avoids any confusion as to whether the path relates to the
current script (the one calling the require_once command) or to a script
that might have required the current script. Consider that you might have a

chain of scripts, with one script requiring another, and that script also
requiring another. If these scripts were in different directories, using the
__DIR__ magic constant ensures that wherever you write a require_once
statement, you’ll know the path will be correct to the files you wish to read
in and execute.

To try using __DIR__, update your main.php file as shown in Listing 5-
3. The changes are shown in black text.

<?php

print "I'm in main.php\n";

$callingScriptPath = __DIR__;

print "callingScriptPath = $callingScriptPath\n";

❶ require_once __DIR__ . '/file2.php';

print "I'm back in main.php\n";

Listing 5-3: A main script using __DIR__ to read in and execute code in a different script

We assign the $callingScriptPath variable the value of the __DIR__
magic constant and print a message containing this variable. Then we use
__DIR__ after the require_once command to make it explicit that the
file2.php script resides in the same directory as this main script ❶. Notice
that we use the string concatenation operator (.) to combine the value of
__DIR__ with the string '/file2.php', building an absolute path to the
other file. Here’s the output of running the main script:

I'm in main.php

❶ callingScriptPath = /Users/matt/magic

 I'm printing from file2.php

 I'm also printing from file2.php

I'm back in main.php

As before, the first message from main.php prints out. Then we see the
path to the main script (the value of __DIR__) printed out ❶. For me, it is
/Users/matt/magic, the path to the directory on my computer for this

example project. The rest of the output is the same as before, featuring the
messages from file2.php followed by the final printed message from the
main script.

Declaring and Calling a Function
Now let’s turn our attention to declaring and using our first custom
function. The function will determine which of two numbers is smaller. In
keeping with best practices, we’ll declare the function in one file,
my_functions.php, and then call it from a separate file, main.php. Start a
new project and create my_functions.php containing the code shown in
Listing 5-4.

<?php

function which_is_smaller(int $n1, int $n2): int

{

 if ($n1 < $n2) {

 return $n1;

 } else {

 return $n2;

 }

}

Listing 5-4: Declaring a function in my_functions.php

Here we declare a function named which_is_smaller(). We begin
with the keyword function, followed by the function name. By convention,
function names are written in snake case, in all lowercase letters and with
underscores to join multiple words. This enables you to write meaningful,
easy-to-read function names (although, unfortunately, not all of PHP’s built-
in functions follow this naming convention because of choices made in the
language’s early design).

After the function name comes a set of parentheses containing a
comma-separated list of the function’s parameters. These are inputs that the
function needs to do its job. In this case, we have two parameters, $n1 and
$n2, representing the two numbers we want the function to compare. Each
parameter name is preceded by its data type to ensure that the correct form

of data enters the function. Here, for example, int $n1 indicates that
parameter $n1 should be an integer.

NOTE
If a function doesn’t need any parameters, you still have to include an
empty set of parentheses after the function name.

After the parentheses comes a colon (:), followed by the function’s
return type. Most functions do some work and produce a value as a result,
which the function then returns, or provides, to the script that called the
function. The return type specifies the data type of this value. In this case,
the function will return the integer $n1 or $n2, whichever is smaller, so we
set the return type to int.

The code we’ve written so far has defined the function’s signature, a
combination of its name, parameters (and their types), and return type. The
PHP engine uses a function’s signature to uniquely identify the function,
recognize when we’re calling it, validate that appropriate data is being
passed to the function’s parameters, and ensure that the function is returning
an appropriate value.

Next comes the body of the function, a statement group enclosed within
curly brackets and containing the code that will execute each time the
function is called. The body of our which_is_smaller() function consists
of an if...else statement that tests whether integer $n1 is smaller than
integer $n2. If $n1 is smaller, the return $n1; statement will be executed.
Otherwise (if $n2 is smaller or the same as $n1), return $n2; will be
executed. In both cases, we use the return keyword to make the function
provide a value (either $n1 or $n2) to the script that called it. As soon as a
function reaches a return statement, the function stops executing and gives
control back to the calling script. Even if the function body includes
additional statements after the return statement, they won’t execute after
the function has returned a value.

Now that we’ve declared a function, let’s use it. Create main.php in the
same location as my_functions.php and enter the code shown in Listing 5-5.

<?php

require_once __DIR__ . '/my_functions.php';

$result1 = which_is_smaller(5, 2);

print "the smaller of 5 and 2 = $result1\n";

$result2 = which_is_smaller(5, 22);

print "the smaller of 5 and 22 = $result2\n";

Listing 5-5: Calling the which_is_smaller() function from main.php

We use require_once to read in the declaration of our function from
my_functions.php. This doesn’t call the function; it simply makes the
function available for use in our main.php script. Next, we call our function
by writing the function name, followed in parentheses by the values we
want the function to compare, 5 and 2. These values are known as
arguments; they fill in the values of the function’s parameters. Notice that
we call the function as part of an assignment statement for the $result1
variable. This way, the function’s return value will be stored in $result1
for later use (in this case, in the next line of code, where it’s printed out in a
message). When a function has a return value, it’s common to follow this
pattern of calling a function and assigning the result to a variable.

We conclude the script by calling the function again, this time using 5
and 22 as arguments. This is the beauty of functions: you can call them as
many times as you want, with different input values each time. We store the
return value of the second function call in the $result2 variable and again
print out a message showing the result. Here’s the output of running the
main.php script:

the smaller of 5 and 2 = 2

the smaller of 5 and 22 = 5

We can see that our function is working correctly. It returns 2 as the
smaller of 5 and 2, and 5 as the smaller of 5 and 22.

Parameters vs. Arguments
The terms parameter and argument are closely related and often mistaken
for each other. When you declare a function, the parameters are variables
that stand in for the inputs the function will work with. As you saw in
Listing 5-4, you list the parameters in the parentheses after the function
name. In our which_is_smaller() function, the parameters were $n1 and
$n2. Each parameter is a temporary variable, local to the function code
itself, that will be assigned a value when the function is called. These
variables exist only while the function is being executed. Once the function
has finished executing, the local parameter variables are discarded from the
computer’s memory.

The technical term for how long a variable “lives” in a software system
is scope. The scope of any variable declared in a function, including a
parameter, is local to the function itself. As such, you can’t expect to access
a function’s variables from any code outside the function declaration. In our
example, we can’t use the variables $n1 and $n2 in main.php. Instead, the
way to get a value out of a function is with a return statement.

When we call a function, the arguments are the specific values we pass
to the function in the parentheses after the function name. These arguments
supply the values for the function’s parameters. When we call
which_is_smaller(5, 22), for example, the argument 5 is assigned as the
value of parameter $n1, and the argument 22 is assigned as the value of
parameter $n2. The order of arguments matches the order of parameters. In
this case, the arguments are literals, but arguments can also be variables, as
shown here:

which_is_smaller($applesCount, $orangesCount)

That’s all there is to it. Arguments are the values passed when
executing a function, and parameters are the local variables created when
the function executes, populated by the arguments received. Each argument
passed to a function will therefore have a corresponding local (temporary)
parameter variable while that function is executing. (One exception is the
special case of pass-by-reference parameters, which we’ll cover later this
chapter.)

Errors from Incorrect Function Calls
In two common cases, you’ll get an error when calling a function: if you
don’t pass the correct number of arguments, or if you pass arguments of the
wrong data type. (See “Errors, Warnings, and Notices” on page 88 for
information on errors and other kinds of alerts generated about your code.)
Consider this call to our custom which_is_smaller() function:

$result = which_is_smaller(3);

The function requires two integer arguments, but we’re providing only
one. If you try to execute this expression, the application will halt and
you’ll see a fatal error similar to the following:

PHP Fatal error: Uncaught ArgumentCountError: Too few argum

ents to function

which_is_smaller(), 1 passed in /Users/matt/main.php on line

9 and exactly 2

expected in /Users/matt/my_functions.php:2

You’ll also get a fatal error if you pass arguments of the wrong data
type (that is, values that can’t be type-juggled into the parameter data types
specified in the function declaration). Consider this expression, where we
pass non-numeric strings to our which_is_smaller() function:

$result = which_is_smaller('mouse', 'lion');

Trying to execute this statement will produce an error message like the
following:

PHP Fatal error: Uncaught TypeError: which_is_smaller(): Ar

gument #1 ($n1)

must be of type int, string given, called in /Users/matt/mai

n.php on line 10

and defined in /Users/matt/my_functions.php:2

A fatal TypeError has occurred because our function requires two integer
arguments but we’ve provided strings instead.

ERRORS, WARNINGS, AND NOTICES

PHP communicates that it has identified issues in your code in three ways. In order
from most to least severe, they are errors, warnings, and notices.

A fatal runtime error indicates that a problem that can’t be recovered from has
occurred while code is being executed. In this case, the PHP engine immediately
terminates the execution of the program. An example of a fatal runtime error is
attempting to execute a function that the PHP engine can’t find (perhaps the function
name is misspelled, or the statement to read in the file containing the function is
missing). Errors can also occur when the PHP engine is parsing, rather than
executing, a file containing code, such as when the PHP engine reads in a function
declaration from a file. These parse errors can be triggered, for example, by a
missing semicolon or closing quotation mark in a function declaration. Fixing errors is
crucial, or your code won’t run.

Warnings identify nonfatal issues, meaning the PHP engine is able to continue
executing your code in spite of the problem. For example, PHP will warn you if you’re
using a variable that hasn’t been assigned a value, but it won’t halt the program.
Instead, it’ll give the variable a default value such as NULL and continue executing the
code. You should always heed warnings and take steps to fix your code so the issue
highlighted in the warning is resolved.

A runtime notice indicates something has occurred during code execution that
could indicate an error but that might also be intended behavior of correctly running
code. An example is a deprecation message, a notice about a language feature that
still works in the current version of the PHP engine but will be removed in a future
version. These messages help you monitor your software and plan ahead for a
feature eventually becoming unavailable. In fact, since PHP 8, many deprecation
messages have been upgraded from notices to warnings as part of the quality
improvements to encourage modern PHP programmers to write more robust and
correct code.

Type Juggling
To avoid a TypeError like the one we just saw when arguments of the
wrong type are provided, the PHP engine attempts to juggle those
arguments into the expected data type. (For a refresher on type juggling, see
Chapter 2.) Listing 5-6 shows some examples where we provide non-
integer arguments to our which_is_smaller() function. Update your
main.php file to match the listing.

<?php

require_once __DIR__ . '/my_functions.php';

$result1 = which_is_smaller(3.5, 2);

print "the smaller of 3.5 and 2 = $result1\n";

$result2 = which_is_smaller(3, '55');

print "the smaller of 3 and '55' = $result2\n";

$result3 = which_is_smaller(false, -8);

print "the smaller of false and -8 = $result3\n";

Listing 5-6: Updating the main.php script to demonstrate type juggling

We call which_is_smaller() three times and print the results. None of
these function calls will trigger an error, since the arguments can all be
juggled to integers. First, we call the function with float 3.5 and integer 2.
The float will be juggled to integer 3. Next, we use integer 3 and string '55'
as arguments. This time, the string will be converted to integer 55. Finally,
we pass Boolean false and integer -8 as arguments. The false will be
converted to integer 0. Here’s the output of running the script:

PHP Deprecated: Implicit conversion from float 3.5 to int l

oses precision in

/Users/matt/my_functions.php on line 2

the smaller of 3.5 and 2 = 2

the smaller of 3 and '55' = 3

the smaller of false and -8 = -8

When you run the script, the first thing you should see printed out is a
deprecation message informing you that you’re losing precision when float
3.5 is juggled into integer 3. This message indicates that at some point in
the future (possibly PHP 9), PHP will stop automatically juggling floats
with fractional components into integers, so the code will someday stop
working and trigger an error. After this message, you should see the results

of the three print statements, indicating that the three function calls
occurred without issue, thanks to PHP’s automatic type juggling.

NOTE
When you encounter a deprecation message, reading a discussion about the
upcoming change can be informative. For example, the request for
comments (RFC) document explaining the deprecation message output from
Listing 5-6 is available online at https://wiki.php.net/rfc/implicit-float-int-
deprecate.

These function calls worked despite the incorrect argument data types,
but well-written programs should avoid relying on type juggling altogether.
Take note of deprecation warnings like the one we just encountered, and
look for ways to revise your code to cope with different kinds of values
without warnings or errors. In this particular case, we could refactor the
function to use union types (discussed in “Union Types” on page 98), which
would allow both integers and floats as arguments.

Functions Without Explicit Return Values
Not every function has to explicitly return a value. For example, you could
write a function that simply prints out a message without returning anything
to the calling script. When a function doesn’t have an explicit return value,
declare its return type as void.

To demonstrate, we’ll declare a function that prints out a given number
of stars, padded on both sides with another spacer character to achieve a
fixed line length. We’ll be able to use the function to create ASCII art,
images formed by arranging characters of text. Start a new project and
create my_functions.php containing the code shown in Listing 5-7.

<?php

function print_stars(int $numStars, string $spacer): void

{

 $lineLength = 20;

 $starsString = str_repeat('*', $numStars);

 $centeredStars = str_pad($starsString, $lineLength, $spa

cer, STR_PAD_BOTH);

https://wiki.php.net/rfc/implicit-float-int-deprecate
https://wiki.php.net/rfc/implicit-float-int-deprecate

 print $centeredStars . "\n";

}

Listing 5-7: Declaring the print_stars() function in my_functions.php

Here we declare a function named print_stars(). The function
requires two parameters: $numStars and $spacer. The integer $numStars is
the number of stars (* characters) to be printed out. The string $spacer is
the character to use as padding on both sides of the stars. After the
parentheses, we use : void to indicate that this function won’t explicitly
return any value.

Inside the function body, we set the length of the line to be printed to
20 characters. (Since this value is hardcoded into the function, it will be the
same each time the function is called; a more flexible alternative could be to
set $lineLength as a parameter.) Then we generate a string ($starsString)
containing the number of asterisks specified by the $numStars parameter.
Next, we use the built-in str_pad() function (discussed in Chapter 3) to
create a string 20 characters long, with $starsString centered and padded
symmetrically on the left and right with whatever string is in the $spacer
parameter. If $numStars is 10 and $spacer is '.', for example, this will
produce the string '.....**********.....', 10 asterisks with 5 periods on
each side, giving a total length of 20. Finally, we print out the result,
followed by a newline character.

Notice that we haven’t included a return statement in the function
body. There’s no need, since all the function is doing is constructing and
printing a string. If we were to try to return a value from this function, it
would trigger a fatal error, since we declared the function as void.

Now let’s use our function to generate an ASCII art image of a tree.
Create main.php containing the code shown in Listing 5-8.

<?php

require_once __DIR__ . '/my_functions.php';

❶ $spacer = '/';

print_stars(1, $spacer);

print_stars(5, $spacer);

print_stars(9, $spacer);

print_stars(13, $spacer);

print_stars(1, $spacer);

print_stars(1, $spacer);

Listing 5-8: A script in main.php to generate a tree shape with the print_stars() function

After reading in the function declaration with require_once, we set the
spacer character to be a forward slash (/) ❶. Then we call our
print_stars() function six times, printing a tree shape made up of lines
with 1, 5, 9, and 13 stars, plus two more lines with just 1 star for the trunk.
Here’s the output of running the main.php script at the terminal:

/////////*//////////

///////*****////////

/////*********//////

///*************////

/////////*//////////

/////////*//////////

We’ve created a tree during a heavy rainstorm!

Returning NULL
Even when a function is declared as void, it still technically has a return
value: NULL. If a function finishes executing without returning a value, the
function returns NULL by default. To prove it, let’s try calling our
print_stars() function again and assigning the result to a variable, as we
would with a function that has a return value. Update your main.php file to
match Listing 5-9. The changes are shown in black text.

<?php

require_once __DIR__ . '/my_functions.php';

$spacer = '/';

print_stars(1, $spacer);

print_stars(5, $spacer);

print_stars(9, $spacer);

print_stars(13, $spacer);

print_stars(1, $spacer);

$result = print_stars(1, $spacer);

var_dump($result);

Listing 5-9: Updating main.php to store and print the print_tree() function’s NULL return
value

We make the same calls to the print_stars() function as before, but
this time we store the return value of the last function call in the $result
variable. We then use var_dump() to see the contents of $result. Since
print_stars() doesn’t have an explicit return value, $result should
contain NULL. Here’s the output of running the main.php script:

/////////*//////////

///////*****////////

/////*********//////

///*************////

/////////*//////////

/////////*//////////

NULL

We can see the ASCII tree again, followed by NULL from the call to
var_dump(). This confirms that the function has returned NULL by default,
despite being declared as void.

Exiting a Function Early
A function declared as void can still use a return statement, as long as the
statement doesn’t include a value. As mentioned earlier, a function stops
executing as soon as it encounters a return statement, so writing return
without a value provides a mechanism for exiting a function early. This can
be useful, for example, if a problem occurs with one of the function’s
parameters. You can add validation logic to check the parameters at the start
of the function, and use return to halt the function execution and resume
the main calling script if one or more argument values aren’t as expected.

The str_pad() function we’ve been using to create centered lines of
stars will trigger a fatal error if the padding string is empty. Rather than let

that crash our program, let’s update our print_stars() function to first
check whether the $spacer string parameter is empty. If it is, we’ll use
return to exit the function early. Modify my_functions.php to match Listing
5-10.

<?php

function print_stars(int $numStars, string $spacer): void

{

 if (empty($spacer)) {

 return;

 }

 $lineLength = 20;

 $starsString = str_repeat('*', $numStars);

 $centeredStars = str_pad($starsString, $lineLength, $spa

cer, STR_PAD_BOTH);

 print $centeredStars . "\n";

}

Listing 5-10: Adding a return statement to exit the print_stars() function early

We add an if statement to the start of the function body, using the
built-in empty() function to test whether $spacer is an empty string. If so,
we use return without any value to end function execution early and return
program control to the calling script. If the function execution gets past this
if statement, then we know that $spacer isn’t empty, so our call to
str_pad() should work fine.

To see whether the return statement is working, update the main.php
script as shown in Listing 5-11.

<?php

require_once __DIR__ . '/my_functions.php';

$spacer = '';

print_stars(1, $spacer);

print_stars(5, $spacer);

print_stars(9, $spacer);

print_stars(13, $spacer);

print_stars(1, $spacer);

$result = print_stars(1, $spacer);

var_dump($result);

Listing 5-11: Updating main.php to call print_tree() with an empty spacer string

We set $spacer to an empty string rather than a slash before making
our calls to print_stars(). The output of running the main script should
now simply be NULL. The print_stars() function returns early each time it
is called because $spacer is an empty string, so we no longer see our ASCII
tree. Then again, we don’t see a fatal error either, because our return
statement prevents us from calling str_pad() with an invalid argument. We
still see NULL in the output, the result of the var_dump() call. This indicates
that when a function encounters a return statement without a value, it
returns NULL, just as it would if it didn’t have a return statement at all.

Calling Functions from Within Functions
It’s perfectly reasonable to call one function from within the body of
another function. In fact, we’ve done it several times already, calling built-
in PHP functions like str_repeat() and str_pad() inside our
print_stars() function. It’s also possible, and in fact, quite common, to
call your own custom functions from within other custom functions.

A lot of the power of programming comes from breaking problems into
smaller tasks. You write basic functions to tackle those small tasks and then
write higher-level functions that combine the tasks to solve the larger
problem. In the end, your main application script looks quite simple: you
just call one or two functions. The trick is that those functions themselves
call several other functions, and so on.

It took us six calls to our print_stars() function to generate an ASCII
tree. Let’s move those six calls into another function, print_tree(). That
way, every time we want to print a tree, all we need is one function call in
our main script. Add the new print_tree() function to my_functions.php
as shown in Listing 5-12.

<?php

function print_stars(int $numStars, string $spacer): void

{

--snip--

}

function print_tree(string $spacer): void

{

 print_stars(1, $spacer);

 print_stars(5, $spacer);

 print_stars(9, $spacer);

 print_stars(13, $spacer);

 print_stars(1, $spacer);

 print_stars(1, $spacer);

}

Listing 5-12: Adding the print_tree() function to my_functions.php

We declare the print_tree() function after our previously declared
print_stars() function. It requires a string parameter called $spacer. In
the function body, we write our six original calls to print_stars(). Notice
that $spacer, the parameter of the print_tree() function, is also acting as
an argument when we call print_stars(). This way, we can easily print
trees with different padding characters around the asterisks just by changing
the string we pass in when we call print_tree().

With this new function, we can now greatly simplify our main script.
Update main.php as shown in Listing 5-13.

<?php

require_once __DIR__ . '/my_functions.php';

print_tree('/');

print_tree(' ');

Listing 5-13: Simplifying the main.php script with the print_tree() function

After reading in the function declaration file, we call print_tree()
twice to generate two trees. The first time we use a forward slash as the

spacer, as before, and the second time we use a space character. Here’s the
result:

/////////*//////////

///////*****////////

/////*********//////

///*************////

/////////*//////////

/////////*//////////

 *

 *

 *

Our main script has accomplished with 2 calls to print_tree() what
would have previously taken 12 calls to print_stars(). Of course, those
calls to print_stars() are still happening, but we’ve hidden them inside
the print_tree() definition, making our main script much tidier. You can
begin to see the power of functions to organize code and promote
reusability.

Functions with Multiple Return and Parameter Types
For straightforward situations, you can usually write a function that does
something and returns a value of a single type or that returns no value.
Other times, however, you’ll want to make a function more reusable by
allowing it to return values of different data types depending on the
situation. Likewise, you might want a function’s parameters to accept
values of different data types to ensure that your code can cope with input
validation issues. Nullable types and union types offer elegant ways to
permit multiple types, both for a function’s return value and its parameters.

Nullable Types
It’s quite common to write functions that normally return one kind of value,
such as a string or a number, but that sometimes return NULL instead. For

example, a function that typically performs a calculation might return NULL
if it receives invalid inputs, or a function that retrieves information from a
database might return NULL if it’s unable to establish a database connection
(we’ll see this in Part VI when we discuss databases). To allow for this,
declare the function’s return type to be nullable by adding a question mark
(?) immediately before the return type. For instance, placing : ?int at the
end of the first line of a function declaration means that the function will
return either NULL or an integer.

Let’s see this in action with a function that attempts to return the
integer value of a spelled-out number (such as 1 instead of 'one'). If the
function doesn’t recognize the input string, it will return NULL instead. Start
a new project and create my_functions.php containing the contents of
Listing 5-14.

<?php

function string_to_int(string $numberString): ❶ ?int

{

 return match ($numberString) {

 'one' => 1,

 'two' => 2,

 'three' => 3,

 'four' => 4,

 'five' => 5,

 ❷ default => NULL

 };

}

Listing 5-14: A function that returns an integer or NULL

We declare the string_to_int() function, using the nullable type ?int
to indicate that the function will return either NULL or an integer ❶. The
function takes in the string parameter $numberString. Its body is a single
return statement that chooses a value to return by using a match
expression. This is possible because match expressions evaluate to a single
value. The expression has five clauses matching the strings 'one' through
'five' to the corresponding integer. A sixth clause sets the default case

❷, returning NULL if any other string is provided. In this way, the match
expression returns an integer or NULL, just as the function’s nullable return
type indicates.

Now we’ll write a main.php file with a script that calls our function.
When you call a function with a nullable return type, it’s important to test
the return value, in case it’s NULL. Listing 5-15 shows how.

<?php

require_once __DIR__ . '/my_functions.php';

❶ $text1 = 'three';

$number1 = string_to_int($text1);

❷ if (is_null($number1)) {

 print "sorry, could not convert '$text1' to an integer

\n";

} else {

 print "'$text1' as an integer = $number1\n";

}

$text2 = 'onee';

$number2 = string_to_int($text2);

if (is_null($number2)) {

 print "sorry, could not convert '$text2' to an integer

\n";

} else {

 print "'$text2' as an integer = $number2\n";

}

Listing 5-15: A main.php script calling the nullable-type string_to_int() function

We assign string 'three' as the value of the $text1 variable, then pass
that variable to our string_to_int() function, storing the return value in
$number1 ❶. Next, we use an if...else statement to test whether the
value in $number1 is empty (NULL) ❷. If so, we print a message stating that
the string couldn’t be converted to an integer. Otherwise, we print a
message showing the string and its corresponding integer. We then repeat
the process with string 'onee'. Here’s the output:

'three' as an integer = 3

sorry, could not convert 'onee' to an integer

We can see that the function returns the integer 3 when the argument is
the string 'three', but it returns NULL when the argument is the misspelled
string 'onee'. Declaring our string_to_int() function with a nullable
return type gives us the flexibility to respond to this problematic input in a
meaningful way.

Just as functions can have nullable return types, you can use the same
question mark syntax to declare function parameters as nullable, meaning
the parameter can be NULL or some other type. For example, the parameter
list (?string $name) means that a function accepts a $name parameter that
is either NULL or a string.

Rather than having to duplicate the if...else statement in our
main.php script each time we call our string_to_int() function, as we did
in Listing 5-15, we might take the function’s NULL or integer return value
and pass it as an argument to another function to generate an appropriate
message. That function therefore needs to be able to accept a parameter that
may be NULL or an integer. Listing 5-16 shows such a function named
int_to_message(). Add the function to the end of your my_functions.php
file.

function int_to_message(?int $number): string

{

 if (is_null($number)) {

 return "sorry, could not convert string to an intege

r\n";

 } else {

 return "an integer = $number\n";

 }

}

Listing 5-16: A function with a nullable type for the $number parameter

The signature for this function includes a single parameter called
$number of nullable type ?int. This means that the argument provided to

the function can be either NULL or an integer. The function body uses the
if...else statement we had in our main.php script to return an appropriate
message depending on which data type is passed in.

We can now greatly simplify our main script by removing the
duplicated if...else statements and calling our new function instead.
Listing 5-17 shows the updated script.

<?php

require_once __DIR__ . '/my_functions.php';

❶ $text1 = 'three';

❷ $number1 = string_to_int($text1);

❸ print int_to_message($number1);

$text2 = 'onee';

$number2 = string_to_int($text2);

print int_to_message($number2);

❹ print int_to_message(string_to_int('four'));

Listing 5-17: Simplifying main.php with the int_to_message() function

Notice that our main script is much simpler now that the logic for
generating the message has been moved to a function. For each input, we
follow a pattern of three basic statements: declaring a string ❶, storing the
integer (or NULL) returned from calling string_to_int() with that string
❷, and printing the string returned by passing this integer or NULL value to
the int_to_message() function ❸.

If we really want to make our code even more succinct, we can put all
three of those statements into a single line ❹, calling the
string_to_int()function inside the parentheses when we call the
int_to_message() function. This way, the former’s return value is passed
directly as an argument to the latter, without the need for an intermediary
variable. This choice is a matter of programming style. Personally, I prefer
to use intermediate variables to prevent a single line of code from becoming
too complex.

Union Types
If you want a function to be able to return a range of data types, declare its
return value by using a union type. This is a list of the value’s possible data
types, separated by vertical bars. For example, int|float indicates that a
value could be an integer or a float. Union types can apply to function
parameters as well as return values.

Nullable types are essentially a special category of union types, and
their question mark syntax provides a convenient shorthand when one of the
possible data types is NULL. The union type string|NULL is the same as the
more concise nullable type ?string, for example. Union types are most
useful when your code has multiple non-NULL types, like int|float, or
when there are multiple non-NULL types plus NULL, like string|int|NULL,
indicating the data type could be a string, an integer, or NULL. This couldn’t
be expressed with nullable-type syntax, since you can’t mix a nullable type
with others in a union by writing something like ?string|int. You also
can’t include void as one of the types in the union.

To demonstrate union types, let’s modify our string_to_int()
function into a string_to_number() function that can return an integer, a
float, or NULL, depending on the string passed in. We’ll also update our
int_to_message() function into a number_to_message() function that can
take in an integer, a float, or NULL as a parameter. Update my_functions.php
to match Listing 5-18.

<?php

function string_to_number(string $numberString): ❶ int|float

|NULL

{

 return match ($numberString) {

 ❷ 'half' => 0.5,

 'one' => 1,

 'two' => 2,

 'three' => 3,

 'four' => 4,

 'five' => 5,

 default => NULL

 };

}

function number_to_message(string $text, ❸ int|float|NULL $n

umber): string

{

 ❹ if (is_int($number)) {

 return "'$text' as an integer = $number\n";

 }

 ❺ if (is_float($number)) {

 return "'$text' as a float = $number\n";

 }

 ❻ return "sorry, could not convert '$text' to a number\n";

}

Listing 5-18: Using union types as function return values and parameters

First, we declare string_to_number(), a revised version of our
string_to_int() function. We use the union type int|float|null to
indicate that the function will return an integer, a float, or NULL ❶. Just like
string_to_int() previously, this function takes in a single string
parameter. We add a new clause to the match statement in the function body,
matching the string 'half' to the float value 0.5 ❷, hence the need for the
union type.

Next, we declare number_to_message(), a revised version of
int_to_message() that returns a string. This function takes in two
parameters. The first, the string $text, will be the same as the string passed
to our string_to_number() function. The second, $number, will be that
function’s return value, and so it might be an integer, a float, or NULL. We
therefore use the same int|float|NULL union type for the parameter ❸.

In the function body, we first test whether $number contains an integer
value ❹, in which case we return a message stating that $text is an integer.
Next, we test whether $number contains a float value ❺, returning an
appropriate message if it does. Finally, we return a message stating that
$text couldn’t be converted to a number ❻. Execution wouldn’t get this

far if either of the previous return statements was executed, so we know at
this point that $number is neither an integer nor a float. We therefore don’t
need to place this final return statement inside an else clause or another
if statement, although we could.

This choice is a matter of personal programming style. I like to end
functions like this with an unconditional return statement, so I can clearly
see the default to be returned. However, some programmers prefer to end
the last if statement with an else clause as a way to communicate the
default. The execution is the same either way.

Now let’s test our functions. Update your main.php script to match
Listing 5-19.

<?php

require_once __DIR__ . '/my_functions.php';

$text1 = 'three';

$number1 = string_to_number($text1);

print number_to_message($text1, $number1);

Listing 5-19: Calling functions with union type parameters and return values in main.php

We call our string_to_number() function, passing in the string
'three', and store the result in the $number1 variable. Then we pass
$number1 along to our number_to_message() function and print the
message that it returns. This code should output the message 'three' as
an integer = 3.

Optional Parameters
If the value of a parameter will usually be the same each time you call a
function, you can set a default value for that parameter when you declare
the function. In effect, this makes the parameter optional. You’ll need to
include an argument corresponding to that parameter only when you know
you’ll want the value to be something other than the default.

Many of PHP’s built-in functions have optional parameters with default
values. For example, PHP’s number_format() function, which takes in a
float and converts it into a string, has several optional parameters

controlling how the string will be formatted. Enter php -a at the command
line to try out the following code in interactive mode:

❶ php > print number_format(1.2345);

1

❷ php > print number_format(1.2345, 2);

1.23

❸ php > print number_format(1.2345, 1, ',');

1,2

The number_format() function’s first parameter is not optional; it’s the
float that we want to format. By default, calling the function with just one
argument ❶ returns a string version of the number with the decimal portion
removed. When we add an integer as an optional second argument ❷, the
function uses that integer to set the number of decimal places to include.
We’ve used the value 2 to preserve two decimal places. By default, the
decimal separator is represented with a period, but if we add a string as an
optional third argument ❸, the function will use that string as the decimal
separator instead. In this case, we’re using a comma, a common decimal
separator in continental Europe.

Listing 5-20 shows the signature for the number_format() function,
taken from the PHP online documentation, to illustrate how the default
values for the parameters are declared.

number_format(

 float $num,

 int $decimals = 0,

 ?string $decimal_separator = ".",

 ?string $thousands_separator = ","

): string

Listing 5-20: The built-in number_format() function, including optional parameters with
default values

First, notice that when you have a long list of parameters, you can
spread them over several lines to make the code more readable. The
function takes up to four parameters, but the second, third, and fourth all

have default values assigned with the assignment operator (=) after the
parameter name. For example, the second parameter, $decimals, has a
default value of 0, so when we call number_format(1.2345) without
providing a second argument, the function executes with the default value
for $decimals and formats the number to include zero decimal places.
Likewise, the $decimal_separator parameter has a period as its default
value, and the $thousands_separator parameter has a comma.

The order in which the parameters are declared is important. All
mandatory parameters (those without default values) must be listed first,
followed by the optional parameters. This is because the order of arguments
when you call a function must match the order of the parameters. If you had
an optional parameter followed by a mandatory one, and you omitted the
optional parameter, there’d be no way to know that your first argument was
meant to correspond to the second parameter. The only exception to this
rule is if you use named arguments, as we’ll discuss later in the chapter.

Now that we’ve seen how optional parameters work, let’s add one to a
custom function. We’ll revisit our which_is_smaller() function from
earlier in the chapter and add an optional parameter controlling how the
function behaves if the values passed in for comparison are the same.
Return to the my_functions.php file for that project and update the script to
match Listing 5-21.

<?php

function which_is_smaller(int $n1, int $n2, ❶ bool $nullIfSa

me = false): ?int

{

 if ($n1 < $n2) {

 return $n1;

 }

 if ($n2 < $n1) {

 return $n2;

 }

 ❷ if ($nullIfSame) {

 return NULL;

 }

 ❸ return $n1;

}

Listing 5-21: Updating the which_is_smaller() function to include an optional parameter

We add a third parameter to our function, the Boolean $nullIfSame,
and give it a default value of false ❶. Thanks to this default value, the
function will typically return $n1 if $n1 and $n2 are found to be the same
❸. However, if the user overrides this default by passing true as the third
argument when calling the function, NULL is returned instead ❷. To account
for this possibility, we use the nullable type ?int to set the function’s return
type.

The sequence of if and return statements matters here. The code will
get to if ($nullIfSame) ❷ only if $n1 and $n2 are equal. Since
$nullIfSame is false by default, this condition will typically fail, so the
final return $n1; will execute ❸. It’s only if the user has set $nullIfSame
to true that the function returns NULL.

Update the project’s main.php file as shown in Listing 5-22 to test the
function.

<?php

require_once __DIR__ . '/my_functions.php';

$result1 = which_is_smaller(1, 1);

var_dump($result1);

$result2 = which_is_smaller(1, 1, true);

var_dump($result2);

Listing 5-22: Calling which_is_smaller() from main.php, with and without the optional
parameter

We call out which_is_smaller() twice, using var_dump() to show the
results. The first time we pass in 1 and 1 and leave out the optional
argument, so $nullIfSame will be false by default. The second time, we

add true as a third argument, overriding the default. Here’s the output of
running the main script:

int(1)

NULL

The first line indicates that the function followed the default behavior
of returning 1 (the value of the first argument) when we omitted the
optional argument. When we used the third argument to set $nullIfSame to
true, however, the function returned NULL.

Positional vs. Named Arguments
When you call a function, the PHP engine by default interprets the
arguments positionally, matching them to the function’s parameters based
on their order. However, you can also call a function by using named
arguments: you explicitly pair an argument’s value with the name of the
corresponding parameter. In this case, the order of arguments no longer
matters. Named arguments are especially useful when a function has
optional parameters.

To use named rather than positional arguments, you don’t have to
change the function declaration in any way, although it becomes even more
important to have meaningful parameter names. Instead, all you have to do
is include the parameter name (minus the dollar sign) inside the parentheses
when you call a function, followed by a colon (:) and the desired argument
value. For example, to use a named argument to pass true as the value of
the $nullIfSame parameter when calling our which_is_smaller()
function, you would include nullIfSame: true in the argument list. The
convention is to add a space after the colon.

Listing 5-23 shows an updated main.php file, adding an extra call to
which_is_smaller() using named arguments.

<?php

require_once __DIR__ . '/my_functions.php';

$result1 = which_is_smaller(1, 1);

var_dump($result1);

$result2 = which_is_smaller(1, 1, true);

var_dump($result2);

❶ $result3 = which_is_smaller(nullIfSame: true, n1: 1, n2: 1);

var_dump($result3);

Listing 5-23: Calling which_is_smaller() by using positional and named arguments

The new call to which_is_smaller() ❶ is functionally equivalent to
the previous call, but we use named arguments. As such, we’re able to list
the arguments in a different order from the way the parameters were
declared: first $nullIfSame, then $n1, then $n2. Here’s the result:

int(1)

NULL

NULL

The last two lines of output are both NULL, indicating the last two function
calls achieved the same result using positional and named arguments.

In this example, each function call used all positional or all named
arguments, but you can also mix both styles of arguments in the same
function call. In that case, the positional arguments must come first, in the
same sequence as the function declaration, followed by the named
arguments in whatever sequence you wish. Consider this example:

$result = which_is_smaller(5, nullIfSame: true, n2: 5);

Here the first argument, 5, doesn’t have a name. PHP will therefore
treat it positionally and match it to the first parameter declared, which is
$n1. The remaining arguments are named and so can appear in any order.
By contrast, here’s another call to the function:

$result = which_is_smaller(nullIfSame: true, 5, n2: 5);

This time we’ve started with a named argument for $nullIfSame. Then
we have an unnamed argument, 5, presumably intended for the $n1
parameter. The PHP engine will have no way of knowing this, however,

since we started with a named argument, and so this function call will
trigger an error.

Skipped Parameters
When a function has multiple optional parameters, you can use named
arguments to set just the optional parameters that you want while skipping
the rest. This works because the named arguments free you from adhering
to the order of the parameters. Any parameters you skip will take on their
default values. To illustrate, let’s create a function that prints customizable
greetings. Start a new project and create my_functions.php to match Listing
5-24.

<?php

function greet(

 string $name,

 string $greeting = 'Good morning',

 bool $hasPhD = false

): void

{

 if ($hasPhD) {

 ❶ print "$greeting, Dr. $name\n";

 } else {

 print "$greeting, $name\n";

 }

}

Listing 5-24: A greet() function with two optional parameters

We declare the greet() function as void, since it prints out a message
without returning a value. The function has a required string parameter
$name, as well as two optional parameters with default values, $greeting
and $hasPhD. The body of the function is an if statement that outputs the
values of $greeting and $name, inserting the title Dr. in between if
parameter $hasPhD is true ❶.

Now we’ll look at a few ways to call the greet() function. Create
main.php containing the code shown in Listing 5-25.

<?php

require_once __DIR__ . '/my_functions.php';

greet('Matt');

greet('Matt', hasPhD: true);

Listing 5-25: A main script calling greet() with skipped parameters

The first time we call greet(), we pass just the string 'Matt' as an
argument. We don’t use named arguments, so this will be matched
positionally to the $name parameter. The other parameters will use their
default values, resulting in the message Good morning, Matt.

The second time we call greet(), we use the positional argument
'Matt' and the named argument hasPhD: true. Notice that $hasPhD is the
third parameter in the function declaration; we’ve skipped over the second
parameter! This is perfectly fine. The parameter we skipped, $message, has
a default value, and thanks to our use of a named argument, the PHP engine
will know unambiguously which provided arguments match which function
parameters. We should get the message Good morning, Dr. Matt as a
result.

Here’s the output of running the main.php script:

Good morning, Matt

Good morning, Dr. Matt

The output is just as we expect. Thanks to the combination of default
parameter values and named arguments, we are able to skip the $message
parameter without issue.

Pass-by-Value vs. Pass-by-Reference
By default, PHP functions match arguments to parameters by using a pass-
by-value approach: the values of the arguments are copied and assigned
(passed) to the appropriate parameters, which are created as temporary
variables limited to the scope of the function. In this way, if the values of
any parameters are manipulated while the function is executing, those

changes will have no effect on any values outside the function itself. After
all, the function is working with copies of the original values.

Another approach is pass-by-reference: instead of receiving copies, the
function parameters are passed references to the original variables
themselves. In this way, if a variable is passed as an argument to a function,
the function can permanently change the value of that variable. To indicate
a pass-by-reference parameter, place an ampersand (&) immediately before
the parameter name when you’re declaring the function.

I don’t typically recommend using pass-by-reference parameters; in
fact, I can’t think of a single one I’ve written in the last 20 years. Allowing
functions to change the variables passed to them makes programs more
complex and therefore harder to understand, test, and debug. Still, it’s
important to be familiar with the concept, since you might encounter pass-
by-reference parameters in other people’s code, including in third-party
libraries you might want to use for your own projects. Calling a function
with pass-by-reference parameters without knowing how they work could
lead to unintended results.

NOTE
In some programming languages, programmers use several pass-by-
reference parameters as a way for a function to “return” multiple values
without the need for return statements. There are better ways to do this in
modern PHP, however, such as returning an array (see Chapter 7) or an
object (see Part V).

To illustrate the difference between pass-by-value and pass-by-
reference parameters, and to show why the latter are often best avoided,
we’ll create two versions of a function that calculates someone’s future age.
Start a new project and create my_functions.php with the contents of Listing
5-26.

<?php

function future_age (int $age): void

{

 $age = $age + 1;

 print "You will be $age years old on your next birthda

y.\n";

}

Listing 5-26: A pass-by-value version of future_age()

Here we declare a function named future_age(). It features an integer
parameter $age declared in the usual way, so this will be a normal pass-by-
value parameter. The function is declared void since no value is to be
returned. In the body of the function, we add 1 to $age and print out a
message containing the result.

Now create a main script in main.php containing the code shown in
Listing 5-27.

<?php

require_once __DIR__ . '/my_functions.php';

$currentAge = 20;

print "You are $currentAge years old.\n";

future_age($currentAge);

print "You are $currentAge years old.\n";

Listing 5-27: Testing the pass-by-value version of future_age()

We assign the $currentAge variable an integer value of 20. Then we
print out a message showing the value of this variable. Next, we call our
future_age() function, passing $currentAge as an argument. We then
print out another message showing the value of the variable. This gives us a
look at the value of $currentAge before and after the function call. Here’s
the result:

You are 20 years old.

You will be 21 years old on your next birthday.

You are 20 years old.

The first and last lines of output are the same, indicating that calling
future_age() has no effect on the value of the $currentAge variable. In
fact, when the function is called, a local variable $age is created within the

scope of the function, and the value of $currentAge is copied into it. This
way, when the function adds 1 to $age, it does so without changing the
value of $currentAge. That’s how pass-by-value parameters work: they
don’t have any influence outside the scope of the function itself.

Now let’s modify our future_age() function to use a pass-by-
reference parameter and see what difference that makes. Update your
my_functions.php file as shown in Listing 5-28.

<?php

function future_age (int &$age): void

{

 $age = $age + 1;

 print "You will be $age years old on your next birthda

y.\n";

}

Listing 5-28: A pass-by-reference version of future_age()

The only change here is adding an ampersand (&) before the parameter
name, indicating $age is a pass-by-reference parameter. As a result, $age
will no longer be a local variable containing a copy of the value in the
variable passed as an argument when the function is called. Rather, $age
will be a reference to that variable, so any changes made to $age will also
be made to that variable. To prove it, run your main.php script again. This
time you should see the following output:

You are 20 years old.

You will be 21 years old on your next birthday.

You are 21 years old.

Notice that adding 1 to the $age parameter within the function also
adds 1 to the $currentAge variable outside the function. Unless the user’s
birthday occurred in the instant between the function call and the final
print statement, this probably isn’t what we want. This illustrates the
danger of using pass-by-reference parameters: they can change the value of
variables that are normally outside the scope of a function.

Summary
In this chapter, we’ve explored how to promote code reusability by
declaring and calling functions, named sequences of code that accomplish a
particular task. You practiced declaring functions in a separate.php file and
then loading them into your main application file with require_once,
allowing you to write concise, well-organized scripts. You saw how return
statements allow functions to send values back to the calling script while
also providing a mechanism to terminate a function early, and you explored
how nullable and union types give functions the flexibility to take in or
output values of various data types.

You learned about the difference between parameters (the variables
used within a function) and arguments (the values passed to those variables
when you call a function). You saw how to make parameters optional by
giving them a default value, and how to use named arguments to pass in
values in any order or even skip parameters. Finally, you learned about the
difference between pass-by-value and pass-by-reference parameters, in the
rare event you want a function to be able to update variables outside its own
scope.

Exercises
1. Create a project with separate main.php and file2.php scripts. The

file2.php script should print out the string '456'. In your main.php
script, first print out '123', then read in and execute file2.php, then print
out '789'. The overall output should be 123456789, but the middle 456
has been printed from file2.php.

2. Write a project declaring a which_is_larger() function that returns the
larger of two integers. Your main.php script should read in and execute
the file declaring your function, and then print out the results of calling
the function with the following arguments:

4 and 5
21 and 19
3 and 3

What happens in the last case, where the parameters are the same?

3. Modify your which_is_larger() function to accept either integers or
floats, and to return an integer, a float, or NULL if both numbers are the
same.

4. Create a file my_functions.php that declares a void function to print out
the first letter of your name in ASCII art style. This function should
have two parameters, one ($character) a string setting the character to
use for making the art, and the second ($spacer) a string setting the
character to fill in the gaps. Assign suitable default values to each
parameter. For example, since the first character of my name is M, my
function might be capital_m(string $character = 'M', string
$spacer = ' '), and it might provide the following output when called
with no arguments:

MM MM

MMMM MMMM

MM MMM MMM MM

MM MMMM MM

MM MM

MM MM

MM MM

Next, write a main.php script to call your function with no
arguments (using both default values). Then use named arguments to
call the function two more times, once providing just the main character,
and then providing just the spacer character.

PART II
WORKING WITH DATA

6
LOOPS

This chapter introduces the loop, a
control structure that allows you to

repeat a sequence of statements over and over again.
Once you understand how to use loops, you’ll be able
to easily create scripts to process large volumes of
data and perform repetitive tasks with efficiently
written code.

We’ll cover two main types of PHP loops: the while loop and the for
loop. A while loop is used for repeating a series of actions until a specific
condition is met, while a for loop is used for repeating a series of actions a
fixed number of times. We’ll also look at do...while loops, a variation on
while loops. A fourth type of PHP loop, the foreach loop, is specifically
designed for looping through collections of data, such as arrays. We’ll look
at foreach loops when we introduce arrays in Chapter 7.

while Loops
One kind of PHP loop is the while loop: a sequence of statements is
repeatedly executed while a certain condition is true. Figure 6-1 illustrates
how this works.

Figure 6-1: The flow of logic for a while loop

When a script features a while loop, some statements are typically
executed before the loop begins. Then the PHP engine checks the condition
controlling the loop. If the condition is false, the statements in the loop
will never be executed, and the program skips ahead to the statements after
the loop. If the condition is true, the statements in the loop are executed
once, then the condition is checked a second time. If it’s still true, the
statements in the loop are executed again. This cycle continues, with the
PHP engine checking the condition before each new repetition until it’s
found to be false, and the loop ends.

To write a while loop, start with the while keyword, followed in
parentheses by the Boolean condition that will control the loop. Then
enclose the statement that should be repeated in curly brackets. If the loop
contains only a single statement, the curly brackets are optional, but most
programmers include them anyway to emphasize that the statement is part
of the loop.

Listing 6-1 shows a script that uses a while loop to test the length of a
password. The loop keeps prompting the user to enter a new password until
the result is long enough.

<?php

$password = "cat";

while (strlen($password) < 6) {

 $password = readline("enter new password (at least 6 cha

racters): ");

}

print "password now set to '$password'";

Listing 6-1: A while loop requesting a password of six characters or more

Before the loop, we set the $password variable to an initial value of
"cat". Then we declare the while loop, using strlen($password) < 6 as
the condition. Before each repetition of the loop, PHP will check the length
of $password. If it’s shorter than six characters, the condition is true, so the
statement in the loop will execute. If it’s six or more characters, the
condition is false, so the loop will end. Since $password starts out being
three characters long, we know the loop will execute at least once.

Inside the loop, we use the built-in readline() function to take in a
password from the user. The function displays the string passed as an
argument as a command line prompt, then reads whatever the user types at
the command line before pressing ENTER. We store the result back into the
$password variable, so now we’ll have a new value to check before the next
repetition of the loop. Once the password is long enough and the loop ends,
we confirm the new value of $password back to the user.

NOTE
This program is not a good example of secure password protocols since the
password is being shown onscreen, where anyone could read it. But it’s a
handy illustration of a while loop.

The following is a sample run of this script. I’ve entered a few
passwords that are too short before providing an acceptable one:

enter new password (at least 6 characters): dog

enter new password (at least 6 characters): whale

enter new password (at least 6 characters): catdog123

password now set to 'catdog123'

Here’s what happens each time the PHP engine checks the
strlen($password) < 6 condition during this run of the script:

1. $password contains "cat", so the condition is true. The loop executes
once.

2. $password contains "dog", so the condition is still true. The loop
executes a second time.

3. $password contains "whale", so the condition is still true. The loop
executes a third time.

4. $password contains "catdog123", so the condition is false. The loop
ends, and the final print statement executes.

In all, the PHP engine checks the loop’s condition four times and
repeats the loop’s contents three times. There will always be one more
check of the condition than there are repetitions of a while loop, since the
condition check happens before the loop’s contents are executed. Try
changing the initial value of $password to text at least six characters long
and running the script again. You’ll find that the script skips straight to the
final print statement, since the first check of the loop condition evaluates
to false.

do...while Loops
A do...while loop is an alternate form of a while loop: the condition
check happens after each repetition of the loop, rather than before. This
way, the statement(s) in the loop are guaranteed to be executed at least
once, and the number of loop repetitions will match the number of times the
condition is checked. Figure 6-2 shows how this works.

Figure 6-2: The flow of logic for a do...while loop

With a do...while loop, first we go once through the statements in the
loop. Then we test the loop condition. If the condition is false, we move on

to the statements after the loop, so the loop will have executed only the one
time. If the condition is true, the loop statements are executed again, and so
on until the condition is false.

To write a do...while loop, start with the do keyword, followed in
curly brackets by the statements that should be repeated. After the closing
curly bracket, write the while keyword, then the loop condition in
parentheses. For example, Listing 6-2 shows how to rewrite the password-
checking script from Listing 6-1 by using a do...while loop instead of a
while loop. The changes are shown in black text.

<?php

do {

 $password = readline("enter new password (at least 6 cha

racters): ");

} while (strlen($password) < 6);

print "password now set to '$password'";

Listing 6-2: A modified version of Listing 6-1 using a do...while loop

We begin the loop with the do keyword. Then, after our statement with
the readline() function, on the same line as the closing curly bracket, we
write the while keyword and then, inside parentheses, the same strlen
($password) < 6 loop condition we had before. Notice that we need to
include a semicolon after the condition to end the statement.

The key difference between this and the previous version of the script
is that we no longer need to set an initial value for the $password variable
before entering the loop. Instead, we read in an initial password from the
user during the first run of the loop before testing its value and deciding
whether a repetition is necessary. In general, if you know you’ll want the
statements in a loop to be executed at least once, a do...while loop may be
a better choice than a while loop.

Boolean Flags
If the logic governing whether to continue looping is more complex than a
single condition, it’s often clearer to control the loop by using a Boolean

variable known as a flag. Typically, you set the flag to true, then enter the
loop, using the flag as the condition. The loop itself features logic (perhaps
a series of if statements) to set the value of the flag to false when the loop
is ready to end.

For example, say we want to repeatedly prompt the user for input until
they type either quit or q. We could accomplish that with a while loop that
starts this way:

while (($userInput != 'q') && ($userInput != 'quit')) {

The condition for this loop is borderline hard to read, and it would become
even more convoluted if we wanted to watch for a third input. Controlling
the loop with a Boolean flag clarifies the code, as shown in Listing 6-3.

<?php

$continueLooping = true;

while ($continueLooping) {

 $userInput = readline("type something (or: quit): ");

 if ($userInput == 'quit') {

 $continueLooping = false;

 }

 if ($userInput == 'q') {

 $continueLooping = false;

 }

 print "you typed '$userInput'\n";

}

print '--- I have left the loop! ---';

Listing 6-3: Using a Boolean flag variable as the loop condition

We first create the Boolean flag variable $continueLooping and set it
to true. Then we declare a while loop with this flag as the loop condition.
Notice that this is much clearer than the compound condition shown earlier.
Since the condition is initially true, we’ll enter the loop and execute the

loop statement group at least once. After prompting the user for text and
storing it in the $userInput variable, we use two if statements to check
whether the variable contains 'quit' or 'q'. These if statements take the
place of the original compound loop condition; both set the flag to false to
end the loop when the user asks to quit. After the if statements, we print
the user’s input. Then, outside the loop, we print a message confirming that
the loop is over.

Here’s a sample run of the script:

type something (or: quit): the

you typed 'the'

type something (or: quit): cat sat

you typed 'cat sat'

type something (or: quit): on

you typed 'on '

type something (or: quit): the mat

you typed 'the mat'

type something (or: quit): quit

you typed 'quit'

--- I have left the loop! ---

As you can see, the script prints out whatever text the user enters. In
this case, the loop ended after I typed quit, but it’ll also end if you type the
letter q.

break Statements
The break keyword immediately exits a loop, without allowing any
remaining statements in the loop to execute. In the previous script’s output,
you may have noticed that when I typed quit, that word was repeated by the
loop’s final print statement (you typed 'quit') before the loop
terminated. With a break statement, we could immediately halt the loop as
soon as the user enters quit or q, before that print statement runs.

Using break also eliminates the need for a Boolean flag. Instead, we
can simply use the literal Boolean value true as the looping condition by
writing while (true). Since true is always true, this loop will
theoretically repeat forever, or at least until some conditional logic triggers

a break statement. Listing 6-4 shows how to update our user input script
with while (true) and break.

<?php

❶ while (true) {

 $userInput = readline("type something (or: quit): ");

 if ($userInput == 'quit'){

 break;

 }

 if ($userInput == 'q'){

 break;

 }

 ❷ print "you typed '$userInput'\n";

}

❸ print '--- I have left the loop! ---';

Listing 6-4: An updated version of Listing 6-3, using break to exit a while (true) loop

We’ve deleted our $continueLooping Boolean flag and replaced the
while loop’s condition with the literal true ❶. Inside the loop, we still
have our two if statements testing whether $userInput contains the string
'quit' or 'q', but this time each if statement simply contains the break
keyword to immediately exit the loop. This way, if either if statement
passes, we’ll jump straight to the final print statement ❸, without
executing the print statement inside the loop ❷.

Here’s a sample run of this updated version of the script:

type something (or: quit): hello

you typed 'hello'

type something (or: quit): world

you typed 'world'

type something (or: quit): quit

--- I have left the loop! ---

This time, when I enter the word quit, no you typed 'quit' message
appears. Instead, the loop ends immediately, so the next message is --- I
have left the loop! ---.

In many cases, it’s a matter of personal preference whether you use
break statements or a Boolean flag in the loop condition to terminate a
loop. If you’re coming from a language that doesn’t support break
statements, Boolean flags might feel more natural. On the other hand, if lots
of conditions are being tested to decide whether the loop should end, break
statements can be more practical. When writing a code compiler or
programming language tool, for example, tens or hundreds of tests might be
included. Using break statements can save you from having to scroll
through pages of code to see what might be happening in the later loop
statements, after all the tests have been conducted.

for Loops
A for loop is a style of loop that repeats a set number of times. If you know
exactly how many times you want to repeat a task (for example, giving a
user three chances to enter the correct password, or testing students with
exactly 10 questions selected randomly from a test bank), a for loop may
be a better choice than a while loop. A for loop hinges around a counter
variable, customarily called $i (short for iterator), that governs the number
of repetitions. Declaring a for loop requires three expressions, all featuring
this counter variable:
1. An expression initializing the counter to a starting value
2. An expression testing the counter’s value to determine when the loop

should stop
3. An expression to increment (or decrement) the counter after each

repetition of the loop
To declare a for loop, all three of these expressions are written in this

sequence on a single line, immediately after the for keyword, enclosed in a
set of parentheses. Here’s an example:

for ($i = 1; $i <= 5; $i++) {

Here $i = 1 initializes the counter variable to 1. Then $i <= 5 sets the
looping condition; as long as $i is less than or equal to 5, the loop will
continue repeating. PHP will check this condition before each new
repetition of the loop. Finally, $i++ uses the increment operator (++) to tell
PHP to add 1 to $i after each pass through the loop. This way, $i gets a
new value for each cycle of the loop that can be tested against the looping
condition. In this case, $i will have a value of 1 the first time through, then
2 the second time through, and so on. The fifth time through the loop, when
$i has a value of 5, the $i <= 5 condition still passes, but at the end of the
fifth repetition, $i will be incremented to 6. At this point, $i is no longer
less than or equal to 5, so the loop ends after five repetitions.

To verify that the for loop works as we expect, let’s fill in the loop’s
body with a simple print statement, as shown in Listing 6-5. This script
should print the same message five times.

<?php

for ($i = 1; $i <= 5; $i++) {

 print "I am a for loop\n";

}

Listing 6-5: An example of a for loop

We declare a for loop, using the same set of expressions with the
looping variable $i we just discussed. Inside the curly brackets delineating
the loop’s statement group, we write a print statement. Here’s the output of
running the script:

I am a for loop

I am a for loop

I am a for loop

I am a for loop

I am a for loop

As you can see, the message indeed prints five times, thanks to the way
the for loop’s counter variable increments from 1 until it’s no longer less
than or equal to 5.

Using the Counter in the Loop
Part of the power of for loops is that the counter variable $i is available for
use within the body of the loop. This can facilitate working with
mathematical tasks, or with organized sets of data indexed or identified by a
sequence of integers. For example, we might want to work with all the
items in a database table whose IDs are a sequence of integers starting at 1
(see Part VI for more on databases). Or we might want to loop sequentially
through all the elements of an integer-indexed array (see Chapter 7).

To demonstrate, Listing 6-6 shows an updated version of our original
for loop that incorporates the value of $i into the printed message. Since $i
has a different value during each repetition of the loop, each message will
now be unique.

<?php

for ($i = 1; $i <= 5; $i++) {

 print "I am repetition $i of a for loop\n";

}

Listing 6-6: Using the counter variable $i within a for loop

We’ve updated the loop’s print statement to include the value of $i.
Here’s the result:

I am repetition 1 of a for loop

I am repetition 2 of a for loop

I am repetition 3 of a for loop

I am repetition 4 of a for loop

I am repetition 5 of a for loop

Notice that the number in each output line changes based on the value
of $i. The output helps illustrate how the counter variable is working: it
starts at 1 and increases by 1 with each repetition of the loop. Once $i gets
to 6, the $i <=5 condition no longer passes, so the loop ends without
printing I am repetition 6 of a for loop.

So far we’ve been initializing $i to 1, but you can initialize it to any
value you want. In fact, you’ll find many examples of for loops using a

counter variable that starts at 0. This is because for loops are often used in
conjunction with arrays, collections of items that are numbered starting
from 0. We’ll discuss arrays, and how to loop through them, in Chapter 7.

When you initialize the counter variable to 0, it’s also common to set
the looping condition with the less-than operator (<) instead of with less-
than-or-equal-to (<=), like this:

for ($i = 0; $i < 3; $i++) {

This loop will run as long as $i is less than 3. Since $i starts at 0, the
loop will repeat three times, when $i equals 0, 1, and 2.

Skipping Loop Statements
The continue keyword stops the current repetition of a loop, but unlike the
break keyword, it doesn’t end the loop entirely. Instead, the loop
immediately jumps ahead to the next repetition. This is useful if you want to
skip certain passes through a loop. For example, maybe you’re retrieving
entries from a database and want to ignore certain values, or you want to
use only certain numbers in a sequence, such as a random sample of every
third item in a randomized collection of data.

Listing 6-7 shows an example of a for loop with a continue statement.
Here we’re using continue to skip odd values of counter variable $i, so we
end up printing only the even values. The listing also illustrates how a for
loop can decrement the counter variable instead of incrementing it.

<?php

for ($i = 8; $i > 0; $i--) {

 ❶ $odd = ($i % 2);

 if ($odd) {

 continue;

 }

 ❷ print "I am an even number: $i\n";

}

Listing 6-7: Skipping parts of a for loop with continue

We declare a for loop with the $i counter variable starting at 8 and
decreasing by 1 after each repetition, thanks to the $i-- decrementing
expression. The loop will count down to 1, then stop when $i equals 0.
Inside the loop, we use the modulo operator (%) to test whether the current
value of $i is even or odd ❶. If even, $i % 2 will be 0, or if odd, $i % 2
will be 1. Either way, we store the result in the $odd variable, then use that
variable as the condition of an if statement.

Since an if statement requires a Boolean condition, $odd will be type-
juggled to a Boolean: true for 1 or false for 0. This way, when the value of
$i is odd, we’ll execute the if statement, which contains just the continue
keyword to interrupt the current repetition of the loop and skip to the next
one. When $i is even, we don’t execute the if statement body, allowing us
to complete the current repetition of the loop by executing the print
statement ❷. The net effect is that we print out only even values of $i, as
the output shows:

I am an even number: 8

I am an even number: 6

I am an even number: 4

I am an even number: 2

We’ve successfully skipped the odd numbers thanks to our conditional
logic triggering the continue statement in our loop.

NOTE
The continue keyword works in while loops just as it does in for loops.
Likewise, the break keyword also works to completely stop a for loop.

Handling the Last Iteration Differently
Sometimes you might want to do something different during the final
repetition of a loop. With a while or do...while loop, you can’t know if
it’s the final repetition until the loop has already ended, but with a for loop,
you can anticipate the last repetition with conditional logic and write code
that treats that last repetition differently.

For example, say we’re using a for loop to build up a string containing
a list of items entered by the user, and we want to separate each item with a
comma. We might be tempted to write something like Listing 6-8.

<?php

$message = "go to the market and buy: ";

$numItems = 3;

for ($i = 1; $i <= $numItems; $i++) {

 $item = readline("type something to buy: ");

 $message .= "$item, ";

}

print $message;

Listing 6-8: A for loop creating a list of items, separated by commas

We initialize a $message variable with the string "go to the market
and buy: ". Then we assign $numItems the value 3. This will be the
number of repetitions of our for loop. Next, we declare the for loop, where
$i counts up from 1 to $numItems (3). Each time through the loop, we
prompt the user to enter an item to buy, storing the input in the $item
variable. We then append the value of $item to the $message string,
followed by a comma and a space. When the loop ends, we print out the
$message string that we’ve constructed.

The problem is that we’re treating each repetition of the loop the same,
so every item in the final message will have a comma after it, including the
last one. You can see this in the following sample run of the script:

type something to buy: bread

type something to buy: butter

type something to buy: apples

go to the market and buy: bread, butter, apples,

Our script has built up a message including the three items entered at
the command line, and unfortunately, a comma appears after the last item,
apples. We can fix this by adding a test to determine whether we’re on the

last repetition of the loop. Then we’ll add a comma only if it isn’t the last
repetition. Listing 6-9 shows how to update the script.

<?php

$message = "go to the market and buy: ";

$numItems = 3;

for ($i = 1; $i <= $numItems; $i++) {

 $item = readline("type something to buy: ");

 $message .= $item;

 $lastIteration = ($i == $numItems);

 if (!$lastIteration) {

 $message .= ', ';

 }

}

print $message;

Listing 6-9: Updating the script from Listing 6-8 to leave off the final comma

This time we first append just the value of $item to the $message
string, without a comma and space after it. Then we create the Boolean
variable $lastIteration, giving it the value of the expression $i ==
$numItems. This expression will be true only the last time through the
loop. Next, we have an if statement with !$lastIteration as the
condition. Thanks to the NOT operator (!), this condition will be true for
all repetitions except the final one. Inside the if statement, we append a
comma and space to $message. This way, all but the last item in the list will
have a comma after it.

Here’s a sample run of the updated script:

type something to buy: bread

type something to buy: butter

type something to buy: apples

go to the market and buy: bread, butter, apples

We no longer have a comma after apples, the last item in the list, since
we’re treating the final repetition of the for loop differently from the

others.

NOTE
Once we start working with arrays, we’ll be able to avoid this kind of last-
repetition-is-special loop logic by using the built-in implode() function. It
intelligently adds a separator between each item in a list, but not after the
last item. We’ll discuss this in Chapter 7.

Alternative Loop Syntax
PHP provides an alternative syntax for writing while and for loops, setting
off the contents of the loop with a colon (:) rather than enclosed in curly
brackets. Just like the alternative syntax for if statements we discussed in
Chapter 4, this other way of writing loops is often useful when combing
PHP statements in a script with templating text such as HTML for web
applications. To demonstrate, Listing 6-10 uses the alternative syntax to
rewrite the password-setting while loop from Listing 6-1.

<?php

$password = "cat";

while (strlen($password) < 6):

 $password = readline("enter new password (at least 6 cha

racters): ");

endwhile;

print "password now set to '$password'";

Listing 6-10: An alternative syntax for the while loop from Listing 6-1

Notice that the line declaring the while loop ends with a colon rather
than an opening curly bracket. In lieu of a closing curly bracket, we signal
the end of the loop with the endwhile keyword.

Listing 6-11 likewise shows the alternative syntax for the for loop
from Listing 6-6.

<?php

for ($i = 1; $i <= 5; $i++):

 print "I am repetition $i of a for loop\n";

endfor;

Listing 6-11: An alternative syntax for the for loop from Listing 6-6

Again, notice the colon at the end of the line declaring the loop, and the
endfor keyword to indicate the end of the loop.

NOTE
PHP has no alternative syntax for a do...while loop.

Avoiding Infinite Loops
It’s all too easy to accidentally get trapped in an infinite loop that keeps
repeating forever because the stopping condition is never met. To avoid
this, it’s important to make sure the condition controlling the loop can and
will be false when appropriate. One way to mistakenly write an infinite
for loop is to set the increment expression to move in the wrong direction
relative to the looping condition. For example, consider this code:

for ($i = 1; $i > 0; $i++) {

This increment expression adds 1 to $i after each repetition.
Meanwhile, the looping condition tests whether $i is greater than 0. Since
$i is growing with each repetition, it will always be greater than 0, so the
loop will never end. The solution is to make $i decrement rather than
increment, or to change the looping condition to some kind of less-than
comparison.

With while and do...while loops, you can get stuck repeating forever
if the variables in the loop condition don’t have a chance to be changed
correctly in the loop statements. For example, say we want to write a script
that totals up prices entered by the user until the total exceeds $100, then
print out the result. We might accidentally create an infinite loop by writing
something like Listing 6-12.

<?php

$total = 0;

do {

 $costString = readline("enter item cost: ");

 if (is_numeric($costString)) {

 ❶ $total = floatval($costString);

 }

} while ($total < 100);

print "grant total = \$$total\n";

Listing 6-12: An unintentionally infinite do...while loop

We set $total to 0, then enter a do...while loop that keeps repeating
while $total is less than 100. Inside the loop, we take in a line of input
from the user and verify it’s numeric. If it is, we convert the input to a float
and store the value in $total ❶.

Do you see the problem? We should have used something like $total
+= floatval($costString); to add the latest input to the value already in
$total, but we’ve used a regular assignment operator (=) rather than an
addition assignment operator (+=). As a result, the value of $total will
always be the last value entered. If the user ever enters a value greater than
100, the loop will end, and the print statement will echo back that last
value. Otherwise, we’ll be stuck in an infinite loop, without really
calculating a running total.

An infinite while loop also occurs when the variable tested in the loop
condition never changes, so once the loop is entered, it’s never exited.
Returning to Listing 6-12, for example, we might use a $grandTotal
variable to set the looping condition, as in while ($grandTotal < 100),
but then increment the $total variable inside the loop instead of
$grandTotal. This way, $grandTotal would never change, so the loop
would run forever.

Summary
In this chapter, we examined while loops, do...while loops, and for
loops, which all offer different methods of repeating a sequence of
statements. The key to these looping control structures is determining how
long the loop should keep repeating, either by setting a condition for when
the loop should stop, as in a while or do...while loop, or by specifying a
fixed number of repetitions, as in a for loop. In addition to the basic
structure of these loops, we discussed break and continue statements,
which provide a mechanism for abruptly ending an entire loop or the
current repetition of a loop, respectively. Armed with control structures like
loops and choice statements, you’ll be able to write sophisticated programs
that perform repetitive tasks and make decisions in response to the current
conditions.

Exercises
1. Use a do...while loop to keep taking in words input by the user until

they enter one that begins with a capital letter.
Hint: Compare the string entered with the value returned by the

ucfirst() function.
2. Use a break statement with a while (true) loop to keep taking in

strings input by the user until one is numeric.
Hint: Use the is_numeric() function.

3. Use a continue statement in a for loop to print out all the multiples of
3 up to 21 (3, 6, 9, and so on).

7
SIMPLE ARRAYS

This chapter introduces arrays, a
compound data type designed for

storing and manipulating multiple data items under a
single variable name. Arrays allow you to group
related data and efficiently apply the same operations
to each data item.

At its heart, an array is a mapping of values to keys. Each value is a
piece of data you want to store in the array, and its key is a unique identifier
associated with that value so that you can access it from within the array. In
this chapter, we’ll focus on simple arrays, which use integers as the keys.
You’ll learn how to create and manipulate simple arrays, and how to iterate
over the items in an array by using a foreach loop. In the next chapter,
we’ll explore how to create more sophisticated arrays by using strings (and
other data types) as keys, instead of integers.

Creating an Array and Accessing Its Values
Let’s start our exploration of arrays by creating a simple array that stores
the monthly rainfall totals for a location (Listing 7-1).

<?php

$rainfall = [10, 8, 12];

Listing 7-1: Declaring a simple array

We declare an array called $rainfall by using a sequence of comma-
separated values inside square brackets: [10, 8, 12]. This is a three-
element array, containing the values 10, 8, and 12.

By default, PHP gives each array value an integer as a key. The keys
are assigned in sequence, starting from zero: the first value (10) has a key of
0, the second value (8) has a key of 1, and the third value (12) has a key of
2. Accepting this default mapping is what makes $rainfall a simple array
(as opposed to the sophisticated arrays with custom key-value mappings
that we’ll explore in Chapter 8).

Now that we have an array, we can use its keys to access its values
individually. In Listing 7-2, we concatenate each value from the $rainfall
array into a string message and print it out.

<?php

$rainfall = [10, 8, 12];

print "Monthly rainfall\n";

print "Jan: " . $rainfall[0] . "\n";

print "Feb: " . $rainfall[1] . "\n";

print "Mar: " . $rainfall[2] . "\n";

Listing 7-2: Accessing array elements with their integer keys

We access an item in an array by specifying its key in square brackets,
after the array name. For example, $rainfall[0] gives us the first value in
the $rainfall array (10), which we concatenate with the string "Jan: ".
Similarly, we access the second element of the array with $rainfall[1].
Since the integer keys start at zero, the last element of an n-member array
has a key of n – 1. In this case, we access the last element of our three-
element array with $rainfall[2]. Here’s the output of running this script:

Monthly rainfall

Jan: 10

Feb: 8

Mar: 12

The values 10, 8, and 12 have been successfully read from the array and
printed using their integer keys 0, 1, and 2.

If you try to access an array element by using a key that hasn’t been
assigned, you’ll get a PHP warning. For example, say we add the following
print statement to the end of Listing 7-2:

print "Apr: " . $rainfall[3] . "\n";

This statement will trigger a warning that looks something like this:

PHP Warning: Undefined array key 3 in /Users/matt/main.php

on line 8

Our array has only three elements, with keys 0, 1, and 2, so no element
exists corresponding to $rainfall[3]. Later in the chapter, we’ll discuss
how to avoid warnings like this by first ensuring that an array element with
a particular key exists before trying to access it.

THE ARRAY() FUNCTION

In Listing 7-1, we declared an array by writing it out as a literal, enclosing its values
in square brackets. Another way to declare an array is to call the array() function,
passing the array element values as a sequence of comma-separated arguments.
Here’s how to declare the same $rainfall array from Listing 7-1 by using the
array() function:

$rainfall = array(10, 8, 12);

Understanding this alternative technique for declaring arrays is important, since
you may find it in older programs and some of the PHP documentation pages
(https://www.php.net). These days, however, the square-bracket notation is more

https://www.php.net/

common (and more succinct), so I’ll stick to square-bracket notation in this book.
Learn more about this function at https://www.php.net/manual/en/function.array.php.

Updating an Array
Often you’ll need to update an array after you’ve created it by adding or
removing elements. For example, it’s common to start with an empty array,
created by assigning an empty set of square brackets ([]) to a variable, and
then to add elements to it as a script progresses. In this section, we’ll
discuss common techniques for changing the contents of an array.

Appending an Element
If you’re adding a new element to an array, you’ll most often want to add it
at the end, an operation known as appending. This is such a common task
that PHP makes it very easy to do as part of a simple assignment statement.
On the left side of the equal sign, you write the array name followed by an
empty set of square brackets; on the right side of the equal sign, you write
the value you want to append to the array. For example, Listing 7-3 shows a
script that creates an empty array of animals and then appends elements to
the end of it.

<?php

$animals = [];

$animals[] = 'cat';

$animals[] = 'dog';

print "animals[0] = $animals[0] \n";

print "animals[1] = $animals[1] \n";

Listing 7-3: Appending elements to the end of an array

We declare an empty array called $animals by writing an empty set of
square brackets. Then we add two elements to the end of the array, one at a
time. For example, $animals[] = 'cat' adds the string value 'cat' to the
end of the array. PHP automatically gives the new element the next
available integer as a key. In this case, since $animals is empty when 'cat'
is added, it receives a key of 0. When we then use the same notation to add

https://www.php.net/manual/en/function.array.php

'dog' to the array, that element automatically gets a key of 1. To confirm
this, we print the individual values from the array at the end of the script,
resulting in this output:

animals[0] = cat

animals[1] = dog

The output indicates that 'cat' was successfully mapped to key 0 of
the array, and 'dog' to 1. The PHP engine was able to find the array’s
highest integer key, add 1 to it, and use the result as the next unique integer
key when appending to the array.

Adding an Element with a Specific Key
While it’s more common to append elements to an array and let PHP do the
work of automatically assigning the next available integer key, you can also
manually specify an element’s key when you’re adding it to an array. For
example, $heights[22] = 101 would add the value 101 to the $heights
array and give it the integer key 22. If a value already exists at that key, that
value will be overwritten. As such, this direct assignment technique is often
used to update an existing value in an array rather than add a completely
new value. Listing 7-4 expands our $animals array script to illustrate how
this is done.

<?php

$animals = [];

$animals[] = 'cat';

$animals[] = 'dog';

$animals[0] = 'hippo';

var_dump($animals);

Listing 7-4: Directly assigning an array element with a specified key

As before, we append 'cat' and 'dog' to the $animals array. Then we
replace the value of the first array element with 'hippo' by directly
assigning this string to key 0 of the array. Here’s the output of running this
script:

array(2) {

 [0]=>

 string(3) "hippo"

 [1]=>

 string(3) "dog"

}

Notice that 'hippo' is now mapped to key 0, indicating it has replaced
the original 'cat' value.

Be careful when adding a new array element with a specific key. This
action can break the sequence of integer keys if an array element doesn’t
exist for the key you provide. This would happen if you used a key beyond
the existing size of the array. Making an array with a break in the sequence
of integer keys is permissible, but it can cause issues if you’ve written code
elsewhere that relies on having a continuous sequence of keys. We’ll
explore nonsequential and non-integer keys when we look at sophisticated
arrays in Chapter 8.

Appending Multiple Elements
So far we’ve been able to add only one element to an array at a time, but the
built-in array_push() function can add several elements at once to the end
of an array. The function takes a variable number of parameters. The first is
the array you want to update, and the rest are the new values to be
appended, and you can append as many as you want. For example, Listing
7-5 revisits the script from Listing 7-3, where we first added elements to the
$animals array and then printed them, and uses array_push() to append
two more animals to the end of the array.

<?php

$animals = [];

$animals[] = 'cat';

$animals[] = 'dog';

array_push($animals, 'giraffe', 'elephant');

print "animals[0] = $animals[0] \n";

print "animals[1] = $animals[1] \n";

print "animals[2] = $animals[2] \n";

print "animals[3] = $animals[3] \n";

Listing 7-5: Using array_push() to append multiple values to the end of an array

We call array_push(), passing in the $animals array and the two
string values we want to add, 'giraffe' and 'elephant'. Since the new
elements are added to the end of the array, they’re automatically assigned
the next available integer keys, 2 and 3. We confirm this at the end of the
script by accessing the two additional elements by their keys and printing
them out, along with the two original elements:

animals[0] = cat

animals[1] = dog

animals[2] = giraffe

animals[3] = elephant

The output indicates that 'giraffe' was successfully mapped to key 2 and
'elephant' to 3.

You may have noticed that when we called the array_push() function,
we didn’t do it as part of an assignment statement, with the function call on
the right side of an equal sign and a variable name on the left to capture the
function’s return value. This is because array_push() directly modifies the
array passed to it. In this sense, array_push() is quite different from the
string manipulation functions we looked at in Chapter 3, which created and
returned a new string rather than making changes directly to the original
string passed to them.

The array_push() function can directly modify the provided array
because its first parameter has been declared using a pass-by-reference
approach. As we discussed in Chapter 5, this means the function is given a
direct reference to the value of the argument passed in, as opposed to being
given a copy of the argument’s value via a pass-by-value approach. We can
confirm this by looking at the function’s signature in the PHP
documentation:

array_push(array &$array, mixed ...$values): int

The ampersand (&) before the first parameter, &$array, indicates that this is
a pass-by-reference parameter.

Since array_push() is directly modifying the array, there’s no need for
it to return a copy of the array, or for us to use an assignment statement to
capture that return value when we call the function. In fact, array_push()
does have a return value, an integer indicating the new length of the array.
This can be useful if you need to keep track of the array’s length as you’re
updating it; we didn’t need this return value in Listing 7-5, so we simply
made a stand-alone call to the function, without assigning the result to a
variable.

Removing the Last Element
The built-in array_pop() function returns the last item of an array while
also removing that item from the array. This is another example of a pass-
by-reference function that changes the provided array. In Listing 7-6, we
use array_pop() to retrieve and remove the last element of our $animals
array.

<?php

$animals = [];

$animals[] = 'cat';

$animals[] = 'dog';

$lastAnimal = array_pop($animals);

print "lastAnimal = $lastAnimal\n";

var_dump($animals);

Listing 7-6: Using array_pop() to retrieve and remove the last array element

We call array_pop(), passing the $animals array as an argument, and
we store the function’s return value in the $lastAnimal variable. We then
print out $lastAnimal, as well as the $animals array, to see which elements
remain. Here’s the result:

lastAnimal = dog

array(1) {

 [0]=>

 string(3) "cat"

}

The string in variable $lastAnimal is 'dog', since this was the last of
the elements appended to the array. The var_dump of $animals shows that
the array contains only 'cat' after the call to array_pop(), demonstrating
how this pass-by-reference function was able to change the array passed
into it.

ARRAYS AS STACKS

One of the classic data structures for solving some types of computer tasks is the
stack. It treats data like a stack of items, such as a pile of books or blocks. You can
push an element onto the stack by adding it on top of the existing elements, or pop
the last (topmost) element off the stack.

If you push A, then B, then C, for example, you have a stack with A on the
bottom, B in the middle, and C on top. If you then start popping items, you first get C,
then B, then A. The most recent item added to the stack is always the first item to be
removed. The PHP functions array_push() and array_pop() mirror these operations,
making it easy to create scripts that solve problems by using simple arrays as
stacks.

Retrieving Information About an Array
We’ve considered some functions for modifying an array, but other
functions can return useful information about an array without changing it
at all. For example, count() returns the number of elements in an array.
This can be useful if you want to check whether an array contains anything
at all (a count of zero might indicate that a shopping cart is empty or that no
records were retrieved from a database), or whether it has more items than
expected (perhaps a customer has more than one address on file).
Sometimes knowing the number of items in an array can be helpful in order
to control a loop through that array. In Listing 7-7, we use count() to print
the total number of items in the $animals array.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

print count($animals);

Listing 7-7: Counting the number of elements in an array

We call the count() function, passing the name of the array we want it
to count up, and print the result. Since $animals has four elements, this
script should output the integer 4.

NOTE
The sizeof() function is an alias of count(). If you see a script that uses
sizeof(), know that it works the same way as count().

Another analytical array function is array_is_list(). PHP
distinguishes between arrays that are lists and arrays that aren’t. To be
considered a list, an array of length n must have consecutively numbered
keys from 0 to n – 1. The array_is_list() function takes in an array and
returns true or false based on whether the array meets that definition. All
the arrays discussed in this chapter qualify as lists, since they rely on PHP’s
default behavior of assigning keys sequentially from 0. In the next chapter,
however, we’ll explore arrays with non-integer keys as well as the unset()
function, which can remove an element of an array with a given key,
potentially breaking the consecutive chain of numeric keys and
disqualifying an array as a list. Thus, array_is_list() could be useful for
evaluating an array before passing it along to code that expects the array to
be structured as a list.

The array_key_last() function returns the key for the last element of
the given array. Assuming the array is a proper list with consecutively
numbered keys, the return value of array_key_last() should be one less
than the return value of count(). For example, calling
array_key_last($animals) at the end of Listing 7-7 would return the
integer 3, since that’s the key of the fourth (and final) element of the array.

Earlier I mentioned that trying to access an array key that doesn’t exist
triggers a warning. To avoid this, use the isset() function to test whether
an array key exists before trying to access it. Listing 7-8 shows the function
in action.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

❶ if (isset($animals[3])) {

 print "element 3 = $animals[3]\n";

} else {

 print "sorry - there is no element 3 in this array\n";

}

print "(popping last element [3])\n";

❷ array_pop($animals);

if (isset($animals[3])) {

 print "element 3 = $animals[3]\n";

} else {

 print "sorry - there is no element 3 in this array\n";

}

Listing 7-8: Using isset() to test the existence of an array key

First, we create our four-element $animals array. Then we use an
if...else statement with isset() to access only the element with key 3 if
that element exists (at this point, it should) ❶. We next use array_pop() to
remove the last element from $animals (the one at key 3) ❷. Then we
repeat the same if...else statement. Now no element has key 3, but since
we’re testing for the element with isset() before attempting to access it,
we shouldn’t get a warning. Take a look at the output of the script:

element 3 = elephant

(popping last element [3])

sorry - there is no element 3 in this array

The first line of the output indicates the first call to isset() returned
true, triggering the if branch of the conditional. The last line shows the
second isset() call returned false, triggering the else branch and saving
us from trying to access a nonexistent array element.

Looping Through an Array
It’s common to have to access the elements of an array, one at a time, and
do something with each one. Assuming the array is a list, you can do this
with a for loop that uses a counter variable as the key for the current array
element. By starting the counter at 0 and incrementing it up to the length of
the array, you can access each element in turn. Listing 7-9 uses a for loop
to print each element of our $animals array.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

$numElements = count($animals);

for ($i = 0; $i < $numElements; $i++) {

 ❶ $animal = $animals[$i];

 print "$animal, ";

}

Listing 7-9: Using a for loop to loop through an array

We use count() to look up the length of the array, storing the result
into the $numElements variable. Then we declare a for loop that increments
counter $i from 0 up to but not including the value of $numElements. (We
could hardcode the stopping condition as $i < 4, but using a variable
makes the code more flexible in case the length of the array changes.) In the
loop statement group, we use $animals[$i] to retrieve the element whose
key is the current value of loop variable $i, storing it in $animal ❶. Then
we print out this $animal string, followed by a comma and a space. The
output when we run this script in a terminal is as follows:

cat, dog, giraffe, elephant,

Each of the array elements is printed out in sequence. (Don’t worry,
we’ll fix that final comma shortly.)

Using a foreach Loop
This for loop approach works, but cycling through the elements of an array
is such a common task that PHP provides another type of loop, the foreach
loop, to do it more efficiently. At the core of a foreach loop is the foreach
($array as $value) syntax; $array is the name of an array to loop over,
and $value is a temporary variable that will be assigned the value of each
element in the array, one at a time. Listing 7-10 shows an updated version
of Listing 7-9, using a foreach loop rather than a for loop.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

foreach ($animals as $animal) {

 print "$animal, ";

}

Listing 7-10: Using a foreach loop to elegantly loop through an array

We declare this loop by using foreach ($animals as $animal). Here,
$animal is a temporary variable that takes on the value of each array
element in turn, which we then print in the body of the loop. Notice that we
no longer have to worry about determining the length of the array to set the
loop’s stopping condition, nor do we need to manually access each array
element, as we did in the for loop version with $animals[$i]. The
foreach loop retrieves each element automatically. The result is the same as
the for loop version, but the foreach loop’s syntax is much more elegant
and concise.

The foreach loop has the added benefit that we don’t need to care
whether the provided array is a true list. With the for loop version, we’re
relying on the consecutive integer numbering of the array keys; if a key is
missing, we’ll get a warning when we try to access that key. By contrast,
the foreach loop simply accesses each element in the array, no matter what
the keys are.

Accessing Keys and Values
An alternative syntax for foreach loops allows you to access both the key
and the value of each array element, instead of just the value. For this,
declare the loop in the format foreach ($array as $key => $value).
Here, $array is the array you want to loop through, $key is a temporary
variable that will hold the current element’s key, and $value is a temporary
variable that will hold the current element’s value. The => operator connects
a key to a value. We’ll use it more extensively in Chapter 8 when we work
with sophisticated arrays whose keys can be strings and other data types.

Gaining access to keys as well as values allows us to eliminate that
pesky final comma from the output after the last element in the $animals
array. Recall that the array_key_last() function returns the key of the last
element in an array. By comparing the value from this function with the
current key in the foreach loop, we can decide whether to print a comma
after each element. Listing 7-11 shows how.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

foreach ($animals as $key => $animal) {

 print "$animal";

 if ($key != array_key_last($animals)) {

 print ", ";

 }

}

Listing 7-11: A revised foreach loop that accesses the key and value of each array element

We declare a foreach loop by using foreach ($animals as $key =>
$animal). Each cycle through the loop, $key will be the key and $animal
will be the value of the current array element. Inside the loop, we first print
out the string in $animal. Then we use an if statement to also print a
comma and a space if the current element’s key is not equal to the last key
of the array (identified with the array_key_last() function). This should
produce the following output:

cat, dog, giraffe, elephant

We’ve successfully eliminated the comma after the last element in the array.

Imploding an Array
The code in Listing 7-11 is essentially printing a string containing the
elements in an array with a separator (in this case, a comma and a space)
between them. This is a common task, so PHP provides a built-in function
called implode() to do it automatically, without the need for any kind of
loop.

The function takes two arguments: a string to use as a separator and an
array to implode into a string. The separator goes between elements, not
after each element, so the code won’t place an extra separator after the last
array element. Listing 7-12 shows an updated script that uses implode()
rather than a foreach loop.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

print implode(', ', $animals);

Listing 7-12: Using implode() to convert an array into a string

Here we print the result of calling implode() on the $animals array.
We use the string ', ' as a separator to put a comma and a space between
the array elements. The output should be exactly the same as that of Listing
7-11, but implode() makes the code much more efficient to write.

The implode() function may have rendered our foreach loop
unnecessary in this case, but don’t let that fool you. A foreach loop is the
right tool to use in plenty of scenarios. In general, when the code you want
to apply to each element in an array is more sophisticated than simply
printing out that element’s value, a foreach loop is likely appropriate.

Functions with a Variable Number of Arguments
One important application for arrays is that you can use them to declare
functions that accept a variable number of arguments. When we created

custom functions in Chapter 5, we needed to know exactly how many
arguments each function would take in so we could define the function with
the corresponding number of parameters. This isn’t always possible,
however.

For example, say we want to declare a sum() function that takes in an
unspecified quantity of numbers, adds them all up, and returns the result.
We don’t know whether the user will pass two numbers, three numbers, or
more as arguments, so we can’t create a separate parameter for each
number. Instead, we use a single parameter to represent all the numbers, and
we write an ellipsis, or three dots (...), before the parameter name. This
syntax tells PHP to treat the parameter as an array and to fill it with all the
arguments provided, however many there are.

Listing 7-13 shows how this approach works by declaring the sum()
function just described. Remember that functions should be declared in a
separate file from the code that calls them, so create a my_functions.php file
containing the contents of this listing.

<?php

function sum(...$numbers): int

{

 $total = 0;

 foreach ($numbers as $number) {

 $total += $number;

 }

 return $total;

}

Listing 7-13: A function to take in a variable number of integer arguments and return their
sum

We declare the sum() function, which returns an integer. It has a single
parameter, ...$numbers. Thanks to the ellipsis, any arguments the function
receives will be assigned as elements to a local array called $numbers.
Notice that we don’t specify a data type for the parameter when using the
ellipsis notation; we know the overall $numbers variable will be of the

array type, although the individual elements of the array can be of any
type. Inside the function body, we initialize $total to 0. Then we use a
foreach loop to cycle through the elements of the $numbers array, adding
the value of each element to $total. Once the loop has finished, we return
$total, which holds the sum of the arguments.

NOTE
Our sum() function doesn’t include any logic to confirm that the elements in
$numbers are actually numbers. A real-world function would need some
form of data validation and would perhaps return NULL or indicate invalid
data some other way if the arguments provided aren’t all numbers. Also
note that PHP already has a built-in array_sum() function that totals up
the numbers in an array. We’ve implemented our own version for
demonstration purposes.

Listing 7-14 shows a main.php script to read in the sum() function
declaration and test it out with a variable number of arguments.

<?php

require_once 'my_functions.php';

print sum(1, 2, 3) . "\n";

print sum(20, 40) . "\n";

print sum(1, 2, 3, 4, 5, 6, 7) . "\n";

Listing 7-14: A main script that calls sum() with different numbers of arguments

After reading in and executing my_functions.php with require_once,
we make three calls to sum(), each with a different number of arguments,
and print the results. The script produces this output:

6

60

28

The three printed sums have been correctly calculated. This indicates
that our sum() function has successfully collected the variable number of
arguments in an array.

Array Copies vs. Array References
Say you have a variable containing an array, and you assign it as the value
of a second variable. In some languages, such as Python and JavaScript, the
second variable would be assigned a reference to the original array. The two
variables would then refer to the same array in the computer’s memory, so a
change to one variable would apply to the other variable as well. In PHP,
however, the default is to assign the second variable a copy of the array.
Because the two variables have their own separate arrays, a change to one
won’t impact the other. Listing 7-15 returns to our $animals array to
illustrate this point.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

$variable2 = $animals;

array_pop($variable2);

var_dump($animals);

Listing 7-15: Copying an array

We declare our usual $animals array, then assign $animals to
$variable2. This creates a separate copy of the array in $variable2, so
anything we do to one array should have no effect on the other. To prove it,
we use array_pop() to remove the last element from the $variable2 array,
then print the original $animals array. Here’s the result:

array(4) {

 [0]=>

 string(3) "cat"

 [1]=>

 string(3) "dog"

 [2]=>

 string(7) "giraffe"

 [3]=>

 string(8) "elephant"

}

All four animal strings are still present in the $animals array, even though
we deleted the final element ('elephant') from the $variable2 array, so
the variables indeed hold separate arrays.

If you want to assign the second variable a reference to the original
array, as is customary in other languages, rather than a copy of the array,
then use the reference operator (&) at the time of assignment. Listing 7-16
updates the code from Listing 7-15 to show the difference.

<?php

$animals = ['cat', 'dog', 'giraffe', 'elephant'];

$variable2 = &$animals;

array_pop($variable2);

var_dump($animals);

Listing 7-16: Using the reference operator when assigning an array

This time we prefix the $animals array with the reference operator (&)
when assigning it to $variable2. This means a change to one variable will
now apply to the other variable as well, since both refer to the same array in
memory. The updated script results in this output:

array(3) {

 [0]=>

 string(3) "cat"

 [1]=>

 string(3) "dog"

 [2]=>

 string(7) "giraffe"

}

The output reveals that popping element 3 from the $variable2 array
also removed element 3 from the $animals array. This confirms that both

$variable2 and $animals refer to the same array in memory.
One of these approaches to array assignment isn’t inherently better than

the other; they’re just different. Sometimes it’s best to copy an array before
manipulating it. For example, a web page might offer the user a chance to
edit a shopping list, while providing a Cancel button to undo those edits. In
this case, you’ll want to work with a copy of the shopping list array until
the changes are confirmed, since you may need to revert to the original
array if the user clicks Cancel. Other times, it’s preferable to have multiple
variables referencing the same array in memory. Perhaps the code contains
logic that chooses one of several arrays and so needs to set a variable to be
a reference to the chosen array.

The key point to take away from this section is that PHP defaults to
copying the array unless you use the reference operator (&). If you’ve
learned a different programming language before PHP, or if you learn
another language in the future, it’s important to understand the difference
between assignment of a copy and assignment of a reference, and to know
which behavior the language uses by default.

Treating Strings as Arrays of Characters
In a way, you can think of a string as an array of individual characters. This
can be useful since you may sometimes want to “navigate” through the
string character by character for tasks such as encryption, spellchecking,
and so on, just as you’d traverse the elements of an array.

As you saw in Chapter 3, the characters in a string are numbered from
0, just like the elements in a simple array. In fact, you can use the same
square-bracket notation for accessing an array element to also access a
specific character from a string. For example, if $name held the string
'Smith', $name[0] would return 'S', $name[1] would return 'm', and so
on. Strings also support negative integer keys for counting characters
backward from the end of the string: $name[-1] returns 'h' (the last
character), $name[-2] returns 't', and so on.

NOTE
Unlike strings, arrays themselves don’t interpret negative integer keys as
counting backward from the end of the array. Instead, $animals[-1] would

be interpreted as an element of the $animals array with an actual key of -1.
While you can manually assign negative integers as keys to array elements,
I personally can’t remember ever needing to do so.

Listing 7-17 shows an example of using array key syntax to access
individual characters from a string.

<?php

$name = 'Smith';

$firstChar = $name[0];

$secondToLastChar = $name[-2];

print "first character = '$firstChar'\n";

print "second to last character = '$secondToLastChar'\n";

Listing 7-17: Using square-bracket notation to access string characters

We assign the string 'Smith' to the $name variable. Next, we copy the
string’s first character ($name[0]) to the $firstChar variable and its
second-to-last character ($name[-2]) to $secondToLastChar. We then print
out messages with the values of these variables, producing the following
output:

first character = 'S'

second to last character = 't'

Unlike with arrays, we can’t pass a string to a foreach loop to cycle
through all its characters. However, we can use PHP’s built-in str_split()
function to convert a string into an actual array of individual characters,
then pass that array to a foreach loop, as shown in Listing 7-18.

<?php

$name = 'Smith';

$characters = str_split($name);

foreach ($characters as $key => $character) {

 print "character with key $key = '$character'\n";

}

Listing 7-18: Using str_split() and foreach to loop over the characters in a string

We pass the same $name string to str_split(). By default, this
function breaks the string into individual characters, assigns them as
elements of an array, and returns the result, which we store in the
$characters variable. We then use a foreach loop to access each key and
value in the array version of the string and print them out. Here’s the result:

character with key 0 = 'S'

character with key 1 = 'm'

character with key 2 = 'i'

character with key 3 = 't'

character with key 4 = 'h'

The output shows that we’ve successfully looped through the characters
from the original string after first converting the string to an array with
str_split().

The str_split() function has an optional second argument controlling
the number of characters for each string element in the resulting array. The
argument defaults to 1, splitting the string into individual characters, but if
we’d called str_split($name, 2), for example, then the resulting array
would contain two-character strings: ['Sm', 'it', 'h'].

Other Array Functions
We’ve discussed some built-in functions for working with arrays in this
chapter, but PHP has many more. Other useful functions that apply to arrays
include the following:

sort() Sorts an array’s values in ascending order (alphabetical for
string values, numerical order for number values)
usort() Sorts the values into a custom order based on a user-defined
function
array_flip() Swaps the keys and values for each array element

array_slice() Returns a new array containing a subsequence of
elements from an existing array
array_walk() Calls a user-defined function on each element of an
array
array_map() Calls a user-defined function on each element of an
array and returns a new array of the results
array_rand() Returns random keys from an array
For a full list of array functions, see the PHP documentation at

https://www.php.net/manual/en/ref.array.php.

Summary
In this chapter, we’ve begun exploring arrays, a compound data type that
stores multiple values under a single variable name, with each value having
its own identifying key. For now, we’ve focused on simple arrays, whose
keys are integers. The chapter introduced various techniques for adding,
subtracting, and accessing array elements, as well as functions for obtaining
information about an array, such as count() and isset(). You also learned
how to work with each array element in sequence by using a foreach loop.
In some cases, PHP provides built-in functions for handling common array
tasks, such as the implode() function that joins all the elements of an array
into a single string. These functions sometimes allow you to replace
complete loops and conditional statements with a single function call.

Exercises
1. Create a $colors array containing the string names of five colors. Print

a random color from the array.
Hint: You can get a valid random key by calling

array_rand($colors).
2. Write a foreach loop to print each of the colors from your array in

Exercise 1 on a new line, in the following form:

color 0 = blue

color 1 = red

...

https://www.php.net/manual/en/ref.array.php

3. Use array_pop() to print the last element of your array of colors from
Exercise 1. Then use var_dump() to show that this item has been
removed from the array.

4. Create an array containing integer ages 23, 31, and 55. Use built-in
functions to calculate and print out the number of items in the array and
their average.

8
SOPHISTICATED ARRAYS

In this chapter, we’ll take a more
sophisticated approach to PHP arrays

and explore how to manually assign an array’s keys.
This opens up the possibility of using meaningful
strings as keys instead of PHP’s default behavior of
using sequential integers. We’ll also discuss
multidimensional arrays, where the value of an array
element is itself another array, and we’ll look at more
functions and operators for working with arrays. With
this expanded look at PHP arrays, you’ll begin to see
how they can store and manipulate more complex
data structures.

Declaring Array Keys Explicitly
We’ve discussed how PHP will automatically assign sequential integer keys
to array elements, starting from 0, in which case the resulting array will
meet the definition of a list. Rather than relying on this default behavior,

however, you can use the double-arrow operator (=>) when declaring an
array to explicitly map a key to each value. Then you aren’t obligated to
follow the default pattern for keys. For example, you can use nonsequential
integers as keys, or start counting from a number other than 0. Either way,
the resulting array will no longer be considered a list, but it will be a valid
array nonetheless. To illustrate, Listing 8-1 shows a script that explicitly
uses nonsequential integer keys in an array.

<?php

$rainfallValues = [

 0 => 10,

 4 => 8,

 3 => 12

];

print "-- Monthly rainfall --\n";

foreach ($rainfallValues as $key => $rainfallValue) {

 print "$key: $rainfallValue\n";

}

var_dump(array_is_list($rainfallValues));

Listing 8-1: Explicitly declaring integer array keys out of sequence

Here we declare a $rainfallValues array. Inside the square brackets
of the array, we use the => operator to explicitly assign a key to each array
element. For example, 0 => 10 adds an element to the array with a value of
10 and a key of 0. The key/value pairs are separated by commas, just as we
separated the array values by commas in Chapter 7 when we weren’t
explicitly declaring the keys. In this case, we’ve also placed each key/value
pair on its own indented line, for clarity. With the array declared, the script
continues by looping through it and printing its key/value pairs.

Notice that the array keys we’ve declared aren’t sequential. The second
array element has a key of 4, and the third element has a key of 3. This may
not be the most intuitive scheme for assigning keys, but if that’s what we
want, PHP is perfectly fine with it. The array won’t meet the definition of a

list (so the call to array_is_list() at the end of the script should return
false), but the array is still valid. Here’s the output of running the script:

-- Monthly rainfall --

0: 10

4: 8

3: 12

bool(false)

The foreach loop works even though the array isn’t a proper list,
iterating through the array’s key/value pairs and printing them out. Notice
that the element with key 4 prints before key 3. What matters is the order in
which the elements are declared, not the numerical order of the keys
themselves. The false at the end of the output confirms that the array no
longer meets the requirements of a list.

Once you start explicitly declaring keys, you don’t necessarily have to
declare one for every array element. If an element is declared without a key,
PHP will automatically look for the most recent integer key, increment it,
and use that as the new key. This can be useful if you want an array to have
sequential keys that don’t start from 0.

For example, say you have a class of students and want an array
mapping the students’ IDs to their grades. Each ID is a seven-digit number,
beginning with the year and followed by three digits that increment
sequentially. In 2025, for instance, the first student would have a numeric
ID of 2025001, the next 2025002, and so on. In this case, you can explicitly
declare just the first array key and let PHP automatically assign the rest.
Listing 8-2 shows how.

<?php

$studentGrades = [

 2025001 => 'A',

 ❶ 'B',

 'A',

 'D',

 'F'

];

print "-- Student grades--\n";

foreach ($studentGrades as $studentId => $grade) {

 print "$studentId => $grade\n";

}

var_dump(array_is_list($studentGrades));

Listing 8-2: Declaring the first array key explicitly and the rest automatically

Within the $studentGrades array, we explicitly give the first element a
key of 2025001. Then, beginning with the second element ❶, we supply
only the values. By default, PHP will map these values to the integer keys
2025002, 2025003, and so on. As before, we finish the script by looping
through and printing the key/value pairs and testing whether the array
counts as a list. The output is shown here:

-- Student grades--

2025001 => A

2025002 => B

2025003 => A

2025004 => D

2025005 => F

bool(false)

Notice that PHP has assigned the remaining keys sequentially,
incrementing from the explicitly declared key of 2025001. However, even
though the keys are sequential, they don’t start from 0. Therefore, the array
isn’t a list, as the false at the end of the output confirms.

Arrays with Strings as Keys
Let’s take our coding a step further: now that we’re assigning array keys
explicitly, who’s to say they have to be integers? They can just as easily be
strings, in which case each value in the array can be given a meaningful
name as a key. Returning to the $rainfallValues array from Listing 8-1,
for example, we can use month names as keys instead of integers. This

change will better indicate that each value in the array is a monthly rainfall
total. Listing 8-3 revises the script accordingly.

<?php

$rainfallValues = [

 'jan' => 10,

 'feb' => 8,

 'march' => 12

];

print "-- Monthly rainfall --\n";

foreach ($rainfallValues as $key => $rainfallValue) {

 print "$key: $rainfallValue\n";

}

var_dump(array_is_list($rainfallValues));

Listing 8-3: Using strings as array keys

This time we’ve assigned the key 'jan' to the value 10, the key 'feb'
to the value 8, and the key 'march' to the value 12. We use the same =>
operator as before to pair keys with values. The only difference is that the
keys are now strings. Here’s the script’s output:

-- Monthly rainfall --

jan: 10

feb: 8

march: 12

bool(false)

The string keys clarify what the values actually represent. The false at the
end of the output shows that this array isn’t a list. This isn’t surprising,
since the keys aren’t even integers.

Accessing individual values from an array with string keys works just
like accessing values from arrays with integer keys: provide the key in
square brackets, after the array name. For example, here’s how to print the
rainfall value for the month of March:

print $rainfallValues['march'];

Similarly, you can also use square-bracket notation to add or update
array elements with string keys. Here we add a new rainfall total for April:

$rainfallValues['april'] = 14;

This is a simple example, but hopefully you can begin to see the
potential power of PHP arrays to build meaningful collections of data.
When you don’t need the full range of features of object-oriented
programming (discussed in Part V), using arrays with string keys allows
you to work with data whose values are naturally associated with keys that
make sense for the task (such as dates or months, people’s names or IDs, or
product names or codes).

Multidimensional Arrays
Up to now, the arrays we’ve been exploring have been single-dimensional:
they contain a sequence of elements, and each element is a scalar (single)
value mapped to a key. However, you can also declare arrays containing
elements that are arrays themselves, resulting in a multidimensional array.
For example, say you want to create an array of tasks and the time each task
will take in minutes. Each element in the array could itself be an array
holding the name of a task and its associated duration, as shown here:

$tasksAndMinutes = [

 ['shopping', 30],

 ['gym', 60],

 ['nap', 15]

];

Here $tasksAndMinutes is a multidimensional array. Its first element,
['shopping', 30], is a two-element array holding a string task name and
the integer number of minutes to allocate for that task. The other array
elements follow this same format. With a multidimensional array like this,

we refer to the overall $tasksAndMinutes as the outer array and its
elements as the inner arrays.

One way to work with a multidimensional array is to use a nested set of
foreach loops, one to iterate over the elements of the outer array and the
other to iterate over the elements of each inner array. In the
$tasksAndMinutes array, however, all the inner arrays have the same
structure (which won’t always be a given). Therefore, in cases like these,
you can use your knowledge of that structure to extract the values from
each inner array by using a single foreach loop that iterates over the outer
array. Listing 8-4 illustrates this approach.

<?php

$tasksAndMinutes = [

 ['shopping', 30],

 ['gym', 60],

 ['nap', 15]

];

foreach ($tasksAndMinutes as $item) {

 $task = $item[0];

 $minutes = $item[1];

 print "allow $minutes minutes today for task: $task\n";

}

Listing 8-4: Working with a multidimensional array

We declare the $tasksAndMinutes array as shown previously. Next, we
declare a foreach loop that iterates through the elements of
$tasksAndMinutes, using the $item variable to represent the current
element. As we’ve seen, each element is itself an array containing a task
name and a time in minutes. We can therefore extract the first element of
$item (using integer index 0) into the $task variable and the second
element (index 1) into $minutes. Then we print a message about the current
task by using these two variables, producing the following output:

allow 30 minutes today for task: shopping

allow 60 minutes today for task: gym

allow 15 minutes today for task: nap

The times and task names have successfully been extracted from each inner
array during the foreach loop.

In this example, the inner arrays use integer keys by default, but as you
know, arrays can also use non-numeric keys. Pairing the values in each
inner array with meaningful string keys like 'task' and 'minutes' will
make the code much more readable. For example, we’ll be able to access
the task from the current element of $tasksAndMinutes with $task =
$item['task'] rather than $task = $item[0]. Listing 8-5 shows this
improvement.

<?php

$tasksAndMinutes = [

 ['task' => 'shopping', 'minutes' => 30],

 ['task' => 'gym', 'minutes' => 60],

 ['task' => 'nap', 'minutes' => 15],

];

foreach ($tasksAndMinutes as $item) {

 $task = $item['task'];

 $minutes = $item['minutes'];

 print "allow $minutes minutes today for task: $task\n";

}

Listing 8-5: Refactoring Listing 8-4 to use string keys in the inner arrays

This time we explicitly assign the string keys 'task' and 'minutes' to
the values in each of the arrays inside $tasksAndMinutes. Then we use
those meaningful keys inside the foreach loop to extract the values from
the current inner array being processed. The result is exactly the same as
before, but the code is easier to read. Before PHP allowed for object-
oriented programming, well-labeled multidimensional arrays like this were
an integral part of the code for the data-related features of many programs.

More Array Operations
In Chapter 7, we discussed array operations such as adding an element to
and removing an element from the end of a simple array. Now that we’ve
explored sophisticated arrays, let’s consider more array operations. We’ll
look at how to remove an element from anywhere in an array, how to use
array operators like union (+) and spread (...), and how to extract the
elements of an array into separate variables.

Removing Any Element from an Array
You can remove an element from an array by passing the element’s key to
the unset() function. Unlike the array_pop() function covered in the
previous chapter, which specifically removes the last element in an array,
unset() can remove an element from any position. Also unlike
array_pop(), the unset() function doesn’t return the deleted element; it’s
simply gone.

Using unset() becomes more appropriate when you start assigning
strings rather than integers as array keys. With string keys, the order of the
array elements often loses its significance, so it’s more meaningful to
remove an element based on its key rather than its position in the array.
Listing 8-6 revisits the $rainfallValues array as an example.

<?php

$rainfallValues = [

 'jan' => 10,

 'feb' => 8,

 'march' => 12

];

unset($rainfallValues['feb']);

print "-- Monthly rainfall --\n";

foreach ($rainfallValues as $key => $rainfallValue) {

 print "$key: $rainfallValue\n";

}

Listing 8-6: Using unset() to remove an element from an array

We use unset() to remove the element with the 'feb' key from the
$rainfallValues array. Then we loop through the array to print details for
the remaining elements as before. Here’s the result:

-- Monthly rainfall --

jan: 10

march: 12

Notice that no data is printed for an element with the key 'feb', since that
element no longer exists within the array.

NOTE
Calling unset() on a whole array, such as unset($rainfallValues),
would delete the entire array, just as calling unset() on any other variable
would clear that variable.

Combining and Comparing Arrays
You can combine or compare arrays by using some of the same addition,
equality, and identity operators that apply to scalar (single-value) variables.
Table 8-1 summarizes the six array operators available.
Table 8-1: Array Operators
Name Symbol Example Description

Union + $a + $b Returns an array with the elements of arrays $a and $b.

Spread ... [1,

...$a]

Returns an array that has 1 as the first element,
followed by the elements of array $a.

Equal == $a == $b Returns true if arrays $a and $b have the same
key/value pairs.

Identical === $a === $b Returns true if arrays $a and $b are identical: they have
the same key/value pairs, and their elements are in the
same order and of the same types.

Not equal != or <> $a != $b

$a <> $b

Returns true if arrays $a and $b do not have the same
key/value pairs.

Not
identical

!== $a !== $b Returns true if array $a is not identical to array $b.

Listing 8-7 shows some of these operators in action.

<?php

$cars1 = ['audi' => 'silver', 'bmw' => 'black'];

$cars2 = ['audi' => 'white', 'ferrari' => 'red'];

$names1 = ['matt' => 'smith', 'joelle' => 'murphy'];

$names2 = ['joelle' => 'murphy', 'matt' => 'smith',];

print_r($cars1 + $cars2);

var_dump($names1 == $names2);

var_dump($names1 === $names2);

❶ print_r(['rolls royce' => 'yellow', ...$cars1, ...$names1]);

Listing 8-7: Using array operators

First, we declare some example arrays to work with: $cars1 and
$cars2 have car makes as keys and car colors as values, while $names1 and
$names2 have first names as keys and last names as values. (Notice that
$names1 and $names2 have the same elements, but in the opposite order.)

Then we apply operators to these arrays and print the results. We use
the union (+) operator to combine $cars1 and $cars2, and we test the equal
(==) and identical (===) operators on $names1 and $names2. We also use the
array spread operator (...) to create a new array with a key of 'rolls
royce' mapped to a value of 'yellow', as well as all the elements of the
$cars1 and $names1 arrays ❶. Notice that we use print_r() to show the
results of the operations that return arrays; this function displays arrays
more succinctly than var_dump(). Running the script results in this output:

❶ Array

(

 [audi] => silver

 [bmw] => black

 [ferrari] => red

)

❷ bool(true)

bool(false)

❸ Array

(

 [rolls royce] => yellow

 [audi] => silver

 [bmw] => black

 [matt] => smith

 [joelle] => murphy

)

The first part of the output shows the result of $cars1 + $cars2 ❶.
Both arrays of cars have an element with a key of 'audi', but an array can’t
have two identical keys. As such, the union operator takes the 'audi' =>
'silver' element from $cars1 but ignores 'audi' => 'white' from
$cars2, resulting in a three-element array. Next, the true and false outputs
❷ indicate that the $names1 and $names2 arrays are equal, since they have
the same keys and values, but not identical, since the sequence of elements
is different. The final array shows the result of using the spread operator
(...) ❸. The new array has a 'rolls royce' element, followed by the
elements from $cars1 and $names1.

It’s worth underscoring what the spread operator (...) is doing here: it
extracts the elements from one array and inserts them, one at a time, into
another array. Without the spread operator, the entire array would be
inserted as a single element into the new array, thus creating a
multidimensional array, rather than its individual elements being spread into
the new array. To illustrate, say we had omitted the spread operator before
$cars1 ❶ in Listing 8-7, like this:

print_r(['rolls royce' => 'yellow', $cars1, ...$names1]);

The resulting array would have an element containing the whole $cars1
array, as shown here:

Array

(

 [rolls royce] => yellow

 [0] => Array

 (

 [audi] => silver

 [bmw] => black

)

 [matt] => smith

 [joelle] => murphy

)

Now the second element in the array, with key 0, is itself an array
containing the complete contents of $cars1. This example also illustrates
how an array can mix integer keys with non-integer keys. When the whole
$cars1 array is added as an element to the new array, it’s automatically
given the first available integer key, 0, since it wasn’t given a key manually.
Meanwhile, the other elements in the new array all have explicitly assigned
string keys. Arrays with mixed keys like this are rare; usually such an array
would indicate something has gone wrong, such as the missing spread
operator here.

Destructuring an Array into Multiple Variables
Sometimes it can be useful to extract the values from an array and assign
them to separate variables, a process known as destructuring. If you know
the number of elements in the array, you can destructure it in a single
statement, as shown in Listing 8-8.

<?php

$rainfallValues = [10, 8, 12];

❶ [$jan, $feb, $march] = $rainfallValues;

print "-- Monthly rainfall --\n";

print "Jan: $jan \n";

print "Feb: $feb \n";

print "Mar: $march \n";

Listing 8-8: Destructuring a three-element array into three separate variables

We declare the $rainfallValues array to have three elements. Then
we destructure the array into the $jan, $feb, and $march variables ❶. For
that, we list the target variables inside square brackets on the left of an
assignment operator (=) and provide the variable containing the whole array
on the right. Finally, we print out the values in the three variables,
producing the following output:

-- Monthly rainfall --

Jan: 10

Feb: 8

Mar: 12

Notice that the values from the array are successfully assigned into, and
print out from, the individual $jan, $feb, and $march variables.

Callback Functions and Arrays
A callback function, or simply a callback, is a function that isn’t called
directly, but rather is passed as an argument to another function. The other
function then calls the callback function for you. PHP has several functions
that use callbacks in conjunction with arrays.

For example, array_walk() takes in an array and a callback function
as arguments and applies the callback function to each element in the array,
transforming the original array in the process. Similarly, array_map() takes
in an array and a callback function, applies the callback to each array
element, and returns a new array containing the results. Both array_walk()
and array_map() are known as higher-order functions, since they take in a
function as an argument.

If you’ve declared a function in a separate file (as previously discussed
in Chapter 5) or are using one of PHP’s built-in functions, you can use that
function as a callback by passing a string containing the function’s name to
a higher-order function. For example, say we’ve declared a function called
my_function() and we want to apply it to every element in $my_array by
using array_map(). Here’s how to do it:

$my_new_array = array_map('my_function', $my_array);

We pass the string 'my_function' (the name of the desired callback)
and the array as arguments to array_map(), which will call my_function()
for each element in the array. The results are returned in a new array, which
we store in the $my_new_array variable.

Rather than declare the callback function separately, another common
approach is to define an anonymous (unnamed) callback function directly in
the argument list for the higher-order function. Before we look at an
anonymous function in the context of a higher-order function like
array_map(), though, let’s consider an anonymous function by itself to
better understand the syntax. Here’s a simple anonymous function that takes
in a number and returns double its value:

function (int $n): int {return $n * 2;}

The function begins with the function keyword, followed by the
function’s signature, (int $n): int, which indicates that the function takes
a single integer parameter $n and returns an integer value. Notice that the
function signature doesn’t include a name, since the function is anonymous.
After the signature comes the anonymous function’s body, which is
enclosed in curly brackets. The body returns twice the value of the provided
$n argument.

Another option is to write the anonymous callback as an arrow
function, using a more concise syntax that uses the double-arrow operator
(=>) to separate the function’s signature and body. This syntax removes the
need for the return keyword, the curly brackets around the body, and the
semicolon to end the statement in the body. Here’s the arrow-function
version of our doubling operation:

fn (int $n): int => $n * 2

Instead of function, we now begin with fn, a reserved keyword for
declaring arrow functions. Then comes the function’s signature as before.
Next, we write the double-arrow operator (=>), followed by an expression
defining the function’s return value (in this case, $n * 2). Without the curly

brackets, semicolon, and return keyword, the arrow function is extremely
compact.

Now let’s try using this arrow function as a callback. Listing 8-9 shows
how to pass the arrow function to array_map() in order to double every
value in an array.

<?php

$numbers = [10, 20, 30];

$doubleNumbers = array_map(

 ❶ fn (int $n): int => $n * 2,

 $numbers

);

var_dump($doubleNumbers);

Listing 8-9: Passing an arrow callback function to array_map()

We declare a $numbers array containing 10, 20, and 30. We then call
the array_map() function. For the first argument, we use arrow-function
syntax to declare the doubling callback function we just discussed ❶.
Notice that the arrow function ends with a comma, since it’s part of the list
of arguments to array_map(). The second argument is the $numbers array.
The array_map() function will automatically apply the arrow function to
each element in the array and return a new array containing the results. We
store that new array in the $doubleNumbers variable. Here’s the output of
running this script and printing the resulting array:

array(3) {

 [0]=>

 int(20)

 [1]=>

 int(40)

 [2]=>

 int(60)

}

The $doubleNumbers array contains the values 20, 40, and 60. This
indicates that the array_map() function successfully accessed each value in
the $numbers array and applied the doubling arrow function to it.

Summary
Arrays are flexible data structures, especially when we begin assigning
meaningful string keys to the values of the elements instead of using the
default integer keys. In this chapter, you learned how to work with string-
keyed arrays. You also saw how to embed arrays inside other arrays to
create multidimensional arrays, and how to apply callback functions
(written with arrow-function syntax) to every element of an array.
Techniques like this are what make the array a sophisticated structure for
representing and manipulating complex data.

Exercises
1. Use an array with string keys to store the following pairs of names and

heights in meters:

Fred 1.82

Joelle 1.55

Robin 1.70

Write a foreach loop to iterate through the array elements and print
them out.

2. Create a multidimensional array to represent the following data about
movies:

Back to the Future

 duration 116

 leadingActor Michael J. Fox

The Fifth Element

 duration 126

 leadingActor Bruce Willis

Alien

 duration 117

 leadingActor Sigourney Weaver

3. Declare one array containing the odd numbers up to nine (1, 3, 5, 7, 9)
and another with the even numbers (2, 4, 6, 8). Use the array spread
operator (...) to combine the two arrays, and then sort them into
numerical order with PHP’s built-in sort() function.

9
FILES AND DIRECTORIES

Many applications require you to read
or write data to and from files. In this

chapter, we’ll explore how to interact with files via
PHP scripts. We’ll focus primarily on simple .txt
files, though we’ll also touch on how PHP handles
other common text file formats.

PHP provides many built-in functions for working with files. Some
read or write files all in one go, while other, lower-level functions provide
more granular control, allowing you to open and close files and selectively
read or write at specific locations. Not all web applications will require you
to work with external files, but knowing your way around these functions is
still useful, in case the need arises. Outside of web applications, for
example, you may find yourself needing to reformat the data inside files or
to move and rename files and directories. With the functions we’ll discuss
here, you can write a PHP script to automate that process.

Reading a File into a String
If you know a file exists and you want to read all its contents into your
script as a single string, you can do so in a single statement, simply by
calling the built-in file_get_contents() function. To illustrate, let’s first

create a file to be read in. Listing 9-1 shows a file containing a
programming haiku by Jorge Suarez (found at
http://selavo.lv/wiki/index.php/Programming_haiku). Create a new file
named data.txt containing these lines.

what is with this code?

oh my, looks like I wrote it

what was I thinking?

Listing 9-1: The text file data.txt containing a programming poem

This file contains three lines of text. The line breaks are a sign that the first
two lines end with an invisible newline character.

Now that we have a file to work with, we can write a script to read and
print its contents. Create a main.php file in the same directory as data.txt
and enter the code in Listing 9-2.

<?php

$file = __DIR__ . '/data.txt';

$text = file_get_contents($file);

print $text;

Listing 9-2: A main.php script to read and print the contents of a file

First, we declare a $file variable containing the path and filename for
our text file. Since the text file and main script are in the same directory, we
create this file location string by concatenating the __DIR__ magic constant
(the path to the location of the main script) with a forward slash and the
data.txt filename. We then use file_get_contents() to read the contents
of the file into the $text variable. Finally, we print out the string containing
the file contents.

Run the main script at the terminal and you should see the haiku
printed across three lines, just as it appears in Listing 9-1. This is because
the invisible newline characters in the file made it into the $text string, just
like the visible characters. We can prove these invisible characters exist in a
couple of ways: by checking the size of the text file or by replacing the

http://selavo.lv/wiki/index.php/Programming_haiku

newlines with visible characters in the string read from the file. To make it
really easy to see how newline characters are part of a text file, let’s replace
the contents of data.txt with that of Listing 9-3.

a

b

Listing 9-3: A simplified data.txt file

Now that the file consists of just two characters, each on a separate
line, we can more easily examine the contents of the file. Update main.php
to match Listing 9-4.

<?php

$file = __DIR__ . '/data.txt';

$text = file_get_contents($file);

$numBytes = filesize($file);

$newlinesChanged = str_replace("\n", 'N', $text);

print "numBytes = $numBytes\n";

print $newlinesChanged;

Listing 9-4: An updated main.php script to prove the existence of newline characters

As before, we first read the contents of the file into the $text variable.
Then we read the size of the file with the built-in filesize() function,
which returns the file’s number of bytes. In a text file with basic ASCII
characters, each character (including invisible characters) takes up 1 byte,
so we should expect the result to be 3. Next, we generate another string that
replaces each newline character ("\n") in $text with a capital letter N,
storing the result in the $newLinesChanged variable. Finally, we print the
file size and the updated string. Here’s the output of running this script at
the terminal:

numBytes = 3

aNb

The first line confirms that the file contains just three characters (bytes)
of data: the letter a, a newline character, and the letter b. The second line is
the string representing the contents of the file with the newlines made
visible: aNb again confirms that the file contains just three characters, with a
newline character between the two letters.

Confirming that the newlines exist isn’t a trivial exercise: later in the
chapter, we’ll explore functions that work with a file’s contents line by line.
These functions rely on invisible newlines to know where one line ends and
the next begins.

NOTE
The file_get_contents() function can also read files from the web rather
than from your local machine if you pass it a full URL to the file’s location.
For example, try storing the URL
https://filesamples.com/samples/document/txt/sample1.txt in the $file
variable and then calling file_get_contents($file) as in Listing 9-2.
You should get back a string of nonsensical Latin text.

Confirming That a File Exists
The previous examples assume that a file named data.txt exists. In practice,
however, it’s a good idea to test that a file exists before attempting to read
its contents. Otherwise, if you attempt to open or read a file that can’t be
found, you’ll get a runtime warning such as the following:

PHP Warning: file_get_contents(/Users/matt/nofile.txt): Fai

led to open

stream: No such file or directory in /Users/matt/main.php on

line 4

Execution will continue after the warning, which can lead to further
warnings and errors if the script attempts to manipulate the contents of the
nonexistent file. To make your code more robust and able to cope with a
missing file, you can use the built-in file_exists() function. It returns a
Boolean value confirming whether the provided file exists. Let’s try it out
by updating main.php with the contents of Listing 9-5.

https://filesamples.com/samples/document/txt/sample1.txt

<?php

$file = __DIR__ . '/data.txt';

$file2 = __DIR__ . '/data2.txt';

$text = "file not found: $file";

$text2 = "file not found: $file2";

if (file_exists($file)) {

 $text = file_get_contents($file);

}

if (file_exists($file2)) {

 $text2 = file_get_contents($file2);

}

print $text . "\n";

print $text2 . "\n";

Listing 9-5: An updated main.php script to confirm the existence of a file before reading it

Here we add $file2, a second variable holding a path to a nonexistent
file, data2.txt. Before attempting to read anything, we assign a default file
not found message to the $text and $text2 variables. This way, these
variables will still hold something, even if we fail to read the contents of a
file. We next use the file_exists() function in two successive if
statements to ensure that we attempt to read the contents of data.txt and
data2.txt only if those files can be found. Then we print the contents of
$text and $text2, each followed by a newline character. Here’s the result:

a

b

file not found: /Users/matt/data2.txt

Since data.txt can be found, its contents have been read into $text
(replacing the default file not found message) and printed out.
Meanwhile, since data2.txt doesn’t exist, printing $text2 ends up
displaying a message indicating that the file can’t be found.

“Touching” a File
Linux and macOS have a touch file terminal command that either updates
the last accessed or modified timestamp of the specified file to the current
datetime or creates an empty file if that file doesn’t already exist. PHP
offers the almost identical touch() function, which provides another way to
ensure that a file exists before trying to access it. If you don’t mind a file’s
contents being empty, you can replace the default file not found
messages and if statements from Listing 9-5 with simple touch()
statements, as shown in Listing 9-6.

<?php

$file = __DIR__ . '/data.txt';

$file2 = __DIR__ . '/data2.txt';

touch($file);

touch($file2);

$text1 = file_get_contents($file);

$text2 = file_get_contents($file2);

print $text1 . "\n";

print $text2 . "\n";

Listing 9-6: An updated main.php script to “touch” files before reading them

We now pass each filename to touch() before using
file_read_contents() to read the files. This lets us safely read the files
without if statements and file_exists(), since we know touch() will
create the files (albeit empty ones) if they don’t already exist.

Ensuring That a Directory Exists
We’ve so far been working with files in the same directory as the executing
script, but a file could also be in a different directory. In that case, it’s
important to confirm that the directory exists (and perhaps create it if it
doesn’t), since just like a missing file, a nonexistent directory will trigger a
runtime warning. PHP has two built-in functions for this: is_dir() returns

a Boolean value confirming whether a specified directory path can be
found, and mkdir() attempts to create a directory at the specified path.

NOTE
The mkdir() function will throw a runtime warning if the directory it’s
trying to create already exists or if it can’t be created based on the current
permissions settings. For more on permissions, see “Directory and File
Permissions” on page 163.

To try these functions, update the contents of main.php as shown in
Listing 9-7.

<?php

$dir = __DIR__ . '/var';

$file = $dir . '/data.txt';

if (!is_dir($dir)) {

 mkdir($dir);

}

touch($file);

$text = file_get_contents($file);

print $text;

Listing 9-7: An updated main.php script to create a directory if it doesn’t exist

We break the desired path and filename into two variables: $dir holds
the path to the directory where the file is to be read from, and $file holds
the path plus the filename. We set $dir to the /var subdirectory within the
directory where our script is executing (__DIR__); this subdirectory doesn’t
exist. The if (!is_dir($dir)) statement checks whether $dir is not a
valid directory path and calls mkdir() to create the directory if it isn’t.
We’re then safe to call touch() on the file, since we now know the
directory exists, and then to read the file, since touch() creates the file if it,
too, doesn’t exist.

The default option for mkdir() is that the function isn’t recursive: it
will fail to create a directory if the parent of that directory doesn’t exist.
However, the function has an optional recursive parameter; if it’s set to
true, the function will create any missing parent directories as well. Listing
9-8 shows an example.

<?php

$dir = __DIR__ . '/sub/subsub';

$file = $dir . '/data.txt';

if (!is_dir($dir)) {

 mkdir($dir, recursive: true);

}

touch($file);

$text = file_get_contents($file);

print $text;

Listing 9-8: An updated main.php script to recursively create directories if they’re missing

The directory path now includes a /subsub directory inside a /sub
directory inside the current directory of the executing script. Inside the if
statement, we call mkdir() with the recursive argument set to true. This
ensures that the function won’t create just the /subsub directory but also its
parent /sub directory if necessary. We have to set recursive as a named
argument, since mkdir() takes another optional argument to set the new
directory’s permissions, and this argument comes before recursive in the
function signature.

DIRECTORY AND FILE PERMISSIONS

The default permission setting for a directory created with mkdir() is full read-write-
execute, meaning anyone can read, write, or execute files in that directory. The best
practice, however, is to use the minimum required permissions. To apply a different
setting, use the function’s optional permissions argument. You can also change the
permissions for an existing file or directory by using the chmod(file, permissions)
function. In both cases, you specify the permission as an octal (base-8) integer.

Octal numbers are prefixed with either 0 (zero) or 0o (zero and a lowercase letter o).
Here are the octal codes for some commonly used permissions:
0o777 Everyone can read, write, and execute (default for the mkdir() function).
0o600 The file owner can read and write; no access is given to anyone else.
0o664 The file owner and group can read and write; any other user can only read.

Writing a String to a Text File
Just as you can use file_get_contents() to read the contents of a file into
a string, you can write the contents of a string to a text file by using the
reciprocal file_put_contents() function. This function automatically
creates the file being written to if it doesn’t exist, so you don’t need to
worry about testing the filename first. The updated main.php script in
Listing 9-9 shows how it works.

<?php

$content = <<<CONTENT

 the cat

 sat

 on the mat!

 CONTENT;

$file = __DIR__ . '/newfile.txt';

file_put_contents($file, $content);

$text = file_get_contents($file);

print $text;

Listing 9-9: A main.php script writing data from a string to a file

First, we declare a three-line heredoc string, $content, using CONTENT
as the delimiter. Then we set the $file variable to the current directory path
plus the filename newfile.txt. Next, we call the file_put_contents()
function, passing it the destination file and the text to write to that file. This
should create a file newfile.txt containing the text from the $content
heredoc. To confirm that the file has been created with the text content, we

use file_get_contents() to read the text back out of the file and into the
$text variable, which we then print. Here’s the result:

the cat

sat

on the mat!

The output matches the original heredoc string, indicating we successfully
wrote the string to newfile.txt and read it back out again.

If the file you’re trying to write to already exists, the default behavior
of file_put_contents() is to completely replace (overwrite) the contents
of that file. To avoid this, call the function with the FILE_APPEND option.
This adds the new text to the end of the file after its existing content.
Listing 9-10 shows an example, updated from Listing 9-9.

<?php

$newContent = <<<CONTENT

 the rat

 spat

 on the cat!

 CONTENT;

$file = __DIR__ . '/newfile.txt';

file_put_contents($file, $newContent, FILE_APPEND);

$text = file_get_contents($file);

print $text;

Listing 9-10: A main.php script appending text to the end of a file

This time we create a different heredoc string and add it to newfile.txt
by calling file_put_contents() with FILE_APPEND as a third argument.
This should append the string after the current contents of the file, as the
output confirms:

the cat

sat

on the mat!

the rat

spat

on the cat!

Try running the code in Listing 9-10 again without the FILE_APPEND
option. You’ll find that only the text from $newContent appears in the
output, since the existing text in the file is overwritten.

Managing Files and Directories
Beyond reading from and writing to files, PHP offers functions to help
manage existing files and directories. For example, you can delete a file
with the unlink() function or delete a whole directory with rmdir(). Both
functions return true if successful or false otherwise. As with reading
files, it’s important to test for the existence of a file or directory before
attempting to delete it. Otherwise, if you call unlink() or rmdir() on a file
or directory that doesn’t exist, you’ll get a warning (but execution will
continue). Listing 9-11 shows these functions in action.

<?php

$dir = __DIR__ . '/var';

$file = $dir . '/data.txt';

if (!is_dir($dir)) {

 mkdir($dir);

}

touch($file);

var_dump(is_dir($dir));

var_dump(file_exists($file));

unlink($file);

rmdir($dir);

var_dump(file_exists($file));

var_dump(is_dir($dir));

Listing 9-11: A main.php script to create and then delete a directory and a file

As in some earlier examples, we declare the target directory and
filename in two variables, $dir and $file. We then create the directory if it
doesn’t already exist and touch() the file. At this point, we should be
confident that a data.txt file exists in a /var directory; we confirm this by
var_dumping the results of calling is_dir() and file_exists(). Next, we
use unlink($file) and rmdir($dir) to delete the file and its directory.
Finally, we make the same var_dump() calls again to make sure that neither
the directory nor the file exists when the script finishes execution. If you
run this script, you should see true, true, false, false displayed,
confirming that the directory and file existed and then were successfully
deleted.

Another useful file-management function is rename(), which changes
the name of a file or directory. For example, you could rename oldfile.txt to
newfile.txt with this statement:

rename('oldfile.txt', 'newfile.txt');

You need to be careful with this function, testing that the old file or
directory exists first. It’s also important to be mindful about the new file or
directory. If you’re renaming a file and another file already exists with that
name, it will be overwritten with no error or warning, which could be
problematic if you need the contents of that overwritten file. If you’re
renaming a directory and the new directory already exists, a warning will be
generated, which is also not ideal, since it’s best to avoid warnings. If
you’re renaming a file into a different directory, you also should ensure that
the new directory exists and, if appropriate, is writable (which is required
by Windows). See https://www.php.net/manual/en/function.rename.php for
more about this function.

Reading a File into an Array
PHP’s built-in file() function reads the contents of a file into an array
rather than a single string, with one array element for each line in the file.
This is useful when you want to perform an action for each line (such as
displaying the line’s contents alongside its line number, as in the following

https://www.php.net/manual/en/function.rename.php

example), or when each line represents one item in a set of data to be
processed, such as the data in a comma-separated values (CSV) file. Listing
9-12 shows a main script demonstrating the file() function.

<?php

$file = __DIR__ . '/data.txt';

$lines = file($file);

foreach ($lines as $key => $line) {

 print "[$key]$line";

}

Listing 9-12: A main.php script to loop through and print each line of a text file

We pass the file information (in the $file variable) to the file()
function, which reads the contents of data.txt line by line into an array
called $lines. Then we use a foreach loop to print each element of the
array (a line from the file) individually, along with its numeric key. If
data.txt contains the three-line haiku from Listing 9-1, the output should
look as follows:

[0]what is with this code?

[1]oh my, looks like I wrote it

[2]what was I thinking?

You can pass optional flags as a second argument to the file()
function to, for example, exclude the newline character at the end of each
line (FILE_IGNORE_NEW_LINES) or completely ignore empty lines in the file
(FILE_SKIP_EMPTY_LINES).

Using Lower-Level File Functions
The file_get_contents() and file_put_contents() functions take care
of all the steps of working with a file for you, such as opening the file,
accessing its contents, and closing the file again. In most situations, those
functions are all you need. Sometimes, however, you may need to work

with files at a lower level, perhaps processing them one line, or even one
character, at a time. In those cases, you might need to explicitly manage the
various file-access steps in your code through a series of separate, lower-
level function calls.

PHP’s lower-level file functions require you to work with a filesystem
pointer (or just file pointer), a reference to a location in the file’s data.
Internally, PHP treats a file as a bytestream (a resource object that can be
read from and written to in a linear fashion), and the file pointer provides
access to that stream. You obtain a file pointer by calling fopen() with a
path to the file you want to access. You also have to pass in a string
specifying how you want to interact with the file; for example, files can be
opened only for reading, only for writing, for both reading and writing, and
so on. Table 9-1 shows the strings for specifying some common fopen()
modes.
Table 9-1: Common fopen() Modes

Mode
string Description Position of file pointer

Outcome if file
doesn’t exist

'r' Read only Beginning of file Warning

'r+' Read and write
(overwrite)

Beginning of file Warning

'w' Write only
(overwrite)

Beginning of file (and truncate the
file by removing any existing
content)

Attempt to create
a file

'a' Write only
(append)

End of file Attempt to create
a file

The typical sequence of actions when working with a file is as follows:
1. Open a file in the appropriate mode and get a file pointer.
2. Change the location of the file pointer in the file if necessary.
3. Read or write at the location of the file pointer.
4. Repeat steps 2 and 3 as required.
5. Close the file pointer.

Listing 9-13 demonstrates this process. This script achieves the same
results as Listing 9-2 (reading the contents of a file to a string) by using the
lower-level fopen(), fread(), and fclose() functions.

<?php

$file = __DIR__ . '/data.txt';

$fileHandle = fopen($file, 'r');

$filesizeBytes = filesize($file);

$text = fread($fileHandle, $filesizeBytes);

fclose($fileHandle);

print $text;

Listing 9-13: Using lower-level functions to read a file

First, we use fopen() to open data.txt, using the string 'r' to specify
read-only mode. The function returns a file pointer located at the beginning
of the file, which we store in the $fileHandle variable. Next, we call
filesize() to look up the size of the file (in bytes). We then call the
fread() function, passing it the file pointer and the size of the file
($filesizeBytes) to read the entire contents of the file into the $text
variable. If we wanted to read only part of the file, we could specify a
different number of bytes as the second argument to the fread() function.
(We’d also want to specify a different number of bytes if the file pointer
were located somewhere other than the beginning of the file.) To finish up,
we close the file by passing the file pointer to the fclose() function.
Closing the file enables it to be used by other system processes and protects
it from being corrupted if any errors occur in the script currently being
executed.

This example illustrates some of the most common low-level file
functions, but PHP has many others. For example, fgets() reads one line
of a file (up to the next newline) from the current file-pointer location, and
fgetc() reads just one character from the current file-pointer location. The
feof() function takes in a file pointer and returns true or false based on
whether the pointer is at the end of the file. This is useful for loops such as
the following:

while (!feof($fileResource)) {

 // Do something at current file pointer position

}

Here we use the NOT operator (!) to negate the result of feof(), so the
loop will keep repeating until the pointer gets to the end of the file. Inside
this kind of loop, we might read a line from the file with fgets(), read the
next character with fgetc(), or read a fixed number of bytes with fread().
Logic in the loop would then process the data (if successfully read), and if
we reach the end of the file while reading, the loop would terminate.

Some functions are just for working with and changing the file pointer.
For example, rewind() moves the file pointer back to the beginning of the
file, and ftell() returns the current location of the pointer, specified as the
number of bytes from the start of the file. The fseek() function moves the
file pointer to a given position in the file specified relative to its current
position, the beginning or the end of the file.

Processing Multiple Files
Let’s combine a lot of what we’ve discussed so far in this chapter in a more
sophisticated example that programmatically extracts data from multiple
files and collects it all in a new summary file. We’ll attempt to gather the
names and game scores of three players, each in a separate file (joe.txt,
matt.txt, and sinead.txt), reformat the data, and write it to a single output
file called total.txt. Listings 9-14 through 9-16 show the three raw data files
we want to process.

Joe

O'Brien

55

Listing 9-14: joe.txt

Matthew

Smith

99

Listing 9-15: matt.txt

Sinead

Murphy

101

Listing 9-16: sinead.txt

Notice that the content in each data file is a little messy, with randomly
located blank lines: Listing 9-15 ends with a blank line, and Listing 9-16
starts and ends with two blank lines. That said, each data file has the same
sequence of content: a line containing the player’s first name, a line with
their last name, and a line with their integer score.

In the output file, we want to consolidate all the data about each player
onto a single line, as well as display the total of all three players’ scores.
Listing 9-17 shows how the resulting total.txt file should appear.

Player = Joe O'Brien / Score = 55

Player = Matthew Smith / Score = 99

Player = Sinead Murphy / Score = 101

total of all scores = 255

Listing 9-17: The consolidated total.txt file we want to create

To achieve this final result, we’ll need to handle each part of the data
files differently, so we can’t simply load a whole file into a string with
file_get_contents(). It will be better to use file() to read in each file as
an array of individual lines.

When working with multiple files, PHP’s oddly named glob() function
is a powerful tool. It returns an array of file and directory paths that match a
given pattern. This is particularly helpful for identifying and then looping
through all the data files in a given location. For example, the following

statement provides an array of paths to all .txt files in the /data subfolder
relative to the location of the executing script:

$files = glob(__DIR__ . '/data/*.txt')

The * is a wildcard representing any number of characters, so
'/data/*.txt' will match any filename with a .txt extension in the given
folder. That’s exactly what we’ll need to gather the player data files in this
example.

Start a new project and create a /data subfolder containing the text files
joe.txt, matt.txt, and sinead.txt shown previously in Listings 9-14 through 9-
16. Then, in the main project folder, create a main.php script with the
contents of Listing 9-18.

<?php

$dir = __DIR__ . '/data/';

$fileNamePattern = '*.txt';

$files = glob($dir . $fileNamePattern); ❶

$outputFile = __DIR__ . '/total.txt';

touch($outputFile);

unlink($outputFile);

$total = 0;

foreach ($files as $file) {❷
 $lines = file($file, FILE_IGNORE_NEW_LINES | FILE_SKIP_E

MPTY_LINES);

 $firstName = $lines[0];

 $lastName = $lines[1];

 $scoreString = $lines[2];

 $score = intval($scoreString);

 $outputFileHandle = fopen($outputFile, 'a');

 fwrite($outputFileHandle, "Player = $firstName $lastName

/ Score = $score\n"); ❸
 fclose($outputFileHandle);

 $total += $score;

}

$outputFileHandle = fopen($outputFile, 'a');

fwrite($outputFileHandle, "total of all scores = $total");

fclose($outputFileHandle);

print file_get_contents($outputFile); ❹

Listing 9-18: A script processing multiple files

We first assign the path to the /data subfolder from the location of the
executing script to the $dir variable, and the filename pattern string
'*.txt' to $fileNamePattern, using the * wildcard to represent any .txt
file. We then call glob() to get an array of all the files in $dir matching the
pattern in $fileNamePattern, storing the result in the $files variable ❶.
Thanks to glob(), we know that all the files in the $files array exist, so
we can avoid the ordeal of checking whether they exist before trying to read
them.

Next, we assign a path to total.txt to the $outputFile variable. This file
may or may not exist already, but we want a fresh output file each time we
run the script. We therefore touch() the file, which creates it if it doesn’t
exist already, and then use unlink() to delete the file. Now we can be sure
that we’re writing to an empty file when it comes time to gather the data
into total.txt.

After initializing the $total variable to 0, we use a foreach loop ❷ to
iterate over the filepaths in the $files array, storing each path in a
temporary $file variable. For each file, we use file() to read the contents
into an array called $lines. Calling the function with the
FILE_IGNORE_NEW_LINES and FILE_SKIP_EMPTY_LINES flags ensures that
end-of-line characters will be ignored and that empty lines will be excluded
from the resulting array. Knowing what we know about each data file, this
means that $lines should be a three-element array: the first element is the
player’s first name, the second element is their last name, and the third
element is their score (represented as a string). We read these values from
the array into separate $firstName, $lastName, and $scoreString

variables and use the built-in intval() function to convert the score from a
string to an integer.

Still within the foreach loop, we call fopen() to get a file pointer to
the output file (total.txt) in write-append mode (specified with the 'a' mode
string), meaning the pointer will be located at the end of the file. The first
time through the loop, total.txt won’t exist, so fopen() will create the file.
We then use fwrite() to append a string to the output file, summarizing the
player’s name and score and ending with a newline character (\n) ❸. We
close the output file with fclose() and add the current player’s score to the
$total variable.

Finally, after the foreach loop has completed, we once again access the
output file in write-append mode and append a final string including the
value of $total. Then, to make sure this has all worked, we call file_get
_contents() to read the output file into a string and print the result ❹.
Notice that we call the function directly from the print statement, instead
of storing the string in a variable first.

If you run the main.php script, you should get the total.txt file shown
previously in Listing 9-17. In fact, you can run this script as many times as
you want and the result will always be the same, since any existing total.txt
file is deleted with the combination of the touch() and unlink() functions.

Strictly speaking, our main.php script isn’t the most efficient way to
code the desired logic. We don’t need to open and close the output file each
time during the foreach loop; we could open it just once before the loop
and then close it once after appending the total score. However, opening it
each time through the loop illustrates the value of write-append mode,
which places the file pointer at the end of the file. This way, any new
content written to the file is added after any existing content.

JSON and Other File Types
PHP can work with more than .txt files. For example, it can also work with
JavaScript Object Notation (JSON) and other text-based data formats. For
JSON data, the built-in json_encode() function can turn a PHP array into a
JSON string, and the json_decode() function does the opposite. This type
of conversion is particularly smooth since JSON data, like PHP arrays,

revolves around key/value pairs. Listing 9-19 shows these functions in
action.

<?php

$filePath = __DIR__ . '/data.json';

$data = [

 'name' => 'matt',

 'office' => 'E-042',

 'phone' => '086-111-2323',

];

$jsonString = json_encode($data);

file_put_contents($filePath, $jsonString);

$jsonStringFromFile = file_get_contents($filePath);

print $jsonStringFromFile;

$jsonArrayFromFile = json_decode($jsonStringFromFile, true);

print "\n";

var_dump($jsonArrayFromFile);

Listing 9-19: A script to convert an array to JSON, and vice versa

We store a path to data.json in the $filePath variable. Then we
declare a $data array that maps the values 'matt', 'E-042', and '086-111-
2323' to the keys 'name', 'office', and 'phone', respectively. Next, we
use the json_encode() function to convert the array to a JSON-formatted
string, storing the result in the $jsonString variable. We then use
file_put_contents() to write the JSON string to the data.json file, just as
we would use it to write to a .txt file.

The rest of the script goes through the same process in reverse. We use
file_get_contents() to read the JSON data from the file into the
$jsonStringFromFile variable, which we print out. The variable contains a
JSON string, but we use json_decode() to convert the string into a PHP
array, which we display using var_dump(). We need to provide true as a
second argument to the json_decode() function, or the result will be a type

of object rather than an array. Here’s the output of running this script at the
terminal:

{"name":"matt","office":"E 042","phone":"086 111 2323"}

array(3) {

 ["name"]=>

 string(4) "matt"

 ["office"]=>

 string(5) "E-042"

 ["phone"]=>

 string(12) "086 111 2323"

}

The first line shows the JSON string that we wrote into and read back
out of the data.json file. The string consists of a JSON object, delimited by
curly brackets, containing three key/value pairs separated by commas. The
keys are set off from their corresponding values by colons. The rest of the
output shows the contents of $jsonArrayFromFile, the array created by
decoding the JSON data. Notice the direct correlation between the
key/value pairs in the JSON object and the key/value pairs in the PHP array.

For YAML Ain’t Markup Language (YAML) text data files, PHP
provides several functions. For example, yaml_parse() and yaml_emit()
are similar to json_decode() and json_encode() but for converting
between YAML strings and PHP arrays. PHP also has direct file-to-string
and string-to-file YAML functions: yaml_parse_file() and
yaml_emit_file().

For CSV files, PHP has the direct file-to-string and string-to-file
functions fgetcsv() and fputcsv(). The str_getcsv() function takes a
string in CSV format and converts it to an array. However, the function has
some flaws. It doesn’t escape newline characters, for example, so it can’t
cope with typical CSV files from spreadsheets like Google Sheets or
Microsoft Excel. Perhaps because of this nonstandard treatment of CSV
data, PHP doesn’t have a reciprocal function to create a CSV-encoded string
from an array.

Working with eXtensible Markup Language (XML) is a little more
complex. PHP represents XML data with objects, so you need to be

confident with the basics of object-oriented programming to use functions
such as simplexml_load_file() and classes such as SimpleXMLElement.
However, PHP provides several powerful ways to traverse and manipulate
XML data once you know how to use these features of the language. We’ll
discuss object-oriented PHP in Part V.

Summary
In this chapter, we worked with basic PHP functions like
file_get_contents() and file_put_contents() for reading and writing
data to and from external files. We also discussed the file() function,
which reads the lines of a file into separate array elements, and low-level
functions like fread() and fwrite() that let you traverse a file by using a
pointer. We explored how to ensure that a file or directory exists (or doesn’t
exist) before interacting with it, and how to use glob() to get a reference to
all the files that match a certain criterion. Although we mostly worked with
.txt files, we also touched on some PHP functions for interacting with
JSON, YAML, CSV, and XML data formats.

Exercises
1. Find a limerick online or write your own. Here’s one I found:

A magazine writer named Bing

Could make copy from most anything

But the copy he wrote

of a ten-dollar note

Was so good he now lives in Sing Sing

Write a script that declares an array; each element of the array is a line
from the limerick. Then write those lines to a text file named
limerick.txt.

2. Find a sample JSON file online that’s accessible through a URL (for
example, at https://jsonplaceholder.typicode.com). Write a script that
reads the JSON string from the URL, converts it to an array, and then
uses var_dump() to display the array.

https://jsonplaceholder.typicode.com/

3. Add a new data file for a game player and their high score in the data
folder to be processed by the script in Listing 9-18. Run the main script,
and you should see another line added to the output file and the new
score added to the total.

PART III
PROGRAMMING WEB APPLICATIONS

10
CLIENT/SERVER COMMUNICATION AND

WEB DEVELOPMENT BASICS

As a language of the internet, PHP is
closely connected to the

communications between web clients and web
servers. In this chapter, we’ll look at how clients and
servers work, and we’ll examine the messages that
pass between them. We’ll also see how to efficiently
embed PHP statements in static HTML code to
construct a full HTML text file that a web browser
client can understand and render onscreen as a web
page. Finally, we’ll discuss how a typical PHP web
application is structured, including a first look at the
model-view-controller (MVC) architecture.

Whether you realize it or not, you probably use clients and servers
every day. When you check your email or social media accounts, you’re
using a client application to communicate with a server to request updates.
These kinds of apps are continually making requests to servers; for

example, your email app requests from servers such as Google Gmail or
Apple iCloud in order to download any new email and update the messages
and folders on your phone to mirror any changes.

You can run a web server application in two places: locally on your
own computer or publicly on an internet-accessible computer. As a PHP
programmer, you’ll do a lot of your software development locally on your
own machine. Then, when you think a project is ready, you’ll test it on a
public server, and finally publish the website live when all testing is
complete.

The HTTP Request-Response Cycle
At the heart of web-based client/server communications is the http request-
response cycle. At a high level, a client sends a request to the server, and the
server returns a response to the client. The response itself may be an error
code, or it could be a message whose body is text, an image file, a binary
executable, or other content. Figure 10-1 illustrates a simple request-
response cycle.

Figure 10-1: A simple HTTP request-response cycle

The client, a web browser, sends a request asking for the index.xhtml
file ❶. The server receives and decodes the request, then searches for and
successfully finds the requested resource (file) ❷. The server then creates
and returns a response, whose body is the HTML text of index.xhtml ❸.
Finally, the web browser reads through the received HTML and displays the
web page contents nicely to the user in the browser window ❹.

Clients can send different types of requests. The two most common
request methods are GET and POST. The HTTP GET method is simpler and,
when using a web browser client, displays much of what’s being sent in the
web browser URL address bar. For example, if you use the Google search
engine to search for the phrase cheese cake, you’ll see those words appear
at the end of the URL when you send the query to Google:
https://www.google.com/search?q=cheese+cake. In fact, anytime you type
a URL into the web browser address bar and hit ENTER, you’re sending a
GET request.

The POST method, on the other hand, can hide much of what’s being
sent in the body of the request message. Therefore, it’s often used for more
private website operations.

In addition to GET and POST, the original HTTP 1.0 defined a third
method, HEAD. It asks for a response with no body, just the headers, which
contain general information about the response. Since the introduction of
HTTP 1.1, five other methods are permitted (OPTIONS, PUT, DELETE, TRACE,
and CONNECT). These aren’t needed for the level of web development in this
book, although they can be useful for sophisticated web applications.

Response Status Codes
At the beginning of every HTTP response returned by the server is a three-
digit HTTP status code that tells the client the status of the server’s attempt
to process and fulfill the request. All HTTP-compliant servers must use a
set of standard codes, and on top of that, custom codes are used by different
servers. The most common codes are 200 OK to indicate that a request has
been successfully fulfilled and 404 Not Found to indicate that the server
was unable to find the requested resource.

The first digit of the code indicates the general status of the server’s
interpretation and processing of the request. Here’s a summary of what the

first-digit prefixes signify:
1nn (information) The request headers were received and understood,
and further processing is needed. In other words, “So far so good, but
not finished yet.” These status codes are fairly uncommon. They’re
informational and used when the server needs to communicate some
information, but not a full response, back to the client.
2nn (success) The request was received, understood, and accepted (for
example, 200 OK).
3nn (redirection) The request was understood, but the client must
take further action, such as choosing from options (300 Multiple
Choices) or following a new URL if the resource has permanently
moved (301 Moved Permanently).
4nn (client error) Either the request is invalid (such as 400 Bad
Request), or the server can’t fulfill the request because of client error
(such as 404 Not Found or 403 Forbidden).
5nn (server error) The server has experienced an error or is unable to
complete the request for other reasons. Examples include 500 Server
Error and 502 Service Unavailable.

You can learn more about HTTP and its status codes at Todd Fredrich’s
free online REST API tutorial: https://www.restapitutorial.com.

An Example GET Request
Let’s look at a simple example of the request-response cycle by examining
what happens behind the scenes when we visit the No Starch Press website.
First, you need to display the browser request-response inspection tools. In
Google Chrome, these tools are usually accessible as a menu item named
Developer Tools. Once the developer tools are open, you’ll see a window
like that at the bottom of Figure 10-2.

https://www.restapitutorial.com/

Figure 10-2: A GET request to the No Starch Press home page

Click the Network tab, and you’re ready to record and examine the
HTTP request-response cycle. Type nostarch.com in the browser URL
address bar. When you press ENTER, you should see the home page appear.
Find the Name column on the left of the developer window, locate the first

file, which should be nostarch.com, and click it. Click Headers to see the
HTTP headers summary, shown in Figure 10-3.

This summary indicates that the HTTP request is for the URL
https://nostarch.com and that the request method is GET (since we just
entered a URL in the address bar). The most important part of the HTTP
response header is the success status code of 200.

Scroll farther down the HTTP headers contents and you’ll see full
details of both the HTTP request and HTTP response headers. Under the
Request Headers section, you can see the list of file types that the web
client is willing to accept, such as HTML, XML, images, and so on. You
can also see which human language the content is available in (for example,
EN for English). Correspondingly, the response headers indicate the actual
content type in the body of the response, such as text/html, the date the
file was last modified, and so on.

NOTE
The majority of modern websites now use HyperText Transfer Protocol
Secure (HTTPS), which enables the client and server to exchange
certificates allowing HTTP messages to be securely encrypted. This is why
the No Starch Press URL begins with https://. HTTPS is built into many
PHP web servers, so we won’t go into it at this point.

Now click the Response tab to see the content of the response’s body,
shown in Figure 10-3. This is the HTML text that the web browser receives
and then renders to make an attractive-looking graphical web page for you
to see and interact with.

Figure 10-3: HTML text content in the HTTP response body

https://nostarch.com/

At the bottom of the HTML code, you’ll see a list of CSS links. When
processing the received HTML, the web client (browser) looks for any
additional content files needed for the web page, like CSS stylesheets,
image files, and JavaScript files. The browser quickly (we rarely notice this
with modern network speeds) makes additional HTTP requests to the server
for each of these files, and as the corresponding HTTP responses arrive, the
browser renders the web page. These extra files received from the web
server can be seen in the Name column in Figure 10-2, beneath the original
request to nostarch.com. They have names like css_lQaZ and so on.

It’s important to underscore that not every HTTP request has to be
initiated by a human user entering a URL, clicking a link, or submitting a
form. The web browser can, behind the scenes (asynchronously), make
additional requests for required resources such as images, CSS files, and
JavaScript files. These additional requests may be to the same web server
that delivered the HTML the browser is processing, or to other web servers
(perhaps to download a free Google font, for example, or the Bootstrap CSS
and JavaScript).

NOTE
JavaScript code can also make additional HTTP requests, such as
retrieving data from remote websites. This is known as asynchronous
JavaScript and XML (AJAX), although many types of data files may be
retrieved, such as JSON and plaintext, so such HTTP requests aren’t limited
to retrieving only XML data. This topic is beyond the scope of this PHP
book.

How Servers Operate
We’ve discussed at a high level how clients and servers communicate
through HTTP requests and responses. Now let’s take a closer look at how
web servers function. We’ll also begin to see how PHP can play a role in the
server’s operations.

Simple Web Servers for File Retrieval
The task of a simple web server is to listen for requests for resources and,
when a request is received, to identify the resource requested and return

either a message containing the resource or an error message if it can’t be
found. A simple web server is basically a file server that’s able to
understand HTTP requests and send HTTP responses. Figure 10-4
illustrates a simple web server.

Figure 10-4: A simple web server communication with a web client

Typically, the client sends a GET request ❶, requesting a file such as
index.xhtml, style.css, or logo.png. The server receives and interprets the
request, then searches for the requested resource (file) ❷. If the file can’t be
found, the server creates and returns a 404 Not Found error. If the file is
found, the server retrieves its contents ❸. Finally, the server creates and
returns a response to the client ❹. The response body is the content of the
requested file, and its header includes the 200 OK status code.

A good analogy for this process is that a simple web server functions
like a librarian in a library: the librarian goes off to locate a requested book
and returns with either the book or a message saying the book can’t be
located.

Simple web servers are sufficient for hypertext or hypermedia
browsing of an unchanging set of HTML pages, such as a set of frequently

asked questions (FAQ) and answer paragraphs or reference materials that
rarely need to be updated, like a user manual. Simple web servers are
stateless, meaning the same request will always get the same file returned.
Different clients will also get the same file returned. This is often termed
static content to indicate that it’s unchanging. Returning to the librarian
analogy, you wouldn’t expect a librarian to change the content of a book as
they’re retrieving it.

We can summarize the behavior of simple stateless web servers as
follows:

Never changes
The same regardless of whether the user has visited before
The same for every user

Most web activity is more interactive than simply clicking links to
specific static documents. The majority of modern web projects require
dynamic interactivity, in which the system responds differently according to
user inputs. Dynamic interactivity encompasses tasks like processing web
forms, managing shopping carts, customizing content based on recent
browsing history, and more. Most PHP web applications are dynamic web
servers, which we’ll explore next.

Dynamic Web Servers for Processing Data
For a web-based system to be interactive beyond static resource retrieval,
further technologies are required beyond basic content markup and
hypertext linking. These capabilities include the following:

Support for user input methods, like inputting text, clicking buttons, and
choosing from menus
Short code scripts that can process and respond in different ways to
different user inputs
Methods for the browser to send user inputs or data to the server
programs that will process the data and generate interactive responses

Dynamic servers with capabilities such as these handle many typical
modern internet activities, like entering keywords into a search engine and
being presented with a tailor-made page of prioritized links, logging into
your personal email system and retrieving your own email in your inbox,

and browsing catalogs of products online and making a purchase using a
credit card.

In this book, we’re most interested in dynamic web servers that
understand and can run PHP scripts. Figure 10-5 illustrates client
communication with one such dynamic web server.

Figure 10-5: A dynamic web server communication with a web client

In this model, the client sends an HTTP request to the server ❶. Then
the server program interprets the request and identifies which PHP server
script should be executed ❷. The script is executed ❸ and generates
output, such as HTML text. Running a PHP script can also trigger other
actions on the web server, such as communication with a database, which is
something we’ll explore in Part VI. Next, the web server application
receives the output ❹. Finally, the output is packaged up in the body of an
HTTP response message and returned with appropriate headers to the client
that originally made the request ❺.

The Routing Process
Routing is the process the web server uses in deciding what to do to respond
appropriately to the HTTP request it has received; the server examines the
request and determines what action it believes the client is requesting, such
as asking for a file, trying to log in with username and password data
included in the request, deleting an item from a database, and so on. In the
simplest scenario, the request contains a valid path for a specific resource
file, like /images/logo.jpg or /styles/homepage.css. In this case, the web
server acts like a file server and returns an HTTP response message
containing the contents of the file with appropriate header information.

If a valid path to a publicly available.php file is requested, such as
/about.php, that PHP script will be interpreted and executed to build the
HTTP response that’s returned to the client. If no specific file is requested,
almost all web servers have default routing defined, which will often route
to a home page file, usually named index. Simple static web servers will
look for index.xhtml to return as the default home page, whereas PHP web
servers will usually look first for index.php and perhaps then look for
index.xhtml if no default PHP file is found. If no file is requested and no
index file is found, the server will return a 404 Not Found response.

Sophisticated PHP web applications will use logic encoded inside the
default index.php script to examine the contents and pattern of the URL
path requested and from there decide how to respond to the request. An
index.php file that uses logic like this to manage the complexity of a many-
featured website is known as a front controller.

Here are some examples of the types of URLs that web browsers use to
make requests to web servers, with explanations of what they mean:

tudublin.ie No path is indicated beyond the domain name, so the web
server will execute the default home page script (index.php if it’s a PHP
web server). The TU Dublin home page HTML content is returned to
the client.
bbc.com/travel/columns/discovery The path contains text separated
by forward slashes, so the home page script executes with logic to
search the site’s database for today’s content relating to the main topic
travel and the subtopic discovery.

nostarch.com/sites/all/themes/nostarch/logo.png The path includes a
static resource file, so the web server locates and returns the contents of
the logo.png image file.
google.com/search?q=cheese+cake The path contains text indicating
a search after the forward slash (search) and then the search text
(cheese cake) in a variable (q) assigned after a question mark character
(?). So the Google home page script executes with logic to search for
web pages relating to cheese cake. In Chapter 11, you’ll learn all about
passing data through variables in URLs like this one.

In Chapter 13, we’ll look at how to write PHP front-controller logic to
perform routing decisions such as the ones summarized here.

Templating
Almost all PHP applications are designed to run websites. For most HTTP
requests, the content of the response is some sort of text, like an HTML,
JavaScript, or CSS file, or perhaps data encoded as JSON or XML. PHP
consequently was designed to facilitate outputting text (with, for example,
the print and echo commands).

Further, as was hinted in Chapter 1, the language also makes it easy to
mix prewritten text such as HTML with text created on the fly by executing
PHP code. This feature is what makes PHP a templating language: it can
insert dynamically generated values into static templates of HTML or other
text. PHP-driven websites benefit from this sort of dynamic output, which
may result from database interactions or communication between various
data sources like Google Maps, weather APIs, and so on.

In the previous chapters, we’ve been writing pure PHP programs,
which are scripts that contain only PHP code. Once we start using PHP as a
templating language, mixing PHP statements with other template text (often
HTML) becomes more common. This allows us to write the unchanging
HTML for web pages as just HTML; any parts that need to change
dynamically can be output from the logic we write in PHP statements.
Conveniently, the HTML in many website pages contains much of the same
content, such as a header, a navigation bar (which might change only by
highlighting the particular page being visited), and page layout HTML code

(for example, a hierarchy of div, header, and footer elements). All this
nonchanging, static content is perfect for PHP templating.

It’s theoretically possible to make a pure PHP script output HTML by
writing lots of print statements, but this approach results in code that’s
long and hard to read. Take a look at Listing 10-1, which outputs HTML by
using pure PHP print statements.

<?php

print '<!doctype html>';

print '<head><title>home</title></head>';

print '<body>';

print '<p>Welcome to My Great Website
';

❶ print 'today is ' . date('F d, Y');

print '<p>';

print '</body></html>';

Listing 10-1: Outputting HTML through print statements

The only real PHP logic we’re using here is calling the date() function
to get the current date as a string in the form Month day, year (for example,
January 1, 2025) ❶. All other lines are print statements that output
unchanging HTML, and these print statements aren’t necessary. We can
make the code more compact and readable by using PHP only where it’s
needed, inserting it into an HTML template. That’s what we do in Listing
10-2, where the unchanging HTML is written just as it will appear in the
final HTML text file to be sent to the client.

<!doctype html>

<head><title>home</title></head><body>

<p>Welcome to My Great Website

today is

❶ <?php

 print date('F d, Y');

❷ ?>

</p>

</body></html>

Listing 10-2: Mixing HTML template text with a PHP code block

We use opening ❶ and closing ❷ PHP tags to surround just the print
statement where we call the date() function, since this is the only place
where PHP code is needed to dynamically generate content. Meanwhile,
we’ve written everything else as regular HTML; no prints, quotes, or
semicolons are needed. Figure 10-6 shows how PHP sees and processes the
script content.

Figure 10-6: How PHP processes mixed template text and dynamic code

First, a block of template text needs to be copied verbatim into the text
output. Next, a block of PHP code (between <?php and ?>) needs to be
interpreted and executed before the result is added to the script’s text
output. Finally, another block of template text needs to be copied verbatim
to the output text. The temporary store for the text being output by the
multiple parts of a PHP script is referred to as the output buffer.

Imagine for a moment that the script in Listing 10-2 is part of an HTTP
request from a web browser. When all PHP execution in the script is
completed, the text in the output buffer will be wrapped up into an HTTP
response by adding headers and then sent back to the browser web client.
The browser will then render (draw) the web page for the user to see,
interpreting the HTML it received in the body text of the HTTP response,
resulting in the simple page shown at the bottom of Figure 10-6.

PHP Tags
As you’ve just seen, when you embed PHP code in template text, it’s
important to use both the opening <?php tag and the closing ?> tag to
delimit the code. By contrast, when writing PHP scripts that contain just
code without any template text, the script should start with an opening <?
php tag, but you shouldn’t include the closing ?> tag at the end of the file.

You leave off the closing tag for two reasons. First, you don’t need it,
since the code has no template text to be separated from the PHP
statements. Second, if you did include the closing PHP tag, any
(unintentional and invisible) whitespace that occurs after the closing tag,
including spaces, tabs, or newline characters, will be interpreted as template
text and could prematurely begin creating the output buffer.

Short Echo Tags
We’ve so far focused on PHP’s main <?php tag, but the language also
provides a short echo tag, denoted with the <?= symbol, that further
simplifies templating. This tag allows you to avoid writing lengthy
commands when all you want to do is output the result of an expression as
text. This might be to display the contents of a variable, or the result of a
complex calculation or series of string concatenations. For example, instead
of writing something like <?php print $someVariable; ?> to output the
value of $someVariable, you can simply write <?= $someVariable ?>
with the short echo tag.

The short echo tag calls for less typing since it omits print (or echo)
and doesn’t require an ending semicolon. Also, any experienced PHP
programmer who encounters the short echo tag can immediately recognize
that the only logic is to output a string. Overall, the key advantage of the
short echo tag is that it doesn’t distract the reader (or writer) with

extraneous PHP code-block syntax when a script mostly contains HTML
template text. The dynamically generated PHP code values blend in better
with the surrounding HTML, as Listing 10-3 illustrates.

<?php

❶ $dateString = date('F d, Y', time());

?>

<!doctype html><head><title>home</title></head><body>

<p>Welcome to My Great Website

❷ Today is <?= $dateString ?>

</p>

</body></html>

Listing 10-3: Simplifying code with the PHP short echo tag

In a full PHP code block surrounded by ordinary PHP tags, we create a
$dateString variable containing our formatted date string ❶. This frees us
up to simply write <?= $dateString ?>, using the short echo tag at the
spot in the template where we want the string to be output ❷. There’s no
need for a print statement or semicolon.

The Model-View-Controller Architecture
Almost all large-scale web applications delegate different responsibilities to
different system components. Most do this by implementing some form of
the model-view-controller (MVC) architecture. This is a software design
pattern that distinguishes between the data underlying the software (the
model), the way that data is displayed to the user (the view), and the
decisions about what data to display when (the controller).

We’ve already touched on aspects of the MVC architecture in this
chapter. We’ve noted how PHP applications can make routing decisions
based on incoming HTTP requests (a controller task) and how we can use
PHP for templating by injecting dynamically generated values into static
HTML text (a view task). Now let’s fill in a few more gaps to see how the
MVC pattern fits into the request-response cycle. Figure 10-7 illustrates a
typical interpretation of the MVC architecture for a web application.

Figure 10-7: The MVC architecture common for web applications

First, the web client sends an HTTP request ❶. Then the controller (the
main application logic) interprets the request and decides what to do ❷.
This may involve checking any stored security credentials and other data
(such as shopping-cart contents) and deciding the appropriate actions to
take in response to the received request. Often the controller needs to read
the contents of a data store, such as a database system, file store, or even an
API running on another server. This data is the model component of the
MVC pattern. If the received request contains data submitted from a form,
the controller may need to update or delete some of the model data.

Then the controller invokes the view component ❸, such as a template
file, to create the contents of the response to be returned to the user. If
appropriate, the controller passes along data collected from the model when
it invokes the view component. Finally, the controller sends the response
that it has created back to the web client (adding any appropriate headers,
response codes, and the like) ❹.

We’ll revisit the MVC pattern throughout this book as we delve further
into structuring PHP web applications. As mentioned, in Chapter 13, we’ll
look at how to create a front-controller script to manage the controller
portion of the architecture. In Chapter 21, we’ll introduce the Twig library,
which simplifies templating for the view portion of the architecture. Finally,
in Part VI, starting with Chapter 27, we’ll investigate how to integrate a
PHP application with a database to handle the model portion of the
architecture.

Structuring a PHP Web Development Project
As we discussed in Chapter 1, the PHP engine comes with a built-in web
server for testing purposes that you can run at the command line by using
the php -S localhost:8000 command. By default, this command makes
every file and folder that lives in the directory that the command line is
currently pointing to publicly available through the web server. For
example, if your command line was navigated to the root of your main hard
disk (such as C:\ on a Windows computer) and you executed the PHP web
server command, you’d be making everything on the hard disk available to
be requested! This probably isn’t a good idea from a security point of view.

Even within a specific PHP project folder, you may have files or other
content that you wouldn’t want to publish publicly, such as code containing
username and password credentials for data access or scripts that should be
accessed only by authorized users. Therefore, it’s customary (and highly
recommended) to create a public folder within the overall folder for any
PHP web development project. This public folder (and its subfolders, if
any) should contain only those files that are to be made publicly accessible
via the web server, including any images, sound files, video files, CSS
stylesheets, JavaScript text files, and the like that are needed for the
website. Any PHP scripts that are to be executed in direct response to
incoming HTTP requests from web clients should also be located in the
public folder, while other content that shouldn’t be publicly accessible
should be located elsewhere in the project’s directory structure.

The usual way to organize a secure web application is to have just one
PHP script named index.php in the project’s public folder. This script (the
front controller we’ll discuss further in Chapter 13) then decides which

other nonpublic scripts should be executed based on the properties of the
incoming HTTP requests and other stored data. A typical PHP project folder
therefore looks as follows:

Generally, it’s best to do any command line work from the root folder
of a project rather than from the public folder. Since this practice is so
common, the built-in PHP web server offers the -t command line option for
specifying a subfolder from which to serve web pages. With your command
line interface navigated to the root project directory, you can therefore enter
the following command to serve only files in the public folder via port
8000:

php -S localhost:8000 -t public

Let’s test these two ways to run the built-in PHP web server: with and
without the -t option. First, create a new empty folder named chapter 10,
and in this folder create an index.php file containing the code shown in
Listing 10-4.

<?php

❶ $total = 2 + 2;

?>

<!doctype html><html><head><title>Home page</title></head>

<body>

❷ <?= "total = $total" ?>

</body></html>

Listing 10-4: A simple index.php file

This script contains only two PHP statements: within full PHP tags, we
set the $total variable to the result of evaluating the mathematical
expression 2 + 2 ❶, and with the short echo tag we output the contents of
this variable ❷. To make sure this script works, navigate your command
line interface to the chapter10 folder (use the cd command to change
directories if you aren’t there already), and then run the built-in PHP web
server at port 8000 without specifying a folder to serve:

% php -S localhost:8000

Open a web browser to localhost:8000 and you should see a web page
showing the result of the PHP output statement: total = 4.

Now let’s see why publishing the entire contents of a project folder is a
bad idea. In your chapter10 folder, also create a text file called password.txt
containing the text password=mysecret. Then visit
localhost:8000/password.txt in your web browser to see that this text file is
also publicly accessible from the web server, just like the index.php script
(see Figure 10-8).

Figure 10-8: The web server publishing a secret password

Let’s make this file more secure by creating a subfolder named public
and moving the index.php script into this subfolder, while keeping
password.txt in the main chapter10 folder. Once you’ve made this change,
press CTRL-C to kill the old web server process and then run the web server
again, this time restricting it to only the content of the public subfolder:

% php -S localhost:8000 -t public

Try visiting both localhost:8000 and localhost:8000/password.txt in
your browser again. You should still be able to see the index page since it’s
located in the public folder, but you should get a 404 error when you try to
access the password.txt file since it isn’t in the public folder. We’ll follow
this structure of using a public folder to isolate just the resources that should
be publicly accessible throughout the book.

INSTALLING A DIFFERENT WEB SERVER

In most cases, the built-in PHP web server is fine for development purposes.
(Personally, I don’t have any other server on my PHP development laptop.) That
said, for a given project or client, you might know that the final published website will
run on a specific web server such as Apache HTTP Server or nginx. If this is the
case, installing the same server application on your local development computer
makes sense so you can identify server-specific issues as early as possible.

Perhaps the most common way to install a web server on a local computer is to
install an “all-in-one” AMP stack. This acronym refers to Apache-MySQL-PHP,
although usually other applications and languages are also available, such as
Python and the nginx web server. A good option, available in both free and paid
versions, is MAMP, which was originally for macOS but is now also available for
Windows. Once installed, MAMP offers a choice of either Apache or nginx.

See Appendix A for other suggestions on AMP stack installations.

Summary
In this chapter, we explored concepts fundamental to PHP web
development. We considered the HTTP messages that form the basis for
web client/server communications and began to discuss the concept of
routing, which is how web servers evaluate the content of the HTTP
request’s path and decide what files to return or which server scripts to

execute. We also looked at PHP as a templating language that enables us to
mix dynamic PHP statements with unchanging template text. We saw a tidy
way to mix PHP output with HTML template text using the short echo tag.

We had our first look at the MVC architecture, a powerful way of
dividing and organizing the tasks and data that drive a web application.
Finally, we looked at the typical structure of a PHP web development
project. In particular, we discussed the need for a public subfolder
containing any resources that should be publicly accessible; any files or
scripts that shouldn’t be publicly accessible must be located outside this
subfolder.

Exercises
1. Open the developer tools for your web browser and visit a favorite

website. Examine the headers of your HTTP GET request and the body
of the HTTP response message that’s returned to the browser.

2. With the developer tools for your web browser open, visit a web page
that offers a form. Complete the form and, when you submit it, view the
HTTP request body. You should see the name or value variables that
were sent to the web server via the POST HTTP method.

3. Write a “pure” PHP script, all in a single PHP block of code, to do the
following:

a. Define a PHP $pageTitle variable containing the string 'Home
Page'.

b. Output <!doctype html><html><head><title>.
c. Output the value inside the $pageTitle variable.
d. Output </title></head>.

4. Rewrite your answer for Exercise 3, using template text instead of PHP
code where possible. Use complete code blocks with <?php and ?> tags
for the PHP code.

5. Rewrite your answer for Exercise 4 to use the short echo tag to output
the value inside the $pageTitle variable.

11
CREATING AND PROCESSING WEB FORMS

After simple, clickable links, web
forms are perhaps the most common

way people interact with websites. In this chapter,
we’ll look at how web clients can submit form data to
server scripts, and we’ll create a range of web forms
that send data. We’ll also practice writing server-side
PHP scripts to extract and process the incoming form
data. You’ll learn to handle data from a range of web-
form elements, sent with both GET and POST HTTP
requests.

A web form is simply a portion of a web page that allows the user to
enter data and then communicates that user input to server applications.
Examples of web form interactions include creating a Facebook post,
booking flights or entertainment tickets, and entering login information. As
you’ll see, each form on a web page is defined between starting and ending
HTML <form> tags. The form data might be text input by the user, or it
might come from mechanisms like radio buttons, selections lists, or

checkboxes. We’ll discuss how to work with all these types of input in this
chapter.

Basic Client/Server Communication for Web Forms
Behind the typical web form lies a sequence of four messages between a
web client (such as the user’s browser) and a web server, whereby the form
is requested, received, submitted, and processed. Figure 11-1 summarizes
these messages.

Figure 11-1: The typical exchange of messages for displaying and processing a web form

First, the web browser client requests the HTML of the form from the
server ❶. The user triggers this request through an action such as clicking a
link or a button. Next, the server retrieves and, in some cases, customizes
the HTML for the form and sends it back to the client ❷. Once the user has
entered data and submitted the form, the form data is sent back to the server
❸. Finally, the server processes the received data, constructs an appropriate
message for the user, and sends that message back ❹. This final message
may be a simple confirmation of received data or an error message if an
issue occurs, or it could be the original form with messages highlighting
missing required data.

GET vs. POST Requests
As mentioned in Chapter 10, the two most common types of HTTP request
sent from a client to a server are GET and POST. When you create an HTML
form, you can send the data to the server with either type of request, since
both GET and POST can send variables from the browser client to the web
server as part of the request. In almost all cases, the data variables sent from
web forms to the server are simple name/value pairs, such as
username=matt or q=chocolate.

The request type you use comes down to the purposes of the form and
how you want the form data to be sent. As you’ll see, the GET method makes
the submission variables visible in the URL, while the POST method can
hide the variables in the body of the HTTP request.

Sending Data Visibly with GET
An HTTP GET request is primarily for retrieving data or a web page from a
server. While you can send data along with the request to help with this
retrieval, a GET request should never result in changes to content stored on
the server (such as modifications to values in a database).

With a GET request, any variables the server needs to complete the
request, including values submitted through web forms, are added to the
end of the URL of the request, after a question mark character (?). This part
of the URL after the question mark is known as a query string, and it will
be visible in your browser’s address bar. The variables are encoded as
name/value pairs in the form name=value, such as username=matt. For

example, when you perform a search using Google or Bing, the terms you
enter into the search engine’s web form are assigned to the variable q, added
to a URL query string, and sent using a GET request.

Say you use Google to search the phrase cheese cake. When you view
the search results, you should see something like
https://www.google.com/search?q=cheese+cake in the address bar. The
single letter q represents your search query and is paired with the value you
entered into Google’s web form. This indicates your query was passed to
Google’s servers through a GET request.

Special rules define the characters allowed in a URL, and the variables
sent via the HTTP GET method must follow these rules too. As a result,
special characters and spaces can’t be represented verbatim in a query string
but must instead be encoded as other symbols. For example, each space is
replaced with either %20 or a plus sign (+), which is why the Google search
query string reads q=cheese+cake rather than q=cheese cake. When two or
more variables are being encoded (for example, from separate fields in a
form), the name/value pairs are separated by ampersand (&) characters, as in
?firstname=matt&lastname=smith. The web browser will look after this
sort of encoding automatically, but knowing about it is handy since it
explains why you’ll often see cryptic, percent-encoded characters when
sending form data with the GET method.

One common use of the GET method is to create a URL that’s easily
bookmarked, perhaps to share with someone else via email or text message.
The Google cheese cake query is one example:
https://www.google.com/search?q=cheese+cake. Another example could be
a Google Maps search, such as this one for Dublin, Ireland:
https://www.google.com/maps?q=dublin+ireland. The variables in the URL
can come from values entered into a web form, as is the case with a Google
search, or they can be hardcoded by explicitly adding the question mark and
the desired name/value pairs to the end of a URL.

Figure 11-2 shows an example of the latter, where clicking the COMP
H2029 -FT link initiates a GET request that includes the name/value pair
id=1499 in the query string. This id value doesn’t come from user input but
rather was hardcoded into the logic of the website.

Figure 11-2: A link with a hardcoded value to be sent via the GET request method

A web server doesn’t care how a GET request is created. Whether the
query-string variables come from form submissions or were hardcoded, the
name/value pairs can be extracted by a server-side script for processing.

Sending Data Invisibly with POST
HTTP POST requests send data primarily for the purposes of creating or
modifying a resource on a server. With the POST method, you can send
variables in the body of the HTTP message, meaning they won’t be seen in
the resulting URL. For any confidential data like usernames and passwords,
you should use POST requests so that people looking at the screen can’t see
the data values being sent to the server. In fact, most web forms send their
data by using the POST method. Figure 11-3 illustrates a POST method login
form.

Figure 11-3: POST method variables in the request body

In this example, I’ve tried to log in to a site with a username of matt
and a password of smith. The browser’s HTTP message inspection tool
reveals that the username and password values were sent in the body of the
HTTP POST request. These values therefore don’t appear as part of the URL
in the address bar.

NOTE
A POST request can send data directly in the query string, like a GET request,
as well as in the request body. We’ll explore POST requests that do both in
“Sending Noneditable Data Along with Form Variables” on page 206.

A Simple Example
To more clearly understand how the GET and POST methods send data
differently, let’s build a simple site with a web form consisting of a single
text box where the user can enter their name (see Figure 11-4). We’ll try
passing data from the form by using both HTTP methods. As you’ll see, we
can choose which method to use whenever we create an HTML <form>
element.

Figure 11-4: A simple web form displayed in the browser

Our project will consist of a public folder containing two PHP script
files, index.php and process.php. Here, index.php is the default home-page
script that will display the form, and process.php will receive the name
submitted by the user from the index page and generate a Hello <name>
message in response.

Creating a Form with the GET Method
We’ll start with the GET version of our simple web form. Create a new
project with a public folder, and inside that folder create a new PHP script
file named index.php. Enter the code shown in Listing 11-1.

<!doctype html><html><head><title>simple form</title></head>

<body>

<form method="GET" action="process.php">

 <input name="firstName">

 <input type="submit">

</form>

</body>

</html>

Listing 11-1: The HTML code for a simple web form using the GET method

The file consists entirely of HTML template text, including a <form>
element that defines the web form. We use the element’s method attribute to
declare that the form data should be submitted with the GET HTTP method,
and the action attribute to specify that the HTTP request and its data
should be sent to the process.php server script. Note that the GET or POST

values of the method HTML form attribute are case insensitive, so we could
also write method="get".

Within the form, we create an <input> element and give it a name of
firstName. We also create a second <input> element with a type of submit
to add a Submit button to the form. Since we don’t specify the type of the
firstName input, HTML 5 automatically defines the default form input type
to be a text box. Text boxes are displayed to the user as rectangular input
boxes. If you wanted to explicitly declare the type of input, you could do so
via <input type="text" name="firstName">. You could go further and
set the character width of the text box and other specs by using the various
optional attributes for each type of HTML form input.

Since our form inputs only a single value, we don’t need to bother
displaying a text label to the user. However, when several input controls are
present, you should precede each with a prompt so that the user knows
which text box (or radio button or other input type) relates to which value.
For example, if we wanted the user to input an age, we might write the
template text Age: and then the form input, like so:

Age: <input name="age">

Modern HTML good practice would also require us to add an id attribute to
the age input with <input name="age" id="age"> and a <label> element
around the template text with <label for="age">Age:</label>. This
allows the user to click either the label or the text box to make age the
active form input.

Processing the GET Request
We’ve created an HTML web form, but our work is only half done; we also
need to write the process.php script to handle the data submitted through
the form. All we need to know when writing processing scripts for simple
forms is the name of the variable the script is to receive and whether that
variable was submitted through the query string (as with the GET method) or
in the request body (as with the POST method).

In this case, the script should attempt to find a value for the firstName
variable in the query string received from the GET request and then output

HTML to present to the user a greeting featuring that name. Add
process.php to the public folder of your project and enter the code in Listing
11-2.

<?php

//----- (1) LOGIC -----

❶ $firstName = filter_input(INPUT_GET, 'firstName');

?>

<!-- (2) HTML template output -->

<!doctype html> <html><head><title>process</title></head><bo

dy>

❷ Hello <?= $firstName ?>

</body></html>

Listing 11-2: A process.php server script to respond to the web form

Notice that we use two kinds of comments in this script, since it mixes
two languages: a PHP comment starting with // and an HTML <!--
comment. Inside the initial PHP code block, we call the filter_input()
function to read data from the incoming HTTP request, storing the result in
the $firstName variable ❶. The INPUT_GET argument specifies that we
want to read data embedded directly in the URL query string, and the
'firstName' argument identifies the specific HTML form variable we’re
looking for. Form input variable names are case sensitive, so it’s important
to carefully match the variable names defined in HTML forms when calling
the filter_input() function. If we passed 'firstname' rather than
'firstName' as a function argument, for example, the script wouldn’t
work. When passing the value of a form variable along to a PHP variable,
as we’re doing here, it’s generally good practice to give the PHP variable
the same name as the corresponding form variable.

Next, we declare the HTML that should be sent in response to the form
submission. This includes the template text Hello followed by the value of
the $firstName variable inside PHP short echo tags ❷.

NOTE

The INPUT_GET argument to filter_input() is somewhat misleadingly
named. Its purpose is to retrieve data from the URL query string, regardless
of whether that data was sent via the GET method (where all variables are
part of the query string) or via the POST method (where data can be either
in the query string or in the request body). Therefore, when you see GET
while working on form-processing code in PHP, interpret this as query-
string variables and don’t necessarily assume they came from a GET request.

Testing the Form
Now that we’ve created the web form in index.php and written the
process.php script to respond to it, let’s test our work. Launch the PHP web
server at the command line by using the php -S localhost:8000 -t
public command, as discussed in Chapter 10; then open a browser tab to
localhost:8000. The form we’ve created should be displayed by default
since the file is named index.php. You’ll see something like the form in
Figure 11-4: a text box with a Submit button.

Enter your name into the form, then click Submit. When you do, the
text entered should be sent as part of an HTTP GET request from the browser
to the PHP server. The GET request triggers the server to execute the
process.php script, as declared in the action attribute of the HTML <form>
element in index.php. This script extracts the submitted value and injects it
into its HTML template text, which is then added to the text buffer that
becomes the body of the HTTP response message the server sends back to
the requesting client (the web browser). You should see something like
Figure 11-5 as a result.

Figure 11-5: The result of the process.php script, confirming the data received through the
form

You see your name not only in the greeting displayed on the page (such
as Hello matt in the figure) but also at the end of the URL in the browser’s
address bar, because the form is submitted via a GET request. For example,
the URL I get when I submit matt through the form is
localhost:8000/process.php?firstName=matt. This indicates the GET request
is trying to access the process.php script and pass it a firstName variable
with a value of matt. Notice the question mark separating the query string
from the rest of the URL.

Switching to the POST Method
Let’s modify our project to send the form data with the POST method rather
than GET and see what difference it makes. Only a few minor changes are
needed. First, update the index.php script as shown in Listing 11-3.

<!doctype html><html><head><title>simple form</title></head>

<body>

<form method="POST" action="process.php">

 <input name="firstName">

 <input type="submit">

</form>

</body>

</html>

Listing 11-3: Switching from GET to POST in index.php

We now declare the method of the <form> element to be POST. That’s it:
no further changes are required to the index script to ensure that the web
browser uses the POST method instead of GET to submit the form data. Next,
update process.php as shown in Listing 11-4.

<?php

//----- (1) LOGIC -----

$firstName = filter_input(INPUT_POST, 'firstName');

?>

<!-- (2) HTML template output -->

<!doctype html> <html><head><title>process</title></head><bo

dy>

Hello <?= $firstName ?>

</body></html>

Listing 11-4: Switching from GET to POST in process.php

This is another simple change: all we have to do is pass INPUT_POST
rather than INPUT_GET as an argument to filter_input() to tell the
function to look for a variable submitted in the body of the request with
POST.

Try running the web server and submitting your name through the form
again. You should still see the same Hello <name> greeting as before. If
you look a little closer, however, you’ll see some key differences, as shown
in Figure 11-6.

Figure 11-6: Viewing the HTTP POST request and the firstName variable with the browser
developer tools

First, the URL in the browser’s address bar should read just
localhost:8000/ process.php. Because the firstName form variable is now
being sent in the request body with POST, it no longer appears in the URL
query string for all to see. You can verify that the variable is still being
transmitted by viewing the request with the browser’s developer tools. In
this example, I submitted the name Fred through the form, and you can see
in Figure 11-6 that, indeed, the form data variable firstName=Fred is
shown in the body of the POST request.

The filter_input() Function
Our simple web form project illustrated how to receive incoming form data
by using PHP’s filter_input() function. This function makes it easy to
extract values submitted with the GET and POST methods. Writing form-
processing scripts wasn’t always so simple, however; in older versions of
PHP, the usual way to extract data received from the user was to access one
or both of the built-in $_GET and $_POST superglobal arrays.

The $_GET array contains key/value pairs representing all the variables
received as part of the URL query string, while the $_POST array contains
key/value pairs representing all the variables received via the POST HTTP
method. For instance, submitting the first name Matt through the GET
request version of our simple web form would produce a $_GET array
containing ['firstName' => 'Matt'] and an empty $_POST array.

NOTE
The $_GET and $_POST arrays are examples of PHP’s superglobals. These
are arrays that always exist and that can be accessed from anywhere in
your PHP code (that is, from any scope), including inside functions and
class methods.

Even in modern PHP programming, extracting form data from these
two superglobal arrays is still theoretically possible. But PHP version 5.2
introduced the filter_input() function as a much better way of accessing
submitted data. To illustrate the improvement, let’s look at what it takes to
work with these superglobal arrays.

In Chapter 7, you learned that trying to access a nonexistent key in an
array will trigger a warning, which you can avoid by using the isset()
function to verify that an array key exists before accessing its value. This
kind of test makes scripts more robust and error-proof, and it’s especially
important when working directly with the $_GET and $_POST arrays.
Unfortunately, such a test also adds extra code to a script. For example,
Listing 11-5 illustrates how to safely retrieve a $firstName variable from
the $_GET array.

<?php

if (isset($_GET['firstName'])) {

 $firstName = $_GET['firstName'];

 // Now use filters / apply sanitization/validation to ex

tracted value

} else {

 $firstName = NULL;

}

Listing 11-5: Testing an array key with isset() before attempting to extract a value from
$_GET

We use isset() in an if...else statement to check whether the
'firstName' key exists in the $_GET array (indicating that a firstName
form variable was submitted through the incoming query string). If the key
exists, we pass on its value to the $firstName variable. Otherwise, we set
$firstName to NULL. This if...else statement saves us from getting a
warning if we naively access a nonexistent value in the array.

Listing 11-5 will work fine, but it represents such a common series of
actions in PHP form-processing code that filter_input() was introduced
to encapsulate it. Our entire if...else statement can therefore be replaced
with a single statement:

$firstName = filter_input(INPUT_GET, 'firstName')

The filter_input() function automatically checks whether the desired
variable exists before trying to access it and typically returns NULL if it

doesn’t. This spares us from writing clunky conditional tests like the one in
Listing 11-5.

An additional advantage of the filter_input() function is that it can
use filters to ignore and remove unwanted and potentially dangerous
content from the received form data. This helps prevent security
vulnerabilities such as cross-site scripting attacks. For example, to filter out
(discard) any nonalphabetic characters from the user input, we could add a
third argument of FILTER_SANITIZE_SPECIAL_CHARS to the
filter_input() call:

$firstName = filter_input(INPUT_GET, 'firstName',

FILTER_SANITIZE_SPECIAL_CHARS);

DATA FILTERING IN PHP

PHP has two main types of filtering: sanitization and validation. Sanitization removes
characters that aren’t permitted and that may potentially be a security threat, such as
the less-than (<) and greater-than (>) symbols for tags around JavaScript code. You
can also sanitize characters when you display them back to the user; for example,
you might display the Unicode symbol for a less-than sign when it’s something the
user might reasonably have entered in a blog about programming, in order to
prevent user-entered special characters from becoming executable code in the
output HTML document. By contrast, validation tests that a received value is
acceptable.

To illustrate the difference between the two processes, say someone submits the
character sequence 3.14.15 through a form. This sequence is sanitized for floats,
since it contains only digits and decimal-point characters. It isn’t a valid floating-point
number, however, since it contains two decimal points, whereas valid numbers can
contain only one.

Sanitization filters take in a value and a filter type and return a value with any
illegal characters removed (and in some cases, replaced). If all characters are illegal,
or NULL is given, then an empty string or 0 is returned (a value is always returned
when using the filter_input() function). Validation filters generally take a value and
a filter type and return true or false, or sometimes NULL, depending on whether the
value is valid for the given filter.

The sanitization filter FILTER_SANITIZE_SPECIAL_CHARS replaces HTML special
characters (such as < and &) with HTML entities (such as < and &), so a
received string and later output to a web page won’t mess up the HTML grammar
with extra special characters.

Learn more about the data filters from the PHP documentation at
https://www.php.net/manual/en/intro.filter.php.

Other Ways to Send Data
Taking user input through a web form isn’t the only way to send data via an
HTTP request. In this section, we’ll consider other techniques for
transmitting data to a server. We’ll look at how to embed noneditable data
into a query string for submission along with user-entered form data, how to
send data about the form’s Submit button itself, and how to add query-string
variables to a regular hyperlink, separate from any web form. Along the
way, you’ll also see how to process a mixture of query string and POST
variables, and how to harness PHP arrays and loops to generate query-string
variables programmatically.

Sending Noneditable Data Along with Form Variables
Often you’ll want a web form to send extra data that the user can’t edit.
Perhaps the most common example occurs when the user, maybe an
employee, is editing details for an item in a database. The item, which
might be a record about a product or a customer, already has an assigned ID
that should be included with the form data, but the ID itself should never be
changed via the form. For these cases, you can send the noneditable values
as query-string variables at the end of the URL in the form’s action
attribute (for example, action="/process.php?id=1022").

To illustrate, let’s create a new web form for submitting information
about movies. Start a new project containing a public folder and create an
index.php script within it. Then enter the HTML code in Listing 11-6 to
create the web form.

<!doctype html><html><head><title>Movie Form 1</title></head

><body>

<h1>Edit movie</h1>

❶ <form method="POST" action="/process.php?id=1022">

 ❷ <label for="title">Title: </label><input name="title" id

="title">

https://www.php.net/manual/en/intro.filter.php

 ❸ <label for="price">Price: </label><input name="price" id

="price">

 <input type="submit">

</form>

</body>

</html>

Listing 11-6: The HTML code for a movie form in index.php

We declare a form using the POST method ❶. (In a more realistic
scenario, this form would likely result in changes to a record in a database,
so POST rather than GET is the appropriate method here.) For the form’s
action attribute, we specify that the script to process the form is
process.php, and we also send a URL query-string variable named id with a
hardcoded value of 1022. When the form is submitted, this extra name/value
pair will be visible in the resulting URL itself (much like data sent with the
GET method). Meanwhile, the form will also send two variables with user-
entered values in the body of the POST request: title ❷ and price ❸.

Processing Mixed Query-String and POST Variables
Now let’s write the process.php script to receive and extract data from this
movie form. Unlike our earlier form-processing script, this one needs to
extract multiple variables from the incoming POST request, including the id
variable sent through the query string and the title and price variables
embedded in the request body. Add process.php to your project’s public
folder and enter the code in Listing 11-7.

<?php

//----- (1) LOGIC -----

$id = filter_input(INPUT_GET, 'id');

$title = filter_input(INPUT_POST, 'title');

$price = filter_input(INPUT_POST, 'price');

?>

<!-- (2) HTML template output -->

<!doctype html> <html><head><title>process</title></head><bo

dy>

id = <?= $id ?>

title = <?= $title ?>

price = <?= $price ?>

</body></html>

Listing 11-7: The PHP server script to process the movie form

We use the filter_input() function with the INPUT_GET argument to
read the id query-string variable into the corresponding PHP variable, $id.
(Remember, INPUT_GET simply means we’re reading data from the query
string, even if that data was sent with the POST method rather than GET. The
actual method of the HTTP request makes little difference from the server-
side script’s perspective.) Then we use filter_input() twice more with
INPUT_POST to read the two values from the request body into the $title
and $price variables. After some basic HTML page tags, we output each
variable’s name and value by using PHP short echo tags, separating them
with HTML
 line breaks.

Figure 11-7 shows how the process.php script handles the incoming
form data.

Figure 11-7: An HTTP request sending query-string and POST variables

In this example, I filled in The Lost World in the title field of the form
and 9.99 in the price field. The output in the browser shows these values
echoed back, along with the id value of 1022 that we hardcoded into the
query string. You should also see the id variable in the URL in the
browser’s address bar, and if you view the request with the browser
developer tools, you should see id listed as a query-string parameter, while
title and price are listed as form data variables in the request body.

Offering Multiple Submit Buttons
Another way to send data through a form is to give a name attribute to the
form’s Submit button. This is especially useful when you want a form to
feature multiple Submit buttons so the user can choose how to process the
data in a form.

For example, a customer renting an online movie might want to pay for
it and immediately start watching it, or they might want to pay for it but
start watching later. Each option could be triggered by a different Submit
button, as illustrated in Figure 11-8. The server-side script can then detect
the name of the button the user clicked and respond accordingly.

Figure 11-8: Two Submit buttons for the same form

Let’s design such a form with multiple Submit buttons. Create a new
project containing a public folder with a PHP script file named index.php,
and enter the code in Listing 11-8.

<!doctype html><html><head><title>Movie Rent Form 1</title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/

css/bootstrap.min.css"

> ❶
</head>

<body class="container">

<h1>Rent movie</h1>

<form method="POST" action="process.php?movieId=80441"> ❷
 <p><label for="number">Credit card number:</label>

 <input name="number" id="number"></p>

 <p><label for="date">

 Expiry date:</label>

 <input name="date" id="date"></p>

 <p><label for="ccv">

 CCV code:</label>

 <input name="ccv" id="ccv"></p>

 <p>

 <input type="submit" name="watchNow" ❸
 value="Pay and start watching now" class="btn btn-su

ccess">

 <input type="submit" name="watchLater" ❹
 value="Pay and watch later" class="btn btn-success">

 </p>

</form>

</body>

</html>

Listing 11-8: The HTML code for a form with two Submit buttons

First, we read in the Bootstrap CSS stylesheet ❶. This allows us to
style the submit-type inputs to look like nice green buttons by using
class="btn btn-success" without having to write any CSS code
ourselves. Then we set up a form using the POST method since this form
submits data that would likely lead to changes on the server (processing the
payment and recording the movie as being rented by the user) ❷. Notice
that we’ve hardcoded a movieID variable into the query string through the
form’s action attribute, much as in the previous movie form example.

We give the form input fields for the user’s credit card information, and
then we define two Submit buttons, one with a name attribute of watchNow
❸ and the other with a name attribute of watchLater ❹. These buttons also
have value attributes to define the text that will appear in each button.
Thanks to these buttons’ name attributes, when one of them is clicked, its
name and value will be sent as a key/value pair in the body of the POST
request along with the other form data. For example, if the user clicks the
watchNow button, a watchNow=Pay and start watching now will be sent
with the request. The value portion is of little significance, but the server-
side script can check for a key of watchNow among the form data to
determine which Submit button was clicked. Listing 11-9 shows a
process.php file that does just that.

<?php

if (filter_has_var(INPUT_POST, 'watchNow')) {

 print 'you clicked the button to Watch Now';

} else {

 print 'you clicked the button to Watch Later';

}

Listing 11-9: Detecting which Submit button was clicked in process.php

Since the form has only two Submit buttons, we use an if...else
statement to test whether one of them (watchNow) was clicked; if not, we
can safely assume that the other was clicked instead. (If we had three or
more buttons, we could use elseif statements or a switch statement to
detect the correct button.) In theory, we could call the filter_input()
function as usual, extracting the value of the watchNow variable and
checking that its value isn’t NULL to determine whether that’s the button that
was used. Since we aren’t interested in the value of watchNow, but rather in
whether such a variable even exists in the incoming request, we instead use
PHP’s filter_has_var() function to set the if...else statement’s
condition. This function takes two input parameters, the source of the
variable (usually INPUT_GET or INPUT_POST) and the name of the variable,
and returns true or false based on whether that named value is found.

Figure 11-9 shows a sample submission through our movie rental web
form.

Figure 11-9: Finding a Submit button name among the POST variables in the request body

In this example, I’ve used the watchNow button to submit the form data.
The message on the resulting page confirms that the process.php script
detected this button. Further, a look at the request with the browser
developer tools shows watchNow listed with the other POST variables.

Encoding Data in Hyperlinks
In addition to sending data through a web form, we can send data to a
server by adding name/value pairs to the query string at the end of the URL
in an HTML hyperlink. This data will be sent with the GET method, since
whenever you click a link in a web page, your browser is making an HTTP

GET request using the URL of the clicked link. An HTML hyperlink is
represented with the anchor (<a>) element; the link’s URL is set via the
element’s href attribute.

We’ll explore this additional way to send data via the GET method
through a typical example of a link that shows details about an item in an
online shopping cart. Figure 11-10 shows the button-styled links we want to
create.

Figure 11-10: The Details hyperlinks styled as buttons in a shopping cart

Each item in the cart has a hyperlink (styled as a button) alongside it to
show details about that item. The links might be to URLs such as
/show.php?id=102. This URL would request the PHP script show.php via
the GET method, while passing the product’s ID (in this case, 102) through
the query string id variable. The GET method is more appropriate than POST
in this case since the intended result is simply to display data (so no content
is being changed on the server).

Hardcoding the Links
Let’s create the page shown in Figure 11-10. For simplicity, we’ll begin by
hardcoding the product IDs into the hyperlinks. Create a new project
containing a public folder and add an index.php script to that folder. Then
enter the code in Listing 11-10.

<!doctype html><html><head><title>Basket Form 1</title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/

css/bootstrap.min.css"

>

</head>

<body class="container">

<h1>Your shopping cart</h1>

<div class="row">

 <div class="col-lg-3 text-end py-2">

 Hammer $ 19.99

 D

etails ❶
 </div>

</div>

<div class="row">

 <div class="col-lg-3 text-end py-2">

 Bucket of nails $ 9.99

 D

etails ❷
 </div>

</div>

</body>

</html>

Listing 11-10: An index.php file with data embedded in the Details hyperlinks

As in the previous example, we read in the Bootstrap CSS stylesheet as
a shortcut for styling the page. In the page’s HTML, we create two links
with the text Details, styled as blue buttons using the Bootstrap CSS class
btn btn-primary: one for a hammer ❶ and one for a bucket of nails ❷.
Each link is to the PHP script show.php, with the ID of the product encoded
into the URL in the fashion ?id=102. Clicking one of these links will send
the appropriate id variable via a GET request, as shown in Figure 11-11.

Figure 11-11: The result of clicking one of the Details links

We won’t worry about writing the show.php script, but notice that
clicking the Details link for the bucket of nails initiates a GET request with
an id value of 511 embedded in the query string.

NOTE
In a more realistic scenario, we wouldn’t hardcode id values into links like
this. Instead, we’d loop through an array representing the products in the
user’s shopping cart and programmatically insert each product’s ID into its
corresponding Details link. We’ll look at how to do this next.

Generating the Links Programmatically
Most of the content presented in web pages is dynamically generated at
runtime based on values in the website’s database. Therefore, instead of
hardcoding product ID values into links like /show.php?id=102, links are
usually created programmatically with PHP statements looping through a
collection of data representing the items in the user’s shopping cart. Each
time through the loop, the product’s ID is looked up and dynamically
inserted into a hyperlink. The product’s description and price are similarly
dynamically inserted into generic HTML template text.

Let’s update our shopping cart page to try this approach. We’ll use an
array to represent the shopping cart as a whole; each item in the array will
itself be an array representing a particular cart item, with three values for

the ID, description, and price of the product. Modify the index.php file as
shown in Listing 11-11.

<?php

// Set up data array

$items = [

 ['id' => 102, 'description' => 'Hammer', 'price' => 9.9

9],

 ['id' => 511, 'description' => 'Bucket of nails', 'pric

e' => 19.99],

];

?>

<!doctype html><html><head><title>Cart From Array</title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/

css/bootstrap.min.css"

>

</head>

<body class="container">

<h1>Your shopping cart</h1>

<?php foreach ($items as $item): ?> ❶
 <div class="col-lg-3 text-end py-2">

 <?= $item['description'] ?> $ <?= $item['price'] ?>

 <a href="/show.php?id=<?= $item['id'] ?>" class="btn

btn-primary">Details ❷
 </div>

<?php endforeach; ?> ❸
</body>

</html>

Listing 11-11: Using a PHP loop to create the Details links for the shopping cart items

Before any HTML, we use a PHP code block to declare an $items
array containing information about our two products. (Of course, we’re still
hardcoding the information, albeit within an array; in a more realistic
scenario, we’d retrieve the product information from a database, as we’ll
discuss in Part VI). Then we begin the HTML template text. Under the Your
shopping cart heading, we use another PHP code block to begin a

foreach loop in which the $item variable will represent the current element
of the $items array ❶. We use alternative loop syntax with a colon (:) to
set up the start of the loop and endforeach ❸ to close it. See Chapter 6 to
review this alternative loop syntax which makes it easier to combine PHP
with HTML.

Inside the loop, we use a mix of HTML and PHP short echo tags within
a <div> to insert the current product’s 'description', 'price', and 'id'
values into the template text. In this way, we dynamically create a <div>
element for each product, including a Bootstrap-styled Details link. Notice
in particular that we embed the product’s ID into the href property of the
<a> element ❷, which will result in hyperlinks like /show.php?id=102, just
as before. Overall, the page should look exactly the same as Figure 11-10.

Other Form Input Types
Single text and numeric form inputs (text, password, textarea, and so on)
are all sent in the HTTP request as a name/value pair, but other types of
form data aren’t quite so simple. It’s important to understand how the
browser chooses the variable names and values for these other form
elements so that you can write server scripts to correctly retrieve and
validate the incoming data. In this section, we’ll discuss how to work with
other common form elements like radio buttons, checkboxes, and single-
and multiple-selection lists.

Radio Buttons
Radio buttons are a set of two or more form input choices offered to the
user, of which only one value can be chosen. Radio button inputs are
declared in groups that share the same name attribute, with each having a
unique value attribute to distinguish which input was selected. In this way,
a set of radio buttons forms a group of mutually exclusive choices for the
value assigned to the shared name attribute. Except in rare situations where
it’s acceptable for no option to be selected, one of the radio buttons should
be automatically checked so the user is offered a default choice. This way, a
value will definitely be sent in the HTTP request.

Let’s write the HTML for a form that uses radio buttons to present a
choice between two Irish counties, as shown in Figure 11-12. This figure

also illustrates the output when the form is processed by process.php.

Figure 11-12: Radio buttons submitting values via a query-string parameter

Create a new project containing a public folder with an index.php
script, then enter the code shown in Listing 11-12.

<!doctype html><html><head><title> Radio Buttons </title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/

css/bootstrap.min.css"

>

</head>

<body class="container">

<form method="GET" action="process.php">

 <label>

 <input type="radio" name="county" value="dublin" che

cked> ❶
 Dublin

 </label>

 <label>

 <input type="radio" name="county" value="cork"> ❷
 Cork

 </label>

 <input type="submit" class="btn btn-primary">

</form>

</body>

</html>

Listing 11-12: An HTML form illustrating radio buttons

We create a form using the GET method with an action attribute to
request the process.php script. Within the form, we declare two radio
buttons (<input> elements of type "radio"), both with "county" as a name
attribute. One has a value of "dublin" ❶, and the other a value of "cork"
❷. We use the checked attribute to set the Dublin option as the default. All
the user sees for a radio button is a small circular input, so it’s important to
add a text or image prompt immediately next to each radio button, and to
use <label> elements so that the user can click either the text or the button.

NOTE
The labels show each county starting with a capital letter (such as Dublin),
while the corresponding values start with a lowercase letter (dublin).
Personally, I always use lower camel case for the values of radio buttons,
checkboxes, and other inputs. Having a consistent naming convention like
this makes it easier to write the form-processing logic without having to
look back at the form code itself and reduces the number of mistakes you’re
likely to make.

Because this form uses the GET method, we’ll see either ?
county=dublin or ?county=cork in the URL when the form is submitted.
In other words, the name attribute of the radio button group serves as the
key for a query-string variable, and the value attribute of the selected
button serves as the variable’s value. We would therefore use
filter_input(INPUT_GET, 'county') to extract the value submitted by
the user through the button group.

Checkboxes
Checkboxes offer Boolean (true/false) choices to the user. They appear in
the browser as small squares that can be checked or unchecked. You might
use checkboxes in a form, for example, to allow the user to select toppings
when ordering a pizza. Unlike radio buttons, checkboxes aren’t mutually
exclusive; the user can check as many of the boxes as they want. As with
radio buttons, adding text or an image prompt immediately next to each
checkbox lets the user know what they’re selecting.

The checkboxes in a form can be treated individually or processed
collectively as an array. We’ll look at both approaches.

Treated Individually
When checkboxes are treated individually, each one should have a unique
name attribute. You can define a value attribute for each checkbox as well,
but it isn’t really necessary for processing the form. A checkbox will send
its name/value pair with the HTTP request only if it has been selected, so on
the receiving end, it’s sufficient to simply test for the box’s name with the
filter_has_var() function, regardless of the box’s value. If a checkbox is
selected and no value was defined, the default value of on will be submitted
with the form data.

To see how this works, let’s use checkboxes to create a form for pizza
toppings. Figure 11-13 shows how the form should look.

Figure 11-13: A form with checkboxes

Start a new project with a public/index.php file containing the code in
Listing 11-13 to design the pizza toppings form.

<!doctype html><html><head><title> Checkboxes </title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dis

t/css/bootstrap.min.css"

>

</head>

<body class="container">

<h1>Extra pizza toppings</h1>

<form method="GET" action="process.php">

 <p><label><input type="checkbox" name="olives"> Olives</

label></p>

 <p><label><input type="checkbox" name="pepper"> Pepper</

label></p>

 <p><label><input type="checkbox" name="garlic"> Garlic s

alt</label></p>

 <p><input type="submit" class="btn btn-primary"></p>

</form>

</body>

</html>

Listing 11-13: An HTML form with checkboxes

Inside a form declared with the GET method, we create checkboxes for
the olives, pepper, and garlic salt options, as well as a Submit button. Each
checkbox has a unique name attribute and is immediately followed by a text
label to indicate which option the checkbox represents. Because the
checkboxes don’t have explicitly declared value attributes, when the user
submits the form, each checkbox that has been selected will add a variable
to the query string in the form <name>=on. For example, if only “Olives”
is selected, the form will trigger a GET request with the URL
http://localhost:8000/process.php?olives=on.

Listing 11-14 illustrates the sort of logic we might use in the
process.php script to detect one of the checkboxes.

<?php

$olivesSelected = filter_has_var(INPUT_GET, 'olives');

var_dump($olivesSelected);

Listing 11-14: Detecting an individual checkbox

We call filter_has_var() with INPUT_GET and 'olives' to detect
whether an olives variable was sent with the GET request, indicating this
box was checked. We store the resulting true/false value in
$olivesSelected, which for simplicity we pass to var_dump(). In a more
realistic scenario, we might use the Boolean to set up conditional logic. We
could use a similar filter_has_var() test for the other checkboxes, as
long as each is uniquely named.

Treated as an Array
Sometimes it’s more practical to treat two or more checkboxes as related by
giving them all the same name attribute ending in square brackets. For
example, the checkboxes in the pizza toppings form could all be given a
name of toppings[]. This way, all the toppings that are selected will be
grouped into an array and sent in the HTTP request under the same
toppings variable name. When taking this approach, it’s vital to ensure that
each checkbox has a unique value attribute so the individual boxes can still
be distinguished from one another.

Listing 11-15 shows how to rewrite the pizza toppings form to send all
selected checkboxes as values in a single array.

<!doctype html><html><head><title>Checkboxes array</title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dis

t/css/bootstrap.min.css"

>

</head>

<body class="container">

<h1>Extra pizza toppings</h1>

<form method="GET" action="process.php">

 <p><label>

 <input type="checkbox" name="toppings[]" value="oliv

es"> Olives

 </label></p>

 <p><label>

 <input type="checkbox" name="toppings[]" value="pepp

er"> Pepper

 </label></p>

 <p><label>

 <input type="checkbox" name="toppings[]" value="garl

ic"> Garlic salt

 </label></p>

 <p><input type="submit" class="btn btn-primary"></p>

</form>

</body>

</html>

Listing 11-15: Grouping a form’s checkboxes into an array

As before, we declare checkboxes for the three topping options.
However, this time we assign toppings[] as the name for each checkbox so
they will be grouped into a toppings array. We also add a value attribute to
each checkbox, indicating the type of topping to be added to the array if
selected. Figure 11-14 shows how multiple values for toppings[] appear in
the query string when the form is submitted with all three boxes checked.

Figure 11-14: Checkbox values being submitted as values for a single array variable

To successfully process this form, we’ll have to ensure that the
process.php script is set up to expect an array of checkbox values. The array
may be empty if no checkboxes were selected, or it could contain one or
more values. Listing 11-16 uses an if...else statement to handle both

cases, so it should work regardless of how many pizza toppings are
selected.

<?php

❶ $toppings

 = filter_input(INPUT_GET, 'toppings', options: FILTER_

REQUIRE_ARRAY);

if (empty($toppings)) {

 ❷ print 'no extra toppings selected';

} else {

 ❸ $toppingsString = implode('+', $toppings);

 print "toppings: $toppingsString";

}

Listing 11-16: Processing an array of checkbox values

Now that the values of the checkboxes matter, we need to use filter
_input() instead of filter_has_var() ❶. As usual, we use the function’s
first two arguments to retrieve a toppings variable from the query string,
but this time we also use a named argument of options:
FILTER_REQUIRE_ARRAY to specify that we’re looking for an array of values
under the toppings variable name. We store the resulting array in the
$toppings PHP variable.

We need to use a named argument here because $options is the filter
_input() function’s fourth parameter. We’re skipping over the third
parameter, $filter, leaving it with its default value of FILTER_DEFAULT.
See Chapter 5 for a review of named and optional parameters.

We next use an if...else statement to check whether the $toppings
array is empty. If so, we print a message accordingly ❷. Otherwise, we use
the built-in implode() array function to collapse the array of toppings into a
single string, with the topping names separated by plus signs ❸. Look back
at the bottom of Figure 11-14 to see the resulting string of toppings when all
three boxes are checked.

Single-Selection Lists
A single-selection list displays as a drop-down menu enabling the user to
choose one option. This list is created with an HTML <select> element
containing <option> elements representing the possible choices. The
<select> element has a name that will be assigned the value of the chosen
<option> element when the form is submitted, resulting in a
straightforward name/value pair on the receiving end. Figure 11-15 shows a
form offering a simple single-selection list of flowers.

Figure 11-15: A single-selection list

Let’s create this flower form. Start a new project with a
public/index.php file and enter the contents of Listing 11-17.

<!doctype html><html><head><title>Single Selection list</tit

le>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dis

t/css/bootstrap.min.css"

>

</head>

<body class="container">

<h1>Flower selection</h1>

<form method="GET" action="process.php">

<div class="row">

 <div class="col-lg-3 text-end py-2">

 <input type="submit" value="Select a flower" class

="btn btn-primary">

 </div>

 <div class="col-lg-3 text-end py-2">

 <select name="flower" class="custom-select"> ❶
 <option value="poppy">Poppy</option>

 <option value="daisy">Daisy</option>

 <option value="tulip">Tulip</option>

 </select>

 </div>

</div>

</form>

</body>

</html>

Listing 11-17: An HTML form with a single-selection list

We declare a form with the GET method containing a Submit button
alongside a selection list with the name flower ❶. The <select> element
holds three <option> elements with value attributes of poppy, daisy, and
tulip. When the form is submitted, the selected flower will be sent in the
HTTP request as a query parameter named flower. In Figure 11-15, for
example, flower=poppy appears in the query string when the poppy is
selected.

We can process the choice submitted through a single-selection list by
using filter_input() and the name of the select element. In the case of
our flower form, for example, we can use filter_input(INPUT_GET,
'flower') to extract the user’s chosen flower.

Multiple-Selection Lists
A multiple-selection list allows the user to choose more than one option
from a menu. This list is created by adding the multiple attribute to the
HTML <select> element. Figure 11-16 shows a multiple-selection version
of our flower form.

Figure 11-16: A multiple-selection list

Whereas a single-selection list results in a simple name/value pair, a
multiple-selection list should be handled similarly to the array approach we
used for checkboxes: the list should have a name attribute ending with
square brackets, as in flowers[]. This way, we’ll get an array containing
the zero, one, or more values selected from the list’s options. Listing 11-18
shows how to modify the index.php file for our flower form to turn it into a
multiple-selection list.

<!doctype html><html><head><title>Multiple Selection list</t

itle>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dis

t/css/bootstrap.min.css"

>

</head>

<body class="container">

<h1>Flower selection</h1>

<form method="GET" action="process.php">

<div class="row">

 <div class="col-lg-3 text-end py-2">

 <input type="submit" value="Select some flowers" cla

ss="btn btn-primary">

 </div>

 <div class="col-lg-3 text-end py-2">

 <select name="flowers[]" ❶
 class="custom-select"

 size="3"

 multiple> ❷
 <option value="poppy">Poppy</option>

 <option value="daisy">Daisy</option>

 <option value="tulip">Tulip</option>

 </select>

--snip--

Listing 11-18: An HTML form illustrating a multiple-selection list as an array of values

We modify the selection list to have an array name of flowers[] ❶
and specify that it should be displayed in a box that fits three rows. We
include the multiple attribute to indicate that the user may select more than
one item from the list (this attribute doesn’t need to be assigned a value) ❷.
When the form is submitted, any selected flowers will be sent in the HTTP
request as an array named flowers.

We can process this form by using similar logic to that of our script
processing an array of checkboxes from Listing 11-16. We use an
if...else statement to check whether the incoming array is empty, as
shown in Listing 11-19.

<?php

$flowers = filter_input(INPUT_GET, 'flowers', options: FILTE

R_REQUIRE_ARRAY);

if (empty($flowers)) {

 print 'no flowers selected';

} else {

 $toppingsString = implode(' + ', $flowers);

 print "flowers: $toppingsString";

}

Listing 11-19: Processing the array of values from a multiple-selection list

We extract the $flowers array from the incoming GET request, once
again using the extra options: FILTER_REQUIRE_ARRAY argument to
filter_input() to specify that we’re looking for an array. Then, if the
array isn’t empty, we use implode() to merge the received flowers into a
string separated by plus signs.

Summary
In this chapter, we explored how to create web forms that submit data to
server scripts, and we discussed the difference between submitting those
forms with the HTTP GET and POST methods. We also covered how to write
server-side scripts to identify and extract the submitted form data. We
focused on how to use PHP’s filter_input() function to extract the values
of variables from an incoming HTTP request, as well as how to use filter
_has_var() when all we need to know is whether a variable exists at all.
We applied this approach to a variety of form input types, including text
inputs, radio buttons, checkboxes, and selection lists.

Exercises
1. Create a form for a costume-rental company that enables the user to

submit the name of the superhero costume they want. Make the form
submit data via the HTTP GET method to a PHP script called
costumeSearch.php, and use hero for the name of the text value entered
by the user. Visit the form through your web server and submit the value
superman. You should see costumeSearch.php?hero=superman in the
resulting URL.

2. Create a basic login form using the HTTP POST method, with <input>
elements for a username (using the default text type) and a password
(use the password type). Use your browser’s developer tools to inspect
the form data when it’s submitted.

3. Create a form to input the user’s age and a script to process the received
age. The processing script should return an HTML page containing a
message stating how old the user will be on their next birthday.

4. Create a form with radio buttons asking the user whether they would be
willing to pay more for an environmentally friendly car. If they say yes,
return an HTML page containing a message recommending they buy an
electric car. If they say no, recommend a gas car.

5. Create a form offering the user several options for a new car, each
represented with a uniquely named checkbox. For example, offer
options such as metallic paint, fog lights, and a reversing camera. Write

a script that processes the form data and returns an HTML page
containing a message confirming each selected option.

6. Duplicate your answer for Exercise 5 about car options, but change the
checkboxes to send the data as part of an array variable named
extras[]. Update your form-processing code to handle the array. Think
about whether you find the array approach easier or harder than
processing the checkboxes individually.

12
VALIDATING FORM DATA

Not all data received through web
forms will be valid; users may make

mistakes or miss required values, or a number of
other things could go wrong. In this chapter, we’ll
explore ways to validate the received data, and we’ll
design some typical decision logic to take appropriate
action depending on the values received (and any that
are missing).

It’s important to recognize that HTML forms submit values only as text
strings, regardless of the input type. One of the very reasons PHP isn’t type-
sensitive is to make it easy to treat a string containing digits as a number
without explicitly type-casting or including data-type conversion
statements. This makes it that much more important to carefully write (and
test) the validation rules for processing received form data.

Writing Custom Validation Logic
In Chapter 11, you learned to use simple built-in filters such as FILTER
_SANITIZE_SPECIAL_CHARS in conjunction with filter_input() to sanitize
incoming form data. However, real-world data often has its own special

validation criteria that goes beyond these built-in filters. Once you’ve
retrieved data from the submitted form request, you may therefore need to
write custom validation logic to make sure the data is as it should be.

Let’s illustrate how this works with a simple example: a product details
form asking the user to enter a product code and a price (see Figure 12-1).
We’ll assume that the product code must have a minimum of three
characters and that the price must be a number (either an integer or a
decimal value).

Figure 12-1: A product details form in need of validation logic

As we explored in Chapter 11, we can write a simple script confirming
receipt of the form data with a few lines of PHP. Listing 12-1 shows how.

<?php

$productCode = filter_input(INPUT_GET, 'productCode');

$price = filter_input(INPUT_GET, 'price');

?>

<h1>Data received:</h1>

<p>Product Code: <?= $productCode ?></p>

<p>Price: <?= $price ?></p>

Listing 12-1: Confirming the received product code and price

Here we use the filter_input() function to extract the productCode
and price variables from the received URL-encoded form data and display
them back to the user by using PHP short echo tags. This will work if the
user has submitted values as expected, but it’s never a good idea to assume
the data that has arrived from the user is all present and correct.

We should expand the script to validate the data before confirming it to
the user. We’ll try to validate the price and product code data in the

following ways:
If the product code is missing or empty, display the error message
missing product code.
If the product code is less than three characters in length, display the
error message product code too few characters.
If the price isn’t a numeric value, display the error message price was
not a number.
If no validation errors occur, display the message input data was error
free.

As you’ll see, PHP has built-in functions to help with these sorts of
validation checks.

Managing Multiple Validation Errors
One common approach to managing custom validation logic with multiple
potential errors is to use an array for the errors. Start with an empty array,
then use a series of if...else statements to add an error message to the
array each time a new validation error is detected. If the array is empty after
all the validation, it means the data was found to be error free. If it isn’t
empty, you can loop through the array to display all the error messages to
the user. Listing 12-2 uses this approach to implement the validation logic
for our product details form.

<?php

$productCode = filter_input(INPUT_GET, 'productCode');

$price = filter_input(INPUT_GET, 'price');

❶ $errors = [];

❷ if (empty($productCode)) {

 $errors[] = 'missing product code';

} elseif (strlen($productCode) < 3) {

 $errors[] = 'product code too few characters';

}

❸ if (!is_numeric($price)) {

 $errors[] = 'price was not a number';

}

❹ if (sizeof($errors) > 0) {

 // errors

 print 'Data validation errors:';

 foreach ($errors as $error) {

 print " $error ";

 }

 print "";

} else {

 print 'input data was error free';

}

Listing 12-2: Implementing custom validation logic with an array of error messages

After extracting the product code and price from the incoming form
data as before, we create an empty array in the $errors variable ❶. Then
we use an if...elseif structure ❷ to validate the $productCode variable.
The if branch adds the message 'missing product code' to the $errors
array if $productCode is empty. (The empty() function will return true if
$productCode wasn’t found in the received form data or if it contained an
empty string.) The elseif branch, which is visited only if $productCode
isn’t empty, adds the message 'product code too few characters' to the
array if the strlen() function finds the product code to contain fewer than
three characters.

Next, we use a separate if statement to validate the $price variable ❸.
We pass the variable to is_numeric(), which returns true if the received
string can be interpreted as an integer or a float. If not, we add the message
'price was not a number' to the array.

Finally, we test whether the $errors array contains any errors ❹. If it
does, we use a foreach loop to display each error to the user as an item in
an HTML ordered list. Otherwise, if the array is empty, we display the
message 'input data was error free'.

This example has illustrated a range of typical validations. You’ll often
find yourself checking for the following:

Any required data that’s missing You can test for this with the
empty() function.
Too few characters for text data You might need to ensure that the
input meets minimum-length rules for usernames or passwords, for
example. You can test for this with the strlen() function.
Non-numeric values You might want to know if the value received is
neither a valid integer nor a decimal number. You can test for this with
the is_numeric() function.

While we were able to rely on built-in PHP functions for our validation
checks, we needed custom logic to string them together and match them to
the particular requirements of our product details form.

Testing for a Valid Zero Value
Because of PHP’s type insensitivity, it’s easy to write code that incorrectly
treats a numeric value of 0 as missing or false. This happens because in
PHP all the following (among other values) are considered false:

The Boolean false itself
The integers 0 and -0
The floats 0.0 and -0.0
The empty string and the string "0"
The special NULL type (including unset variables)

To illustrate the problem, say you want to test whether the user left a
form field blank. You’d typically use the empty() function, but if the user
happened to enter the digit 0 in the form field, the test empty('0') will
return true, just like the test empty('') for a truly empty form field
(remember that all form values arrive as strings in the HTTP request, even
if they are numeric characters). If you want the 0 to be a valid entry for the
field (for example, if the field is to record someone’s score on a test), you’ll
need to write code that distinguishes between a valid 0 entry and an
unacceptable empty string. The solution is to use the triple-equal-sign
identical operator (===), which tests whether its operands have the same
value and data type, as discussed in Chapter 2.

NOTE
The PHP documentation describes type comparisons at
https://www.php.net/manual/en/types.comparisons.php, comparing the
results of the == and === operators, as well as showing the results for
functions such as gettype(), empty(), and isset() for potentially
confusing values. I recommend you bookmark this page for reference.

Listing 12-3 assumes a form has been submitted with the GET method
sending a variable named score. The code uses an if...elseif statement
to differentiate between no value and a 0 value.

$score = filter_input(INPUT_GET, 'score');

if ($score === '0') {

 print "score was the string '0'";

} elseif (empty($score)) {

 print 'score was empty (but not zero)';

}

Listing 12-3: Distinguishing between the number 0 and an empty or NULL value

We first use the === operator to test whether $score holds the exact string
'0'. If not, we use the empty() function to check whether an empty string
was received.

If testing for a valid 0 is a task you’ll need to perform often, it would
be useful to encapsulate the necessary logic in a function that returns false
when given the string '0' or the result of the empty() function otherwise,
as shown in Listing 12-4. Create a zeroFunction.php file containing this
code, since we’ll make use of it later in this chapter.

<?php

function isAnEmptyNonZeroString($s): bool

{

 if ($s === '0') return false;

 return empty($s);

}

https://www.php.net/manual/en/types.comparisons.php

Listing 12-4: A function that tests for an empty string but does not consider the digit 0 as
empty

Keep in mind that if a numeric value of 0 is an acceptable form input,
you may need to do more than simply compare the incoming string with the
string literal '0'. This is because other strings may also evaluate to 0, such
as '0.0', '0.00', and so on. To be thorough, you need to test the
underlying numeric value that the incoming string represents. Fortunately,
PHP provides the intval() function, which can take in a string and return
the numeric integer value of its contents. Normal PHP type juggling will
take place, and so any valid numeric characters at the beginning of the
string will be used to determine the string’s integer value. As discussed in
Chapter 2, any non-numeric content in a string is ignored during type
juggling.

Table 12-1 lists examples of strings and their intval() evaluations.
Notice that the non-numeric remainders of strings are simply ignored (such
as '5abc' evaluating to 5), as are any decimal components of numeric
strings.
Table 12-1: Example intval() Calls
Function call Return value

intval('0') 0

intval('00') 0

intval('0.00') 0

intval('0.99') 0 (decimal component ignored)

intval('0005') 5 (leading zeros ignored)

intval('5abc') 5 (everything from 'a' on ignored)

At the end of the day, validation should match whatever data the form
owner specifies is acceptable. It is, of course, always a good idea to offer
the user a confirmation screen with a chance to correct values after any
validation and string-to-number evaluation, to make sure the form’s
validation logic matches the user’s intent.

Displaying and Validating Forms in a Single Postback
Script
A frequently used strategy for validating web forms is to use a single script,
known as a postback, both to display the form and to perform validation.
Combining these two actions ensures that the form can be redisplayed to the
user in the event of any validation errors, with the added validation error
messages included. A postback also makes it easy to implement a sticky
form, a form that’s redisplayed with the previously submitted values
prepopulated in the appropriate fields, saving the user from having to enter
the data again. (The term sticky refers to the values remaining, or sticking,
in the form after submission.)

Using a single script to both display and validate has two drawbacks.
First, the script can get very long, especially for complex forms with lots of
validation logic. Second, the complexity of a script performing multiple
tasks is high, making the code potentially harder to understand, more error-
prone, and harder to update or maintain at a later date. In Chapter 13, we’ll
address these disadvantages as we look at strategies to separate logic from
display code.

For now, though, we’ll focus on creating single scripts for sticky
postback forms. We’ll start with a form that requires only simple validation
logic, and then we’ll revisit the array-based approach to handling multiple
validation errors discussed earlier in the chapter.

Simple Validation Logic
Let’s create a simple postback script for a sticky form where the user enters
their name and receives a Hello <name> greeting in response. We’ll
arbitrarily say that the submitted name must have at least three characters to
be valid. Our postback script needs to handle three possible situations that
can occur after the server receives a new HTTP request. The first situation
is the initial form request (via the GET HTTP method), when an empty text
box and Submit button are presented to the user, as in Figure 12-2.

Figure 12-2: The first presentation of the sticky postback form

The second situation is a form submission with invalid data (via the
POST HTTP method). In this case, the form should be redisplayed to the user
with an error message about the invalid submission. Since the form is
sticky, the text box should be populated with whatever text the user
submitted last, as shown in Figure 12-3. In this example, a single letter a
was submitted.

Figure 12-3: Redisplaying the sticky postback form with a message about the invalid data

The third and final situation is a form submission with valid data (via
the POST HTTP method). In this case, a confirmation message should be
displayed to the user, as shown in Figure 12-4.

Figure 12-4: Displaying a confirmation message after valid data is submitted

The logic for our postback PHP script can be visualized as a flow chart
with two decisions (Figure 12-5).

Figure 12-5: A decision flowchart for the postback sticky form

We’ll write the postback script in a public/index.php file in four stages:
setting default values, validating the submitted data, displaying a
confirmation for valid data, and displaying the form.

Setting Default Values
First, we need to set default values for the two key postback variables
$isSubmitted and $isValid. The first of these Boolean flags records
whether the form has been submitted, as determined by whether the
incoming request uses the POST method (indicating a form submission) or
the GET method (indicating the initial request for the form). The second flag
signals whether the data received is valid. A third variable will set the
default value of the $firstName variable for our logic. Listing 12-5 shows
the code.

<?php

$isSubmitted = ($_SERVER['REQUEST_METHOD'] === 'POST');

$isValid = true;

$firstName = '';

Listing 12-5: Setting default values

We set the $isSubmitted Boolean flag to true or false depending on
the value of the 'REQUEST_METHOD' key in the $_SERVER array. This
superglobal array holds information from the web server about the current
executing script, the request being processed, and the like. If the value is the
string 'POST', then $isSubmitted will be true; otherwise, it will be false.

We next set the $isValid Boolean flag to true by default; we’re
therefore assuming the received data is valid unless later logic determines
otherwise. Finally, we set $firstName to an empty string to ensure that,
whatever happens, we have a value for this variable that can be inserted into
the form text box when the form is presented to the user.

NOTE
Learn more about the $_SERVER array in the PHP documentation at
https://www.php.net/manual/en/reserved.variables.server.php.

https://www.php.net/manual/en/reserved.variables.server.php

Validating the Submitted Data
The second block of code in our postback script, shown in Listing 12-6,
attempts to validate the submitted form data after the form has been
successfully submitted.

if ($isSubmitted) {

 ❶ $firstName = filter_input(INPUT_POST, 'firstName');

 ❷ if (strlen($firstName) < 3) {

 $isValid = false;

 $errorMessage = 'invalid - name must contain at leas

t 3 letters';

 }

}

Listing 12-6: Validating the number of characters in $firstName

We perform the validation inside an if statement whose body will
execute only if the $isSubmitted Boolean flag is true. Therefore, we’ll
skip this code when the form is requested for the first time. To validate the
data, we use filter_input() to retrieve the value of firstName from the
submitted POST variables, overwriting the default, empty-string value of
$firstName in the process ❶. Then we use strlen() to check whether the
received string contains less than three characters ❷. If so, we change the
$isValid Boolean flag to false and assign an error message to the
$errorMessage variable.

Displaying a Confirmation for Valid Data
At this point, we have values in the $isSubmitted and $isValid flags that
we can use to decide what to present to the user. Our third block of code,
shown in Listing 12-7, uses these flags in a single if statement for the
situation in which the form has been submitted with valid data.

if ($isSubmitted && $isValid) {

 print "Hello $firstName";

 die(); // End script processing here

}

?>

Listing 12-7: Responding to valid data

If both flags are true, we display a "Hello $firstName" confirmation
message to the user. Then we terminate the script with the die() function.

Displaying the Form
If the if statement in Listing 12-7 fails, either the form is being requested
for the first time ($isSubmitted is false) or the submitted data is invalid
($isValid is false). In either case, the result is the same: we need to
display the form to the user. Listing 12-8 shows the necessary mix of
HTML and PHP code.

<!doctype html>

<html><head>

 <title>Tiny sticky postback form</title>

 ❶ <style>.error {background-color: pink; padding: 1rem;}</

style>

</head>

<body>

❷ <form method="POST">

 ❸ <?php if ($isSubmitted && !$isValid): ?>

 <div class="error"><?= $errorMessage ?></div>

 <?php endif; ?>

 ❹ <input name="firstName" value="<?= $firstName ?>">

 <input type="submit">

</form>

</body></html>

Listing 12-8: Displaying the form to the user

In the HTML head, we define a CSS error class for any error message
we need to display, with a pink background and some padding ❶. In the
page’s body, we declare a <form> element with the POST method ❷. Notice
that we don’t include an action attribute setting the PHP script that will

process the form; when no action is specified, the form submission request
is sent by default to the same URL that displayed the form. This default is
perfect for a postback form like this one.

NOTE
In HTML 4, a form had to specify an action attribute, but in HTML 5, the
attribute defaults to an empty string, which results in the form submitting to
the same URL as led to the form’s display.

Within the <form> element, we use PHP’s alternative if statement
syntax to display a <div> element with the content of the $errorMessage
variable if the form is submitted but the data isn’t valid ❸. We style the
<div> with our error CSS class. We then display the form text input box
and set its value attribute to the contents of the PHP $firstName variable
❹. If the form is being displayed for the first time, this will be the default
empty string we declared in Listing 12-5, but if the form is being
redisplayed after an invalid input, $firstName will hold the user’s previous
submission. This mechanism is what makes the form sticky: the submitted
value sticks in the text box when submitted and redisplayed, saving the user
from typing values again.

Array-Based Validation Logic
Let’s now join the two key concepts from this chapter and implement our
earlier product details form with its array-based approach to error messages
as a postback sticky form. Figure 12-6 shows an example of the error
messages to be output when the submitted data is missing values or violates
any validation rules.

Figure 12-6: The sticky postback product form with errors

Even with an array-based approach to data validation, our postback
script will follow the same basic steps as before: setting default values,
validating the data, displaying a confirmation for valid input, and displaying
the form. Listing 12-9 tackles the first step.

<?php

require 'zeroFunction.php'; // Read in our function

$isSubmitted = ($_SERVER['REQUEST_METHOD'] === 'POST');

$productCode = '';

$price = '';

$errors = [];

Listing 12-9: Setting default values

As before, we set the $isSubmitted Boolean flag to true or false
depending on whether $_SERVER['REQUEST_METHOD'] contains 'POST'. We
then set the $productCode and $price variables to empty strings to ensure
that we can refer to them safely for default values in the form inputs.
Finally, we set $errors to an empty array. We’ll add to this array only if

any validation errors are found; an empty array will indicate that the data is
valid.

Listing 12-10 attempts to validate the submitted form data.

if ($isSubmitted) {

 $productCode = filter_input(INPUT_POST, 'productCode');

 $price = filter_input(INPUT_POST, 'price');

 ❶ if (empty($productCode)) {

 $errors[] = 'missing product code';

 }

 ❷ elseif (strlen($productCode) < 3) {

 $errors[] = 'product code too few characters';

 }

 ❸ if (isAnEmptyNonZeroString($price)) {

 $errors[] = 'missing price';

 } elseif (!is_numeric($price)) {

 $errors[] = 'price was not a number';

 }

}

Listing 12-10: Validating the submitted form data

Once again, all our validation occurs inside an if statement executed
only if the $isSubmitted flag is true. We first retrieve the productCode
and price values from the submitted POST variables. Then we test whether
$productCode is empty ❶ and add an error message to the $errors array if
it is. Otherwise, we test whether $productCode is less than three characters
long ❷, again adding an error message to the array if not. For our last
validation check, we add another error message if $price is empty or isn’t
numeric ❸.

Next, Listing 12-11 shows the code to confirm a valid form
submission.

$isValid = empty($errors);

if ($isSubmitted && $isValid) {

 print 'input data was error free';

 die(); // End script processing here

}

?>

Listing 12-11: Confirming a valid submission

First, we test whether the $errors array is empty and set the $isValid
Boolean flag accordingly. Then, if both the $isSubmitted and $isValid
Boolean flags are true, we display a confirmation message to the user and
terminate the script with the die() function. If either flag is false, we need
to display the form to the user, with any errors if appropriate. Listing 12-12
shows the code.

<!doctype html>

<html><head>

 <title>Two-field postback form</title>

 <style>.error {background-color: pink; padding: 1rem;}</

style>

</head>

<body>

 ❶ <?php if ($isSubmitted && !$isValid): ?>

 <div class="error">

 ❷ <?php foreach ($errors as $error): ?>

 <?= $error ?>

 <?php endforeach; ?>

 </div>

 <?php endif; ?>

 <h1>Product details</h1>

 <form method="POST">

 ❸ Product code: <input name="productCode" value="<?=

$productCode ?>">

 ❹ <p>Price: <input name="price" value="<?= $price ?>">

</p>

 <p><input type="submit"></p>

 </form>

</body></html>

Listing 12-12: Displaying the form with any error messages

Initially, this code is similar to our earlier sticky form template from
Listing 12-8, up to the if statement checking whether the form was
submitted but the data isn’t valid ❶. From there, we use a PHP foreach
loop ❷ to print each message in the $errors array as a separate list item
inside the <div> styled with our error CSS class. Later, we make the
<form> element sticky by prefilling the product code and price fields with
the values from the $productCode ❸ and $price ❹ variables, which will
be either the user’s previous submissions or the default empty strings.

As you can see, the same basic structure that worked for our simpler
form also worked for this more complex postback sticky form script, and
the strategy of building up and displaying an array of error messages fits
well into this structure. However, the complete PHP postback script is
nearly 60 lines long and performs enough actions as to make the single
script complex.

In the next chapter, we’ll explore strategies to keep the benefits of the
postback approach for form processing (such as displaying validation
messages with the form and using sticky form values to save the user from
retyping) while breaking up the tasks of form display, validation, error
message display, and confirmation logic into simpler scripts. In the process,
we’ll develop a basic web application architecture that can scale up to meet
the requirements of complex websites, forms, and validation rules.

Summary
In this chapter, we covered strategies for validating submitted form data,
including using an array to flexibly handle situations where zero, one, or
several validation errors must be addressed. We highlighted the special care
that must be taken when a 0 is submitted as a valid entry in a form. Finally,
we looked at the postback technique for displaying and validating forms
with a single script, and we implemented sticky forms that conveniently
prefill with the user’s previous entries. As a PHP programmer, you may
have to understand and maintain a range of website programming styles,

and the postback approach in this chapter is a common one you’ll likely
come across in other programmers’ code, even if it’s not an approach you
use often when writing your own.

Exercises
1. Create a sticky form using the HTTP POST method that prompts for an

integer age and redisplays the form populated with the submitted value
each time.

2. Improve your answer to Exercise 1 so that an error message is displayed
if a non-numeric age is entered.

3. Improve your answer to Exercise 2 so that after a valid (numeric)
submission is received, a confirmation message displays, stating the
user’s age after their next birthday.

4. Create a sticky form using the HTTP POST method that prompts for an
email address. If the address is valid, a confirmation message is
displayed; if it’s not valid, the form is redisplayed with an error message
stating that the email address is invalid. Think about the requirements
for a valid email address.

13
ORGANIZING A WEB APPLICATION

In this chapter, we’ll progressively
explore a structured approach to

dividing a web application’s responsibilities among
multiple scripts while also developing a project
folder architecture that gives every script a clearly
defined home. You’ll be introduced to the front-
controller design pattern, which requires the sending
of every request to the web server through a single
script that decides how to respond, then delegates the
responsibility for generating that response to other
server scripts.

Chapters 11 and 12 introduced differing approaches to designing a web
application. One is to write multiple scripts for each web form that
separately handle displaying, validating, and confirming the form; another
is to create a single postback script that does all those tasks. Both
approaches have advantages and disadvantages, but neither is scalable for
web applications that may grow in size and complexity over time. You
wouldn’t want to have tens, hundreds, or even thousands of PHP scripts

sitting in your application’s public folder, as might happen with the first
approach, for reasons of maintenance as well as security (malicious users
may attempt to execute public scripts out of sequence to bypass validation
checks, for example). But neither would you want an individual script to
become overly complex, as might happen with the second approach.

The architecture we’ll discuss in this chapter addresses these problems
by focusing all decision-making logic on the single front-controller script
while using other scripts or functions to carry out all other tasks. The front
controller acts much like the receptionist in a large office building, whom
every guest must visit; it identifies and interprets each request (who the
visitor is and what they’re asking for), and directs it to the appropriate
server script (a room in the building) that satisfies the request. With this
architecture, no one script is overly complicated, and while an application
can grow to include many scripts, they’re organized in such a way that the
application is easy to maintain and extend.

Front Controllers and the MVC Architecture
Chapter 10 introduced the model-view-controller (MVC) architecture, a
design pattern that divides a web application into three main components.
The model represents the data underlying the application, typically stored in
a database; the view uses templating to determine how the data is displayed
to the user; and the controller makes decisions about what data to display
when. The front-controller scripts we’ll explore in this chapter are the core
piece of the controller portion of the MVC architecture, as they take in
every HTTP request to the application and determine how to respond.
Figure 13-1 illustrates how a front controller fits into the MVC pattern.

Figure 13-1: The MVC architecture, featuring a front controller

The front controller ❶ handles every HTTP request received from web
clients, deciding which action controller should be invoked. These action
controllers are more specialized scripts or functions, also part of the
controller component of the MVC architecture, that carry out particular
tasks for the application, such as checking stored security credentials or
manipulating data like shopping-cart contents. An action controller may
need to read the contents of a data store, such as a database system (more
about this in Part VI). The action controller then invokes the view
(templating) component ❷ to create the contents of the response to be
returned to the user, passing along the data from the model if appropriate.
The action controller then receives the output from the view component ❸
and adds any appropriate headers or response codes. Finally, the response is
sent back to the web client ❹.

Separating Display and Logic Files
We’ll revisit the simple Hello <name> form developed in the preceding
two chapters to start the process of separating the display code from the
decision-making logic in an application. See “A Simple Example” on page
199 to review how we initially created and processed that form with
separate scripts, and “Simple Validation Logic” on page 231 for how we
validated and displayed the form with a single postback script. In this
version, the application will have three possible responses it may return:

The blank form if the HTTP request used the GET method
A Hello <name> confirmation message if a valid name was received
An error message if an invalid name (less than three characters long) was
received

The decision-making logic and possible outputs are modeled in the
flowchart in Figure 13-2.

Figure 13-2: Modeling the logic and outputs of the Hello <name> application

We’ll create a separate file for each of the three possible outputs.
Meanwhile, every request will be routed to the front controller in the
index.php file. The logic in the front controller will decide what to do (that
is, which of the other three files to draw upon to generate the output to be
returned to the user). The file structure for the project will therefore look as
follows when we’ve finished:

Notice that all the files are located in the project’s public folder.

Creating the Front Controller
We’ll first write the index.php front-controller script. All requests for this
project will be for index.php, some with the GET method, some with the
POST method, some containing valid submitted data, and some containing
invalid submitted data. Depending on the type of HTTP method (GET or
POST) and whether the submitted data is valid, this script decides which of
the three display pages to return as the response. Listing 13-1 shows the
code.

<?php

$isGetMethod = ($_SERVER['REQUEST_METHOD'] === 'GET');

if ($isGetMethod) {

 ❶ require_once 'displayForm.php';

} else {

 $firstName = filter_input(INPUT_POST, 'firstName');

 if (strlen($firstName) < 3) {

 $errorMessage = 'invalid - name must contain at leas

t letters';

 ❷ require_once 'displayError.php';

 } else {

 ❸ require_once 'displayHello.php';

 }

}

Listing 13-1: The front-controller script in index.php deciding which page to display

First, we test whether the request received was via the GET method and
set the $isGetMethod Boolean flag accordingly. Then we pass this flag to an
if...else statement. If true, we display the form by requiring the file
displayForm.php ❶. Otherwise, we must be processing a POST request
containing the form submission, so we use the logic in the else branch (the
rest of the script) to read and validate the data. For that, we use
filter_input() to extract a $firstName value from the POST variables.
Then we test the validity of the received name. If it’s too short, we set
$errorMessage to a suitable message, then read in the displayError.php file
to show the error page ❷. If the name is valid, we read in the
displayHello.php file to show the Hello <name> confirmation message ❸.

Writing the Display Scripts
Next, we’ll create the three display scripts, starting with the web form itself.
Enter the contents of Listing 13-2 into a file named displayForm.php in the
public folder.

<!doctype html><html><head><title>Tiny Form</title></head>

<body>

 <form method="POST">

 <input name="firstName">

 <input type="submit">

 </form>

</body></html>

Listing 13-2: The displayForm.php script to display the form to the user

This script consists entirely of HTML template text, namely a POST-
method form with a name input and a Submit button. Because we don’t give
the form an action attribute, the form will be submitted to the same URL as
the request that displayed the form. In this case, that’s our index.php front-
controller script.

Next, Listing 13-3 creates the page confirming a valid submission.
Copy the listing into a file called displayHello.php.

<!doctype html><html>

<head><title>hello</title></head><body>

 Hello <?= $firstName ?>

</body></html>

Listing 13-3: The displayHello.php script to confirm that a valid name has been received

Within the HTML template text, we use the PHP short echo tag to
output the value of the $firstName variable. Notice that this variable hasn’t
been declared in displayHello.php itself, but that’s okay. This file isn’t
written as a stand-alone script but rather is intended to be required from
another script: index.php. As long as we’ve set the $firstName variable in
index.php before reading in this script (which we have), the variable will be
accessible within displayHello.php as well.

Finally, we’ll write the third display page that outputs an error message.
Create displayError.php and enter the contents of Listing 13-4.

<!doctype html><html><head>

 <title>error</title>

 <style>.error {background-color: pink; padding: 1rem;}</

style>

</head><body>

<div class="error">

 <p>Sorry, there was a problem with your form submission

</p>

 <p><?= $errorMessage ?></p>

</div>

</body></html>

Listing 13-4: The displayError.php script to show an error message to the user

We again use a PHP short echo tag to output the value of a variable (in
this case, $errorMessage). Once again, we need to ensure that this variable
has been assigned a value in index.php before the front-controller script
references the displayError.php display script.

We now have four PHP scripts in our project. This may seem like a lot,
but each script has the advantage of having a single core responsibility. We
have three scripts to display the application’s three possible pages, along
with an index.php front-controller script that pulls together the main
program logic.

Moving Website Logic into Functions
We can further organize our project by taking each task or decision in the
index.php front controller and encapsulating it in its own function. While
the current level of complexity of index.php is suitable for this small
project, multipage websites with multiple forms would become much too
complex for a single script to handle. We’ll create a PHP file named
controllerFunctions.php to store the functions, thereby streamlining the
front-controller script.

Also, at present all the files are in the project’s public folder, meaning
any of them can be directly requested and served to a user. For example,
you could enter localhost:8000/displayHello.php in your browser’s address
bar and the display script would be executed without the $firstName
variable first having been assigned a value, since the form-processing logic
in index.php wouldn’t have been executed. This would trigger a notice-level
error flagging the undefined variable.

This file structure would be messy and unmanageable for a larger
project, with potentially hundreds of directly accessible files in the public
folder. In addition, we’re exposing PHP scripts that the user shouldn’t ever
be able to directly request. The solution, as first discussed in Chapter 10, is
to use folders to separate public scripts (generally the index.php front
controller) from those that shouldn’t be directly accessible to the public.
We’ll implement this change as well.

Designing a Secure Folder Structure
To make the application more secure, move the three output scripts
(displayHello.php, displayError.php, and displayForm.php) from public to a
new folder named templates. Likewise, we don’t want users to be able to
directly request our new controllerFunctions.php file. This file will contain
only function declarations, so there’s no reason for it to be published in the

public folder. Instead, we’ll put controllerFunctions.php in its own folder,
which by convention we’ll name src (short for source code). The file
structure for our refactored project will therefore look as follows:

Using separate folders like this not only makes the application more
secure but also keeps it better organized, with the scripts grouped into
folders based on their purpose.

Simplifying the Front-Controller Script
Now let’s simplify our front-controller script by replacing some of the logic
with function calls. The main task the front controller needs to do is check
whether the received request used the GET method (in which case the form
should be displayed) or the POST method (in which case the form should be
processed).

We’ll update the script to focus just on this decision and leave the
remaining details to separate functions (which we’ll write next). Listing 13-
5 shows how to modify the index.php file.

<?php

require_once '../src/controllerFunctions.php';

$isGetMethod = ($_SERVER['REQUEST_METHOD'] === 'GET');

if ($isGetMethod) {

 displayForm();

} else {

 processForm();

}

Listing 13-5: The simplified front-controller script in index.php

We read in the definitions for all the functions we’ll be using from
src/controllerFunctions.php. The two dots (..) at the start of the filepath
signify the parent directory relative to the current script’s directory (that is,
the overall project folder that contains both public and src). As before, we
next set the $isGetMethod Boolean flag and use it to control an if...else
statement. This time, however, the if...else statement simply invokes the
displayForm() function if the server receives a GET request or invokes the
processForm() function if it is a POST request.

Writing the Functions
All that remains is to declare the functions handling the more granular
front-controller logic in the new src/controllerFunctions.php file. First, let’s
write the displayForm() function, as in Listing 13-6.

<?php

function displayForm(): void

{

 require_once '../templates/displayForm.php';

}

Listing 13-6: A function to display the form

This function simply reads in and executes the contents of the templates/
displayForm.php file by using require_once.

Next, let’s write the processForm() function that will extract the name
from the POST variables and decide what to do depending on whether it’s
valid, as in Listing 13-7.

function processForm(): void

{

 $firstName = filter_input(INPUT_POST, 'firstName');

 if (strlen($firstName) < 3) {

 displayErrorMessage();

 } else {

 displayHello($firstName);

 }

}

Listing 13-7: A function to process the form

This function reads the $firstName variable from the incoming request
and tests whether it’s less than three characters long. We invoke another
custom function depending on the result: either displayErrorMessage() or
displayHello(). Notice that the latter takes the $firstName variable as an
argument; you’ll learn more about this shortly. We’ll define these two
functions in Listing 13-8.

function displayHello($firstName) : void

{

 require_once '../templates/displayHello.php';

}

function displayErrorMessage(): void

{

 $errorMessage = 'invalid - name must contain at least 3

letters';

 require_once '../templates/displayError.php';

}

Listing 13-8: Functions to display the Hello <name> greeting or an error message

The displayHello() function receives the valid first-name string, then
reads in and displays the displayHello.php page. The
displayErrorMessage() function assigns an error message string to the
$errorMessage variable, then reads in and displays the displayError.php
page.

The displayHello() function has a $firstName parameter because of
the scoping of variables in PHP. When a function reads in and executes a
PHP script file by using a require_once statement, any variables expected
by that script must be either parameters received by the function or
variables created within the function. In this case, since the
displayHello.php script needs access to $firstName, a value for that
variable must be passed to the displayHello() function. If $firstName

weren’t a function parameter, no variable of that name would be available
to output in the displayHello.php script, and we would see the error
displayed in Figure 13-2.

Overall, the functionality of our application is just the same as before,
but it has a much better architecture that’s easier to maintain, more secure,
and more scalable in the event the project requirements expand in the
future. Our only public script is the front controller in public/index.php, and
every HTTP request to the server goes through this script. The front
controller determines whether the user wants the form displayed (via a GET
request) or has submitted the form for processing (a POST request). The
remaining controller logic is encapsulated in a collection of functions
declared in the src/controllerFunctions.php file. Meanwhile, the three
responses that can be returned to the client are defined in scripts in the
templates folder: displayForm.php, displayHello.php, and displayError.php.

Generalizing the Front-Controller Structure
You’ve seen how much simpler scripts and functions become once you start
breaking an application into individual responsibilities. Let’s now test the
architecture we’ve developed on a new, more complex website project with
several pages. You’ll see how a front-controller script can cope with several
GET requests as well as a POST form submission and its validation logic.

Figure 13-3 shows the three-page site we’ll create, including a home
page, a contact details page, and an inquiry form. The MGW name is a
placeholder, standing for My Great Website.

Figure 13-3: A three-page web application displayed in the browser

Each page has a navigation bar at the top with the current page
highlighted, followed by a level 1 heading and some page content. To give
the pages the nice styling shown in the figure, we’ll link to the prewritten
Bootstrap CSS stylesheet, as we did in Chapter 11.

Distinguishing Between Requested Pages
Each of the three pages in our application will be displayed in response to a
GET request, so we need a way to determine which page is being requested.
This is a bit different from our Hello <name> application, where we knew
a GET request could only be for displaying the web form. One simple and
common solution is to add an action query-string variable to every request,
regardless of whether the GET or POST method is used, and give the variable
a value indicating the desired action or page. The request URLs will
therefore look something like index.php?action=contactUs to display the
contact details page and index.php?action=inquiryForm to display the
inquiry form page.

As we build our new site, we’ll be sure to present links to the user that
will pass such an action variable to the server with each GET request. We’ll
also set an action query-string variable to processForm when the inquiry
form is being submitted with the POST method. All the requests will go to
the index.php front-controller script, which simply has to detect the value of
the action variable to determine what to do. If no value for action is
received, or if the value isn’t recognized, the home page will be displayed
by default.

Notice that the different values for the action query-string variable can
also be seen in the URL address bars in Figure 13-3. The home page, which
is also the website root, is simply localhost:8000; the Contact Us page ends
with index.php?action=contact; and the Enquiry Form page ends with
index.php?action=enquiryForm.

Building a Multipage Application
We’ll now build a three-page web application like the one illustrated in
Figure 13-3. Create a new folder for this project, and create the public, src,
and templates subfolders inside it. We’ll follow the same directory structure
used for the simpler application earlier in the chapter. We’ll start by writing
the application’s front-controller script.

Creating the Front Controller
We’ll structure our public/index.php script around a straightforward PHP
switch statement (see Chapter 4) based on the value of the action query-
string variable. Listing 13-9 shows the script. It includes calls to some
functions we’ll write in a moment.

<?php

require_once '../src/controllerFunctions.php';

$action = filter_input(INPUT_GET, 'action');

switch ($action) {

 case 'contactUs':

 displayContactUs();

 break;

 case 'inquiryForm':

 displayInquiryForm();

 break;

 case 'processForm':

 processForm();

 break;

 default:

 displayHomePage();

}

Listing 13-9: The front-controller logic in index.php for a three-page website

The front controller reads in the function declarations in controller
Functions.php, then extracts the value of the action query-string variable
and passes it to a switch statement. The statement has cases for displaying
each of the pages (including the default case of displaying the home page),
as well as a case for processing the submitted inquiry form. Each case
simply calls a custom function that will handle the actual work of carrying
out the desired action, such as displayContactDetails() to show the
contact details page.

Designing the front controller around a switch statement makes it quite
simple to expand the application if necessary. To add another page to the
website, all we’d have to do is insert another case into the switch
statement, write a corresponding function in controllerFunctions.php, and
add a template for displaying the page to the templates folder. For more
complex websites, we could break things up even further by having
different collections of functions for different types of website actions. For
example, manager actions could be in a file named managerFunctions.php,
and so on.

Writing the Display Functions
Now we’ll write simple functions to display the three basic pages. Create
src/controllerFunctions.php containing the code in Listing 13-10.

<?php

function displayHomePage(): void

{

 require_once '../templates/homePage.php';

}

function displayContactUs(): void

{

 require_once '../templates/contactDetails.php';

}

function displayInquiryForm(): void

{

 require_once '../templates/inquiryForm.php';

}

Listing 13-10: The functions to display the three basic pages

Each of the functions uses a require_once statement to read in and
display the contents of the corresponding template file. (We’ll make those
template files next.) For example, the displayHomePage() function reads in
and displays the templates/homepage.php script.

Creating the Page Templates
We’ll now create the templates for the application’s various pages, starting
with the project’s home page in templates/homePage.php. Create the file as
shown in Listing 13-11.

<!doctype html><html><head><title>MGW Home Page</title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dis

t/css/bootstrap.min.css"

>

</head><body class="container">

<ul class="nav nav-pills"> ❶
 <li class="nav-item"><a class="nav-link active" href

="/">Home ❷
 <li class="nav-item"><a class="nav-link"

 href="/index.php?action=contact">Contact Us

 <li class="nav-item"><a class="nav-link"

 href="/index.php?action=inquiryForm">Inquiry Form

<h1>Welcome to MGW</h1>

<p>Great products at great prices!</p>

</body></html>

Listing 13-11: The homePage.php template

After linking to the Bootstrap stylesheet, we create a navigation bar at
the top of the page by using an unordered list with the Bootstrap nav and
nav-pills styles ❶. Each list item, styled with the nav-item class,
contains a link to one of the three pages. Each link is styled with the nav-
link class. The link for the currently displayed page (home) is also styled
with the active class so it will be highlighted ❷. Notice that we include an
action query-string variable in the hyperlinks for the Contact Us and
Inquiry Form pages. The hyperlink for the home page is simply a forward
slash (/). We could have used /index.php instead, but since the index.php
script loads by default, this isn’t necessary.

We can now copy our home-page script and alter its code to create the
contact details page in templates/contactUs.php, as shown in Listing 13-12.

<!doctype html><html><head><title>MGW: Contact Us</title>

<link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dis

t/css/bootstrap.min.css"

>

</head><body class="container">

<ul class="nav nav-pills">

 <li class="nav-item">Home</

a>

 <li class="nav-item"><a class="nav-link active"

 href="/index.php?action=contact">Contact Us

 <li class="nav-item"><a class="nav-link"

 href="/index.php?action=inquiryForm">Inquiry Form

<h1>MGW Contact Details</h1>

<p>email: info@my-great-website.com

 Phone: +353 1 888 2233

 Post: 198 Main Street, Dublin, Ireland

</p>

</body></html>

Listing 13-12: The contactUs.php template

We’ve kept the boilerplate HTML at the start of the file the same,
except for changing the page title and styling the Contact Us page link in
the navigation bar as active instead of the home-page link. Then we’ve
filled in some contact information for the body of the page.

Next, we’ll write the code for the inquiry form. Once again, start by
copying one of your other templates into a new templates/inquiryForm.php
file. Then change the page title and set the Inquiry Form link in the
navigation bar to active. Use the HTML code in Listing 13-13 to create the
inquiry form itself.

--snip--

<ul class="nav nav-pills">

 <li class="nav-item">Home</

a>

 <li class="nav-item"><a class="nav-link"

 href="/index.php?action=contact">Contact Us

 <li class="nav-item"><a class="nav-link active" ❶
 href="/index.php?action=inquiryForm">Inquiry Form

<h1>MGW Sales Inquiry</h1>

<form method="POST" action="/index.php?action=processForm">

❷
<div class="form-group">

 <label for="customerName">Your name</label>

 <input class="form-control" name="customerName" id="cust

omerName">

</div>

<div class="form-group">

 <label for="customerEmail">Email address</label>

 <input type="email" class="form-control" name="customerE

mail"

 id="customerEmail">

 <small class="form-text text-muted">

 We'll never share your email with anyone else.

 </small>

</div>

<div class="form-group">

 <label for="inquiry">Your inquiry</label>

 <textarea class="form-control" name="inquiry" id="inquir

y" rows="3"></textarea>

</div>

<input type="submit" value="Submit inquiry" class="btn btn-s

uccess">

</form>

Listing 13-13: The inquiryForm.php template

We make the Submit an Inquiry link active in the navigation bar ❶. We
declare the form with the POST method and define its action as /index.php?
action=processForm ❷, so when the form is submitted, it will pass an
action query-string variable with the value processForm. The rest of the
HTML adds form inputs for a customer name, an email address, and the
text of an inquiry (as a textarea input), plus a Submit button, all decorated
with more Bootstrap CSS classes.

Confirming Receipt of Valid Form Data
If the user enters valid data (we’ll just test for non-empty form fields for
this project), we’ll display a confirmation page stating that the inquiry has
been received and echoing the submitted values back to the user. One
simple way to do this is to present a similar form prefilled with the
submitted values, with each field set to disabled so the user can’t edit the
information and attempt to resubmit it.

Figure 13-4 shows an inquiry form complete with valid values (left)
and the corresponding read-only confirmation form page (right). Users will
understand that the page is read-only because the boxes are grayed out,
there isn’t a Submit button, and nothing happens when they click the mouse
cursor in the fields.

Figure 13-4: Comparing the form submission and confirmation pages

Enter the content in Listing 13-14 into a new template file called
templates/confirmData.php to create the valid form confirmation. Much of
the code can be copied from the inquiry form script inquiryForm.php.
You’ll also need to add our standard HTML head and navigation bar at the
beginning of the file.

--snip--

<h1>Inquiry received</h1>

<p>Thank you for your inquiry - we aim to respond within 2 w

orking days.</p>

<p>Data received:

<div class="form-group">

 <label for="customerName">Your name</label>

 <input class="form-control" name="customerName" value="

<?= $customerName ?>"

 id="customerName" disabled> ❶
</div>

<div class="form-group">

 <label for="customerEmail">Email address</label>

 <input type="email" class="form-control" name="customerE

mail"

 id="customerEmail" value="<?= $customerEmail ?>" dis

abled >

 <small class="form-text text-muted">

 We'll never share your email with anyone else.

 </small>

</div>

<div class="form-group">

 <label for="inquiry">Your inquiry</label>

 <textarea class="form-control" name="inquiry" rows="3" i

d="inquiry"

 disabled> <?= $inquiry ?></textarea>

</div>

Listing 13-14: The confirmData.php template

We use the PHP short echo tag to insert the value of the $customerName
variable into the customerName input field, setting the field to disabled so
it can’t be edited ❶. We use the same mechanism to show the received
$customerEmail and $inquiry values. We don’t need to add a <form>
element or a Submit button to this template page; we’re just echoing the
data back to the user, so this isn’t an interactive form.

Processing the Submitted Data
Let’s now write the processForm() function to receive the form data
submitted with the POST request and decide what to do depending on
whether the data is valid. Add the function shown in Listing 13-15 to the
end of the src/controllerFunctions.php file (although it doesn’t actually
matter in what order functions are declared in files like this).

--snip--

function processForm(): void

{

 ❶ $customerName = filter_input(INPUT_POST, 'customerName',

 FILTER_SANITIZE_SPECIAL_CHA

RS);

 $customerEmail = filter_input(INPUT_POST, 'customerEmai

l',

 FILTER_SANITIZE_EMAIL);

 $inquiry = filter_input(INPUT_POST, 'inquiry',

 FILTER_SANITIZE_SPECIAL_CHARS);

 ❷ $errors = [];

 if (empty($customerName)) {

 $errors[] = 'missing customer name';

 }

 if (empty($customerEmail)) {

 $errors[] = 'missing or invalid customer email';

 }

 if (empty($inquiry)) {

 $errors[] = 'missing inquiry message';

 }

 ❸ if (sizeof($errors) > 0) {

 require_once '../templates/displayError.php';

 } else {

 confirmData($customerName, $customerEmail, $inquir

y);

 }

}

Listing 13-15: A function to process the form data

First, we use three filter_input() calls ❶ to attempt to extract the
received POST form data for the three expected values. Notice that for the
two strings (name and inquiry), we use a FILTER_SANITIZE_SPECIAL_CHAR
filter as the third function argument, and we use FILTER_SANITIZE_EMAIL

for the customer email input. These filters remove any unsafe characters
submitted through the form, protecting against cross-site scripting (XSS)
attacks, where JavaScript code is submitted through forms to attempt to
gain entry to website data.

We next implement the array-based approach to data validation
discussed in Chapter 12. We declare $errors as an empty array ❷, then use
three if statements to test whether any of the received form variables are
empty, adding an appropriate error message to the array if necessary.
Finally, we test the size of the $errors array ❸, and if any errors have been
found, we display the file templates/displayError.php (which we’ll create
next). Otherwise, if the submitted data is all valid, we invoke the
confirmData() function, passing $customerName, $customerEmail, and
$inquiry as arguments. Listing 13-16 shows the code for this function.
Enter the code at the end of src/controllerFunctions.php.

function confirmData($customerName, $customerEmail, $inquir

y): void

{

 require_once '../templates/confirmData.php';

}

Listing 13-16: A function confirming valid data to the user

This function reads in and executes the templates/confirmData.php file.
As before, the function must take in the variables needed within the
template script as parameters.

Creating the Error Page
As a final step, we need to create the template file for a page displaying any
error messages to the user. Figure 13-5 shows this error page when all three
validation checks have failed.

Figure 13-5: The error page

Create a new file called templates/displayError.php containing the error
output script shown in Listing 13-17. Once again, you’ll have to also add
the standard HTML head and navigation bar code to the start of the script.

--snip--

<h1>Errors in data for inquiry form</h1>

❶ <div class="alert alert-danger" role="alert">

 Sorry, there was a problem with your form submission:

 ❷ <?php foreach ($errors as $error): ?>

 ❸ <?= $error ?>

 <?php endforeach; ?>

</div>

Listing 13-17: A displayError.php template

We set the CSS style of the page’s main <div> to the Bootstrap classes
"alert alert-danger" ❶, a typical website error style with a pink
background. Then we use a foreach loop with alternative syntax to cycle
through each message in the $errors array ❷ and display it as a list item
❸.

Summary
In this chapter, we’ve worked toward a well-organized and extensible web
application architecture, which we’ve applied to a multipage website
featuring both static pages and a web form. The architecture hinges on a
single public/index.php front-controller script, which at its core is a
straightforward switch statement deciding what to do based on the action
query-string variable sent with each incoming HTTP request. We’ve
delegated other, more granular logic to custom functions, which we’ve
safely declared outside the public folder in src/controllerFunctions.php.
Meanwhile, all the scripts that output HTML content to the user are located
in the templates folder. These scripts harness Bootstrap CSS to achieve
professional-looking formatting with minimal code.

Although this project has many more pages and features than the
previous form-processing projects from the last few chapters, none of our
scripts or functions are complex or long-winded, demonstrating that the
architecture we’ve adopted is suitable for more sophisticated websites,
while still being readily understandable and easy to maintain.

Exercises
1. Create a website containing four simple page templates (no forms): a

home page (home.php), an about page (about.php), a contact details
page (contact.php), and a customer recommendations page
(recommendations.php). These pages should be accessed from the index
page through the value of the action query-string parameter, like this:

index.php?action=home

index.php?action=about

index.php?action=contact

index.php?action=recommendations

Structure your project by using the front-controller architecture
demonstrated in this chapter and the functions declared in
src/controllerFunctions.php. You should have the following file
structure:

2. Using the front-controller architecture from this chapter, create a new
website with a home-page template (home.php), containing a link to a
staff login page. The staff login page template (loginStaff.php) should
display a standard username/password login form. The values for a
successful staff login are the username author and the password words.
If correct values are entered, display a staff login success page
(successStaff.php), but if the received username and password don’t
match the correct ones, display a login error page (loginError.php). The
error page should contain a link back to the home page.

The website pages should be accessed from the index page through
the value of the action query-string parameter, like this:

index.php?action=home

index.php?action=loginStaff

3. Copy and extend your solution for Exercise 2, adding a second login
page for clients (loginClient.php), with a link to this page also offered
on the home page. Values for the client login are the username customer
and the password paying. If correct client login values are received,
display a client login success page (successClient.php), but if the values
are invalid, display the login error page (loginError.php).

The website pages should be accessed from the index page through
the value of the action query-string parameter, like this:

index.php?action=home

index.php?action=loginStaff

index.php?action=loginClient

4. Copy and extend your solution for Exercise 3, placing the staff and
client login forms into the home page. The home page should contain
welcome text and two login forms, one for staff and one for clients.

5. Copy and extend your solution for Exercise 4, now offering a single
login form on the home page, but two Submit buttons: one for staff and
one for clients.

Hint: See Chapter 11 to review how to detect which of the two
Submit buttons has been clicked.

PART IV
STORING USER DATA WITH BROWSER

SESSIONS

14
WORKING WITH SESSIONS

This chapter introduces browser
sessions, which allow a web client and

server to remember user information over time.
When browsing an online store, for example, you
expect to be able to add items into a shopping cart
and for those items to be remembered a few minutes
later, or even across browser tabs. Similarly, if you
enter a username and password to access a web-based
email system, you expect your successful login to be
remembered as you click through pages to display
email, draft messages, and so on. Sessions make this
kind of memory possible.

This chapter discusses how to work with browser sessions in PHP,
including storing and retrieving values, and resetting or destroying sessions
entirely. We’ll develop a general pattern for writing code that uses sessions,
which will be applicable to most situations, such as shopping carts and
login authentication.

A Web Browser Session
A browser session is a temporary information exchange between a web
client, such as a browser or phone app, and a web server. A session begins
at a certain point in time and will terminate at a later point in time. Sessions
often begin when a user directs their web browser to a new website; the
browser and server agree on a unique session ID, and this ID will be used in
the subsequent HTTP requests and responses exchanged between the client
and server to indicate that they are all part of the same session. Figure 14-1
illustrates a web client making repeated requests by continuing to use the
session ID created after its first request.

Figure 14-1: Repeated requests from a web client, each including the same session ID

You can find the session IDs behind real-world web interactions by
using your browser’s developer tools to examine HTTP requests. For
example, Figure 14-2 shows the Amazon UK website agreeing on a session
ID with my web browser.

Figure 14-2: The Chrome browser tools showing a session ID from Amazon

Both the server and the client need to keep a record of the agreed-upon
session ID, since this unique token must be included in each HTTP request.
This way, when the server receives an incoming request, it can immediately
tell which session it belongs to out of the potentially thousands of sessions
the server might be tracking. The server also uses the session ID to store
and manage the data for each session, such as shopping carts, successful
logins, and so on. PHP web servers automatically create these session IDs,
and the PHP language provides several functions for working with sessions.
Web clients usually use an HTTP cookie to temporarily store session IDs.

Sessions can be ended in several ways, depending on the web server
settings, the PHP code, and sometimes additional JavaScript code running
on the web clients. Sessions are closed when the user quits the browser

application. Sessions can also be terminated by PHP server code, such as
when a user chooses to log out of their account. Some websites have
JavaScript running in the web browser to detect when the user closes or
navigates away from the website browsing tab, at which point the
JavaScript sends a message to the server requesting that the session be
ended.

Sessions might also time out; the server can set a time limit that starts
with the latest client request so that if no new request is received within the
designated time period, the server will automatically terminate the session.
Time-outs help keep sites secure: if a user walks away from their computer,
the session can time out and prevent a nonauthorized person from
continuing the authorized session. (Even with time-outs, though, logging
out or quitting the browser before walking away from your computer is
always a good idea.)

LOCALLY STORED SESSION COOKIES

An HTTP cookie, often just called a cookie, is a small piece of data stored on the
system that runs the client (for example, a laptop or mobile phone running a web
browser). Cookies can store temporary data such as the session ID, shopping cart
items, open pages or tabs, and authentication status (whether a user is logged in).

Cookies can also be used to store data for longer periods so certain information,
such as usernames, can be automatically prefilled into websites that are visited
frequently. Currently, almost all websites use cookies to track users’ behavior across
multiple sites and for long periods of time in order to deliver targeted advertising.
This has sparked concerns about privacy that are being addressed through various
laws around the world (especially in Europe), often requiring users to be informed of
and to give consent to the use of tracking cookies.

The session_start() and session_id() Functions
PHP provides the session_start() function, which starts a new session if
none currently exists, or renews an existing session if a valid session ID is
included in the received HTTP request. When renewing an existing session,
the function restarts the time-out timer. Although you rarely need to know
the unique session ID when writing PHP scripts, the language does provide
a function to retrieve it: session_id().

Listing 14-1 shows a two-statement PHP script that first calls session
_start() and then prints the value returned by session_id().

<?php

session_start();

print session_id();

Listing 14-1: Starting (or restarting) a session and printing its ID

If you run this script, the output will be a long string of letters and
numbers similar to d98rqmn9amvtf3cqbpifv95bdd. This is the unique
session ID generated by session_start() and retrieved by session_id().

NOTE
An alternative to using the session_start() function in your PHP code is
to enable automatic session starting through a configuration setting for the
PHP engine (session.auto_start = 1 in the php.ini file) or for the web
server (php_value session .auto_start 1 in .htaccess for Apache web
servers). However, when learning to use sessions or if your web hosting
makes configuration changes difficult, the best approach is to use the
session_start() function, as illustrated throughout this chapter.

The $_SESSION Superglobal Array
You don’t usually need to reference a specific session ID in your PHP code
to work with sessions. Instead, you primarily work with session data
through the built-in $_SESSION array. This is another of PHP’s superglobals,
like $_GET and $_POST that we met in Chapter 11.

The $_SESSION array holds data related to the current session using
string keys. This array is automatically provided by the PHP engine when
an HTTP request with a session ID is received from a client. It’s there so
PHP web programmers have a variable for storing any values that need to
be remembered for the current client’s session from one request to another.

One way to understand this is to consider that a typical web server
might be maintaining tens, hundreds, or thousands of $_SESSION arrays, one
for each session with each of the clients currently communicating with the

server. (Think of the thousands of people using eBay or Amazon at any
given time.) When the server executes a PHP script for a particular client
request that has been received (containing a unique session ID), the PHP
engine retrieves data stored on the server associated with that session ID
and puts it in the $_SESSION array for that copy of the script to work with.
(Many copies of the script may be being executed at any point in time, one
for each of the clients using the website.) This process allows that copy of
the script to remember any values from previous client/server interactions
during the session.

To see how this all works, let’s write a script that attempts to both store
and retrieve a value from the $_SESSION array. One common use of sessions
is to store login authentication tokens, so we’ll work with the username of
the currently logged-in user as an example. Listing 14-2 shows the code.

<?php

session_start();

$message = '(no username found in session)';

if (isset($_SESSION['username'])) {

 $message = 'username value in session = ' . $_SESSION['u

sername'];

}

$_SESSION['username'] = 'matt';

print $message;

Listing 14-2: Attempting to retrieve, then store, a value in the $_SESSION array

After (re)starting the session with session_start(), we store the
default string value (no username found in session) in the $message
variable. Then we use the isset() function to test whether any value can be
found in the $_SESSION array under the 'username' key. If a value is found,
we update $message with a new string including that value. Next, we store
the value 'matt' into $_SESSION['username']. This will overwrite any
existing value in the $_SESSION array for the 'username' key. Finally, we

print out whatever string is stored in $message. Figure 14-3 shows the result
of visiting this web page twice in a row.

Figure 14-3: Retrieving the username from the session on the second request

The first time the page is visited, no value is found in the session for
'username' at the time the if statement is executed, so the default message
is displayed. The second time the page is visited, however, the value 'matt'
that was stored to the $_SESSION array the first time through the script is
retrieved and displayed back. In this way, the session allows us to
remember a value from one execution of the script to the next.

Updating a Stored Value
One benefit of the $_SESSION array is that its values can be updated as
needed. For example, if you were using the session to keep track of a user’s
shopping cart, you’d need to make updates each time the user adds or
removes an item. We’ll explore that exact scenario in Chapter 15, but for
now we’ll consider a simpler example of updating a value in the $_SESSION
array: a hit counter that stores and displays the number of HTTP requests
made to a website. When personal websites first became popular, having
such a hit counter was common.

A caveat here: in reality, sessions aren’t an appropriate mechanism for
storing data from different website visitors or for storing values for time
periods of more than seconds or minutes. As we’ve discussed, a separate set
of data is stored for each user’s session, so a session-based hit counter can
count only the number of website visits made by the same user. Also,
sessions are terminated when the user quits the browser or the session times
out, so visiting the site later in the day (or on another day) will mean the
session-based hit counter will restart at 1, having “forgotten” the previous

visits. Still, a session-based hit counter is a helpful project for introducing
some of the core logic involved in session storage operations.

Figure 14-4 illustrates the counter we’re aiming to create. The first time
the page is visited, the counter is 1. Then, with each page refresh, the
previous total is remembered and incremented by one.

Figure 14-4: A hit counter incrementing after each page refresh

Listing 14-3 shows the public/index.php script needed to create the
session- based hit counter.

<link rel="icon" href="

NSUhEUgAAAAEAAAABC

AIAAACQd1PeAAAADElEQVQI12P4//8/AAX+Av7czFnnAAAAAElFTkSuQmC

C">

<?php

session_start();

❶ $pageHits = 0;

❷ if (isset($_SESSION['counter'])) {

 ❸ $pageHits = $_SESSION['counter'];

}

❹ $pageHits++;

❺ $_SESSION['counter'] = $pageHits;

❻ print "<p>Counter (number of page hits): $pageHits</p>";

Listing 14-3: Using a session variable to simulate a website hit counter

The first part of the script is HTML for a dummy favicon. Since
modern browsers will send an extra request for a favicon image if one isn’t
defined in the HTML received, adding this <link> element at the beginning
of the script keeps the browser happy and prevents it from making twice as
many requests, which would make the hit counter confusing.

This script hinges on the typical logic of first testing whether any value
exists in the session before attempting to retrieve and update it. We use a
local PHP variable called $pageHits to represent the number of page hits
when the script is executed, while we use the 'counter' key to store the
running total in the $_SESSION array. (The distinct names help avoid any
confusion between these two values.)

After starting the session, we set $pageHits to a default value of 0 to
represent the case when there’s no existing value stored in the session ❶.
Next, we test whether any value can be found in the $_SESSION array under
the 'counter' key ❷. If a value is found, we retrieve it from the array and
store it in the $pageHits variable, overwriting the default value ❸.

At this point, whether or not a value is found in the $_SESSION array,
we know we have an appropriate value in the $pageHits variable: either 0
or the running total of hits up to but not including the current page visit. In
either case, we add 1 to $pageHits to account for the current visit to the
page ❹. Then we store the updated value of $pageHits into the $_SESSION
array under the 'counter' key, either overwriting the key’s existing value
or creating it if this is the first page visit ❺. Finally, we output a message
stating the number of times the page has been visited ❻.

The flowchart in Figure 14-5 illustrates the general logic behind our
hit-counter script. You can correlate this flowchart with points ❶ through
❻ in Listing 14-3.

Figure 14-5: How to update (or set) a session variable

The logic in the flowchart generalizes to just about any work you may
need to do with session values. First, you set a variable to a default value in
the local script. Then you check whether a previously stored value can be
found in the $_SESSION array and use that to overwrite the default if
appropriate. Next, you update the local variable and store the updated value
back in the $_SESSION array. Usually, you’ll also want to do something with
the updated variable. This approach works whether it’s the beginning of the
session (meaning nothing is stored in the $_SESSION array) or the code is
being executed upon the second, third, or nth request during the session
(meaning a value is stored in the $_SESSION array from a previous run of
the script).

Unsetting a Value
At times you’ll want to remove a particular value stored in the session. As
we discussed in Chapter 8, you can delete a value from an array by using
the unset() function. This is different from setting an array element to
something like NULL, an empty string, or 0, since unsetting an element
removes any value associated with the string key. Using our hit-counter
example, we would remove any session value associated with the

'counter' key by calling unset($_SESSION['counter']). We might do
this, for example, if the page had a Reset button that cleared the hit counter.

Let’s implement such a Reset button now, as well as add a link to
revisit the hit-counter page (and therefore increment the counter). Figure
14-6 shows the page we’ll try to create.

Figure 14-6: The hit-counter page with revisit and reset links

To add this functionality, update your index.php script to match Listing
14-4.

<link rel="icon" href="

NSUhEUgAAAAEAAAABC

AIAAACQd1PeAAAADElEQVQI12P4//8/AAX+Av7czFnnAAAAAElFTkSuQmC

C">

<?php

session_start();

$action = filter_input(INPUT_GET, 'action');

if ('reset' === $action) {

 ❶ unset($_SESSION['counter']);

}

$pageHits = 0;

❷ if (isset($_SESSION['counter'])) {

 $pageHits = $_SESSION['counter'];

}

$pageHits++;

$_SESSION['counter'] = $pageHits;

?>

<p>Counter (number of page hits): <?= $pageHits ?>

<p>visit page again

❸ <p>(reset counter)

Listing 14-4: Adding a reset link to the hit counter

After (re)starting the session, we retrieve and test the value of the
'action' query-string variable. If its value is 'reset', we unset the
'counter' element in the $_SESSION array ❶. Then the script proceeds as
before. In the event that the user has clicked the Reset button and the
'counter' element was unset, it will be as if this element never existed, so
the isset() test ❷ will fail and the 'counter' element will end up with a
fresh value of 1 (after the default value of 0 is incremented).

At the end of the file, we add two links. The first is simply to revisit
index.php (and so increment the counter). The second link is also to
index.php but includes an 'action' query-string variable with a value of
'reset', which will trigger the script to reset the counter ❸.

Destroying the Session and Emptying the Session Array
Sometimes you might want to destroy the entire session and so invalidate
the session ID and delete all stored session data. The deletion may be a
security requirement, for example, since destroying a session should result
in the server session data being immediately destroyed rather than waiting
for a garbage-collection process (such as after a session time-out). That
said, completely destroying a session is generally not recommended, since
it may interfere with ongoing concurrent requests, such as asynchronous
JavaScript. If all you want to do is clear the $_SESSION array, you can do so
without entirely killing the session: use unset($_SESSION) or $_SESSION =
[] to turn $_SESSION into an empty array.

If you do need to completely destroy a session, take these steps:

1. (Re)start the session with session_start().
2. Set the $_SESSION array to an empty array.
3. If using cookies, invalidate (time out) the session cookie.
4. Destroy the PHP session by executing the session_destroy() function.

See the PHP documentation at
https://www.php.net/manual/en/function.session-destroy.php for more
information about this process.

Next, let’s add a link for killing the session to our hit-counter page.
Figure 14-7 shows the page with the added link, which passes the
action=kill query-string variable when the user wants to completely
destroy the session.

Figure 14-7: The hit-counter page with a new link to kill the session

To keep our index.php file from getting too complex, we’ll encapsulate
the code to kill the session in a separate function. Listing 14-5 shows the
code for this killSession() function; it implements steps 2 through 4 of
the session-killing process outlined previously (step 1 happens at the
beginning of the index.php file). Add a src/usefulFunctions.php file to your
hit-counter project and enter the code in the listing.

function killSession() {

 $_SESSION = [];

https://www.php.net/manual/en/function.session-destroy.php

 if (ini_get("session.use_cookies")) {

 $params = session_get_cookie_params();

 setcookie(session_name(), '', time() - 42000,

 $params["path"], $params["domain"],

 $params["secure"], $params["httponly"]

);

 }

 session_destroy();

}

Listing 14-5: A function for killing a session

The function starts by setting $_SESSION to an empty array (step 2) and
ends by calling session_destroy() (step 4). In between, the if statement
implements step 3 of the session-killing process: invalidating the session
cookie. For this, we check whether cookies are in use, then change the
cookie with the current session name to an empty string, also setting an
expiring time that’s in the past (time() - 42000), effectively deleting the
cookie.

With the killSession() function declared, update the public/index.php
script as shown in Listing 14-6 in order to offer a kill-session link to the hit-
counter page.

<link rel="icon" href="

NSUhEUgAAAAEAAAABC

AIAAACQd1PeAAAADElEQVQI12P4//8/AAX+Av7czFnnAAAAAElFTkSuQmC

C">

<?php

require_once __DIR__ . '/../src/usefulFunctions.php';

session_start();

$action = filter_input(INPUT_GET, 'action');

❶ switch ($action) {

 case 'reset':

 unset($_SESSION['counter']);

 break;

 case 'kill':

 killSession();

 break;

}

$pageHits = 0;

if (isset($_SESSION['counter'])) {

 $pageHits = $_SESSION['counter'];

}

$pageHits++;

$_SESSION['counter'] = $pageHits;

?>

❷ <p>Session ID = <?= session_id() ?>

<p>Counter (number of page hits): <?= $pageHits ?>

<p>visit page again

<p>(reset counter)

<p>(kill session)

Listing 14-6: Adding a kill-session link to the hit-counter page

First, we read in the declaration of the killSession() function from its
source file. Then, since we need to check for multiple values of the
'action' query-string variable, we use a switch statement ❶ to decide
how to process the incoming HTTP request. If the action is 'reset', we
unset the 'counter' key of the $_SESSION array as before, or if the action is
'kill', we invoke killSession(). In the HTML at the end of the script,
we add a kill-session link that passes the action=kill query-string variable
to index.php. We also add a line displaying the current session ID to prove
that the session is indeed being destroyed ❷; if you click the kill-session

link, this field should come up blank, in addition to the hit counter resetting
to 1.

Summary
This chapter introduced you to sessions, which provide a mechanism for a
web server to remember information about a user across multiple HTTP
requests. You learned how to start a session with session_start(), how to
store and update values in the $_SESSION superglobal array, and how to
clear values from this array or destroy a session entirely. We outlined a
basic pattern for working with session data, whereby you first set a default
value, then overwrite this default with a value from the $_SESSION array (if
one exists) before updating the value and storing it back in the array.

Exercises
1. Visit a website where you think sessions are being used, such as an e-

commerce website with a shopping cart feature or a site with a login
page. Use your browser developer tools to find the session ID that has
been agreed upon by the server and client and is being stored as a
cookie on your client device.

2. Write a PHP script that looks in the $_SESSION array for a value with the
key 'guess'. If it isn’t found, store 0 for this key and display a message
to the user stating no previous value was found. If a value is found in
the session, add a random number from 1 to 10 to that value. Store the
result back in the $_SESSION array and display it to the user.

3. Write a script to display a form that has a text box in which the user can
enter a number, along with two Submit buttons. One Submit button
should take the value from the text box and store it in the session. The
second button should simply display the current value stored in the
session, or a message stating no value was found in the session, as
appropriate.

15
IMPLEMENTING A SHOPPING CART

When browsing an online store, you
expect to add items to a shopping cart

and for them to be remembered until you’re ready to
check out and pay. This is an extremely common
requirement, so in this chapter we’ll focus on building
an application with a shopping cart. In the process,
you’ll learn how to work with sessions in a more
sophisticated way, storing and updating whole arrays
within the $_SESSION superglobal. We’ll also continue
our efforts to encapsulate the core logic for user
actions into separate functions coordinated by a front-
controller script, yielding a well-organized, easy-to-
maintain application structure.

A shopping cart is basically a way to record which products and what
quantities a user has selected. Our website therefore needs to show a list of
products as well as enable the user to add items to their shopping cart and
view its contents. We should also offer a way to edit the shopping cart,

allowing the user to change quantities, remove items, or empty the cart
altogether. As an example, Figure 15-1 shows an Amazon shopping cart with
a few items.

Figure 15-1: An e-commerce shopping cart

Notice that the cart displays the cost of the individual items as well as a
total cost of the entire order. The Amazon shopping cart page also offers
ways to change the quantity of each item and to delete items from the cart.
We’ll emulate all these features in our own shopping cart.

The Shopping Cart File Structure
Our shopping cart web application will span several files, including an
index.php front-controller script, a functions.php file declaring various
useful functions, a collection of template scripts, and other supporting files.
The complete structure for the project will ultimately be as follows:

For now, start a new PHP project, create the necessary folders, and copy
the image files (banana.png, pineapple.png, and so on) from the book’s
provided resource files into the public/images folder. With that, we’re ready
to start building the application. The book resource files and exercise
solutions can be found at https://github.com/dr-matt-smith/php-crash-
course.

Defining the Product List
Before we create the shopping cart itself, we’ll begin by building a list of
products for the user to choose from. We’ll use an array to store the products
available in our online shop. (Normally, product information would be
stored in a database instead, but we won’t be covering these until Part VI.)
In addition to the product array, we’ll use a second array stored in the
session to keep track of the contents of each user’s shopping cart. You
learned to loop through an array of products to automatically generate links
featuring the product IDs in Chapter 11 (see Listing 11-11 on page 214).
We’ll do something similar here.

Figure 15-2 shows the product list page we’ll create. As usual, we can
use a little Bootstrap to help produce a professional-looking page with
minimal CSS.

https://github.com/dr-matt-smith/php-crash-course
https://github.com/dr-matt-smith/php-crash-course

Figure 15-2: A page showing the list of products

We’ll have five products on our site. Table 15-1 lists the data values we
need to store for each product.
Table 15-1: Product Details
Attribute Value of attribute per product

ID 010 025 005 021 002

Name Sandwich Slice of
cheesecake

Pineapple Jelly donut Banana

Description A filling,
savory
snack of
peanut
butter and
jelly.

Treat yourself to a
chocolate-
covered
cheesecake slice.

A piece of
exotic fruit.

The best type
of donut —
filled with
sweet jam.

The basis
for a good
smoothie
and high in
potassium.

Price 1.00 2.00 3.00 2.50 0.50

Stars 4 5 2 3 5

Image peanut
_butter.png

chocolate_cheese
_cake.png

pineapple.png jellydonut.png banana.png

Notice that each product has a unique ID, name, description, price, star
rating (from 1 to 5), and associated image filename. To implement all of
this, we’ll create a $products array that contains an element for each
product, using the product IDs as keys. Each product in the array is itself an

array with keys for each attribute, such as 'name', 'description', 'price',
and so on.

Creating the Products Array
Listing 15-1 shows how to declare each product array element to store its
data values, creating elements for the first two products. Enter this code into
public/index.php.

<?php

$products = [];

$products['010'] = [

 'name' => 'Sandwich',

 'description' =>

 'A filling, savory snack of peanut butter and jelly.',

 'price' => 1.00,

 'stars' => 4,

 'image' => 'peanut_butter.png'

];

$products['025'] = [

 'name' => 'Slice of cheesecake',

 'description' =>

 'Treat yourself to a chocolate-covered cheesecake slic

e.',

 'price' => 2.00,

 'stars' => 5,

 'image' => 'chocolate_cheese_cake.png'

];

--snip--

Listing 15-1: Declaring the first two products in index.php

First, we create a new, empty array called $products. Then we use
$products['010'] to append a new element to the end of $products,
indexed with the key '010'. This new element is set to an array containing
the properties for the peanut butter and jelly sandwich. We then append
another element to $products with the key '025', containing an array with
the properties for the cheesecake slice.

Using these first two products as a model, add the code declaring array
elements for the remaining three products from Table 15-1. Be sure to use
strings containing the products’ IDs as array keys.

Adding CSS
We’ll need a little CSS to style the product list page, so create the
public/css/products.css file containing the contents of Listing 15-2.

.glyphicon-star {

 ❶ color: goldenrod;

 font-size: 150%;

}

.glyphicon-star-empty {

 ❷ color: darkgray;

 font-size: 150%;

}

❸ .product img {

 width: 100%;

}

❹ .price {

 font-size: 1.5rem;

 font-weight: bold;

}

Listing 15-2: The CSS to style the product list in css/products.css

We first style the stars that represent the product’s ratings. We use
Bootstrap Glyphicon stars. Filled stars will be gold ❶, and disabled stars
will be gray ❷. Then we set the product images to fill (100%) the available
horizontal spaces (for dynamically flexed blocks) ❸. I’ve used an image
editor to make all images the same size for a consistent, professional look
and feel. We also set the prices to be larger than normal text (1.5) and bold
❹. This will apply to prices both on the product list page and in the
shopping cart itself.

Displaying the Star Ratings
Next, we’ll write a PHP function that will return a string containing the
HTML and CSS classes for a given number of stars. Create and complete
the PHP script src/functions.php, based on the contents of Listing 15-3.

<?php

function starsHtml($stars): string

{

 $s = '';

 switch ($stars) {

 case 0:

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 break;

 case 1:

 $s .= '</s

pan>';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 break;

 case 2:

 $s .= '</s

pan>';

 $s .= '</s

pan>';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 $s .= '<span class="glyphicon glyphicon-star-empt

y">';

 break;

--snip--

 // Fill in the rest up to case 5.

 }

 return $s;

}

Listing 15-3: A function to output gold and gray stars

To keep our code simple, we’ve created a reusable function to return the
HTML needed to display a given number of filled gold stars (set with the
function’s $stars parameter) while displaying the remaining (disabled) stars
as gray. We use a switch statement to handle each possible star rating from
0 to 5. (I’ve shown cases 0 through 2; you can fill in the remaining cases.)
We display each Bootstrap Glyphicon star character by using an HTML
 element, with the CSS class glyphicon glyphicon-star for a filled
gold star or glyphicon glyphicon-star-empty for a gray star. We could
also implement this starsHtml() function by using some kind of loop, but
the switch statement is more straightforward to follow.

Creating the Template Script
We now need to write the template script for the product list page. It will
loop through the $products array, decorating the data for each product with
the appropriate HTML. (For this to work, the $products array must already
have been created in the calling script before the template script itself is
executed; we’ve done this in Listing 15-1.) Create templates/list.php and
enter the contents of Listing 15-4.

<!doctype html>

<html>

<head>

 <title>Shopping site: Product List</title>

 <link rel="stylesheet" href="/css/products.css">

 <link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/

dist/css/bootstrap.min.css">

 <link rel="stylesheet"

 href="https://netdna.bootstrapcdn.com/bootstrap/3.

0.0/css/bootstrap-glyphicons.css">

</head>

<body class="container">

<h1>List of Products</h1>

<div class="row">

<?php

foreach ($products as $id => $product): ❶
 $price = number_format($product['price'], 2); ❷
?>

 <div class="product col-md-2 text-center">

 <img src="/images/<?= $product['image'] ?>" alt="<?=

$product['name'] ?>"> ❸
 <?= starsHtml($product['stars']) ?> ❹
 <h1 class="fs-5"><?= $product['name'] ?></h1>

 <div class="price">

 $ <?= $price ?>

 <form method="post" action="/?action=addToCart&id

=<?= $id ?>"

 style="display: inline"> ❺
 <button class="btn btn-primary btn-sm">Add To

Cart</button>

 </form>

 </div>

 <div>

 <?= $product['description'] ?> ❻

 </div>

 </div>

<?php endforeach; ?>

</div>

</body>

</html>

Listing 15-4: The list.php template

We use three <link> elements to load the Bootstrap CSS styles and
glyphs, plus our custom products.css stylesheet in the css folder. Then we
declare a PHP foreach loop to iterate through the $products array, one
product at a time ❶. On each iteration, the loop extracts the array containing
details about the current product (with elements indexed by 'name',
'price', 'stars', and 'image'), and names that array $product. The
foreach syntax $products as $id => $product also means that the key
for the current array element (a string containing the current product ID) will
be available in the $id variable. This will become important because our
shopping cart logic needs to know the ID of each product so it can display
and modify the cart contents.

Inside the loop, we create a $price variable containing the value of the
'price' element of the current product array, formatted to two decimal
places with the number_format() function ❷. Next, we create an HTML
 element that uses the image filename stored in $product['image'] to
create the path to the appropriate image file in the public images folder (for
example, images/banana.png) ❸. We then pass the integer number of stars
($product['stars']) to the starsHtml() function so the appropriate
HTML for the five gold and gray stars will be output ❹.

Still in the foreach loop, we set the name of the product as a level 1
heading styled with the fs-5 Bootstrap CSS class for smaller text. We then
create a <div> styled with the price CSS class (defined in our
css/products.css file). This <div> displays the price of the current product,
along with a form containing a button labeled Add to Cart. Once we’ve
added shopping functionality, clicking this button will add the ID of the
current product to the shopping cart via a POST HTTP request. The form
passes two query-string parameters: action with a value of addToCart and

id with a value of the current product ID ❺. Finally, we display the
product’s text description in its own <div> styled with the fs-6 Bootstrap
CSS class for small text ❻, before closing the foreach loop.

Updating the Index Script
To complete our product list, we need to add require_once statements to
the index.php script so it can access code from other parts of the project.
Update public/index.php as shown in Listing 15-5.

<?php

require_once __DIR__ . '/../src/functions.php';

$products = [];

$products['010'] = [

 'name' => 'Sandwich',

--snip--

require_once __DIR__ . '/../templates/list.php';

Listing 15-5: Reading the function declarations and template script into index.php

We use require_once to read in the function declaration file, which
gives the page template access to the starsHtml() function. Then, at the end
of the script, we read in the template script to display the product list page.
Because we declare the $products array in between, the template will have
access to this too. At this point, if you run the PHP web server (php -S
localhost:8000 -t public) and visit the home page in a web browser, you
should see the list of products, as shown earlier in Figure 15-2.

Designing the Shopping Cart
Now let’s create a shopping cart display page, so users will have a way to
view their cart. In “Implementing Cart-Manipulation Functions” on page
293, we’ll implement the logic for adding to, deleting from, and changing
the quantities of the shopping cart contents. Figure 15-3 shows the shopping
cart page we’ll create.

Figure 15-3: The shopping cart page

We’ll need to display a row for each product in the cart, along with the
unit price, the quantity in the cart, and the subtotal for each product. Each
item also needs + and - buttons to incrementally change the quantity of the
product by plus or minus 1, and a red Remove button to completely remove
that product from the cart. We’ll have a final row beneath the products
displaying the total cost of all items in the cart.

Creating the Front Controller
Since the shopping cart will be our second display page, we need to
introduce front-controller logic to public/index.php to select the appropriate
template to display. We’re going to offer two navigation links at the top of
each page: List of Products (href="/") and Shopping Cart (href="/?
action=cart"). The front controller can therefore check for an action
query-string variable with a value of cart to determine which page the user
is requesting. Delete the require_once statement currently at the end of
public/index.php and replace it with the code in Listing 15-6.

--snip--

// Default is product list page

$page = 'list.php';

// Try to find "action=cart" in query-string variables

$action = filter_input(INPUT_GET, 'action');

if ('cart' == $action){

 // If found, change template file to be displayed

 $page = 'cart.php';

}

// Read in and execute the $page template

❶ require_once __DIR__ . "/../templates/$page";

Listing 15-6: Deciding which template to display at the end of index.php

This code creates a $page variable whose value is the name of a
template file. We incorporate whatever value $page has into the
require_once statement at the end of the script to display the appropriate
template ❶. We have just two templates to choose from: the product list
(list.php) and the shopping cart (cart.php, which we’ll write shortly). By
default, we first set $page to the product list template. Then we retrieve a
value for the action variable from the query-string parameters, and if it’s
found to be cart, we change $page to the shopping cart template.

In “Writing the switch Statement” on page 297, we’ll expand on the
front- controller logic to account for all the actions users can take on the
shopping cart page. For now, though, Listing 15-6 has all the front-controller
logic we need in order to view the cart.

Managing the Product and Cart Arrays
We’ll represent the contents of the shopping cart by using a $cartItems
array whose keys are product IDs and whose values are the quantities of
those products in the cart. We don’t need to store additional product
information, such as prices, in this array, since we can use the product IDs to
retrieve the other details from the source of our product data, the $products
array.

Ultimately, we’ll be reading the contents of the shopping cart array from
the session, but for now, we’ll hardcode an array of cart items for testing
purposes. This is a common approach when developing a new feature: you
hardcode initial data so you can write scripts to work with data for the new

feature, and then once that’s all working, you make the source of the data
dynamic (for example, coming from the session or a database).

To keep our index.php script from getting too complicated, we’ll write a
separate function that returns the array of items currently in the shopping
cart. Add the getShoppingCart() function shown in Listing 15-7 to the end
of the src/functions.php file.

function getShoppingCart(): array

{

 $cartItems = [];

 $cartItems['010'] = 2; // 2 sandwiches

 $cartItems['005'] = 4; // 4 pineapples

 return $cartItems;

}

Listing 15-7: The getShoppingCart() function

The getShoppingCart() function creates and returns the contents of the
$cartItems array. Each element in the array has a product ID string that acts
as its key (in this hardcoded example, '010' and '005' for the sandwich and
pineapple products, respectively). The value of each element is the quantity
of that product in the cart (two sandwiches and four pineapples).

While we’re at it, let’s also move all the code declaring the $products
array from index.php into a getAllProducts() function. Again, this will
help keep the index script from becoming too complex. Copy the code you
created in Listing 15-1 from public/index.php and paste it at the end of the
src/functions.php script, as shown in Listing 15-8. To embed the code within
a function, you’ll also need to add the lines shown in black.

function getAllProducts(): array

{

 $products = [];

 $products['010'] = [

 'name' => 'Sandwich',

 'description' =>

 'A filling, savory snack of peanut butter and jell

y.',

 'price' => 1.00,

 'stars' => 4,

 'image' => 'peanut_butter.png'];

 $products['025'] = [

 'name' => 'Slice of cheesecake',

 'description' =>

 'Treat yourself to a chocolate-covered cheesecake sli

ce.',

 'price' => 2.00,

 'stars' => 5,

 'image' => 'chocolate_cheese_cake.png'];

 $products['005'] = [

 'name' => 'Pineapple',

 'description' =>

 'A piece of exotic fruit.',

 'price' => 3.00,

 'stars' => 2,

 'image' => 'pineapple.png'];

 $products['021'] = [

 'name' => 'Jelly donut',

 'description' =>

 'The best type of donut - filled with sweet jam.',

 'price' => 4.50,

 'stars' => 3,

 'image' => 'jellydonut.png'];

 $products['002'] = [

 'name' => 'Banana',

 'description' =>

 'The basis for a good smoothie and high in potassiu

m.',

 'price' => 0.50,

 'stars' => 5,

 'image' => 'banana.png'];

 return $products;

}

Listing 15-8: The getAllProducts() function

This function builds up the $products array and then returns it,
allowing the array to be used in public/index.php.

Streamlining the Index Script
We can now update our index.php script to make use of the new
getAllProducts() and getShoppingCart() functions. If you haven’t
already, delete the code building the $products array from the index.php
script. Then update the file by adding the statements shown in Listing 15-9.

<?php

require_once __DIR__ . '/../src/functions.php';

$products = getAllProducts();

$cartItems = getShoppingCart();

// Choose page to display

$page = 'list.php';

$action = filter_input(INPUT_GET, 'action');

if ('cart' == $action) {

 // If found, change template file to be displayed

 $page = 'cart.php';

}

require_once __DIR__ . "/../templates/$page";

Listing 15-9: The simplified index.php script

We now use the getAllProducts() and getShoppingCart() functions
declared in src/functions.php to create the $products and $cartItems
arrays. The arrays are therefore available to whichever template script is
invoked in the final require_once statement.

Creating a Header Template
When we write a display template for the shopping cart, much of its page
header content will be the same as that of the product list page. To simplify
both the cart and product display templates, we’ll put all the common
HTML content into a separate template file named templates/_header.php.

This name follows the common convention of using an underscore to
prefix the name of a partial template (a file that renders only part of a page
and is shared by several other templates). This convention enables you to
quickly identify partial templates within a folder, so you can ignore them
when you’re looking for a particular full template file.

Copy the code from templates/list.php, paste it into a new
templates/_header.php file, and update the code as shown in Listing 15-10.

<!doctype HTML>

<html>

<head>

 <title>Shopping site: <?= $pageTitle ?></title> ❶

 <link rel="stylesheet" href="/css/products.css">

 <link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/

dist/css/bootstrap.min.css">

 <link rel="stylesheet"

 href="https://netdna.bootstrapcdn.com/bootstrap/3.

0.0/css/bootstrap-glyphicons.css">

</head>

<body class="container ">

 <nav>

 List of Products

 Shopping Cart

 </nav>

 <h1><?= $pageTitle ?></h1> ❷

Listing 15-10: The common page header content in _header.php

The header template uses a $pageTitle variable, which will need to be
defined in each script that requires this header template. The variable
appears twice: in the required HTML title in the <head> element ❶ and as a
level 1 HTML heading in the body of every page ❷. In between, we add a
simple navigation list with two links, one to show the product list and one to
display the shopping cart.

We can now remove all that common header content from our product
list page (templates/list.php). Listing 15-11 shows the updated, simplified
contents of the template.

<?php

 $pageTitle = 'List of products';

 require_once '_header.php';

?>

<div class="row">

<?php

foreach ($products as $id => $product):

 $price = number_format($product['price'], 2);

?>

 <div class="product col text-center">

--snip--

Listing 15-11: The simplified list.php template

We use a PHP code block to set a value for $pageTitle and read in the
_header.php template to create the page header. The remainder of the file is
just as before: a single <div> styled as a Bootstrap row, and a foreach loop
to add column divs for each product.

Creating the Cart Display Template
We’re now ready to write the template for displaying the items in the
shopping cart. This script will loop through and display each product in the
$cartItems array, calculate a subtotal for each product, and find the overall
total for the complete shopping cart. The script is quite long, so we’ll discuss
it in sections.

The first part of the script accesses the common HTML page header
code and sets up headings for each column in the cart display. Create a new
templates/cart.php file and enter the code in Listing 15-12.

<?php

 $total = 0;

 $pageTitle = 'Shopping Cart';

 require_once '_header.php';

?>

❶ <div class="row">

 <div class="col-2 fw-bold text-center">

 Image

 </div>

 <div class="col-4 fw-bold">

 Item

 </div>

 <div class="col fw-bold text-right">

 Price

 </div>

 <div class="col-3 fw-bold text-center">

 Quantity

 </div>

 <div class="col fw-bold text-right">

 Subtotal

 </div>

 <div class="col fw-bold">

 Action

 </div>

</div>

Listing 15-12: The first part of the cart.php template: setting up the cart display

First, we zero the $total variable; this will eventually hold the grand
total of all items in the shopping cart. Then we set the $pageTitle variable
and read in the header template, just as we did on the product list page. We
then create a row of column headers ❶ identifying the Image, Item, Price,
Quantity, Subtotal, and Action columns. We use the Bootstrap 12-column
layout, making the image (col-2), item (col-4), and quantity (col-3)
columns wider than the price, subtotal, and action columns (which default to
1/12 page-width columns).

The workhorse section of the shopping cart display script is a loop
through the $cartItems array. For each product in the array, we’ll display
the product’s image, name, description, unit price, quantity, and subtotal.
Within the loop, we’ll also create form buttons for changing the quantity and
removing the product completely from the shopping cart. Listing 15-13
shows the main PHP code block at the beginning of the loop.

<?php

foreach ($cartItems as $id => $quantity):

 ❶ $product = $products[$id];

 $price = $product['price'];

 ❷ $subtotal = $quantity * $price;

 // Update total

 ❸ $total += $subtotal;

 // Format prices to 2 d.p.

 $price = number_format($price, 2);

 $subtotal = number_format($subtotal, 2);

?>

Listing 15-13: The second part of the cart.php template: the item loop

The loop will continue in Listing 15-14 with all the HTML column <div>
elements needed to display each cart item.

Within a PHP code block, we start a foreach loop through the
$cartItems array, setting $id to equal the current array element key and
$quantity to equal the current element value. Since $id also corresponds to
a key in the $products array, we use it to retrieve all product details for the
current shopping cart item, storing them in the $product variable ❶. We
then extract the price of the product into $price and multiply it by
$quantity to get the subtotal for the cart item ❷. Next, we add the subtotal
for the current cart item to the grand total ($total) ❸. This grand total will
accumulate over the course of the loop. Finally, we format both $price and
$subtotal to be numbers with two decimal places, since they represent
currency values.

Listing 15-14 shows the rest of the foreach loop, where we lay out the
HTML needed to display each cart item.

<div class="row border-top"> ❶

 <div class="col-2 product text-center"> ❷
 <img src="/images/cart/<?= $product['image'] ?>" alt

="<?= $product['name'] ?>">

 </div>

 <div class="col-4"> ❸
 <h1><?= $product['name'] ?></h1>

 <div>

 <?= $product['description'] ?>

 </div>

 </div>

 <div class="col price text-end align-self-center"> ❹
 $ <?= $price ?>

 </div>

 <div class="col-3 text-center align-self-center"> ❺
 <form action="/?action=changeCartQuantity&id=<?= $id

?>" method="post">

 <button type="submit" name="changeDirection" valu

e="reduce"

 class="btn btn-primary btn-sm">

 </spa

n>

 </button>

 <?= $quantity ?>

 <button type="submit" name="changeDirection" valu

e="increase"

 class="btn btn-primary btn-sm">

 </span

>

 </button>

 </form>

 </div>

 <div class="col price text-end align-self-center"> ❻
 $ <?= $subtotal ?>

 </div>

 <div class="col align-self-center"> ❼
 <form action="/?action=removeFromCart&id=<?= $id ?>"

method="post">

 <button class="btn btn-danger btn-sm">

 </sp

an>

 Remove

 </button>

 </form>

 </div>

</div>

<?php endforeach; ?> ❽

Listing 15-14: The third part of the cart.php template: the item <div> elements

We start a new <div>, which will be a row for the current shopping cart
item in the foreach loop ❶. Then we display a <div> containing an HTML
image tag for the current product’s image, getting the image filename from

the value of $product['image'] ❷. The image is centered and also styled
with the product CSS class (from our products.css) so that the image is
sized to fit the <div> (size: 100%). For cart product display, we have a
different (smaller) image with the same name, so the URL for the image
references the cart subfolder of the images folder: /images/cart/<?=
$product['image'] ?>.

We next create a <div> displaying the product name
($product['name']) as a level 1 heading, along with the text description of
the product ($product['description']) ❸. Then we display the two-
decimal-place value stored in $price in a <div> styled with the Bootstrap
align-self-center class to vertically center the content in the row, with
text aligned to the right (text-end) and with the price CSS class (bold and
larger text) from our products.css stylesheet ❹.

The next <div> displays the quantity for the current cart item ❺. This is
actually an HTML form, with two buttons (a minus and a plus) and the
$quantity variable displayed. The form uses the POST method (since we’re
changing content on the server) and passes two query-string parameters:
action=changeCartQuantity and the ID of the product (id=<?= $id ?>).
Later in the chapter, we’ll add more logic to our index.php script to
recognize this new value of the action parameter and process a change of
quantity. For the buttons, we use a minus-sign Glyphicon symbol (Bootstrap
CSS class glyphicon-minus) with the name changeDirection and the value
reduce, and a plus-sign Glyphicon, also with the name changeDirection
but with the value increase.

Next, we display the value of $subtotal. Once again we format its
<div> with our price CSS class because it is a currency value, and we align
the text to the right (text-end) ❻. Then we output another vertically
centered <div> with text aligned to the right (text-end) that presents a
button for the user to remove the item completely from the shopping cart ❼.
This is another form submitting with the POST method. It sends two query-
string variables: action=removeFromCart and the ID of the current item
(id=<?= $id ?>). The form offers the user a button consisting of a cross
Glyphicon followed by the word Remove. Again, later in the chapter, we’ll

add more logic to our index.php script to handle removing an item from the
shopping cart. And with that, we end our foreach loop ❽.

Listing 15-15 shows the final part of the templates/cart.php script. This
section of the code displays the grand total.

<div class="row border-top">

 <div class="col-11 price text-end">

 <?php

 $total = number_format($total, 2);

 ?>

 $ <?= $total ?>

 </div>

 <div class="col fw-bold ">

 Total

 </div>

</div>

</body>

</html>

Listing 15-15: The final part of the cart.php template: showing the total

This code outputs a final row, displaying two <div> elements. One
gives the cart total ($total), formatted to two decimal places. The other
outputs just the word Total. The div to display the total is made wide
enough to cover all the missing columns to its left by using the Bootstrap
class col-11, and since the value is a currency, it’s again styled with the
price CSS class defined in the products.css stylesheet file.

We’ve now achieved a two-page website. One page displays a list of
products from data stored in the $products array. The second page displays
the contents of a shopping cart by using the $cartItems array.

Interacting with the Session
Up to this point, we’ve used a hardcoded function to always return the same
shopping cart contents. Now we’ll modify the application to work with a
dynamic, interactive shopping cart stored in the $_SESSION array so that the

cart contents can be remembered over the course of the browser session. In
the process, we’ll implement functions to modify the contents of the cart.

Updating the Cart-Retrieval Function
To work with dynamic shopping cart data, we must first update the
getShoppingCart() function to retrieve the shopping cart contents from the
session. As we explored in Chapter 14, before we attempt to retrieve a value
from the session, we should set a default value in case nothing is found. Our
default case will be an empty shopping cart array.

Listing 15-16 shows the updated getShoppingCart() code. This
function replaces the previous one in src/functions.php.

function getShoppingCart(): array

{

 // Default is empty shopping cart array

 $cartItems = [];

 if (isset($_SESSION['cart'])) {

 $cartItems = $_SESSION['cart'];

 }

 return $cartItems;

}

Listing 15-16: A function to retrieve the cart array from the session

We set $cartItems to the default value of an empty array. Then we use
isset() to test whether a value can be found in the $_SESSION array for the
'cart' key. If an element exists for this key, its value is copied into the
$cartItems variable. Finally, the function returns the contents of
$cartItems.

Implementing Cart-Manipulation Functions
Next, we’ll implement functions to manipulate the contents of the cart. First,
to add an item to the shopping cart stored in the $_SESSION array, we need a
function that will add a new element to the array with the product ID as the
key and a quantity of 1 as the value. If $_SESSION doesn’t contain a current

shopping cart array, this same function should create a new one containing
one element. We’ll achieve this by adding a new function to
src/functions.php, as shown in Listing 15-17.

function addItemToCart($id): void

{

 $cartItems = getShoppingCart();

 $cartItems[$id] = 1;

 $_SESSION['cart'] = $cartItems;

}

Listing 15-17: A function to add a new product to the cart

The function takes an $id parameter representing the ID of the item
being added to the cart. We first store the current shopping cart array in the
$cartItems variable by calling our getShoppingCart() function. Then we
add a new element to $cartItems, with the key of the $id parameter and a
value of 1 (the quantity of this product in the cart). Finally, we store the
updated $cartItems array in $_SESSION, overwriting the previous
$_SESSION['cart'] array if one existed.

Removing a product completely from the shopping cart is similar to
adding an item. We’ll add a new removeItemFromCart() function to
src/functions.php, as shown in Listing 15-18.

function removeItemFromCart($id): void

{

 $cartItems = getShoppingCart();

 unset($cartItems[$id]);

 $_SESSION['cart'] = $cartItems;

}

Listing 15-18: A function to remove a product from the cart

Once again, the function takes in an $id parameter and starts by getting
the array of items in the shopping cart. Then we use unset() to remove the
element with the specified ID from the $cartItems array. As before, we

finish by storing the updated array in the session, overwriting the previous
array.

Next, we’ll write a getQuantity() function to look up the current
quantity of a given product in the shopping cart array. This function, shown
in Listing 15-19, will help us write other functions for increasing and
decreasing the quantity of a product in the cart.

function getQuantity($id, $cart): int

{

 if (isset($cart[$id])) {

 return $cart[$id];

 }

 // If $id not found, then return zero

 return 0;

}

Listing 15-19: A function to check the quantity of a product

This function takes in the desired product ID and the shopping cart
array as parameters. We use isset() to test whether an element can be
found in the cart for the given ID. If it’s found, we return the value for that
array element, representing the current quantity for that item. If no element
is found indexed by $id, the item isn’t in the cart, so we return a quantity of
0.

To increase the quantity of a product in the cart by 1, we need to
retrieve the existing quantity, add 1 to it, and save the updated array back to
the session. We’ll encode this logic in an increaseCartQuantity()
function, as shown in Listing 15-20.

function increaseCartQuantity($id): void

{

 $cartItems = getShoppingCart();

 $quantity = getQuantity($id, $cartItems);

 $newQuantity = $quantity + 1;

 $cartItems[$id] = $newQuantity;

 $_SESSION['cart'] = $cartItems;

}

Listing 15-20: A function to increase the quantity of a cart item

After retrieving the $cartItems array, we use our getQuantity()
function to determine the quantity of the product with the given $id. Next,
we add 1 to this quantity and assign the new quantity to the $id key in the
$cartItems array. Then we store the updated array in $_SESSION['cart'],
overwriting the previous array.

Decreasing the quantity by 1 is a little more complicated than increasing
it, since this may reduce the quantity to 0, in which case we should remove
the product completely from the shopping cart. We need to retrieve the
existing quantity, subtract 1 from it, test whether the quantity is now 0,
update the cart array appropriately, and save the updated array back to the
session. We’ll encode this logic in a reduceCartQuantity() function, as
shown in Listing 15-21.

function reduceCartQuantity($id): void

{

 $cartItems = getShoppingCart();

 $quantity = getQuantity($id, $cartItems);

 $newQuantity = $quantity - 1;

 if ($newQuantity < 1) {

 unset($cartItems[$id]);

 } else {

 $cartItems[$id] = $newQuantity;

 }

 $_SESSION['cart'] = $cartItems;

}

Listing 15-21: A function to reduce the quantity of a cart item in file src/functions.php

We retrieve the shopping cart from the session and look up the quantity
of the product with the given $id, just as we did in the previous function.
Then we subtract 1 from this quantity. Next, we test whether the reduced

quantity is less than 1 (that is, 0), and if so, we remove the entire element
from the shopping cart by using unset(). Otherwise, we store the reduced
quantity in the shopping cart. Finally, we store the updated $cartItems
array in the session, overwriting the previous values.

NOTE
When easy to do so, I always recommend using strong tests, such as less-
than or greater-than, as we do for Listing 15-21’s if statement, rather than
testing for equality with a value like 0.

Creating the Empty Cart Template
Now that we’re making the shopping cart dynamic, we need to account for
the possibility that the user will try to view their cart when it’s empty. We’ll
create a separate empty cart template to display when this happens. Figure
15-4 shows how it should look.

Figure 15-4: The empty shopping cart page

Listing 15-22 shows the code for the empty cart template. Enter this
code in a new file called templates/emptyCart.php.

<?php

$pageTitle = 'Shopping Cart';

require_once '_header.php';

?>

<div class="row">

 (there are no items in your shopping cart)

</div>

</body>

</html>

Listing 15-22: The emptyCart.php template

This template is very short since, like our other display templates, it
uses all the common content in _header.php (after first setting the required
$pageTitle variable). Besides the header, it contains a single row of text
informing the user that the cart is empty.

Finalizing the Front Controller
Our website now has three possible pages the user can see: the list of
products, the empty cart, and the cart containing items. The application
needs to identify and perform a range of actions, such as adding items to the
cart and changing quantities. To finalize our shopping cart application, we
therefore need to expand the front-controller script in index.php to choose
from all these pages and actions.

Adding Display Functions
Although we’ll be expanding the front controller, we still want to keep it as
simple and concise as possible. Therefore, we’ll declare two final helper
functions: one to display the list of products and one to display the shopping
cart (either empty or full). Add the code shown in Listing 15-23 to the
src/functions.php file.

function displayProducts(): void

{

 $products = getAllProducts();

 require_once __DIR__ . '/../templates/list.php';

}

function displayCart(): void

{

 $products = getAllProducts();

 $cartItems = getShoppingCart();

 ❶ if (!empty($cartItems)) {

 require_once __DIR__ . '/../templates/cart.php';

 } else {

 require_once __DIR__ . '/../templates/emptyCart.php';

 }

}

Listing 15-23: Functions to display the products and the shopping cart

First, we declare the displayProducts() function. It invokes
getAllProducts() to obtain an array of all the products, then reads in and
executes the list.php template. Then we declare the displayCart() function.
It retrieves the $products and $cartItems arrays, then tests whether
$cartItems is empty ❶. Depending on the result, the function displays the
appropriate template, either cart.php or emptyCart.php.

Writing the switch Statement
We’re ready to bring everything together with updated front-controller code.
We’ll follow the pattern we discussed in Chapter 13 of using a switch
statement to detect the required action and respond appropriately. Our front
controller needs to handle six queries from the user:

Display all products
Display the shopping cart
Add a product to the shopping cart (given a product ID)
Remove a product from the shopping cart (given a product ID)
Increase the quantity of a product by 1 (given a product ID)
Decrease the quantity of a product by 1 (given a product ID), and remove
it if the quantity is now 0

Replace the existing contents of public/index.php with the code in
Listing 15-24. This is a well-organized script, since all the complex logic
has been relegated to separate functions. The front-controller script simply
focuses on retrieving query-string and POST values, deciding which function
to call, and choosing whether to display the product list or shopping cart
after executing the appropriate function.

<?php

session_start();

require_once __DIR__ . '/../src/functions.php';

// Try to find "action" in query-string variables

$action = filter_input(INPUT_GET, 'action');

switch ($action){

 ❶ case 'cart':

 displayCart();

 break;

 ❷ case 'addToCart':

 $id = filter_input(INPUT_GET, 'id');

 addItemToCart($id);

 displayCart();

 break;

 ❸ case 'removeFromCart':

 $id = filter_input(INPUT_GET, 'id');

 removeItemFromCart($id);

 displayCart();

 break;

 ❹ case 'changeCartQuantity':

 $id = filter_input(INPUT_GET, 'id');

 $changeDirection = filter_input(INPUT_POST, 'changeDi

rection');

 if ($changeDirection == 'increase') {

 increaseCartQuantity($id);

 } else {

 reduceCartQuantity($id);

 }

 displayCart();

 break;

 ❺ default:

 displayProducts();

}

Listing 15-24: The final version of the front-controller logic in index.php

We use PHP’s session_start() function to start a new session if none
currently exists or to renew the existing session. Calling this function is one
of the first tasks you must do when processing a request to the server
involving data stored in the $_SESSION array. Next, after reading in the
function declarations from src/functions.php, we try to find a value for the
$action variable from the query-string parameters and use it to begin a
switch() statement.

If the value of $action is 'cart' ❶, we display the shopping cart by
using the displayCart() function. If the value is 'addToCart' ❷ or
'removeFromCart' ❸, we retrieve the value of the id query-string variable,
pass it to the appropriate function to add or remove a cart item, and then
display the shopping cart. If $action is 'changeCartQuantity' ❹, we
retrieve the product ID from the query string and get the value of
changeDirection from the POST variables. If the latter is 'increase', we
call increaseCartQuantity(); otherwise, we call
decreaseCartQuantity(). In either case, we then display the shopping cart.
Finally, if no value of the action query-string variable is found, we use the
default case to display the list of products ❺.

Summary
In this chapter, we explored a real-world application of working with
sessions: an interactive shopping cart. Our work with the shopping cart
stored in the $_SESSION array followed the same approach as in the

preceding chapter: we set a default, attempt to read a value from the
$_SESSION array, do something with the value, then save the updated data
back into the session. The core logic for the project in this chapter revolves
around two arrays, a product list and a shopping cart, both of which are
keyed with product IDs. While in this chapter our list of products is fixed in
an array, it would be straightforward to refactor this code to read the list of
products from a database, which is how most real-world e-commerce
websites operate.

By identifying the operations we wanted to apply to our shopping cart
array and then encoding this logic as individual functions in
src/functions.php, our final public/index.php front controller was simple to
write. The listings for templates/list.php and templates/cart.php are
relatively long, but this is mostly because we incorporated some Bootstrap
CSS to make the list of products and shopping cart look more professional.
In fact, the display templates would have been even longer had we not used
a templates/_header.php file to store information common to all three pages
of the site.

Many software systems are designed around the relationship between
data structures (the way information is stored) and algorithms (the
programming of the application logic). In this case, we structured both our
product details and our shopping cart arrays around unique product IDs.
This decision made creating the site logic and display templates
straightforward.

We also saw that not all information about a session needs to be stored
to the session. For example, the shopping cart subtotals and grand total can
be calculated dynamically each time the cart page is loaded; they don’t need
to be stored. Likewise, we don’t store product details within the shopping
cart array, just the product ID, since we can retrieve all the other attributes of
each product in the cart from the array of product items. To sum up, we
created two data structures (the arrays for product details and shopping cart
contents) and then designed algorithms (our front-controller logic and
display templates) to efficiently interact with them.

Exercises
1. Add a new 'category' attribute for the products in the shopping cart

application, with possible values 'savory' (the sandwich), 'sweet' (the
cheesecake and the donut), or 'fruit' (the pineapple and banana).
You’ll need to add this element to each product in the
getAllProducts() function, and add a new <div> in the list.php
template to display it.

2. Add a button labeled Empty Cart to the shopping cart display page that
results in a POST request sending the query-string parameter
action=emptyCart. Then add an emptyShoppingCart() function to the
src/functions.php file and a new case to the front controller’s switch
statement to invoke this function and clear the shopping cart’s contents.

Hint: Since nothing else is being stored in the session for this
project, you could either use the killSession() function approach from
Chapter 14 or simply replace the existing contents of
$_SESSION['cart'] with an empty array.

3. Our code doesn’t have any validation checking for missing or invalid
data. For example, when the action query-string variable is addToCart,
we would have a problem if the ID is missing or invalid or if no product
exists in the $products array matching the received ID. Add some
simple validation so that if any problem arises with the ID when one is
required, the product list page is displayed and no change is made to the
shopping cart.

16
AUTHENTICATION AND AUTHORIZATION

Many websites implement security
measures to safeguard private content

or sensitive data. In this chapter, we’ll use PHP
sessions to develop an application with one such
measure, a login form. In the process, you’ll learn
how to implement two related security concepts:
authentication and authorization.

Authentication determines the identity of the person using the computer
system—that is, who is the user? Our application will harness the
username- and-password login method of authentication to identify the user.
Meanwhile, authorization determines whether the user is permitted to
access a particular part of the computer system (what is the user permitted
to do?). Our application will use data stored in a PHP session, combined
with access control logic, to authorize certain aspects of the web application
that a user can access.

A Simple Login Form
At its heart, a login page is an HTML form usually consisting of a text field
for the unique user identifier (such as a username or email address), a

password text field, and a Submit button. That’s it! The difference between
a regular text field and a password text field is that for the latter, the
browser displays a placeholder symbol like an asterisk (*) for each
character typed so that the actual password isn’t displayed onscreen for a
snooper to read. Figure 16-1 shows a bare-bones login form.

Figure 16-1: A simple login form

The form has the three elements we’ve described: a Username field, a
Password field, and a Submit button. Listing 16-1 shows the HTML code
needed to display this login form.

<!doctype html>

<html>

<head>

<title>login form</title>

</head>

<body>

 <form action="/?action=login" ❶ method="post">

 <label>Username:<input name="username"></label>

 <label>Password:<input name="password" ❷ type="passw

ord"><label>

 <input type="submit">

 </form>

</body>

</html>

Listing 16-1: The code for a basic login form

This code creates our labeled input boxes for a username and password,
along with a submit input button. We specify type="password" for the
Password field so that the input will display as placeholder characters ❷.
The login form submits via the POST HTTP method ❶. Almost all login
forms use the POST method so that the user’s password won’t be displayed
as a query-string variable in the browser address bar, as would happen with
the GET method. A second reason to use POST is that we don’t want the login
data to be cached. Instead, we want the server to process each username and
password at the time the login form is submitted.

Caching occurs when a computer system or application, such as a web
browser, stores copies of files locally (on the desktop, laptop, or phone) in
order to retrieve them faster the next time they’re requested. Although this
works well for website logos and unchanging page content like home pages,
you usually wouldn’t want a web browser to store a local copy of submitted
forms, such as login forms.

Web browser applications often cache web pages requested with the
GET HTTP method, but they don’t cache the content of web pages received
after a POST HTTP request. Remember, GET requests simply retrieve
information (without changing content on the server), so there is no
problem with caching such requests. However, POST requests often involve
form data submission (including login forms), and such requests can result
in changes to the server contents such as deleting or changing database
contents, so it would be dangerous, and perhaps insecure, to cache and
repeat such POST requests.

Creating a Site with a Login Form
Now that you know how to create a basic login form, let’s build a website
that includes a functional, professional-looking login page. We’ll secure one
of the pages of the website by requiring users to log in to view it. The
website will have the following pages:

A home page
A Contact Us page
A login form
An error message page

A Secure Banking page (with Swiss bank account details!)
While we’re happy for any user (whether logged in or not) to see the

home page, Contact Us page, and login page, we need to authenticate users
via the form on the login page in order to allow only authorized users to
view the secured Swiss bank account page.

All the pages of the website will have the same structure and look. For
example, Figure 16-2 shows the home page.

Figure 16-2: The home page of our website

Every page will have a Bootstrap-styled header featuring a custom logo
and a navigation bar. Where appropriate, the navigation link relating to the
page currently being displayed will be highlighted in white, while the other
links will be gray. Below the navigation bar is a banner with a website
tagline on the left and a greeting on the right. The bottom part of each page
contains the individual page content (in this case, the heading and text
telling users that this is the home page).

To build the website, we’ll first create the individual pages. Then we’ll
create the login form and login-processing logic, and add the code to
authorize only successfully logged-in users to view the secured Swiss bank
account page.

Defining the File Structure
Create a folder for the project. Inside, it will have the following structure:

Creating the Shared Page Content
Now we’ll create a _header.php file defining the header content shared by
all the page templates. Using a shared header file will give a consistent look
and feel to the site and avoid unnecessary code duplication. Additionally, if
we ever want to change the site style or navigation bar contents, we’ll need
to change only the contents of this one header file.

Add the _header.php file to the templates subfolder. The file will
contain quite a few lines of code (mostly Bootstrap classes and HTML
<div> elements), so we’ll look at it in three parts, starting with Listing 16-2.

<?php

$homeLink = $homeLink ?? '';

$contactLink = $contactLink ?? '';

$loginLink = $loginLink ?? '';

$pageTitle = $pageTitle ?? '';

?>

<!doctype HTML>

<html>

<head>

 <meta name="viewport" content="width=device-width">

 <title>Secure site: <?= $pageTitle ?></title> ❶

 <link rel="stylesheet" href="/css/login.css">

 <link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.

3/dist/css/bootstrap.min.css"

 >

</head>

<body class="container">

Listing 16-2: The first part of _header.php

We start with a PHP code block declaring three variables to help
control the display of the navigation links at the top of the page: $homeLink,
$contactLink, and $loginLink, corresponding to the Home, Contact Us,
and Login page links. Later, when we write the individual templates for
each of these pages, we’ll add code setting that page’s variable to the
'active' string, which corresponds to a CSS style selector that will make
the page’s navigation link appear white. Here in the _header template, we
use the null-coalescing operator ?? (see Chapter 4) to set all three variables
to empty strings if they don’t already have a value. An empty string will
make the navigation link appear gray.

Thus, when we load the login page, for example, $loginLink will be
set to 'active', and the Login navigation link will appear white, while
$homeLink and $contactLink, not having any prior value, will be set to
empty strings and their links will appear gray. This use of PHP variables to
fill in CSS style values is an effective way to highlight the current page in a
navigation bar and gray out the others.

NOTE
If you aren’t confident using the null-coalescing operator, you can always
write an if statement using the isset() function to provide the same
functionality, such as if (!isset($homeLink)) $homeLink = ''.

We next use another null-coalescing operator to set the $pageTitle
variable to an empty string in case it hasn’t been set. Then we use the value
of $pageTitle to form an HTML <title> element for the page ❶. This
way, each function that includes our _header.php file can define a value for
the PHP variable $pageTitle, giving each page a meaningful title that most

browsers will use for the bookmark text. We then read in the Bootstrap
stylesheet as well as our own CSS stylesheet file from /public/css/login.css.
This stylesheet, which we’ll create later, will have a few styles for the login
page. The final line in this listing starts a <body> element, styled with the
Bootstrap container class.

The code for our header template continues in Listing 16-3.

❶ <header class="navbar navbar-expand navbar-dark d-flex mb-3

bg-primary">

 <ul class="navbar-nav p-2">

 <li class="nav-item">

 ❷ <a class="nav-link <?= $homeLink ?>" href="/">

 Home

 <li class="nav-item">

 ❸ <a class="nav-link <?= $contactLink ?>" href="/?

action=contact">

 Contact Us

 <ul class="navbar-nav ms-auto p-2">

 <li class="nav-item">

 ❹ <a class="nav-link <?= $loginLink ?>" href="/?ac

tion=login">

 Login

</header>

Listing 16-3: The second part of _header.php

We declare a header element that will contain the logo image and
navigation links ❶. Within it, we declare the navigation bar link for the
home page, styling this link with class="nav-link <?= $homeLink ?>"
❷. Here’s where we continue implementing the navigation link styling
mechanism we set in motion at the start of Listing 16-2. The link will be
styled as a Bootstrap navigation link (nav-link), but also as active
(highlighted in white) if we’ve set the $homeLink variable to 'active'.
Otherwise, if $homeLink is an empty string, the navigation bar link won’t be
highlighted in white as the active page link. We style the Contact Us ❸ and
Login ❹ links in a similar way, again making them active only if their
corresponding link variable ($contactLink or $loginLink) contains the
string 'active'.

Listing 16-4 is the final part of our common page-header code.

<div class="row bg-light p-5">

 <div class="col">

 <h1>MGW.
You know it makes sense!</h1>

 </div>

 <div class="col">

 <p>

 Welcome to My Great Website (MGW).

 Now with login security!

 </p>

 </div>

</div>

Listing 16-4: The third part of _header.php

Here we declare a Bootstrap row <div> with the standard content for
every page on the website. This <div> is styled with a light gray
background and some padding. It contains two <div> elements styled as
columns, one with the website tagline and the other with a greeting touting
the site’s login feature.

Designing the Page Templates
Next, we’ll create the templates for the home, Contact Us, and Secure
Banking pages. With much of the work being done by the common page-
header template, the template scripts for these three pages are
straightforward. Listing 16-5 shows our Home page template script. Save
this script in the templates subfolder as homepage.php.

<?php

$pageTitle = 'Home Page';

$homeLink = 'active';

require_once '_header.php';

?>

❶ <h1><?= $pageTitle ?></h1>

<p>

Welcome to the secure website demo.

</p>

</body>

</html>

Listing 16-5: The homepage.php template

We first assign the $pageTitle variable a value, heading off the null-
coalescing operator in Listing 16-2. Additionally, since we want the Home
link highlighted in the navigation bar, we assign the string 'active' to the
$homeLink variable. Then we read in and execute the _header.php template.
Next, we display the value in $pageTitle as a level 1 heading in the body
of the HTML page ❶. This is followed by a paragraph of page content,
then tags to close the <body> and <html> elements of the page.

Listing 16-6 shows the code for the Contact Us page in templates/
contact.php.

<?php

❶ $pageTitle = 'Contact Us';

❷ $contactLink = 'active';

require_once '_header.php';

?>

<h1><?= $pageTitle ?></h1>

❸ <p>

 Contact us as follows:

</p>

<dl>

 <dt>Email</dt>

 <dd>enquiries@securitydemo.com</dd>

 <dt>Phone</dt>

 <dd>+123 22-333-4444</dd>

 <dt>Address</dt>

 <dd>1 Main Street,
Newtown,
Ireland</dd>

</dl>

</body>

</html>

Listing 16-6: The contact.php template

The Contact Us template is similar to the Home page template,
differing only in the value of $pageTitle ❶, the variable set to 'active' to
highlight the Contact Us navigation link ❷, and the page content paragraph
and definition list details ❸.

Next, we’ll create the Secure Banking page, which is shown in Figure
16-3. We’ll add authorization logic later so that only logged-in users can
view this page.

Figure 16-3: The Secure Banking page of our website

Listing 16-7 creates the Secure Banking page. Save this code in
templates/ secureBanking.php.

<?php

❶ $pageTitle = 'Secure Banking - Swiss bank account details';

require_once '_header.php';

?>

<h1><?= $pageTitle ?></h1>

❷ <p>

 Welcome to the secure website demo.

 Today's bank account number is 12294934503845 with code

word "green lawn"

</p>

</body>

</html>

Listing 16-7: The secureBanking.php template

Once again, this template is similar to those for the home page and
Contact Us page. It differs only in the value of $pageTitle ❶ and the page
content paragraph ❷. Since we don’t currently link to this page in the
navigation bar, we don’t bother setting a variable to 'active'.

Developing the Login Form
Now we’ll create a login form for our website (Figure 16-4). Though we’ll
use some extra HTML and CSS to make the form look more professional, at
its core it’ll be the same as the basic login form we created at the start of the
chapter, with a Username field, a Password field, and a Log In submit
button.

Figure 16-4: The login page of our website

Listing 16-8 shows the code used to create the login form, saved in
templates/login.php.

<?php

$pageTitle = 'Login';

$loginLink = 'active';

require_once '_header.php';

?>

<div class="formLogin">

 ❶ <form action="/?action=login" method="post">

 ❷ <div class="form-group row m-3">

 <label for="username" class="col-form-label col-

sm-3">

 Username:

 </label>

 <div class="col">

 <input name="username" id="username"

 placeholder="Your username" class="form-

control"

 >

 </div>

 </div>

 ❸ <div class="form-group row m-3">

 <label for="password" class="col-form-label col-

sm-3">

 Password:

 </label>

 <div class="col">

 <input name="password" id="password" type="p

assword"

 placeholder="Your password" class="form-

control"

 >

 </div>

 </div>

 ❹ <div class="form-group">

 <input type="submit" class="btn btn-primary w-10

0"

 value="Log in" class="form-control"

 >

 </div>

 </form>

</div>

</body>

</html>

Listing 16-8: The login.php template

The script starts much like our other templates: we assign a value to
$pageTitle, set $loginLink to the string 'active' so the Login link will
be highlighted in the navigation bar, and read in and execute the
_header.php template. Then we define a <div> to encapsulate the login
form, styled with a custom formLogin CSS class (which we’ll create
shortly). The login form itself is declared with the POST method and the /?
action=login action ❶.

We’ll use this same action value (login) to both request the display of
the login form and process the submitted form data, distinguishing between
the requests by their HTTP method: GET will request the form be displayed,
and POST will request processing of submitted login form data by the web
application. We’ll implement this logic later in the chapter.

Our form is structured as three Bootstrap rows for the Username ❷,
Password ❸, and Log In ❹ inputs, each represented with a <div> element.
The Username and Password rows contain <label> and <input> elements.
Notice that the inputs have a placeholder attribute whose value will appear
as faint gray filler text, and that we specify type="password" as an attribute
of the Password input box to obscure the password while it’s being typed in.

To finish up the login page, we’ll create the CSS stylesheet public/css/
login.css, shown in Listing 16-9. It adds custom styling to the login form.
Recall that the common _header.php template reads in this stylesheet for
every page.

.formLogin {

 background-color: lightgray;

 padding: 4rem;

 max-width: 30rem;

}

Listing 16-9: The CSS code in login.css

The stylesheet defines the formLogin class referenced in Listing 16-8.
This style sets the form background to light gray, adds padding, and sets a
maximum width of 30 characters.

Writing the Front Controller
As usual, we’ll create a single front controller through which every request
to our web application must arrive. Create public/index.php containing the
code in Listing 16-10.

<?php

require_once __DIR__ . '/../src/functions.php';

$action = filter_input(INPUT_GET, 'action');

switch ($action) {

 ❶ case 'contact':

 contact();

 break;

 ❷ case 'login':

 $isSubmitted = ($_SERVER['REQUEST_METHOD'] === 'POS

T');

 if ($isSubmitted) {

 // POST method so process submitted login data

 processLogin();

 } else {

 // GET method to display login form

 loginForm();

 }

 break;

 ❸ default:

 home();

}

Listing 16-10: The index.php front-controller script

The script follows the usual pattern of reading in the function-
declaration file, extracting the value of the action query-string parameter
(if found in the request), and passing it to a switch statement that decides
what to do. If the value is contact ❶, we invoke contact(), which reads
in the template to display the Contact Us page. If the value is 'login' ❷,

we test whether the HTTP request used the POST method, indicating the user
has submitted username and password values through the login form, and
invoke the processLogin() function if so. Otherwise, we invoke the
loginForm() function to display the login page. Finally, the default case
❸ displays the home page by invoking the home() function.

Implementing the Logic Functions
Next, we need to create the functions for implementing the logic of the
website, saved in src/functions.php. Five of the functions are
straightforward: they simply display the four main pages of the site (home
page, Contact Us, login page, Secure Banking), plus an error message page.
We’ll look at these functions first, shown in Listing 16-11.

<?php

function home(): void

{

 require_once __DIR__ . '/../templates/homepage.php';

}

function contact(): void

{

 require_once __DIR__ . '/../templates/contact.php';

}

function loginForm(): void

{

 require_once __DIR__ . '/../templates/login.php';

}

function secureBanking(): void

{

 require_once __DIR__ . '/../templates/secureBanking.ph

p';

}

function showError($message): void

{

 require_once __DIR__ . '/../templates/error.php';

}

Listing 16-11: The display functions in functions.php

The first four functions all perform the same task: they use a
require_once statement to read in and display one of the template scripts.
Next, the showError() function expects a $message string as a parameter. It
too uses a require_once statement to read in and display one of the
template scripts. In this case, since $message is a parameter, it has scope
when the error.php template is read in and executed, so the template can
display the contents of the string inside $message. (We’ll create the
error.php template shortly.)

The second part of the functions.php script, shown in Listing 16-12,
declares three functions for processing submitted usernames and passwords
from the login form.

❶ function getUsers(): array

{

 $users = [];

 $users['matt'] = 'smith';

 $users['james'] = 'bond';

 $users['jane'] = 'doe';

 return $users;

}

❷ function processLogin(): void

{

 $username = filter_input(INPUT_POST, 'username');

 $password = filter_input(INPUT_POST, 'password');

 ❸ if (validLoginCredentials($username, $password)) {

 secureBanking();

 } else {

 showError('invalid login credentials - try again');

 }

}

❹ function validLoginCredentials($username, $password): bool

{

 $users = getUsers();

 if (isset($users[$username])) {

 $storedPassword = $users[$username];

 if ($password == $storedPassword) {

 return true;

 }

 }

 // If get here, no matching username/password

 ❺ return false;

}

Listing 16-12: The second part of functions.php

In this part of the script, we declare the getUsers() function ❶, which
returns an array called $users whose keys are usernames and whose values
are passwords. This is the list of users who can be authenticated through our
website’s login system (by providing a valid username and its
corresponding password). Although we’re using an array here, a real-world
website would usually get username and password data from a database,
and the passwords would be hashed for security reasons. We’ll look at how
to do this in Chapter 30.

Next, we define the processLogin() function ❷. In it, we use
filter_input() to attempt to retrieve the username and password
submitted via the login form, storing the values in the $username and
$password variables. Then we pass these values to the
validLoginCredentials() function ❸. If the function returns true, we’ve
successfully authenticated the user, since they were able to provide a
matching username-password pair. Therefore, we display the secure bank
page to the user by invoking the secureBanking() function. Otherwise, if
validLoginCredentials() returns false, we invoke the showError()
function to display the error page, passing an error message stating the login
credentials are invalid.

Notice that the error message doesn’t tell the user whether the problem
is with the username or password. This follows the common security
practice of minimum information disclosure. We shouldn’t inform the user
(or hacker-bot or whatever is trying to log in) when they’ve found a valid
username. Armed with that information, an attacker could repeatedly use
the valid username with different passwords in an attempt to gain access to
the system, which would be easier than needing to guess the username and
the password each time.

The final function is validLoginCredentials() ❹, which expects two
parameters, $username and $password. This is where we perform the all-
important task of authenticating the user attempting to log in. We first
retrieve the array of passwords indexed by the username from getUsers(),
storing the array in the $users variable.

Then we test whether an element can be found in $users with the key
$username. If no such key is found (isset($users[$username]) is false),
we exit the if statement and the function will return false ❺, indicating
the submitted username and password aren’t valid. However, if $username
can be found in $users, its corresponding value is stored in the
$storedPassword variable. Then we test whether the password received
from the login form ($password) matches the retrieved password from the
array ($storedPassword). If the two passwords match, we have valid
credentials, so we return true. Otherwise, the script will drop out of the if
statement and return false.

Creating the Error Page Template
Now we’ll create the template for the error page (Figure 16-5).

Figure 16-5: The error message page after invalid login credentials

This template, saved in templates/error.php, is similar to the other page
templates we’ve created, as shown in Listing 16-13.

<?php

$pageTitle = 'Error page';

require_once '_header.php';

?>

<div class="alert alert-danger" role="alert">

 Sorry, there was a problem:

 <p>

 ❶ <?= $message ?>

 </p>

</div>

</body>

</html>

Listing 16-13: The error.php template

We set the value of $pageTitle to 'Error page', then read in and
execute the common _header.php template. In a pink Bootstrap alert–styled
<div>, we output the string inside the $message variable ❶. All scripts that
include this error page template should have first assigned a string to this
variable (as we did, for example, in Listing 16-12 when we called

showError() with the string 'invalid login credentials - try
again').

Storing Login Data with Sessions
While our website at present allows a user to authenticate through the login
form and visit the Secure Banking page, the site doesn’t remember the
successful login credentials. Once the user clicks away from the bank
details page, they’ll have to return to the login form and resubmit their
credentials to view it again. To make the site more user-friendly, we can use
PHP sessions to remember successful logins.

If all logged-in users should have the same level of access, we can
simply store the username to the session after a successful login, as we’ll do
in this section. If different users have roles that come with different levels
of authorization (for example, sales, supervisor, manager, administrator),
we could store both the username and the corresponding role in the session.
Then we would write logic so logged-in users can access only pages
appropriate to their role. We’ll talk through this second approach in
Exercise 3 at the end of the chapter.

Let’s add some code to save login data to the session. We’ll also add a
link to the Secure Banking page for the navigation bar, but we’ll let the user
visit that page only if they’ve logged in. Otherwise, we’ll display an
authentication error message.

Updating the Front Controller
We first need to edit our index.php front controller to handle navigation to
the Secure Banking details page. Since we now plan to use sessions to
remember login data, we also need to (re)start a PHP session at the
beginning of the front-controller script. Listing 16-14 shows the updated
script, with new code highlighted.

<?php

session_start();

require_once __DIR__ . '/../src/functions.php';

$action = filter_input(INPUT_GET, 'action');

switch ($action) {

 case 'contact':

 contact();

 break;

 case 'login':

 $isSubmitted = ($_SERVER['REQUEST_METHOD'] === 'POS

T');

 if ($isSubmitted) {

 // POST method so process submitted login data

 processLogin();

 } else {

 // GET method to display login form

 loginForm();

 }

 break;

 ❶ case 'secured':

 if (isLoggedIn()) {

 secureBanking();

 } else {

 showError('invalid login credentials - try agai

n');

 }

 break;

 default:

 home();

}

Listing 16-14: The updated index.php front-controller script

At the start of the script, we (re)start a session. Then we add a new case
to the switch statement for when the value of $action is 'secured' ❶. In
this case, we call the isLoggedIn() function, which we’ll write shortly. If it
returns true, we invoke secureBanking() to display the Secure Banking
page. Otherwise, we display the error page with the message 'invalid
login credentials - try again'.

Writing the Login Function
Now we need to write a new isLoggedIn() function to check whether a
username is stored in the $_SESSION array, indicating a user has
successfully logged in. We also need to update our processLogin()
function so that when valid login credentials are processed, we store the
username in $_SESSION. First, add isLoggedIn() to the end
src/functions.php, as shown in Listing 16-15.

function isLoggedIn(): bool

{

 if (isset($_SESSION['username'])) {

 return true;

 } else {

 return false;

 }

}

Listing 16-15: The isLoggedIn() function

The function uses a simple if...else statement based on whether a
value can be found in the $_SESSION array for the string key 'username'. If
so, we return true; if not, we return false. Notice that we don’t need to test
the actual value stored in the session under the 'username' key. We simply
test whether any value is stored for this key. We don’t care what the
username is of the user who’s logged in, as long as they’ve successfully
logged in.

Now edit the processLogin() function in src/functions.php as shown
in Listing 16-16 to store the username in the session after a successful
login.

function processLogin(): void

{

 $username = filter_input(INPUT_POST, 'username');

 $password = filter_input(INPUT_POST, 'password');

 if (validLoginCredentials($username, $password)) {

 $_SESSION['username'] = $username;

 secureBanking();

 } else {

 showError('invalid login credentials - try again');

 }

}

Listing 16-16: Updating the processLogin() function

In the if branch of the function’s conditional logic, we store the
submitted username in the $_SESSION array under the 'username' key. This
way, the test in isLoggedIn() will pass after a successful login.

Updating the Header Template
Let’s now edit the common templates/_header.php file to add a navigation
bar link to the secured bank page, along with its associated CSS style
variable. We’ll use an if statement so that this link will appear only while
the user is logged in. We need to add this conditional nav-item after the
navigation bar items for the home and Contact Us pages, as shown in
Listing 16-17.

<?php

$homeLink = $homeLink ?? '';

$contactLink = $contactLink ?? '';

$loginLink = $loginLink ?? '';

❶ $securedLink = $securedLink ?? '';

$pageTitle = $pageTitle ?? '';

?>

--snip--

<ul class="navbar-nav">

 <li class="nav-item">

 <a class="nav-link <?= $homeLink ?>" href="/">

 Home

 <li class="nav-item">

 <a class="nav-link <?= $contactLink ?>" href="/?acti

on=contact">

 Contact Us

❷ <?php if (isLoggedIn()): ?>

 <li class="nav-item">

 ❸ <a class="nav-link <?= $securedLink ?>" href="/?acti

on=secured">

 Secure banking

<?php endif; ?>

--snip--

Listing 16-17: Adding a conditional navigation link for the Secure Banking page in
_header.php

We use the null-coalescing operator to set the $securedLink variable to
an empty string if it has no value already ❶. Then we add an if statement
that uses our isLoggedIn() function to test whether the user is logged in
❷. If so, the navigation link in the body of the if statement will be
displayed. The link adds an action=secured variable to the query string ❸.
Notice also that the value of the $securedLink variable is part of the CSS
class for this link. As with our other navigation links, if this variable
contains the string 'active', the link will be highlighted.

Updating the Banking Page Template
Now that we’ve added a navigation link for the Secure Banking page, we
need to update the templates/secureBanking.php script to set the
$securedLink variable to 'active'. This will highlight the page’s
navigation link when the page is being viewed. Update the template as
shown in Listing 16-18.

<?php

$pageTitle = 'Secure Banking- Swiss bank account details';

$securedLink = 'active';

require_once '_header.php';

?>

--snip--

Listing 16-18: Updating the secureBanking.php template

The only change we need to make here is to add the statement that sets
the $securedLink variable before we read in the shared header template.

Offering a Logout Feature
If we offer the user a way to log in and have their login information
remembered, we should also offer a way to log out. Logging out a user
means setting the $_SESSION array to be empty so it no longer contains an
element with the string key 'username'. To put this into practice, we need
to add a new function, update the front controller, and create a logout link in
the navigation bar.

Adding the Logout Function
First, let’s write a logout() function in src/functions.php that clears the
user’s data from the session. Add the code shown in Listing 16-19 to the
end of the file.

function logout(): void

{

 $_SESSION = [];

 home();

}

Listing 16-19: The logout() function

We set $_SESSION to an empty array, erasing the stored username from
the session. Then we invoke the home() function to display the home page
to the user after they’ve logged out.

Updating the Front Controller
Now we need to add a new logout case to the switch statement in our
index.php front controller. Update the file as shown in Listing 16-20.

--snip--

 case 'secured':

 if (isLoggedIn()) {

 secureBanking();

 } else {

 showError('invalid login credentials - try agai

n');

 }

 break;

 ❶ case 'logout':

 logout();

 break;

 default:

 home();

}

Listing 16-20: The logout case in index.php

We add a case that invokes that logout() function when the $action
variable has the value 'logout' ❶.

Displaying the Logout Link
Finally, we need to conditionally decide whether to offer the user a Login
link or a Logout link, depending on whether the user is currently logged in.
We therefore need to add an if statement to the common
templates/_header.php file, as shown in Listing 16-21.

--snip--

 <?php if (isLoggedIn()):?>

 <li class="nav-item">

 <a class="nav-link <?= $securedLink ?>" href="/?

action=secured">

 Secure Banking

 <?php endif; ?>

 <ul class="navbar-nav ms-auto p-2">

 <li class="nav-item">

 ❶ <?php if (isLoggedIn()): ?>

 Logout

 ❷ <?php else: ?>

 <a class="nav-link <?= $loginLink ?>" href="/?ac

tion=login">

 Login

 <?php endif; ?>

</header>

Listing 16-21: The conditional Login/Logout navigation bar link in _header.php

Inside the declaration of an HTML list item with the nav-item class,
we use an if...else statement to test the value returned by the
isLoggedIn() function. If the user is logged in ❶, we display the /?
action=logout link. Otherwise, if the user isn’t logged in ❷, we display
the /?action=login link as before.

Figure 16-6 shows the navigation bar when the user has successfully
logged in and is visiting the secured bank details page.

Figure 16-6: The navigation bar showing the Secure Banking and Logout links

Notice that the Logout link appears on the right instead of the Login
link. Additionally, the Secure Banking link in the middle is highlighted,
since that’s the page the user is currently viewing.

Displaying the Logged-in Username
The final feature we’ll add to our website is to display the username of the
logged-in user in the navigation bar, above the Logout link. To do this, we
need a function to return the username stored in the $_SESSION array. We’ll
also need to update the shared header template and add extra code to our
CSS stylesheet.

Retrieving the Username
To look up the current user’s username, add the function in Listing 16-22 to
the end of the src/functions.php file.

function usernameFromSession(): string

{

 if (isset($_SESSION['username']))

 return $_SESSION['username'];

 else

 return '';

}

Listing 16-22: The usernameFromSession() function

Here we define the usernameFromSession() function. Using isset(),
we check whether a value can be found in the $_SESSION array under the
'username' key. If a value exists, it’s returned. Otherwise, the function
returns an empty string.

Updating the Navigation Bar
Listing 16-23 shows what we need to add to the navigation bar in the
common templates/_header.php file to display the current username as well
as the Logout link.

--snip--

<?php if (isLoggedIn()):?>

 You are logged in as:

 <?= usernameFromSession() ?>

 Logout

<?php else: ?>

--snip--

Listing 16-23: Displaying the username in _header.php

We declare an HTML element, styled with the CSS username
class (which we’ll create next). This displays the text You are logged in
as: followed by the value returned from the usernameFromSession()
function. Since we should display this text only when the user is logged in,
there will always be a stored username, so usernameFromSession() should
never return an empty string.

Updating the CSS
Finally, we need to add a CSS rule for the username class to
public/css/login.css, as shown in Listing 16-24. This style rule colors the
username text yellow (in contrast with the dark background of the
navigation bar)..username {

 color: yellow;

}

Listing 16-24: The username CSS class in login.css

Figure 16-7 shows how the username is displayed in the navigation bar
as a result of this CSS declaration.

Figure 16-7: The username and Logout link in the navigation bar

The text showing the username appears above the Logout link. In this
example, I’ve logged in with the username matt. This username was
successfully stored in the $_SESSION array and then retrieved for display.

Summary
In this chapter, we created a front controller–driven website that uses the
login form method of authenticating a user’s identity. Although this is a
small website with only a few pages, its basic architecture and approach to
security mirror the way real-world, secure websites operate. We wrote
functions to search for a match between submitted username and password
credentials and a stored array of username and password pairs.

We stored details of a successfully authenticated user in a PHP session
to remember when a user has logged in. Then we wrote program logic such
as the isLoggedIn() function to allow our website to decide whether a user
is authorized to view bank details. We used the same logic to decide
whether to display a Login or a Logout link in the navigation bar.

Exercises
1. Add a second secured page to the website for this chapter that displays

the solution to a math question (answer = -2!). In the navigation bar,
add a link to the secured page that displays only when a user has
successfully logged in.

Hint: You’ll need to add a new case to the index.php front controller
and a new function to display the page in functions.php.

2. Add two additional authorized users to the system, one with a username
of fred and a password of flintstone, and the other with a username
of teddy and a password of cuddly.

3. Try adding another layer of security to the website by having two user-
authentication roles: 'USER' and 'BANKER'. Any logged-in user can
view the math solution page, but only those with the 'BANKER' role can
view the bank details page. Add two more authorized banker user
credentials to the system, one with a username of banker1 and a
password of rich, and the other with a username of banker2 and a
password of veryrich.

Hint: Try the following:
a. Just as you have a getUsers() function, add a getBankers()

function.
b. Rename the validLoginCredentials() function to

validUSERLoginCredentials().
c. Write a second version of this function as

validBANKERLoginCredentials().
d. Change the logic in the processLogin() function to do the

following: If a valid user logs in, store their username in the session
and display the home page. If a valid banker logs in, store their
username in the session, store their role in the session
($_SESSION['role'] = 'BANKER'), and display the home page.

e. Add a new getRoleFromSession() function that returns the role
found in the session. If a value is found for $_SESSION['role'],
that string is returned; otherwise, an empty string is returned.

f. Change the logic in the index.php front controller as follows: For the
math solution, check whether a user is logged in. For the bank page,
check whether the role of the logged-in user is 'BANKER'. You could
write something like getRoleFromSession() == 'BANKER'.

PART V
OBJECT-ORIENTED PHP

17
INTRODUCTION TO OBJECT-ORIENTED

PROGRAMMING

So far in this book, we’ve been using
PHP to write procedural code, a

sequence of instructions executed in order. We’re
now going to shift our attention to a different way of
using PHP: object-oriented programming (OOP).
This chapter provides an overview of some important
OOP concepts. Then the next several chapters will
present in more depth how to harness OOP in your
PHP projects.

The object-oriented style of programming revolves around objects,
computer representations of real-world things, and classes, generalized
models that define all the abilities and characteristics every object of a
certain category should have. In an object-oriented computer system,
objects send messages to each other, interpret those messages, and decide
what instructions to execute in response, often creating a value to be
returned to the sender.

The power of OOP lies in its capacity for abstraction: programmers can
focus much of their attention on planning out a system of classes with
features relating to the real-world task or problem the application is meant
to solve, rather than always having to think about the code itself. For
example, an online banking system might need classes like Client,
BankAccount, and Transaction, and objects created from those classes
would represent specific instances of clients, bank accounts, and
transactions. The messages and operations to make changes to these objects
might include functions like withdrawCash($sum),
setNewOverdraft($limit), or updateClientAddress($address).
Similarly, an online computer game might need such classes as Player,
Level, and InventoryItem, with messages and operations like
purchaseInventoryItem($itemID) and setPlayerName($name). A
programmer can identify all these requirements and map out the necessary
web of class relationships before writing a single line of code. Thanks to
this planning and organization, the process of writing the code becomes
much easier.

Ultimately, the programmer must declare each class, which does
require writing code. The programmer will declare data variables and
functions to carry out typical programming tasks such as performing
numeric calculations, manipulating strings and arrays, and so on. However,
the beauty of OOP is that once you’ve created a class, its structure is
essentially hidden “under the hood.” The rest of the coding process can
focus on harnessing the objects’ messages and functions, which closely
relate to real-world concepts and tasks.

Classes and Objects
An object-oriented program is made up of PHP files that declare classes. A
class can be thought of as the blueprint, or template, from which objects are
created. Just like a blueprint of a car is just a drawing on paper, a PHP file
declaring a class doesn’t itself do anything. However, just as you can ask a
factory to take the car blueprint and manufacture one or more physical cars,
you can ask the PHP engine to use a class declaration to create objects
based on that class.

Sometimes people refer to an object as an instance of a class, since
each object is one specific manifestation of the general characteristics and
behaviors defined by the class. You can treat the terms object and instance
as synonyms: an object in the computer’s memory, created from a class
template, with a set of data values and the capability to respond to messages
and execute functions. Figure 17-1 illustrates the relationship between a
class and the objects created from that class.

Figure 17-1: The Client class and two Client objects, matt and aoife

The class in the figure, Client, represents customers of a bank. You
need to know three important aspects of a class: its name, its data variables,
and its functions. In this example, our Client objects will have data
variables for the client’s ID number, name, and contact information. When
variables are declared as part of a class, they’re called properties. Likewise,
our Client objects have several functions: you can close, suspend, or
resume a customer’s account. When functions are declared as part of a
class, they’re called methods. The various parts of a class are known

collectively as its members; the members of a class include all its properties
(variables), methods (functions), and constants.

The bottom of Figure 17-1 also shows two objects (or instances)
created from the Client class, named matt and aoife. Each object has its
own set of properties (for example, the matt object has a surname of Smith
and the address 10 Main Street, Dublin), and both objects have access to
the methods defined in the Client class. In PHP programming, you can
have a $matt variable that functions as a reference to the Client object of
the same name, and you can send it a message to close Matt’s account by
writing $matt->closeAccount(). When the $matt object receives this
message, it would execute its closeAccount() method.

WARNING
When you’re writing object-oriented PHP code, make sure you don’t
confuse the -> object operator (for objects and messages) with the =>
operator, which is for key/value relationships in arrays.

Creating Relationships Between Objects
One of the powerful features of OOP is that you can build relationships
between objects by linking a property of one object to another object. In
some cases, you might relate objects of the same class. For example, if you
have a Person class, you might link one Person object to another to
demonstrate that one person is another person’s parent. Other times, you
might relate objects of different classes, such as to establish that a Client
object is the owner of a BankAccount object, as shown in Figure 17-2.

Figure 17-2: The BankAccount class declares that each BankAccount object is linked to a
Client object.

The top of the figure shows the BankAccount class. Like the Client
class we considered earlier, it includes data properties and methods that
objects of this class can have: each BankAccount object has an account
number, an owner, a balance, an overdraft limit, and a category, along with
methods to deposit and withdraw money and set the overdraft limit.

The owner property is particularly significant: its value must be a
reference to a Client object. The owner property thus creates a link
between objects of the BankAccount and Client classes. For example, as
you can see at the bottom of the figure, DUB1070, a BankAccount object, is
linked to matt, one of the Client objects. The beauty of this mechanism is
that for any BankAccount object we’re working with, we can follow the link
through the owner property to its related Client object and find out the
name, address, and other details of the person who has the bank account.

Encapsulation and Information Hiding
A class organizes an object’s data and the methods that can affect that data,
gathering them in the same place. This principle, known as encapsulation,
is central to OOP. Encapsulation helps keep projects organized; returning to
the example in Figure 17-1, it’s logical that the methods for working with
customer data are declared in the same file that also declares the data
properties that should be stored about customers.

A danger arises, however, if all the data of an object can be directly
changed by any part of the computer system that has access to that object.
For example, we wouldn’t want the age of a Client object to be set to 0 or
a negative number! In fact, the bank might have a policy setting the
minimum age of a client to, say, 16 years old. To avoid such unauthorized
changes and ensure valid data, object-oriented languages, including PHP,
provide ways to control access to an object’s data.

The OOP feature of managing access to the data and methods of an
object is known as information hiding. In PHP, you use the public,
private, and protected keywords to declare different levels of access to
the properties and methods of a class of objects. Continuing our example,
we might prevent direct access to a Client object’s age property by making
it private. Then we might declare a public setAge() method that will update
the age only if certain validation requirements are met, such as being an
integer 16 or greater. We’ll discuss how to use these features of object-
oriented PHP in detail in the next few chapters.

Superclasses, Inheritance, and Overriding
You can assign properties and methods that are common among several
classes to a superclass, a generalized class that other classes (called
subclasses) can inherit characteristics from. For example, both staff and
clients of a bank will share many common data properties, such as a name,
address, and phone number. Figure 17-3 shows the common properties and
methods of the Client and StaffMember classes in bold. Some properties
and methods are unique to each class, such as clientId for Client objects
versus staffId for StaffMember objects.

Figure 17-3: The Client and StaffMember classes have many duplicate members—very
inefficient!

Figure 17-4 illustrates how we can generalize the common properties
and methods into a new superclass named Person, from which the Client
and StaffMember classes both inherit. Only those properties and methods
unique to a particular subclass are defined directly in the subclass itself. In
PHP, we write something as simple as class Client extends Person to
indicate that one class is to inherit from another.

Figure 17-4: The generalized Person superclass eliminates duplication.

Superclasses and inheritance help you avoid duplicating code across
several classes. For example, you wouldn’t want to write code for
operations like validating telephone numbers and addresses in multiple
places; if something were to change (such as the 2014 introduction of Irish
ZIP codes, called Eircodes!), you’d have to update several classes, and
perhaps addresses and phone numbers would end up being treated
differently in different parts of the system. Thanks to superclasses and
inheritance, the code needs to be updated only once.

Often you’ll want subclasses to inherit all the methods from their
superclass, but this isn’t always the case. Sometimes a class may need to
have logic that’s different from that of its superclass. For example, you
might have a subclass of clients whose costs or taxes are calculated
differently, or you might have products that require a special disclaimer to
be displayed. In such circumstances, a subclass can override an inherited
method; that is, you can create a method directly in the subclass that takes
precedence over the method of the same name from the superclass. In PHP,

overriding a method is straightforward: if a subclass declaration implements
a method matching one that would have been inherited from a superclass,
then the subclass’s method will be used.

The Flow of Control for Object-Oriented Systems
Each type of programming language has a flow of control, which indicates
how a computer system starts running and how it decides what to do next,
after it’s started. As you’ve seen in the last several chapters, the flow of
control for a procedural PHP web application usually is driven by a front
controller in the index.php PHP script. When the web server receives an
HTTP request, the statements in index.php are executed in sequence. In an
object-oriented application, however, where many of the PHP files are
devoted to declaring classes of objects, the flow of control may seem a bit
more obscure. When do objects of those classes actually get created and
start sending messages to one another?

Object-oriented PHP web applications still have an index.php script,
though it looks a bit different from what we’ve seen previously. It typically
creates the main application object, which serves as a front controller, and
tells this object to process the received request and act appropriately.
Listing 17-1 illustrates the kind of index.php scripts we’ll write in the
coming chapters.

<?php

require_once __DIR__ . 'path to class declaration file';

$app = new WebApplication();

$app->run();

Listing 17-1: The typical code for an object-oriented index.php front controller

First, we read in the declaration for the class (or classes) we’ll be using.
You’ll learn a simple way to do this in Chapter 18, and then in Chapter 20
you’ll learn to use the Composer PHP command line tool to load class
declarations in a more general way.

Next, we create a new object of the WebApplication class, storing a
reference to this new object in the $app variable. The WebApplication class
will contain the logic for processing an HTTP request received from a web
client, which is everything we previously would have put into the index.php
script itself.

Then we send the message run() to the WebApplication object, which
will result in the run() method that’s declared in the WebApplication class
being executed for the particular $app object. The code for the run()
method will include statements to do things like extract an action from the
URL-encoded variables and check the session for login status. The code
may also invoke other methods or create new objects as appropriate to
complete the action requested by the web client.

In summary, for a web application like this, the flow of control is
sequential within the index.php file; the statements in that file are executed
in order. As a result, an object is created, and the object is sent a message to
start processing the HTTP request. From this point on, all the other logic for
our web application will be in the methods of the WebApplication class, or
other classes for which objects will be created as part of the execution of
methods in the WebApplication class.

An Example Class Declaration
Let’s now consider an example PHP class declaration. In Listing 17-2, we
declare a class named Player, such as might be part of an online game
system. Don’t worry too much about the specifics of the code; we’ll cover
how to write PHP classes in much more detail in later chapters. For now,
this example simply offers a glimpse of the type of code that’s to come.

<?php

class Player

{

 private string $name;

 ❶ private int $highScore = 0;

 ❷ public function setName(string $name)

 {

 $this->name = $name;

 }

 ❸ public function setHighScore(int $newScore)

 {

 if ($newScore > $this->highScore) {

 $this->highScore = $newScore;

 }

 }

}

Listing 17-2: The PHP code to declare a Player class

We use the class keyword to declare a class called Player, and we
give the class two properties, name and highScore. Just as for variables in
non-object-oriented PHP, you can assign a default value to a property. We
do that here, setting the default value of highScore to 0 ❶ so that each new
Player object will be created with an initial high score of 0. We next
declare the setName() method ❷, which when invoked will take in a string
parameter and store it in a Player object’s name property. Then we declare
the setHighScore() method ❸. It takes in a parameter ($newScore), and if
this new score is higher than the stored high score for the object, then the
new score is stored in the object’s highScore property.

When a method is executed, it will be working on the properties of a
particular object created from the class the method is defined in. In the
method’s definition, the special PHP keyword $this refers to the object on
which the method will be invoked. Thus, in the definition for the setName()
method, we use the $this keyword (as in $this->name = $name;) as a
stand-in for whichever Player object is being assigned a name. For
example, I might have an object $player1 whose name I set to "Matt", and
a second object $player2 whose name I set to "Aoife". In both cases, the
setName() method code ❷ would be invoked to assign the name, and in
both cases $this would stand for the Player object whose name is being
set: first $player1 and then $player2.

Our class declaration includes examples of information hiding, in that
the name and highScore properties are declared as private. They can’t be

changed by code from outside the Player class. However, we’ve also
declared the setName() and setHighScore() methods as public. These
setter methods allow for outside communication with Player objects, but
only through internal validation checks coded in the methods (such as
checking that a new score exceeds the previous high score before
overwriting the highScore property); these checks ensure that the object’s
data is never set to invalid or inconsistent values.

Notice that each method in Listing 17-2 is short and simple. Once the
architecture of an application has been created, writing code to declare each
property and method of a class is often relatively straightforward. While the
methods for a full web application will be longer than those shown in this
example, one benefit of OOP is that it typically allows programmers to
focus on writing one method of a class at a time, with each method having
one clear responsibility.

With OOP, you don’t have to think about all the ways the method could
be used; you only need to make sure that what you’re writing is a correct
behavior for the class. For example, it doesn’t matter if a Player object’s
name is being set for the first time at the start of the game, is being updated
in the middle of the game because the player changed their mind, or is
being changed automatically because the player was turned into a frog. The
point is to write the setName() method so that it requires valid parameters
and results in the correct changes to the Player object’s properties. As such,
the code will be easy to write and maintain.

Summary
In this chapter, we surveyed some of the important OOP concepts. You saw
that classes are templates for creating objects and that classes allow you to
store all the variables and functions an object needs in one place, a concept
called encapsulation. You also saw that objects can link to each other
through their properties and that objects of different subclasses can inherit
shared properties and methods from superclasses. Finally, you had a first
look at some of the PHP code that implements these concepts.

In the next few chapters, you’ll learn how to declare classes, create
objects, and send messages to objects to invoke their methods and change
their data. You’ll then begin to put all that knowledge together to create

well-organized object-oriented web applications building on the features
we’ve explored in all the previous chapters. As you read ahead, don’t forget
that you already know many of the core requirements for writing object-
oriented PHP programs, since OOP comes down to declaring variables and
writing PHP statements in functions; it’s just that the variables (properties)
and functions (methods) are grouped (encapsulated) together in classes, and
that the methods will be invoked in response to messages sent to objects of
the classes.

Exercises
1. Choose a computer system, such as an online store, an application on

your desktop or laptop, or an app on your phone or tablet. Think about
some of the classes of objects that system might be using. Choose one
class of object and write a list of the pieces of data it might store, as
well as some of the methods it might need in order to work on that data.

2. Thinking again of the classes from Exercise 1, try to identify one data
property that you would want to restrict access to, so that it could be
changed only through a method that would log the change.

3. Consider a computer system for a library. Think of two classes of
objects the computer system might use that share several data properties
and methods (for example, different types of items the library offers for
lending). Now generalize those common properties and methods into a
suitably named superclass, and draw a class diagram like Figure 17-4
that shows which properties and methods are inherited from the
superclass and which are specific to each subclass.

18
DECLARING CLASSES AND CREATING

OBJECTS

In this chapter, you’ll learn how to
define the structure of a class by using a

class-declaration file, and you’ll practice creating
individual objects of that class. You’ll see that classes
with public properties let you directly change an
object’s data, while classes with private properties
mean you can change an object’s data only via its
methods, some of which can perform validation.
You’ll also learn about PHP “magic” methods that
make it easier to write object-oriented code.

Declaring a Class
A class declaration defines a class: it lays out the properties (variables)
each object of that class will have, as well as the methods (functions) that
can act upon those properties. A class declaration also establishes any
relationship that class has with other classes (such as inheritance, which
you’ll learn about in Chapter 19).

Like function declarations, class declarations are stored in PHP files in
the src directory of a project. For all the projects in this book, each class
will be declared in its own file; if a project has five classes, it will have five
class-declaration files, and so on.

NOTE
In this book, we won’t explore the advanced topic of anonymous classes,
which is one of the few cases where more than one class may be declared in
a single file. You can learn more at
https://www.php.net/manual/en/language.oop5.anonymous.php.

By a well-established convention in OOP, both class names and class-
declaration filenames always start with a capital letter. If the name includes
multiple words, each word should start with a capital letter, with no spaces
between the words. This is known as upper camel case, or sometimes
Pascal case. Examples of valid class names include Product,
NetworkSupplier, DesktopComputer, ReferenceBook, and InventoryItem.

Throughout this chapter, we’ll work with a class called Product that
can represent various items for sale through an e-commerce site. Let’s
declare it now. Create a new directory for a new project, and in it create a
src directory. In this src directory, create a Product.php file and enter the
contents of Listing 18-1.

<?php

class Product

{

 public string $name;

 public float $price;

}

Listing 18-1: The Product.php file to declare the Product class

We start with the standard PHP beginning code tag, since we use PHP
code to declare classes. Then we use the class keyword to state that we’re
declaring a new class named Product. After the class name, enclosed in
curly brackets, we define any properties or methods that will be associated
with objects of that class. In this example, we declare two properties for

https://www.php.net/manual/en/language.oop5.anonymous.php

each object of the Product class: name, which will be a string, and price,
which will be a float. We declare both properties as public, meaning any
part of our program with access to a Product object can read and change
the values of its properties. We’ll explore the implications of public
properties later in the chapter.

If we want all objects to have a default value for a property, we can
assign a property a value in the class declaration. For example, if our
system set an initial –1 price for every new Product object, we could have
written public float $price = -1.

Figure 18-1 shows a Unified Modeling Language (UML) class diagram
visualizing the class we’ve just written. UML is a common tool for
representing classes, objects, and their interactions through diagrams and
text.

Figure 18-1: The Product class

The top row of the diagram indicates the class name (Product), and the
second row lists the properties associated with that class, along with the
data type expected for each property. The plus sign before each property
name indicates that the properties have public visibility.

Creating an Object
You use the PHP keyword new to create an object of a class. The new
keyword is followed by the name of the class for which an object is to be
created, then a set of parentheses. Inside the parentheses, you may pass
arguments for initialization, as we’ll discuss in “Initializing Values with a
Constructor Method” on page 346. The general form of a statement to
create an object is thus new ClassName(). Creating an object is also called
instantiation, since the object is an instance of the class.

By writing the new keyword and a class name, you’re asking PHP to
create a new object of the named class. When an object is created in the
computer’s memory with the new keyword, the PHP engine automatically
returns a reference to the new object. In most cases, you’ll want to store the
reference to that newly created object in a variable—for example,
$myObject = new ClassName(). It’s important to understand that with such
statements, the variable $myObject doesn’t actually contain the object itself,
but rather a reference to the object. It’s possible for several variables, or
none, to refer to a particular object in memory.

Once you have a reference to an object, use the object operator (->) to
access properties and methods of that object. For example, you could write
$myObject->description to access the description property of the object
referred to by $myObject. Likewise, you could invoke a setDescription()
method of an object by writing something like $myObject-
>setDescription('small carpet'). The parentheses or lack thereof are
important, since they tell the PHP engine (and people reading the code)
whether a statement is attempting to access a property (no parentheses
present) or a method (parentheses present).

With all this in mind, let’s create an object. We’ll write an index.php
script to read in the Product.php class-declaration file, create a Product
object, and set the values of its properties. Figure 18-2 shows our goal: a
$product1 variable that stores a reference to a Product object whose
properties have the values 'hammer' and 9.99.

Figure 18-2: The $product1 variable references an object of the Product class.

For simplicity, we’ll start by creating a Product object and setting only
its name property. To make sure our code is working, we’ll also print the
value of the object’s name property to the project’s home page. In your
project directory, create a public folder, and in that folder create an
index.php file containing the code in Listing 18-2.

<?php

require_once __DIR__ . '/../src/Product.php';

$product1 = new Product();

$product1->name = 'hammer';

print 'product 1 name = ' . $product1->name;

Listing 18-2: An index.php script to create and manipulate a Product object

We read in the declaration for the Product class, using the __DIR__
magic constant to create a path from the location of this index.php file (in
public) to the location of the Product.php file (in src). Then we use the new
keyword to create a new object of the Product class. Since this class
doesn’t require any initial values or options when creating objects, we don’t
pass any arguments in the parentheses after the class name.

If you aren’t passing any arguments when you create a new object,
PHP (unlike most object-oriented languages) allows you to omit the
parentheses after the class name. Writing new Product() is the same as
writing new Product. However, there are several good reasons to always
include the parentheses, and so this is the style you’ll see throughout this
book. Perhaps the most important reason to always use parentheses after the
keyword new is to remind ourselves that a constructor method may be
executed as the new object is created; we’ll look at such methods in
“Initializing Values with a Constructor Method” on page 346.

The new Product() expression creates the new object and returns a
reference to it, which we store in the $product1 variable. To reiterate,
$product1 doesn’t contain the object itself, nor does it contain a copy of the
object. It contains just a reference to the object created in the computer
system’s memory. In “Object Variables as References” on page 351, we’ll
have two variables refer to the same object to help illustrate this concept.

Next, we set the value of the object’s name property to the string
'hammer'; we can do this because the property was declared as public. We
use the object operator (->) after the $product1 variable to refer to the name
property of that object.

WARNING
Do not write a dollar sign after the -> characters: $product->name is
correct, and $product->$name is wrong. The PHP engine won’t create a
warning or error if you write the latter, but it will interpret the code as
meaning there’s a variable called $name whose value is the name of a
property you want to access on the $product object. This is very different
from accessing the value of the $product object’s name property. If your
code is behaving strangely, check for this possible programming mistake.

Finally, the script ends by printing a message featuring the value
retrieved from the $product object’s name property. If you run the web
server and visit the project’s home page, you should see this line of text
displayed:

product 1 name = hammer

The -> operator lets you manipulate any of an object’s public
properties by name. Let’s update our script to set and display the price of
the object as well as its name. Modify the index.php file as shown in Listing
18-3.

<?php

require_once __DIR__ . '/../src/Product.php';

$product1 = new Product();

$product1->name = 'hammer';

print 'product 1 name = ' . $product1->name;

$product1->price = 9.99;

print ", and price = {$product1->price}";

Listing 18-3: Setting and displaying the product price in index.php

We set the object’s price property to 9.99 following the same format
we used in Listing 18-2 to set the name property. Then we display the value
of the property. Notice that this time we use a double-quoted string to

combine the message and property value. This illustrates that in double-
quoted strings, a reference to a public property of an object, such as
$product1->price, will be parsed and the resulting value will be output,
just as with a simple variable.

Visiting the home page again, you should see both the product name
and price displayed:

product 1 name = hammer, and price = 9.99

We’ve now created an object of the Product class, and since the class’s
properties are public, we were able to set and retrieve the properties’ values
directly. In practice, however, most classes are written with private rather
than public properties.

Private Properties with Public Accessor Methods
When properties are declared as private, they can’t be accessed by code
outside the class declaration itself. Instead, they’re available through public
accessor methods, functions that allow object property values to be
retrieved (getter methods) or updated (setter methods). This mechanism of
private properties with public accessor methods reduces the risk of invalid
property values; when changes to a property must take place through a
setter method, you can implement validation logic as part of the method (for
example, preventing negative values or out-of-range values). Also, related
properties or other objects might need to be updated together, such as the
balance of one bank account being reduced by the same value that another
account is increased. With setter methods and private properties, you can
easily enforce such rules so that the data in the application stays correct and
internally consistent.

The default visibility for class members is public, so if no access
modifier is provided for a property, the PHP engine will automatically
declare it as having public visibility. Even with this default behavior, it’s
still good practice to explicitly use the public access modifier in the class
declaration when you want a class member to have public visibility.
Otherwise, use the private access modifier to make the member private.

NOTE
In addition to public and private, a third access modifier, protected, can
be used in conjunction with inheritance. We’ll explore this topic in Chapter
19.

For PHP and almost all OOP languages, a getter or setter method’s
name usually starts with the word get or set, followed by the property name
the method affects, with its first letter capitalized. According to this
convention, the getter method for the name property of our Product class
should be getName(), and its setter method should be setName(). For the
price property, the methods should be getPrice() and setPrice(). An
exception to this convention is made when a property contains a Boolean
true/false value. In this case, naming the getter method isPropertyName
rather than getPropertyName is customary. For example, if the Product
class had a dangerousItem property that contained true or false, its getter
would be named isDangerousItem().

A getter method usually returns a value of the same data type as the
property it’s paired with (although sometimes we have multiple getter
methods for different representations of an object’s property, such as
methods to return both rounded-up integer and float values of a float
property). A setter method usually takes in a parameter of the same type and
stores its value in the property, perhaps conducting validation checks in the
process. Usually, setter methods don’t return any value and so are declared
to return void.

Let’s revise the declaration for the Product class, making its name and
price properties private and adding four public accessor methods, two for
each property. Update the src/Product.php file as shown in Listing 18-4.

<?php

class Product

{

 private string $name;

 private float $price;

 ❶ public function getName(): string

 {

 return $this->name;

 }

 ❷ public function setName(string $name): void

 {

 ❸ $this->name = $name;

 }

 public function getPrice(): float

 {

 return $this->price;

 }

 public function setPrice(float $price): void

 {

 $this->price = $price;

 }

}

Listing 18-4: Modifying the Product class to use getter and setter methods

First, we change the declaration of the two properties to private. Then
we declare getName(), the public getter method for the name property ❶.
Methods in classes can use the special pseudo-variable $this to reference
the calling object; that is, $this is a stand-in for the object whose properties
and methods we’re working with. Our getName() method thus returns the
value in the name property of whichever Product object the method is
currently being called on. The method has a string return type, since the
name property is a string.

We next declare setName(), the public setter method for the name
property ❷. This method takes in a new string name value through the
$name parameter and stores this value in the name property for the current
object, again using $this to reference the object. This setter method returns
void. The getter and setter methods for price follow the same pattern.

Notice in the body of setName() how PHP distinguishes between the
$name parameter and the name property for the current object ❸. The
former is prefixed by a dollar sign, while the latter is attached to $this->

and doesn’t have a dollar sign to indicate it’s a property of the current
object. In other words, $name in the setName() method unambiguously
refers to the value of the argument passed to the method, while the private
name property of the object that has been sent the setName() message is
unambiguously referred to by $this->name. The same goes for the float
$price parameter of the setPrice() method versus the price property of
the object the method is being called on.

When you write methods in a class-declaration file, you must always
keep in mind that the same methods may be executed on zero, one, or
thousands of objects, in response to objects receiving a message with the
name of the method (and any required arguments). Although you may plan
to create and use only one instance (object) of a class when you first write
the declaration, a well-written class encapsulates the data (properties) and
behavior (methods) for any object of that class. When you keep the general
use in mind while programming, you can often use a class in other parts of
the same project, or different projects altogether, with few or no changes
required to the class declaration. Well-written class declarations lend
themselves to reuse.

NOTE
While you can type out accessor methods yourself, many code editors,
including PhpStorm, offer an automated feature to generate simple getter
and setter methods for you. Autogenerating code is faster than typing it out
by hand, and it ensures error-free scripts that follow PHP programming
conventions.

Getting and Setting Private Properties
Since the two properties of any Product object are now declared private,
we can’t access them directly, such as by writing $product1->name or
$product1->price. If you run the existing index.php script, you’ll get a
fatal error about not being able to access the private name property. Instead,
we have to read and modify these private properties by using their public
accessor methods. Listing 18-5 shows how to update index.php to make use
of these new methods.

<?php

require_once __DIR__ . '/../src/Product.php';

$product1 = new Product();

$product1->setName('hammer');

$product1->setPrice(9.99);

print 'product 1 name = ' . $product1->getName();

print ", and price = {$product1->getPrice()}";

Listing 18-5: Using accessor methods in index.php

As in Listing 18-3, we create the $product1 object, set its properties,
and print out those properties. This time, however, we rely entirely on
accessor methods. We use setter methods to update the values of the object
properties, such as $product1->setName('hammer'). Likewise, we use
getter methods to retrieve values from the object, such as $product1-
>getName(). Thanks to these methods, the data in the $product1 object is
safely encapsulated but still accessible.

Screening for Invalid Data
One of the advantages of protecting the data properties of objects is that you
can add validation logic to the setter methods to prevent invalid values from
being stored in the properties. For example, most businesses probably
wouldn’t want to set a negative price for a product (although something
might be a free gift, so we’ll allow for a price of 0). We should therefore
add an if statement to the setPrice() method that updates the stored
price only if the new value is greater than or equal to 0. Listing 18-6 shows
how to update the method in src/Product.php.

--snip--

public function setPrice(float $price): void

{

 if ($price >= 0) {

 $this->price = $price;

 }

}

Listing 18-6: Adding validation logic to the setPrice() method of the Product class

In our validation logic, we confirm that the new $price argument is
greater than or equal to 0 before setting the value of the object’s price
property. To make sure the validation check works, we can update our
index.php script to attempt to set an invalid, negative price value. We should
see that the invalid values aren’t stored in the object. Listing 18-7 adds extra
statements to index.php for two tests of the validation logic.

<?php

require_once __DIR__ . '/../src/Product.php';

$product1 = new Product();

$product1->setPrice(9.99);

print "(initial value) product 1 price = {$product1->getPric

e()}\n";

$product1->setPrice(-0.5);

print '
(test 1) trying -0.5: ';

print "product 1 price = {$product1->getPrice()}\n";

$product1->setPrice(22);

print '
(test 2) trying 22: ';

print "product 1 price = {$product1->getPrice()}\n";

Listing 18-7: Testing the setter validation logic in index.php

As before, we create a new Product object and set its price to 9.99.
Then we try to set the price to an invalid negative value, and then a valid
positive value that’s different from its initial value, printing the product
price each time. Here’s the output of this script in the browser:

(initial value) product 1 price = 9.99

(test 1) trying -0.5: product 1 price = 9.99

(test 2) trying 22: product 1 price = 22

For test 1 (a negative price of -0.5), the stored price remains
unchanged at 9.99. For test 2 (a nonnegative value of 22), the stored price
is updated. Our validation logic has worked. In this example, we simply
ignored the invalid value, but it’s generally better to somehow indicate that
there was a problem. One option is for setters to return a Boolean false
value when no value was set. Another option is to throw an Exception
object, as we’ll explore in Chapter 23.

Overriding Default Class Behavior with Magic Methods
PHP offers several magic methods that override default behavior of an
object. For example, the __construct() magic method overrides the
default way objects of a class are created, and the __toString() magic
method overrides the way objects are handled in print statements and other
contexts requiring a string. We’ll explore each of these magic methods in
this section.

Despite their name, magic methods are unrelated to PHP magic
constants. Magic methods are a feature of object-oriented PHP, allowing the
default behavior of an object to be changed. All magic methods have names
beginning with double underscore characters (__); therefore, you should
name methods with such a prefix only when declaring a magic method for a
class. You can find a list of all the PHP magic methods at
https://www.php.net/manual/en/language.oop5.magic.php.

Initializing Values with a Constructor Method
It’s common to want to set some (or all) of an object’s properties as soon as
that object has been created. As shown in Listing 18-5, you can do this by
first creating an object and then having a sequence of statements invoking
setter methods to set values for each property. However, initializing object
properties immediately after creating an object is such a common
requirement that PHP enables you to combine these actions into a single
step by writing a magic method called a constructor as part of the class
declaration.

Every class-declaration file either declares no constructor method (as
you’ve seen so far in this chapter) or declares a single constructor magic
method named __construct(). It’s magic in the sense that it overrides the

https://www.php.net/manual/en/language.oop5.magic.php

default way of creating an object: creating it without setting any of its
properties. The __construct() method takes in a series of parameters and
assigns them as initial values of the newly created object’s properties. Using
a constructor method in an index.php file is as simple as providing the
initial values as arguments in the parentheses after the class name:
$myObject = new ClassName($value1, $value2), for example. Thanks to
the use of the new keyword, PHP automatically links the arguments with the
constructor, even though __construct() isn’t called explicitly.

NOTE
PHP is quite unusual as an object-oriented language in that the constructor
method doesn’t have the same name as the class. In most other object-
oriented languages, a Product() method in the Product class would be a
constructor method, but in PHP, there’s nothing special about a method that
has the same name as the class in which it’s declared.

Setting properties as part of the constructor method can save some code
when it comes to creating new objects. For example, if we know we’ll want
to set the name and price properties upon creation of a Product object, we
can add a constructor method to the Product class that takes in $name and
$price arguments to set these properties automatically. That way, when we
create our $product1 object in index.php, we can replace these three
statements

$product1 = new Product();

$product1->setName('hammer');

$product1->setPrice(9.99);

with just a single statement:

$product1 = new Product('hammer', 9.99);

Update Product.php as shown in Listing 18-8 to add a constructor
method that sets the name and price properties.

<?php

class Product

{

 private string $name;

 private float $price;

 public function __construct(string $name, float $price)

 {

 $this->setName($name);

 $this->setPrice($price);

 }

 public function getName()

--snip--

Listing 18-8: Adding a constructor method to the Product class

We declare a new __construct() method. It replaces the default no-
parameter creation of an object via new Product() with a method requiring
two parameters: the initial string name and float price values for the new
Product object. Note that constructor methods don’t specify any return
type. Within the __construct() method definition, we call the setName()
and setPrice() methods, which we’ve already defined elsewhere in the
Product class declaration, feeding them the $name and $price parameters.
This may not seem easier than calling those methods in the index.php script,
but as you start creating more instances of the same object, setting
properties through the constructor quickly becomes much more efficient.
This approach also ensures that exactly the same validation is applied when
values are set at the time of object construction as when values are changed
at a later time with a direct call to a setter method.

NOTE
Many IDEs (such as PhpStorm) offer an interactive constructor method
generator that enables you to add selected properties as parameters and
have their values set by the generated constructor method code.

Listing 18-9 shows how to simplify index.php to take advantage of the
new constructor method.

<?php

require_once __DIR__ . '/../src/Product.php';

$product1 = new Product('hammer', 9.99);

print 'product 1 name = ' . $product1->getName();

print ", and price = {$product1->getPrice()}";

Listing 18-9: The simpler index.php script, using the constructor method

When we create the $product1 object, we pass the desired initial
values for the name and price properties as arguments for the constructor.
As noted previously, this collapses three lines of code (creating the object
and setting each of its two properties) into a single line.

CONSTRUCTOR PROPERTY PROMOTION

PHP 8 introduced constructor property promotion, which allows you to declare a
class’s properties and pass the initial values of those properties in the constructor
method, both as a single step. This can make your class declaration files much more
concise. This technique takes the place of separately declaring a private property
and initializing it in the constructor method. Instead, you write just a constructor with
a private argument and no body.

Without constructor property promotion, you’d have to set a class’s name property
through the constructor like this:

private string $name;

public function __construct(string $name)

{

 $this->name = $name;

}

With constructor property promotion, those lines become a single constructor
declaration with no method body:

public function __construct(private string $name){}

Until you’re very familiar with OOP, I recommend that you keep your class
property declarations separate from your constructor method code. This separation
helps you see at a glance which properties each object of the class will have, and if
you want to, you can look at the code for the constructor to see which (if any) can be
initialized when a new object is created. Constructor property promotion also isn’t
appropriate when new object values should be validated through calls to setter
methods, as in Listing 18-8.

Converting Objects to Strings
It’s common to want to summarize the contents of an object as a string,
sometimes to display details about the object, or sometimes for debugging
and logging purposes. One common reason to convert objects to strings is
to generate a list of objects for a web interface, such as a drop-down menu.
Figure 18-3 shows an example drop-down menu with a list of some of the
courses I teach.

Figure 18-3: A list of courses summarized as strings

You can imagine that each of these courses is represented in PHP by a
Course object, which has properties like courseNumber and courseName. To
generate the drop-down menu, PHP converts each Course object to a string
in the form courseNumber - courseName, such as COMP H2029 - Web
Development Server-Side. These strings can then be fed into the HTML
code for displaying the menu.

How does that conversion to a string happen? Most object-oriented
languages, including PHP, offer a way to implement a special method to
return a string when an object is used in an expression that requires a string
(for example, something like print $course1, where $course1 is a
reference to a Course object). In PHP, this functionality comes from another
magic method prefixed with two underscore characters: __toString().

You don’t have to implement a __toString() method for every class,
but if you know you’ll need a string summary of an object (such as for a
drop-down HTML menu), or if you want to log details about objects to a
report, then __toString() methods are useful. If a class has no
__toString() method and you try to reference an object of that class in an
expression requiring a string, you’ll get a could not be converted to
string fatal error. Let’s see this happen by replacing the print statements
at the end of our index.php script with print $product1. Update index.php
to match Listing 18-10.

<?php

require_once __DIR__ . '/../src/Product.php';

$product1 = new Product('hammer', 9.99);

print $product1;

Listing 18-10: Trying to output details of an object via print in index.php

We pass the expression $product1 to a print statement. Because
print statements expect a string expression and $product1 isn’t a string,
PHP will try to convert it to one. Since the PHP engine can’t convert an
object reference to a string without a __toString() method, a fatal error
occurs.

Let’s now implement a __toString() method for our Product class,
both to explore this common feature of OOP and to allow us to use the
simplified index.php script in Listing 18-10. Listing 18-11 shows the new
__toString() method added to the src/Product.php file.

<?php

class Product

{

 private string $name;

 private float $price;

 public function __construct(string $name, float $price)

 {

 $this->setName($name);

 $this->setPrice($price);

 }

 public function __toString(): string

 {

 ❶ return '(Product) name = ' . $this->name

 . ', and price = ' . $this->price;

 }

 public function getName(): void

--snip--

Listing 18-11: Adding a __toString() method to the Product class

We add a new __toString() method to the class. It contains a single
statement that builds and returns a string summarizing the object property
values. Note that we generalized the string message to start with
'(Product) ' rather than 'product 1 ' ❶. Since this is a method of a
class and therefore will potentially be used by many objects, we shouldn’t
hardcode the name of the variable referring to a particular object into the
general class declaration file.

Run the index.php script as it was updated in Listing 18-10, and you
should see that the print $product1 statement works correctly, thanks to
the new __toString() method.

Object Variables as References
As noted earlier, the $product1 variable used throughout this chapter is a
reference to a Product object in memory, not a Product object itself. One
implication of this distinction is that more than one variable can reference
the same object in memory. This can occur in lots of ways. For example, it
would happen when you need to loop through a collection of objects and

perform actions on each. In this case, a temporary local variable would
reference the current object being worked on, but the collection would also
still have a separate reference to that object.

To see how object variables are just references to locations in memory,
update index.php as shown in Listing 18-12. In this code, we create
$variable2, make it a reference to the same object as $product1, and
change one of the object’s properties through $variable2. As you’ll see,
this change impacts the object referenced by $product1 as well, proving
both variables are referencing the same object.

<?php

require_once __DIR__ . '/../src/Product.php';

$product1 = new Product('hammer', 5.00);

print $product1;

print '
';

❶ $variable2 = $product1;

print 'changing price via $variable2';

print '
';

$variable2->setPrice(20.00);

print $product1;

Listing 18-12: Updating index.php to illustrate how object variables are references

We make $variable2 a reference to the same object as $product1 ❶.
Then we call setPrice() to the object that $variable2 refers to, changing
the value of the object’s price property to 20.00. We then print $product1
a second time. Since $product1 is a reference to an object, its
__toString() method will be invoked. This produces the following output
in the browser:

(Product) name = hammer, and price = 9.99

Changing price via $variable2

(Product) name = hammer, and price = 20

The object referenced by $product1 has had its price changed to 20,
even though we made the price change through $variable2. Therefore, the
two variables must be referencing the same object.

Handling Missing Objects
Sometimes code is written in such a way that you expect a variable to refer
to an object, but no such object is found. That variable would be NULL, so
it’s often important to include checks for NULL when you’re writing object-
oriented code.

Let’s consider an example. Imagine you’re writing code for a blog. To
display a particular blog post, the code expects a valid ID of a blog post
from an HTTP request, then uses that ID to retrieve data from a database
and construct a Blog object. If no ID is found in the request, if the ID is
invalid, or if the ID doesn’t match any item in the database, then the
application can’t create a Blog object, and so the code would return NULL
instead of an object reference.

To account for this situation, other code expecting to work with a Blog
object would first test for NULL and then decide whether to deal with an
invalid ID (say 0 or negative) or with a successfully retrieved Blog object.
Listing 18-13 shows an example method that might come from a database-
driven blog website to illustrate this point.

<?php

--snip--

public function blogFromId (int $id): ?Blog

{

 ❶ if (is_numeric($id) && $id > 0) {

 return $this->blogRepository->find($id);

 }

 return NULL;

}

--snip--

Listing 18-13: Using a nullable return type

This blogFromId() method takes in a value for an $id and returns
either a reference to a Blog object or NULL, using the nullable return type ?
Blog. (We could also have written this as union return type Blog|NULL.) The
method tests whether $id is numeric and greater than 0 ❶. If so, it passes
the valid $id to the find() method of the blogRepository property and
returns the value from this method (either NULL or the Blog object found for
this ID in the database). If the $id isn’t valid, NULL is returned.

This example is making lots of assumptions, but the point is that the
variable set to the result of calling the blogFromId() method will either
have a reference to an object or be NULL. Code like this is quite common in
OOP (as you’ll see in Part VI), which is why you often test for a NULL value
of a variable you expect to be a reference to an object, to identify whether
any object is being referred to. This compares to working with non-object-
oriented PHP variables, where NULL can mean, for example, that a variable
hasn’t been initialized or that no string value was received for a URL-
encoded variable in an HTTP form submission.

Custom Methods and Virtual Attributes
You can write all sorts of custom methods for a class, beyond the standard
getters and setters and the __construct() and __toString() magic
methods. Remember, methods are simply functions attached to a class of
objects, so custom methods are functions to implement logic and
calculations relating to objects of the class. For example, our Product class
might come with a method for calculating the total price of a product,
including tax. The tax rate will be a float value, such as 0.5 (for 50 percent).
Such a method would still be functioning as a getter, but instead of simply
returning a stored property value, it would be dynamically calculating a
value each time it’s invoked.

To see how it works, we’ll add a getPriceIncludingTax() method to
our Product class declaration. The method will retrieve the tax rate and the
pretax price of a product from the appropriate object properties, perform the
necessary calculation, and return the total price with tax. For a tax rate of
0.1 (10 percent) and a price of 5.00, for instance, the method should return

1.1 * 5.00 = 5.50. To create the method, we also need to add a private
taxRate property to the class, along with accessor methods for setting and
getting the tax rate for a product.

Listing 18-14 shows an updated Product.php class-declaration file. In
addition to adding the taxRate property, its accessors, and the custom
method, we also modify the __toString() method to display the results of
the tax calculation.

<?php

class Product

{

 private string $name;

 private float $price;

 ❶ private float $taxRate;

 public function __construct(string $name, float $price)

 {

 $this->setName($name);

 $this->setPrice($price);

 }

 public function __toString(): string

 {

 return '(Product) name = ' . $this->name

 . ', and price = ' . $this->price

 . ', and price with Tax = ' . $this->getPriceInc

ludingTax();

 }

 ❷ public function getTaxRate(): float

 {

 return $this->taxRate;

 }

 public function setTaxRate(float $taxRate): void

 {

 $this->taxRate = $taxRate;

 }

 ❸ public function getPriceIncludingTax(): float

 {

 return (1 + $this->taxRate) * $this->price;

 }

 public function getName()

--snip--

Listing 18-14: Adding the taxRate property and associated methods to the Product class

We declare the taxRate property ❶ along with its simple getter and
setter methods ❷. Then we declare the getPriceIncludingTax() method
❸. It returns the price with the tax rate factored in.

As you can see, our getPriceIncludingTax() custom method is
simply a function that performs a useful calculation for our class. In this
case, it’s essentially an extra getter method that provides a variation on one
of the class’s stored properties, price. In fact, it’s quite common in OOP to
see what amounts to multiple getter methods for the same property of an
object: methods that return pre- and post-tax prices of a product, methods
that return the same property with different levels of precision (rounded to
the nearest whole number versus including up to two decimal places),
methods that retrieve the same property converted to different currencies or
units (dollars versus euros, feet versus meters), and so on.

In other cases, custom methods can act as virtual attributes: rather than
provide a variation on an existing property, such methods perform
calculations to arrive at a completely new piece of information. An example
of a virtual attribute might be a method to calculate the age of a product. If
products had a dateReceived property, the age of a product could be
dynamically calculated as part of a getProductAge() method. The method
would subtract dateReceived from the current date. In this case, the
product’s age isn’t actually stored as a property of the object, but thanks to
the getProductAge() method, the information is available as if it were a
property.

Custom methods highlight some of the power of OOP: the person
writing code that uses a public getProductAge() method of a Product

object doesn’t need to worry about how that method is implemented. All
that counts is that the method works. If the implementation of the method is
changed (perhaps changing the data type of the dateReceived property
from stored MySQL datetime values to Linux timestamps) but its behavior
remains correct and unchanged, it makes no difference to the parts of the
system that are sending messages to Product objects and using the values
returned by those methods.

Summary
This chapter covered how to declare classes, how to read those declarations
into an index.php file and use them to create objects, and how to invoke
methods of objects to set and retrieve their property values. You saw how to
protect an object’s data properties by declaring them as private, and how
to use getter and setter methods declared as public to manage access to the
object’s properties and perform validation where relevant. We also
discussed how to perform common useful actions with PHP “magic”
methods, such as creating new objects with some properties initialized via a
constructor method and generating a string message representing an object’s
properties by declaring a __toString() method.

Exercises
1. Write a PHP class declaration for a Cat class, with public properties of

name, breed, and age. Then write an index.php file to read in the class
declaration and create a Cat object. Store a reference to the new object
in a variable named $cat1 and set its properties as follows:

name = 'Mr. Fluffy'

breed = 'long-haired mix'

age = 2

Finally, add statements to print the data values for each property of
$cat1.

2. Write a PHP class declaration for a Pet class, with a private name
property and public get and set accessor methods for this name variable.
Then write an index.php file to read in the class declaration and create a
Pet object referenced by a variable named $pet1. Use the setter to set

its name to 'Fifi', and add a statement to print the name stored in this
object.

3. Add a constructor method to your Pet class so you can create new Pet
objects with an initial value of the name variable by using a statement
like this:

$pet1 = new Pet('Mr. Fluffy');

Update your index.php file to use this constructor method rather than
setting the name with the setter method.

4. For the following properties and types, write their corresponding
accessor (getter/setter) method names:

age // integer

houseNumber // integer

color // string

length // float

heavy // bool

19
INHERITANCE

This chapter covers perhaps the most
powerful and important feature of

OOP: inheritance. This is the capability of one or
more classes, called subclasses, to automatically have
all the same properties and methods as another class,
called a superclass. Inheritance makes OOP more
efficient: you have to define any general, shared
members only once, in the superclass. Objects of the
subclasses inherit those properties and methods, and
they will also have whatever properties and methods
are specific to the individual subclasses.

Associated with inheritance is the capability of subclasses to override
inherited methods from their superclass when that general method isn’t
appropriate to the particular subclass. As we’ll explore in this chapter, you
can also have the best of both worlds (executing the inherited method and
adding additional behavior through the subclass’s method) by using the
parent keyword. Additionally, we’ll discuss the third kind of protection
PHP offers for methods and properties: protected. You’ll learn what

distinguishes protected members of a class from public and private
members, and when to use each visibility designation.

Inheritance as Generalization
Inheritance simplifies code by identifying and generalizing properties and
behaviors shared among classes of objects. Consider the properties
identified for Car and Boat objects shown in Figure 19-1.

Figure 19-1: The Car and Boat classes, with common properties shown in bold

The first three properties of each class are identical: both Car and Boat
objects have a make and model, a number of passengers, and a top speed.
To avoid redundancy, we can generalize these common properties (and any
associated methods) into a superclass, which we’ll name Vehicle. Figure
19-2 shows this generalized Vehicle class with the three shared properties,
as well as the simplified Car and Boat classes, each now with just one
property of its own.

Figure 19-2: The Vehicle superclass and the Car and Boat subclasses

The arrows going from Car and Boat to Vehicle indicate that both Car
and Boat inherit from Vehicle; that is, Car and Boat are subclasses of the
generalized Vehicle superclass. Notice that the visibility of the properties
(public versus private) hasn’t been indicated in the diagram. For now, we’ll
implement the classes by using simple public properties. Later in the
chapter, we’ll refactor the classes by using the third visibility setting,
protected.

Listing 19-1 implements the Vehicle class shown in Figure 19-2. Start
a new project and create src/Vehicle.php containing the code in this listing.

<?php

class Vehicle

{

 public string $makeModel;

 public int $numPassengers;

 public float $topSpeed;

}

Listing 19-1: Implementing the Vehicle superclass

We declare the Vehicle class with three public properties: makeModel,
numPassengers, and topSpeed.

Listing 19-2 implements the Car subclass of Vehicle, which should be
created in src/Car.php.

<?php

class Car extends Vehicle

{

 public string $bodyShape;

}

Listing 19-2: Implementing Car as a subclass of Vehicle

We declare that Car should be a subclass of Vehicle simply by adding
the extends keyword followed by the superclass name at the start of the
class declaration. Any Car objects we create will automatically inherit all
the properties and methods from the Vehicle superclass, in addition to
having the bodyShape property declared directly in the Car class.

Creating Objects from Subclasses
To verify that our example of inheritance works, we’ll create a Car object
and set values for its properties—both the one declared directly in Car and
the ones inherited from Vehicle. Create public/index.php containing the
code in Listing 19-3.

<?php

require_once __DIR__ . '/../src/Vehicle.php';

require_once __DIR__ . '/../src/Car.php';

$car1 = new Car();

$car1->bodyShape = 'Sedan';

$car1->makeModel = 'Ford Mustang';

$car1->numPassengers = 5;

$car1->topSpeed = 150;

var_dump($car1);

Listing 19-3: Creating a Car object in index.php

We first read in the files declaring the Vehicle and Car classes. It’s
imperative to read in declarations for all the classes the code uses, including
inherited classes such as Vehicle, even though we won’t be directly
creating objects of this class. The order we read in the files is important too:
for the Car class to be able to extend the Vehicle class, we must have read
in and executed the declaration for the Vehicle class before reading in and
declaring the Car class. Otherwise, we’ll get an error about the Vehicle
class not being found.

NOTE
Large projects may require tens, or even hundreds, of class declarations. In
Chapter 20, we’ll look at a way to read in all the class declarations in the
required sequence with a single statement, using a script called an
autoloader.

Next, we create a new Car object and store a reference to it in the
$car1 variable. Then we set values for the bodyShape, makeModel,
numPassengers, and topSpeed properties. The syntax is the same whether
the property was declared for the subclass or inherited from the superclass:
either way, we simply use $car1->propertyName = value. Finally, we use
var_dump() to output structured information about the $car1 variable and
the object it refers to in memory. Here’s the result of running the index
script at the command line:

$ php public/index.php

object(Car)#1 (4) {

 ["bodyShape"]=>

 string(5) "Sedan"

 ["makeModel"]=>

 string(12) "Ford Mustang"

 ["numPassengers"]=>

 int(5)

 ["topSpeed"]=>

 float(150)

}

The Car object indeed has four properties, and we’ve successfully set
all four, including the property declared in Car.php (bodyShape) and the
three properties inherited from the Vehicle superclass.

Let’s complete our implementation of the class hierarchy from Figure
19-2 by declaring the Boat subclass. Create src/Boat.php and enter the code
in Listing 19-4.

<?php

class Boat extends Vehicle

{

 public string $countryOfRegistration;

}

Listing 19-4: Implementing the Boat class

We declare that Boat should inherit from Vehicle, once again using the
extends keyword to establish the subclass/superclass relationship. The class
has only one unique property, countryOfRegistration, but Boat objects
will also inherit the three public properties of makeModel, numPassengers,
and topSpeed from Vehicle.

Using Multiple Levels of Inheritance
Class hierarchies can involve many levels of inheritance: class A could have
a subclass B, class B could have a subclass C, and so on. In this case, class C
would inherit methods and properties from both class B, its immediate
superclass, and from class A, the superclass of its superclass. Figure 19-3
illustrates how we might use this mechanism to further extend our hierarchy
of vehicular classes.

Figure 19-3: A three-level class hierarchy, with subclasses of subclasses

The class hierarchy features two subclasses of Boat: MotorBoat and
SailBoat. All MotorBoat and SailBoat objects will inherit the properties
and methods of Boat, their superclass. That includes the properties and
methods that Boat inherits from Vehicle. Meanwhile, MotorBoat objects
will also have a special property of their own, engineSize, while SailBoat
will have a unique numberOfMasts property.

When it comes time to declare the MotorBoat class, we’d start by
writing class MotorBoat extends Boat. We don’t need to also mention
Vehicle in the MotorBoat class declaration; the inheritance from Vehicle is
already covered in the src/Boat.php class-declaration file.

Like most object-oriented languages, PHP permits each class to have
only a single direct superclass. This safeguard prevents ambiguities as to
where a property or method is being inherited from, but it also adds
challenges when it comes to designing class hierarchies. For example, since
cars and motorboats both have engines, it might make sense to create a
MotorizedVehicle subclass of Vehicle. The Car class would naturally
inherit from MotorizedVehicle, but what about MotorBoat? Should it
inherit from Boat or MotorizedVehicle? It can inherit directly from only

one or the other. As this example illustrates, once class hierarchies get more
complex, care must be taken in their design.

Protected Visibility
With the introduction of inheritance, a third visibility keyword, besides
public and private, becomes relevant: protected. When a method or
property is declared protected, it becomes accessible to any subclasses that
inherit it, but it can’t be accessed by code elsewhere in the project. For
example, a protected property of the Vehicle superclass could be accessed
within Car.php, since Car inherits from Vehicle. By contrast, that protected
property couldn’t be accessed within the general index.php file.

The protected visibility designation is more restrictive than public,
since public properties and methods can be accessed from anywhere within
the project code. On the other hand, protected is less restrictive than
private. When a method or property is private, it’s accessible only within
the class itself; not even methods of subclasses can directly access private
properties and methods from their superclass.

To illustrate the distinction between the three visibility keywords, we’ll
refactor the Vehicle class. To begin, we’ll update the class to have private
properties and public accessor methods, as we discussed in Chapter 18.
Then we’ll add the protected designation into the mix. Listing 19-5 shows
the first changes to src/Vehicle.php.

<?php

class Vehicle

{

 private string $makeModel;

 private int $numPassengers;

 private float $topSpeed;

 ❶ public function getMakeModel(): string

 {

 return $this->makeModel;

 }

 public function setMakeModel(string $makeModel): void

 {

 $this->makeModel = $makeModel;

 }

 public function getNumPassengers(): int

 {

 return $this->numPassengers;

 }

 public function setNumPassengers(int $numPassengers): vo

id

 {

 $this->numPassengers = $numPassengers;

 }

 public function getTopSpeed(): float

 {

 return $this->topSpeed;

 }

 public function setTopSpeed(float $topSpeed): void

 {

 $this->topSpeed = $topSpeed;

 }

}

Listing 19-5: Revising the Vehicle class to have private properties and public accessor
methods

We declare all three class properties as private rather than public.
This means they can’t be set directly. Instead, we’ve declared public getter
and setter methods for each property ❶.

We now need to update the index script to use the setter methods to set
values for the Car object. Modify public/index.php to match the code in
Listing 19-6.

<?php

require_once __DIR__ . '/../src/Vehicle.php';

require_once __DIR__ . '/../src/Car.php';

$car1 = new Car();

❶ $car1->bodyShape = 'Sedan';

$car1->setMakeModel('Ford Mustang');

$car1->setNumPassengers(5);

$car1->setTopSpeed(150);

var_dump($car1);

Listing 19-6: Updating index.php to set inherited properties via setter methods

We can still directly access the bodyShape property declared in the Car
class ❶, since it’s still set as public. However, we now need to use the
setter methods to assign values to the three inherited properties, makeModel,
numPassengers, and topSpeed, since these properties are now declared as
private in the Vehicle superclass. The Car object inherits the accessor
methods from Vehicle, just as it inherits the properties themselves. Thanks
to the accessor methods, var_dump() will work as before.

Using public setter methods to update private properties within
index.php makes sense; this is exactly what we did in Chapter 18. But what
if we want to use one of the properties inherited from Vehicle as part of a
method declared in the Car class? Let’s try this and see what happens. We’ll
add a new getMakeModelShape() method to Car that returns a string
summary of some of the object’s properties. Update src/Car.php to match
the code in Listing 19-7.

<?php

class Car extends Vehicle

{

 public string $bodyShape;

 public function getMakeModelShape(): string

 {

 return "$this->makeModel, $this->bodyShape";

 }

}

Listing 19-7: Trying to access private superclass properties from a subclass

We declare the new getMakeModelShape() method in the Car class.
This method attempts to insert the values of the makeModel and bodyShape
properties into a string. To see whether this method works, we’ll invoke it
in our index script. Update public/index.php as shown in Listing 19-8.

<?php

require_once __DIR__ . '/../src/Vehicle.php';

require_once __DIR__ . '/../src/Car.php';

$car1 = new Car();

$car1->bodyShape = 'Sedan';

$car1->setMakeModel('Ford Mustang');

$car1->setNumPassengers(5);

$car1->setTopSpeed(150);

print $car1->getMakeModelShape();

Listing 19-8: Testing the getMakeModelShape() method in index.php

We’ve replaced the var_dump() function call with a print statement
invoking the getMakeModelShape() method of our $car1 object reference.
However, if you now run the index script, you’ll get an Undefined
property warning, as shown here:

$ php public/index.php

Warning: Undefined property: Car::$makeModel in /Users/matt/

src/Car.php

on line 10

, Sedan

Statements in our Car class methods have no access to inherited private
properties, so the PHP engine simply can’t find a makeModel property when
it executes getMakeModelShape(). Notice, however, that the warning
message is followed by the text , Sedan. This indicates that the index script
continued executing despite the issue. Indeed, after continuing from its
undefined property warning, the PHP engine had no problem with the
$this->bodyShape portion of the getMakeModelShape() method, since
bodyShape is a property defined directly on the Car class itself.

One way for us to access the value of an inherited property could be to
use the public getter method to access the makeModel property, but in some
situations it’s best not to offer public getter or setter methods for a property.
A better solution when you want to give methods of a subclass direct access
to a property or method inherited from its superclass, without making that
property or method public, is to give the property or method protected
visibility. For that, update the Vehicle class as shown in Listing 19-9.

<?php

class Vehicle

{

 ❶ protected string $makeModel;

 private int $numPassengers;

 private float $topSpeed;

 public function getMakeModel(): string

 {

 return $this->makeModel;

 }

--snip--

Listing 19-9: Using protected visibility for makeModel in the Vehicle class

We now declare the Vehicle property makeModel to have protected
visibility ❶, which means it can be accessed directly by statements in the
Car subclass. Re-execute the index script and you’ll see the make, model,
and shape string output with no warnings: Ford Mustang, Sedan.

STEREOTYPING

UML allows us to introduce visual language abbreviations to simplify common code
design features through a feature called stereotyping. Stereotypes are indicated by
double chevron angle brackets (called guillemets) in the form «StereotypeName».
So, rather than laboriously listing public getter and setter methods for each property
in our class diagrams, we can indicate that a property should have a getter and/or
setter method by annotating the property with a stereotype. For example, «get/set»
indicates that a property should have both a getter and setter public method.

Figure 19-4 shows the UML diagram for our three classes, updated to
indicate the visibility of each class property and method.

Figure 19-4: An updated UML diagram showing the visibility settings for the class hierarchy

Within the Vehicle class, the hash mark (#) indicates the protected
visibility of the makeModel property, while the other two properties are
shown as private with minus signs. All properties and methods for classes
Car and Boat are public and so indicated with plus signs. The «get/set»
annotations in the diagram indicate public getter and setter accessor
methods for all three properties of the Vehicle class.

This example demonstrates the distinction between private and
protected. To illustrate the difference between the public and protected
visibility of properties, let’s modify the public/index.php script to try to
directly set the value of the makeModel property. Update the index script to
match Listing 19-10.

<?php

require_once __DIR__ . '/../src/Vehicle.php';

require_once __DIR__ . '/../src/Car.php';

$car1 = new Car();

$car1->bodyShape = 'Sedan';

$car1->makeModel = 'Ford Mustang';

$car1->setNumPassengers(5);

$car1->setTopSpeed(150);

print $car1->getMakeModelShape();

Listing 19-10: Illustrating the difference between public and protected visibility

We set the value of the public bodyShape property to 'Sedan' as
before. Then we attempt to directly change the value stored in the
makeModel property of $car1 to the string 'Ford Mustang'. Execute this
script and you’ll get a fatal error, as shown here:

$ php public/index.php

Fatal error: Uncaught Error: Cannot access protected propert

y Car::$makeModel

in /Users/matt/public/index.php:13

Stack trace:

#0 {main}

 thrown in /Users/matt/public/index.php on line 13

The makeModel property has protected visibility, so it can’t be
accessed from our index script. Only subclasses of Vehicle can access the
property directly.

Abstract Classes
An abstract class is one that will never be used to create objects. Instead,
abstract classes are commonly declared so their members (properties and

methods) can be inherited by subclasses. The Vehicle class, for example, is
an abstract class. We’ll never want to create a Vehicle object; we declared
the class only to generalize common properties and methods from the Car
and Boat classes.

Another use of abstract classes is to declare static members, properties,
or methods that relate to the class as a whole rather than to individual
objects. We’ll explore static members in Chapter 25.

It’s good practice to be as specific as possible about how a class and its
members will be used. For that reason, if you know a class is abstract, it’s
best to include the abstract keyword when you’re declaring it. This
keyword ensures that no object of the class can be created without
triggering an error. To demonstrate, we’ll add the abstract keyword to our
Vehicle class declaration. Update src/Vehicle.php as shown in Listing 19-
11.

<?php

abstract class Vehicle

{

 protected string $makeModel;

--snip--

Listing 19-11: Declaring Vehicle as an abstract class

We declare that Vehicle is an abstract class by adding abstract
immediately before the class keyword. If you run the index script again
after making this change, you’ll see no difference in the behavior of the
program. However, if you now attempt to create a Vehicle object, as shown
in Listing 19-12, a fatal error will occur. Update public/index.php to match
the listing.

<?php

require_once __DIR__ . '/../src/Vehicle.php';

require_once __DIR__ . '/../src/Car.php';

❶ $vehicle1 = new Vehicle();

$car1 = new Car();

--snip--

Listing 19-12: Attempting to create an object of the abstract Vehicle class

We attempt to create an object of the Vehicle class and store a
reference to the created object in the $vehicle1 variable ❶. Here’s what
happens if you try to run this index script:

$ php public/index.php

Fatal error: Uncaught Error: Cannot instantiate abstract cla

ss Vehicle in

/Users/matt/public/index.php:5

Stack trace:

#0 {main}

 thrown in /Users/matt/public/index.php on line 5

A fatal error occurs, with the message Cannot instantiate abstract
class. This is exactly what we want: by declaring the Vehicle class to be
abstract, we’ve guaranteed that no Vehicle objects can be created.

Overriding Inherited Methods
In some cases, you might want to change the way an inherited method
behaves on a subclass, as compared to the way it’s defined in the superclass.
This is called overriding the method, and you do it by defining the method
directly on the subclass and giving it the same name as the method inherited
from the superclass. PHP gives precedence to properties and methods
defined lower in the class hierarchy, so it will execute the method definition
from the subclass rather than the one from the superclass.

Let’s illustrate with a superclass that declares a __toString() method,
then a subclass that overrides this declaration with its own __toString()
implementation. Figure 19-5 shows the UML diagram for the two classes
we’ll use to investigate how to override inherited methods, with notes to
indicate how each __toString() method should behave. We’ll be creating a
general Food class and a Dessert subclass of Food.

Figure 19-5: The Dessert subclass overrides the __toString() method inherited from Food.

The Food class has a __toString() method that generates a string in
the form "(FOOD) foodname", such as "(FOOD) apple". Meanwhile, the
Dessert subclass overrides this behavior with its own __toString()
method that generates a string in the form "I am a Dessert named
foodname", such as "I am a Dessert named strawberry cheesecake".

First, we’ll declare the Food class. Create a new project, then create
src/Food.php containing the code in Listing 19-13.

<?php

class Food

{

 protected string $name;

 public function __construct(string $name)

 {

 $this->name = $name;

 }

 public function __toString(): string

 {

 return "(FOOD) $this->name";

 }

}

Listing 19-13: The Food class

We declare the Food class with one string property, name, that has
protected visibility so all subclasses can directly access it. The class has a
constructor to initialize the name property when each new object is created,
as well as the __toString() method shown in Figure 19-5.

Let’s now declare Dessert as a subclass of Food. Create
src/Dessert.php and enter the contents of Listing 19-14.

<?php

class Dessert extends Food

{

 public function __toString(): string

 {

 $message = "I am a Dessert named $this->name";

 return $message;

 }

}

Listing 19-14: The Dessert class, with its own __toString() method

We declare that Dessert is a subclass of (extends) Food and give it its
own __toString() method, as illustrated in Figure 19-5. Since PHP
prioritizes methods declared lower in the class hierarchy, this __toString()
method will override the __toString() method defined for the Food
superclass. Notice that we’ve introduced a local $message variable in the
Dessert class’s __toString() method. This variable may seem
unnecessary now, but we’ll return to this example and add to the message
later in the chapter.

Test these classes by creating the public/index.php script that is shown
in Listing 19-15. This script creates two objects, one Food object and one
Dessert object, and prints out each, which will result in the objects’
__toString() methods being invoked.

<?php

require_once __DIR__ . '/../src/Food.php';

require_once __DIR__ . '/../src/Dessert.php';

$f1 = new Food('apple');

❶ print $f1;

print '
';

$f2 = new Dessert('strawberry cheesecake');

print $f2;

Listing 19-15: Creating and printing Food and Dessert objects in index.php

We read in and execute the class declarations for Food and Dessert,
starting with the superclass. Then we create and print an object of each
class, which will invoke the objects’ __toString() methods ❶. Here’s the
browser output of running the web server and requesting a page:

(FOOD) apple

I am a Dessert named strawberry cheesecake

Notice that the Dessert object outputs I am a Dessert named
strawberry cheesecake, demonstrating that it successfully overrode the
__toString() method inherited from Food with its own definition of this
method. Overriding one method doesn’t disrupt the subclass’s inheritance of
any other methods or properties from its superclass, however. In this case,
the Dessert object still successfully inherited the name property and
__construct() method from Food.

THE LISKOV SUBSTITUTION PRINCIPLE

In some cases of method overriding, such as the __toString() methods in our Food
and Dessert example, the superclass and subclass methods have an identical
signature: the method name, parameter list, and return type match exactly. However,
this isn’t necessary. Only the method name must match exactly between the
superclass and subclass; other aspects of the method signatures can vary, as long
as the subclass still satisfies the Liskov substitution principle (LSP), named for
Barbara Liskov, one of the first women to earn a PhD in computer science in the

United States. This principle states that you must be able to substitute an object of a
superclass with an object of a subclass without creating any unexpected behavior.

To adhere to the LSP, an overriding method’s signature can vary from that of the
parent method in the following ways:
Make a mandatory parameter optional For example, a superclass method
validUser(int $minAge), which has the mandatory parameter $minAge, could be
overridden by a subclass method that provides a default value, making the
parameter optional, such as validUser(int $minAge = 18).
Add new optional parameters This would be demonstrated if the validUser(int
$minAge) superclass method could be overridden by a subclass method that adds
another optional parameter (with a default value), such as validUser(int $minAge,
int $maxAge = 65).
Return a more specific type An example of this would be if a superclass has a
getRandomFood() method that returns a reference to a Food object, this method could
be overridden by a subclass method that returns a Dessert object instead (where
Dessert is a subclass of Food). This kind of substitution with a more specific type is
known as covariance.
Declare a parameter type to be less specific For example, if a superclass has a
method that takes a Dessert object as a parameter, a subclass could override it with
a method that instead takes a Food object as a parameter. This kind of substitution
with a more general type is known as contravariance.

Augmenting Inherited Behavior
Sometimes, rather than completely replace (override) an inherited method,
you might want to augment the inherited method with additional behavior
specific to the subclass. PHP provides the keyword parent for this purpose:
it allows you to reference a superclass’s method or property from within a
subclass declaration file. To illustrate, we’ll modify the __toString()
method of the Dessert subclass. It will now generate a string by using the
__toString() method from the parent Food class, then add a special
message specific to Dessert objects. Update src/Dessert.php as shown in
Listing 19-16.

<?php

class Dessert extends Food

{

 public function __toString(): string

 {

 $message = parent::__toString();

 $message .= " I am a Dessert!";

 return $message;

 }

}

Listing 19-16: The updated __toString() method of the Dessert subclass

We invoke the __toString() method of the superclass (Food), storing
the result into the $message variable. To access the superclass method, we
use the keyword parent, then the double-colon scope-resolution operator
(::), then the name of the method. Next, we use string concatenation to
append " I am a Dessert!" to the end of the message. All this happens
within the definition of the Dessert class’s __toString() method, meaning
we’re still technically overriding the __toString() method from the
superclass. It’s just that we’re using parent to access the method definition
from the superclass as we override it.

Visit the index web page now and you should see the following:

(FOOD) apple

(FOOD) strawberry cheesecake I am a Dessert!

The string returned by the Dessert object is a combination of the string "
(FOOD) strawberry cheesecake" generated by the Food class’s
__toString() method, plus the Dessert object–specific "I am a
Dessert!" message added to the end.

Instead of using parent:: to access a method from a superclass, you
can explicitly refer to the superclass by name, such as Food:: in our
example. This is most useful in multilevel class hierarchies (for example, D
is a subclass of C is a subclass of B is a subclass of A), where you may wish
to reference an inherited class higher up in the hierarchy rather than the
direct parent. In this case, naming the class explicitly is the only option,
since the parent keyword always refers to the direct parent class.

One common reason to augment a method rather than fully override it
is to create a constructor tailored to a subclass. If the subclass has all the
properties of the superclass plus some of its own, it’s efficient to create a
constructor that starts by using parent::__construct() to invoke the

superclass’s constructor and finishes by setting the properties specific to the
subclass. This way, you get to reuse any validation or other important logic
in the superclass constructor method.

NOTE
Constructors are exempt from the method signature rules of the LSP. It’s
okay if the parameter lists of the subclass and superclass constructors
aren’t compatible, as when the subclass constructor has extra, mandatory
parameters.

To demonstrate how to augment a constructor, we’ll add a new
calories property to Dessert objects. Then we’ll create a constructor for
Dessert objects that augments the Food constructor by setting calories as
well as name. Update the src/Dessert.php file to match the code in Listing
19-17.

<?php

class Dessert extends Food

{

 private int $calories;

 ❶ public function __construct(string $name, int $calories)

 {

 parent::__construct($name);

 $this->setCalories($calories);

 }

 ❷ public function setCalories(int $calories)

 {

 $this->calories = $calories;

 }

 public function __toString(): string

 {

 $message = parent::__toString();

 $message .= " I am a Dessert containing $this->calor

ies calories!";

 return $message;

 }

}

Listing 19-17: Adding an augmented constructor to the Dessert class

We declare the new calories property and make it private (since we
don’t have any subclasses of Dessert for this project). Then we declare a
constructor method that takes in two parameters, the name and calories for
the new Dessert object to be created ❶. Within the method definition, we
use parent:: to invoke the constructor method for the Food superclass,
setting the name property in the process. Then we finish the Dessert
constructor by setting the calories property for the object. We use the
setter method setCalories(), which we declare next ❷. Finally, we update
the __toString() method to also output the value of the calories property
for the object so we’ll know the code is working.

We now need to add a value for the calories property in our index
script when we create a Dessert object. Update public/index.php to match
the code in Listing 19-18.

<?php

require_once __DIR__ . '/../src/Food.php';

require_once __DIR__ . '/../src/Dessert.php';

$f1 = new Food('apple');

print $f1;

print '
';

$f2 = new Dessert('strawberry cheesecake', 99);

print $f2;

Listing 19-18: Adding a calories argument to the index script

We create a Dessert object with two arguments corresponding to the
name and calories properties. Here’s the result of visiting the web page:

(FOOD) apple

(FOOD) strawberry cheesecake I am a Dessert containing 99 ca

lories!

The second message demonstrates that both Dessert object properties were
successfully set by the class’s constructor method, which augments that of
its superclass. Also, it shows that we successfully augmented the
__toString() method of the Dessert subclass with a call to its parent
superclass __toString() method.

Preventing Subclassing and Overriding
In certain situations, you might never want to allow a subclass to be created
from a class you declare. In this case, declare the class with the final
keyword, which prevents other classes from extending (subclassing) the
class. The keyword goes at the very start of the class declaration (for
example, final class Dessert). You can also add the final keyword to
the declaration of an individual method to prevent the method from being
overridden by a subclass.

The use of final, especially for whole classes, is the subject of heated
debate in the OOP community. It’s wise to declare classes or methods as
final only if you have a good justification for doing so. For example, if
you have an API library, you might declare a class as final to prevent
anyone from subclassing it, since you don’t want to allow or encourage
programmers to expect different behaviors besides those declared in the
API. The final declaration also helps prevent code from breaking between
versions and across updates: when a class is final, changes to the class’s
internal implementation (private methods and properties) won’t have any
unintended consequences outside the class.

Declaring a Class final
Let’s create an example of a final class and see how an error occurs if we
try to declare a subclass of it. Start a new project and create src/Product.php
as shown in Listing 19-19.

<?php

❶ final class Product

{

 private int $skuId;

 private string $description;

 ❷ public function __construct(int $skuId, string $descript

ion)

 {

 $this->skuId = $skuId;

 $this->description = $description;

 }

 public function getSkuId(): int

 {

 return $this->skuId;

 }

 public function getDescription(): string

 {

 return $this->description;

 }

}

Listing 19-19: The Product class, declared as final

We declare the Product class, designating it as final ❶. This simple
class has properties for a stock keeping unit (SKU) number and a text
description, which are set in the class’s constructor ❷. It also has a getter
method for each property.

Next, we’ll attempt to extend Product by declaring a subclass. Create
src/MyProduct.php containing the code in Listing 19-20.

<?php

class MyProduct extends Product

{

}

Listing 19-20: The MyProduct subclass of Product

We declare that MyProduct is a subclass of Product, while leaving its body
blank.

Now create a public/index.php script that reads in the two class
declarations, as shown in Listing 19-21.

<?php

require_once __DIR__ . '/../src/Product.php';

require_once __DIR__ . '/../src/MyProduct.php';

Listing 19-21: An index script reading the Product and MyProduct declarations

We don’t need any more than these two require_once statements to
demonstrate that classes declared final can’t be extended. Execute the
index script and you should see this: Fatal error: Class MyProduct may
not inherit from final class Product.

Declaring a Method final
Declaring specific methods final prevents them from being overridden
while still allowing the class to have subclasses. Among other applications,
this technique ensures that a method has consistent validation logic at all
levels of the class hierarchy.

To illustrate, let’s modify our Product class, removing its overall final
declaration and adding a new method to set the skuId property. The method
will have validation to ensure that the SKU number is greater than 0. We’ll
declare this method final, so no subclass can replace it with a method that
doesn’t contain the validation logic. Update the Product class declaration as
shown in Listing 19-22.

<?php

class Product

{

 protected int $skuId;

 private string $description;

 public function __construct(int $skuId, string $descript

ion)

 {

 $this->skuId = $skuId;

 $this->description = $description;

 }

 public function getSkuId(): int

 {

 return $this->skuId;

 }

 public function getDescription(): string

 {

 return $this->description;

 }

 final public function setSkuId(int $skuId): void

 {

 if ($skuId > 0)

 $this->skuId = $skuId;

 }

}

Listing 19-22: Adding a final method to the Product class

We remove the final keyword from the overall class declaration,
allowing this class to be extended, and we change the visibility of the skuId
property to protected so it can be used in subclass methods. Then we add a
new final setter method for the skuId property that confirms the desired
value is greater than 0.

Now update the MyProduct class to match the contents of Listing 19-
23, where we attempt to override the setSkuId() method.

<?php

class MyProduct extends Product

{

 ❶ public function setSkuId(int $skuId): void

 {

 $this->skuId = $skuId;

 }

}

Listing 19-23: Overriding the setSkuId() method in MyProduct

We attempt to declare a setSkuId() method directly on the MyProduct
class ❶, without the greater-than-zero validation check. This isn’t
permitted, since the setSkuId() method in the Product superclass has been
declared final. If you run the index script again, you should see another
fatal error noting that the Product class’s setSkuId() method can’t be
overridden.

Summary
In this chapter, we explored several OOP features, most notably inheritance
between classes. We also covered the related topics of protected visibility,
which enables access to inherited properties and methods by subclasses, as
well as method overriding and the invocation of inherited method behavior
with the parent keyword. Finally, we looked at how to restrict the usage of
classes and methods through the abstract and final keywords.

Exercises
1. Implement the Jam class diagrammed in Figure 19-6.

Figure 19-6: The Jam class and its $food1 object

Write an index script to create the $food1 object of the Jam class
shown in the diagram. Use a print statement to invoke the object’s
__toString() method.

2. Make a copy of your project from Exercise 1. Create two new classes,
Spread and Honey, and simplify the Jam class as shown in Figure 19-7.
Note the visibility of the properties for the Spread class: # for
protected and + for public.

Figure 19-7: The Jam and Honey subclasses inheriting from Spread

Update your index script to create and print one Jam object and one
Honey object.

Hint: You may wish to simplify your string-creation code by
creating a private helper method manukaString() that returns the string
(Manuka) or (NOT Manuka) depending on the value of the isManuka
property.

3. Examine the Car and Van classes in Figure 19-8 and plan out an abstract
superclass to hold the common members of both classes.

Figure 19-8: The Car and Van classes

Declare your superclass, as well as the Car and Van classes. Then
write an index script that creates one Car and one Van object and uses
print statements to invoke their __toString() methods.

4. Test out the use of the final keyword to prevent subclasses. Make a
copy of your project from Exercise 2 and replace the abstract keyword
with the final keyword at the beginning of your Spread class
declaration. Run your index script, and the Jam and Honey class
declarations should trigger a fatal error.

20
MANAGING CLASSES AND NAMESPACES

WITH COMPOSER

As your PHP projects grow larger and
more complex, you increasingly run the

risk of encountering a naming collision, or having
two classes with the same name. In this chapter,
you’ll learn about namespaces, the solution provided
by object-oriented languages to avoid naming
collisions. In addition, you’ll learn to use the helpful
Composer command line tool, which automates the
process of loading class- and function-declaration
files and simplifies work with namespaces. Almost
every modern object-oriented PHP project uses
Composer, and we’ll use it throughout the remainder
of the book.

You might think that a naming collision would be unlikely; after all, up
until now we’ve been writing class declarations in PHP files with the same
name as the class, and we’ve been placing these class declaration files in

the project’s src directory. Since PHP doesn’t allow two files with the same
name in the same directory, surely we couldn’t end up with two classes of
the same name?

In fact, naming collisions can occur in several cases. First, you might
try to declare a class with the same name as one of the built-in classes of the
PHP language, such as Error, Directory, or Generator. Second, you might
declare two classes in different directories (for example, different
subdirectories of src). Third, you might combine your own classes with
classes from third-party libraries.

Namespaces
Namespaces can be thought of as a virtual hierarchy of directories for
classes, used to prevent class name collisions. Classes are organized within
namespaces and sub-namespaces, much as computer files are organized
within directories and subdirectories. Just as you need to state the directory
location of a computer file on a hard disk, using namespaced classes
requires you to specify both the name of the class and its namespace to
uniquely identify a particular class.

A backslash character (\) separates namespaces, sub-namespaces (if
any), and the class name. For example,
\MyNamespace\MySubNamespace\MyClass refers to a class called MyClass in
the sub-namespace MySubNamespace, which is part of the larger
MyNamespace namespace. Identifying MyClass with a namespace and sub-
namespace prevents it from colliding with another MyClass class in a
different namespace, such as \YourNamespace\MyClass. By convention, the
first letter of a namespace or sub-namespace is capitalized, just like class
names. Other letters in the namespace or sub-namespace can be capitalized
as well.

Classes that are built into the PHP language are considered to be in the
root namespace, which is identified with just a single backslash character.
For example, you can write \DateTime or \Exception to explicitly refer to
PHP’s built-in DateTime or Exception classes. So far in this book, we’ve
been omitting the backslash before built-in class names, since we haven’t
been using namespaces when writing our own classes. Including the

backslash makes it unambiguous that we’re referring to a PHP class in the
root namespace.

In the examples that follow, I’ll use the namespace Mattsmithdev. It’s
the namespace I use for all the classes I write, along with a sub-namespace
for each project I work on. You may want to make up your own namespace,
such as Supercoder or DublinDevelopers, and use it when following these
chapters and writing your own classes. We’ll also encounter other
namespaces in “Adding Third-Party Libraries to a Project” on page 390.

Declaring a Class’s Namespace
To declare the namespace of a class, use the namespace keyword followed
by the namespace’s name. This should be the first line of PHP code in the
class-declaration file. To demonstrate, we’ll declare a class called Shirt and
make it part of the Mattsmithdev namespace. Start a new project, create a
file called src/Shirt.php, and enter the code from Listing 20-1.

<?php

namespace Mattsmithdev;

class Shirt

{

 private string $type ='t-shirt';

 public function getType(): string

 {

 return $this->type;

 }

 public function setType(string $type): void

 {

 $this->type = $type;

 }

}

Listing 20-1: The Shirt class in the Mattsmithdev namespace

Immediately after the opening PHP tag, we use namespace
Mattsmithdev to make the class we’re about to declare part of the
Mattsmithdev namespace. We follow the namespace statement with two
blank lines, which is recommended by the PHP coding standards. Then we
proceed with the class declaration as usual. In this case, the Shirt class has
a private type property with a default value of 't-shirt', as well as public
getter and setter methods for this property.

Using a Namespaced Class
Once a class is declared to be within a namespace, you need to
unambiguously inform the PHP engine that it’s the class you want to use.
You can do this in two ways.

The first option is to always include the namespace when referencing
the class; this is called using the fully qualified name of the class. For
example, to create a new Shirt object, you would write new
\Mattsmithdev\Shirt(). Let’s try that now. Add a public/index.php file to
your project and enter the code from Listing 20-2.

<?php

require_once __DIR__ . '/../src/Shirt.php';

$shirt1 = new \Mattsmithdev\Shirt();

$shirt2 = new \Mattsmithdev\Shirt();

print "shirt 1 type = {$shirt1->getType()}";

Listing 20-2: Creating objects of the \Mattsmithdev\Shirt class in index.php

After reading in the class-declaration file, we create two objects of the
Shirt class, using the class’s fully qualified name. Run the project at the
command line with php public/index.php and you should see the
following:

shirt 1 type = t-shirt

The message indicates that a Shirt object has been successfully created via
the class’s fully qualified name.

The second way to unambiguously reference a class from a particular
namespace is to include a use statement before invoking the class. For
example, use Mattsmithdev\Shirt tells the PHP engine that any
subsequent references to the Shirt class are specifically to the one in the
Mattsmithdev namespace. To see how use statements work, update your
public/index.php file to match Listing 20-3.

<?php

require_once __DIR__ . '/../src/Shirt.php';

use Mattsmithdev\Shirt;

$shirt1 = new Shirt();

$shirt2 = new Shirt();

print "shirt 1 type = {$shirt1->getType()}";

Listing 20-3: Referencing the Shirt class with a use statement in index.php

We include a use statement after reading in the class declaration to
ensure that Shirt later in the code will refer to Mattsmithdev\Shirt.
Notice that we don’t include a backslash before the namespace in a use
statement. This kind of class identifier, without the initial backslash, is
called a qualified name, as opposed to a fully qualified name that includes
the initial backslash. We then create the two Shirt objects simply with new
Shirt(), since the PHP engine knows which class we’re referencing,
thanks to the use statement. Run the index script again and you should see
that the output hasn’t changed. We’ve still successfully created some Shirt
objects.

If you need to differentiate between two classes with the same name
but different namespaces in the same section of code, you can either refer to
both with their fully qualified names (for example, \Mattsmithdev\Shirt
and \OtherNamespace\Shirt) or provide a use statement for one of the
classes and qualify the other.

Referencing Namespaces in Class Declarations
Say you’re writing code in the class-declaration file for a namespaced class
(as opposed to in a general script like index.php) and you want to refer to a
class from a different namespace. If you haven’t written a use statement,
you must use the fully qualified name of the other class, starting with a
backslash. For example, if you were writing code for a class declared in the
Mattsmithdev namespace and you wanted to refer to PHP’s built-in
DateTime class, you’d have to write it as \DateTime to indicate that it’s part
of the root namespace. Likewise, if you wanted to refer to a third-party
class, you’d write a backslash, then the third-party namespace, then another
backslash, and then the class name, such as \MathPHP\Algebra.

Without the initial backslash, PHP will assume you’re referring to a
class or sub-namespace of the current namespace. For example, in a class in
the Mattsmithdev namespace, a reference to DateTime() without an initial
backslash is assumed to be a reference to Mattsmithdev\DateTime,
meaning a DateTime class in the Mattsmithdev namespace. Similarly, a
reference to MathPHP\Algebra without an initial backslash is assumed to be
a reference to Mattsmithdev\MathPHP\Algebra, meaning MathPHP is
assumed to be a sub-namespace of Mattsmithdev and Algebra is assumed
to be a class in that sub-namespace. Writing a fully qualified namespace
beginning with the backslash ensures that the PHP engine will understand
the namespace of the class you’re referencing.

On the other hand, if you are referring to a class or sub-namespace of
the current namespace, you shouldn’t include a backslash before the class or
sub-namespace. For example, if you’re working on a class in the
Mattsmithdev namespace, Shirt() is understood to refer to the Shirt class
in the Mattsmithdev namespace, and SubNamespace\Example is understood
to refer to the class Mattsmithdev\SubNamespace\Example.

If you’re using a class from another namespace only once, it might
make sense to just write the class’s fully qualified name, including the
initial backslash. If you’ll need to refer to the class several times, however,
writing a use statement for it at the beginning of the class declaration is
more efficient. In this case, no initial backslash is needed. As you look at
and write more PHP code, you’ll often see many use statements at the

beginning of a class declaration when the code uses classes declared in
other namespaces, as illustrated in Listing 20-4.

<?php

namespace App\Controller;

use App\Entity\ChessGame;

use App\Entity\Comment;

use App\Form\ChessGameType;

use App\Repository\ChessGameRepository;

use App\Repository\CommonRepository;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractContro

ller;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

use Symfony\Component\HttpFoundation\Session\SessionInterfac

e;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGrant

ed;

/**

* @Route("/chessgame")

*/

class ChessGameController extends AbstractController

{

 private $session;

 public function __construct(SessionInterface $session)

 {

--snip--

Listing 20-4: A class declaration with many use statements

This code snippet is the start of a class declaration from one of my PHP
Symfony web framework chess projects. It has a whopping 11 use
statements, drawing on classes from a variety of namespaces and sub-
namespaces. The use statements help keep them all straight, but if juggling

all those classes still seems overwhelming, don’t worry: we’re about to
discuss a tool for managing all the classes in a project.

Composer
Composer is a command line tool to support object-oriented PHP
programming. It helps with loading class and function declaration files
(your own and those from third-party libraries), and it facilitates working
with classes from different namespaces. It’s an essential, easy-to-use tool
for professional web application projects. In this section, you’ll set up
Composer and learn how to use it to create command line aliases, load
class-declaration files automatically, and manage a project’s third-party
dependencies.

NOTE
SymfonyCasts has a great free video introducing the Composer tool at
https://symfonycasts.com/screencast/composer.

Installing and Testing Composer
For Windows, Composer offers a simple installer that can be found at
https://getcomposer.org/Composer-Setup.exe. For macOS, you can install
Composer with Homebrew, as discussed in Appendix A. For Linux, you
need to execute several command line statements to download and run the
composer.php script. You can find details at
https://getcomposer.org/download/. If you’re using Replit to follow along
with this book, see Appendix C for how to integrate Composer into your
projects.

Once you’ve installed Composer, test it by opening a new command
line terminal application and entering composer. This launches the
Composer tool, bringing up a nice ASCII art logo, the version number, and
a list of the command line options.

Creating the composer.json Configuration File
To use the Composer command line tool with a project, you need to create a
composer.json file to house all the information Composer needs to know
about the project. (See the following “JSON File Format” box for a

https://symfonycasts.com/screencast/composer
https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/download/

refresher on this type of file.) For example, the composer.json file features
records of the namespaces and class locations for your own code, as well as
of the third-party packages that the project depends on. In addition, you can
declare command line aliases in the composer.json file, shortcuts that can
save you from typing long commands at the command line. We’ll begin our
exploration of the composer.json file by declaring a simple alias.

THE JSON FILE FORMAT

JavaScript Object Notation (JSON) is a popular text file format for storing and
exchanging data. Originally, JSON was just part of JavaScript programs, but it
caught on quickly as a general-purpose format for sharing data between computer
programs and is now independent of the JavaScript language.

JSON documents have two types of structures: objects and arrays. A JSON
object is declared within curly brackets and has a comma-separated list of
name/value pairs, as shown here:

{id: 1, name: "hammer"}

This object has two items, one with a name of id and a value of 1, and the other with
a name of name and a value of "hammer". Objects are typically used to store multiple
properties or pieces of information about the same entity, which is why the
name/value pairs in an object are often called properties.

A JSON array is declared within square brackets and is a comma-separated list
of values. The values in an array can be simple ones (such as strings and numbers),
or they can be other arrays or objects, as in this example:

[{id: 1, name: "hammer"}, {id: 2, name: "bucket"}]

This array has two values, and each is a JSON object.
Beyond recognizing the difference between an object and an array, you don’t

need to know much about JSON to be able to configure the composer .json file for
your projects. That said, you can learn more about JSON at the official site for this
international file format: https://www.json.org.

The composer.json text file must be located at the top level of your
PHP project directory, not inside a subfolder like src or public. Continuing
with this chapter’s project, create composer.json, save it at the top level of
the project directory, and then enter the contents of Listing 20-5. This code

https://www.json.org/

creates an alias called hello that will stand in for the command echo Hello
World.

{

 "scripts": {

 "hello": "echo Hello World"

 }

}

Listing 20-5: Declaring an alias in the composer.json file

The content of composer.json is always a JSON object and so will
always begin and end with a pair of curly brackets. Inside the object, we
declare a "scripts" property with a value that itself is an object. Within the
sub-object, we declare a property named "hello" (the name of our alias)
with a value of "echo Hello, world!" (the code that will be replaced by
the shortcut alias).

We now have a simple but valid composer.json file telling Composer
that there’s a command line alias named "hello". To see whether this has
worked, enter composer hello at the terminal. You should see Hello,
world! as a result:

$ composer hello

> echo Hello, world!

Hello, world!

In this case, we’ve written more characters to declare the alias than we
would need to write out the echo statement in full at the command line.
However, sometimes these script aliases can be handy. For example, here’s
an alias I use in some projects to output a report of how much code in the
/src folder needs fixing to match the PHP programming standards (although
the alias appears on two lines here for space reasons, it would be all one
line in the file):

"reportfixsrc":"php php-cs-fixer.phar fix --level=psr2

--dry-run --diff ./src > ./tests/fixerReport.txt"

This alias lets me enter composer reportfixsrc at the command line rather
than a long PHP command to run a PHP Archive (.phar) file with lots of
parameters.

As you’ll soon see, Composer can do a lot more than just keep track of
command line aliases. For now, we’ve successfully created the
composer.json file for our project, an essential first step in using this
powerful tool.

Creating an Autoloader
An autoloader is a system that automatically retrieves class-declaration
files whenever they’re needed, so you don’t have to load them all into an
index.php file yourself. Autoloaders become useful as object-oriented PHP
projects grow in size and complexity, involving many classes in many
namespaces. If you had to write require_once statements for each class in
your index.php front controller, not only would it be a lot of work, but it
would also be easy to miss one or two, particularly as the project continues
to evolve. This would lead to errors and would force you to keep going
back to update the list of files to require. An autoloader handles the process
for you, provided the classes are correctly namespaced and correctly located
according to the autoloading rules.

One of the most powerful features of the Composer tool is its
autoloader. It conforms to PSR-4, PHP’s recommended set of rules for
autoloading. According to PSR-4, you must specify the base directory
containing the classes of each namespace. For example, you may want to
declare that classes in the Mattsmithdev namespace can be found in the src
directory. Further, PSR-4 stipulates that any sub-namespaces will be
assumed to have corresponding subdirectories within the declared base
directory of the namespace. For example, the class
Mattsmithdev\Trigonometry\Angles.php should be located in
src/Trigonometry, the class Mattsmithdev\Utility\Security.php should
be located in src/Utility, and so on. As long as the subdirectory has the same
name as the sub-namespace, you don’t need to tell the autoloader where to
find the sub-namespaced classes.

Getting the Composer autoloader to work requires three steps:

1. Declare the base directory for each namespace in the project’s composer
.json file.

2. Tell Composer to create or update its autoloader script.
3. Add a require_once statement for the autoloader script at the beginning

of the project’s public/index.php front controller. This single
require_once statement replaces the separate require_once statements
for each individual class.
We’ll walk through the process of setting up the Composer autoloader

to load our Mattsmithdev\Shirt class. First, Listing 20-6 shows what to
write in the composer.json file to declare that classes in the Mattsmithdev
namespace can be found in the src directory.

{

 "autoload": {

 "psr-4": {

 "Mattsmithdev\\": "src"

 }

 }

}

Listing 20-6: Setting up the autoloader in the composer.json file

We declare an "autoload" property, whose value is an object. Within
that object, we declare the "psr-4" property, whose value is another object.
It contains a "Mattsmithdev\\" property whose value is "src". This tells
Composer that class files in the Mattsmithdev namespace are located in the
src directory. Notice the two backslash characters (\\) after the namespace.
This is a requirement of the PSR-4.

For the projects we’ll work on in the next few chapters, the
composer.json files will be essentially the same as Listing 20-6. The only
potential difference from project to project will be the actual namespace(s)
and location(s) declared within the "psr-4" object.

NOTE
The Composer autoloader has some additional subtleties. If you want to
learn more, consult the Composer documentation at

https://getcomposer.org/doc/04-schema.md#psr-4.

Now that we’ve declared the base directory for the Mattsmithdev
namespace in the composer.json file, we can tell Composer to generate a
class autoloader for us. Enter the following at the command line for the
current project’s working directory:

$ composer dump-autoload

This command creates a new folder in the project called vendor, if it
doesn’t exist already, and generates or updates several files within that
folder. This vendor folder is where Composer keeps its working files for the
project. You can look inside it, but you shouldn’t change its contents. You
can also delete the folder and ask Composer to rebuild it anytime, so you
can safely omit this folder whenever you back up a project.

Inside vendor, you should see a vendor/autoload.php file as well as a
vendor/composer folder containing several more scripts, including
autoload_psr4.php, which encodes our PSR-4-compliant declaration. This
file contains statements to return the location (src/) of classes in the
Mattsmithdev namespace.

Now that we’ve generated the autoloader, we can update the
public/index.php script to require just this one autoload.php file, no matter
how many classes we need to refer to in our project. As long as the base
directories for the namespaces have been declared in the composer.json file
and the autoloader has been updated with the composer dump-autoload
command, then whenever we write a use statement for a namespaced class,
the PHP engine will load its declaration, ready for our code. Listing 20-7
shows how to update index.php.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Shirt;

$shirt1 = new Shirt();

$shirt2 = new Shirt();

https://getcomposer.org/doc/04-schema.md#psr-4

print "shirt 1 type = {$shirt1->getType()}";

Listing 20-7: Reading the Composer-generated autoloader script into index.php

We change the require_once statement to read in and execute the
Composer-generated autoloader script from the vendor directory. When you
run the project, the output will be just as before, but now we’re using the
Composer autoloader to automatically read in the declaration for the
Mattsmithdev\Shirt class from the src folder, instead of reading it in
manually. While this may not seem to make much of a difference for our
one-class project, the autoloader is a big time-saver for projects with many
classes.

Adding Third-Party Libraries to a Project
Another powerful feature of Composer is its capability to add third-party
libraries to a project and maintain a record of these dependencies in the
composer.json file. Thousands of open source libraries are available, many
kept up-to-date by multiple experienced software developers; in many
cases, a few minutes of searching can offer up a ready-made library that
does all or most of what you want. Well-maintained open source projects
have been tested thoroughly and refactored to implement best practices, so
careful use of third-party libraries can reduce your workload while helping
to maintain the quality of a software project.

Without Composer’s package-dependency features, you’d have to
download the code for third-party libraries from websites or Git
repositories, copy it to an appropriate location such as a lib folder, and
update the composer.json file with the namespaces and locations of these
library classes. Instead, you can simply tell Composer that you need a third-
party library in your project, and it will do all the hard work for you. It will
automatically download the code, create and copy the files to an appropriate
subdirectory in vendor, update the autoloader, and record the dependency
(and its version) in the composer.json file. All you need to know is the name
of the package you want and the vendor supplying it.

To see how this works, we’ll tell Composer to add the math-php
package from the vendor markrogoyski to our chapter project. This is a

great package offering many useful mathematics operations. At the
command line for the current project’s working directory, enter the
following:

$ composer require markrogoyski/math-php

This require command triggers Composer to perform a series of
actions. First, if you check your project’s vendor folder, you should see that
Composer has created a new subfolder matching the package’s vendor
name (in this case, vendor/markrogoyski). Inside, you’ll find a folder for the
math-php package, containing all the necessary code.

Keep in mind that the vendor name (markrogoyski) and package name
(math-php) are not namespaces. They’re simply names that Composer uses
to identify and locate the third-party scripts to be added to the project.
Composer will automatically determine the namespaces for all the open
source library classes, and so the contents of vendor/composer will be
updated for all these classes that have been added to the vendor folder. In
particular, autoload_psr4.php will likely be updated with the base directory
for the namespaced third-party classes, since most open source libraries use
the PSR-4 autoloading standard. Meanwhile, you’ll need to read the
package’s documentation to find out the namespaces of the third-party
classes so you can reference them correctly in your code.

The require command also prompts Composer to update the composer
.json file with information about the markrogoyski/math-php package. If
you check the file, you should now see something like Listing 20-8.

{

 "autoload": {

 "psr-4": {

 "Mattsmithdev\\": "src"

 }

 },

 "require": {

 "markrogoyski/math-php": "^2.10"

 }

}

Listing 20-8: The composer.json file’s record of the math-php library dependency

In addition to the "autoload" property we wrote earlier, the main
object in composer.json now has a "require" property that Composer
automatically generated. Its value is an object with entries for all the
packages required for the project. In this case, there’s an entry of
"markrogoyski/math-php". Its value, "^2.10", indicates the acceptable
versions of the package. The caret symbol (^) means we’re happy to use
newer versions with the same main version number (2.10.1, 2.11, 2.2, and
so on) but not version 3.x or later, since that might break backward
compatibility.

Now that Composer has integrated the markrogoyski/math-php
package into our project, we can try using it. Specifically, we’ll draw on the
package’s Average class to compute the average of a series of numbers.
Update the contents of public/index.php with the code in Listing 20-9.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use MathPHP\Statistics\Average;

$numbers = [13, 18, 13, 14, 13, 16, 14, 21, 13];

$numbersString = implode(', ', $numbers);

$mean = Average::mean($numbers);

print "average of [$numbersString] = $mean";

Listing 20-9: Calculating the average of an array of integers

We start with a use statement telling the PHP engine that Average
refers to the namespaced class MathPHP\Statistics\Average. Notice that
the namespace for this class is different from the vendor and package name
we used earlier in the require statement to Composer. Then we declare a
$numbers array and use the built-in implode() function to create a string
version of it for user-friendly output. Next, we invoke the mean() method
from the Average class, storing the result in $mean. We then print out the list
of numbers and the calculated mean value.

Notice that we’ve invoked the mean() method without actually having
to create an object of the Average class. This is because mean() is a static
method. We’ll explore this OOP concept in detail in Chapter 25.

Where to Find PHP Libraries
You may be wondering how the Composer tool knew where to go on the
internet to download the markrogoyski/math-php package files for our
project. The answer is Packagist (https://packagist.org), a website for
publishing open source PHP packages. Vendors can register with the site
(I’m mattsmithdev on Packagist, for example) and then publish PHP
packages for anyone to install via Composer.

When publishing a package, the vendor must provide information
including the GitHub (or other repository) location of the package’s
publicly downloadable files. For example, the Packagist page for the
markrogoyski/math-php package lists a GitHub address of
https://github.com/markrogoyski/math-php. This is where Composer goes to
get the package files. Each page on Packagist also lists the exact require
command you need in order to make Composer add that package to your
project.

Summary
In this chapter, you learned to unambiguously differentiate between classes
of the same name by using namespaces. You also learned to use the
powerful Composer command line tool to support object-oriented PHP
programming. The time spent learning how to maintain the composer.json
file and how to use Composer to autoload classes and incorporate third-
party libraries into your projects will save you countless hours of tedious
manual work.

Exercises
1. Start a new project and create a Composer script alias for a command to

display the message Hello name, replacing name with your name. Then
use Composer to execute your command.

https://packagist.org/
https://github.com/markrogoyski/math-php

Hint: Declare a script alias in composer.json, then run it at the
command line with composer alias.

2. Start a new project and create a src/Product.php file declaring a
Product class with the private properties $id, $description, and
$price, and public getters and setters for each property. Declare the
class to be in the Mattsmithdev namespace. Add a composer.json file to
the root folder of your project, declaring that classes in the
Mattsmithdev namespace can be found in the src directory. Then use
Composer to generate an autoloader.

Write a public/index.php file that does the following:
a. Reads in and executes the Composer autoloader in vendor/

autoload.php
b. Creates a new Product object, $p1, with an id of 7, a description

of 'hammer', and a price of 9.99
c. Uses var_dump() to output the details of $p1

When you run your code, you should see something like this:

object(Mattsmithdev\Product)#4 (3) {

 ["id":"Mattsmithdev\Product":private]=>

 int(7)

 ["description":"Mattsmithdev\Product":private]=>

 string(6) "hammer"

 ["price":"Mattsmithdev\Product":private]=>

 float(9.99)

}

3. Go to the Packagist website at https://packagist.org and search for the
mattsmithdev/faker-small-english package. Look at the
documentation, then use Composer to require the
mattsmithdev/faker-small-english package for a new project. Write
a public/index.php file that loops 10 times to display 10 random names
from a FakerSmallEnglish object.

https://packagist.org/

21
EFFICIENT TEMPLATE DESIGN WITH TWIG

This chapter introduces the free, open
source Twig templating library, a third-

party package that applies object-oriented principles
such as inheritance to page display templates. This
mix of templating with OOP streamlines the process
of designing web applications. We’ll explore the
basics of using Twig, then use it to progressively
build a multipage website.

This chapter also offers a first look at how the object-oriented style of
programming influences the web application architecture we arrived at in
Part III. For example, rather than writing functions that implement the logic
of a front controller, we’ll create object-oriented classes containing front-
controller methods. We’ll refine our approach to object-oriented application
development in Chapter 22 as we further develop this chapter’s multipage
site.

The Twig Templating Library
Web templating systems like the Twig library (which can be found at
https://twig.symfony.com) manage the duplication that’s common in web

https://twig.symfony.com/

application outputs by distinguishing between unchanging content and
content that may change upon each request. This makes developing the
view element of a web application’s MVC architecture much more efficient.
As we’ve discussed in previous chapters, a lot of basic HTML is often
duplicated across the template scripts for each page of a website, since the
multiple pages typically share elements such as a header and a navigation
bar. When we created a three-page website in Chapter 13, for example,
most of the code in the template file for each page was redundant HTML;
barely any code was unique to the page at hand.

Duplicating so much HTML across multiple templates causes two
issues. First, if you need to change an aspect of the website design (for
example, the look and feel of the navigation bar, or a special header or
footer), you’d have to edit every page template, which for a large website
could be tens, hundreds, or even thousands of files. Second, when editing
the content or behavior of a page template, spotting the content that’s
specific to the current page can be difficult when it’s hidden within a bunch
of generic code. You want to be able to focus on just the content for the
particular page you’re editing.

One solution is to separate the common parts of a page into sub-
templates for the header, navigation, footer, and so on. This is what we did
in Chapter 15, for example, when we created a templates/_header.php file
containing header elements common to all the pages in our shopping cart
website. A more elegant solution, however, is to use a dedicated PHP
templating library, especially one such as Twig that supports template
inheritance. As you’ll see, a key advantage of template inheritance is that
after we’ve declared that a template for a particular page inherits from a
parent template, the only content in the child page is that for the child page
itself; we don’t have to write require statements for standard page headers,
footers, navigation bars, and so on. This way, each child template contains
fewer distractions away from the page it represents.

Another advantage of templating libraries is that they limit the behavior
that can be encoded into a page template by removing any PHP code from
the template itself. If you’re working on a website as part of a team, these
limitations mean you can safely have other members of the team (such as a
marketing department) edit the page templates to refine the website’s look

and feel, secure in the knowledge that they can’t accidentally copy in PHP
code that would break the website or create a security vulnerability. After
all, template files are the view component of an MVC architecture, so they
should only be “decorating” provided data with tags in a markup language
like HTML.

How Twig Works
Before we create anything with Twig, let’s explore the basic files, objects,
and methods involved when working with Twig templates. When using
Twig in our code, we work with an object of the Twig\Environment class.
This object is responsible for generating the HTML for a web page, based
on a template file and any data needed to customize the contents of the
page. It does this through its render() method. Usually, you store a
reference to the Twig\Environment object in a variable called twig, which
is itself a property of a general Application class that encapsulates all the
high-level logic for the web application.

The render() method requires two parameters. The first is a string
containing the path to the desired template file. This string is typically
stored in a variable called $template. The second parameter is an array of
variables that need to be provided to the template to customize the page’s
content. This array is typically stored in a variable called $args, since the
array is essentially providing arguments to the template. The string keys in
the array should correspond to the names of any variables used in the Twig
template. If no values need to be provided to the template, $args will be an
empty array.

To illustrate, say you wanted to display a page showing the items in a
shopping cart. The template for this page would be in a file that is called
shoppingCart.xhtml.twig (by convention, Twig template files that output
HTML are named in the form <pageName>.xhtml.twig), and it would have
a products variable standing in for whatever products are in the user’s cart
(variables in Twig templates don’t start with dollar signs).

You would pass the template filepath as the first argument to the
Twig\Environment class’s render() method. The second argument would
be an $args array containing a 'products' key (the same name as the
variable in the template) whose value is an array of Product objects. The

render() method would then return a string containing the HTML for a
web page listing all the products as a nice shopping cart, with subtotals, the
grand total, links to remove items or change their quantities, and so on. This
string could then be printed to the output buffer that would become the
body of the HTTP response being returned to the web client.

If a web application uses Twig templating, every method that returns
HTML response text will contain something similar to the code shown in
Listing 21-1.

$template = 'path/templateName.xhtml.twig';

$args = [

 'variable1NameForTwig' => $phpVariable1,

 'variable2NameForTwig' => $phpVariable2,

 ...

];

$html = $this->twig->render($template, $args);

print $html;

Listing 21-1: The typical code to create and print HTML from a Twig template

We store the path to a template in the $template variable, then build up
the $args array with the required template variables. We pass these
variables to the render() method. Remember, we typically store a
reference to the Twig\Environment object that owns the render() method
in the twig property of an overarching Application class. This is why the
call to the method is written as $this->twig->render() rather than $twig-
>render(). We store the resulting string in $html, which we print. Soon
you’ll see this code pattern in context as we use Twig to create a basic web
page.

A Simple Example
In this section, we’ll use Twig to create a simple “Hello, world!” web page
that displays a greeting. Thanks to Twig, we’ll be able to customize the
greeting by filling in a name for the person being greeted, based on the
value of a PHP variable. In addition to illustrating the basics of working
with Twig, this project will also offer a first glimpse at how an object-
oriented web application is structured.

To create our basic greeting page, we’ll start by setting up Twig. Then
we’ll write a Twig template featuring a name variable, as well as the PHP
scripts needed to make the template work.

Adding Twig to the Project
The easiest way to add Twig to a project is to use Composer. Create a new
empty folder for the project and then enter the following at the command
line:

$ composer require twig/twig

This command triggers Composer to install the latest version of the
Twig package into the project’s vendor folder (the folder will be created,
since the project doesn’t already have one). The command also installs any
additional dependencies that Twig requires, such as symfony/polyfill -
mbstring and symfony/polyfill-ctype. If you look at the contents of the
vendor folder after installation has finished, you should see that folders for
these packages have been created. You can even look in each package’s src
folder and examine each class and configuration file in the package.

Now that the Twig package has been copied into our project folder, we
can add use statements in our classes to create and exploit the features of
the library in our project.

Writing the Twig Template
By convention, Twig template files are stored in a templates folder, just like
the PHP template files we’ve written in earlier chapters. Add this folder to
your project directory, then create a hello.xhtml.twig template in that folder
and enter the contents of Listing 21-2.

<!doctype html>

<html lang="en">

<head>

 <title>Twig hello</title>

</head>

<body>

 ❶ Hello {{name}}, nice to meet you

</body>

</html>

Listing 21-2: The hello.xhtml.twig template to create an HTML greeting around the name
variable

Like many web templating languages, Twig templates use double curly
brackets to indicate a value that should be filled in, such as {{name}} in this
template ❶. This declares that the value of a Twig variable called name is to
be inserted here when the render() method generates its HTML output
string. In the PHP script invoking this template, we’ll need to pass Twig a
value for the variable in the $args array, under a key of the same name. For
example, if we declared the $args array as ['name' => 'Matt'], the
render() method would produce the HTML shown in Listing 21-3, with
Matt (shown here in bold) inserted in place of the name variable.

<!doctype html>

<html lang="en">

<head>

 <title>Twig hello</title>

</head>

<body>

 ❶ Hello Matt, nice to meet you

</body>

</html>

Listing 21-3: The HTML rendered by the Twig template when name contains 'Matt'

We see Matt has been inserted into the line saying hello in the HTML
text output ❶.

Twig’s double curly brackets are similar to the PHP <?= short echo tag,
in that both set off expressions that evaluate to strings and will be inserted
into the output HTML. (Just as with PHP, Twig has other tags for setting off
logic, such as loops and conditionals, rather than string output statements.)
However, since Twig templates can’t contain PHP statements, using Twig

double curly brackets instead of PHP short echo tags protects a website
from PHP security vulnerabilities in the site’s templates.

Creating the Application Class
Let’s now write an Application class for our greeting page. It will set up
the Twig\Environment object in its constructor method and have a run()
method to set variables and generate the page’s HTML via Twig. All object-
oriented MVC web applications have something like this Application class
to perform any setup and initializations required, and then to execute the
main logic for handling requests to the application.

For now, the class will always output the same HTML, but later in the
chapter, we’ll see some logic in the class’s run() method to output different
HTML content depending on variables received in the request to the server.
To declare the class, create src/Application.php containing the code in
Listing 21-4.

<?php

namespace Mattsmithdev;

use \Twig\Loader\FilesystemLoader;

use \Twig\Environment;

class Application

{

 const PATH_TO_TEMPLATES = __DIR__ . '/../templates';

 private Environment $twig;

 public function __construct()

 {

 $loader = new FilesystemLoader(self::PATH_TO_TEMPLAT

ES);

 ❶ $this->twig = new Environment($loader);

 }

 public function run()

 {

 $name = 'Matt';

 $template = 'hello.xhtml.twig';

 $args = [

 'name' => $name,

];

 ❷ $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 21-4: The class src/Application.php to create a Twig object and a method to output
HTML

We declare the Application class as part of the Mattsmithdev
namespace and include two use statements, since we’ll need to create
objects of classes from the Twig namespace in the constructor. Then we
declare a constant named PATH_TO_TEMPLATES holding the path to the base
templates directory where all the templates are saved. We also declare a
private twig property, which will be a reference to a Twig\Environment
object.

Next, we declare the class’s constructor method. Within it, we create
two Twig-related objects, FilesystemLoader and Environment. The latter
holds the all-important render() method, while the former helps the
Environment object access the template files. The FilesystemLoader
object is created only temporarily, since its reference, stored in the $loader
variable, exists only within the scope of the constructor. When we create the
Environment object (using $loader), we store a reference to it in the
Application object’s twig property ❶, which all our Application
methods can access when $this->twig is written.

Notice that when we create the FilesystemLoader object by using the
PATH_TO_TEMPLATES constant, we must add self:: before the constant
identifier. As we’ll discuss in Chapter 25, this prefix is necessary when
referencing a constant declared in the same class. This is because PHP
doesn’t create a copy of the constant for each object of the class. Instead,
there’s just one constant for all objects of the class, so writing $this-
>PATH_TO_TEMPLATES isn’t valid.

We next declare the Application class’s run() method. In it, we define
the $name variable containing the name of the person we want to greet.
Then we create the $template variable, which holds the name of our
template file (hello.xhtml.twig), and the $args variable, an array with a
single element holding the value of the $name variable under the 'name'
key. As we’ve discussed, this key corresponds to the Twig variable enclosed
in double curly brackets in our template file. Still within the run() method,
we then invoke the render() method of our Twig object, storing the string
it returns in the $html variable ❷. Finally, we print the content of $html,
which becomes the HTML body of the response returned to the web client.

Creating the Autoloader
Let’s now get Composer to create the autoloader for Mattsmithdev
namespaced classes located in the src directory (such as our Application
class). To do this, we need to add an "autoload" property to composer.json
in the top-level directory for the project. This file was created automatically
when we used Composer to add the Twig package to the project, and it
should already contain a "require" property with information about Twig.
Update the file as shown in Listing 21-5.

{

 "autoload": {

 "psr-4": {

 "Mattsmithdev\\": "src"

 }

 ❶},

 "require": {

 "twig/twig": "^3.10"

 }

}

Listing 21-5: Updating composer.json for class autoloading

We add an "autoload" property, declaring that Mattsmithdev
namespaced classes are PSR-4 compliant and can be found in the src
directory. Don’t forget the comma after the closing curly bracket ❶; you’ll
get a JSON syntax error if this comma is missing.

Once you’ve updated composer.json, enter the following at the
command line:

$ composer dump-autoload

This instructs Composer to generate the necessary autoload scripts in the
vendor folder.

Adding the Index Script
The final step required to get our greeting page up and running is to create a
simple index script that will read in the autoloader, create an Application
object, and invoke its run() method. All our object-oriented web
applications will have a simple index script like this, since all the work is
being performed by the Application object. Create public/index.php as
shown in Listing 21-6.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Application;

$app = new Application();

$app->run();

Listing 21-6: The index.php script

We first read in and execute the generated autoloader script. Note that
the autoloader created by Composer will load any class declared in the
Mattsmithdev namespace, as well as any classes in third-party libraries that
Composer has added to the project (such as Twig). Next, we add a use
statement so we can refer to the Application class without specifying the
namespace each time. Then we create an Application object and invoke its
run() method.

If you run the PHP web server and visit the project home page, you
should see something like Figure 21-1. Also shown in the figure is the
HTML source of the response that the web client receives. Notice that the
HTML and the resulting web page both have the name Matt filled in at the
location of the Twig {{name}} variable.

Figure 21-1: The web output, with HTML source, for our basic Twig project

This might have seemed like a lot of work for a simple “Hello, world!”
website, but we’ve now created all the structure required for any project
that uses the powerful Twig templating system. Before we apply that
structure to a more substantial website, let’s explore a few more useful
features of the Twig package.

Manipulating Objects and Arrays in Twig Templates
In addition to simple data types like strings, Twig templates can work with
PHP objects, arrays, and so on. However, the notation is a bit different from
what we’re used to in PHP, since Twig uses dot notation to access a
property or method of an object, or an element in an array. For example,
while you’d write $product->price in PHP to access the price property of
a Product object, you’d use {{product.price}} to do the same in a Twig
template. Conveniently, this works whether the property is public or private,
provided that if it’s private, the property has a public getter method that
follows the usual getPropertyName() or isBooleanPropertyName()
naming convention. For example, {{product.price}} would still
successfully access an object’s private price property as long as the object
has a public getPrice() method. You don’t need to reference the

getPrice() method explicitly in the Twig template, since Twig calls the
method for you.

To illustrate how Twig templates work with these more complex data
types, we’ll update our “Hello, world!” web page to display information
obtained from a PHP object and array. First, we’ll need to write a class so
we can create an object and pass it to the Twig template. Listing 21-7 shows
a simple Product class that we can use as an example. Create
src/Product.php and enter the contents of the listing.

<?php

namespace Mattsmithdev;

class Product

{

 private string $description;

 private float $price;

 public function getDescription(): string {

 return $this->description;

 }

 public function setDescription(string $description): voi

d {

 $this->description = $description;

 }

 public function getPrice(): float {

 return $this->price;

 }

 public function setPrice(float $price): void {

 $this->price = $price;

 }

 public function __toString(): string {

 return "(PRODUCT) description =

 $this->description / price = $this->price";

 }

}

Listing 21-7: A simple Product class to use in the Twig demo

The class has two private properties: description and price. The code
also has public getter and setter methods for each of these properties, as
well as a __toString() method that generates a string summary of the
object.

Next, we’ll modify the run() method of our Application class. The
new method will create an array and a Product object and pass them along
to the Twig template, along with the original name variable. Update
src/Application.php to match the contents of Listing 21-8.

--snip--

 public function run()

 {

 $meals = [

 'breakfast' => 'toast',

 'lunch' => 'salad',

 'dinner' => 'fish and chips',

];

 $product1 = new Product();

 $product1->setDescription('bag of nails');

 $product1->setPrice(10.99);

 ❶ $template = 'demo.xhtml.twig';

 $args = [

 'name' => 'matt',

 'meals' => $meals,

 'product' => $product1

];

 $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 21-8: The updated Application class passing an object and an array to the template

We create a $meals array with the keys 'breakfast', 'lunch', and
'dinner', along with a Product object with the description 'bag of
nails' and the price 10.99. Then we declare the $template and $args
variables required for the render() method. In $args, we pass values for
three variables in the Twig template: name, meals, and product. This time
we declare the value for the 'name' key directly in the array rather than as a
separate variable.

Notice that we declare the Twig template to be demo.xhtml.twig rather
than the hello.xhtml.twig template we created earlier ❶. We’ll create that
new template now and design it to show off some of the ways Twig
interacts with objects and arrays. Make a copy of hello.xhtml.twig, rename
it demo.xhtml.twig, and update this new file to match Listing 21-9.

<!doctype html>

<html lang="en">

<head>

 <title>Twig examples</title>

</head>

<body>

❶ Hello {{name}}

<hr>

❷ for dinner you will have: {{meals.dinner}}

<hr>

the price of ❸ {{product.getDescription()}} is $ ❹ {{produc

t.price}}

<hr>

❺ details about product: {{product}}

</body>

</html>

Listing 21-9: The demo.xhtml.twig template

In the body of the template, we first print the value of the Twig name
variable ❶. Then we print the value inside the meals array variable under
the dinner key ❷. The Twig dot notation of {{meals.dinner}} here
corresponds to the PHP expression $meals['dinner'].

Next, we print the value returned from the getDescription() method
of the product object variable ❸. In this case, the Twig dot notation of
{{product.getDescription()}} corresponds to the PHP expression
$product ->getDescription(). We also print the value of the object’s
price property ❹. When Twig tries to access this price property, it will
see that the property is private, so it will automatically attempt to invoke
the object’s getPrice() accessor method instead. The Twig dot notation of
{{product.price}} therefore corresponds to the PHP expression
$product->getPrice().

Finally, we place the Twig product variable inside double curly
brackets without any dot notation ❺. When Twig sees that product is an
object, it will automatically attempt to invoke its __toString() method.
This is similar to PHP automatically invoking an object’s __toString()
method when a reference to that object is used in a context where a string is
expected. Essentially, {{product}} in Twig corresponds to print
$product in PHP, which in turn corresponds to $product->__toString().
Figure 21-2 shows how the HTML rendered from this template will appear
in the browser.

Figure 21-2: A browser rendering of the HTML from the Twig demo template

As you can see, Twig has successfully filled in all the information from
the object and array passed to the template. The annotations in the figure

summarize the Twig notation used to access each piece of information, and
the equivalent expressions in PHP.

Twig Control Structures
Beyond printing individual values, the Twig templating language also offers
several control structures, including if and for statements, allowing you to
add conditional logic and looping to your Twig templates. This greatly
expands the templates’ ability to adapt to whatever data they receive in the
$args array.

Twig control statements are written within single curly brackets and
percent characters, such as {% if condition %} or {% for ... %}, and
each control structure must conclude with a closing tag, such as {% endif
%} or {% endfor %}.

Twig can loop through all the values in an array with {% for value in
array %}, much like a foreach loop in PHP. If you want the key and value
for each array item, you could write {% for key, value in array %}.
Let’s try that now by creating a Twig template that will loop through the
items in the PHP $meals array we created in the preceding section. Update
the Twig template demo.xhtml.twig as shown in Listing 21-10.

<!doctype html>

<html lang="en">

<head>

 <title>Twig examples</title>

</head>

<body>

 ❶ {% for key, value in meals %}

 ❷ meal: {{key}} = {{value}}

 ❸ {% else %}

 (there are no meals to list)

 ❹ {% endfor %}

</body>

</html>

Listing 21-10: Looping through and outputting meals as an HTML list

We declare a Twig for loop to iterate through the elements of the
meals array ❶. The key and value of each element in the array will become
part of a list item in an HTML unordered list and will be output as HTML in
the form meal: lunch = salad ❷. Instead of having to write
separate HTML for each item in the list, we simply write one item using the
Twig variables key and value, and the for loop will generate all the items
for us. The loop also includes a Twig else statement ❸, which is executed
if the given array is empty. In that case, we output a message stating that no
meals are in the list. The loop concludes with the closing endfor tag ❹.
Figure 21-3 shows the web page that’s rendered when you serve this code
with the web server.

Figure 21-3: The web page and HTML source generated by the Twig for loop

The Twig for loop has successfully generated an HTML list by using
the keys and values from the $meals array.

Creating a Multipage Website with Twig
For the rest of this chapter, we’ll harness Twig templating to create a
multipage website. In addition to demonstrating the value of Twig
templating, building this site will illustrate how the front-controller
structure we’ve used in previous chapters translates to an object-oriented
web application. Figure 21-4 shows the site we’ll progressively develop: a
simplified two-page version of the website we created in Chapter 16, with
the login page removed.

Figure 21-4: A two-page website created with Twig templating

Our site will have a home page and a Contact Us page, with the same
header and navigation links shared by the two pages. All the common
HTML will be declared in a base template from which the page-specific
content templates will inherit.

This means that each page (child) template will contain only the
special content for that page. It also means that every page in the website
can be changed simply by updating the base template (for example, if we
wanted to add or change the navigation links, change the logo, or make the
website background turn green for St. Patrick’s Day).

The File Structure and Dependencies
Let’s first establish the file structure for the application. Create a new
project folder. Inside it, we’ll build the following directories and files:

Two files are exactly the same as the examples shown earlier in this
chapter: public/index.php and composer.json. As you saw in Listing 21-6,
the index.php script simply reads in the autoloader, creates an object of the
Application class, and calls the class’s run() method. The composer.json
file (Listing 21-5) provides information for the autoloader and about the
project’s namespace (Mattsmithdev) as well as third-party library
requirements (Twig). Copy these two files into the folder created for the
project.

Also copy the public/images/logo.png image provided in the files
accompanying this book at https://github.com/dr-matt-smith/php-crash-
course (or use your own logo image). Finally, since we’ll be using the same
namespace and Twig library as before, you can also copy the vendor folder
to get the same autoloader and library files.

The Application Class
The Application class for our project plays the role of a front controller: it
determines which page of the website to display based on the URL-encoded
navigation action. If the URL has no action variable, Application will
display the home page. If Application finds an action variable with the
value contact, it will display the Contact Us page.

https://github.com/dr-matt-smith/php-crash-course
https://github.com/dr-matt-smith/php-crash-course

The Application class is also responsible for creating a
Twig\Environment object to manage the Twig templates, and for this reason
the first several lines of the Application class declaration are the same as
they were for our “Hello, world!” project earlier in the chapter. Copy
src/Application.php from the previous project and update it to match Listing
21-11.

<?php

namespace Mattsmithdev;

use \Twig\Loader\FilesystemLoader;

use \Twig\Environment;

class Application

{

 const PATH_TO_TEMPLATES = __DIR__ . '/../templates';

 private Environment $twig;

 public function __construct()

 {

 $loader = new FilesystemLoader(self::PATH_TO_TEMPLAT

ES);

 $this->twig = new Environment($loader);

 }

 ❶ public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 switch ($action) {

 case 'contact':

 $this->contactUs();

 break;

 case 'home':

 default:

 $this->homepage();

 }

 }

 ❷ private function homepage(): void

 {

 $template = 'homepage.xhtml.twig';

 $args = [

 'pageTitle' => 'Home Page'

];

 $html = $this->twig->render($template, $args);

 print $html;

 }

 ❸ private function contactUs(): void

 {

 $template = 'contactUs.xhtml.twig';

 $args = [

 'pageTitle' => 'Contact Us Page'

];

 $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 21-11: The Application class for the two-page website

We first declare the run() method ❶, which takes the place of the
front-controller code we’ve previously written in an index.php script. The
method attempts to find a URL-encoded variable named action, then feeds
its value to a typical front-controller switch statement. If the value is
'contact', the contactUs() method is invoked. Otherwise, the
homepage() method is invoked.

Next, we declare the homepage() method ❷. It prints the result of
running the render() method of the twig property (which contains a
reference to the Twig\Environment object). When we call render(), we
pass in $template, which has a value of 'homepage.xhtml.twig', and pass

in the $args array, which provides the Twig pageTitle variable with the
value 'Home Page'.

We also declare the contactUs() method for displaying the Contact Us
page ❸. This method similarly calls render() and prints the result, this
time passing in $template with a value of 'contactUs.xhtml.twig' and
$args providing the Twig pageTitle variable with the 'Contact Us Page'
value.

These two methods, homepage() and contactUs(), replace stand-alone
helper functions that we earlier would have written in a functions.php file.
In this way, our object-oriented application encapsulates all the display
logic within the Application class.

The Twig Templates
Now all we have to do to complete our site is write the Twig template files
for the two pages. We’ll start with the home page. Create
templates/homepage.xhtml.twig containing the code in Listing 21-12.

<!doctype html>

<html lang="en">

<head>

 ❶ <title>MGW: {{pageTitle}}</title>

</head>

<body>

<header>

 ❷

 ❸

 Home

 ❹

 Contact Us

</header>

❺ <blockquote>

 <p>

 MGW.

You know it makes sense!

 </p>

 <p>

 Welcome to My Great Website (MGW).

 </p>

</blockquote>

❻ <h1>{{pageTitle}}</h1>

❼ <p>

 Welcome to the secure website demo.

</p>

</body>

</html>

Listing 21-12: The homepage.xhtml.twig template

We declare the HTML title, outputting MGW followed by the contents of
the Twig pageTitle variable ❶. Then we display the site logo image ❷.
We next present a simple navigation list with links to the home page ❸ and
the Contact Us page ❹. Then we use a <blockquote> element to present
the website’s tagline and greeting ❺, followed by a level 1 heading that
again uses the Twig pageTitle variable ❻. Finally, we declare the page-
specific content; for this home page, it’s just a sentence in a paragraph ❼.

Listing 21-13 shows the parts of the page that are different for the
Contact Us Twig template. Copy homepage.xhtml.twig, name the copy
contactUs.xhtml.twig, and edit this file to match this listing.

--snip--

 </p>

 <p>

 Welcome to My Great Website (MGW).

 </p>

</blockquote>

<h1>{{pageTitle}}</h1>

❶ <p>

 Contact us as follows:

</p>

<dl>

 <dt>Email</dt>

 <dd>inquiries@securitydemo.com</dd>

 <dt>Phone</dt>

 <dd>+123 22-333-4444</dd>

 <dt>Address</dt>

 <dd>1 Main Street,
Newtown,
Ireland</dd>

</dl>

</body>

</html>

Listing 21-13: The contactUs.xhtml.twig template

The only content of this template that differs from the home page is the
paragraph and definition list at the end of the HTML body ❶. Thanks to the
use of the Twig pageTitle variable, the rest of the template is identical.
Twig will fill in the variable with Home Page or Contact Us Page as
appropriate.

At this point, the website has everything we need to display and
navigate the two pages. If you run the project, you’ll see something like
Figure 21-5.

Figure 21-5: A simple two-page site built with Twig

Notice that Twig has correctly filled in the value of the pageTitle
variable for each page.

Twig Features to Improve Efficiency
Our two-page website now works as expected, but a lot of duplicated code
remains in the two Twig template files. In this section, we’ll explore
techniques for improving the efficiency of our templates, such as include
statements and template inheritance. Features like these make Twig
particularly useful for developing multipage web applications.

include Statements
As you’ve seen, pages in a website typically share much of the same HTML
code. Twig include statements make it possible to create partial templates

containing that shared code and add the rendered output from those partial
templates to the actual page templates that need it. These include
statements take the form {{include(templateName)}}.

To demonstrate, we’ll take all the shared content at the top of each of
our two page templates and put it in a common _header.xhtml.twig file.
(Remember, it’s common to prefix partial templates like this with an
underscore.) Then we’ll use include statements to add the partial template
to the top of our page template files, which we’ll be able to shorten to
contain just the content unique to each page.

Create templates/_header.xhtml.twig and copy in the code from the top
of one of the page template files, as shown in Listing 21-14.

<!doctype html>

<html lang="en">

<head>

 <title>MGW: {{pageTitle}}</title>

</head>

--snip--

 <p>

 Welcome to My Great Website (MGW).

 </p>

</blockquote>

<h1>{{pageTitle}}</h1>

Listing 21-14: The partial _header.xhtml.twig template

Everything up to and including the level 1 heading (again, using the
Twig pageTitle variable) has been moved into this _header.xhtml.twig
partial template. With that, we can greatly reduce the content in the home
page and Contact Us templates. Listing 21-15 shows the updated home
page Twig template, replacing all the duplicated content with a simple Twig
include statement. Update templates/homepage.xhtml.twig to match the
contents of this listing.

{{include('_header.xhtml.twig')}}

<p>

 Welcome to the secure website demo.

</p>

</body>

</html>

Listing 21-15: The simplified homepage.xhtml.twig template

We begin with a the Twig include statement,
{{include('_header.xhtml.twig')}}, telling Twig to read in the partial
template file _header.xhtml.twig. All that remains in the template is the
page-specific content.

We can similarly remove the duplicated content from our Contact Us
template. Update templates/contactUs.xhtml.twig as shown in Listing 21-
16.

{{include('_header.xhtml.twig')}}

<p>

 Contact us as follows:

</p>

<dl>

 <dt>Email</dt>

 <dd>inquiries@securitydemo.com</dd>

 <dt>Phone</dt>

 <dd>+123 22-333-4444</dd>

 <dt>Address</dt>

 <dd>1 Main Street,
Newtown,
Ireland</dd>

</dl>

</body>

</html>

Listing 21-16: The simplified contactUs.xhtml.twig template

Once again, we’ve removed the duplicated content and replaced it with
a Twig include statement. The page-specific content follows.

Using Twig include statements, we’ve drastically simplified our
individual page templates. However, notice that we still have the final
</body> and </html> tags shared by both templates. In theory, we could
relocate these to a partial _footer.xhtml.twig template. For a simple website,
this could be a reasonable approach, but for more complex pages and larger
websites, Twig offers an even more powerful feature for consolidating
redundant content than include statements: template inheritance.

Template Inheritance
Template inheritance involves creating a base template with all the content
shared by a group of web pages, then creating individual child templates
that extend the base template by filling in or overriding just the content
unique to a particular page. It’s much like the OOP technique of creating
subclasses that inherit from, extend, and override certain behaviors of a
superclass.

The base template ensures that all website pages have all the required
valid, well-formed HTML, including ending tags, freeing up the child
templates to focus on their own page-specific content. As you’ll see, this
inheritance approach is much neater than using include statements to
incorporate partial templates.

INCLUDE IS SOMETIMES USEFUL EVEN WHEN USING INHERITANCE

Once we are using Twig inheritance, all we need for many web applications are base
and child templates, since all the common page content is declared in the base
templates. So it may seem there is no need to use Twig include statements and
partial templates. However, sometimes a web application developer may choose to
declare rarely used content in partial templates, which can then be included by those
few pages that need them. The chosen approach is often a personal preference
between keeping everything inheritance based versus simplifying the base template
to declare only the most commonly used content blocks.

To use template inheritance, we’ll first convert our
templates/_header.xhtml.twig file into a base template that the other
templates can inherit from and extend. Rename _header.xhtml.twig to
base.xhtml.twig and edit it to match Listing 21-17.

<!doctype html>

<html lang="en">

<head>

 <title>MGW: {{pageTitle}}</title>

</head>

--snip--

 <p>

 Welcome to My Great Website (MGW).

 </p>

</blockquote>

<h1>{{pageTitle}}</h1>

{% block main %}

{% endblock %}

</body>

</html>

Listing 21-17: The base.xhtml.twig template

The key to template inheritance is to use Twig statements in the base
template to delineate blocks of code that will be filled in or overridden in
each child page template. In this example, we define a block called main.
This is where the unique content for each page will go. In our base template
itself, however, the block is empty, so nothing is between the block and
endblock statements. Twig blocks have names (in this case, main) so that
child templates can specify which blocks (if any) are to be overridden with
page-specific content.

Notice that in this inheritance approach, we have a full web page in the
base template; that is, it isn’t a partial template. In particular, the base
template includes closing </body> and </html> tags. A Twig base template

is a complete HTML page in its own right, although it may have default or
empty blocks meant to be overridden in the child templates.

We can now update our home page and Contact Us templates to inherit
from the base template and override the main block with individual page
content. First, update templates/homepage.xhtml.twig to match Listing 21-
18.

{% extends 'base.xhtml.twig' %}

{% block main %}

<p>

 Welcome to the secure website demo.

</p>

{% endblock %}

Listing 21-18: The homepage.xhtml.twig template, inheriting from the base template

We declare that this template extends (inherits from) base.xhtml.twig.
Then we embed the page-specific paragraph inside the main block,
overriding the empty contents of this block in the base template. We finish
with an endblock statement so that Twig knows where the overriding
content ends. These endblock statements are particularly important because
in more complex pages we may be overriding two or more blocks in a child
page template. Notice that we no longer have the closing HTML tags at the
end of the file, since these have moved to the base template.

We next need to make the same changes to the Contact Us page.
Update templates/contactUs.xhtml.twig to match Listing 21-19.

{% extends 'base.xhtml.twig' %}

{% block main %}

<p>

 Contact us as follows:

</p>

<dl>

 <dt>Email</dt>

 <dd>inquiries@securitydemo.com</dd>

 <dt>Phone</dt>

 <dd>+123 22-333-4444</dd>

 <dt>Address</dt>

 <dd>1 Main Street,
Newtown,
Ireland</dd>

</dl>

{% endblock %}

Listing 21-19: The contactUs.xhtml.twig template, inheriting from the base template

Once again, we use extends so that this template will inherit from
base.xhtml.twig, and we override the main block with the page-specific
content. As before, we close out the main block with an endblock
statement.

Blocks Instead of Variables
For this simple, static, two-page website, we shouldn’t need to pass any
variables to the Twig templates through the $args array when we call the
render() method. At present, our controller methods are passing the page
title as a Twig variable named pageTitle. However, we could instead make
the page title a block in the base template and override the block with the
appropriate text in each child template.

Let’s remove the pageTitle variable being passed by the controller
methods in our Application class. Update src/Application.php to match
Listing 21-20.

--snip--

 private function homepage(): void

 {

 $template = 'homepage.xhtml.twig';

 $args = [];

 $html = $this->twig->render($template, $args);

 print $html;

 }

 private function contactUs(): void

 {

 $template = 'contactUs.xhtml.twig';

 $args = [];

 $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 21-20: Passing an empty $args array in the Application class

We declare $args as an empty array in the homepage() and
contactUs() methods. While we could just pass an empty array as the
second argument to render(), first declaring the array as a variable clarifies
whether any variables are being passed to the Twig template.

We must now update the base template to declare a block for the page
title, rather than printing the contents of a Twig variable. Update
templates/base.xhtml.twig as shown in Listing 21-21.

<!doctype html>

<html lang="en">

<head>

 <title>MGW: {% block pageTitle %}{% endblock %}</title>

</head>

--snip--

 <p>

 Welcome to My Great Website (MGW).

 </p>

</blockquote>

❶ <h1>{{block('pageTitle')}}</h1>

{% block main %}

{% endblock %}

</body>

</html>

Listing 21-21: Adding a page title block to the base.xhtml.twig template

We declare a new pageTitle Twig block whose contents will become
part of the HTML <title> element. We also need to repeat the contents of
this block later as a level 1 heading ❶. We aren’t permitted to declare a
second block with the same name, however. Instead, we print the contents
of the block by using Twig’s block() function, which takes an argument
indicating the name of the block whose contents should be output. We need
to enclose this function call in double curly brackets, just like other Twig
expressions.

All that remains is to update each child page to declare a pageTitle
block containing an appropriate page name, overriding the default empty
pageTitle block in the base template. Update
templates/homepage.xhtml.twig to match Listing 21-22.

{% extends 'base.xhtml.twig' %}

{% block pageTitle %}Home Page{% endblock %}

{% block main %}

<p>

 Welcome to the secure website demo.

</p>

{% endblock %}

Listing 21-22: Declaring a page title block in the homepage.xhtml.twig template

We declare the pageTitle block with the Home Page content. This one
declaration is enough to fill in the page title at both locations in the base
template. Update templates/contactUs.xhtml.twig in the same way,
declaring the pageTitle block with the Contact Us Page content.

When you now load the website, you should see that nothing has
changed. However, our use of template inheritance has made the code much
more efficient.

Improved Page Styling with CSS
Our website is working, and the template code is efficient and well
organized, but the pages themselves don’t look very appealing. We’ll round
out the website by introducing some CSS to give it a more polished design.
With all the common content for the site confined to the single
base.xhtml.twig template file, you’ll see that Twig makes this process of
updating the site’s appearance quite straightforward.

Highlighting the Current Navigation Link
Highlighting the current page’s navigation bar link is a common way to
inform the user which page they’re viewing. In Chapter 16, we did this with
PHP variables. Now you’ll see how Twig template inheritance makes the
process even easier. In the base template, we’ll declare a uniquely named
Twig block for the content of the class attribute for each link element in
the navigation list. Then, in the child templates, we’ll override the
appropriate Twig block to set the current page link’s class attribute to
active. We’ll use CSS to style the active link a different color from others.

To begin, update base.xhtml.twig to match Listing 21-23.

<!doctype html>

<html lang="en">

<head>

 <title>MGW: {% block pageTitle %}{% endblock %}</title>

 <style>@import '/css/style.css'</style>

</head>

<body>

<header>

 <a href="/" class="{% block homeLink %}{% endblo

ck %}">

 Home

 <a href="/?action=contact"

 class="{% block contactLink %}{% endblock

%}">

 Contact Us

</header>

--snip--

Listing 21-23: The base.xhtml.twig template with blocks for the navigation links

We add a style import declaration so that all pages of the site will be
able to use the CSS styles declared in public/css/style.css (which we’ll
create shortly). Then we declare a homeLink Twig block as the content for a
class attribute for the link to the home page. The block is empty, so if it
isn’t overridden, the link won’t be assigned to a class. We similarly declare
a contactLink Twig block as the content for a class attribute for the
Contact Us link.

We now need to make the child templates override these blocks.
Update the homepage.xhtml.twig template file as shown in Listing 21-24.

{% extends 'base.xhtml.twig' %}

{% block pageTitle %}Home Page{% endblock %}

{% block homeLink %}active{% endblock %}

{% block main %}

<p>

 Welcome to the secure website demo.

</p>

{% endblock %}

Listing 21-24: Declaring a homeLink block in homepage.xhtml.twig

We declare the homeLink block to have active content, thereby
assigning it to a CSS class that will highlight the page link in a different

color from the default navigation links. Listing 21-25 shows how to update
the contactUs.xhtml.twig template file in the same way.

{% extends 'base.xhtml.twig' %}

{% block pageTitle %}Contact Us Page{% endblock %}

{% block contactLink %}active{% endblock %}

{% block main %}

<p>

 Contact us as follows:

</p>

--snip--

Listing 21-25: Declaring a contactLink block in contactUs.xhtml.twig

We declare the contactLink block with active content, which again
will highlight the page’s link when the user visits it.

To finish, we need to declare some simple CSS rules. We’ll give the
page header (containing the navigation list) a dark background color and
define default and active colors for the links. Create a new public/css folder
for the project, then create style.css within it and enter the contents of
Listing 21-26.

header {

 background-color: rebeccapurple;

}

❶ a {

 color: gray;

 text-decoration: none;

}

❷ a.active {

 color: white;

}

❸ header ul {

 display: inline-block;

}

Listing 21-26: The style.css stylesheet

We set the default color of all <a> elements to be gray ❶, while any
<a> elements with a class attribute of active will be white instead ❷.
Finally, we declare the unordered list in the header element to display
inline-block ❸ so our navigation items appear in the same row as the
logo image in the header. Figure 21-6 shows the updated home page for our
site, as well as the page’s HTML source code.

Figure 21-6: The home page and corresponding active CSS class for the page’s link in the
HTML source

In the HTML, notice that the active content from the homeLink block
appears in the class element for the Home link in the navigation bar. As a
result, the Home link appears white to indicate it’s the page currently being
viewed.

Polishing the Website with Bootstrap
Rather than hacking together our own CSS for a more professional-looking
and responsive page layout, we can once again let the powerful Bootstrap
CSS framework do most of the work for us. Twig makes incorporating

Bootstrap styling easy. All we need to do is make a few changes to the base
template, and those changes will affect every page of the website. We don’t
need to change the child page templates at all.

We’ll let Bootstrap style our navigation links, and we’ll use predefined
colors that Bootstrap provides, so we can delete the folder and file
css/style.css altogether. Then we just need to modify the base template of
the site. Edit base.xhtml.twig to match the contents of Listing 21-27.

<!doctype HTML>

<html>

<head>

 <title>MGW: {% block pageTitle %}{% endblock %}</title>

 <meta name="viewport" content="width=device-width"> ❶

 <link rel="stylesheet"

 href=https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/

dist/css/bootstrap.min.css> ❷
</head>

<body class="container"> ❸

<header class="navbar navbar-expand navbar-dark bg-dark"> ❹

<ul class="navbar-nav"> ❺
 <li class="nav-item">

 <a class="nav-link {% block homeLink %}{% endblock

%}" href="/">

 Home

 <li class="nav-item">

 <a class="nav-link {% block contactLink %}{% endbloc

k %}" href="/?action=contact">

 Contact Us

</header>

<div class="row bg-light p-5 mb-4"> ❻
 <div class="col display-6">

 MGW.

You know it makes sense!

 </div>

 <div class="col">

 <p>

 Welcome to My Great Website (MGW).

 </p>

 </div>

</div>

<h1>{{block('pageTitle')}}</h1>

--snip--

Listing 21-27: Updating the base.xhtml.twig template with Bootstrap

We add a meta element to prevent the page content from appearing too
small when viewed on mobile devices ❶. Then we load in the Bootstrap
stylesheet ❷ and entire HTML page body as a Bootstrap container ❸.
This adds basic spacing to the left and right margins of the page after
Bootstrap has determined the appropriate maximum width for page content
for the web client viewport dimensions.

We assign the header element containing the logo and navigation bar
several Bootstrap classes to render the element as a navigation bar in dark
mode with the predefined bg-dark background color ❹. The unordered list
containing the navigation links receives the navbar-nav style ❺ for
professional-looking links. We style each link’s list item as a nav-item and
its anchor link element as a nav-link. Notice that the Twig homeLink and
contactLink blocks still appear as part of the links’ class attributes,
alongside the nav-link class. This way, the currently displayed page’s link
element will have both the nav-link and active styles applied, and
Bootstrap will highlight the link accordingly.

The background color, spacing, and multicolumn layout of the header
are achieved using a combination of Bootstrap utility classes. We replace
the header’s old <blockquote> element with a <div> ❻ styled as a row
with a light background (bg-light), lots of padding on all four sides (p-5),
and a medium-spaced bottom margin (mb-4). The header <div> contains a
<div> for the main heading and tagline styled as a column (col display-
6), which will appear to the left of another <div> for the site’s greeting.

With the addition of Bootstrap styling, our website now has the
professional look and feel shown previously in Figure 21-4. We achieved
this styling simply by changing the base template file, without having to
touch any of the child page templates.

Summary
In this chapter, you learned the basics of the Twig templating package,
which greatly simplifies the process of creating general HTML templates
that can be customized with page-specific content. Using Twig, we created
a multipage website, driven by the run() method of an Application class,
which performs the function of a front controller. The only part of our web
application that isn’t object-oriented is the code in the public/index.php
script, which reads in and executes the Composer autoloader, creates an
Application object, and calls its run() method.

Thanks to Twig, we can safely hand over responsibility for creating and
modifying page templates to team members who need no knowledge of
PHP programming. Through the use of Twig inheritance and overridable
blocks, the templates for each page are small and focus on content specific
to that individual page. We leveraged Twig’s powerful inheritance feature,
enabling us to add features such as professional Bootstrap styling and active
link highlighting, all through declarations in the top-level base template.
Overall, using a templating system such as Twig means we’re strongly
separating the view component of our web application from its controllers
and model: Twig templates have the single responsibility of decorating
provided data with HTML to create the body of responses to be returned to
the requesting web client.

Exercises
1. Create a project with a single script, public/index.php, that returns a

complete, well-formed HTML page body containing a paragraph saying
Hello name, where name is a URL-encoded variable. Then progressively
refactor the project in the following sequence:
a. Move the HTML into templates/hello.php, and write front-controller

PHP code in public/index.php to display this template.
b. Move your front-controller logic into a run() method in a

namespaced Application class. The run() method should extract
the name URL-encoded variable and pass it to a hello() method
that displays the templates/hello.php template. You’ll also need to
create a composer.json file for your class’s namespace, generate the
Composer autoloader, and update public/index.php to read in the
autoloader, create an Application object, and call the run()
method.

c. Convert your templates/hello.php file into a Twig template called
templates/hello.xhtml.twig, and update your Application class to
create a twig property in its constructor. Use this property in the
hello() method to create and then print an $html variable for the
body of the request to be returned to the web client.

2. Copy the project from Exercise 1 and progressively turn it into a two-
page website by doing the following:
a. Separate the core of the HTML structure into a base.xhtml.twig

template, and then refactor hello.xhtml.twig to extend this base
template and override its body block with the “hello” message.

b. Create a second page template, privacy.xhtml.twig, that also extends
the base template and displays the sentence This website stores zero
cookies and so does not affect your browsing privacy in any way.

c. Add a footer to the hello.xhtml.twig template containing the text
Privacy Policy and linking to URL /?action=privacy.

d. Add a privacy() method to the Application class. This method
should display the privacy.xhtml.twig template.

e. Update the logic in the run() method of the Application class so
that the value of the URL-encoded action variable (if found) is

stored in the $action variable. Then add a switch statement that
invokes the privacy() method if the value of $action is privacy,
or otherwise invokes the hello() method.

3. Create an object-oriented, inheritance-based, Twig-templated, three-
page website, with a home page, a staff details page, and a privacy
policy page. Include Bootstrap CSS and a three-item navigation bar,
where the navigation bar item for the page being displayed is
highlighted using the active CSS class. The staff details page should
use a Twig for loop to display an HTML table of three staff members,
from a provided array of Staff objects. The Staff class should have
name and jobTitle properties.

22
STRUCTURING AN OBJECT-ORIENTED WEB

APPLICATION

In the preceding chapter, we used
object- oriented PHP code to create a

simple two-page website controlled from an
Application class. In this chapter, we’ll revisit that
website and explore how to further leverage OOP
techniques to improve its structure. You’ll learn how
to use multiple classes to compartmentalize the
application logic, and you’ll see how inheritance can
help share code among those classes to cut down on
redundancy.

Dividing the application logic across multiple classes will help make
the site more manageable. This may seem trivial for a two-page website, but
imagine if the site grew to include tens, hundreds, or thousands of pages.
The Application class would quickly become unwieldy. It would be
imperative to organize the code into different types of actions and assign
those actions to different classes.

For our application in Chapter 21, two main types of actions need to be
performed. The first is deciding what to do when a request comes into the
web server. We can assign this task to a front-controller class that will
examine each incoming request, including its URL pattern and any data
variables received, and decide which type of page is appropriate to be
returned to the web client.

The other main action is displaying the requested page. We can assign
this task to a range of page-generating controller classes. One such class
might be designed for displaying basic pages (such as home and Contact
Us), another for displaying pages with security features like logging in and
updating passwords, another for product listings, and so on. Each of these
page-controller classes can operate knowing that the front controller has
already made the decision to return the appropriate page.

Separating Display and Front-Controller Logic
Let’s start the process of improving our application architecture by
separating the front-controller decision logic (in the Application class)
from the basic page-generation actions for the home page and Contact Us
page. We’ll move the latter into a new class called DefaultController. The
name reflects that the home page is the default page displayed when the
URL pattern / is requested, but the class could also reasonably be named
BasicPageController, HomePageController, or something similar.

Copy src/Application.php, name the copy src/DefaultController.php,
and delete the run() method from this new DefaultController class. Also
make the homepage() and contactUs() methods public so that they can
still be called from the Application class. After these changes, the file
should match Listing 22-1.

<?php

namespace Mattsmithdev;

use \Twig\Loader\FilesystemLoader;

use \Twig\Environment;

class DefaultController

{

 const PATH_TO_TEMPLATES = __DIR__ . '/../templates';

 private Environment $twig;

 public function __construct()

 {

 $loader = new FilesystemLoader(self::PATH_TO_TEMPLAT

ES);

 $this->twig = new Environment($loader);

 }

 public function homepage()

 {

 $template = 'homepage.xhtml.twig';

 $args = [];

 $html = $this->twig->render($template, $args);

 print $html;

 }

 public function contactUs()

 {

 $template = 'contactUs.xhtml.twig';

 $args = [];

 $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 22-1: Declaring the DefaultController class

This new DefaultController class has a constant for the path to the
template files, a twig property for rendering the templates, a constructor
method, and homepage() and contactUs() methods for displaying the two
pages of the web application.

Now that we’ve encapsulated the logic for displaying the web pages in
a separate class, we can simplify the Application class to focus only on
deciding which page to display. All we need to keep in Application is the

run() method, which will determine which page to display and invoke the
corresponding DefaultController method. Update src/Application.php as
shown in Listing 22-2.

<?php

namespace Mattsmithdev;

class Application

{

 public function run(): void

 {

 $defaultController = new DefaultController();

 $action = filter_input(INPUT_GET, 'action');

 switch ($action) {

 case 'contact':

 ❶ $defaultController->contactUs();

 break;

 case 'home':

 default:

 ❷ $defaultController->homepage();

 }

 }

}

Listing 22-2: The simplified Application class

Our updated Application class’s only content, the run() method,
begins by creating a new DefaultController object. Then, in the switch
statement, we invoke either that object’s contactUs() method ❶ or
homepage() method ❷ to display the appropriate page based on the action
received in the HTTP request.

In this new arrangement, Application is functioning as a true front
controller: it receives requests from the client and decides how to respond.
Meanwhile, the code that generates and prints a response has been
delegated to the DefaultController class. For our simple two-page site,
this may seem like software architecture overkill, but for more sophisticated

websites, this separation of front-controller logic from page-generation
logic means that when we add methods for many pages, we won’t end up
with a single, overcrowded Application class trying to do too many things.

For example, say we have some pages that can be accessed only by a
logged-in user. We could encapsulate the methods for displaying these
pages in a SecureActions controller class. Then we would check whether
the user is logged in within the front-controller Application class and
invoke methods of SecureActions only if the user is logged in. Otherwise,
we could offer the user an error page or login page as appropriate.

Another example of the value of separating front-controller actions
from page controllers is testing the incoming URL patterns for data
parameters. Let’s say some of the pages of our website display news items
by using a NewsItem page controller class. The methods of this class need
the ID of the news item to be retrieved from a database or file store, based
on a URL pattern such as /?action=news&id=<id>. In this case, our front
controller can check for an integer ID along with the news action, then pass
that ID to an appropriate NewsItem object method. If no such integer ID is
found in the URL, we can offer the user an error page instead.

In both of these examples, the methods in the page-controller classes
can be written knowing that any required checks and decisions (determining
whether the user is logged in or retrieving a news item ID) have already
taken place and been satisfied. We’re separating the decision of what to do
(the front controller) from the actions that define how we do it (the page-
controller class methods).

Using Multiple Controller Classes
Our DefaultController class works well for displaying simple pages with
static content such as the home page, but pages with other features would
benefit from being organized within their own specialized controller
classes. For example, an e-commerce site would likely have several kinds
of pages related to products: a list of all available products, search results
showing products that match a particular user query, pages showing the
details of a single product, and so on. Each of these pages would likely need
a way of interacting with objects of a Product class, perhaps passed to the
page templates in a $products array or a single $product object.

Our DefaultController class isn’t currently equipped to handle these
kinds of product-related operations. We could extend and modify the class,
but a more logical approach would be to create a separate
ProductController class to handle the specialized operations required to
display pages related to products. Similarly, pages that include login forms
might have their own LoginController class, pages for displaying and
editing a shopping cart would have their own CartController class, and so
on.

To illustrate the benefit of multiple controller classes, and to
demonstrate how easy it is to add more pages and sections to an object-
oriented web application, we’ll add a Product List page to our website, as
shown in Figure 22-1, and we’ll create a ProductController class for
displaying this page.

Figure 22-1: The Product List page we’ll create

Our new page will display the name and price of a collection of
products, where each product is an instance (object) of a Product class.

Using Twig template inheritance, we’ll give the page the same navigation
bar and header content as the other pages of the website. We’ll coordinate
the page’s display from our new ProductController class, which will be
designed specifically to gather Product objects in an array that can be
passed to the Twig template.

To build the new page, we’ll first create the Product class to represent
each product’s name and price. Create a new file, src/Product.php,
containing the code in Listing 22-3.

<?php

namespace Mattsmithdev;

class Product

{

 public string $name;

 public float $price;

 ❶ public function __construct(string $name, float $price)

 {

 $this->name = $name;

 $this->price = $price;

 }

}

Listing 22-3: The Product class

We declare two public properties for each Product object: name and
price. Then we declare a constructor method ❶ that will take in initial
values for each of these properties when creating a new Product object.

Now that we have a Product class, we can create the
ProductController class for displaying the page. Create a new
src/ProductController.php file as shown in Listing 22-4.

<?php

namespace Mattsmithdev;

use \Twig\Loader\FilesystemLoader;

use \Twig\Environment;

class ProductController

{

 const PATH_TO_TEMPLATES = __DIR__ . '/../templates';

 private Environment $twig;

 public function __construct()

 {

 $loader = new FilesystemLoader(self::PATH_TO_TEMPLAT

ES);

 $this->twig = new Environment($loader);

 }

 public function productList()

 {

 $product1 = new Product('Hammer', 9.99);

 $product2 = new Product('Bag of nails', 6.00);

 $product3 = new Product('Bucket', 2.00);

 ❶ $products = [$product1, $product2, $product3];

 $template = 'productList.xhtml.twig';

 $args = [

 ❷ 'products' => $products

];

 ❸ $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 22-4: The src/ProductController.php file declaring the ProductController class

The ProductController class’s constructor method is similar to that of
the DefaultController class: it performs the setup necessary for working
with the Twig templates. What distinguishes this controller from the other is
its productList() method for displaying the new Product List page.

Within that method, we create three Product objects and package them
into a $products array ❶. Then we set the $template variable to

'productList.xhtml.twig', the new Twig template file we’ll create to list
all the products. We next construct the $args array. It maps the 'products'
key (which will become a Twig variable name) to $products, our array of
Product objects ❷. Then we pass the $template and $args variables to
Twig to generate the HTML needed for the page ❸.

We next need to update the front-controller logic in our Application
class to call the ProductController class’s productList() method when
the value of action in the URL is products. Update src/Application.php to
match Listing 22-5.

<?php

namespace Mattsmithdev;

class Application

{

 public function run(): void

 {

 $defaultController = new DefaultController();

 ❶ $productController = new ProductController();

 $action = filter_input(INPUT_GET, 'action');

 switch ($action) {

 ❷ case 'products':

 $productController->productList();

 break;

 case 'contact':

 $defaultController->contactUs();

 break;

 case 'home':

 default:

 $defaultController->homepage();

 }

 }

}

Listing 22-5: Updating the Application class to handle the products case

In the run() method, we create $productController, a variable
referencing a new ProductController object ❶. Then we add a new case
to the switch statement ❷. When the action in the URL has the value
products, we’ll send a message to our ProductController object to invoke
its productList() method.

We can now write the Twig template to loop through and display the
provided array of products. Create the new Twig template file
templates/productList.xhtml.twig as shown in Listing 22-6.

{% extends 'base.xhtml.twig' %}

{% block pageTitle %}Product List{% endblock %}

{% block productsLink %}active{% endblock %}

{% block main %}

<p>

 Here is a list of our products.

</p>

<dl class="container bg-light">

❶ {% for product in products %}

 <dt>{{product.name}}</dt>

 <dd> $ {{product.price | number_format(2)}}</dd>

{% else %}

 <dt>(sorry, there are no products to list)</dt>

{% endfor %}

</dl>

{% endblock %}

Listing 22-6: The productList.xhtml.twig template

Like our other page templates, this one inherits from base.xhtml.twig,
giving it access to all the content shared across pages. We’re therefore able
to focus on just filling in the blocks from that base template that need to be
customized. First, we override the pageTitle Twig block with the text
Product List. Then we override the productsLink Twig block with the

text active to highlight this page’s link in the navigation bar (we’ll add a
new navigation bar link to the base template next).

Next, we override the main Twig block with the page-specific body
content. The centerpiece of this content is a loop through all the Product
objects in the products Twig array variable to generate the items of an
HTML definition list ❶. The name of each product is declared as the
definition term (<dt>), and the definition data element (<dd>) is the price
of the product, formatted to two decimal places by using the Twig
number_format filter. If the products array is empty, a Twig else statement
will display an appropriate message.

Our final action to get our Product List page working is to add a new
item to its navigation bar in the base template. Update
templates/base.xhtml.twig to match Listing 22-7.

--snip--

<body class="container">

<header class="navbar navbar-expand navbar-dark bg-dark">

 <ul class="navbar-nav">

 <li class="nav-item">

 <a class="nav-link {% block homeLink %}{% endblo

ck %}" href="/">

 Home

 <li class="nav-item">

 <a class="nav-link {% block contactLink %}{% end

block %}" href="/?action=contact">

 Contact Us

 <li class="nav-item">

 <a class=

"nav-link {% block productsLink %}{% endblock %}" href="/?ac

tion=products"

 >

 Product List

</header>

--snip--

Listing 22-7: Adding the product list link to the base.xhtml.twig template

We add a third item to the navigation bar for the Product List page. As
with the other links, we include a class attribute containing a Twig block
named productsLink so the link can be styled active as needed.

We’ve now added a Product List page to our website. In the new
ProductController class, our productList() method creates an array of
objects and uses the Twig template templates/productList.xhtml.twig to
create the HTML for the page. Adding a new navigation link to our base
Twig template was easy. Clicking that link creates a GET request with
action=products. In our Application class front controller, an instance of
the ProductController is created so that when this value of action is
found in the request URL, the productList() method can be invoked. In
all, the majority of the new code for this product list feature is well
organized in its own controller class and corresponding Twig template.

Sharing Controller Features Through Inheritance
As a last step, let’s use the OOP principle of inheritance to streamline our
controller classes. Right now, DefaultController and ProductController
share several lines of identical code: both declare a PATH_TO_TEMPLATES
constant, have a private twig property, and have identical constructor
methods to create a Twig\Environment object. If we were to create more
controller classes (for login security, shopping carts, and so on), they would
also need this identical code.

To avoid all this repetition, we’ll take the common properties and
behaviors all controller classes should have and make them part of a general
Controller superclass. The individual controller classes, such as
DefaultController and ProductController, will inherit from this

superclass and extend it with their own unique properties and methods.
Figure 22-2 shows a diagram of the class structure we’ll create.

Figure 22-2: The Controller superclass and its DefaultController and ProductController
subclasses

We’ll declare our new Controller class as abstract, meaning we can
never actually create a Controller object. This is fitting since the
Controller class exists only to store the general code that all controllers
should have and to be subclassed by the specific controller classes we’ll
want to instantiate. Remember, declaring a class abstract is a way to tell
other programmers (and yourself in the future) that you don’t want the class
to be instantiated.

In Figure 22-2, notice the plus signs (+) denoting public methods and
constants, as well as the hash mark (#) next to the twig property in the
Controller superclass, which indicates this property has protected
visibility, not public or private. We wouldn’t want this twig property to
be public, since it could be incorrectly changed or used by any code in the
web application with access to a Controller object or one of its subclasses.
However, if we were to make the twig property private, the code in the
methods of our subclasses wouldn’t have access to it either. This would be a

problem, since using Twig to render templates is a core behavior of all our
controller classes.

Giving the twig property protected visibility ensures that subclasses of
Controller can access it, while preventing direct access by any code
outside the Controller class hierarchy. This is a useful real-world example
of the inheritance concepts we examined in Chapter 19.

Listing 22-8 shows the code for the Controller superclass. Create
src/Controller.php containing the code from this listing.

<?php

namespace Mattsmithdev;

use \Twig\Loader\FilesystemLoader;

use \Twig\Environment;

❶ abstract class Controller

{

 const PATH_TO_TEMPLATES = __DIR__ . '/../templates';

 ❷ protected Environment $twig;

 public function __construct()

 {

 $loader = new FilesystemLoader(self::PATH_TO_TEMPLAT

ES);

 $this->twig = new Environment($loader);

 }

}

Listing 22-8: The Controller superclass

We declare the class to be abstract so it can’t be instantiated ❶, and
we designate the twig property as protected so it will be available to the
subclasses ❷. Otherwise, this code is identical to the code at the start of our
DefaultController and ProductController classes. Now that this code
lives in the Controller class, the redundant parts can be removed. Listing
22-9 shows the much-simplified DefaultController class code.

<?php

namespace Mattsmithdev;

class DefaultController extends Controller

{

 private function homepage()

 {

 $template = 'homepage.xhtml.twig';

 $args = [];

 $html = $this->twig->render($template, $args);

 print $html;

 }

 private function contactUs()

 {

 $template = 'contactUs.xhtml.twig';

 $args = [];

 $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 22-9: The simplified DefaultController class, a subclass of Controller

We declare that DefaultController extends the Controller class,
allowing it to inherit the constructor and twig property. Thanks to this
inheritance, DefaultController now has only two methods of its own, for
displaying the home page and Contact Us templates. We can similarly
streamline the ProductController class code, as shown in Listing 22-10.

<?php

namespace Mattsmihdev;

class ProductController extends Controller

{

 public function productList()

 {

 $product1 = new Product('Hammer', 9.99);

 $product2 = new Product('Bag of nails', 6.00);

 $product3 = new Product('Bucket', 2.00);

 $products = [$product1, $product2, $product3];

 $template = 'productList.xhtml.twig';

 $args = [

 'products' => $products

];

 $html = $this->twig->render($template, $args);

 print $html;

 }

}

Listing 22-10: The simplified ProductController class, a subclass of Controller

Again, we use extends Controller when declaring the class so that
ProductController will inherit from Controller. The only method
specific to the subclass is productList() for displaying the Product List
page.

We’ve now successfully used inheritance to abstract the common twig
property and its initialization into a Controller superclass. This has
simplified the two page-controller classes, while still providing exactly the
same functionality.

Summary
In this chapter, we improved the architecture of our object-oriented web
application. We separated the overall front-controller logic governing the
site, located in the Application class, from the page-controller logic for
displaying the individual web pages. The latter is divided between an
abstract Controller superclass, which contains the Twig setup code
required for displaying any web page, and multiple subclasses containing
just the code for logic specific to displaying particular kinds of pages.

The example site in this chapter has only three pages: a home page, a
Contact Us page, and a Product List page. However, the architecture
demonstrated in this chapter can easily be scaled up for complex websites

with hundreds or thousands of pages and complex features like session
interactions, shopping carts, login security, and more.

Exercises
1. Make a copy of the project from this chapter and add a fourth page for a

privacy policy. Follow these steps:
a. Create a privacy.xhtml.twig template.
b. Add a new privacyPolicy() method to the DefaultController

class that displays the new template.
c. Add a Privacy Policy navigation bar link in the base.xhtml.twig

template with the URL ?action=privacy.
d. Add a new case to the switch statement in the run() method of the

Application class that invokes the privacyPolicy() method of the
DefaultController object if the value of action in the URL is
privacy.

2. Make a copy of your project from Exercise 1, and add a fifth page for
listing company staff. Follow these steps:
a. Create a Staff class to represent staff details, including firstName,

lastName, and email properties.
b. Create a new subclass of Controller named StaffController.

Give it a list() method that creates two or three staff objects and
passes them as an array to the Twig render() method, along with
the template name staff.xhtml.twig.

c. Add a new Staff List navigation bar link in the base.xhtml.twig
template with the URL ?action=staffList.

d. Create a staff.xhtml.twig template, based on the
productList.xhtml.twig template, that uses Twig code to loop through
and print out each Staff object in the received array.

e. In the run() method of the Application class, create a new
$staffController object that’s an instance of the StaffController
class. Then add a new switch statement case that calls
$staffController->list() if the value of action in the URL is
staffList.

23
ERROR HANDLING WITH EXCEPTIONS

Applications don’t always function the
way you want. For example, a file may

not upload because of a network error, or data from a
user or web API may be malformed in some way. In
this chapter, you’ll learn to use exceptions to
anticipate these sorts of problems and recover from
them, so your application doesn’t always crash when
something goes wrong. You’ll work with PHP’s
generic Exception class, along with other, more
specialized exception classes built into the language.
You’ll also see how to design your own custom
exception classes, as well as how to design your
applications to safely handle any and all exceptions
that may arise.

The Basics of Exceptions
Exceptions are classes that provide a sophisticated and customizable
approach to handling and recovering from anticipated, problematic
circumstances in OOP. They differ from errors, which arise from
circumstances or events that can’t be recovered from, such as the computer
system running out of memory or a class declaration attempting to use a
constant that can’t be found. PHP has a built-in Exception class for
handling generic problems, along with other more specialized exception
classes that cater to particular types of errors. You can also develop your
own custom exception classes.

Exception-based software design allows you to write code in the most
natural sequence, assuming it will all work fine, and then to separately write
code to capture and address any typical problems that may occur. This
involves writing tests into the methods of a class that generate exception
objects and disrupt the flow of program control whenever an unusual or
invalid situation occurs, such as providing invalid arguments for a
constructor or setter method. Thanks to these tests, code appearing later in a
method can be written with the safe assumption that if execution gets that
far, the exception-throwing conditions haven’t occurred, and the code is
working as it should.

Central to exception-based application programming are throw and
catch statements. A method uses a throw statement to create an exception
object when a problem occurs. This is called throwing an exception. The
throw statement halts the execution of the method and disrupts the flow of
the program. By itself, throwing an exception can lead to a fatal error,
unless you catch the exception with a catch statement. The catch statement
features code that’s intended to be executed when an exception is thrown;
such code may allow the application to recover from the issue, or if non-
recoverable, then the problem can be logged and execution ended
gracefully.

In this section, we’ll explore the basics of throwing and catching
exceptions. We’ll also look at finally statements, pieces of code that are
executed at the end of a process, regardless of whether an exception has
been thrown.

Throwing an Exception
First, we’ll consider how to throw an uncaught exception to cause a fatal
error, halting an application. We’ll examine the common use case of
throwing an exception when an invalid argument is provided to the setter
method of a class. We’ll create a variation of the Food and Dessert classes
from Chapter 19, adding exception-based validation behavior in the
setCalories() method of the Dessert class. An exception will be thrown
if a negative value is provided as the number of calories for a new Dessert
object. The project we’ll create is illustrated in the UML class diagram in
Figure 23-1.

Figure 23-1: A diagram showing an exception thrown by the Dessert class

Recall that Dessert is a subclass of Food, with its own __toString()
method and a calories property. The diagram indicates that an invalid
calories value will throw an exception.

First, we’ll declare the Food class. Create a new project with
src/Food.php containing the code in Listing 23-1.

<?php

namespace Mattsmithdev;

class Food

{

 protected string $name;

 public function __construct(string $name)

 {

 $this->name = $name;

 }

 public function __toString(): string

 {

 return "(FOOD) $this->name";

 }

}

Listing 23-1: The Food superclass

We assign the Food class to the Mattsmithdev namespace and give it a
name property with protected visibility so that all subclasses can directly
access it. The class has a straightforward constructor to initialize name when
each new object is created, and a __toString() method to return a string in
the form "(FOOD) name".

Let’s now declare the Dessert subclass of Food. Create src/Dessert.php
and enter the contents of Listing 23-2.

<?php

namespace Mattsmithdev;

class Dessert extends Food

{

 private int $calories;

 public function __construct(string $name, int $calories)

 {

 parent::__construct($name);

 ❶ $this->setCalories($calories);

 }

 public function getCalories(): int

 {

 return $this->calories;

 }

 public function setCalories(int $calories)

 {

 ❷ if ($calories < 0) {

 throw new \Exception(

 'attempting to set calories to a negative va

lue');

 }

 ❸ $this->calories = $calories;

 }

 public function __toString(): string

 {

 return "I am a Dessert containing $this->calories!";

 }

}

Listing 23-2: The Dessert class, which throws an exception if the calories value is invalid

The Dessert class has a calories property assigned in the constructor
via the setCalories() method ❶. This way, we reserve any validation
logic for the setter method itself, so every new calories value will be
vetted, regardless of whether it’s provided at the time of object construction
or via the setter at a later point.

Within setCalories(), we perform the validation with an if statement
❷. If the provided integer argument $calories is less than 0, we throw a
new Exception object, with the message 'attempting to set calories
to a negative value'. If the $calories argument is 0 or more and no
exception is thrown, the code continues by storing the provided value in the
Dessert object’s calories property ❸.

Notice the syntax for throwing the exception. We begin with the throw
keyword, which tells PHP to disrupt the flow of the program if the if
statement is true. Then we use the new keyword to create a new object of

the Exception class, passing the error message we want to display as an
argument. We have to prefix the Exception class with a backslash (\)
because it’s part of PHP’s root namespace, whereas Dessert is part of the
Mattsmithdev namespace. Without the backslash, Exception would be
assumed to be in the Mattsmithdev namespace as well.

We next need to write a composer.json file to autoload our classes.
Create this file as shown in Listing 23-3.

{

 "autoload": {

 "psr-4": {

 "Mattsmithdev\\": "src"

 }

 }

}

Listing 23-3: The composer.json file for autoloading

Once you have this file, generate the autoloader scripts by entering
composer dump-autoload at the command line.

Now let’s write an index script to attempt to create a Food and a
Dessert object. Create public/index.php to match Listing 23-4.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Food;

use Mattsmithdev\Dessert;

$f1 = new Food('apple');

print $f1 . PHP_EOL;

$f2 = new Dessert('strawberry cheesecake', -1);

print $f2;

Listing 23-4: Attempting to create an invalid Dessert object in index.php

We read and execute the autoloader and provide use statements for the
two classes we need. Then we create and print a Food object and a Dessert
object, passing an invalid argument of -1 for the latter’s calories property.
Here’s the result of running this index script at the command line:

$ php public/index.php

(FOOD) apple

Fatal error: Uncaught Exception: attempting to set calories

to a negative

value in /Users/matt/src/Dessert.php:23

Stack trace:

#0 /Users/matt/src/Dessert.php(12): Mattsmithdev\Dessert->se

tCalories(-1)

#1 /Users/matt/public/index.php(10): Mattsmithdev\Dessert->_

_construct

('strawberry chee...', -1)

#2 {main}

 thrown in /Users/matt/src/Dessert.php on line 23

The first line of output shows that the Food object was successfully
created and printed out, but then we get a fatal error due to the exception
thrown by the negative calorie value. The exception is said to be uncaught,
since we didn’t write any code telling PHP what to do if an exception is
thrown. As a result, the application has simply stopped running and has
printed the error message we provided, followed by a stack trace, a report
that steps through the code to show the cause of the exception.

The stack trace tells us the following:
#0 shows that the exception was thrown when setCalories() was
passed -1 as an argument at line 12 of the src/Dessert.php file.
#1 shows that setCalories() was called when the Dessert class’s
constructor method was invoked with the arguments ('strawberry
chee...', -1) (the food-name string has been shortened).
#2 reports that the exception-throwing code is line 23 in src/Dessert.php.

Notice that the output ends with the stack trace, meaning the index
script wasn’t able to get to the point of printing out the Dessert object. The
uncaught exception halted the flow of the program, so the final line of the
index script didn’t execute.

Catching an Exception
To avoid a fatal error and safely manage exceptions, we need to catch the
exceptions by writing a try...catch statement in our index script. The try
portion indicates what we want to do under normal circumstances, and the
catch portion indicates what to do when an exception is thrown.

By catching exceptions, we prevent application users from seeing fatal
errors and the resulting stack traces. Besides being embarrassing and not
user-friendly, printing out a stack trace “leaks” information about the
structure of the web application code (in the preceding example, for
instance, we leaked the folder name src and the class filename Dessert.php).
While stack traces aren’t serious security vulnerability issues, any
information leaked like this might be helpful to an attacker and so should be
prevented where possible. Catching exceptions lets us decide what to do
with the exception data, as well as what the user will see when a problem
arises.

NOTE
In Chapter 24, we’ll explore logging, which allows useful debugging data
such as stack traces to be stored for developers and site administrators to
access, while not publishing such information to any public website visitor
or software client.

To catch the exception raised when a negative calorie value is given,
update the public/index.php script to match Listing 23-5.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev \Food;

use Mattsmithdev \Dessert;

❶ try {

 $f1 = new Food('apple');

 print $f1 . PHP_EOL;

 $f2 = new Dessert('strawberry cheesecake', -1);

 print $f2;

❷} catch (\Exception $e) {

 print '(caught!) - an exception occurred!' . PHP_EOL;

 ❸ print $e->getMessage();

}

Listing 23-5: Adding a try...catch statement to index.php

The old code creating and printing Food and Dessert objects is now
inside a try block ❶. If any exception occurs during this sequence, PHP
checks the class of the exception against the class(es) specified in the catch
block that follows ❷. If the class matches, the catch block is executed. In
this case, the catch statement is for objects of the \Exception class, as
specified in the parentheses after the catch keyword. The variable $e, also
in the parentheses, becomes a reference to the Exception object that has
been caught.

In the catch block, we print out the message '(caught!) - an
exception occurred!' followed by a line break. Then we print the
message inside the Exception object via its public getMessage() method
❸. This is the 'attempting to set calories to a negative value'
message we defined earlier.

Now that we’ve added code catching the exception, try running the
index script again at the command line. You should see the following:

$ php public/index.php

(FOOD) apple

(caught!) - an exception occurred!

attempting to set calories to a negative value

Again, the Food object has been successfully created and printed. Next,
we see the message printed from inside our catch statement, followed by

the message from the Exception object itself. In this example, having
caught the exception, we’re still printing out a message for the user, but
we’ve controlled the information that’s displayed. No stack trace is leaking
information now that we’re handling the exception with a catch statement.

Ending with a finally Statement
A finally statement is a block of code that gets executed regardless of
whether an exception has been thrown. It’s written after the try and catch
statements and typically includes housekeeping code, code that gracefully
ends any processes that have been started. For example, you might use a
finally statement to ensure that any file streams or database connections
are closed.

Let’s add a finally statement to our index script to gracefully close
the application every time it runs, even if an exception has been thrown.
Modify public/index.php to match Listing 23-6.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

try {

 $f1 = new Food('apple');

 print $f1 . PHP_EOL;

 $f2 = new Dessert('strawberry cheesecake', -1);

 print $f2;

} catch (\Exception $e) {

 print '(caught!) - an exception occurred!' . PHP_EOL;

 print $e->getMessage();

} finally {

 print PHP_EOL . '(finally) -- Application finished --';

}

Listing 23-6: Adding a finally statement to index.php

We declare a finally block that prints a simple message after either
the try or catch block concludes. Here’s the result of running this updated
index script:

$ php public/index.php

(FOOD) apple

(caught!) - an exception occurred!

attempting to set calories to a negative value

(finally) -- Application finished --

The message from the finally block prints at the end of the output, after
displaying the message from the exception.

To make sure the finally statement executes even when the catch
statement doesn’t, let’s update our script so that the Dessert object is given
a valid number of calories, meaning no exception will be thrown. Modify
the instantiation of the Dessert object in public/index.php as shown in
Listing 23-7.

--snip--

 $f2 = new Dessert('strawberry cheesecake', 500);

--snip--

Listing 23-7: Creating a valid Dessert object in index.php

When you run the index script now, you should see the Food and
Dessert object messages and then the finally message:

$ php public/index.php

(FOOD) apple

I am a Dessert containing 500 calories!

(finally) -- Application finished --

The output confirms that a Dessert object was successfully created without
throwing an exception, and that the finally block was still executed
regardless.

Using Multiple Exception Classes
In addition to PHP’s root Exception class, several other classes of
exception are available as part of the Standard PHP Library (SPL), such as
the InvalidArgumentException class. These other exception classes are all

connected hierarchically to Exception as its subclasses, subclasses of its
subclasses, and so on. You can also create your own custom exception
classes that are subclasses of one of these built-in exception classes.

At first glance, it may seem unnecessary to have subclasses of
Exception, since we could create basic Exception objects with custom
messages for each situation throwing an exception. However, by writing
code that throws objects of different Exception subclasses, you can include
several catch statements, one for each Exception subclass, allowing you to
respond differently to each type of exception.

For example, you could write multiple validation checks into a setter
method and throw a certain class of exception depending on which
validation check fails. Then you could write a separate catch statement for
each of the exception classes, so each type of exception generates a
customized response. You would then typically end with a catch statement
for generic Exception objects, allowing you to catch any exceptions you
didn’t already account for. We’ll look at how this works in the following
sections.

Other Built-in Exception Classes
Let’s use another built-in PHP exception class in conjunction with the root
Exception class. We’ll update our Dessert class’s setCalories() method
to throw one of two exception class objects as part of the validation of the
received $calories argument. Our validation tests are as follows:

If $calories is less than 0, throw an \InvalidArgumentException
object because desserts can’t have negative calories.
If $calories is greater than 5000, throw a general \Exception object
because that’s way too many calories for one dessert.

Update the setCalories() method in src/Dessert.php to match Listing
23-8.

public function setCalories(int $calories): void

{

 if ($calories < 0) {

 throw new \InvalidArgumentException(

 'attempting to set calories to a negative valu

e');

 }

 if ($calories > 5000) {

 throw new \Exception('too many calories for one dess

ert!');

 }

 $this->calories = $calories;

}

Listing 23-8: Updating the setCalories() method to throw different classes of exception

First, we change the class of exception thrown when the argument
received is negative to \InvalidArgumentException. Once again, note the
forward slash before the class name, indicating that this class is declared in
the root PHP namespace. Then we add a second validation test: when the
number of calories is greater than 5000, an object of the general \Exception
class will be thrown. If execution of the code gets past these two if
statements without throwing any exceptions, we store the provided value in
the object’s calories property as before.

Next, we need to update the index script. We’ll write multiple catch
statements to handle each class of exception object appropriately. Then
we’ll try different values for the Dessert object’s calories property to test
the validation logic. Edit public/index.php to match Listing 23-9.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Food;

use Mattsmithdev\Dessert;

$calories = -1; // Negative invalid argument

$calories = 6000; // General exception

$calories = 500; // Valid

try {

 $f2 = new Dessert('strawberry cheesecake', $calories);

 print $f2;

} ❶ catch (\InvalidArgumentException $e) {

 print '(caught!) - an Invalid Argument Exception occurre

d!' . PHP_EOL;

 print $e->getMessage();

} ❷ catch (\Exception $e) {

 print '(caught!) - a general Exception occurred!' . PHP_

EOL;

 print $e->getMessage();

} finally {

 print PHP_EOL . '(finally) -- Application finished --';

}

Listing 23-9: Multiple catch statements in the public/index.php script

We start with three assignment statements for different values of the
$calories variable. To thoroughly test the script, comment out all but one
of these assignment statements, choosing a different one each time. In the
try block, we create a new Dessert object, providing the $calories
variable as an argument. Then we create two catch statements, one for the
InvalidArgumentException class ❶ and the other for the general
Exception class ❷. Each prints a different message, along with the
message attached to the exception object itself, retrieved with $e-
>getMessage().

Table 23-1 shows the outputs for the three values of $calories,
demonstrating that our exception-based logic is working as expected.
Table 23-1: Outputs for Calorie Values
Value of
$calories Program output

-1 (caught!) - an Invalid Argument Exception occurred! attempting to

set calories to a negative value (finally) -- Application finished

--

6000 (caught!) - a general Exception occurred! too many calories for one

dessert! (finally) -- Application finished --

Value of
$calories Program output

500 I am a Dessert containing 500 calories! (finally) -- Application

finished --

Notice that the values of -1 and 6000 each trigger their own class of
exception, while 500 allows the Dessert object to be successfully created
and printed.

Custom Exception Classes
PHP gives you the flexibility to write your own custom exception classes,
provided they’re subclasses of Exception or one of the other built-in PHP
exception classes. Also, many third-party libraries come with their own
custom exception classes designed specifically for the methods in that
library. Whether you’re writing your own or using someone else’s, custom
exception classes give you even more freedom to structure your code to
respond differently to a variety of anticipated problems.

Let’s add a custom exception class to our Dessert project:
Mattsmithdev\NegativeCaloriesException. We’ll update the project to
throw an exception object of this class instead of the
InvalidArgumentException class. Figure 23-2 shows the two classes of
exception that our Dessert objects can throw. Notice that the
NegativeCaloriesException class falls within the Mattsmithdev
namespace, while the Exception class is outside, since it’s in the root PHP
namespace.

Figure 23-2: The two classes of exception that a Dessert object can throw

First, create a new class in src/NegativeCaloriesException.php
containing the code in Listing 23-10.

<?php

namespace Mattsmithdev;

class NegativeCaloriesException extends \Exception

{

}

Listing 23-10: The custom NegativeCaloriesException class

We declare NegativeCaloriesException as a subclass of the root
\Exception class. It contains no methods. Since it doesn’t have its own
constructor method, it will inherit the constructor from its Exception
superclass, allowing it to take in a message for display.

Let’s now update our Dessert class’s setCalories() method to throw
a NegativeCaloriesException object when the provided calorie value is
negative. As in the previous example, we’ll throw a general Exception
object when the provided value is greater than 5000. Update the
setCalories() method in src/Dessert.php to match Listing 23-11.

public function setCalories(int $calories)

{

 if ($calories < 0) {

 throw new NegativeCaloriesException(

 'attempting to set calories to a negative valu

e');

 }

 if ($calories > 5000) {

 throw new \Exception('too many calories for one dess

ert!');

 }

 $this->calories = $calories;

}

Listing 23-11: Throwing a custom exception in the setCalories() method

We change the class of exception thrown when the argument received
is negative to an object of the NegativeCaloriesException class. Since
this new class is in the same namespace as our Dessert class, we don’t
write a backslash before the class identifier.

Next, we need to update the catch statements in our index script to
handle the new custom exception class. Modify public/index.php as shown
in Listing 23-12.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Dessert;

use Mattsmithdev\NegativeCaloriesException;

$calories = -1; // Negative invalid argument

$calories = 6000; // General exception

$calories = 500; // Valid

try {

 $f2 = new Dessert('strawberry cheesecake', $calories);

 print $f2;

} catch (NegativeCaloriesException) {

 print '(caught!) - a Negative Calories Value Exception o

ccurred!' . PHP_EOL;

 print $e->getMessage();

} catch (\Exception $e) {

 print '(caught!) - a general Exception occurred! ' . PHP

_EOL;

 print $e->getMessage();

} finally {

 print PHP_EOL . '(finally) -- Application finished --';

}

Listing 23-12: Catching custom exception objects in the index.php script

We add a use statement so we can reference the
NegativeCaloriesException class without the Mattsmithdev namespace
prefix. Then we create a catch statement for exceptions of this class,
printing an appropriate message. Here’s the output you should get if you try
to create a new Dessert object with -1 calories, confirming that a
NegativeCaloriesException is thrown:

$ php public/index.php

(caught!) - a Negative Calories Value Exception occurred!

attempting to set calories to a negative value

(finally) -- Application finished --

Testing for a negative value is a simple example, but it serves to
illustrate how straightforward it is to create custom subclasses of
Exception, allowing you to write different logic to address different
anticipated problems at runtime.

Call-Stack Bubbling
If an exception occurs in a block of code and isn’t caught by that code
block, it will bubble up the call stack to the code that invoked the code
block. If not caught there, the exception will continue to bubble up through
successively higher levels of code until either it’s caught and handled or the
top of the call stack is reached. If the exception isn’t caught in the top-level
block of code, a fatal error will result, as we saw in this chapter’s first
example. For this reason, it’s a good idea to include some code at the top
level of an application to catch any exceptions that may have bubbled all
the way to the top of the call stack.

As you’ve seen, the flow of control for a typical object-oriented PHP
web application begins with the index script, which creates an object of the
Application class and invokes its run() method. This in turn triggers the
creation of other objects and the invocation of other methods. Some of this
activity might throw exceptions. You can try to catch all those exceptions
within the Application class, but any uncaught exceptions will ultimately
bubble up to the index script and should be caught there to avoid a fatal
error.

To demonstrate how this works, we’ll update our Dessert project,
taking the code that used to be in the index script and encapsulating it in an
Application class. This class will be responsible for catching any
NegativeCaloriesException objects thrown during the creation of
Dessert objects, but we’ll allow other miscellaneous exceptions to bubble
up to the top of the call stack. Then we’ll catch those in the top-level index
script.

First, let’s update our index script to create an Application object and
invoke its run() method. We’ll wrap that code in a try...catch statement
to handle any uncaught exceptions that bubble up, and we’ll include a
finally statement to gracefully close the application. We’ll also clearly
indicate that the messages being printed by the catch and finally blocks
are coming from this index script by prefixing them with (index.php).
Modify public/index.php to match Listing 23-13.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Application;

try {

 $app = new Application();

 $app->run();

} catch (\Exception $e) {

 print '(index.php) Exception caught!';

} finally {

 print PHP_EOL;

 print '(index.php) finally -- Application finished --';

}

Listing 23-13: The simplified index.php script creating an Application object

Inside the try block, we create an Application object, storing a
reference to the new object in the $app variable, and invoke its run()
method. If any uncaught Exception objects bubble up from the try block
statements, we use a catch block to handle them and print a message. Since
every exception object is an instance of the Exception class (either directly
or as a subclass), this catch statement acts as a catchall for any possible
exception object that was thrown during program execution but wasn’t
caught elsewhere in the code. We also add a finally block that will print a
final message regardless of whether any exceptions were thrown.

Now let’s write the Application class. Create a new file named
src/Application.php to match Listing 23-14.

<?php

namespace Mattsmithdev;

class Application

{

 public function run(): void

 {

 $calories = -1; // Negative invalid argument

 $calories = 6000; // General exception

 $calories = 500; // Valid

 try {

 $f2 = new Dessert('strawberry cheesecake', $calo

ries);

 print $f2;

 } catch (NegativeCaloriesException $e) {

 print

'(Application->run) - Negative Calories Value Exception caug

ht!';

 }

 }

}

Listing 23-14: The Application class

We declare the Application class with a run() method containing
many of the statements from the older index script. As before, we include
three assignment statements for the $calories variable that you can
selectively comment out to test the project. Then we create and print a new
Dessert object in a try block and use a catch block to handle
NegativeCaloriesException objects. Table 23-2 shows the results of
running the application with the different possible values of $calories.
Table 23-2: Catching Exceptions with Call-Stack Bubbling
Value of
$calories Program output

500 I am a Dessert containing 500 calories! (index.php) finally --

Application finished --

-1 (Application->run) - Negative Calories Value Exception caught!

(index.php) finally -- Application finished --

6000 (index.php) Exception caught! (index.php) finally -- Application

finished --

When a valid value of 500 is used, the object properties are printed out.
When the value is -1, the NegativeCaloriesException is caught inside the
run() method of the Application class. When the too-high value of 6000 is
used, the run() method of the Application class fails to catch the general
Exception that’s thrown, since the method is watching only for

NegativeCaloriesException objects. As a result, the exception bubbles up
to the index script, where it hits the general catch block. In all cases, the
output ends with the message from the finally block in the index script.

Adding a general try...catch statement to an index script ensures that
any bubbled-up uncaught exceptions will be addressed, meaning the
application will avoid runtime errors relating to exceptions. Meanwhile, the
code for handling more-specific exceptions, such as our custom
NegativeCaloriesException, is located at a lower level of the application
code, which keeps the index script simple and well organized.

Summary
This chapter introduced how to work with exceptions. You learned how to
create exceptions when anticipated problematic situations occur by writing
throw statements, and how to manage exceptions with
try...catch...finally structures. All exceptions are instances of PHP’s
top-level \Exception class, but we discussed how to refine the program
logic by using provided exception subclasses such as
InvalidArgumentException or by declaring custom exception subclasses.

We also explored a general application architecture that exploits the
bubbling up of uncaught exceptions. Specific anticipated exceptions can be
caught within class methods, while any remaining exceptions can be caught
in the index script at the top level of the application.

Exercises
1. Create a new project and implement a simple Product class with private

name and price properties, public accessor methods for each property,
and a constructor that takes in new values for each property and sets
them using the setter methods. Add validation as follows:
a. If a negative value for price is received, an

InvalidArgumentException is thrown.
b. If a price greater than 1000000 is received, a general Exception is

thrown.
c. If an empty string is provided for the name property, an

InvalidArgumentException is thrown.

Create a composer.json file and an index script to attempt to create a
Product object with valid and invalid names and prices. Then wrap your
index code with try...catch statements, so you can handle the various
exceptions your code throws.

2. Make a copy of your Exercise 1 solution and introduce an Application
class similar to the one from Listing 23-14. Refactor your code as
follows:
a. Create the Product object in the run() method of your Application

class. Catch InvalidArgumentException objects and print an
appropriate message as part of the run() method as well.

b. In the index script, create an Application object and invoke its
run() method. Catch any bubbled-up general Exception objects and
print an appropriate message.

3. Make a copy of your solution for Exercise 2 and introduce a custom
exception named EmptyStringException that’s thrown by the
setName() method. Add an appropriate catch block to catch and
process this exception in the run() method of the Application class.

24
LOGGING EVENTS, MESSAGES, AND

TRANSACTIONS

Almost all live, commercial web
applications keep a log, a record of

messages, errors, events, performance summaries,
and other information generated by the application
while it runs. In this chapter, we’ll explore how to
maintain logs for PHP web applications so you can
analyze application performance and respond to
problems when they occur. You’ll learn about PHP’s
built-in resources for logging, as well as Monolog, a
popular third-party PHP logging package, and you’ll
see how to log messages to various locations.

Sometimes a log records events for auditing purposes, such as to
review electronic monetary transactions for irregularities. Other times,
transactions are logged for backup and recovery purposes. For example, if
something goes wrong while writing information to a database, the database
can be returned to a correct state by reverting to a backup (called an image,

or snapshot) from a known point in time and then rerunning the sequence of
transactions logged after that snapshot was created. Logging also goes hand
in hand with exceptions, which we discussed in the preceding chapter.
When an exception is thrown, it can be recorded in the system log for later
analysis.

Built-in PHP Resources for Logging
Logging is such a core part of server programming that PHP provides many
resources to facilitate it. These include a set of predefined constants
corresponding to various log severity levels, as well as built-in functions for
logging messages to files. We’ll explore these features now.

Predefined Constants for Severity Levels
Most computer logging systems allow messages to be classified according
to a particular level of urgency or importance. To that end, PHP comes with
eight predefined constants establishing levels of logging severity. These
severity levels, numbered 0 through 7, from most to least urgent,
correspond to the eight levels laid out in RFC 5424, a widely used standard
for the syslog protocol set by the IETF. You can find this protocol at
https://www.rfc-editor.org/rfc/rfc5424.

You can use the PHP constants in conjunction with the built-in
syslog() function, which we’ll discuss next, to generate log messages of
the appropriate severity level. Table 24-1 shows the eight severity levels,
their RFC 5424 level names, and a summary of their meanings.
Table 24-1: Levels of Severity for Log Messages from RFC 5424
Syslog
severity
value

RFC 5424 log
level Meaning

0 Emergency The system is unusable or unavailable.

1 Alert A problem has happened, and immediate action is
required.

2 Critical A problem is about to happen and must be addressed
immediately.

3 Error A failure has occurred that is non-urgent but needs

https://www.rfc-editor.org/rfc/rfc5424

Syslog
severity
value

RFC 5424 log
level Meaning

action in a given time frame.

4 Warning An event requires action, since it is likely to lead to an
error.

5 Notice An expected but significant event has occurred that
warrants logging, but no action is required.

6 Info An expected event has occurred for reporting and
measurement.

7 Debug Used by software developers to record detailed
information supporting current debugging and code
analysis.

Table 24-2 shows the eight named PHP constants corresponding to the
RFC 5424 log levels as well as the integer values of these constants for
macOS, Unix, and Windows systems.
Table 24-2: PHP Log-Level Constants
PHP constant macOS and Unix value Windows value

LOG_EMERG 0 1

LOG_ALERT 1 1

LOG_CRIT 2 1

LOG_ERR 3 4

LOG_WARNING 4 5

LOG_NOTICE 5 6

LOG_INFO 6 6

LOG_DEBUG 7 6

On macOS and Unix systems, each constant has an integer value
corresponding to one of the eight severity levels. For example, the
LOG_EMERG constant has a value of 0 in macOS and Unix. If you’re running

PHP on a Windows server, the values of these constants are slightly
different, because of different standards for system header files. For all
systems, however, the severity of the log level increases as the value of the
constant decreases, in line with the principles of RFC 5424. We’ll refer to
the macOS and Unix values throughout this chapter.

The various severity levels have their own conventional uses. When
testing and debugging code, for example, it’s customary to use LOG_DEBUG
severity and perhaps to direct these log entries to their own debugging
logfile. You might log messages about standard, noncritical issues, such as a
user trying to upload files that are too big or of the wrong file type, with a
severity of LOG_INFO or LOG_NOTICE. This way, user-interface or file-size
improvements could be considered if the same issues occur many times.
Much thought should go into events likely to lead to errors, and these
should be logged as LOG_ERR severity. Likewise, it’s always important when
coding for exceptions to identify those that might impact the overall
functioning of the web application and log them with LOG_EMERG,
LOG_ALERT, or LOG_CRIT severity.

Classifying log messages by severity level allows you to design
computer systems with logic to respond to new log messages of different
importance in different ways. For example, when a new log message occurs
at the top three severity levels (Emergency, Alert, or Critical), the logging
system rules might perform actions such as sending text messages and
automated phone calls to the site technicians listed as being on call.
Meanwhile, messages of lower importance might be written to archive files
or perhaps sent via a web API to a cloud logging system. We’ll explore an
example of creating customized responses for different severity in
“Managing Logs According to Severity” on page 466.

Logging Functions
PHP has two built-in functions for logging messages: error_log() and
syslog(). They differ based on where the messages get logged.

The error_log() function appends to the PHP error logfile, whose
location is defined by the error_log path in your php.ini file or your server
log settings, or to another location that can be passed as a parameter when

calling the function. (See Appendix A for information on how to locate your
system’s php.ini file.)

By contrast, the syslog() function appends messages to your computer
system’s general syslog file. Table 24-3 shows the default name and
location of this file on macOS, Unix, and Windows.
Table 24-3: Default Names and Locations of Syslog Files
Operating system Filename Location

macOS system.log /var/log

Unix syslog /etc

Windows SysEvent.evt C:\WINDOWS\system32\config\

When setting up an application, choosing where to log messages can be
difficult: Do you want to have dedicated logfiles just for this application, do
you want to log your PHP web application messages to the same location as
other PHP logs, or do you want logs from the application to be added to the
computer system’s general logging system? As you’ll see in “Logging to the
Cloud” on page 472, using a third-party logging library provides even more
options to select from: choosing the filename and location, using multiple
files for different log types, or even logging to a web API.

The decision partly depends on the nature of the project. For personal
project development, logging to your local machine might make sense,
whereas for mission-critical reporting of a live production system, logging
to files on a web server or the cloud is probably more appropriate and may
be mandated by the requirements and standards of the organization you’re
working for.

An advantage of logging to the system’s general syslog file, as with
PHP’s syslog() function, is that logs for all applications and processes will
be in one place, so you can look at issues with your web application in
relation to other system issues (such as memory or processing speed
problems). Also, you can use a range of applications for viewing, searching,
and analyzing the general logging system, whether it be for Windows,
macOS, or Unix. However, general logs are large and constantly being
appended to by running processes, so when developing and even when

running a production site, targeting logs for the web application to a
dedicated file, as with the error_log() function, can make a lot of sense.
With this in mind, let’s take a look at how the two built-in PHP logging
functions work.

You can log a message to the PHP error logfile with error_log() by
writing a statement such as the following:

error_log('Some event has happened!');

Pass the message you want to log as an argument to the function. By
default, this message will be appended to the file specified in your php.ini
settings. You can view that file from the command line by using cat
(macOS/Unix) or type (Windows), followed by the filename. For example,
here’s the entry added to the logfile on my macOS laptop (which logs to a
file named php_error.log) by the previous error_log() call:

$ cat php_error.log

[28-Jan-2025 22:08:16 UTC] Some event has happened!

The log entry starts with a timestamp, followed by the message string
passed as an argument to the function.

The syslog() function takes two arguments. The first is one of the
integers (0 through 7) indicating the severity level, or a constant declared
with that integer value. This is where the built-in PHP constants discussed
earlier come in. The second argument is a string message to be logged to
the system’s general syslog file. Here’s an example call to the function:

syslog(LOG_WARNING, 'warning message from Matt');

We use the LOG_WARNING constant as the first argument, which PHP defines
with a value of 4, corresponding to the fifth level on the RFC 5424 severity
scale. This event requires action since it’s likely to lead to an error.

The syslog file often contains hundreds or even thousands of entries,
logging many events and actions from many system programs and
applications. Rather than display the whole logfile, filtering it to just the

entries you want is helpful. For macOS or Unix, you can use grep to see
entries containing a certain string. Windows has an equivalent findstr
command. Here’s an example of using grep to view the log entry just
created with the syslog() function:

$ grep "from Matt" system.log

Jan 28 22:15:15 matts-MacBook-Pro-2 php[4304]: warning messa

ge from Matt

Here I’ve used grep to show only log entries containing the string
"from Matt". (In Windows, the command would be findstr "from Matt"
SysEvent.evt.) On my Apple MacBook, the log entry created by syslog()
begins with a formatted date, followed by the computer name (matts-
MacBook-Pro-2). Next comes the program or service appending to the log
(in this case, php), followed by the process ID (4304), a number assigned by
the operating system to uniquely identify each active process. Finally, the
entry ends with the message string passed to the syslog() function. The
contents of each syslog entry are similar for Windows, containing the event
type, event ID, source, message, and so on.

NOTE
If you aren’t comfortable perusing syslog files at the command line, many
applications are available for viewing, filtering, and analyzing these files.
For example, Windows has Event Viewer, and macOS has Console.

The Monolog Logging Library
Logging is so common in web applications that several third-party PHP
libraries exist to help with it, including the popular Monolog library. The
majority of PHP web frameworks and cloud logging systems provide
integration with Monolog. It’s usually the first, and sometimes only, logging
system many PHP programmers learn to use. The library makes it easy to
develop customized, sophisticated logging strategies, with different types of
log entries handled in different ways, and messages being logged to a
variety of locations, including local files, cloud-based systems, and more.

Monolog is compliant with PSR-3, a standards recommendation for
PHP logging systems. This standard uses the same eight levels of log
severity as the RFC 5424 syslog standard. To be PSR-3 compliant, a
logging interface should have methods for each of the eight log levels. Each
method should require a string argument containing the message to be
logged and an optional array for more information about the context of the
message.

NOTE
Monolog’s source code and documentation can be found on GitHub at
https://github.com/Seldaek/monolog, and you can learn more about the
PSR-3 standard at https://www.php-fig.org/psr/psr-3/.

Let’s create an example project that uses Monolog to log messages.
Create a new project folder and then use the command composer require
monolog/monolog to add the Monolog library. You should now have a
composer.json file and a vendor folder with an autoloader and the Monolog
library classes. Next, create an index script in public/index.php containing
the code in Listing 24-1.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

$logFile = __DIR__ . '/../logs/mylogs.log';

$logger = new Logger('demo');

$logger->pushHandler(new StreamHandler($logFile));

❶ $logger->warning('I am a warning.');

$logger->error('I am a test error!');

Listing 24-1: Setting up and using Monolog in public/index.php

https://github.com/Seldaek/monolog
https://www.php-fig.org/psr/psr-3/

As usual, our index script begins by requiring the autoloader script.
Then we provide use statements for the Monolog Logger and
StreamHandler classes. Next, we declare a path to mylogs.log in the logs
folder for this project; this is where we’ll log our messages, but you could
provide a path to any file you wish. The first time Monolog tries to append
a message to this file, it will create the file and directory if they don’t
already exist.

We next create a new Logger object to manage the logging, providing
the channel name demo. We’ll explore channels and why they’re useful in
the next section. Every Logger object needs one or more log handler classes
to tell it what to do with log entries, so we also create a log handler by
calling the Logger object’s pushHandler() method, passing in a new object
of Monolog’s StreamHandler class. This is a class for logging messages to
files (in our case, the logs/mylogs.log file specified in the $logFile
variable), but Monolog has different handler classes for other actions, such
as logging to the browser, a cloud API, or a database. We’ll explore another
log handler in “Logging to the Cloud” on page 472.

Since Monolog is PSR-3 compliant, Logger objects have methods for
logging messages with each of the eight standard severity levels. We use
two of these methods. First, we use warning() to create a warning log entry
with the text 'I am a warning.'❶ Then we use the error() method to
create an error log entry with the text 'I am a test error!'

After executing the index script, the contents of logs/mylogs.log should
look something like the following:

[2025-01-28T23:26:51.686815 + 00:00] demo.WARNING: I am a wa

rning. [] []

[2025-01-28T23:26:51.688375 + 00:00] demo.ERROR: I am a test

error! [] []

Remember, you can view the file at the command line via cat (macOS and
Unix) or type (Windows).

Notice that each log entry generated by Monolog starts with a
timestamp, followed by the channel name and severity level (for example,
demo .WARNING), followed by the log message. The empty square brackets

at the end of each log entry indicate no additional information was
provided. We’ll add more information about the context of the log message
in “Logging Exceptions” on page 469.

Organizing Logs with Channels
Larger systems are organized into well-defined subsystems, and knowing
which subsystems have generated which log entries greatly aids debugging,
error tracking, and code evaluations. Monolog makes this possible by
giving each Logger object a channel name. By creating multiple Logger
objects with unique channel names, you can organize your log based on the
source of the entries. For example, an online shop might have channels like
security, database, and payments for logging different kinds of system
events.

In the previous section, we created our Logger object to be part of the
demo channel, and we saw how this channel name was included in each log
entry. Let’s now modify our project to distinguish between two channels:
demo and security. Update public/index.php to match the contents of
Listing 24-2.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

$logFile = __DIR__ . '/../logs/mylogs.log';

$demoLogger = new Logger('demo');

$demoLogger->pushHandler(new StreamHandler($logFile));

❶ $securityLogger = $demoLogger->withName('security');

$demoLogger->error('I am a test error!');

$securityLogger->warning('invalid username entered');

Listing 24-2: Logging to two separate channels in index.php

We create a new Logger object called $demoLogger for a channel
named demo and set its log handler to be a StreamHandler to the
logs/mylogs.log file. Then we create a second Logger object with a channel
named security. Next, we use the $demoLogger object’s withName()
method to create a clone of the object with a channel name of security ❶.
This saves us from having to create the second Logger object and its log
handler (which points to the same file as $demoLogger) from scratch.

We now have two Logger objects, $demoLogger (channel name demo)
and $securityLogger (channel name security). Both of these Logger
objects use the same log handler, writing logs to logs/mylogs.log.
Depending on which Logger object we use, we can ensure that log entries
are marked with the appropriate channel to aid later logfile analysis. We
finish the script by logging a message to each channel. The resulting
contents of the logs/mylogs.log file should look something like this:

[2025-01-30T08:54:05.091158 + 00:00]

 demo.ERROR: I am a test error! [] []

[2025-01-30T08:54:05.092702 + 00:00]

 security.WARNING: invalid username entered [] []

Notice that the error log entry went to the demo channel, while the
warning entry went to the security channel. We could filter the logfile to
show entries from just one of the channels by using the Unix grep or
Windows findstr commands. For example, we could search for security
channel entries by entering findstr "security." logs/mylogs.log in a
Windows command terminal.

Managing Logs According to Severity
Beyond sorting entries into channels, we can add even more sophistication
to our logging strategy by treating log entries differently according to their
level of severity. Monolog can do this by adding multiple log handlers,
collectively referred to as a stack, to the same Logger object. When we add
a log handler, we can optionally specify which severity levels it applies to.
We could, for example, have one log handler for the three most severe
levels that works with a web API to automatically notify IT staff via text

message to address the problem immediately. A second log handler could
respond to lower severity levels and record the messages to a logfile.

Monolog handlers also have an optional feature called bubbling that
allows log entries to be processed by one handler and also passed (bubbled)
down the stack to be processed again by other log handlers. In addition to
high-severity log entries triggering automated messages to IT staff phones,
for example, those same log entries could also be stored to a logfile for
archive and analysis purposes, along with the low-severity entries. Figure
24-1 shows an example log handler stack that uses bubbling and manages
log entries according to severity.

Figure 24-1: Using bubbling and severity levels to create a sophisticated logging strategy

The diagram illustrates a stack of three log handlers. At the top of the
stack, handler1 catches any log entries of Critical or more importance
(severity levels 0 through 2) and records them in immediateActions.log.
This first handler has bubbling enabled, so the high-severity log entries are
also passed further down the stack for additional processing.

Next in the stack is handler2, which catches all log entries of Info or
more importance (levels 0 through 6) and records them in infoActions.log.

Thanks to bubbling, the high-severity log entries will therefore be recorded
in two separate files. Bubbling is turned off for handler2, so any log entries
this handler processes won’t be sent down the stack for further action. As a
result, the only log entries arriving at the bottom of the log handler stack are
those of severity level 7 (Debug). These are received by handler3 and
recorded in debug.log. Notice that handler3 is set to receive log entries of
any severity, but in practice it will receive only debug entries because all
other severity levels stop at handler2.

Let’s modify our project to implement the stack of these three log
handlers. To make sure the stack works as expected, we’ll generate log
entries for all eight levels of severity and check the contents of the three
logs. Update public/index.php as shown in Listing 24-3.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

❶ use Monolog\Level;

❷ $immediateActionFile = __DIR__ . '/../logs/immediateActions.

log';

$logFile = __DIR__ . '/../logs/infoActions.log';

$debugFile = __DIR__ . '/../logs/debug.log';

❸ $handler1 = new StreamHandler($immediateActionFile, Level::C

ritical);

$handler2 = new StreamHandler($logFile, Level::Info, false);

$handler3 = new StreamHandler($debugFile);

❹ $logger = new Logger('logger');

$logger->pushHandler($handler3);

$logger->pushHandler($handler2);

$logger->pushHandler($handler1);

❺ $logger->emergency('0 emergency');

$logger->alert('1 alert');

$logger->critical('2 critical');

$logger->error('3 error');

$logger->warning(' 4 warning');

$logger->notice(' 5 notice');

$logger->info('6 info');

$logger->debug('7 debug');

Listing 24-3: Managing log entries by severity level with a stack of three log handlers in
index.php

First, we have added a use statement to give us access to the constants
in the Monolog\Level class ❶. We declare three variables for the filepaths
to immediateActions.log, infoActions.log, and debug.log ❷. Then we create
three variables referencing three StreamHandler objects ❸. These will be
the three log handlers in our stack.

For the first, $handler1, we pass the path to the immediate actions
logfile, and we use the constant Level::Critical as the second argument
to assign this handler to entries of Critical or greater importance. The
handler has bubbling enabled by default. We provide $handler2 the path to
the info actions file and use Level::Info to assign it to Info-level log
entries or greater (all logs except Debug entries). The third argument of
false turns bubbling off for handler2.

To create $handler3, we simply pass the path to the debug logfile and
omit the other arguments. By default, all log entries will be processed by
this handler and bubbling will be enabled. However, the handler will
receive only Debug-level entries, and since it will be at the bottom of the
stack, no other log handler exists for log entries to bubble down to.

Next, we create a new Logger object ❹ and assign all three log
handlers to it, one at a time. When multiple handlers are added to the same
Logger object, the last one added is considered to be at the top of the stack
and will get the chance to process all log entries first. Therefore, we add the
handlers in reverse order, starting with $handler3 and ending with
$handler1. Finally, we log eight messages ❺, one for each level of
severity, with a message confirming the level number and name.

After executing the index script, the logs/immediateActions.log file
should look something like this:

[2025-02-13T10:50:52.818515 + 00:00] logger.EMERGENCY: 0 eme

rgency [] []

[2022-02-13T10:50:52.820236 + 00:00] logger.ALERT: 1 alert

[] []

[2022-02-13T10:50:52.820352 + 00:00] logger.CRITICAL: 2 crit

ical [] []

Only Critical, Alert, and Emergency logs were processed and written to
immediateActions.log by $handler1 at the top of the log handler stack.
Here are the contents of logs/infoActions.log:

[2025-02-13T10:50:52.818515 + 00:00] logger.EMERGENCY: 0 eme

rgency [] []

[2025-02-13T10:50:52.820236 + 00:00] logger.ALERT: 1 alert

[] []

[2025-02-13T10:50:52.820352 + 00:00] logger.CRITICAL: 2 crit

ical [] []

[2025-02-13T10:50:52.820454 + 00:00] logger.ERROR: 3 error

[] []

[2025-02-13T10:50:52.820509 + 00:00] logger.WARNING: 4 warn

ing [] []

[2025-02-13T10:50:52.820563 + 00:00] logger.NOTICE: 5 notic

e [] []

[2025-02-13T10:50:52.820617 + 00:00] logger.INFO: 6 info []

[]

All logs from levels 0 to 6 were processed and written to infoActions.log by
$handler2 from the middle of the log handler stack. Since we’ve already
seen the level 0, 1, and 2 logs in immediateActions.log from $handler1,
seeing them again in infoActions.log confirms that the bubbling mechanism
has worked, allowing these logs to also be received by $handler2. Finally,
here are the contents of the logs/debug.log file:

[2025-02-13T10:50:52.820672 + 00:00] logger.DEBUG: 7 debug

[] []

Only the entry for severity level 7 (Debug) can be seen in debug.log. This
demonstrates that $handler3 at the bottom of the stack received only this
single log entry.

Logging Exceptions
A common use of logs is to record when exceptions occur during program
execution. In Chapter 23, we explored how programs can be organized
around try...catch statements: a try statement with the code that should
execute under normal circumstances, and a catch statement for handling
exceptions. When an application uses logging, the exceptions are logged as
part of the catch statement.

Let’s create a simple, single-class project to illustrate how to do this.
Our project will have a Product class that throws an exception when we try
to create a Product object with a negative price. We’ll use Monolog to log
those exceptions to a logs/debug.log file. We’ll begin by declaring the
Product class. Create a new project with src/Product.php containing the
code in Listing 24-4.

<?php

namespace Mattsmithdev;

class Product

{

 private string $name;

 private float $price;

 public function __construct(string $name, float $price)

 {

 ❶ if ($price < 0) {

 throw new \Exception(

 'attempting to set price to a negative valu

e');

 }

 $this->price = $price;

 $this->name = $name;

 }

}

Listing 24-4: A Product class that throws an exception

We declare the Product class in the Mattsmithdev namespace and give
it two private properties, name and price. The class’s constructor method
takes in $name and $price values for the new object being created. Within
the constructor, we validate the $price argument and throw an exception if
its value is negative ❶. For this simple example, we’re using PHP’s root
Exception class.

We now need to create a composer.json file to autoload the class.
Listing 24-5 shows how.

{

 "autoload": {

 "psr-4": {

 "Mattsmithdev\\": "src"

 }

 }

}

Listing 24-5: The composer.json file

Next, use Composer at the command line to generate the autoloader
scripts and add the Monolog library to the project:

$ composer dump-autoload

$ composer require monolog/monolog

Now we need to write an index script that attempts to create a Product
object and logs the exception if the attempt is unsuccessful. Create
public/index.php to match Listing 24-6.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Product;

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

$debugFile = __DIR__ . '/../logs/debug.log';

$logger = new Logger('demo');

$logger->pushHandler(new StreamHandler($debugFile));

try {

 $p1 = new Product('hammer', -1);

} catch (\Exception $e) {

 ❶ $logger->error('problem creating new product', ['excepti

on' => $e]);

}

Listing 24-6: Attempting to create an invalid Product object in index.php

First, we read and execute the autoloader and add use statements for
the classes we need. Then we get set up for logging by creating a variable
for the logs/debug.log filepath, creating a new Logger object for a channel
named demo and giving it a log handler. Next, inside a try block, we create
a new Product object, passing -1 for the price. In the related catch block,
we log an entry of Error-level severity with the Logger object if creating the
product fails ❶.

In addition to providing a message to log ('problem creating new
product'), we include an array as the second argument to log additional
information. Specifically, we pass the entire Exception object $e and give it
the key exception. In the Monolog documentation, this optional array is
called the context of the log entry. It can contain multiple elements with
keys of your choosing, which can be helpful when reviewing the logs and
analyzing them for patterns.

After executing the index script, the logs/debug.log file should look
something like this:

[2025-01-25T11:48:46.813377 + 00:00] demo.ERROR: problem cre

ating new product

{"exception":"[object] (Exception(code: 0): attempting to se

t price to a

negative value at /Users/matt/src/Product.php:15)"} []

An Error-level log has been added to the logfile for the demo channel,
with the message problem creating new product. The log entry also
contains the details of the Exception object that was thrown by the Product
constructor method, including the message associated with the exception
(attempting to set price to a negative value) and the location of the
exception-triggering code.

Logging to the Cloud
So far we’ve been logging messages to files, but most large-scale web
applications log to a dedicated cloud-based logging system rather than to
files on the server. One popular cloud logging system is Mezmo (previously
LogDNA). Using a cloud logging API such as Mezmo provides many
benefits, including historical storage of logs, powerful filtering and search
features, and comprehensive analytical and reporting features. Cloud
logging APIs such as Mezmo can also be linked to alert notification systems
such as Atlassian’s Opsgenie to send the email or text alerts for log entries
requiring immediate actions.

Let’s create a project that sends log entries to Mezmo. We’ll log to two
separate channels and try out entries of each severity level. First, visit the
Mezmo website (https://www.mezmo.com) and create a free account. Make
a note of the unique hexadecimal Mezmo ingestion key created for you in
your account details; you’ll need to reference it in your script.

To interact with Mezmo from your PHP code, we’ll use the monolog -
logdna package, maintained by Nicolas Vanheuverzwijn. This package adds
Mezmo API communication capabilities to Monolog. Create a new project
folder and add the package by entering composer require
nvanheuverzwijn/monolog-logdna at the command line. You should now
have a composer.json file and a vendor folder containing an autoloader and
the Monolog and other library classes for logging to the Mezmo API. Now

https://www.mezmo.com/

create an index script in public/index.php containing the code in Listing 24-
7.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Monolog\Logger;

use Zwijn\Monolog\Handler\LogdnaHandler;

❶ $INGESTION_KEY='your-MEZMO-ingestion-key-goes-here';

$generalLogger = new Logger('general');

$handler = new LogdnaHandler($INGESTION_KEY, 'host-mgw.co

m');

$generalLogger->pushHandler($handler);

❷ $generalLogger->emergency('0 emergency');

$generalLogger->alert('1 alert');

$generalLogger->critical('2 critical');

$generalLogger->error('3 error');

$generalLogger->warning(' 4 warning');

$generalLogger->notice(' 5 notice');

$generalLogger->info('6 info');

$generalLogger->debug('7 debug');

❸ $securityLogger = $generalLogger->withName('security');

$securityLogger->debug('7 debug - from security channel',

 ['context-1' => 'some data']);

Listing 24-7: Setting up and using Monolog in public/index.php

We provide use statements for Monolog’s Logger class and for
LogDnaHandler, the log handler needed to log to Mezmo. Then we declare a
variable for the necessary Mezmo ingestion key; be sure to fill in your own
key here ❶. Next, we create a new Logger object named $generalLogger,
providing general as the channel name, and we give it a log handler,
passing the ingestion key and naming the host source of logs as host-

mgw.com (short for My Great Website, as usual). Different web applications
or subsites could use different hostnames in their handlers, to further
differentiate the source of logs.

We log eight messages to our $generalLogger object ❷, one for each
level of severity, with a message confirming the level number and name.
Then we save a bit of work by using the withName() method to create a
clone of the $generalLogger object called $securityLogger with a
channel name of security ❸. Both Logger objects use the same log
handler and so can send logs to the Mezmo API. We use this second object
to log a debug entry, passing a second argument of a single-element array
with the 'context-1' key and 'some data' data string. This tests how we
might record extra data in a log entry.

Figure 24-2 shows the logs from our executed index script, received
and displayed on the Mezmo site.

Figure 24-2: Log entries on the Mezmo cloud service

Mezmo shows timestamped logs from the general and security
channels, with all entries coming from host-mgw. Each entry is marked with
its severity level. The details of the final log, to the security channel, have
been expanded in the figure, revealing the context data we passed to the
Logger object via an array.

Summary
As you’ve seen in this chapter, you can create logs for a web application in
several ways, from simple error_log() function calls to the sophisticated
Monolog open source logging library package to APIs like Mezmo for cloud
storage and analytics. The scale and importance of each project will
determine the most appropriate approach to take, but for almost all projects
that you need to quality-assure and maintain, you’ll probably have to adopt
some form of logging to record and manage errors and exceptions, and to
collect historical data about use and performance of the system.

Exercises
1. Create message entries by using both the syslog() and error_log()

functions. Locate the files that these functions write to on your
computer system and view your messages in the logfiles.

2. Create a new project and use Composer to add the Monolog package. In
your index script, create a new Logger object for a channel named
general, and add a StreamHandler to append logs to the
logs/mylogs.log file. Log several entries of different severity levels, and
view the log entries in your logfile after executing your index script.

3. Create a new project with a stack of two handlers: handler1 (appending
to the urgent.log file) and handler2 (appending to the other.log file).
Add handler2 first so that handler1 will be on the top of the stack.
Turn off bubbling for handler1 and configure it to catch all log entries
of Critical or more importance. Generate log entries for all eight levels
of severity. You should see log entries of severity 0, 1, and 2 in
urgent.log, and all others (3 through 7) in other.log.

4. Create an account at a cloud logging site such as Mezmo, and update
the project from Exercise 3 to log entries to that site’s API. View the

logs online to confirm that your program successfully sent them via the
API.

25
STATIC METHODS, PROPERTIES, AND

ENUMERATIONS

In this chapter, we’ll explore static
members. Unlike the instance-level

properties and methods we’ve been using so far,
which are accessible through the individual objects of
a class, static properties and methods are accessed
through the class as a whole. As such, you don’t have
to create an object of a class to use its static
members.

We’ll discuss how to work with static members and illustrate their
usefulness in situations such as storing information about all the instances
of a class or sharing resources across an entire application. We’ll also touch
on enumerations, which provide a way to list all possible values for a data
type.

Storing Class-Wide Information
One common use of static members is to keep track of information about all
instances of a class. This is handy when a message needs to be sent to all

objects of a class, or when a calculation must be based on just the class’s
current instances. Consider the AudioClip class diagrammed in Figure 25-
1.

Figure 25-1: An AudioClip class with static members

The AudioClip class has instance members for storing details about a
given audio file. These are the title and durationSeconds properties, with
their associated getters and setters. The constructor and __toString()
method are instance members as well, since they pertain to creating or
summarizing the contents of a particular object. Meanwhile, the class has a
maxClipDurationSeconds property that tracks the longest duration of any
AudioClip objects that have been created. This is a good use of a static
member (indicated by underlining in the diagram), since the property holds
information pertaining to all the objects of the class. The property’s getter
method should also be static.

To see how static members are useful for storing class-wide
information, we’ll declare the AudioClip class and create three instances of
it. The diagram shows how each instance will have its own values for the
title and durationSeconds properties. For example, clip1 will have a
title of 'Hello World' and a durationSeconds of 2.

Create a new project folder and add the usual composer.json file
declaring that Mattsmithdev namespaced classes are located in the src
folder. Generate the autoloader file by entering composer dump-autoload at
the command line. Then declare the AudioClip class by creating
src/AudioClip.php and entering the contents of Listing 25-1.

<?php

namespace Mattsmithdev;

class AudioClip

{

 // --- Static (per-class) members ---

 ❶ private static int $maxClipDurationSeconds = -1;

 ❷ public static function getMaxClipDurationSeconds(): int

 {

 return self::$maxClipDurationSeconds;

 }

 // --- Object (instance) members ---

 ❸ private string $title;

 private int $durationSeconds = 0;

 ❹ public function __construct(string $title, int $duration

Seconds)

 {

 $this->setTitle($title);

 $this->setDurationSeconds($durationSeconds);

 }

 public function getTitle(): string

 {

 return $this->title;

 }

 public function setTitle(string $title): void

 {

 $this->title = $title;

 }

 public function getDurationSeconds(): int

 {

 return $this->durationSeconds;

 }

 ❺ public function setDurationSeconds(int $durationSecond

s): void

 {

 // Exit with no action if negative

 if ($durationSeconds < 0) return;

 $this->durationSeconds = $durationSeconds;

 if ($durationSeconds > self::$maxClipDurationSecond

s) {

 self::$maxClipDurationSeconds = $durationSecond

s;

 }

 }

 ❻ public function __toString(): string

 {

 return "(AudioClip) $this->title ($this->durationSec

onds seconds) \n";

 }

}

Listing 25-1: The AudioClip class

We declare maxClipDurationSeconds by using the static keyword to
specify that this is a static member that exists independent of any objects of
the AudioClip class ❶. We initialize it to -1, ensuring that whatever the
duration of the first AudioClip object to be created, its duration will be
greater than -1 and so will be stored in this static property. We’ll see how
this is done later, as part of the setDurationSeconds() setter method.

We set maxClipDurationSeconds to be private, but we declare a public
getter method, getMaxClipDurationSeconds(), which is also static ❷.
Making this method public allows code inside and outside the class to query
the value of the longest AudioClip object that’s been created since the
program or request has been running. We’ll explore what this implies and
how this property is used shortly.

We next declare two instance-level properties for each AudioClip
object, title and durationSeconds ❸, with a default value of 0 for the
latter to ensure that it’s set even if an invalid argument is provided at
construction. The class’s constructor method ❹ takes in initial values for
these two properties and sets them in the object by invoking the appropriate
setters.

The instance-level accessor methods are all straightforward, save for
setDurationSeconds(), which has custom validation logic ❺. A clip’s
duration should never be negative, so we first test for this and use return to
halt execution of the method with no further action if a negative value is
provided. If we make it past that point, we know the provided argument is 0
or positive, so we store it in the object’s durationSeconds property.

Then we check whether the object’s new duration is greater than the
value stored in the maxClipDurationSeconds static property. If it is, we
update this property to equal the new duration. Since
maxClipDurationSeconds starts off with a sentinel value of -1, and because
of our validation at the beginning of the method, we know that no
AudioClip objects will ever have a negative duration. Therefore, as soon as
the first clip has been created with a valid duration, this static property will
be set accordingly.

Notice that we have to use self:: to access the
maxClipDurationSeconds property. This scope resolution operator (::) is
the syntax for accessing a static member from within the same class.

We complete the declaration of the class with the __toString()
method ❻. It returns a string summarizing an AudioClip object’s contents,
in the form (AudioClip) title (durationSeconds seconds).

Now let’s put our class to work through an index script that creates
AudioClip objects and outputs the changing value of the static maxClip

DurationSeconds property. Create public/index.php as shown in Listing 25-
2.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\AudioClip;

print '- Max AudioClip duration so far = '

 . AudioClip::getMaxClipDurationSeconds() . PHP_EOL;

$clip1 = new AudioClip('hello world', 2);

print $clip1;

print '- Max AudioClip duration so far = '

 . AudioClip::getMaxClipDurationSeconds() . PHP_EOL;

$clip2 = new AudioClip('bad duration', -10);

print $clip2;

print '- Max AudioClip duration so far = '

 . AudioClip::getMaxClipDurationSeconds() . PHP_EOL;

$clip3 = new AudioClip('My Way', 275);

print $clip3;

print '- Max AudioClip duration so far = '

 . AudioClip::getMaxClipDurationSeconds() . PHP_EOL;

Listing 25-2: The index.php script

First, we print a message displaying the value of
maxClipDurationSeconds, accessed via the public static
getMaxClipDurationSeconds() method. Since we haven’t yet instantiated
any AudioClip objects, the property should still have its initial value of -1.
Notice that we have to prefix the static member’s name with AudioClip::
rather than self::, since we’re writing this code from the index script and
not from within the static members’ class. We then create three AudioClip

objects, $clip1, $clip2, and $clip3, printing each one and then displaying
the value of maxClipDurationSeconds again.

Here’s the output of running the index script:

- Max AudioClip duration so far = -1

(AudioClip) hello world (2 seconds)

- Max AudioClip duration so far = 2

(AudioClip) bad duration (0 seconds)

- Max AudioClip duration so far = 2

(AudioClip) My Way (275 seconds)

- Max AudioClip duration so far = 275

The max duration starts with a value of -1, but each time an AudioClip
object with a nonnegative duration is created, this value is updated if the
new clip is the longest, through the logic in the setDurationSeconds()
method. After creating the hello world object, the max duration goes from
-1 to 2. The value doesn’t change after the bad duration object is created
with an invalid duration of -10. (Notice from the object’s printout that its
duration is stored as 0, the default value, rather than -10, thanks to our
initial validation logic in the setDurationSeconds() method.) Finally, after
creating the My Way object, the max duration is updated to 275.

Our logic for updating maxClipDurationSeconds has worked well for
demonstration purposes, but it isn’t actually a good way to keep track of the
longest AudioClip object, since it assumes that all the objects exist for the
entire run of the application. Say we decide that we no longer want one of
the audio clips (the user might choose to delete it from a list). Our current
logic provides no way to roll back the maximum clip duration if that clip is
deleted. A better approach might be to have an array of active AudioClip
objects. Each time a clip is removed, we could then loop through the array
and recalculate the duration of the longest active clip.

Static Properties vs. Class Constants
Static properties aren’t to be confused with class constants. In both cases,
only one copy of the static property or class constant exists on the class
itself, rather than a separate copy on each instance of the class. However,

class constants are immutable, so their value never changes. By contrast,
the value of a static property can change (as you saw with
maxClipDurationSeconds), just like the value of an ordinary property of an
object. In this sense, the term static can be a bit misleading. All PHP object-
oriented properties, whether they’re per-object instance properties or per-
class static properties, begin with a dollar sign, which distinguishes them
from constants.

Use a class constant when you have a value that should apply to all
objects of a class and should never change. We’ve met class constants
previously; one example is the PATH_TO_TEMPLATES constant used to create
the Twig\Environment object for templating. In this case, the filepath to the
templates folder should never change and would apply equally to any and
all Twig\Environment objects. Other uses of a class constant include
defining special values, like setting the maximum score for a school grade
point average (GPA) to 4.0 or the neutral value for the pH acidity scale to
7.0.

In the case of our AudioClip class, we might have class constants
defining details like the number of channels or the sampling rate of the
audio files, on the assumption that these will be standard across all audio
clips. To explore the difference between class constants and static
properties, we’ll add some class constants to our AudioClip project now.
Figure 25-2 shows an updated diagram of the AudioClip class.

Figure 25-2: Adding class constants and an extra method to the AudioClip class

The diagram shows that the AudioClip class will now offer four public
class constants, which are indicated as {read-only} in class diagrams. For
our project, we’ll make some assumptions about the audio clips that the
class represents: they’ll all be stereo (two channels) and store 16 bits per
sample (CD-quality digital audio). The number of samples per second will
always be 44,100, which is a common audio sampling rate. These values
are indicated by the AudioClip class constants NUM_CHANNELS,
BITS_PER_SAMPLE, and SAMPLES_PER _SECOND, and together they’re used to
calculate the BITS_PER_SECOND constant.

NOTE
For a more realistic example, these constants could be replaced by instance
properties, since not all audio clips may conform to the standard laid out by
the constants.

We’ll also add a new getSizeBits() method that uses the class
constants to calculate the number of bits required to store the audio clip in
memory or on disk. Additionally, we’ll include the value from this new
method as part of the object summary returned by the __toString()
method.

To implement all these changes, edit the src/AudioClip.php file as
shown in Listing 25-3.

<?php

namespace Mattsmithdev;

class AudioClip

{

 const NUM_CHANNELS = 2;

 const BITS_PER_SAMPLE = 16;

 const SAMPLES_PER_SECOND = 44100;

 const BITS_PER_SECOND = self::NUM_CHANNELS

 * self::BITS_PER_SAMPLE * self::SAMPLES_PER_SECOND;

--snip--

 public function getSizeBits(): int

 {

 return self::BITS_PER_SECOND * $this->durationSecond

s;

 }

 ❶ public function __toString(): string

 {

 $numBitsFormatted = number_format($this->getSizeBits

());

 return "(AudioClip) $this->title "

 . "($this->durationSeconds seconds), $numBitsFor

matted bits \n";

 }

}

Listing 25-3: Adding constants and the getSizeBits() method to the AudioClip class

It’s common to list constants first when declaring a class, before any
properties and methods, so we begin the AudioClip class by declaring the

constants NUM_CHANNELS, BITS_PER_SAMPLE, and SAMPLES_PER_SECOND,
with the values described previously. Then we declare BITS_PER_SECOND,
which is an example of a calculated constant since its value is determined
based on the values of the other constants rather than being set directly. By
precalculating this value and storing it as a constant, we avoid having to
repeat the calculation every time we need to convert from seconds of audio
to bits of data. Notice the use of self:: to access the other constants in the
BITS_PER_SECOND calculation. This syntax applies to accessing class
constants from within the class, just as it does to accessing static members.

Next, we declare getSizeBits(), a useful extra getter method for each
AudioClip object. It returns an integer representing the number of bits
required to store the audio clip, found by multiplying the precalculated BITS
_PER_SECOND constant by the object’s durationSeconds property. We also
update the __toString() method ❶, summarizing an AudioClip object’s
contents including its size in bits, thanks to our new method. Notice that we
use the built-in number_format() function to create a temporary
$numBitsFormatted string variable. With the function’s default settings,
this creates a more readable representation of the number with a comma
separator every three digits.

Here’s the terminal output of running the index script again (no
changes to the index script are needed):

- Max AudioClip duration so far = -1

(AudioClip) hello world (2 seconds), 2,822,400 bits

- Max AudioClip duration so far = 2

(AudioClip) bad duration (0 seconds), 0 bits

- Max AudioClip duration so far = 2

(AudioClip) My Way (275 seconds), 388,080,000 bits

- Max AudioClip duration so far = 275

Each AudioClip object printout now ends with the integer number of
bits the clip data occupies, thanks to our class constants. Even for a two-
second clip, over 2 million bits are needed (which is why we’ve formatted
the number of bits with comma separators).

Utility Classes with Static Members
Static members may also be created as part of utility classes; these exist to
help other classes do their work and aren’t used to create objects. A utility
class’s static members might store helpful information or perform basic,
general-purpose calculations that might have uses in other projects or other
parts of the current project.

Continuing with our AudioClip example, let’s say we want to display
the size of each audio clip in megabytes rather than bits. We’ll need a way
to convert from bits to megabytes. We could refactor the AudioClip class’s
getSizeBits() method to make the necessary calculation. This calculation,
along with supporting pieces of information such as the number of bits in a
byte, is general enough that it might be useful to other, non-audio parts of
the project or to other projects entirely. Therefore, locating the necessary
code in a utility class makes sense.

We’ll create a utility class called SizeUtilities to help the AudioClip
class calculate memory size. Often, utility classes aren’t used to create
objects, and this will be the case for SizeUtilities. Since an object of this
class will never be instantiated, we’ll declare SizeUtilities as abstract.
By extension, since there will never be a SizeUtilities object, all the
class’s members need to be accessible through the class as a whole. That is,
SizeUtilities must consist of class-level constants and static members.
Figure 25-3 shows a diagram of the modified AudioClip class and the new
SizeUtilities utility class.

Figure 25-3: A class diagram of AudioClip and SizeUtilities demonstrating static methods
and properties

The SizeUtilities class offers three public class constants indicated
as {read-only} in the diagram: BITS_PER_BYTE, BYTES_PER_KILOBYTE, and
BITS_PER _MEGABYTE. These will be useful for calculating file sizes. The
class also offers a public static method called bitsToMegaBytes() that takes
in a number of bits as a parameter and returns the corresponding number of
megabytes to a given number of decimal places (or two by default).
Meanwhile, the AudioClip class declares a new getSizeMegaBytes()
method that returns a float representing the memory required for the clip in
megabytes, with the help of the SizeUtilities class. Notice that the
AudioClip class also has a modified __toString() method that includes
the file size in megabytes in the object summary.

Let’s declare the SizeUtilities class. Create src/SizeUtilities.php
containing the code in Listing 25-4.

<?php

namespace Mattsmithdev;

abstract class SizeUtilities

{

 const BITS_PER_BYTE = 8;

 const BYTES_PER_KILOBTYE = 1024;

 const BITS_PER_MEGABTYE =

 self::BITS_PER_BYTE * self::BYTES_PER_KILOBTYE * 102

4;

 public static function bitsToMegaBytes(int $bits): float

 {

 return $bits / self::BITS_PER_MEGABTYE;

 }

}

Listing 25-4: The SizeUtilities class with constants and a static method

We declare SizeUtilities as abstract, since all members of this
class are either constants or static. Its BITS_PER_BYTE and
BYTES_PER_KILOBYTE constants have values of 8 and 1024, respectively, and
the BITS_PER_MEGABYTE constant is calculated based on them. The class’s
bitsToMegaBytes() static method takes in a number of bits and divides it
by the BITS_PER_MEGABYTE constant to return the equivalent number of
megabytes.

Next, update src/AudioClip.php as shown in Listing 25-5.

<?php

namespace Mattsmithdev;

class AudioClip

{

--snip--

 public function getSizeBits(): int

 {

 return self::BITS_PER_SECOND * $this->durationSecond

s;

 }

 public function getSizeMegaBytes(): float

 {

 ❶ return SizeUtilities::bitsToMegaBytes($this->getSize

Bits());

 }

 public function __toString(): string 2

 {

 $numMegaBytesFormatted = number_format($this->getSiz

eMegaBytes(), 2);

 return "(AudioClip) $this->title "

 . "($this->durationSeconds seconds), $numMegaByt

esFormatted MB \n";

 }

}

Listing 25-5: Updating the AudioClip class to use SizeUtilities

We add the getSizeMegaBytes() method, which returns a float
representing the size of the AudioClip object in megabytes. The method
gets the size in bits and passes it to the public static bitsToMegaBytes()
method declared in our SizeUtilities class ❶. This is a good example of
how to use public static methods in other classes: we don’t have to create an
object of the SizeUtilities class in order to use its public static method.
Instead, we simply write SizeUtilities:: followed by the name of the
method.

In the new __toString() method, we create a temporary
$numMegaBytesFormatted variable holding the clip size in megabytes,
formatted as a string with two decimal places. We then include the value of
this variable as part of the string returned by the method. Once again, we
don’t need to make any changes to the index script to test our updates, since
we’re still using __toString() to output information. Here’s the terminal
output of the updates:

- Max AudioClip duration so far = -1

(AudioClip) hello world (2 seconds), 0.34 MB

- Max AudioClip duration so far = 2

(AudioClip) bad duration (0 seconds), 0 MB

- Max AudioClip duration so far = 2

(AudioClip) My Way (275 seconds), 46.26 MB

- Max AudioClip duration so far = 275

The size of each AudioClip object is now given in megabytes. Our new
utility class has successfully helped the AudioClip class make the necessary
bits-to-megabytes conversions through its static method and class constants.

Sharing Resources Across an Application
Another use of static methods is to offer a functionality (such as reading
from or writing to a database, or appending messages to a logfile) to all
parts of a software system, without each part of the system needing to
duplicate the required setup code. The idea is to create an abstract class with
static methods that do the necessary legwork, like establishing a database
connection or setting up a logger and log handler. Then you can call those
static methods from anywhere in your code whenever you need that
functionality. This makes processes like logging or working with a database
connection quite straightforward.

To illustrate how this works, let’s create a project that allows logging
from anywhere in the system just by writing something like this:

Logger::debug('my message');

For this to work, we’ll need a Logger class with a public static debug()
method that can be invoked from anywhere in the system. This method will
handle the mechanics of the logging process so that the other parts of the
system don’t have to.

Start a new project folder and create the usual composer.json file to
autoload the Mattsmithdev namespaced classes. Then enter this command
at the command line to add the Monolog library to the project:

$ composer require monolog/monolog

Since we have a composer.json file, Composer will also generate the
autoloader scripts at this step, in addition to loading the Monolog library.
All the relevant files will be in your project’s vendor directory.

Next, create a custom Logger class in src/Logger.php as shown in
Listing 25-6.

<?php

namespace Mattsmithdev;

❶ use Monolog\Logger as MonologLogger;

use Monolog\Handler\StreamHandler;

abstract class Logger

{

 const PATH_TO_LOG_FILE = __DIR__ . '/../logs/debug.log';

 ❷ public static function debug(string $message): void

 {

 $logger = new MonologLogger('channel1');

 $logger->pushHandler(new StreamHandler(self::PATH_TO

_LOG_FILE));

 $logger->debug($message);

 }

}

Listing 25-6: The Logger class with a public static logging method

We declare our Logger class in the Mattsmithdev namespace to avoid a
naming collision with the Monolog library’s Logger class and designate it
as abstract since we won’t ever need to instantiate it. The use statements
allow us to refer to the necessary Monolog classes in our code without
having to write fully qualified namespaces. Notice that we alias Monolog’s
Logger class as MonologLogger to better differentiate it from our own class
❶.

Inside the class, we create a constant for the filepath to logs/debug.log.
Then we declare debug() as a public static method that takes a $message
string parameter ❷. The method creates a new MonologLogger object for

channel1 and assigns it a log handler for writing to the debug logfile, then
uses the Monolog class’s debug() method to log $message to the logfile.

Now create an index script in public/index.php containing the code in
Listing 25-7.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Application;

$app = new Application();

$app->run();

Listing 25-7: Creating an Application object in index.php

We read in and execute the Composer-generated autoloader, create an
object of the Application class, and invoke its run() method. This is the
same basic pattern for the index script of an object-oriented web application
that we discussed in Chapter 21.

Finally, declare the Application class in src/Application.php as shown
in Listing 25-8. The class includes code for logging messages via our
Logger class’s static method.

<?php

namespace Mattsmithdev;

class Application

{

 public function run(): void

 {

 print 'Hello, world!';

 Logger::debug('Hello, world! printed out');

 Logger::debug('another log message');

 }

}

Listing 25-8: The Application class

In the Application class’s run() method, we print out a 'Hello,
world!' message. Then we invoke the static debug() method of our Logger

class to log messages to the debug logfile. Notice that we don’t need to
create a Logger object or include any setup code (such as declaring a path
to the logfile or creating a log handler) in the Application class itself;
everything is handled by the static method we defined on the Logger class.
If the Application and Logger classes were in different namespaces, all
we’d need to do is add a use statement or fully qualify the class when using
it, like this:

Mattsmithdev\Logger::debug('Hello, world! printed out');

We can confirm that the two messages have been appended to the
logfile by viewing the contents of logs/debug.log after running the index
script. Remember to use the cat command (macOS and Unix) or type
(Windows), as discussed in Chapter 24. You should see something like this:

$ cat debug.log

[2025-01-30T10:49:54.516974 + 00:00]

channel1.DEBUG: Hello, world! printed out [] []

[2025-01-30T10:49:54.519278 + 00:00]

channel1.DEBUG: another log message [] []

We’ve successfully used our static method to append messages to the
logfile. If we wanted, we could add optional arguments to this method to
change the name and location of the logfile, log to different channels, or
provide a context array such as an Exception object. This basic example
has illustrated generally how a class can offer a single static method to
make it easy for any part of a software system to utilize its functionality.

Saving Resources with the Singleton Pattern
The approach we used in the preceding section to share resources across an
application can work in many situations, but in some cases, such as creating
a connection to a database or setting up a mailing or file-writing object, the
static method’s task takes up enough time and memory to impair the
application’s performance. In cases like these, an object-oriented design

technique called the singleton pattern can help conserve computing
resources while still making an operation available throughout an
application.

Take a look back the last section of Listing 25-6, where we declared
our Logger class. According to our definition of the static debug() method,
a new MonologLogger object and a new StreamHandler object will be
created each time the method is invoked to log a debug message. In our
application’s run() method in Listing 25-8, we invoked this method twice,
so four objects were created to log the two messages, which is a bit
wasteful. When operations are resource expensive, a more efficient
approach is to perform them once and then cache (store) the created
resources for future use. The singleton pattern is one way of doing this.

The singleton pattern declares a class with a private constructor, along
with logic to ensure that, at most, we create only one object of the class.
The class offers a public static method named getInstance() that returns a
reference to the single instance of the class. If no instance exists, one is
created the first time the getInstance() method is invoked. Otherwise, the
class caches, or keeps a record of, the single instance, so it can be returned
again the next time getInstance() is called.

Anytime you need to use the singleton class, you’d write something
like this from anywhere in your code:

$myObject = Singleton::getInstance();

This stores a reference to the sole instance of the singleton class in the
$myObject variable. You can then use the Singleton class’s resources
through the $myObject reference. Listing 25-9 shows the typical skeleton
for singleton-style classes.

<?php

class Singleton

{

 private static ?Singleton $instance = NULL;

 private function __construct()

 {

 // -- Do the resource-expensive work here --

 }

 public static function getInstance(): Singleton

 {

 ❶ if (self::$instance == NULL)

 {

 ❷ self::$instance = new Singleton();

 }

 return self::$instance;

 }

}

Listing 25-9: The Singleton class

We declare a private static property called instance, initializing it to
NULL. Ultimately, this property will hold a reference to the only object of the
singleton class. Then we declare a private constructor method where any
resource-hungry work can be completed. Since the constructor has been
declared as private, it can’t be invoked with the new keyword from
anywhere outside the class itself.

Next, we declare the only public member of this class, the static
getInstance() method. This method first tests whether the instance is
NULL ❶. If so, this must be the first time that this method has been invoked,
so a new Singleton object is created (which calls the constructor,
triggering the resource-heavy work), and the reference to the new object is
stored in the static instance property ❷. Then the method returns the
object reference in instance, making the object available for use elsewhere
in the application.

Let’s modify the previous section’s project to save computing resources
by using the singleton pattern. This way, we’ll have to create the Logger
object and log handler only once, no matter how many messages we log.
We’ll also make our application more flexible by making our custom
Logger class a subclass of Monolog’s Logger class so that we can use any
of the latter’s methods and optional arguments (for example, to provide

context data and to log at different severity levels through the inherited
methods).

First, update the declaration of the Logger class in src/Logger.php to
match Listing 25-10. This redesigned class is closely modeled on the
skeletal Singleton class demonstrated in Listing 25-9.

<?php

namespace Mattsmithdev;

use Monolog\Logger as MonologLogger;

use Monolog\Handler\StreamHandler;

❶ class Logger extends MonologLogger

{

 const PATH_TO_LOG_FILE = __DIR__ . '/../logs/debug.log';

 private static ?Logger $instance = NULL;

 private function __construct()

 {

 parent::__construct('channel1');

 $this->pushHandler(new StreamHandler(self::PATH_TO_L

OG_FILE));

 }

 ❷ public static function getInstance(): Logger

 {

 if (self::$instance == NULL)

 {

 self::$instance = new Logger();

 }

 return self::$instance;

 }

}

Listing 25-10: Implementing the Logger class with the singleton pattern

We declare our Logger class as a subclass of the Monolog Logger class
(aliased as MonoLogger) ❶. Since we’ll be creating one instance of this
class, we no longer declare it to be abstract. Next, we initialize the private
static instance property to NULL and declare a private constructor. The
constructor uses parent:: to call the Monolog Logger class’s constructor,
creating a new object with channel1, then assigns it a log handler to the
debug logfile. Since all this is encapsulated within the private constructor, it
will happen only once.

We also declare the public static getInstance() method, typical for
singleton classes ❷. The method follows the logic described in Listing 25-
9, creating and returning a Logger object if instance is NULL, or simply
returning the instance if it’s been created already.

Now let’s update the run() method of our Application class. We’ll
obtain a reference to the single instance of our Logger class, then use that
object reference to log some entries. Modify src/Application.php to match
Listing 25-11.

<?php

namespace Mattsmithdev;

class Application

{

 public function run(): void

 {

 print 'Hello, world!';

 Logger::getInstance()->warning('I am a warning.');

 Logger::getInstance()->error('I am a test error!',

 ['exception' => new \Exception('example of excep

tion object')]);

 }

}

Listing 25-11: The Application class updated to use our singleton Logger class

We get a reference to the singleton instance of Logger by writing
Logger::getInstance() and use it to log a warning-severity message via
the warning() method inherited from the Monolog Logger class. Since this

is the first attempt to get the singleton instance, the instance property of
our Logger class will be NULL, and a new Logger object will be created and
a reference to it saved in instance.

Then we again get a reference to the singleton instance of Logger and
log an error-severity message, creating and passing a second parameter of a
new Exception object as the context. This time, the instance property of
Logger isn’t NULL, so the reference to the existing object is returned. In this
way, both logs have been created by a single instance of the Logger class,
saving time and resources while still making the logging functionality
available anywhere in the application.

Use the cat or type command to view the contents of logs/debug.log
after running the index script. You should see something like this:

$ cat debug.log

[2025-01-30T14:37:32.728758 + 00:00]

channel1.WARNING: I am a warning. [] []

[2025-01-30T14:37:32.730002 + 00:00]

channel1.ERROR: I am a test error! {"exception":"[object]

(Exception(code: 0): example of exception object

 at /Users/matt/src/Application.php:13)"} []

Both messages were successfully appended to the logfile, including the
Exception object context data added to the error-level log entry.

You’ve seen how the singleton pattern can be useful. However, many
programmers consider it an antipattern, a solution to a common problem
that ends up being worse than the problem it’s attempting to solve. Critics
of the singleton pattern object to it being a form of global program state,
which makes testing code more difficult since code using the singleton
can’t be tested separately from the singleton itself. Also, the singleton has
global visibility, meaning that any code in an application might be
dependent on it. More complex code analysis is therefore needed to
determine which parts of an application are or aren’t dependent on the
globally visible singleton. On the other hand, proponents argue that the
reduction in resource usage is enough to outweigh some overhead in testing
or the design of other parts of the application.

Enumerations
To enumerate is to list out every possibility, one by one, and in computer
programming, an enumeration is a list of all the possible values for a data
type. A good example of an enumerated data type is bool, which lists its
only two possible values as true and false. Booleans are built into the
language, but since version 8.1, PHP allows you to create and use your own
custom enumerations, also known as enum classes.

Enum classes are useful when you have data items that can take only
one of a closed set of values. For example, a pizza order can be designated
as being for delivery or pickup, an employee’s work status can be full-time
or part-time, and a playing card’s suit can be hearts, diamonds, clubs, or
spades. While you could use a Boolean property when you have only two
potential values (for example, $fullTime = false), enum classes are more
appropriate when you have more than two possibilities. Even for just two
possible values, defining them through an enum class makes the choice
more explicit.

Inside an enum class, you declare each of the possible cases for that
class, where each case is an object of the class. For example, you might
have a playing card Suit enum class with possible cases HEARTS, DIAMONDS,
CLUBS, and SPADES. To reference the cases of an enum class, you use the
same double-colon syntax (the scope resolution operator) as when using a
static member or class constant (for example, $card1Suit =
Suit::SPADES).

Because of this shared syntax, enum classes bear some relationship to
static members and class constants. The key difference is that each case of
an enum class is a proper object of that class, whereas class constants and
static properties and methods are members of a class. Crucially, this means
that enum classes can serve as the data types for properties of other classes,
and for function parameters and return values.

As a simple example, Listing 25-12 shows the declaration of an enum
class for the suits of a deck of playing cards. Declare this enum class in a
file called Suit.php, just like an ordinary class declaration file.

<?php

namespace Mattsmithdev;

enum Suit

{

 case CLUBS;

 case DIAMONDS;

 case HEARTS;

 case SPADES;

}

Listing 25-12: The Suit enum class

After the namespace, we use the enum keyword followed by the class
name Suit. Then we declare four cases for this enum class, representing the
four playing card suits. Because the enumeration cases serve a similar
function as class constants (that is, defining fixed values), I tend to write
them in all capital letters, although many programmers capitalize only the
first letter of each case.

We can now assign an object of the Suit enum class to a variable. To
illustrate, Listing 25-13 shows a simple Card class that harnesses the Suit
enum.

<?php

namespace Mattsmithdev;

class Card

{

 ❶ private Suit $suit;

 private int $number;

 public function getSuit(): Suit

 {

 return $this->suit;

 }

 public function setSuit(Suit $suit): void

 {

 $this->suit = $suit;

 }

 public function getNumber(): int

 {

 return $this->number;

 }

 public function setNumber(int $number): void

 {

 $this->number = $number;

 }

 ❷ public function __toString(): string

 {

 return "CARD: the " . $this->number . " of " . $this

->suit->name;

 }

}

Listing 25-13: The Card class with a suit property that uses the Suit enum class

We first declare suit as a property of the Suit data type ❶. Again,
since enums are considered classes, they can be used as valid data types. We
also give the class a number property, and we provide simple getters and
setters for both suit and number. Then we declare a __toString() method
to output the details of the Card object’s properties ❷. In it, we get a string
version of the enum object’s name from its name property, accessed with the
expression $this->suit->name.

Listing 25-14 shows a simple index script to demonstrate the use of the
Suit and Card classes.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Suit;

use Mattsmithdev\Card;

$card1 = new Card();

❶ $card1->setSuit(Suit::SPADES);

$card1->setNumber(1);

print $card1;

Listing 25-14: Using Card and Suit in an index script

After providing use statements for the two classes, we create a new
Card object and set its suit property to be a reference to the SPADES case of
the Suit enum class, using the double-colon Suit::SPADES syntax to
reference the case ❶. We also set the number of this Card object to 1
(representing an ace). Then we print the details of the $card1 variable,
which will invoke its __toString() method. Here’s the output of running
this index script:

$ php public/index.php

CARD: the 1 of SPADES

The output shows the number property of 1 and the string SPADES, the name
of the Suit enum class referenced in the object’s suit property.

Backed Enums
Besides giving enum cases names like SPADES and HEARTS, you can also
associate an integer or string value with each case. When you give the cases
values, the class is called a value-backed enum, or backed enum for short.
The type of int or string must be declared after the enum class name, and
every case must be assigned a value; otherwise, an error will occur.

Let’s turn Suit into a backed enum by assigning a string value for each
case. We could choose strings that exactly match the case names ('HEARTS',
'CLUBS', and so on), or we could have a bit of fun and assign strings with
the corresponding card suit symbols. See Listing 25-15 for the updated Suit
declaration.

<?php

namespace Mattsmithdev;

enum Suit: string

{

 case CLUBS = '♣';

 case DIAMONDS = '♦';

 case HEARTS = '♥';

 case SPADES = '♠';

}

Listing 25-15: Turning Suit into a backed enum class

We declare Suit as a string-backed enum by adding a colon and the
string type after the class name. Then we assign the string '♣' as the
value for the CLUBS case, as well as the corresponding symbols for the other
three suits. To retrieve the value of a backed enum, use its public value
property. For example, if the $card1Suit variable were a reference to a
Suit enum object, we’d get its string value with the expression
$card1Suit->value. These values are read-only; once they’re set in the
enum class declaration, they can’t be changed from elsewhere in the code.

An Array of All Cases
All enum classes have a built-in static method called cases() that returns
an array of all the case objects for the enumeration. We can use this to build
an array of the values associated with the cases. For example, Listing 25-16
shows an index script that does just this by looping through each Suit case
object and appending its string value to an array for printout.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Suit;

$cases = Suit::cases();

$caseStrings = [];

foreach ($cases as $case) {

 $caseStrings[] = $case->value;

}

print implode($caseStrings);

Listing 25-16: Creating an array of all Suit enum case values

We call the Suit::cases() static method to obtain a $cases array
holding an instance of each possible Suit case. Then we initialize
$caseStrings as an empty array. Next, we loop through the Suit case
objects in $cases and append their string values to the $caseStrings array.
Finally, we print out the array of strings as a single string by using the built-
in implode() function. Here’s the output of running this index script at the
command line:

$ php public/index.php

♣♦♥♠

All four suit characters have been printed out on the same line. Here
we’ve simply printed out the case values, but we could use a similar
looping technique to, for example, create a drop-down menu of all the case
values from an enum class so that a user can select one of the options.

Summary
In this chapter, we explored static members of classes: properties and
methods that aren’t related directly to individual objects but belong to the
class as a whole. You saw how static members can be accessed within the
class via self:: and outside the class via ClassName:: (assuming the static
member is public). You learned about uses of static members, including to
record class-wide information, provide common methods through utility
classes, and share functionality across an application, through either an
abstract class or the singleton design pattern. We also discussed the related
concepts of class constants and enumeration classes.

Exercises
1. Create a new project to implement a Car class representing various cars.

As shown in Figure 25-4, this class should have instance properties for
make, model, and price, and a constructor taking in values for each
instance property when a new object is created. You should also have
private static properties for totalPrice and numInstances.

Figure 25-4: The Car class

Each time a new Car object is created, the constructor method
should increment numInstances and add the price of the new Car object
to totalPrice.

2. Add a public static averagePrice() method to the Car class from
Exercise 1 that uses the static numInstances and totalPrice properties
to calculate and return the average price of all Car objects that have
been created.

3. Create a new project featuring an enum class called DietType with three
cases: VEGAN, VEGETARIAN, and CARNIVORE. Also create a Dessert class
that has a name property (a string) and a diet property (a DietType
enum case), as well as a __toString() method that summarizes the
Dessert object in the form '(DESSERT) Dessert Name (DietType
dish)'. Write an index script that creates a Dessert object and prints its
details. The output should be something like this:

(DESSERT) Eton Mess (VEGETARIAN dish)

26
ABSTRACT METHODS, INTERFACES, AND

TRAITS

In this chapter, we’ll move beyond the
standard mechanism of inheritance

from a superclass to a subclass and explore other
strategies for sharing methods among classes. You’ll
be introduced to abstract methods, interfaces, and
traits.

As you’ll see, abstract methods and interfaces allow you to share just
the signatures of methods across multiple classes, without specifying the
details of how the methods should be implemented. In effect, these
mechanisms act as contracts: to use abstract methods or interfaces, a class
must agree to provide suitable implementations of those methods.
Meanwhile, traits are a way to bypass inheritance and share fully
implemented methods among classes in separate hierarchies. Interfaces, too,
transcend class hierarchies, while abstract methods are still passed along
between superclasses and subclasses through inheritance.

Together, abstract methods, interfaces, and traits can facilitate updating
an application without breaking any code, since they provide assurances
that certain methods will be present on a class for use by other parts of the

application. Abstract methods and interfaces, in particular, promote class
interchangeability. By enforcing method signatures while remaining
agnostic about the implementations, they make it easy to substitute in
classes that realize those methods differently as new project requirements
arise (for example, having new types of files to write to, new database
management systems to communicate with, or new destinations for logging
events and exceptions). Traits, on the other hand, are helpful for avoiding
redundancy and promoting code reusability, since they save you from
having to declare the same method on several unrelated classes. In this
sense, they’re somewhat similar to utility classes that are designed to make
certain common operations available to all the classes in an application.

Of the topics covered in this chapter, interfaces especially are quite
common in medium-to-large PHP projects. Even if you don’t write many
interfaces yourself, you’ll probably use them, since they’re a feature of
many third-party libraries for core web application components, including
database communication and working with HTTP requests and responses.

From Inheritance to Interfaces
In this section, we’ll progressively develop a sample network of classes to
illustrate the features and merits of abstract methods and interfaces. We’ll
start by reviewing the conventional process of a subclass inheriting methods
from a superclass, then transition to using abstract methods and finally
interfaces to standardize the features of unrelated classes. For simplicity,
this will be a toy example. Once we’ve established the basics, however,
we’ll turn to a more realistic and practical application for interfaces.

Inheriting a Fully Implemented Method from a
Superclass
As we discussed in Chapter 19, inheritance makes it possible to pass down
the definition of a superclass method to a related group of subclasses. If
some of the subclasses need to implement the method differently, they can
always override it with their own implementation, while other subclasses
will simply inherit the default implementation from the superclass.

Sometimes the superclass may be abstract, meaning it will never be
instantiated. In this case, one or more non-abstract subclasses must extend

the abstract superclass in order for objects to be created and the superclass’s
methods to be executed. As an example, Figure 26-1 shows a simple class
hierarchy of various animals, all of which will be able to return a string
describing the type of sound they make.

Figure 26-1: A class hierarchy with an abstract superclass passing down a getSound()
method

At the top of this class hierarchy is the abstract Animal superclass. Its
sound property is declared with a default value of 'meow' and protected (#)
visibility, meaning the property’s value can be accessed (and overridden) by
a subclass if required. Its numLegs property is public (+) and has a default
value of 4. In addition, a getSound() method returns the string stored in
sound.

At the next layer of the hierarchy, the Cat subclass extends Animal and
so inherits the sound and numLegs properties and the getSound() method.
This means Cat objects will produce a 'meow' sound. The Dog subclass also
extends Animal but declares its own sound property of 'bark', overriding
the value inherited from the superclass.

Finally, let’s imagine that opinions vary about the sound a bird makes;
sometimes 'tweet tweet' is more popular, and sometimes 'chirp chirp'.

To account for this, the Bird subclass declares a custom implementation of
getSound(), overriding the inherited method from the superclass. At
runtime, each Bird object’s getSound() method will access a (fictional)
API at www.mostPopularBirdSound.com to determine the most popular bird
sound string, ignoring the value of its inherited sound property. In addition,
since birds have only two legs, the Bird class overrides the inherited
number of legs.

Listing 26-1 shows the code for the Animal class.

<?php

namespace Mattsmithdev;

abstract class Animal

{

 protected string $sound = "meow";

 public int $numLegs = 4;

 ❶ public function getSound(): string

 {

 return $this->sound;

 }

}

Listing 26-1: The Animal class

We declare the Animal class to be abstract so that it can never be
instantiated and assign it sound and numLegs properties. We also provide an
implementation of the getSound() method ❶, which returns the value of
the sound property. For any instance of a subclass inheriting this method,
the value of the object’s sound property will be determined at runtime when
the getSound() method is invoked. For example, a Cat object will return
'meow', a Dog object will return 'bark', and a Bird object will override this
method and instead return whatever string is retrieved from the
www.mostPopularBirdSound.com API.

The takeaway from this example is that a superclass (whether abstract
or not) provides a way to offer a default method implementation that gets

http://www.mostpopularbirdsound.com/
http://www.mostpopularbirdsound.com/

inherited by the subclasses in its class hierarchy. When required, however,
this implementation can be overridden by individual subclasses.

Inheriting an Abstract Method
An abstract method is a method on a superclass that doesn’t have an
implementation. Instead, all that’s declared is the method’s signature: its
name, its parameters, and its return type. Any subclasses that inherit from
the superclass must provide their own implementation of the abstract
method. The exact details of how the method is implemented are left up to
each subclass, as long as the implementation matches the method signature
specified on the superclass.

Abstract methods can come into play when very different classes
should exhibit the same behavior. For example, cars, like animals, make
sound, and they should likely have a getSound() method that returns a
string, just like our Animal class does. However, cars are otherwise very
different from animals, and even the way they make sounds is pretty
different; cars might output a sound such as 'putt-putt-putt', 'purr', or
'vroom-vroom', depending on their engine size, fuel type, and so on. As
such, the getSound() method for cars will be different from that for
animals, and yet they’ll still have the same signature, since in both cases the
method is ultimately returning a string.

Let’s address this scenario by introducing a new abstract SoundMaker
superclass that declares an abstract getSound() method. Any subclasses
inheriting from SoundMaker, such as Animal and Car, will have to provide
an appropriate getSound() implementation. Figure 26-2 shows the new,
modified class hierarchy.

Figure 26-2: Sharing an abstract getSound() method through the SoundMaker superclass

Listing 26-2 shows the declaration of the new SoundMaker class. Notice
that the class provides no implementation for the getSound() method, just
its signature.

<?php

namespace Mattsmithdev;

abstract class SoundMaker

{

 abstract public function getSound(): string;

}

Listing 26-2: The SoundMaker class with an abstract method

We designate the getSound() method abstract and declare just its
signature. The method declaration is considered a statement, since no
implementation is provided, and so it must end with a semicolon.

The non-abstract Car subclass must now provide an implementation for
the getSound() method in order to successfully inherit from SoundMaker. If
it didn’t, we’d get a fatal error like the following:

PHP Fatal error: Class Mattsmithdev\Car contains 1 abstract

method and must

therefore be declared abstract or implement the remaining me

thods

We’ve already provided a getSound() implementation on the Animal
class, so it can successfully inherit from SoundMaker. The Cat and Dog
subclasses inherit the method implementation from Animal, so they also
meet the requirements of the SoundMaker class. The Bird class can still
override the getSound() implementation inherited from Animal with its
own implementation.

To see the benefit of making getSound() an abstract method, say our
application has a function that needs to know the sound an object makes.
That function can require a SoundMaker object (or one of its subclasses) as
an argument, and know that whatever subclass of SoundMaker is received
will have a getSound() method that can be invoked to return a string. It
doesn’t matter whether it’s an Animal object or a Car object; the method is
guaranteed to be there. In this way, abstract methods maximize class
interchangeability while still allowing for different classes to have quite
distinct implementations of a method.

If a class declares one or more abstract methods, the class itself must
also be abstract. This is because you can’t instantiate a class with an
abstract method, since no implementation of the method is provided. The
opposite isn’t necessarily true, however: a class may be declared abstract
but not contain any abstract methods. For example, you might have an
abstract class consisting of fully implemented, static members.

Requiring Method Implementations with Interfaces
An interface is a way to declare the signatures of one or more methods that
a class should have. Classes then implement the interface by declaring
methods with those specified signatures. Interfaces are similar to abstract

methods in that both are ways of ensuring that one or more classes should
have certain methods, without specifying exactly how those methods should
be implemented. Both promote class interchangeability by guaranteeing the
consistency of those methods’ signatures. The difference is that interfaces
aren’t classes, and therefore are independent of any class hierarchy scheme,
whereas abstract methods are declared as part of a class. As such, any
classes that implement the abstract methods must fall within the hierarchy
of the class that declares them.

Being independent of class hierarchies, interfaces are useful when you
want to share a behavior among very different classes that wouldn’t belong
in the same class hierarchy, or when you want to share multiple behaviors,
in various combinations, among several very different classes.

Continuing with the example from the previous sections, pipe organs
also make sounds, like cars and animals. Both pipe organs and cars require
regular maintenance as well, whereas animals don’t. Let’s consider that
subclasses of a Maintainable class must implement a nextService()
method that returns some kind of Date object. The way a service date is
calculated will be implemented differently for Car objects and PipeOrgan
objects. Car service dates may be based on the type of engine and number
of miles driven, while PipeOrgan objects may have service dates calculated
based on, say, the length and material of the pipes.

We might be tempted to create a new abstract Maintainable class that
declares an abstract nextService() method. The Car and PipeOrgan
classes would inherit from Maintainable and provide their own
nextService() implementations, while also inheriting from the
SoundMaker class, along with Animal. This would be an example of multiple
inheritance, the capability of a class to inherit from two or more
superclasses at the same time. The class diagram in Figure 26-3 illustrates
this scheme.

Figure 26-3: A class hierarchy with multiple inheritance

This arrangement may seem appealing: the Car and PipeOrgan classes
inherit from two superclasses, thereby receiving the requirement for the
getSound() method from the abstract SoundMaker class as before while
also receiving the requirement for the nextService() method from the
abstract Maintainable class. However, although some computer languages
allow multiple inheritance, PHP does not, to avoid problems of ambiguity.
If a class inherits from more than one superclass, and two or more of those
superclasses declare a constant or method of the same name, how does the
inheriting class know which to use?

We could try to get around the prohibition against multiple inheritance
by placing the SoundMaker and Maintainable superclasses at different
levels of the same class hierarchy. That is, we could make Maintainable a
subclass of SoundMaker, and Car and PipeOrgan subclasses of
Maintainable, as in Figure 26-4.

Figure 26-4: A class hierarchy where Maintainable is a subclass of SoundMaker

At first glance, this seems to work. Objects of any class in the
hierarchy must have a getSound() method, and Car and PipeOrgan each
must implement a nextService() method as well. However, what if we
identify further behaviors that some of these classes should have but not
others? Those behaviors may not make sense anywhere in the proposed
hierarchy. Also, what if we want to add a Maintainable subclass that
doesn’t make sound? Chimneys, for example, require regular maintenance
but are silent.

Clearly, we’ve created a fragile and artificial class hierarchy.
Completely unrelated classes such as birds, cars, and chimneys may be
forced into being subclasses of classes they have nothing to do with, all to
enforce the inheritance of the getSound() and nextService() method
signatures. The solution is to use an interface to define a set of required
method signatures that can be implemented by classes that aren’t all in the
same hierarchy. This dodges the illegal solution of multiple inheritance
while also skirting the requirement for a single class hierarchy.

To demonstrate, let’s first define SoundMaker as an interface rather than
a class. Then we can stipulate that the classes in our example should all
implement the SoundMaker interface. This is illustrated in Figure 26-5.

At the lower left of the diagram, the SoundMaker interface declares the
signature of the getSound() method. With SoundMaker reframed as an
interface rather than a class, we’re free to break our classes into separate,
more meaningful, and robust hierarchies: we have the abstract Animal class
and its subclasses, and the abstract Vehicle class with subclasses Car and
Helicopter. The PipeOrgan class, which has little to do with animals or
vehicles, is off by itself. The classes that implement the SoundMaker
interface are annotated with the interface name and lollipop notation.

Figure 26-5: The SoundMaker interface, implemented by multiple classes

Notice that when an abstract class such as Animal or Vehicle
implements an interface, it doesn’t have to provide full implementations of
all (or any) of the methods declared on the interface. The implementation
can be left to the non-abstract subclasses instead. Here Animal provides a
getSound() implementation (although it’s overridden by the Bird subclass),
while Vehicle doesn’t. In the latter case, the Car and Helicopter
subclasses must each provide their own custom getSound() implementation

in order to fulfill the promise the Vehicle class is making by declaring that
it will implement the SoundMaker interface.

Declaring an Interface
The code declaring an interface goes in its own.php file with the same name
as the interface, much like a class declaration. For example, the SoundMaker
interface should be declared in a SoundMaker.php file. Listing 26-3 shows
its code.

<?php

namespace Mattsmithdev;

interface SoundMaker

{

 public function getSound(): string;

}

Listing 26-3: The SoundMaker interface

We declare SoundMaker by using the interface keyword. Its body
contains just the signature for the getSound() method, without an actual
implementation. Just as when declaring an abstract method, the getSound()
signature must end with a semicolon to indicate the end of the statement.
Notice that we give getSound() public visibility. Including the public
modifier explicitly is considered best practice, though it isn’t strictly
necessary since all methods declared on an interface are automatically
considered public so that other parts of the system can harness the
behaviors of any interface-implementing classes.

NOTE
In addition to declaring method signatures, interfaces can also declare
constants. A class that implements the interface will inherit the interface
constant, although as of PHP 8.1, the class can override the interface
constant if needed.

Implementing an Interface
Now let’s look at how a class can implement an interface. As an example,
Listing 26-4 shows the code for the PipeOrgan class, which implements the
SoundMaker interface.

<?php

namespace Mattsmithdev;

class PipeOrgan implements SoundMaker

{

 public function getSound(): string

 {

 return 'dum, dum, dum-dum';

 }

}

Listing 26-4: Implementing the SoundMaker interface with the PipeOrgan class

We declare that this class implements the SoundMaker interface by
using the implements keyword. Because the PipeOrgan class implements
SoundMaker, the class is obligated to provide an implementation for the
getSound() method: in this case, it returns the string 'dum, dum, dum-
dum'. The method matches the signature declared by the SoundMaker
interface. We would similarly declare getSound() methods on the Animal
and Vehicle classes. The details of each implementation don’t matter, as
long as the method is called getSound() and it returns a string.

If a (non-abstract) class doesn’t include a definition for a method
required by an interface it’s implementing, you’d get a fatal error. For
example, if the code for the PipeOrgan class didn’t declare a getSound()
method, you’d see the following when trying to create an object of this
class:

PHP Fatal error: Class Mattsmithdev\PipeOrgan contains 1 ab

stract method and

must therefore be declared abstract or implement the remaini

ng methods

Notice that this is exactly the same fatal error as when a subclass fails to
implement an abstract method declared in its superclass. The PHP engine
processes the method signatures of an interface as if they were abstract
methods; they must be realized in the class hierarchy implementing the
interface before any object can be created.

Implementing Multiple Interfaces with One Class
A powerful feature of interfaces is that a single class may implement more
than one of them. When a class implements an interface, it’s promising to
provide a set of public methods with the signatures declared in that
interface, and there’s no reason a class can’t do this for multiple interfaces.

Returning to our example, the PipeOrgan class can implement a
Maintainable interface, promising to declare an implementation of
nextService(), in addition to implementing the SoundMaker interface by
declaring a getSound() method. Likewise, if all vehicles require
maintenance and make sounds, the Vehicle class can implement both the
Maintainable and SoundMaker interfaces too. Figure 26-6 shows how these
classes can implement multiple interfaces.

Figure 26-6: Classes implementing multiple interfaces

The figure shows the Maintainable interface alongside SoundMaker,
and the PipeOrgan and Vehicle classes now have two “lollipops,”
indicating that they implement both interfaces. This arrangement of classes
and interfaces is much neater conceptually than the artificial class hierarchy
shown in Figure 26-4 or the multiple inheritance scheme shown in Figure
26-3.

To see how to declare that a class implements multiple interfaces, refer
to Listing 26-5, which shows the updated code for the PipeOrgan class.

<?php

namespace Mattsmithdev;

class PipeOrgan implements SoundMaker, Maintainable

{

 public function getSound(): string

 {

 return 'dum, dum, dum-dum';

 }

 public function nextService(): \DateTime

 {

 return new \DateTime('2030-01-01');

 }

}

Listing 26-5: Implementing multiple interfaces with the PipeOrgan class

When a class implements multiple interfaces, you need to use the
implements keyword only once, followed by the interface names, separated
by commas, as in implements SoundMaker, Maintainable here. Beyond
this, implementing multiple interfaces is as simple as providing definitions
for all requisite methods. In this case, we’ve added the nextService()
method, which returns a DateTime object as the Maintainable interface
requires (we’ll discuss handling dates in Chapter 31).

I mentioned earlier that an argument against multiple inheritance is the
ambiguity of a class attempting to inherit the same member from multiple
superclasses. This isn’t a problem for a class implementing multiple

interfaces. Whether one, two, or any number of interfaces declare identical
method signatures, all those interface contracts can be met by a single
method of that signature implemented in a class. For example, if for some
reason the Maintainable interface declared both a nextService() and a
getSound() method, the code would still work fine provided the PipeOrgan
class declares implementations for both methods. As long as all methods
coming from interfaces are defined in the classes that implement them, no
ambiguity exists and the PHP engine will work consistently, correctly, and
error-free.

Comparing Interfaces and Abstract Classes
At first glance, it may seem that interfaces are the same as abstract classes,
as neither can be used to instantiate objects. However, while the concepts
are related, key differences exist, and each is appropriate for different
situations. Above all, an abstract class is a class, while an interface is not;
it’s a promise, or contract, of method signatures that a class must
implement. Another key difference is that a class can inherit from only one
abstract class, whereas a class can implement multiple interfaces.

Interfaces can’t declare or work with instance-level members, so
interfaces can’t have instance properties or implement methods that work
with instance members. Indeed, interfaces can’t implement methods at all;
they only specify requirements for instance methods. An abstract class,
meanwhile, can be a fully implemented class, or it can be a partially
completed class including instance variables, a constructor, and a
combination of implemented instance methods and unimplemented abstract
methods. In the latter case, a class extending an abstract class has to
complete the implementation only by fleshing out the inherited abstract
methods.

Interfaces and abstract classes also differ in terms of method visibility.
Methods declared on interfaces must be public, whereas abstract classes
have the option to declare protected methods that are available only for
internal use by objects within the class hierarchy. Also, while declaring the
signature of a constructor method on an interface is technically possible, it’s
highly discouraged; but it’s perfectly fine for an abstract class to have a
constructor. Finally, it should be noted that an interface can extend another

interface, much like a subclass extending a superclass. Unlike with class
inheritance, however, an interface can extend multiple interfaces.

Real-World Applications of Interfaces
Our SoundMaker and Maintainable scenario may have been a trivial
example, but interfaces have significant real-world applications as well.
They’re particularly useful for standardizing the method signatures of
classes whose behavior may change as a web application evolves. Declaring
the method signatures as an interface ensures that the application will still
work; even if the details of the method implementations change, the way to
call the methods won’t, so the rest of the application code will be
unaffected.

We already used a practical, real-world interface in Chapter 24 when
we discussed logging. The PSR-3 standard specifies a Logger interface,
outlining several methods that any classes implementing the interface must
provide, such as log(), error(), and so on. You can work with any class
that implements this interface and feel confident that these methods will be
present. In Chapter 24, for example, we used the Monolog library’s Logger
class, which implements the Logger interface, but classes from other third-
party libraries implement it too. Any of these classes would work, and you
could even switch between Logger implementations without having to
change the code that uses the logging object provided.

Another functionality that interfaces can help with is the ability to
temporarily cache (store) data, such as when processing form submissions
or HTTP requests in a web application. Caching the data helps avoid having
to pass lots of arguments between controller objects and methods; you can
simply store the data to the cache in one part of the code and then retrieve it
from the cache in another part.

Caching has many approaches, such as using browser sessions, a
database, JSON or XML files, the PHP Extension Community Library
(PECL) language extension, or perhaps an API to connect to another
service. If you declare an interface for common caching operations, you can
write code that will be compatible with any interface-compliant caching
system. Then you can easily switch caching systems as the project
requirements change. For example, you might use one caching system when

developing a project and a different caching system for the live production
website.

We’ll explore the approaches to caching in this section and illustrate
how to standardize them through a caching interface. We’ll test everything
through a web application designed to cache the ID of any incoming HTTP
requests and display that ID on an About page.

NOTE
PHP already has the PSR-6 and PSR-16 standards recommendations for
caching interfaces, but they’re too involved for our purposes. We’ll create
our own simpler approach to caching to explore the benefits of interfaces
through a more straightforward example.

Caching Approach 1: Using an Array
First, let’s implement a cache as a class called CacheStatic that uses a
static (class-level) array for storing and retrieving values under string keys.
We might use this simple approach to get the cache working quickly during
the early stages of development. Besides getting and setting values, we’ll
want the class to provide a has() method that returns a Boolean indicating
whether a value is currently stored for a given key.

Start a new project and give it the usual composer.json file declaring
src as the location for classes in the Mattsmithdev namespace. Generate an
autoloader with Composer, and create the usual public/index.php script that
reads in and executes the autoloader, creates an Application object, and
invokes its run() method. Once that’s written, you’re ready to declare the
CacheStatic class in src/CacheStatic.php, as shown in Listing 26-6.

<?php

namespace Mattsmithdev;

class CacheStatic

{

 ❶ private static array $dataItems = [];

 ❷ public static function set(string $key, string $value):

void

 {

 self::$dataItems[$key] = $value;

 }

 ❸ public static function get(string $key): ?string

 {

 if (self::has($key)) {

 return self::$dataItems[$key];

 }

 return NULL;

 }

 ❹ public static function has(string $key): bool

 {

 return array_key_exists($key, self::$dataItems);

 }

}

Listing 26-6: The CacheStatic class

We initialize the private static dataItems property as an empty array
❶. This will be our cache. Then we declare the set() static method, which
takes in two string arguments, a key and a value, for storage in the cache ❷.
We next declare the get() static method, which takes in a string key and
returns the value in the cache array stored for that key ❸. The method
includes a test that returns NULL if no value exists for the given key. Finally,
we declare the static has() method ❹, which returns true or false to
indicate whether a value is cached for the given key.

Next, we’ll declare the Application class. Its run() method will cache
the ID from the HTTP request, then instantiate a MainController object
(we’ll declare this class shortly) to respond to the request. Create the file
src/Application.php with the code in Listing 26-7.

<?php

namespace Mattsmithdev;

class Application

{

 public function run()

 {

 $action = filter_input(INPUT_GET, 'action');

 ❶ $id = filter_input(INPUT_GET, 'id');

 if (empty($id)) {

 $id = "(no id provided)";

 }

 // Cache ID from URL

 ❷ CacheStatic::set('id', $id);

 $mainController = new MainController();

 ❸ switch ($action) {

 case 'about':

 $mainController->aboutUs();

 break;

 default:

 $mainController->homepage();

 }

 }

}

Listing 26-7: The Application class

After retrieving the URL-encoded action variable as usual, we attempt
to retrieve another URL-encoded variable called id and store its value in
the $id variable ❶. If this query-string variable turns out to be empty, we
set $id to '(no id provided)' instead. Then we use the CacheStatic
class’s set() static method to store the string in the $id variable in the
cache with a key of 'id' ❷. We can now retrieve the stored string with the
CacheStatic public static method get('id') if needed. The run() method
concludes with a typical switch statement that invokes either the
homepage() or aboutUs() method of the MainController object,
depending on the value of the action variable ❸.

Now we’ll declare the MainController class. Create
src/MainController.php as shown in Listing 26-8.

<?php

namespace Mattsmithdev;

class MainController

{

 public function homepage()

 {

 require_once __DIR__ . '/../templates/homepage.php';

 }

 public function aboutUs()

 {

 ❶ $id = CacheStatic::get('id');

 require_once __DIR__ . '/../templates/aboutUs.php';

 }

}

Listing 26-8: The MainController class

The homepage() method simply outputs the Home page template. In
the aboutUs() method, we use the CacheStatic class’s get() method to
retrieve the ID from the cache array, storing the result in the $id variable
❶. Then we read in and execute the About page template, which will have
access to $id.

Listing 26-9 shows the content of the Home page template. Enter this
code into templates/homepage.php.

<!DOCTYPE html>

<html lang="en">

<head>

 <title>home page</title>

</head>

<body>

<?php

❶ require_once '_nav.php'

?>

<h1>home page</h1>

<p>

 welcome to home page

</p>

</body>

</html>

Listing 26-9: The homepage.php template

This basic HTML Home page template reuses some code by outputting
the navigation bar from the partial template file templates/_nav.php ❶.
Listing 26-10 shows the content of that partial template.

 Home

 About Us

 ❶ <a href="/?action=about&id=<?= rand(1,99) ?>">

 about (with ID in URL)

<hr>

Listing 26-10: The _nav.php partial template

The navigation bar starts with two simple links, with the / URL for the
home page and /?action=about for the About page. We also provide an
extra, more complex link to the About page ❶, using PHP’s rand()
function to pick an integer from 1 to 99 and pass it as the value of the id
query-string variable. This value will be cached and then displayed in the
content of the About page to confirm that the cache is working.

Listing 26-11 shows the About page template in
templates/aboutUs.php.

<!DOCTYPE html>

<html lang="en">

<head>

 <title>about page</title>

</head>

<body>

<?php

require_once '_nav.php'

?>

<h1>about page</h1>

<p>

 welcome to about page

 ❶ your ID = <?= $id ?>

</p>

</body>

</html>

Listing 26-11: The aboutUs.php template

As for the home page, we draw on the partial _nav.php template to
simplify the file at hand. Then we incorporate the value of the $id variable
into the body of the page ❶. Figure 26-7 shows the resulting web page.

Figure 26-7: The About page, including the cached ID value

Notice that the value of the URL-encoded id variable has been printed
to the page. This indicates that the ID was successfully cached by the run()
method in the Application class, then retrieved by the aboutUs() method
of the MainController class, and finally printed by the aboutUs.php
template.

Caching Approach 2: Using a JSON File
Suppose we later decide to add a second caching approach that caches data
in a JSON file. This JSON approach would, for example, make it much
easier to log different states of the cache at different times to a logging API
that accepts JSON data. Let’s declare a new caching class named CacheJson
to implement this other approach. Create src/CacheJson.php containing the
code in Listing 26-12.

<?php

namespace Mattsmithdev;

class CacheJson

{

 private const CACHE_PATH = __DIR__ . '/../var/cache.jso

n';

 ❶ public function set(string $key, string $value): void

 {

 $dataItems = $this->readJson();

 $dataItems[$key] = $value;

 $this->writeJson($dataItems);

 }

 ❷ public function get(string $key): ?string

 {

 $dataItems = $this->readJson();

 if ($this->has($key)) {

 return $dataItems[$key];

 }

 return NULL;

 }

 ❸ public function has(string $key): bool

 {

 $dataItems = $this->readJson();

 return array_key_exists($key, $dataItems);

 }

 private function readJson(): array

 {

 $jsonString = file_get_contents(self::CACHE_PATH);

 if (!$jsonString) {

 return [];

 }

 $dataItems = json_decode($jsonString, true);

 return $dataItems;

 }

 private function writeJson(array $dataItems): bool

 {

 $jsonString = json_encode($dataItems);

 return file_put_contents(self::CACHE_PATH, $jsonStri

ng);

 }

}

Listing 26-12: The CacheJson class

Within CacheJson, we declare public set() ❶, get() ❷, and has()
❸ methods. Outwardly, they’re similar to those in our CacheStatic class,
except they’re instance methods, belonging to each object of the class,
rather than static methods belonging to the class as a whole. Internally,
however, the method definitions are different from those of CacheStatic:
they read and write information to a JSON file by using the private
readJson() and writeJson() methods, which in turn use the built-in
file_get_contents() and file_put_contents() functions introduced in
Chapter 9.

These details are hidden from the rest of the application, though, so the
impact of these changes on our code is minimal. For example, Listing 26-13
shows the only changes we need to make to the Application class.

<?php

namespace Mattsmithdev;

class Application

{

 public function run()

 {

 $action = filter_input(INPUT_GET, 'action');

 $id = filter_input(INPUT_GET, 'id');

 if (empty($id)) {

 $id = "(no id provided)";

 }

 $cache = new CacheJson();

 $cache->set('id', $id);

 --snip--

 }

}

Listing 26-13: Updating the Application class to use a CacheJson object

We replace CacheStatic::set('id', $id) with two statements that
create a CacheJson object and invoke its set() method. The
MainController class requires a similar small tweak, shown in Listing 26-
14.

<?php

namespace Mattsmithdev;

class MainController

{

 public function homepage()

 {

 require_once __DIR__ . '/../templates/homepage.php';

 }

 public function aboutUs()

 {

 ❶ $cache = new CacheJson();

 $id = $cache->get('id');

 require_once __DIR__ . '/../templates/aboutUs.php';

 }

}

Listing 26-14: Updating the MainController class to use a CacheJson object

Instead of the $id = CacheStatic::get('id') statement, we create a
CacheJson object and invoke its get() method to retrieve the value cached
under the 'id' key ❶. If you now test the application again, it should work
just as it did before. The only difference is that the ID is being cached to a
JSON file instead of an array.

Caching Approach 3: Creating a Cacheable Interface
We’ve already used two methods of caching for our application, and in the
future we might want to use still others. This situation lends itself to

abstracting the caching classes’ common operations as an interface, then
writing classes that implement the interface. This way, as long as our code
can create an object of any class that implements the interface, we know
we’ll be able to use that class’s get(), set(), and has() methods without
having to worry about which class the caching object is an instance of or
how the class is doing the work.

To make this change, we’ll first declare a generic Cacheable interface.
In addition to the get(), set(), and has() methods, we’ll also stipulate a
fourth method, reset(), that completely empties the cache of any stored
values. Create src/Cacheable.php and enter the contents of Listing 26-15.

<?php

namespace Mattsmithdev;

interface Cacheable

{

 public function reset(): void;

 public function set(string $key, string $value): void;

 public function get(string $key): ?string;

 public function has(string $key): bool;

}

Listing 26-15: The Cacheable interface

We declare the Cacheable interface with the signatures for the four
methods that any class implementing the interface must have. These
methods are all public instance methods, with appropriate typed arguments
and return types. For example, set() takes in strings for the desired key and
value being cached and returns void, while get() takes in a string key and
returns a string or NULL.

When we switched from using CacheStatic to CacheJson, we had to
make some updates to the Application and MainController classes. We’ll
now refactor those classes so that we can switch implementations of the
Cacheable interface without having to change anything. We’ll start with the
Application class. Listing 26-16 shows the updates to src/Application.php.

<?php

namespace Mattsmithdev;

class Application

{

 ❶ private Cacheable $cache;

 ❷ public function __construct(Cacheable $cache)

 {

 $this->cache = $cache;

 $this->cache->reset();

 }

 ❸ public function getCache(): Cacheable

 {

 return $this->cache;

 }

 public function run()

 {

 $action = filter_input(INPUT_GET, 'action');

 $id = filter_input(INPUT_GET, 'id');

 if (empty($id)) {

 $id = "(no id provided)";

 }

 ❹ $this->cache->set('id', $id);

 ❺ $mainController = new MainController($this);

 switch ($action) {

 case 'about':

 $mainController->aboutUs();

 break;

 default:

 $mainController->homepage();

 }

 }

}

Listing 26-16: Refactoring the Application class to use the Cacheable interface

We first add a private cache property to the class, whose value is a
reference to a Cacheable object ❶. This is a powerful feature of interfaces:
we can provide an interface name as a data type for a variable, method
parameter, or method return value, and any object from any class that
implements the interface will work fine.

We next obtain a Cacheable object reference for this property as an
argument passed to the constructor method ❷. Whatever object is passed as
an argument when an Application object is created must therefore be of a
class that implements the Cacheable interface. The constructor invokes the
reset() method of the provided Cacheable object, so we know we’ll have
an empty cache when we start processing the current HTTP request.
Because the cache property is private, we declare a public getter method so
that it can be accessed outside the Application class ❸.

Notice that all these new statements so far have been written in such a
way that the Application class doesn’t need to know which
implementation of the Cacheable interface is referenced by the argument
provided to the class’s constructor. You’ll see later how the Cacheable
object is created in the index script, so this is the only place where the code
needs to change if we choose to use a different Cacheable implementation.

Inside run(), we use the Cacheable object’s expected set() method to
store the value of the $id variable in the cache ❹. Then, when we create a
MainController object, we provide $this as an argument ❺, meaning that
the MainController object will have a reference back to this Application
object. By extension, the MainController object will also have access to
the Cacheable object through the Application object’s cache property.

Now let’s update the MainController class. Listing 26-17 shows the
revised src/MainController.php file.

<?php

namespace Mattsmithdev;

class MainController

{

 ❶ private Application $application;

 ❷ public function __construct(Application $application)

 {

 $this->application = $application;

 }

 public function homepage()

 {

 require_once __DIR__ . '/../templates/homepage.php';

 }

 public function aboutUs()

 {

 ❸ $cache = $this->application->getCache();

 $id = $cache->get('id');

 require_once __DIR__ . '/../templates/aboutUs.php';

 }

}

Listing 26-17: Refactoring the MainController class to use the Cacheable interface

We declare a private application property ❶ whose value is the
reference to the Application object passed as an argument to the
constructor method ❷. Then, in the aboutUs() method, we use the public
getCache() method of the application object to obtain a reference to the
Cacheable object ❸. This way, we can call the get() method as before to
retrieve the stored ID from the cache for use within the page template.

Next, we need to update the public/index.php script to create a caching
object and pass it to the Application object when the latter is created. As
mentioned earlier, this is the only part of the code that needs to know which
implementation of the Cacheable interface we want to use. Update the
index script as shown in Listing 26-18.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Application;

use Mattsmithdev\CacheJson;

use Mattsmithdev\CacheStatic;

$cache1 = new CacheJson();

$cache2 = new CacheStatic();

app = new Application($cache2);

$app->run();

Listing 26-18: Choosing a Cacheable implementation in index.php

We create two objects: $cache1 is a CacheJson object, and $cache2 is a
CacheStatic object. Then we pass one of these variables when we
construct the Application object. Try the code with both variables, and it
should work the same way each time.

The final step is to revise our cache classes to implement the
Cacheable interface. Listing 26-19 shows the updated CacheStatic class.
To meet the contractual obligations of the Cacheable interface, we need to
make set(), get(), and has() instance (rather than static) methods, and we
also must add a public reset() instance method. Update
src/CacheStatic.php as shown in the listing.

<?php

namespace Mattsmithdev;

class CacheStatic implements Cacheable

{

 private static array $dataItems = [];

 ❶ public function reset(): void

 {

 self::$dataItems = [];

 }

 public function set(string $key, string $value): void

 {

 self::$dataItems[$key] = $value;

 }

 public function get(string $key): ?string

 {

 if (self::has($key)) {

 return self::$dataItems[$key];

 }

 return NULL;

 }

 public function has(string $key): bool

 {

 return array_key_exists($key, self::$dataItems);

 }

}

Listing 26-19: Revising CacheStatic to implement the Cacheable interface

We declare that the class implements the Cacheable interface, then
provide an implementation for the requisite reset() method that sets
$dataItems to an empty array ❶. The set(), get(), and has()
implementations are the same as before, except we’ve changed them all
from static to instance methods. The $dataItems array itself remains a
static member.

Listing 26-20 shows the modified CacheJson class in
src/CacheJson.php.

<?php

namespace Mattsmithdev;

class CacheJson implements Cacheable

{

 private const CACHE_PATH = __DIR__ . '/../var/cache.jso

n';

 ❶ public function reset(): void

 {

 $directory = dirname(self::CACHE_PATH);

 $this->makeDirIfNotExists($directory);

 $this->makeEmptyFile(self::CACHE_PATH);

 }

 private function makeDirIfNotExists(string $directory):

bool

 {

 return is_dir($directory) || mkdir($directory);

 }

 private function makeEmptyFile(string $path): bool

 {

 return file_put_contents($path, '');

 }

 public function set(string $key, string $value): void

--snip--

Listing 26-20: Our refactored CacheJson class, implementing the Cacheable interface

Again, we have to provide an implementation for the reset() method
❶. It uses the private makeDirIfNotExists() and makeEmptyFile()
methods (declared next in the listing) to ensure that an empty file and
directory exist after reset() is invoked. The remainder of the code,
including the set(), get(), and has() methods, is the same as it was in
Listing 26-12.

As this example has illustrated, declaring a useful feature like caching
as an interface means you can create different implementations of that
feature while writing most of your code (in this case, the Application and
MainController classes) in a general way. This enables you to switch
implementations of the interface, or create new ones later, without having to
update all your code because of hardcoded references to the old way of
doing things. All that has to change is the code that actually instantiates the
class implementing the interface. We’ve conveniently located that code in
the index script, where it can easily be updated without breaking the
application.

Traits
A trait is a way to provide default versions of methods that are shared
among multiple, unrelated classes. This feature offers not just the method
signatures, as with an interface or abstract method, but actual method
implementations. When a class uses a trait, it’s called insertion, since the
trait is essentially inserting a method into the class without the class having
to define the method itself. That said, a trait can be inserted onto a class and
then be overridden by the class’s own method implementations if necessary.
This is useful when most, but not all, classes inserting a trait can use the
same method implementation.

NOTE
In some other programming languages, traits are known as mixins, after
the extra ingredients such as nuts or candy that can be mixed into ice
cream.

Traits are a way of permitting code reuse across class hierarchies
without resorting to multiple inheritance, a sort of copy-and-paste feature
for methods that allows the methods to still be overridden if needed. This is
helpful, for example, if you have several classes implementing the same
interface, all with identical versions of some of the methods the interface
calls for. In this case, a lot of code would be duplicated across the classes, a
violation of the DRY principle. Declaring those methods as a trait would
allow you to write the code once and then add it to all the relevant classes
by telling them to use the trait.

More broadly, traits may come into play when classes in multiple class
hierarchies need to perform common actions. For example, several classes
may need the behaviors of makeDirIfNotExists() and makeEmptyFile(),
methods we declared earlier as part of the CacheJson class. One solution
could be to make these methods public members of some kind of utility
class (say, FileUtilities), so each class needing that functionality could
create a FileUtilities object and invoke the methods; or we could declare
the methods as public static members of the utility class to avoid having to
create an object at all.

However, the application might change over time, and some of the
classes may need specialized variations of the main method
implementations. As such, instead of relegating the methods to a utility
class, we can declare them as a trait. The methods will then be available for
any class to use, but each class can replace them with custom
implementations if required, without affecting any other part of the
codebase.

Ultimately, traits and utility classes are similar concepts, in that both
can provide the same fully implemented methods to classes from different
class hierarchies. Traits are a little more sophisticated and flexible than
utility classes, however, since they can be overridden if needed. A class’s
reliance on a trait may be more obvious than its reliance on a utility class,
since the trait must be referenced with a use statement, whereas utility class
method calls might be hidden within the implementation of a method; in
this way, traits make code dependencies more transparent. On the other
hand, traits can be harder to test directly since their methods are often
private or protected, whereas utility class methods are typically public.

Declaring Traits
You declare a trait much like a class, but with the trait rather than the
class keyword. To see how it works, let’s move the declarations of the
makeDirIfNotExists() and makeEmptyFiles() methods from the class to a
FileSystemTrait trait. Continuing the project from the previous section,
create a new src/FileSystemTrait.php file and copy over the two method
definitions, as shown in Listing 26-21.

<?php

namespace Mattsmithdev;

trait FileSystemTrait

{

 private function makeDirIfNotExists(string $directory):

bool

 {

 return is_dir($directory) || mkdir($directory);

 }

 private function makeEmptyFile(string $path): bool

 {

 return file_put_contents($path, '');

 }

}

Listing 26-21: The FileSystemTrait trait

We use the trait keyword to declare FileSystemTrait as a trait. It
contains method declarations for makeDirIfNotExists() and
makeEmptyFile(). The implementation of these two methods is exactly as it
was when they were in the CacheJson class.

While we’re at it, let’s extract the two JSON file methods from the
CacheJson class, readJson() and writeJson(), and declare them as a
second trait, JsonFileTrait, since these methods also define functionality
that several classes might need. Copy the method definitions into a new
src/JsonFileTrait.php file and update them as shown in Listing 26-22.

<?php

namespace Mattsmithdev;

trait JsonFileTrait

{

 private function readJson(string $path): array

 {

 $jsonString = file_get_contents($path);

 if (!$jsonString) {

 return [];

 }

 $dataItems = json_decode($jsonString, true);

 return $dataItems;

 }

 private function writeJson(string $path, array $dataItem

s): bool

 {

 $jsonString = json_encode($dataItems);

 return file_put_contents($path, $jsonString);

 }

}

Listing 26-22: The JsonFileTrait trait

We declare the JsonFileTrait trait with two methods, readJson() and
writeJson(). Once again the method implementations are virtually
identical to the original methods on the CacheJson class, but this time we
use a string $path parameter to indicate the JSON file that needs to be read
or written to instead of a hardcoded class constant. This makes the methods
more generally applicable.

Inserting Traits
Now let’s look at how to insert traits onto a class by refactoring CacheJson
to use our two traits. Listing 26-23 shows the modified src/CacheJson.php
file.

<?php

namespace Mattsmithdev;

class CacheJson implements Cacheable

{

 ❶ use FileSystemTrait, JsonFileTrait;

 private const CACHE_PATH = __DIR__ . '/../var/cache.jso

n';

 ❷ public function reset(): void

 {

 $directory = dirname(self::CACHE_PATH);

 $this->makeDirIfNotExists($directory);

 $this->makeEmptyFile(self::CACHE_PATH);

 }

 public function set(string $key, string $value): void

 {

 $dataItems = $this->readJson(self::CACHE_PATH);

 $dataItems[$key] = $value;

 $this->writeJson(self::CACHE_PATH, $dataItems);

 }

 public function get(string $key): ?string

 {

 $dataItems = $this->readJson(self::CACHE_PATH);

 if($this->has($key)){

 return $dataItems[$key];

 }

 return NULL;

 }

 public function has(string $key): bool

 {

 $dataItems = $this->readJson(self::CACHE_PATH);

 return array_key_exists($key, $dataItems);

 }

}

Listing 26-23: Updating the CacheJson class to use traits

We start with a use statement containing a comma-separated list of the
traits to insert onto the class ❶. In the reset() method ❷, notice how we
invoke the makeDirIfNotExists() and makeEmptyFile() methods, which
now come from the trait, just as we did before. We don’t need to mention
the trait when using these methods; we simply call the methods by name, as
usual. Similarly, we’re able to use the readJson() and writeJson()
methods as before, but now we pass the CACHE_PATH constant as an
argument.

We now have a much simpler CacheJson class. The commonly used
methods for filesystem and JSON file operations have been refactored as
traits, which keeps CacheJson itself focused on tasks related to caching.
Meanwhile, the methods on the traits are also available for any other class
to use.

Resolving Trait Conflicts
If a class uses two or more traits, the same member could be declared in
multiple traits. This potential problem is similar to issues that occur in
languages that allow multiple inheritance. In such cases, you’ll get a fatal
error if you try to call that method, since the PHP engine won’t know which
implementation to invoke.

To resolve the ambiguity and avoid the error, use the insteadof
keyword to specify which version of the method you want to use. Here’s an
example:

use TraitA, TraitB {

 TraitA::printHello insteadof TraitB;

This code snippet specifies that if printHello() is declared in both TraitA
and TraitB, it’s the TraitA implementation that should be inserted into the
class.

What to Use When?
The various strategies we’ve discussed in this chapter have considerable
overlap. Deciding which to use in a given situation may be a matter of
personal preference or the preference of a larger team. That said, Figure 26-
8 offers some guidance by summarizing the similarities and differences
between the approaches we’ve discussed.

Figure 26-8: Comparing strategies for code reuse and class interchangeability

For basic class hierarchies, much can be achieved with simple
inheritance, allowing subclasses to inherit fully implemented methods from
concrete ❸ or abstract ❹ superclasses. If many subclasses will require
custom implementations of the inherited methods, you might declare them
on the superclass as abstract methods instead ❺. This way, only the
methods’ signatures will be specified, with the implementation details left
up to the subclasses. Interfaces are another way to declare just the
signatures of methods, but in this case the methods can be shared across
class hierarchies ❻.

Taken together, inheritance, abstract methods, and interfaces promote
class interchangeability while also loosening the dependencies among the
components in a software system. This greatly facilitates cooperative
software development. By standardizing method signatures while allowing
for flexibility in method implementation, interfaces in particular can be a
contract between software components as well as a contract between
cooperating developers, each with responsibilities for coding different parts
of the system. The whole team can be confident that the system will behave
as expected as long as the interface requirements are adhered to. This
approach to software design is sometimes referred to as loose coupling: the
number and form of breakable dependencies among software components

are reduced, so changes in any one component are much less likely to affect
performance or require refactoring of other components.

Meanwhile, if your goal is to reduce code duplication, you can use
traits to offer sets of default method implementations that can be explicitly
inserted into classes from different hierarchies ❷. For small systems, utility
classes, perhaps with public static methods, can be another way to offer the
same functionality to different parts of the system ❶. Traits provide more
flexibility (for example, a class that inserts a trait may still override a
method from that trait with its own custom implementation), but the public
methods on utility classes are more readily exposed for thorough testing.

Summary
In this chapter, we looked at several strategies for sharing methods among
classes, both within and outside the confines of class hierarchies. You saw
how abstract methods and interfaces enforce method signatures without
providing implementations. The rest of the application can safely call the
relevant methods, regardless of the implementation, since the signatures are
guaranteed to always be the same. You saw this at work when we created a
Cacheable interface that allowed us to switch approaches to caching (using
a static array versus an external JSON file) with virtually no impact on the
rest of the application code.

You also saw how to use traits to insert fully implemented methods
onto unrelated classes, while still having the flexibility to override those
methods if necessary. We harnessed traits to make general-purpose
filesystem and JSON-handling methods available for any class in our
caching project to use. This promoted code reusability and allowed us to
declare simpler, more narrowly focused classes.

Exercises
1. Declare a Book class that has the following members:

A private string title property with get and set methods
A private float price property with get and set methods
A public getPriceIncludingSalesTax() method that returns a
float, calculated as price plus 5 percent sales tax

Write a main script that creates a Book object and prints its price with
and without sales tax, like so:

Book "Life of Pi"

 price (excl. tax) = $20.00

 price (incl. tax) = $21.00

2. Refactor your project for Exercise 1 to declare an interface named
SalesTaxable requiring classes to implement a
getPriceIncludingSalesTax() method that returns a float. The Book
class should implement the SalesTaxable interface.

Next, declare a Donut class that also implements the SalesTaxable
interface and has these members:

A private string topping property with get and set methods
A private float price property with get and set methods
A public getPriceIncludingSalesTax() method implementing the
SalesTaxable interface and returning price plus 7 percent sales tax
Finally, write a main script that creates the following two objects

and prints their price with and without sales tax:

Book "Life of Pi"

 price (excl. tax) = $20.00

 price (incl. tax) = $21.00

Donut "strawberry icing"

 price (excl. tax) = $10.00

 price (incl. tax) = $10.70

3. Write a TaxFunctions utility class that declares a public static
addTaxToPrice() method that takes in a float price and float tax rate
and returns the value of the price with the tax added. Refactor the
implementations of the getPriceIncludingSalesTax() methods in the
Book and Donut classes to use this utility class method, to avoid code
duplication.

4. Change your TaxFunctions utility class to a trait, declaring a (nonstatic)
addTaxToPrice() method. Refactor the Book and Donut classes to insert
the trait and use its addTaxToPrice() method in their implementations
of getPriceIncludingSalesTax().

5. Refactor your project as a class hierarchy, with an abstract
SellableItem superclass that declares a fully implemented
getPriceIncludingSalesTax() method with protected visibility. Make
Book and Donut subclasses of SellableItem, and delete the interface
and trait files; they aren’t needed in this design. Sometimes, for a simple
situation, the simplest solution is the most appropriate.

PART VI
DATABASE-DRIVEN APPLICATION

DEVELOPMENT

27
INTRODUCTION TO DATABASES

Databases are one of the ways
computer systems can persistently store

data so that it can be remembered when code runs at
a later time. We’ll explore how to use PHP to work
with databases over the next several chapters, starting
in this chapter with database fundamentals. We’ll go
over basic database terminology, look at how
databases are structured, and consider the motivation
for and benefits of connecting a web application to a
database.

We’ll also discuss how a database fits with our coverage so far about
web application architecture. You’ll learn how to map the contents of a
database onto an object-oriented structure of classes and objects, and you’ll
see how a database forms the backbone of the model component of the
MVC architecture described in earlier chapters.

NOTE

This book doesn’t aim to provide a comprehensive guide to relational
database design, a complex field in its own right. Our focus will be on
interacting with databases by using PHP. Some books for learning more
about SQL and databases include Practical SQL, 2nd edition (2022), by
Anthony DeBarros; The Manga Guide to Databases (2009) by Mana
Takahashi; and MySQL Crash Course (2023) by Rick Silva, all from No
Starch Press.

Relational Database Basics
The majority of modern database systems are relational, meaning they’re
composed of a set of interrelated tables. Each table represents a type of
entity. For example, a customer table might store information about the
customers at an e-commerce site.

A table consists of columns and rows. Each column represents an
attribute of the entity (for example, the customer table might have columns
for a customer’s name, address, phone number, and so on). Each row
represents a single instance of the entity (for example, an individual
customer). Each row is also called a record.

The relationships between database tables are established through keys;
each key is a unique identifier associated with one record in a table.
Referencing one table’s keys from within another table creates a link
between the two tables, while also avoiding duplication of data. Continuing
our e-commerce example, each customer in our customer table could be
given a primary key in the form of a unique customer ID number.
Meanwhile, we might also have an invoice table for recording transactions,
with a unique ID number for each invoice. Every invoice should be related
to a single customer (the person who initiated the transaction), while each
customer may be associated with multiple invoices, since a person can
initiate multiple transactions.

We would establish this relationship by storing the customer ID
associated with each invoice as a column in the invoice table,
unambiguously associating each invoice with one—and only one—
customer. In the context of the invoice table, the customer ID is known as
a foreign key, since it connects to a field in a different table. Thanks to the
foreign key, the invoice table doesn’t need to duplicate the name, address,

and other information about the customer; we can simply look up those
details in the customer table based on the customer ID assigned to a given
invoice. This is the power of the relational database.

Assigning a unique key to each row also helps maintain the
correctness, or integrity, of the database. When database changes are being
attempted, these keys act as links between data items in different tables. The
system can ensure there’s an associated data item corresponding to a key
referenced by another item in a different table. Rules can be established in
the database to prevent new data from being created if it attempts to link to
a nonexistent data item. For example, this might save a customer from
being charged for a nonexistent invoice, or save an invoice from being
assigned to a nonexistent customer. Other rules can be related to deletions
of data, creating a warning or exception if we try to delete an item that other
items are linked to.

Overall, the structure of a database’s tables, the relationships between
the tables, and the rules governing data integrity are referred to as the
relational schema for that database. Complex web applications often
require several relational schemas that operate side by side. For example,
one schema might be for the financial records of an organization, another
for human resource details, and another for stock items and customer
orders.

Database Management Systems
The software that creates, modifies, retrieves from, and stores a database is
called a database management system (DBMS). For a relational database,
we sometimes refer more specifically to a relational database management
system (RDBMS). For the purposes of this book, we’ll focus on two
(R)DBMSs: MySQL and SQLite. These are two of the most popular free
and open source systems in use today.

Some DBMSs run as server applications requiring usernames and
passwords. They may run on the same computer system as the web
application that uses them, or they may run on a completely independent
internet server. MySQL is an example of a server-based DBMS. Other
DBMSs, such as SQLite, are file-based, meaning the data is stored in files
on the same computer as the web application. Server-based DBMSs like
MySQL can work with multiple database schemas, whereas SQLite and

most other file-based DBMSs store a single database schema in each file.
One SQLite file might hold the financial records database, for example,
another file could hold the human resource details database, and so on.

For a computer language like PHP to communicate with a particular
DBMS, you need a database driver. This piece of software allows a
program to communicate with a DBMS through its own standard protocol.
For example, PHP has a driver for MySQL, a driver for SQLite, and other
drivers for other DBMSs. The MySQL and SQLite PHP drivers may
already be enabled on your system. If not, you’ll get driver errors when you
try to run the code in the following chapters, and you may need to tweak the
settings in your php.ini configuration file. See Appendix B for instructions
on setting up one or both of these database systems locally, or Appendix C
if you’re working in Replit.

When your PHP program needs to work with a DBMS, it uses a
database connection at runtime. This connection is an active communication
link between a computer program and a DBMS. To create a connection with
a server-based database system, you must provide the host and port details,
and usually the appropriate username and password authentication details as
well. In some cases, a connection can be made directly to work with a
particular database schema (for example, the human resource details
schema); in other cases, a general connection is made to the DBMS, and
either a new schema is created or the existing schema to be used is selected
after the connection has been created. Once a connection has been
established to work with a specific schema, the desired actions can be
executed, which might include creating tables and relationships, inserting or
deleting data, or retrieving data from the tables of the schema.

One key advantage of databases over other persistent storage methods
such as files is that many DBMSs are designed to safely be used by
multiple people simultaneously. Incorporating a database into a web
application thus allows many people to interact with the application at the
same time, while still ensuring the security and integrity of the system data.
This is one area where server-based DBMSs like MySQL shine over file-
based DBMSs like SQLite. While SQLite allows multiple simultaneous
users to work on its file-based database, it locks the entire database file
when a user is making changes. This is fine for local machine testing and
development, but it would result in unacceptable delays for a fully

deployed, real-world web application with heavy traffic. Systems such as
MySQL can handle large numbers of concurrent connections, locking only
single tables or even single database rows to minimize any interference with
other users.

Server-based DBMSs also have the potential to be run as multiple
instances, allowing multiple versions of both the web application and its
database to help a system handle massive numbers of simultaneous users.
Instances can be added and removed as needed to cope with a varying load
of traffic over time. This technique is known as load balancing, and many
cloud services implement it automatically.

Structured Query Language
The majority of modern RDBMSs are manipulated using Structured Query
Language (SQL). SQL is designed to accomplish three key aspects of
working with relational databases:

Defining the structure of the related tables
Manipulating the stored data (creating, updating, or deleting data)
Querying the data (searching the database, given criteria to match
against)

Listing 27-1 illustrates SQL statements for each of these kinds of
actions.

CREATE TABLE IF NOT EXISTS product (

 id integer PRIMARY KEY AUTO_INCREMENT,

 description text,

 price float

)

DELETE FROM product WHERE price < 0

SELECT * FROM product WHERE price > 99

Listing 27-1: Examples of SQL definition, manipulation, and querying statements

The first SQL statement creates a product table and defines its
structure. Each entry in this table will store the id, description, and price

of a product. Each of these columns is given a data type (such as float for
the price column), and the id column is designated as the table’s primary
key, meaning each table entry should have a unique id value.

The second SQL statement demonstrates how to manipulate the data
stored in the database; the statement deletes all entries from the product
table that have a negative price. Finally, the third SQL statement is an
example of a database query; it uses SELECT to request all the entries in the
products table that have a price greater than 99.

Although SQL isn’t case-sensitive, it’s common practice to write SQL
keywords like SELECT, FROM, and WHERE in all caps, and to use lowercase
letters for table and column names as well as for strings forming a condition
in a statement. Following this convention helps make SQL statements more
readable.

Databases and Web Application Architecture
Databases naturally fit into the architecture of object-oriented web
applications. Classes of objects can be written to closely map to the data
items stored in database tables, and databases and their classes are the usual
choice for the model (M) component in the MVC web application pattern.

Object-Oriented Programming
The class structure of OOP easily maps to relational database tables. A
common and straightforward way to structure a web application working
with a database is to design a class that corresponds to each table in the
database. These entity classes have properties mirroring the table’s
columns, and an instance of the class would correspond to a record (row) of
the table.

If we need to write data to a database table, we would first create an
object of the appropriate class containing the new data, then use our
database connection to send the object’s data to the database table. We can
even send data back to that object; for example, if the database needs to
choose a new unique key for the new record, this value can be sent back to
the web application and stored in the corresponding object for future
reference. Conversely, if we need to read a whole record out of a database
table, we would read the retrieved data into a new object of the appropriate

class, at which point the rest of the application can utilize the database data
by accessing that object.

Consider a web application (and its database) implementing products
of various categories. We may have categories with names such as food,
hardware, and furniture, and each product must be related to one of these
categories. Figure 27-1 shows the database’s relational schema. This kind of
diagram is called an entity-relationship (ER) model.

Figure 27-1: An ER diagram showing related Product and Category entities

Our database will have a Product table containing an entry for each
product as well as a Category table with the possible categories the
products can fall into. The line connecting the tables illustrates how entries
from these tables can relate. The 1 at the Category end of the connecting
line expresses the relationship “each product is associated with precisely
one category.” The crow’s foot link and asterisk (*) at the Product end
expresses the relationship “each category is associated with zero, one, or
more products.”

Each record in the Category table will have a unique integer id
property (a primary key) and a text description. Table 27-1 shows sample
entries in the table.
Table 27-1: Example Rows for the Category Table
id (primary key) name

1 "food"

id (primary key) name

2 "hardware"

3 "furniture"

Every record in the Product table will similarly have a unique integer
id property as a primary key, along with a text description and a float
price. Each product will also be related to exactly one category via the
category_id column, which will store a reference to the key for one of the
records in the Category table. Again, this is known as a foreign key. Table
27-2 shows example rows for the Product table.
Table 27-2: Example Rows for the Product Table
id (unique key) description price category_id

1 "peanut bar" 1.00 1 (food)

2 "hammer" 9.99 2 (hardware)

3 "ladder" 59.99 2 (hardware)

We can easily map our database tables to object-oriented classes.
Figure 27-2 shows the corresponding class diagram for Product and
Category. Notice that this UML diagram is essentially the same as the ER
model from Figure 27-1.

Figure 27-2: A class diagram of the related Product and Category classes

Each class has properties for all the columns of its corresponding
database table; for example, the Product class has id, description, price,
and category properties. Each Product object will be related to exactly one
Category object via its category property, which will store a reference to a
Category object. Notice that this is the main difference between our class
structure and our database structure. In the Product database table, the
category_id column simply stores the integer ID of the related category,
whereas with our classes we can store a reference to a complete Category
object.

Figure 27-3 shows the objects that will be created when we read the
sample database rows from Tables 27-1 and 27-2 into our web application.

Figure 27-3: Connecting Product objects to Category objects

We end up with three Product objects, linked to their corresponding
Category objects. Notice that each Product object is associated with only
one Category object. In contrast, a Category object can be related to zero,
one, or many Product objects, since at a given point we may have no
products for some categories, perhaps just one product, or more.

The Model-View-Controller Pattern
In previous chapters, we’ve discussed the MVC software architecture,
which assigns the various tasks required for operating a web application to
different parts of the system. We’ve focused primarily on how a templating
library like Twig provides the view component of MVC, preparing content
to be displayed to the user, and on how a front controller and other
specialized controller classes provide the controller component, making
decisions about how to respond to each user request.

I’ve said little so far about the model part of this architecture, the actual
data that underlies the web application. This is where a database comes in.

It stores the data in an organized format and serves it up or modifies it when
prompted by the controller classes. The classes corresponding to the
database tables are part of the model component of the application as well.
Figure 27-4 illustrates the database’s place in the MVC web application
architecture.

Figure 27-4: The MVC architecture, highlighting the model component

Notice that the action controller classes communicate with (read from
and modify) the model classes. As you’ll learn in the following chapters,
these are the object-oriented classes that communicate with the database.
All database interactions are kept completely separate from the controller
and view components of the application. This compartmentalization means
that we could change the underlying database (from a file-based DBMS to a
server-based DBMS, for example) without having to make any changes to
the front controller, the action controller classes, or the templates.

Summary
In this chapter, we reviewed the concept of databases, especially SQL-based
relational databases, and considered some of the advantages of adding
databases to web applications. We also explored how databases fit into web
application architecture, including how databases are the heart of the MVC
pattern’s model component. We observed the close mapping among the

tables, columns, and rows of a relational database and the classes,
properties, and instances used in OOP. With this introduction, you’re now
ready for the remaining chapters in the book, where you’ll learn to use PHP
to connect to, create, modify, and retrieve data from MySQL and SQLite
relational databases.

Exercises
1. Read up on some of the history of databases in the phoenixNAP article

“What Is a Database?” by Milica Dancuk
(https://phoenixnap.com/kb/what-is-a-database).

2. DB Fiddle (https://www.db-fiddle.com) is a great online resource for
practicing SQL statements and designing a database. You can create and
populate tables, query them, and view the results. Try using DB Fiddle
to implement the Product and Category database tables discussed in
this chapter. Insert the three rows of sample data for each database table
(see Tables 27-1 and 27-2), then run queries to select the data from each
table.

https://phoenixnap.com/kb/what-is-a-database
https://www.db-fiddle.com/

28
DATABASE PROGRAMMING WITH THE PDO

LIBRARY

Incorporating a database into a web
application requires writing code to

perform operations such as opening a connection to
the database system; creating a database and its table
structure; manipulating database data through
insertions, deletions, and updates; and querying and
retrieving data matching your desired criteria. In this
chapter, you’ll learn about the PHP Data Objects
(PDO) library, which makes it easy to carry out these
sorts of database operations. We’ll use the library to
progressively develop a simple, multipage web
application that pulls information from a database.

The PDO Library
The PDO library for database operations has been a built-in feature of the
PHP language since 2005 and is compatible (through various drivers) with

many DBMSs, including MySQL and SQLite, as we’ll see in this chapter.
This makes it incredibly easy to develop flexible web applications that can
switch DBMSs with minimal changes required to the code. Before PDO,
switching to a different DBMS meant using a different library.

In addition to offering a standard (and therefore reusable) way to run
SQL commands on different relational database systems, PDO also makes it
much easier to write more secure database communication code through the
use of prepared statements. These are templates for database queries,
including placeholders for certain fields that can be set to actual values
when the query is to be executed. The basic pattern is to build the SQL
statement as a string (including any placeholders), pass that string to a PDO
connection object to “prepare” the statement, pass along any values for
filling in the placeholders, and then execute the prepared statement on the
database.

Handling SQL code through prepared statements avoids problems of
SQL injection attacks, and so we’ll be using only prepared statements in
this book. In a SQL injection, text that’s received from the user (for
example, through a web form or a login field) is concatenated into an SQL
query string and executed on the database. Malicious users can take
advantage of this common web application vulnerability to modify the
original SQL query or add an additional SQL query that will then also be
executed on the database. The web comic XKCD took a humorous look at
SQL injection, shown in Figure 28-1.

Figure 28-1: Randall Munroe’s “Bobby Tables” cartoon (https://xkcd.com/327/) is a
lighthearted example of the damage an SQL injection attack can do.

https://xkcd.com/327/

Yet another bonus of using PDO is that it offers an object fetch mode,
whereby data queried from the database is automatically packaged into
objects of the appropriate classes in your PHP code (model classes). All you
have to do is tell PDO which classes correspond to which database tables.
Without this feature, you’d have to write code to handle the details of
building the objects based on the results of the query, which often requires
fussing with multidimensional arrays and column headers.

We’ll explore the basics of using the PDO library throughout this
chapter as we develop an object-oriented, database-driven web application.

NOTE
This chapter only scratches the surface of the PDO library’s capabilities.
For more information about what it can do, I recommend the modestly titled
“(The Only Proper) PDO Tutorial,” available online at
https://phpdelusions.net/pdo.

A Simple Database-Driven Web Application
To get started using PDO, we’ll first create a bare-bones application with a
single page that retrieves and displays information about a selection of
products stored in a database. This will illustrate how to connect to a
database, create a table, populate it with data, and retrieve that data for use
in the application, all in an object-oriented way. In “A Multipage Database-
Driven Web Application” on page 553, we’ll expand the application to
include multiple pages, well-organized controller logic, and Twig
templating.

For now, the project will have the following file structure:

https://phpdelusions.net/pdo

To begin, create a new project folder and add the usual composer.json
file declaring that Mattsmithdev namespaced classes are located in the src
folder. Then add a public folder containing the usual index.php script that
reads in the autoloader, creates an Application object, and invokes its
run() method. With that, we’re ready to set up the databases. The db folder
will contain the scripts to create both MySQL and SQLite versions of a
database to support our application.

Setting Up the Database Schema
Our web application will be able to use MySQL or SQLite as a DBMS, and
in this section we’ll write PHP scripts to set up a new database schema
using both systems. For small, local projects, an SQLite database file in the
var folder of the project is often sufficient. For large-scale, production-
ready web applications, MySQL is more common, with the database
running on a different server (or multiple servers).

For this simple example, we’ll save the MySQL and SQLite database
setup scripts in the project’s db folder. In a more realistic scenario, however,
the database structure would be fixed and the database already set up, so
such scripts wouldn’t usually be kept as part of the application’s folder
structure.

For our database, we’ll create a simple schema consisting of a single
table called product and insert two example records into that table. Figure
28-2 shows an ER model of this table.

Figure 28-2: An ER model for the product table

As the diagram shows, the product table will have fields for the
product’s id (a unique numerical identifier), its description, and its price.

MySQL
Listing 28-1 uses PDO to create a MySQL database schema, define the
structure of a product table, and insert two example records into that table.
Name this script create_database.php and save it in the db folder.

<?php

❶ define('DB_NAME', 'demo1');

❷ $connection = new \PDO(

 'mysql:host=localhost:3306',

 'root',

 'passpass'

);

❸ $sql = 'CREATE DATABASE ' . DB_NAME ;

$stmt0 = $connection->prepare($sql);

$stmt0->execute();

$connection = new \PDO(

 ❹ 'mysql:dbname=' . DB_NAME . ';host=localhost:3306',

 'root',

 'passpass'

);

$sql = 'CREATE TABLE IF NOT EXISTS product ('

 ❺ . 'id integer PRIMARY KEY AUTO_INCREMENT,'

 . 'description text,'

 . 'price float'

 . ')';

$stmt1 = $connection->prepare($sql);

$stmt1->execute();

$sql = "INSERT INTO product (description, price) VALUES ('ha

mmer', 9.99)";

$stmt2 = $connection->prepare($sql);

$stmt2->execute();

$sql = "INSERT INTO product (description, price) VALUES ('la

dder', 59.99)";

$stmt3 = $connection->prepare($sql);

$stmt3->execute();

Listing 28-1: A script to create our MySQL database

First, we define a DB_NAME constant to hold the database schema name,
'demo1' ❶. Putting the name in a constant makes this script easy to edit
and reuse on other database schemas—just update the name in the constant.

Next, we create a new PDO object to establish a connection with a
database, storing the result in the $connection variable ❷. The first
argument is the data source name (DSN), a standardized string providing
information about the database connection. The DSN string begins with
'mysql:', telling PDO that we want to connect to a MySQL server,
followed by one or more key=value pairs, separated by semicolons. For
now, we need just one key=value pair to specify that the host the MySQL
database is running on is the localhost server at port 3306. We don’t
include the schema name here, since we haven’t created the schema yet.
The second and third arguments passed to the PDO constructor provide the
username 'root' and the password 'passpass'. Replace these with the
database username and password for your MySQL setup (see Appendix B).

We next build and execute an SQL statement to create the database
schema named in the DB_NAME constant ❸. We create the SQL statement as
a string in the $sql variable, consisting of the SQL keywords 'CREATE
DATABASE' plus the schema name. We pass that string to the $connection
object’s prepare() method to securely prepare the statement, placing the

result, an object of the PDO library’s PDOStatement class, in the $stmt0
variable. Then we execute the prepared statement. We’ll use this basic
pattern of preparing and executing SQL statements over and over when
working with databases. In most cases, we’d then perform an action after
the statement has been executed, such as returning a list of retrieved objects
or confirming the database has been changed as expected and then
informing the user if it has.

Now that we’ve created the schema, we need to create the product
table within it. First, we overwrite $connection with a new connection to
the database schema itself, rather than to the MySQL server in general.
Notice that this time we specify the schema name as part of the DSN string
when constructing the PDO object ❹. Specifically, we assign the DB_NAME
constant as the value of the dbname key, followed by a semicolon (;) to
separate this key/value pair from the others in the DSN string. Then we
build and execute another SQL statement creating the product table with
id, description, and price fields. MySQL databases support auto-
incrementing, which automatically generates unique numeric keys in
sequence. Our SQL statement uses this feature as part of the primary-key
declaration for the id field, so we don’t have to worry about manually
setting the product IDs ❺.

We finish the script by creating and executing two INSERT SQL
statements to add two rows to the product table: a 'hammer' costing 9.99
and a 'ladder' costing 59.99. We don’t include values for each product’s
id field since MySQL will automatically generate them.

Once you’ve written this script, run it by entering php
db/create_database.php at the command line. This will create and
populate the MySQL schema.

SQLite
Now let’s adapt the script from Listing 28-1 to create the same schema as
an SQLite database file. As you’ll see, the process is similar, since the PDO
library can work with SQLite just as easily as with MySQL. Save the
contents of Listing 28-2 as create_databaseSQLite.php in your project’s db
subdirectory. The SQLite database file itself will be located in the var
subdirectory, which is created as part of the script.

<?php

define('FILENAME', 'demo1.db');

❶ define('FOLDER_PATH', __DIR__ . '/../var/');

if (!file_exists(FOLDER_PATH)) {

 mkdir(FOLDER_PATH);

}

$connection = new \PDO(

 ❷ 'sqlite:' . FOLDER_PATH . FILENAME

);

$sql = 'CREATE TABLE IF NOT EXISTS product ('

 ❸ . 'id integer PRIMARY KEY AUTOINCREMENT,'

 . 'description text,'

 . 'price float'

 . ')';

$stmt1 = $connection->prepare($sql);

$stmt1->execute();

$sql = "INSERT INTO product (description, price) VALUES ('ha

mmer', 9.99)";

$stmt2 = $connection->prepare($sql);-

$stmt2->execute();

$sql = "INSERT INTO product (description, price) VALUES ('la

dder', 59.99)";

$stmt3 = $connection->prepare($sql);

$stmt3->execute();

Listing 28-2: A script to create our SQLite database

First, we define constants for the database filename ('demo1.db') and
folder path. Remember that a double dot (..) in a path refers to a parent
directory, so /../var indicates that var should be at the same hierarchy level
as the running script’s directory ❶. We create this directory if it doesn’t
already exist.

Then we create a new PDO object, once again passing a DSN string as
an argument to provide information about the database we want to connect
to ❷. This time, the DSN string begins with 'sqlite:', telling PDO that
we want to connect to an SQLite server, followed by the full filepath,
including the directory path and filename, to the desired database. Unlike
with MySQL, we don’t need to write and execute an SQL statement
creating the database schema; if necessary, the SQLite database file is
created when the connection is established. Also, since SQLite is just
working with a file, there’s no need for any username or password.

Once PDO establishes a database connection, it mostly doesn’t matter
what DBMS it’s working with, so the rest of the script is virtually identical
to Listing 28-1: we create and execute SQL statements to create the
product table and add two entries to it. The only difference is that SQLite
uses the keyword AUTOINCREMENT with no underscore (unlike MySQL’s
AUTO_INCREMENT) ❸.

As with the MySQL version, you need to run this script to create and
populate the SQLite database schema. Enter php
db/create_databaseSQLite.php at the command line.

Writing the PHP Classes
Now we’ll organize the logic of our simple web application by writing
some PHP classes. For now, we need three. As usual, we’ll create an
Application class to serve as a front controller for the application. We’ll
also write a Product class with properties corresponding to the fields in our
database’s product table, to make it easy to move data back and forth
between the database and our PHP code. Finally, we’ll design a Database
class to encapsulate the logic of creating a database connection. Not only
will this help keep our code tidy and object-oriented, but it will also enable
us to easily refactor the application to switch between MySQL and SQLite
with little to no effect on the rest of the code.

We’ll start with the Application class. Declare this class in
src/Application.php, as shown in Listing 28-3.

<?php

namespace Mattsmithdev;

use Mattsmithdev\Product;

class Application

{

 ❶ private ?\PDO $connection;

 public function __construct()

 {

 $db = new Database();

 ❷ $this->connection = $db->getConnection();

 }

 public function run()

 {

 if (NULL != $this->connection){

 ❸ $products = $this->getProducts();

 print '<pre>';

 var_dump($products);

 print '</pre>';

 } else {

 print '<p>Application::run() - sorry '

 . '- there was a problem with the database c

onnection';

 }

 }

 public function getProducts(): array

 {

 $sql = 'SELECT * FROM product';

 $stmt = $this->connection->prepare($sql);

 $stmt->execute();

 ❹ $stmt->setFetchMode(\PDO::FETCH_CLASS, Product::clas

s);

 $products = $stmt->fetchAll();

 return $products;

 }

}

Listing 28-3: The Application class

We start by giving the class a private connection property ❶. This
property has the nullable data type of ?\PDO, so it will be either a reference
to a PDO database connection object or NULL (if the connection fails). In the
class’s constructor method, we create a new Database object and invoke its
getConnection() method (we’ll define that class and method shortly).

Next, we store the resulting database connection reference into the
Application class’s connection property ❷. This may seem more
roundabout than directly connecting to a database as we did earlier in the
setup code, but relegating the details of establishing the connection to the
Database class allows this Application class to work regardless of the
DBMS we’re using.

We next declare the application’s run() method. In it, we test the
connection property to make sure it isn’t NULL and invoke the
getProducts() method if it isn’t ❸, which returns an array of Product
objects retrieved from the database. For simplicity, we print the array
preceded by an HTML <pre> tag. (We’ll refine this project to output valid
HTML when we expand the application later in the chapter.) If connection
is NULL, we print an error message instead.

We close out the class by declaring the getProducts() method. It uses
the connection property to prepare and execute an SQL statement that
selects all the rows from the database’s product table. The raw results of
this query are in the PDOStatement object referenced by the $stmt variable,
but we want to represent the results as Product objects.

This is where the PDO library’s object fetch mode comes in handy. We
set it up by invoking $stmt->setFetchMode() ❹, passing the
\PDO::FETCH_CLASS constant as a first argument to indicate that we want
the results to be objects of a class. The second argument, Product::class,
tells PDO which (namespaced) class to use. The ::class magic constant
returns the fully qualified class name string (in this case,
'Mattsmithdev\\Product'). Then we invoke $stmt->fetchAll() to
retrieve the results. Since we selected multiple rows from the database, this
creates an array of Product objects rather than just a single object. We
return this array via the $products variable.

Now we’ll create the Product model class. The properties of this class
must correspond to the columns of the product database table (that is, have
the same names and data types) for PDO to be able to successfully return
query results as Product objects. Save the contents of Listing 28-4 in
src/Product.php.

<?php

namespace Mattsmithdev;

class Product

{

 private int $id;

 private string $description;

 private float $price;

}

Listing 28-4: The Product class

All this code does is declare three private properties for the class (id,
description, and price) with names and data types matching the fields in
the product table. That’s all the PDO library needs in order to retrieve rows
from the table as objects of this class. Since for now our application is
simply using var_dump() to display an array of Product objects, we never
need to access the class’s private properties. When we expand the
application, we’ll add accessor methods to the Product class so that we can
write a more elegant template page that loops through and outputs each
object’s properties in customizable and valid HTML.

Finally, let’s declare the Database class to manage the process of
establishing and storing a live MySQL database connection. Create the file
src/Database.php containing the contents of Listing 28-5.

<?php

namespace Mattsmithdev;

class Database

{

 ❶ const MYSQL_HOST = 'localhost';

 const MYSQL_PORT = '3306';

 const MYSQL_USER = 'root';

 const MYSQL_PASSWORD = 'passpass';

 const MYSQL_DATABASE = 'demo1';

 const DATA_SOURCE_NAME = 'mysql:dbname=' . self::MYSQL_

DATABASE

 ❷ . ';host=' . self::MYSQL_HOST . ':' . self::MYSQL_PO

RT;

 ❸ private ?\PDO $connection;

 public function getConnection(): ?\PDO

 {

 return $this->connection;

 }

 public function __construct()

 {

 ❹ try {

 $connection = new \PDO(

 self::DATA_SOURCE_NAME,

 self::MYSQL_USER,

 self::MYSQL_PASSWORD

);

 $this->connection = $connection;

 ❺} catch (\Exception $e) {

 print "Database::__construct() - Exception '

 . '- error trying to create database connect

ion";

 }

 }

}

Listing 28-5: The Database class

We declare class constants for the five individual pieces of data needed
to create a live connection to a MySQL database ❶: the host (localhost),
the port (3306), the MySQL username and password (fill these in as

appropriate), and the name of the database schema we want to work with
(demo1). Then we combine some of these constants into another constant
representing the DSN string that we’ll need to pass as the first argument
when creating the PDO object ❷.

We next declare a private connection property for the class ❸, along
with a public getConnection() method to return its value. This property
has the nullable data type of ?\PDO, so it will be either NULL or a reference
to a PDO object.

In the Database class’s constructor method, we attempt to connect to
the MySQL database by creating a new PDO object, using the class constants
to provide the necessary DSN string, username, and password. A reference
to the database connection is stored in the class’s connection property.
These actions are wrapped inside a try statement ❹, so any exception
thrown in the process will be caught ❺ and an error message will be
printed out. Therefore, whenever a new Database object is created (from
within the Application class), the constructor method will attempt to
connect to the database. A subsequent call to getConnection() will return
either a PDO connection object or NULL if a problem occurred when creating
the connection.

With that, we’re ready to run the application and see the results. When
you visit the localhost server running the web application, you should see
something like Figure 28-3.

Figure 28-3: The web page showing the contents of the $products array

At this stage, the web page doesn’t look like much; all it shows is a
var_dump() of the $products array. Since we haven’t yet included any
decision logic in the run() method of the Application class, this page will
always be displayed, regardless of any URL-encoded request variables.
However, the printed contents of the array indicate that we’ve successfully
retrieved entries from the products MySQL database table and mapped
them to objects of our custom Product class, an important first step in
database-driven application development.

Switching from MySQL to SQLite
Earlier, we set up the same database schema in both MySQL and SQLite;
what would it take to refactor our application to use the SQLite schema

rather than MySQL? We’ve designed the application so that all the DBMS-
specific logic is encapsulated in the Database class, and we reference this
class only once, in the constructor method for the Application class (see
Listing 28-3). There we use the statement $db = new Database() to get a
reference to a new Database object before invoking its getConnection()
method to obtain a PDO database connection.

Let’s replace this statement with one that creates an instance of a
DatabaseSQLite class that will connect to SQLite instead of MySQL.
Listing 28-6 shows the necessary change to src/Application.php.

--snip--

 public function __construct()

 {

 $db = new DatabaseSQLite();

 $this->connection = $db->getConnection();

 }

--snip--

Listing 28-6: Updating the Application class to create a DatabaseSQLite object instead of a
Database object

Now we need to declare the DatabaseSQLite class to encapsulate the
work of creating and storing a live SQLite database connection. For the rest
of our application code to work as before, it needs to have a
getConnection() method that returns a reference to a PDO connection
object, just like the Database class. Create src/DatabaseSQLite.php
containing the code in Listing 28-7.

<?php

namespace Mattsmithdev;

class DatabaseSQLite

{

 const DB_DIRECTORY = __DIR__ . '/../var';

 const DB_FILE_PATH = self::DB_DIRECTORY . '/demo1.db';

 const DATA_SOURCE_NAME = 'sqlite:' . self::DB_FILE_PAT

H;

 private ?\PDO $connection = NULL;

 public function getConnection(): ?\PDO

 {

 return $this->connection;

 }

 public function __construct()

 {

 try {

 $this->connection = new \PDO(self::DATA_SOURCE_N

AME);

 } catch (\Exception $e){

 print 'DatabaseSQLite::__construct() - Exception

- '

 . 'error trying to create database connectio

n'

 . PHP_EOL;

 }

 }

}

Listing 28-7: The DatabaseSQLite class

This new class follows the same contours as the old Database class;
only the SQLite-specific details differ. We first declare constants for the
data needed to create a live SQLite database connection: the location of the
directory containing the database file (DB_DIRECTORY); the full filepath,
including the directory location and filename (DB_FILE_PATH); and the DSN
string, including the full filepath (DATA_SOURCE_NAME). Then we declare a
private connection property with a nullable \PDO data type of ?\PDO and its
public getConnection() getter method, as before. Finally, we declare a
constructor method that uses try and catch statements to attempt to create
a new PDO database connection object and report any errors—again, just
like the Database class.

Try running the web server again and you should see the application
function exactly as before, displaying the contents of the $products array

that features data retrieved from the database. It’s just that now we’re using
SQLite rather than MySQL. This switch required virtually no updates to the
code aside from declaring the new DatabaseSQLite class and changing one
line to create a DatabaseSQLite object instead of Database.

A Multipage Database-Driven Web Application
Now let’s expand our database-driven web application to encompass
multiple pages, including a home page, a product list page, a page for
displaying details about a single product, and a page for showing error
messages. We’ll also use Twig templating to streamline the process of
designing these pages. This expanded project will have the following file
structure:

Figure 28-4 shows the four pages of this website.

Figure 28-4: The expanded web application

The pages feature HTML formatted with Bootstrap and offer a
navigation bar with links to the home page and the list of products. When
the (show) link is clicked next to a listed product, the details of that product
are displayed on a new page. Notice that the ID of the clicked product
appears as part of the query string in the page’s URL (for example, id=1 on
the page displaying information about the hammer). If an error occurs, such
as a missing ID or an ID that doesn’t match a row in the database, an error
page will be shown with an appropriate error message; the example in
Figure 28-4 shows an ID of 99 in the browser address bar, and an error
message stating that no product could be found with this ID.

Since the application will involve several actions, we’ll create two
controller classes: ProductController for listing all products and
displaying a details page for an individual item, and DefaultController
with methods to display the home page and the error message page. We’ll

revert to using MySQL and the original Database class to manage the
database connection, but keep in mind that you can always sub in SQLite
by switching to the DatabaseSQLite class instead. Since the project will use
Twig templating, be sure to run composer require twig/twig at the
command line to add the Twig library to the project.

Managing the Product Information
Let’s begin expanding the application by focusing on the classes that
manage product information through database interaction. To start, we’ll
add getter and setter methods to the Product class. This is necessary since
the application will now need to individually access a Product object’s
properties to display them in a more elegant way than a simple var_dump().
Update src/Product.php to match the contents of Listing 28-8.

<?php

namespace Mattsmithdev;

class Product

{

 private int $id;

 private string $description;

 private float $price;

 public function getId(): int

 {

 return $this->id;

 }

 public function setId(int $id): void

 {

 $this->id = $id;

 }

 public function getDescription(): string

 {

 return $this->description;

 }

 public function setDescription(string $description): voi

d

 {

 $this->description = $description;

 }

 public function getPrice(): float

 {

 return $this->price;

 }

 public function setPrice(float $price): void

 {

 $this->price = $price;

 }

}

Listing 28-8: The Product class, now with getters and setters for each property

Here we add simple getter and setter methods for each of the three
properties of the Product class: id, description, and price. That’s a total
of six new methods for this class.

We’ll now start organizing our application code a little better by putting
any logic pertaining to retrieving products from the database in a
ProductRepository class. It’s common in database-driven applications to
use these sorts of classes, called repository classes, to separate logic
accessing the database from the other logic in the application. The
repository class methods take in and return objects, and handle any access
to the database (with help establishing the database connection from the
Database class itself). The rest of the application works with the resulting
objects and has nothing at all to do with the database.

Our ProductRepository class will include a method to retrieve all the
products, as we originally had in the Application class, as well as a new
method to retrieve a single product with a given ID. (Often repository
classes have methods for other database operations as well, such as adding,
updating, or deleting entries. We’ll discuss these operations in Chapter 29.)
Since this new class needs to interact with the database, it will now be

responsible for creating the necessary Database object. These changes will
free up the main Application class to focus on controller logic.

Create the new ProductRepository class in src/ProductRepository.php
as shown in Listing 28-9. The black code is brand new; the grayed-out code
has been taken from the Application class (see Listing 28-3).

<?php

namespace Mattsmithdev;

class ProductRepository

{

 private ?\PDO $connection = NULL;

 public function __construct()

 {

 $db = new Database();

 $this->connection = $db->getConnection();

 }

 public function findAll(): array

 {

 ❶ if (NULL == $this->connection) return [];

 $sql = 'SELECT * FROM product';

 $stmt = $this->connection->prepare($sql);

 $stmt->execute();

 $stmt->setFetchMode(\PDO::FETCH_CLASS, Product::clas

s);

 $products = $stmt->fetchAll();

 return $products;

 }

 public function find(int $id): ?Product

 {

 if (NULL == $this->connection) return NULL;

 $sql = 'SELECT * FROM product WHERE id = :id';

 $stmt = $this->connection->prepare($sql);

 ❷ $stmt->bindParam(':id', $id);

 $stmt->execute();

 $stmt->setFetchMode(\PDO::FETCH_CLASS, Product::clas

s);

 ❸ $product = $stmt->fetch();

 ❹ if ($product == false) {

 return NULL;

 }

 return $product;

 }

}

Listing 28-9: The new ProductRepository class

We declare a private connection property, followed by a constructor
method that creates a new Database object and invokes its
getConnection() method to retrieve a database connection. This is just like
the original Application class. Next, we declare a findAll() method
containing the logic from the Application class’s getProducts() method.
(Since this is now a method in the ProductRepository class, we don’t need
to use the word product in the method name.) The method starts with an
extra line of code that tests whether the database connection is NULL and
returns an empty array if it is ❶. This is necessary because the
Application class no longer has access to the database connection. If the
connection isn’t NULL, the method retrieves all the products from the
database and returns them as an array of Product objects, just like before.

We next declare the new find() method. It takes in an integer $id
argument, which is used to retrieve a single Product object from the
database table. Again, the first statement of this method is a NULL test on the
database connection. If the connection is NULL, this method will
immediately return NULL and finish executing. If the connection isn’t NULL,
we prepare the 'SELECT * FROM product WHERE id = :id' string as an

SQL query. The :id at the end is a named PDO placeholder, consisting of a
colon followed by an identifier (id) for a part of the SQL statement that
needs to be filled in by the value of a variable.

We use the bindParam() method of the PDO statement object to
connect the placeholder with the value of the $id argument ❷. This
mechanism is what makes PDO’s prepared statements safe from SQL
injection attacks. The placeholder syntax forces the value of $id to be
treated as a possible value to look for in the id column. The value of the
variable can’t possibly change the query itself into something more
malicious.

The method uses PDO’s object fetch mode to retrieve the result of the
query as a Product object (or NULL if no product in the database has a
matching ID). Notice that we obtain the Product object by calling $stmt-
>fetch() ❸ rather than $stmt->fetchAll() as we did in the findAll()
method, since this time we’re expecting only a single result. Since the
fetch() method returns false (not NULL) on failure, we test for this value
and return NULL if no object was successfully retrieved ❹.

Implementing the Controller Logic
Next, we’ll focus on the classes that implement the application’s controller
logic. First, we’ll remove the database-related code from the Application
class (since that code now lives in ProductRepository) and update the
class to take in requests and delegate them to the appropriate controller.
Modify src/Application.php to match the contents of Listing 28-10.

<?php

namespace Mattsmithdev;

class Application

{

 private DefaultController $defaultController;

 private ProductController $productController;

 public function __construct()

 {

 $this->defaultController = new DefaultController();

 $this->productController = new ProductController();

 }

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 switch ($action)

 {

 case 'products': ❶
 $this->productController->list();

 break;

 case 'show': ❷
 $id = filter_input(INPUT_GET, 'id', FILTER_S

ANITIZE_NUMBER_INT);

 if (empty($id)) {❸
 $this->defaultController->

error('error - To show a product, an integer ID must be prov

ided');

 } else {❹
 $this->productController->show($id);

 }

 break;

 default: ❺
 $this->defaultController->homepage();

 }

 }

}

Listing 28-10: The updated Application class with simple front-controller logic

We declare two private defaultController and productController
properties and then use the constructor to fill them with
DefaultController and ProductController objects. Then we declare the
run() method, which retrieves the value of $action from the incoming
URL and passes it to a switch statement to decide what to do. If the value is

'products' ❶, we invoke the list() method of the ProductController
object to display the page listing all the products.

If the value of $action is 'show' ❷, we want to display a page with
details about just one product. For that, we attempt to extract an integer $id
variable from the URL, using FILTER_SANITIZE_NUMBER_INT to remove any
non-integer characters from the variable. If $id ends up being empty ❸, we
display an error page by passing a string error message to the error()
method of the DefaultController object. If the value of $id isn’t empty
❹, we pass it to the show() method of the ProductController object to
display the product page. Finally, we declare the switch statement’s default
action ❺, which is to display the home page by invoking the homepage()
method of the DefaultController object.

Now we’ll create an abstract Controller class that will become the
superclass for both our controller classes, DefaultController and
ProductController. Create src/Controller.php containing the contents of
Listing 28-11. Note that this class is just the same as Listing 22-8 on page
436.

<?php

namespace Mattsmithdev;

use Twig\Loader\FilesystemLoader;

use Twig\Environment;

abstract class Controller

{

 const PATH_TO_TEMPLATES = __DIR__ . '/../templates';

 protected Environment $twig;

 public function __construct()

 {

 $loader = new FilesystemLoader(self::PATH_TO_TEMPLAT

ES);

 $this->twig = new Environment($loader);

 }

}

Listing 28-11: The abstract Controller superclass, providing a twig property

We declare this class to be abstract so that it can’t be instantiated. We
declare a class a constant for the path to the Twig templates directory. Then
we declare a twig property with protected visibility so that it will be
available to methods of subclasses to this class. Within the class’s
constructor, we create two Twig objects: FilesystemLoader object and
Environment. The latter holds the all-important render() method and is
stored in the twig property, while the former helps the Environment object
access the template files.

With this Controller superclass declared, we can now declare the
subclasses that will inherit from it. We’ll start with DefaultController,
which will handle displaying the home page and error page. Declare the
class in src/DefaultController.php as shown in Listing 28-12.

<?php

namespace Mattsmithdev;

class DefaultController extends Controller

{

 ❶ public function homepage(): void

 {

 $template = 'home.xhtml.twig';

 $args = [];

 print $this->twig->render($template, $args);

 }

 ❷ public function error(string $message): void

 {

 $template = 'error.xhtml.twig';

 $args = [

 'message' => $message

];

 print $this->twig->render($template, $args);

 }

}

Listing 28-12: The DefaultController class for simple page actions

We declare that this class extends Controller so that it will inherit the
superclass’s twig property. The class’s homepage() method ❶ invokes the
render() method of the inherited twig property to render the
home.xhtml.twig template, then prints out the text received. Similarly, the
error() method ❷ renders and prints the error.xhtml.twig template. For
this template, we pass along the value of the $message argument so that the
error page will include a custom error message.

Now we’ll create the other controller subclass, ProductController, for
displaying product-related pages. Create src/ProductController.php to
match the code in Listing 28-13.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 public function __construct()

 {

 parent::__construct();

 $this->productRepository = new ProductRepository();

 }

 ❶ public function list(): void

 {

 $products = $this->productRepository->findAll();

 $template = 'product/list.xhtml.twig';

 $args = [

 'products' => $products

];

 print $this->twig->render($template, $args);

 }

 ❷ public function show(int $id): void

 {

 $product = $this->productRepository->find($id);

 if (empty($product)) {

 $defaultController = new DefaultController();

 $defaultController->error(

 'error - No product found with ID = ' . $i

d);

 } else {

 $template = 'product/show.xhtml.twig';

 $args = [

 'product' => $product

];

 print $this->twig->render($template, $args);

 }

 }

}

Listing 28-13: The ProductController class

Like DefaultController, this class is declared as extending
Controller. Its constructor method first invokes the parent (Controller)
constructor, which sets up the inherited twig property. Then the constructor
creates a new ProductRepository object and stores it in the
productRepository property. The class will be able to use this object to get
product information from the database.

The class’s list() method ❶ obtains an array of Product objects by
invoking the ProductRepository object’s findAll() method. Then it
renders and prints the list.xhtml.twig template, passing along the array of
products, to display the full product list page. The show() method ❷ is
similar to list(), but it uses the provided integer $id argument to retrieve a
single Product object from the database (via the ProductRepository
object’s find() method). Then it displays a page with just this product’s
information by rendering and printing the show.xhtml.twig template. The if

statement in this method tests whether NULL was received from the
repository instead of an object, indicating no product with the provided ID
exists in the database. If so, an error page will be displayed.

Designing the Templates
All that remains is to design the Twig templates for the application’s various
pages. The templates will all extend a common base template that defines
the HTML skeleton for each page and includes the Bootstrap CSS
stylesheets. We’ll write that base template first. Create
templates/base.xhtml.twig containing the Twig code in Listing 28-14.

<html lang="en">

<head>

 <title>MGW - {% block title %}{% endblock %}</title> ❶
 <meta name="viewport" content="width=device-width">

 <link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.

3/dist/css/bootstrap.min.css">

</head>

<body class="container">

<ul class="nav nav-pills"> ❷
 <li class="nav-item">

 <a class="nav-link {% block homeLink %}{% endblock

%}" href="/">Home page

 <li class="nav-item">

 <a class="nav-link {% block productLink %}{% endbloc

k %}"

 href="/?action=products">Product List page

{% block body %} ❸
{% endblock %}

</body></html>

Listing 28-14: The top-level base.xhtml.twig template

The HTML <head> element includes a Twig title block where the
page title can be inserted ❶. Each individual page template will declare its
own title to be appended to the MGW text immediately before this block. The
<head> element also contains a link to download the Bootstrap 5 minimized
stylesheets from https://www.jsdelivr.com.

Inside the HTML <body>, we declare an unordered list styled with the
nav nav-pills CSS class to represent the navigation bar at the top of each
page ❷. We want the bar to include links to the home page and the product
list. We declare each item as a list element styled with the nav-item CSS
class and an anchor link element styled with the nav-link CSS class. The
class declaration for each anchor link element features an empty Twig block
(called homeLink and productLink, respectively), which we can override in
the page templates to add the active CSS class. This way, the current page
will be highlighted in the navigation bar. The base template ends with a
body Twig block, where we’ll fill in the page-specific content ❸.

Now that we have the base Twig template, we can begin declaring the
individual child templates, starting with the home page. Create the new
Twig template templates/home.xhtml.twig containing the code in Listing 28-
15.

{% extends 'base.xhtml.twig' %}

{% block title %}Home page{% endblock %}

{% block homeLink %}active{% endblock %}

{% block body %}

 <h1>Home page</h1>

 <p>

 Welcome to the home page

 </p>

{% endblock %}

Listing 28-15: The home.xhtml.twig template for the home page

We first declare that this template extends the base template. As such,
the file is very short, since we have to fill in only the page-specific content.

https://www.jsdelivr.com/

We override the title block with the text content home page so that the
page’s title will be MGW - home page. Then we override the homeLink block
with the text content active, so the home page link will appear as a colored
button when this template page is displayed. Finally, we override the body
block with a basic heading and paragraph.

Now we’ll create the Twig template for the error page. Enter the
contents of Listing 28-16 into templates/error.xhtml.twig.

{% extends 'base.xhtml.twig' %}

{% block title %}error page{% endblock %}

{% block body %}

 <h1>Error</h1>

 <p class="alert alert-danger">

 {{message}}

 </p>

{% endblock %}

Listing 28-16: The error.xhtml.twig template for the error page

First, we override the title block with the text content error page,
making this page’s title MGW - error page. Then we override the body
block with a heading and paragraph. The paragraph is styled with the alert
alert-danger CSS class to make it a nicely spaced, pink warning message
to the viewer. The text content of this paragraph is the Twig message
variable, which will be passed in via the $args array from the
DefaultController class’s error() method. Figure 28-5 shows this error
page displayed in a web browser.

Figure 28-5: The error page when an integer product ID hasn’t been provided

Next, we’ll create a Twig template for the Product List page in
templates/product/list.xhtml.twig.

To prepare for templates for other model classes, we create a
subdirectory of templates named product, and we will create our templates
for the Product class here. Also, since templates for the Product class are
in this folder, we don’t need to prefix the template names with the class
name. For example, we can name this list template list.xhtml.twig rather
than productList.xhtml.twig and so on.

The code for templates/product/list.xhtml.twig is shown in Listing 28-
17.

{% extends 'base.xhtml.twig' %}

{% block title %}Product List page{% endblock %}

{% block productLink %}active{% endblock %}

{% block body %}

 <h1>Product List page</h1>

 ❶ {% for product in products %}

 id: {{product.id}}

 description: {{ product.description}}

 ❷ price: $ {{product.price | number_format(2)}}

 ❸ (show)

 {% endfor %}

{% endblock %}

Listing 28-17: The list.xhtml.twig template for listing all products

We override the title block with the text content product list page
and override the productLink block with the text content active, much as
we did for the home page. Then, inside the body block, we use a Twig for
loop ❶ to iterate over the Product objects in the products variable,
formatting each one as a list item in an unordered list. (These Product
objects were passed to the template in an array as part of the list() method
of the ProductController class.)

We extract each property of each object individually for display on its
own line, using Twig’s double curly bracket notation. For example,
{{product.id}} accesses the id property of the current Product object.
Notice that we format the product’s price to include two decimal places ❷.
Each product’s list item ends with an anchor link element to show the
details page for just that one product ❸. We insert the product’s ID into the
link’s URL. This ID, in turn, will be passed to the find() method of the
ProductRepository class to retrieve just that product’s information from
the database.

Finally, we’ll create the individual Product Details page template in
templates/product/show.xhtml.twig. Listing 28-18 shows how.

{% extends 'base.xhtml.twig' %}

{% block title %}Product Details page{% endblock %}

{% block body %}

 <h1>Product Details page</h1>

 id: {{product.id}}

 description: {{ product.description}}

 price: $ {{product.price | number_format(2)}}

{% endblock %}

Listing 28-18: The show.xhtml.twig template to display a single product’s details

This template is simpler than the main Product List page template,
since only a single Product object’s properties are being displayed inside
the body block. The object is the Twig product variable that was passed to
this template from the ProductController class’s show() method. Just as
in the Product List page template, we output each of the object’s properties
individually, accessing them via double curly bracket notation.

With that, the application is complete. Try launching it and visiting its
four pages, clicking the (show) link to view the Product Details page about
each product. You should see that the application is able to retrieve all the
products from the database, or just one of the products based on the
appropriate integer ID. You should also be able to toggle between MySQL
and SQLite simply by substituting the Database class with the
SQLiteDatabase class.

Summary
In this chapter, we explored the basics of PHP’s built-in PDO library for
interacting with databases. We used the library to create a database schema
and to insert data into a table. We then retrieved data from a table, mapping
the results of a query to objects of a PHP model class using PDO’s object
fetch mode. We also used prepared SQL statements, which add a layer of
protection against SQL injection attacks.

We integrated our database schema into a well-organized, multipage
web application. The code to manage the database connection was
abstracted into a suitable class, either Database or SQLiteDatabase,
allowing us to switch seamlessly between MySQL and SQLite as the

application’s DBMS. The logic to retrieve data from the database and into
Product objects was encapsulated in the ProductRepository class, front-
controller logic was placed in an Application class, and logic for
displaying simple pages was located in the DefaultController class.
Actions relating to requests for one or many products went into the
ProductController class, which used ProductRepository methods to
query the database.

This architecture could easily be scaled up, with additional repository,
model, and controller classes for other database tables (users, customers,
orders, suppliers, and so on). The entire application was styled using Twig
templating, with a base (parent) template to efficiently share common page
elements across all the individual child templates.

Exercises
1. Create a new model class called Book with the following properties:

id (integer), an auto-incrementing primary key
title (string)
author (string)
price (float)
Create a setup script (based on Listings 28-1 and 28-2) to create a

database with a book table, mapped to the Book class’s properties and
types (use int, text, and float for the SQL data types). Also insert at
least two book records into the database table with title, author, and
price properties of your choice. Then write an object-oriented project (or
adapt the example from this chapter) to retrieve and list all the books
from the database. The project should include the following:

A Database class to create a connection to your database
A public/index.php script that creates an Application object and
invokes its run() method
An Application class with a run() method to get an array of Book
objects and var_dump() them
Your Book model class

2. Extend your project from Exercise 1 as follows:

a. Add getter and setter accessor methods for each property in your
Book class.

b. Change your Application logic to test for an action variable in
the URL. The default action should be to display a home page
using an appropriate template. If the action is books, the
application should display a page with information about all the
books, using an appropriate template.

29
PROGRAMMING CRUD OPERATIONS

In the preceding chapter, we began
developing a database-driven web

application, with a focus on learning how to read data
from the database. However, reading is just one of
the four primary database operations known
collectively as CRUD, short for create, read, update,
delete. In this chapter, we’ll look at the other
components of CRUD as we expand our web
application. We’ll write code that allows users to
change the database data by deleting, adding, or
updating entries through interactive links and web
forms.

Just about any database-driven mobile or web application revolves
around the four CRUD operations. Take an email app as an example: when
you write a new email and send it, this creates an item in the database
representing the receiver of the email, as well as an item in your own
system’s Sent mailbox database. It’s common to read or delete email in

your inbox, and you may also draft an email and then update it later before
sending (or deleting) it.

As we start adding the remaining CRUD features to our web
application, you’ll notice a pattern. Each change will begin with a new case
in the front-controller switch statement inside the Application class,
invoking a new method in the ProductController class. This method, in
turn, will call a new repository class method, where the actual database
interaction will take place. Finally, we’ll update the appropriate page
templates to add the necessary user interface for the new feature.

Deleting Data
Sometimes we need to delete data from a database table. For example, a car
manufacturer may stop making a particular model of a car. The model’s
details might be copied into an archive database table, and then the model is
deleted from the main table of car models. To delete data from a table, we
use the DELETE SQL keyword. If no criteria are given, all records are deleted
from the named table.

When deleting a specific row or rows matching certain criteria, we
need to provide an SQL WHERE clause. For example, to delete the row with
an ID of 4 from a model table, the SQL statement would be as follows:

DELETE FROM model WHERE id = 4

We’ll look at examples of deleting an entire table and selectively
deleting entries from a table in this section.

Deleting Everything from a Table
Let’s first add a feature to our web application from the previous chapter
that deletes all the products from the products table in the database. Figure
29-1 shows the Delete All Products link we’ll create, along with a pop-up
confirmation dialog. It’s always a good idea to offer users a chance to
reconsider and cancel destructive operations such as permanently deleting
data (assuming they have the option to delete data at all).

Figure 29-1: Deleting all products

First, we’ll add a new route to detect a POST submission with the
action =deleteAll variable. Update the run() method in the Application
class to match Listing 29-1.

<?php

namespace Mattsmithdev;

class Application

{

--snip--

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 $isPostSubmission = ($_SERVER['REQUEST_METHOD'] ===

'POST');

 switch ($action)

 {

 --snip--

 case 'deleteAll':

 if ($isPostSubmission) {

 $this->productController->deleteAll();

 } else {

 $this->defaultController->

 error('error - not a POST request');

 }

 break;

 default:

 $this->defaultController->homepage();

 }

 }

}

Listing 29-1: The updated Application class to act on the deleteAll action

We add a new $isPostSubmission variable that will be true if the
received request uses the POST method. While it’s technically possible to
write a web application that changes the server state (such as the database
contents) in response to GET messages, this would violate the definition of
the HTTP GET method. For this reason, we’ll use the POST method and an
HTML <form> element for any database-changing requests (deletions,
creations, or updates) in this chapter.

We next add a new case to the front-controller switch statement for
when the value of action in the URL is 'deleteAll'. When this action is
received through a POST request, we invoke the deleteAll() method of the
ProductController object. If $isPostSubmission is false, we instead use
the defaultController to return an error message to the user.

We’ll define the deleteAll() method next. Update
src/ProductController.php to match the contents of Listing 29-2.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 --snip--

 public function deleteAll(): void

 {

 $this->productRepository->deleteAll();

 $this->list();

 }

}

Listing 29-2: Adding the deleteAll() method to ProductController

We declare the ProductController class’s deleteAll() method to in
turn invoke the deleteAll() method of the ProductRepository class
(which manages communication with the database). Then we invoke the
list() method to make the application display the Product List page, using
the header() function and location URL /?action=products. The user
should therefore see an empty list of products after they’ve all been deleted.

Now we’ll add the deleteAll() method to the ProductRepository
class. Update src/ProductRepository.php as shown in Listing 29-3.

<?php

namespace Mattsmithdev;

class ProductRepository

{

 private ?\PDO $connection = NULL;

 --snip--

 public function deleteAll(): int

 {

 if (NULL == $this->connection) return 0;

 $sql = 'DELETE FROM product';

 $stmt = $this->connection->prepare($sql);

 $stmt->execute();

 ❶ $numRowsAffected = $stmt->rowCount();

 return $numRowsAffected;

 }

}

Listing 29-3: Adding the deleteAll() method to ProductRepository

We declare the deleteAll() method to return an integer value
indicating the number of rows deleted from the database. If the connection
is NULL, we return 0. Otherwise, we declare, prepare, and execute the
'DELETE FROM product' SQL query string, which deletes every entry from
the product table. Then we invoke the rowCount() method of the PDO
statement object ❶, which returns the number of rows affected by the most
recently executed query. We return this integer value at the end of the
method.

Finally, we need to update the template for the Product List page to
offer a link for deleting all the products. Update
templates/product/list.xhtml.twig to match the contents of Listing 29-4.

{% extends 'base.xhtml.twig' %}

{% block title %}product list page{% endblock %}

{% block productLink %}active{% endblock %}

{% block body %}

 <h1>Product list page</h1>

 {% for product in products %}

 --snip--

 {% endfor %}

 <p>

 <form method="POST" action="/?action=deleteAll">

 <button class="btn btn-danger m-1"

 onclick="return confirm('Delete ALL products: Ar

e you sure?');">

 Delete ALL products</button>

 </form>

 </p>

{% endblock %}

Listing 29-4: The list.xhtml.twig template for listing all products

Here we add a paragraph to the end of the template declaring a POST
method form containing a Bootstrap-styled button with the text Delete ALL

products. The action for our controller to receive (deleteAll) is sent
through the form’s action attribute. This button includes a pop-up
confirmation message (launched by the JavaScript confirm() function)
declared in its onclick attribute, so the user will be able to confirm or
cancel the request.

Deleting Individual Items by ID
Just as we can show a particular product based on its ID, we can also use an
ID to specify which individual product to delete from the database. Let’s
add that feature now. Figure 29-2 shows a screenshot of the page we’ll
create: each product in the Product List page will get its own Show and
Delete button-styled links, each triggering a database action based on the
product’s ID.

Figure 29-2: The Show and Delete buttons for an individual product

We first need to add a new route URL pattern of action=delete, where
the ID of the product to be deleted is passed through a POST form
submission as a variable id. Update the Application class code to match
Listing 29-5.

<?php

namespace Mattsmithdev;

class Application

{

--snip--

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 $isPostSubmission = ($_SERVER['REQUEST_METHOD'] ===

'POST');

 switch ($action)

 {

 --snip--

 case 'delete':

 ❶ $id = filter_input(INPUT_POST, 'id',

 FILTER_SANITIZE_NUMBER_IN

T);

 if ($isPostSubmission && !empty($id)) {

 $this->productController->delete($id);

 } else {

 $this->defaultController->error('error -

to delete a

 product an integer id must be pro

vided by a

 POST request');

 }

 break;

 default:

 $this->defaultController->homepage();

 }

 }

}

Listing 29-5: The Application class, updated to act on the delete action

Here we add a new case in the front-controller switch statement for
when the value of action in the URL is 'delete'. In this case, we attempt
to extract an integer variable id from the POST variables received in the
request ❶. If $isPostSubmission is true and the ID isn’t empty, we pass
the ID to the delete() method of the ProductController object.
Otherwise, we pass an appropriate error message to the error() method of
the DefaultController object for display.

To define the delete() method, update src/ProductController.php
according to Listing 29-6.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 --snip--

 public function delete(int $id): void

 {

 $this->productRepository->delete($id);

 $this->list();

 }

}

Listing 29-6: Adding the delete() method to ProductController

The delete() method takes in an integer product ID and passes it to
the delete() method of the ProductRepository object. Then it makes the
application display the Product List page via the list() method. The user

should therefore see the list of products, less the one deleted, after clicking
the link to delete an item.

Now we’ll add the delete() method to the ProductRepository class
in src/ProductRepository.php. Listing 29-7 shows how.

<?php

namespace Mattsmithdev;

class ProductRepository

{

 private ?\PDO $connection = NULL;

 --snip--

 public function delete(int $id): bool

 {

 if (NULL == $this->connection) return false;

 $sql = 'DELETE FROM product WHERE id = :id';

 $stmt = $this->connection->prepare($sql);

 $stmt->bindParam(':id', $id);

 $success = $stmt->execute();

 return $success;

 }

}

Listing 29-7: Adding the delete() method to ProductRepository

The delete() method takes in an integer argument (the ID) and returns
a Boolean indicating the success of the deletion. If the connection is NULL,
we return false. Otherwise, we declare the SQL query string 'DELETE FROM
product WHERE id = :id' to delete just the product with the specified ID.
We then prepare the statement and bind the $id argument to the :id
placeholder. Executing the statement then produces a Boolean success
value, which we store and return.

Finally, we need to update the Product List template to offer the button-
styled Show and Delete links for each product. Modify

templates/product/list.xhtml.twig to match the contents of Listing 29-8.

{% extends 'base.xhtml.twig' %}

{% block title %}product list page{% endblock %}

{% block productLink %}active{% endblock %}

{% block body %}

 <h1>Product list page</h1>

 {% for product in products %}

 <li class="mt-5">

 id: {{product.id}}

 description: {{product.description}}

 price: $ {{product.price | number_format(2)}}

 <a href="/?action=show&id={{product.id}}"

❶ class="btn btn-secondary m-1">Show

 <form method="POST" action="/?action=delete">

 ❷ <input type="hidden" name="id" value="{{prod

uct.id}}">

 <button class="btn btn-danger m-1"

 onclick="return confirm(

 'Delete product with ID =

{{product.id}}:

 Are you sure?');"

 >

 Delete</button>

 </form>

 ❸ {% else %}

 (there are no products to display)

 {% endfor %}

 <p>

 <form method="POST" action="/?action=deleteAll">

--snip--

Listing 29-8: The list.xhtml.twig template offering deletion by ID

We style the existing Show link as a secondary button ❶. Then we
declare a POST submission form with action=delete and a button Delete,
passing id as a hidden variable filling in the product ID with the Twig
{{product.id}} placeholder ❷. As with the Delete ALL products form,
this form button includes a pop-up confirmation message declared in an
onclick attribute, so the user will be able to confirm or cancel the request.
We also add a Twig else block ❸ so that the message (there are no
products to display) is shown if no products are found in the database.

Creating New Database Entries
Let’s turn to the C in CRUD: creating new database entries by using SQL
INSERT statements. For example, here’s an SQL statement that inserts a new
row into a table called cat:

INSERT INTO cat (name, gender, age) VALUES ('fluffy', 'femal

e', 4)

Three values are provided for the name, gender, and age columns. The
INSERT SQL statement requires us to first list the sequence of column
names, and then follow this with the values to be inserted into those
columns.

We touched on how to create new database entries when we first set up
our application’s database with its two initial products in “Setting Up the
Database Schema” on page 543. Now we’ll make the process interactive by
adding a form to our application that allows users to define new products
and submit them to the database. Figure 29-3 shows the form we’ll create.

Figure 29-3: The link to create a new product and its associated form

We’ll add a button link at the bottom of the Product List page to create
a new product. This link will launch a Create NEW Product page with form
fields for submitting the new product’s description and price.

Adding Products Through a Web Form
To offer the Create NEW Product page form feature, we first need to add
two new route actions to the application, one to display the form
(action=create) and one to process the form submission
(action=processCreate). Listing 29-9 shows how to add cases for these
actions to the front controller in the Application class.

<?php

namespace Mattsmithdev;

class Application

{

--snip--

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 $isPostSubmission = ($_SERVER['REQUEST_METHOD'] ===

'POST');

 switch ($action)

 {

 --snip--

 case 'create': ❶
 $this->productController->create();

 break;

 case 'processCreate': ❷
 $description = filter_input(INPUT_POST, 'des

cription');

 $price = filter_input(INPUT_POST, 'price', F

ILTER_SANITIZE_NUMBER_FLOAT,

 FILTER_FLAG_ALLOW_FRAC

TION);

 if ($isPostSubmission && !empty($descriptio

n) && !empty($price)) {❸
 $this->productController->processCreate

($description, $price);

 } else {

 $this->defaultController->error(

 'error - new product needs a description

and price (via a POST request)');

 }

 break;

 default:

 $this->defaultController->homepage();

 }

 }

}

Listing 29-9: Adding the 'create' and 'processCreate' routes to the front controller

First, we add a new case in the front-controller switch statement for
when the value of action in the URL is 'create' ❶. This invokes the
create() method of the ProductController object.

Next, we declare the case for the 'processCreate' action ❷. For that,
we retrieve the description and price values from the POST submission
variables. Notice the use of two filters for the float price variable; the
FILTER_FLAG_ALLOW_FRACTION argument is required to permit the decimal-
point character.

If $isPostSubmission is true and both $description and $price are
not empty ❸, the description and price are passed to the processCreate()
method of the ProductController object. Otherwise, an appropriate error
message will be displayed using the error() method of the
DefaultController object.

This example is assuming that the product database table uses auto-
incrementing to choose a new, unique integer ID when a new row is added,
as demonstrated in Chapter 28. Without this feature, we’d also have to
supply an ID for the new product, perhaps using logic that first finds the
highest current ID in the database and then adds 1 to it.

We’ll now add the create() and processCreate() methods to the
Product Controller class. Update src/ProductController.php to match
Listing 29-10.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 --snip--

 ❶ public function create(): void

 {

 $template = 'product/create.xhtml.twig';

 $args = [];

 print $this->twig->render($template, $args);

 }

 ❷ public function processCreate(string $description, float

$price): void

 {

 $this->productRepository->insert($description, $pric

e);

 $this->list();

 }

}

Listing 29-10: Adding the create() and processCreate() methods to ProductController

The create() method ❶ simply renders the
templates/product/create.xhtml.twig template to display the new product
form (we’ll create this template shortly). The processCreate() method ❷
takes in a string for the new description and a float for the new price and
passes them along to the insert() method of the ProductRepository
object for insertion into the database. Then processCreate() invokes the
Product List page via the list() method so that the user will see the
updated list of products, including the newly created one.

If we were being completely correct, our processCreate() method
would not call the list() method, but instead would force a redirect,
sending a new request to the server to list all products. By not redirecting,
we’ll get a problem: if the user refreshes their browser page after submitting
a form, the form will be submitted a second time. However, adding redirects
now would make our work in the next section more complex, so we’ll just
call the list() method for now and formulate a better redirect solution at
the end of this chapter.

To add the insert() method to the ProductRepository class, update
src/ProductRepository.php as shown in Listing 29-11.

<?php

namespace Mattsmithdev;

class ProductRepository

{

 private ?\PDO $connection = NULL;

 --snip--

 public function insert(string $description, float $pric

e): int

 {

 if (NULL == $this->connection) return -1;

 $sql = 'INSERT INTO product (description, price)'

 . ' VALUES (:description, :price)';

 $stmt = $this->connection->prepare($sql);

 $stmt->bindParam(':description', $description);

 $stmt->bindParam(':price', $price);

 $success = $stmt->execute();

 ❶ if ($success) {

 return $this->connection->lastInsertId();

 } else {

 return -1;

 }

 }

}

Listing 29-11: Adding the insert() method to ProductRepository

The new insert() method takes in a string argument ($description)
and a float argument ($price) and returns an integer—either the ID of the
newly created database record or -1 if no record is created. If the database
connection is NULL, we return -1 right away. Otherwise, we declare and
prepare the SQL query string 'INSERT INTO product (description,
price) VALUES (:description, :price)' to add a new entry to the
product table.

We then bind the $description argument to the :description
placeholder and the $price argument to the :price placeholder before
executing the statement. Finally, we test the Boolean $success value from
the execution ❶. If true, we use the lastInsertId() method of the PDO
connection object to return the ID of the most recently inserted database

entry, which should correspond to the new product. If false, we return -1
instead.

Now let’s revise the Product List page template to include the link for
adding a new product. Update templates/product/list.xhtml.twig to match
the contents of Listing 29-12.

{% extends 'base.xhtml.twig' %}

{% block title %}product list page{% endblock %}

{% block productLink %}active{% endblock %}

{% block body %}

 --snip--

 Delete ALL products</button>

 </form>

 </p>

 <p>

 <a href="/?action=create" class="btn btn-secondary m

-1">

 Create NEW product

 </p>

{% endblock %}

Listing 29-12: Adding the new product link to the list.xhtml.twig template

Here we add a paragraph to the end of the template containing a
Bootstrap button–styled link with the text Create NEW product. The link
triggers the create URL action.

Now let’s add the Twig template to display the Create NEW Product
page form. Create the templates/product/create.xhtml.twig template file
containing the code shown in Listing 29-13.

{% extends 'base.xhtml.twig' %}

{% block title %}create product page{% endblock %}

{% block body %}

 <h1>Create NEW Product page</h1>

 ❶ <form method="POST" action="/?action=processCreate">

 <p>

 Description:

 <input name="description">

 </p>

 <p>

 Price:

 <input name="price" type="number" min="0" step="0.0

1">

 </p>

 <input type="submit">

 </form>

{% endblock %}

Listing 29-13: The create.xhtml.twig template for the new product form

This template presents an HTML form ❶ whose submit action is
action=processCreate, so the submitted values will be passed along to the
processCreate() method of the ProductController class described
earlier. The form contains two paragraphs, for the description and price, and
then a Submit button.

Highlighting the Newly Created Product
When something is changed, it’s helpful to highlight the change to the user.
Let’s update our application to highlight the new product in the product list
after it’s been added to the database. Figure 29-4 shows the effect we want
to achieve; it shows we’ve added a very expensive bag of nails costing
$999!

Figure 29-4: Displaying the newly created product with a highlighted background

To implement this feature, we can take advantage of the return value
from the ProductRepository class’s insert() method, which we declared
in the preceding section. This value indicates the ID of the newly created
product, so we can add logic to the application to highlight the product
whose ID matches this value. First, we need to update the
ProductController class, shown in Listing 29-14.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 public function list(?int $newProductId = NULL): void

 {

 $products = $this->productRepository->findAll();

 $template = 'product/list.xhtml.twig';

 $args = [

 'products' => $products,

 ❶ 'id' => $newProductId

]

 print $this->twig->render($template, $args);

 }

 --snip--

 public function processCreate(string $description, float

$price): void

 {

 $newProductId =

 $this->productRepository->insert($description,

$price);

 $this->list($newProductId);

 }

}

Listing 29-14: Updating the list() and update() methods in the ProductController class

We update the list() method (which displays the complete product
list) to take in an optional $newProductId parameter with a default value of
NULL. We pass this parameter to the Twig Product List template, along with
the array of products ❶. Next, we update the processCreate() method to
receive the new product ID returned from insert() and pass it along to the
list() method.

Now we can update the Product List template to highlight the product
matching the id variable passed to the template. Since the product IDs start
at 1 and auto-increment, a value of -1 will never match an object retrieved
from the database, so the list() method’s default $newProductId

parameter value of -1 will result in no products being highlighted. Modify
templates/product/list.xhtml.twig as shown in Listing 29-15.

{% extends 'base.xhtml.twig' %}

{% block title %}product list page{% endblock %}

{% block productLink %}active{% endblock %}

{% block body %}

 <h1>Product list page</h1>

 {% for product in products %}

 ❶ {% if id == product.id %}

 {% set highlight = 'active' %}

 {% else %}

 {% set highlight = '' %}

 {% endif %}

 ❷ <li class="{{highlight}}">

 id: {{product.id}}

--snip--

{% endblock %}

Listing 29-15: Updating the list.xhtml.twig template to highlight the newly added product
within the list

We’ve added a Twig if statement inside the loop through the products
that sets the Twig highlight variable to 'active' if the ID of the current
product matches the received Twig variable id ❶. Otherwise, the
highlight variable is set to an empty string. We include the value of
highlight in the CSS style classes for each list item ❷, so each product
will either be highlighted or not, as appropriate.

Finally, we need to add a <style> element for the active CSS class in
the base template. Update /templates/product/base.xhtml.twig according to

Listing 29-16.

<!doctype html>

<html lang="en">

<head>

 <title>MG- - {% block title %}{% endblock %}</title>

 <meta name="viewport" content="width=device-width">

 <link rel="stylesheet"

 href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.

3/dist/css/bootstrap.min.css">

 <style>

 li.active {background-color: pink;}

 </style>

</head>

<body class="container">

--snip--

Listing 29-16: Declaring a <style> element in the base.xhtml.twig Twig template

In the <head> element, we add a CSS rule that active list items should
have a pink background.

Updating a Database Entry
The last CRUD operation to explore is the U for update. This operation is
necessary since the data in a database constantly needs to be changed to
reflect changes in the real world, such as a person’s new address, the
increase in the price of a product, a user changing their subscription status,
and so on. To modify an existing record in a table, we can use the SQL
UPDATE keyword. For example, here’s an SQL statement that changes the
age of a cat to 5, for the row whose ID is 1:

UPDATE cat SET age = 5 WHERE id = 1

Let’s add a way to update an existing product to our web application.
Much like creating a new product, we’ll do this through a web form. Figure

29-5 shows how this new feature will work.

Figure 29-5: Updating an existing product

We’ll add an Edit button to each product in the Product List page,
which will take the user to an Edit Product page with form fields to modify
the product’s description and price (the ID will be read-only). These fields
will start out with the current values filled in. Once the changes are
submitted, the newly updated product will be highlighted on the Product
List page.

To implement this feature, we must first add two new route actions, one
to display the editing form (action=edit) and one to process the form
submission (action=processEdit). Listing 29-17 adds these two new cases
to the front controller in the Application class.

<?php

namespace Mattsmithdev;

class Application

{

--snip--

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 $isPostSubmission = ($_SERVER['REQUEST_METHOD'] ===

'POST');

 switch ($action)

 {

 --snip--

 case 'edit': ❶
 $id = filter_input(INPUT_GET, 'id', FILTER_S

ANITIZE_NUMBER_INT);

 if (empty($id)) {

 $this->defaultController->error(

 'error - To edit a product, an int

eger ID must be provided');

 } else {

 $this->productController->edit($id);

 }

 break;

 case 'processEdit': ❷
 $id = filter_input(INPUT_POST, 'id', FILTER_

SANITIZE_NUMBER_INT);

 $description = filter_input(INPUT_POST, 'des

cription');

 $price = filter_input(INPUT_POST, 'price', F

ILTER_SANITIZE_NUMBER_FLOAT,

 FILTER_FLAG_ALLOW_FRAC

TION);

 if ($isPostSubmission && !empty($id) && !emp

ty($description)

 && !empty($price)) {

 $this->productController->processEdit($i

d, $description, $price);

 } else {

 $this->defaultController->error(

 'error - Missing data (or not POST metho

d) when trying to update product');

 }

 break;

 default:

 $this->defaultController->homepage();

 }

 }

}

Listing 29-17: Adding the 'edit' and 'processEdit' routes to the front controller

We add a new case in the front-controller switch statement for when
the value of action in the URL is 'edit' ❶. As with the 'show' and
'delete' cases, we attempt to extract an integer id variable from the URL-
encoded variables received in the request. If the value of id is empty, we
display an appropriate error message by passing a string message to the
error() method of the DefaultController object. If the value isn’t empty,
we pass it to the edit() method of the ProductController object.

Next, we add the 'processEdit' case ❷, which starts by retrieving id,
description, and price from the POST submitted variables. If
$isPostSubmission is true and all three variables (id, description, and
price) aren’t empty, we pass the values to the processEdit() method of
the ProductController object. Otherwise, we again display an appropriate
error message by using the error() method of the DefaultController
object.

Now we’ll add the new methods to the ProductController class.
Update src/ProductController.php to match the contents of Listing 29-18.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 --snip--

 public function edit(int $id): void

 {

 ❶ $product = $this->productRepository->find($id);

 $template = 'product/edit.xhtml.twig';

 $args = [

 'product' => $product

];

 print $this->twig->render($template, $args);

 }

 public function processEdit(int $id, string $descriptio

n,

 float $price): void

 {

 ❷ $this->productRepository->update($id, $description,

$price);

 $this->list($id);

 }

}

Listing 29-18: Adding the edit() and processEdit() methods to ProductController

The edit() method uses the provided integer $id argument to retrieve
a single Product object from the database ❶. Then it passes this object to
the /templates/product/edit.xhtml.twig template, which displays the form for
editing the product. The processEdit() method takes in an $id integer,
$description string, and $price float and passes them to the update()
method of the ProductRepository object ❷. Then it makes the application
display to the Product List page via the list() method. As with the
processCreate() method, we pass the ID of the updated product to list()
so that product will be highlighted.

Listing 29-19 shows how to add the new update() method to the
ProductRepository class.

<?php

namespace Mattsmithdev;

class ProductRepository

{

 private ?\PDO $connection = NULL;

 --snip--

 public function update(int $id, string $description, flo

at $price): bool

 {

 if (NULL == $this->connection) return false;

 $sql = 'UPDATE product SET description = :descriptio

n, price = :price WHERE id=:id';

 $stmt = $this->connection->prepare($sql);

 $stmt->bindParam(':id', $id);

 $stmt->bindParam(':description', $description);

 $stmt->bindParam(':price', $price);

 $success = $stmt->execute();

 return $success;

 }

}

Listing 29-19: Adding the update() method to the ProductRepository class

The update() method takes in a product’s ID, description, and price,
and returns a Boolean value indicating the success or failure of the update.
If the database connection is NULL, then false is returned. Otherwise, we
declare the SQL query string 'UPDATE product SET description =
:description, price = :price WHERE id=:id', using the WHERE clause
with the object’s ID to specify the particular database row to be updated.
After preparing the statement, we bind the $id, $description, and $price
variables to their corresponding placeholders.

Then we execute the statement and return the resulting Boolean success
value. Note that we’re returning a Boolean here, rather than the product ID
as we did previously for the insert() method. The difference here is that
the calling method already knows the product ID in question, so it’s

sufficient to simply return the true/false success of executing the database
update statement.

Now we need to offer an Edit button for each product on the Product
List page. Update the templates/product/list.xhtml.twig file as shown in
Listing 29-20.

--snip--

{% block body %}

 <h1>Product list page</h1>

 --snip--

 <li class="{{highlight}}">

 id: {{product.id}}

 description: {{product.description}}

 price: $ {{product.price | number_format(2)}}

 <a href="/?action=show&id={{product.id}}"

 class="btn btn-secondary m-1">Show

 <a href="/?action=edit&id={{product.id}}"

 class="btn btn-secondary m-1">Edit

 --snip--

{% endblock %}

Listing 29-20: Adding an Edit button to the list.xhtml.twig template

Inside the Twig for loop for the current product, we add a Bootstrap
button–styled link with the text Edit. This link for the edit action includes
the id of the current product.

Finally, let’s add the Twig template to display the form to edit the
details of a product. Create templates/product/edit.xhtml.twig containing the
code shown in Listing 29-21.

{% extends 'base.xhtml.twig' %}

{% block title %}edit product page{% endblock %}

{% block body %}

 <h1>Edit Product page</h1>

 ❶ <form method="POST" action="/?action=processEdit">

 <p>

 ID:

 ❷ <input name="id" value="{{product.id}}" readonly

>

 </p>

 <p>

 Description:

 <input name="description" value="{{product.descr

iption}}">

 </p>

 <p>

 Price:

 <input name="price" value="{{product.price}}" type

="number"

 min="0" step="0.01">

 </p>

 <input type="submit">

 </form>

{% endblock %}

Listing 29-21: The edit.xhtml.twig template for the form to edit a product

The main work of this template is to present an HTML form ❶ whose
submit action is action=processEdit, so the submitted values will go to
the processEdit() method of the ProductController class described
earlier. This form contains three paragraphs, for the ID, description, and
price, and then a Submit button. The ID, description, and price form inputs
are populated with the values of the Product object for those properties.
The ID input has the readonly attribute; since we don’t want the user to be
able to edit this value, it’s displayed but isn’t editable ❷.

Avoiding Double Form Submission with Redirects
In our current implementation, we call the list() method after processing
a form submission to add or edit a product. By passing a product ID to this
method, we can make our template highlight the product that’s been created
or updated. If the user were to refresh their browser page after submitting a
form, however, the browser would attempt to submit the form data a second
time by repeating the HTTP POST request. We can avoid this problem by
making the server redirect to request the Product List page after a form
submission (a GET request for the URL /?action=products). If the page is
refreshed, this GET request to list all products will be repeated rather than
the POST request. This technique is sometimes called the post-redirect-get
(PRG) pattern.

Let’s update our application to use this redirect approach. Rather than
passing the product ID as an argument to the list() method, we’ll need to
store the ID in the $_SESSION array. As we discussed in Chapter 14, this is a
special array for storing data about the user’s current browser session. First,
we’ll update the list() method and add a new session helper method in
src/ProductController.php, as shown in Listing 29-22.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 --snip--

 public function list(): void

 {

 $products = $this->productRepository->findAll();

 ❶ $id = $this->getIdFromSession();

 $template = 'product/list.xhtml.twig';

 $args = [

 'products' => $products,

 'id' => $id

];

 print $this->twig->render($template, $args);

 }

 private function getIdFromSession(): ?int

 {

 $id = NULL;

 ❷ if (isset($_SESSION['id'])) {

 $id = $_SESSION['id'];

 // Remove it now that it's been retrieved

 unset($_SESSION['id']);

 }

 return $id;

 }

}

Listing 29-22: Updating the list() method and adding getIdFromSession() to the
ProductController class

The list() method no longer has any parameters as input. Instead we
attempt to retrieve an ID from the session by using the
getIdFromSession() method ❶. This method initializes the $id variable to
NULL, then tests whether the $_SESSION array contains a variable with a key
of 'id' ❷. If such a key exists, its value is retrieved and stored in $id, then
that element of the array is unset so that it will no longer be stored in the
session once retrieved. The method returns the value of $id, which will be
either NULL or the value retrieved from the session.

Now we can update the ProductController class methods to use
redirects after storing the ID in the session. Update these methods in
src/ProductController.php as shown in Listing 29-23.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 --snip--

 public function delete(int $id): void

 {

 $this->productRepository->delete($id);

 ❶ $location = '/?action=products';

 header("Location: $location");

 }

 public function deleteAll(): void

 {

 $this->productRepository->deleteAll();

 $location = '/?action=products';

 header("Location: $location");

 }

 --snip--

 public function processCreate(string $description, float

$price): void

 {

 $newObjectId =

 $this->productRepository->insert($description,

$price);

 ❷ $_SESSION['id'] = $newObjectId;

 $location = '/?action=products';

 header("Location: $location");

 }

 --snip--

 public function processEdit(

 int $id, string $description, float $price): void

 {

 $this->productRepository->update($id, $description,

$price);

 // Store ID of product to highlight in the SESSION

 ❸ $_SESSION['id'] = $id;

 $location = '/?action=products';

 header("Location: $location");

 }

}

Listing 29-23: Updating the POST action methods to use redirects in ProductController

Both the delete() and deleteAll() methods have been updated to use
the built-in header() function to redirect the server to process a GET request
for the URL /?action=products ❶. This value of action will result in the
products being listed by our list() method.

We’ve also updated processCreate() to store the ID of the newly
created product ($newObjectId) in the session with key 'id' ❷. Then it
redirects the server to process a GET request for the URL /?
action=products. Likewise, we’ve updated the processEdit() method to
store the ID of the edited product’s ID ($id) in the session with the key
'id' ❸ and to redirect to /?action=products in the same way. We’ve now
improved our web application to properly redirect after processing a POST
form submission, so a refresh of the browser will not result in a repeat
submission of the form data.

Since we’re storing the ID in the session, we have to ensure that the
session is started by our front-controller index script each time a request is
received. Update /public/index.php as shown in Listing 29-24.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

session_start();

use Mattsmithdev\Application;

$app = new Application();

$app->run();

}

Listing 29-24: Updating index.php to ensure that sessions are active for our web application

We now call the session_start() function before any actions are
taken. This ensures that our web application can store and retrieve values
from the user’s HTTP session.

Summary
In this chapter, we explored the full range of standard database operations:
creating, reading, updating, and deleting entries, collectively known as
CRUD. As in the preceding chapter, we used prepared statements for all our
database queries, making it easy to bind parameters to the four actions such
as deleting a row by its ID or inserting new values into multiple fields of a
database entry.

We continued to see how much of the architecture of a database-driven
web application is identical to that of a non-database application. The core
of our code is focused around a front controller interrogating the requests
received from the web client and invoking appropriate controller methods.
By encapsulating our database actions in a repository class, we were able to
keep the logic in our controller classes focused on responding to requests by
arranging data and rendering the appropriate Twig template.

We also saw how forms for creating and updating database rows are
presented and processed just like any other web form, only now the data is
passed to the repository method to work with the database. We then saw
how to improve the system by using redirects after processing form
submissions to avoid a repeat of the form actions if the browser page
happens to be refreshed.

Exercises
1. Open a web application you regularly use, such as a social media app or

e-commerce site. Explore the actions available to you as a user and
reflect on which CRUD operations are being executed for each action.

How is data coming from and being saved to the database sitting behind
the web application you’re using?

2. Create a CRUD web application for Book objects with these properties:
id (integer), an auto-incrementing primary key
title (string)
author (string)
price (float)
You can either create a new project from scratch or reuse classes

from this chapter and the Chapter 28 exercises. I suggest you follow this
sequence when incrementally adding CRUD features to your
application:
a. List all objects.
b. List one object, given an ID.
c. Delete all objects.
d. Delete one object, given an ID.
e. Create a new object.
f. Edit an object, given an ID.

30
ORM LIBRARIES AND DATABASE SECURITY

In this chapter, we’ll explore techniques
that make working with databases

easier and more secure. First, much of the CRUD
code in repository classes can become tedious and
repetitive to write, varying only in terms of the names
of the model classes and their properties. Object-
relational mapping (ORM) libraries relieve this
problem, automating lower-level work like preparing
and executing SQL queries based on the way an
application’s model classes are named and structured.
You’ll see how to use such a library to simplify or
replace our repository classes with just a few lines of
code. We’ll start by adding a simple ORM library to
our example web application, then later integrate the
professional-grade Doctrine ORM library with the
project.

On the security front, adopting on ORM library will push us to remove
any hardcoded database credentials from our code, instead placing those
credentials in a separate data file. We’ll also explore best practices for
handling login information in a web application, including using password
hashing to avoid storing plaintext passwords in a database. As you’ll see,
PHP provides built-in functions that make this process straightforward.

Simplifying Database Code with an ORM Library
One approach to making web applications communicate with databases is
to design and write the necessary low-level code from scratch for each
project. This includes the code to connect to database servers, create
schemas and tables, and perform the four CRUD operations so that the
database tables can store the data to support the application. Implementing
this code requires careful analysis of the project requirements, especially
the requirements for which data needs to be persisted to a database. The
result is code that’s tailored to the application at hand and can be written for
computational efficiency to maximize speed.

We’ve followed this approach of designing and writing custom,
application-specific database code in the last few chapters. It’s been helpful
for learning about how to work with a database, but it also comes with
disadvantages. First, it takes time to design, write, and test code for every
new application. Second, if the application requirements change, both the
web application’s database communication code and the database structure
itself need to be changed accordingly. Finally, any new developers joining a
software team for an ongoing project will have to learn all the details of the
system’s design to communicate with the database.

An alternative approach is to use an ORM library to abstract away the
lower-level work of communication with the database. ORM libraries use
the structure and associations of an application’s model classes (often with a
little additional metadata) to automatically create and update the structure
of the corresponding database tables. If changes in the application
requirements lead to changes in the model classes (perhaps new model
classes are added, or existing classes are given new properties or
associations), then the ORM library can automatically update the database

table structures accordingly and manage updated database queries based on
the new model class declarations.

ORM libraries can be less computationally efficient than custom-
written low-level database communication code. If speed isn’t the most
important feature for a web application, however, they have several
strengths. For one, the database structure and queries are updated as soon as
the model classes are updated, which streamlines the coding process. Also,
if the project uses a well-known, industrial-standard ORM library, new
developers joining a project will likely already be familiar with the
abstracted ways to use the ORM library to handle database operations.

Before we get into the details of how to use an ORM library, let’s
consider an example that illustrates this approach’s benefits, compared to
using custom code. Listing 30-1 shows an excerpt of the
ProductRepository class developed in the previous two chapters.

<?php

namespace Mattsmithdev;

class ProductRepository

{

 private ?\PDO $connection = NULL;

 public function __construct()

 {

 $db = new Database();

 $this->connection = $db->getConnection();

 }

 public function findAll(): array

 {

 if (NULL == $this->connection) return [];

 $sql = 'SELECT * FROM product';

 $stmt = $this->connection->prepare($sql);

 $stmt->execute();

 $stmt->setFetchMode(\PDO::FETCH_CLASS, 'Mattsmithdev

\\Product');

 $products = $stmt->fetchAll();

 return $products;

 }

 public function find(int $id): ?Product

 {

 if (NULL == $this->connection) return NULL;

 $sql = 'SELECT * FROM product WHERE id = :id';

 $stmt = $this->connection->prepare($sql);

 $stmt->bindParam(':id', $id);

 $stmt->execute();

 $stmt->setFetchMode(\PDO::FETCH_CLASS, 'Mattsmithdev

\\Product');

 $product = $stmt->fetch();

 return $product;

 }

 --snip--

}

Listing 30-1: Some of the contents of the ProductRepository class

We developed this class manually, meaning we had to implement
lower-level methods such as a constructor to retrieve a database connection
and CRUD methods such as findAll() and find() to prepare and execute
SQL queries. Compare this code with Listing 30-2, which declares an
equivalent ProductRepository class with the help of an ORM library.

<?php

namespace Mattsmithdev;

use Mattsmithdev\PdoCrudRepo\DatabaseTableRepository;

class ProductRepository extends DatabaseTableRepository

{

}

Listing 30-2: A ProductRepository class inheriting from an ORM library

For straightforward database interactions, an ORM library can do
almost all the work for us. Instead of implementing custom methods in the
repository class, we simply inherit those methods from an ORM library
superclass (in this case, DatabaseTableRepository). The superclass is
designed to use reflection, a technique of inspecting the classes and objects
it interacts with, such as the Product model class. Then the superclass uses
what it finds to generate SQL queries suitable for objects of those classes.

In the coming sections, we’ll explore how this works in more detail by
using a simple ORM library, one that I maintain as an open source project
on GitHub. Later we’ll also try out an industrial-strength ORM library
called Doctrine, one of the most popular ORM libraries available for
modern PHP. For now, though, take a moment to appreciate how much
shorter the ORM-assisted ProductRepository class declaration is than the
manually coded version.

Adding an ORM Library to a Project
Let’s extend our database-driven web application from the previous
chapters to work with a simple ORM library called pdo-crud-for-free-
repositories that I maintain (https://github.com/dr-matt-smith/pdo-crud-
for-free-repositories). It has limited features but is straightforward to use,
making it a good tool for introducing the basics of ORM libraries. To get
started, enter the following at the command line to add the library to the
project:

$ composer require mattsmithdev/pdo-crud-for-free-repositori

es

This will add a mattsmithdev folder inside vendor containing the library
code.

At the time of this writing, the released version of the pdo-crud-for-
free -repositories is compatible only with MySQL, so we’ll focus on

https://github.com/dr-matt-smith/pdo-crud-for-free-repositories
https://github.com/dr-matt-smith/pdo-crud-for-free-repositories

the MySQL version of our web application rather than the SQLite version.

Moving Database Credentials to a .env File
The ORM library we’re using requires all our database credentials to be
declared in a file named .env, commonly known as a dotenv file, rather than
hardcoded in the Database class where we currently have them. Dotenv
files are human-readable text files defining name/value pairs necessary for a
program to run; other common file types for such variables include XML
and YAML. This requirement is not a bad thing, since it also makes the
application more secure.

Typically, we’d exclude dotenv files when using version-control
systems such as Git so that when code is archived or pushed to open source
projects, sensitive database credentials won’t be included. This reduces the
chance of a security breach from code being published or distributed to
unauthorized people. Another advantage of this approach is that different
environments can be set up in multiple dotenv files, such as for local
development, remote development, testing, and live production systems.

To satisfy this ORM library requirement, create a file called .env and
save it in the main project directory. Enter the contents of Listing 30-3 into
the file, changing values such as the password and port to match the
MySQL server properties running on your computer.

MYSQL_USER=root

MYSQL_PASSWORD=password

MYSQL_HOST=127.0.0.1

MYSQL_PORT=3306

MYSQL_DATABASE=demo1

Listing 30-3: The database credentials in the .env file

These MySQL attributes were all previously defined as constants in our
Database class. We can now delete the Database class from our project,
since the ORM library comes with its own class for managing the
connection with the database, based on the information in the dotenv file.

Relegating Product Operations to the ORM Library
Now that the ORM library has access to the database, we can shift
responsibility for all CRUD operations relating to the product table from
our ProductRepository class to the ORM library. We’ll still use the
ProductRepository class, but as hinted earlier, instead of manually filling
it with methods that prepare and execute SQL statements, we’ll simply
declare it to be a subclass of one of the ORM library classes. Replace the
contents of src/ProductRepository.php with the code shown in Listing 30-4.

<?php

namespace Mattsmithdev;

use Mattsmithdev\PdoCrudRepo\DatabaseTableRepository;

class ProductRepository extends DatabaseTableRepository

{

}

Listing 30-4: The much-simplified ProductRepository class

The use statement specifies that we want to refer to the
DatabaseTableRepository class in the Mattsmithdev\PdoCrudRepo
namespace. Then we declare ProductRepository as a subclass of
DatabaseTableRepository, with no code whatsoever in the class body.
And that’s it! We now have a working ProductRepository class with just
those few lines of code. It will inherit all the methods declared in the
DatabaseTableRepository superclass that happen to follow the same
naming convention we used previously: find(), findAll(), delete(),
deleteAll(), and so on.

But how does the DatabaseTableRepository class know that we want
it to work with a product table with id, description, and price fields?
This is where reflection comes into play. The DatabaseTableRepository
class uses this technique to infer the details about how to construct
appropriate SQL statements based on the classes and objects it comes into
contact with. In this case, the reflection code assumes that the
ProductRepository repository class manages database methods for a

model class in the same namespace called Product, and that a
corresponding product table in the database has fields matching the
property names of the Product class. As long as all the names align, the
ORM library will be able to do its job.

For the reflection process to work, the DatabaseTableRepository
methods need to receive objects of the appropriate model class, rather than
free- floating variables as we’d previously designed the CRUD methods in
Chapter 29. To finalize the shift to the ORM library, we therefore need to
refactor our ProductController class to pass in Product objects when
calling the insert() and update() methods to process new and updated
products. Change the src/ProductController.php file as shown in Listing 30-
5.

<?php

namespace Mattsmithdev;

class ProductController extends Controller

{

 private ProductRepository $productRepository;

 --snip--

 public function processCreate(string $description, float

$price): void

 {

 $product = new Product();

 $product->setDescription($description);

 $product->setPrice($price);

 ❶ $newObjectId = $this->productRepository->insert($pro

duct);

 $_SESSION['id'] = $newObjectId;

 $location = '/?action=products';

 header("Location: $location");

 }

 --snip--

 public function processEdit(int $id, string $descriptio

n,

 float $price): void

 {

 ❷ $product = $this->productRepository->find($id);

 $product->setDescription($description);

 $product->setPrice($price);

 $this->productRepository->update($product);

 $_SESSION['id'] = $id;

 $location = '/?action=products';

 header("Location: $location");

 }

}

Listing 30-5: The updated src/ProductController.php class

In the revised processCreate() method, we first create a new Product
object and set its description and price properties to the values passed
into the method. We then pass this Product object to the
ProductRepository object’s insert() method to add the new product to
the database ❶. The ORM library assumes that every database table has an
auto-incrementing primary key named id, so no value for the product ID is
needed when creating a new row in the database. We make a similar change
to the processEdit() method, using the id to get a reference to the
Product object to be updated ❷, setting the other properties received from
the form, and passing the object reference to the repository class’s update()
method.

Run the web server and you should now see the web application is
working just as before, but with significantly less code! In this way,
working with an ORM library greatly simplified the task of executing
standard database CRUD operations.

NOTE

Before moving on, make a copy of your project at this point. In “The
Doctrine ORM Library” on page 615, we’ll modify that copy to use
Doctrine.

Adding a New Database Table
Now that we’ve incorporated the ORM library into the project, let’s expand
our web application by adding another table to the database. With the
library handling all the CRUD operations, the process will be much more
efficient than our effort in Chapter 29 to get CRUD working for the
product table. When we look at security in “Security Best Practices” on
page 608, we’ll discuss best practices for handling passwords, so we’ll go
ahead and add a user table storing username and password information.

Along with the new database table, we’ll need a User model class, a
UserRepository repository class (so named to match the ORM library’s
requirements), a UserController controller class, and a page for displaying
all the users. Figure 30-1 shows that page. Of course, this page exists just to
illustrate that the database methods are working; displaying a list of
usernames and passwords is not an example of secure web development.

Figure 30-1: The User List page

We’ll start by declaring the User model class. Add a src/User.php file
containing the code in Listing 30-6 to the project.

<?php

namespace Mattsmithdev;

class User

{

 private int $id;

 private string $username;

 private string $password;

 public function getId(): int

 {

 return $this->id;

 }

 public function setId(int $id): void

 {

 $this->id = $id;

 }

 public function getUsername(): string

 {

 return $this->username;

 }

 public function setUsername(string $username): void

 {

 $this->username = $username;

 }

 public function getPassword(): string

 {

 return $this->password;

 }

 public function setPassword(string $password): void

 {

 $this->password = $password;

 }

}

Listing 30-6: The User class

The class has an integer id property (a requirement for the ORM
library) and string properties for username and password. We declare
standard getter and setter methods for each of these properties.

Now we’ll create the UserRepository class in src/UserRepository.php.
As with ProductRepository, we’ll have this class extend the ORM
library’s DatabaseTableRepository class. Listing 30-7 shows the code.

<?php

namespace Mattsmithdev;

use Mattsmithdev\PdoCrudRepo\DatabaseTableRepository;

class UserRepository extends DatabaseTableRepository

{

}

Listing 30-7: The simple UserRepository class

We don’t need to declare any methods for this repository class, since it
will inherit all the necessary CRUD methods from the
DatabaseTableRepository class. Thanks to the naming of the
UserRepository and User classes, these CRUD methods will know to work
with the user table in the database.

Next, let’s create a UserController class, with a method to retrieve all
users from the database and display them with a Twig template. Create
src/UserController.php containing the code in Listing 30-8.

<?php

namespace Mattsmithdev;

class UserController extends Controller

{

 private UserRepository $userRepository;

 public function __construct()

 {

 parent::__construct();

 $this->userRepository = new UserRepository();

 }

 public function list(): void

 {

 ❶ $users = $this->userRepository->findAll();

 $template = 'user/list.xhtml.twig';

 $args = [

 'users' => $users,

];

 print $this->twig->render($template, $args);

 }

}

Listing 30-8: The UserController class declaring a list() method

We declare UserController as a subclass of Controller so that it will
inherit a twig property for rendering templates. We declare a private
userRepository property and initialize it in the constructor (where we also
must first invoke the parent Controller class’s constructor to set up the
twig property). We then declare a list() method, which uses the
UserRepository object’s findAll() method (inherited from the ORM
library) to retrieve all users from the database ❶. The results are returned as
an array of objects, which we store as $users. We pass this array as the
Twig variable users for rendering by the templates/user/list.xhtml.twig
template.

Now we’ll add a navigation bar link for the User List page to the base
Twig template that all other templates inherit from. Update
templates/base.xhtml.twig to match the contents of Listing 30-9.

<!doctype html>

<html lang="en">

--snip--

<body class="container">

<ul class="nav nav-pills">

 <li class="nav-item">

 <a class="nav-link {% block homeLink %}{% endblock

%}"

 href="/">Home page

 <li class="nav-item">

 <a class="nav-link {% block productLink %}{% endbloc

k %}"

 href="/?action=products">Product List page

 <li class="nav-item">

 <a class="nav-link {% block userLink %}{% endblock

%}"

 href="/?action=users">User List page

{% block body %}

{% endblock %}

</body></html>

Listing 30-9: Adding a user list link to /templates/base.xhtml.twig

Here we add a navigation list item with the text User List page. The
anchor element has an action of users, and its CSS class attribute declares
an empty Twig block called userLink. As with the other navigation bar
items, this block can be overridden with the text active to highlight the
link.

With the base template updated, we can now create the
templates/user/list.xhtml.twig child template for the User List page. Listing
30-10 shows how.

{% extends 'base.xhtml.twig' %}

{% block title %}User List page{% endblock %}

❶ {% block userLink %}active{% endblock %}

{% block body %}

 <h1>User List page</h1>

 ❷ {% for user in users %}

 <li class="mt-5">

 id: {{user.id}}

 username: {{ user.username}}

 password: {{ user.password}}

 {% endfor %}

{% endblock %}

Listing 30-10: The list.xhtml.twig template

In this template, we override the userLink block to contain the text
active ❶, highlighting the User List page link in the navigation bar. In the
body block, we use a Twig for loop ❷ to iterate through the users array,
creating a list item for each user displaying the associated ID, username,
and password.

Now we need to add a case for the action=users route to our front-
controller Application class. Update src/Application.php to match the
contents of Listing 30-11.

<?php

namespace Mattsmithdev;

class Application

{

 private DefaultController $defaultController;

 private ProductController $productController;

 private UserController $userController;

 public function __construct()

 {

 $this->defaultController = new DefaultController();

 $this->productController = new ProductController();

 $this->userController = new UserController();

 }

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 $isPostSubmission = ($_SERVER['REQUEST_METHOD'] ===

'POST');

 switch ($action)

 {

 case 'products':

 $this->productController->list();

 break;

 case 'users':

 $this->userController->list();

 break;

 --snip--

}

Listing 30-11: Adding a route to the user list in the Application class

We declare a userController property and initialize it as a new
UserController object in the constructor. Then, in the switch statement,
we declare a case for when the action is 'users', invoking the list()
method of the UserController object.

All we need to do now is add the user table to the database schema and
insert user rows into the table. Create a new helper script,
db/setup_users.php, as shown in Listing 30-12.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\User;

use Mattsmithdev\UserRepository;

$userRepository = new UserRepository();

❶ $userRepository->resetTable();

$user1 = new User();

$user1->setUsername('matt');

$user1->setPassword('password1');

$userRepository->insert($user1);

$user2 = new User();

$user2->setUsername('john');

$user2->setPassword('password2');

$userRepository->insert($user2);

$users = $userRepository->findAll();

print '<pre>';

var_dump($users);

print '</pre>';

Listing 30-12: The setup script for the user table in /db/setup_users.php

When we first set up the product table in Chapter 28, we had to
manually type out and execute each SQL statement to add a new row to the
database. Now we can instead build each row as an instance of the User
class and add it to the table by calling the insert() method of the
UserRepository class (inherited from the ORM library). In this script, we
do that for two users, assigning them usernames and passwords.

First, though, we invoke the UserRepository class’s resetTable()
method ❶, which drops any existing table mapped to the User class and
creates a new table based on the names and data types of the User class.
This is another “free” method automatically available to our repository
class through inheritance from the ORM library’s
DatabaseTableRepository class. To confirm the database table has been
created and two User records have been inserted, the script ends by
retrieving all users from the database with the findAll() method and
printing them with var_dump().

Enter php db/setup_users.php at the terminal to run this setup script.
You should see the following output:

$ php db/setup_users.php

<pre>array(2) {

 [0]=> object(Mattsmithdev\User)#8 (3) {

 ["id":"Mattsmithdev\User":private]=> int(1)

 ["username":"Mattsmithdev\User":private]=> string(4) "ma

tt"

 ["password":"Mattsmithdev\User":private]=> string(9) "pa

ssword1"

 }

 [1]=> object(Mattsmithdev\User)#9 (3) {

 ["id":"Mattsmithdev\User":private]=> int(2)

 ["username":"Mattsmithdev\User":private]=> string(4) "jo

hn"

 ["password":"Mattsmithdev\User":private]=> string(9) "pa

ssword2"

 }

}

The terminal output shows an array containing two User objects, proof
that the user database table has been added to the database schema,
complete with two users. At this point, you can also launch the web
application again and visit the User List page. It should look like Figure 30-
1.

By working with my pdo-crud-for-free-repositories library,
we’ve seen how using an ORM library can remove the need to code low-
level database queries. This reduces the amount of code required for each
individual web application, simplifying the development process. We’ll
continue to use this library as we turn our attention to application security,
but later we’ll return to the topic of ORM libraries to see the added benefits
of working with a more sophisticated library like Doctrine.

Security Best Practices
Security is an essential part of software development, both in your local
development environment and when deploying web applications to the real
world as public websites. Perhaps the most common manifestation of
security a user meets these days is a username/password login form. We’ll
explore best practices for securing login information in this section.

Storing Hashed Passwords
You should never store plaintext passwords in your application’s database.
Otherwise, if someone gets access to the database, all those accounts would
be compromised. One option for securely storing data is to encrypt it,
encoding data in such a way that it can be decoded back to its original form
at a later time. When sending confidential messages, for example, it’s
common to encrypt them first and to provide the intended recipient with the
method for decrypting the message once received. For passwords, however,
encryption isn’t the best solution; if the database were accessed, brute-force

techniques could allow attackers to eventually decrypt the data (although
depending on the speed of their computers, it might take a long time).

A better technique for password storage is hashing. This is an
irreversible way of creating a new piece of data from the original data;
there’s no way to reconstruct the plaintext password from the hashed
version. The same password passed through the same hash algorithm will
always yield the same hash, however. When a user is logging into an
application, you can therefore test whether their password is valid by
hashing what they’ve entered and comparing it with the hash stored in the
database. With this mechanism, there’s no need to ever store the original
plaintext password.

Let’s make our web application more secure by storing hashes rather
than plaintext passwords in the user database table. Conveniently, modern
PHP offers a built-in password_hash() function for calculating the hash of
a string. We’ll change the setPassword() method of the User entity class to
take advantage of this function. Update src/User.php to match the contents
of Listing 30-13.

<?php

namespace Mattsmithdev;

class User

{

 private int $id;

 private string $username;

 private string $password;

 --snip--

 public function setPassword(string $password): void

 {

 $hashedPassword = password_hash($password, PASSWORD_

DEFAULT);

 $this->password = $hashedPassword;

 }

}

Listing 30-13: Storing a hashed password in the User class

The revised setPassword() method takes in the plaintext password for
a new user and passes it to the password_hash() function for hashing. The
PASSWORD_DEFAULT constant means the function will use the strongest
hashing algorithm available in the installed version of PHP, though there are
other constants for explicitly choosing a particular hashing algorithm. We
store the hash in the $hashedPassword variable and assign this as the value
of the User object’s password property.

With this change, any new User objects created and passed to the
database will contain hashed rather than plaintext passwords. To prove it,
rerun our user table setup script by entering php db/setup_users.php at
the command line. This will delete and re-create the table with the modified
User class. Here’s the resulting var_dump() output in the terminal:

$ php db/setup_users.php

<pre>array(2) {

 [0]=> object(Mattsmithdev\User)#8 (3) {

 ["id":"Mattsmithdev\User":private]=> int(1)

 ["username":"Mattsmithdev\User":private]=> string(4) "ma

tt"

 ["password":"Mattsmithdev\User":private]=> string(60)

 "$2y$10$k25neEiR.2k8j4gM7Gn6aeiHK8T7ZNgS18QUVsTdm592fGfN

23SZG"

 }

 [1]=> object(Mattsmithdev\User)#9 (3) {

 ["id":"Mattsmithdev\User":private]=> int(2)

 ["username":"Mattsmithdev\User":private]=> string(4) "jo

hn"

 ["password":"Mattsmithdev\User":private]=> string(60)

 "$2y$10$telY8TmtAD7a/niym3/W5OvlKIFbu.CYOfrX0u3yRKdPEyD1

V6KRi"

 }

}

The black text lines show the hashes in each password field. Each hash
is a long character string that has no discernible relationship with the
original password.

Verifying Hashed Passwords at Login
Another useful built-in PHP function is password_verify(), which takes in
a plaintext password, hashes it, and compares it with an existing hash to
determine whether the password is correct. With this function, we can
implement a login page for our application, where the user inputs a
username and password for verification against their record in the user
database table. Figure 30-2 shows the login page we’ll create.

Figure 30-2: The new login page

Our application will need two new routes, one to request display of the
login page (action=login) and one to request processing of the submitted
data from the login form (action=processLogin). First, we’ll add cases for
these routes to our front-controller Application class. Update the switch
statement in src/Application.php to match Listing 30-14.

<?php

namespace Mattsmithdev;

class Application

{

 --snip--

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 $isPostSubmission = ($_SERVER['REQUEST_METHOD'] ===

'POST');

 switch ($action)

 {

 case 'login':

 $this->userController->loginForm(); ❶
 break;

 case 'processLogin':

 $username = filter_input(INPUT_POST, 'userna

me');

 $password = filter_input(INPUT_POST, 'passwo

rd');

 if (empty($username) || empty($password))

{❷
 $this->defaultController->error(

 'error - you must enter both a usern

ame and a password to login');

 } else {

 $this->userController->processLogin($use

rname, $password); ❸
 }

 break;

--snip--

}

Listing 30-14: Adding login routes to the Application class

For the 'login' case, we invoke the loginForm() method of the
UserController object ❶. For the 'processLogin' case, we first attempt
to extract the 'username' and 'password' values from the variables
received in the POST request. If either is empty ❷, an appropriate error
message is displayed by passing a string message to the error() method of
the DefaultController object. Otherwise, the username and password are
passed to the processLogin() method of the UserController object ❸.

Now we need to add the new methods to the UserController class.
Update src/UserController.php as shown in Listing 30-15.

<?php

namespace Mattsmithdev;

class UserController extends Controller

{

--snip--

 public function loginForm(): void

 {

 $template = 'user/login.xhtml.twig';

 $args = [];

 print $this->twig->render($template, $args);

 }

 public function processLogin(string $username, string $p

assword): void

 {

 ❶ $loginSuccess = $this->isValidUsernamePassword($user

name, $password);

 if ($loginSuccess) {

 print 'success - username and password found in

database';

 } else {

 print 'sorry - there was an error with your user

name/password';

 }

 }

 private function isValidUsernamePassword($username, $pas

sword): bool

 {

 ❷ $user = $this->userRepository->findOneByUsername($us

ername);

 // False if no user for username

 if ($user == NULL) {

 return false;

 }

 // See if entered password matches stored (hashed) o

ne

 ❸ return password_verify($password, $user->getPassword

());

 }

}

Listing 30-15: Adding login methods to the UserController class

For the loginForm() method, we simply render the appropriate Twig
template, which doesn’t require any arguments. For the processLogin()
method, we take in the received $username and $password variables and
pass them to the isValidUsernamePassword() helper method ❶, which
returns a Boolean. If true, we print a success message, or an error message
if false. In a full web application, at this stage, we would store the login
success in the session as we did in Chapter 16.

The isValidUsernamePassword() helper is responsible for
determining whether the database holds a record matching the received
username and password. First, we call the UserRepository class method
findOneByUsername(), which attempts to retrieve a record (in the form of a
User object) from the user table matching the provided username ❷. If a
single user can’t be retrieved, findOneByUsername() returns NULL, in which
case the validation method returns false. Otherwise, we call PHP’s built-in
password_verify() function, passing it the submitted password
($password) and the correct password hash (accessed with the User object’s
getPassword() method) ❸. The password_verify() function hashes the
provided plaintext password and returns a Boolean indicating whether it
matches the provided hash.

TIMING ATTACKS

You may be wondering why PHP’s password_verify() function exists. Couldn’t we
just use password_hash() on the submitted password and compare the resulting

string with the correct password hash stored in the database? We could, but that
would open up the application to a security vulnerability known as a timing attack.

Simple string-comparison functions examine two strings character by character
and return false as soon as they encounter a pair of characters that don’t match.
The longer the function takes before returning false, the more characters at the start
of the strings must have matched. In timing attacks, hackers use this fact to their
advantage by deliberately entering incorrect passwords with known hashes and
measuring how long the application takes to report these passwords as incorrect.
Based on the timings, they can infer information about the correct hash.

The password_verify() function is specially designed to guard against timing
attacks. After hashing the input password, it uses a constant-time function to
compare it with the stored hash. The comparison takes the same amount of time no
matter how many characters do or don’t match, so no information about the stored
hash is exposed.

Now let’s write the findOneByUsername() method for the
UserRepository class. Update src/UserRepository.php to match the code in
Listing 30-16.

<?php

namespace Mattsmithdev;

use Mattsmithdev\PdoCrudRepo\DatabaseTableRepository;

class UserRepository extends DatabaseTableRepository

{

 public function findOneByUsername(string $username): ?Us

er

 {

 $users = $this->searchByColumn('username', $usernam

e);

 if (count($users) != 1) {

 return NULL;

 }

 return $users[0];

 }

}

Listing 30-16: Adding the findOneByUsername() method to the UserRepository class

The new findOneByUsername() method has a nullable ?User return
type. It uses the searchByColumn() method inherited from the ORM
library, which takes in a column name ('username') and a value (in the
$username variable) and returns an array of records where the value in that
column of the database table is a match. If the resulting array doesn’t have a
length of exactly 1 (either because it’s empty or because multiple records
were retrieved), findOneByUsername() returns NULL. However, if a single
user matches the submitted username string, the corresponding User object
is returned.

Note that the logic in this method could have been made part of the
isValidUsernamePassword() method in UserController, but what’s
needed is a query for a user with a given username, which is a model
database query. It therefore makes sense to create this as a custom method
in our UserRepository class, where all the code for querying the user
database table lives. It’s also worth highlighting that even though we’re
relying on an ORM library for generic methods such as find() and
findAll(), it’s often still necessary to extend a repository class with
custom database methods that support the more specialized controller logic
specific to the application at hand. In this case, we need to search by the
username column rather than id, so the inherited find() method wouldn’t
do. The ORM library is still helping us through the searchByColumn()
method, but we still need the custom logic of verifying that exactly one
User object has been retrieved.

Next, we’ll add a login page link to the navigation bar in the base
template. Update templates/base.xhtml.twig as shown in Listing 30-17.

<!doctype html>

<html lang="en">

--snip--

<body class="container">

<ul class="nav nav-pills">

 --snip--

 <li class="nav-item">

 Login

{% block body %}

{% endblock %}

</body></html>

Listing 30-17: Adding a login link to the base.xhtml.twig template

Here we add a navigation list item with the text Login and a URL route
of action=login. With that added, we can create the child template for the
login page itself in /templates/user/login.xhtml.twig. Listing 30-18 shows
the code.

{% extends 'base.xhtml.twig' %}

{% block title %}login page{% endblock %}

{% block body %}

 <h1>Login</h1>

 <form method="POST" action="/?action=processLogin">

 <p>

 Username:

 <input name="username">

 </p>

 <p>

 Password:

 ❶ <input name="password" type="password">

 </p>

 <input type="submit">

 </form>

{% endblock %}

Listing 30-18: The login.xhtml.twig template

The body of the page features a <form> element with a POST action of
processLogin. The form features fields for a username and password, along

with a Submit button. Notice that the password input is of type "password"
❶. With this setting, the browser will display placeholder characters such
as dots or asterisks, hiding the actual characters the user enters.

Try testing out the new login form with the username matt and
password password1, or with any incorrect username/password
combination. Thanks to PHP’s secure, handy password_verify() function,
you should find that the form works, even though the database is storing
password hashes rather than plaintext passwords.

Securing Database Credentials
Another important security measure for web applications is to avoid
exposing your database credentials. Whether you declare these credentials
as class constants or in a completely separate file such as .env, as we did
earlier in the chapter, it’s important not to have them in any public-facing
files.

To begin, you should have only a single file for your credentials. If
you’re using class constants rather than a .env file, I recommend having a
completely separate class that just declares the constants. Then you can
reference this class from your Database class (or whatever other class is
responsible for establishing the database connection).

Next, mark the file containing your credentials to be ignored by any
backup or archiving system. For example, if you’re using the Git distributed
version control system, you’d list this file in your project’s .gitignore file.

The Doctrine ORM Library
The open source Doctrine project is a well-maintained, fully featured PHP
ORM library. It’s widely used; for example, the Symfony framework uses
Doctrine for all database communications. My small ORM library is fine
for small projects and for learning the basics, but for larger projects with
many interrelated model classes, Doctrine is a more robust, sophisticated
solution. Some of its features include easily facilitating object-to-object
references that become foreign keys in the database schema and providing
low-level control of the database table and column names beyond the
default naming conventions.

After Listing 30-5 (before adding the User model class), you were
asked to make a copy of your project. (Don’t worry if you didn’t make a
copy of your project at that point; you can copy my listing30-05 from the
book codes at https://github.com/dr-matt-smith/php-crash-course.) The
coming sections will show you how to adapt that copy of the project to use
Doctrine rather than my pdo-crud-for-free-repositories ORM library.

Removing the Previous ORM Library
First, let’s remove the previous ORM library features from the project.
Enter the following at the command line to remove the pdo-crud-for-free
-repositories library from the project’s /vendor folder and composer.json
project dependencies file:

$ composer remove mattsmithdev/pdo-crud-for-free-repositorie

s

We also need to remove the references to the old library’s
DatabaseTableRepository class from the ProductRepository class
declaration. Listing 30-19 shows how to update the src/UserRepository.php
file.

<?php

namespace Mattsmithdev;

class ProductRepository

{

}

Listing 30-19: The ProductRepository class, without inheriting from the ORM library

For now, we’re left with an empty class declaration, but later we’ll
return to the class and integrate it with Doctrine.

Adding Doctrine
Now we’ll use Composer to add the Doctrine ORM library to the project,
along with two other required libraries. Enter the following at the command
line:

https://github.com/dr-matt-smith/php-crash-course

$ composer require doctrine/orm

$ composer require symfony/cache

$ composer require symfony/dotenv

Doctrine requires a cache to aid its performance, and symfony/cache is
the recommended choice. Additionally, symfony/dotenv will make it easy
to access values from the project’s .env file.

Next, we need to connect Doctrine with the database. Create a script in
the project’s top-level directory named bootstrap.php, containing the code
in Listing 30-20. This script is based on Doctrine’s documentation pages at
https://www.doctrine-project.org.

<?php

require_once "vendor/autoload.php";

use Doctrine\DBAL\DriverManager;

use Doctrine\ORM\EntityManager;

use Doctrine\ORM\ORMSetup;

use Symfony\Component\Dotenv\Dotenv;

❶ $dotenv = new Dotenv();

$dotenv->load(__DIR__ . '/.env');

// Get Doctrine to create DB connection

$connectionParams = [

 'dbname' => $_ENV['MYSQL_DATABASE'],

 'user' => $_ENV['MYSQL_USER'],

 'password' => $_ENV['MYSQL_PASSWORD'],

 'host' => $_ENV['MYSQL_HOST'],

 'driver' => 'pdo_mysql',

];

$config = ORMSetup::createAttributeMetadataConfiguration(

 paths: [__DIR__.'/src'],

 isDevMode: true,

);

❷ $connection = DriverManager::getConnection($connectionParam

https://www.doctrine-project.org/

s, $config);

❸ $entityManager = new EntityManager($connection, $config);

Listing 30-20: The bootstrap.php script to set up Doctrine

We read in the Composer autoloader, create a Dotenv object to load the
database credentials from the project’s .env file ❶, and package those
credentials into a $connectionParams array. We then use this array and
some Doctrine static methods to establish a database connection ❷ and
create an EntityManager object ❸. The EntityManager class is key to the
way Doctrine works; the class maintains the link between the model class
objects in the PHP code and their corresponding database table rows
defined with unique primary keys.

Any other script that reads in bootstrap.php will now have access to a
database connection through the $connection variable and to Doctrine’s
entity manager through the $entityManager variable.

Verifying That Doctrine Is Working
Before we go any further, let’s make sure Doctrine is successfully linked
with the project’s database. Listing 30-21 shows a simple script that tests
Doctrine by retrieving Product objects from the database as an associative
array. Save this script as public/doctrine1.php.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

require_once __DIR__ . '/../bootstrap.php';

$sql = 'SELECT * FROM product';

$stmt = $connection->executeQuery($sql);

$result = $stmt->fetchAllAssociative();

// Print results

foreach ($result as $row) {

 print "ID: {$row['id']}, Description: {$row['descriptio

n']}\n";

}

Listing 30-21: The doctrine1.php script to retrieve existing rows from the database

After reading in the autoloader and the Doctrine bootstrap script, we
create an SQL query to select all rows from the product database table,
then execute the query by using the Doctrine database connection (in the
$connection variable). The results are returned as a nested array; each
inner array maps the column names to the values in a particular row of the
product database table. We loop through this array and print each row. If
you run this public/doctrine1.php script, you should see the following
output:

ID: 1, Description: bag of nails

ID: 2, Description: bucket

We’ve successfully retrieved the two products from the database,
indicating that Doctrine is up and running.

Creating Database Tables
One of Doctrine’s strengths is its ability to update the structure of a
database based on the classes it encounters in the application’s PHP code,
creating new tables and columns as needed. To see how this works, let’s
switch our project over to a new, empty database. Then we can use Doctrine
to create the product table from scratch.

To begin, open the project’s .env file and change the value associated
with the MYSQL_DATABASE key to demo2. Next, we need to write a script to
create this new demo2 database schema. Create db/create_database.php and
enter the contents of Listing 30-22.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Symfony\Component\Dotenv\Dotenv;

use Doctrine\DBAL\DriverManager;

$dotenv = new Dotenv(); ❶
$dotenv->load(__DIR__ . '/../.env');

$connectionParams = [

 'user' => $_ENV['MYSQL_USER'],

 'password' => $_ENV['MYSQL_PASSWORD'],

 'host' => "{$_ENV['MYSQL_HOST']}:{$_ENV['MYSQL_PORT']}",

 'driver' => 'pdo_mysql',

];

try {

 // Get connection

 $connection = DriverManager::getConnection($connectionPa

rams); ❷

 $databaseNames = $connection->createSchemaManager()->lis

tDatabases();

 $databaseExists = array_search($_ENV['MYSQL_DATABASE'],

$databaseNames); ❸
 // Drop database if exists already

 if ($databaseExists) {

 $connection->createSchemaManager()->dropDatabase($_E

NV['MYSQL_DATABASE']);

 }

 // Create database

 $connection->createSchemaManager()->createDatabase($_ENV

['MYSQL_DATABASE']); ❹

 print "succeeded in (re)creating database: {$_ENV['MYSQL

_DATABASE']}\n";

} catch (Exception $e) {❺
 print "there was a problem creating the database: $e";

}

Listing 30-22: The db/create_database.php script to create the database named in the .env
file

We use a Dotenv object ❶ to read the database credentials from the
.env file and create an array of connection parameters. Then, inside a
try...catch block, we create a connection to the MySQL database server
by using Doctrine’s DriverManager::getConnection() method ❷. We

then get an array of all the database names and search that array for the
database name from our .env file, storing the result (true or false) in the
$databaseExists variable ❸.

If the database exists, we drop it by using the dropDatabase() method.
Then we create the database anew by using the createDatabase() method
❹ and print a success message. If any Exception is caught ❺, we print an
error message instead. Run this script and you should now have a new,
empty database schema called demo2.

The basic usage of Doctrine is to run a command line script that reads
metadata about model classes in the PHP code (called entity classes in
Doctrine’s parlance) and executes SQL statements to create corresponding
structures in the database schema. The command line script is usually
placed in a file called /bin/doctrine (without the.php file extension). Create
this file as shown in Listing 30-23.

<?php

require_once __DIR__ . '/../bootstrap.php';

use Doctrine\ORM\Tools\Console\ConsoleRunner;

use Doctrine\ORM\Tools\Console\EntityManagerProvider\SingleM

anagerProvider;

ConsoleRunner::run(new SingleManagerProvider($entityManage

r), []);

Listing 30-23: The /bin/doctrine command line script

This script invokes the run() method of Doctrine’s ConsoleRunner
class. The method takes in the arguments from the command line and uses
them to run whatever Doctrine command has been entered after
bin/doctrine in the terminal. Let’s run this script to try updating the new
database schema. Enter php bin/doctrine orm:schema-tool:create at
the command line. You should see the following output:

$ php bin/doctrine orm:schema-tool:create

[OK] No Metadata Classes to process.

The script hasn’t done anything because we haven’t yet added any of
the necessary metadata for Doctrine to know which model classes and
properties should be mapped to which database tables and columns. We’ll
now add metadata to the Product model class so that Doctrine will have a
table to create in the database. As you’ll see, each metadata tag is preceded
by a hash mark (#) and enclosed in square brackets. Modify the
src/Product.php file as shown in Listing 30-24.

<?php

namespace Mattsmithdev;

use Doctrine\ORM\Mapping as ORM;

❶ #[ORM\Entity]

#[ORM\Table(name: 'product')]

class Product

{

 ❷ #[ORM\Id]

 #[ORM\Column(type: 'integer')]

 #[ORM\GeneratedValue]

 private ?int $id;

 #[ORM\Column(type: 'string')]

 private string $description;

 #[ORM\Column()]

 private float $price;

 --snip--

}

Listing 30-24: Adding Doctrine metadata to the Product class

To keep the metadata easier to read, we start with a use statement
aliasing the Doctrine\ORM\Mapping class as ORM. Then we add metadata to
the class itself and to each of its properties. We declare the class as an
Entity ❶, indicating that it should correspond to a database table, and
specify that this table should be named product. Without the latter,

Doctrine would default to Product (starting with a capital letter) as the table
name, to match the class name.

For the class’s id property, the Id tag indicates that this property should
be used as the primary key ❷, Column indicates the property should
correspond to a column in the database table, and GeneratedValue means
the property should be auto-incremented in the database system. For the
remaining properties, all we need is the Column tag. Notice that we can
either specify the database column’s data type as part of the Column tag or
let Doctrine guess the appropriate data type.

With this metadata added, we can run our Doctrine command line
script again. First, let’s add the --dump-sql option, which will show the
SQL that Doctrine would execute, without actually executing it yet:

$ php bin/doctrine orm:schema-tool:create --dump-sql

CREATE TABLE product (id INT AUTO_INCREMENT NOT NULL, descri

ption VARCHAR(255)

NOT NULL, price DOUBLE PRECISION NOT NULL, PRIMARY KEY(id))

DEFAULT CHARACTER

SET utf8 COLLATE `utf8_unicode_ci` ENGINE = InnoDB;

This shows that Doctrine will issue SQL code to create a product table
with an auto-incrementing integer primary key id, a text description, and
a floating-point price. Exactly what we want! Now run the command line
script again without the --dump-sql option to execute that SQL:

$ php bin/doctrine orm:schema-tool:create

! [CAUTION] This operation should not be executed in a produ

ction environment!

Creating database schema...

[OK] Database schema created successfully!

Doctrine has now created the product table in the demo2 database
schema.

Adding Records to a Table
Now that we’ve used Doctrine to map our Product class to the product
database table, we can create new Product objects and store their data in
the database. Listing 30-25 shows the public/doctrine2.php script to do this.
Add this file to the project.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

require_once __DIR__ . '/../bootstrap.php';

use Mattsmithdev\Product;

❶ $product1 = new Product();

$product1->setDescription("small hammer");

$product1->setPrice(4.50);

$entityManager->persist($product1);

$entityManager->flush();

// Retrieve products from Database

❷ $productRepository = $entityManager->getRepository(Product::

class);

$products = $productRepository->findAll();

foreach ($products as $product) {

 print "Product OBJECT = ID: {$product->getId()}, "

 . "Description: {$product->getDescription()}\n";

}

Listing 30-25: The public/doctrine2.php script to insert and retrieve a database row

We create a Product object ❶ and set its description and price. Then
we use the Doctrine EntityManager object to add this product’s data to a
queue (the persist() method) and insert the object into the database (the
flush() method).

To confirm this has worked, we use EntityManager to create and get a
reference to a Doctrine repository object for the Product class ❷. This is a
custom repository object linking the Product class with the records in the

product database table. We use this repository object to retrieve all the
records (in this case, just the one) from the table with the object’s
findAll() method. Then we loop through the resulting $products array
and print each object. Here’s the output of running this script:

Product OBJECT = ID: 1, Description: small hammer

This output confirms that Doctrine has successfully added the "small
hammer" object to the product database table.

Integrating Doctrine into the Application Code
All the code is in place now to integrate the Doctrine ORM library into our
main web application so that we can easily map objects and database table
rows. First, to minimize changes required throughout the application code,
we’ll add a helper class called OrmHelper that manages access to the
Doctrine EntityManager instance. Listing 30-26 shows how to declare this
class in src/OrmHelper.php.

<?php

namespace Mattsmithdev;

use Doctrine\ORM\EntityManager;

class OrmHelper

{

 private static EntityManager $entityManager;

 public static function getEntityManager(): EntityManager

 {

 return self::$entityManager;

 }

 public static function setEntityManager(

 EntityManager $entityManager): void

 {

 self::$entityManager = $entityManager;

 }

}

Listing 30-26: The OrmHelper class storing and providing access to the $entityManager
property

This class declares a private static entityManager property, with public
static getters and setters. We use static members to allow retrieval of a
reference to the Doctrine EntityManager object from anywhere in our
application code (after the variable has been set), without having to create
an object or pass an object reference down through several constructor
methods when creating the application, controller, or repository classes.

Notice that the setter method takes in a reference to an EntityManager
object and passes it along to the class’s entityManager property. We’ve
already created that reference in the bootstrap.php script, so we just need to
read in the bootstrap script before invoking the setter method. We’ll do that
now by updating the public/index.php script as shown in Listing 30-27.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

❶ require_once __DIR__ . '/../bootstrap.php';

session_start();

use Mattsmithdev\Application;

❷ use Mattsmithdev\OrmHelper;

OrmHelper::setEntityManager($entityManager);

$app = new Application();

$app->run();

Listing 30-27: Updating the index.php script to bootstrap Doctrine and store the
EntityManager object reference

We add a require_once statement to read and run our Doctrine
bootstrap script ❶. We add a use statement so that we can refer to the
OrmHelper class in our code ❷. Then we store a reference to the script’s

EntityManager object by calling the setEntityManager() static method of
our OrmHelper class. This means the EntityManager object is now
available anywhere in our web application logic via the public static method
OrmHelper::getEntityManager().

Finally, we need to fill out our ProductRepository class, which we left
as an empty class declaration when we switched over to Doctrine. Our
ProductController class expects ProductRepository to have CRUD
methods like find(), findAll(), insert(), delete(), and so on. Listing
30-28 shows how to update src/ProductRepository.php accordingly.

<?php

namespace Mattsmithdev;

use Doctrine\ORM\EntityManager;

use Doctrine\ORM\EntityRepository;

use Mattsmithdev\Product;

class ProductRepository extends EntityRepository

{

 private EntityManager $entityManager;

 public function __construct()

 {

 ❶ $this->entityManager = OrmHelper::getEntityManager

();

 $entityClass = Product::class;

 $entityMetadata = $this->entityManager->

 getClassMetadata($entityClass);

 ❷ parent::__construct($this->entityManager, $entityMet

adata);

 }

 public function insert(Product $product): int

 {

 $this->entityManager->persist($product);

 $this->entityManager->flush();

 return $product->getId();

 }

 public function update(Product $product): void

 {

 $this->entityManager->persist($product);

 $this->entityManager->flush();

 }

 public function delete(int $id): void

 {

 $product = $this->find($id);

 $this->entityManager->remove($product);

 $this->entityManager->flush();

 }

 public function deleteAll(): void

 {

 $products = $this->findAll();

 foreach ($products as $product) {

 $this->entityManager->remove($product);

 }

 $this->entityManager->flush();

 }

}

Listing 30-28: Updating ProductRepository with Doctrine-based CRUD methods

We declare ProductRepository as a subclass of
Doctrine\ORM\EntityRepository. This means it will inherit methods such
as find() and findAll() from its parent. The class declares one instance
variable, an EntityManager object, which is assigned its value in the
constructor via our OrmHelper class ❶. The remaining lines in the
constructor retrieve the required metadata about the Product class and pass
it along to the parent class’s constructor to tailor the repository class to the
product table ❷.

We continue the class by declaring the remaining CRUD methods our
application expects. For insert() and update(), we use the persist() and
flush() methods of the EntityManager object methods to add or modify a

database record. The delete() method uses the remove() and flush()
methods of the EntityManager object to remove a record. Finally, the
deleteAll() method retrieves all objects with the inherited findAll()
method, then loops through them to remove each one from the database.

Creating Foreign-Key Relationships
It may seem like we’ve done a lot of work to incorporate Doctrine while
gaining little or no functionality beyond the previous ORM library.
However, we can begin to see some of the real power of the Doctrine ORM
library when we start creating foreign-key relationships between database
tables and their corresponding model classes. In our code, we establish this
relationship by adding a property to a model class whose value is a
reference to an object of another model class. With the right metadata,
Doctrine can see this relationship and generate all the SQL needed to realize
it in the database.

To illustrate, let’s add a Category model class to our project along with
the equivalent category database table. Then we’ll modify the Product
model class so that each product is associated with a category. In the
process, we’ll see how Doctrine manages the foreign-key relationship
behind this association. Listing 30-29 shows the src/Category.php script
declaring the new Category class.

<?php

namespace Mattsmithdev;

use Doctrine\ORM\Mapping as ORM;

#[ORM\Entity]

❶ #[ORM\Table(name: 'category')]

class Category

{

 #[ORM\Id]

 #[ORM\Column(type: 'integer')]

 ❷ #[ORM\GeneratedValue]

 private ?int $id;

 #[ORM\Column(type: 'string')]

 private string $name;

 public function getId(): ?int

 {

 return $this->id;

 }

 public function setId(?int $id): void

 {

 $this->id = $id;

 }

 public function getName(): string

 {

 return $this->name;

 }

 public function setName(string $name): void

 {

 $this->name = $name;

 }

}

Listing 30-29: The Category model class, including Doctrine ORM metadata

The initial metadata before the class name indicates that this simple
model class (or Doctrine entity) should correspond to a database table
called category ❶. The class has two properties: a unique integer id and a
string name. As with the Product class, we include a tag specifying that id
is to be autogenerated by the database ❷. For each property, we declare
basic getter and setter methods.

Now let’s add a category property to the Product class so that each
Product object will be associated with one Category object. Listing 30-30
shows how to modify src/Product.php.

<?php

namespace Mattsmithdev;

use Doctrine\ORM\Mapping as ORM;

#[ORM\Entity]

#[ORM\Table(name: 'product')]

class Product

{

 #[ORM\Id]

 #[ORM\Column(type: 'integer')]

 #[ORM\GeneratedValue]

 private ?int $id;

 #[ORM\Column(type: 'string')]

 private string $description;

 #[ORM\Column()]

 private float $price;

 ❶ #[ORM\ManyToOne(targetEntity: Category::class)]

 private Category|NULL $category = NULL;

 public function getCategory(): ?Category

 {

 return $this->category;

 }

 public function setCategory(?Category $category): void

 {

 $this->category = $category;

 }

 --snip--

}

Listing 30-30: Adding a category property to the Product class

We declare the category property as either NULL or a reference to a
Category object, and give it public getter and setter methods. The metadata
attribute preceding the property ❶ tells Doctrine that this field in the
database should hold a foreign-key reference to a row in the category table.
Here ManyToOne indicates that the foreign key establishes a many-to-one

relationship, where many products can be of the same category, and
targetEntity sets the model class (and database table) on the other end of
the relationship.

Since we’ve changed the structure of the Product model class, as well
as adding the new Category class, we need Doctrine to update the structure
of the database accordingly. First, let’s use our bin/doctrine command-line
script to drop the old product table from the database schema:

$ php bin/doctrine orm:schema-tool:drop --force

[OK] Database schema dropped successfully!

This drops all tables from the schema (in our case, that’s just the
product table). Now we’ll use the command-line script again to create the
database schema anew, complete with the product and category tables and
the foreign-key relationship between them. As before, we’ll first use the --
dump-sql option to view the SQL statements Doctrine wants to run:

$ php bin/doctrine orm:schema-tool:create --dump-sql

CREATE TABLE category (id INT AUTO_INCREMENT NOT NULL, name

VARCHAR(255)

NOT NULL, PRIMARY KEY(id))

--snip--

CREATE TABLE product (id INT AUTO_INCREMENT NOT NULL, catego

ry_id INT DEFAULT

NULL, description VARCHAR(255) NOT NULL, price DOUBLE PRECIS

ION NOT NULL,

INDEX IDX_1x (category_id), PRIMARY KEY(id))

--snip--

ALTER TABLE product ADD CONSTRAINT FK_1x FOREIGN KEY (catego

ry_id) REFERENCES

category (id);

This shows that Doctrine will issue SQL code to create the category
and product tables, where product has a category_id field with a
foreign-key reference to a category database row. Real-world databases

abound with foreign-key references like this, and here we see how Doctrine
excels at managing the SQL for these relationships so we don’t have to.

Run the command-line script once more without the --dump-sql option
to execute the SQL statements and create these related database tables. To
make sure the related tables have been successfully created in the database,
we’ll write a one-off script creating related Product and Category objects,
saving them to the database, and retrieving them. Listing 30-31 shows
public/doctrine3.php implementing these actions. Add this file to your
project.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

require_once __DIR__ . '/../bootstrap.php';

use Mattsmithdev\ProductRepository;

use Mattsmithdev\OrmHelper;

OrmHelper::setEntityManager($entityManager);

// -- Create 2 categories ---

$category1 = new \Mattsmithdev\Category();

$category1->setName('HARDWARE');

$entityManager->persist($category1);

$category2 = new \Mattsmithdev\Category();

$category2->setName('APPLIANCES');

$entityManager->persist($category2);

// Push category objects into DB

❶ $entityManager->flush();

// -- Create 2 products ---

$productRepository = new ProductRepository();

$productRepository->deleteAll();

$product1 = new \Mattsmithdev\Product();

$product1->setDescription("small hammer");

$product1->setPrice(4.50);

$product1->setCategory($category1);

$productRepository->insert($product1);

$product2 = new \Mattsmithdev\Product();

$product2->setDescription("fridge");

$product2->setPrice(200);

$product2->setCategory($category2);

$productRepository->insert($product2);

// Retrieve products from Database

❷ $products = $productRepository->findAll();

if (empty($products)) {

 print 'no products found in DB';

} else {

 foreach ($products as $product) {

 print "Product OBJECT = ID: {$product->getId()}, "

 . "Description: {$product->getDescription()} //

"

 . "Category = {$product->getCategory()->getName

()}\n";

 }

}

Listing 30-31: The public/doctrine3.php script to insert related records into the database

We create two Category objects for HARDWARE and APPLIANCES, then
store them in the database by using the Doctrine EntityManager object
from the bootstrap script. Notice that we call the persist() method on each
Category object individually, then call the flush() method once ❶;
flush() will batch-process any operations that have been queued up for it
with methods like persist(). We next use our ProductRepository class to
create and insert two Product objects into the database, one for each
category. Then we retrieve an array of all the products from the database
with the ProductRepository class’s findAll() method ❷. If the array
isn’t empty, we loop through it and print each product. Here’s the output of
running this script:

Product OBJECT = ID: 1, Description: small hammer // Categor

y = HARDWARE

Product OBJECT = ID: 2, Description: fridge // Category = AP

PLIANCES

Each product is shown with its associated category. With just a little bit
of metadata in the Product model classes (the Doctrine ManyToOne attribute
added before the category property), we’ve created a whole database of
foreign-key declaration and storage mapping.

Overall, although switching from my simple ORM library to Doctrine
added complexity to the code, such as the need for a bootstrap script and
metadata tags in the model classes, Doctrine comes with added benefits like
increased flexibility and support for foreign-key relationships. Using a
popular ORM library like Doctrine for a project also means that developers
you collaborate with will be more likely to already be familiar with its
operations, which can save time in code development and maintenance.
Another advantage of ORM libraries like Doctrine is that they allow you to
seamlessly switch from one DBMS to another (such as from MySQL to
PostgreSQL), without any of your core web application code having to
change. The only downside may be the effort of learning the library in the
first place, and perhaps some performance reduction due to the extra layer
of abstraction. Still, the advantages will in many cases outweigh any minor
performance reduction.

Summary
In this chapter, we used my pdo-crud-for-free-repositories library to
explore the basics of ORM libraries, seeing how they can simplify the
process of working with a database by eliminating the need for writing a lot
of repetitive code for CRUD applications. When we transitioned to the
Doctrine ORM library, we saw that this more robust and feature-complete
library has added benefits like greater flexibility and support for foreign-
key associations between model classes and their corresponding database
tables.

This chapter also outlined important practices in web application
security. In previous chapters, we were already using prepared SQL

statements, which help protect against SQL injection attacks. Now we’ve
added the ability to store and verify against hashed passwords, so we never
need to store plaintext passwords in a database. We’ve also emphasized the
importance of keeping database credentials in a separate file so that they
won’t be published or archived and accidentally exposed.

Exercises
1. I’ve created a publicly shared sample project to help explore the pdo-

crud -for-free-repositories library. The project uses PHP templates
(not Twig) to illustrate how to use the ORM library for a Movie model
class and its associated MovieRepository class. To check out the
project, do the following:
a. Enter the following at the command line to create a new project

named demo1 based on my published project template:

$ composer create-project mattsmithdev/pdo-repo-project demo

1

b. In the demo1 directory that was created, edit the MySQL credentials
in the .env file to match your computer’s setup.

c. Run the database setup script in db/migrateAndLoadFixtures.php.
d. Run a web server and visit the home page and movie list page.
e. Examine the Movie model class, and the listMovies() method in

the Application class.
2. Use the pdo-crud-for-free-repositories library to create a MySQL

CRUD web application for Book objects with these properties:
id (integer), an auto-incrementing primary key
title (string)
author (string)
price (float)
You can either create a new project from scratch, extend the demo

project from the previous exercise, or adapt your work from Exercise 2
of the previous chapter. You may find it helpful to adapt the database
schema creation and initial data script from Listing 30-12, or if you’re

using the demo project, you can adapt the database setup script in
db/migrateAndLoadFixtures.php.

3. Web application security is an enormous topic (the subject of entire
books), and covering it exhaustively here would be impossible. Learn
more about PHP security best practices by exploring the following
resources:

The Paragon Initiative Enterprises PHP security guide,
https://paragonie.com/blog/2017/12/2018-guide-building-secure-
php-software
The Open Web Application Security Project, https://owasp.org
PHP The Right Way’s security chapters, by Josh Lockhart
(codeguy), https://phptherightway.com/#security

https://paragonie.com/blog/2017/12/2018-guide-building-secure-php-software
https://paragonie.com/blog/2017/12/2018-guide-building-secure-php-software
https://owasp.org/
https://phptherightway.com/#security

31
WORKING WITH DATES AND TIMES

Web applications use dates and times in
many ways: to maintain calendars, log

when invoices are created, record when a message
has been sent, and so on. In this chapter, we’ll
explore PHP’s built-in resources for storing and
manipulating dates and times, including ways to
handle complexities such as time zones and daylight
saving time. We’ll also look at how to send date-time
information back and forth between PHP and a
database system like MySQL, which has its own,
separate way of storing that information.

The ISO 8601 Standard
Countries have varying conventions for representing dates and times in day-
to-day life. For example, people in the United States write 11/2 for
November 2, but people in Ireland and the United Kingdom write 2/11 for
that date. Likewise, some countries use 24-hour time, while others use 12-
hour time with AM and PM designations. Computer programs have no room

for such ambiguity when storing and manipulating dates and times, so it’s
important to agree on a standard. These days, pretty much everyone in
computing uses the date-time formats declared in ISO 8601, a standard
originally published in 1988 and updated several times since.

Two key principles of ISO 8601 are that dates and times are
represented with numbers and that they’re ordered from most to least
significant. Dates therefore start with the year, then the month, then the day.
For example, November 22, 1968, would typically be written as 1968-11-
22, with four digits for the year, two for the month, and two for the day,
adding leading zeros if required (such as 03 for March rather than just 3).
Following the same principle of most to least significance, times are written
as hours, then minutes, then seconds. For example, 5 minutes and 30
seconds past 9 AM would be written as 09:05:30. You can add a decimal
point and more digits for fractions of a second if needed, so 09:05:30.01 is
one-hundredth of a second after 09:05:30. The standard uses 24-hour time,
so 11 PM is given as 23:00:00.

NOTE
The creator of PHP, Rasmus Lerdorf, was born on November 22, 1968. The
web doesn’t say what time he was born, so I’ve made up the time of 9:05 AM
and 30 seconds for the examples in this chapter.

These examples illustrate the extended version of ISO 8601’s date and
time formatting, which adds dashes between the fields in the date, and
colons between the fields in the time, to aid with human readability.
Internally, the computer might not use these separators, but it’s
recommended to always use them when presenting a date or time to a
human, since something like 1968-11-22 is a lot easier for a human to
interpret than 19681122.

When combining a date and a time, ISO 8601 calls for a capital T
between the date and time components. Therefore 5 minutes and 30 seconds
past 9 AM on November 22, 1968, would be written as 1968-11-
22T09:05:30. That said, the original ISO 8601 standard allowed the use of a
space between the date and time rather than a T, so many computer
implementations will also accept 1968-22-22 09:05:30 as a valid format.

NOTE
A concept found in most programming languages is date-time. So while we
humans think about dates and times separately, or might talk about a date
and time, in computer programming we typically work with objects that
store data about a date and time all together. If we’re interested in only the
date, we ignore the time components in our code, often defaulting to a
zeroed time component for the beginning of a new day (00:00:00). If we’re
interested in only the time, we ignore the date components in our code and
often default to the current date.

Time-zone characters or time offsets can be added to the end of a date-
time string; we’ll look at how this works in “Formatting the Date-Time
Information” on page 634. ISO 8601 also defines other date and time
components (such as week numbers), but the components I’ve described
cover 99 percent of the date and time formatting needed to create and work
with temporal data in PHP programs.

Creating Dates and Times
The fundamental PHP class for working with individual dates and times is
DateTimeImmutable. If you create a DateTimeImmutable object without
providing arguments to the constructor, the new object defaults to the
current time and day at the moment of its creation, based on the local time-
zone settings for your computer system. Listing 31-1 illustrates how to
instantiate this class.

<?php

$today = new DateTimeImmutable();

var_dump($today);

Listing 31-1: Creating a DateTimeImmutable object for the current date and time

We create a new DateTimeImmutable object without any arguments
and output its value by using the var_dump() function. If you execute this
script at the command line, you should see something similar to the
following:

object(DateTimeImmutable)#1 (3) {

 ["date"]=>

 string(26) "1968-11-22 09:05:30.000000"

 ["timezone_type"]=>

 int(3)

 ["timezone"]=>

 string(3) "Europe/Dublin"

}

The var_dump() function returns the object’s internal date value as a
date-time string. Notice that this string output uses a space rather than a T
between the date and the time to aid in human readability, and that the time
component uses six decimal places to capture the time down to the nearest
microsecond (millionth of a second). The object’s remaining properties
pertain to the time zone (I’m in Dublin, Ireland, for example), as we’ll
discuss in detail in “Time Zones” on page 641.

NOTE
To get the current date and time, you can also use new
DateTimeImmutable('now'). The 'now' argument is useful if you need to
provide a second argument specifying a different time zone from the default.

To create a DateTimeImmutable object holding another (noncurrent)
date and time, pass a string containing the desired date and time to the
constructor, like this:

$rasmusBirthdate = new DateTimeImmutable('1968-11-22T09:05:3

0');

This creates a new DateTimeImmutable object holding the date November
22, 1968, and the time 9:05 and 30 seconds.

Formatting the Date-Time Information
The DateTimeImmutable class’s format() method makes it possible to
adjust the output style for dates and times in different ways. For example,

Listing 31-2 shows how to format a date-time string to the ISO 8601
standard.

<?php

$now = new DateTimeImmutable();

$atomDateString = $now->format(DateTimeInterface::ATOM);

print 'now (ISO-8601): ' . $atomDateString . PHP_EOL;

Listing 31-2: Formatting a DateTimeImmutable object constant

We instantiate $now as a default DateTimeImmutable object, then call
its format() method, passing in the ATOM constant from
DateTimeInterface (the DateTimeImmutable class is an implementation of
this interface). This constant indicates that the date and time should be
formatted according to the ISO 8601 standard. The format() method
returns a string, which we store in $atomDateString and print. The output
should look something like this:

now (ISO-8601): 1968-11-22T09:05:30 + 00:00

Notice that the output follows ISO 8601 format, including the T between the
date and the time. The +00:00 at the end has to do with time zones, which
we’ll discuss later.

The format() method can also take in a string specifying custom
formatting. This allows you to create more readable date-time output. For
example, you can tell format() to spell out the name of the month, include
the day of the week, convert from 24-hour to 12-hour time, add a suffix to
the date number (as in 1st, 2nd, or 23rd), and so on. Listing 31-3 illustrates
how it’s done.

<?php

$now = new DateTimeImmutable();

$formattedDateString = $now->

 format('l \t\h\e jS \o\f F Y \a\t i \m\i\n\s \p\a\s\t g

a');

print 'now (nice format): ' . $formattedDateString . PHP_EO

L;

Listing 31-3: Customizing the output string format for a date-time

This time, we provide a string to format() that defines a custom
format for the date-time information. The string uses letter codes, such as l,
j, and S, to stand in for parts of the date and time. Here’s what the letters in
Listing 31-3 mean:

l The full name of the day of the week (Monday, Tuesday, and so on)
j The day of the month as an integer with no leading space (1, 4, 20,
31, and so on)
S A two-letter suffix for the numeric date of the month (st for 1st, nd
for 2nd, and so on)
F The full name of the month (January, May, and so on)
Y The four-digit year (2000, 2019, 2025, and so on)
i Minutes with leading zeros (00 through 59)
g The hour in 12-hour format without leading zeros (1 through 12)
a The appropriate AM or PM abbreviation

The case of each character is important, since several characters represent
different values depending on whether they’re upper- or lowercase. For
example, a lowercase d represents the date of the month (with a leading
zero if required to ensure that it’s two digits), while an uppercase D is the
three-letter abbreviation of the day of the week (Mon, Tue, and so on).

NOTE
The PHP documentation provides a full list of all these special formatting
characters at https://www.php.net/manual/en/datetime.format.php.

Any text that you want to be included verbatim in the formatted string
needs to be escaped (preceded by a backslash), character by character. Thus,
the string argument to format() in Listing 31-3 includes character
sequences like \t\h\e (the word the) and \o\f (the word of). Listing 31-3
should output something like this:

https://www.php.net/manual/en/datetime.format.php

now (nice format): Friday the 22nd of November 1968 at 05 mi

ns past 9am

You can also use letter codes with the createFromFormat() static
method to create new DateTimeImmutable objects based on formatted
strings. Consider this example:

$date = DateTimeImmutable::createFromFormat('j-M-Y', '15-Feb

-2009');

The createFromFormat() method takes two arguments. The first is a
formatter string built using the letter codes we’ve discussed. The second is a
string that follows the indicated format and sets the value for the new
DateTimeImmutable object.

Using DateTimeImmutable vs. DateTime
Our focus has been on the DateTimeImmutable class, but PHP also offers
the similar DateTime class. The only difference (but an important one) is
that once created, a DateTimeImmutable object won’t change the values it
contains, whereas a DateTime object’s value can be updated. One
consequence is that DateTimeImmutable methods that might change the
date or time return a new DateTimeImmutable object rather than modifying
the original object’s values.

Use DateTimeImmutable whenever possible rather than DateTime to
avoid the unexpected behavior of an object changing and returning a
reference to itself. To see why, look at Listing 31-4.

<?php

$today = new DateTime();

print 'today (before modify) = ' . $today->format('Y-m-d') .

PHP_EOL;

$tomorrow = $today->modify('+1 day');

print 'today = ' . $today->format('Y-m-d') . PHP_EOL;

print 'tomorrow = ' . $tomorrow->format('Y-m-d') . PHP_EOL;

Listing 31-4: Creating a DateTime object and modifying it

We create a new DateTime (rather than DateTimeImmutable) object
called $today and print its value (in year-month-day format). Then we
invoke the object’s modify() method to move the date one day forward,
storing the result in the $tomorrow variable. Rather than creating a new
DateTime object for the next day, however, calling modify() changes the
original DateTime object and returns a reference to that same object. To
confirm this, we print both $today and $tomorrow. The output will look
something like this:

today (before modify) = 1968-11-22

today = 1968-11-23

tomorrow = 1968-11-23

Initially, the value of $today indicates November 22. After calling
modify(), both $today and $tomorrow indicate November 23. Both
variables reference the same DateTime object, whose value was changed by
the modify() method.

While having changeable date-time information may sometimes be
desirable, it’s important to make sure that’s what you want before using
DateTime over DateTimeImmutable. The example also illustrates how
inappropriate variable names can make code hard to understand and debug.
If we deliberately create a mutable DateTime object and make a change to
its date, that object shouldn’t be named for a particular date (like $today or
$tomorrow), since at some point the name of the variable won’t correctly
refer to its value.

To really see the difference between the two PHP date-time classes, try
changing the class from DateTime to DateTimeImmutable in Listing 31-4
and then run the script again. Here’s the output:

today (before modify) = 1968-11-22

today = 1968-11-22

tomorrow = 1968-11-23

This time, the value of $today remains the same, even as $tomorrow
moves one day ahead. This is because the modify() method of a
DateTimeImmutable object creates and returns a completely new
DateTimeImmutable object with the modified value while leaving the
original object unchanged. Therefore, $today and $tomorrow refer to two
different DateTimeImmutable objects, and both variable names are
reasonable, since they always correctly refer to the values of the object they
reference.

Manipulating Dates and Times
PHP’s DateTimeImmutable class features several methods that create a new
DateTimeImmutable object based on the value of an existing one. These
methods make it possible to programmatically manipulate date and time
information.

You already saw one example, the modify() method, in Listing 31-4.
This method takes a string argument indicating how to set a new date or
time relative to the current DateTimeImmutable object’s value. For instance,
the strings 'yesterday' and 'tomorrow' yield midnight (time 00:00:00)
on the previous or next day; the 'noon' and 'midnight' strings yield noon
(12:00:00) or midnight on the current day; and 'first day of this
month' or 'last day of this month' change the date as appropriate
while leaving the time the same. These modifier strings can be combined;
for example, 'tomorrow noon' and 'first day of this month
midnight' are both valid.

Other modifier strings use + or - followed by a quantity and unit of
time to give more granular control over the new DateTimeImmutable
object’s value, as in '+1 day', '-2 hours', or '+30 seconds'. These can
also be combined into longer strings, such as '+1 day +30 seconds'.
Listing 31-5 shows some of these modifiers in action.

<?php

function showModify(string $modifier): void

{

 print PHP_EOL. $modifier . PHP_EOL;

 $date1 = new DateTimeImmutable();

 $date2 = $date1->modify($modifier);

 print 'date1 = ' . $date1->format(DateTimeInterface::ATO

M) . PHP_EOL;

 print 'date2 = ' . $date2->format(DateTimeInterface::ATO

M) . PHP_EOL;

}

showModify('first day of this month');

showModify('+1 day');

showModify('+30 seconds');

showModify('-10 seconds');

showModify('+1 month +3 days +1 seconds');

Listing 31-5: Passing relative date-time strings to the modify() method

To help show the date-times before and after modification, we first
declare a showModify() function that takes in a modifier string as an
argument. The function prints the modifier string itself, creates a new
DateTimeImmutable object with the current time, and passes the string to
the modify() method to create another, modified DateTimeImmutable
object. Then it prints both objects in ISO 8601 format. Next, we make a
series of showModify() calls to demonstrate various modifier strings. The
output should be something like this:

first day of this month

date1 = 1968-11-22T09:05:30 + 00:00

❶ date2 = 1968-11-01T09:05:30 + 00:00

+1 day

date1 = 1968-11-22T09:05:30 + 00:00

❷ date2 = 1968-11-23T09:05:30 + 00:00

+30 seconds

date1 = 1968-11-22T09:05:30 + 00:00

date2 = 1968-11-22T09:06:00 + 00:00

-10 seconds

date1 = 1968-11-22T09:05:30 + 00:00

date2 = 1968-11-22T09:05:20 + 00:00

+1 month +3 days +1 seconds

date1 = 1968-11-22T09:05:30 + 00:00

date2 = 1968-12-25T09:05:31 + 00:00

The value of $date1 is the same for each function call, November 22,
1968, at 9:05 and 30 seconds. With the 'first day of this month'
modifier, the date component of $date2 ends up as November 1, but the
time component is left unchanged ❶. With '+1 day', the date component
moves forward to November 23, but again the time component is
unchanged ❷. The '+30 seconds' and '-10 seconds' strings move the
time component forward and backward without changing the date
component, while '+1 month +3 days +1 seconds' changes both the date
and time.

If you provide a date to the modify() method, that date will replace the
original one in the new DateTimeImmutable object created, leaving the time
unchanged. For example, the '2000-12-31' string applied to an object
holding 1968-11-22T09:05:30 would result in a new object of 2000-12-31
T09:05:30, the same time but for December 31, 2000. Likewise, providing
a time results in a new object with the original date but the new time.

That said, modifying just the date or time component of a DateTime
Immutable object can be accomplished more easily using the setDate()
and setTime() methods. For example, if $date1 is a DateTimeImmutable
object, both the following statements result in the same new object being
created:

$date2 = $date1->modify('2000-12-31');

$date2 = $date1->setDate(2000, 12, 31);

Notice that the setDate() method takes three separate integers as
arguments, rather than a single string. These integers represent the desired
year, month, and day. Similarly, the setTime() method takes four integers
for the new hour, minute, second, and microsecond. The latter two default
to 0.

Using Date-Time Intervals
The DateInterval class represents a span of time rather than a specific
date-time. This class provides another useful way of manipulating date-time
information and of thinking about the relationship between different date-
times. For example, the add() and sub() methods of the
DateTimeImmutable class take in a DateInterval object and return a new
DateTimeImmutable object offset forward or backward in time from the
original object by the specified interval. Listing 31-6 illustrates how this
works.

<?php

$interval1 = DateInterval::createFromDateString('30 second

s');

$interval2 = DateInterval::createFromDateString('1 day');

$date1 = new DateTimeImmutable();

$date2 = $date1->add($interval1);

$date3 = $date1->sub($interval2);

print '$date1 = ' . $date1->format(DateTimeInterface::ATOM)

. PHP_EOL;

print '$date2 = ' . $date2->format(DateTimeInterface::ATOM)

. PHP_EOL;

print '$date3 = ' . $date3->format(DateTimeInterface::ATOM)

. PHP_EOL;

Listing 31-6: Creating new DateTimeImmutable objects offset by time intervals

First, we use the createFromDateString() static method to create two
Date Interval objects. With this method, we can express the desired
interval by using strings like '30 seconds' or '1 day'. Next, we create a
DateTimeImmutable object for the current date and time, then call its add()
and sub() methods, passing in the DateInterval objects. This creates two
more DateTimeImmutable objects, offset according to the given time
intervals. The three date-time strings in the output should look something
like this:

$date1 = 1968-11-22T09:05:30 + 00:00

$date2 = 1968-11-22T09:06:00 + 00:00

$date3 = 1968-11-21T09:05:30 + 00:00

Notice that $date2 has the same date, but its time is 09:06:00, 30
seconds later than $date1. Meanwhile, $date3 has the same time, but its
date is one day earlier: November 21 instead of November 22. Note that we
can create negative as well as positive DateInterval objects. For example,
we could create a DateInterval by using the string '-1 day'.

A more common way of creating a DateInterval object is to use the
diff() method of the DateTimeImmutable class. Given one
DateTimeImmutable object, you call its diff() method, passing in a second
DateTimeImmutable object, and the method returns a DateInterval object
representing the difference between those two date-times. This is useful
when a user has provided a start and end date, and some logic or calculation
needs to be performed based on the size of the date interval between them.
For example, a hotel-booking web application might calculate the cost of a
stay based on the number of days between the desired start and end date.
Listing 31-7 shows how this mechanism works.

<?php

$date1 = new DateTimeImmutable('1968-11-22');

$date2 = new DateTimeImmutable('1968-11-16');

$interval = $date1->diff($date2);

print '$interval = ' . $interval->

 format('%m months, %d days, %i minutes, %s seconds');

Listing 31-7: Obtaining the interval between two DateTimeImmutable objects

We create two DateTimeImmutable objects, $date1 and $date2,
specifying just the date for each; the objects are six days apart. Then we call
the diff()method on $date1, passing $date2 as an argument. This
produces a DateInterval object holding the difference between the two
dates, which we format and print. Here’s the result:

$interval = 0 months, 6 days, 0 minutes, 0 seconds

As expected, the DateInterval object indicates that the two dates are
four days apart. Note that the format() method of the DateInterval class
works differently from formatting actual dates. It takes in a string using the
percent character (%) to indicate where values from the DateInterval
object should be inserted. For example, %d is replaced by the number of
days (6) in the output string.

Looping at Regular Intervals
For displaying a series of date-time values, updating calendars, or
generating historical reports, it’s often useful to loop at a regular interval
between two dates. PHP’s DatePeriod class makes this possible. An object
of this class can be iterated through with a foreach loop, just like an array.
Each iteration turns up a new DateTimeImmutable object, with all the
objects evenly spaced in time.

To create a DatePeriod object, you must provide a start and end date,
plus a DateInterval object defining the rate of iteration. Listing 31-8
shows an example of using this class to automatically list the first seven
days of a month.

<?php

$today = new DateTimeImmutable();

print 'today: ' . $today->format('l \t\h\e jS \o\f F Y') . P

HP_EOL;

$firstOfMonth = $today->modify('first day of this month');

$oneWeekLater = $firstOfMonth->modify('+1 week');

$interval = DateInterval::createFromDateString("1 day");

❶ $period = new DatePeriod($firstOfMonth, $interval, $oneWeekL

ater);

print '--- first 7 days of current month ---'. PHP_EOL;

❷ foreach ($period as $date) {

 print $date->format('l \t\h\e jS \o\f F Y') . PHP_EOL;

}

Listing 31-8: Iterating through a DatePeriod object

First, we create and print a DateTimeImmutable object for the current
day ($today). Then we use the modify() method to create two more
DateTimeImmutable objects, $firstOfMonth for the first day of the current
month, and $oneWeekLater for a week after that. These will be the start and
end points for the iteration. Next, we create a one-day DateInterval object,
which we use, along with the start and end points, to create a DatePeriod
object ❶. The order of arguments is the start date, the interval, and then the
end date. Finally, we run a foreach loop to iterate through the DatePeriod
object ❷, printing a formatted string for each date as it comes up. The
output should look something like the following:

today: Friday the 22nd of November 1968

--- first 7 days of current month ---

Friday the 1st of November 1968

Saturday the 2nd of November 1968

Sunday the 3rd of November 1968

Monday the 4th of November 1968

Tuesday the 5th of November 1968

Wednesday the 6th of November 1968

Thursday the 7th of November 1968

Based on a start day of November 22, 1968, the script successfully looped
through and displayed the first seven days of that month.

Rather than a start and end date, another way to create DatePeriod
objects is to give the start date, the interval, and the number of recurrences.
This third argument doesn’t count the start date itself, so to list the first
seven days of a month, the number of recurrences would be 6. The
DatePeriod constructor also has an optional parameter to exclude the start
date by passing a fourth argument of the constant
DatePeriod::EXCLUDE_START_DATE.

NOTE
At present, DatePeriod works only for positive DateInterval objects, so
loops have to move forward in time.

Time Zones
A time zone is a geographical area that observes the same time. These days,
all time zones worldwide are defined relative to the time standard of
Coordinated Universal Time (UTC). This is the time at the International
Reference Meridian (0° longitude), which passes through Greenwich,
England. For example, UTC +3 and UTC –2 indicate three hours ahead and
two hours behind UTC, respectively. UTC is also nicknamed Zulu time,
with Zulu being the standard codeword for the letter Z in the NATO
phonetic alphabet. (The Z is for zero.) Table 31-1 lists some example UTC
offsets and their associated time zones.
Table 31-1: Example Time Zones
UTC
offset Abbreviation Common name

UTC +0 GMT Greenwich Mean Time

UTC +1 BST British Summer Time

UTC +1 IST Irish Standard Time

UTC +11 AEDT Australian Eastern Daylight Time (Tasmania is where my twin
brother lives)

UTC –5 EST Eastern Standard Time

UTC +2 CEST Central European Summer Time

You can set the default time zone for your system’s PHP setup in the
php.ini configuration file. The time zone itself is given with a time-zone
identifier, a string that includes a region (such as America, Europe, or
Pacific) and a city located in the desired time zone, separated by a forward
slash. Listing 31-9, for example, shows I’ve set up my system to the
Europe/Dublin time zone.

--snip--

[Date]

; Defines the default timezone used by the date functions

; https://php.net/date.timezone

date.timezone = Europe/Dublin

--snip--

Listing 31-9: An excerpt of a php.ini file setting the default time zone to Europe/Dublin

You use date.timezone to set a time-zone identifier for the PHP
engine. To verify that your system’s time zone has been set correctly, use
the date _default_timezone_get() function. This returns Europe/Dublin
for me.

NOTE
You can find a full list of acceptable time-zone identifiers in the PHP
documentation at https://www.php.net/manual/en/timezones.php. However,
avoid using any of the identifiers listed in the Others region, apart from
UTC. These identifiers are for backward compatibility only and may be
changed in the future.

When you create a DateTimeImmutable object in a PHP script, it
defaults to the time zone of your system. My preferred way to specify a
time zone is to pass a DateTimeZone object as a second argument to the
DateTimeImmutable constructor. Another common method is to append a
UTC offset to the end of an ISO 8601 string. For example, adding +03:00 to
the end of the string indicates that the date-time is three hours ahead of
UTC. Listing 31-10 illustrates each of these methods.

<?php

function prettyPrintDatetime(string $name, DateTimeImmutable

$date)

{

 print '---------' . $name . '---------' . PHP_EOL;

 print $date->format(DATE_ATOM) . ' ' . $date->getTimezon

e()->getName(). PHP_EOL . PHP_EOL;

}

$iceCreamDay = '2009-08-02';

$localDatetime = new DateTimeImmutable($iceCreamDay); ❶
$utcDatetime = new DateTimeImmutable($iceCreamDay, new DateT

https://www.php.net/manual/en/timezones.php

imeZone('UTC')); ❷
$londonDatetime = new DateTimeImmutable($iceCreamDay, new Da

teTimeZone('Europe/London'));

$parisDatetime = new DateTimeImmutable($iceCreamDay, new Dat

eTimeZone('Europe/Paris'));

$hobartDatetime = new DateTimeImmutable($iceCreamDay, new Da

teTimeZone('Australia/Hobart'));

$threeHoursAhead = new DateTimeImmutable('2000-01-01T10:00:0

0 + 03:00'); ❸

print 'local time zone = ' . date_default_timezone_get() . P

HP_EOL; ❹
prettyPrintDatetime('local', $localDatetime); ❺
prettyPrintDatetime('UTC', $utcDatetime);

prettyPrintDatetime('London', $londonDatetime);

prettyPrintDatetime('Paris', $parisDatetime);

prettyPrintDatetime('Hobart', $hobartDatetime);

prettyPrintDatetime('+03', $threeHoursAhead);

Listing 31-10: Creating DateTimeImmutable objects with different time zones

We declare a prettyPrintDatetime() function to nicely print out a
DateTimeImmutable object and its time zone, along with a string label
passed in as the $name parameter. The time zone is accessed using the
DateTimeImmutable object’s getTimezone() method, which returns a
DateTimeZone object. Then we have to call the DateTimeZone object’s
getName() method, which returns the name of the time zone as a string.

Next, we declare a series of DateTimeImmutable objects with different
time zones, all for the date August 2, 2009 (2009-08-02), the first
occurrence of National Ice Cream Sandwich Day in the United States. The
$localDatetime object ❶ holds the date according to the system’s default
time zone (Europe/Dublin for me, per my php.ini file). Since we didn’t
specify a time, the time will default to midnight.

The $utcDatetime object ❷ is set to UTC by passing two arguments
to the DateTimeImmutable constructor: $iceCreamDay to specify the date,
and a DateTimeZone object set to 'UTC' to specify the time zone. We use
this same technique to create objects for the time in London, Paris, and

Hobart. The $threeHoursAhead object ❸ is created by appending the UTC
offset +03:00 to the date-time string 2000-01-01T10:00:00 passed to the
DateTimeImmutable constructor, indicating the time is three hours ahead of
UTC.

We print confirmation of the computer system’s time-zone setting by
using the date_default_timezone_get() built-in function ❹. Then we
pass our DateTimeImmutable objects one at a time to the
prettyPrintDatetime() function ❺. The output should look something
like this:

❶ local time zone = Europe/Dublin

---------local---------

2009-08-02T00:00:00 + 01:00 Europe/Dublin

---------UTC---------

2009-08-02T00:00:00 + 00:00 UTC

---------London---------

2009-08-02T00:00:00 + 01:00 Europe/London

---------Paris---------

2009-08-02T00:00:00 + 02:00 Europe/Paris

---------Hobart---------

2009-08-02T00:00:00 + 10:00 Australia/Hobart

---------+03---------

❷ 2000-01-01T10:00:00 + 03:00 +03:00

The first data printed is the system’s time-zone setting, Europe/Dublin
for me ❶. Then as each of our DateTimeImmutable objects is printed, its
time-zone information is visible in the output in two ways: in the UTC
offset at the end of the date-time string (for example, +01:00 for London
and Dublin, and +10:00 for Hobart), and in the separate time-zone string we
extract as part of the prettyPrintDatetime() function. Notice, however,
that when we specify the time zone by using a generic UTC offset like

+03:00 rather than a more specific time-zone identifier, that’s how the
DateTimeImmutable object records the time zone ❷. This is because PHP
doesn’t know which region and city to associate with the offset. For
example, +03:00 could be Europe/Moscow, Asia/Riyadh, or
Africa/Mogadishu.

Daylight Saving Time
Around a quarter of all countries worldwide operate a system of daylight
saving time: clocks are set forward by one hour in the spring (“spring
forward”), then set back by one hour in the autumn (“fall back”). PHP’s
DateTimeImmutable objects automatically account for these changes if the
location designated by an object’s time-zone identifier observes daylight
saving time.

The format() method of the DateTimeImmutable class has a special
value for identifying whether daylight saving time is in effect for that
object: an uppercase letter I. Calling format('I') returns 1 (true) if
daylight saving time applies, or 0 (false) if not. Listing 31-11 shows an
updated version of the time-zone script from Listing 31-10, with an
expanded prettyPrintDatetime() function that displays additional
information about daylight saving time.

<?php

function prettyPrintDatetime(string $name, DateTimeImmutable

$date)

{

 print '---------' . $name . '---------' . PHP_EOL;

 ❶ $isDaylightSaving = $date->format('I');

 if ($isDaylightSaving) {

 $dstString = ' (daylight saving time = TRUE)';

 } else {

 $dstString = ' (daylight saving time = FALSE)';

 }

 print $date->format(DATE_ATOM) . ' ' . $date->getTimezon

e()->getName()

 . $dstString . PHP_EOL . PHP_EOL;

}

$iceCreamDay = '2009-08-02';

$localDatetime = new DateTimeImmutable($iceCreamDay);

$utcDatetime = new DateTimeImmutable(

 $iceCreamDay, new DateTimeZone('UTC'));

$londonDatetime = new DateTimeImmutable(

 $iceCreamDay, new DateTimeZone('Europe/London'));

--snip--

Listing 31-11: An updated prettyPrintDatetime() function to output a message about
daylight saving time

We call format('I') on the DateTimeImmutable object passed into the
prettyPrintDatetime() function, storing the resulting 1 or 0 in the
$isDaylight Saving variable ❶. Then we use an if...else statement to
create an appropriate true/false message about daylight saving time based
on this variable. All the DateTimeImmutable objects have again been
created for National Ice Cream Sandwich Day, a useful summertime date in
the northern hemisphere for demonstrating whether daylight saving applies
in different time zones. Here’s the output when this updated script is
executed:

local time zone = Europe/Dublin

---------local---------

2009-08-02T00:00:00 + 01:00 Europe/Dublin (daylight saving t

ime = FALSE)

---------UTC---------

2009-08-02T00:00:00 + 00:00 UTC (daylight saving time = FALS

E)

---------London---------

2009-08-02T00:00:00 + 01:00 Europe/London (daylight saving t

ime = TRUE)

---------Paris---------

2009-08-02T00:00:00 + 02:00 Europe/Paris (daylight saving ti

me = TRUE)

---------Hobart---------

2009-08-02T00:00:00 + 10:00 Australia/Hobart (daylight savin

g time = FALSE)

---------+03---------

2000-01-01T10:00:00 + 03:00 +03:00 (daylight saving time = F

ALSE)

Daylight saving time never applies to UTC, so the UTC line is shown
as FALSE. The United Kingdom and France observe daylight saving time
starting in late March, so London and Paris both show TRUE.

Strangely, while the clocks in Ireland do shift forward as well, Dublin
is shown to be FALSE. This appears to be due to the way the Republic of
Ireland’s time zone is legally defined as being GMT in the winter and IST
(Irish Standard Time) in the summer. By contrast, the United Kingdom and
France are defined as being in a summer time rather than a standard time
when daylight saving is in effect (BST, or British Summer Time, for
London, and CEST, or Central European Summer Time, for Paris).
Therefore, while the UTC+01:00 offset is correct in the summer for the time
zones identified by Europe/Dublin and Europe/London, one is considered
daylight saving time and the other is not by the format('I') method.

Epochs and Unix Time
Many computer systems measure time relative to an epoch, a fixed point in
time that’s treated as time 0. For example, Unix systems (including macOS)
use the time_t format, commonly known as Unix time, which represents
time in terms of the number of seconds that have elapsed since the
beginning (00:00:00) of Thursday, January 1, 1970. Table 31-2 shows a few
Unix timestamps and their equivalent ISO 8601 date-times. Notice that
timestamps before 1970 are represented as negative values.
Table 31-2: Example Unix Timestamps
Date Timestamp

1969-12-31 23:59:00 –60

1970-01-01 00:00:00 0

Date Timestamp

1970-01-01 00:02:00 120

2009-08-02 00:00:00 1249171200

PHP’s built-in time() function returns the current date and time as a
Unix timestamp. While modern PHP programmers typically use
DateTimeImmutable objects, you may encounter the time() function in
older code or code from non-object-oriented programmers. Therefore, it’s
useful to be able to work with code that stores these Unix timestamps. If
you have a DateTimeImmutable object, you can get its equivalent Unix
timestamp by using the object’s getTimestamp() method. Listing 31-12
shows a script to create objects and print the corresponding timestamps for
each row in Table 31-2.

<?php

function print_timestamp(string $dateString): void

{

 $date = new DateTimeImmutable($dateString);

 print $date->format('D, F j, Y g.i:s');

 print ' / timestamp = ' . $date->getTimestamp() . PHP_EO

L;

}

print_timestamp('1969-12-31T23:59:00');

print_timestamp('1970-01-01T00:00:00');

print_timestamp('1970-01-01T00:02:00');

print_timestamp('2009-08-02T00:00:00');

Listing 31-12: Converting DateTimeImmutable objects to Unix timestamps

First, we declare a print_timestamp() function that takes in a date-
time string, creates a DateTimeImmutable object for that string, and prints
the equivalent timestamp (along with a custom-formatted, human-readable
version of the date-time) by using the getTimestamp() method. Then we
invoke the function four times, once for each row from Table 31-2. Here’s
the result:

Wed, December 31, 1969 11.59:00 / timestamp = -60

Thu, January 1, 1970 12.00:00 / timestamp = 0

Thu, January 1, 1970 12.02:00 / timestamp = 120

Sun, August 2, 2009 12.00:00 / timestamp = 1249171200

The reverse of getTimestamp() is the setTimeStamp() method, which
creates a new DateTimeImmutable object corresponding to a given Unix
timestamp, as shown here:

$datetime = (new DateTimeImmutable())->setTimeStamp($timesta

mp);

Notice the extra set of parentheses around (new DateTimeImmutable()).
This creates a new default DateTimeImmutable object, which we then use to
call the setTimeStamp() method, passing the relevant timestamp in the
$timestamp variable. This in turn creates another new DateTimeImmutable
object set to correspond with the timestamp, which we store in the
$datetime variable. Without the extra parentheses, the statement would
look as follows, and the PHP engine wouldn’t understand the syntax:

// This will not work

$datetime = new DateTimeImmutable()->setTimeStamp($timestam

p);

When working with code that uses Unix timestamps, I recommend
refactoring the code to use setTimeStamp() to create an equivalent
DateTimeImmutable object, then do all the logic with that object. You can
then use the getTime stamp() method to convert the final result back to a
timestamp. Or, better still, refactor all the code to use DateTimeImmutable
objects with no reference whatsoever to timestamps.

NOTE
Unix timestamps were originally stored using 32-bit integers, a shortsighted
scheme. The last timestamp that can be correctly stored in the original 32-
bit format will be +2147483647 (231 – 1), the equivalent of 3:14 AM and 7

seconds on January 19, 2038. Ticking forward one more second would
result in an overflow error and a timestamp of -2147483648, or 8:45 PM

and 52 seconds on December 13, 1901. Fortunately, most systems have
already been upgraded to use 64 bits for Unix timestamps, which postpones
the overflow error by 292 billion years.

Date-Time Information in a Web Application
In this section, we’ll build a simple web application to synthesize what
we’ve covered so far about working with date-time information in PHP. The
application will provide a form for the user to enter an address and a date,
and it will display the sunrise and sunset times for that day and location,
along with the total duration of daylight for that day as determined by the
DateInterval class.

As it happens, PHP has a built-in date_sun_info() function that
reports the sunrise and sunset times (along with other information) for a
given date and location. The function requires the location to be specified as
latitude and longitude coordinates rather than a street address, however. Our
application will therefore also demonstrate how to obtain data from an
external API, as we’ll rely on OpenStreetMap to convert the address to
coordinates. We’ll use a popular open source PHP library called Guzzle to
communicate with OpenStreetMap. Guzzle provides an HTTP client,
allowing code to send and receive HTTP requests. This makes it
straightforward to integrate PHP web applications with external web
services.

Figure 31-1 features screenshots of the pages we’ll create.

Figure 31-1: Screenshots of the sunrise-sunset web application

The home page allows the user to submit a street address and a date.
This leads to a results page showing the calculated information. The results
page will also have a link to view the specified location in OpenStreetMap.

To get started, create a new project with the usual composer.json file
and public/index.php script that creates an Application object and calls its
run() method. Then enter composer require guzzlehttp/guzzle at the
command line to add the third-party Guzzle library to the project. Since
we’re running Composer and have created the composer.json file for our
namespace, Composer will also create our namespaced class autoloader at
this time.

The Application Class
Now we’ll declare the Application class for our site in
src/Application.php. The class will handle requests by either displaying the
home page or processing data from the application’s web form. Listing 31-
13 shows the code.

<?php

namespace Mattsmithdev;

class Application

{

 public function run(): void

 {

 $action = filter_input(INPUT_GET, 'action');

 switch ($action) {

 case 'processForm': ❶
 $address = filter_input(INPUT_POST, 'addres

s');

 $date = filter_input(INPUT_POST, 'date');

 if (empty($address) || empty($date)) {❷
 $this->homepage('you must enter a valid

address and a date');

 } else {

 $this->processForm($date, $address);

 }

 break;

 default: ❸
 $this->homepage();

 }

 }

 private function homepage(string $errorMessage = ''): vo

id ❹
 {

 require_once __DIR__ . '/../templates/homepage.php';

 }

 private function processForm(string $dateString, string

$address): void

 {

 try {

 $streetMapper = new StreetMap();

 $latLongArray = $streetMapper->getOpenStreetMapD

ata($address); ❺
 $latitude = $latLongArray['latitude'];

 $longitude = $latLongArray['longitude'];

 $date = new \DateTimeImmutable($dateString);

 $sunData = new SunData($date, $latitude, $longit

ude); ❻

 $sunrise = $sunData->getSunrise()->format('g:i

a');

 $sunset = $sunData->getSunset()->format('g:ia');

 $hoursDaylight = $sunData->getHoursDaylight()->f

ormat("%h hours %i minutes"); ❼

 require_once __DIR__ . '/../templates/result.ph

p'; ❽
 } catch (\Exception) {❾
 print 'sorry - an error occurred trying to retri

eve data from Open Street Map';

 print '
';

 print 'home';

 }

 }

}

Listing 31-13: The Application class declaring two routes

As usual, the class’s run() method uses a switch statement to handle
incoming requests. First, we declare the case for when $action is
'processForm' ❶. For this case, we attempt to extract the address and
date variables from the POST data in the request. If either is empty ❷, we
invoke the homepage() method, passing in an error message. Otherwise, we
pass along the address and date to the processForm() method.

The only other case in the switch statement is the default route ❸,
which simply invokes the homepage() method without any arguments. The
homepage() method itself ❹ uses require_once to display the
homepage.php template (we’re using regular PHP files for templating rather
than Twig for simplicity). The method has an $errorMessage parameter
with a default value of an empty string. This variable will be in the scope of
the template for printing.

The meat of this class is the processForm() method, which takes in the
submitted address and date as strings and uses them to obtain sunrise and
sunset times, along with a total duration of daylight. We first need to
convert the address into latitude and longitude coordinates. For that, we
create a new StreetMap object (we’ll look at this class shortly) and invoke

its getOpenStreetMapData() method ❺, passing in the $address string.
The result, in the $latLongArray variable, is an array with 'latitude' and
'longitude' keys holding the necessary coordinates, which we extract into
separate variables.

Next, we use the date string submitted through the web form to create a
corresponding DateTimeImmutable object called $date. We then create a
new SunData object (another class we’ll look at shortly), passing $date,
$latitude, and $longitude as arguments ❻. The SunData object uses the
provided information to calculate the sunrise and sunset times and the
daylight duration. We extract this data into individual variables via the
appropriate getter methods, which are chained with calls to format() to
convert the date-time information into strings. The $sunrise and $sunset
variables are given in the form 8.35am. The $hoursDaylight variable is a
DateInterval object presented in the form 16 hours 39 minutes, using %h
for the hours and %i for minutes ❼. With all these variables in scope, we
display the result.php template ❽.

All this activity in the processForm() method is embedded inside a
try block. If something goes wrong, such as a failure to connect to
OpenStreetMap, the catch statement at the end of the method ❾ displays
an error message along with a link back to the home page.

The Supporting Classes
We’ll next declare the supporting classes for the application, starting with
StreetMap, which manages working with the OpenStreetMap web server.
Create src/StreetMap.php as shown in Listing 31-14.

<?php

namespace Mattsmithdev;

use GuzzleHttp\Client;

class StreetMap

{

 private Client $client;

 public function __construct()

 {

 $this->client = new Client([

 'timeout' => 10.0,

 'headers' => [

 'User-Agent' => 'matt smith demo',

 ❶ 'Accept' => 'application/json',

],

 'verify' => true,

]);

 }

 public function getOpenStreetMapData(

 string $address = 'grafton street, dublin, ireland'

): array

 {

 $url = $this->buildQueryString($address);

 ❷ $response = $this->client->request('GET', $url);

 if ($response->getStatusCode() == 200) {

 $responseBody = $response->getBody();

 ❸ $jsonData = json_decode($responseBody, true);

 if (empty($jsonData)) {

 throw new \Exception('no JSON data receive

d');

 }

 } else {

 ❹ throw new \Exception('Invalid status code');

 }

 ❺ return [

 'latitude' => $jsonData[0]['lat'],

 'longitude' => $jsonData[0]['lon'],

];

 }

 private function buildQueryString(string $address): stri

ng

 {

 ❻ $query = http_build_query([

 'format' => 'jsonv2',

 'q' => $address,

 'addressdetails' => 1,

]);

 $url = "https://nominatim.openstreetmap.org/search?

$query";

 return $url;

 }

}

Listing 31-14: The StreetMap class for accessing the OpenStreetMap server

First, the use statement allows us to draw on the Guzzle library’s
Client class, which is in the GuzzleHttp namespace. This class will
manage the details of making an HTTP request to an external site. We then
declare the client instance variable and initialize it as a Client object in
the constructor. We provide various Guzzle Client parameters, such as the
time-out (the amount of time to wait for a response) and the sending agent
name ('matt smith demo' is fine for this project). We take care to
configure the Client to accept JSON data ❶, since that’s the format
returned by the OpenStreetMap API.

Next, we declare the getOpenStreetMapData() method. It takes in an
address (I’ve provided a default value for testing purposes) and uses it to
build an appropriate query string via the buildQueryString() method.
Then it uses the request() method of the Client object to send the request
to the OpenStreetMap API and store the received response ❷. If the
response code is valid (200), the received data is decoded into a $jsonData
array ❸. If either the response code isn’t 200 or an empty array is received,
we throw an exception to signal to the calling code that there has been a
problem getting data from the OpenStreetMap API ❹. If the code gets
through the if...else statement without throwing an exception, the
latitude and longitude are extracted from the received $jsonData and
returned as an array ❺.

Finally, we declare the buildQueryString() method. It uses PHP’s
built-in http_build_query() function to encode the address and other
details into an appropriate query string for the Nominatim OpenStreetMap
API ❻. We provide the query information to http_build_query() as
key/value pairs in an array, then attach the encoded query string, in variable
$query, to the end of a $url.

NOTE
For more about the requirements of the Nominatim OpenStreetMap API, see
https://nominatim.org. Nominatim (Latin for “by name”) is an open source
software project that offers searching of OpenStreetMap data. It facilitates
both geocoding (location from a given name and address) and reverse
geocoding (address from a given location).

Now we’ll look at the SunData class, which is designed to simplify the
process of working with PHP’s built-in date_sun_info() function. Declare
the class in src/SunData.php as in Listing 31-15.

<?php

namespace Mattsmithdev;

class SunData

{

 private \DateTimeImmutable $sunrise;

 private \DateTimeImmutable $sunset;

 private \DateInterval $hoursDaylight;

 public function __construct(\DateTimeImmutable $date, fl

oat $latitude, float $longitude)

 {

 $timestamp = $date->getTimestamp(); ❶
 $data = date_sun_info($timestamp, $latitude, $longit

ude); ❷

 $this->sunrise = $this->dateFromTimestamp($data['sun

rise']);

 $this->sunset = $this->dateFromTimestamp($data['suns

https://nominatim.org/

et']);

 $this->hoursDaylight = $this->sunset->diff($this->su

nrise); ❸
 }

 private function dateFromTimestamp(int $timestamp): \Dat

eTimeImmutable

 {

 return (new \DateTimeImmutable())->setTimeStamp($tim

estamp); ❹
 }

 public function getSunrise(): \DateTimeImmutable

 {

 return $this->sunrise;

 }

 public function getSunset(): \DateTimeImmutable

 {

 return $this->sunset;

 }

 public function getHoursDaylight(): \DateInterval

 {

 return $this->hoursDaylight;

 }

}

Listing 31-15: The SunData class for working with the date_sun_info() function

We give the SunData class three instance variables: sunrise and
sunset are DateTimeImmutable objects for the sunrise and sunset times,
and hoursDaylight is a DateInterval object for the duration of daylight.
The SunData constructor takes in three arguments: the date (a
DateTimeImmutable object) and the latitude and longitude of the location of
interest. These are the pieces of information the date_sun_info() function
needs, although the date must be in the form of a Unix timestamp, so the
constructor starts by calling getTime stamp() to make the conversion ❶.

Then we call date_sun_info(), storing the result, an array of
information, in the $data variable ❷. We extract the sunrise and sunset
times from the $data array, storing them in the appropriate instance
variables. Because date_sun_info() returns date-time information as Unix
timestamps, we use the dateFromTimestamp() helper method to convert
back from timestamps to DateTimeImmutable objects. (In this method,
notice once again that we have to add extra parentheses around the creation
of the new DateTimeImmutable object before we can call its
setTimeStamp() method ❹.)

For the duration of daylight, we simply take the difference between the
sunset and sunrise times ❸. The remainder of the SunData class consists of
simple getter methods to return the three instance variables.

The Templates
We’re now ready to create the templates for the home page (with the web
form) and the results page. We’ll start with the Home page template in
templates/homepage.php. Listing 31-16 shows the code.

<!doctype html>

<html lang="en">

<head><title>Sun Data</title></head>

<body>

❶ <?php if (!empty($errorMessage)): ?>

 <p style="background-color: pink; padding: 2rem">

 <?= $errorMessage ?>

 </p>

<?php endif; ?>

<form action="/?action=processForm" method="post">

 <p>

 Address:

 <input name="address">

 </p>

 <p>

 ❷ <input name="date" type="date">

 </p>

 <input type="submit">

</form>

</body>

</html>

Listing 31-16: The form to input an address and date from the user

In the body of the page, we first use the alternative if statement syntax
to display a pink-styled paragraph containing an error message string,
provided the $errorMessage variable isn’t empty ❶. Then we create a form
with an action of processForm and fields for the address and date. For the
latter, we use an <input> element of type date ❷, which most web
browsers display as a user-friendly calendar date-picker widget, as shown
earlier in Figure 31-1.

The second template is for displaying the results to the user. Create
templates/result.php with the code in Listing 31-17.

<!doctype html>

<html lang="en">

<head><title>results</title></head>

<body>

(back to home page) ❶
<hr>

<h1>Latitude and Longitude</h1>

Date = <?= $dateString ?>

Latitude = <?= $latitude ?>

Longitude = <?= $longitude ?>

<a href="http://www.openstreetmap.org/?zoom=17&mlat=<?= $lat

itude ?>&mlon=<?= $longitude ?>"> ❷
 Open maps link to: <?= $address ?>

<hr>

Sunrise <img src="/images/sunrise.png" width="50" alt="Sunri

se">

<?= $sunrise ?>

Sunset <img src="/images/sunset.png" width="50" alt="Sunse

t">

<?= $sunset ?>

<p>

 so there will be <?= $hoursDaylight ?> of daylight

</p>

<footer> ❸
 icon attribution:

 <a href="https://www.flaticon.com/free-icon/sunrise_3920

688" title="sunrise icons">

 Sunrise

 <a href="https://www.flaticon.com/free-icon/sunset_39207

99" title="sunset icons">

 Sunset

 icons created by Mehwish - Flaticon

</footer>

</body>

</html>

Listing 31-17: The template to present sun data results to the user

In this template, we first offer the user a link back the home page ❶.
Then we display the provided date and the latitude and longitude
corresponding to the provided address.

Next, we offer a link to view the location in OpenStreetMap, with the
values of the $latitude and $longitude variables inserted into the link for
the mlat and mlon query fields ❷. We then output the sunrise, sunset, and
hours of daylight values, along with appropriate images next to the sunrise
and sunset times (sunrise.png and sunset.png, from user Mehwish at
https://www.flaticon.com).

Links to these images, with acknowledgment to the publisher, are
provided in the page’s footer element ❸. Download these images and copy
them into the public/images directory to complete the creation of the web
application. Then try running the web server and testing out the application
with different dates and addresses.

This project has brought together lots of the concepts from this chapter,
demonstrating a practical use for the DateInterval class and showing how

https://www.flaticon.com/

to juggle between DateTimeImmutable objects and Unix timestamps. It also
illustrates the power of open source libraries, in this case showing how
Guzzle makes it easy to send requests to external APIs and process the
returned JSON data.

MySQL Dates
When working in PHP, using native PHP date and time objects and
functions makes sense. When storing temporal data in a database, however,
it’s best to use the database system’s native format. This way, database
queries can be performed on the fields, and applications written in other
programming languages can also work with the stored database data. It’s
therefore important to understand the database formats for date-time
information and learn how to convert between PHP and the relevant
database formats when reading and writing to the database system. In this
section, we’ll look at how MySQL handles date-time information, but the
principles are the same for any DBMS.

MySQL can store dates, date-times, and timestamps, but we’ll focus on
date-times here. The basic individual date and time formats for MySQL are
the same as ISO 8601, with dates in the form YYYY-MM-DD and times in the
form HH:MM:SS. However, MySQL uses a space rather than the letter T as
the separator between the date and time components, so 1968-11-
22T09:05:30 in ISO 8601 format would appear as 1968-11-22 09:05:30
when stored in MySQL. Like PHP, MySQL can add decimal places to the
time component to store fractions of seconds, down to microseconds (six
decimal places).

To specify that you want a column in a MySQL table to store date-
times, declare the column with the DATETIME data type. Modern MySQL
systems default to zero decimal places for the time component (whole
seconds). To include fractions of a second, add the desired number of
decimal places in parentheses after the data type. For example, to store
date-times down to the microsecond, you’d declare a column of type
DATETIME(6).

MySQL stores date-time data as UTC values. Therefore, if the MySQL
server is set to a time zone that isn’t UTC, it will convert any date-times to
UTC for storage and then convert them back from UTC upon retrieval. In

practice, it’s common to create UTC DateTimeImmutable objects for
storage in the database, and to have the web application logic convert
retrieved date-times to any other desired time zone.

NOTE
If you’re using the TIMESTAMP data type in MySQL, be aware that MySQL
will automatically convert it to UTC, using the time-zone settings of your
MySQL server.

To create a MySQL datetime string for insertion into a table from a
PHP script, start with a DateTimeImmutable object and use its format()
method, with the format string 'Y-m-d H:i:s' for whole seconds or 'Y-m-d
H:i:s.u' for fractional seconds. Notice in particular the space between the
d and the H. Likewise, having retrieved a date-time string from MySQL,
you can use the createFromFormat() static method of the
DateTimeImmutable class to get an equivalent DateTimeImmutable object
for that MySQL data.

To demonstrate how to go back and forth between DateTimeImmutable
objects and MySQL DATETIME fields, let’s create a project with an
Appointment entity class and a corresponding appointment database table
to hold the names and date-times of appointments. Start a new project with
the usual composer.json file, and enter composer dump-autoload at the
command line to generate the autoloader. Then create a new MySQL
database schema called date1, and create an appointment table in that
schema by using the SQL statement in Listing 31-18. (See “Setting Up the
Database Schema” on page 543 to review how to integrate this SQL
statement into a PHP script.)

CREATE TABLE IF NOT EXISTS appointment (

 id integer PRIMARY KEY AUTO_INCREMENT,

 title text,

 startdatetime datetime(6)

)

Listing 31-18: The SQL to create the appointment MySQL database table

The table has an auto-incrementing id field for the primary key, a
title field for a description of the appointment, and a startdatetime field
for when it begins. We declare the startdatetime field to be of type
datetime(6) to illustrate working with fractions of a second, but note that
MySQL’s default of zero decimal places would be sufficient for the
majority of real-world meeting or appointment applications.

Now we’ll declare the Appointment class corresponding to this table.
Enter the contents of Listing 31-19 into src/Appointment.php.

<?php

namespace Mattsmithdev;

class Appointment

{

 private int $id;

 private string $title;

 private \DateTimeImmutable $startDateTime; ❶

 public function getId(): int

 {

 return $this->id;

 }

 public function setId(int $id): void

 {

 $this->id = $id;

 }

 public function getTitle(): string

 {

 return $this->title;

 }

 public function setTitle(string $title): void

 {

 $this->title = $title;

 }

 public function getStartDateTime(): \DateTimeImmutable

 {

 return $this->startDateTime;

 }

 public function setStartDateTime(\DateTimeImmutable|stri

ng $startDateTime): void ❷
 {

 if (is_string($startDateTime)) {

 $startDateTime = \DateTimeImmutable::createFromF

ormat(

 AppointmentRepository::MYSQL_DATE_FORMAT_STR

ING, $startDateTime);

 }

 $this->startDateTime = $startDateTime;

 }

}

Listing 31-19: The Appointment entity class, containing a DateTimeImmutable property

The Appointment class has id, title, and startDateTime properties to
match the columns in the appointment table. Notice that the
startDateTime property is a DateTimeImmutable object ❶. We give each
property appropriate getter and setter methods. This includes a special setter
method for the startDateTime property that uses the union type
DateTimeImmutable|string to allow either a DateTimeImmutable object or
a string to be provided as an argument ❷.

If the received argument is a string, we convert it to a
DateTimeImmutable object by using the public constant
MYSQL_DATE_FORMAT_STRING to help with the formatting. (We’ll declare this
constant later in the AppointmentRepository class.) This mechanism
allows the same setter method to work with PHP DateTimeImmutable
objects as well as the MySQL date-time strings received from the database.
The extra logic could be avoided by using an ORM library such as
Doctrine, which would seamlessly convert between PHP data types and
their database equivalents.

We’ll next create an AppointmentRepository class with methods to
insert a new appointment into the appointments table and fetch all the
appointments. For simplicity, we’ll combine the database connection and
repository methods into this one class, but see Chapter 28 for examples of
managing the database connection in a separate Database class. Create
src/AppointmentRepository.php containing the code in Listing 31-20.

<?php

namespace Mattsmithdev;

class AppointmentRepository

{

 public const MYSQL_DATE_FORMAT_STRING = 'Y-m-d H:i:s.u';

❶

 public const MYSQL_DATABASE = 'date1';

 public const MYSQL_HOST = 'localhost:3306';

 public const MYSQL_USER = 'root';

 public const MYSQL_PASS = 'passpass';

 private ?\PDO $connection = NULL;

 public function __construct()

 {

 try {

 $this->connection = new \PDO('mysql:dbname='

 . self::MYSQL_DATABASE . ';host='

 . self::MYSQL_HOST , self::MYSQL_USER, sel

f::MYSQL_PASS

); ❷
 } catch (\Exception) {

 print 'sorry - there was a problem connecting to

database ' . self::MYSQL_DATABASE;

 }

 }

 public function insert(Appointment $appointment): int

 {

 if (NULL == $this->connection) return -1;

 $title = $appointment->getTitle();

 $startDateTime = $appointment->getStartDateTime();

 $dateString = $startDateTime->format(self::MYSQL_DAT

E_FORMAT_STRING); ❸

 // Prepare SQL

 $sql = 'INSERT INTO appointment (title, startdatetim

e) VALUES (:title,

:startdatetime)';

 $stmt = $this->connection->prepare($sql);

 // Bind parameters to statement variables

 $stmt->bindParam(':title', $title);

 $stmt->bindParam(':startdatetime', $dateString);

 // Execute statement

 $success = $stmt->execute();

 if ($success) {

 return $this->connection->lastInsertId();

 } else {

 return -1;

 }

 }

 public function findAll(): array

 {

 $sql = 'SELECT * FROM appointment';

 $stmt = $this->connection->prepare($sql);

 $stmt->execute();

 $objects = $stmt->fetchAll(); ❹

 $appointments = [];

 foreach ($objects as $object) {

 $appointment = new Appointment();

 $appointment->setId($object['id']);

 $appointment->setTitle($object['title']);

 $appointment->setStartDateTime($object['startdat

etime']);

 $appointments[] = $appointment;

 }

 return $appointments;

 }

}

Listing 31-20: The AppointmentRepository class for MySQL database interaction

We declare a public MYSQL_DATE_FORMAT_STRING constant holding the
string with the necessary formatting for compatibility between MySQL
datetimes and PHP DateTimeImmutable objects ❶. We then declare more
constants for the database credentials (be sure to fill in your own values for
these), along with a private connection property to hold the PDO database
connection object. In the constructor, we create the database connection and
store it in the connection property ❷, using a try...catch structure to
handle any problems.

We next declare the insert() method, which takes in an Appointment
object and extracts its title and startDateTime properties into individual
variables. To create the MySQL date string $dateString, we pass the MYSQL
_DATE_FORMAT_STRING constant to the DateTimeImmutable object’s
format() method to get the proper string formatting ❸. We then prepare a
SQL INSERT statement, populate it with values, and execute the statement to
add a new row into the appointment table.

In the findAll() method, we use PDO’s fetchAll() method to
retrieve all the entries from the appointment table as an associative array of
keys and values ❹. The method then loops through this array, creating an
Appointment object from each element and adding it to the $appointments
array, which is then returned.

Finally, we’ll create an index script that we can run at the command
line to create a few sample Appointment objects, add their data to the
database, and then retrieve the entries back out of the database as an array
of Appointment objects. Create public/index.php as in Listing 31-21.

<?php

require_once __DIR__ . '/../vendor/autoload.php';

use Mattsmithdev\Appointment;

use Mattsmithdev\AppointmentRepository;

$appointmentRepository = new AppointmentRepository();

$appointment = new Appointment();

$appointment->setTitle('get an ice cream sandwich');

$appointment->setStartDateTime(new DateTimeImmutable('2009-0

8-02T11:00:00.5'));

$appointmentRepository->insert($appointment);

$appointment2 = new Appointment();

$appointment2->setTitle('celebrate birthday');

$appointment2->setStartDateTime(new DateTimeImmutable('2025-

11-22T09:05:30.77'));

$appointmentRepository->insert($appointment2);

$appointments = $appointmentRepository->findAll();

foreach ($appointments as $appointment) {

 var_dump($appointment);

}

Listing 31-21: The index script /public/index.php testing our MySQL date example

We require the autoloader and declare use statements for the
Mattsmithdev namespaced AppointmentRepository and Appointment
classes. Then we create an AppointmentRepository object called
$appointmentRepository, along with two sample Appointment objects,
which we insert into the database by using the $appointmentRepository
object’s insert() method. Each object is given a time with a fractional
second component and is specified using ISO 8601 formatting, including
the T separator between the date and the time. This formatting doesn’t
matter, however, since we’ve written the AppointmentRepository class
with logic to convert to MySQL date-time formatting. We finish the script
by calling the findAll() method of the repository object to retrieve all

database rows as an array of Appointment objects, which we loop through
and pass to var_dump().

Here’s the output when the index script is executed:

object(Mattsmithdev\Appointment)#9 (3) {

 ["id":"Mattsmithdev\Appointment":private]=>

 int(1)

 ["title":"Mattsmithdev\Appointment":private]=>

 string(25) "get an ice cream sandwich"

 ["startDateTime":"Mattsmithdev\Appointment":private]=>

 object(DateTimeImmutable)#10 (3) {

 ["date"]=>

 string(26) "2009-08-02 11:00:00.500000"

 ["timezone_type"]=>

 int(3)

 ["timezone"]=>

 string(13) "Europe/Dublin"

 }

}

object(Mattsmithdev\Appointment)#11 (3) {

 ["id":"Mattsmithdev\Appointment":private]=>

 int(2)

 ["title":"Mattsmithdev\Appointment":private]=>

 string(18) "celebrate birthday"

 ["startDateTime":"Mattsmithdev\Appointment":private]=>

 object(DateTimeImmutable)#12 (3) {

 ["date"]=>

 string(26) "2025-11-22 09:05:30.770000"

 ["timezone_type"]=>

 int(3)

 ["timezone"]=>

 string(13) "Europe/Dublin"

 }

}

Two appointments have been retrieved from the database and output to
the console. The first is the 'get an ice cream sandwich' appointment,
with a start date-time of 2009-08-02 11:00:00.500000. The second is the

'celebrate birthday' appointment, with a start date-time of 2025-11-22
09:05:30.770000. The date components for both have been stored to six
decimal places for fractions of a second. Notice that the time zones are
Europe/Dublin, the setting for my PHP setup that is applied by default when
new DateTimeImmutable objects are created. If the web application was
working with dates from different time zones, one solution would be to
store the time zone along with the UTC version of each date-time in the
database, then convert the retrieved date-times back to that time zone upon
retrieval.

Summary
Manipulating dates and times is often a necessary part of developing
applications, since date-time information provides useful functionality to
users (such as maintaining a calendar) and is valuable for recording data
about when actions and requests have occurred. In this chapter, we explored
the most useful PHP classes and functions relating to dates and times,
including the DateTimeImmutable and DateInterval classes.

We put these language features to work in a web application that
reported sunrise and sunset information, which relied on the Guzzle library
to make HTTP requests to an external site. We also looked at how to move
date-time information back and forth between PHP scripts and MySQL
database tables, converting formats as appropriate.

Exercises
1. Write a script to create (and var_dump) DateTimeImmutable objects in

UTC (Zulu time), Irish Standard Time, and Eastern Standard Time for
the following:

2025-01-01 10:00:00

2025-01-02 12:00:00.05

2. Write a script to create (and var_dump) DateInterval objects between
2000-01-01 22:00:00 and the following:

2000-01-02 22:00:00

2010-05-06 00:00:00

2010-05-06 00:00:30

2020-01-01 22:00:00

3. Develop a project to create, store, and retrieve patient meetings with
doctors. The project should use a MySQL database for storing the
records. Base your project around a Consultation entity class
containing the following properties:

Patient name (string)
Doctor name (string)
Consultation date and time (DateTimeImmutable)
Duration in minutes (integer)
Here’s a SQL statement to create a database table for such records:

CREATE TABLE IF NOT EXISTS consultation (

 id integer PRIMARY KEY AUTO_INCREMENT,

 patient text,

 doctor text,

 duration integer,

 consultationdatetime datetime

)

4. Create a new project to find the hours of daylight in New York and
Dublin on the last day of the previous millennium, December 31, 1999.

A
INSTALLING PHP

While it’s possible to do PHP
development in the cloud, many

programmers and students prefer to have PHP
installed on their local computer. This appendix goes
through the steps to install PHP for macOS, Linux,
and Windows computer systems.

macOS
The easiest way to install PHP on macOS is to use Homebrew, a free
package manager that greatly simplifies installing and setting up software
packages. If you don’t already have it, first install Homebrew by visiting
https://brew.sh and following the instructions there.

Once you have Homebrew installed, enter the following at the
command line to install PHP:

$ brew install php

To verify this has worked, enter the following:

https://brew.sh/

$ php -v

If PHP has been successfully installed, you should see the latest PHP
version number in the output.

You can also use Homebrew to install the Composer dependency
manager, which is discussed in Chapter 20:

$ brew install composer

One last step is to check which, if any, INI configuration file your PHP
installation is reading from. Use this command:

$ php --ini

The output should be something like this:

Configuration File (php.ini) Path: /opt/homebrew/etc/php/8.x

Loaded Configuration File: /opt/homebrew/etc/php/8.

x/php.ini

--snip--

The first two lines displayed tell you the path and filename of the INI
file from which the PHP engine is reading its settings. On my macOS
computer, for example, the INI is located at /opt/homebrew/etc/php/8.
<x>/php.ini.

Linux
Many Linux distributions use the Advanced Packaging Tool (APT) package
manager for software installation. When using APT at the command line,
it’s a good idea to first update and upgrade any previously installed
packages with the following commands:

$ sudo apt-get update

$ sudo apt-get upgrade

You can then install PHP as follows:

$ sudo apt-get install php

$ sudo apt-get install php-cgi

This should work for most Linux distributions, such as Ubuntu, but you
can find details about installing PHP on a wider range of distributions at
https://www.zend.com/blog/installing-php-linux.

To verify that the installation has worked, enter the following:

$ php -v

If PHP has been successfully installed, you should see the latest PHP
version number in the output. You should also check which, if any, INI
configuration file the PHP installation is reading from with this command:

$ php --ini

The result should be something like this:

Configuration File (php.ini) Path: /etc/php/8.x/cli

Loaded Configuration File: /etc/php/8.x/cli/php.ini

--snip--

The first two lines displayed tell you the path and filename of the INI
file from which the PHP engine is reading its settings. On my Ubuntu Linux
computer, for example, the INI is located at /etc/php/8.<x>/cli/php.ini.

Windows
The cleanest way to install PHP on a Windows computer is to visit the
Downloads page at https://www.php.net, click the Windows Downloads
link for the latest version of PHP listed, and download the ZIP file. Then
unzip the contents of that ZIP file to c:\php.

NOTE

https://www.zend.com/blog/installing-php-linux
https://www.php.net/

You don’t have to install PHP to c:\php, but I find this to be the easiest
location. If you prefer to install PHP elsewhere, make a note of your
preferred installation folder path so you can add it to the PATH
environment variable, as discussed next.

You now need to add the c:\php path to the PATH environment variable
for your computer system. In the Quick Launch search box, enter
Environment and then select Edit the System Environment Variables to
open the Advanced tab of the System Properties dialog. Next, click the
Environment Variables button to pull up the Environment Variables
dialog. Locate the Path row in the list of system variables and click Edit, as
shown in Figure A-1.

Figure A-1: Accessing the Path row in the Environment Variables dialog

In the next dialog (see Figure A-2), click New and enter the PHP
location of c:\php. Then keep clicking OK to save changes until all the
dialogs have closed.

Figure A-2: Adding the c:\php path to the PATH environment variable

To make sure everything has worked, open up a command line terminal
and enter the following:

> php -v

If PHP has been successfully installed, you should see the latest PHP
version number in the output. You should also make sure your installation
has an INI configuration file by entering the following at the command line:

> php --ini

You should see something like this in response:

Configuration File (php.ini) Path:

Loaded Configuration File: c:\php\php.ini

These lines tell you the path and filename of the INI file from which
the PHP engine is reading its settings. On my Windows computer, for
example, the INI file is located at c:\php\php.ini. If no INI file is listed, go
to the c:\php folder and rename the php.ini-development file to php.ini.
Then run the php --ini command again, and you should see this file listed
as your loaded configuration file.

For Windows, you should make sure that four commonly used
extensions are enabled in the INI file. Once you know where it is, open the
file with a text editor and search for extension=curl. Then remove any
semicolon at the beginning of the lines for these four extensions:

extension=curl

extension=pdo_mysql

extension=pdo_sqlite

extension=zip

The first and last of these (curl and zip) will help the Composer tool
manage third-party packages for your projects (see Chapter 20). The middle
two (pdo_mysql and pdo_sqlite) enable the PDO database communication
extensions for MySQL and SQLite (see Chapter 28). If you’ve made any
changes, save the updated text file before closing it.

AMP Installations
While I recommend following the steps outlined in this appendix to install
PHP, some developers instead prefer to install a complete AMP stack,
which uses a single installer to bundle together the three common
components for PHP web application development: a web server such as
Apache HTTP Server, a database management system such as MySQL, and
the PHP engine. Popular AMP systems include the following:

XAMPP (for Linux, macOS, and Windows):
https://www.apachefriends.org
WampServer (for Windows): https://wampserver.aviatechno.net
MAMP (for macOS and Windows): https://www.mamp.info

Visit these websites to learn more about the necessary installation process.

https://www.apachefriends.org/
https://wampserver.aviatechno.net/
https://www.mamp.info/

B
DATABASE SETUP

Part VI of this book outlined how to use
PHP to interact with MySQL and

SQLite databases. This appendix covers how to make
sure these database management systems are set up
on your local computer.

MySQL
MySQL is available in various editions. For the purposes of this book, the
free MySQL Community Server is sufficient. We’ll discuss how to install it
for your chosen operating system.

macOS and Windows
To install MySQL Community Server on macOS or Windows, visit
https://dev.mysql.com/downloads/mysql/. The website should detect the
operating system you’re using, so you just need to download the latest
version of the appropriate installer for your system. For macOS, I
recommend one of the DMG Archive files: either the ARM installer for an
M-series machine or the x86 installer for an Intel-based machine. For
Windows, I suggest the Microsoft Software Installer (MSI).

https://dev.mysql.com/downloads/mysql/

Once you’ve downloaded the installer for your system, run it and take
the defaults that are offered. The only part of the installation you need to
take special care with is when you’re asked to enter a password for the root
user of the MySQL server. Choose a password you can remember, since
you’ll need to provide this password in your PHP scripts that communicate
with the database server.

Once you’ve completed the installation process, the MySQL server
should be ready to use with your PHP applications. The default installation
will configure the server to start up and run in the background each time
you restart your system, so you shouldn’t need to manually start the
MySQL server before using it.

Linux
If you’re a Linux user, you’ll need to install the PDO and MySQL server
extension packages to enable PHP to communicate with MySQL databases
using the PDO library. Use the following commands:

$ sudo apt-get install php-mysql

$ sudo apt-get install mysql-server

The database server should be running once it’s installed, which you
can check with the following command:

$ sudo ss -tap | grep mysql

LISTEN 0 70 127.0.0.1:33060 0.0.0.0:*

users:(("mysqld",pid=21486,fd=21))

LISTEN 0 151 127.0.0.1:mysql 0.0.0.0:*

users:(("mysqld",pid=21486,fd=23))

This indicates that the server is active and running on port 33060. If
you ever need to restart the MySQL server, you can do so with this
command:

$ sudo service mysql restart

If you wish, you can set a password for the root MySQL user as
follows (replacing password with whatever you prefer):

$ sudo mysql

mysql> ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_n

ative_password BY 'password';

mysql> exit

Bye

You’re now ready to use MySQL databases with your PHP projects.

SQLite
When you install PHP on macOS with Homebrew, SQLite should be
enabled by default. On Windows, SQLite will be available as long as the
pdo_sqlite extension is enabled in your INI file. We discussed how to
verify this in Appendix A.

On Linux, use this command to enable PHP to communicate with
SQLite databases:

$ sudo apt install php-sqlite3

As of this writing, version 3 is the latest stable version of SQLite.

Confirming the MySQL and SQLite Extensions
You can check your active PHP database extensions at any time by creating
an index.php script that calls the phpinfo() function. As discussed in
Chapter 1, this function prints out a detailed report about your PHP
installation. Listing B-1 shows the index.php file you need.

<?php

phpinfo();

Listing B-1: An index.php script to view your PHP settings

Serve this script by entering php -S localhost:8000 at the command
line, then open a browser to localhost:8000. Search the resulting page for

PDO to see the list of PDO database extensions. If everything is working,
you should see that both MySQL and SQLite are enabled.

C
REPLIT CONFIGURATION

If you’ve chosen to use the Replit
online coding environment to follow

along with this book, you’ll be able to get started
right away using Replit’s default PHP settings. As
you move through the book, however, you may need
to make some changes to make Replit work with
more sophisticated tools like the Composer
dependency manager and a database management
system. This appendix discusses how to reconfigure
your Replit projects. The settings we’ll discuss apply
to both PHP CLI and PHP Web Server projects.

Changing the PHP Version
A new Replit project may not be running the latest version of PHP by
default. To find out, enter php -v into the Replit command line shell. You
should see the PHP version number printed in response. If this isn’t the
latest version of PHP, you may be able to change the version by editing one
of the project’s hidden configuration files. First, show the hidden files by

clicking the three vertical dots widget in the left-hand Files column and
choosing Show Hidden Files (see Figure C-1).

Figure C-1: Showing hidden files for the current Replit project

You should now see a new section in the Files column labeled Config
Files and containing two files: .replit and replit.nix. Select the replit.nix file,
and you should see its contents in the middle editor column. The contents
should look something like Listing C-1.

{pkgs}: {

 deps = [

 pkgs.php

];

}

Listing C-1: The replit.nix configuration file

To change the PHP version, add two digits to the end of pkgs.php
representing the major and minor version numbers you want (for example,

pkgs.php82 to use PHP version 8.2.x). Then, if you enter php -v at the
command line again after a short time, you should see the new version
number listed.

This may take some trial and error, as Replit may not be able to work
with the absolute latest version of PHP. For example, it can’t run PHP 8.3 at
the time of this writing, though in the future you should be able to use
pkgs.php83 to run PHP 8.3.x, then pkgs.php84 for version 8.4.x, and so on.

NOTE
Rather than guessing how long it will take to rebuild the environment after
changing a configuration setting, you can close the current shell tab and
then open a new one. You won’t be shown a command line prompt in the
new tab until the new environment has been fully loaded.

Adding the Composer Tool
Chapter 20 introduces the Composer command line tool for dependency
management. This tool isn’t available by default in Replit PHP projects, but
you can easily add it by editing the replit.nix configuration file. Make the
changes shown in Listing C-2, replacing the x after the 8 with the
appropriate PHP minor version number, such as 2 for PHP version 8.2.

{pkgs}: {

 deps = [

 pkgs.php8x

 pkgs.php8xPackages.composer

];

}

Listing C-2: Adding Composer to the replit.nix configuration file

After the Replit environment updates, enter composer at the command
line. If everything is working, you should see a list of all the commands
available with the Composer tool.

Using the SQLite Database System
Part VI introduced database programming with the MySQL and SQLite
database systems. If you’re following along with Replit, the most
straightforward option is to use SQLite, which as of this writing is available
by default for all Replit PHP projects. You can verify this by executing the
phpinfo() function and checking the PDO and pdo_sqlite entries, as in
Figure C-2.

Figure C-2: Confirming PDO SQLite features by printing phpinfo()

In the event the default installation of SQLite is removed in the future,
you can add it to a Replit project by editing the replit.nix configuration file
to include the two extra lines shown in Listing C-3. This is how my typical
PHP Web Server project replit.nix file looked before SQLite was added as a
default.

{pkgs}: {

 deps = [

 pkgs.php8x

 pkgs.php8xPackages.composer

 pkgs.php8xExtensions.pdo

 pkgs.sqlite

];

}

Listing C-3: Enabling SQLite in the replit.nix file

These extra lines add the PDO extension and SQLite to the project.
Once again, replace the x with the latest minor version number of PHP
available.

Serving Pages from the public Directory
When you click the Run button in a PHP Web Server project, Replit
defaults to serving all files and folders for the project. As discussed in
Chapter 10, however, it’s best for security reasons to create a public folder
for the project and serve only the contents of this folder. While you can
always serve from public by entering php -S localhost:8000 -t public
in the shell, you may find it more convenient to change the behavior of the
Run button instead. For that, open the hidden .replit configuration file and
change the first line as follows:

run = "php -S 0.0.0.0:8000 -t ./public"

If your index.php script is located in a public folder and you don’t
make this change, clicking the Run button will trigger a 404 Not Found
error, since Replit will be looking for the index.php script in the root
directory of the project.

INDEX

Symbols
200 OK status code, 179
404 error codes, 179, 192
+ (addition operator), 21
& (ampersand), 107, 138
&& (AND operator), 39, 70
= (assignment operator), 17, 22, 101, 124
\ (backslash escape character), 43
{} (braces), 47–48, 67, 85, 112
::cases() static method, 495
: (colon), 122
+= (combined assignment and addition operator), 122, 124
/= (combined assignment and division operator), 23
**= (combined assignment and exponentiation operator), 23
%= (combined assignment and modulo operator), 23
*= (combined assignment and multiplication operator), 23
-= (combined assignment and subtraction operator), 22
.= (concatenating assignment operator), 45
-- (decrement operator), 23
/ (division operator), 21–23
$ (dollar sign), 17–18, 20
=> (double-arrow operator), 76, 135, 144, 329
{{}} (double braces in Twig), 399
== (equal operator), 35–36, 74–75
\\ (escaped backslash), 46
\" (escaped double quote), 43
\n (escaped newline), 46, 52, 59, 60, 170
\' (escaped single quote), 43, 59
\t (escaped tab), 46 60
** (exponentiation operator), 21
« » (guillemets, UML notation), 366
=== (identical operator), 36, 75, 229
++ (increment operator), 23, 117–118
?int nullable integer type, 96
% (modulo operator), 21–22, 120

/*..*/ (multiline comment), 16
* (multiplication operator), 21
<> (not-equal operator), 36, 150
!= (not-equal operator), 36, 150
!== (not-identical operator), 36, 150
! (NOT operator), 36, 70–71, 122
?? (null-coalescing operator), 77–78, 305
|| (OR operator), 39, 70, 72–73
:: (scope-resolution operator), 372, 478
%20 (space replacement character), 197
<==> (spaceship operator), 38
... (spread operator), 137, 150–151
[] (square brackets), 126–127
{%%} statements in Twig, 406–407
. (string concatenation operator), 35, 44, 84
- (subtraction operator), 21
? (ternary operator), 39, 76–77
\u{<hex>} (Unicode escape), 48
+ (union operator), 150

A
absolute filepaths, 83
abstract classes, 367, 502, 505, 509

abstract superclass, 498–499, 526
abstraction, 327
abstract keyword, 367, 437
abstract methods, 497, 500–509, 526
access control logic, 301
accessor methods, 341–342, 363
action controllers, 241
addition, combined assignment and addition operator (+=), 122, 124
addition operator (+), 21
add() method (DateTimeImmutable), 639
Advanced Packaging Tool (APT), 664
AJAX (Asynchronous JavaScript and XML), 182
aliases, 387
alternative loop syntax, 122–123

foreach loop, 214
AMP (Apache HTTP Server, MySQL, PHP) installations, 667
ampersand (&), 107, 138
AND operations, 70, 71–72
AND operator (&&), 39, 70
anonymous classes, 338
anonymous functions, 153
antipattern, 491
application programming interface (API), 42

API key, 473
architecture, web application, 177, 438
arguments, 55, 86

named, 102
arithmetic expressions, 33–34
arms, 76
array functions

array(), 127
array_flip(), 141
array_is_list(), 132, 144
array_key_last(), 132
array_map(), 141, 153
array_pop(), 130, 149
array_push(), 129
array_rand(), 141
array_slice(), 141
array_sum(), 137
array_walk(), 141, 153

arrays, 28, 111, 119, 125
accessing keys and values, 126, 134
appending an element, 127
array-based form validation logic, 235–237
checkboxes as, 218–220
combining, 150
comparing, 150
copies, 137–139
data type, 137
default mapping, 126
destructuring into variables, 152
elements of, 126
empty, 128
ID-indexed, 282
imploding, 135
integer keys, 126

negative, 139
nonsequential, 144
unique, 128

key/value pairs, 144
looping through, 133
managing multiple validation errors with, 227
multidimensional, 147–148, 542
non-integer keys, 129
operators, 150–151
references, 137–139
simple, 125
sophisticated, 143
as stacks, 131

string keys, 146
superglobal, 204, 265

arrow functions, 154
ASCII (American Standard Code for Information Interchange), 59

ASCII art, 90
assignment operator (=), 17, 22, 101, 124
Asynchronous JavaScript and XML (AJAX), 182
ATOM constant, 634
augmenting inherited behavior, 371–373
authentication, 301–316, 533

tokens, 265
authorization, 301, 303, 316
auto-incrementing, 579
autoloaders, 360, 388–391

class namespaces, 388
autoload property, 389

B
backed enums, 494
backslash escape character (\), 43

escaped (\\), 46
base template, Twig, 408
block (Twig keyword), 416–419
block() function, 419
blocks of code, 15, 416
bool data type, 28
Boolean values, 21, 33

expressions, 66, 70
flags, 114, 116
variables, 72

Bootstrap CSS, 209, 304, 581
bootstrap script, 616–17
braces ({}), 47–48, 67, 85, 112

double (Twig output), 399
break statement, 74, 116
browser

developer tools, 180, 203–204, 208
sessions, 262–263

brute-force techniques, 608
bubbling, 454–456, 467
buffers, output, 187
built-in classes, 382
built-in web server, 190

C
caching, 303, 488, 509, 616

callback functions, 153
call-stack bubbling, 454–456, 467
camel case

lower, 19–20, 85, 216
Pascal, 338
upper, 338

Cannot instantiate abstract class error message, 368
capitalization, 19, 37
Cascading Style Sheets (CSS), 181, 190, 209, 277, 291, 304, 309
cases, 19–20, 37, 53–54, 74, 338

sensitivity, 19, 57
::cases() static method, 495
casting, 27, 30, 39
catching exceptions, 446–447
catch statements, 442
channels, 465–466
checkboxes, 216–220
child templates, 408, 415
chmod() function, 163
choice statements, 66
classes, 19, 327, 329, 334, 338–339

abstract, 367, 502, 505, 509
anonymous, 338
built-in, 382
constants, 480
custom exception, 441, 451–453
declaring, 337–348, 374
default behavior, 346
entity, 535, 619
enum, 491
helper, 622
hierarchy, 360, 436, 504
interchangeability, 526
log handler, 465, 472
members of, 329
model, 538, 542, 596, 601
names, 338
repository, 556, 570, 595, 622
utility, 482

client/server communication, 177, 196–204
code blocks, 15, 416
code reuse, 522
collections, 111, 351
colon (:), 122
combined assignment operators

addition (+=), 122, 124
division (/=), 23

exponentiation (**=), 23
modulo (%=), 23
multiplication (*=), 23
subtraction (-=), 22

command line interface (CLI), 4, 6, 9
comma-separated values (CSV), 126, 166
comments, 15–16
comparative expressions, 35
comparison operators, 35–37
compiled programming languages, 6
Composer, 381, 386, 398, 673

autoloader, 389
package-dependency features, 391

composer.json configuration file, 386, 464
compound data types, 125
computational efficiency, 596
concatenating assignment operator (.=), 45
concatenation, 45, 126, 542
concatenation, string operator (.), 35, 44, 84
conditional loops, 112
conditional statements, 39, 65
confirmation dialog, 570
consoles, 5
constants, 20

calculated, 481
class, 480
magic, 83, 340, 346
undefined, 18

constant-time function, 612
__construct() method, 346
constructor methods, 346–348, 433

constructor property promotion, 348
continue keyword, 119
contracts, 497
controllers, 240–241

action, 241
classes, 428

multiple, 430–435
front, 185, 333, 428–430

Application class as, 409
creating, 284
updating, 320

model-view-controller, 177, 189, 240, 396, 535
cookies, 263–264

time out, 270
Coordinated Universal Time (UTC), 641
count_chars() function, 56

counter variables, 117
count() function, 131
createFromDateString() method, 639
createFromFormat() method, 635
creating objects, 339
credentials, database, 598

securing, 615
CRUD (create, read, update, delete) database operations, 569, 585, 596
curly brackets ({}), 47, 67, 85, 112

double, 399
current page link, 249, 251, 305, 420, 434
custom exception classes, 441, 451–453
custom form validation logic, 226
custom methods, 353

D
data

filtering, 205
sorting, 39
source name, 545–546
structures, 299
types, 27–28, 75, 85, 88, 125, 137, 492
validation, 233, 255

databases, 531
abstracting away lower-level work, 596
columns, 620
connections, 533, 581, 598

concurrent, 534
credentials, 596, 598
database-driven applications, 529, 543, 569
drivers, 533
images, 282, 460
integrity of, 532
management system (DBMS), 533
programming, 541
queries, 535
records in, 532
relational, 532
schema, 533, 607
security, 595, 615
tables, 532

date classes
DateInterval, 639
DatePeriod, 640
DateTimeImmutable, 633–641

date functions
date_default_timezone_get(), 643

date_sun_info(), 647
date.timezone, 642

dates, 631
manipulating, 637

date-time, 632–640
letter codes in, 635

DATETIME MySQL data type, 656
DateTime object, 636
daylight saving time, 631, 644
debugging, 15, 446
decimal place formatting, 100, 281, 288, 292, 434, 484, 564, 576, 589
declaring

abstract classes, 367
abstract methods, 501
array keys, 144
arrays, 126–127
classes, 337–348

final, 374
enumerations, 492
exceptions, 452
final methods, 375
functions, 82, 84–88
interfaces, 505
static methods, 522
traits, 522

decrement operator (--), 23
decryption, 608
default

class behavior, 346
method implementation, 500
routing, 185
value, 101
visibility, 342

default keyword, 74
define() function, 21
delimiters, 49–50
dependency management, 391
deprecation messages, 88–89
design patterns, 240
developer tools, browser, 180, 203–204, 208
die() function, 234
diff() method, 639
__DIR__ constant, 83, 340
directories, 157

confirming existence, 161
creating, 161

recursive creation, 162

deleting, 165
paths, 83

array of, 169
permissions, 163
renaming, 165

division, combined assignment and division operator (/=), 23
division operator (/), 21–23
Doctrine ORM library, 595, 615

bootstrap script, 616–17
dollar sign ($), 17–18, 20
don’t repeat yourself (DRY) principle, 82
dotenv files, 598
Dotenv object, 617
dot notation, 403
double-arrow operator (=>), 76, 135, 144, 329
double keyword, 29
double-precision format, 29
double-quoted strings, 41, 46–48

object access, 341
do...while loops, 111, 113
DriverManager::getConnection() method, 619
drop tables, SQL, 607
DSN (data source name), 545–546
dynamic web servers, 183

E
echo command, 5–7, 10
efficiency, computational, 596
elements, appending, 127
elseif statement, 68
else statement, 67
{% else %} statement in Twig, 407
emojis, 48
empty arrays, 128
empty() function, 93, 227
encapsulation, 331
encryption, 608
endblock statements, 416
endfor statements, 123
endif statements, 69
entity classes, 535, 619
EntityManager class, 617
entity-relationship (ER) model, 535–536, 544
enumerations (enums), 475, 491–492

backed, 494
classes, 491
value, 494

.env file, 598
Environment Variables dialog, 665
EOT (end of text) delimiter, 49
epochs, 646
equality tests, 36, 74
equal operator (==), 35–36, 74–75
equal sign (=), 17
ER (entity-relationship) model, 535–536, 544

diagram, 536
error_log() function, 462
error() method, 465
errors

codes, 178–179, 192
fatal, 87–88, 350, 454
handling, 441
messages, 160, 368, 575, 587, 611
multiple validation, 227
pages, 243, 256

escaped backslash (\\), 46
escaped character (\), 43

date-time formatting, 635
escaped double quote (\"), 43
escaped newline (\n), 46, 52, 59, 60, 170
escaped single quote (\'), 43, 59
escaped tab (\t), 46 60
escape sequences, 46–48, 50

Unicode, 48
evaluation of expressions, 17
Exception object, 442, 471, 619
exceptions, 441–457, 460

bubbling, 454–456, 467
built-in, 449–451
catching, 446–447
custom, 441, 451–453
finally statements, 447–448
logging, 469
multiple classes, 449–454
subclasses, 456
throwing, 442–446
uncaught, 442–446

exclusive-OR (XOR) operations, 70, 73
execution, halting, 442
exponentiation, combined assignment and exponentiation operator (**=), 23
exponentiation operator (**), 21
expressions, 17, 21–24, 32–35

Boolean, 66, 70
comparative, 35

evaluation of, 17
string, 30, 35, 44, 52, 350

extends keyword, 359, 438
Twig, 418

eXtensible Markup Language (XML), 173, 599

F
fatal errors, 87–88, 350, 454
favicons, 267
FILE_APPEND option, 164
file functions

fclose() function, 167
feof() function, 168
fgetc() function, 168
fgetcsv() function, 173
fgets() function, 168
file_exists() function, 160
file() function, 166
file_get_contents() function, 158, 166
file_put_contents() function, 163, 166
filesize() function, 159
fopen() function, 167
fputcsv() function, 173
fread() function, 167
fseek() function, 168
ftell() function, 168

FILE_IGNORE_NEW_LINES flag, 166
filename pattern strings, 170
file not found message, 160
files, 157

array of paths, 169
bytestreams, 167
closing, 168
confirming existence, 159
deleting, 164
end of, 168
extensions, 10
permissions, 163
reading, 158

into an array, 166
renaming, 165
size, 159
text, 158, 177, 190, 387, 599

naming, 5
writing to, 163–164

touching, 161
.txt, 157

file servers, 182
FILE_SKIP_EMPTY_LINES flag, 166
filesystem pointers, 167
FILTER_DEFAULT value, 220
filter_has_var() function, 210, 217
filter_input() function, 201, 203–204, 226, 243
FILTER_REQUIRE_ARRAY argument, 220, 223
FILTER_SANITIZE_SPECIAL_CHARS argument, 205
final declarations, 374–376
finally statements, 447–448
findstr command, 463
Flaticon (website), 655
float data type, 28–29
floating-point numbers, 27, 29
flow of control, 333
foreach loops, 111, 134–136, 145
foreign keys, 532

relationships in Doctrine, 624
for loops, 111, 117–122, 133

last iteration, handling the, 120–122
form actions

avoiding double form submissions, 590
default, 234
processing data, 201
validation, 225–226, 231–233, 235

format() method, 634–635
for statements, Twig, 406
front controllers, 185, 333, 428–430

Application class as, 409
creating, 284
updating, 320

fully qualified names, 548
namespaced classes, 383

functions, 10–11, 17, 21, 81, 85. See also names of individual functions
anonymous, 153
callback, 153
calling, 82, 86
declaring, 82, 84–88
helper, 297
higher-order, 153
moving website logic into, 245
parameters, 85–86
return type, 85
scope of, 107
signature, 85, 97
variable number of arguments, 136
for website logic, 245

G
generalization, 332, 358
geocoding, 652
$_GET array, 204
GET HTTP method, 178–181

method forms, 200–202
requests, 197

getInstance() function, 488
«get/set» annotations, 366
getter methods, 342, 354, 363, 476

Twig, 403
getTimestamp() function, 646
getTimezone() function, 643
gettype() function, 29
Git, 599
.gitignore files, 615
global variables, 82
global visibility, 491
glob() function, 169
Glyphicon stars, 280
greater-than operator (>), 35, 37, 119, 188
greater-than-or-equal-to (>=) operator, 37
grep function, 463
guillemets, UML notation (« »), 366
GuzzleHttp namespace, 651
Guzzle library, 648

H
halting execution, 442
hardcoded

database credentials, 596
references, 521
values, 90

hashing, 596, 608–609
haystack strings, 55
HEAD HTTP method, 179
“Hello, world!” script, 5–6, 15
helper

classes, 622
functions, 297
methods, 591
scripts, 606

heredocs, 49–52
operator, 49
strings, 41, 49, 163

indention in, 50

hexadecimal code, 48
hidden variables, 577
hiding information, 331
higher-order functions, 153
highlighting the current page, 249, 251, 305, 420, 434
hit counters, 266
Homebrew package manager, 663
.htaccess files, 264
HTML (HyperText Markup Language), 7, 49

template text, 244
HTTP (HyperText Transfer Protocol), 20, 178

cookies, 263–264
headers, 181
method, 204
requests, 178, 195, 197
responses, 178

status codes, 179
Secure (HTTPS), 181

http_build_query() function, 652
hyperlinks

dynamically created, 213
encoding data, 211

I
IDE (integrated development environment), 8
identical code, 435
identical operator (===), 36, 75, 229
identifiers, 16
identity, 36, 75, 150
ID-indexed arrays, 282
id property, 603
if...else statements, 67

if...elseif, 68
if...elseif...else, 69

nested, 68
if statements, 66

alternative syntax, 69
in Twig, 406

images
databases, 282, 460
logo, 306

implode() function, 122, 135, 220
include command, 83

Twig, 414
increment operator (++), 23, 117–118
indention in heredoc strings, 50
indexing, zero-based, 54

index.php file, 7, 11–13
infinite loops, 123
information disclosure, minimum, 314
information hiding, 331
inheritance, 331, 357, 427, 607

augmenting behavior, 371–373
multiple, 503–504
OOP, 435

hierarchies, 497
Twig, 415

INI file, 664
INPUT_GET argument, 201
INPUT_POST argument, 203
input prompts, 112
INSERT statement, 660
installing PHP, 663–667

extensions, 667
instances, 328, 339

instantiation, 339, 479, 498
instance-level

members, 508
properties, 478

insteadof keyword, 525
int data type, 28
integers, 27–28
integrated development environment (IDE), 8
interactive mode, 28
interfaces, 497, 502

extension of multiple, 509
implementing, 506–507

interpreters, 6
?int nullable integer type, 96
intval() function, 229
InvalidArgumentException class, 449
is_datatype functions

is_bool() function, 31
is_dir() function, 161
is_float() function, 31
is_int() function, 31
is_null() function, 31
is_numeric() function, 32, 228

ISO 8601 standard, 632
isset() function, 132, 204, 305
is_string() function, 31
iterator ($i) variable, 117

J

JavaScript Object Notation (JSON), 171, 387, 514, 655
JSON-formatted string, 172

json_decode() function, 172
json_encode() function, 172

K
keys

accessing, 126, 134
API, 473
array, 125
databases, 532
foreign, 532, 624
integer, 126

negative, 139
nonsequential, 144
unique, 128

non-integer, 129
primary, 532
string, 146

key-value mapping, 126

L
last iteration, handling the, 120–122
lcfirst() function, 54
leading numeric strings, 34, 38
Lerdorf, Rasmus, 632
less-than (<) operator, 37, 119
less-than-or-equal-to (<=) operator, 37, 119
Linux, 664
Liskov substitution principle (LSP), 370–371
lists, 132, 144

multiple-selection, 221
single-selection, 220

literal values, 17, 21
load balancing, 534
localhost, 12
local variables, 87, 107
logfiles, 462–463, 467
logging, 446, 459–460, 472–473

cloud, 472
interface, 464–465, 509
Logger class, 464, 466–474, 485–491, 509

log handler classes, 465, 472
logical comparison operators, 39, 70–73, 122
login

authentication tokens, 265

forms, 301
storing data with sessions, 316
username, displaying, 321
verifying hashed passwords at, 608–609

logo images, 306
logout feature, 319–321
LOG_WARNING constant, 463
lollipop notation, 504–505
loops, 111

alternative syntax, 122–123
through arrays, 133
conditional, 112
do...while, 111, 113
for, 111, 117–122, 133
foreach, 111, 134–136, 145
infinite, 123
Twig, 433

loose coupling, 526
lower camel case, 19–20, 85, 216
lowercase letters, 37, 53–54
low-level code, 596
ltrim() function, 59

M
macOS, 663
magic constants, 83, 340, 346
magic methods, 346
many-to-one relationships, 626
mapping, key-value, 126
match statements, 75–76, 96–99
members of a class, 329
messages

deprecation, 88–89
error, 160, 368, 575, 587, 611
between objects, 327–328
pop-up confirmation, 577
warning, 17

metadata, 596, 619–620
tags, 619

methods, 329, 339
abstract, 497, 500–509, 526
accessor, 341–342, 363
constructor, 346–348, 433
custom, 353
declaring final, 375
default implementation, 500
helper, 591

magic, 346
overriding, 333, 357, 368–376, 498
signatures, 370, 497, 527
static, 480

minimum information disclosure, 314
mixins, 522
mkdir() function, 161
models, 240–241

classes, 538, 542, 596, 601
model-view-controller (MVC) architecture, 177, 189, 240, 396, 535
modify() function, 636
modulo, combined assignment and modulo operator (%=), 23
modulo operator (%), 21–22, 120
Monolog library, 464
multidimensional arrays, 147–148, 542
multiline comment (/*..*/), 16
multiple attribute, 221
multiple controller classes, 430–435
multiple exception classes, 449–454
multiple inheritance, 503–504
multiple interfaces, extension of, 509
multiple levels of inheritance, 361
multiple return types, 95
multiple-selection lists, 221
multiple validation errors, 227
multiplication operator (*), 21
MVC (model-view-controller architecture), 177, 189, 240, 396, 535
MySQL, 533, 542, 667, 669

dates, 655
server, 599

MYSQL_DATE_FORMAT_STRING constant, 658

N
\n (newline character), 5, 10, 14–15, 42–43, 46, 158
named arguments, 102
namespaces, 381–384

fully qualified names, 383
referencing, 384–385
root, 382, 444

name/value pairs, 198
naming collision, 381
navigation bars, 396
needle strings, 55
new keyword, 339, 346
Nominatim, 652
non-numeric characters, 32–34
non-numeric strings, 35

not-equal operator (!=), 36, 150
not-equal operator (<>), 36, 150
not-identical operator (!==), 36, 150
NOT operator (!), 36, 70–71, 122
nowdoc strings, 41, 52–53
nullable

parameters, 97
types, 95–98

null-coalescing operator (??), 77–78, 305
NULL type, 28, 30–31, 37, 77–78

connection, 573
referring to missing objects, 351–352
returning, 91

number_format filter, 434, 564–565, 576, 589
number_format() function, 100, 281, 288, 292, 481, 484
numeric

characters, 32–34
comparisons, 36
strings, 34, 38

O
object fetch mode, 542, 548
object operator (->), 45, 329, 339–340
object-oriented

PHP, 325, 427
programming, 19–20, 327, 427

inheritance, 435, 497
web applications, 402, 438

object-relational mapping (ORM), 595–596, 615
objects, 28, 31, 327, 339

resource, 167
online coding environments, 4
open source projects, 598
OpenStreetMap, 648
operands, 21, 32
operators, 21

arithmetic, 21–22, 33
array, 150–151
assignment, 17, 101, 124
combined arithmetic assignment, 22–23
comparison, 35
concatenating assignment, 45
decrement, 23
equal, 35–36
identical, 36, 75
increment, 23
logical AND, 39, 70, 71–72

logical NOT, 36, 70–71, 122
logical OR, 39
null-coalescing, 77–78, 305
order of precedence, 22
string concatenation, 44
ternary, 39, 76–77
unary, 23

optional parameters, 100
ORM (object-relational mapping), 595–596, 615
OR operations, 70
OR operator (||), 39, 70, 72–73
output buffers, 187
overriding

methods, 333, 357, 368–376, 498
preventing, 374
Twig, 417, 434

P
Packagist (website), 392
padding, 61
page-generation logic, 430
page header HTML templates, 287
parameters, 85–86

nullable, 97
optional, 100
skipped, 104

parentheses (()), 22, 71
parent keyword, 371
parsed strings, 35, 46
partial templates, 287, 414
Pascal case, 338
pass-by-reference approach, 105, 130
pass-by-value approach, 105
password_hash() function, 608
passwords, 112, 601

hashing, 596
verifying at login, 608–609

text fields, 302
password_verify() function, 609
PATH environment variable, 665
PATH_TO_TEMPLATES constant, 400
pdo-crud-for-free-repositories library, 598
permissions, files and directories, 163
PHP

Data Objects, 541, 670, 675
engine, 6, 11, 15
Extension Community Library, 509

extensions, 667
Hypertext Preprocessor, xxvi
installing, 663–667
libraries, 392
object-oriented, 325, 427
Standards Recommendations, 81

PSR-3, 464
PSR-4, 388–389
PSR-6, 510
PSR-16, 510

tags, 187
PHP_EOL constant, 44, 47
phpinfo() function, 11
php.ini file, 264, 462, 533, 642
plus sign (+), 21
popping (stack), 131
pop-up confirmation messages, 577
ports, 12
$_POST array, 204
postback scripts, 230
PostgreSQL, 629
POST HTTP method, 178, 291, 571

method forms, 202–204
requests, 197

post-increment values, 24
post-redirect-get (PRG) pattern, 590
power operator (**), 21
precedence, 22, 70–71
pre-increment values, 24
prepared statements, 542, 545
primary keys, 532
print_r() function, 150
print statements, 10, 14
print_timestamp() function, 646
private constructors, 488
private keyword, 335, 362
private properties, 341
procedural programming, 327
process IDs, 463
processing form data, 201
project structures

directory, 190
file, 304
secure, 245

properties of a class, 329, 338–339
protected keyword, 342, 362, 436
pseudo-variables, 343

PSR (PHP Standards Recommendations), 81
PSR-3, 464
PSR-4, 388–389
PSR-6, 510
PSR-16, 510

public keyword, 335, 338, 362
public properties, 338–339, 341
pushing (stack), 131

Q
qualified names, 384
query-string variables, 197–198

hardcoded IDs, 207
in hyperlinks, 206
quotation marks, 14, 21, 30, 88
double (""), 6, 41, 50
escaped, 43
single (''), 41–43

R
radio buttons, 215
read-evaluate-print loop (REPL), 4
readline() function, 113
records in databases, 532
redirects, 580, 590
reference, pass-by-reference approach, 105, 130
reference operator (&), 138
references, 31, 329, 339, 351

to arrays, 137–139
hardcoded, 521

referencing namespaces, 384–385
reflection, 598
relational databases, 532

management system, 533
relationships

databases, 532
ER model, 536
between objects, 330

relative paths, 83
rename() function, 165
render() function, 397
Replit, 673
replit.nix file, 674
repository classes, 556, 570, 595, 622
REQUEST_METHOD keyword, 232
request-response cycle, HTTP, 178

requests for comments (RFC), 89
RFC 5424 levels, 460

require command, 83
require_once command, 82–84
resource-expensive operations, 488
resource objects, 167
return statements, 86, 91
return types, 85, 347

multiple, 95
reusability, 82
reverse geocoding, 652
rewind() function, 168
rmdir() function, 165
root namespace, 382, 444
rounding down, 40
routing, 184–185
rtrim() function, 59
runtime notices, 88

S
sanitization, 205
scalable web applications, 239
scalar data types, 28, 39, 147, 150
schema, database, 533, 607
scope

of functions, 107
of variables, 87, 247

scope-resolution operator (::), 372, 478
scripts, 5–6, 15, 388

bootstrap, 623
helper, 606
postback, 230

security, 301
best practices, 608
credentials, 189
database, 595, 615
of project folder structures, 245
Twig, 399
vulnerability, 446

self:: prefix, 401, 478
semicolons, 6
sensitivity, case, 19, 57
sentinel values, 478
separating display and logic files, 242
$_SERVER array, 232
server-based database management systems (DBMS), 533
servers, 195

client communication, 177, 196–204
file, 182

$_SESSION array, 265, 275, 317, 591
session.auto_start configuration setting, 264
session_destroy() function, 270
session_id() function, 264
sessions, 261–272, 301

destroying, 270
IDs, 262
shopping carts, 275
storing login data with, 316
time out, 263

session_start() function, 264, 298, 593
setDate() function, 638
setter methods, 335, 342, 354, 363, 476
setTime() function, 638
setTimeStamp() function, 647, 652–653
severity levels, 463, 474

logging, 460
shared header templates, 304
sharing static resources, 485
shopping carts, 13, 16, 211, 275, 397

subtotal calculation in, 288–290
short echo tags, 188
side effects, 82
signatures of methods, 370, 497, 527
simple arrays, 125
SimpleXMLElement class, 173
simplexml_load_file() function, 173
single-quoted strings, 41–43

nowdoc strings, 52
single-selection lists, 220
singleton pattern, 488
sizeof() function, 132
skipped parameters, 104
snake case, 19–20, 85
snapshots of databases, 460
software architecture, 430
sophisticated arrays, 143
sort() function, 141
sorting data, 39
space replacement character (%20), 197
spaceship operator (<=>), 38
spread operator (...), 137, 150–151
SQL (Structured Query Language), 49, 534, 570

drop tables, 607
injection, 542

statements, 534
SQLite, 533, 542, 667, 675

installation, 671
square brackets ([]), 126–127
src directory, 245, 338
stacks, 131
stack trace, 446
Standard PHP Library (SPL), 449
statements, 6, 13, 24

branch, 68
choice, 66
conditional, 39, 65
group, 67
prepared, 542, 545

static, 475
content, 183
members, 367, 476
methods and properties, 480

status codes, 179
stereotyping, 366
sticky forms, 230
str_contains() function, 72
StreamHandler class, 464–465
str_getcsv() function, 173
string concatenation operator (.), 35, 44, 84
string data type, 90
string literal values, 21
strings, 6, 28, 41

array of characters, 139
comparison, 36

functions, 612
concatenation, 45, 126, 542
double-quoted, 41, 46–48
expression, 42
functions, 41, 53
heredoc, 41, 49, 163
keys, 146

negative integer, 139
needle and haystack, 55
non-numeric, 35
nowdoc, 41, 52–53
numeric, 34, 38
parsed, 35, 46
replacement, 58
searching, 54
single-quoted, 41, 43
unparsed, 52

stristr() function, 57
strlen() function, 55, 73, 112, 228
STR_PAD_BOTH constant, 61–62
str_pad() function, 61, 90
STR_PAD_LEFT constant, 61–62
strpos() function, 55
str_repeat() function, 61
str_replace() function, 58
str_split() function, 140
strtolower() function, 53
strtoupper() function, 53
structures, data, 299
subclasses, 331, 357, 451

exceptions, 456
subclassing, preventing, 374
sub() method (DateTimeImmutable), 639
submit buttons, 200, 208
substr_count() function, 55
substr() function, 56
substrings, 54–56
substr_replace() function, 58
subtraction, combined assignment and subtraction operator (-=), 22
subtraction operator (-), 21
superclasses, 331, 357, 435

abstract, 498–499, 526
superglobal arrays, 204, 265
switch statements, 73
Symfony web framework, 386
syslog() function, 460, 462

T
\t (tab escape character), 83
tables, database, 532
tabs, 42
tags, 5, 619

PHP, 187
short echo, 188

templating, 185, 395
library, 396
script, 281
text, 13–14, 244

ternary operator (?), 39, 76–77
textarea input, 253
text box form input, 200
text/html content type, 181
third-party libraries, 382, 390

$this keyword, 20, 335, 343
throwing exceptions, 442–446
throw statements, 442
time() function, 646
times, 631

daylight saving, 631, 644
manipulating, 637
offsets, 633

timestamp() function, 653
timestamps, 40, 463, 656

logging, 473
time_t format, 646
time zones, 631, 641

identifiers, 642
timing attacks, 612
__toString() method, 346, 349
touch() function, 161
traits, 497, 521

resolving conflicts, 525
trim() function, 59
try...catch statements, 446
Twig, 395

Composer, 398
control structures, 406
inheritance, 415
loops, 433
security, 399
templates, 408
variables, 397

type casting, 27, 39
type conversions, 34
TypeError message, 35, 88
type juggling, 27, 30, 32–39, 89–90

comparative, 35–39
logical, 39
numeric, 33–35
string, 35

types, data, 27–28, 75, 85, 88, 492

U
\u{<hex>} Unicode escape sequence, 48
Ubuntu, 665
ucfirst() function, 54
ucwords() function, 54
unary operator, 23
undefined

constants, 18

variables, 17
Undefined property warning, 364
Unicode characters, 48
Unified Modeling Language (UML), 339

diagram, 365
union operator (+), 150
union types, 98
Unix time, 646
unlink() function, 165
unparsed strings, 52
unset() function, 31, 132, 149, 269
unsetting a variable, 40
upper camel case, 338
uppercase letters, 53–54
username/password login forms, 608

displaying logged-in username, 321
use statements, 384
usort() function, 141
UTC (Coordinated Universal Time), 641
utility classes, 482

V
validation, 205, 231, 233, 255

errors, 227
form data, 225–226, 233

array-based, 235–237
value-backed enums (->value), 494
var_dump() function, 30, 607
variable multiplication operator (*=), 23
variables, 16–21

Boolean, 72
counter, 117
destructuring arrays into, 152
global, 82
hidden, 577
local, 87, 107
names, 47
pseudo, 343
query-string, 197–198
scope of, 87, 247
Twig, 397
undefined, 17
unsetting, 40

vendor folders, 390
view, 240

model-view-controller architecture, 189, 396
virtual attributes, 354

virtual machines, 4
visibility

default, 342
global, 491
keywords, 362

void return type, 90

W
warning() function, 465
warnings, 88, 364

messages, 17
web applications

architecture of, 438
multipage, 249
object-oriented, 402, 438
scalable, 239

web forms, 195
client/server communications for, 196–203
encoding data, 211–214
filtering, 203–206
input types, 214–223
mixed variables, 207–208
multiple submit buttons, 208–211
noneditable data, 206–207

web servers, 4, 7–8, 11–12
built-in, 190
dynamic, 183
installing a different, 192
public directory, 676

while loops, 111–112
whitespace, 33, 42, 188

trimming, 59
Windows, 665–667

X
XML (eXtensible Markup Language), 173, 599
XOR (exclusive-OR) operations, 70, 73

Y
YAML (YAML Ain’t Markup Language), 173, 599
YAML functions

yaml_emit(), 173
yaml_emit_file(), 173
yaml_parse(), 173
yaml_parse_file(), 173

Z
zero, numeric value of, 228
zero-based indexing, 54
Zulu time, 641

	Title Page
	Copyright
	Dedication
	About the Author and About the Technical Reviewers
	Acknowledgments
	Introduction
	Who This Book Is For
	Why PHP?
	What You Will Learn
	Online Resources

	Part I: Language Fundamentals
	1. PHP Program Basics
	Two Methods to Run PHP
	The Replit Online Coding Environment
	A Local PHP Installation

	Template Text vs. PHP Code
	Comments
	Variables
	Creating Variables
	Using Variables
	Naming Variables

	Constants
	Operators and Operands
	Arithmetic Operators
	Combined Arithmetic Assignment Operators
	Increment and Decrement Operators

	Summary
	Exercises

	2. Data Types
	PHP Data Types
	Scalar Data Types
	The Special NULL Type
	Functions to Test for a Data Type

	Type Juggling
	Numeric Contexts
	String Contexts
	Comparative Contexts
	Logical and Other Contexts

	Type Casting
	Summary
	Exercises

	3. Strings and String Functions
	Whitespace
	Single-Quoted Strings
	Joining Strings: Concatenation
	Double-Quoted Strings
	Handling the Character After a Variable Name
	Incorporating Unicode Characters

	Heredocs
	Escape Sequences
	Indention

	Nowdocs
	Built-in String Functions
	Converting to Upper- and Lowercase
	Searching and Counting
	Extracting and Replacing Substrings
	Trimming Whitespace
	Removing All Unnecessary Whitespace
	Repeating and Padding

	Summary
	Exercises

	4. Conditionals
	Conditions Are True or False
	if Statements
	if...else Statements
	Nested if...else Statements
	if...elseif...else Statements
	Alternative Syntax

	Logical Operators
	NOT
	AND
	OR
	XOR

	switch Statements
	match Statements
	The Ternary Operator
	The Null-Coalescing Operator
	Summary
	Exercises

	5. Custom Functions
	Separating Code into Multiple Files
	Reading in and Executing Another Script
	Creating Absolute Filepaths

	Declaring and Calling a Function
	Parameters vs. Arguments
	Errors from Incorrect Function Calls
	Type Juggling

	Functions Without Explicit Return Values
	Returning NULL
	Exiting a Function Early

	Calling Functions from Within Functions
	Functions with Multiple Return and Parameter Types
	Nullable Types
	Union Types

	Optional Parameters
	Positional vs. Named Arguments
	Skipped Parameters

	Pass-by-Value vs. Pass-by-Reference
	Summary
	Exercises

	Part II: Working with Data
	6. Loops
	while Loops
	do...while Loops
	Boolean Flags
	break Statements

	for Loops
	Using the Counter in the Loop
	Skipping Loop Statements
	Handling the Last Iteration Differently

	Alternative Loop Syntax
	Avoiding Infinite Loops
	Summary
	Exercises

	7. Simple Arrays
	Creating an Array and Accessing Its Values
	Updating an Array
	Appending an Element
	Adding an Element with a Specific Key
	Appending Multiple Elements
	Removing the Last Element

	Retrieving Information About an Array
	Looping Through an Array
	Using a foreach Loop
	Accessing Keys and Values
	Imploding an Array

	Functions with a Variable Number of Arguments
	Array Copies vs. Array References
	Treating Strings as Arrays of Characters
	Other Array Functions
	Summary
	Exercises

	8. Sophisticated Arrays
	Declaring Array Keys Explicitly
	Arrays with Strings as Keys
	Multidimensional Arrays
	More Array Operations
	Removing Any Element from an Array
	Combining and Comparing Arrays
	Destructuring an Array into Multiple Variables

	Callback Functions and Arrays
	Summary
	Exercises

	9. Files and Directories
	Reading a File into a String
	Confirming That a File Exists
	“Touching” a File
	Ensuring That a Directory Exists

	Writing a String to a Text File
	Managing Files and Directories
	Reading a File into an Array
	Using Lower-Level File Functions
	Processing Multiple Files
	JSON and Other File Types
	Summary
	Exercises

	Part III: Programming Web Applications
	10. Client/Server Communication and Web Development Basics
	The HTTP Request-Response Cycle
	Response Status Codes
	An Example GET Request

	How Servers Operate
	Simple Web Servers for File Retrieval
	Dynamic Web Servers for Processing Data
	The Routing Process

	Templating
	PHP Tags
	Short Echo Tags

	The Model-View-Controller Architecture
	Structuring a PHP Web Development Project
	Summary
	Exercises

	11. Creating and Processing Web Forms
	Basic Client/Server Communication for Web Forms
	GET vs. POST Requests
	A Simple Example

	The filter_input() Function
	Other Ways to Send Data
	Sending Noneditable Data Along with Form Variables
	Processing Mixed Query-String and POST Variables
	Offering Multiple Submit Buttons
	Encoding Data in Hyperlinks

	Other Form Input Types
	Radio Buttons
	Checkboxes
	Single-Selection Lists
	Multiple-Selection Lists

	Summary
	Exercises

	12. Validating Form Data
	Writing Custom Validation Logic
	Managing Multiple Validation Errors
	Testing for a Valid Zero Value

	Displaying and Validating Forms in a Single Postback Script
	Simple Validation Logic
	Array-Based Validation Logic

	Summary
	Exercises

	13. Organizing A Web Application
	Front Controllers and the MVC Architecture
	Separating Display and Logic Files
	Creating the Front Controller
	Writing the Display Scripts

	Moving Website Logic into Functions
	Designing a Secure Folder Structure
	Simplifying the Front-Controller Script
	Writing the Functions

	Generalizing the Front-Controller Structure
	Distinguishing Between Requested Pages
	Building a Multipage Application

	Summary
	Exercises

	Part IV: Storing User Data with Browser Sessions
	14. Working with Sessions
	A Web Browser Session
	The session_start() and session_id() Functions
	The $_SESSION Superglobal Array
	Updating a Stored Value
	Unsetting a Value
	Destroying the Session and Emptying the Session Array

	Summary
	Exercises

	15. Implementing A Shopping Cart
	The Shopping Cart File Structure
	Defining the Product List
	Creating the Products Array
	Adding CSS
	Displaying the Star Ratings
	Creating the Template Script
	Updating the Index Script

	Designing the Shopping Cart
	Creating the Front Controller
	Managing the Product and Cart Arrays
	Streamlining the Index Script
	Creating a Header Template
	Creating the Cart Display Template

	Interacting with the Session
	Updating the Cart-Retrieval Function
	Implementing Cart-Manipulation Functions
	Creating the Empty Cart Template

	Finalizing the Front Controller
	Adding Display Functions
	Writing the switch Statement

	Summary
	Exercises

	16. Authentication and Authorization
	A Simple Login Form
	Creating a Site with a Login Form
	Defining the File Structure
	Creating the Shared Page Content
	Designing the Page Templates
	Developing the Login Form
	Writing the Front Controller
	Implementing the Logic Functions
	Creating the Error Page Template

	Storing Login Data with Sessions
	Updating the Front Controller
	Writing the Login Function
	Updating the Header Template
	Updating the Banking Page Template

	Offering a Logout Feature
	Adding the Logout Function
	Updating the Front Controller
	Displaying the Logout Link

	Displaying the Logged-in Username
	Retrieving the Username
	Updating the Navigation Bar
	Updating the CSS

	Summary
	Exercises

	Part V: Object-Oriented PHP
	17. Introduction to Object-Oriented Programming
	Classes and Objects
	Creating Relationships Between Objects
	Encapsulation and Information Hiding
	Superclasses, Inheritance, and Overriding
	The Flow of Control for Object-Oriented Systems
	An Example Class Declaration
	Summary
	Exercises

	18. Declaring Classes and Creating Objects
	Declaring a Class
	Creating an Object
	Private Properties with Public Accessor Methods
	Getting and Setting Private Properties
	Screening for Invalid Data

	Overriding Default Class Behavior with Magic Methods
	Initializing Values with a Constructor Method
	Converting Objects to Strings

	Object Variables as References
	Handling Missing Objects
	Custom Methods and Virtual Attributes
	Summary
	Exercises

	19. Inheritance
	Inheritance as Generalization
	Creating Objects from Subclasses
	Using Multiple Levels of Inheritance

	Protected Visibility
	Abstract Classes
	Overriding Inherited Methods
	Augmenting Inherited Behavior
	Preventing Subclassing and Overriding
	Declaring a Class final
	Declaring a Method final

	Summary
	Exercises

	20. Managing Classes and Namespaces with Composer
	Namespaces
	Declaring a Class’s Namespace
	Using a Namespaced Class
	Referencing Namespaces in Class Declarations

	Composer
	Installing and Testing Composer
	Creating the composer.json Configuration File
	Creating an Autoloader
	Adding Third-Party Libraries to a Project

	Where to Find PHP Libraries
	Summary
	Exercises

	21. Efficient Template Design with Twig
	The Twig Templating Library
	How Twig Works
	A Simple Example

	Manipulating Objects and Arrays in Twig Templates
	Twig Control Structures
	Creating a Multipage Website with Twig
	The File Structure and Dependencies
	The Application Class
	The Twig Templates
	Twig Features to Improve Efficiency
	Improved Page Styling with CSS

	Summary
	Exercises

	22. Structuring an Object-Oriented Web Application
	Separating Display and Front-Controller Logic
	Using Multiple Controller Classes
	Sharing Controller Features Through Inheritance
	Summary
	Exercises

	23. Error Handling with Exceptions
	The Basics of Exceptions
	Throwing an Exception
	Catching an Exception
	Ending with a finally Statement

	Using Multiple Exception Classes
	Other Built-in Exception Classes
	Custom Exception Classes

	Call-Stack Bubbling
	Summary
	Exercises

	24. Logging Events, Messages, and Transactions
	Built-in PHP Resources for Logging
	Predefined Constants for Severity Levels
	Logging Functions

	The Monolog Logging Library
	Organizing Logs with Channels
	Managing Logs According to Severity

	Logging Exceptions
	Logging to the Cloud
	Summary
	Exercises

	25. Static Methods, Properties, and Enumerations
	Storing Class-Wide Information
	Static Properties vs. Class Constants
	Utility Classes with Static Members
	Sharing Resources Across an Application
	Saving Resources with the Singleton Pattern
	Enumerations
	Backed Enums
	An Array of All Cases

	Summary
	Exercises

	26. Abstract Methods, Interfaces, and Traits
	From Inheritance to Interfaces
	Inheriting a Fully Implemented Method from a Superclass
	Inheriting an Abstract Method
	Requiring Method Implementations with Interfaces

	Real-World Applications of Interfaces
	Caching Approach 1: Using an Array
	Caching Approach 2: Using a JSON File
	Caching Approach 3: Creating a Cacheable Interface

	Traits
	Declaring Traits
	Inserting Traits
	Resolving Trait Conflicts

	What to Use When?
	Summary
	Exercises

	Part VI: Database-Driven Application Development
	27. Introduction to Databases
	Relational Database Basics
	Database Management Systems
	Structured Query Language

	Databases and Web Application Architecture
	Object-Oriented Programming
	The Model-View-Controller Pattern

	Summary
	Exercises

	28. Database Programming with the PDO Library
	The PDO Library
	A Simple Database-Driven Web Application
	Setting Up the Database Schema
	Writing the PHP Classes
	Switching from MySQL to SQLite

	A Multipage Database-Driven Web Application
	Managing the Product Information
	Implementing the Controller Logic
	Designing the Templates

	Summary
	Exercises

	29. Programming CRUD Operations
	Deleting Data
	Deleting Everything from a Table
	Deleting Individual Items by ID

	Creating New Database Entries
	Adding Products Through a Web Form
	Highlighting the Newly Created Product

	Updating a Database Entry
	Avoiding Double Form Submission with Redirects
	Summary
	Exercises

	30. ORM Libraries and Database Security
	Simplifying Database Code with an ORM Library
	Adding an ORM Library to a Project
	Moving Database Credentials to a .env File
	Relegating Product Operations to the ORM Library
	Adding a New Database Table

	Security Best Practices
	Storing Hashed Passwords
	Verifying Hashed Passwords at Login
	Securing Database Credentials

	The Doctrine ORM Library
	Removing the Previous ORM Library
	Adding Doctrine
	Verifying That Doctrine Is Working
	Creating Database Tables
	Adding Records to a Table
	Integrating Doctrine into the Application Code
	Creating Foreign-Key Relationships

	Summary
	Exercises

	31. Working with Dates and Times
	The ISO 8601 Standard
	Creating Dates and Times
	Formatting the Date-Time Information
	Using DateTimeImmutable vs. DateTime

	Manipulating Dates and Times
	Using Date-Time Intervals
	Looping at Regular Intervals

	Time Zones
	Daylight Saving Time
	Epochs and Unix Time
	Date-Time Information in a Web Application
	The Application Class
	The Supporting Classes
	The Templates

	MySQL Dates
	Summary
	Exercises

	Appendix A: Installing PHP
	macOS
	Linux
	Windows
	AMP Installations

	Appendix B: Database Setup
	MySQL
	macOS and Windows
	Linux

	SQLite
	Confirming the MySQL and SQLite Extensions

	Appendix C: Replit Configuration
	Changing the PHP Version
	Adding the Composer Tool
	Using the SQLite Database System
	Serving Pages from the public Directory

	Index

