

Python Testing with pytest,
Second Edition

Simple, Rapid, Effective, and Scalable

by Brian Okken

Version: P1.0 (February 2022)

Copyright © 2022 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to https://pragprog.com/book/bopytest2, the
book's homepage.

Thanks for your continued support,

Andy Hunt
The Pragmatic Programmers

The team that produced this book includes: Dave Rankin (CEO), Janet Furlow (COO),
Tammy Coron (Managing Editor), Katharine Dvorak (Development Editor),
Karen Galle (Copy Editor), Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout),
Andy Hunt and Dave Thomas (Founders)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/bopytest2
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Acknowledgments

 Preface
Why pytest?
Learn pytest While Testing a Sample Application
How This Book Is Organized
What You Need to Know
Why a Second Edition?
Example Code and Online Resources

Part I. Primary Power

1. Getting Started with pytest
Installing pytest
Running pytest
Review
Exercises
What’s Next

2. Writing Test Functions
Installing the Sample Application
Writing Knowledge-Building Tests

Using assert Statements
Failing with pytest.fail() and Exceptions
Writing Assertion Helper Functions
Testing for Expected Exceptions
Structuring Test Functions
Grouping Tests with Classes
Running a Subset of Tests
Review
Exercises
What’s Next

3. pytest Fixtures
Getting Started with Fixtures
Using Fixtures for Setup and Teardown
Tracing Fixture Execution with –setup-show
Specifying Fixture Scope
Sharing Fixtures through conftest.py
Finding Where Fixtures Are Defined
Using Multiple Fixture Levels
Using Multiple Fixtures per Test or Fixture
Deciding Fixture Scope Dynamically
Using autouse for Fixtures That Always Get Used
Renaming Fixtures
Review
Exercises
What’s Next

4. Builtin Fixtures

Using tmp_path and tmp_path_factory
Using capsys
Using monkeypatch
Remaining Builtin Fixtures
Review
Exercises
What’s Next

5. Parametrization
Testing Without Parametrize
Parametrizing Functions
Parametrizing Fixtures
Parametrizing with pytest_generate_tests
Using Keywords to Select Test Cases
Review
Exercises
What’s Next

6. Markers
Using Builtin Markers
Skipping Tests with pytest.mark.skip
Skipping Tests Conditionally with pytest.mark.skipif
Expecting Tests to Fail with pytest.mark.xfail
Selecting Tests with Custom Markers
Marking Files, Classes, and Parameters
Using “and,” “or,” “not,” and Parentheses with Markers
Being Strict with Markers
Combining Markers with Fixtures

Listing Markers
Review
Exercises
What’s Next

Part II. Working with Projects

7. Strategy
Determining Test Scope
Considering Software Architecture
Evaluating the Features to Test
Creating Test Cases
Writing a Test Strategy
Review
Exercises
What’s Next

8. Configuration Files
Understanding pytest Configuration Files
Saving Settings and Flags in pytest.ini
Using tox.ini, pyproject.toml, or setup.cfg in place of pytest.ini
Determining a Root Directory and Config File
Sharing Local Fixtures and Hook Functions with conftest.py
Avoiding Test File Name Collision
Review
Exercises
What’s Next

9. Coverage
Using coverage.py with pytest-cov
Generating HTML Reports
Excluding Code from Coverage
Running Coverage on Tests
Running Coverage on a Directory
Running Coverage on a Single File
Review
Exercises
What’s Next

10. Mocking
Isolating the Command-Line Interface
Testing with Typer
Mocking an Attribute
Mocking a Class and Methods
Keeping Mock and Implementation in Sync with Autospec
Making Sure Functions Are Called Correctly
Creating Error Conditions
Testing at Multiple Layers to Avoid Mocking
Using Plugins to Assist Mocking
Review
Exercises
What’s Next

11. tox and Continuous Integration
What Is Continuous Integration?
Introducing tox

Setting Up tox
Running tox
Testing Multiple Python Versions
Running tox Environments in Parallel
Adding a Coverage Report to tox
Specifying a Minimum Coverage Level
Passing pytest Parameters Through tox
Running tox with GitHub Actions
Review
Exercises
What’s Next

12. Testing Scripts and Applications
Testing a Simple Python Script
Testing an Importable Python Script
Separating Code into src and tests Directories
Defining the Python Search Path
Testing requirements.txt-Based Applications
Review
Exercises
What’s Next

13. Debugging Test Failures
Adding a New Feature to the Cards Project
Installing Cards in Editable Mode
Debugging with pytest Flags
Re-Running Failed Tests
Debugging with pdb

Combining pdb and tox
Review
Exercises
What’s Next

Part III. Booster Rockets

14. Third-Party Plugins
Finding Plugins
Installing Plugins
Exploring the Diversity of pytest Plugins
Running Tests in Parallel
Randomizing Test Order
Review
Exercises
What’s Next

15. Building Plugins
Starting with a Cool Idea
Building a Local conftest Plugin
Creating an Installable Plugin
Testing Plugins with pytester
Testing Multiple Python and pytest Versions with tox
Publishing Plugins
Review
Exercises
What’s Next

16. Advanced Parametrization
Using Complex Values
Creating Custom Identifiers
Parametrizing with Dynamic Values
Using Multiple Parameters
Using Indirect Parametrization
Review
Exercises
What’s Next

A1. Virtual Environments

A2. pip

Copyright © 2022, The Pragmatic Bookshelf.

Early praise for Python Testing with
pytest, Second Edition
The knowledge and experience Brian brings to these pages has made this
the definitive pytest resource for me. New or experienced, this book will be
your one-stop shop for all of your real-world pytest needs.

→ Julian Sequeira
Cofounder of PyBites

If you are into coding books and Python, this is a great and fun way to learn
and acquire testing skills like a pro, much faster than figuring it out on your
own.

→ Sebastián Ramírez
Creator of FastAPI and Typer

This is my pytest go-to book—thorough coverage, great code examples,
and accessible. If you want to write great test code and become proficient in
what I think is the best Python testing framework out there, study this book.

→ Bob Belderbos
Python coach and Cofounder of PyBites

This book truly is an excellent resource on pytest. I’ve been recommending
the first edition when people ask me for a book during my pytest trainings.
While reading through the second edition, I sometimes thought, “I wish the
pytest documentation would explain this topic just as well.”

→ Florian Bruhin
Founder, Bruhin Software

Acknowledgments

I first need to thank Michelle, my wife and best friend. I wish you could see
the room I get to write in. Monitor, keyboard, and recording equipment
arranged neatly-ish atop a vintage oak desk. Next to the desk, an antique
secretary to hide away papers, spare cables, and a growing microphone
collection. Behind me, tech and sci-fi books, retro space toys, and juggle
balls arranged in a glass-front bookcase. In front, a fabric-covered wall to
dampen sound echos (and it looks great with vintage frames, quirky posters,
and old medical illustrations). I love writing here not just because it’s
wonderful and reflects my personality, but because it’s a space that
Michelle and I created together. She and I have always been a team, and she
has been incredibly supportive of my crazy ideas to write a blog, start a
podcast or two, and write a pytest book, and now, rewrite the same book.
She helps me find time for writing, researching, and recording. I really,
really couldn’t do this without her.

I also have two amazingly awesome, curious, and brilliant daughters,
Gabriella and Sophia, who are two of my biggest fans. They tell anyone
talking about programming that they should listen to my podcasts, and
anyone interested in Python that they should learn how to test their code
better by reading my book.

There are so many more people to thank.

My editor, Katharine Dvorak. She has helped tremendously through both
editions. I’m a better writer and a better teacher because of her involvement

in this project. She was incredibly helpful for the first edition. During the
second edition, I wanted the book to be a smooth progression of
complexity. We re-arranged the order several times to get here, and it wasn’t
easy. With her help, I think we’ve got a great story to tell with this book.

Thank you to Dave Rankin, Tammy Coron, and the rest of The Pragmatic
Bookshelf for maintaining such an amazing publishing company.

The technical reviewers have been instrumental in suggesting fixes and
updates to the second edition. Thank you to Bob Belderbos, Oliver
Bestwalter, Florian Bruhin, Floris Bruynooghe, Paul Everitt, Matt Harrison,
Michael Kennedy, Matt Layman, Kelly Paredes, Raphael Pierzina,
Sebastián Ramírez, Julian Sequeira, Anthony Sottile, and Sean Tibor. Many
on that list are also pytest core developers and/or maintainers of incredible
pytest plugins. The suggestions, direction, and tips from reviewers have
really helped make this edition great.

Special thanks to Florian Bruhin. In the midst of the pytest 7 release and the
2021 holiday season, he also found time to review this second edition with
a fine-toothed comb. If there are mistakes left in the book, it’s probably
because I didn’t listen to Florian in all the places I should have.

Special thanks to Matt Harrison, not only for reviewing this edition, but for
arranging my first in-person pytest training. It got me hooked. Teaching
people in person is an amazing experience. The second edition was heavily
influenced by my new-found little voice in my head saying, “Would you
really teach someone this if they were sitting there with you in person?” If
not, I took it out. If not then, I moved it to later in the book.

Thank you to the entire pytest-dev team for creating such a cool testing
tool, and for answering my pytest questions over the years. Even during the
writing of this edition, I sent many quick emails to many on the team to
clarify my understanding. They’ve been supportive of the book. For that,
I’m deeply grateful. Special thanks to Holger Krekel for creating pytest in

the first place, and Florian Bruhin, Ran Benita, Bruno Oliveira, Ronny
Pfannschmidt, Anthony Sottile, and so many others for keeping it going and
keeping the pytest contributor environment healthy.

Python and pytest are amazing communities that I’m proud to be part of. I
am humbled and profoundly grateful for all of the encouragement and help
I have received in my goal to get software developers to learn to love
testing.

Paul Everitt told me that the first edition changed his attitude toward testing
from something he should do to something he enjoys doing. He even calls it
“the joy of testing.” I hope the second edition lives up to the first. I hope
you find joy in testing.

Brian Okken
February 2022

Copyright © 2022, The Pragmatic Bookshelf.

Preface

The use of Python is increasing not only in software development, but also
in fields such as data science, machine learning, data analysis, research
science, finance, and just about all other industries. The growth of Python in
many critical fields also comes with the desire to properly, effectively, and
efficiently put software tests in place to make sure the programs run
correctly and produce the correct results. In addition, more and more
software projects are embracing continuous integration and including an
automated testing phase. There is still a place for exploratory manual testing
—but thorough manual testing of increasingly complex projects is
infeasible. Teams need to be able to trust the tests being run by the
continuous integration servers to tell them if they can trust their software
enough to release it.

Enter pytest. pytest is a robust Python testing tool that can be used for all
types and levels of software testing. pytest can be used by development
teams, quality assurance teams, independent testing groups, and individuals
practicing test-driven development, for both commercial and open-source
projects. In fact, projects all over the Internet have switched from unittest or
nose to pytest, including Mozilla and Dropbox. Why? Because pytest offers
powerful features such as assert rewriting, a third-party plugin model, and a
powerful yet simple fixture model that is unmatched in any other testing
framework.

Why pytest?
pytest is a software testing framework, which means pytest is a command-
line tool that automatically finds tests you’ve written, runs the tests, and
reports the results. It has a library of goodies that you can use in your tests
to help you test more effectively. It can be extended by writing plugins or
installing third-party plugins. And it integrates easily with other tools like
continuous integration and web automation.

Here are a few of the reasons pytest stands out above many other testing
frameworks:

Simple tests are simple to write in pytest.

Complex tests are still simple to write.

Tests are easy to read.

Tests are easy to read. (So important it’s listed twice.)

You can get started in seconds.

You use assert in tests for verifications, not things like self.assertEqual()
or self.assertLessThan(). Just assert.

You can use pytest to run tests written for unittest or nose.

pytest is being actively developed and maintained by a passionate and
growing community. It’s so extensible and flexible that it will easily fit into
your work flow. And because it’s installed separately from your Python
version, you can use the same version of pytest on multiple versions of
Python.

Learn pytest While Testing a Sample Application
In this book, you’re going to learn pytest by writing tests against an
example project that I hope has many of the same traits of applications
you’ll be testing after you read this book.

The sample application is called Cards. Cards is a minimal task-tracking
application with a command-line user interface. It has enough in common
with many other types of applications that I hope you can easily see how
the testing concepts you learn while developing tests against Cards are
applicable to your projects now and in the future.

Cards has a command-line interface (CLI). The CLI interacts with the rest
of the code through an application programming interface (API). The API is
the interface where you’ll direct most of your testing. The API interacts
with a database control layer, which interacts with a document database,
TinyDB.

This isn’t the most sophisticated task-management application, but it’s
complicated enough to use it to explore testing.

How This Book Is Organized
The book is organized into three parts. In Part 1, ​Primary Power​, you’ll
install pytest and start to explore its primary features using the Cards
project along the way. You’ll learn how to run simple test functions on the
command line. You’ll then use pytest fixtures to push setup and teardown
code out of the test functions. You’ll learn how to use many of pytest’s
builtin fixtures to help with common testing problems like temporary
directories. You’ll also learn how to turn one test into many test cases with
parametrization. And finally, you’ll learn how to use markers to run a subset
of tests.

In Part 2, ​Working with Projects​, you’ll look at some real-world issues
around testing projects, as well as explore more of the power of pytest.
You’ll start by exploring a simple testing strategy process and applying it to
the Cards project. You’ll take a look at configuration files and all of the
other non-test files involved in testing projects. You’ll use coverage analysis
to look at where our testing holes are with respect to Cards, and use
mocking to help test the user interface and fill in some coverage gaps.
Really all testing involves some debugging of both code and tests, so you’ll
take a look at some of the great features pytest has to help us debug test
failures. Many projects utilize continuous integration (CI). Tox is a popular
framework to simulate a local CI system. You’ll look at using pytest with
tox and with hosted CI systems. Part II also includes a look at the Python
search path. The Cards project is an installable Python package; however,
not all testing projects involve installed packages. This chapter in Part II
looks at how you can tell pytest to find your source code.

In Part 3, ​Booster Rockets​, you’ll take your tests to the next level. You’ll
learn how to use third-party plugins to extend the capabilities of pytest and
learn how to build your own plugins. You’ll also learn advanced
parametrization techniques that build on what you learned in Part I.

What You Need to Know
Python

This book assumes that you are fairly comfortable with Python. You
don’t need to know a lot of Python—the examples don’t do anything
super weird or fancy—but Python isn’t explained in detail.

pip
You should use pip to install pytest and pytest plugins. If you want a
refresher on pip, check out Appendix 2, ​pip​.

A command line
I wrote this book and captured the example output using zsh on a Mac
laptop. However, the only commands I use in zsh are cd to go to a
specific directory, and pytest, of course. Because cd exists in Windows
cmd.exe and all Unix shells that I know of, all examples should be
runnable on whatever terminal-like application you choose to use.

That’s it, really. You don’t need to be a programming expert to start writing
automated software tests with pytest.

Why a Second Edition?
Both Python and pytest have changed since the first edition of this book
was published in 2017. There have been updates to pytest that are now
reflected in the book:

New builtin fixtures
New flags
The addition of package scope fixtures

There have also been updates to Python that are reflected in the book:

The adoption of f-strings and pathlib
The addition of dataclasses

Also, since publication of the first edition, I have taught many, many people
about pytest, and I think I’ve learned how to be a better teacher. The second
edition not only expands on what is covered in the first edition—it grew
from 7 to 16 chapters!—but also it presents the material in what I think is a
more gradual, digestible manner.

So what’s in all of these new chapters?

More on parametrization, markers, coverage, mocking, tox and
continuous integration, and third-party plugins. All of these topics
were covered in the first edition, but in this edition I expand that
coverage. I pulled the discussion of parametrization into its own
chapter and added a discussion of advanced parametrization
techniques. I delve more deeply into markers and include an example
of how to pass data from markers to fixtures (which is super cool). I
also take you on a deeper dive into test coverage, mocking, and CI,
and using and building your own plugins to extend pytest’s
capabilities.

A discussion of test strategy. Feedback from the first edition was that
the book was great for the mechanics of how to use pytest, but the
“What test do I write?” information was a bit lacking. The new
Chapter 7, ​Strategy​ is a push in the right direction of what tests to
write. A complete treatment of test strategy would be a book in itself;
however, this chapter will get you started.

Information about the Python search path. A lot of readers reached out
to me asking about how to get their tests to see their test code, and the
first edition didn’t cover it. The project in this book, Cards, doesn’t
have that problem because it’s an installed Python package. However,
lots of user projects are applications or scripts or lots of other things
that are not installed packages. This chapter offers a focused look at
the problem and provides some solutions.

I consolidated the information about debugging test failures into a chapter
of its own. In the last edition, this information was spread all throughout the
book. It is my hope that when you are faced with a deadline and a failing
test suite, bringing this information together into one chapter will help you
figure out an answer quickly and ease some stress.

Finally, the example project changed. The first edition used a project called
Tasks to illustrate how to use pytest. Now it’s called Cards. Here’s why:

It’s easier to say out loud. (Try it. Say “tasks” three times, then “cards”
three times. Right?)

The new project itself is different because it uses Typer instead of
Click for command-line functionality. Typer code is easier to read.

The project also uses Rich for formatting the output. Rich didn’t exist
(neither did Typer) when the first edition was written.

The code examples have also been simplified. The directory structure of the
first edition code examples followed a progression of a possible test
directory within a project, with most of the project removed. Seriously, I
think it made sense to me at the time. In this edition, there is a project in its
own directory, cards_proj, with no tests. Then, each of the chapters have test
code (if appropriate) that either work on the one project or on some local
code. Trust me, I think you’ll agree that it’s way easier to follow along now.

[1]

[2]

Example Code and Online Resources
The examples in this book were written and tested using Python 3.7+
(including 3.10) and pytest 6.2 and 7.0. If you’re reading this with later
versions of pytest and wondering if this book still applies, the odds are that
it does. There are places where this book depends on pytest 7 features.
However, because pytest 7 is very new, I’ve noted differences with pytest
6.2 when necessary. I have worked with many core pytest contributors to
make sure the content of this book will apply to future versions of pytest as
well. There is also an errata page set up at both pythontest.com[1] and at
pragprog.com[2] that notes any updates you need to be aware of for future
versions of pytest and this book.

The source code for the Cards project, as well as for all of the tests shown
in this book, is available through a link on the book’s web page.[3] You don’t
need to download the source code to understand the test code; the test code
is presented in usable form in the examples. But to follow along with the
Cards project, or to adapt the testing examples to test your own project
(more power to you!), you must go to the book’s web page to download the
project.

To learn more about software testing in Python, you can also check out
pythontest.com[4] and testandcode.com,[5] a blog and podcast I run that
discuss the topic.

I’ve been programming for decades, and nothing has made me love writing
test code as much as pytest. I hope you learn a lot from this book, and I
hope you’ll end up loving test code as much as I do.

Footnotes

https://pythontest.com/pytest-book

https://pythontest.com/pytest-book

[3]

[4]

[5]

https://pragprog.com/titles/bopytest2

https://pragprog.com/titles/bopytest2/source_code

https://pythontest.com

https://testandcode.com

Copyright © 2022, The Pragmatic Bookshelf.

https://pragprog.com/titles/bopytest2
https://pragprog.com/titles/bopytest2/source_code
https://pythontest.com/
https://testandcode.com/

Part 1
Primary Power

Chapter 1

Getting Started with pytest

This is a test:

ch1/test_one.py

​ ​def​ ​test_passing​():

​ ​assert​ (1, 2, 3) == (1, 2, 3)

This looks very simple. It is. But there’s still a lot going on. The function
test_passing() will be discovered by pytest as a test function because it starts
with test_ and is in a file that starts with test_. And when the test is run, the
assert statement will determine if the test passes or fails. assert is a keyword
built into Python and has the behavior of raising a AssertionError exception if
the expression after assert is false. Any uncaught exception raised within a
test will cause the test to fail. Although any type of uncaught exception can
cause a test to fail, traditionally we stick with AssertionError from assert to
determine pass/fail for tests.

We’ll get into the nitty-gritty of all of that later. First, I’d like to show you
what it looks like to run a test on the command line. And in order to run this
test, we’ll need to install pytest. So let’s do that now.

http://media.pragprog.com/titles/bopytest2/code/ch1/test_one.py

Installing pytest
The headquarters for pytest is https://pytest.org. That’s the official
documentation. But it’s distributed through PyPI (the Python Package
Index) at https://pypi.org/project/pytest.

Like other Python packages distributed through PyPI, use pip to install
pytest into the virtual environment you’re using for testing:

​ $ python3 -m venv venv

​ $ source venv/bin/activate

​ (venv) $ pip install pytest

The (venv) added before the command prompt lets you know that you are
using a virtual environment. For the examples in the rest of the book, we’ll
always use a virtual environment. However, in order to save a little clutter
on the page, (venv) has been removed. We’ll also always be using python3,
but will shorten it to python.

If you are not familiar with venv or pip, I’ve got you covered. Check out
Appendix 1, ​Virtual Environments​ and Appendix 2, ​pip​.

What About Windows?
The example for venv and pip should work on many POSIX systems, such as Linux
and macOS, and many versions of Python, including Python 3.7 and later.

Note that the source venv/bin/activate line won’t work for Windows. For cmd.exe,
use venv\Scripts\activate.bat instead:

​ C:\> python -m venv venv

​ C:\> venv\Scripts\activate.bat

​ C:\> pip install pytest

For PowerShell, use venv\Scripts\Activate.ps1 instead:

​ PS C:\> python -m venv venv

​ PS C:\> venv\Scripts\Activate.ps1

https://pytest.org/
https://pypi.org/project/pytest

​ PS C:\> pip install pytest

What About virtualenv?
With some distributions of Linux, you will need to use virtualenv. Some people also
just prefer virtualenv for various reasons:

​ $ python3 -m pip install virtualenv

​ $ python3 -m virtualenv venv

​ $ source venv/bin/activate

​ (venv) $ pip install pytest

Running pytest
With pytest installed, we can run test_passing(). This is what it looks like
when it’s run:

​ ​$ ​​cd​​ ​​/path/to/code/ch1​

​ ​$ ​​pytest​​ ​​test_one.py​

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_one.py . [100%]

​

​ ========================== 1 passed in 0.01s ===========================

The dot after test_one.py means that one test was run and it passed. The
[100%] is a percentage indicator showing how much of the test suite is done
so far. Because there is just one test in the test session, one test equals 100%
of the tests. If you need more information, you can use -v or --verbose:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_one.py​

​ ===================== test session starts ======================

​ collected 1 item

​

​ test_one.py::test_passing PASSED [100%]

​

​ =================== 1 passed in 0.00 seconds ===================

If you have a color terminal, PASSED and the bottom line appear green. It’s
nice.

This is a failing test:

ch1/test_two.py

​ ​def​ ​test_failing​():

​ ​assert​ (1, 2, 3) == (3, 2, 1)

http://media.pragprog.com/titles/bopytest2/code/ch1/test_two.py

The way pytest shows you test failures is one of the many reasons
developers love pytest. Let’s watch this fail:

​ ​$ ​​pytest​​ ​​test_two.py​

​ ===================== test session starts ======================

​ collected 1 item

​

​ test_two.py F [100%]

​

​ =========================== FAILURES ===========================

​ _________________________ test_failing _________________________

​

​ def test_failing():

​ ​>​​ ​​assert​​ ​​(1,​​ ​​2,​​ ​​3)​​ ​​==​​ ​​(3,​​ ​​2,​​ ​​1)​

​ E assert (1, 2, 3) == (3, 2, 1)

​ E At index 0 diff: 1 != 3

​ E Use -v to get the full diff

​

​ test_two.py:2: AssertionError

​ =================== short test summary info ====================

​ FAILED test_two.py::test_failing - assert (1, 2, 3) == (3, 2, 1)

​ ====================== 1 failed in 0.03s =======================

Cool. The failing test, test_failing, gets its own section to show us why it
failed. And pytest tells us exactly what the first failure is: index 0 is a
mismatch. If you have a color terminal, much of this appears in red to make
it really stand out. This extra section showing exactly where the test failed
and some the surrounding code is called a traceback.

That’s already a lot of information, but there’s a line that says Use -v to get the

full diff. Let’s do that:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_two.py​

​ ===================== test session starts ======================

​ collected 1 item

​

​ test_two.py::test_failing FAILED [100%]

​

​ =========================== FAILURES ===========================

​ _________________________ test_failing _________________________

​

​ def test_failing():

​ ​>​​ ​​assert​​ ​​(1,​​ ​​2,​​ ​​3)​​ ​​==​​ ​​(3,​​ ​​2,​​ ​​1)​

​ E assert (1, 2, 3) == (3, 2, 1)

​ E At index 0 diff: 1 != 3

​ E Full diff:

​ E - (3, 2, 1)

​ E ? ^ ^

​ E + (1, 2, 3)

​ E ? ^ ^

​

​ test_two.py:2: AssertionError

​ =================== short test summary info ====================

​ FAILED test_two.py::test_failing - assert (1, 2, 3) == (3, 2, 1)

​ ====================== 1 failed in 0.03s =======================

Wow. pytest adds little carets (^) to show us exactly what’s different.

So far we’ve run pytest with the commands pytest test_one.py and pytest

test_two.py, so we know we can give pytest a filename and it will run the
tests in the file. Let’s run it a few more ways.

To run pytest, you have the option to specify files and directories. If you
don’t specify any files or directories, pytest will look for tests in the current
working directory and subdirectories. It looks for .py files starting with test_

or ending with _test. From the ch1 directory, if you run pytest with no
commands, you’ll run two files’ worth of tests:

​ ​$ ​​pytest​​ ​​--tb=no​

​ ===================== test session starts ======================

​ collected 2 items

​

​ test_one.py . [50%]

​ test_two.py F [100%]

​

​ =================== short test summary info ====================

​ FAILED test_two.py::test_failing - assert (1, 2, 3) == (3, 2, 1)

​ ================= 1 failed, 1 passed in 0.03s ==================

I also used the --tb=no flag to turn off tracebacks, since we don’t really need
the full output right now. We’ll be using various flags throughout the book.

We can also get the same set of tests to run by specifying them or by listing
the directory name:

​ ​$ ​​pytest​​ ​​--tb=no​​ ​​test_one.py​​ ​​test_two.py​

​ ===================== test session starts ======================

​ collected 2 items

​

​ test_one.py . [50%]

​ test_two.py F [100%]

​

​ =================== short test summary info ====================

​ FAILED test_two.py::test_failing - assert (1, 2, 3) == (3, 2, 1)

​ ================= 1 failed, 1 passed in 0.03s ==================

​

​ ​$ ​​cd​​ ​​..​

​ ​$ ​​pytest​​ ​​--tb=no​​ ​​ch1​

​ ===================== test session starts ======================

​ collected 2 items

​

​ ch1/test_one.py . [50%]

​ ch1/test_two.py F [100%]

​

​ =================== short test summary info ====================

​ FAILED ch1/test_two.py::test_failing - assert (1, 2, 3) == (3...

​ ================= 1 failed, 1 passed in 0.04s ==================

We can also specify a test function within a test file to run by adding
::test_name to the file name:

​ ​$ ​​pytest​​ ​​-v​​ ​​ch1/test_one.py::test_passing​

​ ===================== test session starts ======================

​ collected 1 item

​

​ ch1/test_one.py::test_passing PASSED [100%]

​

​ ====================== 1 passed in 0.00s =======================

Test Discovery

The part of pytest execution where pytest goes off and finds which tests to
run is called test discovery. pytest was able to find all the tests we wanted it
to run because we named them according to the pytest naming conventions.

Given no arguments, pytest looks at your current directory and all
subdirectories for test files and runs the test code it finds. If you give pytest a
filename, a directory name, or a list of those, it looks there instead of the
current directory. Each directory listed on the command line is examined for
test code, as well as any subdirectories.

Here’s a brief overview of the naming conventions to keep your test code
discoverable by pytest:

Test files should be named test_<something>.py or <something>_test.py.
Test methods and functions should be named test_<something>.
Test classes should be named Test<Something>.

Because our test files and functions start with test_, we’re good. There are
ways to alter these discovery rules if you have a bunch of tests named
differently. I’ll cover how to do that in Chapter 8, ​Configuration Files​.

Test Outcomes
So far we’ve seen one passing test and one failing test. However, pass and
fail are not the only outcomes possible.

Here are the possible outcomes of a test:

PASSED (.)—The test ran successfully.

FAILED (F)—The test did not run successfully.

SKIPPED (s)—The test was skipped. You can tell pytest to skip a test
by using either the @pytest.mark.skip() or @pytest.mark.skipif() decorators,
which are discussed in ​Skipping Tests with pytest.mark.skip​.

XFAIL (x)—The test was not supposed to pass, and it ran and failed.
You can tell pytest that a test is expected to fail by using the
@pytest.mark.xfail() decorator, which is discussed in ​Expecting Tests to
Fail with pytest.mark.xfail​.

XPASS (X)—The test was marked with xfail, but it ran and passed.

ERROR (E)—An exception happened either during the execution of a
fixture or hook function, and not during the execution of a test function.
Fixtures are discussed in Chapter 3, ​pytest Fixtures​, and hook functions
are discussed in Chapter 15, ​Building Plugins​.

Review
Congratulations! You’ve done quite a bit so far in this chapter and are on a
good pace to master pytest quickly. Here’s a quick review of what was
covered in the chapter:

pytest is installed into a virtual environment with the following steps:

python -m venv venv

source venv/bin/activate (or
venv\Scripts\activate.bat/venv\Scripts\Activate.ps1 on Windows)

pip install pytest

pytest can be run in several different ways:

pytest: With no arguments, pytest searches the local directory and
subdirectories for tests.

pytest <filename>: Runs the tests in one file

pytest <filename> <filename> ...: Runs the tests in multiple named
files

pytest <dirname>: Starts in a particular directory (or more than one)
and recursively searches for tests

Test discovery refers to how pytest finds your test code and depends on
naming:

Test files should be named test_<something>.py or
<something>_test.py.
Test methods and functions should be named test_<something>.

Test classes should be named Test<Something>.

The possible outcomes of a test function include: PASSED (.),
FAILED (F), SKIPPED (s), XFAIL (x), XPASS (X), and ERROR (E).

The -v or --verbose command-line flag is used to reveal more verbose
output.

The --tb=no command-line flag is used to to turn off tracebacks.

Exercises
This chapter, and the rest of the book, is designed so that you can follow
along on your own. Doing the exercises at the end can help cement your
learning. They should only take a few minutes.

The following exercises are intended to

get you comfortable with virtual environments,
make sure you can install pytest, and
get you writing a few test files and using different types of assert

statements.

pytest allows you to write new small tests quickly. Seeing for yourself just
how quickly by writing some tests on your own should be fun. Actually,
testing should be fun. Starting now to learn how to play with test code will
help you avoid fear of writing tests in the future.

Also, you really need to know about any trouble you have installing or
running pytest now, or the rest of the book is going to be decidedly not fun.

1. Create a new virtual environment using python -m virtualenv or python -m

venv. Even if you know you don’t need virtual environments for the
project you’re working on, humor me and learn enough about them to
create one for trying out things in this book. I resisted using them for a
very long time, and now I always use them. Read Appendix 1, ​Virtual
Environments​ if you’re having any difficulty.

2. Practice activating and deactivating your virtual environment a few
times.

$ source venv/bin/activate

$ deactivate

On Windows:

C:>venv\scripts\activate.bat (or C:>venv\scripts\Activate.ps1 for
PowerShell)
C:>deactivate

3. Install pytest in your new virtual environment. See Appendix 2, ​pip​ if
you have any trouble. Even if you thought you already had pytest
installed, you’ll need to install it into the virtual environment you just
created.

4. Create a few test files. You can use the ones we used in this chapter or
make up your own. Practice running pytest against these files.

5. Change the assert statements. Don’t just use assert something ==

something_else; try things like:

assert 1 in [2, 3, 4]

assert a < b

assert ’fizz’ not in ’fizzbuzz’

What’s Next
In this chapter, we looked at where to get pytest, how to install it, and the
various ways to run it. However, we didn’t discuss what goes into test
functions. In the next chapter, we’ll look at writing test functions, and
grouping tests into classes, modules, and directories.

Copyright © 2022, The Pragmatic Bookshelf.

Chapter 2

Writing Test Functions

In the last chapter, you got pytest up and running and saw how to run it
against files and directories. In this chapter, you’ll learn how to write test
functions in the context of testing a Python package. If you’re using pytest
to test something other than a Python package, most of this chapter still
applies.

We’re going to write tests for a simple task-tracking command-line
application called Cards. We’ll look at how to use assert in tests, how tests
handle unexpected exceptions, and how to test for expected exceptions.

Eventually, we’ll have a lot of tests. Therefore, we’ll look at how to
organize tests into classes, modules, and directories.

Installing the Sample Application
The test code we write needs to be able to run the application code. The
“application code” is the code we are validating, and it has many names.
You may hear it referred to as production code, the application, code under
test (CUT), system under test (SUT), device under test (DUT), and so on.
For this book, we’ll use the term “application code” if it’s necessary to
distinguish the code from the test code.

The “test code” is the code we are writing in order to test the application
code. Ironically, “test code” is fairly unambiguous and doesn’t have many
names other than “test code.”

In our case, the Cards project is the application code. It is an installable
Python package, and we need to install it in order to test it. Installing it will
also allow us to play with the Cards project on the command line. If the
code you are testing is not a Python package that can be installed, you’ll
have to use other ways to get your test to see your code. (Some alternatives
are discussed in Chapter 12, ​Testing Scripts and Applications​.)

If you haven’t already done so, you can download a copy of the source code
for this project from the book’s web page.[6] Download and unzip the code
to a location on your computer you are comfortable working with and can
find easily later. For the rest of the book, I’ll be referring to this location as
/path/to/code. The Cards project is at /path/to/code/cards_project, and the tests
for this chapter are at /path/to/code/ch2.

You can use the same virtual environment you used in the previous chapter,
create new environments for each chapter, or create one for the whole book.
Let’s create one at the /path/to/code/ level and use that until we need to use
something different:

​ ​$ ​​cd​​ ​​/path/to/code​

​ ​$ ​​python​​ ​​-m​​ ​​venv​​ ​​venv​

​ ​$ ​​source​​ ​​venv/bin/activate​

And now, with the virtual environment activated, install the local cards_proj

application. The ./ in front of ./cards_proj/ tells pip to look in the local
directory, instead of trying to install from PyPI.

​ (venv) $ pip install ./cards_proj/

​ Processing ./cards_proj

​ ​...​

​ Successfully built cards

​ Installing collected packages: cards

​ Successfully installed cards

While we’re at it, let’s make sure pytest is installed, too:

​ (venv) $ pip install pytest

For each new virtual environment, we have to install everything we need,
including pytest.

For the rest of the book, even though I will be working within a virtual
environment, I’ll only show $ as a command prompt instead of (venv) $

merely to save horizontal space and visual noise.

Let’s run cards and play with it a bit:

​ ​$ ​​cards​​ ​​add​​ ​​do​​ ​​something​​ ​​--owner​​ ​​Brian​

​ ​$ ​​cards​​ ​​add​​ ​​do​​ ​​something​​ ​​else​

​ ​$ ​​cards​

​ ID state owner summary

​ ──

​ 1 todo Brian do something

​ 2 todo do something else

​ ​$ ​​cards​​ ​​update​​ ​​2​​ ​​--owner​​ ​​Brian​

​ ​$ ​​cards​

​ ID state owner summary

​ ──

​ 1 todo Brian do something

​ 2 todo Brian do something else

​ ​$ ​​cards​​ ​​start​​ ​​1​

​ ​$ ​​cards​​ ​​finish​​ ​​1​

​ ​$ ​​cards​​ ​​start​​ ​​2​

​ ​$ ​​cards​

​ ID state owner summary

​ ──

​ 1 done Brian do something

​ 2 in prog Brian do something else

​ ​$ ​​cards​​ ​​delete​​ ​​1​

​ ​$ ​​cards​

​ ID state owner summary

​ ──

​ 2 in prog Brian do something else

These examples show that a todo item, or “card,” can be manipulated with
the actions add, update, start, finish, and delete, and that running cards with no
action will list the cards.

Nice. Now we’re ready to write some tests.

Writing Knowledge-Building Tests

The Cards source code is split into three layers: CLI, API, and DB. The CLI
handles the interaction with the user. The CLI calls the API, which handles
most of the logic of the application. The API calls into the DB layer (the
database), for saving and retrieving application data. We’ll look at the
structure of Cards more in ​Considering Software Architecture.

There’s a data structure used to pass information between the ClI and the
API, a data class called Card:

cards_proj/src/cards/api.py

​ @dataclass

​ ​class​ Card:

​ summary: str = None

​ owner: str = None

​ state: str = ​"todo"​

​ id: int = field(default=None, compare=False)

​

​ @classmethod

​ ​def​ ​from_dict​(cls, d):

​ ​return​ Card(**d)

​ ​def​ ​to_dict​(self):

​ ​return​ asdict(self)

Data classes were added to Python in version 3.7,[7] but they may still be
new to some. The Card structure has three string fields: summary, owner, and
state, and one integer field: id. The summary, owner, and id fields default to
None. The state field defaults to "todo". The id field is also using the field
method to utilize compare=False, which is supposed to tell the code that when
comparing two Card objects for equality, to not use the id field. We will
definitely test that, as well as the other aspects. A couple of other methods
were added for convenience and clarity: from_dict and to_dict, since Card(**d)
or dataclasses.asdict() aren’t very easy to read.

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/api.py

When faced with a new data structure, it’s often helpful to write some quick
tests so that you can understand how the data structure works. So, let’s start
with some tests that verify our understanding of how this thing is supposed
to work:

ch2/test_card.py

​ ​from​ ​cards​ ​import​ Card

​

​

​ ​def​ ​test_field_access​():

​ c = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ ​assert​ c.summary == ​"something"​

​ ​assert​ c.owner == ​"brian"​

​ ​assert​ c.state == ​"todo"​

​ ​assert​ c.id == 123

​

​

​ ​def​ ​test_defaults​():

​ c = Card()

​ ​assert​ c.summary ​is​ None

​ ​assert​ c.owner ​is​ None

​ ​assert​ c.state == ​"todo"​

​ ​assert​ c.id ​is​ None

​

​

​ ​def​ ​test_equality​():

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ ​assert​ c1 == c2

​

​

​ ​def​ ​test_equality_with_diff_ids​():

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2 = Card(​"something"​, ​"brian"​, ​"todo"​, 4567)

​ ​assert​ c1 == c2

​ ​def​ ​test_inequality​():

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2 = Card(​"completely different"​, ​"okken"​, ​"done"​, 123)

​ ​assert​ c1 != c2

​

http://media.pragprog.com/titles/bopytest2/code/ch2/test_card.py

​

​ ​def​ ​test_from_dict​():

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2_dict = {

​ ​"summary"​: ​"something"​,

​ ​"owner"​: ​"brian"​,

​ ​"state"​: ​"todo"​,

​ ​"id"​: 123,

​ }

​ c2 = Card.from_dict(c2_dict)

​ ​assert​ c1 == c2

​

​

​ ​def​ ​test_to_dict​():

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2 = c1.to_dict()

​ c2_expected = {

​ ​"summary"​: ​"something"​,

​ ​"owner"​: ​"brian"​,

​ ​"state"​: ​"todo"​,

​ ​"id"​: 123,

​ }

​ ​assert​ c2 == c2_expected

Do a quick test run:

​ $ cd /path/to/code/ch2

​ $ pytest test_card.py

​ ===================== test session starts ======================

​ collected 7 items

​

​ test_card.py [100%]

​

​ ====================== 7 passed in 0.04s =======================

We could have started with one test. However, I want to demonstrate just
how quickly and concisely we can write a bunch of tests. These tests are
intended to demonstrate how to use a data structure. They aren’t exhaustive
tests; they are not looking for corner cases, or failure cases, or looking for
ways to make the data structure blow up. I haven’t tried passing in gibberish

or negative numbers as IDs or huge strings. That’s not the point of this set of
tests.

The point of these tests is to check my understanding of how the structure
works, and possibly to document that knowledge for someone else or even
for a future me. This use of checking my own understanding, and really of
using tests as little playgrounds to play with the application code, is super
powerful, and I think more people would enjoy testing more if they start
with this mindset.

Note also that all of these tests use plain old assert statements. Let’s take a
look at them next.

Using assert Statements
When you write test functions, the normal Python assert statement is your
primary tool to communicate test failure. The simplicity of this within pytest
is brilliant. It’s what drives a lot of developers to use pytest over other
frameworks.

If you’ve used any other testing framework, you’ve probably seen various
assert helper functions. For example, following is a list of a few of the assert

forms and assert helper functions from unittest:

pytest unittest
assert something assertTrue(something)

assert not something assertFalse(something)

assert a == b assertEqual(a, b)

assert a != b assertNotEqual(a, b)

assert a is None assertIsNone(a)

assert a is not None assertIsNotNone(a)

assert a <= b assertLessEqual(a, b)

… …

With pytest, you can use assert <expression> with any expression. If the
expression would evaluate to False if converted to a bool, the test would fail.

pytest includes a feature called “assert rewriting” that intercepts assert calls
and replaces them with something that can tell you more about why your
assertions failed. Let’s see how helpful this rewriting is by looking at an
assertion failure:

ch2/test_card_fail.py

http://media.pragprog.com/titles/bopytest2/code/ch2/test_card_fail.py

​ ​def​ ​test_equality_fail​():

​ c1 = Card(​"sit there"​, ​"brian"​)

​ c2 = Card(​"do something"​, ​"okken"​)

​ ​assert​ c1 == c2

This test will fail, but what’s interesting is the traceback information:

​ ​$ ​​pytest​​ ​​test_card_fail.py​

​ ===================== test session starts ======================

​ collected 1 item

​

​ test_card_fail.py F [100%]

​

​ =========================== FAILURES ===========================

​ ______________________ test_equality_fail ______________________

​

​ def test_equality_fail():

​ c1 = Card("sit there", "brian")

​ c2 = Card("do something", "okken")

​ ​>​​ ​​assert​​ ​​c1​​ ​​==​​ ​​c2​

​ E AssertionError: assert Card(summary=...odo', id=None) ==

​ E Card(summary=...odo', id=None)

​ E

​ E Omitting 1 identical items, use -vv to show

​ E Differing attributes:

​ E ['summary', 'owner']

​ E

​ E Drill down into differing attribute summary:

​ E summary: 'sit there' != 'do something'...

​ E

​ E ...Full output truncated (8 lines hidden),

​ E use '-vv' to show

​

​ test_card_fail.py:7: AssertionError

​ =================== short test summary info ====================

​ FAILED test_card_fail.py::test_equality_fail - AssertionError...

​ ====================== 1 failed in 0.07s =======================

That’s a lot of information. For each failing test, the exact line of failure is
shown with a > pointing to the failure. The E lines show you extra
information about the assert failure to help you figure out what went wrong.

I intentionally put two mismatches in test_equality_fail(), but only the first was
shown in the previous code. Let’s try it again with the -vv flag, as suggested
in the error message:

​ ​$ ​​pytest​​ ​​-vv​​ ​​test_card_fail.py​

​ ===================== test session starts ======================

​ collected 1 item

​

​ test_card_fail.py::test_equality_fail FAILED [100%]

​

​ =========================== FAILURES ===========================

​ ______________________ test_equality_fail ______________________

​

​ def test_equality_fail():

​ c1 = Card("sit there", "brian")

​ c2 = Card("do something", "okken")

​ ​>​​ ​​assert​​ ​​c1​​ ​​==​​ ​​c2​

​ E AssertionError: assert Card(summary='sit there',

​ E owner='brian', state='todo', id=None) ==

​ E Card(summary='do something',

​ E owner='okken', state='todo', id=None)

​ E

​ E Matching attributes:

​ E ['state']

​ E Differing attributes:

​ E ['summary', 'owner']

​ E

​ E Drill down into differing attribute summary:

​ E summary: 'sit there' != 'do something'

​ E - do something

​ E + sit there

​ E

​ E Drill down into differing attribute owner:

​ E owner: 'brian' != 'okken'

​ E - okken

​ E + brian

​

​ test_card_fail.py:7: AssertionError

​ =================== short test summary info ====================

​ FAILED test_card_fail.py::test_equality_fail - AssertionError...

​ ====================== 1 failed in 0.07s =======================

Well, I think that’s pretty darned cool. pytest listed specifically which
attributes matched and which did not, and highlighted the exact mismatches.

The previous example only used equality assert; many more varieties of
assert statements with awesome trace debug information are found on the
pytest.org website.[8]

Just for reference, we can see what Python gives us by default for assert

failures. We can run the test, not from pytest, but directly from Python by
adding a if __name__ == ’__main__’ block at the end of the file and calling
test_equality_fail(), like this:

ch2/test_card_fail.py

​ ​if​ __name__ == ​"__main__"​:

​ test_equality_fail()

Using if __name__ == ’__main__’ is a quick way to run some code from a file but
not allow the code to be run if it is imported. When a module is imported,
Python will fill in __name__ with the name of the module, which is the name
of the file without the .py. However, if you run the file with python file.py,
__name__ will be filled in by Python with the string "__main__".

Running the test with straight Python, we get this:

​ $ python test_card_fail.py

​ Traceback (most recent call last):

​ File "/path/to/code/ch2/test_card_fail.py", line 12, in <module>

​ test_equality_fail()

​ File "/path/to/code/ch2/test_card_fail.py", line 7, in test_equality_fail

​ assert c1 == c2

​ AssertionError

That doesn’t tell us much. The pytest version gives us way more information
about why our assertions failed.

http://media.pragprog.com/titles/bopytest2/code/ch2/test_card_fail.py

Assertion failures are the primary way test code results in a failed test.
However, it’s not the only way.

Failing with pytest.fail() and Exceptions
A test will fail if there is any uncaught exception. This can happen if

an assert statement fails, which will raise an AssertionError exception,
the test code calls pytest.fail(), which will raise an exception, or
any other exception is raised.

While any exception can fail a test, I prefer to use assert. In rare cases where
assert is not suitable, use pytest.fail().

Here’s an example of using pytest’s fail() function to explicitly fail a test:

ch2/test_alt_fail.py

​ ​import​ ​pytest​

​ ​from​ ​cards​ ​import​ Card

​

​

​ ​def​ ​test_with_fail​():

​ c1 = Card(​"sit there"​, ​"brian"​)

​ c2 = Card(​"do something"​, ​"okken"​)

​ ​if​ c1 != c2:

​ pytest.fail(​"they don't match"​)

Here’s what the output looks like:

​ $ pytest test_alt_fail.py

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_alt_fail.py F [100%]

​

​ =============================== FAILURES ===============================

​ ____________________________ test_with_fail ____________________________

​

​ def test_with_fail():

​ c1 = Card("sit there", "brian")

​ c2 = Card("do something", "okken")

http://media.pragprog.com/titles/bopytest2/code/ch2/test_alt_fail.py

​ if c1 != c2:

​ > pytest.fail("they don't match")

​ E Failed: they don't match

​

​ test_alt_fail.py:9: Failed

​ ======================= short test summary info ========================

​ FAILED test_alt_fail.py::test_with_fail - Failed: they don't match

​ ========================== 1 failed in 0.16s ===========================

When calling pytest.fail() or raising an exception directly, we don’t get the
wonderful assert rewriting provided by pytest. However, there are
reasonable times to use pytest.fail(), such as in an assertion helper.

Writing Assertion Helper Functions
An assertion helper is a function that is used to wrap up a complicated
assertion check. As an example, the Cards data class is set up such that two
cards with different IDs will still report equality. If we wanted to have a
stricter check, we could write a helper function called assert_identical like
this:

ch2/test_helper.py

​ ​from​ ​cards​ ​import​ Card

​ ​import​ ​pytest​

​

​

​ ​def​ ​assert_identical​(c1: Card, c2: Card):

​ __tracebackhide__ = True

​ ​assert​ c1 == c2

​ ​if​ c1.id != c2.id:

​ pytest.fail(f​"id's don't match. {c1.id} != {c2.id}"​)

​

​

​ ​def​ ​test_identical​():

​ c1 = Card(​"foo"​, id=123)

​ c2 = Card(​"foo"​, id=123)

​ assert_identical(c1, c2)

​

​

​ ​def​ ​test_identical_fail​():

​ c1 = Card(​"foo"​, id=123)

​ c2 = Card(​"foo"​, id=456)

​ assert_identical(c1, c2)

The assert_identical function sets __tracebackhide__ = True. This is optional. The
effect will be that failing tests will not include this function in the traceback.
The normal assert c1 == c2 is then used to check everything except the ID for
equality.

http://media.pragprog.com/titles/bopytest2/code/ch2/test_helper.py

Finally, the IDs are checked, and if they are not equal, pytest.fail() is used to
fail the test with a hopefully helpful message.

Let’s see what that looks like when run:

​ ​$ ​​pytest​​ ​​test_helper.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ test_helper.py .F [100%]

​

​ =============================== FAILURES ===============================

​ _________________________ test_identical_fail __________________________

​

​ def test_identical_fail():

​ c1 = Card("foo", id=123)

​ c2 = Card("foo", id=456)

​ ​>​​ ​​assert_identical(c1,​​ ​​c2)​

​ E Failed: id's don't match. 123 != 456

​

​ test_helper.py:18: Failed

​ ======================= short test summary info ========================

​ FAILED test_helper.py::test_identical_fail - Failed: id's don't match...

​ ===================== 1 failed, 1 passed in 0.15s ======================

If we had not put in the __tracebackhide__ = True, the assert_identical code would
have been included in the traceback, which in this case, wouldn’t have added
any clarity. I could have also used assert c1.id == c2.id, "id’s don’t match." to
much the same effect, but I wanted to show an example of using pytest.fail().

Note that assert rewriting is only applied to conftest.py files and test files. See
the pytest documentation[9] for more details.

Testing for Expected Exceptions
We’ve looked at how any exception can cause a test to fail. But what if a bit
of code you are testing is supposed to raise an exception? How do you test
for that?

You use pytest.raises() to test for expected exceptions.

As an example, the cards API has a CardsDB class that requires a path
argument. What happens if we don’t pass in a path? Let’s try it:

ch2/test_experiment.py

​ ​import​ ​cards​

​

​

​ ​def​ ​test_no_path_fail​():

​ cards.CardsDB()

​ $ pytest --tb=short test_experiment.py

​ ===================== test session starts ======================

​ collected 1 item

​

​ test_experiment.py F [100%]

​

​ =========================== FAILURES ===========================

​ ______________________ test_no_path_fail _______________________

​ test_experiment.py:4: in test_no_path_fail

​ c = cards.CardsDB()

​ E TypeError: __init__() missing 1 required positional argument: 'db_path'

​ =================== short test summary info ====================

​ FAILED test_experiment.py::test_no_path_fail - TypeError: __i...

​ ====================== 1 failed in 0.06s =======================

Here I used the --tb=short shorter traceback format because we don’t need to
see the full traceback to find out which exception is raised.

http://media.pragprog.com/titles/bopytest2/code/ch2/test_experiment.py

The TypeError exception seems reasonable, since the error occurs when trying
to initialize the custom CardsDB type. We can write a test to make sure this
exception is thrown, like this:

ch2/test_exceptions.py

​ ​import​ ​pytest​

​ ​import​ ​cards​

​

​

​ ​def​ ​test_no_path_raises​():

​ ​with​ pytest.raises(TypeError):

​ cards.CardsDB()

The with pytest.raises(TypeError): statement says that whatever is in the next
block of code should raise a TypeError exception. If no exception is raised,
the test fails. If the test raises a different exception, it fails.

We just checked for the type of exception in test_no_path_raises(). We can also
check to make sure the message is correct, or any other aspect of the
exception, like additional parameters:

ch2/test_exceptions.py

​ ​def​ ​test_raises_with_info​():

​ match_regex = ​"missing 1 .* positional argument"​

​ ​with​ pytest.raises(TypeError, match=match_regex):

​ cards.CardsDB()

​

​

​ ​def​ ​test_raises_with_info_alt​():

​ ​with​ pytest.raises(TypeError) ​as​ exc_info:

​ cards.CardsDB()

​ expected = ​"missing 1 required positional argument"​

​ ​assert​ expected ​in​ str(exc_info.value)

The match parameter takes a regular expression and matches it with the
exception message. You can also use as exc_info or any other variable name to
interrogate extra parameters to the exception if it’s a custom exception. The

http://media.pragprog.com/titles/bopytest2/code/ch2/test_exceptions.py
http://media.pragprog.com/titles/bopytest2/code/ch2/test_exceptions.py

exc_info object will be of type ExceptionInfo. See the pytest documentation[10]

for full ExceptionInfo reference.

Structuring Test Functions
I recommend making sure you keep assertions at the end of test functions.
This is such a common recommendation that it has at least two names:
Arrange-Act-Assert and Given-When-Then.

Bill Wake originally named the Arrange-Act-Assert pattern in 2001.[11] Kent
Beck later popularized the practice as part of test-driven development
(TDD).[12] Behavior-driven development (BDD) uses the terms Given-When-
Then, a pattern from Ivan Moore, popularized by Dan North.[13] Regardless
of the names of the steps, the goal is the same: separate a test into stages.

There are many benefits of separating into stages. The separation clearly
separates the “getting ready to do something,” the “doing something,” and
the “checking to see if it worked” parts of the test. That allows the test
developer to focus attention on each part, and be clear about what is really
being tested.

A common anti-pattern is to have more a “Arrange-Assert-Act-Assert-Act-
Assert…” pattern where lots of actions, followed by state or behavior
checks, validate a workflow. This seems reasonable until the test fails. Any
of the actions could have caused the failure, so the test is not focusing on
testing one behavior. Or it might have been the setup in “Arrange” that
caused the failure. This interleaved assert pattern creates tests that are hard to
debug and maintain because later developers have no idea what the original
intent of the test was. Sticking to Given-When-Then or Arrange-Act-Assert
keeps the test focused and makes the test more maintainable.

The three-stage structure is the structure I try to stick to with my own test
functions and the tests in this book.

Let’s apply this structure to one of our first tests as an example:

ch2/test_structure.py

​ ​def​ ​test_to_dict​():

​ ​# GIVEN a Card object with known contents​

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​

​ ​# WHEN we call to_dict() on the object​

​ c2 = c1.to_dict()

​

​ ​# THEN the result will be a dictionary with known content​

​ c2_expected = {

​ ​"summary"​: ​"something"​,

​ ​"owner"​: ​"brian"​,

​ ​"state"​: ​"todo"​,

​ ​"id"​: 123,

​ }

​ ​assert​ c2 == c2_expected

Given/Arrange—A starting state. This is where you set up data or the
environment to get ready for the action.

When/Act—Some action is performed. This is the focus of the test—the
behavior we are trying to make sure is working right.

Then/Assert—Some expected result or end state should happen. At the
end of the test, we make sure the action resulted in the expected
behavior.

I tend to think about tests more naturally using the Given-When-Then terms.
Some people find it more natural to use Arrange-Act-Assert. Both ideas
work fine. The structure helps to keep test functions organized and focused
on testing one behavior. The structure also helps you to think of other test
cases. Focusing on one starting state helps you think of other states that
might be relevant to test with the same action. Likewise, focusing on one
ideal outcome helps you think of other possible outcomes, like failure states
or error conditions, that should also be tested with other test cases.

http://media.pragprog.com/titles/bopytest2/code/ch2/test_structure.py

Grouping Tests with Classes
So far we’ve written test functions within test modules within a file system
directory. That structuring of test code actually works quite well and is
sufficient for many projects. However, pytest also allows us to group tests
with classes.

Let’s take a few of the test functions related to Card equality and group them
into a class:

ch2/test_classes.py

​ ​class​ TestEquality:

​ ​def​ ​test_equality​(self):

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ ​assert​ c1 == c2

​ ​def​ ​test_equality_with_diff_ids​(self):

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2 = Card(​"something"​, ​"brian"​, ​"todo"​, 4567)

​ ​assert​ c1 == c2

​

​ ​def​ ​test_inequality​(self):

​ c1 = Card(​"something"​, ​"brian"​, ​"todo"​, 123)

​ c2 = Card(​"completely different"​, ​"okken"​, ​"done"​, 123)

​ ​assert​ c1 != c2

The code looks pretty much the same as it did before, with the exception of
some extra white space and each method has to have an initial self argument.

We can now run all of these together by specifying the class:

​ $ cd /path/to/code/ch2

​ $ pytest -v test_classes.py::TestEquality

​ =========================== test session starts ===========================

​ collected 3 items

​

​ test_classes.py::TestEquality::test_equality PASSED [33%]

http://media.pragprog.com/titles/bopytest2/code/ch2/test_classes.py

​ test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [66%]

​ test_classes.py::TestEquality::test_inequality PASSED [100%]

​

​ ============================ 3 passed in 0.02s ============================

We can still get at a single method:

​ $ pytest -v test_classes.py::TestEquality::test_equality

​ =========================== test session starts ===========================

​ collected 1 item

​

​ test_classes.py::TestEquality::test_equality PASSED [100%]

​

​ ============================ 1 passed in 0.02s ============================

If you are familiar with object-oriented programming (OOP) and class
inheritance with Python, you can utilize test class hierarchies for inherited
helper methods. If you are not familiar with OOP and such, don’t worry
about it. In this book, and in almost all of my own use of test classes, I use
them solely for the purpose of grouping tests to easily run them together. I
recommend that in production test code, you also use test classes sparingly
and primarily for grouping. Getting fancy with test class inheritance will
certainly confuse someone, possibly yourself, in the future.

Running a Subset of Tests
In the previous section, we used test classes to be able to run a subset of
tests. Running just a small batch of tests is handy while debugging or if you
want to limit the tests to a specific section of the code base you are working
on at the time.

pytest allows you to run a subset of tests in several ways:

Subset Syntax
Single test method pytest

path/test_module.py::TestClass::test_method

All tests in a class pytest path/test_module.py::TestClass

Single test function pytest path/test_module.py::test_function

All tests in a module pytest path/test_module.py

All tests in a directory pytest path

Tests matching a name
pattern

pytest -k pattern

Tests by marker Covered in Chapter 6, ​Markers​.

We’ve used everything but pattern and marker subsets so far. But let’s run
through examples anyway.

We’ll start from the top-level code directory so that we can use ch2 to show
the path in the command-line examples:

​ $ cd /path/to/code

Running a single test method, test class, or module:

​ $ pytest ch2/test_classes.py::TestEquality::test_equality

​ $ pytest ch2/test_classes.py::TestEquality

​ $ pytest ch2/test_classes.py

Running a single test function or module:

​ $ pytest ch2/test_card.py::test_defaults

​ $ pytest ch2/test_card.py

Running the whole directory:

​ $ pytest ch2

We’ll cover markers in Chapter 6, ​Markers​, but let’s talk about -k here.

The -k argument takes an expression, and tells pytest to run tests that
contain a substring that matches the expression. The substring can be part of
the test name or the test class name. Let’s take a look at using -k in action.

We know we can run the tests in the TestEquality class with:

​ $ pytest ch2/test_classes.py::TestEquality

We can also use -k and just specify the test class name:

​ $ cd /path/to/code/ch2

​ $ pytest -v -k TestEquality

​

​

​ =========================== test session starts ===========================

​ collected 24 items / 21 deselected / 3 selected

​

​ test_classes.py::TestEquality::test_equality PASSED [33%]

​ test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [66%]

​ test_classes.py::TestEquality::test_inequality PASSED [100%]

​

​ ==================== 3 passed, 21 deselected in 0.06s =====================

or even just part of the name:

​ $ pytest -v -k TestEq

​ =========================== test session starts ===========================

​ collected 24 items / 21 deselected / 3 selected

​

​ test_classes.py::TestEquality::test_equality PASSED [33%]

​ test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [66%]

​ test_classes.py::TestEquality::test_inequality PASSED [100%]

​

​ ==================== 3 passed, 21 deselected in 0.06s =====================

Let’s run all the tests with “equality” in their name:

​ $ pytest -v --tb=no -k equality

​ =========================== test session starts ===========================

​ collected 24 items / 17 deselected / 7 selected

​

​ test_card.py::test_equality PASSED [14%]

​ test_card.py::test_equality_with_diff_ids PASSED [28%]

​ test_card.py::test_inequality PASSED [42%]

​ test_card_fail.py::test_equality_fail FAILED [57%]

​ test_classes.py::TestEquality::test_equality PASSED [71%]

​ test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [85%]

​ test_classes.py::TestEquality::test_inequality PASSED [100%]

​

​ =============== 1 failed, 6 passed, 17 deselected in 0.08s ================

Yikes. One of those is our fail example. We can eliminate that by expanding
the expression:

​ $ pytest -v --tb=no -k "equality and not equality_fail"

​ =========================== test session starts ===========================

​ collected 24 items / 18 deselected / 6 selected

​

​ test_card.py::test_equality PASSED [16%]

​ test_card.py::test_equality_with_diff_ids PASSED [33%]

​ test_card.py::test_inequality PASSED [50%]

​ test_classes.py::TestEquality::test_equality PASSED [66%]

​ test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [83%]

​ test_classes.py::TestEquality::test_inequality PASSED [100%]

​

​ ==================== 6 passed, 18 deselected in 0.07s =====================

The keywords and, not, or, and parentheses are allowed to create complex
expressions. Here’s a test run of all tests with “dict” or “ids” in the name,
but not ones in the “TestEquality” class:

​ $ pytest -v --tb=no -k "(dict or ids) and not TestEquality"

​ =========================== test session starts ===========================

​ collected 24 items / 18 deselected / 6 selected

​

​ test_card.py::test_equality_with_diff_ids PASSED [16%]

​ test_card.py::test_from_dict PASSED [33%]

​ test_card.py::test_to_dict PASSED [50%]

​ test_classes.py::test_from_dict PASSED [66%]

​ test_classes.py::test_to_dict PASSED [83%]

​ test_structure.py::test_to_dict PASSED [100%]

​

​ ==================== 6 passed, 18 deselected in 0.08s =====================

The keyword flag, -k, along with and, not, and or, add quite a bit of
flexibility to selecting exactly the tests you want to run. This really proves
quite helpful when debugging failures or developing new tests.

Review
We’ve covered a lot in this chapter and are well on our way to testing the
Cards application.

The sample code should be downloaded into /path/to/code.

The Cards application (and pytest) is installed into a virtual
environment with the following steps:

cd /path/to/code

python -m venv venv --prompt cards

source venv/bin/activate (or venv\Scripts\activate.bat on Windows)
pip install ./cards_proj

pip install pytest

pytest uses assert rewriting, which allows us to use standard Python
assert expressions.

Tests can fail from assertion failures, from calls to fail(), or from any
uncaught exception.

pytest.raises() is used to test for expected exceptions.

A great way to structure tests is called Given-When-Then or Arrange-
Act-Assert.

Classes can be used to group tests.

Running small subsets of tests is handy while debugging, and pytest
allows you to run a small batch of tests in many ways.

The -vv command-line flag shows even more information during test
failures.

Exercises
We’ll use the Cards project in the rest of the book, so it’s important you are
able to install it and run tests against it.

If you haven’t already, download the code from the book’s web page[14] and
make sure you can install the Cards application locally with pip install

/path/to/code/cards_proj.

Navigate to the path/to/code/ch2 directory. Run pytest test_card.py.

You should see something like this:

​ ​$ ​​pytest​​ ​​test_card.py​

​ ========================= test session starts ==========================

​ collected 7 items

​

​ test_card.py [100%]

​

​ ========================== 7 passed in 0.07s ===========================

If you are not able to run pytest, or don’t get seven passing tests,
something’s wrong. Please try to resolve these issues before attempting to
go further.

These are things that might have gone wrong:

You installed pytest in a virtual environment, but forgot to activate the
environment.

You have pytest and cards installed in separate environments.

pip list --not-required shows all top level packages you have installed.
Make sure both pytest and cards show up in the list.

The following exercises are to get you started on playing with some code
and thinking about how to extend testing, as well as thinking about missing
tests.

1. The file test_card_mod.py in /path/to/code/exercises/ch2 is a copy of
test_card.py, but the import statement is replaced with the definition of
the Card class. Modify default values in the Card definition. For
example, replace some None values with an empty string or a filled-in
string. Do the tests catch the changes?

2. What happens if we change compare=False to compare=True?

3. Are there any missing tests? Any functionality not covered? Add some
test functions if there is something missing.

4. Try the -k option to select a test.

Using the options as they come up in the book will help you to get used to
the flexibility of the pytest command line. Even if you don’t remember the
options, if you use them a couple of times, you’ll remember that the
functionality is there, and can look for it again in pytest --help if you ever
need it in the future.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

What’s Next
An important point discussed in this chapter is the structure of Given-
When-Then or Arrange-Act-Assert, which helps us focus on what we are
testing with a test function. In the next chapter, you will learn about
fixtures, which allow us to focus even more by pushing the “Given” or
“Arrange” setup portion into a separate function. Pushing setup and
teardown into fixtures is extremely powerful, as it allows for an elegant
separation of complex system state and test code and keeps track of external
resources.

Footnotes

https://pragprog.com/titles/bopytest2/source_code

https://docs.python.org/3/library/dataclasses.html

https://doc.pytest.org/en/latest/example/reportingdemo.html

https://docs.pytest.org/en/latest/how-to/assert.html#assertion-introspection-details

https://docs.pytest.org/en/latest/reference/reference.html#exceptioninfo

https://xp123.com/articles/3a-arrange-act-assert

https://en.wikipedia.org/wiki/Test-driven_development

https://dannorth.net/introducing-bdd

https://pragprog.com/titles/bopytest2/source_code

Copyright © 2022, The Pragmatic Bookshelf.

https://pragprog.com/titles/bopytest2/source_code
https://docs.python.org/3/library/dataclasses.html
https://doc.pytest.org/en/latest/example/reportingdemo.html
https://docs.pytest.org/en/latest/how-to/assert.html#assertion-introspection-details
https://docs.pytest.org/en/latest/reference/reference.html#exceptioninfo
https://xp123.com/articles/3a-arrange-act-assert
https://en.wikipedia.org/wiki/Test-driven_development
https://dannorth.net/introducing-bdd
https://pragprog.com/titles/bopytest2/source_code

Chapter 3

pytest Fixtures

Now that you’ve used pytest to write and run test functions, let’s turn our
attention to test helper functions called fixtures, which are essential to
structuring test code for almost any non-trivial software system. Fixtures
are functions that are run by pytest before (and sometimes after) the actual
test functions. The code in the fixture can do whatever you want it to. You
can use fixtures to get a data set for the tests to work on. You can use
fixtures to get a system into a known state before running a test. Fixtures
are also used to get data ready for multiple tests.

In this chapter, you’ll learn how to create fixtures and learn how to work
with them. You’ll learn how to structure fixtures to hold both setup and
teardown code. You’ll use scope to allow fixtures to run once over many
tests, and learn how tests can use multiple fixtures. You’ll also learn how to
trace code execution through fixtures and test code.

But first, before you learn the ins and outs of fixtures and use them to help
test Cards, let’s look at a small example fixture and how fixtures and test
functions are connected.

Getting Started with Fixtures
Here’s a simple fixture that returns a number:

ch3/test_fixtures.py

​ ​import​ ​pytest​

​

​

​ @pytest.fixture()

​ ​def​ ​some_data​():

​ ​"""Return answer to ultimate question."""​

​ ​return​ 42

​ ​def​ ​test_some_data​(some_data):

​ ​"""Use fixture return value in a test."""​

​ ​assert​ some_data == 42

The @pytest.fixture() decorator is used to tell pytest that a function is a
fixture. When you include the fixture name in the parameter list of a test
function, pytest knows to run it before running the test. Fixtures can do
work, and can also return data to the test function.

You don’t need to have a complete understanding of Python decorators to
use the decorators included with pytest. pytest uses decorators to add
functionality and features to other functions. In this case, pytest.fixture() is
decorating the some_data() function. The test, test_some_data(), has the name
of the fixture, some_data, as a parameter. pytest will see this and look for a
fixture with this name.

The term fixture has many meanings in the programming and test
community, and even in the Python community. I use “fixture,” “fixture
function,” and “fixture method” interchangeably to refer to the
@pytest.fixture() decorated functions discussed in this chapter. Fixture can
also be used to refer to the resource that is being set up by the fixture
functions. Fixture functions often set up or retrieve some data that the test

http://media.pragprog.com/titles/bopytest2/code/ch3/test_fixtures.py

can work with. Sometimes this data is considered a fixture. For example, the
Django community often uses fixture to mean some initial data that gets
loaded into a database at the start of an application.

Regardless of other meanings, in pytest and in this book, test fixtures refer to
the mechanism pytest provides to allow the separation of “getting ready for”
and “cleaning up after” code from your test functions.

pytest treats exceptions differently during fixtures compared to during a test
function. An exception (or assert failure or call to pytest.fail()) that happens
during the test code proper results in a “Fail” result. However, during a
fixture, the test function is reported as “Error.” This distinction is helpful
when debugging why a test didn’t pass. If a test results in “Fail,” the failure
is somewhere in the test function (or something the function called). If a test
results in “Error,” the failure is somewhere in a fixture.

pytest fixtures are one of the unique core features that make pytest stand out
above other test frameworks, and are the reason why many people switch to
and stay with pytest. There are a lot of features and nuances about fixtures.
Once you get a good mental model of how they work, they will seem easy to
you. However, you have to play with them a while to get there, so let’s do
that next.

Using Fixtures for Setup and Teardown
Fixtures are going to help us a lot with testing the Cards application. The
Cards application is designed with an API that does most of the work and
logic, and a thin CLI. Especially because the user interface is rather thin on
logic, focusing most of our testing on the API will give us the most bang for
our buck. The Cards application also uses a database, and dealing with the
database is where fixtures are going to help out a lot.

Make Sure Cards Is Installed
Examples in this chapter require having the Cards application
installed. If you haven’t already installed the Cards application,
be sure to install it with cd code; pip install ./cards_proj. See ​
Installing the Sample Application​ for more information.

Let’s start by writing some tests for the count() method that supports the count

functionality. As a reminder, let’s play with count on the command line:

​ ​$ ​​cards​​ ​​count​

​ 0

​ ​$ ​​cards​​ ​​add​​ ​​first​​ ​​item​

​ ​$ ​​cards​​ ​​add​​ ​​second​​ ​​item​

​ ​$ ​​cards​​ ​​count​

​ 2

An initial test, checking that the count starts at zero, might look like this:

ch3/test_count_initial.py

​ ​from​ ​pathlib​ ​import​ Path

​ ​from​ ​tempfile​ ​import​ TemporaryDirectory

​ ​import​ ​cards​

​

​

​ ​def​ ​test_empty​():

http://media.pragprog.com/titles/bopytest2/code/ch3/test_count_initial.py

​ ​with​ TemporaryDirectory() ​as​ db_dir:

​ db_path = Path(db_dir)

​ db = cards.CardsDB(db_path)

​

​ count = db.count()

​ db.close()

​

​ ​assert​ count == 0

In order to call count(), we need a database object, which we get by calling
cards.CardsDB(db_path). The cards.CardsDB() function is a constructor; it returns
a CardsDB object. The db_path parameter needs to be a pathlib.Path object that
points to the database directory. The pathlib module was introduced in
Python 3.4 and pathlib.Path[15] objects are the standard way to represent file
system paths. For testing, a temporary directory works, which we get from
tempfile.TemporaryDirectory(). There are other ways to get all of this done, but
this works for now.

This test function really isn’t too painful. It’s only a few lines of code. Let’s
look at the problems anyway. There is code to get the database set up before
we call count() that isn’t really what we want to test. There is the call to
db.close() before the assert statement. It would seem better to place this at the
end of the function, but we have to call it before assert, because if the assert

statement fails, it won’t be called.

These problems are resolved with a pytest fixture:

ch3/test_count.py

​ ​import​ ​pytest​

​

​

​ @pytest.fixture()

​ ​def​ ​cards_db​():

​ ​with​ TemporaryDirectory() ​as​ db_dir:

​ db_path = Path(db_dir)

​ db = cards.CardsDB(db_path)

​ ​yield​ db

http://media.pragprog.com/titles/bopytest2/code/ch3/test_count.py

​ db.close()

​

​

​ ​def​ ​test_empty​(cards_db):

​ ​assert​ cards_db.count() == 0

Right off the bat we can see that the test function itself is way easier to read,
as we’ve pushed all the database initialization into a fixture called cards_db.

The cards_db fixture is “setting up” for the test by getting the database ready.
It’s then yield-ing the database object. That’s when the test gets to run. And
then after the test runs, it closes the database.

Fixture functions run before the tests that use them. If there is a yield in the
function, it stops there, passes control to the tests, and picks up on the next
line after the tests are done. The code above the yield is “setup” and the code
after yield is “teardown.” The code after the yield, the teardown, is guaranteed
to run regardless of what happens during the tests.

In our example, the yield happens within a context manager with block for the
temporary directory. That directory stays around while the fixture is in use
and the tests run. After the test is done, control passes back to the fixture, the
db.close() can run, and then the with block can complete and clean up the
directory.

Remember: pytest looks at the specific name of the arguments to our test and
then looks for a fixture with the same name. We never call fixture functions
directly. pytest does that for us.

You can use fixtures in multiple tests. Here’s another one:

ch3/test_count.py

​ ​def​ ​test_two​(cards_db):

​ cards_db.add_card(cards.Card(​"first"​))

​ cards_db.add_card(cards.Card(​"second"​))

​ ​assert​ cards_db.count() == 2

http://media.pragprog.com/titles/bopytest2/code/ch3/test_count.py

test_two() uses the same cards_db fixture. This time, we take the empty
database and add two cards before checking the count. We can now use
cards_db for any test that needs a configured database to run. The individual
tests, such as test_empty() and test_two() can be kept smaller and focus on
what we are testing, and not the setup and teardown bits.

The fixture and test function are separate functions. Carefully naming your
fixtures to reflect the work being done in the fixture or the object returned
from the fixture, or both, will help with readability.

While writing and debugging test functions, it’s frequently helpful to
visualize when the setup and teardown portions of fixtures run with respect
the tests using them. The next section describes --setup-show to help with this
visualization.

Tracing Fixture Execution with –setup-show
Now that we have two tests using the same fixture, it would be interesting
to know exactly in what order everything is getting called.

Fortunately, pytest provides the command-line flag, --setup-show, which
shows us the order of operations of tests and fixtures, including the setup
and teardown phases of the fixtures:

​ ​$ ​​cd​​ ​​/path/to/code/ch3​

​ ​$ ​​pytest​​ ​​--setup-show​​ ​​test_count.py​

​ ======================== test session starts =========================

​ collected 2 items

​

​ test_count.py

​ SETUP F cards_db

​ ch3/test_count.py::test_empty (fixtures used: cards_db).

​ TEARDOWN F cards_db

​ SETUP F cards_db

​ ch3/test_count.py::test_two (fixtures used: cards_db).

​ TEARDOWN F cards_db

​

​ ========================= 2 passed in 0.02s ==========================

We can see that our test runs, surrounded by the SETUP and TEARDOWN

portions of the cards_db fixture. The F in front of the fixture name indicates
that the fixture is using function scope, meaning the fixture is called before
each test function that uses it, and torn down after each function that uses it.
Let’s take a look at scope next.

Specifying Fixture Scope
Each fixture has a specific scope, which defines the order of when the setup
and teardown run relative to running of all the test function using the fixture.
The scope dictates how often the setup and teardown get run when it’s used
by multiple test functions.

The default scope for fixtures is function scope. That means the setup portion
of the fixture will run before each test that needs it runs. Likewise, the
teardown portion runs after the test is done, for each test.

However, there may be times when you don’t want that to happen. Perhaps
setting up and connecting to the database is time-consuming, or you are
generating large sets of data, or you are retrieving data from a server or a
slow device. Really, you can do anything you want within a fixture, and
some of that may be slow.

I could show you an example where I put a time.sleep(1) statement in the
fixture when we are connecting to the database to simulate a slow resource,
but I think it suffices that you imagine it. So, if we want to avoid that slow
connection twice in our example, or imagine 100 seconds for a hundred
tests, we can change the scope such that the slow part happens once for
multiple tests.

Let’s change the scope of our fixture so the database is only opened once,
and then talk about different scopes.

It’s a one-line change, adding scope="module" to the fixture decorator:

ch3/test_mod_scope.py

» @pytest.fixture(scope=​"module"​)

​ ​def​ ​cards_db​():

​ ​with​ TemporaryDirectory() ​as​ db_dir:

​ db_path = Path(db_dir)

http://media.pragprog.com/titles/bopytest2/code/ch3/test_mod_scope.py

​ db = cards.CardsDB(db_path)

​ ​yield​ db

​ db.close()

Now let’s run it again:

​ ​$ ​​pytest​​ ​​--setup-show​​ ​​test_mod_scope.py​

​ ========================== test session starts ==========================

​ collected 2 items

​

​ test_mod_scope.py

​ SETUP M cards_db

​ ch3/test_mod_scope.py::test_empty (fixtures used: cards_db).

​ ch3/test_mod_scope.py::test_two (fixtures used: cards_db).

​ TEARDOWN M cards_db

​

​ =========================== 2 passed in 0.03s ===========================

Whew! We saved that imaginary one second of setup time for the second test
function. The change to module scope allows any test in this module that
uses the cards_db fixture to share the same instance of it and not incur extra
setup/teardown time.

The fixture decorator scope parameter allows more than function and module.
There’s also class, package, and session. The default scope is function.

Here’s a rundown of each scope value:

scope=’function’

Run once per test function. The setup portion is run before each test
using the fixture. The teardown portion is run after each test using the
fixture. This is the default scope used when no scope parameter is
specified.

scope=’class’

Run once per test class, regardless of how many test methods are in the
class.

scope=’module’

Run once per module, regardless of how many test functions or
methods or other fixtures in the module use it.

scope=’package’

Run once per package, or test directory, regardless of how many test
functions or methods or other fixtures in the package use it.

scope=’session’

Run once per session. All test methods and functions using a fixture of
session scope share one setup and teardown call.

Scope is defined with the fixture. I know this is obvious from the code, but
it’s an important point to make sure you fully grok. The scope is set at the
definition of a fixture, and not at the place where it’s called. The test
functions that use a fixture don’t control how often a fixture is set up and
torn down.

With a fixture defined within a test module, the session and package scopes
act just like module scope. In order to make use of these other scopes, we
need to put them in a conftest.py file.

Sharing Fixtures through conftest.py
You can put fixtures into individual test files, but to share fixtures among
multiple test files, you need to use a conftest.py file either in the same
directory as the test file that’s using it or in some parent directory. The
conftest.py file is also optional. It is considered by pytest as a “local plugin”
and can contain hook functions and fixtures.

Let’s start by moving the cards_db fixture out of test_count.py and into a
conftest.py file in the same directory:

ch3/a/conftest.py

​ ​from​ ​pathlib​ ​import​ Path

​ ​from​ ​tempfile​ ​import​ TemporaryDirectory

​ ​import​ ​cards​

​ ​import​ ​pytest​

​

​

​ @pytest.fixture(scope=​"session"​)

​ ​def​ ​cards_db​():

​ ​"""CardsDB object connected to a temporary database"""​

​ ​with​ TemporaryDirectory() ​as​ db_dir:

​ db_path = Path(db_dir)

​ db = cards.CardsDB(db_path)

​ ​yield​ db

​ db.close()

ch3/a/test_count.py

​ ​import​ ​cards​

​

​

​ ​def​ ​test_empty​(cards_db):

​ ​assert​ cards_db.count() == 0

​

​

​ ​def​ ​test_two​(cards_db):

​ cards_db.add_card(cards.Card(​"first"​))

http://media.pragprog.com/titles/bopytest2/code/ch3/a/conftest.py
http://media.pragprog.com/titles/bopytest2/code/ch3/a/test_count.py

​ cards_db.add_card(cards.Card(​"second"​))

​ ​assert​ cards_db.count() == 2

And yep, it still works:

​ ​$ ​​cd​​ ​​/path/to/code/ch3/a/​

​ ​$ ​​pytest​​ ​​--setup-show​​ ​​test_count.py​

​ ========================== test session starts ==========================

​ collected 2 items

​

​ test_count.py

​ SETUP S cards_db

​ ch3/a/test_count.py::test_empty (fixtures used: cards_db).

​ ch3/a/test_count.py::test_two (fixtures used: cards_db).

​ TEARDOWN S cards_db

​

​ =========================== 2 passed in 0.01s ===========================

Fixtures can only depend on other fixtures of their same scope or wider. So a
function-scope fixture can depend on other function-scope fixtures (the
default, and used in the Cards project so far). A function-scope fixture can
also depend on class-, module-, and session-scope fixtures, but you can’t go
in the reverse order.

Don’t Import conftest.py
Although conftest.py is a Python module, it should not be
imported by test files. The conftest.py file gets read by pytest
automatically, so you don’t have import conftest anywhere.

Finding Where Fixtures Are Defined
We’ve moved a fixture out of the test module and into a conftest.py file. We
can have conftest.py files at really every level of our test directory. Tests can
use any fixture that is in the same test module as a test function, or in a
conftest.py file in the same directory, or in any level of parent directory up to
the root of the tests.

That brings up a problem if we can’t remember where a particular fixture is
located and we want to see the source code. Of course, pytest has our back.
Just use --fixtures and we are good to go.

Let’s first try it:

​ ​$ ​​cd​​ ​​/path/to/code/ch3/a/​

​ ​$ ​​pytest​​ ​​--fixtures​​ ​​-v​

​ ​...​

​ -------------------- fixtures defined from conftest ---------------------

​ cards_db [session scope] -- conftest.py:7

​ CardsDB object connected to a temporary database

​ ​...​

pytest shows us a list of all available fixtures our test can use. This list
includes a bunch of builtin fixtures that we’ll look at in the next chapter, as
well as those provided by plugins. The fixtures found in conftest.py files are
at the bottom. If you supply a directory, pytest will list the fixtures available
to tests in that directory. If you supply a test file name, pytest will include
those defined in test modules as well.

pytest also includes the first line of the docstring from the fixture, if you’ve
defined one, and the file and line number where the fixture is defined. It
will also include the path if it’s not in your current directory.

Adding -v will include the entire docstring. Note that for pytest 6.x, we have
to use -v to get the path and line numbers. Those were added to --fixturues
without verbose for pytest 7.

You can also use --fixtures-per-test to see what fixtures are used by each test
and where the fixtures are defined:

​ ​$ ​​pytest​​ ​​--fixtures-per-test​​ ​​test_count.py::test_empty​

​ =========================== test session starts ===========================

​ collected 1 item

​

​ ----------------------- fixtures used by test_empty -----------------------

​ ---------------------------- (test_count.py:4) ----------------------------

​ cards_db -- conftest.py:7

​ CardsDB object connected to a temporary database

​

​ ========================== no tests ran in 0.00s ==========================

In this example we’ve specified an individual test, test_count.py::test_empty.
However, the flag works for files or directories as well. Armed with --
fixtures and --fixtures-per-test, you’ll never again wonder where a fixture is
defined.

Using Multiple Fixture Levels
There’s a little bit of a problem with our test code right now. The problem is
the tests both depend on the database being empty to start with, but they use
the same database instance in the module-scope and session-scope versions.

The problem becomes very clear if we add a third test:

ch3/a/test_three.py

​ ​def​ ​test_three​(cards_db):

​ cards_db.add_card(cards.Card(​"first"​))

​ cards_db.add_card(cards.Card(​"second"​))

​ cards_db.add_card(cards.Card(​"third"​))

​ ​assert​ cards_db.count() == 3

It works fine by itself, but not when it’s run after test_count.py::test_two:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_three.py​

​ ========================== test session starts ==========================

​ collected 1 item

​

​ test_three.py::test_three PASSED [100%]

​

​ =========================== 1 passed in 0.01s ===========================

​ ​$ ​​pytest​​ ​​-v​​ ​​--tb=line​​ ​​test_count.py​​ ​​test_three.py​

​ ========================== test session starts ==========================

​ collected 3 items

​

​ test_count.py::test_empty PASSED [33%]

​ test_count.py::test_two PASSED [66%]

​ test_three.py::test_three FAILED [100%]

​

​ =============================== FAILURES ================================

​ /path/to/code/ch3/a/test_three.py:8: assert 5 == 3

​ ======================== short test summary info ========================

​ FAILED test_three.py::test_three - assert 5 == 3

​ ====================== 1 failed, 2 passed in 0.01s ======================

http://media.pragprog.com/titles/bopytest2/code/ch3/a/test_three.py

There are five elements in the database because the previous test added two
items before test_three ran. There’s a time-honored rule of thumb that says
tests shouldn’t rely on the run order. And clearly, this does. test_three passes
just fine if we run it by itself, but fails if it is run after test_two.

If we still want to try to stick with one open database, but start all the tests
with zero elements in the database, we can do that by adding another fixture:

ch3/b/conftest.py

​ @pytest.fixture(scope=​"session"​)

​ ​def​ ​db​():

​ ​"""CardsDB object connected to a temporary database"""​

​ ​with​ TemporaryDirectory() ​as​ db_dir:

​ db_path = Path(db_dir)

​ db_ = cards.CardsDB(db_path)

​ ​yield​ db_

​ db_.close()

​

​

​ @pytest.fixture(scope=​"function"​)

​ ​def​ ​cards_db​(db):

​ ​"""CardsDB object that's empty"""​

​ db.delete_all()

​ ​return​ db

I’ve renamed the old cards_db to db and made it session scope.

The cards_db fixture has db named in its parameter list, which means it
depends on the db fixture. Also, cards_db is function scoped, which is a more
narrow scope than db. When fixtures depend on other fixtures, they can only
use fixtures that have equal or wider scope.

Let’s see if it works:

​ ​$ ​​cd​​ ​​/path/to/code/ch3/b/​

​ ​$ ​​pytest​​ ​​--setup-show​

​

​

http://media.pragprog.com/titles/bopytest2/code/ch3/b/conftest.py

​ ========================== test session starts ==========================

​ collected 3 items

​

​ test_count.py

​ SETUP S db

​ SETUP F cards_db (fixtures used: db)

​ ch3/b/test_count.py::test_empty (fixtures used: cards_db, db).

​ TEARDOWN F cards_db

​ SETUP F cards_db (fixtures used: db)

​ ch3/b/test_count.py::test_two (fixtures used: cards_db, db).

​ TEARDOWN F cards_db

​ test_three.py

​ SETUP F cards_db (fixtures used: db)

​ ch3/b/test_three.py::test_three (fixtures used: cards_db, db).

​ TEARDOWN F cards_db

​ TEARDOWN S db

​

​ =========================== 3 passed in 0.01s ===========================

We can see that the setup for db happens first, and has session scope (from
the S). The setup for cards_db happens next, and before each test function
call, and has function scope (from the F). Also, all three tests pass.

Using multiple stage fixtures like this can provide some incredible speed
benefits and maintain test order independence.

Using Multiple Fixtures per Test or Fixture
Another way we can use multiple fixtures is just to use more than one in
either a function or a fixture. As an example, we can put some pre-canned
tasks together to test with as a fixture:

ch3/c/conftest.py

​ @pytest.fixture(scope=​"session"​)

​ ​def​ ​some_cards​():

​ ​"""List of different Card objects"""​

​ ​return​ [

​ cards.Card(​"write book"​, ​"Brian"​, ​"done"​),

​ cards.Card(​"edit book"​, ​"Katie"​, ​"done"​),

​ cards.Card(​"write 2nd edition"​, ​"Brian"​, ​"todo"​),

​ cards.Card(​"edit 2nd edition"​, ​"Katie"​, ​"todo"​),

​]

Then we can use both empty_db and some_cards in a test:

ch3/c/test_some.py

​ ​def​ ​test_add_some​(cards_db, some_cards):

​ expected_count = len(some_cards)

​ ​for​ c ​in​ some_cards:

​ cards_db.add_card(c)

​ ​assert​ cards_db.count() == expected_count

Fixtures can also use multiple other fixtures:

ch3/c/conftest.py

​ @pytest.fixture(scope=​"function"​)

​ ​def​ ​non_empty_db​(cards_db, some_cards):

​ ​"""CardsDB object that's been populated with 'some_cards'"""​

​ ​for​ c ​in​ some_cards:

​ cards_db.add_card(c)

​ ​return​ cards_db

http://media.pragprog.com/titles/bopytest2/code/ch3/c/conftest.py
http://media.pragprog.com/titles/bopytest2/code/ch3/c/test_some.py
http://media.pragprog.com/titles/bopytest2/code/ch3/c/conftest.py

The fixture non_empty_db has to be function scope because it uses cards_db,
which is function scope. If you try to make non_empty_db module scope or
wider, pytest will throw an error. Remember that if you don’t specify a
scope, you get function-scope fixtures.

And now, tests that need a database with stuff in it can do that easily:

ch3/c/test_some.py

​ ​def​ ​test_non_empty​(non_empty_db):

​ ​assert​ non_empty_db.count() > 0

We’ve discussed how different fixture scopes work and how to use different
scopes in different fixtures to our advantage. However, there may be times
where you need a scope to be determined at runtime. That’s possible with
dynamic scoping.

http://media.pragprog.com/titles/bopytest2/code/ch3/c/test_some.py

Deciding Fixture Scope Dynamically
Let’s say we have the fixture setup as we do now, with db at session scope
and cards_db at function scope, but we’re worried about it. The cards_db
fixture is empty because it calls delete_all(). But what if we don’t completely
trust that delete_all() function yet, and want to put in place some way to
completely set up the database for each test function?

We can do this by dynamically deciding the scope of the db fixture at
runtime. First, we change the scope of db:

ch3/d/conftest.py

​ @pytest.fixture(scope=db_scope)

​ ​def​ ​db​():

​ ​"""CardsDB object connected to a temporary database"""​

​ ​with​ TemporaryDirectory() ​as​ db_dir:

​ db_path = Path(db_dir)

​ db_ = cards.CardsDB(db_path)

​ ​yield​ db_

​ db_.close()

Instead of a specific scope, we’ve put in a function name, db_scope. So we
also have to write that function:

ch3/d/conftest.py

​ ​def​ ​db_scope​(fixture_name, config):

​ ​if​ config.getoption(​"--func-db"​, None):

​ ​return​ ​"function"​

​ ​return​ ​"session"​

There are many ways we could have figured out which scope to use, but in
this case, I chose to depend on a new command-line flag, --func-db. In order
to allow pytest to allow us to use this new flag, we need to write a hook
function (which I’ll cover in more depth in Chapter 15, ​Building Plugins​):

http://media.pragprog.com/titles/bopytest2/code/ch3/d/conftest.py
http://media.pragprog.com/titles/bopytest2/code/ch3/d/conftest.py

ch3/d/conftest.py

​ ​def​ ​pytest_addoption​(parser):

​ parser.addoption(

​ ​"--func-db"​,

​ action=​"store_true"​,

​ default=False,

​ help=​"new db for each test"​,

​)

After all that, the default behavior is the same as before, with session-scope
db:

​ ​$ ​​pytest​​ ​​--setup-show​​ ​​test_count.py​

​ ========================== test session starts ==========================

​ collected 2 items

​

​ test_count.py

​ SETUP S db

​ SETUP F cards_db (fixtures used: db)

​ ch3/d/test_count.py::test_empty (fixtures used: cards_db, db).

​ TEARDOWN F cards_db

​ SETUP F cards_db (fixtures used: db)

​ ch3/d/test_count.py::test_two (fixtures used: cards_db, db).

​ TEARDOWN F cards_db

​ TEARDOWN S db

​

​ =========================== 2 passed in 0.01s ===========================

But when we use the new flag, we get a function-scope db fixture:

​ ​$ ​​pytest​​ ​​--func-db​​ ​​--setup-show​​ ​​test_count.py​

​ =========================== test session starts ===========================

​ collected 2 items

​

​ test_count.py

​ SETUP F db

​ SETUP F cards_db (fixtures used: db)

​ ch3/d/test_count.py::test_empty (fixtures used: cards_db, db).

​ TEARDOWN F cards_db

​ TEARDOWN F db

​ SETUP F db

http://media.pragprog.com/titles/bopytest2/code/ch3/d/conftest.py

​ SETUP F cards_db (fixtures used: db)

​ ch3/d/test_count.py::test_two (fixtures used: cards_db, db).

​ TEARDOWN F cards_db

​ TEARDOWN F db

​

​ ============================ 2 passed in 0.01s ============================

The database is now set up before each test function, and torn down
afterwards.

Using autouse for Fixtures That Always Get Used
So far in this chapter, all of the fixtures used by tests were named by the
tests or another fixture in a parameter list. However, you can use
autouse=True to get a fixture to run all of the time. This works well for code
you want to run at certain times, but tests don’t really depend on any system
state or data from the fixture.

Here’s a rather contrived example:

ch3/test_autouse.py

​ ​import​ ​pytest​

​ ​import​ ​time​

​

​

​ @pytest.fixture(autouse=True, scope=​"session"​)

​ ​def​ ​footer_session_scope​():

​ ​"""Report the time at the end of a session."""​

​ ​yield​

​ now = time.time()

​ ​print​(​"--"​)

​ ​print​(

​ ​"finished : {}"​.format(

​ time.strftime(​"​​%​​d ​​%​​b ​​%​​X"​, time.localtime(now))

​)

​)

​ ​print​(​"-----------------"​)

​

​

​ @pytest.fixture(autouse=True)

​ ​def​ ​footer_function_scope​():

​ ​"""Report test durations after each function."""​

​ start = time.time()

​ ​yield​

​ stop = time.time()

​ delta = stop - start

​ ​print​(​"​​\n​​test duration : {:0.3} seconds"​.format(delta))

​

http://media.pragprog.com/titles/bopytest2/code/ch3/test_autouse.py

​

​ ​def​ ​test_1​():

​ ​"""Simulate long-ish running test."""​

​ time.sleep(1)

​

​

​ ​def​ ​test_2​():

​ ​"""Simulate slightly longer test."""​

​ time.sleep(1.23)

We want to add test times after each test, and the date and current time at the
end of the session. Here’s what these look like:

​ ​$ ​​cd​​ ​​/path/to/code/ch3​

​ ​$ ​​pytest​​ ​​-v​​ ​​-s​​ ​​test_autouse.py​

​ ===================== test session starts ======================

​ collected 2 items

​

​ test_autouse.py::test_1 PASSED

​ test duration : 1.0 seconds

​

​ test_autouse.py::test_2 PASSED

​ test duration : 1.24 seconds

​ --

​ finished : 25 Jul 16:18:27

​ -----------------

​ =================== 2 passed in 2.25 seconds ===================

I used the -s flag in this example. It’s a shortcut flag for --capture=no that tells
pytest to turn off output capture. I used it because the new fixtures have print
functions in them, and I wanted to see the output. Without turning off output
capture, pytest only prints the output of tests that fail.

The autouse feature is good to have around. But it’s more of an exception
than a rule. Opt for named fixtures unless you have a really great reason not
to.

Renaming Fixtures
The name of a fixture, listed in the parameter list of tests and other fixtures
using it, is usually the same as the function name of the fixture. However,
pytest allows you to rename fixtures with a name parameter to
@pytest.fixture():

ch3/test_rename_fixture.py

​ ​import​ ​pytest​

​

​

​ @pytest.fixture(name=​"ultimate_answer"​)

​ ​def​ ​ultimate_answer_fixture​():

​ ​return​ 42

​

​

​ ​def​ ​test_everything​(ultimate_answer):

​ ​assert​ ultimate_answer == 42

I’ve run across a few examples where renaming is desirable. As in this
example, some people like to name their fixtures with a _fixture suffix or
fixture_ prefix or similar.

One instance where renaming is useful is when the most obvious fixture
name already exists as an existing variable or function name:

ch3/test_rename_2.py

​ ​import​ ​pytest​

​ ​from​ ​somewhere​ ​import​ app

​

​

​ @pytest.fixture(scope=​"session"​, name=​"app"​)

​ ​def​ ​_app​():

​ ​"""The app object"""​

​ ​yield​ app()

​

http://media.pragprog.com/titles/bopytest2/code/ch3/test_rename_fixture.py
http://media.pragprog.com/titles/bopytest2/code/ch3/test_rename_2.py

​

​ ​def​ ​test_that_uses_app​(app):

​ ​assert​ app.some_property == ​"something"​

I usually only use fixture renaming with a fixture that lives in the same
module as the tests using it, as renaming a fixture can make it harder to find
where it’s defined. However, remember that there is always --fixtures, which
can help you find where a fixture lives.

Review
In this chapter, we covered a lot about fixtures:

Fixtures are @pytest.fixture() decorated functions.

Test functions or other fixtures depend on a fixture by putting its name
in their parameter list.

Fixtures can return data using return or yield.

Code before the yield is the setup code. Code after the yield is the
teardown code.

Fixtures can be set to function, class, module, package, or session
scope. The default is function scope. You can even define the scope
dynamically.

Multiple test functions can use the same fixture.

Multiple test modules can use the same fixture if it’s in a conftest.py

file.

Multiple fixtures at different scope can speed up test suites while
maintaining test isolation.

Tests and fixtures can use multiple fixtures.

Autouse fixtures don’t have to be named by the test function.

You can have the name of a fixture be different than the fixture
function name.

We also covered a few new command-line flags:

pytest --setup-show is used to see the order of execution.
pytest --fixtures is used to list available fixtures and where the fixture is
located.
-s and --capture=no allow print statements to be seen even in passing
tests.

Exercises
Fixtures are often one of the trickier parts of pytest for people to get used
to. Going through the following exercises will

help solidify your understanding of how fixtures work,
allow you to use different fixture scopes, and
internalize the run sequence with the visual output of --setup-show.

1. Create a test file called test_fixtures.py.

2. Write a few data fixtures—functions with the @pytest.fixture() decorator
—that return some data (perhaps a list, dictionary, or tuple).

3. For each fixture, write at least one test function that uses it.

4. Write two tests that use the same fixture.

5. Run pytest --setup-show test_fixtures.py. Are all the fixtures run before
every test?

6. Add scope=’module’ to the fixture from Exercise 4.

7. Re-run pytest --setup-show test_fixtures.py. What changed?

8. For the fixture from Exercise 6, change return <data> to yield <data>.

9. Add print statements before and after the yield.

10. Run pytest -s -v test_fixtures.py. Does the output make sense?

11. Run pytest --fixtures. Can you see your fixtures listed?

12. Add a docstring to one of your fixtures, if you didn’t include them
already. Re-run pytest --fixtures to see the description show up.

[15]

What’s Next
The pytest fixture implementation is flexible enough to use fixtures like
building blocks to build up test setup and teardown. Because fixtures are so
flexible, I use them heavily to push as much of the setup of my tests into
fixtures as I can.

In this chapter, we looked at pytest fixtures you write yourself, but pytest
provides loads of useful fixtures for you to use right out of the box. We’ll
take a closer look at some of the builtin fixtures in the next chapter.

Footnotes

https://docs.python.org/3/library/pathlib.html#basic-use

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.python.org/3/library/pathlib.html#basic-use

Chapter 4

Builtin Fixtures

In the previous chapter, you learned what fixtures are, how to write them,
and how to use them for test data as well as setup and teardown code. You
also used conftest.py for sharing fixtures between tests in multiple test files.

Reusing common fixtures is such a good idea that the pytest developers
included some commonly used fixtures with pytest. The builtin fixtures that
come prepackaged with pytest can help you do some pretty useful things in
your tests easily and consistently. For example, pytest includes builtin
fixtures that can handle temporary directories and files, access command-
line options, communicate between test sessions, validate output streams,
modify environment variables, and interrogate warnings. The builtin
fixtures are extensions to the core functionality of pytest.

We’ll take a look at a few of the builtin fixtures in this chapter:

tmp_path and tmp_path_factory—for temporary directories

capsys—for capturing output

monkeypatch—for changing the environment or application code, like a
lightweight form of mocking

This is a good mix that shows you some of the extra capabilities you can get
with creative fixture use. I encourage you to read up on other builtin

fixtures by reading the output of pytest --fixtures.

Using tmp_path and tmp_path_factory
The tmp_path and tmp_path_factory fixtures are used to create temporary
directories. The tmp_path function-scope fixture returns a pathlib.Path instance
that points to a temporary directory that sticks around during your test and a
bit longer. The tmp_path_factory session-scope fixture returns a
TempPathFactory object. This object has a mktemp() function that returns Path

objects. You can use mktemp() to create multiple temporary directories.

You use them like this:

ch4/test_tmp.py

​ ​def​ ​test_tmp_path​(tmp_path):

​ file = tmp_path / ​"file.txt"​

​ file.write_text(​"Hello"​)

​ ​assert​ file.read_text() == ​"Hello"​

​

​

​ ​def​ ​test_tmp_path_factory​(tmp_path_factory):

» path = tmp_path_factory.mktemp(​"sub"​)

​ file = path / ​"file.txt"​

​ file.write_text(​"Hello"​)

​ ​assert​ file.read_text() == ​"Hello"​

Their usage is almost identical except for the following:

With tmp_path_factory, you have to call mktemp() to get a directory.
tmp_path_factory is session scope.
tmp_path is function scope.

In the previous chapter, we used the standard library
tempfile.TemporaryDirectory for our db fixture:

ch4/conftest_from_ch3.py

​ ​from​ ​pathlib​ ​import​ Path

http://media.pragprog.com/titles/bopytest2/code/ch4/test_tmp.py
http://media.pragprog.com/titles/bopytest2/code/ch4/conftest_from_ch3.py

​ ​from​ ​tempfile​ ​import​ TemporaryDirectory

​

​

​ @pytest.fixture(scope=​"session"​)

​ ​def​ ​db​():

​ ​"""CardsDB object connected to a temporary database"""​

​ ​with​ TemporaryDirectory() ​as​ db_dir:

​ db_path = Path(db_dir)

​ db_ = cards.CardsDB(db_path)

​ ​yield​ db_

​ db_.close()

Let’s use one of the new builtins instead. Because our db fixture is session
scope, we cannot use tmp_path, as session-scope fixtures cannot use
function-scope fixtures. We can use tmp_path_factory:

ch4/conftest.py

​ @pytest.fixture(scope=​"session"​)

​ ​def​ ​db​(tmp_path_factory):

​ ​"""CardsDB object connected to a temporary database"""​

​ db_path = tmp_path_factory.mktemp(​"cards_db"​)

​ db_ = cards.CardsDB(db_path)

​ ​yield​ db_

​ db_.close()

Nice. Notice that this also allows us to remove two import statements, as we
don’t need to import pathlib or tempfile.

Following are two related builtin fixtures:

*tmpdir—Similar to tmp_path, but returns a py.path.local object. This
fixture was available in pytest long before tmp_path. py.path.local

predates pathlib, which was added in Python 3.4. py.path.local is being
phased out slowly in pytest in favor of the stdlib pathlib version.
Therefore, I recommend using tmp_path.

tmpdir_factory—Similar to tmp_path_factory, except its mktemp function
returns a py.path.local object instead of a pathlib.Path object

http://media.pragprog.com/titles/bopytest2/code/ch4/conftest.py

The base directory for all of the pytest temporary directory fixtures is
system- and user-dependent, and includes a pytest-NUM part, where NUM is
incremented for every session. The base directory is left as-is immediately
after a session to allow you to examine it in case of test failures. pytest does
eventually clean them up. Only the most recent few temporary base
directories are left on the system.

You can also specify your own base directory if you need to with pytest --

basetemp=mydir.

Using capsys
Sometimes the application code is supposed to output something to stdout,
stderr, and so on. As it happens, the Cards sample project has a command-
line interface that should be tested.

The command, cards version, is supposed to output the version:

​ ​$ ​​cards​​ ​​version​

​ 1.0.0

The version is also available from the API:

​ ​$ ​​python​​ ​​-i​

​ ​>>>​​ ​​import​​ ​​cards​

​ ​>>>​​ ​​cards.__version__​

​ '1.0.0'

One way to test this would be to actually run the command with
subprocess.run(), grab the output, and compare it to the version from the API:

ch4/test_version.py

​ ​import​ ​subprocess​

​

​

​ ​def​ ​test_version_v1​():

​ process = subprocess.run(

​ [​"cards"​, ​"version"​], capture_output=True, text=True

​)

​ output = process.stdout.rstrip()

​ ​assert​ output == cards.__version__

The rstrip() is used to remove the newline. (I started with this example
because sometimes calling a subprocess and reading the output is your only
option. However, it makes a lousy capsys example.)

http://media.pragprog.com/titles/bopytest2/code/ch4/test_version.py

The capsys fixture enables the capturing of writes to stdout and stderr. We can
call the method that implements this in the CLI directly, and use capsys to
read the output:

ch4/test_version.py

​ ​import​ ​cards​

​

​

​ ​def​ ​test_version_v2​(capsys):

​ cards.cli.version()

​ output = capsys.readouterr().out.rstrip()

​ ​assert​ output == cards.__version__

The capsys.readouterr() method returns a namedtuple that has out and err.
We’re just reading the out part and then stripping the newline with rstrip().

Another feature of capsys is the ability to temporarily disable normal output
capture from pytest. pytest usually captures the output from your tests and
the application code. This includes print statements.

Here’s a small example:

ch4/test_print.py

​ ​def​ ​test_normal​():

​ ​print​(​"​​\n​​normal print"​)

If we run it, we don’t see any output:

​ ​$ ​​cd​​ ​​/path/to/code/ch4​

​ ​$ ​​pytest​​ ​​test_print.py::test_normal​

​ ======================= test session starts =======================

​ collected 1 item

​

​ test_print.py . [100%]

​

​ ======================== 1 passed in 0.00s ========================

http://media.pragprog.com/titles/bopytest2/code/ch4/test_version.py
http://media.pragprog.com/titles/bopytest2/code/ch4/test_print.py

pytest captures all the output. It helps keep the command-line session
cleaner.

However, there may be times when we want to see all the output, even on
passing tests. We can use the -s or --capture=no flag for that:

​ ​$ ​​pytest​​ ​​-s​​ ​​test_print.py::test_normal​

​ ======================= test session starts =======================

​ collected 1 item

​

​ test_print.py

» normal print

​ .

​

​ ======================== 1 passed in 0.00s ========================

pytest will then show the output for tests that fail, at the end.

Here’s a simple failing test:

ch4/test_print.py

​ ​def​ ​test_fail​():

​ ​print​(​"​​\n​​print in failing test"​)

​ ​assert​ False

The output is shown:

​ ​$ ​​pytest​​ ​​test_print.py::test_fail​

​ ======================= test session starts =======================

​ collected 1 item

​

​ test_print.py F [100%]

​

​ ============================ FAILURES =============================

​ ____________________________ test_fail ____________________________

​

​ def test_fail():

​ print("\nprint in failing test")

​ ​>​​ ​​assert​​ ​​False​

​ E assert False

http://media.pragprog.com/titles/bopytest2/code/ch4/test_print.py

​

​ test_print.py:9: AssertionError

» ---------------------- Captured stdout call -----------------------

»

» print in failing test

​ ===================== short test summary info =====================

​ FAILED test_print.py::test_fail - assert False

​ ======================== 1 failed in 0.04s ========================

Another way to always include output is with capsys.disabled():

ch4/test_print.py

​ ​def​ ​test_disabled​(capsys):

​ ​with​ capsys.disabled():

​ ​print​(​"​​\n​​capsys disabled print"​)

The output in the with block will always be displayed, even without the -s
flag:

​ ​$ ​​pytest​​ ​​test_print.py::test_disabled​

​ ======================= test session starts =======================

​ collected 1 item

​

​ test_print.py

​ capsys disabled print

​ . [100%]

​

​ ======================== 1 passed in 0.00s ========================

Following are related builtin fixtures:

capfd—Like capsys, but captures file descriptors 1 and 2, which usually
is the same as stdout and stderr

capsysbinary—Where capsys captures text, capsysbinary captures bytes.

capfdbinary—Captures bytes on file descriptors 1 and 2

caplog—Captures output written with the logging package

http://media.pragprog.com/titles/bopytest2/code/ch4/test_print.py

Using monkeypatch
During the previous discussion of capsys, we used this code to test the output
of the Cards project:

ch4/test_version.py

​ ​import​ ​cards​

​

​

​ ​def​ ​test_version_v2​(capsys):

​ cards.cli.version()

​ output = capsys.readouterr().out.rstrip()

​ ​assert​ output == cards.__version__

That made a decent example of how to use capsys, but it’s still not how I
prefer to test the CLI. The Cards application uses a library called Typer[16]

that includes a runner feature that allows us to test more of our code, makes
it look more like a command-line test, remains in process, and provides us
with output hooks. It’s used like this:

ch4/test_version.py

​ ​from​ ​typer.testing​ ​import​ CliRunner

​

​

​ ​def​ ​test_version_v3​():

​ runner = CliRunner()

​ result = runner.invoke(cards.app, [​"version"​])

​ output = result.output.rstrip()

​ ​assert​ output == cards.__version__

We’ll use this method of output testing as a starting point for the rest of the
tests we do of the Cards CLI.

I started the CLI testing by testing cards version. Starting with cards version is
nice because it doesn’t use the database. In order to test the rest of the CLI,
we need to redirect the database to a temporary directory, like we did when

http://media.pragprog.com/titles/bopytest2/code/ch4/test_version.py
http://media.pragprog.com/titles/bopytest2/code/ch4/test_version.py

testing the API in ​Using Fixtures for Setup and Teardown​. We’ll use
monkeypatch for that.

A “monkey patch” is a dynamic modification of a class or module during
runtime. During testing, “monkey patching” is a convenient way to take over
part of the runtime environment of the application code and replace either
input dependencies or output dependencies with objects or functions that are
more convenient for testing. The monkeypatch builtin fixture allows you to do
this in the context of a single test. It is used to modify objects, dictionaries,
environment variables, the python search path, or the current directory. It’s
like a mini version of mocking. And when the test ends, regardless of pass or
fail, the original unpatched code is restored, undoing everything changed by
the patch.

This is all very hand-wavy until we jump into some examples. After looking
at the API, we’ll look at how monkeypatch is used in test code.

The monkeypatch fixture provides the following functions:

setattr(target, name, value, raising=True)—Sets an attribute

delattr(target, name, raising=True)—Deletes an attribute

setitem(dic, name, value)—Sets a dictionary entry

delitem(dic, name, raising=True)—Deletes a dictionary entry

setenv(name, value, prepend=None)—Sets an environment variable

delenv(name, raising=True)—Deletes an environment variable

syspath_prepend(path)—Prepends path to sys.path, which is Python’s list
of import locations

chdir(path)—Changes the current working directory

The raising parameter tells pytest whether or not to raise an exception if the
item doesn’t already exist. The prepend parameter to setenv() can be a
character. If it is set, the value of the environment variable will be changed
to value + prepend + <old value>.

We can use monkeypatch to redirect the CLI to a temporary directory for the
database in a couple of ways. Both methods involve knowledge of the
application code. Let’s look at the cli.get_path() method:

cards_proj/src/cards/cli.py

​ ​def​ ​get_path​():

​ db_path_env = os.getenv(​"CARDS_DB_DIR"​, ​""​)

​ ​if​ db_path_env:

​ db_path = pathlib.Path(db_path_env)

​ ​else​:

​ db_path = pathlib.Path.home() / ​"cards_db"​

​ ​return​ db_path

This is the method that tells the rest of the CLI code where the database is.
We can either patch the whole function, patch pathlib.Path().home(), or set the
environment variable CARDS_DB_DIR.

We’ll test these modifications with the cards config command, which
conveniently returns the database location:

​ ​$ ​​cards​​ ​​config​

​ /Users/okken/cards_db

Before we jump in, we’re going to be calling runner.invoke() to call cards

several times, so let’s put that code into a helper function called run_cards():

ch4/test_config.py

​ ​from​ ​typer.testing​ ​import​ CliRunner

​ ​import​ ​cards​

​

​

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py
http://media.pragprog.com/titles/bopytest2/code/ch4/test_config.py

​ ​def​ ​run_cards​(*params):

​ runner = CliRunner()

​ result = runner.invoke(cards.app, params)

​ ​return​ result.output.rstrip()

​

​

​ ​def​ ​test_run_cards​():

​ ​assert​ run_cards(​"version"​) == cards.__version__

Notice that I included a test function for our helper function, just to make
sure I got it right.

First, let’s try patching the entire get_path function:

ch4/test_config.py

​ ​def​ ​test_patch_get_path​(monkeypatch, tmp_path):

​ ​def​ ​fake_get_path​():

​ ​return​ tmp_path

​

​ monkeypatch.setattr(cards.cli, ​"get_path"​, fake_get_path)

​ ​assert​ run_cards(​"config"​) == str(tmp_path)

Like mocking, monkey-patching requires a bit of a mind shift to get
everything set up right. The function, get_path is an attribute of cards.cli. We
want to replace it with fake_get_path. Because get_path is a callable function,
we have to replace it with another callable function. We can’t just replace it
with tmp_path, which is a pathlib.Path object that is not callable.

If we want to instead replace the home() method in pathlib.Path, it’s a similar
patch:

ch4/test_config.py

​ ​def​ ​test_patch_home​(monkeypatch, tmp_path):

​ full_cards_dir = tmp_path / ​"cards_db"​

​

​ ​def​ ​fake_home​():

​ ​return​ tmp_path

​

http://media.pragprog.com/titles/bopytest2/code/ch4/test_config.py
http://media.pragprog.com/titles/bopytest2/code/ch4/test_config.py

​ monkeypatch.setattr(cards.cli.pathlib.Path, ​"home"​, fake_home)

​ ​assert​ run_cards(​"config"​) == str(full_cards_dir)

Because cards.cli is importing pathlib, we have to patch the home attribute of
cards.cli.pathlib.Path.

Seriously, if you start using monkey-patching and/or mocking more, a
couple things will happen:

You’ll start to understand this.
You’ll start to avoid mocking and monkey-patching whenever possible.

Let’s hope the environment variable patch is less complicated:

ch4/test_config.py

​ ​def​ ​test_patch_env_var​(monkeypatch, tmp_path):

​ monkeypatch.setenv(​"CARDS_DB_DIR"​, str(tmp_path))

​ ​assert​ run_cards(​"config"​) == str(tmp_path)

Well, look at that. It is less complicated. However, I cheated. I’ve set the
code up so that this environment variable is essentially part of the Cards API
so that I could use it during testing.

Design for Testability
Designing for testability is a concept borrowed from hardware designers, specifically
those developing integrated circuits. The concept is simply that you add functionality to
software to make it easier to test. In some cases, it may mean undocumented API or
parts of the API that are turned off for release. In other cases, the API is extended and
made public.

In the case of the Cards config command that returns the database location and the
support of CARDS_DB_DIR environment variable, these were added expressly to make
the code easier to test. They may also be useful to end users. At the very least, they
are not harmful for users to know about, so they were left as part of the public API.

http://media.pragprog.com/titles/bopytest2/code/ch4/test_config.py

Remaining Builtin Fixtures
In this chapter, we’ve looked at the tmp_path, tmp_path_factory, capsys, and
monkeypatch builtin fixtures. There are quite a few more. Some we will
discuss in other parts of the book. Others are left as an exercise for the
reader to research if you find the need for them.

Here’s a list of the remaining builtin fixtures that come with pytest, as of the
writing of this edition:

capfd, capfdbinary, capsysbinary—Variants of capsys that work with file
descriptors and/or binary output

caplog—Similar to capsys and the like; used for messages created with
Python’s logging system

cache—Used to store and retrieve values across pytest runs. The most
useful part of this fixture is that it allows for --last-failed, --failed-first,
and similar flags.

doctest_namespace—Useful if you like to use pytest to run doctest-style
tests

pytestconfig—Used to get access to configuration values, pluginmanager,
and plugin hooks

record_property, record_testsuite_property—Used to add extra properties
to the test or test suite. Especially useful for adding data to an XML
report to be used by continuous integration tools

recwarn—Used to test warning messages

request—Used to provide information on the executing test function.
Most commonly used during fixture parametrization

pytester, testdir—Used to provide a temporary test directory to aid in
running and testing pytest plugins. pytester is the pathlib based
replacement for the py.path based testdir.

tmpdir, tmpdir_factory—Similar to tmp_path and tmp_path_factory; used to
return a py.path.local object instead of a pathlib.Path object

We will take a look at many of these fixtures in the remaining chapters. You
can find the full list of builtin fixtures by running pytest --fixtures, which also
gives pretty good descriptions. You can also find more information in the
online pytest documentation.[17]

Review
In this chapter, we looked at the tmp_path, tmp_path_factory, capsys, and
monkeypatch builtin fixtures:

The tmp_path and tmp_path_factory fixtures are used to for temporary
directories. tmp_path is function scope, and tmp_path_factory is session
scope. Related fixtures not covered in the chapter are tmpdir and
tmpdir_factory.

capsys can be used to capture stdout and stderr. It can also be used to
temporarily turn off output capture. Related fixtures are capsysbinary,
capfd, capfdbinary, and caplog.

monkeypatch can be used to change the application code or the
environment. We used it with the Cards application to redirect the
database location to a temporary directory created with tmp_path.

You can read about these and other fixtures with pytest --fixtures.

Exercises
Reaching for builtin fixtures whenever possible is a great way to simplify
your own test code. The exercises below are designed to give you experience
using tmp_path and monkeypatch, two super handy and common builtin
fixtures.

Take a look at this script that writes to a file:

ch4/hello_world.py

​ ​def​ ​hello​():

​ ​with​ open(​"hello.txt"​, ​"w"​) ​as​ f:

​ f.write(​"Hello World!​​\n​​"​)

​

​

​ ​if​ __name__ == ​"__main__"​:

​ hello()

1. Write a test without fixtures that validates that hello() writes the correct
content to hello.txt.

2. Write a second test using fixtures that utilizes a temporary directory and
monkeypatch.chdir().

3. Add a print statement to see where the temporary directory is located.
Manually check the hello.txt file after a test run. pytest leaves the
temporary directories around for a while after test runs to help with
debugging.

4. Comment out the calls to hello() in both tests and re-run. Do they both
fail? If not, why not?

http://media.pragprog.com/titles/bopytest2/code/ch4/hello_world.py

[16]

[17]

What’s Next
So far all of the test functions we’ve used only run once. In the next chapter,
we’re going to explore a few ways to have test functions run a bunch of
times with different data or with different environments. It’s a fantastic way
to test more thoroughly without writing more tests.

Footnotes

https://pypi.org/project/typer

https://docs.pytest.org/en/latest/reference/fixtures.html

Copyright © 2022, The Pragmatic Bookshelf.

https://pypi.org/project/typer
https://docs.pytest.org/en/latest/reference/fixtures.html

Chapter 5

Parametrization

In the last couple of chapters, we looked at custom and builtin fixtures. In
this chapter, we return to test functions. We’ll look at how to turn one test
function into many test cases to test more thoroughly with less work. We’ll
do this with parametrization.

Parametrized testing refers to adding parameters to our test functions and
passing in multiple sets of arguments to the test to create new test cases.
We’ll look at three ways to implement parametrized testing in pytest in the
order in which they should be selected:

Parametrizing functions
Parametrizing fixtures
Using a hook function called pytest_generate_tests

We’ll compare them side by side by solving the same parametrization
problem using all three methods; however, as you’ll see, there are times
when one solution is preferred over the others.

Before we really jump in to how to use parametrization, though, we’ll take
a look at the redundant code we are avoiding with parametrization. Then
we’ll look at three methods of parametrization. When we’re done, you’ll be
able to write concise, easy-to-read test code that tests a huge number of test
cases.

Parametrize or Parameterize?
The English language offers many spellings of this word:
parametrize, parameterize, parametrise, parameterise. The
difference being “s” vs “z” and whether or not to have an “e”
between “t” and “r.”

pytest uses one spelling: parametrize. However, if you forget
and use one of the other forms, pytest will generate an error
message such as:

"E Failed: Unknown ’parameterize’ mark, did you mean ’parametrize’?"

That’s helpful.

Testing Without Parametrize
Sending some values through a function and checking the output to make
sure it’s correct is a common pattern in software testing. However, calling a
function once with one set of values and one check for correctness isn’t
enough to fully test most functions. Parametrized testing is a way to send
multiple sets of data through the same test and have pytest report if any of
the sets failed.

To help understand the problem parametrized testing is trying to solve, let’s
write some tests for the finish() API method:

cards_proj/src/cards/api.py

​ ​def​ ​finish​(self, card_id: int):

​ ​"""Set a card state to 'done'."""​

​ self.update_card(card_id, Card(state=​"done"​))

The states used in the application are “todo,” “in prog,” and “done,” and this
method sets a card’s state to “done.”

To test this, we could

create a Card object and add it to the database, so we have a Card to
work with,

call finish(), and

make sure the end state is “done.”

One variable is the start state of the Card. It could be “todo,” “in prog,” or
even already “done.”

Let’s test all three. Here’s a start:

ch5/test_finish.py

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/api.py
http://media.pragprog.com/titles/bopytest2/code/ch5/test_finish.py

​ ​from​ ​cards​ ​import​ Card

​

​

​ ​def​ ​test_finish_from_in_prog​(cards_db):

​ index = cards_db.add_card(Card(​"second edition"​, state=​"in prog"​))

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

​

​

​ ​def​ ​test_finish_from_done​(cards_db):

​ index = cards_db.add_card(Card(​"write a book"​, state=​"done"​))

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

​

​

​ ​def​ ​test_finish_from_todo​(cards_db):

​ index = cards_db.add_card(Card(​"create a course"​, state=​"todo"​))

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

The test functions are very similar. The only difference is the starting state
and the summary. Because we only have three states, it’s not overly terrible
to write essentially the same code three times, but it does seem like a waste.

Let’s run it:

​ ​$ ​​cd​​ ​​/path/to/code/ch5​

​ ​$ ​​pytest​​ ​​-v​​ ​​test_finish.py​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_finish.py::test_finish_from_todo PASSED [33%]

​ test_finish.py::test_finish_from_in_prog PASSED [66%]

​ test_finish.py::test_finish_from_done PASSED [100%]

​

​ ========================== 3 passed in 0.05s ===========================

One way to reduce the redundant code is to combine them into the same
function, like this:

ch5/test_finish_combined.py

​ ​from​ ​cards​ ​import​ Card

​

​

​ ​def​ ​test_finish​(cards_db):

​ ​for​ c ​in​ [

​ Card(​"write a book"​, state=​"done"​),

​ Card(​"second edition"​, state=​"in prog"​),

​ Card(​"create a course"​, state=​"todo"​),

​]:

​ index = cards_db.add_card(c)

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

This sorta works, but has problems. Check out this test:

​ ​$ ​​pytest​​ ​​test_finish_combined.py​

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_finish_combined.py . [100%]

​

​ ========================== 1 passed in 0.01s ===========================

It passes, and we have eliminated the redundant code. Woohoo! But, there
are other problems:

We have one test case reported instead of three.

If one of the test cases fails, we really don’t know which one without
looking at the traceback or some other debugging information.

If one of the test cases fails, the test cases following the failure will not
be run. pytest stops running a test when an assert fails.

pytest parametrization is a great fit to solve this kind of testing problem.
We’ll start with function parametrization, then fixture parametrization, and
finish up with pytest_generate_tests.

http://media.pragprog.com/titles/bopytest2/code/ch5/test_finish_combined.py

Parametrizing Functions
To parametrize a test function, add parameters to the test definition and use
the @pytest.mark.parametrize() decorator to define the sets of arguments to
pass to the test, like this:

ch5/test_func_param.py

​ ​import​ ​pytest​

​ ​from​ ​cards​ ​import​ Card

​

​

​ @pytest.mark.parametrize(

​ ​"start_summary, start_state"​,

​ [

​ (​"write a book"​, ​"done"​),

​ (​"second edition"​, ​"in prog"​),

​ (​"create a course"​, ​"todo"​),

​],

​)

​ ​def​ ​test_finish​(cards_db, start_summary, start_state):

​ initial_card = Card(summary=start_summary, state=start_state)

​ index = cards_db.add_card(initial_card)

​

​ cards_db.finish(index)

​

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

The test_finish() function now has its original cards_db fixture as a parameter,
but also two new parameters: start_summary and start_state. These match
directly to the first argument to @pytest.mark.parametrize().

The first argument to @pytest.mark.parametrize() is a list of names of the
parameters. They are strings and can be an actual list of strings, as in
["start_summary", "start_state"], or they can be a comma-separated string, as in
"start_summary, start_state". The second argument to @pytest.mark.parametrize()

http://media.pragprog.com/titles/bopytest2/code/ch5/test_func_param.py

is our list of test cases. Each element in the list is a test case represented by a
tuple or list that has one element for each argument that gets sent to the test
function.

pytest will run this test once for each (start_summary, start_state) pair and
report each as a separate test:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_func_param.py::test_finish​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_func_param.py::test_finish[write a book-done] PASSED [33%]

​ test_func_param.py::test_finish[second edition-in prog] PASSED [66%]

​ test_func_param.py::test_finish[create a course-todo] PASSED [100%]

​

​ ========================== 3 passed in 0.05s ===========================

This use of parametrize() works for our purposes. However, changing the
summary for each test case doesn’t really matter for this test. Therefore,
changing it with each test case really is an extra bit of complexity that is not
necessary.

Let’s change the parametrization to just start_state, and see how the syntax
changes:

ch5/test_func_param.py

​ @pytest.mark.parametrize(​"start_state"​, [​"done"​, ​"in prog"​, ​"todo"​])

​ ​def​ ​test_finish_simple​(cards_db, start_state):

​ c = Card(​"write a book"​, state=start_state)

​ index = cards_db.add_card(c)

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

It’s still mostly the same test. The “list” of parameters is just one parameter,
"start_state". The list of test cases now contains just values for the single
parameter. The function definition no longer includes a start_summary

http://media.pragprog.com/titles/bopytest2/code/ch5/test_func_param.py

parameter. We’ve just hard-coded the start summary into the Card("write a

book", state=start_state) call.

Now when we run it, it focuses on the change we care about:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_func_param.py::test_finish_simple​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_func_param.py::test_finish_simple[done] PASSED [33%]

​ test_func_param.py::test_finish_simple[in prog] PASSED [66%]

​ test_func_param.py::test_finish_simple[todo] PASSED [100%]

​

​ ========================== 3 passed in 0.05s ===========================

Looking at the difference in the output of the two examples, we see that now
we only have the starting state listed, “todo,” “in prog,” and “done.” In the
first example, pytest displayed the values of both parameters, separated by a
dash (-). No dash is needed when there’s only one parameter changing.

In both the test code and the output, we’ve focused attention on the different
starting states. In the test code, it’s subtle, and I’m often tempted to add
more parameters than necessary. The output change, however, is dramatic.
It’s very clear from the output the differences in the test cases. This clarity in
the output is extremely helpful when a test case fails. It’ll allow you to more
quickly zero in on the changes that matter to the test failure.

We can write the same test using fixture parametrization instead of function
parametrization. It works mostly the same, but the syntax is different.

Parametrizing Fixtures
When we used function parametrization, pytest called our test function once
each for every set of argument values we provided. With fixture
parametrization, we shift those parameters to a fixture. pytest will then call
the fixture once each for every set of values we provide. Then downstream,
every test function that depends on the fixture will be called, once each for
every fixture value.

Also, the syntax is different:

ch5/test_fix_param.py

​ @pytest.fixture(params=[​"done"​, ​"in prog"​, ​"todo"​])

​ ​def​ ​start_state​(request):

​ ​return​ request.param

​

​

​ ​def​ ​test_finish​(cards_db, start_state):

​ c = Card(​"write a book"​, state=start_state)

​ index = cards_db.add_card(c)

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

What happens is pytest ends up calling start_state() three times, once each for
all values in params. Each value of params is saved to request.param for the
fixture to use. Within start_state() we could have code that depends on the
parameter value. However, in this case, we’re just returning the parameter
value.

The test_finish() function is identical to the test_finish_simple() function we
used in function parametrization, but with no parametrize decorator. Because
it has start_state as a parameter, pytest will call it once for each value passed
to the start_state() fixture. And after all of that, the output looks the same as
before:

http://media.pragprog.com/titles/bopytest2/code/ch5/test_fix_param.py

​ ​$ ​​pytest​​ ​​-v​​ ​​test_fix_param.py​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_fix_param.py::test_finish[done] PASSED [33%]

​ test_fix_param.py::test_finish[in prog] PASSED [66%]

​ test_fix_param.py::test_finish[todo] PASSED [100%]

​

​ ========================== 3 passed in 0.05s ===========================

That’s cool. It looks just like the function parametrization example.

At first glance, fixture parametrization serves just about the same purpose as
function parametrization, but with a bit more code. There are times where
there is benefit to fixture parametrization.

Fixture parametrization has the benefit of having a fixture run for each set of
arguments. This is useful if you have setup or teardown code that needs to
run for each test case—maybe a different database connection, or different
contents of a file, or whatever.

It also has the benefit of many test functions being able to run with the same
set of parameters. All tests that use the start_state fixture will all be called
three times, once for each start state.

Fixture parametrization is also a different way to think about the same
problem. Even in the case of testing finish(), if I’m thinking about it in terms
of “same test, different data,” I often gravitate toward function
parametrization. But if I’m thinking about it as “same test, different start
state,” I gravitate toward fixture parametrization.

Parametrizing with pytest_generate_tests
The third way to parametrize is by using a hook function called
pytest_generate_tests. Hook functions are often used by plugins to alter the
normal operation flow of pytest. But we can use many of them in test files
and conftest.py files.

Implementing the same flow as before with pytest_generate_tests looks like
this:

ch5/test_gen.py

​ ​from​ ​cards​ ​import​ Card

​

​

​ ​def​ ​pytest_generate_tests​(metafunc):

​ ​if​ ​"start_state"​ ​in​ metafunc.fixturenames:

​ metafunc.parametrize(​"start_state"​, [​"done"​, ​"in prog"​, ​"todo"​])

​

​

​ ​def​ ​test_finish​(cards_db, start_state):

​ c = Card(​"write a book"​, state=start_state)

​ index = cards_db.add_card(c)

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

The test_finish() function hasn’t changed. We’ve just changed the way pytest
fills in the value for initial_state every time the test gets called.

The pytest_generate_tests function we provide will get called by pytest when
it’s building its list of tests to run. The metafunc object has a lot of
information,[18] but we’re using it just to get the parameter name and to
generate the parametrizations.

This form looks familiar when we run it:

http://media.pragprog.com/titles/bopytest2/code/ch5/test_gen.py

​ ​$ ​​pytest​​ ​​-v​​ ​​test_gen.py​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_gen.py::test_finish[done] PASSED [33%]

​ test_gen.py::test_finish[in prog] PASSED [66%]

​ test_gen.py::test_finish[todo] PASSED [100%]

​

​ ========================== 3 passed in 0.06s ===========================

The pytest_generate_tests function is actually super powerful. This example is
a simple case to match functionality of previous parametrization methods.
However, pytest_generate_tests is especially useful if we want to modify the
parametrization list at test collection time in interesting ways.

Here are a few possibilities:

We could base our parametrization list on a command-line flag, since
metafunc gives us access to metafunc.config.getoption("--someflag"). Maybe
we add a --excessive flag to test more values, or a --quick flag to test just a
few.

The parametrization list of a parameter could be based on the presence
of another parameter. For example, for test functions asking for two
related parameters, we can parametrize them both with a different set of
values than if the test is just asking for one of the parameters.

We could parametrize two related parameters at the same time with
metafunc.parametrize("planet, moon", [(’Earth’, ’Moon’), (’Mars’, ’Deimos’), (’Mars’,

’Phobos’), ...]), for example.

Now we’ve seen three ways to parametrize tests. Although we’re using it to
just create three test cases from one test function in the finish() example,
parametrization has the possibility of generating a large number of test
cases. In the next section, we’ll look at how to use the -k flag to select a
subset.

Using Keywords to Select Test Cases
Parametrization techniques are quite effective at creating large numbers of
test cases quickly. As such, it’s often beneficial to be able to run a subset of
the tests. We first looked at -k in ​Running a Subset of Tests​, but let’s use it
here, as we’ve got quite a few test cases in this chapter:

​ ​$ ​​pytest​​ ​​-v​

​ ========================= test session starts ==========================

​ collected 16 items

​

​ test_finish.py::test_finish_from_in_prog PASSED [6%]

​ test_finish.py::test_finish_from_done PASSED [12%]

​ test_finish.py::test_finish_from_todo PASSED [18%]

​ test_finish_combined.py::test_finish PASSED [25%]

​ test_fix_param.py::test_finish[done] PASSED [31%]

​ test_fix_param.py::test_finish[in prog] PASSED [37%]

​ test_fix_param.py::test_finish[todo] PASSED [43%]

​ test_func_param.py::test_finish[write a book-done] PASSED [50%]

​ test_func_param.py::test_finish[second edition-in prog] PASSED [56%]

​ test_func_param.py::test_finish[create a course-todo] PASSED [62%]

​ test_func_param.py::test_finish_simple[done] PASSED [68%]

​ test_func_param.py::test_finish_simple[in prog] PASSED [75%]

​ test_func_param.py::test_finish_simple[todo] PASSED [81%]

​ test_gen.py::test_finish[done] PASSED [87%]

​ test_gen.py::test_finish[in prog] PASSED [93%]

​ test_gen.py::test_finish[todo] PASSED [100%]

​

​ ========================== 16 passed in 0.05s ==========================

We can run all of the “todo” cases with -k todo:

​ ​$ ​​pytest​​ ​​-v​​ ​​-k​​ ​​todo​

​ ========================= test session starts ==========================

​ collected 16 items / 11 deselected / 5 selected

​

​ test_finish.py::test_finish_from_todo PASSED [20%]

​ test_fix_param.py::test_finish[todo] PASSED [40%]

​ test_func_param.py::test_finish[create a course-todo] PASSED [60%]

​ test_func_param.py::test_finish_simple[todo] PASSED [80%]

​ test_gen.py::test_finish[todo] PASSED [100%]

​

​ =================== 5 passed, 11 deselected in 0.02s ===================

If we want to eliminate the test cases with “play” or “create,” we can further
zoom in:

​ ​$ ​​pytest​​ ​​-v​​ ​​-k​​ ​​"todo and not (play or create)"​

​ ========================= test session starts ==========================

​ collected 16 items / 12 deselected / 4 selected

​

​ test_finish.py::test_finish_from_todo PASSED [25%]

​ test_fix_param.py::test_finish[todo] PASSED [50%]

​ test_func_param.py::test_finish_simple[todo] PASSED [75%]

​ test_gen.py::test_finish[todo] PASSED [100%]

​

​ =================== 4 passed, 12 deselected in 0.02s ===================

We can select a single test function, and that will run all of the
parametrizations of it:

​ ​$ ​​pytest​​ ​​-v​​ ​​"test_func_param.py::test_finish"​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_func_param.py::test_finish[write a book-done] PASSED [33%]

​ test_func_param.py::test_finish[second edition-in prog] PASSED [66%]

​ test_func_param.py::test_finish[create a course-todo] PASSED [100%]

​

​ ========================== 3 passed in 0.02s ===========================

We can also just select one test case:

​ ​$ ​​pytest​​ ​​-v​​ ​​"test_func_param.py::test_finish[write a book-done]"​

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_func_param.py::test_finish[write a book-done] PASSED [100%]

​

​ ========================== 1 passed in 0.01s ===========================

Use Quotes
It’s a really good idea to include quotes when selecting a
parametrized test to run, as the dashes and brackets and spaces
can mess with command shells.

It’s nice to see that all of the normal subset tools work with parametrized
tests. These aren’t new techniques, but I find I use them frequently when
running and debugging parametrized tests.

Review
In this chapter, we looked at three ways to parametrize tests:

We can parametrize test functions, creating many test cases, when we
apply the @pytest.mark.parametrize() decorator.

We can parametrize fixtures with @pytest.fixture(params=()). This is
helpful if the fixture needs to do different work based on the parameter
values.

We can generate complex parametrization sets with
pytest_generate_tests.

We also looked at how we can run subsets of parametrized test cases using
pytest -k.

However, while the techniques for parametrization covered in this chapter
are quite powerful, when you start using parametrization in your own
testing, you may run into more complex parameter set needs, such as
needing to

parametrize multiple parameters with all three techniques,

combine techniques,

use lists and generators for parametrization,

create custom identifiers (which is especially useful when
parametrizing with object values), or

use indirect parametrization.

We’ll cover these advanced scenarios in Chapter 16, ​Advanced
Parametrization​.

Exercises
When people start working with parametrization, I’ve noticed that many
tend to favor the technique they learned first—usually function
parametrization—and seldom use the other methods.

Working through these exercises will help you learn how easy all three
techniques are. Then later, in your own testing, you’ll be able to chose from
three tools and select which is most useful to you at the time.

We’ve tested finish() already. But there’s another similar API method that
needs testing, start():

cards_proj/src/cards/api.py

​ ​def​ ​start​(self, card_id: int):

​ ​"""Set a card state to 'in prog'."""​

​ self.update_card(card_id, Card(state=​"in prog"​))

Let’s build some parametrized tests for it:

1. Write out three test functions that make sure any start state results in “in
prog” when start() is called:

test_start_from_done()

test_start_from_in_prog()

test_start_from_todo()

1. Write a test_start() function that uses function parametrization to test the
three test cases.

2. Rewrite test_start() using fixture parametrization.

3. Rewrite test_start() using pytest_generate_tests.

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/api.py

For Exercise 3 and Exercise 4, you can re-use the start_state fixture and the
pytest_generate_tests implementation if you put the test_start() function in the
same file as test_finish().

Shared fixtures, even parametrized ones, and pytest_generate_tests can also be
placed in conftest.py and shared between many test files. However, in our
case, if we try to put a start_state fixture in conftest.py and a
pytest_generate_tests hook function that parametrizes start_state, it won’t
work. pytest will notice the collision and give us a duplicate ’start_state’ error.
This, of course, is not a problem normally, as we don’t usually use two
methods for parametrizing the same parameter.

[18]

What’s Next
The focus of this chapter was on parametrization. And the first technique
you learned was using @pytest.mark.parametrize. parametrize is just one of
many builtin markers pytest provides. You’ll learn about a bunch more in
the next chapter as well as how to use markers to select a subset of tests to
run. You’ve used several techniques so far to run subsets of tests. You can
name a specific test, class, file, or directory of tests to run them. You’ve also
just learned how to use keywords to select tests. Markers are another way.

Footnotes

https://docs.pytest.org/en/latest/reference.html#metafunc

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.pytest.org/en/latest/reference.html#metafunc

Chapter 6

Markers

In pytest, markers are a way to tell pytest there’s something special about a
particular test. You can think of them like tags or labels. If some tests are
slow, you can mark them with @pytest.mark.slow and have pytest skip those
tests when you’re in a hurry. You can pick a handful of tests out of a test
suite and mark them with @pytest.mark.smoke and run those as the first stage
of a testing pipeline in a continuous integration system. Really, for any
reason you might have for separating out some tests, you can use markers.

pytest includes a handful of builtin markers that modify the behavior of
how tests are run. We’ve used one already, @pytest.mark.parametrize, in ​
Parametrizing Functions​. In addition to the custom tag-like markers we can
create and add to our tests, the builtin markers tell pytest to do something
special with the marked tests.

In this chapter, we’re going to explore both types of markers: the builtins
that change behavior, and the custom markers we can create to select which
tests to run. We can also use markers to pass information to a fixture used
by a test. We’ll take a look at that, too.

Using Builtin Markers
pytest’s builtin markers are used to modify the behavior of how tests run.
We explored @pytest.mark.parametrize() in the last chapter. Here’s the full list
of the builtin markers included in pytest as of pytest 6:

@pytest.mark.filterwarnings(warning): This marker adds a warning filter to
the given test.

@pytest.mark.skip(reason=None): This marker skips the test with an
optional reason.

@pytest.mark.skipif(condition, ..., *, reason): This marker skips the test if
any of the conditions are True.

@pytest.mark.xfail(condition, ..., *, reason, run=True, raises=None,

strict=xfail_strict): This marker tells pytest that we expect the test to fail.

@pytest.mark.parametrize(argnames, argvalues, indirect, ids, scope): This
marker calls a test function multiple times, passing in different
arguments in turn.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): This marker marks
tests as needing all the specified fixtures.

These are the most commonly used of these builtins:

@pytest.mark.parametrize()

@pytest.mark.skip()

@pytest.mark.skipif()

@pytest.mark.xfail()

We used parametrize() in the last chapter. Let’s go over the other three with
some examples to see how they work.

Skipping Tests with pytest.mark.skip
The skip marker allows us to skip a test. Let’s say we’re thinking of adding
the ability to sort in a future version of the Cards application, so we’d like to
have the Card class support comparisons. We write a test for comparing Card
objects with < like this:

ch6/builtins/test_less_than.py

​ ​from​ ​cards​ ​import​ Card

​

​

​ ​def​ ​test_less_than​():

​ c1 = Card(​"a task"​)

​ c2 = Card(​"b task"​)

​ ​assert​ c1 < c2

​

​

​ ​def​ ​test_equality​():

​ c1 = Card(​"a task"​)

​ c2 = Card(​"a task"​)

​ ​assert​ c1 == c2

And it fails:

​ ​$ ​​cd​​ ​​/path/to/code/ch6/builtins​

​ ​$ ​​pytest​​ ​​--tb=short​​ ​​test_less_than.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ test_less_than.py F. [100%]

​

​ =============================== FAILURES ===============================

​ ____________________________ test_less_than ____________________________

​ test_less_than.py:6: in test_less_than

​ assert c1 < c2

​ E TypeError: '<' not supported between instances of 'Card' and 'Card'

​ ======================= short test summary info ========================

​ FAILED test_less_than.py::test_less_than - TypeError: '<' not support...

​ ===================== 1 failed, 1 passed in 0.13s ======================

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_less_than.py

Now the failure isn’t a shortfall of the software; it’s just that we haven’t
finished this feature yet. So what do we do with this test?

One option is to skip it. Let’s do that:

ch6/builtins/test_skip.py

​ ​import​ ​pytest​

​

​

» @pytest.mark.skip(reason=​"Card doesn't support < comparison yet"​)

​ ​def​ ​test_less_than​():

​ c1 = Card(​"a task"​)

​ c2 = Card(​"b task"​)

​ ​assert​ c1 < c2

The @pytest.mark.skip() marker tells pytest to skip the test. The reason is
optional, but it’s important to list a reason to help with maintenance later.

When we run skipped tests, they show up as s:

​ ​$ ​​pytest​​ ​​test_skip.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ test_skip.py s. [100%]

​

​ ===================== 1 passed, 1 skipped in 0.03s =====================

Or as SKIPPED in verbose:

​ ​$ ​​pytest​​ ​​-v​​ ​​-ra​​ ​​test_skip.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ test_skip.py::test_less_than SKIPPED (Card doesn't support <...) [50%]

​ test_skip.py::test_equality PASSED [100%]

​

​ ======================= short test summary info ========================

​ SKIPPED [1] test_skip.py:6: Card doesn't support < comparison yet

​ ===================== 1 passed, 1 skipped in 0.03s =====================

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_skip.py

The extra line at the bottom lists the reason we gave in the marker, and is
there because we used the -ra flag in the command line. The -r flag tells
pytest to report reasons for different test results at the end of the session. You
give it a single character that represents the kind of result you want more
information on. The default display is the same as passing in -rfE: f for failed
tests; E for errors. You can see the whole list with pytest --help.

The a in -ra stands for “all except passed.” The -ra flag is therefore the most
useful, as we almost always want to know the reason why certain tests did
not pass.

We can also be more specific and only skip the test if certain conditions are
met. Let’s look at that next.

Skipping Tests Conditionally with
pytest.mark.skipif
Let’s say we know we won’t support sorting in the 1.x.x versions of the
Cards application, but will in version 2.x.x. We can tell pytest to skip the test
for all versions of Cards lower than than 2.x.x like this:

ch6/builtins/test_skipif.py

​ ​import​ ​cards​

​ ​from​ ​packaging.version​ ​import​ parse

​

​

​ @pytest.mark.skipif(

​ parse(cards.__version__).major < 2,

​ reason=​"Card < comparison not supported in 1.x"​,

​)

​ ​def​ ​test_less_than​():

​ c1 = Card(​"a task"​)

​ c2 = Card(​"b task"​)

​ ​assert​ c1 < c2

The skipif marker allows you to pass in as many conditions as you want and
if any of them are true, the test is skipped. In our case, we are using
packaging.version.parse to allow us to isolate the major version and compare it
against the number 2.

This example uses a third-party package called packaging. If you want to try
the example, pip install packaging first. version.parse is just one of the many
handy utilities found there. See the packaging documentation[19] for more
information.

With both the skip and the skipif markers, the test is not actually run. If we
want to run the test anyway, we can use xfail.

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_skipif.py

Another reason we might want to use skipif is if we have tests that need to be
written differently on different operating systems. We can write separate
tests for each OS and skip on the inappropriate OS.

Expecting Tests to Fail with pytest.mark.xfail
If we want to run all tests, even those that we know will fail, we can use the
xfail marker.

Here’s the full signature for xfail:

​ @pytest.mark.xfail(condition, ..., *, reason, run=True,

​ raises=None, strict=xfail_strict)

The first set of parameters to this fixture are the same as skipif. The test is run
anyway, by default, but the run parameter can be used to tell pytest to not run
the test by setting run=False. The raises parameter allows you to provide an
exception type or a tuple of exception types that you want to result in an
xfail. Any other exception will cause the test to fail. strict tells pytest if
passing tests should be marked as XPASS (strict=False) or FAIL, strict=True.

Let’s look at an example:

ch6/builtins/test_xfail.py

​ @pytest.mark.xfail(

​ parse(cards.__version__).major < 2,

​ reason=​"Card < comparison not supported in 1.x"​,

​)

​ ​def​ ​test_less_than​():

​ c1 = Card(​"a task"​)

​ c2 = Card(​"b task"​)

​ ​assert​ c1 < c2

​

​

​ @pytest.mark.xfail(reason=​"XPASS demo"​)

​ ​def​ ​test_xpass​():

​ c1 = Card(​"a task"​)

​ c2 = Card(​"a task"​)

​ ​assert​ c1 == c2

​

​

http://media.pragprog.com/titles/bopytest2/code/ch6/builtins/test_xfail.py

​ @pytest.mark.xfail(reason=​"strict demo"​, strict=True)

​ ​def​ ​test_xfail_strict​():

​ c1 = Card(​"a task"​)

​ c2 = Card(​"a task"​)

​ ​assert​ c1 == c2

We have three tests here: one we know will fail and two we know will pass.
These tests demonstrate both the failure and passing cases of using xfail and
the effect of using strict. The first example also uses the optional condition
parameter, which works like the conditions of skipif.

Here’s what they look like when run:

​ ​$ ​​pytest​​ ​​-v​​ ​​-ra​​ ​​test_xfail.py​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_xfail.py::test_less_than XFAIL (Card < comparison not s...) [33%]

​ test_xfail.py::test_xpass XPASS (XPASS demo) [66%]

​ test_xfail.py::test_xfail_strict FAILED [100%]

​

​ =============================== FAILURES ===============================

​ __________________________ test_xfail_strict ___________________________

​ [XPASS(strict)] strict demo

​ ======================= short test summary info ========================

​ XFAIL test_xfail.py::test_less_than

​ Card < comparison not supported in 1.x

​ XPASS test_xfail.py::test_xpass XPASS demo

​ FAILED test_xfail.py::test_xfail_strict

​ =============== 1 failed, 1 xfailed, 1 xpassed in 0.11s ================

For tests marked with xfail:

Failing tests will result in XFAIL.
Passing tests (with no strict setting) will result in XPASSED.
Passing tests with strict=true will result in FAILED.

When a test fails that is marked with xfail, pytest knows exactly what to tell
you: “You were right, it did fail,” which is what it’s saying with XFAIL. For
tests marked with xfail that actually pass, pytest is not quite sure what to tell

you. It could result in XPASSED, which roughly means, “Good news, the test
you thought would fail just passed.” Or it could result in FAILED, or, “You
thought it would fail, but it didn’t. You were wrong.”

So you have to decide. Should your passing xfail tests result in XFAIL? If yes,
leave strict alone. If you want them to be FAILED, then set strict. You can
either set strict as an option to the xfail marker like we did in this example, or
you can set it globally with the xfail_strict=true setting in pytest.ini, which is
the main configuration file for pytest.

A pragmatic reason to always use xfail_strict is because we tend to look
closely at all failed tests. Setting strict makes you look into the the cases
where your test expectations don’t match the code behavior.

There are a couple additional reasons why you might want to use xfail:

You’re writing tests first, test-driven development style, and are in the
test writing zone, writing a bunch of test cases you know aren’t
implemented yet but that you plan on implementing shortly. You can
mark the new behaviors with xfail and remove the xfail gradually as you
implement the behavior. This is really my favorite use of xfail. Try to
keep the xfail tests on the feature branch where the feature is being
implemented.

Or

Something breaks, a test (or more) fails, and the person or team that
needs to fix the break can’t work on it right away. Marking the tests as
xfail, strict=true, with the reason written to include the defect/issue report
ID is a decent way to keep the test running, not forget about it, and alert
you when the bug is fixed.

There are also bad reasons to use use xfail or skip. Here’s one:

Suppose you’re just brainstorming behaviors you may or may not want in
future versions. You can mark the tests as xfail or skip just to keep them
around for when you do want to implement the feature. Um, no.

In this case, or similar, try to remember YAGNI (“Ya Aren’t Gonna Need
It”), which comes from Extreme Programming and states: “Always
implement things when you actually need them, never when you just foresee
that you need them.”[20] It can be fun and useful to peek ahead and write tests
for bits of functionality you are just about to implement. However, it’s a
waste of time to try to look too far into the future. Don’t do it. Our ultimate
goal is to have all tests pass, and skip and xfail are not passing.

The builtin markers skip, skipif, and xfail are quite handy when you need
them, but can quickly become overused. Just be careful.

Now let’s switch gears and look at markers that we create ourselves to mark
tests we want to run or skip as a group.

Selecting Tests with Custom Markers
Custom markers are markers we make up ourselves and apply to tests. Think
of them like tags or labels. Custom markers can be used to select tests to run
or skip.

To see custom markers in action, let’s take a look at a couple of tests for the
“start” behavior:

ch6/smoke/test_start_unmarked.py

​ ​import​ ​pytest​

​ ​from​ ​cards​ ​import​ Card, InvalidCardId

​

​

​ ​def​ ​test_start​(cards_db):

​ ​"""​

​ ​ start changes state from "todo" to "in prog"​

​ ​ """​

​ i = cards_db.add_card(Card(​"foo"​, state=​"todo"​))

​ cards_db.start(i)

​ c = cards_db.get_card(i)

​ ​assert​ c.state == ​"in prog"​

​

​

​ ​def​ ​test_start_non_existent​(cards_db):

​ ​"""​

​ ​ Shouldn't be able to start a non-existent card.​

​ ​ """​

​ any_number = 123 ​# any number will be invalid, db is empty​

​ ​with​ pytest.raises(InvalidCardId):

​ cards_db.start(any_number)

Let’s say we want to mark some of our tests, in particular happy path test
cases, with “smoke.” Segmenting a subset of tests into a smoke test suite is a
common practice to be able to run a representative set of tests that will tell
us if anything is horribly broken with any of the main systems. Further, we’ll
mark some of our tests with “exception”—those that check for expected

http://media.pragprog.com/titles/bopytest2/code/ch6/smoke/test_start_unmarked.py

exceptions. Well, the choice is pretty easy for this test file, as there are only
two tests. Let’s mark test_start with “smoke” and test_start_non_existent with
“exception.”

We’ll start with “smoke,” and add @pytest.mark.smoke to test_start():

ch6/smoke/test_start.py

» @pytest.mark.smoke

​ ​def​ ​test_start​(cards_db):

​ ​"""​

​ ​ start changes state from "todo" to "in prog"​

​ ​ """​

​ i = cards_db.add_card(Card(​"foo"​, state=​"todo"​))

​ cards_db.start(i)

​ c = cards_db.get_card(i)

​ ​assert​ c.state == ​"in prog"​

Now we should be able to select just this test by using the -m smoke flag:

​ ​$ ​​cd​​ ​​/path/to/code/ch6/smoke​

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​smoke​​ ​​test_start.py​

​ ========================= test session starts ==========================

​ collected 2 items / 1 deselected / 1 selected

​

​ test_start.py::test_start PASSED [100%]

​

​ =========================== warnings summary ===========================

​ test_start_smoke.py:6

​ /path/to/code/ch6/tests/test_start.py:6:

​ PytestUnknownMarkWarning: Unknown pytest.mark.smoke - is this a typo?

​ You can register custom marks to avoid this warning

​ ​ ...​

​ @pytest.mark.smoke

​ ​ ...​

​ ============== 1 passed, 1 deselected, 1 warning in 0.01s ==============

Well, it certainly worked to run just one test, but we also got a warning:
Unknown pytest.mark.smoke - is this a typo?

http://media.pragprog.com/titles/bopytest2/code/ch6/smoke/test_start.py

Although possibly annoying at first, this warning is a lifesaver. It helps keep
you from making mistakes like marking tests with smok, somke, soke, or
whatever, when you really meant smoke. pytest wants us to register custom
markers so that it can help us avoid typos. Cool. No problem. We register
custom markers by adding a markers section to pytest.ini. Each marker listed
is in the form, <marker_name>: <description> as shown here:

ch6/reg/pytest.ini

​ ​[pytest]​

​ markers =

​ ​smoke:​ ​subset​ ​of​ ​tests​

Now pytest won’t warn us about an unknown marker:

​ ​$ ​​cd​​ ​​/path/to/code/ch6/reg​

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​smoke​​ ​​test_start.py​

​ ========================= test session starts ==========================

​ collected 2 items / 1 deselected / 1 selected

​

​ test_start.py::test_start PASSED [100%]

​

​ =================== 1 passed, 1 deselected in 0.01s ====================

Let’s do the same thing with the “exception” marker for
test_start_non_existent. First, register the marker in pytest.ini:

ch6/reg/pytest.ini

​ ​[pytest]​

​ markers =

​ ​smoke:​ ​subset​ ​of​ ​tests​

» ​exception:​ ​check​ ​for​ ​expected​ ​exceptions​

Second, add the marker to the test:

ch6/reg/test_start.py

» @pytest.mark.exception

​ ​def​ ​test_start_non_existent​(cards_db):

http://media.pragprog.com/titles/bopytest2/code/ch6/reg/pytest.ini
http://media.pragprog.com/titles/bopytest2/code/ch6/reg/pytest.ini
http://media.pragprog.com/titles/bopytest2/code/ch6/reg/test_start.py

​ ​"""​

​ ​ Shouldn't be able to start a non-existent card.​

​ ​ """​

​ any_number = 123 ​# any number will be invalid, db is empty​

​ ​with​ pytest.raises(InvalidCardId):

​ cards_db.start(any_number)

Third, run it with -m exception:

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​exception​​ ​​test_start.py​

​ ========================= test session starts ==========================

​ collected 2 items / 1 deselected / 1 selected

​

​ test_start.py::test_start_non_existent PASSED [100%]

​

​ =================== 1 passed, 1 deselected in 0.01s ====================

Using markers to select one test, as we’ve done twice now, isn’t really where
markers shine. It starts getting fun when we have more files involved.

Marking Files, Classes, and Parameters
With the tests in test_start.py, we added @pytest.mark.<marker_name>

decorators to test functions. We can also add markers to entire files or
classes to mark multiple tests, or zoom in to parametrized tests and mark
individual parametrizations. We can even put multiple markers on a single
test. How fun. We’ll use all the mentioned marker types with test_finish.py.

Let’s start with file-level markers:

ch6/multiple/test_finish.py

​ ​import​ ​pytest​

​ ​from​ ​cards​ ​import​ Card, InvalidCardId

​

​

​ pytestmark = pytest.mark.finish

If pytest sees a pytestmark attribute in a test module, it will apply the
marker(s) to all the tests in that module. If you want to apply more than one
marker to the file, you can use a list form: pytestmark = [pytest.mark.marker_one,

pytest.mark.marker_two].

Another way to mark multiple tests at once is to have tests in a class and use
class-level markers:

ch6/multiple/test_finish.py

» @pytest.mark.smoke

​ ​class​ TestFinish:

​ ​def​ ​test_finish_from_todo​(self, cards_db):

​ i = cards_db.add_card(Card(​"foo"​, state=​"todo"​))

​ cards_db.finish(i)

​ c = cards_db.get_card(i)

​ ​assert​ c.state == ​"done"​

​

​ ​def​ ​test_finish_from_in_prog​(self, cards_db):

http://media.pragprog.com/titles/bopytest2/code/ch6/multiple/test_finish.py
http://media.pragprog.com/titles/bopytest2/code/ch6/multiple/test_finish.py

​ i = cards_db.add_card(Card(​"foo"​, state=​"in prog"​))

​ cards_db.finish(i)

​ c = cards_db.get_card(i)

​ ​assert​ c.state == ​"done"​

​

​ ​def​ ​test_finish_from_done​(self, cards_db):

​ i = cards_db.add_card(Card(​"foo"​, state=​"done"​))

​ cards_db.finish(i)

​ c = cards_db.get_card(i)

​ ​assert​ c.state == ​"done"​

The test class TestFinish is marked with @pytest.mark.smoke. Marking a test
class like this effectively marks each test method in the class with the same
marker. You can also mark individual tests, but we haven’t done that in this
example.

Marking a file or a class adds markers to multiple tests at a time. We can
also zoom in and only mark specific test cases, parametrizations, of a
parametrized test:

ch6/multiple/test_finish.py

​ @pytest.mark.parametrize(

​ ​"start_state"​,

​ [

​ ​"todo"​,

​ pytest.param(​"in prog"​, marks=pytest.mark.smoke),

​ ​"done"​,

​],

​)

​ ​def​ ​test_finish_func​(cards_db, start_state):

​ i = cards_db.add_card(Card(​"foo"​, state=start_state))

​ cards_db.finish(i)

​ c = cards_db.get_card(i)

​ ​assert​ c.state == ​"done"​

The function test_finish_func() isn’t marked directly, but one of its
parametrizations is marked: pytest.param("in prog", marks=pytest.mark.smoke).
You can use more than one marker by using the list form: marks=

[pytest.mark.one, pytest.mark.two]. If you do want to mark all the test cases of a

http://media.pragprog.com/titles/bopytest2/code/ch6/multiple/test_finish.py

parametrized test, just add the mark like you would a regular function, either
above or below the parametrize decorator.

The previous example was for function parametrization. You can also mark
fixture parametrizations in the same way:

ch6/multiple/test_finish.py

​ @pytest.fixture(

​ params=[

​ ​"todo"​,

​ pytest.param(​"in prog"​, marks=pytest.mark.smoke),

​ ​"done"​,

​]

​)

​ ​def​ ​start_state_fixture​(request):

​ ​return​ request.param

​

​

​ ​def​ ​test_finish_fix​(cards_db, start_state_fixture):

​ i = cards_db.add_card(Card(​"foo"​, state=start_state_fixture))

​ cards_db.finish(i)

​ c = cards_db.get_card(i)

​ ​assert​ c.state == ​"done"​

If you want to add more than one marker to a function, no problem, just
stack them up. For example, test_finish_non_existent() is marked with both
@pytest.mark.smoke and @pytest.mark.exception:

ch6/multiple/test_finish.py

​ @pytest.mark.smoke

​ @pytest.mark.exception

​ ​def​ ​test_finish_non_existent​(cards_db):

​ i = 123 ​# any number will do, db is empty​

​ ​with​ pytest.raises(InvalidCardId):

​ cards_db.finish(i)

We’ve added a couple of markers a lot of different ways to test_finish.py.

http://media.pragprog.com/titles/bopytest2/code/ch6/multiple/test_finish.py
http://media.pragprog.com/titles/bopytest2/code/ch6/multiple/test_finish.py

Let’s use the markers to select tests to run, but instead of targeting one test
file, we’ll just let pytest pick from both test files.

Using -m exception should just pick out the two exception tests:

​ ​$ ​​cd​​ ​​/path/to/code/ch6/multiple​

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​exception​

​ ========================= test session starts ==========================

​ collected 12 items / 10 deselected / 2 selected

​

​ test_finish.py::test_finish_non_existent PASSED [50%]

​ test_start.py::test_start_non_existent PASSED [100%]

​

​ =================== 2 passed, 10 deselected in 0.06s ===================

Excellent.

Now we marked a bunch of stuff with smoke. Let’s see what all we get with -
m smoke:

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​smoke​

​ ========================= test session starts ==========================

​ collected 12 items / 5 deselected / 7 selected

​

​ test_finish.py::TestFinish::test_finish_from_todo PASSED [14%]

​ test_finish.py::TestFinish::test_finish_from_in_prog PASSED [28%]

​ test_finish.py::TestFinish::test_finish_from_done PASSED [42%]

​ test_finish.py::test_finish_func[in prog] PASSED [57%]

​ test_finish.py::test_finish_fix[in prog] PASSED [71%]

​ test_finish.py::test_finish_non_existent PASSED [85%]

​ test_start.py::test_start PASSED [100%]

​

​ =================== 7 passed, 5 deselected in 0.03s ====================

Nice. The -m smoke flag picked up all the TestFinish class test methods, one
parametrization each from the parametrized tests, and one test from
test_start.py.

Last, the -m finish should grab everything in the test_finish.py:

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​finish​

​ ========================= test session starts ==========================

​ collected 12 items / 2 deselected / 10 selected

​

​ test_finish.py::TestFinish::test_finish_from_todo PASSED [10%]

​ test_finish.py::TestFinish::test_finish_from_in_prog PASSED [20%]

​ test_finish.py::TestFinish::test_finish_from_done PASSED [30%]

​ test_finish.py::test_finish_func[todo] PASSED [40%]

​ test_finish.py::test_finish_func[in prog] PASSED [50%]

​ test_finish.py::test_finish_func[done] PASSED [60%]

​ test_finish.py::test_finish_fix[todo] PASSED [70%]

​ test_finish.py::test_finish_fix[in prog] PASSED [80%]

​ test_finish.py::test_finish_fix[done] PASSED [90%]

​ test_finish.py::test_finish_non_existent PASSED [100%]

​

​ =================== 10 passed, 2 deselected in 0.03s ===================

In this particular case, marking a single file with a marker just for that file
may seem kind of silly. However, once we have some CLI-level tests, we
may want to have the ability to either group tests by CLI vs API, or group by
functionality. Markers give us that ability to group tests regardless of where
the tests are in the directory/file structure.

Using “and,” “or,” “not,” and Parentheses with
Markers
We can combine markers and use a bit of logic to help select tests, just like
we did with -k keywords in ​Using Keywords to Select Test Cases​.

We can run the “finish” tests that deal with exceptions with -m "finish and

exception":

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​"finish and exception"​

​ ========================= test session starts ==========================

​ collected 12 items / 11 deselected / 1 selected

​

​ test_finish.py::test_finish_non_existent PASSED [100%]

​

​ =================== 1 passed, 11 deselected in 0.01s ===================

We can find all the finish tests that are not included in the smoke tests:

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​"finish and not smoke"​

​ ========================= test session starts ==========================

​ collected 12 items / 8 deselected / 4 selected

​

​ test_finish.py::test_finish_func[todo] PASSED [25%]

​ test_finish.py::test_finish_func[done] PASSED [50%]

​ test_finish.py::test_finish_fix[todo] PASSED [75%]

​ test_finish.py::test_finish_fix[done] PASSED [100%]

​

​ =================== 4 passed, 8 deselected in 0.02s ====================

We can also get fancy and use “and,” “or,” “not,” and parentheses to be
very specific about the markers:

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​"(exception or smoke) and (not finish)"​

​ ========================= test session starts ==========================

​ collected 12 items / 10 deselected / 2 selected

​

​ test_start.py::test_start PASSED [50%]

​ test_start.py::test_start_non_existent PASSED [100%]

​

​ =================== 2 passed, 10 deselected in 0.01s ===================

We can also combine markers and keywords for selection. Let’s run the
smoke tests that are not part of the TestFinish class:

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​smoke​​ ​​-k​​ ​​"not TestFinish"​

​ ========================= test session starts ==========================

​ collected 12 items / 8 deselected / 4 selected

​

​ test_finish.py::test_finish_func[in prog] PASSED [25%]

​ test_finish.py::test_finish_fix[in prog] PASSED [50%]

​ test_finish.py::test_finish_non_existent PASSED [75%]

​ test_start.py::test_start PASSED [100%]

​

​ =================== 4 passed, 8 deselected in 0.02s ====================

One thing to keep in mind when using markers and keywords is that marker
names have to be complete in the -m <marker_name> flag, whereas keywords
are more of a substring thing in -k <keyword>. For example, -k "not TestFini"

works fine, but -m smok would not.

So what happens if you misspell a marker? That brings us to the topic of --
strict-markers.

Being Strict with Markers
Let’s say we want to add the “smoke” marker to test_start_non_existent, like
we did for test_finish_non_existent. However, we happen to misspell “smoke”
as “smok” like this:

ch6/bad/test_start.py

» @pytest.mark.smok

​ @pytest.mark.exception

​ ​def​ ​test_start_non_existent​(cards_db):

​ ​"""​

​ ​ Shouldn't be able to start a non-existent card.​

​ ​ """​

​ any_number = 123 ​# any number will be invalid, db is empty​

​ ​with​ pytest.raises(InvalidCardId):

​ cards_db.start(any_number)

If we try to run this “smoke” test, we’ll get a familiar warning:

​ ​$ ​​cd​​ ​​/path/to/code/ch6/bad​

​ ​$ ​​pytest​​ ​​-m​​ ​​smoke​

​ ========================= test session starts ==========================

​ collected 12 items / 5 deselected / 7 selected

​

​ test_finish.py [85%]

​ test_start.py . [100%]

​

​ =========================== warnings summary ===========================

​ test_start.py:17

​ /path/to/code/ch6/bad/test_start.py:17:

​ PytestUnknownMarkWarning:

​ Unknown pytest.mark.smok - is this a typo? ...

​ @pytest.mark.smok

​ ​ ...​

​ ============== 7 passed, 5 deselected, 1 warning in 0.06s ==============

However, if we want that warning to be an error instead, we can use the --
strict-markers flag:

http://media.pragprog.com/titles/bopytest2/code/ch6/bad/test_start.py

​ ​$ ​​pytest​​ ​​--strict-markers​​ ​​-m​​ ​​smoke​

​ ========================= test session starts ==========================

​ collected 10 items / 1 error / 4 deselected / 5 selected

​

​ ================================ ERRORS ================================

​ ____________________ ERROR collecting test_start.py ____________________

​ 'smok' not found in `markers` configuration option

​ ======================= short test summary info ========================

​ ERROR test_start.py

​ !!!!!!!!!!!!!!!! Interrupted: 1 error during collection !!!!!!!!!!!!!!!!

​ ==================== 4 deselected, 1 error in 0.15s ====================

So, what’s the difference? First, the error is issued at collection time, not at
run time. If you have a test suite longer than a second or two, you will
appreciate getting that feedback fast. Second, errors are sometimes easier to
catch than warnings, especially in continuous integration systems. I
recommend always using --strict-markers. Instead of typing it all the time, you
can add --strict-markers to your addopts section of pytest.ini:

ch6/strict/pytest.ini

​ ​[pytest]​

​ markers =

​ ​smoke:​ ​subset​ ​of​ ​tests​

​ ​exception:​ ​check​ ​for​ ​expected​ ​exceptions​

​ ​finish:​ ​all​ ​of​ ​the​ ​"cards​ ​finish"​ ​related​ ​tests​

» addopts =

» ​--strict-markers​

Having strict markers turned on is something that I always want but hardly
ever think about, so I try to always put it in my pytest.ini files.

http://media.pragprog.com/titles/bopytest2/code/ch6/strict/pytest.ini

Combining Markers with Fixtures
Markers can be used in conjunction with fixtures. They also can be used in
conjunction with plugins and hook functions (but that’s a topic for Chapter
15, ​Building Plugins​). Here, we’ll combine markers and fixtures to help test
the Cards application.

The builtin markers took parameters, while the custom ones we’ve used so
far do not. Let’s create a new marker called num_cards that we can pass to the
cards_db fixture.

The cards_db fixture currently cleans out the database for each test that wants
to use it:

ch6/combined/test_three_cards.py

​ @pytest.fixture(scope=​"function"​)

​ ​def​ ​cards_db​(session_cards_db):

​ db = session_cards_db

​ db.delete_all()

​ ​return​ db

If we want to, say, have three cards in the database when our test starts, we
could just write a different but similar fixture:

ch6/combined/test_three_cards.py

​ @pytest.fixture(scope=​"function"​)

​ ​def​ ​cards_db_three_cards​(session_cards_db):

​ db = session_cards_db

​ ​# start with empty​

​ db.delete_all()

​ ​# add three cards​

​ db.add_card(Card(​"Learn something new"​))

​ db.add_card(Card(​"Build useful tools"​))

​ db.add_card(Card(​"Teach others"​))

​ ​return​ db

http://media.pragprog.com/titles/bopytest2/code/ch6/combined/test_three_cards.py
http://media.pragprog.com/titles/bopytest2/code/ch6/combined/test_three_cards.py

Then we could use the original fixture for tests that expect an empty
database, and the new fixture for tests that expect the database to include
three cards:

ch6/combined/test_three_cards.py

​ ​def​ ​test_zero_card​(cards_db):

​ ​assert​ cards_db.count() == 0

​

​

​ ​def​ ​test_three_card​(cards_db_three_cards):

​ cards_db = cards_db_three_cards

​ ​assert​ cards_db.count() == 3

Well, great. Now we have the option of either having zero or three cards in
the database when we start. What if we want one card, or four cards, or 20
cards? Do we write a fixture for each? Nah. It’d be so much nicer if we
could just tell the fixture how many cards we want right from the test.
Markers make this possible.

We’d like to be able to write this:

ch6/combined/test_num_cards.py

​ @pytest.mark.num_cards(3)

​ ​def​ ​test_three_cards​(cards_db):

​ ​assert​ cards_db.count() == 3

In order to do that, we need to first declare a marker, modify the cards_db

fixture to detect if the marker is used, and then read the value supplied as a
marker parameter to figure out how many cards to prefill. Also, hard-coding
the card information isn’t going to work very well, so we’ll enlist the help of
a Python package called Faker[21] that conveniently includes a pytest fixture
that creates fake data.

First, we need to install Faker:

​ ​$ ​​pip​​ ​​install​​ ​​Faker​

http://media.pragprog.com/titles/bopytest2/code/ch6/combined/test_three_cards.py
http://media.pragprog.com/titles/bopytest2/code/ch6/combined/test_num_cards.py

Then we need to declare our marker:

ch6/combined/pytest.ini

​ ​[pytest]​

​ markers =

​ ​smoke:​ ​subset​ ​of​ ​tests​

​ ​exception:​ ​check​ ​for​ ​expected​ ​exceptions​

​ ​finish:​ ​all​ ​of​ ​the​ ​"cards​ ​finish"​ ​related​ ​tests​

» ​num_cards:​ ​number​ ​of​ ​cards​ ​to​ ​prefill​ ​for​ ​cards_db​ ​fixture​

Now we need to modify the cards_db fixture:

ch6/combined/conftest.py

​ @pytest.fixture(scope=​"function"​)

» ​def​ ​cards_db​(session_cards_db, request, faker):

​ db = session_cards_db

​ db.delete_all()

​

​ ​# support for `@pytest.mark.num_cards(<some number>)`​

​

​ ​# random seed​

» faker.seed_instance(101)

» m = request.node.get_closest_marker(​"num_cards"​)

» ​if​ m ​and​ len(m.args) > 0:

​ num_cards = m.args[0]

​ ​for​ _ ​in​ range(num_cards):

​ db.add_card(

​ Card(summary=faker.sentence(), owner=faker.first_name())

​)

​ ​return​ db

There are a lot of changes here, so let’s walk through them.

We added request and faker to the cards_db parameter list. We use request for
the line m = request.node.get_closest_marker(’num_cards’). The term request.node

is pytest’s representation of a test. get_closest_marker(’num_cards’) returns a
Marker object if the test is marked with num_cards, otherwise it returns None.
The name of the function get_closest_marker() seems weird at first. There’s

http://media.pragprog.com/titles/bopytest2/code/ch6/combined/pytest.ini
http://media.pragprog.com/titles/bopytest2/code/ch6/combined/conftest.py

only one marker. What makes it the closest one? Well, remember that we can
place markers on tests, classes, and even files. get_closest_marker(’num_cards’)

returns the marker closest to the test, which is usually what we want.

The expression, m and len(m.args) > 0 will be true if the test is marked with
num_cards, and an argument is provided. The extra len check is done so that if
someone accidentally uses just pytest.mark.num_cards without specifying the
number of cards, then we skip this part. We could also raise an exception or
assert something, which would very much alert users that they’ve done
something wrong. However, we’ll assume it’s the same as them saying
num_cards(0).

Once we know how many cards to create, we let Faker create some data for
us. Faker provides the faker fixture. The call to faker.seed_instance(101) seeds
the randomness of Faker so that we get the same data every time. We’re not
using Faker for random data, we’re using it to avoid making up data
ourselves. For the summary field, the method faker.sentence() will work. And
faker.first_name() works for the owner. There are tons of other capabilities you
can utilize with Faker. I encourage you to search the Faker documentation
for other capabilities for your own projects.

That’s it…really. Now all of our old tests that don’t use the marker will still
work the same, and new tests that want some initial cards in the database
work as well, with the same fixture:

ch6/combined/test_num_cards.py

​ ​import​ ​pytest​

​

​

​ ​def​ ​test_no_marker​(cards_db):

​ ​assert​ cards_db.count() == 0

​

​

​ @pytest.mark.num_cards

​ ​def​ ​test_marker_with_no_param​(cards_db):

http://media.pragprog.com/titles/bopytest2/code/ch6/combined/test_num_cards.py

​ ​assert​ cards_db.count() == 0

​

​

​ @pytest.mark.num_cards(3)

​ ​def​ ​test_three_cards​(cards_db):

​ ​assert​ cards_db.count() == 3

​ ​# just for fun, let's look at the cards Faker made for us​

​ ​print​()

​ ​for​ c ​in​ cards_db.list_cards():

​ ​print​(c)

​

​

​ @pytest.mark.num_cards(10)

​ ​def​ ​test_ten_cards​(cards_db):

​ ​assert​ cards_db.count() == 10

One more thing: I’m often curious about what the fake data looks like, so I
added some print statements to test_three_cards().

Let’s run these to make sure it works right, and see an example of this fake
data:

​ ​$ ​​cd​​ ​​/path/to/code/ch6/combined​

​ ​$ ​​pytest​​ ​​-v​​ ​​-s​​ ​​test_num_cards.py​

​ ========================= test session starts ==========================

​ collected 4 items

​

​ test_num_cards.py::test_no_marker PASSED

​ test_num_cards.py::test_marker_with_no_param PASSED

​ test_num_cards.py::test_three_cards

​ Card(summary='Suggest training much grow any me own true.',

​ owner='Todd', state='todo', id=1)

​ Card(summary='Forget just effort claim knowledge.',

​ owner='Amanda', state='todo', id=2)

​ Card(summary='Line for PM identify decade.',

​ owner='Russell', state='todo', id=3)

​ PASSED

​ test_num_cards.py::test_ten_cards PASSED

​

​ ========================== 4 passed in 0.06s ===========================

These sentences are oddballs and meaningless. However, they do the trick to
test the code. Using Faker and our marker/fixture combination allows us to
create a large database of unique cards, if we want to.

This last example of using markers and fixtures and a third-party package
was included kinda for the fun of it, but also to demonstrate the massive
power of combining different features of pytest, which may be simple on
their own, into a behavior that’s larger than the sum of parts. With very little
effort, we transformed the cards_db fixture from database access with zero
entries into a database with any number of entries we want by simply adding
@pytest.mark.num_cards(<any number>) to a test. That’s pretty cool, and pretty
simple to use.

Listing Markers
We’ve covered a lot of markers in this chapter. We used the builtin markers
skip, skipif, and xfail. We created our own markers, smoke, exception, finish,
and num_cards. There are also a few more builtin markers. And as we start
using pytest plugins, those plugins may also include some markers.

To list all the markers available, including descriptions and parameters, run
pytest --markers:

​ ​$ ​​cd​​ ​​/path/to/code/ch6/multiple​

​ ​$ ​​pytest​​ ​​--markers​

​ @pytest.mark.smoke: subset of tests

​

​ @pytest.mark.exception: check for expected exceptions

​

​ @pytest.mark.finish: all of the "cards finish" related tests

​

​ @pytest.mark.num_cards: number of cards to prefill for cards_db fixture

​

​ ​...​

​

​ @pytest.mark.skip(reason=None): skip the given test function with

​ an optional reason. ...

​

​ @pytest.mark.skipif(condition, ..., *, reason=...): skip the given test

​ function if any of the conditions evaluate to True. ...

​

​ @pytest.mark.xfail(condition, ..., *, reason=..., run=True,

​ raises=None, strict=xfail_strict): mark the test function as an expected

​ failure if any of the conditions evaluate to True. ...

​

​ @pytest.mark.parametrize(argnames, argvalues): call a test function multiple

​ times passing in different arguments in turn. ...

​ ​...​

This is a super handy feature to let us look up markers quickly, and a good
reason to include useful descriptions with our own markers.

Review
In this chapter, we looked at custom markers, builtin markers, and how to
use markers to pass data to fixtures. We also covered a few new options and
changes to pytest.ini.

Here’s an example pytest.ini file:

​ ​[pytest]​

​ markers =

​ ​<marker_name>:​ ​<marker_description>​

​ ​<marker_name>:​ ​<marker_description>​

​ addopts =

​ ​--strict-markers​

​ ​-ra​

​

​ xfail_strict = ​true​

Custom markers are declared with the markers section.

The --strict-markers flag tells pytest to raise an error if it sees us using an
undeclared marker. The default is a warning.

The -ra flag tells pytest to list the reason for any test that isn’t passing.
This includes fail, error, skip, xfail, and xpass.

Setting xfail_strict = true turns any passing tests marked with xfail into
failed tests since our understanding of the system behavior was wrong.
Leave this out if you want xfail tests that pass to result in XPASS.

Custom markers can be used to select a subset of tests to run with -m
<marker name> or not run with -m "not <marker name>".

Markers are placed on tests using the syntax, @pytest.mark.

<marker_name>.

Markers on classes also use the @pytest.mark.<marker_name> syntax and
will result in each class test method being marked.

Files can have markers, using pytestmark = pytest.mark.<marker_name> or
pytestmark = [pytest.mark.<marker_one>, pytest.mark.<marker_two>].

For parametrized tests, an individual parametrization can be marked
with pytest.param(<actual parameter>, marks=pytest.mark.<marker_name>).
Like the file version, the parametrized version can accept a list of
markers.

The -m flag can use logic operators and, or, not, and parentheses.

pytest --markers lists all available markers.

Builtin markers provide extra behavior functionality, and we discussed
skip, skipif, and xfail.

Tests can have more than one marker, and a marker can be used on
more than one test.

From a fixture, you can access markers using
request.node.get_closest_marker(<marker_name>).

Markers can have parameters that can be accessed with .args and
.kwargs attributes.

Faker is a handy Python package that provides a pytest fixture called
faker to generate fake data.

Exercises
Using markers for test selection is a powerful pytest capability to help run a
subset of tests. Walking through these exercises will help you get
comfortable with them.

The directory /path/to/code/ch6/exercises has a couple of files:

​ exercises/ch6

​ ├── pytest.ini

​ └── test_markers.py

test_markers.py includes seven test cases:

​ ​$ ​​cd​​ ​​ch6/exercises​

​ ​$ ​​pytest​​ ​​-v​

​ ========================= test session starts ==========================

​ collected 7 items

​

​ test_markers.py::test_one PASSED [14%]

​ test_markers.py::test_two PASSED [28%]

​ test_markers.py::test_three PASSED [42%]

​ test_markers.py::TestClass::test_four PASSED [57%]

​ test_markers.py::TestClass::test_five PASSED [71%]

​ test_markers.py::test_param[6] PASSED [85%]

​ test_markers.py::test_param[7] PASSED [100%]

1. Modify pytest.ini to register three markers, odd, testclass, and all.

2. Mark all the odd test cases with odd.

3. Use a file level marker to add the all marker.

4. Mark the test class with the testclass marker.

5. Run all the tests using the all marker.

6. Run the odd tests.

7. Run the odd tests that are not marked with testclass.

8. Run the odd tests that are parametrized. (Hint: Use both marker and
keyword flags.)

[19]

[20]

[21]

What’s Next
So far in this book you’ve learned about all of the primary powers of pytest.
Now you are ready to unleash these powers onto an unsuspecting project…
bwahahaha!

Actually, in the next part of the book, we’re going to build a full test suite
for the Cards project and learn lots of skills related to testing real projects.
We are going to take a look at testing strategy and build a test suite, use
code coverage to see if we missed anything, use mocks to test the user
interface, learn how to debug test failures, set up a development workflow
with tox, learn how pytest plays nice with continuous integration systems,
and learn about how to tell pytest where your code is if you are testing
something other than an installable Python package.

Whew! That’s a lot. But it’s going to be fun.

Footnotes

https://packaging.pypa.io/en/latest/version.html

http://c2.com/xp/YouArentGonnaNeedIt.html

https://faker.readthedocs.io

Copyright © 2022, The Pragmatic Bookshelf.

https://packaging.pypa.io/en/latest/version.html
http://c2.com/xp/YouArentGonnaNeedIt.html
https://faker.readthedocs.io/

Part 2
Working with Projects

Chapter 7

Strategy

So far in this book we’ve been talking about the mechanics of pytest—the
“how to write tests” part of software testing—including writing test
functions, using fixtures, and implementing parametrized testing. In this
chapter, we’re going to use all that you’ve learned about pytest so far to
create a test strategy for the Cards project—the “what tests to write” part of
software testing.

We’ll start by defining goals for our test suite. We’ll then look at how the
software architecture of Cards has influence on our test strategy and is
influenced by the need for tests. Then we can start selecting and prioritizing
which features to test. Once we know what features need tests, we can
generate a list of test cases needed. All of this methodical planning really
doesn’t take long, and will help to generate a pretty decent initial test suite.

Although this isn’t a comprehensive look at software testing strategy as a
whole—that’d be a book in itself—looking at a possible testing strategy for
a single project can help you determine the best testing strategies for your
own projects.

Determining Test Scope
Different projects have different test goals and requirements. Critical
systems like heart monitoring systems, air traffic control systems, and smart
braking systems require exhaustive testing at all levels. And then there are
tools to make animated gifs. Most software is somewhere in between.

We will almost always want to test the behavior of the user visible
functionality. However, there are quite a few other questions we need to
consider when determining how much testing we need to do:

Is security a concern? This is especially important if you save any
confidential information.

Performance? Do interactions need to be fast? How fast?

Loading? Can you handle lots of people with lots of requests? Are you
expecting to need to? If so, you should test for that.

Input validation? For really any system that accepts input from users,
we should validate the data before acting on it.

The Cards project is intended for use by an individual or a small team. Even
so, in reality, all of the concerns above apply to this project, especially as it
grows. So for an initial test suite, how much testing should we do? Here’s a
reasonable start:

Test the behavior of user visible functionality.

Postpone security, performance, and load testing for the current design.
The current design is to have the database stored in the users home
directory. When/if that moves to a shared location with multiple users,
these concerns will definitely be more important.

Input validation is also less important while Cards is a single user
application. However, I also don’t want stack traces to occur while
using the app, so we should test wacky input, at least at the CLI level.

All projects will need to have functionality or feature testing. However,
even with functionality testing alone, we need to decide which features
need testing and at what priority. Then for each feature, we need to decide
on test cases.

Using a methodical approach makes all of this fairly straightforward. We’ll
go through all of this for the Cards project as an example. We’ll begin by
prioritizing features and then generating test cases. But first, let’s take a
look at how your project’s software architecture can influence the testing
strategy you choose.

Testing Enough to Sleep at Night
The idea of testing enough so that you can sleep at night may
have come from software systems where developers have to be
on call to fix software if it stops working in the middle of the
night. It’s been extended to include sleeping soundly, knowing
that your software is well tested. Although it’s a very informal
concept, the idea is helpful as we evaluate what features to test
and what test cases are needed in the following sections.

Considering Software Architecture
How your application is set up—its software architecture—is an important
consideration when determining a testing strategy. Software architecture
pertains to how your project’s software is organized, what APIs are
available, what the interfaces are, where code complexity lives, modularity,
and so much more. In relation to testing, we need to know how much of the
system we need to test and what the entry points are.

As a simple example, let’s say we’re testing code that exists in one module,
is intended to be used on the command line, has no interactive components
other than print output, and has no API. Also, it’s not written in Python. We
have no choices then. Our only option is to test it as a black box. We’ll have
our test code call it with different parameters and state and watch the
output.

If the code is written in Python and is importable, and we can test the
different parts of it by calling functions within the module, we then have
choices. We can still test it as before, as a black box. But we can also test
the functions inside separately if we want to.

This concept scales well. If the software under test is designed as a Python
package with lots of submodules, we can still test at the CLI level, or we
can zoom in a bit and test the modules, or we can zoom in further and test
the functions within the modules. Scaling up one more, we have larger
systems that are designed as interacting subsystems, each possibly with
multiple packages and modules.

All of this affects our testing strategy in many ways:

At what level should we be testing? The top user interface? Something
lower? Subsystem? All levels?

How easy is it to test at different levels? UI testing is often the most
difficult, but can also be easier to tie to customer features. Testing for
individual functions might be easier to implement, but harder to tie to
customer requirements.

Who is responsible for the different levels and the testing of each? If
you are supplying a subsystem, are you only responsible for that
subsystem? Is someone else doing the system testing? If so, it’s an
easy choice: test your own subsystem. However, it would be good to
be involved at least with knowing what’s being tested at the system
level.

Let’s simplify things a bit. Let’s say you and your team are responsible for
the whole shebang, and your software is built up in layers. You’ve got a UI
at the top that’s super thin on logic, calls an API layer, and calls whatever
else is in the system. The rest of the code could be a huge single file or
well-designed subsystems and modules.

You can then essentially do system testing against the API, and do some
minimal testing of the UI to make sure it calls the API correctly. Then you
could do some high-level tests at the UI level as system tests and focus your
testing effort on the API.

That simplified system is what we have with Cards. The Cards project is
implemented in three layers: (1) the CLI that lives in cli.py, (2) the API that
lives in api.py, and (3) a database layer in db.py.

The CLI is implemented in cli.py. It depends on two third-party packages:
Typer,[22] which is a tool for building CLIs, and Rich,[23] which does lots of
great rich text terminal stuff, but we’re just using it for nice tables. The CLI
is intentionally as thin as possible, with almost all logic passed off to the
API.

The interaction with the underlying database is handled in db.py. It has a
third-party dependency, TinyDB,[24] which is the underlying database. It’s
also as thin as possible.

Both cli.py and db.py are as thin as possible for a few reasons:

Testing through the API tests most of the system and logic.
Third-party dependencies are isolated to a single file.

Isolating third-party packages brings several benefits. If anything needs to
change due to interface changes in those dependencies, the changes will be
isolated to a single file. This may even include swapping out the
dependency for something else. If we ever want to try a different database
backend, for example, we could create a test suite using db.py as an entry
point, change the database, and make any adapter modifications necessary
in db.py.

In Cards, the primary reason for keeping cli.py thin is to allow most of the
testing to be directed at the API. For db.py, the primary reason is to allow
isolated testing of our expectations of any underlying database.

How does this relate to testing strategy? A few ways:

Because the CLI is thin on logic, we can test most everything through
the API.

Testing the CLI enough to verify it calls the correct API entry point
should be sufficient.

Because the database interactions are isolated to db.py, we can add
subsystem testing at that layer if we feel it’s necessary.

Even if we test through the API, we want to focus testing effort on visible
end-user behavior, instead of getting lost in testing implementation.

Therefore, here’s a workable testing strategy for Cards:

Test features that are accessible to users—features that are visible in
the CLI.

Test those features through the API, not through the CLI.

Test the CLI enough to verify it’s connected to the API correctly.

That seems like a decent place to start. We can hold off on isolated testing
of the database for now. Next, let’s take a look at the user-visible features to
decide what to test.

Evaluating the Features to Test
Before we create the cases we want to test, we first need to evaluate what
features to test. When you have a lot of functionality and features to test,
you have to prioritize the order of developing tests. At least a rough idea of
order helps.

I generally prioritize features to test based on the following factors:

Recent—New features, new areas of code, new functionality that has
been recently repaired, refactored, or otherwise modified

Core—Your product’s unique selling propositions (USPs). The
essential functions that must continue to work in order for the product
to be useful

Risk—Areas of the application that pose more risk, such as areas
important to customers but not used regularly by the development
team or parts that use third-party code you don’t quite trust

Problematic—Functionality that frequently breaks or often gets defect
reports against it

Expertise—Features or algorithms understood by a limited subset of
people

Cards has a limited feature set. Here are the features visible to the end user:

​ ​$ ​​cards​​ ​​--help​

​ Usage: cards [OPTIONS] COMMAND [ARGS]...

​

​ Cards is a small command line task tracking application.

​

​ Options:

​ --help Show this message and exit.

​

​ Commands:

​ add Add a card to db.

​ config List the path to the Cards db.

​ count Return number of cards in db.

​ delete Remove card in db with given id.

​ finish Set a card state to 'done'.

​ list List cards in db.

​ start Set a card state to 'in prog'.

​ update Modify a card in db with given id with new info.

​ version Return version of cards application

Because we’re treating the Cards project as a legacy system needing testing,
some of these criteria are more helpful than others:

Core

add, count, delete, finish, list, start, and update all seem like core
functionality.
config and version seem less important.

Risk

The third-party packages are Typer for the CLI and TinyDB for
the database. Having some focused tests around our use of these
components would be prudent. Our use of Typer will be tested
when we test the CLI. Our use of TinyDB will be tested really in
all of the other tests, and since db.py is isolating our interaction
with TinyDB, we can create tests focused at that layer if
necessary.

And because the feature set is small, we’ll actually test all of the Cards
project. However, even this quick analysis of features helps us come up
with our strategy:

Test core features thoroughly.
Test non-core features with at least one test case.
Test the CLI in isolation.

Now let’s take this plan and generate test cases.

Creating Test Cases
As with determining the goals and scope of your test strategy, generating
test cases is also easier if you take a methodical approach. For generating an
initial set of test cases, these criteria will be helpful:

Start with a non-trivial, “happy path” test case.

Then look at test cases that represent

interesting sets of input,
interesting starting states,
interesting end states, or
all possible error states.

Some of these test cases will overlap. If a test case satisfies more than one
of the above criteria, that’s fine. Let’s go through a few of the Cards
features to get the hang of it.

For count, a happy path test case might be, “For an empty database, count
returns 0.” However, I’d also consider this a trivial example. It just doesn’t
seem like it tests much. What if count is hard-coded to return 0? Therefore,
for a decent non-trivial, happy path example, let’s say:

For a database with three elements, count returns 3.

What are the interesting sets of inputs? None. count doesn’t take any
parameters.

What are the interesting starting states? I would say:

Empty database
One item
More than one item

Interesting ending states? None. count doesn’t modify the database.

Error states? Also none that I can think of.

So, for count we’ve got these test cases:

count from an empty database
count with one item
count with more than one item

Because the last test satisfies our happy path test case, we can just leave it
at these three.

Actually, the happy path is often satisfied by one of the other test cases
generated by the other criteria. So why should we specifically think of a
non-trivial, happy path test case? We should for a couple of reasons. First, if
we are in a hurry, we could create only non-trivial, happy path test cases,
one for each feature we are testing. That’s not a thorough test suite.
However, it’s quite effective in testing a large portion of the system with
minimal work. Many times I have started here and built out more test cases
during development.

The second reason to start with the happy path is that it makes thinking
about the other criteria pretty easy. If you start with everything that could
go wrong, you may forget to test the cases where it goes right.

Let’s now look at add and delete.

For add, here’s the help text:

​ ​$ ​​cards​​ ​​add​​ ​​--help​

​ Usage: cards add [OPTIONS] SUMMARY...

​

​ Add a card to db.

​

​ Arguments:

​ SUMMARY... [required]

​

​ Options:

​ -o, --owner TEXT

​ --help Show this message and exit.

A non-trivial, happy path case could be to add a card to a non-empty
database. A summary is required, and an owner passed in is optional. So we
should test both summary alone and test summary plus owner. What if we
don’t pass in a summary? That would fall under the error conditions. As
would empty text for an owner. What if we add a card who’s summary and
owner match an already existing card? Should that be allowed or rejected as
an error state? This question highlights some of the value in writing tests
during development, or at the very least, before the behavior and API are
too far along to easily change without disrupting existing users. What
should the behavior be? The Cards app allows duplicates. But either answer
would be reasonable. Still, we should test for it.

Here are the test cases we have for add:

add to an empty database, with summary
add to a non-empty database, with summary
add a card with both summary and owner set
add a card with a missing summary
add a duplicate card

Now for delete, here’s the help text:

​ cards delete --help

​ Usage: cards delete [OPTIONS] CARD_ID

​

​ Remove card in db with given id.

​

​ Arguments:

​ CARD_ID [required]

​

​ Options:

​ --help Show this message and exit.

For a non-trivial, happy path test case, let’s start with more than one card
and delete one. The only input is the card ID. Interesting options could be
an ID that exists and a non-existent ID. Interesting starting states could be
empty, non-empty with the card we are deleting, and non-empty without the
card. Ending states finally make an appearance as a useful criteria, since the
action of deleting could bring us from non-empty to empty. For error
conditions, I think the non-existent card deletion is really the only one.

Here are the test cases we have for delete:

delete one from a database with more than one
delete the last card
delete a non-existent card

So far we have test cases for add, delete, and count. Let’s take a look at start
and finish together. Because these functions change the state of a single card,
looking at the card state is more interesting than looking at the database
state. The possible states of cards are “todo,” “in prog,” and “done.” All
seem interesting. Like delete, you pass in an ID of a card you want to start
or finish. We should test existing IDs and non-existent IDs. This brings us
these new test cases:

start from “todo,” “in prog,” and “done” states
start an invalid ID
finish from “todo,” “in prog,” and “done” states
finish an invalid ID

We’ve got update, list, config, and version left. If you would like practice with
this technique, I encourage you to try them yourself now before reading on,
and see if your list is different than mine.

Here’s what I came up with for the remaining features:

update the owner of a card
update the summary of a card

update owner and summary of a card at the same time
update a non-existent card
list from an empty database
list from a non-empty database
config returns the correct database path
version returns the correct version

That’s a reasonably good set of test cases to start with. Note that these
aren’t detailed test descriptions. As we implement the test cases, questions
might come up regarding what the correct behavior really is. That’s great.
These questions often trigger communication, design clarity, and API
completeness. They can also help determine holes in documentation.

The initial list of test cases is also not complete. As we work through the
test writing, we’ll inevitably come up with more test cases. This is also a
great time to get feedback from a team, if you are working with a team. The
informal nature of the test cases at this stage allows for a discussion of
behavior without getting lost in the details of the code.

There may still be some missing information that will be needed to
complete the test writing. For example, if an exception is expected, what
specific exception will it be? Missing information is okay, especially if the
API for the code being tested isn’t finalized. If you discuss the test case list
with domain experts on the team at this stage, they will be ready for
questions about specifics when you run into them while writing the tests.

After this planning work of examining the features to test and generating an
initial test case list, you may want to jump right in to writing tests.
However, it’s a good idea to pause and write down what we’ve worked on
so far.

Writing a Test Strategy
Earlier in the chapter we decided that most of our testing will be through
the API. The CLI will be tested enough to make sure it calls the API
correctly. We’re going to punt on database testing for now. We can pick it
up later if we want to have a set of tests useful for migrating to a new
database package.

Even with this quick summary of our testing strategy, it’s easy to forget the
details once we are in the thick of testing. Therefore, I really like to write a
testing strategy down so I can refer to it later. Writing it down is especially
important if you are working with teams, even if there are just two of you.

Here’s the current Cards testing strategy:

Test the behaviors and features that are accessible through the end user
interface, the CLI.

Test those features through the API as much as possible.

Test the CLI enough to verify the API is getting properly called for all
features.

Test the following core features thoroughly: add, count, delete, finish,
list, start, and update.

Include cursory tests for config and version.

Test our use of TinyDB with subsystem tests against db.py.

Also, we won’t list it here, but if you are sharing the strategy with a team in
a document or an internal wiki or something, definitely include the initial
test case list.

We know we’ll probably extend this initial strategy as the testing
progresses. Whenever we feel it needs to change, that’s a great time to
discuss the changes with the team.

Taking the time to write down the features to test, an initial list of test cases,
and a test strategy is up-front time, but it pays for itself quickly as we blast
through implementing the tests, which is the next step.

Test Case Implementation
The tests written for the test cases generated in previous
sections are included in the code download under code/ch7.
None of the code is complicated and uses only pytest features
we’ve covered in previous chapters. Feel free to look through
the code.

Review
In this chapter, we looked at developing an initial test suite and a test
strategy for the Cards project. We started by looking at at the system
architecture and deciding at what layer we should test. We then looked at
features to test, prioritizing based on:

Recent—New features, new areas of code, new functionality that has
been recently repaired, refactored, or otherwise modified

Core—Your product’s unique selling propositions (USPs). The
essential functions that must continue to work in order for the product
to be useful

Risk—Areas of the application that pose more risk, such as areas
important to customers but not used regularly by the development
team or parts that use third-party code you don’t quite trust

Problematic—Functionality that frequently breaks or often gets defect
reports against it

Expertise—Features or algorithms understood by a limited subset of
people

Then for each feature, we listed test cases using these criteria:

Start with a non-trivial, happy path test case.

Then look at test cases that represent

interesting sets of input,
interesting starting states,
interesting end states, or
all possible error states.

Finally, we wrote down the features we’re testing, the list of initial test
cases, and the overall test strategy so that we can discuss it and refer to it
later.

Exercises
When writing automated tests, these are common mistakes:

Only writing happy path test cases
Spending too much time thinking about how things can go wrong
Ignoring how behaviors change based on system or component state

Like many complex activities, the hardest part of writing a thorough yet
efficient test suite is just getting started and getting the initial list of test
cases. The methods covered in this chapter should be practiced so they
become second nature to you.

The cool thing about these strategies is that you can practice on really any
project. Going through these exercises will help you learn how to think
about behavior. Going through them with even two to three projects you use
but didn’t build will help you when you need to come up with test cases for
your own software.

1. Pick a software project you are familiar with. This could be something
you wrote or helped write, or it could be some software that you use
regularly.

2. Describe one or two user accessible features.

3. Write down test cases for these features. What are the interesting
starting states? Are there possible error cases? Does the ending state
matter? What input should you try?

4. If the project is one of your own, or a Python package that’s installable
with pip, try to write these test cases.

[22]

[23]

[24]

What’s Next
The test cases developed in this chapter were used to create an initial test
suite. In the next chapter, we’ll put these tests into a directory layout, along
with pytest’s configuration files. We’ll discuss the effect file structure has
on testing, as well as the role of each configuration file.

Footnotes

https://pypi.org/project/typer

https://pypi.org/project/rich

https://pypi.org/project/tinydb

Copyright © 2022, The Pragmatic Bookshelf.

https://pypi.org/project/typer
https://pypi.org/project/rich
https://pypi.org/project/tinydb

Chapter 8

Configuration Files

Configuration files—those non-test files that affect how pytest runs—save
time and duplicated work. If you find yourself always using certain flags in
your tests, like --verbose or --strict-markers, you can tuck those away in a
config file and not have to type them all the time. In addition to
configuration files, a handful of other files are useful when using pytest to
make work of writing and running tests easier. We’ll cover all of them in
this chapter.

Understanding pytest Configuration Files
Let’s run down the non-test files relevant to pytest:

pytest.ini: This is the primary pytest configuration file that allows you to
change pytest’s default behavior. Its location also defines the pytest
root directory, or rootdir.

conftest.py: This file contains fixtures and hook functions. It can exist at
the rootdir or in any subdirectory.

__init__.py: When put into test subdirectories, this file allows you to
have identical test file names in multiple test directories.

tox.ini, pyproject.toml, and setup.cfg: These files can take the place of
pytest.ini. If you already have one of these files in a project, you can
use it to save pytest settings.

tox.ini is used by tox, the command-line automated testing tool we
take a look at in Chapter 11, ​tox and Continuous Integration​.

pyproject.toml is used for packaging Python projects and can be
used to save settings for various tools, including pytest.

setup.cfg is also used for packaging, and can be used to save pytest
settings.

Let’s look at some of these files in the context of an example project
directory structure:

​ cards_proj

​ ├── ... top level project files, src dir, docs, etc ...

​ ├── pytest.ini

​ └── tests

​ ├── conftest.py

​ ├── api

​ │ ├── __init__.py

​ │ ├── conftest.py

​ │ └── ... test files for api ...

​ └── cli

​ ├── __init__.py

​ ├── conftest.py

​ └── ... test files for cli ...

In the case of the Cards project we’ve been using so far for testing against,
there is no tests directory. However, in either open-source or closed-source
projects, the tests usually exist in a tests directory of the project.

We’ll refer to this structure while talking about the various files in the rest
of this section.

Saving Settings and Flags in pytest.ini
Let’s look at an example pytest.ini file:

ch8/project/pytest.ini

​ ​[pytest]​

​ addopts =

​ ​--strict-markers​

​ ​--strict-config​

​ ​-ra​

​

​ testpaths = ​tests​

​

​ markers =

​ ​smoke:​ ​subset​ ​of​ ​tests​

​ ​exception:​ ​check​ ​for​ ​expected​ ​exceptions​

The file starts with [pytest] to denote the start of the pytest settings. It may
seem weird that we have to include this notation, given that it’s strictly a
pytest configuration file. However, including [pytest] allows the pytest ini
parsing to treat pytest.ini and tox.ini identically. After that are the individual
settings, each on their own line (or multiple lines) in the form of <setting> =

<value>.

Configuration settings that allow more than one value often allow values to
be written on either one line or on multiple lines. For instance, we could
have written the options all on one line like this:

addopts = --strict-markers --strict-config -ra

Splitting them up into one line per flag is a style thing. Markers are different,
and only one marker per line is allowed.

This example is a basic pytest.ini file that includes items I almost always
have set. Let’s run through the options and settings briefly:

http://media.pragprog.com/titles/bopytest2/code/ch8/project/pytest.ini

addopts = --strict-markers --strict-config -ra

The addopts setting enables us to list the pytest flags we always
want to run in this project.

--strict-markers tells pytest to raise an error for any unregistered
marker encountered in the test code as opposed to a warning. Turn
this on to avoid marker-name typos.

--strict-config tells pytest to raise an error for any difficulty in
parsing configuration files. The default is a warning. Turn this on
to avoid configuration-file typos going unnoticed.

-ra tells pytest to display extra test summary information at the end
of a test run. The default is to show extra information on only test
failures and errors. The a part of -ra tells pytest to show
information on everything except passing tests. This adds skipped,
xfailed, and xpassed to the failure and error tests.

testpaths = tests

The testpaths setting tells pytest where to look for tests if you
haven’t given a file or directory name on the command line.
Setting testpaths to tests tells pytest to look in the tests directory.

At first glance, setting testpaths to tests may seem redundant
because pytest will look there anyway, and we don’t have any test_

files in our src or docs directories. However, specifying a testpaths

directory can save a bit of startup time, especially if our docs or src

or other directories are quite large.

markers = ...

The markers setting is used to declare markers, as we did in ​
Selecting Tests with Custom Markers​.

You can specify many more configuration settings and command-line
options in configuration files, and you can see all of them by running pytest --

help.

Using tox.ini, pyproject.toml, or setup.cfg in place
of pytest.ini
If you are writing tests for a project that already has a pyproject.toml, tox.ini,
or setup.cfg file in place, you can still use pytest.ini to store your pytest
configuration settings. Or you can store your configuration settings in one of
these alternate configuration files. The syntax is a little different in the two
non-ini files, so we’ll take a look at each one.

tox.ini
A tox.ini file contains settings for tox, which is covered in more detail in
Chapter 11, ​tox and Continuous Integration​. It can also include a [pytest]
section. And because it’s also an .ini file, the tox.ini example below is almost
identical to the pytest.ini example shown earlier. The only difference is that
there will also be a [tox] section.

A sample tox.ini file looks like this:

ch8/alt/tox.ini

​ ​[tox]​

​ ​; tox specific settings​

​

​ ​[pytest]​

​ addopts =

​ ​--strict-markers​

​ ​--strict-config​

​ ​-ra​

​

​ testpaths = ​tests​

​

​ markers =

​ ​smoke:​ ​subset​ ​of​ ​tests​

​ ​exception:​ ​check​ ​for​ ​expected​ ​exceptions​

http://media.pragprog.com/titles/bopytest2/code/ch8/alt/tox.ini

pyproject.toml
The pyproject.toml file started as a file intended for packaging Python
projects; however, the Poetry[25] and Flit[26] projects use pyproject.toml for
defining a project settings. The Setuptools library, which has been the
standard packaging tool before Flit and Poetry came around, hasn’t
traditionally used pyproject.toml. However, you can now use Setuptools with
pyproject.toml.[27] In 2018, a Python code formatter named Black[28] started to
gain popularity. The only way to configure Black is to use pyproject.toml.
Since then, more and more tools have started to support storing
configuration in pyproject.toml, including pytest.

Because TOML[29] is a different configuration file standard than .ini files, the
format is a little different, but fairly easy to get used to. The format looks
like this:

ch8/alt/pyproject.toml

​ ​[tool.pytest.ini_options]​

​ addopts = [

​ ​"--strict-markers"​,

​ ​"--strict-config"​,

​ ​"-ra"​

​]

​

​ testpaths = ​"tests"​

​

​ markers = [

​ ​"smoke: subset of tests"​,

​ ​"exception: check for expected exceptions"​

​]

Instead of [pytest], you start the section with [tool.pytest.ini_options]. The
setting values need quotes around them, and lists of setting values need to be
lists of strings in brackets.

setup.cfg

http://media.pragprog.com/titles/bopytest2/code/ch8/alt/pyproject.toml

The setup.cfg file format is more like .ini. Here’s what our configuration
example looks like as a setup.cfg file:

ch8/alt/setup.cfg

​ [tool:pytest]

​ addopts =

​ --strict-markers

​ --strict-config

​ -ra

​

​ testpaths = tests

​

​ markers =

​ smoke: subset of tests

​ exception: check for expected exceptions

Here, the only noticeable difference between this and pytest.ini is the section
specifier of [tool:pytest].

However, the pytest documentation warns that the .cfg parser is different then
the .ini file parser, and that difference may cause problems that are hard to
track down.[30]

http://media.pragprog.com/titles/bopytest2/code/ch8/alt/setup.cfg

Determining a Root Directory and Config File
Even before it starts looking for test files to run, pytest reads the
configuration file—the pytest.ini file or the tox.ini, setup.cfg, or pyproject.toml

files that contain a pytest section.

If you’ve passed in a test directory, pytest starts looking there. If you’ve
passed in multiple files or directories, pytest starts at the common ancestor
of all of them. If you don’t pass in a file or directory, it starts at the current
directory. If pytest finds a configuration file at the starting directory, that’s
the root. If not, pytest goes up the directory tree until it finds a
configuration file that has a pytest section in it. Once pytest finds a
configuration file, it marks the directory where it found it as the root
directory, or rootdir. This root directory is also the relative root of test node
IDs. It also tells you where it found a configuration file.

The rules around which configuration file to use and where the root
directory is can seem confusing at first. However, having a well-defined
rootdir search process and having pytest display what the rootdir is allows
us to run tests at various levels and be assured that pytest will find the
correct configuration file. For instance, even if you change directories into a
test subdirectory deep inside the tests directory, pytest will still find your
configuration file at the top of the project.

Even if you don’t need any configuration settings, it’s still a great idea to
place an empty pytest.ini at the top of your project. If you don’t have any
configuration files, pytest will keep searching to the root of your file
system. At best, this will just cause a slight delay while pytest is looking. At
worst, it will find one along the way that has nothing to do with your
project.

Once it locates a configuration file, pytest will print out which rootdir and
configuration file it’s using at the top of a test run:

​ ​$ ​​cd​​ ​​/path/to/code/ch8/project​

​ ​$ ​​pytest​

​ ========================= test session starts ==========================

​ platform darwin -- Python 3.x.y, pytest-x.y.z, py-1.x.y, pluggy-0.x.y

» rootdir: /path/to/code/ch8/project, configfile: pytest.ini, testpaths: tests

​ collected 28 items

​

​ tests/api/test_add.py [17%]

​ tests/api/test_config.py . [21%]

​ ​...​

​ tests/api/test_update.py [96%]

​ tests/api/test_version.py . [100%]

​

​ ========================== 28 passed in 0.14s ==========================

It also shows the testpaths if you have it set, which we do. That’s nice.

Note that for most of the examples in this book, you won’t see this header
information, as it’s been removed for the sole purpose of making the
examples shorter and easier to read.

Sharing Local Fixtures and Hook Functions with
conftest.py
The conftest.py file is used to store fixtures and hook functions. (Fixtures are
described in Chapter 3, ​pytest Fixtures​, and hook functions are discussed in
Chapter 15, ​Building Plugins​.) You can have as many conftest.py files as you
want in a project, even one per test subdirectory. Anything defined in a
conftest.py file applies to tests in that directory and all subdirectories.

If you have one top conftest.py file at the tests level, fixtures defined there
can be used with all tests in the top-level tests directory and below. Then if
there are specific fixtures that only apply to a subdirectory, they can be
defined in another conftest.py file in that subdirectory. For instance, the GUI
tests might need different fixtures than the API tests, and they might also
want to share some.

However, it’s a good idea to try to stick to one conftest.py file so that you
can find fixture definitions easily. Even though you can always find where a
fixture is defined by using pytest --fixtures -v, it’s still easier if you know it’s
either in the test file you are looking at or in one other file, the conftest.py

file.

Avoiding Test File Name Collision
The __init__.py file affects pytest in one way and one way only: it allows you
to have duplicate test file names.

If you have __init__.py files in every test subdirectory, you can have the same
test file name show up in multiple directories. That’s it—the only reason to
have a __init__.py file.

Here’s an example:

​ ​$ ​​cd​​ ​​/path/to/code/ch8/dup​

​ ​$ ​​tree​​ ​​tests_with_init​

​ tests_with_init

​ ├── api

​ │ ├── __init__.py

​ │ └── test_add.py

​ ├── cli

​ │ ├── __init__.py

​ │ └── test_add.py

​ └── pytest.ini

We might want to test some add functionality both through the API and
through the CLI, so having a test_add.py in both seems reasonable.

As long as we also have a __init__.py file in both the api and cli directories,
this test will work fine:

​ ​$ ​​pytest​​ ​​-v​​ ​​tests_with_init​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ tests_with_init/api/test_add.py::test_add PASSED [50%]

​ tests_with_init/cli/test_add.py::test_add PASSED [100%]

​

​ ========================== 2 passed in 0.02s ===========================

However, if we leave out the __init__.py files, it won’t work. Here’s the same
directory, without the __init__.py files:

​ ​$ ​​tree​​ ​​tests_no_init​

​ tests_no_init

​ ├── api

​ │ └── test_add.py

​ ├── cli

​ │ └── test_add.py

​ └── pytest.ini

When we try to run the test, we get an error:

​ ​$ ​​pytest​​ ​​-v​​ ​​tests_no_init​

​ ========================= test session starts ==========================

​ collected 1 item / 1 error

​ ================================ ERRORS ================================

​ ___________________ ERROR collecting cli/test_add.py ___________________

​ import file mismatch:

​ imported module 'test_add' has this __file__ attribute:

​ /path/to/code/ch8/dup/tests_no_init/api/test_add.py

​ which is not the same as the test file we want to collect:

​ /path/to/code/ch8/dup/tests_no_init/cli/test_add.py

​ HINT: remove __pycache__ / .pyc files and/or use a unique basename for

​ your test file modules

​ ======================= short test summary info ========================

​ ERROR tests_no_init/cli/test_add.py

​ !!!!!!!!!!!!!!!! Interrupted: 1 error during collection !!!!!!!!!!!!!!!!

​ =========================== 1 error in 0.07s ===========================

The error message highlights that we have two files named the same, and
recommends changing the file names. Changing the file names would work
to avoid this error, but you can also add __init__.py files and leave them as
they are.

Duplicated file names is such a confusing error when you run into it that it’s
a decent habit to just stick __init__.py files in subdirectories and be done with
it.

Review
In this chapter, we looked at all the files related to tests that are not test
files:

You can have pytest settings in one primary configuration file per
project: pytest.ini, pyproject.toml, tox.ini, or setup.cfg.

pytest calls the primary configuration file location the root directory or
rootdir.

Settings live in the configuration file, including options and flags
defined by the addopts configuration setting.

The conftest.py file is used for fixtures and hook functions shared by all
tests in the same directory or lower.

The __init__.py files in test subdirectories allow you to duplicate test file
names.

Exercises
Getting used to adding and editing configuration files now will help you
understand just how simple and powerful they can be. These exercises focus
on the primary configuration files.

The following exercises are based around the /path/to/code/exercises/ch8
directory, which looks like this:

​ exercises/ch8

​ ├── pytest.ini

​ └── tests

​ ├── a

​ │ └── test_x.py

​ └── b

​ └── test_x.py

1. Go to /path/to/code/exercises/ch8 and run pytest.

What is the root directory?
What is the configuration file in use?
You should also see an error message. What does it say?

1. In the pytest.ini file, set testpaths to tests/a.

Does that fix the error?

1. Change the testpaths from tests/a to tests. Add __init__.py files to a and b.

Does that fix the error?

1. Set addopts to -v and re-run pytest.

What was the behavior change?

1. Create a tests/pyproject.toml file.

Set addopts to "-v".

Run pytest from the exercises/ch8 directory and once from the
exercises/ch8/tests directory.

Was the root directory and configuration file different?

If so, why?

[25]

[26]

[27]

[28]

[29]

[30]

What’s Next
When writing tests for a software project, it can be useful to understand
how much of the application code is being tested and if there are any
untested parts. In the next chapter, we’ll use the code coverage tools
coverage.py and pytest-cov to see how much of the source code for the Cards
project is being tested by the test suite developed in Chapter 7, ​Strategy​.

Footnotes

https://python-poetry.org

https://flit.readthedocs.io

https://setuptools.readthedocs.io/en/latest/build_meta.html

https://pypi.org/project/black

https://toml.io/en

https://docs.pytest.org/en/latest/reference/customize.html#setup-cfg

Copyright © 2022, The Pragmatic Bookshelf.

https://python-poetry.org/
https://flit.readthedocs.io/
https://setuptools.readthedocs.io/en/latest/build_meta.html
https://pypi.org/project/black
https://toml.io/en
https://docs.pytest.org/en/latest/reference/customize.html#setup-cfg

Chapter 9

Coverage

In Chapter 7, ​Strategy​, we generated an initial list of test cases based on a
test strategy by analyzing the user-facing features of the Cards project. The
tests in the ch7 directory of the book’s source code[31] are an implementation
of those test cases, which test Cards through the API. But how do we know
if these tests are thoroughly testing our code? That’s where code coverage
comes in.

Tools that measure code coverage watch your code while a test suite is
being run and keep track of which lines are hit and which are not. That
measurement—called line coverage—is calculated by dividing the total
number of lines run divided by the total lines of code. Code coverage tools
can also tell you if all paths are taken in control statements, a measurement
called branch coverage.

Code coverage cannot tell you if your test suite is good; it can only tell you
how much of the application code is getting hit by your test suite. But that
in itself is useful information.

Coverage.py[32] is the preferred Python coverage tool that measures code
coverage. And pytest-cov[33] is a popular pytest plugin often used in
conjunction with coverage.py that makes the command line a little shorter. In
this chapter, we’ll use both tools to see if we missed anything important in
the test suite we developed in the last chapter for the Cards project.

Using coverage.py with pytest-cov
Both coverage.py and pytest-cov are third-party packages that need to be
installed before use:

​ ​$ ​​pip​​ ​​install​​ ​​coverage​

​ ​$ ​​pip​​ ​​install​​ ​​pytest-cov​

To run tests with coverage.py, you need to add the --cov flag and provide either
a path to the code you want to measure, or the installed package you are
testing. In our case, the Cards project is an installed package, so we’ll test it
using --cov=cards.

The normal pytest output is followed by the coverage report, as shown here:

​ ​$ ​​cd​​ ​​/path/to/code​

​ ​$ ​​pytest​​ ​​--cov=cards​​ ​​ch7​

​ ============================ test session starts
=============================

​ collected 27 items

​

​ ch7/test_add.py [18%]

​ ch7/test_config.py . [22%]

​ ch7/test_count.py ... [33%]

​ ch7/test_delete.py ... [44%]

​ ch7/test_finish.py [59%]

​ ch7/test_list.py .. [66%]

​ ch7/test_start.py [81%]

​ ch7/test_update.py [96%]

​ ch7/test_version.py . [100%]

​

​ ---------- coverage: platform darwin, python 3.x.y -----------

​ Name Stmts Miss Cover

​ ---

​ venv/lib/python3.x/site-packages/cards/__init__.py 3 0 100%

​ venv/lib/python3.x/site-packages/cards/api.py 72 3 96%

​ venv/lib/python3.x/site-packages/cards/cli.py 86 53 38%

​ venv/lib/python3.x/site-packages/cards/db.py 23 0 100%

​ ---

​ TOTAL 184 56 70%

​

​ ============================= 27 passed in 0.12s
=============================

The previous output was produced by the report capabilities of coverage,
even though we didn’t call coverage directly. The command, pytest --cov=cards

ch7 told the pytest-cov plugin to

run coverage with --source set to cards while running pytest with the tests
in ch7, and

run coverage report for the terminal line-coverage report.

We can do this all ourselves using coverage directly. Without pytest-cov, the
commands would look like this:

​ ​$ ​​coverage​​ ​​run​​ ​​--source=cards​​ ​​-m​​ ​​pytest​​ ​​ch7​

​ ​$ ​​coverage​​ ​​report​

The resulting output report is the same, which is a little surprising. Even
though the source code for cards is in /path/to/code/cards_proj/src/cards, the
coverage report is for the installed package within the virtual environment.
The virtual environment path to the Cards source files is annoyingly long,
but still useful. The virtual environment path is the correct path, as that’s
where the code is running during the tests. However, the code is also in the
local cards_proj directory. Having coverage list the local cards_proj directory
would be nice. Luckily, there is a workaround to tell coverage that the local
cards_proj code is the same as the installed code, and to use the local location
instead.

If you try the same commands using the book’s source code, you’ll get a
different result. The reason is because the source code includes a .coveragerc

file with the following content:

.coveragerc

http://media.pragprog.com/titles/bopytest2/code/.coveragerc

​ [paths]

​ source =

​ cards_proj/src/cards

​ */site-packages/cards

This file is the coverage.py configuration file, and the source setting tells
coverage to treat the cards_proj/src/cards directory as if it’s the same as the
installed cards within */site-packages/cards. The asterisk (*) is a wildcard there
to save us a bit of typing, and also makes the path work for multiple versions
of Python. Typing out the whole /path/to/venv/lib/python3.x/site-packages/cards

path will only match one particular Python version.

Here’s what the modified output looks like after the .coveragerc changes:

​ ​$ ​​pytest​​ ​​--cov=cards​​ ​​ch7​

​ ============================ test session starts
=============================

​ collected 27 items

​

​ ​...​​actual​​ ​​test​​ ​​run​​ ​​omitted...​

​

​ ---------- coverage: platform darwin, python 3.x.y -----------

​ Name Stmts Miss Cover

​ cards_proj/src/cards/__init__.py 3 0 100%

​ cards_proj/src/cards/api.py 72 3 96%

​ cards_proj/src/cards/cli.py 86 53 38%

​ cards_proj/src/cards/db.py 23 0 100%

​ --

​ TOTAL 184 56 70%

​

​ ============================= 27 passed in 0.12s
=============================

The report now lists the local files instead of the installed location. The
shorter path helps to focus our attention on the important part: the coverage
report. But does the report make sense knowing what we know about the test
code?

The __init__.py and db.py files are at 100% coverage, which means our test
suite is hitting every line in those files. It doesn’t tell us that it’s sufficiently
tested or that the tests will catch failure possibilities. But it does at least tell
us that every line has been run during the test suite, and that’s a nice feeling.

The cli.py file is at 38% coverage. This might seem surprisingly high as we
aren’t testing the CLI at all yet. The short answer to the question why is that
cli.py is getting imported by __init__.py, so all of the function definitions are
run, but none of the function contents are being run.

What we really care about now is the api.py file. It is tested at 96% coverage.
Is this good? Bad? We don’t know yet. We need to look at the actual code to
see which lines are being missed to know if testing them is important or not.
We can find out what was missed either through the terminal report or
through an HTML report.

To add missing lines to the terminal report, we can either re-run the tests and
add the --cov-report=term-missing flag like this:

​ ​$ ​​pytest​​ ​​--cov=cards​​ ​​--cov-report=term-missing​​ ​​ch7​

Or we can run coverage report --show-missing like this:

​ ​$ ​​coverage​​ ​​report​​ ​​--show-missing​

​ Name Stmts Miss Cover Missing

​ --

​ cards_proj/src/cards/__init__.py 3 0 100%

​ cards_proj/src/cards/api.py 72 3 96% 75, 79, 81

​ cards_proj/src/cards/cli.py 86 53 38% 20, 28-31,

​ 38-42, 53-65, 75-80, 87-91, 98-102, 109-110, 117-118, 126-127,

​ 131-136, 143-146

​ cards_proj/src/cards/db.py 23 0 100%

​ --

​ TOTAL 184 56 70%

It’s important to know that even if you run coverage with pytest-cov, you still
have access to the report using coverage directly.

Now that we have line numbers of what lines haven’t been tested, we can
open the files in an editor and look at missed lines. However, looking at the
HTML report is easier.

Generating HTML Reports
With coverage.py, we are able to generate HTML reports to help view
coverage data in more detail. The report is generated either by using the --cov-

report=html flag, or by running coverage html after running a previous coverage
run:

​ ​$ ​​cd​​ ​​/path/to/code​

​ ​$ ​​pytest​​ ​​--cov=cards​​ ​​--cov-report=html​​ ​​ch7​

or

​ ​$ ​​pytest​​ ​​--cov=cards​​ ​​ch7​

​ ​$ ​​coverage​​ ​​html​

Either command asks coverage.py to generate an HTML report. The report,
called htmlcov/, is placed in the directory from which you ran the command.

Open htmlcov/index.html with a browser and you’ll see:

Clicking the api.py file shows a report for that file, as shown here:

The top of the report shows the percentage of lines covered (96%), the total
number of statements (72), and how many statements were run (69), missed
(3), and excluded (0). Scroll down and you can see the highlighted lines that
were missed:

Looks like the list_cards() function has a couple of optional parameters—
owner and state—that allow the list to be filtered. These lines are not being
tested by our test suite.

Should we add tests to exercise these lines? If we go back to our test strategy,
remember that we decided to test user-visible functionality through the API.
It’s visible to the user if it’s also visible in the CLI. So let’s check that:

​ ​$ ​​cards​​ ​​list​​ ​​--help​

​ Usage: cards list [OPTIONS]

​

​ List cards in db.

​

​ Options:

​ -o, --owner TEXT

​ -s, --state TEXT

​ --help Show this message and exit.

Yep. The cards list command allows for these to be passed in. Looks like we
missed that bit of functionality when generating the initial test case list.
Therefore, we need to add at least these test cases to our list:

list with owner to filter by owner
list with state to filter by state
list with owner and state to filter by both

Those test cases should hit the three lines we’re missing, which is good, as
they seem like important features to test.

Excluding Code from Coverage
In the HTML reports generated in the previous section, notice the inclusion
of a column that indicates “0 excluded.” This refers to a feature of coverage

that allows us to exclude some lines from being tested. In Cards, we aren’t
excluding anything. But it’s not unusual to exclude some code from being
part of the coverage calculation.

As an example, a module that can be either imported or run directly might
include a block like this:

​ ​if​ __name__ == ​'__main__'​:

​ main()

This command tells Python to run main() if we call the module directly, like
python some_module.py, but not to run the code if the module is imported.

These types of blocks are frequently excluded from testing with a simple
pragma statement:

​ ​if​ __name__ == ​'__main__'​: ​# pragma: no cover​

​ main()

This tells coverage to exclude either a single line or a block of code. In this
sample case, you don’t have to put the pragma on both lines of code. Having
it on the if statement counts for the rest of the block.

Beware of Coverage-Driven Development
The coverage report generated with coverage.py in ​Generating HTML Reports​
indicates which lines of our code were not run by our test suite, which helps us
determine if there was functionality that wasn’t tested but should have been. In our
case, the report indicated that there were three legitimate missing test cases.
However, if the filter feature had not been visible to the user, and therefore, not part of
our test strategy, we would have had different decisions to make, such as:

Should we add the functionality to the CLI?

Should we remove the functionality from the API?

Should we add test cases because we plan to add this functionality to the CLI
soon?

Should we just be okay with less than 100% coverage?

Should we pretend the code isn’t there with # pragma: no cover?

Should we add test cases just to cover these lines and let us hit 100%?

I would argue that the last option is the worst.

For the three missing lines in Cards specifically, the pragma option is just as bad.
However, there are times where excluding makes sense, such as when the __name__
== ’__main__’ block is used, as discussed earlier in ​Excluding Code from Coverage​.

The others are legitimate options depending on the circumstances.

The problem with adding tests just to hit 100% is that doing so will mask the fact that
these lines aren’t being used and therefore are not needed by the application. It also
adds test code and coding time that is not necessary.

Running Coverage on Tests
In addition to using coverage to determine if our test suite is hitting every
line of our application code. Let’s add our test directory to the coverage
report:

​ ​$ ​​pytest​​ ​​--cov=cards​​ ​​--cov=ch7​​ ​​ch7​

​ =========================== test session starts ============================

​ collected 27 items

​

​ ​...​​actual​​ ​​test​​ ​​run​​ ​​omitted...​

​

​ ---------- coverage: platform darwin, python 3.x.y -----------

​ Name Stmts Miss Cover

​ --

​ cards_proj/src/cards/__init__.py 3 0 100%

​ cards_proj/src/cards/api.py 71 3 96%

​ cards_proj/src/cards/cli.py 71 39 45%

​ cards_proj/src/cards/db.py 23 0 100%

​ ch7/conftest.py 22 0 100%

​ ch7/test_add.py 31 0 100%

​ ch7/test_config.py 2 0 100%

​ ch7/test_count.py 9 0 100%

​ ch7/test_delete.py 28 0 100%

​ ch7/test_finish.py 13 0 100%

​ ch7/test_list.py 11 0 100%

​ ch7/test_start.py 13 0 100%

​ ch7/test_update.py 21 0 100%

​ ch7/test_version.py 5 0 100%

​ --

​ TOTAL 323 42 87%

​

​ ============================ 27 passed in 0.14s ============================

The --cov=cards command tells coverage to watch the cards package. The --
cov=ch7 command tells coverage to watch the ch7 directory, where our tests
are located.

Why would we do this? Of course we’re going to hit all of our tests, right?
Not always. A common error in all programming, and especially in coding
tests, is to add a new test function with copy/paste/modify. For a new test
function, we might copy an existing function, paste it as a new function,
and modify the code to meet a new test case. If we forget to change the
function name, then two functions will have the same name, and only the
last one in the file will be run. The problem of duplicate named tests is
easily caught by including your test code in the sources for coverage.

A similar problem can happen with large test modules when we just forget
all of the function names and accidentally name a second test function with
the same name as a previous one.

A third problem is more subtle. coverage has the ability to combine reports
from several test sessions. This is necessary, for example, to test on
different hardware in continuous integration. Some tests may be specific to
certain hardware and be skipped on others. The combined report, if we
include tests, will help us make sure all of our tests eventually got run on at
least some hardware. It also helps with finding unused fixtures, or dead
code inside fixtures.

Running Coverage on a Directory
We’ve been running coverage on an installed package, cards. But there’s a lot
more to the Python world than just building installable packages. In
addition to packages, we can ask coverage to pay attention to directories and
files as well. Let’s take a look at running coverage on a directory.

In the ch9/some_code directory, we have a couple source code modules and a
test module:

​ ​$ ​​tree​​ ​​ch9/some_code​

​ ch9/some_code

​ ├── bar_module.py

​ ├── foo_module.py

​ └── test_some_code.py

To demonstrate pointing coverage at a path instead package, let’s stay in the
top-level code directory and run the tests from there:

​ ​$ ​​pytest​​ ​​--cov=ch9/some_code​​ ​​ch9/some_code/test_some_code.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ ch9/some_code/test_some_code.py .. [100%]

​

​ ---------- coverage: platform darwin, python 3.x.y -----------

​ Name Stmts Miss Cover

​ ---

​ ch9/some_code/bar_module.py 4 1 75%

​ ch9/some_code/foo_module.py 2 0 100%

​ ch9/some_code/test_some_code.py 6 0 100%

​ ---

​ TOTAL 12 1 92%

​

​ ========================== 2 passed in 0.03s ===========================

We passed the directory with --cov=ch9/some_code. We can also run
everything right from the ch9 directory:

​ ​$ ​​cd​​ ​​/path/to/code/ch9​

​ ​$ ​​pytest​​ ​​--cov=some_code​​ ​​some_code/test_some_code.py​

or even just:

​ ​$ ​​pytest​​ ​​--cov=some_code​​ ​​some_code​

Because test_some_code.py is the only test file, these two pytest commands
are equivalent.

Now let’s look at an odd corner case: a single file.

Running Coverage on a Single File
A lot of lovely single-file Python applications could use a little test
coverage. Single-file applications, sometimes called scripts, are often not
packaged or deployed, but just shared as single files. In those cases, it’s
handy to put the test code right into the script.

Here’s a small example:

ch9/single_file.py

​ ​def​ ​foo​():

​ ​return​ ​"foo"​

​

​

​ ​def​ ​bar​():

​ ​return​ ​"bar"​

​

​

​ ​def​ ​baz​():

​ ​return​ ​"baz"​

​

​

​ ​def​ ​main​():

​ ​print​(foo(), baz())

​

​

​ ​if​ __name__ == ​"__main__"​: ​# pragma: no cover​

​ main()

​

​ ​# test code, requires pytest​

​

​

​ ​def​ ​test_foo​():

​ ​assert​ foo() == ​"foo"​

​

​

​ ​def​ ​test_baz​():

​ ​assert​ baz() == ​"baz"​

​

http://media.pragprog.com/titles/bopytest2/code/ch9/single_file.py

​

​ ​def​ ​test_main​(capsys):

​ main()

​ captured = capsys.readouterr()

​ ​assert​ captured.out == ​"foo baz​​\n​​"​

Here’s what it looks like to run:

​ ​$ ​​cd​​ ​​/path/to/code/ch9​

​ ​$ ​​python​​ ​​single_file.py​

​ foo baz

We can run the tests on it just by swapping the python for pytest:

​ ​$ ​​pytest​​ ​​single_file.py​

But what about coverage? If this script is sitting in a directory with a bunch of
other stuff, we can’t simply pass the directory to coverage because we only
want to measure this single file.

In this case, we treat the file as a package, even though nothing is getting
imported, and use --cov=single_file with no .py extension:

​ ​$ ​​pytest​​ ​​--cov=single_file​​ ​​single_file.py​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ single_file.py ... [100%]

​

​ ---------- coverage: platform darwin, python 3.x.y -----------

​ Name Stmts Miss Cover

​ ------------------------------------

​ single_file.py 16 1 94%

​ ------------------------------------

​ TOTAL 16 1 94%

​

​ ========================== 3 passed in 0.02s ===========================

One of the beautiful things about pytest is that we don’t even need to import

pytest. To add tests to a script, we can just add them. If we do need to use

parametrization or markers, however, you can stick the import in the else
block of the if __name__ == ’__main__’ block:

​ ​if​ __name__ == ​'__main__'​: ​# pragma: no cover​

​ main()

​ ​else​:

​ ​import​ ​pytest​

That way it’s there when you are running the tests, but not required for
anyone just using your script as a script.

Review
In this chapter, we used coverage.py and pytest-cov to measure code coverage
and used quite a few commands and options.

For running coverage with pytest-cov, use:

pytest --cov=cards <test path> to run with a simple report

pytest --cov=cards --cov-report=term-missing <test path> to show which lines
weren’t run

pytest --cov=cards --cov-report=html <test path> to generate an HTML report

For running coverage by itself, use:

coverage run --source=cards -m pytest <test path> to run the test suite with
coverage
coverage report to show a simple terminal report
coverage report --show-missing to show which lines weren’t run
coverage html to generate an HTML report

Even if you ran coverage from pytest --cov=..., you can run different reports or
generate HTML using coverage report and coverage html.

The --cov and --source flags tell coverage what code to watch, and can either
be the name of an installed package, or the path to the application code.

There’s a lot more to coverage.py and pytest-cov than we’ve covered here.
(Get it? Ha! Okay, I’ll stop.) Read up on combining coverage from multiple
runs, branch coverage, and much more at the respective documentation for
both tools.

Exercises
Running coverage a few times will help you learn how easy and powerful it
is. We’ll start out easy and get a little more exciting with these exercises.

1. Coverage for single_file.py showed 94%.

Add a command-line flag to include which lines are missing in
the terminal report.

Bonus: Add or change a test to get to 100%.

2. The example for some_code showed the coverage at 92%.

Generate an HTML report to find out what code is missing.

Bonus: Add or change a test to get to 100%.

3. For Cards, we found a few missing lines in api.py related to filtering the
list command.

Run a coverage report and make sure you see the three missing
lines of code in api.py.

Extend ch7/test_list.py by writing three new test functions to
satisfy the new test cases:

list with owner to filter by owner
list with state to filter by state
list with owner and state to filter by both

Run coverage reports to see if you’ve hit the missing lines.

[31]

[32]

[33]

What’s Next
So far we’ve mostly ignored the user interface of Cards—the CLI. In the
next chapter, we’ll write tests for the CLI using mocking. You’ll also learn
about various ways to use and abuse mocks during testing.

Footnotes

https://pragprog.com/titles/bopytest2/source_code

https://coverage.readthedocs.io

https://pytest-cov.readthedocs.io

Copyright © 2022, The Pragmatic Bookshelf.

https://pragprog.com/titles/bopytest2/source_code
https://coverage.readthedocs.io/
https://pytest-cov.readthedocs.io/

Chapter 10

Mocking

In the last chapter, we tested the Cards project through the API. In this
chapter, we’re going to test the CLI. When we wrote the test strategy for the
Cards project in ​Writing a Test Strategy​, we included the following
statement:

Test the CLI enough to verify the API is getting properly called for all
features.

We’re going to use the mock package to help us with that. Shipped as part of
the Python standard library as unittest.mock as of Python 3.3,[34] the mock

package is used to swap out pieces of the system to isolate bits of our
application code from the rest of the system. Mock objects are sometimes
called test doubles, spies, fakes, or stubs. Between pytest’s own monkeypatch

fixture (covered in ​Using monkeypatch​) and mock, you should have all the
test double functionality you need.

In this chapter, we’ll take a look at using mock to help us test the Cards CLI.
We’ll also look at using the CliRunner provided by Typer to assist in testing.

Isolating the Command-Line Interface
The Cards CLI uses the Typer library[35] to handle all of the command-line
parts, and then it passes the real logic off to the Cards API. In testing the
Cards CLI, the idea is that we’d like to test the code within cli.py and cut off
access to the rest of the system. To do that, we have to look at cli.py to see
how it’s accessing the rest of Cards.

The cli.py module accesses the rest of the Cards system through an import of
cards:

cards_proj/src/cards/cli.py

​ ​import​ ​cards​

Through this cards namespace, cli.py accesses:

cards.__version__ (a string)
cards.CardDB (a class representing the main API methods)
cards.InvalidCardID (an exception)
cards.Card (the primary data type for use between the CLI and API)

Most of the API access is through a context manager that creates a
cards.CardsDB object:

cards_proj/src/cards/cli.py

​ @contextmanager

​ ​def​ ​cards_db​():

​ db_path = get_path()

​ db = cards.CardsDB(db_path)

​ ​yield​ db

​ db.close()

Most of the functions work through that object. For example, the start
command accesses db.start() through db, a CardsDB instance:

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py
http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py

cards_proj/src/cards/cli.py

​ @app.command()

​ ​def​ ​start​(card_id: int):

​ ​"""Set a card state to 'in prog'."""​

​ ​with​ cards_db() ​as​ db:

​ ​try​:

​ db.start(card_id)

​ ​except​ cards.InvalidCardId:

​ ​print​(f​"Error: Invalid card id {card_id}"​)

Both add and update also use the cards.Card data structure we’ve played with
before:

cards_proj/src/cards/cli.py

​ db.add_card(cards.Card(summary, owner, state=​"todo"​))

And the version command looks up cards.__version__:

cards_proj/src/cards/cli.py

​ @app.command()

​ ​def​ ​version​():

​ ​"""Return version of cards application"""​

​ ​print​(cards.__version__)

For the sake of what to mock for testing the CLI, let’s mock both __version__
and CardsDB.

The version command looks pretty simple. It just accesses cards.__version__
and prints that. We’ll start there. But first, let’s look at how Typer helps us
with testing.

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py
http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py
http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py

Testing with Typer
A great feature of Typer is that it provides a testing interface. With it, we can
call our application without having to resort to using subprocess.run, which is
good, because we can’t mock stuff running in a separate process. (We looked
at a short example of using subprocess.run with test_version_v1 in ​Using capsys​
.) We just need to give the runner’s invoke function our app—cards.app—and
a list of strings that represents the command.

Here’s an example of invoking the version function:

ch10/test_typer_testing.py

​ ​from​ ​typer.testing​ ​import​ CliRunner

​ ​from​ ​cards.cli​ ​import​ app

​

​ runner = CliRunner()

​

​

​ ​def​ ​test_typer_runner​():

​ result = runner.invoke(app, [​"version"​])

​ ​print​()

​ ​print​(f​"version: {result.stdout}"​)

​

​ result = runner.invoke(app, [​"list"​, ​"-o"​, ​"brian"​])

​ ​print​(f​"list:​​\n​​{result.stdout}"​)

In the example test:

To run cards version, we run runner.invoke(app, ["version"]).
To run cards list -o brian, we run runner.invoke(app, ["list", "-o", "brian"]).

We don’t have to include “cards” in the list to send to the app, and the rest of
the string is split into a list of strings.

Let’s run this code and see what happens:

http://media.pragprog.com/titles/bopytest2/code/ch10/test_typer_testing.py

​ ​$ ​​cd​​ ​​/path/to/code/ch10​

​ ​$ ​​pytest​​ ​​-v​​ ​​-s​​ ​​test_typer_testing.py::test_typer_runner​

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_typer_testing.py::test_typer_runner

​ version: 1.0.0

​

​ list:

​ ID state owner summary

​ ──

​ 3 todo brian Finish second edition

​

​ PASSED

​ ========================== 1 passed in 0.05s ===========================

Looks like it works, and is running against the live database.

However, before we move on, let’s write a helper function called cards_cli.
We know we’re going to invoke the app plenty of times during testing the
CLI, so let’s simplify it a bit:

ch10/test_typer_testing.py

​ ​import​ ​shlex​

​

​

​ ​def​ ​cards_cli​(command_string):

​ command_list = shlex.split(command_string)

​ result = runner.invoke(app, command_list)

​ output = result.stdout.rstrip()

​ ​return​ output

​

​

​ ​def​ ​test_cards_cli​():

​ result = cards_cli(​"version"​)

​ ​print​()

​ ​print​(f​"version: {result}"​)

​

​ result = cards_cli(​"list -o brian"​)

​ ​print​(f​"list:​​\n​​{result}"​)

http://media.pragprog.com/titles/bopytest2/code/ch10/test_typer_testing.py

This allows us to let shlex.split() turn "list -o brian" into ["list", "-o", "brian"] for us,
as well as grab the output and return it.

Now we’re ready to get back to mocking.

Mocking an Attribute
Most of the Cards API is accessed through a CardsDB object, but one entry
point is just an attribute, cards.__version__. Let’s look at how we can use
mocking to make sure the value from cards.__version__ is correctly reported
through the CLI.

There are several patch methods within the mock package. We’ll be using
patch.object. We’ll use it primarily in its context manager form. Here’s what it
looks like to mock __version__:

ch10/test_mock.py

​ ​from​ ​unittest​ ​import​ mock

​

​ ​import​ ​cards​

​ ​import​ ​pytest​

​ ​from​ ​cards.cli​ ​import​ app

​ ​from​ ​typer.testing​ ​import​ CliRunner

​

​ runner = CliRunner()

​

​

​ ​def​ ​test_mock_version​():

​ ​with​ mock.patch.object(cards, ​"__version__"​, ​"1.2.3"​):

​ result = runner.invoke(app, [​"version"​])

​ ​assert​ result.stdout.rstrip() == ​"1.2.3"​

In our test code, we import cards. The resulting cards object is what we’re
going to be patching. The call to mock.patch.object() used as a context
manager within a with block returns a mock object that is cleaned up after
the with block.

In this case, the __version__ attribute of cards is replaced with "1.2.3" for the
duration of the with block. We then use invoke to call our application with the
“version” command. The print statement within the version() method will add

http://media.pragprog.com/titles/bopytest2/code/ch10/test_mock.py

a newline, which we are stripping with result.stdout.rstrip() to make the
comparison easier.

When the version() method is called from the CLI code, the __version__

attribute isn’t the original string, it’s the string we replaced with
patch.object().

Mock is replacing part of our system with something else, namely mock
objects. With mock objects, we can do lots of stuff, like setting attribute
values, return values for callables, and even look at how callables are called.

If that last bit was confusing, you’re not alone. This weirdness is one of the
reasons many people avoid mocking altogether. Once you get your head
around that, the rest kinda sorta makes sense.

In the upcoming sections, we’ll look at mocking classes and methods of
classes.

Mocking a Class and Methods
Let’s take a look at how to test config:

cards_proj/src/cards/cli.py

​ @app.command()

​ ​def​ ​config​():

​ ​"""List the path to the Cards db."""​

​ ​with​ cards_db() ​as​ db:

​ ​print​(db.path())

The cards_db() is a context manager that returns a cards.CardsDB object. The
returning object is then used as db to call db.path(). So we have two things to
mock: cards.CardsDB and one of its methods, path().

We’ll start with the class:

ch10/test_mock.py

​ ​def​ ​test_mock_CardsDB​():

​ ​with​ mock.patch.object(cards, ​"CardsDB"​) ​as​ MockCardsDB:

​ ​print​()

​ ​print​(f​" class:{MockCardsDB}"​)

​ ​print​(f​"return_value:{MockCardsDB.return_value}"​)

​ ​with​ cards.cli.cards_db() ​as​ db:

​ ​print​(f​" object:{db}"​)

This is an exploratory test function to see if we have the mocking set up
right.

This time, we want to have CardsDB be a mock object.

If someone calls a mock object, a new mock object is returned. The mock
object returned is also accessible as the return_value attribute of the original
object. This seems strange, but it’s very convenient.

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py
http://media.pragprog.com/titles/bopytest2/code/ch10/test_mock.py

Let’s look at the objects involved before moving on:

​ ​$ ​​pytest​​ ​​-v​​ ​​-s​​ ​​test_mock.py::test_mock_CardsDB​

​ ======================== test session starts =========================

​ collected 1 item

​

​ test_mock.py::test_mock_CardsDB

​ class:<MagicMock name='CardsDB' id='140410645302384'>

​ return_value:<MagicMock name='CardsDB()' id='140410647097840'>

​ object:<MagicMock name='CardsDB()' id='140410647097840'>

​ PASSED

​

​ ========================= 1 passed in 0.03s ==========================

When someone calls CardsDB(), they won’t get a new CardsDB object, they
will get the mock object that is assigned to the attribute return_value of the
original.

It’s this second mock object, the return value from CardsDB(), where we can
change the path attribute. Specifically, we also don’t really want to change
the path attribute, but change the behavior when someone calls path(), so
again, we modify the return_value:

ch10/test_mock.py

​ ​def​ ​test_mock_path​():

​ ​with​ mock.patch.object(cards, ​"CardsDB"​) ​as​ MockCardsDB:

​ MockCardsDB.return_value.path.return_value = ​"/foo/"​

​ ​with​ cards.cli.cards_db() ​as​ db:

​ ​print​()

​ ​print​(f​"{db.path=}"​)

​ ​print​(f​"{db.path()=}"​)

Let’s make sure it really works:

​ $ pytest -v -s test_mock.py::test_mock_path

​ ======================== test session starts =========================

​ collected 1 item

​

​ test_mock.py::test_mock_path

http://media.pragprog.com/titles/bopytest2/code/ch10/test_mock.py

​ db.path=<MagicMock name='CardsDB().path' id='140712512496016'>

​ db.path()='/foo/'

​ PASSED

​

​ ========================= 1 passed in 0.03s ==========================

Cool. We have almost all of the pieces in place.

The last thing we need to do before we really start testing the CLI is push the
mock for the database into a fixture—because we’re going to need it in lots
of test methods:

ch10/test_mock.py

​ @pytest.fixture()

​ ​def​ ​mock_cardsdb​():

​ ​with​ mock.patch.object(cards, ​"CardsDB"​, autospec=True) ​as​ CardsDB:

​ ​yield​ CardsDB.return_value

This fixture mocks the CardsDB object and returns the return_value so that tests
can use it to replace things like path:

ch10/test_mock.py

​ ​def​ ​test_config​(mock_cardsdb):

​ mock_cardsdb.path.return_value = ​"/foo/"​

​ result = runner.invoke(app, [​"config"​])

​ ​assert​ result.stdout.rstrip() == ​"/foo/"​

And hey, look at that. We have are first CLI test done, and it’s not too scary-
looking.

Notice, though, that the fixture added one more component, autospec=True.
Let’s talk about that.

http://media.pragprog.com/titles/bopytest2/code/ch10/test_mock.py
http://media.pragprog.com/titles/bopytest2/code/ch10/test_mock.py

Keeping Mock and Implementation in Sync with
Autospec
Mock objects are typically intended to be objects that are used in place of
the real implementation. However, by default, they will accept any access.
For example, if the real object allows .start(index), we want our mock objects
to allow .start(index) as well. There’s a problem, however. Mock objects are
too flexible by default. They will also accept star() happily, any misspelled
methods, any additional parameters, really anything.

Now initially, we won’t do that; we’ll test with the real method names and
proper parameters, hopefully. But then mock drift can happen. Mock drift
occurs when the interface you are mocking changes, and your mock in your
test code doesn’t.

This form of mock drift is cured by adding autospec=True to the mock during
creation, as we did for CardsDB. Without it, a mock will allow you to call any
function with any parameters, even if it doesn’t make sense for the real thing
being mocked.

For example, let’s try to call .path() with an argument and try to call
.not_valid(), a function that doesn’t exist:

ch10/test_mock.py

​ ​def​ ​test_bad_mock​():

​ ​with​ mock.patch.object(cards, ​"CardsDB"​) ​as​ CardsDB:

​ db = CardsDB(​"/some/path"​)

​ db.path() ​# good​

​ db.path(35) ​# invalid arguments​

​ db.not_valid() ​# invalid function​

This will pass just fine:

​ ​$ ​​pytest​​ ​​-v​​ ​​-k​​ ​​bad_mock​​ ​​test_mock.py​

http://media.pragprog.com/titles/bopytest2/code/ch10/test_mock.py

​ ========================= test session starts ==========================

​ collected 7 items / 6 deselected / 1 selected

​

​ test_mock.py::test_bad_mock PASSED [100%]

​

​ =================== 1 passed, 6 deselected in 0.03s ====================

However, we don’t want that. Lots of normal mistakes are hidden by mocks
without a spec:

Misspelling a method in the source code, maybe .pth() instead of .path()

Adding or removing a parameter to an API method and forgetting to
change the calling code in the CLI

Changing a method name during refactoring, and again, forgetting to
change it everywhere

If we add that little extra code, autospec=True, these mistakes are caught by
the tests:

ch10/test_mock.py

​ ​def​ ​test_good_mock​():

​ ​with​ mock.patch.object(cards, ​"CardsDB"​, autospec=True) ​as​ CardsDB:

And pytest and mock will catch our mistakes with lines like:

​ E TypeError: too many positional arguments

or

​ E AttributeError: Mock object has no attribute ​'not_valid'​

We want this protection. So always autospec when you can. Really the only
time you can’t is if the class or object being mocked is naturally dynamic
with methods or if attributes are being added at runtime. The Python
documentation has a great section on autospec.[36]

http://media.pragprog.com/titles/bopytest2/code/ch10/test_mock.py

Making Sure Functions Are Called Correctly
So far we’ve utilized return values from a mocked method to make sure our
application code is dealing with the return values correctly. But sometimes
there is not any useful return value. In those cases, we can actually ask the
mock object if it was called correctly.

The config command calls .path() and prints the return value. So we can mock
the return value of .path() and and test what config prints. The count command
prints the output of db.count(), so we can test that a lot like config.

But there are a bunch of other commands where we can’t test the behavior
by checking the output, because there is no output. For instance, cards add

some tasks -o brian.

After calling cards_cli("add some tasks -o brian"), instead of using the API to
check if that item made it to the database, we’ll use a mock to make sure the
CLI called the right API method correctly.

The add command implementation ends up calling db.add_card() with a Card

object:

cards_proj/src/cards/cli.py

​ db.add_card(cards.Card(summary, owner, state=​"todo"​))

To make sure it was called correctly, we can ask the mock:

ch10/test_cli.py

​ ​def​ ​test_add_with_owner​(mock_cardsdb):

​ cards_cli(​"add some task -o brian"​)

​ expected = cards.Card(​"some task"​, owner=​"brian"​, state=​"todo"​)

​ mock_cardsdb.add_card.assert_called_with(expected)

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py
http://media.pragprog.com/titles/bopytest2/code/ch10/test_cli.py

If the add_card() isn’t called, or is called with the wrong type or wrong object
contents, the test will fail. For example, if we capitalize the “B” in Brian in
the expectation, but not in the CLI call, we will get something like this:

​ ​...​

​ E AssertionError: expected call not found.

​ E Expected: add_card(Card(summary='some task', owner='Brian', ...

​ E Actual: add_card(Card(summary='some task', owner='brian', ...

​ ​...​

There are quite a few variants of assert_called(). Read the documentation[37]

for a full list and description. When the only way to test is to make sure
something was called correctly, the various assert_called methods do the trick.

Creating Error Conditions
Now let’s check to make sure the Cards CLI deals with error conditions
correctly. For example, here’s the delete command implementation:

cards_proj/src/cards/cli.py

​ @app.command()

​ ​def​ ​delete​(card_id: int):

​ ​"""Remove card in db with given id."""​

​ ​with​ cards_db() ​as​ db:

​ ​try​:

​ db.delete_card(card_id)

​ ​except​ cards.InvalidCardId:

​ ​print​(f​"Error: Invalid card id {card_id}"​)

To test the CLI’s handling of an error condition, we can pretend that
delete_card generates an exception by assigning the exception to the mock
object side_effect attribute, like this:

ch10/test_cli.py

​ ​def​ ​test_delete_invalid​(mock_cardsdb):

​ mock_cardsdb.delete_card.side_effect = cards.api.InvalidCardId

​ out = cards_cli(​"delete 25"​)

​ ​assert​ ​"Error: Invalid card id 25"​ ​in​ out

That’s pretty much all we need to test the CLI. We’ve talked about mocking
return values, asserting how mock functions were called, and mocking
exceptions. For many applications, including the Cards CLI, that’s all the
mocking techniques we need. However, there’s quite a bit more to mocking
that we haven’t covered, so be sure to read the documentation if you wish to
make a lot of use of mocking.

Mocking Tests Implementation, Not Behavior
One of the biggest problems when using mocks is that when we are using mocks in a
test, we are no longer testing behavior, but testing implementation. Focusing tests on

http://media.pragprog.com/titles/bopytest2/code/cards_proj/src/cards/cli.py
http://media.pragprog.com/titles/bopytest2/code/ch10/test_cli.py

testing implementation is dangerous and time-consuming. A completely valid
refactoring, say changing a variable name, might break tests if that particular variable
was being mocked.

We have a name for tests that break during valid refactoring: change detector tests. We
want most of our tests to fail only when valid breaks in behavior occur. When tests fail
whenever the code changes, they are change detector tests, and are usually more
trouble than they are worth.

Are there any benefits to mocking? Of course. There are times when it’s the simplest
way to generate exceptions or error conditions, and make sure your code handles
those correctly. There are also times where testing behavior is unreasonable, like
accessing payment API or sending email. In those cases, making sure your code calls
a particular API method when its supposed to, with the correct parameters, is a decent
option for testing. However, it’s good to know what you are getting into when testing
implementation over behavior.

Testing at Multiple Layers to Avoid Mocking
Our initial Cards testing strategy statement, “Test the CLI enough to verify
the API is getting properly called for all features,” can be taken literally as
checking the API calls, as we did with mocks. However, we can satisfy this
statement in other ways.

While testing the CLI, we could also use the API. We won’t be testing the
API, but using it to check the behavior of actions made through the CLI.
Let’s look at an example:

ch10/test_cli_alt.py

​ ​def​ ​test_add_with_owner​(cards_db):

​ ​"""​

​ ​ A card shows up in the list with expected contents.​

​ ​ """​

​ cards_cli(​"add some task -o brian"​)

​ expected = cards.Card(​"some task"​, owner=​"brian"​, state=​"todo"​)

​ all_cards = cards_db.list_cards()

​ ​assert​ len(all_cards) == 1

​ ​assert​ all_cards[0] == expected

For comparison, here’s the mock version:

ch10/test_cli.py

​ ​def​ ​test_add_with_owner​(mock_cardsdb):

​ cards_cli(​"add some task -o brian"​)

​ expected = cards.Card(​"some task"​, owner=​"brian"​, state=​"todo"​)

​ mock_cardsdb.add_card.assert_called_with(expected)

Mocking tested the implementation of the CLI, making sure a specific API
call was called with specific parameters. The mixed-layer approach tests the
behavior, making sure the outcome is what we want. This kind of approach
is much less of a change detector and has a greater chance of remaining
valid during refactoring.

http://media.pragprog.com/titles/bopytest2/code/ch10/test_cli_alt.py
http://media.pragprog.com/titles/bopytest2/code/ch10/test_cli.py

The rest of ch10/test_cli_alt.py demonstrates completely replacing mocking
with mixed-layer testing. Interestingly, it’s about twice as fast:

​ ​$ ​​pytest​​ ​​test_cli.py​

​ ========================= test session starts ==========================

​ collected 17 items

​

​ test_cli.py [100%]

​

​ ========================== 17 passed in 0.26s ==========================

​ ​$ ​​pytest​​ ​​test_cli_alt.py​

​ ========================= test session starts ==========================

​ collected 17 items

​

​ test_cli_alt.py [100%]

​

​ ========================== 17 passed in 0.11s ==========================

We could also avoid mocking in another way. We could test behavior
completely through the CLI. This would involve possibly parsing the cards

list output to verify correct database contents.

In the API, add_card() returns an index and provides a get_card(index) method,
which helps with testing. Neither of those are present in the CLI, but
conceptually, they could be. We could maybe add cards get index or cards info

index commands to allow us to retrieve one card instead of having to use
cards list for everything. list also already supports filtering. Perhaps filtering
on index would work instead of adding a new command. And we could add
an output to cards add to say something such as, "Card added at index 3". These
modifications would fall into the “Design for Testability” category of
changes. They also don’t seem like deep intrusions to the interface, and
perhaps should be considered in future versions.

Using Plugins to Assist Mocking
This chapter has focused on using unittest.mock directly. However, there are
many plugins that help with mocking, such as pytest-mock, which is a
general-purpose plugin that provides a mocker fixture that acts as a thin
wrapper around unittest.mock. One benefit of using pytest-mock is that the
fixture cleans up after itself, so you don’t have to use a with block, as we
did in our examples.

There are also several special-purpose mocking libraries that should be
considered if their focus matches what you are testing:

For mocking database access, try pytest-postgresql, pytest-mongo, pytest-
mysql, and pytest-dynamodb.

For mocking HTTP servers, try pytest-httpserver.

For mocking requests, try responses and betamax.

And there are even more tools, such as pytest-rabbitmq, pytest-solr, pytest-
elasticsearch, and pytest-redis.

This is just a short sampling. Lots of people like to use mock to isolate parts
of their system. If you are using a third-party service, there’s a decent
chance someone has made a pytest plugin or other package to help mock it.
It may save you time to do a quick search before rolling your own mocks.

Review
In this chapter, we looked at how to test a layer of code in isolation using
mocks and mock objects. Mocks allow us to swap out pieces of the
application code with mock objects or other code. In addition:

Mock objects can simulate return values, raise exceptions, and record
how they were called.

Using autospec=True when mocking objects, such as CardsDB, can help
avoid mock drift and make sure our use of the mock in tests is the
same as the API of the object being mocked.

Return values can be simulated with mock_object.return_value = <new

value>.

Exceptions can be simulated with mock_object.side_effect = Exception.

Mock objects return new mock objects when called as a function, unless
you’ve set their return_value.

Mocking has some drawbacks, the most important of which is that using
mocks during testing means that you are testing implementation instead of
testing behavior.

Testing at multiple layers is one way of avoiding the need for mocking.

Adding functionality that makes testing easier is part of “design for
testability” and can be used to allow testing at multiple levels or testing at a
higher level.

Exercises
Mocking is a powerful tool for testing, and it’s important to know how to
use it. Spending a bit of time now to play with mocks will help solidify the
concepts and help you recognize places in your testing future where you
may want to use mocks.

For the exercise, we’ll use a small script called my_info.py:

exercises/ch10/my_info.py

​ ​from​ ​pathlib​ ​import​ Path

​

​

​ ​def​ ​home_dir​():

​ ​return​ str(Path.home())

​

​

​ ​if​ __name__ == ​"__main__"​:

​ ​print​(home_dir())

The home_dir() function utilizes pathlib to get a users home directory. Just to
show you how it works, the __name__ == "__main__" allows us to see it in
action. This is what it looks like for me:

​ ​$ ​​cd​​ ​​/path/to/code/exercises/ch10​

​ ​$ ​​python​​ ​​my_info.py​

​ /Users/okken

Obviously, everyone’s home directory is different, so this is going to be hard
to test.

1. In test_my_info.py, write a test that uses mock and changes the return
value of Path.home() to "/users/fake_user", and checks the return value of
home_dir().

http://media.pragprog.com/titles/bopytest2/code/exercises/ch10/my_info.py

2. Write another test that also calls home_dir(), but instead of checking the
value, just asserts that Path.home() is called by home_dir().

[34]

[35]

[36]

[37]

What’s Next
With the testing done for both the API and the CLI, the application has
100% coverage and all is well with the world. Let’s keep it that way. In the
next chapter, you’ll learn how to keep your tests running with every change
to your code to make sure nothing breaks.

Footnotes

https://docs.python.org/3/library/unittest.mock.html

https://pypi.org/project/typer

https://docs.python.org/3/library/unittest.mock.html#autospeccing

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.assert_called

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.python.org/3/library/unittest.mock.html
https://pypi.org/project/typer
https://docs.python.org/3/library/unittest.mock.html#autospeccing
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.assert_called

Chapter 11

tox and Continuous Integration

When working with a team of people who are all working on the same
codebase, continuous integration (CI) offers an amazing productivity boost.
CI refers to the practice of merging all developers’ code changes into a
shared repository on a regular basis—often several times a day. CI is also
quite helpful even when working on a project alone.

Most tools used for CI run on a server (GitHub Actions is one example). tox
is an automation tool that works a lot like a CI tool but can be run both
locally and in conjunction with other CI tools on a server.

In this chapter, we take a look at tox and how to set it up in the Cards
application to help us with testing Cards locally. Then we’ll set up testing
on GitHub using GitHub Actions. First, let’s review what exactly CI is and
how it fits into the testing universe.

What Is Continuous Integration?
In software engineering, the name “continuous integration” only makes
sense in the context of history. Before the implementation of CI, software
teams used version control to keep track of code updates, and different
developers would add a feature or fix a bug on the separate code branches.
At some point, the code was merged, built, and (hopefully) tested. The
frequency of this merge varied from “when your code is ready, merge it” to
regularly scheduled merges, maybe weekly or every other week. This merge
phase was called integration because the code is being integrated together.

With this sort of version control, code conflicts happened often. Therefore,
some teams had dedicated people to do the merge and debug merge
conflicts, sometimes pulling in other developers to help with decisions.
Some errors in merging were not found until testing. And some merge
errors were not found until much later.

This is obviously not a fun way to write software. Thus, CI was born.

CI tools build and run tests all on their own, usually triggered by a merge
request. Because the build and test stages are automated, developers can
integrate more frequently, even several times a day. This frequency makes it
so the code change between branches is smaller, reducing the chance of
merge conflicts. Combining that with the advances in automated merging
present in tools like Git, we get the “continuous” part of the continuous
integration process.

CI tools traditionally automate the process of build and test. The actual
merge to the final main code branch can sometimes be handled by the CI
systems. However, more frequently, the tools stop after test. The software
team can then continue with a code review and manually click a “merge”
button in the revision control system.

At first glance, CI seems to be most helpful for teams of people. However,
the automation, convenience, and consistency that CI brings to a project are
also valuable to single-person projects.

Introducing tox
tox[38] is a command-line tool that allows you to run your complete suite of
tests in multiple environments. tox is a great starting point when learning
about CI. Although it strictly is not a CI system, it acts a lot like one, and
can run locally. We’re going to use tox to test the Cards project in multiple
versions of Python. However, tox is not limited to just Python versions. You
can use it to test with different dependency configurations and different
configurations for different operating systems.

In gross generalities, here’s a mental model for how tox works:

tox uses project information in either setup.py or pyproject.toml for the
package under test to create an installable distribution of your package. It
looks in tox.ini for a list of environments, and then for each environment, tox

1. creates a virtual environment in a .tox directory,
2. pip installs some dependencies,
3. builds your package,
4. pip installs your package, and
5. runs your tests.

After all environments are tested, tox reports a summary of how they all
did. This makes a lot more sense when you see it in action, so let’s look at
how to set up the Cards project to use tox.

tox Alternatives
Although tox is used by many projects, there are alternatives
that perform similar functions. Two alternatives to tox are nox
and invoke. This chapter focuses on tox mostly because it’s the
tool I use.

Setting Up tox
Up to now we’ve had the cards_proj code in one directory and the tests in our
chapter directories. Now we’ll combine them into one project and add a
tox.ini file.

Here’s the abbreviated code layout:

​ cards_proj

​ ├── LICENSE

​ ├── README.md

​ ├── pyproject.toml

​ ├── pytest.ini

​ ├── src

​ │ └── cards

​ │ └── ...

​ ├── tests

​ │ ├── api

​ │ │ └── ...

​ │ └── cli

​ │ └── ...

​ └── tox.ini

You can explore the full project at /path/to/code/ch11/cards_proj. This is a
typical layout for many package projects.

Let’s take a look at a basic tox.ini file in the Cards project:

ch11/cards_proj/tox.ini

​ ​[tox]​

​ envlist = ​py310​

​ isolated_build = ​True​

​

​ ​[testenv]​

​ deps =

​ ​pytest​

​ ​faker​

​ commands = ​pytest​

http://media.pragprog.com/titles/bopytest2/code/ch11/cards_proj/tox.ini

Under [tox], we have envlist = py310. This is shorthand to tell tox to run our
tests using Python version 3.10. We’ll add more versions of Python shortly,
but using one for now helps to understand the flow of tox. Note also the line,
isolated_build = True. The Cards project configures the build instructions to
Python in a pyproject.toml file. For all pyproject.toml-configured packages, we
need to set isolated_build = True. For setup.py-configured projects using the
setuptools library, this line can be left out.

Under [testenv], the deps section lists pytest and faker. This tells tox that we
need to install both of these tools for testing. You can specify which version
to use, if you wish, such as pytest == 6.2.4 or pytest >= 6.2.4.

Finally, the commands setting tells tox to run pytest in each environment.

Running tox
Before running tox, you have to make sure you install it:

​ ​$ ​​pip​​ ​​install​​ ​​tox​

This can be done within a virtual environment.

Then to run tox, just run, well… tox:

​ ​$ ​​cd​​ ​​/path/to/code/ch11/cards_proj​

​ ​$ ​​tox​

​ py310 recreate: /path/to/code/ch11/cards_proj/.tox/py310

​ py310 installdeps: pytest, faker

​ py310 inst: /path/to/code/ch11/cards_proj/

​ .tox/.tmp/package/1/cards-1.0.0.tar.gz

​ py310 installed: ...

​ py310 run-test: commands[0] | pytest

​ ========================= test session starts ==========================

​ collected 51 items

​

​ tests/api/test_add.py [9%]

​ tests/api/test_config.py . [11%]

​ ​...​

​ tests/cli/test_update.py . [98%]

​ tests/cli/test_version.py . [100%]

​

​ ========================== 51 passed in 0.32s ==========================

​ _______________________________ summary ________________________________

​ py310: commands succeeded

​ congratulations :)

At the end, tox gives you a nice summary of all the test environments (just
py310 for now) and their outcomes:

​ _______________________________ summary ________________________________

​ py310: commands succeeded

​ congratulations :)

Doesn’t that give you a nice warm, happy feeling? We got a
“congratulations” and a smiley face.

Testing Multiple Python Versions
Let’s extend envlist in tox.ini to add more Python versions:

ch11/cards_proj/tox_multiple_pythons.ini

​ ​[tox]​

​ envlist = ​py37, py38, py39, py310​

​ isolated_build = ​True​

​ skip_missing_interpreters = ​True​

Now we’ll be testing Python versions from 3.7 though 3.10.

We also added the setting, skip_missing_interpreters = True. If
skip_missing_interpreters is set to False, the default, tox will fail if your system
is missing any of the versions of Python listed. With it set to True, tox will
run the tests on any available Python version, but skip versions it can’t find
without failing.

The output is similar. This is an abbreviated output:

​ ​$ ​​tox​​ ​​-c​​ ​​tox_multiple_pythons.ini​

​ ​...​

​ py37 run-test: commands[0] | pytest

​ ​...​

​ py38 run-test: commands[0] | pytest

​ ​...​

​ py39 run-test: commands[0] | pytest

​ ​...​

​ py310 run-test: commands[0] | pytest

​ ​...​

​ _______________________________ summary ________________________________

​ py37: commands succeeded

​ py38: commands succeeded

​ py39: commands succeeded

​ py310: commands succeeded

​ congratulations :)

http://media.pragprog.com/titles/bopytest2/code/ch11/cards_proj/tox_multiple_pythons.ini

Note that the use of an alternate configuration than tox.ini is unusual. We just
used tox -c tox_multiple_pythons.ini so that we can see different tox.ini settings
with the same project.

Running tox Environments in Parallel
In the previous example, the different environments ran in a series. It’s also
possible to run them in parallel with the -p flag:

​ ​$ ​​tox​​ ​​-c​​ ​​tox_multiple_pythons.ini​​ ​​-p​

​ ✔ OK py310 in 3.921 seconds

​ ✔ OK py37 in 4.02 seconds

​ ✔ OK py39 in 4.145 seconds

​ ✔ OK py38 in 4.218 seconds

​ _______________________________ summary ________________________________

​ py37: commands succeeded

​ py38: commands succeeded

​ py39: commands succeeded

​ py310: commands succeeded

​ congratulations :)

Note that the output is not abbreviated. This is actually all the output you
see if everything passes.

Adding a Coverage Report to tox
With a couple of changes to the tox.ini file, tox can add coverage reports to
its test runs. To do so, we need to add pytest-cov to the deps setting so that the
pytest-cov plugin will be installed in the tox test environments. Pulling in
pytest-cov will also include all of its dependencies, like coverage. We then
extend the commands call to pytest to be pytest --cov=cards:

ch11/cards_proj/tox_coverage.ini

​ ​[testenv]​

​ deps =

​ ​pytest​

​ ​faker​

​ ​pytest-cov​

​ commands = ​pytest --cov=cards​

When using coverage with tox, it’s also nice to set up a .coveragerc file to let
coverage know which source paths should be considered identical:

ch11/cards_proj/.coveragerc

​ [paths]

​ source =

​ src

​ .tox/*/site-packages

This looks a little cryptic at first. tox creates virtual environments in the .tox

directory (for example, in .tox/py310). The Cards source is in the src/cards

directory before we run. But when tox installs our package into the
environment, it will live in a site-packages/cards directory somewhere buried
in .tox. For example, for Python 3.10, it shows up in
.tox/py310/lib/python3.10/site-packages/cards.

The coverage source setting to the list including src and .tox/*/site-packages is
shorthand to make the earlier code work such that the following output is

http://media.pragprog.com/titles/bopytest2/code/ch11/cards_proj/tox_coverage.ini
http://media.pragprog.com/titles/bopytest2/code/ch11/cards_proj/.coveragerc

possible:

​ ​$ ​​tox​​ ​​-c​​ ​​tox_coverage.ini​​ ​​-e​​ ​​py310​

​ ​...​

​ py310 run-test: commands[0] | pytest --cov=cards

​ ​...​

​ ---------- coverage: platform darwin, python 3.x.y -----------

​ Name Stmts Miss Cover

​ ---

​ src/cards/__init__.py 3 0 100%

​ src/cards/api.py 72 0 100%

​ src/cards/cli.py 86 0 100%

​ src/cards/db.py 23 0 100%

​ ---

​ TOTAL 184 0 100%

​

​

​ ========================== 51 passed in 0.44s ==========================

​ _______________________________ summary ________________________________

​ py310: commands succeeded

​ congratulations :)

In this example, note that we also used the -e py310 flag to choose a specific
environment.

Specifying a Minimum Coverage Level
When running coverage from tox, it’s also nice to set a baseline coverage
percent to flag any slips in coverage. This is done with the --cov-fail-under

flag:

ch11/cards_proj/tox_coverage_min.ini

​ ​[testenv]​

​ deps =

​ ​pytest​

​ ​faker​

​ ​pytest-cov​

​ commands = ​pytest --cov=cards --cov=tests --cov-fail-under=100​

This will add an extra line to the output:

​ ​$ ​​tox​​ ​​-c​​ ​​tox_coverage_min.ini​​ ​​-e​​ ​​py310​

​ ​...​

​ Name Stmts Miss Cover

​ ---

​ src/cards/__init__.py 3 0 100%

​ src/cards/api.py 72 0 100%

​ src/cards/cli.py 86 0 100%

​ ​...​

​ tests/cli/test_version.py 3 0 100%

​ tests/conftest.py 22 0 100%

​ ---

​ TOTAL 439 0 100%

​

» Required test coverage of 100% reached. Total coverage: 100.00%

​

​ ========================== 51 passed in 0.43s ==========================

​ _______________________________ summary ________________________________

​ py310: commands succeeded

​ congratulations :)

We used a couple of other flags as well. In tox.ini, we added --cov=tests to the
pytest call to make sure all of our tests are run. In the tox command line, we

http://media.pragprog.com/titles/bopytest2/code/ch11/cards_proj/tox_coverage_min.ini

used -e py310. The -e flag allows us to run one specific tox environment.

Passing pytest Parameters Through tox
In the previous section we saw how using -e py310 enables us to zoom in on
one environment to run. We could also zoom in on an individual test if we
make one more modification to allow parameters to get to pytest.

The changes are as simple as adding {posargs} to our pytest command:

ch11/cards_proj/tox_posargs.ini

​ ​[testenv]​

​ deps =

​ ​pytest​

​ ​faker​

​ ​pytest-cov​

​ commands =

​ ​pytest​ --cov=​cards --cov=tests --cov-fail-under=100 {posargs}​

Then to pass arguments to pytest, add a -- between the tox arguments and the
pytest arguments. In this case, we’ll select test_version tests using keyword
flag -k. We’ll also use --no-cov to turn off coverage (no point in measuring
coverage when we’re only running a couple of tests):

​ ​$ ​​tox​​ ​​-c​​ ​​tox_posargs.ini​​ ​​-e​​ ​​py310​​ ​​--​​ ​​-k​​ ​​test_version​​ ​​--no-cov​

​ ​...​

​ py310 run-test: commands[0] | pytest --cov=cards --cov=tests

​ --cov-fail-under=100 -k test_version --no-cov

​ ========================= test session starts ==========================

​ collected 51 items / 49 deselected / 2 selected

​

​ tests/api/test_version.py . [50%]

​ tests/cli/test_version.py . [100%]

​

​ =================== 2 passed, 49 deselected in 0.10s ===================

​ _______________________________ summary ________________________________

​ py310: commands succeeded

​ congratulations :)

http://media.pragprog.com/titles/bopytest2/code/ch11/cards_proj/tox_posargs.ini

tox is capable of doing many other cool things. Check the tox
documentation[39] for specific needs not covered here.

tox is not only awesome for automating testing processes locally, but also it
helps with cloud-based CI. Let’s move on to running pytest and tox using
GitHub Actions.

Running tox with GitHub Actions
Even if you are careful to run tox all the time before committing or merging
your code, it’s really nice to have a CI system set up to always run tox on all
changes. Even though GitHub Actions has only been available since 2019,
it’s already very popular for Python projects.

GitHub Actions[40] is a cloud-based CI system provided by GitHub. If you
are using GitHub to store your project, Actions are a natural CI option.

CI Alternatives
GitHub Actions is just one example of a continuous integration
tool. There are many other great tools available, such as GitLab
CI, Bitbucket Pipelines, CircleCI, and Jenkins.

To add Actions to a repository, all you have to do is add a workflow .yml file
to .github/workflows/ at the top level of your project.

Let’s look at main.yml for Cards:

ch11/cards_proj/.github/workflows/main.yml

​ name: ​CI​

​

​ on: [push, pull_request]

​

​ jobs:

​ build:

​

​ runs-on: ​ubuntu-latest​

​ strategy:

​ matrix:

​ python: [​"​​3.7"​, ​"​​3.8"​, ​"​​3.9"​, ​"​​3.10"​]

​

​ steps:

​ - uses: ​actions/checkout@v2​

http://media.pragprog.com/titles/bopytest2/code/ch11/cards_proj/.github/workflows/main.yml

​ - name: ​Setup Python​

​ uses: ​actions/setup-python@v2​

​ with:

​ python-version: ​${{ matrix.python }}​

​ - name: ​Install Tox and any other packages​

​ run: ​pip install tox​

​ - name: ​Run Tox​

​ run: ​tox -e py​

Now let’s walk through what this file is specifying:

name can be anything. It shows up in the GitHub Actions user interface
that we’ll see in a bit.

on: [push, pull_request] tells Actions to run our tests every time we either
push code to the repository or a pull request is created. If we push code
changes, our tests will run. If anyone creates a pull request, the tests
will run. On pull requests, the result of the test run can be seen in the
pull request interface. All action run results can be seen in the Actions
tab on the GitHub interface. We’ll see that shortly.

runs-on: ubuntu-latest specifies which operating system to run the tests
on. Here we’re just running on Linux, but other OSs are available.

matrix: python: ["3.7", "3.8", "3.9", "3.10"] specifies which Python version to
run.

steps is a list of steps. The name of each step can be anything and is
optional.

uses: actions/checkout@v2 is a GitHub Actions tool that checks out our
repository so the rest of the workflow can access it.

uses: actions/setup-python@v2 is a GitHub Actions tool that gets Python
configured and installed in a build environment.

with: python-version: ${{ matrix.python }} says to create an environment for
each of the Python versions listed in matrix: python.

run: pip install tox installs tox.

run: tox -e py runs tox. The -e py is a bit surprising because we don’t have
a py environment specified. However, this works to select the correct
version of Python specified in our tox.ini.

The Actions syntax can seem mysterious at first. Luckily it’s documented
well. A good starting point in the GitHub Actions documentation is the
Building and Testing Python[41] page. The documentation also shows you
how to run pytest directly without tox and how to extend the matrix to
multiple operating systems.

Once you’ve set up your workflow .yml file and pushed it to your GitHub
repository, it will be run automatically.

Select the Actions tab to see previous runs, as shown in the following
screenshot:

The different Python environments are listed on the left. Selecting one
shows you the results for that environment, as shown in this screenshot:

Notice how our top-level name setting, “Python package,” shows up at the
top, and the names for each step are shown as well.

Running Other Tools from tox and CI
We used tox and GitHub Actions to run pytest. However, these
tools can do so much more. Many projects use these tools to run
other tools for static analysis, type checking, code format
checks, and so on. Please visit the documentation for both tox
and GitHub Actions to find out more.

Review
In this chapter, we set up both tox and GitHub Actions to run pytest on
multiple Python versions. You also saw how to

run tox environments in parallel,
test with coverage,
set a minimum coverage percentage,
run specific environments,
pass parameters from the tox command line to pytest, and
run tox on GitHub Actions.

Exercises
Working with tox is even more fun than reading about it. Running through
these exercises will help you realize how simple it is to work with tox. A
small starter project with a starter tox.ini set to run tests using Python 3.10 is
in the /path/to/code/exercises/ch11 folder. Use that project to complete the
following exercises.

1. Go to /path/to/code/exercises/ch11. Install tox.

2. Run tox with the current settings.

3. Change envlist to also run Python 3.9.

4. Change commands to add coverage report, including making sure there
is 100% coverage. Don’t forget to add pytest-cov to deps.

5. Add {posargs} to the end of the pytest command. Run tox -e py310 -- -v to
see the test names.

6. (Bonus) Set up GitHub Actions to run tox for this project, or some
other Python project repository.

[38]

[39]

[40]

[41]

What’s Next
We’ve been testing the Cards application for most of this book. Cards is a
Python pip-installable package. However, lots of Python projects are not
installed with pip, such as simple single-file scripts and larger applications
that are deployed in ways other than pip.

When testing non-pip-installable Python code, there are some gotchas. For
example, in order for a test file to import another module, the module needs
to be in the Python search path. And, without pip install, we need some
other way to get the application code into the search path. The next chapter
addresses these issues and walks through some solutions.

Footnotes

https://tox.wiki

https://tox.wiki/

https://github.com/features/actions

https://docs.github.com/en/actions/guides/building-and-testing-python

Copyright © 2022, The Pragmatic Bookshelf.

https://tox.wiki/
https://tox.wiki/
https://github.com/features/actions
https://docs.github.com/en/actions/guides/building-and-testing-python

Chapter 12

Testing Scripts and Applications

The sample Cards application is an installable Python package that is
installed with pip install. Once it is installed, the test code can simply import

cards to access the application’s capabilities, and test away. However, not all
Python code is installable with pip, but still needs to be tested.

In this chapter, we’ll look at techniques for testing scripts and applications
that cannot be installed with pip. To be clear on terms, the following
definitions apply in this chapter:

A script is a single file containing Python code that is intended to be
run directly from Python, such as python my_script.py.

An importable script is a script in which no code is executed when it is
imported. Code is executed only when it is run directly.

An application refers to a package or script that has external
dependencies defined in a requirements.txt file. The Cards project is
also an application, but it is installed with pip. External dependencies
for Cards are defined in its pyproject.toml file and pulled in during pip

install. In this chapter, we’ll specifically look at applications that cannot
or choose to not use pip.

We’ll start with testing a script. We’ll then modify the script so that we can
import it for testing. We’ll then add an external dependency and look at

testing applications.

When testing scripts and applications, a few questions often come up:

How do I run a script from a test?

How do I capture the output from a script?

I want to import my source modules or packages into my tests. How
do I make that work if the tests and code are in different directories?

How do I use tox if there’s no package to build?

How do I get tox to pull in external dependencies from a
requirements.txt file?

These are the questions this chapter will answer.

Don’t Forget to Use a Virtual Environment
The virtual environment you’ve been using in the previous part
of the book can be used for the discussion in this chapter, or you
can create a new one. Here’s a refresher on how to do that:

​ $ cd /path/to/code/ch12

​ $ python3 -m venv venv

​ $ source venv/bin/activate

​ (venv) $ pip install -U pip

​ (venv) $ pip install pytest

​ (venv) $ pip install tox

Testing a Simple Python Script
Let’s start with the canonical coding example, Hello World!:

ch12/script/hello.py

​ ​print​(​"Hello, World!"​)

The run output shouldn’t be surprising:

​ ​$ ​​cd​​ ​​/path/to/code/ch12/script​

​ ​$ ​​python​​ ​​hello.py​

​ Hello, World!

Like any other bit of software, scripts are tested by running them and
checking the output and/or side effects.

For the hello.py script, our challenge is to (1) figure out how to run it from a
test, and (2) how to capture the output. The subprocess module, which is part
of the Python standard library,[42] has a run() method that will solve both
problems just fine:

ch12/script/test_hello.py

​ ​from​ ​subprocess​ ​import​ run

​

​

​ ​def​ ​test_hello​():

​ result = run([​"python"​, ​"hello.py"​], capture_output=True, text=True)

​ output = result.stdout

​ ​assert​ output == ​"Hello, World!​​\n​​"​

The test launches a subprocess, captures the output, and compares it to
"Hello, World!\n", including the newline print() automatically adds to the
output. Let’s try it out:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_hello.py​

​ ========================= test session starts ==========================

http://media.pragprog.com/titles/bopytest2/code/ch12/script/hello.py
http://media.pragprog.com/titles/bopytest2/code/ch12/script/test_hello.py

​ collected 1 item

​

​ test_hello.py::test_hello PASSED [100%]

​

​ ========================== 1 passed in 0.03s ===========================

That’s not too bad. Let’s try it with tox.

If we set up a normal-ish tox.ini file, it won’t really work. Let’s try anyway:

ch12/script/tox_bad.ini

​ ​[tox]​

​ envlist = ​py39, py310​

​

​ ​[testenv]​

​ deps = ​pytest​

​ commands = ​pytest​

​

​ ​[pytest]​

Running this illustrates the problem:

​ ​$ ​​tox​​ ​​-e​​ ​​py310​​ ​​-c​​ ​​tox_bad.ini​

​ ERROR: No pyproject.toml or setup.py file found. The expected locations are:

​ /path/to/code/ch12/script/pyproject.toml or
/path/to/code/ch12/script/setup.py

​ You can

​ 1. Create one:

​ https://tox.readthedocs.io/en/latest/example/package.html

​ 2. Configure tox to avoid running sdist:

​ https://tox.readthedocs.io/en/latest/example/general.html

​ 3. Configure tox to use an isolated_build

The problem is that tox is trying to build something as the first part of its
process. We need to tell tox to not try to build anything, which we can do
with skipsdist = true:

ch12/script/tox.ini

​ ​[tox]​

​ envlist = ​py39, py310​

http://media.pragprog.com/titles/bopytest2/code/ch12/script/tox_bad.ini
http://media.pragprog.com/titles/bopytest2/code/ch12/script/tox.ini

» skipsdist = ​true​

​

​ ​[testenv]​

​ deps = ​pytest​

​ commands = ​pytest​

​

​ ​[pytest]​

Now it should run fine:

​ ​$ ​​tox​

​ ​...​

​ py39 run-test: commands[0] | pytest

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_hello.py . [100%]

​

​ ========================== 1 passed in 0.04s ===========================

​ ​...​

​ py310 run-test: commands[0] | pytest

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_hello.py . [100%]

​

​ ========================== 1 passed in 0.04s ===========================

​ _______________________________ summary ________________________________

​ py39: commands succeeded

​ py310: commands succeeded

​ congratulations :)

​ ​$​

Awesome. We tested our script with pytest and tox and used subprocess.run()

to launch our script and capture the output.

Testing a small script with subprocess.run() works okay, but it does have
drawbacks. We may want to test sections of larger scripts separately. That’s
not possible unless we split the functionality into functions. We also may
want to separate test code and scripts into different directories. That’s also
not trivial with the code as is, because our call to subprocess.run() assumed

hello.py was in the same directory. A few modifications to our code can clean
up these issues.

Testing an Importable Python Script
We can change our script code a tiny bit to make it importable and allow
tests and code to be in different directories. We’ll start by making sure all of
the logic in the script is inside a function. Let’s move the workload of
hello.py into a main() function:

ch12/script_importable/hello.py

​ ​def​ ​main​():

​ ​print​(​"Hello, World!"​)

​

​

​ ​if​ __name__ == ​"__main__"​:

​ main()

We call main() inside a if __name__ == ’__main__’ block. The main() code will be
called when we call the script with python hello.py:

​ ​$ ​​cd​​ ​​/path/to/code/ch12/script_importable​

​ ​$ ​​python​​ ​​hello.py​

​ Hello, World!

The main() code won’t be called with just an import. We have to call main()

explicitly:

​ ​$ ​​python​

​ ​>>>​​ ​​import​​ ​​hello​

​ ​>>>​​ ​​hello.main()​

​ Hello, World!

Now we can test main() as if it were just any other function. In the modified
test, we are using capsys (which was covered in ​Using capsys​):

ch12/script_importable/test_hello.py

​ ​import​ ​hello​

​

http://media.pragprog.com/titles/bopytest2/code/ch12/script_importable/hello.py
http://media.pragprog.com/titles/bopytest2/code/ch12/script_importable/test_hello.py

​

​ ​def​ ​test_main​(capsys):

​ hello.main()

​ output = capsys.readouterr().out

​ ​assert​ output == ​"Hello, World!​​\n​​"​

Not only can we test main(), but also as our script grows, we may break up
code into separate functions. We can now test those functions separately. It’s
a bit silly to break up Hello, World!, but let’s do it anyway, just for fun:

ch12/script_funcs/hello.py

​ ​def​ ​full_output​():

​ ​return​ ​"Hello, World!"​

​

​

​ ​def​ ​main​():

​ ​print​(full_output())

​

​

​ ​if​ __name__ == ​"__main__"​:

​ main()

Here we’ve put the output contents into full_output() and the actual printing
of it in main(). And now we can test those separately:

ch12/script_funcs/test_hello.py

​ ​import​ ​hello​

​

​

​ ​def​ ​test_full_output​():

​ ​assert​ hello.full_output() == ​"Hello, World!"​

​

​

​ ​def​ ​test_main​(capsys):

​ hello.main()

​ output = capsys.readouterr().out

​ ​assert​ output == ​"Hello, World!​​\n​​"​

http://media.pragprog.com/titles/bopytest2/code/ch12/script_funcs/hello.py
http://media.pragprog.com/titles/bopytest2/code/ch12/script_funcs/test_hello.py

Splendid. Even a fairly large script can be reasonably tested in this manner.
Now let’s look into moving our tests and scripts into separate directories.

Separating Code into src and tests Directories
Suppose we have a bunch of scripts and a bunch of tests for those scripts,
and our directory is getting a bit cluttered. So we decide to move the scripts
into a src directory and the tests into a tests directory, like this:

​ script_src

​ ├── src

​ │ └── hello.py

​ ├── tests

​ │ └── test_hello.py

​ └── pytest.ini

Without any other changes, pytest will blow up:

​ ​$ ​​cd​​ ​​/path/to/code/ch12/script_src​

​ ​$ ​​pytest​​ ​​--tb=short​​ ​​-c​​ ​​pytest_bad.ini​

​ ========================= test session starts ==========================

​ collected 0 items / 1 error

​

​ ================================ ERRORS ================================

​ _________________ ERROR collecting tests/test_hello.py _________________

​ ImportError while importing test module

​ '/path/to/code/ch12/script_src/tests/test_hello.py'.

​ ​...​

​ tests/test_hello.py:1: in <module>

​ import hello

​ E ModuleNotFoundError: No module named 'hello'

​ ======================= short test summary info ========================

​ ERROR tests/test_hello.py

​ !!!!!!!!!!!!!!!! Interrupted: 1 error during collection !!!!!!!!!!!!!!!!

​ =========================== 1 error in 0.08s ===========================

Our tests—and pytest—don’t know to look in src for hello. All import

statements, either in our source code or in our test code, use the standard
Python import process; therefore, they look in directories that are found in
the Python module search path. Python keeps this search path list in the

sys.path variable,[43] then pytest modifies this list a bit to add the directories
of the tests it’s going to run.

What we need to do is add the directories for the source code we want to
import into sys.path. pytest has an option to help us with that, pythonpath. The
option was introduced for pytest 7. If you need to use pytest 6.2, you can use
the pytest-srcpaths plugin,[44] to add this option to pytest 6.2.x.

First we need to modify our pytest.ini to set pythonpath to src:

ch12/script_src/pytest.ini

​ ​[pytest]​

​ addopts = ​-ra​

​ testpaths = ​tests​

» pythonpath = ​src​

Now pytest runs just fine:

​ ​$ ​​pytest​​ ​​tests/test_hello.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ tests/test_hello.py .. [100%]

​

​ ========================== 2 passed in 0.01s ===========================

That’s great that it works. But when you first encounter sys.path, it can seem
mysterious. Let’s take a closer look.

http://media.pragprog.com/titles/bopytest2/code/ch12/script_src/pytest.ini

Defining the Python Search Path
The Python search path is simply a list of directories Python stores in the
sys.path variable. During any import statement, Python looks through the list
for modules or packages matching the requested import. We can use a small
test to see what sys.path looks like during a test run:

ch12/script_src/tests/test_sys_path.py

​ ​import​ ​sys​

​

​

​ ​def​ ​test_sys_path​():

​ ​print​(​"sys.path: "​)

​ ​for​ p ​in​ sys.path:

​ ​print​(p)

When we run it, notice the search path:

​ ​$ ​​pytest​​ ​​-s​​ ​​tests/test_sys_path.py​

​ ========================= test session starts ==========================

​ collected 1 item

​

​ tests/test_sys_path.py sys.path:

​ /path/to/code/ch12/script_src/tests

​ /path/to/code/ch12/script_src/src

​ ​...​

​ /path/to/code/ch12/venv/lib/python3.10/site-packages

​ .

​

​ ========================== 1 passed in 0.00s ===========================

The last path, site-packages, makes sense. That’s where packages installed via
pip go. The script_src/tests path is where our test is located. The tests
directory is added by pytest so that pytest can import our test module. We
can utilize this addition by placing any test helper modules in the same
directory as the tests using it. The script_src/src path is the path added by the

http://media.pragprog.com/titles/bopytest2/code/ch12/script_src/tests/test_sys_path.py

pythonpath=src setting. The path is relative to the directory that contains our
pytest.ini file.

Testing requirements.txt-Based Applications
A script or application may have dependencies—other projects that need to
be installed before the script or application can run. A packaged project like
Cards has a list of dependencies defined in either a pyproject.toml, setup.py, or
setup.cfg file. Cards uses pyproject.toml. However, many projects don’t use
packaging, and instead define dependencies in a requirements.txt file.

The dependency list in a requirements.txt file could be just a list of loose
dependencies, like:

ch12/sample_requirements.txt

​ typer

​ requests

However, it’s more common for applications to “pin” dependencies by
defining specific versions that are known to work:

ch12/sample_pinned_requirements.txt

​ typer==0.3.2

​ requests==2.26.0

The requirements.txt files are used to recreate a running environment with pip

install -r. The -r tells pip to read and install everything in the requirements.txt

file.

A reasonable process would then be:

Get the code somehow. For example, git clone <repository of project>.
Create a virtual environment with python3 -m venv venv.
Activate the virtual environment.
Install the dependencies with pip install -r requirements.txt.
Run the application.

http://media.pragprog.com/titles/bopytest2/code/ch12/sample_requirements.txt
http://media.pragprog.com/titles/bopytest2/code/ch12/sample_pinned_requirements.txt

For so many projects, packaging makes way more sense. However, this
process is common for web frameworks like Django[45] and projects using
higher-level packaging, such as Docker.[46] In those cases and others,
requirements.txt files are common and work fine.

Let’s add a dependency to hello.py to see this situation in action. We’ll use
Typer[47] to help us add a command-line argument to say hello to a certain
name. First we’ll add typer to a requirements.txt file:

ch12/app/requirements.txt

​ typer==0.3.2

Notice that I also pinned the version to Typer 0.3.2. Now we can install our
new dependency with either:

​ ​$ ​​pip​​ ​​install​​ ​​typer==0.3.2​

or

​ ​$ ​​pip​​ ​​install​​ ​​-r​​ ​​requirements.txt​

A code change is in order as well:

ch12/app/src/hello.py

​ ​import​ ​typer​

​ ​from​ ​typing​ ​import​ Optional

​

​

​ ​def​ ​full_output​(name: str):

​ ​return​ f​"Hello, {name}!"​

​

​

​ app = typer.Typer()

​

​

​ @app.command()

​ ​def​ ​main​(name: Optional[str] = typer.Argument(​"World"​)):

​ ​print​(full_output(name))

http://media.pragprog.com/titles/bopytest2/code/ch12/app/requirements.txt
http://media.pragprog.com/titles/bopytest2/code/ch12/app/src/hello.py

​

​

​ ​if​ __name__ == ​"__main__"​:

​ app()

Typer uses type hints[48] to specify the type of options and arguments passed
to a CLI application, including optional arguments. In the previous code we
are telling Python and Typer that our application takes name as an argument,
to treat it as a string, that it’s optional, and to use "World" if no name is passed
in.

Just for sanity’s sake, let’s try it out:

​ ​$ ​​cd​​ ​​/path/to/code/ch12/app/src​

​ ​$ ​​python​​ ​​hello.py​

​ Hello, World!

​ ​$ ​​python​​ ​​hello.py​​ ​​Brian​

​ Hello, Brian!

Cool. Now we need to modify the tests to make sure hello.py works with and
without a name:

ch12/app/tests/test_hello.py

​ ​import​ ​hello​

​ ​from​ ​typer.testing​ ​import​ CliRunner

​

​

​ ​def​ ​test_full_output​():

​ ​assert​ hello.full_output(​"Foo"​) == ​"Hello, Foo!"​

​

​

​ runner = CliRunner()

​

​

​ ​def​ ​test_hello_app_no_name​():

​ result = runner.invoke(hello.app)

​ ​assert​ result.stdout == ​"Hello, World!​​\n​​"​

​

​

​ ​def​ ​test_hello_app_with_name​():

http://media.pragprog.com/titles/bopytest2/code/ch12/app/tests/test_hello.py

​ result = runner.invoke(hello.app, [​"Brian"​])

​ ​assert​ result.stdout == ​"Hello, Brian!​​\n​​"​

Instead of calling main() directly, we’re using Typer’s built in CliRunner() to
test the app.

Let’s run it first with pytest and then with tox:

​ ​$ ​​cd​​ ​​/path/to/code/ch12/app​

​ ​$ ​​pytest​​ ​​-v​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ tests/test_hello.py::test_full_output PASSED [33%]

​ tests/test_hello.py::test_hello_app_no_name PASSED [66%]

​ tests/test_hello.py::test_hello_app_with_name PASSED [100%]

​

​ ========================== 3 passed in 0.02s ===========================

Great. Works with pytest. Now on to tox. Because we have dependencies,
we need to make sure they are installed in the tox environments. We do that
by adding -rrequirements.txt to the deps setting:

ch12/app/tox.ini

​ ​[tox]​

​ envlist = ​py39, py310​

​ skipsdist = ​true​

​

​ ​[testenv]​

​ deps = ​pytest​

​ ​pytest-srcpaths​

» ​-rrequirements.txt​

​ commands = ​pytest​

​

​ ​[pytest]​

​ addopts = ​-ra​

​ testpaths = ​tests​

​ pythonpath = ​src​

That was easy. Let’s try it out:

http://media.pragprog.com/titles/bopytest2/code/ch12/app/tox.ini

​ ​$ ​​tox​

​ py39 installed: ..., pytest==x.y,typer==x.y.z

​ ​...​

​ ========================= test session starts ==========================

​ ​...​

​ collected 3 items

​

​ tests/test_hello.py ... [100%]

​

​ ========================== 3 passed in 0.03s ===========================

​ py310 ..., pytest==x.y,typer==x.y.z

​ ​...​

​ ========================= test session starts ==========================

​ ​...​

​ collected 3 items

​

​ tests/test_hello.py ... [100%]

​

​ ========================== 3 passed in 0.02s ===========================

​ _______________________________ summary ________________________________

​ py39: commands succeeded

​ py310: commands succeeded

​ congratulations :)

Yay! We have an application with an external dependency listed in a
requirements.txt file. We are using pythonpath to specify the source code
location. We added -rrequirements.txt to tox.ini to get those dependencies
installed in the tox environments. And our tests run with pytest and with tox.
Woohoo!

Review
In this chapter, we looked at how to use pytest and tox to test scripts and
applications. In the context of this chapter, script refers to a Python file that
is run directly, as in python my_script.py, and application refers to a Python
script or larger application that requires dependencies to be installed with
requirements.txt.

In addition, you learned several techniques for testing scripts and
applications:

Using subprocess.run() and pipes to run a script and read the output
Refactoring a script code into functions, including main()

Calling main() from a if __name__ == "__main__" block
Using capsys to capture output
Using pythonpath to move tests into tests and source code into src

Specifying requirements.txt in tox.ini for applications with dependencies

Exercises
Testing scripts can be quite fun. Running through the process on a second
script will help you remember the techniques in this chapter.

The exercises start with an example script, sums.py, that adds up numbers in a
separate file, data.txt.

Here’s sums.py:

exercises/ch12/sums.py

​ ​# sums.py​

​ ​# add the numbers in `data.txt`​

​

​ sum = 0.0

​

​ ​with​ open(​"data.txt"​, ​"r"​) ​as​ file:

​ ​for​ line ​in​ file:

​ number = float(line)

​ sum += number

​

​ ​print​(f​"{sum:.2f}"​)

And here’s an example data file:

exercises/ch12/data.txt

​ 123.45

​ 76.55

If we run it, we should get 200.00:

​ ​$ ​​cd​​ ​​/path/to/code/exercises/ch12​

​ ​$ ​​python​​ ​​sums.py​​ ​​data.txt​

​ 200.00

Assuming valid numbers in data.txt, we need to test this script.

http://media.pragprog.com/titles/bopytest2/code/exercises/ch12/sums.py
http://media.pragprog.com/titles/bopytest2/code/exercises/ch12/data.txt

1. Write a test using subprocess.run() to test sums.py with data.txt.

2. Modify sums.py so it can be imported by a test module.

3. Write a new test that imports sums and tests it using capsys.

4. Set up tox to run your tests on at least one version of Python.

5. (Bonus) Move the tests and source into tests and src. Make necessary
changes to get the tests to pass.

6. (Bonus) Modify the script to pass in a file name.

Run the code as python sums.py data.txt.
You should be able to use it on multiple files.
What different test cases would you add?

[42]

[43]

[44]

[45]

[46]

[47]

[48]

What’s Next
A big part of writing and running tests that we haven’t discussed much yet
in this book is what to do when the tests fail. When one or more test fails,
we need to figure out why. It’s either a problem with the test, or a problem
with the code we are testing. Either way, the process to figure it out is called
debugging. In the next chapter, we’ll look at the many flags and features
that pytest has to help you with debugging.

Footnotes

https://docs.python.org/3/library/subprocess.html#subprocess.run

https://docs.python.org/3/library/sys.html#sys.path

https://pypi.org/project/pytest-srcpaths

https://www.djangoproject.com

https://www.docker.com

https://typer.tiangolo.com

https://docs.python.org/3/library/typing.html

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.python.org/3/library/subprocess.html#subprocess.run
https://docs.python.org/3/library/sys.html#sys.path
https://pypi.org/project/pytest-srcpaths
https://www.djangoproject.com/
https://www.docker.com/
https://typer.tiangolo.com/
https://docs.python.org/3/library/typing.html

Chapter 13

Debugging Test Failures

Test failures happen. If they didn’t, tests wouldn’t be much use. What we do
when tests fail is what counts. When tests fail, we need to figure out why. It
might be the test or it might be the application. The process of determining
where the problem lies and what to do about it is similar.

Integrated development environments (IDEs) and many text editors have
graphical debuggers built right in. These tools are incredibly helpful for
debugging, allowing us to add breakpoints, step through code, look at
variable values, and much more. However, pytest also provides many tools
that may help you solve the problem faster, without having to reach for a
debugger. There are also times when IDEs may be difficult to use, such as
while debugging code on a remote system or when debugging one tox
environment. Python includes a builtin source code debugger called pdb, as
well as several flags to make debugging with pdb quick and easy.

In this chapter, we’re going to debug some failing code with the help of
pytest flags and pdb. You may spot the bugs right away. Wonderful. We’re
just using the bug as an excuse to look at debugging flags and the pytest
plus pdb integration.

We need a failing test to debug. For that, we’ll go back to the Cards project
—this time in developer mode—to add a feature and some tests.

Adding a New Feature to the Cards Project
Let’s say we’ve been using Cards for a while and we now have some
finished tasks:

​ ​$ ​​cards​​ ​​list​

​

​ ID state owner summary

​ ────────────────────────────────

​ 1 done some task

​ 2 todo another

​ 3 done a third

We’d like to list all of the completed tasks at the end of the week. We can do
this with cards list already, because it has some filter features:

​ ​$ ​​cards​​ ​​list​​ ​​--help​

​ Usage: cards list [OPTIONS]

​

​ List cards in db.

​

​ Options:

​ -o, --owner TEXT

​ -s, --state TEXT

​ --help Show this message and exit.

​

​ ​$ ​​cards​​ ​​list​​ ​​--state​​ ​​done​

​

​ ID state owner summary

​ ────────────────────────────────

​ 1 done some task

​ 3 done a third

That works. But let’s add a cards done command to do this filter for us. For
that, we need a CLI command:

ch13/cards_proj/src/cards/cli.py

​ @app.command(​"done"​)

​ ​def​ ​list_done_cards​():

http://media.pragprog.com/titles/bopytest2/code/ch13/cards_proj/src/cards/cli.py

​ ​"""​

​ ​ List 'done' cards in db.​

​ ​ """​

​ ​with​ cards_db() ​as​ db:

​ the_cards = db.list_done_cards()

​ print_cards_list(the_cards)

This command calls an API method, list_done_cards(), and prints the results.
The list_done_cards() API method really just needs to call list_cards() with a
pre-filled state="done":

ch13/cards_proj/src/cards/api.py

​ ​def​ ​list_done_cards​(self):

​ ​"""Return the 'done' cards."""​

​ done_cards = self.list_cards(state=​"done"​)

Now let’s add some tests for the API and CLI.

First, the API test:

ch13/cards_proj/tests/api/test_list_done.py

​ ​import​ ​pytest​

​

​

​ @pytest.mark.num_cards(10)

​ ​def​ ​test_list_done​(cards_db):

​ cards_db.finish(3)

​ cards_db.finish(5)

​

​ the_list = cards_db.list_done_cards()

​

​ ​assert​ len(the_list) == 2

​ ​for​ card ​in​ the_list:

​ ​assert​ card.id ​in​ (3, 5)

​ ​assert​ card.state == ​"done"​

Here we set up a list of 10 cards and marked two as finished. The result of
list_done_cards() should be a list of two cards with the correct index and with

http://media.pragprog.com/titles/bopytest2/code/ch13/cards_proj/src/cards/api.py
http://media.pragprog.com/titles/bopytest2/code/ch13/cards_proj/tests/api/test_list_done.py

state set to "done". The @pytest.mark.num_cards(10) lets Faker generate the
contents of the cards.

Now let’s add the CLI test:

ch13/cards_proj/tests/cli/test_done.py

​ ​import​ ​cards​

​

​ expected = ​"""​​\​

​

​ ​ ID state owner summary​

​ ​ ────────────────────────────────​

​ ​ 1 done some task​

​ ​ 3 done a third"""​

​

​

​ ​def​ ​test_done​(cards_db, cards_cli):

​ cards_db.add_card(cards.Card(​"some task"​, state=​"done"​))

​ cards_db.add_card(cards.Card(​"another"​))

​ cards_db.add_card(cards.Card(​"a third"​, state=​"done"​))

​ output = cards_cli(​"done"​)

​ ​assert​ output == expected

For the CLI test, we can’t use the Faker data, as we have to know exactly
what the outcome is going to be. Instead, we just fill in a few cards and set
state to "done" for a couple of them.

If we try to run these tests in the same virtual environment in which we were
testing Cards before, they won’t work. We need to install the new version of
Cards. Because we are editing the Cards source code, we’ll need to install it
in editable mode. We’ll go ahead and install cards_proj in a new virtual
environment.

http://media.pragprog.com/titles/bopytest2/code/ch13/cards_proj/tests/cli/test_done.py

Installing Cards in Editable Mode
When developing both source and test code, it’s super handy to be able to
modify the source code and immediately run the tests, without having to
rebuild the package and reinstall it in our virtual environment. Installing the
source code in editable mode is just the thing we need to accomplish this,
and it’s a feature built in to both pip and Flit.

Let’s spin up a new virtual environment:

​ ​$ ​​cd​​ ​​/path/to/code/ch13​

​ ​$ ​​python3​​ ​​-m​​ ​​venv​​ ​​venv​

​ ​$ ​​source​​ ​​venv/bin/activate​

​ (venv) $ pip install -U pip

​ ​...​

​ Successfully installed pip-21.3.x

Now in our fresh virtual environment, we need to install the ./cards_proj

directory as a local editable package. For this to work, we need pip version
21.3.1 or above, so be sure to upgrade pip if it’s below 21.3.

Installing an editable package is as easy as pip install -e ./package_dir_name. If
we run pip install -e ./cards_proj we will have cards installed in editable mode.
However, we also want to install all the necessary development tools like
pytest, tox, etc.

We can install cards in editable mode and install all of our test tools all at
once using optional dependencies.

​ $ pip install -e "./cards_proj/[test]"

This works because all of these dependencies have been defined in
pyproject.toml, in a optional-dependencies section:

ch13/cards_proj/pyproject.toml

http://media.pragprog.com/titles/bopytest2/code/ch13/cards_proj/pyproject.toml

​ ​[project.optional-dependencies]​

​ test = [

​ ​"pytest"​,

​ ​"faker"​,

​ ​"tox"​,

​ ​"coverage"​,

​ ​"pytest-cov"​,

​]

Now let’s run the tests. We are using --tb=no to turn off tracebacks:

​ ​$ ​​cd​​ ​​/path/to/code/ch13/cards_proj​

​ ​$ ​​pytest​​ ​​--tb=no​

​ ========================= test session starts ==========================

​ collected 55 items

​

​ tests/api/test_add.py [9%]

​ ​...​

​ tests/api/test_list_done.py .F [49%]

​ ​...​

​ tests/cli/test_done.py .F [80%]

​ ​...​

​ tests/cli/test_version.py . [100%]

​

​ ======================= short test summary info ========================

​ FAILED tests/api/test_list_done.py::test_list_done - TypeError: objec...

​ FAILED tests/cli/test_done.py::test_done - AssertionError: assert '' ...

​ ===================== 2 failed, 53 passed in 0.33s =====================

Awesome. There are a couple failures, which is just what we wanted. Now
we can look at debugging.

Debugging with pytest Flags
pytest includes quite a few command-line flags that are useful for
debugging. We will be using some of these to debug our test failures.

Flags for selecting which tests to run, in which order, and when to stop:

-lf / --last-failed: Runs just the tests that failed last

-ff / --failed-first: Runs all the tests, starting with the last failed

-x / --exitfirst: Stops the tests session after the first failure

--maxfail=num: Stops the tests after num failures

-nf / --new-first: Runs all the tests, ordered by file modification time

--sw / --stepwise: Stops the tests at the first failure. Starts the tests at the
last failure next time

--sw-skip / --stepwise-skip: Same as --sw, but skips the first failure

Flags to control pytest output:

-v / --verbose: Displays all the test names, passing or failing
--tb=[auto/long/short/line/native/no]: Controls the traceback style
-l / --showlocals: Displays local variables alongside the stacktrace

Flags to start a command-line debugger:

--pdb: Starts an interactive debugging session at the point of failure

--trace: Starts the pdb source-code debugger immediately when running
each test

--pdbcls: Uses alternatives to pdb, such as IPython’s debugger with --
pdbcls=IPython.terminal.debugger:TerminalPdb

For all of these descriptions, “failure” refers to a failed assertion or any
other uncaught exception found in our source code or test code, including
fixtures.

Re-Running Failed Tests
Let’s start our debugging by making sure the tests fail when we run them
again. We’ll use --lf to re-run the failures only, and --tb=no to hide the
traceback, because we’re not ready for it yet:

​ ​$ ​​pytest​​ ​​--lf​​ ​​--tb=no​

​ ========================= test session starts ==========================

​ collected 27 items / 25 deselected / 2 selected

​ run-last-failure: re-run previous 2 failures (skipped 13 files)

​

​ tests/api/test_list_done.py F [50%]

​ tests/cli/test_done.py F [100%]

​

​ ======================= short test summary info ========================

​ FAILED tests/api/test_list_done.py::test_list_done - TypeError: objec...

​ FAILED tests/cli/test_done.py::test_done - AssertionError: assert '' ...

​ =================== 2 failed, 25 deselected in 0.10s ===================

Great. We know we can reproduce the failure. We’ll start with debugging
the first failure.

Let’s run just the first failing test, stop after the failure, and look at the
traceback:

​ ​$ ​​pytest​​ ​​--lf​​ ​​-x​

​ ========================= test session starts ==========================

​ collected 27 items / 25 deselected / 2 selected

​ run-last-failure: re-run previous 2 failures (skipped 13 files)

​

​ tests/api/test_list_done.py F

​

​ =============================== FAILURES ===============================

​ ____________________________ test_list_done ____________________________

​

​ cards_db = <cards.api.CardsDB object at 0x7fabab5288b0>

​

​ @pytest.mark.num_cards(10)

​ def test_list_done(cards_db):

​ cards_db.finish(3)

​ cards_db.finish(5)

​

​ the_list = cards_db.list_done_cards()

​ ​>​​ ​​assert​​ ​​len(the_list)​​ ​​==​​ ​​2​

» E TypeError: object of type 'NoneType' has no len()

​

​ tests/api/test_list_done.py:10: TypeError

​ ======================= short test summary info ========================

​ FAILED tests/api/test_list_done.py::test_list_done - TypeError: objec...

​ !!!!!!!!!!!!!!!!!!!!!! stopping after 1 failures !!!!!!!!!!!!!!!!!!!!!!!

​ =================== 1 failed, 25 deselected in 0.18s ===================

The error, TypeError: object of type ’NoneType’ has no len() is telling us that
the_list is None. That’s not good. We expect it to be a list of Card objects.
Even if there are no “done” cards, it should be an empty list and not None.
Actually, that’s probably a good test to add, checking that everything works
properly with no “done” cards. Focusing on the problem at hand, let’s get
back to debugging.

Just to be sure we understand the problem, we can run the same test over
again with -l/--showlocals. We don’t need the full traceback again, so we can
shorten it with --tb=short:

​ ​$ ​​pytest​​ ​​--lf​​ ​​-x​​ ​​-l​​ ​​--tb=short​

​ ========================= test session starts ==========================

​ collected 27 items / 25 deselected / 2 selected

​ run-last-failure: re-run previous 2 failures (skipped 13 files)

​

​ tests/api/test_list_done.py F

​

​ =============================== FAILURES ===============================

​ ____________________________ test_list_done ____________________________

​ tests/api/test_list_done.py:10: in test_list_done

​ assert len(the_list) == 2

​ E TypeError: object of type 'NoneType' has no len()

​ cards_db = <cards.api.CardsDB object at 0x7f884a4e8850>

» the_list = None

​ ======================= short test summary info ========================

​ FAILED tests/api/test_list_done.py::test_list_done - TypeError: objec...

​ !!!!!!!!!!!!!!!!!!!!!! stopping after 1 failures !!!!!!!!!!!!!!!!!!!!!!!

​ =================== 1 failed, 25 deselected in 0.18s ===================

Yep. the_list = None. The -l/--showlocals is often extremely helpful and
sometimes good enough to debug a test failure completely. What’s more,
the existence of -l/--showlocals has trained me to use lots of intermediate
variables in tests. They come in handy when a test fails.

Now we know that in this circumstance, list_done_cards() is returning None.
But we don’t know why. We’ll use pdb to debug inside list_done_cards()

during the test.

Debugging with pdb
pdb,[49] which stands for “Python debugger,” is part of the Python standard
library, so we don’t need to install anything to use it. We’ll get pdb up and
running and then look at some of the most useful commands within pdb.

You can launch pdb from pytest in a few different ways:

Add a breakpoint() call to either test code or application code. When a
pytest run hits a breakpoint() function call, it will stop there and launch
pdb.

Use the --pdb flag. With --pdb, pytest will stop at the point of failure. In
our case, that will be at the assert len(the_list) == 2 line.

Use the --trace flag. With --trace, pytest will stop at the beginning of
each test.

For our purposes, combining --lf and --trace will work perfectly. The combo
will tell pytest to re-run the failed tests and stop at the beginning of
test_list_done(), before the call to list_done_cards():

​ ​$ ​​pytest​​ ​​--lf​​ ​​--trace​

​ ========================= test session starts ==========================

​ collected 27 items / 25 deselected / 2 selected

​ run-last-failure: re-run previous 2 failures (skipped 13 files)

​

​ tests/api/test_list_done.py

​ ​>>>​​>>>>>>>>>>>>>​​ ​​PDB​​ ​​runcall​​ ​​(IO-capturing​​ ​​turned​​ ​​off)​​ ​​>>>>>>>>>>>>>>>>>​

​ ​>​​ ​​
/path/to/code/ch13/cards_proj/tests/api/test_list_done.py(5)test_list_done()​

​ ​->​​ ​​cards_db.finish(3)​

​ (Pdb)

Following are the common commands recognized by pdb. The full list is in
the pdb documentation.[50]

Meta commands:

h(elp): Prints a list of commands
h(elp) command: Prints help on a command
q(uit): Exits pdb

Seeing where you are:

l(ist) : Lists 11 lines around the current line. Using it again lists the next
11 lines, and so on.

l(ist) .: The same as above, but with a dot. Lists 11 lines around the
current line. Handy if you’ve use l(list) a few times and have lost your
current position

l(ist) first, last: Lists a specific set of lines

ll : Lists all source code for the current function

w(here): Prints the stack trace

Looking at values:

p(rint) expr: Evaluates expr and prints the value

pp expr: Same as p(rint) expr but uses pretty-print from the pprint
module. Great for structures

a(rgs): Prints the argument list of the current function

Execution commands:

s(tep): Executes the current line and steps to the next line in your source
code even if it’s inside a function

n(ext): Executes the current line and steps to the next line in the current
function

r(eturn): Continues until the current function returns

c(ontinue): Continues until the next breakpoint. When used with --trace,
continues until the start of the next test

unt(il) lineno: Continues until the given line number

Continuing on with debugging our tests, we’ll use ll to list the current
function:

​ (Pdb) ll

​ 3 @pytest.mark.num_cards(10)

​ 4 def test_list_done(cards_db):

​ 5 -> cards_db.finish(3)

​ 6 cards_db.finish(5)

​ 7

​ 8 the_list = cards_db.list_done_cards()

​ 9

​ 10 assert len(the_list) == 2

​ 11 for card in the_list:

​ 12 assert card.id in (3, 5)

​ 13 assert card.state == "done"

The -> shows us the current line, before it’s been run.

We can use until 8 to break right before we call list_done_cards(), like this:

​ (Pdb) until 8

​ ​>​​ ​​
/path/to/code/ch13/cards_proj/tests/api/test_list_done.py(8)test_list_done()​

​ ​->​​ ​​the_list​​ ​​=​​ ​​cards_db.list_done_cards()​

And step to get us into the function:

​ (Pdb) step

​ --Call--

​ ​>​​ ​​/path/to/code/ch13/cards_proj/src/cards/api.py(82)list_done_cards()​

​ ​->​​ ​​def​​ ​​list_done_cards(self):​

Let’s use ll again to see the whole function:

​ (Pdb) ll

​ 82 -> def list_done_cards(self):

​ 83 """Return the 'done' cards."""

​ 84 done_cards = self.list_cards(state='done')

Now let’s continue until just before this function returns:

​ (Pdb) return

​ --Return--

​ ​>​​ ​​/path/to/code/ch13/cards_proj/src/cards/api.py(84)list_done_cards()->None​

​ ​->​​ ​​done_cards​​ ​​=​​ ​​self.list_cards(state=​​'done'​​)​

​ (Pdb) ll

​ 82 def list_done_cards(self):

​ 83 """Return the 'done' cards."""

​ 84 -> done_cards = self.list_cards(state='done')

We can look at the value of done_cards with either p or pp:

​ (Pdb) pp done_cards

​ [Card(summary='Line for PM identify decade.',

​ owner='Russell', state='done', id=3),

​ Card(summary='Director season industry the describe.',

​ owner='Cody', state='done', id=5)]

This looks fine, but I think I see the problem. If we continue out to the
calling test and check the return value, we can make doubly sure:

​ (Pdb) step

​ ​>​​ ​​
/path/to/code/ch13/cards_proj/tests/api/test_list_done.py(10)test_list_done(
)​

​ ​->​​ ​​assert​​ ​​len(the_list)​​ ​​==​​ ​​2​

​ (Pdb) ll

​ 3 @pytest.mark.num_cards(10)

​ 4 def test_list_done(cards_db):

​ 5 cards_db.finish(3)

​ 6 cards_db.finish(5)

​ 7

​ 8 the_list = cards_db.list_done_cards()

​ 9

​ 10 -> assert len(the_list) == 2

​ 11 for card in the_list:

​ 12 assert card.id in (3, 5)

​ 13 assert card.state == "done"

​ (Pdb) pp the_list

​ None

Pretty clear now. We had the correct list in the done_cards variable within
list_done_cards(). However, that value isn’t returned. Because the default
return value in Python is None if there isn’t a return statement, that’s the
value that gets assigned to the_list in test_list_done().

If we stop the debugger, add a return done_cards to list_done_cards(), and re-
run the failed test, we can see if that fixes it:

​ (Pdb) exit

​ !!!!!!!!!!!!!!! _pytest.outcomes.Exit: Quitting debugger !!!!!!!!!!!!!!!

​ ================== 25 deselected in 521.22s (0:08:41) ==================

​ ​$ ​​pytest​​ ​​--lf​​ ​​-x​​ ​​-v​​ ​​--tb=no​

​ ========================= test session starts ==========================

​ collected 27 items / 25 deselected / 2 selected

​ run-last-failure: re-run previous 2 failures (skipped 13 files)

​

​ tests/api/test_list_done.py::test_list_done PASSED [50%]

​ tests/cli/test_done.py::test_done FAILED [100%]

​

​ ======================= short test summary info ========================

​ FAILED tests/cli/test_done.py::test_done - AssertionError: assert ' ...

​ !!!!!!!!!!!!!!!!!!!!!! stopping after 1 failures !!!!!!!!!!!!!!!!!!!!!!!

​ ============== 1 failed, 1 passed, 25 deselected in 0.10s ==============

Wonderful. We fixed one bug. One more to go.

Combining pdb and tox
To debug the next test failure, we’re going to combine tox and pdb. For this
to work, we have to make sure we can pass arguments through tox to pytest.
This is done with tox’s {posargs} feature, which was discussed in ​Passing
pytest Parameters Through tox​.

We’ve already got that set up in our tox.ini for Cards:

ch13/cards_proj/tox.ini

​ ​[tox]​

​ envlist = ​py39, py310​

​ isolated_build = ​True​

​ skip_missing_interpreters = ​True​

​

​ ​[testenv]​

​ deps =

​ ​pytest​

​ ​faker​

​ ​pytest-cov​

» commands = ​pytest --cov=cards --cov=tests --cov-fail-under=100 {posargs}​

We’d like to run the Python 3.10 environment, and start the debugger at the
test failure. We could run it once with -e py310, then use -e py310 -- --lf --trace to
stop at the entry point of the first failing test.

Instead, let’s just run it once and stop at the failure point with -e py310 -- --pdb -

-no-cov. (--no-cov is used to turn off the coverage report.)

​ ​$ ​​tox​​ ​​-e​​ ​​py310​​ ​​--​​ ​​--pdb​​ ​​--no-cov​

​ ​...​

​ py310 run-test: commands[0] | pytest --cov=cards --cov=tests

​ --cov-fail-under=100 --pdb --no-cov

​ ========================= test session starts ==========================

​ ​...​

​ collected 53 items

​

http://media.pragprog.com/titles/bopytest2/code/ch13/cards_proj/tox.ini

​ tests/api/test_add.py [9%]

​ tests/api/test_config.py . [11%]

​ ​...​

​ tests/cli/test_delete.py . [77%]

​ tests/cli/test_done.py F

​ ​>>>​​>>>>>>>>>>>>>>>>>>>>>>>>>>>​​ ​​traceback​​ ​​>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>​

​

​ ​...​

​ ​>​​ ​​assert​​ ​​output​​ ​​==​​ ​​expected​

​ ​...​

​ tests/cli/test_done.py:15: AssertionError

​ ​>>>​​>>>>>>>>>>>>>>>>>>>>>>>>>>​​ ​​entering​​ ​​PDB​​ ​​>>>>>>>>>>>>>>>>>>>>>>>>>>>>>​

​

​ ​>>>​​>>>>>>>>>>>​​ ​​PDB​​ ​​post_mortem​​ ​​(IO-capturing​​ ​​turned​​ ​​off)​​ ​​>>>>>>>>>>>>>>>​

​ ​>​​ ​​/path/to/code/ch13/cards_proj/tests/cli/test_done.py(15)test_done()​

​ ​->​​ ​​assert​​ ​​output​​ ​​==​​ ​​expected​

​ (Pdb) ll

​ 10 def test_done(cards_db, cards_cli):

​ 11 cards_db.add_card(cards.Card("some task", state="done"))

​ 12 cards_db.add_card(cards.Card("another"))

​ 13 cards_db.add_card(cards.Card("a third", state="done"))

​ 14 output = cards_cli("done")

​ 15 -> assert output == expected

That drops us into pdb, right at the assertion that failed.

We can use pp to look at the output and expected variables:

​ (Pdb) pp output

» (' \n'

​ ' ID state owner summary \n'

​ ' ──────────────────────────────── \n'

​ ' 1 done some task \n'

​ ' 3 done a third')

​ (Pdb) pp expected

» ('\n'

​ ' ID state owner summary \n'

​ ' ──────────────────────────────── \n'

​ ' 1 done some task \n'

​ ' 3 done a third')

Now we can see the problem. The expected output starts with a line
containing a single new line character, ’\n’. The actual output contains a
bunch of spaces before the new line. This problem would be difficult to spot
with the traceback only, or even in an IDE. With pdb, it’s not too hard to
spot.

We can add those spaces to the test and re-run the tox environment with that
one test failure:

​ ​$ ​​tox​​ ​​-e​​ ​​py310​​ ​​--​​ ​​--lf​​ ​​--tb=no​​ ​​--no-cov​​ ​​-v​

​ ​...​

​ py310 run-test: commands[0] | pytest --cov=cards --cov=tests

​ --cov-fail-under=100 --lf --tb=no --no-cov -v

​ ========================= test session starts ==========================

​ ​...​

​

​ tests/cli/test_done.py::test_done PASSED [100%]

​

​ =================== 1 passed, 41 deselected in 0.11s ===================

​ _______________________________ summary ________________________________

​ py310: commands succeeded

​ congratulations :)

And just for good measure, re-run the whole thing:

​ ​$ ​​tox​

​ ​...​

​ Required test coverage of 100% reached. Total coverage: 100.00%

​

​ ========================== 53 passed in 0.53s ==========================

​ _______________________________ summary ________________________________

​ py310: commands succeeded

​ py310: commands succeeded

​ congratulations :)

Woohoo! Defects fixed.

Review
We covered a lot of techniques for debugging Python packages with
command-line flags, pdb, and tox:

We installed an editable version of Cards with pip install -e ./cards_proj.

We used many pytest flags for debugging. There’s list of useful flags at
​Debugging with pytest Flags​.

We used pdb to debug the tests. A subset of pdb commands is at ​
Debugging with pdb.

We combined tox, pytest, and pdb to debug a failing test within a tox
environment.

Exercises
The code files included in the code download for this chapter don’t have the
fixes. They just have the broken code. Even if you plan to do most of your
debugging with an IDE, I encourage you to try the debugging techniques in
this chapter to help you understand how to use the flags and pdb
commands.

1. Create a new virtual environment and install Cards in editable mode.

2. Run pytest and make sure you see the same failures listed in the
chapter.

3. Use --lf and --lf -x to see how they work.

4. Try --stepwise and --stepwise-skip. Run them both a few times. How are
they different than --lf and --lf -x?

5. Use --pdb to open pdb at a test failure.

6. Use --lf --trace to open pdb at the start of the first failing test.

7. Fix both bugs and verify with a clean test run.

8. Add breakpoint() somewhere in the source code or test code and run
pytest with neither --pdb or --trace.

9. (Bonus) Break something again and try IPython for debugging.
(IPython[51] is part of the Jupyter[52] project. Please see their respective
documentation for more information.)

Install IPython with pip install ipython.

You can run it with:

pytest --lf --trace --pdbcls=IPython.terminal.debugger:TerminalPdb

pytest --pdb --pdbcls=IPython.terminal.debugger:TerminalPdb

Put breakpoint() somewhere in the code and run pytest --

pdbcls=IPython.terminal.debugger:TerminalPdb

[49]

[50]

[51]

[52]

What’s Next
The next part of the book is intended to help you become more efficient
with writing and running tests. Lots of common testing problems have been
solved by someone else already and packaged as pytest plugins. We’ll look
at quite a few third-party plugins in the next chapter. After third-party
plugins, we’ll build our own plugin in Chapter 15, ​Building Plugins​. And
then to finish up the book we’ll revisit parametrization and look at some
advanced techniques in Chapter 16, ​Advanced Parametrization​.

Footnotes

https://docs.python.org/3/library/pdb.html

https://docs.python.org/3/library/pdb.html#debugger-commands

https://ipython.readthedocs.io/en/stable/index.html

https://jupyter.org

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html#debugger-commands
https://ipython.readthedocs.io/en/stable/index.html
https://jupyter.org/

Part 3
Booster Rockets

Chapter 14

Third-Party Plugins

As powerful as pytest is right out of the box, it gets even better when we
add plugins to the mix. The pytest code base is designed to allow
customization and extensions, and there are hooks available to allow
modifications and improvements through plugins.

It might surprise you to know that you’ve already written some plugins if
you’ve worked through the previous chapters in this book. Any time you
put fixtures and/or hook functions into a project’s conftest.py file, you create
a local plugin. It’s just a little bit of extra work to convert these conftest.py
files into installable plugins that you can share between projects, with other
people, or with the world.

We’ll start this chapter by looking at where to find third-party plugins.
Quite a few plugins are available, so there’s a decent chance someone has
already written the change you want to make to pytest. We’ll take a look at
a handful of plugins that are broadly useful to many software projects.
Finally, we’ll explore the variety available by taking a quick tour of many
types of plugins.

Finding Plugins
You can find third-party pytest plugins in several places.

https://docs.pytest.org/en/latest/reference/plugin_list.html
The main pytest documentation site includes an alphabetized list of
plugins pulled from pypi.org. It’s a big list.

https://pypi.org
The Python Package Index (PyPI) is a great place to get lots of Python
packages, but it is also a great place to find pytest plugins. When
looking for pytest plugins, it should work pretty well to search for
pytest, pytest- or -pytest, as most pytest plugins either start with pytest-

or end in -pytest. You can also filter by classifier "Framework::Pytest",
which will include packages that include a pytest plugin but aren’t
named pytest- or -pytest, such as Hypothesis and Faker.

https://github.com/pytest-dev
The pytest-dev group on GitHub is where the pytest source code is kept.
It’s also where you can find many popular pytest plugins. For plugins,
the pytest-dev group is intended as a central location for popular pytest
plugins and to share some of the maintenance responsibility. Refer to
“Submitting Plugins to pytest-dev” on the docs.pytest.org website[53]

for more information.

https://docs.pytest.org/en/latest/how-to/plugins.html
The main pytest documentation site has a page that talks about
installing and using pytest plugins, and lists a few common plugins.

Let’s look at the various ways you can install plugins with pip install.

Installing Plugins
pytest plugins are installed with pip, just like the other Python packages
you’ve already installed in the earlier chapters in this book.

For example:

​ ​$ ​​pip​​ ​​install​​ ​​pytest-cov​

This installs the latest stable version from PyPI. However, pip is quite
powerful and can install packages from other places like local directories
and Git repositories. See Appendix 2, ​pip​ for more information.

Exploring the Diversity of pytest Plugins
The Plugin List from the main pytest documentation site[54] lists almost
1000 plugins last time I checked. That’s a lot of plugins. Let’s take a look at
a small subset of plugins that are both useful to lots of people and show the
diversity of what we can do with plugins.

All of the following plugins are available via PyPI.

Plugins That Change the Normal Test Run Flow
pytest, by default, runs our tests in a predictable flow. Given a single
directory of test files, pytest will run each file in alphabetical order. Within
each file, each test is run in the order it appears in the file.

Sometimes it’s nice to change that order. The following plugins in some
way change the normal test run flow:

pytest-order—Allows us to specify the order using a marker

pytest-randomly—Randomizes the order, first by file, then by class, then
by test

pytest-repeat—Makes it easy to repeat a single test, or multiple tests, a
specific number of times

pytest-rerunfailures—Re-runs failed tests. Helpful for flaky tests

pytest-xdist—Runs tests in parallel, either using multiple CPUs on one
machine, or multiple remote machines

Plugins That Alter or Enhance Output

The normal pytest output shows mostly dots for passing tests, and
characters for other output. Then you’ll see lists of test names with outcome
if you pass in -v. However, there are plugins that change the output.

pytest-instafail—Adds an --instafail flag that reports tracebacks and
output from failed tests right after the failure. Normally, pytest reports
tracebacks and output from failed tests after all tests have completed.

pytest-sugar—Shows green checkmarks instead of dots for passing tests
and has a nice progress bar. It also shows failures instantly, like pytest-
instafail.

pytest-html—Allows for html report generation. Reports can be
extended with extra data and images, such as screenshots of failure
cases.

Plugins for Web Development
pytest is used extensively for testing web projects, so it’s no surprise there’s
a long list of plugins to help with web testing.

pytest-selenium—Provides fixtures to allow for easy configuration of
browser-based tests. Selenium is a popular tool for browser testing.

pytest-splinter—Built on top of Selenium as a higher level interface, this
allows Splinter to be used more easily from pytest.

pytest-django and pytest-flask—Help make testing Django and Flask
applications easier with pytest. Django and Flask are two of the most
popular web frameworks for Python.

Plugins for Fake Data
We used Faker in ​Combining Markers with Fixtures​ to generate card
summary and owner data. There are many cases in different domains where

it’s helpful to have generated fake data. Not surprisingly, there are several
plugins to fill that need.

Faker—Generates fake data for you. Provides faker fixture for use with
pytest

model-bakery—Generates Django model objects with fake data.

pytest-factoryboy—Includes fixtures for Factory Boy, a database model
data generator

pytest-mimesis—Generates fake data similar to Faker, but Mimesis is
quite a bit faster

Plugins That Extend pytest Functionality
All plugins extend pytest functionality, but I was running out of good
category names. This is a grab bag of various cool plugins.

pytest-cov—Runs coverage while testing

pytest-benchmark—Runs benchmark timing on code within tests

pytest-timeout—Doesn’t let tests run too long

pytest-asyncio—Tests async functions

pytest-bdd—Writes behavior-driven development (BDD)–style tests
with pytest

pytest-freezegun—Freezes time so that any code that reads the time will
get the same value during a test. You can also set a particular date or
time.

pytest-mock—A thin-wrapper around the unittest.mock patching API

While many may find the plugins listed in this section helpful, two plugins
in particular find near universal approval in helping to speed up testing and
finding accidental dependencies between tests: pytest-xdist and pytest-
randomly. Let’s take a closer look at those next.

Running Tests in Parallel
Usually all tests run sequentially. And that’s just what you want if your tests
hit a resource that can only be accessed by one client at a time. However, if
your tests do not need to access a shared resource, you could speed up test
sessions by running multiple tests in parallel. The pytest-xdist plugin allows
you to do that. You can specify multiple processors and run many tests in
parallel. You can even push off tests onto other machines and use more than
one computer.

For example, let’s look at the following simple test:

ch14/test_parallel.py

​ ​import​ ​time​

​

​

​ ​def​ ​test_something​():

​ time.sleep(1)

Running it takes about one second:

​ ​$ ​​cd​​ ​​/path/to/code/ch14​

​ ​$ ​​pytest​​ ​​test_parallel.py​

​ ========================= test session starts ==========================

​ collected 1 item

​

​ test_parallel.py . [100%]

​

​ ========================== 1 passed in 1.01s ===========================

If we use pytest-repeat to run it 10 times with --count=10, it should take about
10 seconds:

​ ​$ ​​pip​​ ​​install​​ ​​pytest-repeat​

​ ​$ ​​pytest​​ ​​--count=10​​ ​​test_parallel.py​

​ ========================= test session starts ==========================

​ collected 10 items

http://media.pragprog.com/titles/bopytest2/code/ch14/test_parallel.py

​

​ test_parallel.py [100%]

​

​ ========================= 10 passed in 10.05s ==========================

Now we can speed things up by running those tests in parallel on four CPUs
with -n=4:

​ ​$ ​​pip​​ ​​install​​ ​​pytest-xdist​

​ ​$ ​​pytest​​ ​​--count=10​​ ​​-n=4​​ ​​test_parallel.py​

​ ========================= test session starts ==========================

​ gw0 [10] / gw1 [10] / gw2 [10] / gw3 [10]

​ [100%]

​ ========================== 10 passed in 3.49s ==========================

We can use -n=auto to run on as many CPU cores as possible:

​ ​$ ​​pytest​​ ​​--count=10​​ ​​-n=auto​​ ​​test_parallel.py​

​ ========================= test session starts ==========================

​ gw0 I / gw1 I / gw2 I ...

​ [100%]

​ ========================== 10 passed in 2.16s ==========================

This was running on a six-core processor. So it seems like maybe we should
be able to run it six times on six cores and get it down to about one second
again:

​ ​$ ​​pytest​​ ​​--count=6​​ ​​-n=6​​ ​​test_parallel.py​

​ ========================= test session starts ==========================

​ gw0 [6] / gw1 [6] / gw2 [6] / gw3 [6] / gw4 [6] / gw5 [6]

​ [100%]

​ ========================== 6 passed in 1.63s ===========================

Not quite. 1.63 seconds. There is some overhead involved with spawning
parallel processes and combining results in the end. However, the overhead
is fairly constant, so for large jobs, it’s worth it.

Here’s the same -n=6 for 60 tests:

​ ​$ ​​pytest​​ ​​--count=60​​ ​​-n=6​​ ​​test_parallel.py​

​ ========================= test session starts ==========================

​ gw0 [60] / gw1 [60] / gw2 [60] / gw3 [60] / gw4 [60] / gw5 [60]

​ .. [100%]

​ ========================= 60 passed in 10.71s ==========================

The overhead just grew a little with 10 times the tests, from 0.63 seconds to
0.71 seconds.

I’ve noted in these examples -n=6. However, it is a better practice to run on -
n=auto to get the best speedup. I honestly don’t know how this works as well
as it does, but even though I have six cores, -n=auto is faster than -n=6:

​ ​$ ​​pytest​​ ​​--count=60​​ ​​-n=auto​​ ​​test_parallel.py​

​ ========================= test session starts ==========================

​ gw0 I / gw1 I / gw2 I ...

​ .. [100%]

​ ========================== 60 passed in 6.14s ==========================

That’s a little over six seconds for 60 seconds of test work.

The pytest-xdist plugin has another nice feature bundled with it: the --
looponfail flag. The --looponfail flag enables you to run tests repeatedly in a
subprocess. After each run, pytest waits until a file in your project changes
and then re-runs the previously failing tests. This is repeated until all tests
pass after which again a full run is performed. This feature is pretty cool for
debugging a bunch of test failures.

Randomizing Test Order
Generally we’d like each of our tests to be able to run independently of all
other tests. Having independent tests allows for easy debugging if something
ever fails. If test order inadvertently depends on the state of the system being
tested, that independence is broken. One common way to test for order
independence is to randomize the test run order.

The pytest-randomly plugin is excellent randomizing test order. It also
randomizes the seed value for other random tools like Faker and Factory
Boy. Let’s try it out on a couple simple test files:

ch14/random/test_a.py

​ ​def​ ​test_one​():

​ ​pass​

​

​

​ ​def​ ​test_two​():

​ ​pass​

ch14/random/test_b.py

​ ​def​ ​test_three​():

​ ​pass​

​

​

​ ​def​ ​test_four​():

​ ​pass​

If we run these normally, we get tests one through four:

​ ​$ ​​cd​​ ​​path/to/code/ch14/random​

​ ​$ ​​pytest​​ ​​-v​

​ ========================= test session starts ==========================

​ collected 4 items

​

​ test_a.py::test_one PASSED [25%]

​ test_a.py::test_two PASSED [50%]

http://media.pragprog.com/titles/bopytest2/code/ch14/random/test_a.py
http://media.pragprog.com/titles/bopytest2/code/ch14/random/test_b.py

​ test_b.py::test_three PASSED [75%]

​ test_b.py::test_four PASSED [100%]

​

​ ========================== 4 passed in 0.01s ===========================

test_a.py runs before test_b.py due to alphabetical order. Then the tests within
the files run in the order they appear in the file.

To randomize the order, install pytest-randomly:

​ ​$ ​​pip​​ ​​install​​ ​​pytest-randomly​

​ ​$ ​​pytest​​ ​​-v​

​ ========================= test session starts ==========================

​ collected 4 items

​

​ test_b.py::test_four PASSED [25%]

​ test_b.py::test_three PASSED [50%]

​ test_a.py::test_two PASSED [75%]

​ test_a.py::test_one PASSED [100%]

​

​ ========================== 4 passed in 0.01s ===========================

Making sure your tests run fine in random order may seem like a weird thing
to care about. However, tests that aren’t properly isolated have caused many
a late-night debugging session. Randomizing your tests on a regular basis
can help you avoid these problems.

Review
In this chapter, we looked at where to find plugins:

https://pypi.org (search for pytest-)
https://github.com/pytest-dev
https://docs.pytest.org/en/latest/how-to/plugins.html
https://docs.pytest.org/en/latest/reference/plugin_list.html

We quickly looked at the variety of plugins available, and specifically tried
out using pytest-randomly, pytest-repeat, and pytest-xdist.

https://pypi.org/
https://github.com/pytest-dev
https://docs.pytest.org/en/latest/how-to/plugins.html
https://docs.pytest.org/en/latest/reference/plugin_list.html

Exercises
pytest is incredibly powerful by itself. However, it’s important to
understand the range and power achievable with the additions of plugins.
Taking a moment to explore the resources available and trying a few
plugins really will help you to remember where to look when you actually
need help on a real testing project.

1. Head over to pypy.python.org with your favorite browser. Search for
pytest-.

How many projects are listed?

1. Activate the virtual environment you were using in Chapter 13.

Run the full test suite.
How long does it take?

1. Install pytest-xdist.

Re-run the tests with --n=auto.
What was the time for the test suite?

[53]

[54]

What’s Next
One of the reasons there are so many pytest plugins available is that it’s
rather simple to create a plugin and share it with the world. In the next
chapter, we’ll walk through developing, testing, and sharing a plugin of
your own.

Footnotes

https://docs.pytest.org/en/latest/contributing.html#submitting-plugins-to-pytest-dev

https://docs.pytest.org/en/latest/reference/plugin_list.html

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.pytest.org/en/latest/contributing.html#submitting-plugins-to-pytest-dev
https://docs.pytest.org/en/latest/reference/plugin_list.html

Chapter 15

Building Plugins

In the last chapter, we talked about the wealth of plugins available. As you
progress with using pytest, you will undoubtedly create fixtures and new
command-line flags and all sorts of new cool things that you will want to
use on more than one project. You may even want to share the
modifications with others and publish your changes. This chapter is exactly
about how to share pytest modifications by building your own plugins.

Starting with a Cool Idea
Maybe “cool idea” is too strong a phrase. An idea doesn’t have to be really
that cool to deserve being made into a plugin. It just needs to be helpful. You
may have a fixture or command-line flag that’s useful on one project, and
you want to use on other projects. That’s good enough for plugin-hood.

As an example, we’ll grab an idea from the pytest documentation about slow
tests. The pytest documentation[55] includes an examples page with a
description of how to skip tests that are marked with @pytest.mark.slow

automatically.

Here’s the idea (the documentation actually uses --runslow, but we’ll use --
slow because it’s shorter and seems like a better flag to me):

Mark tests with @pytest.mark.slow that are so slow you don’t want to
always run them.

When pytest collects tests to run, intercept that process by adding an
extra mark—@pytest.mark.skip(reason="need --runslow option to run")—on
all tests marked with @pytest.mark.slow. That way, these tests will be
skipped by default.

Add the --slow flag so that users can override this behavior and actually
run the slow tests. Under normal circumstances, whenever you run
pytest, the tests marked slow will be skipped. However, the --slow flag
will run all the tests, including the slow tests.

To run just the slow tests, you can still select the marker with -m slow,
but you have to combine it with --slow, so -m slow --slow will run only the
slow tests.

This actually seems like a very useful idea. We’ll develop this idea into a full
plugin in this chapter. Along the way, you’ll learn how to test plugins, how
to package them, and how to publish them on PyPI. You’ll also learn about
hook functions, as we’ll use them to implement this plugin.

We can already use markers to select or exclude specific tests. With --slow,
we’re just trying to change the default to exclude tests marked with “slow”:

Behavior Without plugin With plugin
Exclude slow pytest -m "not slow" pytest

Include slow pytest pytest --slow

Only slow pytest -m slow pytest -m slow --slow

I set up a short test file and configuration file as a playground for the
original behavior.

The test file looks like this:

ch15/just_markers/test_slow.py

​ ​import​ ​pytest​

​

​

​ ​def​ ​test_normal​():

​ ​pass​

​

​

​ @pytest.mark.slow

​ ​def​ ​test_slow​():

​ ​pass​

And here’s the configuration file to declare “slow”:

ch15/just_markers/pytest.ini

​ ​[pytest]​

​ markers = ​slow: mark test as slow to run​

http://media.pragprog.com/titles/bopytest2/code/ch15/just_markers/test_slow.py
http://media.pragprog.com/titles/bopytest2/code/ch15/just_markers/pytest.ini

The behavior we’re trying to make easier, avoiding slow tests, looks like
this:

​ ​$ ​​cd​​ ​​path/to/code/ch15/just_markers​

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​"not slow"​

​ ========================= test session starts ==========================

​ collected 2 items / 1 deselected / 1 selected

​

​ test_slow.py::test_normal PASSED [100%]

​

​ =================== 1 passed, 1 deselected in 0.01s ====================

Great. Now that we know what we’re shooting for, let’s begin.

Building a Local conftest Plugin
We’ll start by making changes in a conftest.py file and testing our changes
locally before moving the code to a plugin.

To modify how pytest works, we need to utilize pytest hook functions. Hook
functions[56] are function entry points that pytest provides to allow plugin
developers to intercept pytest behavior at certain points and make changes.
The pytest documentation lists a lot of hook functions.[57] We’ll use three in
this chapter:

pytest_configure()—Allows plugins and conftest files to perform initial
configuration. We’ll use this hook function to pre-declare the slow

marker so users don’t have to add slow to their config files.

pytest_addoption()—Used to register options and settings. We’ll add the -
-slow flag with this hook.

pytest_collection_modifyitems()—Called after test collection has been
performed and can be used to filter or re-order the test items. We need
this to find the slow tests, so we can mark them for skipping.

Let’s start with pytest_configure() and declare the slow marker:

ch15/local/conftest.py

​ ​import​ ​pytest​

​

​

​ ​def​ ​pytest_configure​(config):

​ config.addinivalue_line(​"markers"​, ​"slow: mark test as slow to run"​)

Now we need to use pytest_addoption() to add the --slow flag:

ch15/local/conftest.py

http://media.pragprog.com/titles/bopytest2/code/ch15/local/conftest.py
http://media.pragprog.com/titles/bopytest2/code/ch15/local/conftest.py

​ ​def​ ​pytest_addoption​(parser):

​ parser.addoption(

​ ​"--slow"​, action=​"store_true"​, help=​"include tests marked slow"​

​)

The call to parser.addoption() creates the flag and the configuration setting.
The action="store_true" parameter tells pytest to store a true in the slow

configuration setting when the --slow flag is passed in, and false otherwise.
The help="include tests marked slow" creates a line in the help output to describe
the flag:

​ ​$ ​​cd​​ ​​path/to/code/ch15/local​

​ ​$ ​​pytest​​ ​​--help​

​ ​...​

​ custom options:

​ --slow include tests marked slow

​ ​...​

Now for the fun part—actually modifying the tests that get run:

ch15/local/conftest.py

​ ​def​ ​pytest_collection_modifyitems​(config, items):

​ ​if​ ​not​ config.getoption(​"--slow"​):

​ skip_slow = pytest.mark.skip(reason=​"need --slow option to run"​)

​ ​for​ item ​in​ items:

​ ​if​ item.get_closest_marker(​"slow"​):

​ item.add_marker(skip_slow)

This code uses the suggestion in the pytest documentation to add a skip
marker to any test that already includes the slow marker. We use
config.getoption("--slow") to get the slow setting. We can also use
config.getoption("slow"). Both work the same. But I find that including the
dashes is more readable.

The items value passed to pytest_collection_modifyitems() will be the list of tests
pytest intends to run. Specifically, it’s a list of Node objects. Now we’re
really getting into the guts of pytest implementation.

http://media.pragprog.com/titles/bopytest2/code/ch15/local/conftest.py

The Node interface[58] includes two methods we care about:
get_closest_marker() and add_marker(). get_closest_marker("slow") will return a
marker object if there is a “slow” marker on the test. If there is no “slow”
marker on the test, the get_closest_marker("slow") will return None. Here we’re
using the return value as a boolean True or False to see if “slow” is a marker
on the test. If it is, we add the skip marker. If the method returns an object, it
will act like a True value in an if clause. A None value evaluates to False in
an if clause. Let’s try it out:

​ ​$ ​​pytest​​ ​​-v​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ test_slow.py::test_normal PASSED [50%]

​ test_slow.py::test_slow SKIPPED (need --slow option to run) [100%]

​

​ ===================== 1 passed, 1 skipped in 0.01s =====================

By default, we avoid our slow test by skipping it. It’s not quite the same as
deselecting it. However, it is nice that the reason is listed in the verbose
output.

We can also include the test with --slow:

​ ​$ ​​pytest​​ ​​-v​​ ​​--slow​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ test_slow.py::test_normal PASSED [50%]

​ test_slow.py::test_slow PASSED [100%]

​

​ ========================== 2 passed in 0.01s ===========================

And to run just the slow tests, use -m slow --slow:

​ ​$ ​​pytest​​ ​​-v​​ ​​-m​​ ​​slow​​ ​​--slow​

​ ========================= test session starts ==========================

​ collected 2 items / 1 deselected / 1 selected

​

​ test_slow.py::test_slow PASSED [100%]

​

​ =================== 1 passed, 1 deselected in 0.01s ====================

We have now created a local conftest plugin. Because it’s entirely contained
in a conftest.py file, we can use it as is. However, packaging it as an
installable plugin will make it easier to share with other projects.

Creating an Installable Plugin
In this section, we’ll walk through the process of going from local conftest
plugin to installable plugin. Even if you never put your own plugins up on
PyPI, it’s good to walk through the process at least once. The experience
will help you when reading code from open source plugins, and you’ll be
better equipped to judge if the plugins can help you or not.

First, we need to create a new directory for our plugin code. The name of the
top-level directory doesn’t really matter. We’ll call it pytest_skip_slow:

​ pytest_skip_slow

​ ├── examples

​ │ └── test_slow.py

​ └── pytest_skip_slow.py

Here test_slow.py was moved into an examples directory. We’ll use it as-is
later when automating tests for the plugin. Our conftest.py file is copied
directly to pytest_skip_slow.py. The name pytest_skip_slow.py also is up to you.
However, use a descriptive name, as the file will end up in our virtual
environments site-packages directory when we pip install it later.

Now we need to create some Python packaging-specific files for the project.
Specifically, we need to fill in a pyproject.toml file, a LICENSE file, and a
README.md. We’ll use Flit to help us with the pyproject.toml file and LICENSE.
We’ll have to modify pyproject.toml, but Flit will give us a good start on it.
Then we’ll have to write our own README.md. We’re choosing Flit because
it’s easy, and the Cards project also uses it.

We start by installing Flit and running flit init inside a virtual environment
and in the new directory:

​ ​$ ​​cd​​ ​​path/to/code/ch15/pytest_skip_slow​

​ ​$ ​​pip​​ ​​install​​ ​​flit​

​ ​$ ​​flit​​ ​​init​

​ Module name [pytest_skip_slow]:

​ Author: Your Name

​ Author email: your.name@example.com

​ Home page: https://github.com/okken/pytest-skip-slow

​ Choose a license (see https://choosealicense.com/ for more info)

​ 1. MIT - simple and permissive

​ 2. Apache - explicitly grants patent rights

​ 3. GPL - ensures that code based on this is shared with the same terms

​ 4. Skip - choose a license later

​ Enter 1-4: 1

​

​ Written pyproject.toml; edit that file to add optional extra info.

flit init asks you a handful of questions. Answer the best you can. For
example, “Home page” is required for flit init, but I often don’t know what to
put there. For projects that I have no intent on publishing to GitHub or PyPI,
I fill this field in with my company URL, my blog site, or whatever.

Let’s now look at what pyproject.toml looks like right after flit init:

​ ​[build-system]​

​ requires = [​"flit_core >=3.2,<4"​]

​ build-backend = ​"flit_core.buildapi"​

​

​ ​[project]​

​ name = ​"pytest_skip_slow"​

​ authors = [​{name​ ​=​ ​"Your Name"​, ​email​ ​=​ ​"your.name@example.com"​​}​]

​ classifiers = [​"License :: OSI Approved :: MIT License"​]

​ dynamic = [​"version"​, ​"description"​]

​

​ ​[project.urls]​

​ Home = ​"https://github.com/okken/pytest-skip-slow"​

This isn’t correct yet. The defaults are a good start, but we need to modify it
for pytest plugins.

Here’s the final pyproject.toml:

ch15/pytest_skip_slow_final/pyproject.toml

​ ​[build-system]​

http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/pyproject.toml

​ requires = [​"flit_core >=3.2,<4"​]

​ build-backend = ​"flit_core.buildapi"​

​

​ ​[project]​

​ name = ​"pytest-skip-slow"​

​ authors = [​{name​ ​=​ ​"Your Name"​, ​email​ ​=​ ​"your.name@example.com"​​}​]

​ readme = ​"README.md"​

​ classifiers = [

​ ​"License :: OSI Approved :: MIT License"​,

​ ​"Framework :: Pytest"​

​]

​ dynamic = [​"version"​, ​"description"​]

​ dependencies = ​["pytest>=6.2.0"]​

​ requires-python = ​">=3.7"​

​

​ ​[project.urls]​

​ Home = ​"https://github.com/okken/pytest-skip-slow"​

​

​ ​[project.entry-points.pytest11]​

​ skip_slow = ​"pytest_skip_slow"​

​

​ ​[project.optional-dependencies]​

​ test = ​["tox"]​

​

​ ​[tool.flit.module]​

​ name = ​"pytest_skip_slow"​

What changed:

name is changed to "pytest-skip-slow". Flit assumes the module name and
package name will be the same. That’s not true of pytest plugins. pytest
plugins usually start with pytest- and Python doesn’t like module names
with dashes.

The actual name of the module is set in the [tool.flit.module] section with
name = "pytest_skip_slow". This module name will also show up in the
entry-points section.

The section [project.entry-points.pytest11] is added, with one entry
pytest_skip_slow = "pytest_skip_slow.py". This section name is always the

same for pytest plugins. It’s defined by pytest.[59] The section needs one
entry, name_of_plugin = "plugin_module". In our case, this is skip_slow =

"pytest_skip_slow".
The classifiers section has been extended to include "Framework :: Pytest",
a special classifier specifically for pytest plugins.

readme points to our README.md file, which we haven’t written yet. It’s
optional, but weird to not have one.

dependencies lists dependencies. Because pytest plugins require pytest,
we list pytest. We’ve specified it with a requirement that pytest must be
version 6.2.0 or above. Pinning the pytest version is optional, but I like
to specify the versions I specifically test against. Start with the pytest
version you are using. Then expand to older versions if you’ve tested
against them and they work.

requires-python is optional. However, I only intend to test against Python
versions 3.7 and above.

Section [project.optional-dependencies], test = ["tox"] is also optional.
When we test our plugin, we’re going to want pytest and tox. pytest is
already part of the dependencies, but tox is not. Setting test = ["tox"] tells
Flit to install tox when we install our project in editable mode.

Check out the Flit documentation for a good write-up of all you can put in
pyproject.toml.[60]

We’re almost ready to build our package. However, there are still a few
things missing. We still need to:

1. Add a docstring describing the plugin to the top of pytest_skip_slow.py.
2. Add a __version__ string to pytest_skip_slow.py.
3. Create a README.md file. (It doesn’t have to be fancy; we can add to it

later.)

Luckily, at this point, if we try to run flit build without some of these items,
Flit will tell us what’s missing.

Here’s a docstring and version in pytest_skip_slow.py:

ch15/pytest_skip_slow_final/pytest_skip_slow.py

​ ​"""​

​ ​A pytest plugin to skip `@pytest.mark.slow` tests by default.​

​ ​Include the slow tests with `--slow`.​

​ ​"""​

​

​ ​import​ ​pytest​

​

​ __version__ = ​"0.0.1"​

​

​ ​# ... the rest of our plugin code ...​

And a simple starter README.md:

ch15/pytest_skip_slow_final/README.md

​ # pytest-skip-slow

​

​ A pytest plugin to skip ​̀@pytest.mark.slow`​ tests by default.

​ Include the slow tests with ​̀--slow`​.

Now we can use flit build to build an installable package:

​ ​$ ​​flit​​ ​​build​

​ Built sdist: dist/pytest-skip-slow-0.0.1.tar.gz I-flit_core.sdist

​ Copying package file(s) from .../pytest_skip_slow.py I-flit_core.wheel

​ Writing metadata files I-flit_core.wheel

​ Writing the record of files I-flit_core.wheel

​ Built wheel: dist/pytest_skip_slow-0.0.1-py3-none-any.whl I-flit_core.wheel

Woohoo! We have an installable wheel. Now we can do whatever we want
with it. We can email the .whl file to someone to try out. We can install the
wheel directly to try it out ourselves:

​ ​$ ​​pip​​ ​​install​​ ​​dist/pytest_skip_slow-0.0.1-py3-none-any.whl​

http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/pytest_skip_slow.py
http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/README.md

​ Processing ./dist/pytest_skip_slow-0.0.1-py3-none-any.whl

​ ​...​

​ Installing collected packages: pytest-skip-slow

​ Successfully installed pytest-skip-slow-0.0.1

​ ​$ ​​pytest​​ ​​examples/test_slow.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ examples/test_slow.py .s [100%]

​

​ ===================== 1 passed, 1 skipped in 0.01s =====================

​ ​$ ​​pytest​​ ​​--slow​​ ​​examples/test_slow.py​

​ ========================= test session starts ==========================

​ collected 2 items

​

​ examples/test_slow.py .. [100%]

​

​ ========================== 2 passed in 0.00s ===========================

Sweet. It works.

If we want to stop here, there are a few more steps you should remember to
do:

Make sure __pycache__ and dist are ignored by your version control
system. For Git, add these to .gitignore.

Commit LICENSE, README.md, pyproject.toml, examples/test_slow.py, and
pytest_skip_slow.py.

However, we’re not going to stop here. In the next sections we’re going to
add tests and walk through publishing the plugin.

Testing Plugins with pytester
Plugins are code that needs to be tested just like any other code. However,
testing a change to a testing tool is a little tricky. When we tested the plugin
manually with test_slow.py, we

ran with -v to make sure the slow marked test was skipped,
ran with -v --slow to make sure both tests ran, and
ran with -v -m slow --slow to make sure just the slow test ran.

We’re going to automate those tests with the help of a plugin called pytester.
pytester ships with pytest but is disabled by default. The first thing we need
to do then, is to enable it in conftest.py:

ch15/pytest_skip_slow_final/tests/conftest.py

​ pytest_plugins = [​"pytester"​]

Now we can use pytester to write our test cases. pytester creates a temporary
directory for each test that uses the pytester fixture. The pytester

documentation[61] lists a bunch of functions to help populate this directory:

makefile() creates a file of any kind.
makepyfile() creates a python file. This is commonly used to create test
files.
makeconftest() creates conftest.py.
makeini() creates a tox.ini.
makepyprojecttoml() creates pyproject.toml.
maketxtfile() … you get the picture.
mkdir() and mkpydir() create test subdirectories with or without __init__.py.
copy_example() copies files from the project’s directory to the temporary
directory. This is my favorite and what we’ll be using for testing our
plugin.

http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/tests/conftest.py

After we have our temporary directory populated, we can runpytest(), which
returns a RunResult object.[62] With the result, we can check the outcome of
the test run and examine the output.

Let’s look at an example:

ch15/pytest_skip_slow_final/tests/test_plugin.py

​ ​import​ ​pytest​

​

​

​ @pytest.fixture()

​ ​def​ ​examples​(pytester):

​ pytester.copy_example(​"examples/test_slow.py"​)

​

​

​ ​def​ ​test_skip_slow​(pytester, examples):

​ result = pytester.runpytest(​"-v"​)

​ result.stdout.fnmatch_lines(

​ [

​ ​"*test_normal PASSED*"​,

​ ​"*test_slow SKIPPED (need --slow option to run)*"​,

​]

​)

​ result.assert_outcomes(passed=1, skipped=1)

copy_example() copies our example test_slow.py into the temporary directory
we’re using for testing. I’ve put the copy_example() call into the examples

fixture so it can be reused in all of the tests. This is just to keep the tests a bit
cleaner by moving common setup out of the individual tests. The examples

directory is in our project directory, which is what copy_example() uses as its
top directory. That can be changed by setting pytester_example_dir in our
project settings file. However, I like the explicitness of leaving the relative
path in the copy_example() call.

test_skip_slow() calls runpytest("-v") to run pytest with -v. runpytest() returns a
result, which allows us to examine stdout and assert_outcomes(). There are a
bunch of ways to look at stdout, but I find fnmatch_lines() the handiest. The

http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/tests/test_plugin.py

name comes from the fact that it’s based on fnmatch from the standard
library.[63] We provide fnmatch_lines() with a list of lines that we want
matched, in relative order. The * is a wildcard and is rather important to get
any reasonable results from it.

The outcomes can be checked with assert_outcomes(), which has you pass in
the expected outcomes and does the assert for you, or parseoutcomes().
parseoutcomes() returns a dictionary of outcomes. We can then assert
ourselves against that. We’ll use parseoutcomes() in one of our tests, to see
how that works.

Let’s look at the next test:

ch15/pytest_skip_slow_final/tests/test_plugin.py

​ ​def​ ​test_run_slow​(pytester, examples):

​ result = pytester.runpytest(​"--slow"​)

​ result.assert_outcomes(passed=2)

Well, dang, that’s simple. We’re reusing the examples fixture to copy
test_slow.py. So we just need to run pytest with --slow and assert that both tests
pass. Why don’t we need to look at the output with fnmatch_lines()? We could
do that. However, there are only two tests, so if two pass, there’s not really
much else to test. I used fnmatch_lines in the first test to make sure the
expected test was passing and the expected test was skipped.

Let’s use parseoutcomes() in the next test (mostly so that there’s something
new to learn):

ch15/pytest_skip_slow_final/tests/test_plugin.py

​ ​def​ ​test_run_only_slow​(pytester, examples):

​ result = pytester.runpytest(​"-v"​, ​"-m"​, ​"slow"​, ​"--slow"​)

​ result.stdout.fnmatch_lines([​"*test_slow PASSED*"​])

​ outcomes = result.parseoutcomes()

​ ​assert​ outcomes[​"passed"​] == 1

​ ​assert​ outcomes[​"deselected"​] == 1

http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/tests/test_plugin.py
http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/tests/test_plugin.py

For test_run_only_slow(), I’ve added back in the -v so we can look at the
output. We have two tests and we only want to run one, the slow one.
fnmatch_lines() is being used to make sure it’s the correct test.

The parseoutcomes() call returns a dictionary that we can assert against. In
this case, we want one ’passed’ test and one ’deselected’.

Now just for fun, let’s make sure our help text shows up with --help:

ch15/pytest_skip_slow_final/tests/test_plugin.py

​ ​def​ ​test_help​(pytester):

​ result = pytester.runpytest(​"--help"​)

​ result.stdout.fnmatch_lines(

​ [​"*--slow * include tests marked slow*"​]

​)

That’s pretty good behavior coverage for our plugin.

Before we run this, let’s test against the editable code:

​ ​$ ​​cd​​ ​​/path/to/code/ch15/pytest_skip_slow_final​

​ ​$ ​​pip​​ ​​uninstall​​ ​​pytest-skip-slow​

​ ​$ ​​pip​​ ​​install​​ ​​-e​​ ​​.​

The dot (.) in pip install -e . means the current directory. Remember that pip
needs to be version 21.3 or later for this to work.

Now we know we’re testing the same code we’re looking at.

​ ​$ ​​pytest​​ ​​-v​

​ ========================= test session starts ==========================

​ collected 4 items

​

​ tests/test_plugin.py::test_skip_slow PASSED [25%]

​ tests/test_plugin.py::test_run_slow PASSED [50%]

​ tests/test_plugin.py::test_run_only_slow PASSED [75%]

​ tests/test_plugin.py::test_help PASSED [100%]

​

​ ========================== 4 passed in 0.20s ===========================

http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/tests/test_plugin.py

Cool. Looking good. Next, let’s use tox to test our plugin against a few
Python versions.

Testing Multiple Python and pytest Versions with
tox
In Chapter 11, ​tox and Continuous Integration​, we used tox to test Cards
against multiple versions of Python. We’re going to do the same thing with
our plugin, but also test against a couple versions of pytest.

Here’s our tox.ini for our plugin:

ch15/pytest_skip_slow_final/tox.ini

​ ​[pytest]​

​ testpaths = ​tests​

​

​ ​[tox]​

​ envlist = ​py{37, 38, 39, 310}-pytest{62,70}​

​ isolated_build = ​True​

​

​ ​[testenv]​

​ deps =

​ ​pytest62:​ pytest=​=6.2.5​

​ ​pytest70:​ pytest=​=7.0.0​

​

​ commands = ​pytest {posargs:tests}​

​ description = ​Run pytest​

We are using a couple of new tricks for tox:

envlist = py{37, 38, 39, 310}-pytest{62,70}. The curly brackets and dashes are
creating a test environment matrix. This is a shorthand that tells tox to
create environments for all combinations of the four listed versions of
Python and the two listed versions of pytest. See tox docs[64] for more
information.

The deps section has two rows, pytest62: pytest==6.2.5 and pytest70:

pytest==7.0.0. This tells tox that for every environment that ends with -

http://media.pragprog.com/titles/bopytest2/code/ch15/pytest_skip_slow_final/tox.ini

pytest62, it should install pytest 6.2.5. Likewise, for -pytest70

environments, install pytest 7.0.0.

And now we just run it:

​ ​$ ​​tox​​ ​​-q​​ ​​--parallel​

​ ​...​

​ _______________________________ summary ________________________________

​ py37-pytest62: commands succeeded

​ py37-pytest70: commands succeeded

​ py38-pytest62: commands succeeded

​ py38-pytest70: commands succeeded

​ py39-pytest62: commands succeeded

​ py39-pytest70: commands succeeded

​ py310-pytest62: commands succeeded

​ py310-pytest70: commands succeeded

​ congratulations :)

The -q reduces the output of tox, and --parallel tells tox to run the
environments in parallel. Since the 4x2 matrix creates eight test
environments, running them in parallel saves a bit of time.

Now let’s move on to publishing.

Publishing Plugins
Now that we have a plugin built and tested, we’d like to share it with other
projects, our company, or even the world. Bwahahahaha!

To publish your plugin, you can:

Push your plugin code to a Git repository and install from there.

For example: pip install git+https://github.com/okken/pytest-skip-slow

Note that you can list multiple git+https://... repositories in a
requirements.txt file and as dependencies in tox.ini.

Copy the wheel, pytest_skip_slow-0.0.1-py3-none-any.whl, to a shared
directory somewhere and install from there.

cp dist/*.whl path/to/my_packages/

pip install pytest-skip-slow --no-index --find-links=path/to/my_packages/

Publish to PyPI.

Check out the Uploading the distribution archives[65] section in
Python’s documentation on packaging.

Also see the Controlling package uploads[66] section of the Flit
documentation.

Review
Wow. In this chapter, we created a plugin and left it inches away from being
able to push it to PyPI. We looked at how to move from hook functions in a
conftest.py file to an installable and distributable packaged pytest plugin.

In addition, we

used a conftest.py and simple test code to manually develop hook
functions for our plugin;

moved conftest.py code into a new directory and pytest_skip_slow.py;

moved test code into an examples directory;

used flit init to create a pyproject.toml file, then modified the file for the
special needs of pytest plugins;

tried building with flit build and manually testing with built wheel;

developed test code that utilized pytester and an example test file; and

looked at different ways to distribute a package.

Exercises
Walking through the steps to go from pytest-skip-slow to pytest-skip-slow-full

will help you learn how to build and test a plugin.

The supplied source code includes the following:

local (the local conftest plugin)
pytest-skip-slow (just the copy from local into new names)
pytest-skip-slow-full (a possible final layout for the completed plugin)

1. Try out -v, --slow, and -v -m slow --slow in the local directory.

2. Go to the pytest-skip-slow directory.

3. pip install flit and run flit init. Use your own information.

4. Modify the pyproject.toml file as described in the chapter.

5. Run flit build and try out the generated wheel.

6. Add tests and a tox.ini file to run tests with either pytest or tox.

7. (Bonus) Create a plugin with a fixture, instead of hook functions.
Especially within teams or a large project, using common fixtures can
really speed up test development. The fixture could be something that
returns interesting data, or fake data, or a connection to a temporary
database, filled or empty. This really could be anything. Try to make it
useful for something you are interested in or useful for a project you
are working on.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

What’s Next
The final chapter is a flashback to parametrization. We’ve parametrized
tests with a single parameter and simple values, like strings. In the next
chapter, we’ll use multiple values, objects for values, and even generate
parameter values in custom functions. We’ll also look at custom identifiers
to help keep our test node names expressive to what we are trying to test.

Footnotes

https://docs.pytest.org/en/7.0.x/example/simple.html#control-skipping-of-tests-according-to-
command-line-option

https://docs.pytest.org/en/6.2.x/writing_plugins.html#writinghooks

https://docs.pytest.org/en/latest/reference/reference.html#hook-reference

https://docs.pytest.org/en/latest/reference/reference.html#node

https://docs.pytest.org/en/latest/how-to/writing_plugins.html#making-your-plugin-installable-
by-others

https://flit.readthedocs.io/en/latest/pyproject_toml.html

https://docs.pytest.org/en/latest/reference/reference.html#std-fixture-pytester

https://docs.pytest.org/en/latest/reference/reference.html#pytest.RunResult

https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch

https://tox.wiki/en/latest/example/basic.html#compressing-dependency-matrix

https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives

https://flit.readthedocs.io/en/latest/upload.html#controlling-package-uploads

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.pytest.org/en/7.0.x/example/simple.html#control-skipping-of-tests-according-to-command-line-option
https://docs.pytest.org/en/7.0.x/example/simple.html#control-skipping-of-tests-according-to-command-line-option
https://docs.pytest.org/en/6.2.x/writing_plugins.html#writinghooks
https://docs.pytest.org/en/latest/reference/reference.html#hook-reference
https://docs.pytest.org/en/latest/reference/reference.html#node
https://docs.pytest.org/en/latest/how-to/writing_plugins.html#making-your-plugin-installable-by-others
https://docs.pytest.org/en/latest/how-to/writing_plugins.html#making-your-plugin-installable-by-others
https://flit.readthedocs.io/en/latest/pyproject_toml.html
https://docs.pytest.org/en/latest/reference/reference.html#std-fixture-pytester
https://docs.pytest.org/en/latest/reference/reference.html#pytest.RunResult
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://tox.wiki/en/latest/example/basic.html#compressing-dependency-matrix
https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives
https://flit.readthedocs.io/en/latest/upload.html#controlling-package-uploads

Chapter 16

Advanced Parametrization

We’re going to wrap up this book by swinging back to parametrization and
look at some advanced techniques. In Chapter 5, ​Parametrization, we
looked at parametrizing tests and fixtures, and you learned how to
implement parametrized testing with the hook function,
pytest_generate_tests(). However, we left the chapter with some pretty simple
parametrizations of a test using one parameter with string values. We’re
going to do so much more in this chapter.

In this chapter we’ll look at:

Using data structures or objects as values. That complicates the test
case identifier slightly, but we’ll use custom identifiers to make the test
node IDs readable.

Using dynamic values. We’ll use a function to dynamically generate
the values at runtime.

Using multiple parameters. We’ll use multiple parameters per test case,
and then stack parametrize decorators to generate a matrix of values.

Intercepting values with a fixture using a technique called “indirect
parametrization.”

Using Complex Values
Sometimes you might want to parametrize using data structures or objects as
values. Let’s start with a string value parametrization from Chapter 5, ​
Parametrization​, and modify it to use Cards objects.

Here’s the function parametrization we used earlier in Chapter 5:

ch16/test_ids.py

​ @pytest.mark.parametrize(​"start_state"​, [​"done"​, ​"in prog"​, ​"todo"​])

​ ​def​ ​test_finish​(cards_db, start_state):

​ c = Card(​"write a book"​, state=start_state)

​ index = cards_db.add_card(c)

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

This code includes one parameter, start_state, with string values statically
listed in the parametrize() decorator.

This results in test node names that are easy to read:

​ ​$ ​​cd​​ ​​/path/to/code/ch16​

​ ​$ ​​pytest​​ ​​-v​​ ​​test_ids.py::test_finish​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_ids.py::test_finish[todo] PASSED [33%]

​ test_ids.py::test_finish[in prog] PASSED [66%]

​ test_ids.py::test_finish[done] PASSED [100%]

​

​ ========================== 3 passed in 0.01s ===========================

http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py

Make Sure Cards and pytest Are Installed
We’re back to using an installed version of the Cards project.
You can use a virtual environment from an early chapter, or
create a new one. Install Cards and pytest with cd /path/to/code;

pip install ./cards_proj; pip install pytest.

Let’s make one small change to this test. Instead of passing in an initial card
state, which is used to create a starting card, let’s actually pass in the starting
card:

ch16/test_ids.py

​ @pytest.mark.parametrize(

​ ​"starting_card"​,

​ [

​ Card(​"foo"​, state=​"todo"​),

​ Card(​"foo"​, state=​"in prog"​),

​ Card(​"foo"​, state=​"done"​),

​],

​)

​ ​def​ ​test_card​(cards_db, starting_card):

​ index = cards_db.add_card(starting_card)

​ cards_db.finish(index)

​ card = cards_db.get_card(index)

​ ​assert​ card.state == ​"done"​

Here we moved the construction of the Card() objects to inside the
parametrized list of values.

When you do that, you are no longer using string values but object values,
and pytest doesn’t really know what to use for identifiers:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_ids.py::test_card​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_ids.py::test_card[starting_card0] PASSED [33%]

​ test_ids.py::test_card[starting_card2] PASSED [66%]

http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py

​ test_ids.py::test_card[starting_card1] PASSED [100%]

​

​ ========================== 3 passed in 0.07s ===========================

Therefore, for objects that don’t have an obvious string value, pytest
numbers them: “starting_card0,” “starting_card1,”and so on. Numbered
identifiers work to distinguish the node IDs, but they are not meaningful to
us. We can remedy these confusing identifiers by using one of several
available methods to create custom identifiers.

Creating Custom Identifiers
You can define a function to generate identifiers by using the ids parameter.
Often the builtin str or repr functions work fine.

Let’s try using str as an ID function:

ch16/test_ids.py

​ card_list = [

​ Card(​"foo"​, state=​"todo"​),

​ Card(​"foo"​, state=​"in prog"​),

​ Card(​"foo"​, state=​"done"​),

​]

​

» @pytest.mark.parametrize(​"starting_card"​, card_list, ids=str)

​ ​def​ ​test_id_str​(cards_db, starting_card):

​ ...

Here we added ids=str. We also moved the list of cards to a named variable to
allow shorter code samples in the rest of this section.

Here’s what our node IDs look like now:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_ids.py::test_id_str​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_ids.py::test_id_str[Card(summary='foo', owner=None,

​ state='todo', id=None)] PASSED [33%]

​ test_ids.py::test_id_str[Card(summary='foo', owner=None,

​ state='in prog', id=None)] PASSED [66%]

​ test_ids.py::test_id_str[Card(summary='foo',

​ owner=None, state='done', id=None)] PASSED [100%]

​

​ ========================== 3 passed in 0.01s ===========================

http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py

That’s a bit hard to read for Card objects. For smaller structures, like small
tuples and lists, str or repr might work fine as an ID function. For classes,
even small ones like the Card class, using str or repr is a bit too verbose and
hides the important details. The important detail is that the state is different.
But that information is buried in a lot of other noise. We can fix that by
writing our own function.

Writing Custom ID Functions
Let’s define our own ID function. It needs to take a Card object and return a
string. And we’ll set ids to our new function:

ch16/test_ids.py

​ ​def​ ​card_state​(card):

​ ​return​ card.state

​

​

» @pytest.mark.parametrize(​"starting_card"​, card_list, ids=card_state)

​ ​def​ ​test_id_func​(cards_db, starting_card):

​ ...

That works so much better at highlighting the state difference in the test
cases:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_ids.py::test_id_func​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_ids.py::test_id_func[todo] PASSED [33%]

​ test_ids.py::test_id_func[in prog] PASSED [66%]

​ test_ids.py::test_id_func[done] PASSED [100%]

​

​ ========================== 3 passed in 0.02s ===========================

Many ID functions will be short. If it’s a one-line function, a lambda
function works great:

ch16/test_ids.py

http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py
http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py

» @pytest.mark.parametrize(

» ​"starting_card"​, card_list, ids=​lambda​ c: c.state

»)

​ ​def​ ​test_id_lambda​(cards_db, starting_card):

​ ...

The output will look just the same:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_ids.py::test_id_lambda​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_ids.py::test_id_lambda[todo] PASSED [33%]

​ test_ids.py::test_id_lambda[in prog] PASSED [66%]

​ test_ids.py::test_id_lambda[done] PASSED [100%]

​

​ ========================== 3 passed in 0.02s ===========================

The ids feature is available with parametrized fixtures and
pytest_generate_tests as well. There are two more methods to create custom
identifiers: pytest.param and id lists.

Adding an ID to pytest.param
In ​Marking Files, Classes, and Parameters​, we used pytest.param to add
markers to parametrization values. pytest.param can also be used to add IDs.
In the following example, we’ll add a “special” ID to one parameter:

ch16/test_ids.py

​ c_list = [

​ Card(​"foo"​, state=​"todo"​),

» pytest.param(Card(​"foo"​, state=​"in prog"​), id=​"special"​),

​ Card(​"foo"​, state=​"done"​),

​]

​

​

​ @pytest.mark.parametrize(​"starting_card"​, c_list, ids=card_state)

​ ​def​ ​test_id_param​(cards_db, starting_card):

​ ...

http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py

This method is especially useful in combination with others. In this example,
we’ve specified the one “special” ID with pytest.param, and let
ids=cards_state() generate the rest of the IDs.

The resulting test run looks like this:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_ids.py::test_id_param​

​ ========================= test session starts ==========================

​ collected 3 items

​

​ test_ids.py::test_id_param[todo] PASSED [33%]

​ test_ids.py::test_id_param[special] PASSED [66%]

​ test_ids.py::test_id_param[done] PASSED [100%]

​

​ ========================== 3 passed in 0.02s ===========================

Using pytest.param for an ID is great if you just have one or two that need
special treatment. If you want to hand write all of the IDs, pytest.param can
be cumbersome. If you want to write custom IDs for all values, using a list
might be more maintainable.

Using an ID List
You can supply a list to ids, instead of a function, like this:

ch16/test_ids.py

​ id_list = [​"todo"​, ​"in prog"​, ​"done"​]

​

​

​ @pytest.mark.parametrize(​"starting_card"​, card_list, ids=id_list)

​ ​def​ ​test_id_list​(cards_db, starting_card):

​ ...

You have to be extra careful to keep the lists synchronized. Otherwise, the
IDs are wrong. One way to keep the IDs and values together is to use the ID
as a key to a dictionary. Then you can use .keys() as the list of IDs and
.values() as the list of parameters. Using a dictionary in this manner is
especially useful when the IDs are not easily generated with a function:

http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py

ch16/test_ids.py

​ text_variants = {

​ ​"Short"​: ​"x"​,

​ ​"With Spaces"​: ​"x y z"​,

​ ​"End In Spaces"​: ​"x "​,

​ ​"Mixed Case"​: ​"SuMmArY wItH MiXeD cAsE"​,

​ ​"Unicode"​: ​"¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾"​,

​ ​"Newlines"​: ​"a​​\n​​b​​\n​​c"​,

​ ​"Tabs"​: ​"a​​\t​​b​​\t​​c"​,

​ }

​

​

​ @pytest.mark.parametrize(

​ ​"variant"​, text_variants.values(), ids=text_variants.keys()

​)

​ ​def​ ​test_summary_variants​(cards_db, variant):

​ i = cards_db.add_card(Card(summary=variant))

​ c = cards_db.get_card(i)

​ ​assert​ c.summary == variant

One nice feature of the dictionary technique is that the ID is at the front of
the line of code instead of at the end, as in pytest.param.

Using dictionaries like this can be surprising to people who have been
conditioned to never trust the order of dictionaries. However, keys() and
values() return view objects into the dictionary.[67] As long as no changes are
made to the dictionary between calls, Python guarantees that the elements of
keys() and values() will be lined up one to one.

We’ve looked at several methods to create custom identifiers. Next, let’s
explore dynamic values.

http://media.pragprog.com/titles/bopytest2/code/ch16/test_ids.py

Parametrizing with Dynamic Values
In the previous example using dictionaries, the parameter values came from
a function, text_variants.values(). We can write our own functions to generate
parameter values.

Let’s move the generation of text variants into a function, text_variants(),
which we’ll define shortly. We can then call that function for our parameter
values:

ch16/test_param_gen.py

​ @pytest.mark.parametrize(​"variant"​, text_variants())

​ ​def​ ​test_summary​(cards_db, variant):

​ i = cards_db.add_card(Card(summary=variant))

​ c = cards_db.get_card(i)

​ ​assert​ c.summary == variant

Now we need to define our text_variants() function. It can really be anything,
but let’s use a dictionary like before, and use it to generate pytest.param
objects, complete with parameter value and ID set:

ch16/test_param_gen.py

​ ​def​ ​text_variants​():

​ variants = {

​ ​"Short"​: ​"x"​,

​ ​"With Spaces"​: ​"x y z"​,

​ ​"End in Spaces"​: ​"x "​,

​ ​"Mixed Case"​: ​"SuMmArY wItH MiXeD cAsE"​,

​ ​"Unicode"​: ​"¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾"​,

​ ​"Newlines"​: ​"a​​\n​​b​​\n​​c"​,

​ ​"Tabs"​: ​"a​​\t​​b​​\t​​c"​,

​ }

​ ​for​ key, value ​in​ variants.items():

​ ​yield​ pytest.param(value, id=key)

http://media.pragprog.com/titles/bopytest2/code/ch16/test_param_gen.py
http://media.pragprog.com/titles/bopytest2/code/ch16/test_param_gen.py

The text_variants() function still has fixed data in the code, but it doesn’t have
to. It could easily be reading the data from a file or a database or an API
endpoint. The sky’s the limit. Or rather, computer memory is the limit. The
entire list will be loaded before the test starts during pytest’s test collection
phase.

Using Multiple Parameters
So far we’ve looked at tests with one parameter variation per test or fixture.
However, you can use more than one. Let’s say you have a list of
summaries, owners, and states and we want to test the cards_db.add_card()

method against all combinations of summary, owner, state:

ch16/test_multiple.py

​ summaries = [​"short"​, ​"a bit longer"​]

​ owners = [​"First"​, ​"First M. Last"​]

​ states = [​"todo"​, ​"in prog"​, ​"done"​]

You can use multiple parameters and pass in a tuple or list of values to line
up with these parameters. In the example that follows, we’re using a comma-
separated list of parameter names: "summary, owner, state". You can also use a
list of strings, or ["summary", "owner", "state"]. The former involves a little less
typing:

ch16/test_multiple.py

​ @pytest.mark.parametrize(

​ ​"summary, owner, state"​,

​ [

​ (​"short"​, ​"First"​, ​"todo"​),

​ (​"short"​, ​"First"​, ​"in prog"​),

​ ​# ...​

​],

​)

​ ​def​ ​test_add_lots​(cards_db, summary, owner, state):

​ ​"""Make sure adding to db doesn't change values."""​

​ i = cards_db.add_card(Card(summary, owner=owner, state=state))

​ card = cards_db.get_card(i)

​

​ expected = Card(summary, owner=owner, state=state)

​ ​assert​ card == expected

This works okay if you have a small number of combinations:

http://media.pragprog.com/titles/bopytest2/code/ch16/test_multiple.py
http://media.pragprog.com/titles/bopytest2/code/ch16/test_multiple.py

​ ​$ ​​pytest​​ ​​test_multiple.py::test_add_lots​​ ​​-v​

​ ======================= test session starts ========================

​ collected 2 items

​

​ test_multiple.py::test_add_lots[short-First-todo] PASSED [50%]

​ test_multiple.py::test_add_lots[short-First-in prog] PASSED [100%]

​

​ ======================== 2 passed in 0.01s =========================

However, if you really want to test all combinations, stacking parameters is
the way to go:

ch16/test_multiple.py

​ @pytest.mark.parametrize(​"state"​, states)

​ @pytest.mark.parametrize(​"owner"​, owners)

​ @pytest.mark.parametrize(​"summary"​, summaries)

​ ​def​ ​test_stacking​(cards_db, summary, owner, state):

​ ​"""Make sure adding to db doesn't change values."""​

​ ...

This will act rather like cascading for loops, looping on the parameters from
the bottom decorator to the top:

​ ​$ ​​pytest​​ ​​test_multiple.py::test_stacking​​ ​​-v​

​ ============================ test session starts
=============================

​ collected 12 items

​

​ test_multiple.py::test_stacking[short-First-todo] PASSED [8%]

​ test_multiple.py::test_stacking[short-First-in prog] PASSED [16%]

​ test_multiple.py::test_stacking[short-First-done] PASSED [25%]

​ ​...​

​ test_multiple.py::test_stacking[a bit longer-First M. Last-done] PASSED
[100%]

​

​ ============================= 12 passed in 0.03s
=============================

Because we have two summaries, two owners, and three states, we get 2 x 2
x 3 = 12 test cases.

http://media.pragprog.com/titles/bopytest2/code/ch16/test_multiple.py

Using Indirect Parametrization
The final parametrization technique we’re going to look at is indirect
parametrization. An indirect parameter is one that gets passed to a fixture
before it gets sent to the test function. Indirect parametrization allows us to
perform work based on the parameter value.

The way it works is to set indirect to a list of parameter names you want to be
indirect, like indirect=["param1", "param2"]. You can also set indirect=True if you
want all parameters to be indirect. Then you need a fixture with the same
name as the parameter.

As an example, let’s say we have expanded Cards to have different access
rights for different user roles. We can parametrize a test with a user

parameter:

ch16/test_indirect.py

​ @pytest.mark.parametrize(

​ ​"user"​, [​"admin"​, ​"team_member"​, ​"visitor"​], indirect=[​"user"​]

​)

​ ​def​ ​test_access_rights​(user):

​ ​print​(f​"Test access rights for {user}"​)

Here we’ve set user to be indirect with indirect=["user"]. We could have also
used indirect=True since user is the only parameter. We also need a user

fixture:

ch16/test_indirect.py

​ @pytest.fixture()

​ ​def​ ​user​(request):

​ role = request.param

​ ​print​(f​"​​\n​​Log in as {role}"​)

​ ​yield​ role

​ ​print​(f​"​​\n​​Log out {role}"​)

http://media.pragprog.com/titles/bopytest2/code/ch16/test_indirect.py
http://media.pragprog.com/titles/bopytest2/code/ch16/test_indirect.py

The fixture is able to retrieve the value through request.param, just like it can
with parametrized fixtures.

Now with each value of user, the user fixture will be called by pytest:

​ ​$ ​​pytest​​ ​​-s​​ ​​-v​​ ​​test_indirect.py​

​ =========================== test session starts ============================

​ collected 3 items

​

​ test_indirect.py::test_access_rights[admin]

​ Log in as admin

​ Test access rights for admin

​ PASSED

​ Log out admin

​

​ test_indirect.py::test_access_rights[team_member]

​ Log in as team_member

​ Test access rights for team_member

​ PASSED

​ Log out team_member

​

​ test_indirect.py::test_access_rights[visitor]

​ Log in as visitor

​ Test access rights for visitor

​ PASSED

​ Log out visitor

​

​ ============================ 3 passed in 0.01s =============================

Indirect parameters can also be used to select a subset of values from a
parametrized fixture.

Selecting a Subset of Fixture Parameters
Let’s say we have parametrized our user fixture:

ch16/test_subset.py

​ @pytest.fixture(params=[​"admin"​, ​"team_member"​, ​"visitor"​])

​ ​def​ ​user​(request):

​ ...

http://media.pragprog.com/titles/bopytest2/code/ch16/test_subset.py

We can use it as normal for tests that use all user roles:

ch16/test_subset.py

​ ​def​ ​test_everyone​(user):

​ ...

We can also use it for tests that just need one or a subset of the fixture
parameters:

ch16/test_subset.py

​ @pytest.mark.parametrize(​"user"​, [​"admin"​], indirect=[​"user"​])

​ ​def​ ​test_just_admin​(user):

​ ...

When we run both of these tests, we’ll see test_everyone() testing against all
user roles, and test_just_admin() only running against the admin role:

​ ​$ ​​pytest​​ ​​-v​​ ​​test_subset.py​

​ ========================= test session starts ==========================

​ collected 5 items

​

​ test_subset.py::test_everyone[admin] PASSED [20%]

​ test_subset.py::test_everyone[author] PASSED [40%]

​ test_subset.py::test_everyone[editor] PASSED [60%]

​ test_subset.py::test_everyone[visitor] PASSED [80%]

​ test_subset.py::test_just_admin[admin] PASSED [100%]

​

​ ========================== 5 passed in 0.01s ===========================

Indirect parameters essentially let us parametrize a fixture, while keeping the
parameter values with the test function, instead of with the fixture function.
This allows different tests to use the same fixture with different parameter
values.

Creating an Optional Indirect Fixture
One last fun aspect of indirect parameters to play with is the use of an
optional indirect fixture. This technique allows us to use the same fixture

http://media.pragprog.com/titles/bopytest2/code/ch16/test_subset.py
http://media.pragprog.com/titles/bopytest2/code/ch16/test_subset.py

that expects a value with both parametrized and non-parametrized tests.

To use this technique, we need a fixture that checks if the test is
parametrized and uses a default value if not:

ch16/test_optional.py

​ @pytest.fixture()

​ ​def​ ​user​(request):

​ role = getattr(request, ​"param"​, ​"visitor"​)

​ ​print​(f​"​​\n​​Log in as {role}"​)

​ ​return​ role

In this example, we used getattr(request, "param", "visitor") to check if there is a
parameter value. If a test is parametrized, pytest will set request.param to the
value, and getattr() will find it. Otherwise, the default of "visitor" will be used.

The user fixture can be used by non-parametrized tests:

ch16/test_optional.py

​ ​def​ ​test_unspecified_user​(user):

​ ...

And by parametrized tests that specify user as indirect:

ch16/test_optional.py

​ @pytest.mark.parametrize(

​ ​"user"​, [​"admin"​, ​"team_member"​], indirect=[​"user"​]

​)

​ ​def​ ​test_admin_and_team_member​(user):

​ ...

Now both parametrized and non-parametrized tests can use the same fixture:

​ ​$ ​​pytest​​ ​​-v​​ ​​-s​​ ​​test_optional.py​

​ ========================= test session starts ==========================

​ collected 3 items

​

http://media.pragprog.com/titles/bopytest2/code/ch16/test_optional.py
http://media.pragprog.com/titles/bopytest2/code/ch16/test_optional.py
http://media.pragprog.com/titles/bopytest2/code/ch16/test_optional.py

​ test_optional.py::test_unspecified_user

​ Log in as visitor

​ PASSED

​ test_optional.py::test_admin_and_team_member[admin]

​ Log in as admin

​ PASSED

​ test_optional.py::test_admin_and_team_member[team_member]

​ Log in as team_member

​ PASSED

​

​ ========================== 3 passed in 0.01s ===========================

The indirect feature is also available with pytest_generate_tests.

Review
There’s a lot of parametrization fun in this chapter! We covered

using data structures and objects as parameter values and how that
results in numbered test IDs;

creating custom identifiers using ids and ID functions, including repr,
str, custom functions, and lambdas;

using the id setting of pytest.param for identifiers;

using a list for IDs and using dictionaries to keep track of test cases
and identifiers;

using functions for parameter values, which allow us to dynamically
create values at test collection time;

using multiple parameters and even stacking parametrize decorators to
create a test matrix, and

moving parameter values from fixture to test function using indirect
parametrization.

Exercises
We went through quite a few techniques in this chapter at a fairly quick
pace. Going through the techniques yourself will help you remember these
features when you really need them.

1. Start at the beginning of the chapter and read and understand the code
examples for each technique.

2. Run pytest for each example.

3. Be sure to understand all of the custom identifier techniques. They all
become useful eventually.

4. When we stacked parameters in ​Using Multiple Parameters​,
“summary” was in the bottom, and “state” was on the top. Try
reversing them. What effect does that have on the test node IDs?

[67]

[68]

[69]

[70]

[71]

What’s Next
You’re definitely ready to go out and try pytest with your own projects. If
you’ve kept up with most of the book, good job. There is a lot of material
here. If you also went through the code examples yourself and did the
exercises, I dare say that you are well above average in pytest knowledge.
Pat yourself on the back. Unless that hurts, then don’t do that; have
someone else pat you on the back gently.

pytest is not a static tool. It’s a dynamic project with lots of amazing people
volunteering to keep it great and add features. I recommend keeping in
touch. I will continue to write about pytest and software development,
testing, and related topics on my blog, pythontest.com,[68] and talk about it
on my podcasts, Test & Code[69] and PythonBytes.[70]

And you will continue to learn and possibly want to share what you’ve
learned. Feel free to reach out to me through the blog, podcast, or Twitter at
@brianokken.[71] I’m always interested in great stories and cool techniques!

Footnotes

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

https://pythontest.com

https://testandcode.com

https://pythonbytes.fm

https://twitter.com/brianokken

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects
https://pythontest.com/
https://testandcode.com/
https://pythonbytes.fm/
https://twitter.com/brianokken

Appendix 1

Virtual Environments

Python virtual environments enable you to set up a Python sandbox with its
own set of packages separate from the system site-packages in which to
work. There are many reasons to use virtual environments, such as if you
have multiple services running with the same Python installation, but with
different packages and package version requirements. In addition, you
might find it handy to keep the dependent package requirements separate
for every Python project you work on. Virtual environments let you do that.

As of Python 3.3, the venv virtual environment module is included as part of
the standard library. However, some problems with venv have been reported
on some versions of Linux. If you have any trouble with venv, use virtualenv

instead. Just remember to pip install virtualenv first.

The basic workflow for using venv:

Create

python -m venv env_dir_name [--prompt my_proj]

Activate

source env_dir_name/bin/activate to activate on macOS and Linux.
env_dir_name\Scripts\activate.bat to activate on Windows.

env_dir_name\Scripts\Activate.ps1 to activate on Windows with
PowerShell.

Deactivate

deactivate when done

You can choose whatever directory name you want. However, it’s a fairly
common convention to use either venv or .venv as the directory name. The --
prompt parameter is optional. If you don’t supply one, the prompt will match
the directory name. As of Python 3.9, providing --prompt . (using just a dot
as the prompt name), will tell venv to use the parent directory as the prompt.

For example, here’s how to set up a virtual environment in macOS and
Linux:

​ ​$ ​​mkdir​​ ​​proj_name​

​ ​$ ​​cd​​ ​​proj_name​

​ ​$ ​​python3​​ ​​-m​​ ​​venv​​ ​​venv​​ ​​--prompt​​ ​​.​

​ ​$ ​​source​​ ​​venv/bin/activate​

​ (proj_name) $ which python

​ /path/to/proj_name/venv/bin/python

​ ​...​​ ​​do​​ ​​your​​ ​​work​​ ​​...​

​ (proj_name) $ deactivate

In Windows, there’s a change to the activate line. Here’s an example for
cmd.exe:

​ ​C:/>​​ ​​mkdir​​ ​​proj_name​

​ ​C:/>​​ ​​cd​​ ​​proj_name​

​ ​C:/>​​ ​​python3​​ ​​-m​​ ​​venv​​ ​​venv​​ ​​--prompt​​ ​​.​

» ​C:/>​​ ​​venv\Scripts\activate.bat​

​ (proj_name) C:/>

​ ​...​​ ​​do​​ ​​your​​ ​​work​​ ​​...​

​ (proj_name) C:/> deactivate

And for PowerShell:

​ PS C:/> mkdir proj_name

[72]

​ PS C:/> cd proj_name

​ PS C:/> python3 -m venv venv --prompt .

» PS C:/> venv\Scripts\Activate.ps1

​ (proj_name) PS C:/>

​ ​...​​ ​​do​​ ​​your​​ ​​work​​ ​​...​

​ (proj_name) PS C:/> deactivate

When you’re done with a virtual environment, you can delete the directory.

venv is a flexible tool with many options. Here we just looked at basics and
common use case of venv. Be sure to check out python -m venv --help. Also, the
Python docs on venv[72] are worth reading. Also, if you have any issues with
creating a virtual environment, the venv docs may help. There is a note
about PowerShell execution policies, for example.

Footnotes

https://docs.python.org/3/library/venv.html

Copyright © 2022, The Pragmatic Bookshelf.

https://docs.python.org/3/library/venv.html

Appendix 2

pip

pip is the tool used to install Python packages, and it is installed as part of your
Python installation. pip supposedly is a recursive acronym that stands for Pip
Installs Python or Pip Installs Packages. If you have more than one version of
Python installed on your system, each version has its own pip package manager.

By default, when you run pip install something, pip will:

1. Connect to the PyPI repository at https://pypi.org/pypi.

2. Look for a package called something.

3. Download the appropriate version of something for your version of Python
and your system.

4. Install something into the site-packages directory of your Python installation
that was used to call pip.

This is a gross understatement of what pip does—it also does cool stuff like
setting up scripts defined by the package, wheel caching, and more.

As mentioned, each installation of Python has its own version of pip tied to it.
If you’re using virtual environments, pip and python are automatically linked to
whichever Python version you specified when creating the virtual environment.
If you aren’t using virtual environments, and you have multiple Python

https://pypi.org/pypi

versions installed, such as python3.9 and python3.10, use python3.9 -m pip or
python3.10 -m pip instead of pip directly. It works just the same.

To check the version of pip and which version of Python it’s tied to, use pip --

version:

​ (venv) $ pip --version

​ pip 21.2.4 from /path/to/code/venv/lib/python3.10/site-packages/pip

​ (python 3.10)

To list the packages you have currently installed with pip, use pip list. If there’s
something there you don’t want anymore, you can uninstall it with pip uninstall

something.

For example:

​ (venv) $ pip list

​ Package Version

​ ---------- -------

​ pip 21.2.4

​ setuptools 57.4.0a

​ (venv) $ pip install pytest

​ ​...​

​ Installing collected packages: pyparsing, toml, py, pluggy, packaging,

​ iniconfig, attrs, pytest

​ Successfully installed ...

​ ​...​

​ (venv) $ pip list

​ Package Version

​ ---------- -------

​ attrs 21.2.0

​ iniconfig 1.1.1

​ packaging 21.0

​ pip 21.2.4

​ pluggy 1.0.0

​ py 1.10.0

​ pyparsing 2.4.7

​ pytest 6.2.5

​ setuptools 57.4.0

​ toml 0.10.2

As shown here, pip installs the package we want and also any dependencies that
aren’t already installed.

pip is pretty flexible. It can install things from other places, such as GitHub, our
own servers, a shared directory, or a local package we’re developing.

You can also use pip to install packages with version numbers from
http://pypi.org if it’s a release version PyPI knows about:

​ ​$ ​​pip​​ ​​install​​ ​​pytest==6.2.5​

You can use pip to install packages directly from a Git repository. For example,
from GitHub:

​ ​$ ​​pip​​ ​​install​​ ​​git+https://github.com/pytest-dev/pytest-cov​

You can also specify a version tag:

​ ​$ ​​pip​​ ​​install​​ ​​git+https://github.com/pytest-dev/pytest-cov@v2.12.1​

Or you can specify a branch:

​ ​$ ​​pip​​ ​​install​​ ​​git+https://github.com/pytest-dev/pytest-cov@master​

Installing from a Git repository is especially useful if you’re storing your own
work within Git, or if the plugin or plugin version you want isn’t on PyPI.

You can use pip to install a local package:

​ ​$ ​​pip​​ ​​install​​ ​​/path/to/package​

Use ./package_name if in the same directory as the package:

​ ​$ ​​cd​​ ​​/path/just/above/package​

​ ​$ ​​pip​​ ​​install​​ ​​my_package​​ ​​# pip is looking in PyPI for "my_package"​

​ ​$ ​​pip​​ ​​install​​ ​​./my_package​​ ​​# now pip looks locally​

You can use pip to install packages that have been downloaded as zip files or
wheels without unpacking them.

http://pypi.org/

You can also use pip to install a lot of packages at once using a requirements.txt

file:

​ (venv) $ cat requirements.txt

​ pytest==6.2.5

​ pytest-xdist==2.4.0

​

​ (venv) $ pip install -r requirements.txt

​ ​...​

​ Successfully installed ... pytest-6.2.5 pytest-xdist-4.2.0

You can use pip to download a bunch of various versions into a local cache of
packages, and then point pip there instead of PyPI to install them into virtual
environments later, even when offline.

The following downloads pytest and all dependencies:

​ (venv) $ mkdir ~/.pipcache

​ (venv) $ pip download -d ~/pipcache pytest

​ Collecting pytest

​ ​...​

​ Successfully downloaded pytest attrs pluggy py iniconfig packaging pyparsing
toml

Later, even if you’re offline, you can install from the cache:

​ (venv) $ pip install --no-index --find-links=~/pipcache pytest

​ Looking in links: /Users/okken/pipcache

​ ​...​

​ Successfully installed attrs-21.2.0 iniconfig-1.1.1 packaging-21.0 pluggy-1.0.0

​ py-1.10.0 pyparsing-2.4.7 pytest-6.2.5 toml-0.10.2

This is great for situations like running tox or continuous integration test suites
without needing to grab packages from PyPI. I also use this method to grab a
bunch of packages before taking a trip so that I can code on the plane.

The Python Packaging Authority documentation[73] is a great resource for more
information on pip.

Footnotes

[73]

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email us
at support@pragprog.com with your feedback. Tell us your story and you could
win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2022 to save
30% on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use ebooks
near water. If rash persists, see a doctor. Doesn’t apply to The Pragmatic
Programmer ebook because it’s older than the Pragmatic Bookshelf itself. Side
effects may include increased knowledge and skill, increased marketability, and
deep satisfaction. Increase dosage regularly.

And thank you for your continued support.

The Pragmatic Bookshelf

https://pip.pypa.io

Copyright © 2022, The Pragmatic Bookshelf.

https://pragprog.com/
https://pip.pypa.io/

Python Brain Teasers
We geeks love puzzles and solving them. The
Python programming language is a simple one, but
like all other languages it has quirks. This book uses
those quirks as teaching opportunities via 30 simple
Python programs that challenge your understanding
of Python. The teasers will help you avoid mistakes,
see gaps in your knowledge, and become better at
what you do. Use these teasers to impress your co-

workers or just to pass the time in those boring meetings. Teasers are fun!

Miki Tebeka

(116 pages) ISBN: 9781680509007 $18.95

Pandas Brain Teasers
This book contains 25 short programs that will
challenge your understanding of Pandas. Like any
big project, the Pandas developers had to make
some design decisions that at times seem surprising.
This book uses those quirks as a teaching
opportunity. By understanding the gaps in your
knowledge, you’ll become better at what you do.
Some of the teasers are from the author’s

experience shipping bugs to production, and some from others doing the

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/d-pybrain
http://pragmaticprogrammer.com/titles/d-pybrain
http://pragmaticprogrammer.com/titles/d-pandas
http://pragmaticprogrammer.com/titles/d-pandas

same. Teasers and puzzles are fun, and learning how to solve them can
teach you to avoid programming mistakes and maybe even impress your
colleagues and future employers.

Miki Tebeka

(110 pages) ISBN: 9781680509014 $18.95

Complex Network Analysis in Python
Construct, analyze, and visualize networks with
networkx, a Python language module. Network
analysis is a powerful tool you can apply to a
multitude of datasets and situations. Discover how
to work with all kinds of networks, including social,
product, temporal, spatial, and semantic networks.
Convert almost any real-world data into a complex
network—such as recommendations on co-using

cosmetic products, muddy hedge fund connections, and online
friendships. Analyze and visualize the network, and make business
decisions based on your analysis. If you’re a curious Python programmer,
a data scientist, or a CNA specialist interested in mechanizing mundane
tasks, you’ll increase your productivity exponentially.

Dmitry Zinoviev

(260 pages) ISBN: 9781680502695 $35.95

Data Science Essentials in Python
Go from messy, unstructured artifacts stored in SQL and NoSQL
databases to a neat, well-organized dataset with this quick reference for

http://pragmaticprogrammer.com/titles/dzcnapy
http://pragmaticprogrammer.com/titles/dzcnapy

the busy data scientist. Understand text mining,
machine learning, and network analysis; process
numeric data with the NumPy and Pandas modules;
describe and analyze data using statistical and
network-theoretical methods; and see actual
examples of data analysis at work. This one-stop
solution covers the essential data science you need
in Python.

Dmitry Zinoviev

(224 pages) ISBN: 9781680501841 $29

Portable Python Projects
Discover easy ways to control your home with the
powerful new Raspberry Pi hardware. Program
short Python scripts that will detect changes in your
home and react with the instructions you code. Use
new add-on accessories to monitor a variety of
measurements, from light intensity and temperature
to motion detection and water leakage. Expand the
base projects with your own custom additions to

perfectly match your own home setup. Most projects in the book can be
completed in under an hour, giving you more time to enjoy and tweak
your autonomous creations. No breadboard or electronics knowledge
required!

Mike Riley

(180 pages) ISBN: 9781680508598 $45.95

http://pragmaticprogrammer.com/titles/dzpyds
http://pragmaticprogrammer.com/titles/dzpyds
http://pragmaticprogrammer.com/titles/mrpython
http://pragmaticprogrammer.com/titles/mrpython

Pythonic Programming
Make your good Python code even better by
following proven and effective pythonic
programming tips. Avoid logical errors that usually
go undetected by Python linters and code
formatters, such as frequent data look-ups in long
lists, improper use of local and global variables, and
mishandled user input. Discover rare language
features, like rational numbers, set comprehensions,

counters, and pickling, that may boost your productivity. Discover how to
apply general programming patterns, including caching, in your Python
code. Become a better-than-average Python programmer, and develop
self-documented, maintainable, easy-to-understand programs that are fast
to run and hard to break.

Dmitry Zinoviev

(150 pages) ISBN: 9781680508611 $26.95

Intuitive Python
Developers power their projects with Python
because it emphasizes readability, ease of use, and
access to a meticulously maintained set of packages
and tools. The language itself continues to improve
with every release: writing in Python is full of
possibility. But to maintain a successful Python
project, you need to know more than just the
language. You need tooling and instincts to help

you make the most out of what’s available to you. Use this book as your

http://pragmaticprogrammer.com/titles/dzpythonic
http://pragmaticprogrammer.com/titles/dzpythonic
http://pragmaticprogrammer.com/titles/dmpython
http://pragmaticprogrammer.com/titles/dmpython

guide to help you hone your skills and sculpt a Python project that can
stand the test of time.

David Muller

(140 pages) ISBN: 9781680508239 $26.95

Practical Programming, Third Edition
Classroom-tested by tens of thousands of students,
this new edition of the best-selling intro to
programming book is for anyone who wants to
understand computer science. Learn about design,
algorithms, testing, and debugging. Discover the
fundamentals of programming with Python 3.6—a
language that’s used in millions of devices. Write
programs to solve real-world problems, and come

away with everything you need to produce quality code. This edition has
been updated to use the new language features in Python 3.6.

Paul Gries, Jennifer Campbell, Jason Montojo

(410 pages) ISBN: 9781680502688 $49.95

http://pragmaticprogrammer.com/titles/gwpy3
http://pragmaticprogrammer.com/titles/gwpy3

	Acknowledgments
	Preface
	Why pytest?
	Learn pytest While Testing a Sample Application
	How This Book Is Organized
	What You Need to Know
	Why a Second Edition?
	Example Code and Online Resources

	Part I. Primary Power
	1. Getting Started with pytest
	Installing pytest
	Running pytest
	Review
	Exercises
	What’s Next

	2. Writing Test Functions
	Installing the Sample Application
	Writing Knowledge-Building Tests
	Using assert Statements
	Failing with pytest.fail() and Exceptions
	Writing Assertion Helper Functions
	Testing for Expected Exceptions
	Structuring Test Functions
	Grouping Tests with Classes
	Running a Subset of Tests
	Review
	Exercises
	What’s Next

	3. pytest Fixtures
	Getting Started with Fixtures
	Using Fixtures for Setup and Teardown
	Tracing Fixture Execution with –setup-show
	Specifying Fixture Scope
	Sharing Fixtures through conftest.py
	Finding Where Fixtures Are Defined
	Using Multiple Fixture Levels
	Using Multiple Fixtures per Test or Fixture
	Deciding Fixture Scope Dynamically
	Using autouse for Fixtures That Always Get Used
	Renaming Fixtures
	Review
	Exercises
	What’s Next

	4. Builtin Fixtures
	Using tmp_path and tmp_path_factory
	Using capsys
	Using monkeypatch
	Remaining Builtin Fixtures
	Review
	Exercises
	What’s Next

	5. Parametrization
	Testing Without Parametrize
	Parametrizing Functions
	Parametrizing Fixtures
	Parametrizing with pytest_generate_tests
	Using Keywords to Select Test Cases
	Review
	Exercises
	What’s Next

	6. Markers
	Using Builtin Markers
	Skipping Tests with pytest.mark.skip
	Skipping Tests Conditionally with pytest.mark.skipif
	Expecting Tests to Fail with pytest.mark.xfail
	Selecting Tests with Custom Markers
	Marking Files, Classes, and Parameters
	Using “and,” “or,” “not,” and Parentheses with Markers
	Being Strict with Markers
	Combining Markers with Fixtures
	Listing Markers
	Review
	Exercises
	What’s Next

	Part II. Working with Projects
	7. Strategy
	Determining Test Scope
	Considering Software Architecture
	Evaluating the Features to Test
	Creating Test Cases
	Writing a Test Strategy
	Review
	Exercises
	What’s Next

	8. Configuration Files
	Understanding pytest Configuration Files
	Saving Settings and Flags in pytest.ini
	Using tox.ini, pyproject.toml, or setup.cfg in place of pytest.ini
	Determining a Root Directory and Config File
	Sharing Local Fixtures and Hook Functions with conftest.py
	Avoiding Test File Name Collision
	Review
	Exercises
	What’s Next

	9. Coverage
	Using coverage.py with pytest-cov
	Generating HTML Reports
	Excluding Code from Coverage
	Running Coverage on Tests
	Running Coverage on a Directory
	Running Coverage on a Single File
	Review
	Exercises
	What’s Next

	10. Mocking
	Isolating the Command-Line Interface
	Testing with Typer
	Mocking an Attribute
	Mocking a Class and Methods
	Keeping Mock and Implementation in Sync with Autospec
	Making Sure Functions Are Called Correctly
	Creating Error Conditions
	Testing at Multiple Layers to Avoid Mocking
	Using Plugins to Assist Mocking
	Review
	Exercises
	What’s Next

	11. tox and Continuous Integration
	What Is Continuous Integration?
	Introducing tox
	Setting Up tox
	Running tox
	Testing Multiple Python Versions
	Running tox Environments in Parallel
	Adding a Coverage Report to tox
	Specifying a Minimum Coverage Level
	Passing pytest Parameters Through tox
	Running tox with GitHub Actions
	Review
	Exercises
	What’s Next

	12. Testing Scripts and Applications
	Testing a Simple Python Script
	Testing an Importable Python Script
	Separating Code into src and tests Directories
	Defining the Python Search Path
	Testing requirements.txt-Based Applications
	Review
	Exercises
	What’s Next

	13. Debugging Test Failures
	Adding a New Feature to the Cards Project
	Installing Cards in Editable Mode
	Debugging with pytest Flags
	Re-Running Failed Tests
	Debugging with pdb
	Combining pdb and tox
	Review
	Exercises
	What’s Next

	Part III. Booster Rockets
	14. Third-Party Plugins
	Finding Plugins
	Installing Plugins
	Exploring the Diversity of pytest Plugins
	Running Tests in Parallel
	Randomizing Test Order
	Review
	Exercises
	What’s Next

	15. Building Plugins
	Starting with a Cool Idea
	Building a Local conftest Plugin
	Creating an Installable Plugin
	Testing Plugins with pytester
	Testing Multiple Python and pytest Versions with tox
	Publishing Plugins
	Review
	Exercises
	What’s Next

	16. Advanced Parametrization
	Using Complex Values
	Creating Custom Identifiers
	Parametrizing with Dynamic Values
	Using Multiple Parameters
	Using Indirect Parametrization
	Review
	Exercises
	What’s Next

	A1. Virtual Environments
	A2. pip

