


Programming Rust
THIRD EDITION

Fast, Safe Systems Development

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Jim Blandy, Jason Orendorff, and Leonora F. S.
Tindall



Programming Rust
by Jim Blandy, Jason Orendorff, and Leonora F. S. Tindall

Copyright © 2026 Jim Blandy, Leonora F. S. Tindall, Jason Orendorff. All
rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Developmental Editor: Jeff Bleiel

Production Editor: Clare Laylock

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

March 2026: Third Edition

Revision History for the Early Release

2025-03-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098176235 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Programming Rust, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781098176235


The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of others,
it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

978-1-098-17617-4

[LSI]



Brief Table of Contents (Not Yet
Final)

Chapter 1. Why Rust? (unavailable)

Chapter 2. A Tour of Rust (available)

Chapter 3. Fundamental Types (available)

Chapter 4. Ownership and Moves (available)

Chapter 5. References (available)

Chapter 6. Expressions (available)

Chapter 7. Error Handling (unavailable)

Chapter 8. Crates and Modules (unavailable)

Chapter 9. Structs (unavailable)

Chapter 10. Enums and Patterns (unavailable)

Chapter 11. Traits and Generics (unavailable)

Chapter 12. Operator Overloading (unavailable)

Chapter 13. Utility Traits (unavailable)

Chapter 14. Closures (unavailable)

Chapter 15. Iterators (unavailable)

Chapter 16. Collections (unavailable)

Chapter 17. Strings and Text (unavailable)

Chapter 18. Input and Output (unavailable)

Chapter 19. Threads (unavailable)

Chapter 20. Asynchronous programming (unavailable)



Chapter 21. Asynchronous programming Part 2 (unavailable)

Chapter 22. Macros (unavailable)

Chapter 23. Unsafe Code (unavailable)

Chapter 24. Foreign Functions (unavailable)



Chapter 1. A Tour of Rust

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at jbleiel@oreilly.com.

Rust presents the authors of a book like this one with a challenge: what gives
the language its character is not some specific, amazing feature that we can
show off on the first page, but rather, the way all its parts are designed to
work together smoothly in service of the goals we laid out in the last chapter:
safe, performant systems programming. Each part of the language is best
justified in the context of all the rest.

So rather than tackle one language feature at a time, we’ve prepared a tour of
a few small but complete programs, each of which introduces some more
features of the language, in context:

As a warm-up, we have a program that does a simple calculation on
its command-line arguments, with unit tests. This shows Rust’s core
types and introduces traits.

Next, we build a web server. We’ll use a third-party library to
handle the details of HTTP and introduce string handling, closures,
and error handling.



Our last program plots a beautiful fractal, distributing the
computation across multiple threads for speed. This includes an
example of a generic function, illustrates how to handle something
like a buffer of pixels, and shows off Rust’s support for
concurrency.

Rust’s promise to prevent undefined behavior with minimal impact on
performance influences the design of every part of the system, from the
standard data structures like vectors and strings to the way Rust programs use
third-party libraries. The details of how this is managed are covered
throughout the book. But for now, we want to show you that Rust is a capable
and pleasant language to use.

First, of course, you need to install Rust on your computer.

rustup and Cargo
The best way to install Rust is to use rustup. Go to https://rustup.rs and
follow the instructions there.

You can, alternatively, go to the Rust website to get pre-built packages for
Linux, macOS, and Windows. Rust is also included in some operating system
distributions. We prefer rustup because it’s a tool for managing Rust
installations, like RVM for Ruby or NVM for Node. For example, when a
new version of Rust is released, you’ll be able to upgrade with zero clicks
by typing rustup update.

In any case, once you’ve completed the installation, you should have three
new commands available at your command line:

$ cargo --version
cargo 1.85.0 (d73d2caf9 2024-12-31)
$ rustc --version
rustc 1.85.0 (4d91de4e4 2025-02-17)
$ rustdoc --version
rustdoc 1.85.0 (4d91de4e4 2025-02-17)

https://rustup.rs/
https://oreil.ly/4Q2FB


Here, the $ is the command prompt; on Windows, this would be PS C:\> or
something similar. In this transcript we run the three commands we installed,
asking each to report which version it is. Taking each command in turn:

cargo is Rust’s compilation manager, package manager, and
general-purpose tool. You can use Cargo to start a new project,
build and run your program, and manage any external libraries your
code depends on.

rustc is the Rust compiler. Usually we let Cargo invoke the
compiler for us, but sometimes it’s useful to run it directly.

rustdoc is the Rust documentation tool. If you write documentation
in comments of the appropriate form in your program’s source code,
rustdoc can build nicely formatted HTML from them. Like rustc,
we usually let Cargo run rustdoc for us.

As a convenience, Cargo can create a new Rust package for us, with some
standard metadata arranged appropriately:

$ cargo new hello
    Creating binary (application) `hello` package

This command creates a new package directory named hello, ready to build a
command-line executable.

Looking inside the package’s top-level directory:

$ cd hello
$ ls -la
total 24
drwxrwxr-x.  4 jimb jimb 4096 Sep 22 21:09 .
drwx------. 62 jimb jimb 4096 Sep 22 21:09 ..
drwxrwxr-x.  6 jimb jimb 4096 Sep 22 21:09 .git
-rw-rw-r--.  1 jimb jimb    7 Sep 22 21:09 .gitignore
-rw-rw-r--.  1 jimb jimb   88 Sep 22 21:09 Cargo.toml
drwxrwxr-x.  2 jimb jimb 4096 Sep 22 21:09 src



We can see that Cargo has created a file Cargo.toml to hold metadata for the
package. At the moment this file doesn’t contain much:

[package]
name = "hello"
version = "0.1.0"
edition = "2024" 
 
[dependencies]

If our program ever acquires dependencies on other libraries, we can record
them in this file, and Cargo will take care of downloading, building, and
updating those libraries for us. We’ll cover the Cargo.toml file in detail in
[Link to Come].

Cargo has set up our package for use with the git version control system,
creating a .git metadata subdirectory and a .gitignore file. You can tell Cargo
to skip this step by passing --vcs none to cargo new on the command line.

The src subdirectory contains the actual Rust code:

$ cd src
$ ls -l
total 4
-rw-rw-r--. 1 jimb jimb 45 Sep 22 21:09 main.rs

It seems that Cargo has begun writing the program on our behalf. The main.rs
file contains the text:

fn main() {
    println!("Hello, world!");
}

In Rust, you don’t even need to write your own “Hello, World!” program.
And this is the extent of the boilerplate for a new Rust program: two files,
totaling nine lines.



We can invoke the cargo run command from any directory in the package to
build and run our program:

$ cargo run
   Compiling hello v0.1.0 (/home/jimb/rust/hello)
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.28s
     Running `/home/jimb/rust/hello/target/debug/hello`
Hello, world!

Here, Cargo has invoked the Rust compiler, rustc, and then run the
executable it produced. Cargo places the executable in the target
subdirectory at the top of the package:

$ ls -l ../target/debug
total 580
drwxrwxr-x. 2 jimb jimb   4096 Sep 22 21:37 build
drwxrwxr-x. 2 jimb jimb   4096 Sep 22 21:37 deps
drwxrwxr-x. 2 jimb jimb   4096 Sep 22 21:37 examples
-rwxrwxr-x. 1 jimb jimb 576632 Sep 22 21:37 hello
-rw-rw-r--. 1 jimb jimb    198 Sep 22 21:37 hello.d
drwxrwxr-x. 2 jimb jimb     68 Sep 22 21:37 incremental
$ ../target/debug/hello
Hello, world!

When we’re through, Cargo can clean up the generated files for us:

$ cargo clean
     Removed 21 files, 7.7MiB total
$ ../target/debug/hello
bash: ../target/debug/hello: No such file or directory

Rust Functions
Rust’s syntax is deliberately unoriginal. If you are familiar with C, C ++,
Java, or JavaScript, you can probably find your way through the general
structure of a Rust program. Here is a function that computes the greatest



common divisor of two integers, using Euclid’s algorithm. You can add this
code to the end of src/main.rs:

fn gcd(mut n: u64, mut m: u64) -> u64 {
    assert!(n != 0 && m != 0);
    while m != 0 {
        if m < n {
            let t = m;
            m = n;
            n = t;
        }
        m = m % n;
    }
    n
}

The fn keyword (pronounced “fun”) introduces a function. Here, we’re
defining a function named gcd, which takes two parameters n and m, each of
which is of type u64, an unsigned 64-bit integer. The -> token precedes the
return type: our function returns a u64 value. Four-space indentation is
standard Rust style.

Rust’s machine integer type names reflect their size and signedness: i32 is a
signed 32-bit integer; u8 is an unsigned 8-bit integer (used for “byte”
values), and so on. The isize and usize types hold pointer-sized signed and
unsigned integers, 32 bits long on 32-bit platforms, and 64 bits long on 64-bit
platforms. Rust also has two floating-point types, f32 and f64, which are the
IEEE single- and double-precision floating-point types, like float and
double in C and C ++.

By default, once a variable is initialized, its value can’t be changed, but
placing the mut keyword (pronounced “mute,” short for mutable) before the
parameters n and m allows our function body to assign to them. In practice,
most variables don’t get assigned to; the mut keyword on those that do can be
a helpful hint when reading code.

The function’s body starts with a call to the assert! macro, verifying that
neither argument is zero. The ! character marks this as a macro invocation,

https://oreil.ly/DFpyb


not a function call. Like the assert macro in C and C ++, Rust’s assert!
checks that its argument is true, and if it is not, terminates the program with a
helpful message including the source location of the failing check; this kind
of abrupt termination is called a panic. Unlike C and C ++, in which
assertions can be skipped, Rust always checks assertions regardless of how
the program was compiled. There is also a debug_assert! macro, whose
assertions are skipped when the program is compiled for speed.

The heart of our function is a while loop containing an if statement and an
assignment. Unlike C and C ++, Rust does not require parentheses around the
conditional expressions, but it does require curly braces around the
statements they control.

A let statement declares a local variable, like t in our function. We don’t
need to write out t’s type, as long as Rust can infer it from how the variable
is used. In our function, the only type that works for t is u64, matching m and
n. Rust only infers types within function bodies: you must write out the types
of function parameters and return values, as we did before. If we wanted to
spell out t’s type, we could write:

let t: u64 = m;

Rust has a return statement, but the gcd function doesn’t need one. If a
function body ends with an expression that is not followed by a semicolon,
that’s the function’s return value. In fact, any block surrounded by curly
braces can function as an expression. For example, this is an expression that
prints a message and then yields x.cos() as its value:

{
    println!("evaluating cos x");
    x.cos()
}

It’s typical in Rust to use this form to establish the function’s value when
control “falls off the end” of the function, and use return statements only for



explicit early returns from the midst of a function.

Writing and Running Unit Tests
Rust has simple support for testing built into the language. To test our gcd
function, we can add this code at the end of src/main.rs:

#[test]
fn test_gcd() {
    assert_eq!(gcd(14, 15), 1);
    assert_eq!(gcd(2 * 3 * 54321, 5 * 7 * 54321), 54321);
}

Here we define a function named test_gcd, which calls gcd and checks that
it returns correct values. The #[test] atop the definition marks test_gcd as
a test function, to be skipped in normal compilations, but included and called
automatically if we run our program with the cargo test command. We can
have test functions scattered throughout our source tree, placed next to the
code they exercise, and cargo test will automatically gather them up and
run them all.

The #[test] marker is an example of an attribute. Attributes are an open-
ended system for marking functions and other declarations with extra
information, like attributes in C ++ and C#, or annotations in Java. They’re
used to control compiler warnings and code style checks, include code
conditionally (like #ifdef in C and C ++), tell Rust how to interact with
code written in other languages, and so on. We’ll see more examples of
attributes as we go.

With our gcd and test_gcd definitions added to the hello package we
created at the beginning of the chapter, and our current directory somewhere
within the package’s subtree, we can run the tests as follows:

$ cargo test
   Compiling hello v0.1.0 (/home/jimb/rust/hello)



    Finished `test` profile [unoptimized + debuginfo] target(s) in 0.35s
     Running unittests src/main.rs (.../hello/target/debug/deps/hello-2375...) 
 
running 1 test
test test_gcd ... ok 
 
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
    finished in 0.00s

Handling Command-Line Arguments
In order for our program to take a series of numbers as command-line
arguments and print their greatest common divisor, we can replace the main
function in src/main.rs with the following:

use std::str::FromStr;
use std::env; 
 
fn main() {
    let mut numbers = Vec::new(); 
 
    for arg in env::args().skip(1) {
        numbers.push(u64::from_str(&arg).expect("error parsing argument"));
    } 
 
    if numbers.len() == 0 {
        eprintln!("Usage: gcd NUMBER ...");
        std::process::exit(1);
    } 
 
    let mut d = numbers[0];
    for m in &numbers[1..] {
        d = gcd(d, *m);
    } 
 
    println!("The greatest common divisor of {numbers:?} is {d}");
}

This is a large block of code, so let’s take it piece by piece:

use std::str::FromStr;



use std::env;

The first use declaration brings the standard library trait FromStr into
scope. A trait is a collection of methods that types can implement. Any type
that implements the FromStr trait has a from_str method that tries to parse a
value of that type from a string. The u64 type implements FromStr, and we’ll
call u64::from_str to parse our command-line arguments. Although we
never use the name FromStr elsewhere in the program, a trait must be in
scope in order to use its methods. We’ll cover traits in detail in [Link to
Come].

The second use declaration brings in the std::env module, which provides
several useful functions and types for interacting with the execution
environment, including the args function, which gives us access to the
program’s command-line arguments.

Moving on to the program’s main function:

fn main() {

Our main function doesn’t return a value, so we can simply omit the -> and
return type that would normally follow the parameter list.

let mut numbers = Vec::new();

We declare a mutable local variable numbers and initialize it to an empty
vector. Vec is Rust’s growable vector type, analogous to C ++’s
std::vector, a Python list, or a JavaScript array. Even though vectors are
designed to be grown and shrunk dynamically, we must still mark the
variable mut for Rust to let us push numbers onto the end of it.

The type of numbers is Vec<u64>, a vector of u64 values, but as before, we
don’t need to write that out. Rust will infer it for us, in part because what we
push onto the vector are u64 values, but also because we pass the vector’s
elements to gcd, which accepts only u64 values.



for arg in env::args().skip(1) {

Here we use a for loop to process our command-line arguments, setting the
variable arg to each argument in turn and evaluating the loop body.

The std::env module’s args function returns an iterator, a value that
produces each argument on demand, and indicates when we’re done.
Iterators are ubiquitous in Rust; the standard library includes other iterators
that produce the elements of a vector, the lines of a file, messages received
on a communications channel, and almost anything else that makes sense to
loop over. Rust’s iterators are very efficient: the compiler is usually able to
translate them into the same code as a handwritten loop. We’ll show how this
works and give examples in [Link to Come].

Beyond their use with for loops, iterators include a broad selection of
methods you can use directly. For example, the first value produced by the
iterator returned by args is always the name of the program being run. We
want to skip that, so we call the iterator’s skip method to produce a new
iterator that omits that first value.

numbers.push(u64::from_str(&arg).expect("error parsing argument"));

Here we call u64::from_str to attempt to parse our command-line
argument arg as an unsigned 64-bit integer. Rather than a method we’re
invoking on some u64 value we have at hand, u64::from_str is a function
associated with the u64 type, akin to a static method in C ++ or Java. The
from_str function doesn’t return a u64 directly, but rather a Result value
that indicates whether the parse succeeded or failed. A Result value is one
of two variants:

A value written Ok(v), indicating that the parse succeeded and v is
the value produced

A value written Err(e), indicating that the parse failed and e is an
error value explaining why



Functions that do anything that might fail, such as doing input or output or
otherwise interacting with the operating system, can return Result types
whose Ok variants carry successful results—the count of bytes transferred,
the file opened, and so on—and whose Err variants carry an error code
indicating what went wrong. Unlike most modern languages, Rust does not
have exceptions: all errors are handled using either Result or panic, as
outlined in [Link to Come].

We use Result’s expect method to check the success of our parse. If the
result is an Err(e), expect prints a message that includes a description of e
and exits the program immediately. However, if the result is Ok(v), expect
simply returns v itself, which we are finally able to push onto the end of our
vector of numbers.

if numbers.len() == 0 {
    eprintln!("Usage: gcd NUMBER ...");
    std::process::exit(1);
}

There’s no greatest common divisor of an empty set of numbers, so we check
that our vector has at least one element and exit the program with an error if
it doesn’t. We use the eprintln! macro to write our error message to the
standard error output stream.

let mut d = numbers[0];
for m in &numbers[1..] {
    d = gcd(d, *m);
}

This loop uses d as its running value, updating it to stay the greatest common
divisor of all the numbers we’ve processed so far. As before, we must mark
d as mutable so that we can assign to it in the loop.

The for loop has two surprising bits to it. First, we wrote for m in
&numbers[1..]; what is the & operator for? Second, we wrote gcd(d, *m);
what is the * in *m for? These two details are complementary to each other.



Up to this point, our code has operated only on simple values like integers
that fit in fixed-size blocks of memory. But now we’re about to iterate over a
vector, which could be of any size whatsoever—possibly very large. Rust is
cautious when handling such values: it wants to leave the programmer in
control over memory consumption, making it clear how long each value
lives, while still ensuring memory is freed promptly when no longer needed.

So when we iterate, we want to tell Rust that ownership of the vector should
remain with numbers; we are merely borrowing its elements for the loop.
The & operator in &numbers[1..] borrows a reference to the vector’s
elements from the second onward. The for loop iterates over the referenced
elements, letting m borrow each element in succession. The * operator in *m
dereferences m, yielding the value it refers to; this is the next u64 we want to
pass to gcd. Finally, since numbers owns the vector, Rust automatically frees
it when numbers goes out of scope at the end of main.

Rust’s rules for ownership and references are key to Rust’s memory
management and safe concurrency; we discuss them in detail in Chapters 3
and 4. You’ll need to be comfortable with those rules to be comfortable in
Rust, but for this introductory tour, all you need to know is that &x borrows a
reference to x, and that *r is the value that the reference r refers to.

Continuing our walk through the program:

println!("The greatest common divisor of {numbers:?} is {d}");

Having iterated over the elements of numbers, the program prints the results
to the standard output stream. The println! macro takes a template string,
replaces the parts in braces {...} with the values of numbers and d, and
writes the result to the standard output stream.

Unlike C and C ++, where main returns zero to indicate success, or a nonzero
exit status if something went wrong, Rust assumes that if main returns at all,
the program finished successfully. Only by explicitly calling functions like



expect or std::process::exit can we cause the program to terminate
with an error status code.

The cargo run command allows us to pass arguments to our program, so we
can try out our command-line handling:

$ cargo run 42 56
   Compiling hello v0.1.0 (/home/jimb/rust/hello)
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.22s
     Running `/home/jimb/rust/hello/target/debug/hello 42 56`
The greatest common divisor of [42, 56] is 14
$ cargo run 799459 28823 27347
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.02s
     Running `/home/jimb/rust/hello/target/debug/hello 799459 28823 27347`
The greatest common divisor of [799459, 28823, 27347] is 41
$ cargo run 83
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.02s
     Running `/home/jimb/rust/hello/target/debug/hello 83`
The greatest common divisor of [83] is 83
$ cargo run
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.02s
     Running `/home/jimb/rust/hello/target/debug/hello`
Usage: gcd NUMBER ...

We’ve used a few features from Rust’s standard library in this section. If
you’re curious about what else is available, we strongly encourage you to try
out Rust’s online documentation. It has a live search feature that makes
exploration easy and even includes links to the source code. The rustup
command automatically installs a copy on your computer when you install
Rust itself. You can view the standard library documentation on the Rust
website, or in your browser with the command:

$ rustup doc --std

Serving Pages to the Web
One of Rust’s strengths is the collection of freely available library packages
published on the website crates.io. The cargo command makes it easy for

https://oreil.ly/CGsB5
https://crates.io/


your code to use a crates.io package: it will download the right version of
the package, build it, and update it as requested. A Rust package, whether a
library or an executable, is called a crate; Cargo and crates.io both derive
their names from this term.

To show how this works, we’ll put together a simple web server using the
actix-web web framework crate, the serde serialization crate, and various
other crates on which they depend. As shown in Figure 1-1, our website will
prompt the user for two numbers and compute their greatest common divisor.

Figure 1-1. Web page offering to compute GCD

First, we’ll have Cargo create a new package for us, named actix-gcd:

$ cargo new actix-gcd
    Creating binary (application) `actix-gcd` package
$ cd actix-gcd

Then, we’ll tell Cargo which packages we want to use:

$ cargo add actix-web
    Updating crates.io index
      Adding actix-web v4.9.0 to dependencies



    ...
$ cargo add serde --features derive
    Updating crates.io index
      Adding serde v1.0.217 to dependencies
    ...

These commands add entries to our new project’s Cargo.toml file, which
now looks like this:

[package]
name = "actix-gcd"
version = "0.1.0"
edition = "2024" 
 
[dependencies]
actix-web = "4.9.0"
serde = { version = "1.0.217", features = ["derive"] }

Instead of using cargo add, you could simply open Cargo.toml in your
editor and add the last two lines yourself. From now on, we’ll show
Cargo.toml snippets instead of cargo add commands, as that is a bit easier
to copy and paste and includes the version numbers for each package we’re
using.

Each line in the [dependencies] section of Cargo.toml gives the name of a
crate on crates.io, and the version of that crate we would like to use. New
versions of these crates are published frequently. By default, whenever we
build this project from scratch on a new machine or run cargo update,
Cargo will download the latest compatible version of these packages,
perhaps Actix 4.10.1 and Serde 1.0.220. We’ll discuss version management
in more detail in [Link to Come].

Crates can have optional features: parts of the interface or implementation
that not all users need, but that nonetheless make sense to include in that
crate. The serde crate offers a wonderfully terse way to handle data from
web forms, but according to serde’s documentation, it is only available if
we select the crate’s derive feature, so we’ve requested it in our
Cargo.toml file as shown.



Note that we need only name those crates we’ll use directly; cargo takes
care of bringing in whatever other crates those need in turn.

For our first iteration, we’ll keep the web server simple: it will serve only
the page that prompts the user for numbers to compute with. In actix-
gcd/src/main.rs, we’ll place the following text:

use actix_web::{web, App, HttpResponse, HttpServer}; 
 
#[actix_web::main]
async fn main() {
    let server = HttpServer::new(|| {
        App::new()
            .route("/", web::get().to(get_index))
    }); 
 
    println!("Serving on http://localhost:3000...");
    server
        .bind("127.0.0.1:3000")
        .expect("error binding server to address")
        .run()
        .await
        .expect("error running server");
} 
 
async fn get_index() -> HttpResponse {
    HttpResponse::Ok()
        .content_type("text/html")
        .body(
            r#"
                <title>GCD Calculator</title>
                <form action="/gcd" method="post">
                <input type="text" name="n"/>
                <input type="text" name="m"/>
                <button type="submit">Compute GCD</button>
                </form>
            "#
        )
}

We start with a use declaration to make some of the actix-web crate’s
definitions easier to get at. When we write use actix_web::{...}, each of
the names listed inside the curly brackets becomes directly usable in our



code; instead of having to spell out the full name
actix_web::HttpResponse each time we use it, we can simply refer to it
as HttpResponse. (We’ll get to the serde crate in a bit.)

This time our main function is an async fn, marked with the attribute #
[actix_web::main]. Actix is written using asynchronous code to support
serving thousands of connections at a time without spawning thousands of
system threads. Rust’s async and await features are in the same general
family as async/await in C# and JavaScript, or the lightweight processes in
Erlang. They’re a way to deal with tasks that don’t need the CPU all the time
—perhaps because, as in our case, they will spend a lot of time waiting for
the network. A single CPU core can keep many concurrent async tasks
running responsively without the overhead of system threads. We’ll explain
in [Link to Come].

The body of our main function is simple: it calls HttpServer::new to create
a server that responds to requests for a single path, "/"; prints a message
reminding us how to connect to it; and then sets it listening on TCP port 3000
on the local machine.

The argument we pass to HttpServer::new is the Rust closure expression
|| { App::new() ... }. A closure is a value that can be called as if it
were a function. This closure takes no arguments, but if it did, their names
would appear between the || vertical bars. The { ... } is the body of the
closure. When we start our server, Actix starts a pool of threads to handle
incoming requests. Each thread calls our closure to get a fresh copy of the
App value that tells it how to route and handle requests.

The closure calls App::new to create a new, empty App and then calls its
route method to add a single route for the path "/". The handler provided
for that route, web::get().to(get_index), treats HTTP GET requests by
calling the function get_index. The route method returns the same App it
was invoked on, now enhanced with the new route. Since there’s no
semicolon at the end of the closure’s body, the App is the closure’s return
value, ready for the HttpServer thread to use.



The get_index function builds an HttpResponse value representing the
response to an HTTP GET / request. HttpResponse::Ok() represents an
HTTP 200 OK status, indicating that the request succeeded. We call its
content_type and body methods to fill in the details of the response; each
call returns the HttpResponse it was applied to, with the modifications
made. Finally, the return value from body serves as the return value of
get_index.

Since the response text contains a lot of double quotes, we write it using the
Rust “raw string” syntax: the letter r, zero or more hash marks (that is, the #
character), a double quote, and then the contents of the string, terminated by
another double quote followed by the same number of hash marks. Any
character may occur within a raw string without being escaped, including
double quotes; in fact, no escape sequences like \" are recognized. We can
always ensure the string ends where we intend by using more hash marks
around the quotes than ever appear in the text.

Having written main.rs, we can use the cargo run command to do
everything needed to set it running: fetching the needed crates, compiling
them, building our own program, linking everything together, and starting it
up:

$ cargo run
    Updating crates.io index
 Downloading crates ...
  Downloaded serde v1.0.100
  Downloaded actix-web v1.0.8
  Downloaded serde_derive v1.0.100
...
   Compiling serde_json v1.0.40
   Compiling actix-router v0.1.5
   Compiling actix-http v0.2.10
   Compiling awc v0.2.7
   Compiling actix-web v1.0.8
   Compiling gcd v0.1.0 (/home/jimb/rust/actix-gcd)
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 1m 24s
     Running `/home/jimb/rust/actix-gcd/target/debug/actix-gcd`
Serving on http://localhost:3000...



At this point, we can visit the given URL in our browser and see the page
shown earlier in Figure 1-1.

Unfortunately, clicking Compute GCD doesn’t do anything, other than
navigate our browser to a blank page. Let’s fix that next, by adding another
route to our App to handle the POST request from our form.

It’s finally time to use the serde crate we listed in our Cargo.toml file: it
provides a handy tool that will help us process the form data. First, we’ll
need to add the following use directive to the top of src/main.rs:

use serde::Deserialize;

Rust programmers typically gather all their use declarations together toward
the top of the file, but this isn’t strictly necessary: Rust allows declarations to
occur in any order, as long as they appear at the appropriate level of nesting.

Next, let’s define a Rust structure type that represents the values we expect
from our form:

#[derive(Deserialize)]
struct GcdParameters {
    n: u64,
    m: u64,
}

This defines a new type named GcdParameters that has two fields, n and m,
each of which is a u64—the argument type our gcd function expects.

The annotation above the struct definition is an attribute, like the #[test]
attribute we used earlier to mark test functions. Placing a #
[derive(Deserialize)] attribute above a type definition tells the serde
crate to examine the type when the program is compiled and automatically
generate code to parse a value of this type from data in the format that HTML
forms use for POST requests. In fact, that attribute is sufficient to let you parse
a GcdParameters value from almost any sort of structured data: JSON,



YAML, TOML, or any one of a number of other textual and binary formats.
The serde crate also provides a Serialize attribute that generates code to
do the reverse, taking Rust values and writing them out in a structured format.

The comma after m: u64 is optional, since it’s the last field. Rust
consistently permits an extra trailing comma everywhere commas are used,
and it is the standard style to include it whenever a list spans multiple lines.
This includes array elements and function arguments. Using the same syntax
on every line means less fiddling with punctuation when things change, and it
makes for cleaner diffs.

With this definition in place, we can write our handler function quite easily:

async fn post_gcd(form: web::Form<GcdParameters>) -> HttpResponse {
    if form.n == 0 || form.m == 0 {
        return HttpResponse::BadRequest()
            .content_type("text/html")
            .body("Computing the GCD with zero is boring.");
    } 
 
    let response = format!(
        "The greatest common divisor of the numbers {} and {} \
            is <b>{}</b>\n",
        form.n,
        form.m,
        gcd(form.n, form.m),
    ); 
 
    HttpResponse::Ok()
        .content_type("text/html")
        .body(response)
}

For a function to serve as an Actix request handler, its arguments must all
have types Actix knows how to extract from an HTTP request. Our post_gcd
function takes one argument, form, whose type is
web::Form<GcdParameters>. Actix knows how to extract a value of any
type web::Form<T> from an HTTP request if, and only if, T can be
deserialized from HTML form POST data. Since we’ve placed the #
[derive(Deserialize)] attribute on our GcdParameters type definition,



Actix can deserialize it from form data, so request handlers can expect a
web::Form<GcdParameters> value as a parameter. These relationships
between types and functions are all worked out at compile time; if you write
a handler function with an argument type that Actix doesn’t know how to
handle, the Rust compiler lets you know of your mistake immediately.

Looking inside post_gcd, the function first returns an HTTP 400 BAD
REQUEST error if either parameter is zero, since our gcd function will panic
if they are. Then, it constructs a response to the request using the format!
macro. The format! macro is just like the println! macro, except that
instead of writing the text to the standard output, it returns it as a string. In
this example, since the values we want to print are not simple variable
names, we must use empty braces {} to mark the place where we want to
insert them, then pass the values as extra arguments. Once it has obtained the
text of the response, post_gcd wraps it up in an HTTP 200 OK response,
sets its content type, and returns it to be delivered to the sender.

We also have to register post_gcd as the handler for the form. We’ll replace
our main function with this version:

#[actix_web::main]
async fn main() {
    let server = HttpServer::new(|| {
        App::new()
            .route("/", web::get().to(get_index))
            .route("/gcd", web::post().to(post_gcd))
    }); 
 
    println!("Serving on http://localhost:3000...");
    server
        .bind("127.0.0.1:3000")
        .expect("error binding server to address")
        .run()
        .await
        .expect("error running server");
}

The only change here is that we’ve added another call to route, establishing
web::post().to(post_gcd) as the handler for the path "/gcd".



The last remaining piece is the gcd function we wrote earlier, in “Rust
Functions”. Add that code to the actix-gcd/src/main.rs file. With that in
place, you can interrupt any servers you might have left running and rebuild
and restart the program:

$ cargo run
   Compiling actix-gcd v0.1.0 (/home/jimb/rust/actix-gcd)
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.0 secs
     Running `target/debug/actix-gcd`
Serving on http://localhost:3000...

This time, by visiting http://localhost:3000, entering some numbers, and
clicking the Compute GCD button, you should actually see some results
(Figure 1-2).

Figure 1-2. Web page showing results of computing GCD

Concurrency
One of Rust’s great strengths is its support for concurrent programming. The
same rules that ensure Rust programs are free of memory errors also ensure
threads can share memory only in ways that avoid data races. For example:



If you use a mutex to coordinate threads making changes to a shared
data structure, Rust ensures that you can’t access the data except
when you’re holding the lock, and releases the lock automatically
when you’re done. In C and C ++, the relationship between a mutex
and the data it protects is left to the comments.

If you want to share read-only data among several threads, Rust
ensures that you cannot modify the data accidentally. In C and C ++,
the type system can help with this, but it’s easy to get it wrong.

If you transfer ownership of a data structure from one thread to
another, Rust makes sure you have indeed relinquished all access to
it. In C and C ++, it’s up to you to check that nothing on the sending
thread will ever touch the data again. If you don’t get it right, the
effects can depend on what happens to be in the processor’s cache
and how many writes to memory you’ve done recently. Not that
we’re bitter.

In this section, we’ll walk you through the process of writing your second
multi-threaded program.

You’ve already written your first: the Actix web framework you used to
implement the Greatest Common Divisor server uses a pool of threads to run
request handler functions. If the server receives simultaneous requests, it may
run the get_index and post_gcd functions in several threads at once. That
may come as a bit of a shock, since we certainly didn’t have concurrency in
mind when we wrote those functions. But Rust guarantees this is safe to do,
no matter how elaborate your server gets: if your program compiles, it is free
of data races. All Rust functions are thread-safe.

This section’s program plots the Mandelbrot set, a fractal produced by
iterating a simple function on complex numbers. Plotting the Mandelbrot set
is often called an embarrassingly parallel algorithm, because the pattern of
communication between the threads is so simple; we’ll cover more complex
patterns in [Link to Come], but this task demonstrates some of the essentials.

To get started, we’ll create a fresh Rust project:



$ cargo new mandelbrot
    Creating binary (application) `mandelbrot` package
$ cd mandelbrot

All the code will go in mandelbrot/src/main.rs, and we’ll add some
dependencies to mandelbrot/Cargo.toml.

Before we get into the concurrent Mandelbrot implementation, we need to
describe the computation we’re going to perform.

What the Mandelbrot Set Actually Is
When reading code, it’s helpful to have a concrete idea of what it’s trying to
do, so let’s take a short excursion into some pure mathematics. We’ll start
with a simple case and then add complicating details until we arrive at the
calculation at the heart of the Mandelbrot set.

Here’s an infinite loop, written using Rust’s dedicated syntax for that, a loop
statement:

fn square_loop(mut x: f64) {
    loop {
        x = x * x;
    }
}

In real life, Rust can see that x is never used for anything and so might not
bother computing its value. But for the time being, assume the code runs as
written. What happens to the value of x? Squaring any number smaller than 1
makes it smaller, so it approaches zero; squaring 1 yields 1; squaring a
number larger than 1 makes it larger, so it approaches infinity; and squaring a
negative number makes it positive, after which it behaves like one of the
prior cases (Figure 1-3).



Figure 1-3. Effects of repeatedly squaring a number

So depending on the value you pass to square_loop, x stays at either zero or
one, approaches zero, or approaches infinity.

Now consider a slightly different loop:

fn square_add_loop(c: f64) {
    let mut x = 0.;
    loop {
        x = x * x + c;
    }
}

This time, x starts at zero, and we tweak its progress in each iteration by
adding in c after squaring it. This makes it harder to see how x fares, but
some experimentation shows that if c is greater than 0.25 or less than –2.0,
then x eventually becomes infinitely large; otherwise, it stays somewhere in
the neighborhood of zero.

The next wrinkle: instead of using f64 values, consider the same loop using
complex numbers. The num crate on crates.io provides a complex number
type we can use, so we must add a line for num to the [dependencies]
section in our program’s Cargo.toml file. While we’re here, we can also add
the image crate, which we’ll use later.

[package]



name = "mandelbrot"
version = "0.1.0"
edition = "2024" 
 
[dependencies]
num = "0.4"
image = "0.25"

Now we can write the penultimate version of our loop:

use num::Complex; 
 
fn complex_square_add_loop(c: Complex<f64>) {
    let mut z = Complex { re: 0.0, im: 0.0 };
    loop {
        z = z * z + c;
    }
}

It’s traditional to use z for complex numbers, so we’ve renamed our looping
variable. The expression Complex { re: 0.0, im: 0.0 } is the way we
write complex zero using the num crate’s Complex type. Complex is a Rust
structure type (or struct), defined like this:

struct Complex<T> {
    /// Real portion of the complex number
    re: T, 
 
    /// Imaginary portion of the complex number
    im: T,
}

The preceding code defines a struct named Complex, with two fields, re and
im. Complex is a generic structure: you can read the <T> after the type name
as “for any type T.” For example, Complex<f64> is a complex number
whose re and im fields are f64 values, Complex<f32> would use 32-bit
floats, and so on. Given this definition, an expression like Complex { re:



0.24, im: 0.3 } produces a Complex value with its re field initialized to
0.24, and its im field initialized to 0.3.

The num crate arranges for *, +, and other arithmetic operators to work on
Complex values, so the rest of the function works just like the prior version,
except that it operates on points on the complex plane, not just points along
the real number line. We’ll explain how you can make Rust’s operators work
with your own types in [Link to Come].

Finally, we’ve reached the destination of our pure math excursion. The
Mandelbrot set is defined as the set of complex numbers c for which z does
not fly out to infinity. Our original simple squaring loop was predictable
enough: any number greater than 1 or less than –1 flies away. Throwing a + c
into each iteration makes the behavior a little harder to anticipate: as we said
earlier, values of c greater than 0.25 or less than –2 cause z to fly away. But
expanding the game to complex numbers produces truly bizarre and beautiful
patterns, which are what we want to plot.

Since a complex number c has both real and imaginary components c.re and
c.im, we’ll treat these as the x and y coordinates of a point on the Cartesian
plane, and color the point black if c is in the Mandelbrot set, or a lighter
color otherwise. So for each pixel in our image, we must run the preceding
loop on the corresponding point on the complex plane, see whether it escapes
to infinity or orbits around the origin forever, and color it accordingly.

The infinite loop takes a while to run, but there are two tricks for the
impatient. First, if we give up on running the loop forever and just try some
limited number of iterations, it turns out that we still get a decent
approximation of the set. How many iterations we need depends on how
precisely we want to plot the boundary. Second, it’s been shown that, if z
ever once leaves the circle of radius 2 centered at the origin, it will
definitely fly infinitely far away from the origin eventually. So here’s the
final version of our loop, and the heart of our program:

use num::Complex; 
 



/// Try to determine if `c` is in the Mandelbrot set, using at most `limit`
/// iterations to decide.
///
/// If `c` is not a member, return `Some(i)`, where `i` is the number of
/// iterations it took for `c` to leave the circle of radius 2 centered on the
/// origin. If `c` seems to be a member (more precisely, if we reached the
/// iteration limit without being able to prove that `c` is not a member),
/// return `None`.
fn escape_time(c: Complex<f64>, limit: usize) -> Option<usize> {
    let mut z = Complex { re: 0.0, im: 0.0 };
    for i in 0..limit {
        if z.norm_sqr() > 4.0 {
            return Some(i);
        }
        z = z * z + c;
    } 
 
    None
}

This function takes the complex number c that we want to test for
membership in the Mandelbrot set and a limit on the number of iterations to
try before giving up and declaring c to probably be a member.

The function’s return value is an Option<usize>. Rust’s standard library
defines the Option type as follows:

enum Option<T> {
    None,
    Some(T),
}

Option is an enumerated type, often called an enum, because its definition
enumerates several variants that a value of this type could be: for any type T,
a value of type Option<T> is either Some(v), where v is a value of type T,
or None, indicating no T value is available. Like the Complex type we
discussed earlier, Option is a generic type: you can use Option<T> to
represent an optional value of any type T you like.

In our case, escape_time returns an Option<usize> to indicate whether c
is in the Mandelbrot set—and if it’s not, how long we had to iterate to find



that out. If c is not in the set, escape_time returns Some(i), where i is the
number of the iteration at which z left the circle of radius 2. Otherwise, c is
apparently in the set, and escape_time returns None.

for i in 0..limit {

The earlier examples showed for loops iterating over command-line
arguments and vector elements; this for loop simply iterates over the range
of integers starting with 0 and up to (but not including) limit.

The z.norm_sqr() method call returns the square of z’s distance from the
origin. To decide whether z has left the circle of radius 2, instead of
computing a square root, we just compare the squared distance with 4.0,
which is faster.

You may have noticed that we use /// to mark the comment lines above the
function definition; the comments above the members of the Complex
structure start with /// as well. These are documentation comments; the
rustdoc utility knows how to parse them, together with the code they
describe, and produce online documentation. The documentation for Rust’s
standard library is written in this form. We describe documentation
comments in detail in [Link to Come].

The rest of the program is concerned with deciding which portion of the set
to plot at what resolution and distributing the work across several threads to
speed up the calculation.

Parsing Pair Command-Line Arguments
The program takes several command-line arguments controlling the
resolution of the image we’ll write and the portion of the Mandelbrot set the
image shows. Since these command-line arguments all follow a common
form, here’s a function to parse them:

use std::str::FromStr; 



 
/// Parse the string `s` as a coordinate pair, like `"400x600"` or `"1.0,0.5"`.
///
/// Specifically, `s` should have the form <left><sep><right>, where <sep> is
/// the character given by the `separator` argument, and <left> and <right> are
/// both strings that can be parsed by `T::from_str`. `separator` must be an
/// ASCII character.
///
/// If `s` has the proper form, return `Some<(x, y)>`. If it doesn't parse
/// correctly, return `None`.
fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)> {
    match s.find(separator) {
        None => None,
        Some(index) => {
            match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) {
                (Ok(l), Ok(r)) => Some((l, r)),
                _ => None,
            }
        }
    }
} 
 
#[test]
fn test_parse_pair() {
    assert_eq!(parse_pair::<i32>("",        ','), None);
    assert_eq!(parse_pair::<i32>("10,",     ','), None);
    assert_eq!(parse_pair::<i32>(",10",     ','), None);
    assert_eq!(parse_pair::<i32>("10,20",   ','), Some((10, 20)));
    assert_eq!(parse_pair::<i32>("10,20xy", ','), None);
    assert_eq!(parse_pair::<f64>("0.5x",    'x'), None);
    assert_eq!(parse_pair::<f64>("0.5x1.5", 'x'), Some((0.5, 1.5)));
}

The definition of parse_pair is a generic function:

fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)> {

You can read the clause <T: FromStr> aloud as, “For any type T that
implements the FromStr trait...” This effectively lets us define an entire
family of functions at once: parse_pair::<i32> is a function that parses
pairs of i32 values, parse_pair::<f64> parses pairs of floating-point
values, and so on. This is very much like a function template in C ++. A Rust



programmer would call T a type parameter of parse_pair. When you use a
generic function, Rust will often be able to infer type parameters for you, and
you won’t need to write them out as we did in the test code.

Our return type is Option<(T, T)>: either None or a value Some((v1,
v2)), where (v1, v2) is a tuple of two values, both of type T. The
parse_pair function doesn’t use an explicit return statement, so its return
value is the value of the last (and the only) expression in its body:

match s.find(separator) {
    None => None,
    Some(index) => {
        ...
    }
}

The String type’s find method searches the string for a character that
matches separator. If find returns None, meaning that the separator
character doesn’t occur in the string, the entire match expression evaluates to
None, indicating that the parse failed. Otherwise, we take index to be the
separator’s position in the string.

match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) {
    (Ok(l), Ok(r)) => Some((l, r)),
    _ => None,
}

This begins to show off the power of the match expression. The argument to
the match is this tuple expression:

(T::from_str(&s[..index]), T::from_str(&s[index + 1..]))

The expressions &s[..index] and &s[index + 1..] are slices of the
string, preceding and following the separator. The type parameter T’s



associated from_str function takes each of these and tries to parse them as a
value of type T, producing a tuple of results. This is what we match against:

(Ok(l), Ok(r)) => Some((l, r)),

This pattern matches only if both Results are Ok variants, indicating that
both parses succeeded. If so, Some((l, r)) is the value of the match
expression and hence the return value of the function.

_ => None

The wildcard pattern _ matches anything and ignores its value. If we reach
this point, then parse_pair has failed, so we evaluate to None, again
providing the return value of the function.

Now that we have parse_pair, it’s easy to write a function to parse a pair
of floating-point coordinates and return them as a Complex<f64> value:

/// Parse a pair of floating-point numbers separated by a comma as a complex
/// number.
fn parse_complex(s: &str) -> Option<Complex<f64>> {
    match parse_pair(s, ',') {
        Some((re, im)) => Some(Complex { re, im }),
        None => None,
    }
} 
 
#[test]
fn test_parse_complex() {
    assert_eq!(
        parse_complex("1.25,-0.0625"),
        Some(Complex { re: 1.25, im: -0.0625 }),
    );
    assert_eq!(parse_complex(",-0.0625"), None);
}



The parse_complex function calls parse_pair, builds a Complex value if
the coordinates were parsed successfully, and passes failures along to its
caller.

If you were reading closely, you may have noticed that we used a shorthand
notation to build the Complex value. It’s common to initialize a struct’s fields
with variables of the same name, so rather than forcing you to write Complex
{ re: re, im: im }, Rust lets you simply write Complex { re, im }.
This is modeled on similar notations in JavaScript and Haskell.

Mapping from Pixels to Complex Numbers
The program needs to work in two related coordinate spaces: each pixel in
the output image corresponds to a point on the complex plane. The
relationship between these two spaces depends on which portion of the
Mandelbrot set we’re going to plot, and the resolution of the image
requested, as determined by command-line arguments. The following
function converts from image space to complex number space:

/// Given the row and column of a pixel in the output image, return the
/// corresponding point on the complex plane.
///
/// `bounds` is a pair giving the width and height of the image in pixels.
/// `pixel` is a (column, row) pair indicating a particular pixel in that image.
/// The `upper_left` and `lower_right` parameters are points on the complex
/// plane designating the area our image covers.
fn pixel_to_point(
    bounds: (usize, usize),
    pixel: (usize, usize),
    upper_left: Complex<f64>,
    lower_right: Complex<f64>,
) -> Complex<f64> {
    let (width, height) = (
        lower_right.re - upper_left.re,
        upper_left.im - lower_right.im
    );
    Complex {
        re: upper_left.re + pixel.0 as f64 * width  / bounds.0 as f64,
        im: upper_left.im - pixel.1 as f64 * height / bounds.1 as f64,
        // Why subtraction here? pixel.1 increases as we go down,



        // but the imaginary component increases as we go up.
    }
} 
 
#[test]
fn test_pixel_to_point() {
    assert_eq!(
        pixel_to_point(
            (100, 200),
            (25, 175),
            Complex { re: -1.0, im: 1.0 },
            Complex { re: 1.0, im: -1.0 },
        ),
        Complex { re: -0.5, im: -0.75 },
    );
}

Figure 1-4 illustrates the calculation pixel_to_point performs.

The code of pixel_to_point is simply calculation, so we won’t explain it
in detail. However, there are a few things to point out. Expressions with this
form refer to tuple fields:

pixel.0

This refers to the first field of the tuple pixel.

pixel.0 as f64

This is Rust’s syntax for a type conversion: this converts pixel.0 to an f64
value. Unlike C and C ++, Rust generally refuses to convert between numeric
types implicitly; you must write out the conversions you need. This can be
tedious, but being explicit about which conversions occur and when is
surprisingly helpful. Implicit integer conversions seem innocent enough, but
historically they have been a frequent source of bugs and security holes in
real-world C and C ++ code.



Figure 1-4. The relationship between the complex plane and the image’s pixels

Plotting the Set



To plot the Mandelbrot set, for every pixel in the image, we simply apply
escape_time to the corresponding point on the complex plane, and color the
pixel depending on the result:

/// Render a rectangle of the Mandelbrot set into a buffer of pixels.
///
/// The `bounds` argument gives the width and height of the buffer `pixels`,
/// which holds one grayscale pixel per byte. The `upper_left` and `lower_right`
/// arguments specify points on the complex plane corresponding to the upper-
/// left and lower-right corners of the pixel buffer.
fn render(
    pixels: &mut [u8],
    bounds: (usize, usize),
    upper_left: Complex<f64>,
    lower_right: Complex<f64>,
) {
    assert!(pixels.len() == bounds.0 * bounds.1); 
 
    for row in 0..bounds.1 {
        for column in 0..bounds.0 {
            let point =
                pixel_to_point(bounds, (column, row), upper_left, lower_right);
            pixels[row * bounds.0 + column] =
                match escape_time(point, 255) {
                    None => 0,
                    Some(count) => 255 - count as u8,
                };
        }
    }
}

The type of the first argument, pixels, is &mut [u8]. In English, that’s a
mutable reference, &mut, to a slice of unsigned 8-bit integers, [u8]. Think of
a slice as an array or vector; pixels will refer to a slab of contiguous
memory, typically millions of u8 bytes. We need a mutable reference in
order to write to the buffer, since Rust references are read-only by default.

pixels[row * bounds.0 + column] =
    match escape_time(point, 255) {
        None => 0,



        Some(count) => 255 - count as u8,
    };

If escape_time says that point belongs to the set, render colors the
corresponding pixel black (0). Otherwise, render assigns darker colors to
the numbers that took longer to escape the circle.

Writing Image Files
The image crate provides functions for reading and writing a wide variety of
image formats, along with some basic image manipulation functions. In
particular, it includes an encoder for the PNG image file format, which this
program uses to save the final results of the calculation:

use image::{ExtendedColorType, ImageEncoder, ImageError};
use image::codecs::png::PngEncoder;
use std::fs::File; 
 
/// Write the buffer `pixels`, whose dimensions are given by `bounds`, to the
/// file named `filename`.
fn write_image(
    filename: &str,
    pixels: &[u8],
    bounds: (usize, usize),
) -> Result<(), ImageError> {
    let output = File::create(filename)?; 
 
    let encoder = PngEncoder::new(output);
    encoder.write_image(
        pixels,
        bounds.0 as u32,
        bounds.1 as u32,
        ExtendedColorType::L8,
    )?; 
 
    Ok(())
}

The operation of this function is pretty straightforward: it opens a file and
tries to write the image to it. The write_image method is provided by the



image::ImageEncoder trait, which we import on the first line of the
example. We pass the encoder the actual pixel data from pixels, and its
width and height from bounds, and then a final argument that says how to
interpret the bytes in pixels: the value ExtendedColorType::L8 indicates
that each byte is an eight-bit grayscale value.

That’s all simple enough. What’s interesting about this function is how it
copes when something goes wrong. If we encounter an error, we need to
report that back to our caller. As we’ve mentioned before, fallible functions
in Rust should return a Result value, which is either Ok(s) on success,
where s is the successful value, or Err(e) on failure, where e is an error
code. So what are write_image’s success and error types?

When all goes well, our write_image function has no useful value to return;
it wrote everything interesting to the file. So its success type is the unit type
(), so called because it has only one value, also written (). The unit type is
akin to void in C and C ++.

When an error occurs, it’s because either File::create wasn’t able to
create the file or encoder.encode wasn’t able to write the image to it; the
I/O operation returned an error code. The return type of File::create is
Result<std::fs::File, std::io::Error>, while that of
encoder.encode is Result<(), std::io::Error>, so both share the
same error type, std::io::Error. It makes sense for our write_image
function to do the same. In either case, failure should result in an immediate
return, passing along the std::io::Error value describing what went
wrong.

So to properly handle File::create’s result, we need to match on its return
value, like this:

let output = match File::create(filename) {
    Ok(f) => f,
    Err(e) => {
        return Err(e);
    }
};



On success, let output be the File carried in the Ok value. On failure, pass
along the error to our own caller.

This kind of match statement is such a common pattern in Rust that the
language provides the ? operator as shorthand for the whole thing. So, rather
than writing out this logic explicitly every time we attempt something that
could fail, you can use the following equivalent and much more legible
statement:

let output = File::create(filename)?;

If File::create fails, the ? operator returns from write_image, passing
along the error. Otherwise, output holds the successfully opened File.

NOTE
It’s a common beginner’s mistake to attempt to use ? in the main function. However, since
main itself doesn’t return a value, this won’t work; instead, you need to use a match
statement, or one of the shorthand methods like unwrap and expect. There’s also the
option of simply changing main to return a Result, which we’ll cover later.

A Concurrent Mandelbrot Program
All the pieces are in place, and we can show you the main function, where
we can put concurrency to work for us. First, a nonconcurrent version for
simplicity:

use std::env; 
 
fn main() {
    let args: Vec<String> = env::args().collect(); 
 
    if args.len() != 5 {
        let program = &args[0];
        eprintln!("Usage: {program} FILE PIXELS LEFT,TOP RIGHT,BOTTOM");
        eprintln!("Example: {program} mandel.png 1000x750 -1.20,0.35 -1,0.20");
        std::process::exit(1);



    } 
 
    let bounds: (usize, usize) = parse_pair(&args[2], 'x')
        .expect("error parsing image dimensions");
    let upper_left = parse_complex(&args[3])
        .expect("error parsing upper left corner point");
    let lower_right = parse_complex(&args[4])
        .expect("error parsing lower right corner point"); 
 
    let mut pixels = vec![0; bounds.0 * bounds.1]; 
 
    render(&mut pixels, bounds, upper_left, lower_right); 
 
    write_image(&args[1], &pixels, bounds)
        .expect("error writing PNG file");
}

After collecting the command-line arguments into a vector of Strings, we
parse each one and then begin calculations.

let mut pixels = vec![0; bounds.0 * bounds.1];

A macro call vec![v; n] creates a vector n elements long whose elements
are initialized to v, so the preceding code creates a vector of zeros whose
length is bounds.0 * bounds.1, where bounds is the image resolution
parsed from the command line. We’ll use this vector as a rectangular array of
one-byte grayscale pixel values, as shown in Figure 1-5.

The next line of interest is this:

render(&mut pixels, bounds, upper_left, lower_right);

This calls the render function to actually compute the image. The expression
&mut pixels borrows a mutable reference to our pixel buffer, allowing
render to fill it with computed grayscale values, even while pixels
remains the vector’s owner. The remaining arguments pass the image’s
dimensions and the rectangle of the complex plane we’ve chosen to plot.



write_image(&args[1], &pixels, bounds)
    .expect("error writing PNG file");

Figure 1-5. Using a vector as a rectangular array of pixels



Finally, we write the pixel buffer out to disk as a PNG file. In this case, we
pass a shared (nonmutable) reference to the buffer, since write_image
should have no need to modify the buffer’s contents.

At this point, we can build and run the program in release mode, which
enables many powerful compiler optimizations, and after several seconds, it
will write a beautiful image to the file mandel.png:

$ cargo build --release
    Updating crates.io index
   ...
   Compiling image v0.25.5
   Compiling mandelbrot v0.1.0 ($RUSTBOOK/mandelbrot)
    Finished `release` profile [optimized] target(s) in 25.36s
$ time target/release/mandelbrot mandel.png 4000x3000 -1.20,0.35 -1,0.20
real    0m4.678s
user    0m4.661s
sys     0m0.008s

On Windows, instead run this command in PowerShell: measure-command
{ .\target\release\mandelbrot mandel.png 4000x3000 -1.20,0.35

-1,0.20 }.

This command should create a file called mandel.png, which you can view
with your system’s image viewing program or in a web browser. If all has
gone well, it should look like Figure 1-6.





Figure 1-6. Results from the Mandelbrot program

In the previous transcript, we used the Unix time program to analyze the
running time of the program: it took about five seconds total to run the
Mandelbrot computation on each pixel of the image. But almost all modern
machines have multiple processor cores, and this program used only one. If
we could distribute the work across all the computing resources the machine
has to offer, we should be able to complete the image much more quickly.

To this end, we’ll divide the image into sections, one per processor, and let
each processor color the pixels assigned to it. For simplicity, we’ll break it
into horizontal bands, as shown in Figure 1-7. When all processors have
finished, we can write out the pixels to disk.



Figure 1-7. Dividing the pixel buffer into bands for parallel rendering

Rust offers a scoped thread facility that does exactly what we need here. To
use it, we need to take out the single line calling render and replace it with
the following:

let threads = std::thread::available_parallelism()
    .expect("error querying CPU count")
    .get();
let rows_per_band = bounds.1.div_ceil(threads); 
 
let bands = pixels.chunks_mut(rows_per_band * bounds.0);
std::thread::scope(|spawner| {
    for (i, band) in bands.enumerate() {
        let top = rows_per_band * i;



        let height = band.len() / bounds.0;
        let band_bounds = (bounds.0, height);
        let band_upper_left =
            pixel_to_point(bounds, (0, top), upper_left, lower_right);
        let band_lower_right =
            pixel_to_point(bounds, (bounds.0, top + height),
                           upper_left, lower_right); 
 
        spawner.spawn(move || {
            render(band, band_bounds, band_upper_left, band_lower_right);
        });
    }
});

Breaking this down in the usual way:

let threads = std::thread::available_parallelism()
    .expect("error querying CPU count")
    .get();

We start by asking the system how many threads we should create, using
std::thread::available_parallelism(). This function returns a
Result<NonZero<usize>>: either an error, or an Ok value containing a
usize that is guaranteed to be nonzero. We use .expect() to dispense with
the error case and the get method of the NonZero type to convert it to a plain
usize.

let rows_per_band = bounds.1.div_ceil(threads);

Next we compute how many rows of pixels each band should have. We
divide the number of rows by the number of threads, rounding upward so that
the bands will cover the entire image even if the height isn’t a multiple of
threads. Rust’s numeric types provide dozens of methods, including
div_ceil for integer division rounding up. In another language, we might
write (bounds.1 + threads - 1) / threads, but calling div_ceil is
shorter, more expressive, and just as fast. (The method is also correct in



corner cases where the addition would overflow, although that’s unlikely
here!)

let bands = pixels.chunks_mut(rows_per_band * bounds.0);

Here we divide the pixel buffer into bands. The buffer’s chunks_mut method
returns an iterator producing mutable, nonoverlapping slices of the buffer,
each of which encloses rows_per_band * bounds.0 pixels—in other
words, rows_per_band complete rows of pixels. The last slice that
chunks_mut produces may contain fewer rows, but each row will contain
the same number of pixels.

Now we can put some threads to work:

std::thread::scope(|spawner| {
    ...
});

The argument |spawner| { ... } is a Rust closure that expects a single
argument, spawner. Note that, unlike functions declared with fn, we don’t
need to declare the types of a closure’s arguments; Rust will infer them,
along with its return type. In this case, std::thread::scope calls the
closure, passing as the spawner argument a value the closure can use to
create new threads. The std::thread::scope function waits for all such
threads to finish execution before returning itself. This behavior allows Rust
to be sure that such threads will not access their portions of pixels after it
has gone out of scope, and allows us to be sure that when
std::thread::scope returns, the computation of the image is complete.

for (i, band) in bands.enumerate() {

Here we iterate over the pixel buffer’s bands. Each band is a mutable slice
of the image, providing exclusive access to one band, ensuring that only one



thread can write to it at a time. We explain how this works in detail in
Chapter 4. The enumerate adapter produces tuples pairing each vector
element with its index.

let top = rows_per_band * i;
let height = band.len() / bounds.0;
let band_bounds = (bounds.0, height);
let band_upper_left =
    pixel_to_point(bounds, (0, top), upper_left, lower_right);
let band_lower_right =
    pixel_to_point(bounds, (bounds.0, top + height),
                   upper_left, lower_right);

Given the index and the actual size of the band (recall that the last one might
be shorter than the others), we can produce a bounding box of the sort
render requires, but one that refers only to this band of the buffer, not the
entire image. Similarly, we repurpose the renderer’s pixel_to_point
function to find where the band’s upper-left and lower-right corners fall on
the complex plane.

spawner.spawn(move || {
    render(band, band_bounds, band_upper_left, band_lower_right);
});

Finally, we create a thread, running the closure move || { ... }. The move
keyword at the front indicates that this closure takes ownership of the
variables it uses; in particular, only the closure may use the mutable slice
band.

As we mentioned earlier, the std::thread::scope call ensures that all
threads have completed before it returns, meaning that it is safe to save the
image to a file, which is our next action.

With all that in place, we can build and run the multithreaded program:

$ cargo build --release
   Compiling mandelbrot v0.1.0 ($RUSTBOOK/mandelbrot)



    Finished `release` profile [optimized] target(s) in #.## secs
$ time target/release/mandelbrot mandel.png 4000x3000 -1.20,0.35 -1,0.20
real    0m1.436s
user    0m4.922s
sys     0m0.011s

Here, we’ve used time again to see how long the program took to run; note
that even though we still spent almost five seconds of processor time, the
elapsed real time was only about 1.5 seconds. You can verify that a portion
of that time is spent writing the image file by commenting out the code that
does so and measuring again. On the laptop where this code was tested, the
concurrent version reduces the Mandelbrot calculation time proper by a
factor of almost four. We’ll show how to substantially improve on this in
[Link to Come].

As before, this program will have created a file called mandel.png. With this
faster version, you can more easily explore the Mandelbrot set by changing
the command-line arguments to your liking.

Safety Is Invisible
In the end, the parallel program we ended up with is not substantially
different from what we might write in any other language: we apportion
pieces of the pixel buffer out among the processors, let each one work on its
piece separately, and when they’ve all finished, present the result. So what is
so special about Rust’s concurrency support?

What we haven’t shown here is all the Rust programs we cannot write. The
code we looked at in this chapter partitions the buffer among the threads
correctly, but there are many small variations on that code that do not (and
thus introduce data races); not one of those variations will pass the Rust
compiler’s static checks. A C or C ++ compiler will cheerfully help you
explore the vast space of programs with subtle data races; Rust tells you, up
front, when something could go wrong.

In Chapters 3 and 4, we’ll describe Rust’s rules for memory safety. [Link to
Come] explains how these rules also ensure proper concurrency hygiene. But



for those to make sense, it’s essential to get a grounding in Rust’s
fundamental types, which we’ll cover in the next chapter.



Chapter 2. Fundamental Types

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at jbleiel@oreilly.com.

The first principles of the universe are atoms and empty space;
everything else is merely thought to exist.

—Diogenes Laertes (describing the philosophy of
Democritus)

This chapter covers Rust’s fundamental types for representing values: integer
and floating-point numbers, strings and characters, vectors and arrays, and so
on. These source-level types have concrete machine-level counterparts with
predictable costs and performance.

Compared to a dynamically typed language like JavaScript or Python, Rust
requires more planning from you up front. You must spell out the types of
function arguments and return values, struct fields, and a few other
constructs. For the rest, Rust’s type inference will generally figure out the
types for you. For example, you could spell out every type in a function, like
this:



fn grade_cutoffs(tier_size: u32) -> Vec<u32> {
    let mut cutoffs: Vec<u32> = Vec::<u32>::new();
    for tier in 1u32..5u32 {
        cutoffs.push(100u32 - tier * tier_size);
    }
    cutoffs
}

But this is cluttered and repetitive. Given the function’s return type, it’s
obvious that cutoffs must be a Vec<u32>, a vector of 32-bit signed
integers; no other type would work. And from that it follows that each
element of the vector must be a u32, and therefore all the numbers being
multiplied and subtracted must be u32 as well. This is exactly the sort of
reasoning Rust’s type inference applies, allowing you to instead write:

fn grade_cutoffs(tier_size: u32) -> Vec<u32> {
    let mut cutoffs = Vec::new();
    for tier in 1..5 {
        cutoffs.push(100 - tier * tier_size);
    }
    cutoffs
}

These two definitions are exactly equivalent, and Rust will generate the same
machine code either way. Type inference gives back much of the legibility of
dynamically typed languages, while still catching type errors at compile time.

The rest of this chapter covers Rust’s types from the bottom up. Table 2-1
offers a sample of the sorts of types you’ll see in Rust. It shows Rust’s
primitive types, some very common types from the standard library, and
some examples of user-defined types.



Table 2-1. Examples of types in Rust

Type Description Values

i8, i16, i32, i64,
i128

u8, u16, u32, u64,
u128

Signed and unsigned integers,
of given bit width

42, -5i8, 
0x400u16, 0o100i16,
20_922_789_888_000u

64,
b'*' (u8 byte
literal)

isize, usize Signed and unsigned integers,
the same size as an address on the
machine (32 or 64 bits)

137,
-0b0101_0010_isize,
0xffff_fc00_usize

f32, f64 IEEE floating-point numbers,
single and double precision

1.0, 3.14159f32, 6.
0221e23

bool Boolean true, false

(char, u8, i32) Tuple: mixed types allowed ('%', 0x7f, -1)

() “Unit” (empty tuple) ()

struct S {

  x: f32,

  y: f32,

}

Named-field struct S { x: 120.0, y: 20

9.0 }

struct T(i32, cha

r);

Tuple-like struct T(120, 'X')

struct E; Unit-like struct; has no fields E



Type Description Values

enum Attend {

  OnTime,

  Late(u32)

}

Enumeration, algebraic data type Attend::Late(5), At
tend::OnTime

Box<Attend> Box: owning pointer to value in heap Box::new(Late(15))

&i32, &mut i32 Shared and mutable references: non-
owning pointers that must not outlive
their referent

&s.y, &mut v

String UTF-8 string, dynamically sized "ラーメン: ramen".t

o_string()

&str Reference to str: non-owning pointer
to UTF-8 text

"そば: soba", &s
[0..12]

char Unicode character, 32 bits wide '*', '\n', '字', 
'\x7f', '\u{CA0}'

[f64; 4], [u8; 25
6]

Array, fixed length; elements all of
same type

[1.0, 0.0, 0.0, 1.

0],
[b' '; 256]

Vec<f64> Vector, varying length; elements all
of same type

vec![0.367, 2.718,

7.389]

&[u8], &mut [u8] Reference to slice: reference to a
portion of an array or vector,
comprising pointer and length

&v[10..20], &mut a
[..]

Option<&str> Optional value: either None (absent)
or Some(v) (present, with value v)

Some("Dr."), None



Type Description Values

Result<u64, Error

>

Result of operation that may fail:
either a success value Ok(v), or an
error Err(e)

Ok(4096), Err(Erro
r::last_os_error())

&dyn Error, &mut
dyn Read

Trait object reference: refers to any
value that implements a given set of
methods

&err as &dyn Error,
&mut file as &mut d

yn Read

fn(&str) -> bool Function pointer str::is_empty

(Closure types
have no
written form)

Closure |a, b| { a*a + b*b

}

Most of these types are covered in this chapter, except for the following:

We give struct types their own chapter, [Link to Come].

We give enumerated types their own chapter, [Link to Come].

We describe trait objects in [Link to Come].

We describe the essentials of String and &str here, but provide
more detail in [Link to Come].

We cover function and closure types in [Link to Come].

Numeric Types
The footing of Rust’s type system is a collection of fixed-width numeric
types, chosen to match the types that almost all modern processors implement
directly in hardware.

Fixed-width numeric types can overflow or lose precision, but they are
adequate for most applications and can be thousands of times faster than



representations like arbitrary-precision integers and exact rationals. If you
need those sorts of numeric representations, they are available in the num
crate.

The names of Rust’s numeric types follow a regular pattern, spelling out their
width in bits, and the representation they use (Table 2-2).

Table 2-2. Rust numeric types

Size (bits)
Unsigned
integer

Signed
integer

Floating-
point

8 u8 i8  

16 u16 i16  

32 u32 i32 f32

64 u64 i64 f64

128 u128 i128  

Machine word usize isize  

Here, a machine word is a value the size of an address on the machine the
code runs on, 32 or 64 bits.

Integer Types
Rust’s unsigned integer types use their full range to represent positive values
and zero (Table 2-3).



Table 2-3. Rust unsigned integer types

Type Range

u8 0 to 28–1 (0 to 255)

u16 0 to 216−1 (0 to 65,535)

u32 0 to 232−1 (0 to 4,294,967,295)

u64 0 to 264−1 (0 to 18,446,744,073,709,551,615, or 18
quintillion)

u128 0 to 2128−1 (0 to around 3.4×1038)

usize 0 to either 232−1 or 264−1

Rust’s signed integer types use the two’s complement representation, using
the same bit patterns as the corresponding unsigned type to cover a range of
positive and negative values (Table 2-4).



Table 2-4. Rust signed integer types

Type Range

i8 −27 to 27−1 (−128 to 127)

i16 −215 to 215−1 (−32,768 to 32,767)

i32 −231 to 231−1 (−2,147,483,648 to 2,147,483,647)

i64 −263 to 263−1 (−9,223,372,036,854,775,808 to
9,223,372,036,854,775,807)

i128 −2127 to 2127−1 (roughly -1.7×1038 to +1.7×1038)

isize Either −231 to 231−1, or −263 to 263−1

Rust uses the u8 type for byte values. For example, reading data from a
binary file or socket yields a stream of u8 values.

C/C ++ programmers should note that there is no single “character” type used
for both text and binary data in Rust. As we’ll see when we discuss strings
and characters later in this chapter, Rust’s char type is a Unicode character
type, not an integer type, and is quite different from C’s char.

The usize and isize types are analogous to size_t and ptrdiff_t in C
and C ++. Their precision matches the size of the address space on the target
machine: they are 32 bits long on 32-bit architectures, and 64 bits long on
64-bit architectures. Rust requires array indices to be usize values. Values
representing the sizes of arrays or vectors or counts of the number of
elements in some data structure also generally have the usize type.

Integer literals in Rust can take a suffix indicating their type: 42u8 is a u8
value, and 1729isize is an isize. If an integer literal lacks a type suffix,
Rust puts off determining its type until it finds the value being used in a way



that pins it down: stored in a variable of a particular type, passed to a
function that expects a particular type, compared with another value of a
particular type, or something like that. If the code provides no such clues,
Rust defaults to i32.

The prefixes 0x, 0o, and 0b designate hexadecimal, octal, and binary literals.

To make long numbers more legible, you can insert underscores among the
digits. For example, you can write the largest u32 value as 4_294_967_295.
The exact placement of the underscores is not significant, so you can break
hexadecimal or binary numbers into groups of four digits rather than three, as
in 0xffff_ffff, or set off the type suffix from the digits, as in 127_u8.

You can convert from one integer type to another using the as operator:

assert_eq!(10_i8 as u16, 10_u16);
assert_eq!(0xcafedad_u64 as u8, 0xad_u8);  // value too big for u8, truncated

The standard library provides some operations as methods on integers. For
example:

assert_eq!(2_u16.pow(4), 16);              // exponentiation
assert_eq!((-4_i32).abs(), 4);             // absolute value
assert_eq!(0b101101_u8.count_ones(), 4);   // population count
assert_eq!(12_i32.max(37), 37);            // maximum of two values

There are dozens of these. You can find them in the online documentation
under “Primitive Type i32” and friends.

In real code, you usually won’t need to write out the type suffixes as we’ve
done here, because the context will determine the type. When it doesn’t,
however, the error messages can be surprising. For example, the following
doesn’t compile:

println!("{}", (-4).abs());



Rust complains:

error: can't call method `abs` on ambiguous numeric type `{integer}`

This can be a little bewildering: all the signed integer types have an abs
method, so what’s the problem? For technical reasons, Rust wants to know
exactly which integer type a value has before it will call the type’s methods.
The default of i32 applies only if the type is still ambiguous after all method
calls have been resolved, so that’s too late to help here. The solution is to
spell out which type you intend, either with a suffix or by using a specific
type’s function:

println!("{}", (-4_i32).abs());
println!("{}", i32::abs(-4));

Note that method calls have a higher precedence than unary prefix operators,
so be careful when applying methods to negated values. Without the
parentheses around -4_i32 in the first statement, -4_i32.abs() would
apply the abs method to the positive value 4, producing positive 4, and then
negate that, producing -4.

Handling Integer Overflow
When an integer arithmetic operation overflows, Rust panics, in a debug
build. In a release build, the operation wraps around: it produces the value
equivalent to the mathematically correct result modulo the range of the value.
(In neither case is overflow undefined behavior, as it is for signed integers in
C and C ++.)

For example, the following code panics in a debug build:

let mut i = 1;
loop {
    i *= 10;  // panic: attempt to multiply with overflow



              // (but only in debug builds!)
}

In a release build, this multiplication wraps to a negative number, and the
loop runs indefinitely.

When this default behavior isn’t what you need, the integer types provide
methods that let you spell out exactly what you want. For example, the
following panics in any build:

let mut i: i32 = 1;
loop {
    // panic: multiplication overflowed (in any build)
    i = i.checked_mul(10).expect("multiplication overflowed");
}

These integer arithmetic methods fall in four general categories:

Checked operations return an Option of the result: Some(v) if the
mathematically correct result can be represented as a value of that
type, or None if it cannot. For example:

// The sum of 10 and 20 can be represented as a u8.

assert_eq!(10_u8.checked_add(20), Some(30)); 

 

// Unfortunately, the sum of 100 and 200 cannot.

assert_eq!(100_u8.checked_add(200), None); 

 

// Do the addition; panic if it overflows.

let sum = x.checked_add(y).unwrap(); 

 

// Oddly, signed division can overflow too, in one particular case.

// A signed n-bit type can represent -2ⁿ⁻¹, but not 2ⁿ⁻¹.

assert_eq!((-128_i8).checked_div(-1), None);



Wrapping operations return the value equivalent to the
mathematically correct result modulo the range of the value:

// The first product can be represented as a u16;

// the second cannot, so we get 250000 modulo 2¹⁶.

assert_eq!(100_u16.wrapping_mul(200), 20000);

assert_eq!(500_u16.wrapping_mul(500), 53392); 

 

// Operations on signed types may wrap to negative values.

assert_eq!(500_i16.wrapping_mul(500), -12144);

As explained, this is how the ordinary arithmetic operators behave
in release builds. The advantage of these methods is that they
behave the same way in all builds.

Saturating operations return the representable value that is closest
to the mathematically correct result. In other words, the result is
“clamped” to the maximum and minimum values the type can
represent:

assert_eq!(32760_i16.saturating_add(10), 32767);

assert_eq!((-32760_i16).saturating_sub(10), -32768);

Overflowing operations return a tuple (result, overflowed),
where result is what the wrapping version of the function would
return, and overflowed is a bool indicating whether an overflow
occurred:

assert_eq!(255_u8.overflowing_sub(2), (253, false));

assert_eq!(255_u8.overflowing_add(2), (1, true));



The bit-shifting operations shl (shift left, <<) and shr (shift right, >>)
deviate from the pattern. For these operations it is the shift distance, not the
result, that can be out of range (again causing undefined behavior in C ++). So
the checking, wrapping, or overflowing for these methods applies to the shift
distance argument.

assert_eq!(10_u64.wrapping_shl(65), 20);
assert_eq!(10_u64.checked_shr(65), None);

Floating-Point Types
Rust provides the usual single- and double-precision floating-point types
(Table 2-5). Rust’s f32 and f64 correspond to the float and double types
in C/C ++ and Java, or float32 and float64 in Go. Both types follow the
IEEE 754 floating point standard. They include positive and negative
infinities, distinct positive and negative zero values, and a not-a-number
value.

Table 2-5. Floating-point types

Type Precision Range

f32 IEEE single precision (at least 6
decimal digits)

Roughly ±3.4 ×
1038

f64 IEEE double precision (at least 15
decimal digits)

Roughly ±1.8 ×
10308

Floating-point literals have the general form diagrammed in Figure 2-1.



Figure 2-1. A floating-point literal

Every part of a floating-point number after the integer part is optional, but at
least one of the fractional part, exponent, or type suffix must be present, to
distinguish it from an integer literal. Rust never assigns a floating-point type
to a integer literal, or vice versa.

The fractional part may consist of a lone decimal point, so 5. is a valid
floating-point constant.

If a floating-point literal lacks a type suffix, Rust checks the context to see
how the value is used, much as it does for integer literals. The default is f64.

The types f32 and f64 have associated constants for the IEEE-required
special values like INFINITY, NEG_INFINITY (negative infinity), NAN (the
not-a-number value), and MIN and MAX (the largest and smallest finite
values):

assert!((-1. / f32::INFINITY).is_sign_negative());
assert_eq!(-f32::MIN, f32::MAX);

The f32 and f64 types provide a full complement of methods for
mathematical calculations; for example, 2f64.sqrt() is the double-
precision square root of two. Some examples:



assert_eq!(5f32.sqrt() * 5f32.sqrt(), 5.);  // exactly 5.0, per IEEE
assert_eq!((-1.01f64).floor(), -2.0);

These methods are documented under “Primitive Type f32” and “Primitive
Type f64”. The separate modules std::f32::consts and
std::f64::consts provide various commonly used mathematical constants
like E, PI, and the square root of two.

As with integers, you usually won’t need to write out type suffixes on
floating-point literals in real code, but when you do, putting a type on either
the literal or the function will suffice:

println!("{}", (2.0_f64).sqrt());
println!("{}", f64::sqrt(2.0));

Unlike C and C ++, Rust performs almost no numeric conversions implicitly.
If a function expects an f64 argument, it’s an error to pass an i32 value as
the argument. In fact, Rust won’t even implicitly convert an i16 value to an
i32 value, even though every i16 value is also an i32 value. But you can
always write out explicit conversions using the as operator: i as f64, or x
as i32.

The lack of implicit conversions sometimes makes a Rust expression more
verbose than the analogous C or C ++ code would be. However, implicit
integer conversions have a well-established record of causing bugs and
security holes, especially when the integers in question represent the size of
something in memory, and an unanticipated overflow occurs. In our
experience, the act of writing out numeric conversions in Rust has alerted us
to problems we would otherwise have missed.

We explain exactly how conversions behave in “Type Casts”.

The bool Type



Rust’s Boolean type, bool, has the usual two values for such types, true and
false. Comparison operators like == and < produce bool results: the value
of 2 < 5 is true.

Many languages are lenient about using values of other types in contexts that
require a Boolean value: C and C ++ implicitly convert characters, integers,
floating-point numbers, and pointers to Boolean values, so they can be used
directly as the condition in an if or while statement. Python and JavaScript
permit any value at all in an if condition, with language-specific rules to
determine which values are treated as true there and which are false. Rust,
however, is very strict: control structures like if and while require their
conditions to be bool expressions, as do the short-circuiting logical
operators && and ||. You must write if x != 0 { ... }, not simply if x
{ ... }.

Rust’s as operator can convert bool values to integer types:

assert_eq!(false as i32, 0);
assert_eq!(true  as i32, 1);

However, as won’t convert in the other direction, from numeric types to
bool. Instead, you must write out an explicit comparison like x != 0.

Although a bool needs only a single bit to represent it, Rust uses an entire
byte for a bool value in memory, so you can create a pointer to it.

Tuples
A tuple is a pair, or triple, quadruple, quintuple, etc. (hence, n-tuple, or
tuple), of values of assorted types. You can write a tuple as a sequence of
values, separated by commas and surrounded by parentheses. For example,
(1984_i32, false) is a tuple whose first field is an integer, and whose
second is a boolean; its type is (i32, bool). Given a tuple value t, you can
access its fields as t.0, t.1, and so on.



Tuples are very different from arrays. For one thing, each field of a tuple can
have a different type, whereas an array’s elements must all be the same type.
Further, while accessing elements by a variable index, arr[i], is practically
the defining feature of arrays, there is no way to do this with a tuple. You can
access a field by its numeric “name”, t.1, but you can’t write t.i or t[i] to
get the ith field.

Rust code often uses tuple types to return multiple values from a function. For
example, the split_at method on string slices, which divides a string into
two halves and returns them both, is declared like this:

fn split_at(&self, mid: usize) -> (&str, &str);

The return type (&str, &str) is a tuple of two string slices. You can use
pattern-matching syntax to assign each field of the return value to a different
variable:

let text = "I see the eigenvalue in thine eye";
let (head, tail) = text.split_at(21);
assert_eq!(head, "I see the eigenvalue ");
assert_eq!(tail, "in thine eye");

This is more legible than the equivalent:

let text = "I see the eigenvalue in thine eye";
let temp = text.split_at(21);
let head = temp.0;
let tail = temp.1;
assert_eq!(head, "I see the eigenvalue ");
assert_eq!(tail, "in thine eye");

You’ll also see tuples used as a sort of minimal-drama struct type. For
example, in the Mandelbrot program in Chapter 1, we needed to pass the
width and height of the image to the functions that plot it and write it to disk.



We could declare a struct with width and height members, but that’s pretty
heavy notation for something so obvious, so we just used a tuple:

/// Write the buffer `pixels`, whose dimensions are given by `bounds`, to the
/// file named `filename`.
fn write_image(
    filename: &str,
    pixels: &[u8],
    bounds: (usize, usize),
) -> Result<(), std::io::Error> {
    ...
}

The type of the bounds parameter is (usize, usize), a tuple of two usize
values. Admittedly, we could just as well write out separate width and
height parameters, and the machine code would be about the same either
way. It’s a matter of clarity. We think of the size as one value, not two, and
using a tuple lets us write what we mean.

The other commonly used tuple type is the zero-tuple (). This is traditionally
called the unit type because it has only one value, also written (). Rust uses
the unit type where there’s no meaningful value to carry, but context requires
some sort of type nonetheless.

For example, a function that returns no value has a return type of (). The
standard library’s std::thread::sleep function has no meaningful value to
return; it just pauses the program for a while. The declaration for
std::thread::sleep reads:

fn sleep(duration: Duration);

The signature omits the function’s return type altogether, which is shorthand
for returning the unit type:

fn sleep(duration: Duration) -> ();



Similarly, the write_image example we mentioned before has a return type
of Result<(), std::io::Error>, meaning that the function returns a
std::io::Error value if something goes wrong, but returns no value on
success.

Pointer Types
Rust has several types that represent memory addresses.

This is unusual in modern programming languages for two reasons. First, in
many languages, values do not nest. In Java, for example, if class
Rectangle contains a field Vector2D upperLeft;, then upperLeft is a
reference to another separately created Vector2D object. Objects never
physically contain other objects in Java. The language doesn’t need pointer
types because every Java object type is implicitly a pointer type.

Rust is different. The language is designed to help keep allocations to a
minimum, so values nest by default. The value ((0, 0), (1440, 900)) is
stored as four adjacent integers. If you store it in a local variable, you’ve got
a local variable four integers wide. Nothing is allocated in the heap. This is
great for memory efficiency, but as a consequence, whenever a Rust program
needs one value to point to another, it must say so by using a pointer type
explicitly.

The second reason Rust needs several pointer types is that there’s no garbage
collector to manage memory for us. It turns out memory still needs to be
managed. Rust programs must decide when to allocate memory, how much to
allocate, and when it’s safe to deallocate it. In Rust, these memory
management policies are written out in the pointer types themselves. Here
are some Rust pointer types and the policies they represent. Don’t worry if
this is a bit bewildering at first; we explain all of these types fully in later
chapters.

&T and &mut T - We showed a few examples of references already
in Chapter 1. References refer to “borrowed” values without taking



on any responsibility for cleanup. Therefore references have no
memory management overhead at all.

Box<T> - This is a pointer type that points to a value of type T stored
in the heap. Memory is allocated when the program calls
Box::new(value). When the box is dropped, the memory is freed.
Boxes are not needed every day, but they’re the most basic way to
override the default nesting of values, which is occasionally useful.

std::rc::Rc<T> and std::sync::Arc<T> - These are Rust’s
support for reference counting. Unlike Box<T> pointers, multiple
Rc<T> pointers can point to the same heap-allocated T. This is
useful when, say, multiple parts of a program all need access to a
shared component. Rust tracks how many Rcs point to each shared
value. The memory for the T is freed when the last Rc pointing to it
is dropped. Arc<T> is the same, but it uses an atomic reference
count, so Arcs can be shared across multiple threads.

*const T and *mut T - These are Rust’s raw pointer types, the
equivalent of C pointers. They can be dereferenced only in unsafe
blocks, code that explicitly opts out of Rust’s safety guarantees.
Raw pointers can be necessary when calling into a C library, or
behind the scenes when implementing a new kind of data structure
from scratch. We won’t discuss them again until [Link to Come].

All of these types point to a value of type T; they differ only in memory
management strategies and corresponding rules about mutability and thread
safety.

Java doesn’t need all this variety: the garbage collector provides a
convenient, one-size-fits-all strategy for managing memory. C ++
programmers, however, will recognize these as smart pointer types, similar
to those in the C ++ standard library: Box<T> is like C ++’s
std::unique_ptr<T>, and Arc<T> is like C ++’s std::shared_ptr<T>.

Except for raw pointers, Rust pointer types are non-nullable. Use Option for
optional pointers, with None representing null. There’s no extra memory



cost; an Option<&T> is the same size as a &T.

Arrays, Vectors, and Slices
Rust has three types for representing a sequence of values in memory:

The type [T; N] represents a fixed-size array of N values, each of
type T. An array’s size is a constant determined at compile time and
is part of the type; you can’t grow or shrink an array.

The type Vec<T>, called a vector of Ts, is a dynamically allocated,
growable sequence of values of type T. A vector’s elements live in
the heap, so you can resize vectors at will: push new elements onto
them, append other vectors to them, delete elements, and so on.

The types &[T] and &mut [T], called a shared slice of Ts and
mutable slice of Ts, are references to a series of elements that are a
part of some other value, like an array or vector. You can think of a
slice as a pointer to its first element, together with a count of the
number of elements you can access starting at that point. A mutable
slice &mut [T] lets you read and modify elements, but can’t be
shared; a shared slice &[T] lets you share access among several
readers, but doesn’t let you modify elements.

Given a value v of any of these three types, the expression v.len() gives the
number of elements in v, and v[i] refers to the ith element of v. The first
element is v[0], and the last element is v[v.len() - 1]. Rust checks that i
always falls within this range; if it doesn’t, the expression panics. The length
of v may be zero, in which case any attempt to index it will panic. i must be
a usize value; you can’t use any other integer type as an index.

Arrays
There are several ways to write array values. The simplest is to write a
series of values within square brackets:



let lazy_caterer: [u32; 6] = [1, 2, 4, 7, 11, 16];
let taxonomy = ["Animalia", "Arthropoda", "Insecta"]; 
 
assert_eq!(lazy_caterer[3], 7);
assert_eq!(taxonomy.len(), 3);

For the common case of a long array filled with some value, you can write
[V; N], where V is the value each element should have, and N is the length.
For example, [true; 10000] is an array of 10,000 bool elements, all set to
true:

let mut sieve = [true; 10000];
for i in 2..100 {
    if sieve[i] {
        let mut j = i * i;
        while j < 10000 {
            sieve[j] = false;
            j += i;
        }
    }
} 
 
assert!(sieve[211]);
assert!(!sieve[9876]);

You’ll see this syntax used for fixed-size buffers: [0u8; 1024] is a one-
kilobyte buffer, filled with zeros. Rust has no notation for an uninitialized
array. (In general, Rust ensures that code can never access any sort of
uninitialized value.)

An array’s length is part of its type and fixed at compile time. If n is a
variable, you can’t write [true; n] to get an array of n elements. When you
need an array whose length varies at run time (and you usually do), use a
vector instead.

The useful methods you’d like to see on arrays—iterating over elements,
searching, sorting, filling, filtering, and so on—are all provided as methods
on slices, not arrays. But Rust implicitly converts a reference to an array to a



slice when searching for methods, so you can call any slice method on an
array directly:

let mut chaos = [3, 5, 4, 1, 2];
chaos.sort();
assert_eq!(chaos, [1, 2, 3, 4, 5]);

Here, the sort method is actually defined on slices, but since it takes its
operand by reference, Rust implicitly produces a &mut [i32] slice referring
to the entire array and passes that to sort to operate on. In fact, the len
method we mentioned earlier is a slice method as well. We cover slices in
more detail in “Slices”.

Vectors
A vector Vec<T> is a resizable array of elements of type T, allocated in the
heap.

There are several ways to create vectors. The simplest is to use the vec!
macro, which gives us a syntax for vectors that looks very much like an array
literal:

let mut primes = vec![2, 3, 5, 7];
assert_eq!(primes.iter().product::<i32>(), 210);

But of course, this is a vector, not an array, so we can add elements to it
dynamically:

primes.push(11);
primes.push(13);
assert_eq!(primes.iter().product::<i32>(), 30030);

You can also build a vector by repeating a given value a certain number of
times, again using a syntax that imitates array literals:



fn new_pixel_buffer(rows: usize, cols: usize) -> Vec<u8> {
    vec![0; rows * cols]
}

The vec! macro is equivalent to calling Vec::new to create a new, empty
vector and then pushing the elements onto it:

let mut pal = Vec::new();
pal.push("step");
pal.push("on");
pal.push("no");
pal.push("pets");
assert_eq!(pal, vec!["step", "on", "no", "pets"]);

Another possibility is to build a vector from the values produced by an
iterator:

let v: Vec<i32> = (0..5).collect();
assert_eq!(v, [0, 1, 2, 3, 4]);

You’ll often need to supply the type when using collect (as we’ve done
here), because it can build many different sorts of collections, not just
vectors. By specifying the type of v, we’ve made it unambiguous which sort
of collection we want.

As with arrays, you can use slice methods on vectors:

// A palindrome!
let mut palindrome = vec!["a man", "a plan", "a canal", "panama"];
palindrome.reverse();
// Reasonable yet disappointing:
assert_eq!(palindrome, vec!["panama", "a canal", "a plan", "a man"]);

Here, the reverse method is actually defined on slices, but the call
implicitly borrows a &mut [&str] slice from the vector and invokes
reverse on that.



Vec is an essential type to Rust—it’s used almost anywhere one needs a list
of dynamic size—so there are many other methods that construct new vectors
or extend existing ones. We’ll cover them in [Link to Come].

A Vec<T> consists of three values: a pointer to the heap-allocated buffer for
the elements, which is created and owned by the Vec<T>; the number of
elements that buffer has the capacity to store; and the number it actually
contains now (in other words, its length). When the buffer has reached its
capacity, adding another element to the vector entails allocating a larger
buffer, copying the present contents into it, updating the vector’s pointer and
capacity to describe the new buffer, and finally freeing the old one.

If you know the number of elements a vector will need in advance, instead of
Vec::new you can call Vec::with_capacity to create a vector with a
buffer large enough to hold them all, right from the start; then, you can add the
elements to the vector one at a time without causing any reallocation. The
vec! macro uses a trick like this, since it knows how many elements the final
vector will have. Note that this only establishes the vector’s initial size; if
you exceed your estimate, the vector simply enlarges its storage as usual.

Many library functions look for the opportunity to use Vec::with_capacity
instead of Vec::new. For example, in the collect example, the iterator
0..5 knows in advance that it will yield five values, and the collect
function takes advantage of this to pre-allocate the vector it returns with the
correct capacity. We’ll see how this works in [Link to Come].

Just as a vector’s len method returns the number of elements it contains now,
its capacity method returns the number of elements it could hold without
reallocation:

let mut v = Vec::with_capacity(2);
assert_eq!(v.len(), 0);
assert_eq!(v.capacity(), 2); 
 
v.push(1);
v.push(2);
assert_eq!(v.len(), 2);
assert_eq!(v.capacity(), 2); 



 
v.push(3);
assert_eq!(v.len(), 3);
// Typically prints "capacity is now 4":
println!("capacity is now {}", v.capacity());

The capacity printed at the end isn’t guaranteed to be exactly 4, but it will be
at least 3, since the vector is holding three values.

You can insert and remove elements wherever you like in a vector, although
these operations shift all the elements after the affected position forward or
backward, so they may be slow if the vector is long:

let mut v = vec![10, 20, 30, 40, 50]; 
 
// Make the element at index 3 be 35.
v.insert(3, 35);
assert_eq!(v, [10, 20, 30, 35, 40, 50]); 
 
// Remove the element at index 1.
v.remove(1);
assert_eq!(v, [10, 30, 35, 40, 50]);

You can use the pop method to remove the last element and return it. More
precisely, popping a value from a Vec<T> returns an Option<T>: None if the
vector was already empty, or Some(v) if its last element had been v:

let mut v = vec!["Snow Puff", "Glass Gem"];
assert_eq!(v.pop(), Some("Glass Gem"));
assert_eq!(v.pop(), Some("Snow Puff"));
assert_eq!(v.pop(), None);

You can use a for loop to iterate over a vector:

// Get our command-line arguments as a vector of Strings.
let languages: Vec<String> = std::env::args().skip(1).collect();
for l in languages {
    println!(
        "{l}: {}",



        if l.len() % 2 == 0 {
            "functional"
        } else {
            "imperative"
        },
    );
}

Running this program with a list of programming languages is illuminating:

$ cargo run Lisp Scheme C C++ Fortran
   Compiling proglangs v0.1.0 (/home/jimb/rust/proglangs)
    Finished dev [unoptimized + debuginfo] target(s) in 0.36s
     Running `target/debug/proglangs Lisp Scheme C C++ Fortran`
Lisp: functional
Scheme: functional
C: imperative
C++: imperative
Fortran: imperative
$

Finally, a satisfying definition for the term functional language.

Despite its fundamental role, Vec is an ordinary type defined in Rust, not
built into the language. We’ll cover the techniques needed to implement such
types in [Link to Come].

Slices
A slice, written [T] without specifying the length, is a region of an array or
vector. Since a slice can be any length, slices can’t be stored directly in
variables or passed as function arguments. Slices are always passed by
reference.

A reference to a slice is a fat pointer: a two-word value comprising a
pointer to the slice’s first element, and the number of elements in the slice.

Suppose you run the following code:

let v: Vec<f64> = vec![0.0,  0.707,  1.0,  0.707];



let a: [f64; 4] =     [0.0, -0.707, -1.0, -0.707]; 
 
let sv: &[f64] = &v;
let sa: &[f64] = &a;

In the last two lines, Rust automatically converts the &Vec<f64> reference
and the &[f64; 4] reference to slice references that point directly to the
data.

By the end, memory looks like Figure 2-2.

Figure 2-2. A vector v and an array a in memory, with slices sa and sv referring to each

Whereas an ordinary reference is a non-owning pointer to a single value, a
reference to a slice is a non-owning pointer to a contiguous range of values
in memory. This makes slice references a good choice when you want to



write a function that operates on either an array or a vector. For example,
here’s a function that prints a slice of numbers, one per line:

fn print(n: &[f64]) {
    for elt in n {
        println!("{elt}");
    }
} 
 
print(&a);  // works on arrays
print(&v);  // works on vectors

You can get a reference to a slice of an array or vector, or a slice of an
existing slice, by indexing it with a range:

print(&v[0..2]);    // print the first two elements of v
print(&a[2..]);     // print elements of a starting with a[2]
print(&sv[1..3]);   // print v[1] and v[2]

As with ordinary array accesses, Rust checks that the indices are valid.
Trying to borrow a slice that extends past the end of the data results in a
panic.

If our print function took its argument as a &Vec<f64>, if would be
unnecessarily limited to full vectors only; &v[0..2] and so on would not be
valid arguments. Where possible, functions should accept slice references
rather than vector or array references, for generality. This is also why the
sort and reverse methods are defined on the slice type [T] rather than on
Vec<T>.

Since slices almost always appear behind references, we often just refer to
types like &[T] or &str as “slices,” using the shorter name for the more
common concept.

String and Character Types



Programmers familiar with C ++ will recall that there are two string types in
the language. String literals have the pointer type const char *. The
standard library also offers a class, std::string, for dynamically creating
strings at run time.

Rust has a similar design. In this section, we’ll show the syntax for string and
character literals and then introduce the string and character types. For much
more about strings and text processing, see [Link to Come].

String and Character Literals
String literals are enclosed in double quotes.

let quote = "Editing is a rewording activity.";  // Alan Perlis

Character literals are enclosed in single quotes, like '8' or '!'. They have
the type char, which can represent any single Unicode character: '錆' is a
char literal representing the Japanese kanji for sabi (rust).

A string may span multiple lines:

println!("In the room the women come and go,
    Singing of Mount Abora");

The newline character in that string literal is included in the string and
therefore in the output. So are the spaces at the beginning of the second line.
(Windows-style line endings do not affect the string’s content. A line break in
a string is always treated as a single newline character, '\n'.)

If one line of a string ends with a backslash, then the newline character and
the leading whitespace on the next line are dropped:

println!("It was a bright, cold day in April, and \
    there were four of us—\
    more or less.");



This prints a single line of text. The string contains a single space between
“and” and “there” because there is a space before the backslash in the
program, and no space between the em dash and “more.”

As in many other languages, escape sequences stand for special characters
(Table 2-6).

Table 2-6. Character escape sequences

Character Escape sequence

Single quote, ' \'

Backslash, \ \\

Newline \n

Carriage return \r

Tab \t

Any ASCII character (0 to 127) \x exactly two hex digits

Any character \u{ up to six hex digits }

You can write any character as \u{HHHHHH}, where HHHHHH is the code point
as a hexadecimal number of up to 6 digits, with underscores allowed for
grouping as usual. For example, the character literal '\u{CA0}' represents
the character “ಠ”, a Kannada letter used in the Unicode Look of
Disapproval, “ಠ_ಠ”. The same literal could also be simply written as 'ಠ'.

In a few cases, the need to double every backslash in a string is a nuisance.
(The classic examples are regular expressions and Windows paths.) For
these cases, Rust offers raw strings. A raw string is tagged with the
lowercase letter r. All backslashes and whitespace characters inside a raw



string are included verbatim in the string. No escape sequences are
recognized:

let default_win_install_path = r"C:\Program Files\Gorillas"; 
 
let pattern = Regex::new(r"\d+(\.\d+)*");

You can’t include a double-quote character in a raw string simply by putting
a backslash in front of it—remember, we said no escape sequences are
recognized. However, there is a cure for that too. The start and end of a raw
string can be marked with pound signs:

println!(r###"
    This raw string started with 'r###"'.
    Therefore it does not end until we reach a quote mark ('"')
    followed immediately by three pound signs ('###'):
"###);

You can add as few or as many pound signs as needed to make it clear where
the raw string ends.

Characters and Strings in Memory
Rust’s character type char represents a single Unicode character by its code
point. Each char value takes up 4 bytes of memory, the same as a u32.

Rust strings are sequences of Unicode characters, but they are not stored in
memory as arrays of chars. Instead, they are stored using UTF-8, a variable-
width encoding. Each ASCII character in a string is stored in one byte. Other
characters take up multiple bytes.

Figure 2-3 shows the String and &str values created by the following
code:

let noodles = "noodles".to_string();



let oodles = &noodles[1..];
let disapproodles = "ಠ_ಠ";

A String has a resizable buffer holding UTF-8 text. The buffer is allocated
in the heap, so it can be resized as needed. In the figure, noodles is a
String that owns an eight-byte buffer, of which seven are in use. You can
think of a String as a Vec<u8> that is guaranteed to hold well-formed UTF-
8; in fact, this is how String is implemented.

A &str (pronounced “stir” or “string slice”) is a reference to a run of UTF-8
text owned by someone else: it “borrows” the text. In the example, oodles is
a &str referring to the last six bytes of the text belonging to noodles, so it
represents the text "oodles". Like other slice references, a &str is a fat
pointer, containing both the address of the actual data and its length.

You can think of a &str as being nothing more than a &[u8] that is
guaranteed to hold well-formed UTF-8. Likewise, a char is essentially a
u32 that is guaranteed to hold a valid Unicode scalar value. They are types
with invariants: rules about their values that are enforced by the
implementation, that can’t be broken except by abusing unsafe code, and that
programs can therefore rely on.



Figure 2-3. String, &str, and str

A string literal is a &str that refers to preallocated text, typically stored in
read-only memory along with the program’s machine code. In the preceding
example, "ಠ_ಠ" is a string literal, pointing to seven bytes that are loaded
into memory when the program begins execution and that last until it exits.



A String or &str’s .len() method returns its length. The length is
measured in bytes, not characters:

assert_eq!("ಠ_ಠ".len(), 7);
assert_eq!("ಠ_ಠ".chars().count(), 3);

It is impossible to modify a &str:

let mut s = "hello";
s[0] = 'c';    // error: `&str` cannot be modified, and other reasons
s.push('\n');  // error: no method named `push` found for reference `&str`

To create new strings at run time, use String.

String
&str is very much like &[T]: a fat pointer to some data. String is analogous
to Vec<T>, as described in Table 2-7.



Table 2-7. Vec〈T〉 and String comparison

 Vec<T> String

Automatically frees buffers Yes Yes

Growable Yes Yes

::new() and ::with_capacity() type-
associated functions

Yes Yes

.reserve() and .capacity() methods Yes Yes

.push() and .pop() methods Yes Yes

Range syntax &v[start..stop] Yes, returns &
[T]

Yes, returns &st
r

Automatic conversion &Vec<T> to &[T] &String to &str

Inherits methods From &[T] From &str

Like a Vec, each String has its own heap-allocated buffer that isn’t shared
with any other String. When a String variable goes out of scope, the buffer
is automatically freed, unless the String was moved.

There are several ways to create Strings:

The .to_string() method converts a &str to a String. This
copies the string:

let error_message = "too many pets".to_string();

The format!() macro works just like println!(), except that it
returns a new String instead of writing text to stdout, and it doesn’t



automatically add a newline at the end:

let place = "Portland";

assert_eq!(format!("Hello, {place}!"), "Hello, Portland!".to_string());

The first argument to format!() or println!() is called a format
string. The bits in curly braces are called format specifiers, and in
the output, each format specifier is replaced with some value.
Values can be passed as additional arguments to the macro or, for
single identifiers only, included in the format specifier itself:

assert_eq!(

    format!("from {} to {}", start, end),

    format!("from {start} to {end}"),

);

A format specifier of {} or {name} renders a value in Display
format, for end users; {:?} or {name:?} renders it in Debug
format, for debugging. An example of the difference is that if s is a
string, println!("{s}") prints the content of the string verbatim,
whereas println!("{s:?}") adds double quotes around it and
renders any special characters in s as escape sequences. Not all
types support Display format, but almost everything supports
Debug. You’ll need {:?} to print a tuple, slice, Vec, or Option.

To include an actual curly brace in the output, double it: println!
("{{").

That should be enough to get on with. Rust format strings offer many
more features for fine-tuning the output. We cover them in [Link to
Come].

To concatenate a list of strings, use .concat() or .join(sep):



let bits = vec!["veni", "vidi", "vici"];

assert_eq!(bits.concat(), "venividivici");

assert_eq!(bits.join(", "), "veni, vidi, vici");

These methods are defined for slices of type [&str] and [String],
and are therefore available on arrays and vectors as well.

The choice sometimes arises of which type to use: &str or String.
Chapter 4 addresses this question in detail. For now it will suffice to point
out that a &str can refer to any slice of any string, so as with slices vs.
vectors, &str is usually preferable to String for function arguments.

Using Strings
Strings support the == and != operators. Two strings are equal if they contain
the same characters in the same order (regardless of whether they point to the
same location in memory):

assert!("ONE".to_lowercase() == "one");

Strings also support the comparison operators <, <=, >, and >=, as well as
many useful methods and functions that you can find in the online
documentation under “Primitive Type str” or the “std::str” module (or
just flip to [Link to Come]). Here are a few examples:

assert!("peanut".contains("nut"));
assert_eq!("ಠ_ಠ".replace("ಠ", "■"), "■_■");
assert_eq!("    clean\n".trim(), "clean"); 
 
for word in "veni, vidi, vici".split(", ") {
    assert!(word.starts_with("v"));
}



Characters have some methods of their own, for classification and
conversions. They are documented under “Primitive Type char” (and in
[Link to Come]).

assert_eq!('β'.is_alphabetic(), true);
assert_eq!(std::char::from_u32(0x1f642), Some('�⧩);
assert_eq!('�⧮len_utf8(), 4);
assert_eq!('1'.to_digit(10), Some(1));
assert_eq!(std::char::from_digit(2, 10), Some('2'));

Other String-Like Types
Rust guarantees that strings are valid UTF-8. Sometimes a program really
needs to be able to deal with strings that are not valid Unicode. This usually
happens when a Rust program has to interoperate with some other system that
doesn’t enforce any such rules. For example, in most operating systems it’s
easy to create a file with a filename that isn’t valid Unicode. What should
happen when a Rust program comes across this sort of filename?

Rust’s solution is to offer a few string-like types for these situations:

For ordinary text, use String and &str.

When working with filenames, use PathBuf and &Path instead. You
can import them from std::path.

When working with environment variable names and command-line
arguments, if you need to handle non-UTF-8 values, use OsString
and &OsStr from std::ffi. But this is rarely necessary. Most
programs just use String, as we did when handling command line
arguments in Chapter 1.

When working with binary data that isn’t UTF-8 encoded at all, use
Vec<u8> and &[u8].

When interoperating with C libraries that use null-terminated
strings, use CString and &CStr from std::ffi.



For those last two situations, Rust has special syntax:

let elf_magic = b"\x7fELF";   // a byte string (not UTF-8)
assert_eq!(elf_magic, &[127u8, b'E', b'L', b'F']); 
 
let branch = c"main";  // a C string (null-terminated)
assert_eq!(branch, CStr::from_bytes_with_nul(b"main\0").unwrap());

A string literal prefixed with b is a byte string. For example, b"\x7fELF" is
a byte string; its type is &[u8; 4], a reference to an immutable array of
bytes. Since a byte string represents bytes, not characters, it does not have to
be valid UTF-8. (This particular example is the “magic number” that appears
as the first four bytes of practically every Linux executable, including the
ones you’ve been building with cargo build, if you’ve been working
through the examples in this book on Linux.)

Similarly, a byte literal is a character-like literal prefixed with b. It has the
type u8. For example, since the ASCII code for A is 65, the literals b'A' and
65u8 are exactly equivalent. Byte strings and byte literals can’t contain
arbitrary Unicode characters; they must make do with ASCII and \xHH
escape sequences.

The string c"main" is a C string. It is like the regular string "main" except it
is null-terminated; that is, it’s stored with an extra 0 byte to indicate the end
of the string, as required by many C APIs. Its type is &std::ffi::CStr.

You won’t use these features every day, but we will show example code
using a byte string in [Link to Come] and a C string in [Link to Come].

Type Aliases
The type keyword can be used like typedef in C ++ to declare a new name
for an existing type:

type Bytes = Vec<u8>;



The type Bytes that we’re declaring here is shorthand for this particular kind
of Vec:

fn encode(image: &Bitmap) -> Bytes {  // returns a Vec<u8>
    ...
}

Beyond the Basics
Types are a central part of Rust. We’ll continue talking about types and
introducing new ones throughout the book. In particular, Rust’s user-defined
types give the language much of its flavor, because that’s where methods are
defined. There are three kinds of user-defined types, and we’ll cover them in
three successive chapters: structs in [Link to Come], enums in [Link to
Come], and traits in [Link to Come].

Functions and closures have their own types, covered in [Link to Come]. And
the types that make up the standard library are covered throughout the book.
For example, [Link to Come] presents the standard collection types.

All of that will have to wait, though. Before we move on, it’s time to tackle
the concepts that are at the heart of Rust’s safety rules.



Chapter 3. Ownership and
Moves

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at jbleiel@oreilly.com.

When it comes to managing memory, there are two characteristics we  ’d like
from our programing languages:

We ’d like memory to be freed promptly, at a time of our choosing.
This gives us control over the program’s memory consumption.

We never want to use a pointer to an object after it’s been freed.
This would be undefined behavior, leading to crashes and security
holes.

But these seem to be mutually exclusive: freeing a value while pointers exist
to it necessarily leaves those pointers dangling. Almost all major
programming languages fall into one of two camps, depending on which of
the two qualities they give up on:



The “Safety First” camp uses garbage collection to manage memory,
automatically freeing objects when all reachable pointers to them
are gone. This eliminates dangling pointers by simply keeping the
objects around until there are no pointers to them left to dangle.
Almost all modern languages fall in this camp, from Python,
JavaScript, and Ruby to Java, C#, and Haskell.

But relying on garbage collection means relinquishing control over
exactly when objects get freed to the collector. In general, garbage
collectors are surprising beasts, and understanding why memory
wasn’t freed when you expected can be a challenge.

The “Control First” camp leaves you in charge of freeing memory.
Your program’s memory consumption is entirely in your hands, but
avoiding dangling pointers also becomes entirely your concern. C
and C ++ are the only mainstream languages in this camp.

This is great if you never make mistakes, but evidence suggests that
eventually you will. Pointer misuse has been a common culprit in
reported security problems for as long as that data has been
collected.

Rust aims to be both safe and performant, so neither of these compromises is
acceptable. But if reconciliation were easy, someone would have done it
long before now. Something fundamental had to change.

Rust breaks the deadlock in a surprising way: by imposing some rules
restricting how your programs can use pointers, the net effect of which is to
bring just enough order to the chaos to allow Rust’s compile-time checks to
verify that your program is free of memory safety errors. At compile time,
Rust records where and when values are created and used, tracking the
ownership of each value as it moves through the program to prevent the use
of uninitialized values and free them exactly once, and only when they are no
longer needed, avoiding double-free bugs. The compiler also analyzes
references to those values to prevent the use of dangling pointers. At run
time, your pointers are simple addresses in memory, just as they would be in



C and C ++. The difference is that your code has been proven to use them
safely.

This chapter and the next are devoted to explaining exactly what these
restrictions are and why they work.

These same rules also form the basis of Rust’s support for safe concurrent
programming. Using Rust’s carefully designed threading primitives, the rules
that ensure your code uses memory correctly also serve to prove that it is
free of data races. A bug in a Rust program cannot cause one thread to
corrupt another’s data, introducing hard-to-reproduce failures in unrelated
parts of the system. The nondeterministic behavior inherent in multithreaded
code is isolated to those features designed to handle it—mutexes, message
channels, atomic values, and so on—rather than appearing in ordinary
memory references. Multithreaded code in C and C ++ has earned its ugly
reputation, but Rust rehabilitates it quite nicely.

Rust’s radical wager, the claim on which it stakes its success and that forms
the root of the language, is that even with these restrictions in place, you’ll
find the language more than flexible enough for almost every task and that the
benefits—the elimination of broad classes of memory management and
concurrency bugs—will justify the adaptations you’ll need to make to your
style. The authors of this book are bullish on Rust exactly because of our
extensive experience with C and C ++. For us, Rust’s deal is a no-brainer.

Rust’s rules are probably unlike what you’ve seen in other programming
languages. Learning how to work with them and turn them to your advantage
is, in our opinion, the central challenge of learning Rust. In this chapter, we’ll
first provide insight into the logic and intent behind Rust’s rules by showing
how the same underlying issues play out in other languages. Then, we’ll
explain Rust’s rules in detail, looking at what ownership means at a
conceptual and mechanical level, how changes in ownership are tracked in
various scenarios, and types that bend or break some of these rules in order
to provide more flexibility.

Ownership



If you’ve read much C or C ++ code, you’ve probably come across a
comment saying that an instance of some class owns some other object that it
points to. This generally means that the owning object gets to decide when to
free the owned object: when the owner is destroyed, it destroys its
possessions along with it.

For example, suppose you write the following C ++ code:

std::string s = "frayed knot";

The string s is usually represented in memory as shown in Figure 3-1.



Figure 3-1. A C ++ std::string value on the stack, pointing to its heap-allocated buffer

Here, the actual std::string object itself is always exactly three words
long, comprising a pointer to a heap-allocated buffer, the buffer’s overall
capacity (that is, how large the text can grow before the string must allocate a
larger buffer to hold it), and the length of the text it holds now. These are
fields private to the std::string class, not accessible to the string’s users.

A std::string owns its buffer: when the program destroys the string, the
string’s destructor frees the buffer. In the past, some C ++ libraries shared a
single buffer among several std::string values, using a reference count to



decide when the buffer should be freed. Newer versions of the C ++
specification effectively preclude that representation; all modern C ++
libraries use the approach shown here.

In these situations it’s generally understood that although it’s fine for other
code to create temporary pointers to the owned memory, it is that code’s
responsibility to make sure its pointers are gone before the owner decides to
destroy the owned object. You can create a pointer to a character living in a
std::string’s buffer, but when the string is destroyed, your pointer
becomes invalid, and it’s up to you to make sure you don’t use it anymore.
The owner determines the lifetime of the owned, and everyone else must
respect its decisions.

We’ve used std::string here as an example of what ownership looks like
in C ++: it’s just a convention that the standard library generally follows, and
although the language encourages you to follow similar practices, how you
design your own types is ultimately up to you.

In Rust, however, the concept of ownership is built into the language itself
and enforced by compile-time checks. Every value has a single owner that
determines its lifetime. When the owner is freed—dropped, in Rust
terminology—the owned value is dropped too. These rules are meant to
make it easy for you to find any given value’s lifetime simply by inspecting
the code, giving you the control over its lifetime that a systems language
should provide.

A variable owns its value. When control leaves the block in which the
variable is declared, the variable is dropped, so its value is dropped along
with it. For example:

fn print_padovan() {
    let mut padovan = vec![1,1,1];  // allocated here
    for i in 3..10 {
        let next = padovan[i-3] + padovan[i-2];
        padovan.push(next);
    }
    println!("P(1..10) = {padovan:?}");
}                                   // dropped here



The type of the variable padovan is Vec<i32>, a vector of 32-bit integers. In
memory, the final value of padovan will look something like Figure 3-2.

Figure 3-2. A Vec<i32> on the stack, pointing to its buffer in the heap

This is very similar to the C ++ std::string we showed earlier, except that
the elements in the buffer are 32-bit values, not characters. Note that the
words holding padovan’s pointer, capacity, and length live directly in the
stack frame of the print_padovan function; only the vector’s buffer is
allocated in the heap.



As with the string s earlier, the vector owns the buffer holding its elements.
When the variable padovan goes out of scope at the end of the function, the
program drops the vector. And since the vector owns its buffer, the buffer
goes with it.

Rust’s Box type serves as another example of ownership. A Box<T> is a
pointer to a value of type T stored in the heap. Calling Box::new(v)
allocates some heap space, moves the value v into it, and returns a Box
pointing to the heap space. Since a Box owns the space it points to, when the
Box is dropped, it frees the space too.

For example, you can allocate a tuple in the heap like so:

{
    let point = Box::new((0.625, 0.5));  // point allocated here
    let label = format!("{point:?}");    // label allocated here
    assert_eq!(label, "(0.625, 0.5)");
}                                        // both dropped here

When the program calls Box::new, it allocates space for a tuple of two f64
values in the heap, moves its argument (0.625, 0.5) into that space, and
returns a pointer to it. By the time control reaches the call to assert_eq!,
the stack frame looks like Figure 3-3.



Figure 3-3. Two local variables, each owning memory in the heap

The stack frame itself holds the variables point and label, each of which
refers to a heap allocation that it owns. When they are dropped, the
allocations they own are freed along with them.

Just as variables own their values, structs and tuples own their fields, and
arrays and vectors own their elements:

struct Person { name: String, birth: i32 } 
 
let mut composers = Vec::new();
composers.push(Person { name: "Palestrina".to_string(),
                        birth: 1525 });
composers.push(Person { name: "Dowland".to_string(),
                        birth: 1563 });
composers.push(Person { name: "Lully".to_string(),
                        birth: 1632 });
for composer in &composers {
    println!("{}, born {}", composer.name, composer.birth);
}



Here, composers is a Vec<Person>, a vector of structs, each of which holds
a string and a number. In memory, the final value of composers looks like
Figure 3-4.

Figure 3-4. A more complex tree of ownership



There are many ownership relationships here, but each one is pretty
straightforward: composers owns a vector; the vector owns its elements,
each of which is a Person structure; each structure owns its fields; and the
string field owns its text. When control leaves the scope in which composers
is declared, the program drops its value and takes the entire arrangement
with it. If there were other sorts of collections in the picture—a HashMap,
perhaps, or a BTreeSet—the story would be the same.

At this point, take a step back and consider the consequences of the
ownership relations we’ve presented so far. Every value has a single owner,
making it easy to decide when to drop it. But a single value may own many
other values: for example, the vector composers owns all of its elements.
And those values may own other values in turn: each element of composers
owns a string, which owns its text.

It follows that the owners and their owned values form trees: your owner is
your parent, and the values you own are your children. And at the ultimate
root of each tree is a variable; when that variable goes out of scope, the
entire tree goes with it. We can see such an ownership tree in the diagram for
composers: it’s not a “tree” in the sense of a search tree data structure, or an
HTML document made from DOM elements. Rather, we have a tree built
from a mixture of types, with Rust’s single-owner rule forbidding any
rejoining of structure that could make the arrangement more complex than a
tree. Every value in a Rust program is a member of some tree, rooted in some
variable.

Rust programs don’t usually explicitly drop values at all, in the way C and
C ++ programs would use free and delete. The way to drop a value in Rust
is to remove it from the ownership tree somehow: by leaving the scope of a
variable, or deleting an element from a vector, or something of that sort. At
that point, Rust ensures the value is properly dropped, along with everything
it owns.

In a certain sense, Rust is less powerful than other languages: every other
practical programming language lets you build arbitrary graphs of objects
that point to each other in whatever way you see fit. But it is exactly because



Rust is less powerful that the analyses the language can carry out on your
programs can be more powerful. Rust’s safety guarantees are possible
exactly because the relationships it may encounter in your code are more
tractable. This is part of Rust’s “radical wager” we mentioned earlier: in
practice, Rust claims, there is usually more than enough flexibility in how
one goes about solving a problem to ensure that at least a few perfectly fine
solutions fall within the restrictions the language imposes.

That said, concept of ownership as we’ve explained it so far is too rigid to
be useful for even relatively simple programs. Rust’s design addresses this
inflexibility in a few ways:

You  can  move  values  from  one  owner  to  another. This allows you
to  build,  rearrange, and tear down the tree.

Very simple types like integers, floating-point numbers, and
characters are excused from the ownership rules. These are called
Copy types.

The standard library provides the reference-counted pointer types
Rc and Arc, which allow values to have multiple owners, under
some restrictions.

You can “borrow a reference” to a value; references are non-owning
pointers, with limited lifetimes.

Each of these strategies contributes flexibility to the ownership model, while
still upholding Rust’s promises. We’ll explain each one in turn, with
references covered in the next chapter.

Moves
In Rust, for most types, operations like assigning a value to a variable,
passing it to a function, or returning it from a function don’t copy the value:
they move it. The source relinquishes ownership of the value to the
destination and becomes uninitialized; the destination now controls the



value’s lifetime. Rust programs build up and tear down complex structures
one value at a time, one move at a time.

You may be surprised that Rust would change the meaning of such
fundamental operations; surely assignment is something that should be pretty
well nailed down at this point in history. However, if you look closely at
how different languages have chosen to handle assignment, you’ll see that
there’s actually significant variation from one school to another. The
comparison also makes the meaning and consequences of Rust’s choice
easier to see.

Consider the following Python code:

s = ['udon', 'ramen', 'soba']
t = s
u = s

Each Python object carries a reference count, tracking the number of values
that are currently referring to it. So after the assignment to s, the state of the
program looks like Figure 3-5 (note that some fields are left out).





Figure 3-5. How Python represents a list of strings in memory

Since only s is pointing to the list, the list’s reference count is 1; and since
the list is the only object pointing to the strings, each of their reference counts
is also 1.

What happens when the program executes the assignments to t and u? Python
implements assignment simply by making the destination point to the same
object as the source, and incrementing the object’s reference count. So the
final state of the program is something like Figure 3-6.





Figure 3-6. The result of assigning s to both t and u in Python

Python has copied the pointer from s into t and u and updated the list’s
reference count to 3. Assignment in Python is cheap, but because it creates a
new reference to the object, we must maintain reference counts to know when
we can free the value.

Now consider the analogous C ++ code:

using namespace std;
vector<string> s = { "udon", "ramen", "soba" };
vector<string> t = s;
vector<string> u = s;

The original value of s looks like Figure 3-7 in memory.

What happens when the program assigns s to t and u? Assigning a
std::vector produces a copy of the vector in C ++; std::string behaves
similarly. So by the time the program reaches the end of this code, it has
actually allocated three vectors and nine strings (Figure 3-8).



Figure 3-7. How C ++ represents a vector of strings in memory



Figure 3-8. The result of assigning s to both t and u in C ++

Depending on the values involved, assignment in C ++ can consume
unbounded amounts of memory and processor time. The advantage, however,
is that it’s easy for the program to decide when to free all this memory: when
the variables go out of scope, everything allocated here gets cleaned up
automatically.

In a sense, C ++ and Python have chosen opposite trade-offs: Python makes
assignment cheap, at the expense of requiring reference counting (and in the
general case, garbage collection). C ++ keeps the ownership of all the
memory clear, at the expense of making assignment carry out a deep copy of
the object. C ++ programmers are often less than enthusiastic about this
choice: deep copies can be expensive, and there are usually more practical
alternatives.

So what would the analogous program do in Rust? Here’s the code:

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s;
let u = s;



Like C and C ++, Rust puts plain string literals like "udon" in read-only
memory, so for a clearer comparison with the C ++ and Python examples, we
call to_string here to get heap-allocated String values.

After carrying out the initialization of s, since Rust and C ++ use similar
representations for vectors and strings, the situation looks just as it did in
C ++ (Figure 3-9).

Figure 3-9. How Rust represents a vector of strings in memory

But recall that, in Rust, assignments of most types move the value from the
source to the destination, leaving the source uninitialized. So after initializing
t, the program’s memory looks like Figure 3-10.



Figure 3-10. The result of assigning s to t in Rust

What has happened here? The initialization let t = s; moved the vector’s
three header fields from s to t; now t owns the vector. The vector’s
elements stayed just where they were, and nothing happened to the strings
either. Every value still has a single owner, although one has changed hands.
There were no reference counts to be adjusted. And the compiler now
considers s uninitialized.

So what happens when we reach the initialization let u = s;? This would
assign the uninitialized value s to u. Rust prudently prohibits using
uninitialized values, so the compiler rejects this code with the following
error:



error: use of moved value: `s`
  |
7 |     let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
  |         - move occurs because `s` has type `Vec<String>`,
  |           which does not implement the `Copy` trait
8 |     let t = s;
  |             - value moved here
9 |     let u = s;
  |             ^ value used here after move

Consider the consequences of Rust’s use of a move here. Like Python, the
assignment is cheap: the program simply moves the three-word header of the
vector from one spot to another. But like C ++, ownership is always clear: the
program doesn’t need reference counting or garbage collection to know when
to free the vector elements and string contents.

The price you pay is that you must explicitly ask for copies when you want
them. If you want to end up in the same state as the C ++ program, with each
variable holding an independent copy of the structure, you must call the
vector’s clone method, which performs a deep copy of the vector and its
elements:

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s.clone();
let u = s.clone();

You could also re-create Python’s behavior by using Rust’s reference-
counted pointer types; we’ll discuss those shortly in “Rc and Arc: Shared
Ownership”.

More Operations That Move
In the examples thus far, we’ve shown initializations, providing values for
variables as they come into scope in a let statement. Assigning to a variable
is slightly different, in that if you move a value into a variable that was
already initialized, Rust drops the variable’s prior value. For example:



let mut s = "Govinda".to_string();
s = "Siddhartha".to_string();  // value "Govinda" dropped here

In this code, when the program assigns the string "Siddhartha" to s, its
prior value "Govinda" gets dropped first. But consider the following:

let mut s = "Govinda".to_string();
let t = s;
s = "Siddhartha".to_string();  // nothing is dropped here

This time, t has taken ownership of the original string from s, so that by the
time we assign to s, it is uninitialized. In this scenario, no string is dropped.

We’ve used initializations and assignments in the examples here because
they’re simple, but Rust applies move semantics to almost any use of a value.
Passing arguments to functions moves ownership to the function’s
parameters; returning a value from a function moves ownership to the caller.
Building a tuple moves the values into the tuple. And so on.

You may now have better insight into what’s really going on in the examples
we offered in the previous section. For example, when we were constructing
our vector of composers, we wrote:

struct Person { name: String, birth: i32 } 
 
let mut composers = Vec::new();
composers.push(Person { name: "Palestrina".to_string(),
                        birth: 1525 });

This code shows several places at which moves occur, beyond initialization
and assignment:

Returning values from a function

The call Vec::new() constructs a new vector and returns, not
a pointer to the vector, but the vector itself: its ownership



moves from Vec::new to the variable composers. Similarly, the
to_string call returns a fresh String instance.

Constructing new values

The name field of the new Person structure is initialized with
the return value of to_string. The structure takes ownership
of the string.

Passing values to a function

The entire Person structure, not a pointer to it, is passed to
the vector’s push method, which moves it onto the end of the
vector. The vector takes ownership of the Person and thus
becomes the indirect owner of the name String as well.

Moving values around like this may sound inefficient, but there are two
things to keep in mind. First, the moves always apply to the value proper, not
the heap storage they own. For vectors and strings, the value proper is the
three-word header alone; the potentially large element arrays and text buffers
sit where they are in the heap. Second, the Rust compiler’s code generation
is good at “seeing through” all these moves; in practice, the machine code
often stores the value directly where it belongs.

Moves and Control Flow
The previous examples all have very simple control flow; how do moves
interact with more complicated code? The general principle is that, if it’s
possible for a variable to have had its value moved away and it hasn’t
definitely been given a new value since, it’s considered uninitialized. For
example, if a variable still has a value after evaluating an if expression’s
condition, then we can use it in both branches:

let x = vec![10, 20, 30];
if c {
    f(x);  // ... ok to move from x here



} else {
    g(x);  // ... and ok to also move from x here
}
h(x);  // bad: x is uninitialized here if either path uses it

For similar reasons, moving from a variable in a loop is forbidden:

let x = vec![10, 20, 30];
while f() {
    g(x);  // bad: x would be moved in first iteration,
           // uninitialized in second
}

That is, unless we’ve definitely given it a new value by the next iteration:

let mut x = vec![10, 20, 30];
while f() {
    g(x);           // move from x
    x = h();        // give x a fresh value
}
e(x);

Moves and Indexed Content
We’ve mentioned that a move leaves its source uninitialized, as the
destination takes ownership of the value. But not every kind of value owner
is prepared to become uninitialized. For example, consider the following
code:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
for i in 101..106 {
    v.push(i.to_string());
} 
 
// Pull out random elements from the vector.
let third = v[2];  // error: Cannot move out of index of Vec
let fifth = v[4];  // here too



For this to work, Rust would somehow need to remember that the third and
fifth elements of the vector have become uninitialized, and track that
information until the vector is dropped. In the most general case, vectors
would need to carry around extra information with them to indicate which
elements are live and which have become uninitialized. That is clearly not
the right behavior for a systems programming language; a vector should be
nothing but a vector. In fact, Rust rejects the preceding code with the
following error:

error: cannot move out of index of `Vec<String>`
   |
14 |     let third = v[2];
   |                 ^^^^
   |                 |
   |                 move occurs because value has type `String`,
   |                 which does not implement the `Copy` trait
   |                 help: consider borrowing here: `&v[2]`

It also makes a similar complaint about the move to fifth. In the error
message, Rust suggests using a reference, in case you want to access the
element without moving it. This is often what you want. But what if you
really do want to move an element out of a vector? You need to find a method
that does so in a way that respects the limitations of the type. Here are three
possibilities:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
for i in 101..106 {
    v.push(i.to_string());
} 
 
// 1. Pop a value off the end of the vector:
let fifth = v.pop().expect("vector empty!");
assert_eq!(fifth, "105"); 
 
// 2. Move a value out of a given index in the vector,
// and move the last element into its spot:
let second = v.swap_remove(1);
assert_eq!(second, "102"); 



 
// 3. Swap in another value for the one we're taking out:
let third = std::mem::replace(&mut v[2], "substitute".to_string());
assert_eq!(third, "103"); 
 
// Let's see what's left of our vector.
assert_eq!(v, vec!["101", "104", "substitute"]);

Each one of these methods moves an element out of the vector, but does so in
a way that leaves the vector in a state that is fully populated, if perhaps
smaller.

Collection types like Vec also generally offer methods to consume all their
elements in a loop:

let v = vec![
    "liberté".to_string(),
    "égalité".to_string(),
    "fraternité".to_string(),
]; 
 
for mut s in v {
    s.push('!');
    println!("{s}");
}

When we pass the vector to the loop directly, as in for ... in v, this
moves the vector out of v, leaving v uninitialized. The for loop’s internal
machinery takes ownership of the vector and dissects it into its elements. At
each iteration, the loop moves another element to the variable s. Since s now
owns the string, we’re able to modify it in the loop body before printing it.
And since the vector itself is no longer visible to the code, nothing can
observe it mid-loop in some partially emptied state.

If you do find yourself needing to move a value out of an owner that the
compiler can’t track, you might consider changing the owner’s type to
something that can dynamically track whether it has a value or not. For
example, here’s a variant on the earlier example:



struct Person { name: Option<String>, birth: i32 } 
 
let mut composers = Vec::new();
composers.push(Person {
    name: Some("Palestrina".to_string()),
    birth: 1525,
});

You can’t do this:

let first_name = composers[0].name;

That will just elicit the same “cannot move out of index” error shown earlier.
But because you’ve changed the type of the name field from String to
Option<String>, that means that None is a legitimate value for the field to
hold, so this works:

let first_name = std::mem::replace(&mut composers[0].name, None);
assert_eq!(first_name, Some("Palestrina".to_string()));
assert_eq!(composers[0].name, None);

The replace call moves out the value of composers[0].name, leaving None
in its place, and passes ownership of the original value to its caller. In fact,
using Option this way is common enough that the type provides a take
method for this very purpose. You could write the preceding manipulation
more legibly as follows:

let first_name = composers[0].name.take();

This call to take has the same effect as the earlier call to replace.

Copy Types: The Exception to Moves



The examples we’ve shown so far of values being moved involve vectors,
strings, and other types that could potentially use a lot of memory and be
expensive to copy. Moves keep ownership of such types clear and
assignment cheap. But for simpler types like integers or characters, this sort
of careful handling really isn’t necessary.

Compare what happens in memory when we assign a String with what
happens when we assign an i32 value:

let string1 = "somnambulance".to_string();
let string2 = string1; 
 
let num1: i32 = 36;
let num2 = num1;

After running this code, memory looks like Figure 3-11.

Figure 3-11. Assigning a String moves the value, whereas assigning an i32 copies it

As with the vectors earlier, assignment moves string1 to string2 so that
we don’t end up with two strings responsible for freeing the same buffer.



However, the situation with num1 and num2 is different. An i32 is simply a
pattern of bits in memory; it doesn’t own any heap resources or really depend
on anything other than the bytes it comprises. By the time we’ve moved its
bits to num2, we’ve made a completely independent copy of num1.

Moving a value leaves the source of the move uninitialized. But whereas it
serves an essential purpose to treat string1 as valueless, treating num1 that
way is pointless; no harm could result from continuing to use it. The
advantages of a move don’t apply here, and it’s inconvenient.

Earlier we were careful to say that most types are moved; now we’ve come
to the exceptions, the types Rust designates as Copy types. Assigning a value
of a Copy type copies the value, rather than moving it. The source of the
assignment remains initialized and usable, with the same value it had before.
Passing Copy types to functions and constructors behaves similarly.

The standard Copy types include all the machine integer and floating-point
numeric types, the char and bool types, and a few others. A tuple or fixed-
size array of Copy types is itself a Copy type.

Only types for which a simple bit-for-bit copy suffices can be Copy. As
we’ve already explained, String is not a Copy type, because it owns a heap-
allocated buffer. For similar reasons, Box<T> is not Copy; it owns its heap-
allocated referent. The File type, representing an operating system file
handle, is not Copy; duplicating such a value would entail asking the
operating system for another file handle. Similarly, the MutexGuard type,
representing a locked mutex, isn’t Copy: this type isn’t meaningful to copy at
all, as only one thread may hold a mutex at a time.

As a rule of thumb, any type that needs to do something special when a value
is dropped cannot be Copy: a Vec needs to free its elements, a File needs to
close its file handle, a MutexGuard needs to unlock its mutex, and so on. Bit-
for-bit duplication of such types would leave it unclear which value was
now responsible for the original’s resources.

What about types you define yourself? By default, struct and enum types are
not Copy:



struct Label { number: u32 } 
 
fn print(l: Label) { println!("STAMP: {}", l.number); } 
 
let l = Label { number: 3 };
print(l);
println!("My label number is: {}", l.number);

This won’t compile; Rust complains:

error: borrow of moved value: `l`
   |
10 |     let l = Label { number: 3 };
   |         - move occurs because `l` has type `main::Label`,
   |           which does not implement the `Copy` trait
11 |     print(l);
   |           - value moved here
12 |     println!("My label number is: {}", l.number);
   |                                        ^^^^^^^^
   |                  value borrowed here after move

Since Label is not Copy, passing it to print moved ownership of the value
to the print function, which then dropped it before returning. But this is
silly; a Label is nothing but a u32 with pretensions. There’s no reason
passing l to print should move the value.

But user-defined types being non-Copy is only the default. If all the fields of
your struct are themselves Copy, then you can make the type Copy as well by
placing the attribute #[derive(Copy, Clone)] above the definition, like
so:

#[derive(Copy, Clone)]
struct Label { number: u32 }

With this change, the preceding code compiles without complaint. However,
if we try this on a type whose fields are not all Copy, it doesn’t work.
Suppose we compile the following code:



#[derive(Copy, Clone)]
struct StringLabel { name: String }

It elicits this error:

error: the trait `Copy` cannot be implemented for this type
  |
7 | #[derive(Copy, Clone)]
  |          ^^^^
8 | struct StringLabel { name: String }
  |                      ------------ this field does not implement `Copy`

Why aren’t user-defined types automatically Copy, assuming they’re eligible?
Whether a type is Copy or not has a big effect on how code is allowed to use
it: Copy types are more flexible, since assignment and related operations
don’t leave the original uninitialized. But for a type’s implementer, the
opposite is true: Copy types are very limited in which types they can contain,
whereas non-Copy types can use heap allocation and own other sorts of
resources. So making a type Copy represents a serious commitment on the
part of the implementer: if it’s necessary to change it to non-Copy later, much
of the code that uses it will probably need to be adapted.

While C ++ lets you overload assignment operators and define specialized
copy and move constructors, Rust doesn’t permit this sort of customization.
In Rust, every move is a byte-for-byte, shallow copy that leaves the source
uninitialized. Copies are the same, except that the source remains initialized.
This does mean that C ++ classes can provide convenient interfaces that Rust
types cannot, where ordinary-looking code implicitly adjusts reference
counts, puts off expensive copies for later, or uses other sophisticated
implementation tricks.

But the effect of this flexibility on C ++ as a language is to make basic
operations like assignment, passing parameters, and returning values from
functions less predictable. For example, earlier in this chapter we showed
how assigning one variable to another in C ++ can require arbitrary amounts
of memory and processor time. One of Rust’s principles is that costs should



be apparent to the programmer. Basic operations must remain simple.
Potentially expensive operations should be explicit, like the calls to clone in
the earlier example that make deep copies of vectors and the strings they
contain.

In this section, we’ve talked about Copy and Clone in vague terms as
characteristics a type might have. They are actually examples of traits,
Rust’s open-ended facility for categorizing types based on what you can do
with them. We describe traits in general in [Link to Come], and Copy and
Clone in particular in [Link to Come].

Rc and Arc: Shared Ownership
Although most values have unique owners in typical Rust code, in some
cases it’s difficult to find every value a single owner that has the lifetime you
need; you’d like the value to simply live until everyone’s done using it. For
these cases, Rust provides the reference-counted pointer types Rc and Arc.
As you would expect from Rust, these are entirely safe to use: you cannot
forget to adjust the reference count, create other pointers to the referent that
Rust doesn’t notice, or stumble over any of the other sorts of problems that
accompany reference-counted pointer types in C ++.

The Rc and Arc types are very similar; the only difference between them is
that an Arc is safe to share between threads directly—the name Arc is short
for atomic reference count—whereas a plain Rc uses faster non-thread-safe
code to update its reference count. If you don’t need to share the pointers
between threads, there’s no reason to pay the performance penalty of an Arc,
so you should use Rc; Rust will prevent you from accidentally passing one
across a thread boundary. The two types are otherwise equivalent, so for the
rest of this section, we’ll only talk about Rc.

Earlier we showed how Python uses reference counts to manage its values’
lifetimes. You can use Rc to get a similar effect in Rust. Consider the
following code:



use std::rc::Rc; 
 
// Rust can infer all these types; written out for clarity
let s: Rc<String> = Rc::new("shirataki".to_string());
let t: Rc<String> = s.clone();
let u: Rc<String> = s.clone();

For any type T, an Rc<T> value is a pointer to a heap-allocated T that has had
a reference count affixed to it. Cloning an Rc<T> value does not copy the T;
instead, it simply creates another pointer to it and increments the reference
count. So the preceding code produces the situation illustrated in Figure 3-12
in memory.

Figure 3-12. A reference-counted string with three references



Each of the three Rc<String> pointers is referring to the same block of
memory, which holds a reference count and space for the String. The usual
ownership rules apply to the Rc pointers themselves, and when the last extant
Rc is dropped, Rust drops the String as well.

You can use any of String’s usual methods directly on an Rc<String>:

assert!(s.contains("shira"));
assert_eq!(t.find("taki"), Some(5));
println!("{u} are quite chewy, almost bouncy, but lack flavor");

A value owned by an Rc pointer is immutable. Suppose you try to add some
text to the end of the string:

s.push_str(" noodles");

Rust will decline:

error: cannot borrow data in an `Rc` as mutable
   |
13 |     s.push_str(" noodles");
   |     ^ cannot borrow as mutable
   |

Rust’s memory and thread-safety guarantees depend on ensuring that no value
is ever simultaneously shared and mutable. Rust assumes the referent of an
Rc pointer might in general be shared, so it must not be mutable. We explain
why this restriction is important in Chapter 4.

One well-known problem with using reference counts to manage memory is
that, if there are ever two reference-counted values that point to each other,
each will hold the other’s reference count above zero, so the values will
never be freed (Figure 3-13).



Figure 3-13. A reference-counting loop; these objects will not be freed

It is possible to leak values in Rust this way, but such situations are rare. You
cannot create a cycle without, at some point, making an older value point to a
newer value. This obviously requires the older value to be mutable. Since Rc
pointers hold their referents immutable, it’s not normally possible to create a
cycle. However, Rust does provide ways to create mutable portions of
otherwise immutable values; this is called interior mutability, and we cover
it in [Link to Come]. If you combine those techniques with Rc pointers, you
can create a cycle and leak memory.

You can sometimes avoid creating cycles of Rc pointers by using weak
pointers, std::rc::Weak, for some of the links instead. However, we won’t
cover those in this book; see the standard library’s documentation for details.

Moves and reference-counted pointers are two ways to relax the rigidity of
the ownership tree. In the next chapter, we’ll look at a third way: borrowing
references to values. Once you have become comfortable with both
ownership and borrowing, you will have climbed the steepest part of Rust’s
learning curve, and you’ll be ready to take advantage of Rust’s unique
strengths.



Chapter 4. References

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at jbleiel@oreilly.com.

Libraries cannot provide new inabilities.
—Mark Miller

All the pointer types we discussed in the last chapter—the simple Box<T>
heap pointer, and the pointers internal to String and Vec values—are
owning pointers: dropping a Box<T> drops the T as well. Rust also has non-
owning pointer types called references, which have no effect on their
referents’ lifetimes.

In fact, it’s rather the opposite: references must never outlive their referents.
You must make it apparent in your code that no reference can possibly outlive
the value it points to. To emphasize this, Rust refers to creating a reference to
some value as borrowing the value: what you have borrowed, you must
eventually return to its owner.

If you felt a moment of skepticism when reading the phrase “You must make it
apparent in your code,” you’re in excellent company. The references
themselves are nothing special—under the hood, they’re just addresses. But



the rules that keep them safe are novel to Rust; outside of research languages,
you won’t have seen anything like them before. And although these rules are
the part of Rust that requires the most effort to master, the breadth of classic,
absolutely everyday bugs they prevent is surprising, and their effect on
multithreaded programming is liberating. This is Rust’s radical wager, again.

In this chapter, we’ll walk through how references work in Rust; show how
references, functions, and user-defined types all incorporate lifetime
information to ensure that they’re used safely; and illustrate some common
categories of bugs that these efforts prevent, at compile time and without run-
time performance penalties.

References to Values
As an example, let’s suppose we’re going to build a table of murderous
Renaissance artists and the works they’re known for. Rust’s standard library
includes a hash table type, so we can define our type like this:

use std::collections::HashMap; 
 
type Table = HashMap<String, Vec<String>>;

In other words, this is a hash table that maps String values to Vec<String>
values, taking the name of an artist to a list of the names of their works. You
can iterate over the entries of a HashMap with a for loop, so we can write a
function to print out a Table:

fn show(table: Table) {
    for (artist, works) in table {
        println!("works by {artist}:");
        for work in works {
            println!("  {work}");
        }
    }
}



Constructing and printing the table is straightforward:

fn main() {
    let mut table = Table::new();
    table.insert("Gesualdo".to_string(),
                 vec!["many madrigals".to_string(),
                      "Tenebrae Responsoria".to_string()]);
    table.insert("Caravaggio".to_string(),
                 vec!["The Musicians".to_string(),
                      "The Calling of St. Matthew".to_string()]);
    table.insert("Cellini".to_string(),
                 vec!["Perseus with the head of Medusa".to_string(),
                      "a salt cellar".to_string()]); 
 
    show(table);
}

And it all works fine:

$ cargo run
     Running `/home/jimb/rust/book/fragments/target/debug/fragments`
works by Gesualdo:
  many madrigals
  Tenebrae Responsoria
works by Cellini:
  Perseus with the head of Medusa
  a salt cellar
works by Caravaggio:
  The Musicians
  The Calling of St. Matthew
$

But if you’ve read the previous chapter’s section on moves, this definition
for show should raise a few questions. In particular, HashMap is not Copy—it
can’t be, since it owns a dynamically allocated table. So when the program
calls show(table), the whole structure gets moved to the function, leaving
the variable table uninitialized. (It also iterates over its contents in no
specific order, so if you’ve gotten a different order, don’t worry.) If the
calling code tries to use table now, it’ll run into trouble:



...
show(table);
assert_eq!(table["Gesualdo"][0], "many madrigals");

Rust complains that table isn’t available anymore:

error: borrow of moved value: `table`
   |
20 |     let mut table = Table::new();
   |         --------- move occurs because `table` has type 
   |                   `HashMap<String, Vec<String>>`,
   |                   which does not implement the `Copy` trait
...
31 |     show(table);
   |          ----- value moved here
32 |     assert_eq!(table["Gesualdo"][0], "many madrigals");
   |                ^^^^^ value borrowed here after move
note: consider changing this parameter type in function `show` to borrow instead
      if owning the value isn't necessary
   |
7  | fn show(table: Table) {
   |    ----        ^^^^^ this parameter takes ownership of the value
   |    |
   |    in this function
help: consider cloning the value if the performance cost is acceptable
   |
35 |     show(table.clone());
   |               ++++++++ 
 

In fact, if we look into the definition of show, the outer for loop takes
ownership of the hash table and consumes it entirely; and the inner for loop
does the same to each of the vectors. (We saw this behavior earlier, in the
“liberté, égalité, fraternité” example.) Because of move semantics, we’ve
completely destroyed the entire structure simply by trying to print it out.
Thanks, Rust!

The compiler helpfully suggests that we could either create a reference or
clone the value to avoid this problem. In this case, the right solution is to use



references, which let you access a value without affecting its ownership.
References come in two kinds:

A shared reference lets you read but not modify its referent.
However, you can have as many shared references to a particular
value at a time as you like. The expression &e yields a shared
reference to e’s value; if e has the type T, then &e has the type &T,
pronounced “ref T.” Shared references are Copy.

If you have a mutable reference to a value, you may both read and
modify the value. However, you may not have any other references
of any sort to that value active at the same time. The expression
&mut e yields a mutable reference to e’s value; you write its type as
&mut T, which is pronounced “ref mute T.” Mutable references are
not Copy.

You can think of the distinction between shared and mutable references as a
way to enforce a multiple readers or single writer rule at compile time. In
fact, this rule doesn’t apply only to references; it covers the borrowed
value’s owner as well. As long as there are shared references to a value, not
even its owner can modify it; the value is locked down. Nobody can modify
table while show is working with it. Similarly, if there is a mutable
reference to a value, it has exclusive access to the value; you can’t use the
owner at all, until the mutable reference goes away. Keeping sharing and
mutation fully separate turns out to be essential to memory safety, for reasons
we’ll go into later in the chapter.

The printing function in our example doesn’t need to modify the table, just
read its contents. So the caller should be able to pass it a shared reference to
the table, as follows:

show(&table);

References are non-owning pointers, so the table variable remains the
owner of the entire structure; show has just borrowed it for a bit. Naturally,



we’ll need to adjust the definition of show to match, but you’ll have to look
closely to see the difference:

fn show(table: &Table) {
    for (artist, works) in table {
        println!("works by {artist}:");
        for work in works {
            println!("  {work}");
        }
    }
}

The type of show’s parameter table has changed from Table to &Table:
instead of passing the table by value (and hence moving ownership into the
function), we’re now passing a shared reference. That’s the only textual
change. But how does this play out as we work through the body?

Whereas our original outer for loop took ownership of the HashMap and
consumed it, in our new version it receives a shared reference to the
HashMap. Iterating over a shared reference to a HashMap is defined to
produce shared references to each entry’s key and value: artist has
changed from a String to a &String, and works from a Vec<String> to a
&Vec<String>.

The inner loop is changed similarly. Iterating over a shared reference to a
vector is defined to produce shared references to its elements, so work is
now a &String. No ownership changes hands anywhere in this function; it’s
just passing around non-owning references.

Now, if we wanted to write a function to alphabetize the works of each artist,
a shared reference doesn’t suffice, since shared references don’t permit
modification. Instead, the sorting function needs to take a mutable reference
to the table:

fn sort_works(table: &mut Table) {
    for (_artist, works) in table {
        works.sort();



    }
}

And we need to pass it one:

sort_works(&mut table);

This mutable borrow grants sort_works the ability to read and modify our
structure, as required by the vectors’ sort method.

When we pass a value to a function in a way that moves ownership of the
value to the function, we say that we have passed it by value. If we instead
pass the function a reference to the value, we say that we have passed the
value by reference. For example, we fixed our show function by changing it
to accept the table by reference, rather than by value. Many languages draw
this distinction, but it’s especially important in Rust, because it spells out
how ownership is affected.

Working with References
The preceding example shows a pretty typical use for references: allowing
functions to access or manipulate a structure without taking ownership. But
references are more flexible than that, so let’s look at some examples to get a
more detailed view of what’s going on.

Rust References Versus C ++ References
If you’re familiar with references in C ++, they do have something in common
with Rust references. Most importantly, they’re both just addresses at the
machine level. But in practice, Rust’s references have a very different feel.

In C ++, references are created implicitly by conversion, and dereferenced
implicitly too:

// C++ code!



int x = 10;
int &r = x;             // initialization creates reference implicitly
assert(r == 10);        // implicitly dereference r to see x's value
r = 20;                 // stores 20 in x, r itself still points to x

In Rust, references are created explicitly with the & operator, and
dereferenced explicitly with the * operator:

// Back to Rust code from this point onward.
let x = 10;
let r = &x;             // &x is a shared reference to x
assert_eq!(*r, 10);     // explicitly dereference r

To create a mutable reference, use the &mut operator:

let mut y = 32;
let m = &mut y;        // &mut y is a mutable reference to y
*m += 32;              // explicitly dereference m to set y's value
assert_eq!(*m, 64);    // or to get y's current value

But you might recall that, when we fixed the show function to take the table of
artists by reference instead of by value, we never had to use the * operator.
Why is that?

Since references are so widely used in Rust, the . operator implicitly
dereferences its left operand, if needed:

struct Anime { name: &'static str, bechdel_pass: bool }
let aria = Anime { name: "Aria: The Animation", bechdel_pass: true };
let anime_ref = &aria;
assert_eq!(anime_ref.name, "Aria: The Animation"); 
 
// Equivalent to the above, but with the dereference written out:
assert_eq!((*anime_ref).name, "Aria: The Animation");

The println! macro used in the show function expands to code that uses the
. operator, so it takes advantage of this implicit dereference as well.



The . operator can also implicitly borrow a reference to its left operand, if
needed for a method call. For example, Vec’s sort method takes a mutable
reference to the vector, so these two calls are equivalent:

let mut v = vec![1973, 1968];
v.sort();           // implicitly borrows a mutable reference to v
(&mut v).sort();    // equivalent, but more verbose

In a nutshell, whereas C ++ converts implicitly between references and
lvalues (that is, expressions referring to locations in memory), with these
conversions appearing anywhere they’re needed, in Rust you use the & and *
operators to create and follow references, with the exception of the .
operator, which borrows and dereferences implicitly.

Assigning References
Assigning a reference to a variable makes that variable point somewhere
new:

let x = 10;
let y = 20;
let mut r = &x; 
 
if b { r = &y; } 
 
assert!(*r == 10 || *r == 20);

The reference r initially points to x. But if b is true, the code points it at y
instead, as illustrated in Figure 4-1.



Figure 4-1. The reference r, now pointing to y instead of x

This behavior may seem too obvious to be worth mentioning: of course r
now points to y, since we stored &y in it. But we point this out because C ++
references behave very differently: as shown earlier, assigning a value to a
reference in C ++ stores the value in its referent. Once a C ++ reference has
been initialized, there’s no way to make it point at anything else.

References to References
Rust permits references to references:

struct Point { x: i32, y: i32 }
let point = Point { x: 1000, y: 729 };
let r: &Point = &point;
let rr: &&Point = &r;
let rrr: &&&Point = &rr;

(We’ve written out the reference types for clarity, but you could omit them;
there’s nothing here Rust can’t infer for itself.) The . operator follows as
many references as it takes to find its target:

assert_eq!(rrr.y, 729);

In memory, the references are arranged as shown in Figure 4-2.



Figure 4-2. A chain of references to references

So the expression rrr.y, guided by the type of rrr, actually traverses three
references to get to the Point before fetching its y field.

Comparing References
Like the . operator, Rust’s comparison operators “see through” any number
of references:

let x = 10;
let y = 10; 
 
let rx = &x;
let ry = &y; 
 
let rrx = &rx;
let rry = &ry; 
 
assert!(rrx <= rry);
assert!(rrx == rry);

The final assertion here succeeds, even though rrx and rry point at different
values (namely, rx and ry), because the == operator follows all the
references and performs the comparison on their final targets, x and y. This
is almost always the behavior you want, especially when writing generic



functions. If you actually want to know whether two references point to the
same memory, you can use std::ptr::eq, which compares them as
addresses:

assert!(rx == ry);               // their referents are equal
assert!(!std::ptr::eq(rx, ry));  // but occupy different addresses

Note that the operands of a comparison must have exactly the same type,
including the references:

assert!(rx == rrx);   // error: type mismatch: `&i32` vs `&&i32`
assert!(rx == *rrx);  // this is okay

References Are Never Null
Rust references are never null. There’s no analogue to C’s NULL or C ++’s
nullptr. There is no default initial value for a reference (you can’t use any
variable until it’s been initialized, regardless of its type) and Rust won’t
convert integers to references (outside of unsafe code), so you can’t convert
zero into a reference.

C and C ++ code often uses a null pointer to indicate the absence of a value:
for example, the malloc function returns either a pointer to a new block of
memory or nullptr if there isn’t enough memory available to satisfy the
request. In Rust, if you need a value that is either a reference to something or
not, use the type Option<&T>. At the machine level, Rust represents None as
a null pointer and Some(r), where r is a &T value, as the nonzero address, so
Option<&T> is just as efficient as a nullable pointer in C or C ++, even
though it’s safer: its type requires you to check whether it’s None before you
can use it.

Borrowing References to Arbitrary Expressions
Whereas C and C ++ only let you apply the & operator to certain kinds of
expressions, Rust lets you borrow a reference to the value of any sort of



expression at all:

fn factorial(n: usize) -> usize {
    (1..n+1).product()
}
let r = &factorial(6);
// Arithmetic operators can see through one level of references.
assert_eq!(r + &1009, 1729);

In situations like this, Rust simply creates an anonymous variable to hold the
expression’s value and makes the reference point to that. The lifetime of this
anonymous variable depends on what you do with the reference:

If you immediately assign the reference to a variable in a let
statement (or make it part of some struct or array that is being
immediately assigned), then Rust makes the anonymous variable live
as long as the variable the let initializes. In the preceding example,
Rust would do this for the referent of r.

Otherwise, the anonymous variable lives to the end of the enclosing
statement. In our example, the anonymous variable created to hold
1009 lasts only to the end of the assert_eq! statement.

If you’re used to C or C ++, this may sound error-prone. But remember that
Rust will never let you write code that would produce a dangling reference.
If the reference could ever be used beyond the anonymous variable’s
lifetime, Rust will always report the problem to you at compile time. You can
then fix your code to keep the referent in a named variable with an
appropriate lifetime.

References to Slices and Trait Objects
The references we’ve shown so far are all simple addresses. However, Rust
also includes two kinds of fat pointers, two-word values carrying the
address of some value, along with some further information necessary to put
the value to use.



A reference to a slice is a fat pointer, carrying the starting address of the
slice and its length. We described slices in detail in Chapter 2.

Rust’s other kind of fat pointer is a trait object, a reference to a value that
implements a certain trait. A trait object carries a value’s address and a
pointer to the trait’s implementation appropriate to that value, for invoking
the trait’s methods. We’ll cover trait objects in detail in [Link to Come].

Aside from carrying this extra data, slice and trait object references behave
just like the other sorts of references we’ve shown so far in this chapter: they
don’t own their referents, they are not allowed to outlive their referents, they
may be mutable or shared, and so on.

Reference Safety
As we’ve presented them so far, references look pretty much like ordinary
pointers in C or C ++. But those are unsafe; how does Rust keep its
references under control? Perhaps the best way to see the rules in action is to
try to break them.

To convey the fundamental ideas, we’ll start with the simplest cases,
showing how Rust ensures references are used properly within a single
function body. Then we’ll look at passing references between functions and
storing them in data structures. This entails giving said functions and data
types lifetime parameters, which we’ll explain. Finally, we’ll present some
shortcuts that Rust provides to simplify common usage patterns. Throughout,
we’ll be showing how Rust points out broken code and often suggests
solutions.

Borrowing a Local Variable
Here’s a pretty obvious case. You can’t borrow a reference to a local
variable and take it out of the variable’s scope:

{
    let r;



    {
        let x = 1;
        r = &x;
    }
    assert_eq!(*r, 1);  // bad: reads memory `x` used to occupy
}

The Rust compiler rejects this program, with a detailed error message:

error: `x` does not live long enough
   |
7  |         r = &x;
   |             ^^ borrowed value does not live long enough 
8  |     }
   |     - `x` dropped here while still borrowed
9  |     assert_eq!(*r, 1);  // bad: reads memory `x` used to occupy
10 | }

Rust’s complaint is that x lives only until the end of the inner block, whereas
the reference remains alive until the end of the outer block, making it a
dangling pointer, which is verboten.

While it’s obvious to a human reader that this program is broken, it’s worth
looking at how Rust itself reached that conclusion. Even this simple example
shows the logical tools Rust uses to check much more complex code.

Rust tries to assign each reference type in your program a lifetime that meets
the constraints imposed by how it is used. A lifetime is some stretch of your
program for which a reference could be safe to use: a statement, an
expression, the scope of some variable, or the like. Lifetimes are entirely
figments of Rust’s compile-time imagination. At run time, a reference is
nothing but an address; its lifetime is part of its type and has no run-time
representation.

In this example, there are three lifetimes whose relationships we need to
work out. The variables r and x both have a lifetime, extending from the
point at which they’re initialized until the point that the compiler can prove
they are no longer in use. The third lifetime is that of a reference type: the
type of the reference we borrow to x and store in r.



Here’s one constraint that should seem pretty obvious: if you have a variable
x, then a reference to x must not outlive x itself, as shown in Figure 4-3.

Beyond the point where x goes out of scope, the reference would be a
dangling pointer. We say that the variable’s lifetime must contain or enclose
that of the reference borrowed from it.

Figure 4-3. Permissible lifetimes for &x

Here’s another kind of constraint: if you store a reference in a variable r, the
reference’s type must be good for the entire lifetime of the variable, from its
initialization until its last use, as shown in Figure 4-4.

If the reference can’t live at least as long as the variable does, then at some
point r will be a dangling pointer. We say that the reference’s lifetime must
contain or enclose the variable’s.



Figure 4-4. Permissible lifetimes for reference stored in r

The first kind of constraint limits how large a reference’s lifetime can be,
while the second kind limits how small it can be. Rust simply tries to find a
lifetime for each reference that satisfies all these constraints. In our example,
however, there is no such lifetime, as shown in Figure 4-5.



Figure 4-5. A reference with contradictory constraints on its lifetime

Let’s now consider a different example where things do work out. We have
the same kinds of constraints: the reference’s lifetime must be contained by
x’s, but fully enclose r’s. But because r’s lifetime is smaller now, there is a
lifetime that meets the constraints, as shown in Figure 4-6.



Figure 4-6. A reference with a lifetime enclosing r’s scope, but within x’s scope

These rules apply in a natural way when you borrow a reference to some part
of some larger data structure, like an element of a vector:

let v = vec![1, 2, 3];
let r = &v[1];

Since v owns the vector, which owns its elements, the lifetime of v must
enclose that of the reference type of &v[1]. Similarly, if you store a reference
in some data structure, its lifetime must enclose that of the data structure. For
example, if you build a vector of references, all of them must have lifetimes
enclosing that of the variable that owns the vector.

This is the essence of the process Rust uses for all code. Bringing more
language features into the picture—e.g., data structures and function calls—
introduces new sorts of constraints, but the principle remains the same: first,
understand the constraints arising from the way the program uses references;
then, find lifetimes that satisfy them. This is not so different from the process
C and C ++ programmers impose on themselves; the difference is that Rust
knows the rules and enforces them.



Receiving References as Function Arguments
When we pass a reference to a function, how does Rust make sure the
function uses it safely? Suppose we have a function f that takes a reference
and stores it in a global variable. We’ll need to make a few revisions to this,
but here’s a first cut:

// This code has several problems, and doesn't compile.
static mut STASH: &i32;
fn f(p: &i32) { STASH = p; }

Rust’s equivalent of a global variable is called a static: it’s a value that’s
created when the program starts and lasts until it terminates. (Like any other
declaration, Rust’s module system controls where statics are visible, so
they’re only “global” in their lifetime, not their visibility.) We cover statics
in [Link to Come], but for now we’ll just call out a few rules that the code
just shown doesn’t follow:

Every static must be initialized.

Mutable statics are inherently not thread-safe (after all, any thread
can access a static at any time), and even in single-threaded
programs, they can fall prey to other sorts of reentrancy problems.
For these reasons, you may access a mutable static only within an
unsafe block. In this example we’re not concerned with those
particular problems, so we’ll just throw in an unsafe block and
move on.

With those revisions made, we now have the following:

static mut STASH: &i32 = &128;
fn f(p: &i32) {  // still not good enough
    unsafe {
        STASH = p;
    }
}



We’re almost done. To see the remaining problem, we need to write out a
few things that Rust is helpfully letting us omit. The signature of f as written
here is actually shorthand for the following:

fn f<'a>(p: &'a i32) { ... }

Here, the lifetime 'a (pronounced “tick A”) is a lifetime parameter of f.
You can read <'a> as “for any lifetime 'a” so when we write fn f<'a>(p:
&'a i32), we’re defining a function that takes a reference to an i32 with any
given lifetime 'a.

Since we must allow 'a to be any lifetime, things had better work out if it’s
the smallest possible lifetime: one just enclosing the call to f. This
assignment then becomes a point of contention:

STASH = p;

Since STASH lives for the program’s entire execution, the reference type it
holds must have a lifetime of the same length; Rust calls this the 'static
lifetime. But the lifetime of p’s reference is some 'a, which could be
anything, as long as it encloses the call to f. So, Rust rejects our code:

error: lifetime may not live long enough
  |
3 | fn f(p: &i32) {  // still not good enough
  |         - let's call the lifetime of this reference `'1`
...
5 |         STASH = p;
  |         ^^^^^^^^^ assignment requires that `'1` must outlive `'static`

At this point, it’s clear that our function can’t accept just any reference as an
argument. But as Rust points out, it ought to be able to accept a reference that
has a 'static lifetime: storing such a reference in STASH can’t create a
dangling pointer. And indeed, the following code compiles just fine:



static mut STASH: &i32 = &10; 
 
fn f(p: &'static i32) {
    unsafe {
        STASH = p;
    }
}

This time, f’s signature spells out that p must be a reference with lifetime
'static, so there’s no longer any problem storing that in STASH. We can
only apply f to references to other statics, but that’s the only thing that’s
certain not to leave STASH dangling anyway. So we can write:

static WORTH_POINTING_AT: i32 = 1000;
f(&WORTH_POINTING_AT);

Since WORTH_POINTING_AT is a static, the type of &WORTH_POINTING_AT is
&'static i32, which is safe to pass to f.

Take a step back, though, and notice what happened to f’s signature as we
amended our way to correctness: the original f(p: &i32) ended up as f(p:
&'static i32). In other words, we were unable to write a function that
stashed a reference in a global variable without reflecting that intention in the
function’s signature. In Rust, a function’s signature always exposes the body’s
behavior.

Conversely, if we do see a function with a signature like g(p: &i32) (or
with the lifetimes written out, g<'a>(p: &'a i32)), we can tell that it does
not stash its argument p anywhere that will outlive the call. There’s no need
to look into g’s definition; the signature alone tells us what g can and can’t do
with its argument. This fact ends up being very useful when you’re trying to
establish the safety of a call to the function.

Passing References to Functions



Now that we’ve shown how a function’s signature relates to its body, let’s
examine how it relates to the function’s callers. Suppose you have the
following code:

// This could be written more briefly: fn g(p: &i32),
// but let's write out the lifetimes for now.
fn g<'a>(p: &'a i32) { ... } 
 
let x = 10;
g(&x);

From g’s signature alone, Rust knows it will not save p anywhere that might
outlive the call: any lifetime that encloses the call must work for 'a. So Rust
chooses the smallest possible lifetime for &x: that of the call to g. This meets
all constraints: it doesn’t outlive x, and it encloses the entire call to g. So this
code passes muster.

Note that although g takes a lifetime parameter 'a, we didn’t need to mention
it when calling g. You only need to worry about lifetime parameters when
defining functions and types; when using them, Rust infers the lifetimes for
you.

What if we tried to pass &x to our function f from earlier that stores its
argument in a static?

fn f(p: &'static i32) { ... } 
 
let x = 10;
f(&x);

This fails to compile: the reference &x must not outlive x, but by passing it to
f, we constrain it to live at least as long as 'static. There’s no way to
satisfy everyone here, so Rust rejects the code.

Returning References



It’s common for a function to take a reference to some data structure and then
return a reference into some part of that structure. For example, here’s a
function that returns a reference to the smallest element of a slice:

// v should have at least one element.
fn smallest(v: &[i32]) -> &i32 {
    let mut s = &v[0];
    for r in &v[1..] {
        if *r < *s { s = r; }
    }
    s
}

We’ve omitted lifetimes from that function’s signature in the usual way. When
a function takes a single reference as an argument and returns a single
reference, Rust assumes that the two must have the same lifetime. Writing this
out explicitly would give us:

fn smallest<'a>(v: &'a [i32]) -> &'a i32 { ... }

Suppose we call smallest like this:

let s;
{
    let parabola = [9, 4, 1, 0, 1, 4, 9];
    s = smallest(&parabola);
}
assert_eq!(*s, 0);  // bad: points to element of dropped array

From smallest’s signature, we can see that its argument and return value
must have the same lifetime, 'a. In our call, the argument &parabola must
not outlive parabola itself, yet smallest’s return value must live at least as
long as s. There’s no possible lifetime 'a that can satisfy both constraints, so
Rust rejects the code:



error: `parabola` does not live long enough
   |
11 |         s = smallest(&parabola);
   |                       -------- borrow occurs here
12 |     }
   |     ^ `parabola` dropped here while still borrowed
13 |     assert_eq!(*s, 0);  // bad: points to element of dropped array
   |                 - borrowed value needs to live until here
14 | }

Moving s so that its lifetime is clearly contained within parabola’s fixes the
problem:

{
    let parabola = [9, 4, 1, 0, 1, 4, 9];
    let s = smallest(&parabola);
    assert_eq!(*s, 0);  // fine: parabola still alive
}

Lifetimes in function signatures let Rust assess the relationships between the
references you pass to the function and those the function returns, and they
ensure they’re being used safely.

Structs Containing References
How does Rust handle references stored in data structures? Here’s the same
erroneous program we looked at earlier, except that we’ve put the reference
inside a structure:

// This does not compile.
struct S {
    r: &i32,
} 
 
let s;
{
    let x = 10;
    s = S { r: &x };



}
assert_eq!(*s.r, 10);  // bad: reads from dropped `x`

The safety constraints Rust places on references can’t magically disappear
just because we hid the reference inside a struct. Somehow, those constraints
must end up applying to S as well. Indeed, Rust is skeptical:

error: missing lifetime specifier
  |
7 |         r: &i32
  |            ^ expected lifetime parameter

Whenever a reference type appears inside another type’s definition, you must
write out its lifetime. You can write this:

struct S {
    r: &'static i32,
}

This says that r can only refer to i32 values that will last for the lifetime of
the program, which is rather limiting. The alternative is to give the type a
lifetime parameter 'a and use that for r:

struct S<'a> {
    r: &'a i32,
}

Now the S type has a lifetime, just as reference types do. Each value you
create of type S gets a fresh lifetime 'a, which becomes constrained by how
you use the value. The lifetime of any reference you store in r had better
enclose 'a, and 'a must outlast the lifetime of wherever you store the S.

Turning back to the preceding code, the expression S { r: &x } creates a
fresh S value with some lifetime 'a. When you store &x in the r field, you
constrain 'a to lie entirely within x’s lifetime.



The assignment s = S { ... } stores this S in a variable whose lifetime
extends to the end of the example, constraining 'a to outlast the lifetime of s.
And now Rust has arrived at the same contradictory constraints as before: 'a
must not outlive x, yet must live at least as long as s. No satisfactory lifetime
exists, and Rust rejects the code. Disaster averted!

How does a type with a lifetime parameter behave when placed inside some
other type?

struct D {
    s: S,  // not adequate
}

Rust is skeptical, just as it was when we tried placing a reference in S
without specifying its lifetime:

error: missing lifetime specifier
  |
8 |     s: S  // not adequate
  |        ^ expected named lifetime parameter
  |

We can’t leave off S’s lifetime parameter here: Rust needs to know how D’s
lifetime relates to that of the reference in its S in order to apply the same
checks to D that it does for S and plain references.

We could give s the 'static lifetime. This works:

struct D {
    s: S<'static>,
}

With this definition, the s field may only borrow values that live for the
entire execution of the program. That’s somewhat restrictive, but it does
mean that D can’t possibly borrow a local variable; there are no special
constraints on D’s lifetime.



The error message from Rust actually suggests another approach, which is
more general:

help: consider introducing a named lifetime parameter
  |
7 | struct D<'a> {
8 |     s: S<'a>,
  |

Here, we give D its own lifetime parameter and pass that to S:

struct D<'a> {
    s: S<'a>,
}

By taking a lifetime parameter 'a and using it in s’s type, we’ve allowed
Rust to relate D value’s lifetime to that of the reference its S holds.

We showed earlier how a function’s signature exposes what it does with the
references we pass it. Now we’ve shown something similar about types: a
type’s lifetime parameters always reveal whether it contains references with
interesting (that is, non-'static) lifetimes and what those lifetimes can be.

For example, suppose we have a parsing function that takes a slice of bytes
and returns a structure holding the results of the parse:

fn parse_record<'i>(input: &'i [u8]) -> Record<'i> { ... }

Without looking into the definition of the Record type at all, we can tell that,
if we receive a Record from parse_record, whatever references it contains
must point into the input buffer we passed in, and nowhere else (except
perhaps at 'static values).

In fact, this exposure of internal behavior is the reason Rust requires types
that contain references to take explicit lifetime parameters. There’s no reason
Rust couldn’t simply make up a distinct lifetime for each reference in the



struct and save you the trouble of writing them out. Early versions of Rust
actually behaved this way, but developers found it confusing: it is helpful to
know when one value borrows something from another value, especially
when working through errors.

It’s not just references and types like S that have lifetimes. Every type in Rust
has a lifetime, including i32 and String. Most are simply 'static, meaning
that values of those types can live for as long as you like; for example, a
Vec<i32> is self-contained and needn’t be dropped before any particular
variable goes out of scope. But a type like Vec<&'a i32> has a lifetime that
must be enclosed by 'a: it must be dropped while its referents are still alive.

Distinct Lifetime Parameters
Suppose you’ve defined a structure containing two references like this:

struct S<'a> {
    x: &'a i32,
    y: &'a i32,
}

Both references use the same lifetime 'a. This could be a problem if your
code wants to do something like this:

let x = 10;
let r;
{
    let y = 20;
    {
        let s = S { x: &x, y: &y };
        r = s.x;
    }
}
println!("{r}");

This code doesn’t create any dangling pointers. The reference to y stays in s,
which goes out of scope before y does. The reference to x ends up in r,



which doesn’t outlive x.

If you try to compile this, however, Rust will complain that y does not live
long enough, even though it clearly does. Why is Rust worried? If you work
through the code carefully, you can follow its reasoning:

Both fields of S are references with the same lifetime 'a, so Rust
must find a single lifetime that works for both s.x and s.y.

We assign r = s.x, requiring 'a to enclose r’s lifetime.

We initialized s.y with &y, requiring 'a to be no longer than y’s
lifetime.

These constraints are impossible to satisfy: no lifetime is shorter than y’s
scope but longer than r’s. Rust balks.

The problem arises because both references in S have the same lifetime 'a.
Changing the definition of S to let each reference have a distinct lifetime
fixes everything:

struct S<'a, 'b> {
    x: &'a i32,
    y: &'b i32,
}

With this definition, s.x and s.y have independent lifetimes. What we do
with s.x has no effect on what we store in s.y, so it’s easy to satisfy the
constraints now: 'a can simply be r’s lifetime, and 'b can be s’s. (y’s
lifetime would work too for 'b, but Rust tries to choose the smallest lifetime
that works.) Everything ends up fine.

Function signatures can have similar effects. Suppose we have a function like
this:

fn f<'a>(r: &'a i32, s: &'a i32) -> &'a i32 { r }  // perhaps too tight



Here, both reference parameters use the same lifetime 'a, which can
unnecessarily constrain the caller in the same way we’ve shown previously.
If this is a problem, you can let parameters’ lifetimes vary independently:

fn f<'a, 'b>(r: &'a i32, s: &'b i32) -> &'a i32 { r }  // looser

The downside to this is that adding lifetimes can make types and function
signatures harder to read. Your authors tend to try the simplest possible
definition first and then loosen restrictions until the code compiles. Since
Rust won’t permit the code to run unless it’s safe, simply waiting to be told
when there’s a problem is a perfectly acceptable tactic.

Omitting Lifetime Parameters
We’ve shown plenty of functions so far in this book that return references or
take them as parameters, but we’ve usually not needed to spell out which
lifetime is which. The lifetimes are there; Rust is just letting us omit them
when it’s reasonably obvious what they should be.

In the simplest cases, you may never need to write out lifetimes for your
parameters. Rust just assigns a distinct lifetime to each spot that needs one.
For example:

struct S<'a, 'b> {
    x: &'a i32,
    y: &'b i32,
} 
 
fn sum_r_xy(r: &i32, s: S) -> i32 {
    r + s.x + s.y
}

This function’s signature is shorthand for:

fn sum_r_xy<'a, 'b, 'c>(r: &'a i32, s: S<'b, 'c>) -> i32



If you do return references or other types with lifetime parameters, Rust still
tries to make the unambiguous cases easy. If there’s only a single lifetime that
appears among your function’s parameters, then Rust assumes any lifetimes in
your return value must be that one:

fn first_third(point: &[i32; 3]) -> (&i32, &i32) {
    (&point[0], &point[2])
}

With all the lifetimes written out, the equivalent would be:

fn first_third<'a>(point: &'a [i32; 3]) -> (&'a i32, &'a i32)

If there are multiple lifetimes among your parameters, then there’s no natural
reason to prefer one over the other for the return value, and Rust makes you
spell out what’s going on.

If your function is a method on some type and takes its self parameter by
reference, then that breaks the tie: Rust assumes that self’s lifetime is the
one to give everything in your return value. (A self parameter refers to the
value the method is being called on. It’s Rust’s equivalent of this in C ++,
Java, or JavaScript, or self in Python. We’ll cover methods in [Link to
Come].)

For example, you can write the following:

struct StringTable {
    elements: Vec<String>,
} 
 
impl StringTable {
    fn find_by_prefix(&self, prefix: &str) -> Option<&String> {
        for i in 0..self.elements.len() {
            if self.elements[i].starts_with(prefix) {
                return Some(&self.elements[i]);
            }
        }



        None
    }
}

The find_by_prefix method’s signature is shorthand for:

fn find_by_prefix<'a, 'b>(&'a self, prefix: &'b str) -> Option<&'a String>

Rust assumes that whatever you’re borrowing, you’re borrowing from self.

Again, these are just abbreviations, meant to be helpful without introducing
surprises. When they’re not what you want, you can always write the
lifetimes out explicitly.

Sharing Versus Mutation
So far, we’ve discussed how Rust ensures no reference will ever point to a
variable that has gone out of scope. But there are other ways to introduce
dangling pointers. Here’s an easy case:

let v = vec![4, 8, 19, 27, 34, 10];
let r = &v;
let aside = v;  // move vector to aside
r[0];           // bad: uses `v`, which is now uninitialized

The assignment to aside moves the vector, leaving v uninitialized, and turns
r into a dangling pointer, as shown in Figure 4-7.



Figure 4-7. A reference to a vector that has been moved away

Although v stays in scope for r’s entire lifetime, the problem here is that v’s
value gets moved elsewhere, leaving v uninitialized while r still refers to it.
Naturally, Rust catches the error:

error: cannot move out of `v` because it is borrowed
   |
9  |     let r = &v;
   |              - borrow of `v` occurs here
10 |     let aside = v;  // move vector to aside
   |         ^^^^^ move out of `v` occurs here

Throughout its lifetime, a shared reference makes its referent read-only: you
may not assign to the referent or move its value elsewhere. In this code, r’s



lifetime contains the attempt to move the vector, so Rust rejects the program.
If you change the program as shown here, there’s no problem:

let v = vec![4, 8, 19, 27, 34, 10];
{
    let r = &v;
    r[0];       // ok: vector is still there
}
let aside = v;

In this version, r goes out of scope earlier, the reference’s lifetime ends
before v is moved aside, and all is well.

Here’s a different way to wreak havoc. Suppose we have a handy function to
extend a vector with the elements of a slice:

fn extend(vec: &mut Vec<f64>, slice: &[f64]) {
    for elt in slice {
        vec.push(*elt);
    }
}

This is a less flexible (and much less optimized) version of the standard
library’s extend_from_slice method on vectors. We can use it to build up a
vector from slices of other vectors or arrays:

let mut wave = Vec::new();
let head = vec![0.0, 1.0];
let tail = [0.0, -1.0]; 
 
extend(&mut wave, &head);   // extend wave with another vector
extend(&mut wave, &tail);   // extend wave with an array 
 
assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0]);

So we’ve built up one period of a sine wave here. If we want to add another
undulation, can we append the vector to itself?



extend(&mut wave, &wave);
assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0, 0.0, 1.0, 0.0, -1.0]);

This may look fine on casual inspection. But remember that when we add an
element to a vector, if its buffer is full, it must allocate a new buffer with
more space. Suppose wave starts with space for four elements and so must
allocate a larger buffer when extend tries to add a fifth. Memory ends up
looking like Figure 4-8.

The extend function’s vec argument borrows wave (owned by the caller),
which has allocated itself a new buffer with space for eight elements. But
slice continues to point to the old four-element buffer, which has been
dropped.



Figure 4-8. A slice turned into a dangling pointer by a vector reallocation



This sort of problem isn’t unique to Rust: modifying collections while
pointing into them is delicate territory in many languages. In C ++, the
std::vector specification cautions you that “reallocation [of the vector’s
buffer] invalidates all the references, pointers, and iterators referring to the
elements in the sequence.” Similarly, Java says, of modifying a
java.util.Hashtable object:

If the Hashtable is structurally modified at any time after the iterator is
created, in any way except through the iterator’s own remove method,
the iterator will throw a ConcurrentModificationException.

What’s especially difficult about this sort of bug is that it doesn’t happen all
the time. In testing, your vector might always happen to have enough space,
the buffer might never be reallocated, and the problem might never come to
light.

Rust, however, reports the problem with our call to extend at compile time:

error: cannot borrow `wave` as immutable because it is also
       borrowed as mutable
  |
9 |     extend(&mut wave, &wave);
  |                 ----   ^^^^- mutable borrow ends here
  |                 |      |
  |                 |      immutable borrow occurs here
  |                 mutable borrow occurs here

In other words, we may borrow a mutable reference to the vector, and we
may borrow a shared reference to its elements, but those two references’
lifetimes must not overlap. In our case, both references’ lifetimes contain the
call to extend, so Rust rejects the code.

These errors both stem from violations of Rust’s rules for mutation and
sharing:

Shared access is read-only access.



Values borrowed by shared references are read-only. Across
the lifetime of a shared reference, neither its referent, nor
anything reachable from that referent, can be changed by
anything. There exist no live mutable references to anything
in that structure, its owner is held read-only, and so on. It’s
really frozen.

Mutable access is exclusive access.

A value borrowed by a mutable reference is reachable
exclusively via that reference. Across the lifetime of a
mutable reference, there is no other usable path to its
referent or to any value reachable from there. The only
references whose lifetimes may overlap with a mutable
reference are those you borrow from the mutable reference
itself.

Rust reported the extend example as a violation of the second rule: since
we’ve borrowed a mutable reference to wave, that mutable reference must be
the only way to reach the vector or its elements. The shared reference to the
slice is itself another way to reach the elements, violating the second rule.

But Rust could also have treated our bug as a violation of the first rule: since
we’ve borrowed a shared reference to wave’s elements, the elements and the
Vec itself are all read-only. You can’t borrow a mutable reference to a read-
only value.

Each kind of reference affects what we can do with the values along the
owning path to the referent, and the values reachable from the referent
(Figure 4-9).



Figure 4-9. Borrowing a reference affects what you can do with other values in the same
ownership tree

Note that in both cases, the path of ownership leading to the referent cannot
be changed for the reference’s lifetime. For a shared borrow, the path is
read-only; for a mutable borrow, it’s completely inaccessible. So there’s no
way for the program to do anything that will invalidate the reference.

Paring these principles down to the simplest possible examples:

let mut x = 10;
let r1 = &x;
let r2 = &x;     // ok: multiple shared borrows permitted
x += 10;         // error: cannot assign to `x` because it is borrowed



let m = &mut x;  // error: cannot borrow `x` as mutable because it is
                 // also borrowed as immutable
println!("{r1}, {r2}, {m}");  // the references are used here,
                              // so their lifetimes must last
                              // at least this long 
 
let mut y = 20;
let m1 = &mut y;
let m2 = &mut y;  // error: cannot borrow as mutable more than once
let z = y;        // error: cannot use `y` because it was mutably borrowed
println!("{m1}, {m2}, {z}");  // references are used here

It is OK to reborrow a shared reference from a shared reference:

let mut w = (107, 109);
let r = &w;
let r0 = &r.0;         // ok: reborrowing shared as shared
let m1 = &mut r.1;     // error: can't reborrow shared as mutable
println!("{r0}");      // r0 gets used here

You can reborrow from a mutable reference:

let mut v = (136, 139);
let m = &mut v;
let m0 = &mut m.0;      // ok: reborrowing mutable from mutable
*m0 = 137;
let r1 = &m.1;          // ok: reborrowing shared from mutable,
                        // and doesn't overlap with m0
v.1;                    // error: access through other paths still forbidden
println!("{r1}");       // r1 gets used here

These restrictions are pretty tight. Turning back to our attempted call
extend(&mut wave, &wave), there’s no quick and easy way to fix up the
code to work the way we  ’d like. And Rust applies these rules everywhere: if
we borrow, say, a shared reference to a key in a HashMap, we can’t borrow a
mutable reference to the HashMap until the shared reference’s lifetime ends.

But there’s good justification for this: designing collections to support
unrestricted, simultaneous iteration and modification is difficult and often
precludes simpler, more efficient implementations. Java’s Hashtable and



C ++’s vector don’t bother, and neither Python dictionaries nor JavaScript
objects define exactly how such access behaves. Other collection types in
JavaScript do, but require heavier implementations as a result. C ++’s
std::map promises that inserting new entries doesn’t invalidate pointers to
other entries in the map, but by making that promise, the standard precludes
more cache-efficient designs like Rust’s BTreeMap, which stores multiple
entries in each node of the tree.

Here’s another example of the kind of bug these rules catch. Consider the
following C ++ code, meant to manage a file descriptor. To keep things
simple, we’re only going to show a constructor and a copying assignment
operator, and we’re going to omit error handling:

struct File {
  int descriptor; 
 
  File(int d) : descriptor(d) {} 
 
  File& operator=(const File &rhs) {
    close(descriptor);
    descriptor = dup(rhs.descriptor);
    return *this;
  }
};

The assignment operator is simple enough, but fails badly in a situation like
this:

File f(open("foo.txt", ...));
...
f = f;

If we assign a File to itself, both rhs and *this are the same object, so
operator= closes the very file descriptor it’s about to pass to dup. We
destroy the same resource we were meant to copy.

In Rust, the analogous code would be:



struct File {
    descriptor: i32,
} 
 
fn new_file(d: i32) -> File {
    File { descriptor: d }
} 
 
fn clone_from(this: &mut File, rhs: &File) {
    close(this.descriptor);
    this.descriptor = dup(rhs.descriptor);
}

(This is not idiomatic Rust. There are excellent ways to give Rust types their
own constructor functions and methods, which we describe in [Link to
Come], but the preceding definitions work for this example.)

If we write the Rust code corresponding to the use of File, we get:

let mut f = new_file(open("foo.txt", ...));
...
clone_from(&mut f, &f);

Rust, of course, refuses to even compile this code:

error: cannot borrow `f` as immutable because it is also
       borrowed as mutable
   |
18 |     clone_from(&mut f, &f);
   |                     -   ^- mutable borrow ends here
   |                     |   |
   |                     |   immutable borrow occurs here
   |                     mutable borrow occurs here

This should look familiar. It turns out that two classic C ++ bugs—failure to
cope with self-assignment and using invalidated iterators—are the same
underlying kind of bug! In both cases, code assumes it is modifying one value
while consulting another, when in fact they’re both the same value. If you’ve
ever accidentally let the source and destination of a call to memcpy or



strcpy overlap in C or C ++, that’s yet another form the bug can take. By
requiring mutable access to be exclusive, Rust has fended off a wide class of
everyday mistakes.

The immiscibility of shared and mutable references really demonstrates its
value when writing concurrent code. A data race is possible only when some
value is both mutable and shared between threads—which is exactly what
Rust’s reference rules eliminate. A concurrent Rust program that avoids
unsafe code is free of data races by construction. We’ll cover this aspect in
more detail when we talk about concurrency in [Link to Come], but in
summary, concurrency is much easier to use in Rust than in most other
languages.



RUST’S SHARED REFERENCES VERSUS C’S POINTERS
TO CONST

On first inspection, Rust’s shared references seem to closely resemble C
and C ++’s pointers to const values. However, Rust’s rules for shared
references are much stricter. For example, consider the following C
code:

int x = 42;             // int variable, not const
const int *p = &x;      // pointer to const int
assert(*p == 42);
x++;                    // change variable directly
assert(*p == 43);       // “constant” referent's value has changed

The fact that p is a const int * means that you can’t modify its referent
via p itself: (*p)++ is forbidden. But you can also get at the referent
directly as x, which is not const, and change its value that way. The C
family’s const keyword has its uses, but constant it is not.

In Rust, a shared reference forbids all modifications to its referent, until
its lifetime ends:

let mut x = 42;         // non-const i32 variable
let p = &x;             // shared reference to i32
assert_eq!(*p, 42);
x += 1;                 // error: cannot assign to x because it is borrowed
assert_eq!(*p, 42);     // if you take out the assignment, this is true

To ensure a value is constant, we need to keep track of all possible paths
to that value and make sure that they either don’t permit modification or
cannot be used at all. C and C ++ pointers are too unrestricted for the
compiler to check this. Rust’s references are always tied to a particular
lifetime, making it feasible to check them at compile time.



Taking Arms Against a Sea of Objects
Since the rise of automatic memory management in the 1990s, the default
architecture of all programs has been the sea of objects, shown in Figure 4-
10.

This is what happens if you have garbage collection and you start writing a
program without designing anything. We’ve all built systems that look like
this.

This architecture has many advantages that don’t show up in the diagram:
initial progress is rapid, it’s easy to hack stuff in, and a few years down the
road, you’ll have no difficulty justifying a complete rewrite. (Cue AC/DC’s
“Highway to Hell.”)

Of course, there are disadvantages too. When everything depends on
everything else like this, it’s hard to test, evolve, or even think about any
component in isolation.



Figure 4-10. A sea of objects

One fascinating thing about Rust is that the ownership model puts a speed
bump on the highway to hell. It takes a bit of effort to make a cycle in Rust—
two values such that each one contains a reference pointing to the other. You
have to use a smart pointer type, such as Rc, and interior mutability,a topic
we haven’t even covered yet. Rust prefers for pointers, ownership, and data
flow to pass through the system in one direction, as shown in Figure 4-11.



Figure 4-11. A tree of values

The reason we bring this up right now is that it would be natural, after
reading this chapter, to want to run right out and create a “sea of structs,” all
tied together with Rc smart pointers, and re-create all the object-oriented
antipatterns you’re familiar with. This won’t work for you right away. Rust’s
ownership model will give you some trouble. The cure is to do some up-
front design and build a better program.

Rust is all about transferring the pain of understanding your program from the
future to the present. It works unreasonably well: not only can Rust force you
to understand why your program is thread-safe, it can even require some
amount of high-level architectural design.



Chapter 5. Expressions

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at jbleiel@oreilly.com.

LISP programmers know the value of everything, but the cost of nothing.
—Alan Perlis, epigram #55

In this chapter, we’ll cover the expressions of Rust, the building blocks that
make up the body of Rust functions and thus the majority of Rust code. We’ll
cover control flow, including if and match expressions, loops, and function
calls, which in Rust are all expressions, and we’ll examine how Rust’s
foundational operators work in isolation and in combination.

A few concepts that technically fall into this category, such as closures and
iterators, are deep enough that we will dedicate a whole chapter to them
later. For now, we aim to cover as much syntax as possible in a few pages.

An Expression Language
Rust visually resembles the C family of languages, but this is a bit of a ruse.
In C, there is a sharp distinction between expressions, bits of code that look



something like this:

5 * (fahr-32) / 9

and statements, which look more like this:

for (; begin != end; ++begin) {
    if (*begin == target)
        break;
}

Expressions have values. Statements don’t.

Rust is what is called an expression language. This means it follows an
older tradition, dating back to Lisp, where expressions do all the work.

In C, if and switch are statements. They don’t produce a value, and they
can’t be used in the middle of an expression. In Rust, if and match can
produce values. We already saw a match expression that produces a numeric
value in Chapter 1:

pixels[r * bounds.0 + c] =
    match escapes(Complex { re: point.0, im: point.1 }, 255) {
        None => 0,
        Some(count) => 255 - count as u8,
    };

An if expression can be used to initialize a variable:

let status =
    if cpu.temperature <= MAX_TEMP {
        HttpStatus::Ok
    } else {
        HttpStatus::ServerError  // server melted
    };

A match expression can be passed as an argument to a function or macro:



println!("Inside the vat, you see {}.",
    match vat.contents {
        Some(brain) => brain.desc(),
        None => "nothing of interest",
    });

This explains why Rust does not have C’s ternary operator (expr1 ? expr2
: expr3). In C, it is a handy expression-level analogue to the if statement. It
would be redundant in Rust: the if expression handles both cases.

Most of the control flow tools in C are statements. In Rust, they are all
expressions.

Operator Precedence and Associativity
Table 5-1 summarizes Rust expression syntax. We will discuss all of these
kinds of expressions in this chapter. Operators are grouped by precedence
and ordered from highest precedence to lowest. (Like most programming
languages, Rust has operator precedence to determine the order of
operations when an expression contains multiple adjacent operators. For
example, in limit < 2 * broom.size + 1, the . operator has the highest
precedence, so the field access happens first.)



Table 5-1. Expressions

Expression type Example

Array literal [1, 2, 3]

Repeat array literal [0; 50]

Tuple (6, "crullers")

Grouping (2 + 2)

Block { f(); g() }

Control flow expressions if ok { f() }

if ok { 1 } else { 0 }

if let Some(x) = f() { x } else { 0 }

match x { None => 0, _ => 1 }

for v in e { f(v); }

while ok { ok = f(); }

while let Some(x) = it.next() { f(x); }

loop { next_event(); }

break

continue

return 0

Macro invocation println!("ok")



Expression type Example

Path std::f64::consts::PI

Struct literal Point {x: 0, y: 0}

Tuple field access pair.0

Struct field access point.x

Method call point.translate(50, 50)

Function call stdin()

Index arr[0]

`Err`/`None` early return create_dir("tmp")?

Logical/bitwise NOT !ok

Negation -num

Dereference *ptr

Borrow &val

Type cast x as u32

Multiplication n * 2

Division n / 2

Remainder (modulus) n % 2

Addition n + 1

Subtraction n - 1



Expression type Example

Left shift n << 1

Right shift n >> 1

Bitwise AND n & 1

Bitwise exclusive OR n ^ 1

Bitwise OR n | 1

Less than n < 1

Less than or equal n <= 1

Greater than n > 1

Greater than or equal n >= 1

Equal n == 1

Not equal n != 1

Logical AND x.ok && y.ok

Logical OR x.ok || backup.ok

End-exclusive range start..stop

End-inclusive range start..=stop

Assignment x = val

Compound assignment x *= 1

x /= 1



Expression type Example

x %= 1

x += 1

x -= 1

x <<= 1

x >>= 1

x &= 1

x ^= 1

x |= 1

Closure |x, y| x + y

The arithmetic and bitwise operations and their associated compound
assignments can be overloaded with arbitrary behavior for user-defined
types, as discussed in [Link to Come].

All of the operators that can usefully be chained are left-associative. That is,
a chain of operations such as a - b - c is grouped as (a - b) - c, not a
- (b - c). The operators that can be chained in this way are all the ones
you might expect:

 
*   /   %   +   -   <<   >>   &   ^   |   &&   ||   as 

The comparison operators, the assignment operators, and the range operators
.. and ..= can’t be chained at all.



Blocks
Blocks are the most general kind of expression. A block produces a value
and can be used anywhere a value is needed:

let display_name = match post.author() {
    Some(author) => author.name(),
    None => {
        let network_info = post.get_network_metadata()?;
        let ip = network_info.client_address();
        ip.to_string()
    }
};

The code after Some(author) => is the simple expression author.name().
The code after None => is a block expression. It makes no difference to Rust.
The value of the block is the value of its last expression, ip.to_string().

Note that there is no semicolon after the ip.to_string() method call. Most
lines of Rust code do end with either a semicolon or curly braces, just like C
or Java. And if a block looks like C code, with semicolons in all the familiar
places, then it will run just like a C block, and its value will be (). As we
mentioned in Chapter 1, when you leave the semicolon off the last line of a
block, that makes the value of the block the value of its final expression,
rather than the usual ().

In some languages, particularly JavaScript, you’re allowed to omit
semicolons, and the language simply fills them in for you—a minor
convenience. This is different. In Rust, the semicolon actually means
something:

let msg = {
    // let-declaration: semicolon is always required
    let dandelion_control = puffball.open(); 
 
    // expression + semicolon: method is called, return value dropped
    dandelion_control.release_all_seeds(launch_codes); 
 



    // expression with no semicolon: method is called,
    // return value stored in `msg`
    dandelion_control.get_status()
};

This ability of blocks to contain declarations and also produce a value at the
end is a neat feature, one that quickly comes to feel natural. The one
drawback is that it leads to an odd error message when you leave out a
semicolon by accident:

...
if preferences.changed() {
    page.compute_size()  // oops, missing semicolon
}
...

If you made this mistake in a C or Java program, the compiler would simply
point out that you’re missing a semicolon. Here’s what Rust says:

error: mismatched types
22 |         page.compute_size()  // oops, missing semicolon
   |         ^^^^^^^^^^^^^^^^^^^- help: try adding a semicolon: `;`
   |         |
   |         expected (), found tuple
   |
   = note: expected unit type `()`
              found tuple `(u32, u32)`

With the semicolon missing, the block’s value would be whatever
page.compute_size() returns, but an if without an else must always
return (). Fortunately, Rust has seen this sort of thing before and suggests
adding the semicolon.

A block can also be labeled with a lifetime. This label can be used with
break to exit early with a value, similarly to return in a function. In the
following example, 'trim is a label for the overall block. break exits the
named block immediately, and it evalues to the given value:



let trimmed = 'trim: {
    if string.chars().last() != Some('\n') {
        break 'trim None;
    }
    string.pop();
    if string.chars().last() != Some('\r') {
        break 'trim Some(Newline::Unix);
    }
    string.pop();
    Some(Newline::Windows)
};

This is similar to a deeply nested if ... else chain, but can be more
readable for a series of side effects.

Declarations
In addition to expressions and semicolons, a block may contain any number
of declarations. The most common are let declarations, which declare local
variables:

let name: type = expr;

The type and initializer are optional. The semicolon is required. Like all
identifiers in Rust, variable names must start with a letter or underscore, and
can contain digits only after that first character. Rust has a broad definition of
“letter”: it includes Greek letters, accented Latin characters, and many more
symbols—anything that Unicode Standard Annex #31 declares suitable.
Emoji aren’t allowed.

A let declaration can declare a variable without initializing it. The variable
can then be initialized with a later assignment. This is occasionally useful,
because sometimes a variable should be initialized from the middle of some
sort of control flow construct:

let name;



if user.has_nickname() {
    name = user.nickname();
} else {
    name = generate_unique_name();
    user.register(&name);
}

Here there are two different ways the local variable name might be
initialized, but either way it will be initialized exactly once, so name does
not need to be declared mut.

It’s an error to use a variable before it’s initialized. (This is closely related
to the error of using a value after it’s been moved. Rust really wants you to
use values only while they exist!)

You may occasionally see code that seems to redeclare an existing variable,
like this:

for line in file.lines() {
    let line = line?;
    ...
}

The let declaration creates a new, second variable, of a different type. The
type of the first variable line is Result<String, io::Error>. The second
line is a String. Its definition supersedes the first’s for the rest of the
block. This is called shadowing and is very common in Rust programs. The
code is equivalent to:

for line_result in file.lines() {
    let line = line_result?;
    ...
}

In this book, we’ll stick to using a _result suffix in such situations so that
the variables have distinct names. In real-world code, however, shadowing
can be useful to prevent future code from incorrectly referring to the previous



value. Since that name now refers to the new value instead, it’s impossible to
do so by mistake.

A block can also contain item declarations. An item is simply any
declaration that could appear globally in a program or module, such as a fn,
struct, or use.

Later chapters will cover items in detail. For now, fn makes a sufficient
example. Any block may contain a fn:

use std::io;
use std::cmp::Ordering; 
 
fn show_files() -> io::Result<()> {
    let mut v = vec![];
    ... 
 
    fn cmp_by_timestamp_then_name(a: &FileInfo, b: &FileInfo) -> Ordering {
        a.timestamp.cmp(&b.timestamp)   // first, compare timestamps
            .reverse()                  // newest file first
            .then(a.path.cmp(&b.path))  // compare paths to break ties
    } 
 
    v.sort_by(cmp_by_timestamp_then_name);
    ...
}

When a fn is declared inside a block, its scope is the entire block—that is, it
can be used throughout the enclosing block. But a nested fn cannot access
local variables or arguments that happen to be in scope. For example, the
function cmp_by_timestamp_then_name could not use v directly. (Rust also
has closures, which do see into enclosing scopes. See [Link to Come].)

A block can even contain a whole module. This may seem a bit much—do
we really need to be able to nest every piece of the language inside every
other piece?—but programmers (and particularly programmers using
macros) have a way of finding uses for every scrap of orthogonality the
language provides.



if and match
The form of an if expression is familiar:

if condition1 { 
    block1
} else if condition2 { 
    block2
} else { 
    block_n
}

Each condition must be an expression of type bool; true to form, Rust does
not implicitly convert numbers or pointers to Boolean values.

Unlike C, parentheses are not required around conditions. In fact, rustc will
emit a warning if unnecessary parentheses are present. The curly braces,
however, are required.

The else if blocks, as well as the final else, are optional. An if
expression with no else block behaves exactly as though it had an empty
else block.

match expressions are something like the C switch statement, but more
flexible. A simple example:

match code {
    0 => println!("OK"),
    1 => println!("Wires Tangled"),
    2 => println!("User Asleep"),
    _ => println!("Unrecognized Error {code}"),
}

This is something a switch statement could do. Exactly one of the four arms
of this match expression will execute, depending on the value of code. The
wildcard pattern _ matches everything. This is like the default: case in a
switch statement, except that it must come last; placing a _ pattern before



other patterns means that it will have precedence over them. Those patterns
will never match anything (and the compiler will warn you about it).

The compiler can optimize this kind of match using a jump table, just like a
switch statement in C ++. A similar optimization is applied when each arm
of a match produces a constant value. In that case, the compiler builds an
array of those values, and the match is compiled into an array access. Apart
from a bounds check, there is no branching at all in the compiled code.

The versatility of match stems from the variety of supported patterns that
can be used to the left of => in each arm. Above, each pattern is simply a
constant integer. We’ve also shown match expressions that distinguish the
two kinds of Option value:

match params.get("name") {
    Some(name) => println!("Hello, {name}!"),
    None => println!("Greetings, stranger."),
}

This is only a hint of what patterns can do. A pattern can match a range of
values. It can unpack tuples. It can match against individual fields of structs.
It can chase references, borrow parts of a value, and more. Rust’s patterns
are a mini-language of their own. We’ll dedicate several pages to them in
[Link to Come].

The general form of a match expression is:

match value { 
    pattern => expr, 
    ... 
}

The comma after an arm may be dropped if the expr is a block.

Rust checks the given value against each pattern in turn, starting with the
first. When a pattern matches, the corresponding expr is evaluated, and the
match expression is complete; no further patterns are checked. At least one



of the patterns must match. Rust prohibits match expressions that do not
cover all possible values:

let score = match card.rank {
    Jack => 10,
    Queen => 10,
    Ace => 11,
};  // error: nonexhaustive patterns

All blocks of an if expression must produce values of the same type:

let suggested_pet =
    if with_wings { Pet::Buzzard } else { Pet::Hyena };  // ok 
 
let favorite_number =
    if user.is_hobbit() { "eleventy-one" } else { 9 };  // error 
 
let best_sports_team =
    if is_hockey_season() { "Predators" };  // error

(The last example is an error because in July, the result would be ().)

Similarly, all arms of a match expression must have the same type:

let suggested_pet =
    match favorites.element {
        Fire => Pet::RedPanda,
        Air => Pet::Buffalo,
        Water => Pet::Orca,
        _ => None,  // error: incompatible types
    };

if let
There is one more if form, the if let expression:

if let pattern = expr { 



    block1
} else { 
    block2
}

The given expr either matches the pattern, in which case block1 runs, or
doesn’t match, and block2 runs. Sometimes this is a nice way to get data out
of an Option or Result:

if let Some(cookie) = request.session_cookie {
    return restore_session(cookie);
} 
 
if let Err(err) = show_cheesy_anti_robot_task() {
    log_robot_attempt(err);
    politely_accuse_user_of_being_a_robot();
} else {
    session.mark_as_human();
}

It’s never strictly necessary to use if let, because match can do everything
if let can do. An if let expression is shorthand for a match with just one
pattern:

match expr { 
    pattern => { block1 } 
    _ => { block2 }
}

let else
When there is only one acceptable pattern, Rust provides a convenient
shorthand, the let ... else expression:

let pattern: type = expr else { 
    divergent block
}



For instance, application code often needs to open a particular file in order
to work, and exit otherwise. With let ... else, this can be written
concisely as:

let Ok(config_file) = File::open(&config_path) else {
    panic!("Unable to open config file {}.", config_path.display());
};
let config = parse_config(config_file);

The else expression must always be something that ends the flow of
execution, such as a panic, a return, or an infinite loop. (This is called
“diverging”, and is discussed further below.) let ... else is convenient
for many common control flow patterns, but like if let, it is always
possible to do the same thing via match:

let name = match expr { 
    pattern => { convergent block } 
    _ => { divergent block }
}

Loops
There are four looping expressions:

while condition { 
    block
} 
 
while let pattern = expr { 
    block
} 
 
loop { 
    block
} 
 



 
for pattern in iterable { 
    block
}

Loops are expressions in Rust, but the value of a while or for loop is
always (), so their value isn’t very useful. A loop expression can produce a
value via the break keyword.

A while loop behaves exactly like the C equivalent, except that, again, the
condition must be of the exact type bool.

The while let loop is analogous to if let. At the beginning of each loop
iteration, the value of expr either matches the given pattern, in which case
the block runs, or doesn’t, in which case the loop exits.

Use loop to write infinite loops. It executes the block repeatedly forever (or
until a break or return is reached or the thread panics).

A for loop evaluates the iterable expression and then evaluates the block
once for each value in the resulting iterator. Many types can be iterated over,
including all the standard collections like Vec and HashMap. The standard C
for loop:

for (int i = 0; i < 20; i++) {
    printf("%d\n", i);
}

is written like this in Rust:

for i in 0..20 {
    println!("{i}");
}

As in C, the last number printed is 19.

The .. operator produces a range, a simple struct with two fields: start
and end. 0..20 is the same as std::ops::Range { start: 0, end: 20



}. Ranges can be used with for loops because Range is an iterable type: it
implements the std::iter::IntoIterator trait, which we’ll discuss in
[Link to Come]. The standard collections are all iterable, as are arrays and
slices.

In keeping with Rust’s move semantics, a for loop over a value consumes
the value:

let strings: Vec<String> = error_messages();
for s in strings {          // each String is moved into s here...
    println!("{s}");
}                           // ...and dropped here
println!("{} error(s)", strings.len());  // error: use of moved value

This can be inconvenient. The easy remedy is to loop over a reference to the
collection instead. The loop variable, then, will be a reference to each item
in the collection:

for s in &strings {         // `strings` is only borrowed here...
    println!("{s}");
}                           // ...nothing is moved or deallocated
println!("{} error(s)", strings.len());  // ok

Here the type of &strings is &Vec<String>, and the type of s is &String.

Iterating over a mut reference provides a mut reference to each element:

let mut strings = error_messages();
for s in &mut strings {     // the type of s is &mut String
    s.push('\n');           // add a newline to each string
}

[Link to Come] covers for loops in greater detail and shows many other
ways to use iterators.

break and continue Expressions



A break expression exits an enclosing loop. (In Rust, break works only in
loops and labeled blocks. It is not necessary in match expressions, which are
unlike switch statements in this regard.)

Within the body of a loop, you can give break an expression, whose value
becomes that of the loop:

// Each call to `next_line` returns either `Some(line)`, where
// `line` is a line of input, or `None`, if we've reached the end of
// the input. Return the first line that starts with "answer: ".
// Otherwise, return "answer: nothing".
let answer = loop {
    if let Some(line) = next_line() {
        if line.starts_with("answer: ") {
            break line;
        }
    } else {
        break "answer: nothing";
    }
};

A break expression can only take a value in a loop (or a labeled block),
unlike for and while loops, where break is only used to end the loop early.
All the break expressions within a loop must produce values with the same
type, which becomes the type of the loop itself.

A continue expression jumps to the next loop iteration:

// Read some data, one line at a time.
for line in input_lines {
    let trimmed = trim_comments_and_whitespace(line);
    if trimmed.is_empty() {
        // Jump back to the top of the loop and
        // move on to the next line of input.
        continue;
    }
    ...
}



In a for loop, continue advances to the next value in the collection. If there
are no more values, the loop exits. Similarly, in a while loop, continue
rechecks the loop condition. If it’s now false, the loop exits.

A loop can be labeled with a lifetime, just like a block. In the following
example, 'search: is a label for the outer for loop. Thus, break 'search
exits that loop, not the inner loop:

'search:
for room in apartment {
    for spot in room.hiding_spots() {
        if spot.contains(keys) {
            println!("Your keys are {spot} in the {room}.");
            break 'search;
        }
    }
}

A break can have both a label and a value expression:

// Find the square root of the first perfect square
// in the series.
let sqrt = 'outer: loop {
    let n = next_number();
    for i in 1.. {
        let square = i * i;
        if square == n {
            // Found a square root.
            break 'outer i;
        }
        if square > n {
            // `n` isn't a perfect square, try the next
            break;
        }
    }
};

Labels can also be used with continue.



return Expressions
A return expression exits the current function, returning a value to the
caller.

return without a value is shorthand for return ():

fn f() {     // return type omitted: defaults to ()
    return;  // return value omitted: defaults to ()
}

Functions don’t have to have an explicit return expression. The body of a
function works like a block expression: if the last expression isn’t followed
by a semicolon, its value is the function’s return value. In fact, this is the
preferred way to supply a function’s return value in Rust.

But this doesn’t mean that return is useless, or merely a concession to users
who aren’t experienced with expression languages. Like a break expression,
return can abandon work in progress. For example, in Chapter 1, we used
the ? operator to check for errors after calling a function that can fail:

let output = File::create(filename)?;

We explained that this is shorthand for a match expression:

let output = match File::create(filename) {
    Ok(f) => f,
    Err(err) => return Err(err),
};

This code starts by calling File::create(filename). If that returns Ok(f),
then the whole match expression evaluates to f, so f is stored in output,
and we continue with the next line of code following the match.

Otherwise, we’ll match Err(err) and hit the return expression. When that
happens, it doesn’t matter that we’re in the middle of evaluating a match



expression to determine the value of the variable output. We abandon all of
that and exit the enclosing function, returning whatever error we got from
File::create().

We’ll cover the ? operator more completely in [Link to Come].

Why Rust Has loop
Several pieces of the Rust compiler analyze the flow of control through your
program:

Rust checks that every path through a function returns a value of the
expected return type. To do this correctly, it needs to know whether
it’s possible to reach the end of the function.

Rust checks that local variables are never used uninitialized. This
entails checking every path through a function to make sure there’s
no way to reach a place where a variable is used without having
already passed through code that initializes it.

Rust warns about unreachable code. Code is unreachable if no path
through the function reaches it.

These are called flow-sensitive analyses. They are nothing new; Java has had
a “definite assignment” analysis, similar to Rust’s, for years.

When enforcing this sort of rule, a language must strike a balance between
simplicity, which makes it easier for programmers to figure out what the
compiler is talking about sometimes, and cleverness, which can help
eliminate false warnings and cases where the compiler rejects a perfectly
safe program. Rust went for simplicity. Its flow-sensitive analyses do not
examine loop conditions at all, instead simply assuming that any condition in
a program can be either true or false.

This causes Rust to reject some safe programs:

fn wait_for_process(process: &mut Process) -> i32 {



    while true {
        if process.wait() {
            return process.exit_code();
        }
    }
}  // error: mismatched types: expected i32, found ()

The error here is bogus. This function only exits via the return statement, so
the fact that the while loop doesn’t produce an i32 is irrelevant.

The loop expression is offered as a “say-what-you-mean” solution to this
problem.

Rust’s type system is affected by control flow, too. Earlier we said that all
branches of an if expression must have the same type. But it would be silly
to enforce this rule on blocks that end with a break or return expression, an
infinite loop, or a call to panic!() or std::process::exit(). What all
those expressions have in common is that they never finish in the usual way,
producing a value. A break or return exits the current block abruptly, a
loop without a break never finishes at all, and so on.

So in Rust, these expressions don’t have a normal type. Expressions that
don’t finish normally are assigned the special type !, and they’re exempt
from the rules about types having to match. You can see ! in the function
signature of std::process::exit():

fn exit(code: i32) -> !

The ! means that exit() never returns. It’s a divergent function.

You can write divergent functions of your own using the same syntax, and this
is perfectly natural in some cases:

fn serve_forever(socket: ServerSocket, handler: ServerHandler) -> ! {
    socket.listen();
    loop {
        let s = socket.accept();
        handler.handle(s);



    }
}

Of course, Rust then considers it an error if the function can return normally.

With these building blocks of large-scale control flow in place, we can move
on to the finer-grained expressions typically used within that flow, like
function calls and arithmetic operators.

Function and Method Calls
The syntax for calling functions and methods is the same in Rust as in many
other languages:

let x = gcd(1302, 462);  // function call 
 
let room = player.location();  // method call

In the second example here, player is a variable of the made-up type
Player, which has a made-up .location() method. (We’ll show how to
define your own methods when we start talking about user-defined types in
[Link to Come].)

Rust usually makes a sharp distinction between references and the values
they refer to. If you pass a &i32 to a function that expects an i32, that’s a type
error. You’ll notice that the . operator relaxes those rules a bit. In the method
call player.location(), player might be a Player, a reference of type
&Player, or a smart pointer of type Box<Player> or Rc<Player>. The
.location() method might take the player either by value or by reference.
The same .location() syntax works in all cases, because Rust’s . operator
automatically dereferences player or borrows a reference to it as needed.

A third syntax is used for calling type-associated functions, like
Vec::new():



let mut numbers = Vec::new();  // type-associated function call

These are similar to static methods in object-oriented languages: ordinary
methods are called on values (like my_vec.len()), and type-associated
functions are called on types (like Vec::new()).

Naturally, method calls can be chained:

// From the Actix-based web server in Chapter 2:
server
    .bind("127.0.0.1:3000").expect("error binding server to address")
    .run().expect("error running server");

One quirk of Rust syntax is that in a function call or method call, the usual
syntax for generic types, Vec<T>, does not work:

return Vec<i32>::with_capacity(1000);  // error: something about chained comparisons 
 
let ramp = (0..n).collect<Vec<i32>>();  // same error

The problem is that in expressions, < is the less-than operator. The Rust
compiler helpfully suggests writing ::<T> instead of <T> in this case, and
that solves the problem:

return Vec::<i32>::with_capacity(1000);  // ok, using ::< 
 
let ramp = (0..n).collect::<Vec<i32>>();  // ok, using ::<

The symbol ::<...> is affectionately known in the Rust community as the
turbofish.

Alternatively, it is often possible to drop the type parameters and let Rust
infer them:

return Vec::with_capacity(10);  // ok, if the fn return type is Vec<i32> 



 
let ramp: Vec<i32> = (0..n).collect();  // ok, variable's type is given

It’s considered good style to omit the types whenever they can be inferred.

Fields and Elements
The fields of a struct are accessed using familiar syntax. Tuples are the same
except that their fields have numbers rather than names:

game.black_pawns   // struct field
coords.1           // tuple field

If the value to the left of the dot is a reference or smart pointer type, it is
automatically dereferenced, just as for method calls.

Square brackets access the elements of an array, slice, or vector:

pieces[i]          // array element

The value to the left of the brackets is automatically dereferenced.

Expressions like these three are called lvalues, because they can appear on
the left side of an assignment:

game.black_pawns = 0x00ff0000_00000000_u64;
coords.1 = 0;
pieces[2] = Some(Piece::new(Black, Knight, coords));

Of course, this is permitted only if game, coords, and pieces are declared
as mut variables.

Extracting a slice from an array or vector is straightforward:

let second_half = &game_moves[midpoint..end];



Here game_moves may be either an array, a slice, or a vector; the result,
regardless, is a borrowed slice of length end - midpoint. game_moves is
considered borrowed for the lifetime of second_half.

The .. operator allows either operand to be omitted; it produces up to four
different types of object depending on which operands are present:

..      // RangeFull
a..     // RangeFrom { start: a }
..b     // RangeTo { end: b }
a..b    // Range { start: a, end: b }

The latter two forms are end-exclusive (or half-open): the end value is not
included in the range represented. For example, the range 0..3 includes the
numbers 0, 1, and 2.

The ..= operator produces end-inclusive (or closed) ranges, which do
include the end value:

..=b     // RangeToInclusive { end: b }
a..=b    // RangeInclusive::new(a, b)

For example, the range 0..=3 includes the numbers 0, 1, 2, and 3.

Only ranges that include a start value are iterable, since a loop must have
somewhere to start. But in array slicing, all six forms are useful. If the start
or end of the range is omitted, it defaults to the start or end of the data being
sliced.

So an implementation of quicksort, the classic divide-and-conquer sorting
algorithm, might look, in part, like this:

fn quicksort<T: Ord>(slice: &mut [T]) {
    if slice.len() <= 1 {
        return;  // Nothing to sort.
    } 
 



    // Partition the slice into two parts, front and back.
    let pivot_index = partition(slice); 
 
    // Recursively sort the front half of `slice`.
    quicksort(&mut slice[.. pivot_index]); 
 
    // And the back half.
    quicksort(&mut slice[pivot_index + 1 ..]);
}

Reference Operators
The address-of operators, & and &mut, are covered in Chapter 4.

The unary * operator is used to access the value pointed to by a reference.
As we’ve seen, Rust automatically follows references when you use the .
operator to access a field or method, so the * operator is necessary only
when we want to read or write the entire value that the reference points to.

For example, sometimes an iterator produces references, but the program
needs the underlying values:

let padovan: Vec<u64> = compute_padovan_sequence(n);
for elem in &padovan {
    draw_triangle(turtle, *elem);
}

In this example, the type of elem is &u64, so *elem is a u64.

Arithmetic, Bitwise, Comparison, and Logical
Operators
Rust’s binary operators are like those in many other languages. To save time,
we assume familiarity with one of those languages, and focus on the few
points where Rust departs from tradition.

Rust has the usual arithmetic operators, +, -, *, /, and %. As mentioned in
Chapter 2, integer overflow is detected, and causes a panic, in debug builds.



The standard library provides methods like a.wrapping_add(b) for
unchecked arithmetic.

Integer division rounds toward zero, and dividing an integer by zero triggers
a panic even in release builds. Integers have a method a.checked_div(b)
that returns an Option (None if b is zero) and never panics.

Unary - negates a number. It is supported for all the numeric types except
unsigned integers. There is no unary + operator.

println!("{}", -100);     // -100
println!("{}", -100u32);  // error: can't apply unary `-` to type `u32`
println!("{}", +100);     // error: leading `+` is not supported

As in C, a % b computes the signed remainder, or modulus, of division
rounding toward zero. The result has the same sign as the lefthand operand.
Note that % can be used on floating-point numbers as well as integers:

let x = 1234.567 % 10.0;  // approximately 4.567

Rust also inherits C’s bitwise integer operators, &, |, ^, <<, and >>.
However, Rust uses ! instead of ~ for bitwise NOT:

let hi: u8 = 0xe0;
let lo = !hi;  // 0x1f

This means that !n can’t be used on an integer n to mean “n is zero.” For that,
write n == 0.

Bit shifting is always sign-extending on signed integer types and zero-
extending on unsigned integer types. Since Rust has unsigned integers, it does
not need an unsigned shift operator, like Java’s >>> operator.

Bitwise operations have higher precedence than comparisons, unlike C, so if
you write x & BIT != 0, that means (x & BIT) != 0, as you probably



intended. This is much more useful than C’s interpretation, x & (BIT != 0),
which tests the wrong bit!

Rust’s comparison operators are ==, !=, <, <=, >, and >=. The two values
being compared must have the same type.

Rust also has the two short-circuiting logical operators && and ||. Both
operands must have the exact type bool.

Assignment
The = operator can be used to assign to mut variables and their fields or
elements. But assignment is not as common in Rust as in other languages,
since variables are immutable by default.

As described in Chapter 3, if the value has a non-Copy type, assignment
moves it into the destination. Ownership of the value is transferred from the
source to the destination. The destination’s prior value, if any, is dropped.

Compound assignment is supported:

total += item.price;

This is equivalent to total = total + item.price;. Other operators are
supported too: -=, *=, and so forth. The full list is given in Table 5-1, earlier
in this chapter.

Unlike C, Rust doesn’t support chaining assignment: you can’t write a = b =
3 to assign the value 3 to both a and b. Assignment is rare enough in Rust that
you won’t miss this shorthand.

Rust does not have C’s increment and decrement operators ++ and --.

Type Casts



Converting a value from one type to another usually requires an explicit cast
in Rust. Casts use the as keyword:

let x = 17;              // x is type i32
let index = x as usize;  // convert to usize

Several kinds of casts are permitted:

Numbers may be cast from any of the built-in numeric types to any
other.

Casting an integer to another integer type is always well-defined.
Converting to a narrower type results in truncation. A signed integer
cast to a wider type is sign-extended, an unsigned integer is zero-
extended, and so on. In short, there are no surprises.

Converting from a floating-point type to an integer type rounds
toward zero: the value of -1.99 as i32 is -1. If the value is too
large to fit in the integer type, the cast produces the closest value
that the integer type can represent: the value of 1e6 as u8 is 255.

Values of type bool or char, or of a C-like enum type, may be cast
to any integer type. (We’ll cover enums in [Link to Come].)

Casting in the other direction is not allowed, as bool, char, and
enum types all have restrictions on their values that would have to
be enforced with run-time checks. For example, casting a u16 to
type char is banned because some u16 values, like 0xd800,
correspond to Unicode surrogate code points and therefore would
not make valid char values. There is a standard method,
std::char::from_u32(), which performs the run-time check and
returns an Option<char>; but more to the point, the need for this
kind of conversion has grown rare. We typically convert whole
strings or streams at once, and algorithms on Unicode text are often
nontrivial and best left to libraries.



As an exception, a u8 may be cast to type char, since all integers
from 0 to 255 are valid Unicode code points for char to hold.

Some casts involving unsafe pointer types are also allowed. See
[Link to Come].

We said that a conversion usually requires a cast. A few conversions
involving reference types are so straightforward that the language performs
them even without a cast. One trivial example is converting a mut reference
to a non-mut reference.

Several more significant automatic conversions can happen, though:

Values of type &String auto-convert to type &str without a cast.

Values of type &Vec<i32> auto-convert to &[i32].

Values of type &Box<Chessboard> auto-convert to &Chessboard.

These are called deref coercions, because they apply to types that implement
the Deref built-in trait. The purpose of Deref coercion is to make smart
pointer types, like Box, behave as much like the underlying value as possible.
Using a Box<Chessboard> is mostly just like using a plain Chessboard,
thanks to Deref.

User-defined types can implement the Deref trait, too. When you need to
write your own smart pointer type, see [Link to Come].

Closures
Rust has closures, lightweight function-like values. A closure usually
consists of an argument list, given between vertical bars, followed by an
expression:

let is_even = |x| x % 2 == 0;



Rust infers the argument types and return type. You can also write them out
explicitly, as you would for a function. If you do specify a return type, then
the body of the closure must be a block, for the sake of syntactic sanity:

let is_even = |x: u64| -> bool x % 2 == 0;  // error 
 
let is_even = |x: u64| -> bool { x % 2 == 0 };  // ok

Calling a closure uses the same syntax as calling a function:

assert_eq!(is_even(14), true);

Closures are one of Rust’s most delightful features, and there is a great deal
more to be said about them. We shall say it in [Link to Come].

Onward
Expressions are what we think of as “running code.” They’re the part of a
Rust program that compiles to machine instructions. Yet they are a small
fraction of the whole language.

The same is true in most programming languages. The first job of a program
is to run, but that’s not its only job. Programs have to communicate. They
have to be testable. They have to stay organized and flexible so that they can
continue to evolve. They have to interoperate with code and services built by
other teams. And even just to run, programs in a statically typed language like
Rust need some more tools for organizing data than just tuples and arrays.

Coming up, we’ll spend several chapters talking about features in this area:
modules and crates, which give your program structure, and then structs and
enums, which do the same for your data.

First, we’ll dedicate a few pages to the important topic of what to do when
things go wrong.



About the Authors
Jim Blandy has been programming since 1981 and writing free software
since 1990. He has been the maintainer of GNU Emacs and GNU Guile, and
a maintainer of GDB, the GNU Debugger. He is one of the original designers
of the Subversion version control system. Jim now works on Firefox’s
graphics and rendering for Mozilla.

Jason Orendorff works on undisclosed Rust projects at GitHub. He
previously worked on the SpiderMonkey JavaScript engine at Mozilla. He is
interested in grammar, baking, time travel, and helping people learn about
complicated topics.

Leonora Tindall is a type system enthusiast and software engineer who uses
Rust, Elixir, and other advanced languages to build robust and resilient
systems software in high-impact areas like healthcare and data ownership.
She works on a variety of open source projects, from genetic algorithms that
evolve programs in strange languages to the Rust core libraries and crate
ecosystem, and enjoys the experience of contributing to supportive and
diverse community projects. In her free time, Leonora builds electronics for
audio synthesis and is an avid radio hobbyist. Her love of hardware extends
to her software engineering practice as well. She has built applications
software for LoRa radios in Rust and Python and uses software and DIY
hardware to create experimental electronic music on a Eurorack synthesizer.


	Brief Table of Contents (Not Yet Final)
	1. A Tour of Rust
	rustup and Cargo
	Rust Functions
	Writing and Running Unit Tests
	Handling Command-Line Arguments
	Serving Pages to the Web
	Concurrency
	What the Mandelbrot Set Actually Is
	Parsing Pair Command-Line Arguments
	Mapping from Pixels to Complex Numbers
	Plotting the Set
	Writing Image Files
	A Concurrent Mandelbrot Program
	Safety Is Invisible


	2. Fundamental Types
	Numeric Types
	Integer Types
	Handling Integer Overflow
	Floating-Point Types

	The bool Type
	Tuples
	Pointer Types
	Arrays, Vectors, and Slices
	Arrays
	Vectors
	Slices

	String and Character Types
	String and Character Literals
	Characters and Strings in Memory
	String
	Using Strings
	Other String-Like Types

	Type Aliases
	Beyond the Basics

	3. Ownership and Moves
	Ownership
	Moves
	More Operations That Move
	Moves and Control Flow
	Moves and Indexed Content

	Copy Types: The Exception to Moves
	Rc and Arc: Shared Ownership

	4. References
	References to Values
	Working with References
	Rust References Versus C++ References
	Assigning References
	References to References
	Comparing References
	References Are Never Null
	Borrowing References to Arbitrary Expressions
	References to Slices and Trait Objects

	Reference Safety
	Borrowing a Local Variable
	Receiving References as Function Arguments
	Passing References to Functions
	Returning References
	Structs Containing References
	Distinct Lifetime Parameters
	Omitting Lifetime Parameters

	Sharing Versus Mutation
	Taking Arms Against a Sea of Objects

	5. Expressions
	An Expression Language
	Operator Precedence and Associativity
	Blocks
	Declarations
	if and match
	if let
	let else
	Loops
	break and continue Expressions
	return Expressions
	Why Rust Has loop
	Function and Method Calls
	Fields and Elements
	Reference Operators
	Arithmetic, Bitwise, Comparison, and Logical Operators
	Assignment
	Type Casts
	Closures
	Onward


