\When Docker
Meets Java

A Practical Guide to Docker for Java
and Spring Boot Applications

Ashish Choudhary

ApPress:

When Docker
Meets Java

Ashish Choudhary

Apress’

When Docker Meets Java: A Practical Guide to Docker for Java and Spring
Boot Applications

Ashish Choudhary
Pune, Maharashtra, India

ISBN-13 (pbk): 979-8-8688-1299-6 ISBN-13 (electronic): 979-8-8688-1300-9
https://doi.org/10.1007/979-8-8688-1300-9

Copyright © 2025 by Ashish Choudhary

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsi-
bility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Dufty

Development Editor: Laura Berendson

Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar
Cover image by Markus Kammermann from Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1300-9

To my daughter Viya and son Ayansh, who fill my world
with joy and wonder.

To my wife Shefali, my unwavering partner and
source of strength.

To my parents, for their endless love and guidance.

This book is for you.

Table of Contents

About the AUthOrccssemmsssmnmmsssmmssssmsssssnmsssssssssasssssnsssssnsssssnnssssnnss xiii
About the Technical REVIEWETccssesssssmsssssnsssssnsssssnsssssasssssanssssnnssss Xv
Chapter 1: Overview of Containers......c.cccennnssennnnssssnnnnsssssnssssssssnsssnss 1
A Bit Of HISTOIYcoeeccece st s 2
Definition 0of CONTAINEISccceveierercrree s 3
DOCKEr’S DEfiNItiONccovverereeererseresese s 3
Understanding CONaINErsccccoeerrrcnennenenesernsesese e 4

The Significance of CONtAINEScccccrerernrrnrese s 6
Key Advantages of CONtaINErS........c.ccceererernnesnsesesese s 7
Container vs. Virtual Maching............coucvviennenesnsesnesese s 9

RiSE OF DOCKET ...c.veueerreerieeresesesese e nsnnis 11
SUMMANY....eitieeireserre et se e p e 15
Chapter 2: Docker High-Level OVerviewcceeummmsssssssmssssssnsssssssnnns 17
Docker’s BasiC PriNCIPIEcccvveververiereviesensesess s sessessessssessessesssssssessessessssessesaens 17
DOCKEN IS NOLH!...ceirir s 18

HOw D0ES DOCKEr WOTK?ccocererirmnseisesesssssssse s e sesssssssss 20
Understanding DOCKer DESKIOP........ccvverererersersesensssessesessesessessessessssessessees 24
Docker Desktop FEALUIEScccvvereriniinne s 26
Docker Desktop i ACHIONccccveererrnrenienenssersere e s e saeses e saesaes 26

Key DOCKEr CONCEPIS....cverrererierererinserere s ses e s e ses e ssessessssessessesaesessesaesaes 32
RS0 36

TABLE OF CONTENTS

Chapter 3: Up and Running with DoCKer........c.ccceumrmsssnnnnmssssnnnsssssssnnnes 39
Creating @ DOCKEITIlEcccovueeerecerire ettt 39
Dockerfile Commands and Their USAge........cccveeernverenenerenerensesesesessesesenaes 42
Exploring Facts About Dockerfiles.........cccvvvnvninnnnsninens s 43
Building and Tagging a Docker Imagecccvvevevncnienens s s sessesnns 46
Tagging a DOCKer IMAge.........ccucveriininienes e 49
Pushing and Running a Docker Image..........cccccvvvennsninennnsensessesesessessennns 53
Running a DOCKEr IMAJEccvceverriiniriers st 56
CommON PItfallScccovevieccrcrern e 57
Inspecting and Managing a Docker Image.........cccoovvvvninevnsnsenesssensennens 59
Managing a Docker IMage........c.ccoevvvnrnennsnsne s 62
10T 111 O 63
Chapter 4: Learning Advanced Docker Concepts........cccrrsssnnnsessssnnnnes 65
Exploring Docker’s NetWOrKing........covvvnvneninnnsnneniess s e sessesnens 65
Docker’s Networking vs. VM Networkingcccceeevnininiennnnsniennsensensenns 65
Types of Docker Network DIVEIS.......cccvvererenernsesesesesesesessesessesesssesessssessenens 66
Bridge DIIVEL ...cccoveeeereerree s s e s sn s nsnnes 67
o015 B0 1 TR 69
NONE DIV ... e 70
Overlay and macvian DriVErS........c.cocvrenmrnsesnsesesese s sessesessnnes 70
Basic Docker Networking Commands..........c.ccoveeernsensnensnnsesssesssesesssessssesenns 71
DOCKEN VOIUMES ...t s s 71
Getting Started with DOCKEr VOIUMESccccereverrerierersesensesessessssessessesssssssensenses 72
Creating DOCKEr VOIUMESccverreverrerrerrersesessessessessssessessesssssssessessesssssssessees 73
Listing Available VOIUMEScccvverriniere e ses s e s e e e saessenns 73
Volume INSPECHIONccevircire s 74
Mounting Data VOIUMES........ccccucrverininninse e s 74

TABLE OF CONTENTS

Copy Containers Dataccvcvrereverierieners e sessesseene s 74
Host Directories As Data VOIUMES ... 74
Ownership and Permissions of VOIUMESccevrevvrenveniennnensessesessssessessenes 75
Deleting DOCKEr VOIUMES........ccocvveririnin e s s e se e s s 75
Bulk VOIUME DEIEtION........cceiercerierree e 75
DOCKET COMPOSE....ccueerreerrrerirsesesseserte e ses e e se s ss e se s sesse e se e st s se s e e sse e see e e ns 77
Understanding DOCKEr COMPOSEcoceeeerrecerenenereneressesesesessesesessesessesessnnes 77
Setting Up Docker COMPOSEccccvevnrinienenn s ses s sesse s sssssssessesnes 79
Docker CompoSe iN ACHONccvcririrc e 80
Docker Compose Support in Spring BOOt..........couevvvernenenesesnsessesesese e 83
1T304 85

Chapter 5: Containerizing Java Applications with Dockerfile87

Understanding Base IMagescccvvvrerininninnensnsnnsse s sses e saessessesnas 87
Choosing JDK vs. JRE As the Base IMage.........ccccoveverncennenerssevenseneneseressenenns 88
Official OPenJDK IMAGES.......cccoeererererererereree s 89
Eclipse Temurin IMAQESccovvvverenmrrnseresesrsesesssse s s sessesessssessssesessesenns 90
AIPIiNg LiNUX IMAGES.....covirerriierrnisrsesesesessssesssse e sssse s ssssesssssssssssessanes 90
Distroless Base IMAQES......ccevererrrierennsensesesesessesessessssessessessssessessessessssessessens 90
Building Custom Base IMAgEScccvrevrrerreriernnensersesessssessessesssssssessessessssessessens 91
Multi-stage Builds for Optimizationccccevvvninininnsnsnenn s 91
Security ConSiderationscoeerreererenernserenese e 92
Containerizing and Running a Spring Boot Application...........c.ccccovrerrenerensenen 93

Dockerizing a Spring Boot Applicationcccccvivninininsnsnne e, 93

Building a Simple Spring Boot Applicationc..cccoevvninnninininnnnsenennn, 94

Containerizing Spring Boot Application with Buildpackccccoeevviniennene 96
SUMMANY....eitieerrestrre s e e p e e 97

vii

TABLE OF CONTENTS

Chapter 6: Working with Container Builder Tools for Java

ApPPlicatioNS.....ccuiiisssmmmmmssssnnnmmsssssnnmsssssssnnnsssnsnsessssnnnsssssnnnnssssnnnnenssnnns 99
Building Container Images with the Google Jib.........ccovvvvrvrrnccsnieseneserenseen 99
Understanding Jibcooccevereresernscsseses e 99
Building With JiD......ccoveeeeerec s 101
Understanding Jib Image Layering.........ccueevrenerrnsesensesessssessssesessssessssessnnes 102
Building Container Images with Fabric8 Docker Maven Plugincccccevu.e. 104
Understanding Fabric8 Docker Maven Plugincccoveeernsenensesennsenennes 105
Benefits of Fabric8 Docker Maven PIUgin........ccccvvvervvninienenensensesesessessessens 105
Setting Up Fabric8 Docker Maven PIUgincccoovvvvvierennsenseneneesessensenees 106
Building Container Images with Spotify’s Docker-Maven-Plugin............c.cceuen.. 110
Understanding Spotify’s Docker-Maven-Pluginccccvvevvvnveriernsenseniennes 110
Getting STArtedcccvvererr e ————— 112
Building Container Images with Cloud-Native Buildpackscccvevrerieruens 115
Understanding Buildpacks........c.ccoovrirvrnnninininsnnsenses e sessesses e ssesesnas 115
Cloud-Native BUildpacks FEATUIESc..corvrerrerrerenensersersensnsessessessssessessenses 116
Configuring BUIlAPACKccvvererererseriere s sensere e sessese e ssssessessessssessessesnes 118
310111117 o SR 121
Chapter 7: Deploying Docker Containers Using GitHub Actions 123
Understanding Github ACLIONS..........cceeeimrerrnrcrrerer s 123
GitHub Action COMPONENTScceerinirrinrn e 125
Understanding Workflow Yaml Fileccccoovvenrnsnnnenesnesessse e 126
Building Java Application Using Github ACtionsS...........ccoovvevnrennnsernsesesesennnnes 128
Setting Up @ Java ProjecCtcovecernsenncsnnnse s sesse e e 128
Containerizing Java Application Using Docker GitHub Actionccccevvveennene 132
Understanding the PrOCESScccvvrverrerereeninsenesesessessesessssesessessssessessesses 132
Writing @ DOCKEIIlEcceveerererircere et s s ss e se e ssesnens 132
Setting Up Github ACIONS.......ccccevevrrrin e 133

viii

TABLE OF CONTENTS

Deploying Java Application to GCP Using GitHub Action.........ccccccvverierenierieraenn 135
Understanding the WOrkflowcccccvvvvnneniniensn s s 136
Setting Up the WOrkfloWccccvvverinienennsensenese s sesese s e sessessessssessessees 138

GitHub Actions Best Practices for CI/CD with DOCKEFcccceerererniecncrerennans 143
Keep Workflows DRY (Don’t Repeat Yourself).........ccccvirnnnnnicniennseniennens 143
Use Secrets for Sensitive Information............ccocevnevennnnnnssescscsesesseenes 145
Leverage Caching to Reduce Build TIMESccocvvevrvenrieccrnscrnreneresernnne 145
Run Security and Performance Tests As Part of the Cl Process................... 146

3101111 T 146

Chapter 8: Exploring Docker Alternativesoccceemmmrresssssssssnnsnnnnnas 147

o004 o ST 147

Setting Up POAMAN ..o 148
Using the .dmg File.........cccoivniiennecersrcse e 149

Developing a Simple Spring Boot Application..........cccccoevvvvrevnnnsenennsensenens 156

Containerizing the Spring Boot Application..........cccvreverververiennsensersesesessenseneens 158

Building Container Image with Podman...........cccooeereirncnnesnsccrncesese e 158

Running Containerized Applicationccccvivnvninnnnsns s 159

BUIIAAN ..o s 161
BUildah FEATUIEScevreriresernse s 162

Podman and Buildah COmMPAriSOoNcuueernvesrnesesesesnsesesesesssesessesessesessnnes 163

Building Images with Buildahccccovervriennvnine e 164

62011 TN 166
Need for KaniKo..........ccovnnmiinnnnnie s 166

Features of KaniKocoeoceerenereercrereserese e 166
Understanding Kanikoccccvevninininnsnsness s sesseenes 167
Using Kaniko to Build and Push Docker Images.........ccccecvverververserseererienne 167

ix

TABLE OF CONTENTS

IMI0 e —————————————— 169
WHY IMG2.ecc s bbb 169
Features 0f iMQcccvvinerrrr s 170
Using img to Build and Push Docker Images.........ccoccerverrnrieniensenseenensennas 170

31011117 OO 171

Chapter 9: Building Native Images with GraalVM............ccusseennenssnnns 173

Demystifying Native Image and GraalVM...........ccccoeeenrcnnnenrescreeseee e 174

Native Image EXplainedc.ccocvvernrenennnennsesseses s s 174

Native Image Benefits..........cocvvurrnvrnrennssnssessesss s 175

Native Image DrawbaCKScccvvriererennerienerissessesse s s s sessessessesessessessees 175

Differences Between Docker and Native Imagecccccvvrvrvinincnnnncniennen, 176

Understanding GraalVIMcccoevvrennnncnnierne et ses e sessesessenes 176

JIT VS, AOT COMPIIET ...ttt 177

JVM VS, Graa@lVVccoocoereerree s se e sss s sensssnsnnnens 178

Spring Boot 3 and GraalVIMcoecrriennenmnnsesssessesess e e senns 179

Building Native Images with Spring BoOt...........cccccverivnninininnnsnsene e 180

Testing GraalVM Native Image for Spring Boot Applicationcecvevverierennes 182

Understanding Quarkus a Kubernetes Native Java Framework..............coccuu.... 184

KNOWING QUANKUSc.cveerereereee e 184
Key Features of QUATKUSccoeeererenerenerescresese e ses s esesnenens 184

Need for Quarkus with KUDEIMELES.........cccocrvernenerenersseseseses s 185

Getting Started with QUArKUS.........cccccvvcrnesnsr 185

Building and Deploying Quarkus Application on Kubernetes..........cccceevrevieruene. 188

Up and Running with QUArKUScccuermnnrnnnnes s sesss s 188

31011117 OO 191

TABLE OF CONTENTS

Chapter 10: Testing Java Applications Using Testcontainers........... 193
Introduction t0 TESICONTAINETS.........ccoeeeererererereree s 194
Need for TESICONTAINETSccceeereeecrereeree e s 194
Testcontainers FEALUIES........coovevrernenerese s 196
Testing Spring Boot Applicationscccccevevnrnininnsnsne e 197
Unit Testing of Spring Boot Application..........c.ccccvvviervvnsniene s sensese s ses e 198
Integration Testing of Spring Boot Application...........cccccevvvverievnsenserenessensenenns 201
Spring Boot and Testcontainers..........ccoccvveerccrnccsnc s 202

Dependencies SEUP......c.cccorcrrr e 203
ANNOtate TESE ClASSES.......ccoererererreeerereresrsesese e sse e ssssseseens 204
Container INitializationcoeoeoreernerrere e 205
SUMMANY....ceiveerinesesese s se s sr s s s e e nenssnenns 208

Chapter 11: Docker Best Practices for Java Developerscccuusuees 209

Implementing Multistage BUildsccooucrninnennns e 210
Understanding Multistage BuUildsccuceerenernsennesnnesesssesesesesesesenns 210
Creating a Basic Multistage Build Dockerfileccueerrrnnernnerensesennnennnnes 211
BESt PraCtiCeS......cuuierreerinerinssersse s 211
EXAMPIC.....ec i 211

Creating Slimmer Container Images with Java JlinK.........c.ccoceovvninienninicnnens 212
Key Features and Benefits of jlinK.......ccccocevvvnveriennnnsnienesensenesesessensensens 213
KNOWING JINK...ccceiiiriiirierernsersere s e e s e ssesessessesaessssessessessssessessens 213
USE GaSeS fOr JIINK.....ccevereereriereriesinsere s s s s e s sas e s s ssesessesnesaes 217
StEP-DY-STEP GUILE ...covevreercerere e 218
BESt PracliCes.......couvirirrinissncs s s 218
EXAMPIC......eeiece s 219

TABLE OF CONTENTS

Using Distroless Base IMages.........ccoovvervrinneninsnsnnsesesses s ssessessesssessessens 220
Understanding Distroless IMages.......c.ccovveririnnnneninsensee s ssessesseesessenns 220
Creating Distroless Java IMAQE........ccvcevrerrrrerrerernsensessessessssessessessssessessesaes 220
Benefits of Distroless IMages.........cccvvvvvnerininsin s 221
BESt PraCtiCes.......cccoeririrncircse e 222
Applying JVM Arguments and Resource Limits to Docker Containers 222
Importance of jym Arguments and Resource Limits..........cccocvvnvennenieniennn 223
Passing jvm Arguments in DOCKETcccceverierieniennensensensee e ssessesseessessessens 223
Balancing Resources for Optimal Performance.........ccccveevevverrerseresensensenaens 224

Configuring Java Applications for EffiCiency........ccccccorvevresrnccrnsenenescrencnenns 224

Securing DOCKEr IMAJEScccoererereerererereesre s ses e s sessesenns 225
Common Security VUINErabilities...........ccovoerrerernscrnserereserese s 225
Scanning for VUINerabilities..........ccovoeererresrnsesereser e 226
BESE PraCtiCeS......cceereecrerceree s 226

Choosing Maven vs. JDK vs. JRE Base IMageccovvrerrenmrensesesenessenesensenenns 227

Pros and CONScccceriernininee s s s s s s sessssessanes 228
BESt PraCtiCeS......uucerreerrneinene st 229
EXAMPIC...eeeeeeere e e 229

SUMMAIY.c.ueititrerese s s s e e s s sae e e e s e s aesae e s e s aesae e e e nannnees 231

T - . X. |

xii

About the Author

Ashish Choudhary is a senior software
engineer and published author. He has over
14 years of experience in the IT industry. He
has experience in designing, developing, and
deploying web applications. His technical
expertise includes Java, Spring Boot, Docker,
Kubernetes, IMDG, Distributed Systems,
Microservices, DevOps, and the Cloud. He is

an active blogger and technical writer. He has
delivered talks at renowned conferences like GitHub Satellite India and
Fosdem. He is a strong advocate of open source technologies. He has been
contributing to various open source projects for quite some time. Ashish
believes in continuous learning and knowledge sharing.

xiii

About the Technical Reviewer

W Anant Chowdhary is a software engineer

working on bringing Al-based dubbing to
[videos. Having completed a master’s in
Computer Science with a focus on Machine
Learning and Distributed Systems, Anant
is a technology professional with extensive
experience in designing and optimizing

complex systems. He is deeply interested
in the transformative potential of emerging
technologies, particularly Al and automation, and how these innovations
are reshaping industries, society, and the way we interact with the world.
Passionate about exploring the intersection of technology and human
behavior, he is committed to understanding the broader implications of
digital advancements on both individuals and communities. Working on
planet scale systems, he has a wealth of experience in Distributed Systems
and Applied Machine Learning.

CHAPTER 1

Overview of Containers

As a child, I spent so much time using Lego to build things, all the while
thinking that there was no way these stupidly simple and standardized 2x4
bricks could be the origin of all the awesome possibilities. Little did I know
that those colorful blocks were instilling in me the fundamental principle
of modern software development. Just as Lego reinvented play, containers
have fundamentally changed how we develop, package, and deploy
applications. Now imagine your software as if it were a Lego construction.
Containers are individual building blocks, standardized and endlessly
combinable, each one representing a containerized component.

Just like the toy bricks, containers provide a standard way to bundle
applications for portability across any compatible system where they run.
Need to scale up? Simple: add more “bricks.” Want to update a feature?
Pop out one container and snap in another, without toppling the whole
tower. Lego is magical in its modularity and flexibility: easily built, broken
apart, and rebuilt. In software development, containers bring the same
agility to software development. They isolate applications and their
dependencies, just like individual Lego bricks are self-contained units.
Such isolation ensures that just like a red 2x4 brick makes no difference
whether it is in a castle or a spaceship, your application will be running
identically whether it is on your laptop or inside a cloud data center.

In this chapter, we put the pieces of container technology together and
explore how those digital building blocks have constructed a new era in
computing. At the end of this, you're going to see how containers are the
doors to innovation: making developers able to build, share, and deploy
their digital creations with unimaginable ease and creativity.

© Ashish Choudhary 2025 1
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_1

https://doi.org/10.1007/979-8-8688-1300-9_1#DOI

CHAPTER 1 OVERVIEW OF CONTAINERS

A Bit of History

In 2010, a small startup called dotCloud was struggling in the competitive
Platform-as-a-Service market. What they didn’t know was that they were
actually about to change the tech world.

Headed by Solomon Hykes, the dotCloud team developed an in-house
tool for managing Linux containers that were meant to improve their
system but soon became so much more.

Linux Containers are a kind of operating system-level virtualization,
running multiple independent Linux environments on one machine.

LXC shares the host machine’s kernel with each one, which gives a leaner
alternative to a virtual machine, yet maintains process, file system, and
network space isolation.

LXC utilizes cgroups (control groups) and namespaces to manage and
limit resources, producing a virtualization experience similar to running
natively on an underlying system without the overhead of a full hypervisor.

Hykes introduced Docker at PyCon in March 2013. He received an
immediate and enthusiastic response from the developers because
Docker suggested a solution for how to more easily create, deploy, and run
applications consistently in any environment.

A key innovation in Docker was its capability to bundle an application
and its dependencies in a standardized unit, that is, containing libraries,
dependencies, configuration files, and runtime environment—in a
consistent format, which is also called a container. This alone solved the
age-old developer headache: “It works on my machine!”

As Docker became popular, dotCloud shifted direction. They renamed
it to Docker, Inc., and now focused exclusively on creating the Docker
ecosystem. The project gained momentum very quickly:

Docker Hub was launched in 2014, providing a central location for
images of containers.

In 2015, Docker Swarm followed with the native orchestration of
containers.

CHAPTER 1 OVERVIEW OF CONTAINERS

Docker Enterprise Edition was released in 2017 to suit the needs of
businesses.

Docker was a total shift in software development. It made
containerization and microservices architecture more popular and
drastically changed how companies develop and deploy applications.

It was not always smooth. Docker, Inc. had financial difficulties that
forced it to sell its Enterprise business in 2019, although the core Docker
technology remained very influential.

Today, Docker is at the heart of many development workflows. This story
exemplifies how an internal tool can become an industry-shaping technology
through the uptake and contribution of an open source community.

As we explore containers throughout this book, we’ll learn about the
story of Docker in the background. It’s a reminder that radical solutions
have humble beginnings, and when the timing is right, they have the
power to transform whole industries.

Definition of Containers

Let’s begin by exploring a formal definition of containers before
going deeper.

Docker’s Definition

Docker defines container as follows:

A container is a standard unit of software that packages up code and
all its dependencies, so the application runs quickly and reliably from
one computing environment to another. A Docker container image is a
lightweight, standalone, executable package of software that includes
everything needed to run an application: code, runtime, system tools, system
libraries, and settings.

CHAPTER 1 OVERVIEW OF CONTAINERS

Understanding Containers

This definition provides a more comprehensive and easily understandable
explanation. For a Java application, the container will encompass the

base image, JRE (Java Runtime Environment), application code, and other
necessary dependencies for its execution.

Let’s further illustrate this concept with an additional example. In Java,
a Class serves as a blueprint or template defining the state and behavior
of objects. By utilizing this template, we can create multiple instances of
the class. Similarly, a container image is a template from which numerous
container instances can be generated.

Containers can be compared to black boxes without their internal
details being visible. Each container possesses its own IP address,
hostname, and disk. While we will explore the benefits of containers in
future lessons, isolation is one of their notable advantages. Consider
running two applications requiring distinct versions of Java or incompatible
tools and libraries. Achieving this on virtual machines (VMs) would be
challenging, resulting in resource wastage. However, such isolation is
inherent with containers, and running multiple applications with different
requirements becomes feasible.

Container

App

Libs

Figure 1-1. Container

CHAPTER 1 OVERVIEW OF CONTAINERS

As illustrated in Figure 1-2, the accompanying image, the underlying
infrastructure, represented at the bottom, can be a physical machine or
a VM. On top of it lies the operating system layer. The container engine is
responsible for running containers on the host machine. At the top of the
image, we observe two separate applications running inside individual
containers, each wholly isolated.

Container 1 Container 2
App1 App2
Libs Libs

Container Engine

Operating System

Physical Machine or VM

Figure 1-2. Visual representation of containers

Let’s understand more about containers with an analogy.

o Imagine Java containers similar to JAR (Java Archive)
files. In Java programming, a JAR file encapsulates
Java classes and resources into a single file, making it
convenient to distribute and run applications.

CHAPTER 1 OVERVIEW OF CONTAINERS

o Now, picture containers as a broader concept that
operates similarly. Like JAR files, containers package
an application with its required dependencies and
configuration files. This encapsulation ensures
the application runs consistently across various
environments, from development to production.

o It’s similar to placing our Java program and all its
dependencies inside a single, self-sufficient container,
ensuring seamless functionality no matter where
we put it. In this analogy, just as a JAR file contains
compiled Java code and resources, a container houses
an entire application with everything it needs to
operate successfully.

Containers encapsulate required dependencies, functioning as self-
contained entities with IP addresses, hostnames, and disk configurations.
The container engine executes them on the host machine. These
containers package an application with essential dependencies and
configuration files, ensuring consistent functionality across various
environments, much like JAR files.

The Significance of Containers

According to the 2023 DZone Containers Trend Report, containerization
continues to mature and usher. Moreover, container adoption is
increasing, particularly in large businesses, as most large organizations
are going through digital transformation to enhance their IT and
business capabilities. The point is there are some apparent benefits of
containerizing our workloads.

So, what's this fuss about containers, and why should we adopt
containers in our organization?

CHAPTER 1 OVERVIEW OF CONTAINERS

Key Advantages of Containers

Containers offer several key advantages that make them a popular choice
in software development and deployment.

Portability

Portability in computing refers to the capability of executing a computer
program or software on an operating system different from the one it was
initially designed for. Due to their inherent portability, containers can

be utilized across various platforms. They are compatible with Linux,
Windows, macOS, and numerous other widely used operating systems,
ensuring consistent behavior on virtual machines, physical servers, and
personal laptops.

Resource Utilization

Containers can be launched without booting an entire operating system,
thus reducing resource consumption. We can operate efficiently using
fewer resources and minimize our expenditure associated with cloud
services or data center operations.

Isolation

By running containers on a single server, each container is isolated from all
others thereby ensuring any issue in one specific container does not affect
any other container with the same application being run in it.

Agility

Starts, stops, removals—everything happens swiftly because containers
are lightweight and self-contained. Due to their quick startup and
shutdown times, they are suitable for continuous integration and

CHAPTER 1 OVERVIEW OF CONTAINERS

deployment (CI/CD) pipelines. Fast startup and shutdown times of
the containers as compared to virtual machines contribute to faster
development and deployment workflows that are more streamlined.

Easy to Scale

Horizontal scaling of containers becomes much easier by running multiple
identical application instances. For instance, Kubernetes is a container
orchestration tool that can automatically scale containers offering an
advanced approach to containerized applications.

Improved Productivity

Often developers say “It works on my machine” meaning their code

runs well without any issues in their setup. However, it often fails to

work properly in the production environment as per the expectations.
Containers solve this problem by providing predictable environments for
them, so there is no need to bother about such compatibility problems.

Cloud Support

Major cloud platforms such as Amazon Web Services, Azure, and
Google Cloud Platform have embraced containers. In other words, these
platforms have adopted container-based services. This is made possible
by containers being packaged in a standard format such as the Open
Container Initiative (OCI) that enables them to run without any deviation
on several cloud platforms. Hence, we can be assured that our application
will run in the same way regardless of which cloud environment it runs on.
The following diagram demonstrates some important aspects of
containers like their isolation, self-containment, and lightweight design. It
also emphasizes its portability meaning that your app could function with
flexibility over different clouds.

CHAPTER 1 OVERVIEW OF CONTAINERS

Container

Isolated Application Environment Lightweigh Portability

Efficiency calability
v
Container Image Resource Usage Run Anywhere Fast Startup Replication
Self-contained Unit Dependencies Runtime
v v v
Application Code Libraries Environment Settings

Figure 1-3. Illustrating essential container attributes

Container vs. Virtual Machine

You might be wondering whether we should consider containerizing our
applications given the fact that VMs are considered the foundation of
cloud computing. Some top cloud providers still have services that let you
run your application on VMs. Before cloud computing was born, VMs were
used for enterprise organizations’ mission-critical workloads, and they
remain cost-effective and time-saving for business applications.
Furthermore, containers and VMs help efficiently use computer
resources but differ in some respects. Let’s take a moment to compare the

differences between containers and virtual machines.

CHAPTER 1

OVERVIEW OF CONTAINERS

Table 1-1. Containers vs. virtual machines

Criteria Container Virtual Machine
Definition Containers encapsulate an A virtual machine emulates
application, its dependencies, a guest 0S and abstracts the
libraries, binaries, and physical host machine it is
configuration files into a single running on.
package.
0S Containers do not run full-blown VMs allow us to run multiple
Architecture operation systems but share an full-blown guest operating
operating system kernel. systems on a host server and
improve resource utilization.
Size Containers are lightweight, VMs contain an entire guest
containing only the required operating system, so their size is
dependencies to run our typically large(i.e., in a few GB).
applications.
Startup Time Containers startup time is less VM’s startup time is generally
(i.e., typically in milliseconds). in minutes because of its large
size.
Runtime Containers provide a predictable ~ With VMs, we must spend

Environment

Maintenance

runtime environment.

Easy to maintain and upgrade. We
can throw away the old container
and spin up a new one.

time and effort to ensure that
environments are consistent.

Maintaining and upgrading VMs
is cumbersome.

To sum up, containers are maturing and gaining popularity, offering

advantages like portability, better resource utilization, isolation, agility,

easy scalability, improved productivity, and cloud support. They are

suitable for CI/CD pipelines and compatible with multiple operating

10

CHAPTER 1 OVERVIEW OF CONTAINERS

systems. Comparatively, VMs are efficient for business applications but
are larger, take more time to start up, and require more effort to ensure
compatibility.

Rise of Docker

Since its introduction in March 2013, Docker has emerged as the
undeniable standard for containerizing application workloads. According
to the 2024 Stack Overflow developer survey, Docker continues to be at
the top of the list among professional developers in the most popular tool
category.

Now, let’s delve into the factors that have captivated developers and
contributed to their fondness for Docker.

Key Reasons for Docker’s Popularity

Docker has gained popularity due to several key features and benefits:

o Cost savings: Docker is the best choice because it
allows us to exploit our existing infrastructure to the
fullest. On account of this, Docker containers utilize
fewer hardware resources compared to VMs; hence,
it becomes a very economical solution. By deploying
Docker containers, we can achieve great ROI due to

efficient resource utilization.

e Security: Applications are well segregated and
isolated with Docker which makes it an excellent
choice for enterprise settings. It is within this context
that Docker’s ability to do so has made it the most
suitable for use in an enterprise setup. For example,
there is a tool called Docker Scout from Docker that
inspects image contents and provides a detailed report

11

CHAPTER 1

12

OVERVIEW OF CONTAINERS

highlighting packages and vulnerabilities identified.
Another thing is that it gives recommendations on how
to solve issues detected during image analysis.

Easier development: With the use of Docker, the “It
works on my machine” problem can be eliminated
since it ensures a consistent environment during all
stages of the software development life cycle from local
setups right through to production environments. This
consistent environment helps developers significantly
increase productivity by allowing them not to worry
about infrastructure compatibility when writing codes.
Furthermore, Docker images are versioned, so it is
easy to roll back on previous image versions in case of
problems, therefore adding an extra layer of flexibility
and stability to the development process.

Integration with existing tools: Docker comes with
direct support in several IDEs that are very widely used.
This eases container-based application development
and management in the inner development loop of the
application. Docker’s inherent features and support
from orchestration tools like Kubernetes make them
efficient and resilient in production environments.
Besides, Docker easily integrates into GitHub Actions—
the widely used CI/CD platform—so that you can
automate your pipeline for building, testing, and
deploying container applications. Docker has many
GitHub Actions available in the market—official,
user-contributed—that provide building, annotating,
and pushing of images with easy-to-use, reusable
components from within our workflows.

CHAPTER 1 OVERVIEW OF CONTAINERS

Microservices architecture: The rise of microservices
architecture demanded a solution to manage

the complexity of deploying and scaling multiple
services independently. Docker’s lightweight and
modular nature makes it an excellent candidate

for decomposing monolithic applications into
microservices. Running stateless Microservices as
containers is thus a logical choice. Thus, with this
approach, deployments are simple, and scaling is
facilitated, by exploiting existing hardware resources
optimally. Each microservice can be put inside its
container that could be developed, scaled up or
down, and deployed autonomously. Airbnb, Netflix,
and Paypal have all adopted Docker as a technology
for building scalable fault-tolerant architectures of

microservices.

Hybrid and multi-cloud deployments: More
enterprises are embracing multi-cloud environments to
avoid vendor lock-ins and global outages by depending
on a single cloud provider. Having said that, each

cloud provider comes with different configurations,
policies, and tools for management, which makes

the deployment of applications complex. Docker’s
portability allows organizations to deploy applications
in a consistent way for both hybrid and multi-cloud
setups. We can build applications once and run
anywhere using Docker containers, allowing seamless
migration and deployment across diverse cloud
providers or on-premises infrastructure. For example,

a running container in AWS EC2 can easily be moved

13

CHAPTER 1

14

OVERVIEW OF CONTAINERS

to an environment within the Google Cloud Platform
without change or loss of anything. This is the flexibility
that can lower the risk of vendor lock-in and allows
businesses to choose the infrastructure that businesses
would prefer to use most.

Versatility for various scenarios: Docker is extremely
flexible and can be used in a multitude of use cases.

In an enterprise setting, when multiple tools and
technologies are in use across the team, creating

a consistent development environment becomes
challenging. This is achievable with Docker, which
gives the ability to standardize environments and set
them up consistently. We can define infrastructure
specifications within a Dockerfile and commit to a code
repository. Developers can then effortlessly create their
development environments using these specifications.
We often rely on third-party tools like PostgreSQL

or Nginx in application development. Leveraging
container images of these third-party applications
simplifies their execution, as all the necessary
dependencies are encapsulated within the container.
That means minimal manual configuration is required
and that one does not have to be wasting a lot of time
looking through documentation. This time-

saving convenience applies to various tools, including
databases and web servers, as container images are
frequently available.

CHAPTER 1 OVERVIEW OF CONTAINERS

Summary

In conclusion, Docker has become the standard for containerizing
application workloads due to its efficient utilization of resources,

provides segregation and isolation for enterprise environments, ensures a
consistent development environment, integrates with numerous developer
tools, facilitates deployment of microservices-based architectures, and can
be deployed consistently across hybrid and multi-cloud environments.

15

CHAPTER 2

Docker High-Level
Overview

Learn about docker, its architecture, its limitations,
and how docker works.

Docker is an open source container management tool, developed by
Solomon Hykes, and it has grown to become the most used standard in
containerizing application workloads within the last decade since its
inception in March 2013. Indeed, Docker changed how we package and
deploy applications at scale according to its “build once, run anywhere”
principle.

Docker provides a platform for effectively developing, distributing, and
running applications as containers. It falls under the category of Platform
as a Service within cloud computing.

Docker’s Basic Principle

Java popularized the slogan “Write Once, Run Anywhere(WORA)” in
software development. That means once written, Java applications can
run on any device or platform with a compatible JVM. Docker has taken
this one step further: ensuring that the application and all its runtime
environment are packaged, distributed, and run uniformly.

© Ashish Choudhary 2025 17
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_2

https://doi.org/10.1007/979-8-8688-1300-9_2#DOI

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Let us now talk about the underlying principle behind how Docker
works: Build Once, Run Anywhere(BORA). Consider this: two developers
are working on the same application, and they want to run the application
on their local machines to speed up the development process. Developer
A finally got the application running on their workstation and shared the
steps they took with Developer B. When Developer B followed these steps,
they couldn’t get the application up and running easily.

Why did developer B encounter difficulties when trying to run the
application?

Well, there could be multiple answers to this but it could be possible
that Developer A unintentionally omitted crucial instructions, such as
environment variables to run the application.

Remember: This issue is all too common among developers, leading
to frustrating situations where some may assert that “it works on my
machine.” At the same time, it fails to function on other setups.

This is precisely where Docker shines, assuring that if an application
is built using Docker, it will exhibit consistent behavior regardless of the
environment—whether it be development, staging, or production. Docker
eliminates the discrepancies caused by environment-specific variations,

offering a reliable and consistent application execution experience.

Docker Is Not!!!

We know about the features offered by Docker, but it’s essential to

understand its limitations.

e Docker is not a virtualization technology:
Virtualization technology, like VMware or Hyper-V,
creates entire virtual machines with their operating
systems, simulating hardware resources. On the other
hand, Docker leverages the underlying host’s OS and
uses containerization, a form of OS-level virtualization.

Docker containers share the same OS kernel and isolate

18

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

the application processes from each other. It does not
emulate hardware or run full-blown guest operating
systems.

Docker is not a container orchestrator: Docker, in

its core form, is a platform to develop, ship, and run
applications inside containers. While Docker provides
a simple orchestration solution called Docker Swarm,
Docker is not an orchestrator. Tools like Kubernetes,
Amazon ECS, or Apache Mesos are dedicated container
orchestrators designed to manage, scale, and maintain

containerized applications across multiple machines.

Docker is not a virtual machine (VM) or a
“lightweight VM”: As mentioned earlier, virtual
machines emulate hardware resources and run whole
operating systems. VMs have their kernel, binaries,

and libraries. On the other hand, Docker containers
share the host’s kernel and encapsulate only the
application and its direct dependencies. Containers are
significantly more lightweight than VMs, but it would
be a misnomer to call them “lightweight VMs” as they
operate at a different layer of abstraction.

Docker is not the exclusive method for
containerizing applications: While Docker
popularized container technology and made it more
accessible, it’s not the sole method for containerization.
Other tools and platforms, like Podman, containerd,
and rkt (Rocket), also provide ways to create and
manage containers. These might have specific features
or design philosophies that distinguish them from
Docker, but they serve the same fundamental purpose

of containerizing applications.

19

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

« Docker is not a container as a service (CaaS)
platform: CaaS platforms provide container
orchestration, management, scaling, and operational
features as a service, often in cloud environments.
Examples include Google Kubernetes Engine (GKE),
Amazon ECS, and Azure Kubernetes Service (AKS). At
its core, Docker is a tool designed for the creation and
execution of containers. While Docker, Inc. has offered
products and services around Docker (e.g., Docker
Hub, Docker Enterprise), Docker itself, as a technology,
isn’t a CaasS solution. It can be part of a Caa$ offering
but isn’t one by itself.

How Does Docker Work?

Docker operates on a client/server architecture, with Docker Engine as
the system’s central component. Docker Engine consists of the Docker
daemon, a REST API, and a command-line interface (CLI). The Docker
CLI communicates with the REST API exposed by the Docker daemon.
When Docker commands are issued from the CLI, they are received by the
Docker daemon, which then executes those commands.

Docker’s client-server architecture relies on a main component known
as Docker Engine. Docker Engine comprises the Docker daemon, a REST
AP], and a CLI. The Docker CLI communicates with the REST API exposed
by the Docker Daemon. So, when Docker commands are issued from the
CLI, they are received by the Docker Daemon, which then executes those
commands.

20

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Key Docker Commands

To illustrate, here are the commands in the sequence typically used to

create an image:

1. docker build: Docker daemon is responsible for
building our image.

2. docker tag: The image is tagged to a specific
version.

3. docker push: Finally, the image is pushed to a
remote Docker Hub registry.

Another application might want to use our image to run the
following commands. Here, all the action is done by the Docker daemon
process itself.

1. docker pull: Docker first needs the image locally to
run our containers. If the image is not found locally,
it will get it from the image registry.

2. docker run:Once the image is available, we can
use this command to start and run the application

inside a container.

The Docker CLI executes all the commands we discussed, while the
Docker daemon performs the corresponding actions.

The following diagram visually represents the interaction between the
Docker CLI, Docker Daemon, Docker REST API, Docker Image Registry,
and Docker Containers, providing an overview of the Docker client/
server architecture and the flow of commands and data between the
components.

21

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Docker Host

Docker Engine
manages

Docker Daemon

communicates with manages manages interacts with
Docker Hub
Docker Registry [Docker Images Docker Containers

Figure 2-1. Docker architecture

Here’s what each part represents:

o Docker engine: This is the core part of Docker,

Docker REST API

receives commands from

Docker CLI

including the runtime and daemon process. It’s the

layer on which Docker runs and manages various
Docker components.

e Docker daemon (Dockerd): This is a persistent
background service that manages Docker images,

containers, networks, and volumes. It’s the part that

does the heavy lifting in the Docker architecture.

e Docker REST api: The Docker daemon exposes a REST

API used by the Docker Client to communicate with

the daemon. It allows users or other tools to interact

programmatically with the Docker daemon.

¢ Docker cli: This command-line interface allows users

to interact with Docker using commands. When we

type a command into the Docker CLI, it sends these

commands to the Docker daemon via the Docker
REST API.

22

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Docker images: These are read-only templates with
instructions for creating Docker containers. Images
define the container environment and the application

running within the container.

Docker containers: Containers are instances of
Docker images executed by the Docker daemon. They
isolate applications from the underlying system and
each other.

Docker registry: This storage and content delivery
system holds named Docker images in different tagged
versions. Users interact with a registry by using Docker
push and pull commands. Docker Hub is a public
instance of a Docker registry that Docker, Inc. operates.

Here's the interaction flow in the Docker architecture as per the

diagram:

1.

The Docker CLI sends a command to the Docker
daemon via the Docker REST API.

The Docker daemon then communicates with

the Docker Registry to pull or push images as
requested or manages Docker Images and Docker
Containers locally.

All these operations are under the umbrella of the
Docker Engine, which facilitates these components
working together seamlessly.

23

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Understanding Docker Desktop

Docker Desktop for macOS and Windows is the fastest, no-clutter way to
containerize applications. When Docker came initially, it was targeted for
Linux, and there was no official support for other systems like Windows
and macOS. After realizing this limitation and huge drawback in their
design, the Docker Team decided in something great—the official port to
these systems—called Docker Desktop.

According to the official documentation:

Docker Desktop is an application for macOS and Windows
machines that is used to build and share containerized appli-
cations and microservices.

When drawing analogies, one might think of Docker Desktop as an
IDE for containers. Since Windows and macOS do not natively support
containers, Docker Desktop compensates by using its light VM. On
Windows, it uses Hyper-V or WSL2 (since the former is preferred), and on
macOS, it uses Hyperkit. Docker Desktop has a helpful GUI that controls
these VM resources.

The advantage of Docker Desktop lies in its streamlined installation
process, as it offers a single package for Mac and Windows users. This
package includes essential components to utilize Docker effectively.

A typical Docker Desktop installation encompasses the following
components:

e Docker Engine

e Docker CLI

e Docker Compose
e Kubernetes

e Content Trust

e Credential Helper

24

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Here’s a simplified diagram illustrating the components of Docker
Desktop:

The following diagram provides a high-level overview
of how the different components of a Docker

Desktop environment work together to enable
containerization and management of applications.

Docker Desktop

Interacts with GUI

| Dockerpeskiop |

Kube st Docker Compose files. Commands and scrip
Interacts with Host Provides U controls:
Development Tools {
Host
e = = —
[xubmmes|“ | DockerCompose | pockerct GUiControls | Manages Docker Engine

\K [miee] [irre]

s~ e C with Docker Engine Provides resources

\\‘\R’E"gm

Figure 2-2. Docker Desktop components

e The central part of the diagram is Docker Desktop itself,
which works directly as the user interface. Users can
interact with the Docker Desktop through Kubernetes
manifests, Docker Compose files, commands, and scripts.

e Then, the Docker Desktop interacts with the Host that
holds the containers and images, which the Docker
Engine is responsible for. The core element of Docker is
the Docker Engine, which is responsible for orchestrating
the containers and providing the necessary resources.

o This diagram further shows several Development Tools
that are part of Docker Desktop, including Kubernetes,
DockerCompose, and DockerCLI. These tools blend in
with the Docker Desktop for additional functionalities
and abilities.

Now, let’s explore some of the critical features Docker Desktop provides.

25

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Docker Desktop Features

Here are some key features of Docker Desktop:
o Simplified containerization and sharing of applications
o Ability to scan images for potential vulnerabilities

e User-friendly interface for managing Docker

components

e Docker Desktop supports multiple system
architectures, including Apple M1, ARM, and Windows

o Introduction of Dev Environments for creating
consistent and reproducible development
environments

e Built-in support for Kubernetes, enabling the creation
of functional single-node Kubernetes clusters using
Docker Desktop

» Extensibility through third-party tools powered by
Docker extensions

e Native support for running Linux on Windows
using WSL2

Docker Desktop in Action

Docker Desktop enhances the functionality of the underlying open source
Docker components by offering user-friendly maintenance, monitoring,
and upgrade features. It delivers a uniform user experience across

various operating systems. With Docker Desktop, team collaboration

is streamlined through Docker Dev Environments, enabling one-click
sharing via Git or Docker Hub. It boasts a straightforward graphical
interface for common tasks such as:

26

https://www.docker.com/blog/tech-preview-docker-dev-environments/
https://www.docker.com/blog/docker-extensions-discover-build-integrate-new-tools-into-docker-desktop/

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Initiating a container

You can start a new container with Docker Desktop
that is based on a Docker image of your choice.

You can choose the image and then optionally set
settings for port mapping, environment variables,
and volumes. It then launches the container in
one click.

This simplifies the process of spinning up new
containerized applications, so users new to Docker
can start easily.

Pausing and restarting a container

Docker Desktop offers a graphical user interface to

pause and resume running containers.

Pausing a container suspends its execution, allowing
you to temporarily stop the container’s activity
without losing its state.

Restarting the paused container resumes its
operation from the point where it was paused.

This feature is useful for temporarily suspending
a container’s activities, for example, during
maintenance or debugging.

Stopping a container

The Docker Desktop interface allows you to easily
stop running containers.

It stops a container gently and closes the application
or process running inside the container.

This is useful if you have to stop a container and

release the resources that container was using.

27

CHAPTER 2

DOCKER HIGH-LEVEL OVERVIEW

Configuring a local Kubernetes cluster

Docker Desktop provides built-in functionality

to create and manage a local Kubernetes cluster.
The user can enable and configure a single-node
Kubernetes cluster directly from the Docker Desktop
interface.

This helps developers test and develop applications
using Kubernetes without an additional separate
Kubernetes setup.

Managing volumes

Docker desktop allows a developer to manage the
volumes by creating, inspecting, and mounting a
volume right from the UI of the Docker desktop.

This therefore simplifies the process of managing persistent storage for

your containerized applications and will thus ensure that no data is lost

when the containers are stopped or removed.

To show the capabilities of the docker desktop, let’s try to run a

pre-built image from Dockerhub.

28

Look for the Docker Desktop icon on our Desktop.
Double-click the Docker Desktop icon to launch the
application.

To locate images, click the search bar at the top or use
the shortcut 38 + K. To find the specific image used in
this guide, search for “welcome-to-docker”.

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

welcome-to-docker

Images (50) Containers (0) Volumes (0) Extensions (0) Docs (0)

@ Hub images (50) ﬂ Remote repositories (0) [Local images (0)

u g 2 % Pull Run

¢ Choose Run.

welcome-to-docker
Images (50) Containers (0) Volumes (0) Extensions (0) Docs (0)

@ Hub images (50) ﬂ Remote repositories (0) [Local images (0)

Tag
u g 2 latest Pull Run

e Upon the display of Optional settings, enter the Host
port number 8090, and then click Run. This will map
the internal port of the container to the host port
specified and allow access to the application running in
the container from the host machine.

29

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

30

Run a new container

docker/welcome-to-docker:latest

Optional settings

Container name

A random name is generated if you do not provide one.

Ports

Enter "0" to assign randomly generated host ports.

8090

Volumes

Host path Container path

Environment variables

Variable

Cancel

S
v

:80/tcp

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

e Goto the Containers tab in Docker Desktop to view the
container.

Docker Desktop Update to latest Q, search: welcome-to-docker

Containers

Container CPU usage (i) Container memory usage (i) Show charts v

Status CPU (%) = Port(s) Last started Actions

Runnin minutes
58fff8b196d2 Lng 0 5 tes ago

e Click the link given under Port(s).

Status CPU (%) ' Port(s) Last started Actions

L % http://localhost:8090
58f{f8b196d2 Running .

e We should see the following output.

localhost

_Confgratulations!!!

You ran your first container.

31

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

e We also have the option to stop the container.

Status CPU (%) | Port(s) Last started Actions

58{(f8b19642 | Zntog % 9 minutes ago

nnin .25% 17 hour:
62b95c9e30¢8 Running ours ago Stop

e We have multiple options to manage containers, that is,
restart/pause.

Status CPU (%) = Port(s) Last started Actions

58fff8b196d2 Running 11 minutesago ® i

© View details
62b95c9e30¢8 Running % 17hou @ Viewimage packages and CVES
Copy docker run

Running % 17 hou
df00aaac9e13 [9 Open in terminal

View files

Running % 18 hou Pause

adsd6a6d3iel
Restart

Running % 18hou [5 Open with browser

a6aacadf8892

To conclude, Docker Desktop simplifies containerizing applications
and microservices for macOS and Windows users. It provides a graphical
interface for managing VM resources and offers streamlined installation.
Features include simplified containerization and sharing, image scanning,
support for multiple system architectures, Dev Environments, and built-in
support for Kubernetes.

Key Docker Concepts

Let’s understand Docker by drawing parallels with familiar Java principles.
In the next sections, let’s look at constituents and associated terminologies
by relating them to the already familiar landscape of Java development.

32

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Dockerfile

Docker relies on a text document named Dockerfile when constructing
a container image. This file encompasses a series of instructions that
define the construction of the Docker image. In Java terms, we can say that
Dockerfile is akin to a Java class definition. It contains instructions on how
to build a Docker image. Just as a Java class specifies how to create objects,
a Dockerfile outlines the steps to construct a Docker image.

For a basic Java/Spring Boot application, the Dockerfile typically
includes the following set of instructions.

FROM openjdk:17
COPY target/*.jar app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

The FROM instruction specifies the base image that serves as the
foundation for our application.

The COPY instruction copies the locally built . jar file generated by the
chosen build tool, such as Maven, Ant, or Gradle, into our container image.

As for the ENTRYPOINT instruction, it designates the default executable
command for our container upon startup. In this example, we aim to run
the . jar file using the java -jar command.

Docker Image

Similar to how a JAR file packages a Java application and its dependencies,
a Docker image encapsulates an application, including its runtime,
libraries, and dependencies. Both serve as self-contained units ready for
deployment. Also, just as JAR files can be distributed and shared easily,
Docker images can be effortlessly distributed and shared, allowing users to
push and pull from Docker registries like Docker Hub and facilitating the
seamless sharing and distribution of applications.

33

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Docker CLI

The Docker CLI (Command-Line Interface) is the primary means of
interacting with Docker. Commands issued from the CLI are transmitted to
the Docker daemon using these communication channels. In Java, JShell
allows developers to enter and execute Java code snippets interactively,
and the Docker CLI enables developers to execute commands for
managing Docker components.

Docker Container

A Docker container is like an instance of a Java class. It’s a runnable
environment created from a Docker image, similar to how objects are
created from a class in Java. Each container is isolated and runs its

application or service.

Docker Daemon

Docker daemon acts as the Docker core component, like the central
nervous system. It runs as a background service in the host system and

is responsible for executing the commands—like docker build, docker
pull, and docker run—issued through the Docker CLI. It's comparable

to aJVM running in the background. It is responsible for running and
managing Docker containers, similar to the way in which the JVM manages
the execution of Java applications.

Docker Hub

Docker Hub is the image repository where we can store, share, and
manage container images. Think of a Docker Hub as a central repository
for storing Docker images, similar to how Maven Central Repository stores
Java libraries. Docker Hub, for example, is like a Maven repository for
Docker images.

34

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Docker Compose

As application developers, in most cases we would be dealing with
applications comprising several components, such as a front-end API
and a back-end API. Say, for example, that the application requires extra
features such as an Nginx web server and a database that the back-end
APTI uses to serve data back to the front-end API. Running and managing
these varied components as separate containers can get very tricky, with
several Docker commands needed to assure the running of the entire
application cohesively. To solve this problem, in comes Docker Compose.
Docker Compose is a tool for running multiple containers, so they all work
together in harmony. This is done through the definition of services using
a docker-compose.yml file, outlining the configuration and dependencies
of various containers needed for an application. It will be possible to
efficiently streamline running and management of the whole application
stack using Docker Compose.

It's much more of a Java build tool, such as Maven or Gradle. In Maven,
for example, a configuration file named pom. xml holds the configuration
of a project and its dependencies; similarly to Docker, in Docker, there
is also one configuration file, usually docker-compose.yml, that defines
multicontainer Docker applications.

A Sample docker-compose.yml file.

version: '3’

services:
app:
build: .
image: my-java-app
ports:
- "8080:8080"
environment:

- SPRING_PROFILES ACTIVE=prod

35

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Here is an image illustrating Docker concepts.

Docker Concepts

Dockerfile DockerHub DockerCLI ’ DockerDaemon DockerCompose

Definesimage Manages image storage Manages containers Manages Docker Engine Orchestrates services

DockerImage ‘ DockerContainer DockerEngine MultiContainer

Figure 2-3. Docker concepts and their relationships

In other words, what Docker knowledge for Java developers can be
easier if one finds a way to compare it to the most familiar principles
of Java. So, Dockerfile is much like a definition of a Java class with
instructions regarding how to build a Docker image. A Docker image
does for an application, runtime libraries, and dependencies what a
JAR file does. The Docker CLI is the primary interface to interact with
Docker, and Docker daemon acts as its central nervous system. Docker
Hub is for image storage, sharing, and management. Docker Compose
enables orchestrating several containers working together seamlessly, like
Java build tools, for configuration and dependency management across
projects.

Summary

The chapter introduces Docker as an open source container management
tool that has revolutionized the way applications are packaged and
deployed. It explains Docker’s core principle of “Build Once, Run
Anywhere” (BORA), which ensures consistent application behavior
across different environments, in contrast to the common “It works on my
machine” problem.

36

CHAPTER 2 DOCKER HIGH-LEVEL OVERVIEW

Then the chapter clarifies what Docker is not—a virtualization
technology, or a container orchestrator, or a virtual machine, or the
only method for containerizing applications. These descriptions help
differentiate Docker from related but quite different concepts.

Then, it goes into how Docker works with its client-server architecture
around the Docker Engine. It explains how the Docker CLI communicates
with the Docker daemon to run commands like build, tag, push, pull,
and run.

In the section about Docker Desktop, it explains how GUI application
meant to make life easier using Docker on macOS and Windows:
simplified containerization, scanning images, multicontainer support
for numerous system architectures, and integration into tools such as
Kubernetes.

The last part of the chapter introduces key Docker concepts and
draws comparisons with well-known Java development principles. It
explains how a Docker file is similar to the definition of a Java class, an
image in Docker is akin to a JAR file, the CLI in Docker is similar to JShell,
a container in Docker is similar to a Java object, a daemon in Docker
is equivalent to a JVM, a Docker Hub is similar to Maven Central, and
Compose in Docker is like the build tools in Java, for instance, Maven
or Gradle.

37

CHAPTER 3

Up and Running
with Docker

Among the many tools available for application packaging and
deployment, Docker is one of the most important in containerization. One
of the key elements in this process is the Dockerfile, which represents a
blueprint of the configuration, dependencies, and steps followed to build
a Docker image. It consists of several instructions that allow us to build
containers using the docker build command.

Creating a Dockerfile

To commence, let’s start by creating an empty Dockerfile. Remember to
name it with a capital “D,” that is, Dockerfile, without any file extension.
By default, the docker build command looks for a file named “Dockerfile”
(with a capital “D”) in the specified context.

If we name it dockerfile or anything else, we will need to specify the
Docker build file using the -f or --file flag during the build process.

Step 1: Create a new directory on the terminal by running the
command mkdir docker. Navigate to the directory using the command
cd docker.

Step 2: Now run touch Dockerfile, creating an empty
Dockerfile for us.

© Ashish Choudhary 2025 39
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_3

https://doi.org/10.1007/979-8-8688-1300-9_3#DOI

CHAPTER 3 UP AND RUNNING WITH DOCKER

Step 3: Run the vi Dockerfile command and paste the following
content. To save the change, press Esc to exit insert mode, then type :wq,
and press Enter.

FROM alpine:latest
RUN apk --no-cache add git
CMD git --version

e Weusethealpine base 0S image in the FROM
command. It is a minimal, simple, secure image based
on Alpine Linux. It is only 5 MB in size.

o Inthe RUN command, we use the apk; the package
manager will install Git inside the container image.
This command is only executed when we build the
container image.

o Inthe CMD command, we use the git --version
command executed when we run the container image.

Step 4: Build the image by executing the docker build . command
with the Dockerfile.

The . (dot) represents the build context. By using . (dot) as the build
context, we are instructing Docker to look for the Dockerfile and associated
files in the current directory and use them to build the Docker image.

Step 5: Run the docker image 1s(to list down images) command
and note down IMAGE ID of the container image.

Step 6: Execute the docker run --rm -it IMAGE ID command.
Ensure that we paste the previously noted IMAGE ID. This command will
display the git version as the output when we run the container image.

The -it flags ensure an interactive session with the container,
allowing us to see and interact with the output if necessary. The -rm flag
automatically removes the container when it exits. This helps clean the
system after the container is executed.

40

CHAPTER 3 UP AND RUNNING WITH DOCKER

The image below demonstrates the process by which a Dockerfile
generates a container.

1]

Dockerfile Docker Image Container

Figure 3-1. Docker image creation flow

To summarize, we will have a handwritten Dockerfile, which we will
use to build the Docker Image. Later on, we will use that image to run a
container.

Let’s talk about commands that we can use while writing a Dockerfile.

41

CHAPTER 3 UP AND RUNNING WITH DOCKER

Dockerfile Commands and Their Usage

Table 3-1. Common Dockerfile commands

Command Usage

Example

ENV Sets environment variables inside the

image

Label Use to specify metadata for image, i.e.,
email id of the maintainer, etc.

EXPOSE Port through which we can access our

application

CMD Use to pass arguments to ENTRYPOINT.
[f ENTRYPOINT is not set, then the
command in CMD gets executed

ENTRYPOINT Specify commands that get executed
when we start the container

WORKDIR Current working directory

RUN To install packages required for our

application

ADD Same as COPY but can also download
and copy files from remote URLSs. It can
also decompress compressed files to
the destination

copy As the name suggests, it copies over
files and directories from a source to a
destination location

FROM Foundation layer upon which all other
layers are built

ENV APP_HOME=/usr/
src/app

LABEL maintainer=
"your-email@example.

com

EXPOSE 8080

CMD ["app.jar"]

ENTRYPOINT ["java",
"-jar"]

WORKDIR $APP_HOME
RUN apt-get update
&& apt-get install
-y openjdk-11-jre
ADD https://example.

com/external-app.jar
$APP_HOME/app.jar

COPY ./local-app-
config $APP_HOME/
config

FROM ubuntu:latest

42

CHAPTER 3 UP AND RUNNING WITH DOCKER

Exploring Facts About Dockerfiles

Dockerfiles are not executable code: A Dockerfile represents commands
for image execution at build time. This isn’t directly executable like it was a
program.

Dockerfile

FROM openjdk:17-jdk

WORKDIR /app

COPY target/myapp.jar /app

CMD ["java", "-jar", "myapp.jar"]

Build and run:

docker build -t my-java-app .
docker run my-java-app

Layer caching: Docker uses a layered file system for its images, where
instructions in a Dockerfile are cached as layers to be used in accelerating
subsequent builds.

FROM openjdk:17-jdk

WORKDIR /app

COPY pom.xml /app # Cached if pom.xml doesn't change
RUN mvn dependency:go-offline # Dependencies are cached
COPY src /app/src

RUN mvn package # Rebuilds only if src changes

Order matters: Since the layers are cached, the order in which you
have the instructions in a Dockerfile is significant. If you change an
instruction, all future layers become invalid and need to be rebuilt.

Inefficient
FROM openjdk:17-jdk
WORKDIR /app

43

CHAPTER 3 UP AND RUNNING WITH DOCKER

COPY src /app/src

COPY pom.xml /app

RUN mvn package # Rebuilds everything if pom.xml changes
Efficient

FROM openjdk:17-jdk

WORKDIR /app

COPY pom.xml /app

RUN mvn dependency:go-offline # Cache dependencies

COPY src /app/src

RUN mvn package

Multiple base images: Even though one can use only the FROM
instruction with a Dockerfile, we can do that by using multi-stage builds,
making it possible to bring artifacts from different bases into one image.

Stage 1: Build

FROM maven:3.8-openjdk-17 as builder

WORKDIR /app

COPY . .

RUN mvn clean package -DskipTests

Stage 2: Minimal runtime

FROM openjdk:17-jre

WORKDIR /app

COPY --from=builder /app/target/myapp.jar /app
CMD ["java", "-jar", "myapp.jar"]

Dangling images: Images created with a tag that is later replaced by
another image become “dangling images,” consuming space until they
are pruned.

$docker image prune # Remove dangling images

44

CHAPTER 3 UP AND RUNNING WITH DOCKER

Image labeling: With Docker, it is possible to add metadata to images
using labels, and the kind of information that one can provide includes
version, maintainer, or arbitrary information.

FROM openjdk:17-jdk

LABEL maintainer="you@example.com"

LABEL version="1.0.0"

LABEL description="Java Spring Boot application”

Escape characters: Dockerfile supports backslashes (\) for escaping,
but beware of inconsistencies with Windows paths; prefer double
backslashes (\\) or forward slashes.

Use forward slashes or double backslashes for Windows
COPY config/app-config.json /app/config/

Size optimization: Be wary of your use of the instruction COPY, as it
may inflate your images. Minimize this by using wildcards, so you only
copy necessary files.

Avoid copying unnecessary files
COPY target/*.jar /app/

Security concerns: Don’t hardcode secrets in the Dockerfile. Pass
sensitive data securely through the build arguments or environment
variables.

FROM openjdk:17-jdk

ARG API_KEY

ENV API_KEY=${API KEY}

CMD ["java", "-jar", "myapp.jar"]

Pass secrets securely during build:

docker build --build-arg API_KEY=mysecretkey -t my-java-app .

45

CHAPTER 3 UP AND RUNNING WITH DOCKER

Building and Tagging a Docker Image

In this section, you will learn how to build an image using Dockerfile.
Explore different strategies to tag an image.

The docker build command allows us to construct an image using
the Dockerfile and a context. The context denotes a collection of files
accessible via a specific path or URL. It’s important to note that the build
context operates recursively, meaning files in subdirectories are also
included in the process. Consequently, we should execute the docker build
command from a directory containing only the Dockerfile.

Alternatively, we can employ a .dockerignore file to specify which
files we want to exclude from the docker build process.

The docker build command supports various flags, offering
additional options and functionalities during the image construction.

Example

Let’s follow a step-by-step coding example to demonstrate building, tagging,
and pushing a Docker image for a simple Java application to DockerHub.

Step 1. Directory setup: Assume we have a basic Java application with
the following file structure:

my-java-app/
F— src/
| L— Main.java
L— Dockerfile

Step 2. Create the java application: Let’s create a simple Java
application in the Main.java file:

public class Main {
public static void main(String[] args) {
System.out.println("Hello,Docker!");

46

CHAPTER 3 UP AND RUNNING WITH DOCKER

Step 3. Create the dockerfile: Next, we need to create a Dockerfile to
define the Docker image:

FROM eclipse-temurin:17-jdk-jammy
COPY ./src /app

WORKDIR /app

RUN javac Main.java

CMD ["java","Main"]

This Dockerfile uses the official OpenJDK 17 image as the base, copies
the Main.java file into the image, compiles it, and finally sets the command
to run the compiled Java application.

Step 4. Build the docker image: Open the terminal or command
prompt, and ensure we are inside the directory having Dockerfile on the
terminal and type the following command.

$ docker build -t my-java-app:1.0 .

This command will build the Docker image with the tag (by using
the -t flag) my-java-app:1.0 as the build context. Setting the image name
and tag while building our image is good practice. The . (dot) at the end
of the command indicates to Docker that Dockerfile is present in the
current working directory.

Step 5. Verify the built docker image: To verify that the Docker image
was built successfully, run the following command:

$ docker images

We should see the my-java-app image with the 1.0 tag listed among our
local Docker images.

Step 6. Tag the docker image for dockerhub: Now, we'll tag the
Docker image to prepare it for pushing to DockerHub:

$ docker tag my-java-app:1.0 our-dockerhub-username/
my-java-app:1.0

47

CHAPTER 3 UP AND RUNNING WITH DOCKER

Note Replace our-dockerhub-username with our actual DockerHub
username.

Here’s a simplified diagram that outlines the Docker image build process:

Source Code

y

Dockerfile

y

],

docker build

Build Context

Send to Docker Daemon

Image Layers

Caching Layers Buildini Layers

‘ Existing Layers ‘ ’ New Layers ‘

Assembled Image

A 4

Image Tagging

A 4
‘ Local Image Repository ‘

Push (optional)
Remote Registry

Figure 3-2. Building and tagging a Docker image

48

CHAPTER 3 UP AND RUNNING WITH DOCKER

In this flow:

The process starts with our source code and a
Dockerfile.

The docker build command initiates the build
process.

The build context, which includes our source code
and any other files in the directory or specified in the
Dockerfile, is sent to the Docker daemon.

Docker then assembles the image in layers, utilizing the
cache to speed up the build process.

New layers are created as needed based on instructions
in the Dockerfile.

The assembled image is then optionally tagged
with a name.

The final image is stored in our local image repository.

We can then push the image to a remote registry if
desired.

Tagging a Docker Image

Tagging a Docker image is a best practice that brings numerous benefits
throughout the software development and deployment life cycle. Image
tagging is the process of assigning a meaningful label to an image, which
can be used to differentiate its version, purpose, or environment. And
here’s why it’s so important:

49

CHAPTER 3

UP AND RUNNING WITH DOCKER

Benefits of Image Tagging

50

Versioning and history: Tagging can also be
used to differentiate the various versions we

have of our images. For instance, while updating
our application, we can tag images with version
numbers like v1.0 and v2.0, or the dates on which
they were taken such as 2023-07-17. This helps to
maintain a history of changes and provides a way
back if needed.

Deployment and rollbacks: If you are deploying
an application into various environments—
development, testing, and production—you can use
tags to ensure that the appropriate image version

is used in each environment. If a problem shows

up in production, we're able to easily roll back to a
previous state with the tagged image.

Collaboration: Tagging offers one of the most

exact reference points for collaboration among
developers. It allows team members to use the same
tagged image, thereby ensuring consistency across

development and testing environments.

Tagging: Use tagging to promote images across

the various stages of the development pipeline. At
each stage of the pipeline, from local development,
through testing, to production, we can tag an image
as it passes, thus keeping a reliable version at

each step.

10.

CHAPTER 3 UP AND RUNNING WITH DOCKER

Microservices/distributed systems: There are
times when services could rely on specific versions
of other services inside the space of a microservice
or distributed system. Tagging, in this regard,
becomes really relevant to making sure that services
can be found and used at compatible versions of
their dependents.

Continuous integration/continuous deployment
(CI/CD): This automates the pipeline, image
creation, and deployment. Tags enable these
pipelines to have a way of finding an exact version
of an image and then tracking it at every stage
throughout the pipeline.

Rollback and recovery: In case a problem arises
after deploying a new application version, with
tagged images, we can quickly roll back to the
previous version, thus reducing downtime and
possible impacts.

Documentation: Tagging is a way of documenting.
An image tag is supposed to present useful
information on the purpose and use of the image,
the version, or any other important thing.

Testing and quality assurance: Tagged images
ensure that the tested version remains consistent
with what will be deployed.

Image pruning: As we build and tag new iterations
of our images, we can delete the older images with
out-of-date tags to save on storage space.

51

CHAPTER 3 UP AND RUNNING WITH DOCKER

Image Tagging Strategies

Let’s understand some advanced image tagging strategies past just
version numbers, so they offer clarity, traceability, and most importantly,
consistency. It is by having consistent and meaningful tag methods that
Docker images become easily managed—hence making it easy for you to
identify and deploy the preferred image versions with ease.

1. Semantic versioning: Tagging with semantic
versioning is a common strategy to indicate the
significance of an image. For example, if this image
is meant for a specific release of our application:

$ docker build -t my-java-app:1.0.0 .

2. Using the git commit hash: Tag images based on
respective git commit hash, so they can be traced
back to specific versions of code. This is very
useful in:

$ docker build -t my-java-app .
3. Environment-specific tags: In case we are building
images for various environments, for example,

development, testing, and production, we can use
environment-specific tags as follows:

$ docker build -t my-java-app .
$ docker build -t my-java-app .
$ docker build -t my-java-app .

4. Date-based tags: Tagging the build date of an image
helps to trace the creation date of an image:

$ docker build -t my-java-app:2023-08-17 .

52

CHAPTER 3 UP AND RUNNING WITH DOCKER

5. Latest tag: Using the latest tag for the latest build
is a convenience, but not the best practice in a
production environment due to the ambiguity it has:

$ docker build -t my-java-app .

In conclusion, we can build a Docker image by using the docker build
command to a Dockerfile and a context. The context is all the files in a
certain path or URL. In this case, the docker build command will have
numerous flags available to offer extra options. This is crucial in tagging for
version control, history tracking, practices in deployment, collaboration,
and the ability to promote images between different stages of the
development pipeline.

Pushing and Running a Docker Image

In this section, we will learn about container management and discover
the art of efficiently pushing Docker images to registries like DockerHub
and seamlessly deploying them.

In the world of containerization for deployment, Docker images are
pushed to remote container registries. The concept of pushing a Docker
image is that we want to upload our locally built Docker image to a remote
image registry, that is, Docker Hub or private registry.

The following are some of the highlights of pushing an image to
registries like DockerHub with the help of docker push command:

1. Image distribution: It allows us to push our images
to distribute the Docker images in a remote location.
They have shared that making images available for
others’ use, developers, and systems is crucial for
collaboration and deployment on heterogeneous

environments.

53

CHAPTER 3 UP AND RUNNING WITH DOCKER

2. Centralized image storage: The Docker registries
form centralized repositories for the storage and
management of Docker images. When we push our
images to a registry, there is one source of truth
for the images that several teams and projects
can access.

3. Consistent deployments: Pushing images to
aregistry will ensure that the same image is
present throughout development environments,
through testing, and up to production. This greatly
minimizes risks that come from a lack of consistency
between different versions of the same image.

4. Share with others: Should we decide to share our
application with colleagues, clients, or the open
source community, pushing images to a public
registry—such as Docker Hub—allows other people
to pull and run our application quickly, without
building it on their machine.

5. Private registries: Organizations often use private
registries for the storage of proprietary or sensitive
images. By pushing images to a private registry,
access is restricted only to authorized users.

6. CI/CD pipelines: Whenever a new image is built,
it needs to be pushed to the container registry
using the CI/CD. Then the following stages of the
pipeline—testing or deployment—will be done
using that image.

54

CHAPTER 3 UP AND RUNNING WITH DOCKER

7. Version control: We store a history of versions
by pushing different versions of our images with
unique tags to the registry. This would enable rolling

back to a former version if necessary.

8. Scalability: For applications deployed on many
nodes, servers, or clusters, putting images into a
registry ensures all the instances have the same
image, resulting in better consistency of scaling and
efficiency.

9. Saves on deployment time: If we need to have more
than one instance of an application, we can save a
lot of time and resources just by pulling the image
from the registry instead of having to build them on
each instance.

10. Disaster recovery: In the case of data loss or
system failure, the application images will have
been pushed to a registry and can be restored in a
short time.

Now, we'll use the docker push command to push Docker image to
DockerHub:

$ docker push our-dockerhub-username/my-java-app:1.0

Here is an image illustrating the sequence of Docker commands.

55

CHAPTER 3 UP AND RUNNING WITH DOCKER

Developer Docker Host Docker Registry

1. docker build -t my-java-app:1.0 .

Image Built
e —
2. docker tag my-java-app:1.0 registry.example.com/my-java-app:1.0
Image Tagged
e ot i S D A e e SR S am S SR eSS S S
3. docker push registry.example.com/my-java-app:1.0
Pushing my-java-app:1.0
Image Pushed
Image Pushed Successfully
L@sssesssssassnansatisnsesesstusrTenesuate e s as e s e e e eSS e s seanaee Y
Developer Docker Host Docker Registry

Figure 3-3. Pushing a Docker image

Running a Docker Image

Running a Docker image is a straightforward process that allows
developers to execute their containerized applications quickly. So we just
finished our previous coding example for a simple Java application, by
successfully building the image, tagging it, and pushing the Docker image
to DockerHub. Now, let’s see how we can run that Docker image in the
form of a Docker container.

Open your terminal or command prompt and enter the following
command to download the Docker image from DockerHub:

$ docker pull our-dockerhub-username/my-java-app:1.0

Note Replace our-dockerhub-username with our actual
DockerHub username.

56

CHAPTER 3 UP AND RUNNING WITH DOCKER

With the image successfully pulled, we can now run it as a Docker
container:

$ docker run our-dockerhub-username/my-java-app:1.0

Instantly, we will see the containerized Java application in action,
with the console output displaying “Hello, Docker!” as it runs the Java
code from within the container. This way, everything related to the
application will be isolated from the host system so that dependencies or
configurations described by the Docker image are self-sufficient.

Running a Docker image allows developers to quickly test their
applications within a controlled environment, without fear of conflicting
dependencies or system-specific issues. This all means that development
and deployment are simplified with the guarantee of consistent behavior
across diverse platforms and environments.

Common Pitfalls

There are several things to watch out for, or common pitfalls when
developers are running a Docker image to achieve a smooth and trouble-
free experience.

¢ Port mapping: Make sure your port mapping is
accurate so we do not run into any inaccessible

applications.

¢ Volume mounting: Never forget to mount the volumes
that are required to prevent loss of data or unexpected
behaviors.

« Resource constraints: Define resource constraints,
such as for CPU and memory, for prevention from
performance erosion or resource contention.

57

CHAPTER 3 UP AND RUNNING WITH DOCKER

o Environment variables: Verify all relevant
environment variables to ensure they are appropriately
configured and would not cause any errors or
unexpected behavior.

« Sensitive information: Do not disclose sensitive data,
such as passwords or API keys.

o Host system interference: Manages the interaction
between applications running in containers and on
hosts to ensure no unintentional tampering or security
weaknesses.

» Image versioning: Always use a specific version of a
Docker image.

e Clean Up: Clean up stopped containers and unused
images regularly to free up disk space.

e Entrypoint and Cmd: Understand the difference
between ENTRYPOINT and CMD in a Dockerfile.

o Networking: Make sure the containers that need to talk
to each other are networked under the same network.

By going through the Docker documentation, confirming the
configuration, and proper testing of the container, one can ensure
areliable and efficient deployment of an application. A correctly
configured and thoroughly tested application goes a long way in ensuring
that potential issues do not jeopardize the reliability and efficiency of
containerized application deployment.

In simple words, to push a Docker image, developers have to use the
docker push command to transfer the locally built image to a remote
container registry. With only one command, docker run, one can easily
run a Docker image. It is easy to run a Docker image, but common pitfalls
should be taken care of, like incorrect port mapping or missing volume
mounting.

58

CHAPTER 3 UP AND RUNNING WITH DOCKER

Inspecting and Managing a Docker Image

In this section, you will learn how to debug an issue with a Docker
container. Explore different ways to manage a Docker image.

While Docker simplifies the creation and distribution of applications,
they have their own set of issues. Therefore, you need to inspect and manage
Docker images to ensure that applications are fit, secure, and reliable—just
like in traditional software development, due diligence is required. It acts
as a safety net against issues possibly escalating to the end users. Ensuring
Docker images are free from issues or probable problems is important.

Consider a real-world scenario: A company deployed a containerized
web application, but was unknown to them that the base image had a
known vulnerability. Attackers can exploit this to their advantage, and
this could result in a data breach or service disruption. If appropriate
inspection and analysis of the image have been done before deployment,
then these risks would be reduced.

Now, let us see how to inspect a Docker image for any underlying
issues using a simple Java application.

Step 1. Pull the docker image: The first step is to ensure we have the
latest version of the Docker image by pulling it from DockerHub:

$ docker pull our-dockerhub-username/my-java-app:1.0

Replace our-dockerhub-username with our actual DockerHub
username and 1.0 with the appropriate version tag.

Step 2. Run the docker container: Run the Docker container from the
pulled image to test its functionality:

$ docker run our-dockerhub-username/my-java-app:1.0

Check the container’s console output for any errors or unexpected
behavior. If the Java application prints “Hello, Docker!” as expected, it’s a
positive indication of a functioning image. However, issues may still exist,
especially when running more complex applications.

59

CHAPTER 3 UP AND RUNNING WITH DOCKER

Step 3. Inspect the container's filesystem: To investigate the
container’s filesystem, we can use Docker’s interactive mode:

$ docker run -it our-dockerhub-username/my-java-app:1.0 /
bin/bash

This command drops us into the container’s shell, allowing us to explore
its contents interactively. Here, we can verify the presence of all necessary
files, libraries, and configurations expected in our Java application.

Step 4. Check for environmental variables: If our Java application
relies on environment variables, ensure they are correctly set when
running the container. Use the following command to inspect the
environment variables:

$ docker inspect our-container-id | grep "Environment"

Replace our-container-id with the container’s ID or name. Verify that
all required environment variables are present and correctly defined.

Step 5. Verify networking and ports: If our Java application
communicates with other services or requires network access, ensure that
the necessary ports are correctly mapped:

$ docker ps

This command will display the ports the container exposes to the host
system. Verify that the required ports are correctly mapped and accessible.
Step 6. Analyze docker logs: Review the container’s logs to identify

any errors or issues:
$ docker logs our-container-id

Replace our-container-id with the container’s ID or name. Check for
any error messages or stack traces indicating underlying problems.

60

CHAPTER 3 UP AND RUNNING WITH DOCKER

Docker initiates a process within the container and gathers the output
streams from this process as logs. By default, Docker uses the json-file
driver, which writes these logs in JSON format to a file.

Here is an image illustrating the interaction between the application,
the output streams, and Docker.

Docker Container

Application Process

N

stdout stderr

Docker logs

Figure 3-4. Docker logging flow

Checking a Docker image for any issues is essential for smooth
deployments and reliable applications. Following these steps and using
Docker’s many tools for inspection, we can reliably identify and fix
potential problems in our Dockerized Java application. In this way, the
proactive approach of image inspection is going to spare our time and
effort in delivering high-quality, containerized applications that work
everywhere as expected. Happy Dockerizing!

61

CHAPTER 3 UP AND RUNNING WITH DOCKER

Managing a Docker Image

Management of Docker images comprises several activities that one needs
to do to handle the images efficiently in our containerized applications.
Here are a few ways that we can manage Docker images:

e Search image: The command docker search followed
by a keyword shall show the available images in any
registry.

e Delete images: This is done via the docker rmi
image name:tag command. We cannot delete an image
if there are running containers based on this image.
The -f flag forces removal.

¢ Cleanup unused images: Unused images can
accumulate over time. All dangling, or unused, images
are removed via docker image prune.

o Image history: See what makes up an image, that is,
layers, and see the commands used to build a given
image via docker history image name.

o Image pruning: The docker system prune removes all
unused images, containers, and networks. Note that it
removes all unused data.

« Image scanning: Docker security scanning is a feature
of Docker that enables us to discover vulnerabilities in
the components—software packages, libraries, etc.—of
our Docker images.

There are several operations that we can perform on Docker images to
manage them efficiently. These include searching for available images in
aregistry by using the docker search command, deleting images by using
the docker rmi command, removing unused images with docker image

62

CHAPTER 3 UP AND RUNNING WITH DOCKER

prune, checking an image’s history with the docker history command,
and lastly, docker system prune to remove all unused images, containers,
and networks. These are tasks that can help manage Docker images
effectively and aid the smooth functioning of containerized applications.

Summary

This chapter gives a comprehensive guide to understanding and working
with Docker, focusing on Dockerfiles and container management. It
introduces Dockerfiles as blueprints for building container images,
detailing key commands like FROM, RUN, CMD, COPY, and EXPOSE. Best
practices include optimizing image size, managing secrets, and using
multi-stage builds.

The chapter explains the image-building process, tagging strategies,
and steps for pushing, pulling, and running images. It talks about
debugging, image management, and commands to inspect and clean up
resources.

The chapter also highlights common mistakes such as wrong port
mapping, resource mismanagement, and security oversights and focuses
on scanning images and protection of sensitive data.

In the end, the chapter summarizes the benefits of using Docker, such
as having consistent environments, simplified distribution, scalability, and

resource usage.

63

CHAPTER 4

Learning Advanced
Docker Concepts

Discover how Docker containers communicate and explore various
Docker networking drivers. Learn how to enable data persistence with
containers using docker volumes. Know how to create, configure, and

manage multicontainer applications with Docker.

Exploring Docker’s Networking

Networking is about communication between processes, and Docker’s
networking functions similarly. Docker networking mainly involves
facilitating interaction between Docker containers and the external world
through the host machine on which the Docker daemon operates.

Docker supports diverse network types, each tailored for specific usage
scenarios. We'll delve into Docker’s supported network drivers in general,
accompanied by code examples.

Docker’s Networking vs. VM Networking

Docker’s networking diverges from networking in virtual machines (VMs)
or physical machines in several ways:

© Ashish Choudhary 2025 65
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_4

https://doi.org/10.1007/979-8-8688-1300-9_4#DOI

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Here’s the information presented in a tabular format.

Feature VMs Docker
Networking Supports flexible Primarily uses a bridge network;
Configurations configurations like NAT and host networking is mostly
host networking. supported on Linux.
Network Separate networking stack for Achieved via a network
Isolation each VM. namespace.
Scale of Hosts fewer processes per Handles numerous containers
Networking VM, simplifying networking on a single host, requiring robust
requirements. networking support.

Types of Docker Network Drivers

Docker simplifies container communication by creating a default bridge
network, sparing users from grappling with networking intricacies and
allowing them to concentrate on container creation and operation. While
this default bridge network suffices in most cases, alternatives exist.
Docker presents three primary network drivers out of the box:

e bridge
e host
. none

However, since these might only suit some context, we’ll also delve into
user-defined networks like overlay and macvlan. Let’s examine each in
more detail.

66

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Bridge Driver

This serves as the default driver. When we initiate Docker, a bridge network
is established, and all newly launched containers will automatically
connect to this default bridge network.

We can employ this when we want isolated containers to communicate
internally. Given the segregation of containers, the bridge network
effectively resolves port conflicts. It resolves port conflicts by providing
each container with its internal IP address within the bridge network’s
subnet. Containers within the same bridge network can interact, while
Docker utilizes iptables on the host machine to restrict access beyond
the bridge.

Following is an example describing how the bridge network driver
operates:

¢ Check available networks using the docker network

1s command.

e Launch two detached busybox (BusyBox a lightweight
container provides a single executable file that contains
many common Unix utilities, such as 1s, cat, and
echo, making it ideal for environments where storage
and resources are limited) containers, naming them
container1 and container2, using the docker
run -dit command.

Here, in -dit flag d is for detached mode, and it
ensures that bash or sh can be allocated to a pseudo-
terminal.

docker run -dit --name containeri busybox /bin/sh
docker run -dit --name container2 busybox /bin/sh

67

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

e Verify that the containers are up and running using the

docker ps.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

8a6464e82c4u busybox "/bin/sh"™ 6 seconds ago
Up 6 seconds container2

9bea14032749 busybox "/bin/sh" 28 seconds
ago Up 28 seconds container1

In Docker, the PORTS section in the output of docker ps
is empty when the containers are started with

the -d (detached) option and do not explicitly expose
or publish any ports.

o Confirm that the containers are connected to the
bridge network with the docker network inspect
bridge. Note down the IP addresses of both containers.

e Attach to containerl using docker attach command
and attempt to ping the container2 using its IP
address.

$ docker attach containeri

/ # whoami

root

/ # hostname -i

182.18.0.2

/ # ping 182.18.0.3

PING 182.18.0.3 (182.18.0.3): 56 data bytes

64 bytes from 182.18.0.3: seq=0 ttl=64 time=2.083 ms
64 bytes from 182.18.0.3: seq=1 ttl=64 time=0.144 ms

68

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

e Please remember that we don’t recommend using
the bridge driver for production scenarios. It is ideal
for single-host setups where all containers run on the
same Docker host.

o Communication between containers relies on IP
addresses rather than automatic service discovery for
translating IP addresses to container names.

o The bridge driver can also permit unrelated containers
to communicate, potentially posing a security hazard.

Host Driver

As the name implies, the host driver leverages the host machine’s
networking. This removes network isolation between the container and
the host machine where Docker operates.

$docker run --rm -d --network host --name my nginx nginx

--network host: Uses the host network, meaning the container shares
the host’s network namespace. The container will directly bind to the
host’s ports without Docker’s network isolation.

For example, the official Nginx image listens on port 80 by default;
when a container bound to port 80 employs host networking, the
container’s application is accessible on port 80 via the host’s IP address.
So in this case, If the host machine’s port 80 is not already in use, you can
access Nginx at http://localhost:80/.

This driver is Linux-specific and isn’t available on Docker desktop
installations. We can leverage it if we want to depend on the host
machine’s networking rather than Docker’s.

69

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

None Driver

This driver avoids attaching containers to any network. Containers
remain cut off from the external network and communication with other
containers.

This driver is helpful when we need to deactivate networking on a

container.

Overlay and macvlan Drivers

The overlay driver supports multi-host communication, often used in
environments like Docker Swarm or Kubernetes. It allows containers
across hosts to interact without intricate setups. It’s like a virtualized
distributed network superimposed on an existing computer network.
The macvlan driver connects Docker containers directly to the
host machine’s physical network. It assigns a unique MAC address to a
container, rendering it a virtual physical device on the network. This driver
is ideal for modernizing legacy apps requiring direct physical network
connection.
Here’s a simple image that provides an overview of Docker’s network
drivers and their primary purposes.

Figure 4-1. Overview of docker network drivers

70

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Basic Docker Networking Commands

Docker offers various commands for managing networks. We can list,
create, connect, disconnect, inspect, and remove Docker networks using
these commands.

Table 4-1. Docker networking commands

Command Description

docker network connect Connects a container to a network
docker network create Creates a new network

docker network disconnect Disconnects a container from a network
docker network inspect Displays detailed network information

To sum up, Docker’s three primary network drivers are bridge, host,
and none. The host driver leverages the host machine’s networking, while
the none driver cuts off containers from the external network. Then there
are user-defined networks like overlay and macvlan, which support multi-
host communication and are often used in environments like Docker

Swarm or Kubernetes.

Docker Volumes

Docker volumes play a pivotal role in efficiently managing data within
containers. First of all, let us understand what Docker volume is. A Docker
volume is just a directory that lives outside of a container’s file system,

yet it is available to the container. It allows data to persist even when

the container is halted or deleted. They enable persistent and shareable
data among containers, effectively separating application data from the

71

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

underlying infrastructure. Volumes provide a bridge through which data

can exist and survive independently of the containers using them. This

fundamental distinction offers several advantages:

o Persistence across container restarts: Containers are
temporary, with their data typically lost upon restart.
Docker Volumes address this challenge by persisting

data even as containers come and go.

o Isolation and portability: Volumes decouple data
from containers, enhancing isolation and simplifying
the sharing and transporting of data between different
environments.

o Data sharing: Containers can share data through
volumes, allowing multiple containers to access the
same dataset concurrently. It enables microservices
architectures and other scenarios where data must be
shared between containers.

Getting Started with Docker Volumes

Volumes are stored in a part of the host filesystem managed by Docker

(/var/1lib/docker/volumes/ on Linux by default).

Docker Host ——runs—{ Docker Engine

manages“

Docker Volume B —persists data on

manages—® Docker Container B —reads/writes data to

Figure 4-2. Docker volume flow

72

managesx>
Docker Volume A —persists data on
—>
t—bbocker Container A —reads/writes data to

Host File System

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

In this diagram:

o The Docker Engine runs on the Docker Host and
manages containers and volumes.

o Containers A and B represent Docker containers
running on the same Docker host.

¢« Docker Volume A and Docker Volume B are volumes
created by the Docker Engine.

e These volumes persist data on the Host File System,
independent of the life cycle of the containers.

e The containers read from and write data to these
volumes, ensuring data persistence and consistency.

Creating Docker Volumes

Creating Docker volumes is easy. Use the docker volume create command
followed by your desired volume name. For example, running docker
volume create mydata produces a volume named “mydata.” Volumes
may also be created at container-creation time using the -v flag.

Listing Available Volumes

Run the command docker volume 1s to see all volumes available on our
system. This will provide much-needed information about each volume
including its name, unique ID, and the driver used for management.

73

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Volume Inspection

To fully understand a Docker volume, explore its details with the docker
volume inspect command and append the name of your volume. It shows
comprehensive details about the configuration and how the volume is
stored in our host system.

Mounting Data Volumes

One of the most distinguishing features of Docker volumes is their ability
to be mounted in containers. This smooth interaction allows data to easily
pass between containers. When starting up a container, one ensures that
all the stored data in the volume is easily accessed.

$ docker run -d -v mydata:/app/data myapp

This command mounts the “mydata” volume to the “/app/data”
directory within the container named “myapp.”’

Copy Containers Data

Docker volumes facilitate the easy transfer of files and directories between
containers. Utilize the docker cp command to copy data from one
container to another without complications. It is very useful when one
wants to transfer specific data without exposing the entire volume.

Host Directories As Data Volumes

Besides creating and managing internal Docker volumes, we can also
include the host directories as volumes within the containers. This way
presents a convenient means to work on data that resides on the host

system while capitalizing on the containerized environment.

74

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Ownership and Permissions of Volumes

Understanding volume permissions and ownership plays a crucial role in
managing the data within containers. By default, data within a container
remains with the permissions it has in the volume directory. We can also
include user and group IDs with this to control the owner within the

container.

Deleting Docker Volumes

When volumes are no longer in use, docker volume rmand the name
of the volume make their deletion easier. However, this also includes
the deletion of the data stored in the volumes and should be exercised

with care.

Bulk Volume Deletion

In cases where more than one volume needs to be removed, the command
docker volume prune stepsin. This command deletes all volumes that are
unlinked from running and stopped containers.

The following diagram visually represents creating a Docker volume,
mounting it within a container, and using it to store and access data.
Following is the explanation in detail:

1. Create volume: A Docker volume is created on
the host system using the docker volume create
command or during container creation using
the -v flag.

2. Mount in container: The created Docker volume
is mounted within a container during its launch,
ensuring data sharing.

75

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

3. Access and store data: The container can access
and store data within the mounted Docker volume.
Multiple containers can share the same volume.

Host System

1. Create Volume

Docker Volume

2. Mount in Container

Container

3. Access and Store Data

Docker Volume

Figure 4-3. Docker volumes in action

In a nutshell, Docker volumes provide an effective means of managing
container data. It empowers the persistence of data, facilitates sharing,
and ensures effective communication between containers and the host
system. Equipped with the knowledge of creating, managing, and utilizing
volumes efficiently, we can amplify the versatility and efficiency of our
containerized applications.

76

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Docker Compose
Understanding Docker Compose

Docker Compose simplifies the management of multicontainer
applications, making it an excellent tool for Java developers. We can
seamlessly orchestrate complex setups by defining services, networks, and
volumes in a single file. Whether working on a Spring Boot application or
any Java project, Docker Compose enhances our development workflow.
With Docker Compose, Java developers can efficiently create, configure,
and manage multicontainer applications.

Docker Compose simplifies the management of multicontainer
applications by defining them in a single docker-compose.yml file. This file
can include services, networks, and volumes, making it a convenient tool
for orchestrating complex setups. Like the Dockerfile, this file should also
be placed at the root of our project repository.

Here’s a simple diagram illustrating the basic structure of a Docker

Compose file.

77

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Services

Docker Compose Confirguration File

Lol

Figure 4-4. Docker compose file components

Docker Compose File Components

In this diagram, each component is represented separately, showing its
relationship to the Docker Compose configuration:

e Services are the fundamental building blocks defining
the containers, their configurations, and their
interaction. A service is a definition for a containerized
application or a microservice within a Docker Compose

configuration.

o Docker Compose configuration file, that is, docker-
compose.yaml, connects three different components:
“Containers,” “Networks,” and “Volumes.” It serves
as a central configuration file that outlines how these
components are defined and how they interact.

78

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Setting Up Docker Compose

Obtaining Docker Compose in the most straightforward and advisable
manner involves installing Docker Desktop, a complete package
containing Docker Compose, Docker Engine, and Docker CLI—essential
components for Compose.

Docker Desktop is available on Linux, Mac, and Windows. If Docker
Desktop is already installed, finding the installed version of Compose can
be found by selecting “About Docker Desktop” from the whale icon on the
Docker menu.

d’ docker desktop

Version 4.17.0 (99724)

@ Engine: 20.10.23 E§ Compose: v2.15.1

B Credential Helper: v0.7.0 Kubernetes: v1.25.4

Release Notes Acknowledgments Docker Subscription Service Agreement

Figure 4-5. Verifying docker compose installation

We can also verify the installation by running the following command.

$ docker-compose --version

79

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Docker Compose in Action

Let’s understand how docker compose works.

o Defining services with docker compose: Services
in Docker Compose are equivalent to individual
containers. Define services in the docker-compose.yml
file under the services section. For a Java application,
we might define a service for the application and
another for the database.

Example of defining a Java application service:

version: '3’
services:
app:
build: .
ports:
- "8080:8080"
environment:
SPRING DATASOURCE URL: jdbc:mysql://db:3306/mydb
SPRING DATASOURCE USERNAME: user
SPRING DATASOURCE_PASSWORD: password
depends_on:
- db
db:
image: mysql:5.7
environment:
MYSQL _ROOT PASSWORD: root
MYSQL_DATABASE: mydb
MYSQL USER: user
MYSQL_PASSWORD: password

80

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Service for Java Application

Networking in docker compose: Docker Compose
automatically creates a network for our services,
allowing them to communicate using service names

as hostnames. This simplifies networking for Java
applications that need to connect to databases or other

services.

Managing dependencies and startup order: The
depends_on directive ensures that services start in the
correct order, helping Java applications that rely on
databases or other services.

Environment variables and secrets: Environment
variables can be set in the docker-compose.yml

file or separate .env files. This is useful for passing
configurations to Java applications without modifying
the source code.

Here in the following code under environment tag,
we have declared env variables for the Spring Boot
application:

version: '3’
services:
app:
build: .
ports:
- "8080:8080"
environment:
SPRING_DATASOURCE URL: jdbc:mysql://db:3306/mydb
SPRING_DATASOURCE_USERNAME: user
SPRING_DATASOURCE_PASSWORD: password

81

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Envrionment variables

o Scaling services: Scaling services is very easy with
Docker Compose. Define the desired scale for a service,
and Docker Compose will create and manage multiple
instances.

We can use the --scale flag to specify the number of

instances you want for a service:
$docker-compose up --scale web=3

If you are using Docker Swarm, the deploy.
replicas directive will specify the desired number
of instances, or replicas, for a service.

version: '3’

services:
app:
image: openjdk:17
...
deploy:
replicas: 3

Scaling Services using Docker Swarm

When using docker stack deploy and deploying a stack in Swarm
mode, Docker will create the number of replicas of the specified service.

$docker stack deploy -c docker-compose.yml mystack

This command uses the deploy.replicas setting to manage the scale
of the service.

82

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Docker Compose Support in Spring Boot

Spring Boot 3.1 has introduced an exciting feature: built-in support for
Docker Compose. This addition significantly simplifies the development
process for Spring Boot applications that rely on Docker for environment
setup. Before Spring Boot 3.1, using Docker Compose involved manually
running docker compose up to start services, followed by docker compose
down to stop them. This required developers to manage Docker Compose
separately and ensure their Spring Boot application’s configuration aligned
with the dynamically assigned ports and service settings.

With Spring Boot 3.1, this process is streamlined. Spring Boot can now
automatically detect a docker-compose.yaml file and manage the life cycle
of Docker Compose services directly. This means:

o Spring Boot runs docker compose up automatically
before connecting to services.

o Ifthe services are already running, Spring Boot uses
them as they are.

o Upon shutting down, the application docker compose
stop is executed, preventing lingering Docker
containers.

The integration builds on the ConnectionDetails abstraction. Spring
Boot automatically detects images started by Docker Compose and creates
ConnectionDetails beans pointing to these services. This eliminates the
need for manual configuration in many cases.

Moreover, support for Docker Compose has been integrated into
start.spring.io, accelerating your project setup process!

83

https://start.spring.io

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

e We can create a new project with the “Docker Compose
support” option.

docker compose| Press 38 for multiple adds

Docker Compose Support

o]
Provides docker compose support for enhanced development experience.

Figure 4-6. Add Docker Compose support dependency

e And including dependencies like the “PostgreSQL
driver,” you automatically receive a well-configured
compose.yaml file at no extra cost.

[.gitignore
[HELPmd
[build.gradle
D

» @ gradle

D settings.gradle

»@m src

Figure 4-7. Preconfigured compose.yaml

How amazing is that!

Integrating Docker Compose into Spring Boot is a significant step
in simplifying Spring Boot application development workflow. It allows
developers to focus more on building their applications and less on
configuring their development environment.

84

https://spring.io/blog/2023/06/21/docker-compose-support-in-spring-boot-3-1

CHAPTER 4 LEARNING ADVANCED DOCKER CONCEPTS

Summary

This chapter has covered advanced Docker concepts: networking,
volumes, and compose. We have examined network drivers like bridge,
host, none, and user-defined networks and also learned about basic
networking commands.

For Docker volumes, we learned how they can be used for persistence
and sharing between containers. This chapter showed how to create,
list, and inspect volumes, mount them, and manage permissions and
ownership; how to delete volumes was also shown.

We then covered Docker Compose, which manages multicontainer
applications. We also explained the structure of docker-compose.yml files
and topics such as defining services, networking, managing dependencies,
and scaling. The chapter concluded by providing an overview of Docker
Compose support in Spring Boot 3.1, which improves integration and
development workflows. Knowing these features will help in development
and deploying containerized applications.

In the next chapter, we will learn about various base images we can use
for containerizing Java applications.

85

CHAPTER 5

Containerizing
Java Applications
with Dockerfile

This chapter will take a much deeper look at containerizing Java
applications with Docker with a specific focus on Spring Boot. The key
topics will include selection of base image for a Dockerfile and brief intro
to buildpack for containerizing Spring Boot applications.

Understanding Base Images

A proper base image is crucial while working with Docker for Java
applications. A base image is referred to as the foundation on which
your application will be built. The base image holds the essential OS and
runtime environment that your application needs to run. Therefore, the
choice of a base image has a severe impact on many aspects, including
size, compatibility, security, and performance.

There are several essential considerations when selecting a base image
for your Java application. Let’s consider those and the options you have
when determining a good base image.

© Ashish Choudhary 2025 87
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_5

https://doi.org/10.1007/979-8-8688-1300-9_5#DOI

CHAPTER 5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

Figure 5-1. Java inside a docker container

Choosing JDK vs. JRE As the Base Image

When choosing a base image for your Java application, you can select
either JDK or JRE as your base image. Let’s explore the differences between
the two:

88

CHAPTER5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

Aspect JDK Base Image JRE Base Image

Includes Full Java development Only the runtime environment
environment, including is required to execute Java
compiler and tools required for applications.
development.

Use Case Suitable for building and Suitable for deploying
compiling Java applications Java applications without
within the Docker image. development tools.

Development Chosen during development Preferred for production
vs. Production or when code compilation is deployments due to reduced
required within the container. attack surface and smaller
image size.

Official OpenJDK Images

Images of official Open]JDK versions are also available from the likes of
Oracle. They can be good, safe, and well-maintained choices. Different
images exist in various versions and tags; you'll get to use the exact Java
version and JVM implementation your application requires.

For instance, if you're developing a Java 17 application, you can use the
following Dockerfile snippet: Images.

FROM openjdk:17-jdk

This line in the Dockerfile says it uses OpenJDK image as a base.
OpenJDK is an open source implementation of the Java Platform.

17-jdk indicates Java version 17, which is an LTS or a Long-Term
Support version for Java, and the image contains the complete Java
Development Kit, ready for compiling and building Java applications.

89

CHAPTER 5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

Eclipse Temurin Images

The Eclipse Temurin project provides a range of Docker images for
different Java versions and JVM implementations. These images are
community-supported and can be a good choice if you need specific
features or optimizations. For example, you can use AdoptOpen]JDK’s
images with Java 17:

FROM eclipse-temurin:17-jdk

Specifies the Eclipse Temurin project image as the base. Eclipse
Temurin provides high-quality, vendor-neutral builds of OpenJDK.

Alpine Linux Images

Alpine Linux is a slim distro mainly used to create small Docker images. If

you use Alpine Linux as your base image, your image size will significantly

reduce, making your application download and deploy much faster.
Here’s an example of using Alpine Linux with OpenJDK 17:

FROM eclipse-temurin:17-alpine

Eclipse Temurin provides builds of the OpenJDK. Here Alpine refers
to the Alpine Linux variant of the image. It is a lightweight distribution,
making the image smaller and more secure.

Distroless Base Images

Distroless is a Google project that creates minimal base images that favors
security and simplicity. The images don’t include the package managers
or shells that are traditionally part of a Linux distribution; therefore, they
are smaller and more secure. These images reduce the attack surface for
the applications. These images are even smaller than alpine linux images.

90

CHAPTER5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

The idea here is that you keep only the stuff relevant to your applications
and get rid of the bloat. Since they are small in size, it makes perfect sense
to use them for cloud use cases because in the cloud you are being charged
heavily for the computing resources.

Consider the following Distroless example for your Java application:

FROM gcr.io/distroless/java:17

Building Custom Base Images

Sometimes, you might need to create a custom base image tailored to your
application’s requirements. This can include adding specific libraries,
tools, or configurations your application depends on.

Here’s a simplified example of creating a custom base image with
additional dependencies:

FROM eclipse-temurin:17-jdk AS base

Add any common dependencies

FROM base AS build

COPY . /app

WORKDIR /app

RUN ./gradlew build

FROM base AS final

COPY --from=build /app/build/libs/my-app.jar /app.jar
CMD ["java", "-jar", "/app.jar"]

Multi-stage Builds for Optimization

Multi-stage builds help optimize your final image size by separating the
build and runtime environments. This reduces unnecessary dependencies
in the final image. Multi-stage Docker builds are ideal for creating smaller,
more secure images. This approach enhances reproducibility and reduces

image size.

91

CHAPTER 5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

Here, the idea is that we build application-specific artifacts in the first
stage of the build and then insert them into our final runtime image.

Here’s an example of a multi-stage Dockerfile for containerizing Spring
Boot applications:

FROM maven:3.9.4-eclipse-temurin-17 AS build

COPY . /app

WORKDIR /app

RUN mvn clean package

FROM eclipse-temurin:17-jre

COPY --from=build /app/target/my-app.jar /app.jar
CMD ["java", "-jar", "/app.jar"]

Security Considerations

Choose a base image as close as possible to the officially maintained
repositories, and keep updated as often as necessary in your CI/CD
pipeline so you will receive security patches and fixes. Explore scanning
your Docker images for vulnerabilities through tools like Clair or Trivy.
Clair is an open source static analysis tool for container images
that can parse image contents and report vulnerabilities affecting the
container images.
Trivy is another open source security scanner tool that can find
vulnerabilities and misconfigurations across:

e Code repositories
e Binary artifacts
o Container images

« Kubernetes clusters

92

CHAPTER5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

The correct choice of a base image is important while Dockerizing your
Java applications. Compatibility, size of the image, and security play a key
role in deciding a base image. With a clear understanding of base images
and alternatives such as Distroless, developers get well prepared to build
and deploy Java applications using Docker more effectively.

Containerizing and Running a Spring
Boot Application

Dockerizing a Spring Boot Application

There are many advantages of running your Spring Boot application in a
Docker container.

o First of all, developing in Docker is easy because it has
a user-friendly CLI-based workflow that lets anyone
develop, share, and run their containerized Spring
applications flawlessly.

o Second, Docker streamlines installation; developers
can use one package to deploy an application quickly.

o Last but not least, Docker ensures consistency between
the development and production environments;

developers can code and test locally.

Containerizing a Spring Boot application is straightforward. You
can achieve this by placing the . jar or .war file directly into a JDK base
image and then package it into a Docker image. While numerous online
resources are available to guide you through this process, many crucial
aspects, such as Docker image security, image size optimization, proper
tagging, and efficient build performance, often go unaddressed. This
lesson will address these common concerns and provide nine valuable tips
for containerizing your Spring Boot application.

93

CHAPTER 5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

Building a Simple Spring Boot Application

To illustrate the importance of addressing these concerns, let’s start by
building a basic “Hello World” Spring Boot application. To create this
application, we will begin by downloading a pre-initialized project using
Spring Initializr, generating a ZIP file, and following a few simple steps to
run the application.

Under the directory src/main/java/com/helloworld/, you can
modify the HelloWorldApplication. java file. This file will contain the
following code:

package com.example.helloworld;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.
SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@SpringBootApplication
public class HelloWorldApplication {
@RequestMapping("/")
public String home() {
return "Hello World!";
}
public static void main(String[] args) {
SpringApplication.run(HelloWorldApplication.
class, args);

94

https://start.spring.io/

CHAPTER5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

To package your compiled code into a distributable format, such as a
JAR, use the following commands:

$./mvnw package
$ java -jar target/*.jar

You should now be able to access the “Hello World” application at
http://localhost:8080 through your web browser or via curl.

$ curl localhost:8080
Hello World!

To Dockerize this application, you'll need a Dockerfile. A Dockerfile is
a text document that contains instructions for assembling a Docker image.
Each instruction corresponds to a layer in the Docker image. Typically,
developers use the following Dockerfile template:

FROM eclipse-temurin:17-jdk

ARG JAR FILE=target/*.jar

COPY ${JAR FILE} app.jar

EXPOSE 8080

ENTRYPOINT ["java", "-jar", "/app.jar"]

e The first line defines the base image.

o The ARG instruction specifies variables available to the
COPY instruction.

e The COPY instruction copies the JAR file from the target/
folder to the root of your Docker image.

¢ The EXPOSE instruction informs Docker about the
container’s network port.

o Finally, the ENTRYPOINT command configures the
container to run as an executable, equivalent to
running the java -jar target/*.jar command.

95

CHAPTER 5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE
Build the Docker image using the following command:

$ docker build -t spring-boot-helloworld .
Finally, run the container with docker run command.

$ docker run -p 8080:8080 -t spring-boot-helloworld

However, a limitation of this approach is that you must create a JAR
file on the host system using the . /mvnw package command, which
necessitates manual Java installation, configuration of the JAVA_HOME
environment variable, and Maven installation. The JDK must reside
outside the Docker container, adding complexity to the build environment.
We can automate the JAR file creation during the image’s build to
resolve this.

FROM eclipse-temurin:jdk-17
WORKDIR /app

COPY .mvn/ .mvn

COPY mvnw pom.xml ./

RUN ./mvnw dependency:go-offline

COPY src ./src
CMD ["./mvnw", "spring-boot:run"]

Containerizing Spring Boot Application
with Buildpack

Spring Boot 2.3 has come with an exciting new feature: buildpack support,
where we can use an effortlessly created Docker image instead of having
to craft our own Dockerfile and execute complex commands using docker
build from the command line. All that will now be required is a simple

command:

$ mvn spring-boot:build-image

96

CHAPTER 5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE
Likewise, for Gradle enthusiasts:
$./gradlew bootBuildImage

Itis important to note that these commands can only be executed
correctly when Docker is installed and running on our system. The build-
image goal greatly simplifies the process by completely automating the
creation and the rapid deployment of Docker images, so developers no
longer need to manually craft a Dockerfile or deal with especially complex
build commands. This process abstracts away a number of the underlying
complexities. It provides a cloud-like deployment experience comparable
to a few platforms such as Heroku or Cloud Foundry.

This approach further revolutionizes how to construct Docker images.
Rather than having to make the same change in multiple Dockerfiles
across different projects, we can craft or customize the image builder of
buildpacks for our use cases.

Apart from the obvious simplicity and improved developer experience,
buildpacks can significantly enhance efficiency. For instance, the
buildpacks approach naturally results in a layered Docker image, and it
takes advantage of the exploded version of the JAR file.

Summary

This chapter focuses on containerizing Spring Boot Java applications
using Docker. It starts by exploring base images, from which all Docker
containers begin: options are diverse, from an official Open]JDK image
down to very lightweight Alpine Linux versions.

Next, we learned about Dockerizing a simple “Hello World” Spring
Boot application: steps to wrap the application in a Docker container. You
also developed some understanding of advanced topics like multi-
stage builds and security recommendations for your Docker images using
Distroless images.

97

CHAPTER 5 CONTAINERIZING JAVA APPLICATIONS WITH DOCKERFILE

One very notable feature is buildpacks, which Spring Boot 2.3 now
offers. This will allow you to use Docker images without writing a single
Dockerfile: with just a simple command, you are good to go. That makes

the containerization process much easier.

98

CHAPTER 6

Working with
Container Builder
Tools for Java
Applications

This chapter will take a much deeper look at four main tools: Google Jib,
Fabric8 Docker Maven Plugin, Spotify’s Docker-Maven-Plugin, and Cloud-
Native Buildpacks. Each tool approaches Java application containerization
differently, from streamlining Docker image creation to integrating
seamlessly with Maven build processes.

Building Container Images
with the Google Jib

Understanding Jib

Google Jib is the Java containerizer developed by Google, and it’s actually
tailor-made for Java developers. What distinguishes Jib from others is
its simplicity. Google Jib simplifies creating a container image for Java

© Ashish Choudhary 2025 99
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_6

https://doi.org/10.1007/979-8-8688-1300-9_6#DOI

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

developers: abstracting away the complexities of Docker so that developers
can focus on their artifacts. Jib’s intelligent layering and use of distroless
images make the containerization process efficient and secure.

Following are some of the key features of Jib:

e Jib eliminates the need for developers to know about
Docker installation.

o Jib operates without a daemon.
e Jib doesn’t require a Dockerfile.

e Jib doesn’t engage with Docker’s complexities, such as
the docker build, tag, and push processes.

o With Jib to containerize your Java application, a Java
developer can add a Jib plugin to their chosen build
tool (Maven or Gradle), and that’s all that’s required.

» Jibintelligently divides your application into multiple
layers. When code changes occur, only the affected
layers are rebuilt, significantly reducing build times.

Jib accepts your application’s source code as input and generates a
container image for your application as output.

Source Code

l

Jib

l

Container Image

Figure 6-1.]ibin action

100

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Building with Jib

A Java application image is normally represented by one layer containing
the application JAR. However, Jib uses a special build approach, breaking
an application into multiple layers. This kind of splitting allows for
even more finely grained incremental builds. Thus, changing some
code rebuilds only those parts you have changed and does not involve
other parts of the application. These layers are placed, by default, over
an OpenJDK base image; otherwise, you can also configure a custom
base image.

In your pom.xmlfile, you can configure the Maven Jib plugin for Spring
Boot projects. Below is a sample configuration:

<project>
<build>
<plugins>
<plugin>
<groupId>com.google.cloud.tools</groupId>
<artifactId>jib-maven-plugin</artifactId>
<version>3.3.2</version>
<configuration>
<to>

</to>

</configuration>
</plugin>

</plugins>
</build>

</project>

101

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

With the Maven Jib plugin configured, building the container image is
as simple as running a Maven command:

mvn compile jib:build

This command compiles your project, constructs the Docker image,
and pushes it to the specified container registry.

For Gradle-based projects, you include the Jib Gradle plugin in your
build.gradle:

plugins {
id 'com.google.cloud.tools.jib" version '2.7.1'

}
jib.to.image = 'my-docker-id/my-app'

Use the following command to create and push an image with Gradle.

./gradlew jib

Understanding Jib Image Layering

Jib’s image layering strategy allows for fine-grained control over the
container image’s composition, promoting incremental builds and
efficient resource utilization during containerization.

Here’s a breakdown of the layers created by Jib:

1. Dependencies layer: This layer includes the
external modules and libraries used by the
application. This ensures that dependencies are
independent and cacheable separately and that
reusability in builds is enhanced.

102

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

2. Resources layer: In the resources layer, Jib includes
application resources like configuration files,
templates, and static assets. These resources can be
cached separately at the same time, thus reducing
redundancy while building.

3. Classes layer: This class layer has the actual
compiled classes of the application in Java. With
each change in the code, only this layer needs to be
rebuilt, which makes building a lot faster.

4. Snapshot dependencies layer: Jib dedicates an
exact layer for all those dependencies that are
occasionally changing or are the snapshots.

5. Custom layers: Additional directories, if any that are
provided by the developer, usually through config
may be turned into their layers.

This distinct layer separation helps Jib to optimize the build process
by breaking down the application into these distinct layers. With changes,
only the layers affected need to be rebuilt and pushed to the registry; other
layers are not affected, making quicker and more efficient container image
updates.

That helps to speed up the builds as well as how the resources get
used. It just makes sure that only the necessary parts are rebuilt and
pushed, which then keeps the size of container images themselves

minimal.

103

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

—> Dependencies

Classes

Resources

Snapshot

A

Custom

Figure 6-2. Jib image layers

Building Container Images with Fabric8
Docker Maven Plugin

Containers have now become the critical technology in modern software
development and deployment; they ensure consistency, portability,

and scalability for different applications across different environments.
Again as we know Docker is the de facto standard in containerization and
together with Maven provides a very smooth development workflow. This
section will explore how to work with the Fabric8 Docker Maven Plugin; a
solid tool invented for easy building and management of Docker images
with our Maven projects.

104

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

The Fabric8 Docker Maven plugin is an open source Maven plugin
to tightly integrate Docker image creation within our own Maven build
process. It falls under a variety of tools by Fabric8, aimed at making
Kubernetes and OpenShift easy to use by developers.

Understanding Fabric8 Docker Maven Plugin

This plugin enables developers to specify Docker image configurations
directly within the Maven POM, or Project Object Model file for their
project, and further build the Docker image easily.

Image Definitiol Build Image
Tagging Tag Image
Pushing Push Image to Registry

Figure 6-3. Image build process with fabric8 docker maven plugin

Maven Project -pom.xml Fabric8 Docker Maven Plugin

Plugin Configurations

Benefits of Fabric8 Docker Maven Plugin

o [Easysetup: The plugin allows us to maintain the
Docker image configurations within our pom.xml
rather than maintaining it separately in a Docker file.

o Seamless integration: It integrates Docker image
creation into the Maven build process and so
containerization becomes a smooth part of our
development workflow.

¢ Consistent builds: With Maven, we ensure that the
Docker images are created and versioned consistently
with the Java applications.

105

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

» Efficient development: The plugin efficiently
streamlines building and managing Docker images
with huge savings of time and development efforts.

e Docker registry support: We can easily push our
images to Docker registries for distribution and
deployment.

e Community support: Being part of the Fabric8
ecosystem, we can get active community support in the
form of continuous updates and support.

Setting Up Fabric8 Docker Maven Plugin

To get started with the Fabric8 Docker Maven Plugin, we need to include it
in our project’s pom.xml file. Here’s how we can do it:

<plugin>
<groupld>io.fabric8</groupId>
<artifactId>docker-maven-plugin</artifactId>
<version>[LATEST VERSION]</version>
<configuration>

<!-- Plugin configuration goes here -->

</configuration>

</plugin>

In this example, we've added the Fabric8 Docker Maven Plugin to the
build section of the pom.xml file. It specifies the plugin’s group ID, artifact
ID, and version, which should match the latest version available during
our project setup.

Defining Docker image configuration: The Fabric8 Docker Maven
Plugin allows us to define Docker image configurations directly in our pom.
xml. We can specify the base image, exposed ports, environment variables,
etc. Below is a simplified example:

106

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

<configuration>
<images>

</images>
</configuration>

In this configuration, we define an image with the alias my-app-image
and the name my-app. The base image is set to openjdk:11-jre-slim,
representing a minimalistic Java 11 runtime environment. We expose port
8080 to allow incoming connections. An environment variable SPRING
PROFILES ACTIVE is setto production.

107

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Building docker image: With the Fabric8 Docker Maven Plugin
configured, we can now build Docker images as part of our Maven build
process. Run the following command:

mvn package docker:build

This command triggers the docker-maven-plugin during the install
phase of our project’s build life cycle. The plugin reads our defined
configuration pom.xml and builds the specified Docker image accordingly.

Pushing docker image: The Fabric8 Docker Maven Plugin offers
advanced features like tagging and pushing images to a registry,
among others.

e To push the image to a Docker registry, specify the
registry details. The registry element can be omitted if
you're pushing to Docker Hub. For a custom registry,
define its URL. It's recommended to define your
registry credentials in the Maven settings.xml file
rather than in pom. xml for security reasons.

For example, pom. xml is typically part of the source
code, and there is a risk of committing it to the version
control system, making it difficult to remove from the
commit history. This is a classic case of credential
leakage.

In your settings.xml:

<servers>
<server>
<id>your.registry.com</id> <!-- Use Docker Hub
ID or your custom registry's ID -->
<username>yourusername</username>
<password>yourpassword</password>
</server>
</servers>

108

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Then, in your pom.xmlReference the server ID:

<push>
<registry>your.registry.com</registry>
<serverId>your.registry.com</serverId>
<!-- Matches the ID in settings.xml -->
</push>

Here’s an example of how to tag and push an image:

<configuration>
<images>

</images>
</configuration>

To define our image with the desired tag, we can

use Maven properties like ${project.version} for
dynamic tagging based on our project’s version. This
allows us to tag our image with a particular version or
label and push it to a Docker registry for distribution.

To push the image, we can usemvn docker:push
maven command.
109

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

The Fabric8 Docker Maven Plugin simplifies Docker image creation
and management in Maven projects. With this integration and easy-to-
configure options, it empowers developers to adopt containerization
without all the complexity involved with Dockerfiles. So this plugin gets
incorporated into our process to make efficient building and management
of Docker images possible, and our applications would always be

consistent and portable on containerized environments.

Building Container Images with Spotify’s
Docker-Maven-Plugin

While Docker provides a powerful set of commands and features for
creating and managing containers, it can be challenging to integrate these
tasks seamlessly into the software development process. This is where
tools like Spotify’s Docker-Maven-Plugin come into play, as it simplifies
the build process of Java applications. This plugin seamlessly integrates
Docker into your Maven build process, making it easier than ever to
package your Java applications into Docker containers.

This lesson will explore the Dockerfile-Maven plugin and demonstrate
how it can streamline your Java application builds.

Understanding Spotify’s Docker-Maven-Plugin

The Docker-Maven-Plugin for Spotify is an open source tool aimed

to simplify the process of containerizing the Java application for you,
particularly when you have the build automation tool Apache Maven. The
Dockerfile-Maven plugin packs the Java application into the container
easily and simply by integrating Docker directly into the Maven build
process so that building and maintaining containers becomes easier,
particularly based on a manually created Dockerfile.

110

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Key advantages of the Dockerfile-Maven plugin:

Streamlined containerization: The Dockerfile-Maven
plugin seamlessly integrates Docker into the Maven
build process, simplifying the process of creating
Docker containers for your Java applications.

Manual Dockerfile utilization: While it doesn’t
generate Dockerfiles, the plugin allows you to use your
manually created Dockerfile, giving you full control
over container configuration and dependencies.

Efficient Docker image builds: With a simple
Maven command, you can efficiently build Docker
images, ensuring consistency and reliability in your

containerization process.

Saves development time: By automating Docker image
creation within your build process, the plugin reduces
the need for manual intervention, saving development

time and effort.

Integration with Maven ecosystem: Dockerfile-Maven
seamlessly integrates with the Maven ecosystem,
making it a natural choice for Java developers already
using Maven for their projects.

mvn package # Builds Docker image
mvn deploy # Pushes the Docker image

Customizable configuration: You have the flexibility to
customize the Docker image configuration within your
project’s pom.xml to match your specific application

requirements.

111

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Getting Started

Using Spotify’s Docker-Maven-Plugin is straightforward:

1.

112

Add the plugin: In your project’s pom.xml, add
the Docker-Maven-Plugin as a build plugin.
Specify the image name and any other necessary
configurations.

<plugin>
<groupId>com.spotify</groupIld>
<artifactId>dockerfile-maven-plugin</artifactId>
<version>${dockerfile-maven-version}</version>
<executions>
<execution>
<id>default</id>
<goals>
<goal>build</goal>
<goal>push</goal>
</goals>
</execution>
</executions>
<configuration>
<repository>spotify/foobar</repository>
<tag>${project.version}</tag>
<buildArgs>
<JAR_FILE>${project.build.finalName}.jar
</JAR_FILE>
</buildArgs>
</configuration>
</plugin>

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Let’s break down the important part of this code

snippet:

<executions>: This block defines a list of
executions for the plugin. In this case, there is one
execution defined.

<execution>: Specifies an execution within the
plugin. It can have an <id> and a list of <goals>.

<id>: An optional identifier for the execution. In
this case, it’s named default.

<goals>: Lists the goals that will be executed within
this execution. Here, two goals build and push are
specified.

<configuration>: This block contains
configuration settings specific to the
dockerfile-maven-

plugin.<repository>: Specifies the name of the
Docker image repository. In this example, it’s set to
spotify/foobarthe repository’s name where the
Docker image will be stored.

<tag>: Sets the tag for the Docker image. It uses the
Maven variable ${project.version} to set the tag
to the project’s version dynamically.

<buildArgs>: Allows you to specify build
arguments for the Docker image. In this case, it sets
the JAR_FILE build argument to ${project.build.
finalName}.jar, which likely represents the name
of the JAR file to include in the image.

113

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Overall, this configuration instructs the dockerfile-maven-
plugin to build a Docker image using the specified Dockerfile,
tag it with the project’s version, and push it to the spotify/
foobar Docker image repository.

2. Build the image: Run a Maven build command,
such asmvn package. The plugin will automatically
create a Docker image of your application during
the build process.

3. Push to registry: Using the mvn deploy command,

you can push the generated Docker image to a
container registry like Docker Hub or Google
Container Registry. This is typically done as part of a

mvn package

>

CI/CD pipeline for production deployment.

mvn deploy o
push to image repository o o

Figure 6-4. Image build process with Spotify docker maven plugin

114

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Building Container Images
with Cloud-Native Buildpacks

Understanding Buildpacks

Autoconfiguration revolutionized Spring. We've relied on Spring Boot’s
defaults to simplify configuration and boost productivity. Spring Boot
autoconfiguration is a feature that facilitates the configuration of Spring
applications. It's designed to minimize the manual configuration required
by automatically configuring beans, settings, and components based on
the dependencies in our project.

Source Code —®{ Spring Boot Autoconfiguration —{ Application

Figure 6-5. Spring Boot autoconfiguration

For example, when you add a dependency such as spring-boot-
starter-data-jpa to your Spring Boot project, the framework recognizes
the existence of classes related to JPA in the classpath and enables the
relevant autoconfiguration classes like JpaRepositoriesAutoConfiguration
and DataSourceAutoConfiguration. These classes automatically
configure some beans like DataSource, EntityManagerFactory, and
TransactionManager if they are not defined elsewhere. This process is
controlled by external configuration properties, for example, spring.
datasource.url, which developers can use to customize the setup. This
flow streamlines the setup of complex components by applying sensible
defaults but leaving room for customization.

Although these defaults usually function effectively, many view
them as magical. Once we’ve developed our application, what about
containerization? Crafting a Dockerfile that adheres to best practices
for optimal containers (minimizing layers, leveraging build caches) can

115

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

consume significant time, which may not be ideal for developers. Enter
Cloud-Native Buildpack. CNB, like Spring’s autoconfiguration, simplifies
container management to mirror the simplicity Spring Boot brings to our
application.

Source Code —»| Cloud Native Buildpack —® Container

Figure 6-6. Spring Boot buildpack

The primary role of a buildpack is to collect all the essential
components required for building and running our application. They
usually operate in the background and convert our source code into a
runnable application image without using Dockerfile.

Starting with Spring Boot 2.3, it uses buildpacks to generate top-tier
OCI containers with effortless configuration hassle. There is no need to
fret about layers, security, JVM memory calculations, or more. Create our

containerized application with a single command.

Cloud-Native Buildpacks Features

Cloud-Native Buildpacks (CNBs) offer several features and capabilities for
building and packaging containerized applications. Here are some of the
key features supported by Cloud Native Buildpacks:

Dependency management: CNBs can
automatically detect and manage application
dependencies, such as language runtimes, libraries,
and packages. They ensure that the required
dependencies are included in the application

container.

116

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Layered build: CNBs follow a layered approach to
build containers. This means they create separate
layers for different application parts, allowing for
efficient caching and reusability during the build
process.

Reproducible builds: CNBs focus on hermetic
reproducible builds. This ensures that the same
source code and same dependencies lead to
identical container images, which is highly critical in
reliability and security purposes.

Build cache: CNBs utilize a build cache in which
layers that are built can be cached. This allows a
cached layer to be reused as much as possible so
that the build is not rebuilding everything.

Customizable builders: CNBs provide the flexibility
to create custom builders tailored to specific
application types or organization requirements.
Custom builders can include additional buildpacks

and configurations.

Life Cycle phases: The CNB build process consists
of different life cycle phases, which include
detection, analysis, build, and export. All these

life cycle phases can be extended or customized
depending on the use case.

Security scanning: CNBs often integrate with
security scanning tools to identify and address
vulnerabilities in application dependencies,
enhancing the security of the resulting
container images.

117

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Environment variable injection: CNBs can
inject environment variables into the application
container, making it easy to configure runtime

settings or connect to external services.

Multi-platform support: CNBs support building
container images for multiple platforms and
architectures, making it easier to create images
that can run on different cloud providers and
device types.

Compatibility: CNBs are compatible with various
container runtimes and orchestrators, such as
Docker, Kubernetes, and Cloud Foundry, making
them versatile for different deployment scenarios.

Continuous integration (CI): CNBs can be
integrated into CI/CD pipelines to automate
containerization, ensuring that applications are
consistently built and packaged. For example,
buildpacks project offers a collection of GitHub
actions for different buildpack-related activities.
One of these actions allows us to configure a job
prepared with the pack CLI. It’s a straightforward

process, and we can use this action with ease:

uses: buildpacks/github-actions/setup-pack@v4.1.0

Configuring Buildpack

Spring Boot 2.3.0.M1 introduces native buildpack support for both Maven
and Gradle. This simplifies the process of generating a Docker image for
our application.

118

https://github.com/buildpacks/github-actions
https://github.com/buildpacks/github-actions

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

First, ensure we have a local Docker installed and
running. Spring Boot buildpack integration needs a
running Docker daemon. Otherwise, we get an error:

Failed to execute goal org.springframework.boot:
spring-boot-maven-plugin:2.4.2:build-image (default-
cli) on project imagebuilder: Execution default-

cli of goal org.springframework.boot:spring-boot-
maven-plugin:2.4.2:build-image failed: Connection to
the Docker daemon at 'localhost' failed with error
"[61] Connection refused"; ensure the Docker daemon is
running and accessible

It differs from Jib in this aspect, where we don’t need a
docker daemon for building container images.

Next, create a new Spring Boot project using start.

spring.io.

For Maven, we can use the command, and for Gradle,
it'sgradle bootBuildImage. We can swiftly create a
well-configured image and store it in our local Docker
daemon with a single command. It will take a little time
to run the first time around, but subsequent calls will
be quicker. We should see something like this in the
build log:

[INFO] Successfully built image 'docker.io/library/
buildpack:0.0.1-SNAPSHOT'

[INFO]

[INFO] === == o mmm s s m o d oo
[INFO] BUILD SUCCESS

[INFO] == === oo mm o s oo
[INFO] Total time: 01:49 min

[INFO] Finished at: 2021-02-20T01:07:08+05:30

119

http://start.spring.io
http://start.spring.io

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

e We now have an OCI-compliant container image of our
application that:

1. Includes necessary middleware like the JRE.

2. Has specific customizations based on our
application framework (Spring Boot).

3. Itwas created in a disposable build container,
provided only with the application source code.

4. Itis secure by default, running as a non-root
user with minimal packages installed.

5. TItwill be named after our application and tagged
with its version.

e Finally, run:
docker run --rm -p 8080:8080 imageName

And check the output using http://localhost:8080/.

o By default, Buildpacks store the image on the local
Docker daemon when used with Spring Boot.
Nevertheless, we can also push our images to a
remote container registry. We will need to make
specific adjustments in our Maven file to enable this

functionality.
<project>
<build>
<plugins>
<plugin>

<groupld>org.springframework.boot
</groupld>
<artifactId>spring-boot-maven-plugin
</artifactId>

120

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

<configuration>

<docker>
<publishRegistry>
<username>user</username>
<password>secret</password>
<url>https://docker.example.

com/v1/</url>
<email>user@example.
com</email>
</publishRegistry>
</docker>
</configuration>
</plugin>
</plugins>
</build>
</project>

Summary

This chapter explores container builder tools for Java applications,

focusing on Spring Boot. It covers Google Jib, Fabric8 Docker Maven

Plugin, Spotify’s Docker-Maven-Plugin, and Cloud-Native Buildpacks. All

of these tools provide different means through which Java applications

are containerized, ranging from creating a Docker image without

121

CHAPTER6 WORKING WITH CONTAINER BUILDER TOOLS FOR JAVA APPLICATIONS

Dockerfile using Jib and buildpack and integrating Docker image build
into the Maven build process. The chapter provides practical examples,
configuration details, and insights into the benefits of each tool. It aims to
help developers choose the right containerization method for their Java
projects.

122

CHAPTER 7

Deploying Docker
Containers Using
GitHub Actions

Containerization is now a cornerstone in application deployment
strategies to run the software in light, consistent, and scalable ways.
Docker for Java applications makes it possible for them to run anywhere,
irrespective of differences between the underlying systems. With GitHub
Actions, developers can automate the building, testing, and deployment of
containers.

Understanding Github Actions

GitHub Actions is an automation tool that allows us to run workflows
based on events such as a push to a repository. GitHub Actions changed
the face of CI/CD. It makes CI/CD easier for a Java developer by allowing
automation right from their GitHub repositories: it builds, tests, and
deploys automatically without human intervention. GitHub Actions can
automate any type of software workflow. This simply runs a sequence

of commands following particular events on a GitHub repository: push,
creating a pull request, or similar actions.

© Ashish Choudhary 2025 123
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_7

https://doi.org/10.1007/979-8-8688-1300-9_7#DOI

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Here are some key features of GitHub Actions:

* Workflow automation: We can automate our build,
test, and deploy workflows using actions defined in
YAML files within our repository.

o Events trigger: Workflows can be triggered by GitHub
events such as push and pull requests, issues created,
releases, or any other event in the GitHub webhooks
payload.

« Reusable components: Actions can be created and
shared as individual tasks, which others can use in their
workflows.

e Marketplace: GitHub Marketplace provides a
community of shared actions that can be used to
automate all sorts of processes.

o Language and platform support: Actions support
various programming languages and platforms, making
them versatile for different projects.

e Hosted runners: GitHub provides hosted runners
for Linux, Windows, and macOS, allowing you to run
workflows on fresh virtual machines.

¢ Self-hosted runners: For custom environments or
specific hardware requirements, we can also host our

runners.

e Matrix builds: We can test across multiple operating
systems, versions, or environments by defining a matrix

of different configurations.

e Secrets management: We can store and use secrets,
like API keys or credentials, securely in our workflows.

124

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

e Artifacts and raches: We can upload artifacts from our
workflows or cache dependencies to speed up the build
process.

\PLShCode ‘

v
‘ GitHub Actions |

N

Build ’ Test ‘ \ Deploy]

Figure 7-1. GitHub Actions

GitHub Action Components

Let’s break down the critical elements of GitHub Actions:

o Workflow: It’s a set of instructions to compile, test,
package, or deploy code on GitHub. Defined in a
YAML file within the .github/workflows folder of our
repository, a workflow activates through specific events
and comprises jobs.

» Events: These are the triggers for workflows. Any
activity, like a push to a branch or a new pull request,
can initiate the workflow.

e Jobs: Ajobis a sequence of steps that run in a virtual
environment called a runner. Jobs organize the
sequence of actions and can operate simultaneously or
one after the other.

o Steps: Each step in a job corresponds to a single
action, such as retrieving the code or executing a shell
command.

125

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

e Actions: Actions are predefined commands you can
run during steps, like pulling your code repository or
setting up a Java Development Kit.

e Runners: These are servers where we run workflows.
GitHub provides these runners, or we can set up our
own. They carry out the jobs and report the outcomes
to your GitHub repository. GitHub’s runners are
compatible with Ubuntu Linux, Windows, and macOS.

Understanding Workflow Yaml File

The diagram below outlines the relationship between a GitHub repository,
workflows, and GitHub Actions.

GitHub Repository
’ Git Push Event |

Triggers
Worjlow
‘ Workflow YAML File |

Defines

GitHubgactions

‘ Workflow ‘

Contains Contains

Job 1 Job 2
Consists of Consists of Consists of
’Step et Step 1.2 Step 2.1 |

Uses

7actionsii
Figure 7-2. GitHub yaml workflow

126

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Here’s a step-by-step explanation:

GitHub repository:[Git Push Event]: This is the
starting point of the workflow. A Git push event occurs
when someone pushes commits to a repository on

GitHub. This event can trigger a workflow.

Workflow: [Workflow YAML File]: This file, typically
named main.yml or ci.yml, islocated in the .github/
workflows directory of your repository. It defines

the workflow to be executed when the Git push

event occurs.

GitHub actions: [Workflow]: This is the overall
automated process defined by the workflow YAML file.

It contains one or more jobs.

[Job 1] and [Job 2]: These are individual jobs within
the workflow. Jobs are steps that execute on the same
runner, which can run in parallel or sequentially as

defined by the workflow.

[Step 1.1] and [Step 1.2]: These are steps within
Job 1. Steps are individual tasks that can run
commands or actions.

[Step 2.1]: Thisis a step within Job 2. Like the steps

in Job 1, it can run commands or actions.

[actions]: This represents actions used in steps.
GitHub Actions can use pre-built actions created by the

community or custom ones defined in your repository.

127

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

The diagram’s arrows show the direction of the workflow:

ITriggersl: The Git push event triggers the workflow
defined in the workflow YAML file.

IDefinesl: The workflow YAML file represents the
actual workflow process.

[Containsl: The workflow contains Job 1 and Job 2.

IConsists ofl: Job 1 consists of Step 1.1and
Step 1.2.

IlUses I:Step 2.1 Ituses one or more actions to
perform its tasks.

The above diagram shows how a Git push event triggers a defined
workflow in the repository, which then controls the execution of jobs and
steps through actions within the GitHub Actions environment.

Building Java Application Using
Github Actions

Setting Up a Java Project

Let’s discuss how to create a Java application build pipeline using GitHub
Actions. Before we begin with GitHub Actions, make sure you have a Java
project on GitHub. For this example, we will use a simple Java application
built with Maven.

First, you need to define the workflow. Workflows are custom
automated processes we set up in your repository to build, test, package, or
deploy any code project on GitHub.

1. In our GitHub repository, navigate to the Actions
tab. Click Java with Maven template or set up a
workflow yourself.

128

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Code () Issues [Pullrequests () Actions [f] Projects [I] Wiki () Security [~ Insights & Settings

Get started with GitHub Actions

r code. Make code reviews, branc

nt, and issue t

Q sea

Suggested for this repository

9 Publish Java Package with
run, or push to a

Figure 7-3. Setting up actions

2. This opens the workflow editor. Here, we write our
build steps.

This workflow will build a Java project with Maven,
and cache/restore any dependencies to improve the
workflow execution time
name: Java CI with Maven
on:
push:
branches: ["main"]
pull request:
branches: ["main"]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up IDK 17
uses: actions/setup-java@v3

129

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

with:
java-version: '17'
distribution: 'temurin'
cache: maven
- name: Build with Maven
run: mvn -B package --file pom.xml

Workflow file

3. Testingis a crucial aspect of the CI process. We
should incorporate tests in our workflow to ensure
code quality

- name: Test with Maven
run: mvn test

This step runs after the build and executes all unit
tests in the project.

4. Building and testing can be time-consuming,
primarily due to dependencies. To speed up the
process, cache the dependencies:

- name: Cache Maven packages
uses: actions/cache@v2
with:
path: ~/.m2
key: ${{ runner.os }}-m2-${{ hashFiles
("**/pom.xml') }}
restore-keys: ${{ runner.os }}-m2

This caches the Maven packages, reducing the need
to fetch them for every build.

130

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

5. Commit changes. This will trigger the workflow.

Cancel changes Commit changes...

Figure 7-4. Committing changes

6. Workflow completed.

Workflow file

Figure 7-5. Workflow completion

Remember, although the guide describes a minimal Java application
with Maven, there is still a lot of flexibility within GitHub Actions. Tailor
the instructions to the requirements of different build tools or deployment
targets. Then take full advantage of the power of automation for your Java
projects.

131

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Containerizing Java Application Using
Docker GitHub Action

Let us go through the steps to containerize a Java application using GitHub
Actions and Docker.

Understanding the Process

This process starts with a Dockerfile for the Java application, defining the
environment and instructions to build a container image. Lastly, GitHub
Actions workflows are defined to automate the execution of this process
every time any change is pushed to the repository.

GitHub Actions —Build Docker Image—% Docker Image Built [r—Push to DockerHub DockerHub

Figure 7-6. GitHub Action docker flow

Writing a Dockerfile

A Dockerfile is a script with various commands to create a Docker image.
For a Java application, a typical Dockerfile might look something like this:

Use a base IDK image from Docker Hub

FROM openjdk:17-jdk

Set the working directory inside the container
WORKDIR /app

Copy the Maven build file and source code

COPY pom.xml .

COPY src /app/src

Build the application

RUN mvn clean package

Expose the port the application runs on

132

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

EXPOSE 8080
Run the jar file
CMD ["java", "-jar", "target/myapp-1.0-SNAPSHOT.jar"]

Setting Up Github Actions

GitHub Actions is an automation tool that allows us to run workflows
based on events such as a push to a repository. Adding GitHub Actions to
our Java application requires creating the directory .github/workflows in
our repository and placing within it a YAML file describing our workflow:

name: Java CI with Docker

on:
push:
branches: [main]
jobs:
build:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v2
- name: Set up JDK 17
uses: actions/setup-java@v2
with:
java-version: '17'
distribution: 'adopt'

- name: Build with Maven
run: mvn clean install

- name: Build Docker Image
run: docker build -t my-java-app .

133

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

- name: Push Docker Image to Registry
run: |
echo ${{ secrets.DOCKER HUB PASSWORD }} | docker login
-u ${{ secrets.DOCKER _HUB USERNAME }} --password-stdin
docker tag my-java-app ${{ secrets.DOCKER _HUB_ USERNAME
}}/my-java-app:latest

GitHub action docker workflow yaml file
This workflow does the following:
Checkout code: Grabs the latest code from the main branch.

- uses: actions/checkout@v2
Set up jdk: Configures the JDK for the runner environment.

- name: Set up JIDK 17
uses: actions/setup-java@v2
with:
java-version: '17'
distribution: 'adopt'

Build with maven: Compiles the Java application and runs any tests.

- name: Build with Maven
run: mvn clean install

Build docker image: Constructs the Docker image using the
Dockerfile.

- name: Build Docker Image
run: docker build -t my-java-app .

Push to docker registry: After the image is successfully created, it’s
tagged and then pushed to Docker Hub.

134

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

- name: Push Docker Image to Registry
run: |

echo ${{ secrets.DOCKER HUB PASSWORD }} | docker login
-u ${{ secrets.DOCKER _HUB USERNAME }} --password-stdin
docker tag my-java-app ${{ secrets.DOCKER _HUB_ USERNAME
}}/my-java-app:latest
docker push ${{ secrets.DOCKER _HUB_USERNAME }}/my-java-
app:latest

The ${{ secrets.DOCKER HUB_USERNAME }} and ${{ secrets.
DOCKER_HUB_PASSWORD }} are GitHub secrets that you set in your
repository settings for secure authentication to the Docker registry.

By containerizing your Java application using GitHub Actions and
Docker, you automate your build and deployment process, which
enhances productivity and reduces the chance of human error. This CI/
CD approach ensures our development team can focus on what they do
best—writing code not worrying about deployment intricacies. Moreover,
the portability of Docker ensures that the Java application can be run on
any machine without the “it works on my machine” syndrome.

Deploying Java Application to GCP Using
GitHub Action

In simple terms, CI/CD automation essentially bridges your code
repository to a live production environment. For Java developers,
application deployment to Google Cloud Platform (GCP) just got easier
using GitHub Actions and Docker. Prior knowledge of GCP is required to
proceed further.

135

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Understanding the Workflow

Before we dive into the deployment process, let’s understand the workflow:

e Code commit: Developers push code to a GitHub
repository.

e GitHub Actions trigger: A push event triggers the
GitHub Actions workflow.

¢ Build: GitHub Actions executes a workflow that builds
a Docker image.

o Push to container registry: The Docker image is
pushed to the Google Container Registry (GCR).

o Deploy to GCP: The image in GCR is then deployed to
a GCP service like Google Kubernetes Engine (GKE) or
Google Cloud run.

Here is a diagram representing CI/CD flow with Docker, GitHub
Actions, and GCP.

136

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Push to Main Branch

GitHub Actions

Checkout Code

v

Set Up Docker

v v
‘ Build Docker Image ‘ ‘ Set Up GCP SDK

Push to Registry

Google Container Registry

v
Deploy to Google Cloud Run

Check Deployment

Success Failure

’ Application Running on GCP l I Rollback to Previous Version

Figure 7-7. GitHub Actions with GCP

137

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Setting Up the Workflow

To configure this workflow:

1. To deploy a Docker image to Google Cloud Platform
(GCP) using GitHub Actions, you'll need to enable
specific GCP APIs to facilitate the integration.
Navigate to GCP Console and ensure that the
following required Google Cloud APIs are enabled:

¢ Cloud Run run.googleapis.com
o Artifact Registry artifactregistry.googleapis.com

2. Create and configure Workload Identity Federation
for GitHub (https://github.com/google-github-
actions/auth#setting-up-workload-identity-
federation).

3. Ensure the required IAM permissions are granted:
Cloud Run

e roles/run.admin

o roles/iam.serviceAccountUser (to act as the
Cloud Run runtime service account)

Artifact Registry

o roles/artifactregistry.admin (project or
repository level)

Note You should always follow the principle of least privilege when
assigning |IAM roles.

138

https://github.com/google-github-actions/auth#setting-up-workload-identity-federation
https://github.com/google-github-actions/auth#setting-up-workload-identity-federation
https://github.com/google-github-actions/auth#setting-up-workload-identity-federation

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

4. Create GitHub secrets for WIF_PROVIDER and WIF_
SERVICE_ACCOUNT.
5. Change the values for the GAR_LOCATION, SERVICE,
and REGION environment variables.
Let’s begin.

Step 1: Firstly, our Java application needs to be ready for deployment.

This typically involves:

Ensuring your application is thoroughly tested
and stable

Configuring your pom.xml or build.gradle file for a
successful build

Step 2: For deploying a Java application, you may need to set up

various GCP resources such as a Compute Engine instance, App Engine,

or Kubernetes Engine. The choice depends on your application’s

requirements.

Compute engine: Ideal for applications requiring
custom virtual machines.

App engine: Suitable for applications that scale
automatically.

Kubernetes engine: Best for containerized
applications.

Cloud run: It is a managed platform that enables you
to run stateless containers that are invocable via web
requests or Pub/Sub events.

Step 3: Finally, we need to set up GitHub Actions so that we automate

our deployment workflow. Here’s how we can set it up:

139

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

o Inyour GitHub repository, create a .github/workflows
directory.

o Add a workflow file (e.g., deploy.yml) in this directory.

- name: Google Auth
jobs:
deploy:
Add 'id-token' with the intended permissions for
workload identity federation
permissions:
contents: 'read’
id-token: 'write'
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up JDK
uses: actions/setup-java@v2
with:
java-version: '17'
env:
PROJECT_ID: YOUR PROJECT ID # TODO: update Google
Cloud project id
GAR_LOCATION: YOUR _GAR _LOCATION # TODO: update
Artifact Registry location
SERVICE: YOUR SERVICE NAME # TODO: update Cloud Run
service name
REGION: YOUR_SERVICE REGION # TODO: update Cloud Run
service region
on:
push:
branches: ["main"]
name: Build and Deploy to GCP Cloud Run
140

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

This workflow does the following:
o Triggers on a push to the main branch.
e Sets up Java environment.
o Authenticates with GCP using secrets.

e Builds a Docker image and pushes it to the Google
artifact repository.

e Deploys the image to Cloud Run using a GitHub Action
specifically for Cloud Run deployment.

1. Authenticate to Google Cloud

l

2. Authenticate Docker to Artifact Registry

v
3. Build a Docker Container

\ 4
4. Publish to Google Artifact Registry

l

5. Deploy to Cloud Run

Figure 7-8. GCP workflow

141

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Step 4: For security, store sensitive information like GCP credentials as
encrypted secrets in your GitHub repository:

e Go to your repository’s settings.

e Click on “Secrets”.

ecurity

Repository secrets

Code security and analysis
4> Deploy keys
(¥] Secrets and variables
Actions New repository secret

Codespaces

Dependabot

Figure 7-9. Setting up secret

e Add your GCP service account key and project ID as
secrets.

| New secret

Secret *

Add secret

Figure 7-10. Creating a secret

142

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Step 5: Once the workflow is configured, any push to the main branch
will trigger the deployment process. You can monitor the progress and
check logs in the “Actions” tab of your repository. Remember to regularly
update your workflow configurations to align with the evolving needs of
your application and team.

GitHub Actions Best Practices for CI/CD
with Docker

Keep Workflows DRY (Don’t Repeat Yourself)

Avoid duplicated code in your GitHub Actions workflows. Reuse actions
and shared logic by breaking your workflow into modular pieces. You can
have reusable workflows referenced by several projects, thus reducing
maintenance overhead and uniformly aligning CI/CD pipelines across
the board.

Suppose you have a Java project and always run the following steps to
set up a Java, build with maven, and run across different workflows. You
should instead create a composite action so that you don’t have to repeat
these several times again for each one of your workflows.

Step 1: Create the composite action.

In your repository, create a folder structure for the composite action,
like this:

.github/actions/java-maven-build

— action.yml

Inside action.yml, define the steps you want to reuse:

.github/actions/java-maven-build/action.yml
name: 'Java Maven Build'

143

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

description: 'Set up Java, build with Maven, and run tests'
runs:
using: 'composite’
steps:
- name: Set up JIDK 17
uses: actions/setup-java@v3
with:
java-version: '17'
distribution: 'temurin'
cache: maven

- name: Build with Maven
run: mvn clean package --file pom.xml

- name: Run Tests with Maven
run: mvn test

Step 2: Reuse the composite action in your workflows.
Now that the composite action is defined, you can reuse it in multiple
workflows. For instance, in your .github/workflows/main.yml:

name: Java CI

on:
push:
branches: [main]
pull request:
branches: [main]

jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

144

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Use the composite action
- uses: ./.github/actions/java-maven-build

This approach keeps your workflows DRY by consolidating repeated
steps into a single composite action, making it easier to manage and
update across multiple pipelines.

Use Secrets for Sensitive Information

Store sensitive data like API keys, credentials, and tokens securely in
GitHub’s Secrets management system. This keeps sensitive information
out of your codebase and workflow files. Refer to these secrets in the
workflow using ${{ secrets.YOUR _SECRET NAME }}, ensuring that
sensitive data is not exposed during the CI/CD process.

Example:

- name: Login to Docker
run: echo ${{ secrets.DOCKER_PASSWORD }} | docker
login -u ${{ secrets.DOCKER_USERNAME }} --password-stdin

Leverage Caching to Reduce Build Times

Dependencies, for example, Maven or npm packages, can significantly

accelerate build times in CI workflows. The GitHub Actions cache

mechanism allows you to skip re-downloading dependencies with each

job run. It will be faster and more efficient, especially for big projects.
Example:

- name: Cache Maven dependencies
uses: actions/cache@v3
with:
path: ~/.m2
key: ${{ runner.os }}-maven-${{ hashFiles('**/pom.xml') }}
restore-keys: ${{ runner.os }}-maven

145

CHAPTER 7 DEPLOYING DOCKER CONTAINERS USING GITHUB ACTIONS

Run Security and Performance Tests As Part
of the Cl Process

Security scanning and performance testing should be part of the CI/CD
pipeline to catch issues early. Tools such as Trivy for container
vulnerabilities or JMeter for load testing keep your deployments secure
and reliable. Automating these tests ensures you don’t ship potentially
vulnerable or underperforming code.

Example:

- name: Run Security Scan
uses: aquasecurity/trivy-action@vo.2.1
with:
image-ref: 'my-java-app'

Summary

This chapter covers automating Java application deployment using
Docker and GitHub Actions. It begins with an overview of GitHub Actions,
explaining how workflows triggered by events like code pushes can
automate tasks such as building, testing, and deploying code. The chapter
then shows how to set up a CI pipeline for Java using Maven, including
caching to speed up builds.

It also explains how to containerize a Java app using Docker and
automate this process with GitHub Actions. Best practices include reusing
workflows, securing sensitive data, optimizing Docker images with multi-
stage builds, and running security tests. These steps streamline and secure
the CI/CD process. This chapter also covers how we can deploy Docker
images to GCP using GitHub Actions as the CI/CD process.

146

CHAPTER 8

Exploring Docker
Alternatives

While Docker has been the go-to solution for containerization, the
container ecosystem has evolved much, introducing a few powerful
alternatives that address some of the pain points in modern development
environments. This chapter goes through four of the most popular Docker
alternatives, Podman, Buildah, Kaniko, and img, each of which offers
unique advantages in different containerization needs. From Podman’s
daemonless architecture and improvements in security compared to
Docker through Buildah-specific image building capability, to a CI/CD-
optimized setup by Kaniko, and through img’s easier container image
construction, these applications represent the emerging wave of container
solutions. Whether it’s security, efficiency, or requirements of specific use
cases, all these Docker alternatives are necessary for understanding how
one should proceed during the journey toward containerization.

Podman

Podman is an open source software under which containers could be
created, managed, and run on any Linux operating system, originally
developed and maintained by Red Hat with functionality quite like Docker.

© Ashish Choudhary 2025 147
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_8

https://doi.org/10.1007/979-8-8688-1300-9_8#DOI

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

It has some distinct features:

o Daemonless: It is daemonless because it does not
require having a central daemon as does Docker.
A daemonless architecture enhances security and
reduces overhead since every container will run
separately under the identity of the user.

e Rootless: Podman runs containers without requiring
root privileges, which is a huge security advantage over
Docker. This reduces the likelihood of a security breach
through the method of container escape (i.e., refers to a
form of vulnerability by which the attacker breaks free
from the container boundaries to gain access to the
potential underlying operating system of the host).

e Docker compatibility: Podman is designed to be
compatible with the CLI interface of Docker. Therefore,
most of the Docker commands can be replaced by the
podman command.

¢ Pod concept: Kubernetes introduced the concept of
pods (i.e., groups of containers that can be treated
collectively as a single unit). Podman uses similar
concept, but it is suitable for single-node use cases and
lacks the orchestration capabilities of Kubernetes.

These features make Podman a good alternative to Docker, especially
when security and resource efficiency are considered.

Setting Up Podman

To install Podman Desktop on a Mac, you have two main methods: using
the . dmg file or Homebrew. Here are the detailed steps for both methods:

148

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Using homebrew: If you haven't already installed Homebrew (a
package manager for macOS), you can install it by running the following
command in your terminal:

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

e Once Homebrew is installed, you can install Podman
by running the following command in your terminal:

$ brew install podman

o After installing Podman, you need to initialize a
virtual machine (VM) which Podman will use to run
containers. Do this by running:

$ podman machine init
e To start the Podman VM, run:
$ podman machine start

o Finally, you can verify that Podman is installed
correctly by running:

$ podman version

This command should display the installed version of Podman.

Using the .dmg File

e Go to the Podman Desktop website and download
the . dmg file from the Downloads section. Choose the
“universal” binary file or the one appropriate for your
Mac’s hardware architecture (Intel or Apple M1).

149

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

The best free & open
source container tools

Manage containers, pods, and images with Podman. Seamlessly work
with containers and Kubernetes from your local environment.

Supported Platforms

S g M A

A A

Get Started Download ¥ = S s O
sk =

Latest stable
Podman 4.7.1

@ Podman CLI for macOS
Install using Brew

Other Install Options @

Figure 8-1. Podman binary downloading

o Locate the downloaded .dmg file, typically in the
Downloads folder, and double-click to open it. Drag the
Podman Desktop icon to the Applications folder.

@ = Podman Desktop 1.5.3-universal

[Applications

Figure 8-2. Podman installation

150

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

e Open Podman Desktop from the Launchpad or the
Applications directory on your Mac.

Get started with Podman Desktop

& Welcome to Podman Desktop v1.5.3!

Podman

™

Configure these and more under

Telemetry: Help Red Hat improve Podman Desktop by allowing anonymous
usage data to be collected

Go to Podman Desktop

Figure 8-3. Podman Desktop

e When you open Podman Desktop for the first time,
you’ll be prompted to install it if Podman CLI/Engine
is not found in the PATH. Click the “View detection
checks” button and then the “Install” button to
proceed.

151

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Dashboard

Notifications

o Podman needs to be set up

The Podman extension is installed, yet requires configuration. Some features might not function optimally.

Setup

Podman v3.0.0 is installed but not ready

To start working with containers, Podman needs to be initialized

Initialize and start 2

W Update to 47.2

8

@ docker-desktop ¥ Docker Compatibility

Figure 8-4. Podman dashboard

¢ You will be redirected to the Podman Installer. Follow

the on-screen instructions.

152

Settings

Resources
Proxy

Registries

0C & Q W

Authentication
Extensions
Desktop Extensions

Preferences

)

@ docker-desktop ¥ Docker Compatibility

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Podman Setup

Skip this entire setup P

Podman already installed

Autostart

Press the Next button below to proceed.

Figure 8-5. Podman setup

153

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

e Create podman machine.

Settings Podman Setup

Skip this entire setup Db

Resources

Proxy

Registries
g 0,0
Authentication - E
2.950.0

Extensions . . \
We could not find any Podman machine. Let's create

Desktop Extensions one!

Preferences

Press the Next button below to proceed.

Cancel Next

B docker-desktop % Docker Compatibility V53 ® @ A @

Figure 8-6. Creating Podman machine

e Setup required resources. Default options are

good enough.

154

CHAPTER 8

Settings

Podman Setup

A Skip this entire setup D
Resources
Proxy

Registries (Foeim

0C & Q&

Authentication

Extensions
CPU(s):2

Desktop Extensions
Preferences Memory: 4 GB

Disk size: 60.07 GB

Image Path (Optional):

® docker-desktop

Figure 8-7. Setting up resources

Create a Podman machine

EXPLORING DOCKER ALTERNATIVES

podman-machine-default

o After installation, close the installation program.

Settings Podman Setup

Skip this entire setup Db
Resources
Proxy
Registries
Authentication
Extensions
Desktop Extensions

Preferences

3

Docker Compatibility @ docker-desktop

Figure 8-8. Setup completed

Podman successfully setup

Press the Next button below to proceed.

Next

vi53 ® 9 A @

155

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

e The Podman Engine will be installed, and you are ready
to use Podman Desktop.

Dashboard

Q0,0
8.9 exe

Podman is starting...
Version 4.7.2

Featured extensions:

& Podman Docker

@ Lima Lima : 7 OpenShift Local

Docker Compatibility @ docker-desktop

Figure 8-9. Podman engine starting

These steps will get Podman up and running on your Mac. Refer to
the official Podman documentation or Mac-specific installation guides for
detailed instructions or troubleshooting.

Developing a Simple Spring
Boot Application

Visit Spring Initializr: Go to start.spring.io.
Project configuration: Select your project settings:

e Choose either Maven Project or Gradle Project.

e Select your preferred language (Java, Kotlin, or Groovy).

156

https://start.spring.io/

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

e Choose a Spring Boot version (usually, the default
version is fine).

o Fillin the project metadata, like Group and Artifact.

Dependencies: Add the “Spring Web” dependency, which is essential
for creating web applications.

Generate project: Click “Generate” to download your project zip file.

Open and run the project:

o Extract the downloaded zip file and open it in your
favorite IDE (like Intelli] IDEA, Eclipse, or VS Code).

o Find the DemoApplication.java file in the src/main/
java directory under the package you specified.

e Write a simple REST controller or modify the existing
DemoApplication.java to return a “Hello World”
message upon visiting a specific URL.

Run the application:

o Execute the main method in the DemoApplication.
java file to start the application.

¢ Once running, you can access the “Hello World”
message by navigating to localhost:8080 of your web
browser.

This process creates a basic Spring Boot application that can be further
developed or containerized.

157

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Containerizing the Spring Boot Application

Now, containerize your application. Create a Dockerfile (or
Containerfile) in the project root. This file instructs how to build your
application’s image. Include the base Java image, add your application’s jar
file, and specify the entry point. Here’s a basic example:

Use an official Java runtime as a parent image

FROM eclipse-temurin:17-jdk-jammy

Set the working directory in the container

WORKDIR /app

Copy the jar file into the container at /app

COPY target/demo-0.0.1-SNAPSHOT.jar /app/hello-world.jar

Make port 8080 available to the world outside this container
EXPOSE 8080

Run the jar file

ENTRYPOINT ["java","-jar","/app/hello-world.jar"]

Building Container Image with Podman

To create a container image using Podman Desktop, start by navigating to
the Images section within Podman Desktop and then click the Build an
Image button at the top-right corner, as shown in the following image.

W Prune images © Pullanimage © Build animage

Figure 8-10. Building an image

This action opens a menu where we can choose our location for
Containerfile, typically found in the root directory of the demo folder.
Once the Containerfile is selected, you can assign a name to the
container image, such as “my-custom-image.”

158

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Next, click Build to observe the creation of each image layer.

> Build an Image

e Build Image from Containerfile

Containerfile Path

[Users/ , Downloads/der

00 &% Q@ H

Build context directory

/Users/ Dot

Image Name

my-custom-image

)

¥ Docker Compatibility @ docker-desktop

Figure 8-11. Configuring containerfile

You can find the image in your local image registry.

& [sTATUS NAME AGE SIZE

O docker.xo/llbrlary/iny-cusmm»lmage 1minute 43139 MB
dofifSe lates

O

Figure 8-12. Image in local registry

Running Containerized Application

Great! Now, head back to the Images section to view the containerized

vi53 ® @ A @

>

ACTIONS

Spring Boot application, which has been successfully built and tagged as

an image. To run this image as a container on our system, click the Run

icon to the right of our container image, as shown in the following image.

159

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

% [0 sTATUS NAME AGE SIZE ACTIONS

O docker.xo(llbrary/my—cus\om»lmage Tmite 43139 MB > &

latest

O

Figure 8-13. Run the image

In the Port Mapping section, ensure that port 8080 of the container
is mapped to port 8080 of the host. You can leave all other settings
unchanged. Then, click Start Container to initiate the containerized
version of your Spring Boot application, as illustrated in the

following image.

> RunImage

’ Create a container from image docker.io/library/my-custom-image:latest

Volumes:

Path on the host

00 & QW

Port mapping:
Local port

(+]

Environment variables:

Environment files:

nment file containing KEY=VALUE items

P Start Container

©

¥ Docker Compatibility @ docker-desktop vi53 @ @ A ©

Figure 8-14. Port mapping

Now, the container is up and running.

160

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

> Container Details

WP suspicious_hypatia

Summary Logs Inspect Kube Terminal Tty

sStarting DemoApplic: 0.0.1-SNAPSHOT using Java 17.0.9 with ¥
ID 1 (/app/hello-world.jar started by root in /app)
2 2112 ‘ i No active profile set, falling back to 1 default profile: "defasl
s
: Tomcat initialized with port(s): 8080 (http)
Starting service [Tomcat]
Starting Servlet engine: [Apache Tomcat/10.1.15)
Initializing Spring embedded WebApplicationContext
Root WebApplicationContext: initialization completed in 4827 ms
Tomcat started on port(s): 8080 (http) with context path '
: Started DemoApplication in 10.235 seconds (process rumaing for 12

¢ ‘dispatcherserviet'

3

¥ Docker Compatibility @ docker-desktop vi53 ® @ A @

Figure 8-15. Container up and running

We have now successfully built and containerized a Spring Boot
application using Podman. This approach simplifies development and
ensures our application is ready for deployment in any environment that
supports containers.

Buildah

Buildah is an open source tool that provides a command-line interface

for creating and managing OCI (Open Container Initiative) compliant
container images. As an alternative to Docker, Buildah is part of the suite
of tools provided by Red Hat, along with Podman and Skopeo, to work with
containers.

161

CHAPTER 8

EXPLORING DOCKER ALTERNATIVES

Buildah is specialized in building container images. It doesn’t manage

container life cycle operations like starting, stopping, or orchestrating

containers. Buildah does not include a container runtime; it creates and

prepares images.

Buildah Features

Here are some critical aspects of Buildah:

Feature

Description

Rootless Container
Image Building

Daemonless
Architecture

Compatibility with
Dockerfiles
Flexibility in Image

Building

Integration with
Other Tools

Fully Scriptable CLI

0CI Images Support

Buildah can create container images without requiring any
access privileges, reducing the risk of privilege escalation
attacks.

Buildah operates without a central daemon, minimizing
system resource usage and simplifying architecture by
treating each operation as a separate process.

Buildah can build images from existing Dockerfiles, easing
the transition for users familiar with Docker.

Users can build images from scratch or using existing
images, allowing for greater customization compared to
Docker.

Buildah integrates well with other tools like Podman
for running containers and Skopeo for transferring and
inspecting images.

Buildah’s CLI is fully scriptable, making it suitable for use in
build and deployment pipelines.

Buildah generates images that are fully compatible with
0Cl-compliant tools and systems.

162

CHAPTER 8

EXPLORING DOCKER ALTERNATIVES

Podman and Buildah Comparison

Let’s do a feature comparison between Podman and Buildah.

Feature Buildah Podman
Project Type Open source Open source
Platform Available on Linux Available on Linux
Primary Building OCI images Managing OCl images and containers,
Function quickly, either with or including pulling, tagging, creating,
without a Dockerfile and running containers
Dockerfile Can build images from a Supports Docker commands, designed
Support Dockerfile or without one as a drop-in replacement for Docker
Daemon Does not run as a daemon Does not run as a daemon
Dependency
Root Operates without root Operates without root privileges
Privileges privileges
Container Typically short-lived Supports long-lived traditional
Lifecycle containers for building containers
images
Storage Uses a different storage Uses a different storage system from
Systems system from Podman Buildah
Integration Complements Podmanin ~ Complements Buildah by managing

building images

containers

163

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Figure 8-16. Podman and Buildah match made in heaven

Building Images with Buildah

To start with Buildah, you can install it on any Linux distribution
supporting OCI. Here’s a quick guide:

Installation

On Fedora/Linux/CentOS, you can install Buildah with sudo dnf
install buildah.

On Ubuntuy, first, add the Kubic project’s repository with sudo add-
apt-repository ppa:projectatomic/ppa followed by sudo apt-get
update and then sudo apt-get install buildah.

Building an image: To create a new image, you can start with a base
image or from scratch, then use the Buildah commands to modify the
filesystem, set up the environment variables, expose ports, and define
entry points.

164

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Committing your work: Once done with the changes, you can commit
the working container to an image using buildah commit.

Pushing to a registry: Finally, you can push your image to a container
registry with buildah push.

Let’s say you want to create a simple container image with a
web server:

Create a new container from scratch
new_container=$(buildah from scratch)

Mount the container filesystem
mountpoint=$(buildah mount $new_container)

Install a web server, for example, nginx

dnf install --installroot $mountpoint --releasever
30 nginx --setopt install weak deps=false -y

Set up some configurations and static HTML files
echo 'Hello from Buildah!' > $mountpoint/usr/share/nginx/html/
index.html

Commit the changes to create a new image

buildah commit $new_container my-webserver

Push the image to a registry

buildah push my-webserver docker://myregistry/my-
webserver:latest

Buildah focuses on building container images, whereas Docker
provides a broader range of features, including orchestration and
networking. For users primarily focused on building and managing
container images, especially in a more scriptable and flexible manner,
Buildah offers a robust alternative to Docker’s image-building capabilities.

165

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Kaniko

Docker has become synonymous with creating and managing containers
in containerization. However, building Docker images typically requires

a Docker daemon, which poses challenges in environments where
running a daemon isn’t feasible or secure. This is where Kaniko enters the
picture, offering a solution to build container images in environments like
continuous integration (CI) pipelines without needing a Docker daemon.

Need for Kaniko

Kaniko was developed by Google to address specific challenges in building
Docker images:

e Security concerns: Running a Docker daemon
typically requires elevated privileges, which can pose
security risks, especially in shared CI environments.

o Environment limitations: Running a Docker daemon
isn’t practical in specific environments, like Kubernetes
clusters.

o Efficiency in ci/cd pipelines: Kaniko optimizes building
images directly within a CI/CD pipeline without relying
on a separate environment to run Docker.

Features of Kaniko

Kaniko boasts several features that make it advantageous for building
Docker images:

¢ No daemon required: Kaniko doesn’t need a Docker
daemon to build an image, reducing the attack surface
and making it safer in shared environments.

166

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

o Works in userspace: It executes each command in a
Dockerfile entirely in userspace, making it compatible
with various environments.

e Caching mechanisms: Kaniko provides caching
options to speed up consecutive builds.

¢ Supports standard dockerfile directives: You can use
the same Dockerfile you would with Docker, making it
easy to integrate into existing workflows.

Understanding Kaniko

The Kaniko executor image (i.e., gcr.io/kaniko-project/executor:latest)
builds an image from a Dockerfile and pushes it to a registry. It begins

by extracting the filesystem from the base image specified by the FROM
command in the Dockerfile. The executor then runs the Dockerfile
commands, taking a snapshot of the filesystem in userspace after each
execution. If any changes occur, it appends a new layer of these files to the
base image and updates the image metadata accordingly.

Using Kaniko to Build and Push Docker Images

e Step 1: Preparing your Dockerfile and context:
First, prepare your Dockerfile as usual. Ensure all files
referenced in the Dockerfile are available in the build

context.

e Step 2: Setting up Docker Registry credentials:
Kaniko needs access to your registry to push the built
image. You'll need to create a JSON file with your
credentials. This file typically looks like this:

167

https://gcr.io/kaniko-project/executor:latest

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

{
"auths": {
"https://index.docker.io/v1/": {
"username": "yourusername",
"password": "yourpassword"
}
}
}

e Step 3: Running Kaniko in Docker: You don’t need
Kubernetes to run Kaniko. It can be executed as a
Docker container. Here’s how:

1. Mount your context and credential: Use
Docker to run Kaniko, mounting the build
context directory and the directory containing
your Docker registry credentials.

docker run --rm \
-v $(pwd) : /workspace \
-v /path/to/kaniko/.docker/:/kaniko/.docker/ \
gcr.io/kaniko-project/executor:latest \
--dockerfile /workspace/Dockerfile \
--context dir:///workspace/ \
--destination yourdockerhubusername/your-image-
name:your-tag

2. Build and push: Kaniko will build the image
using the provided Dockerfile and context and
then push it to the specified destination in your
Docker registry.

e Step 4: Verifying the image: After the build process,
verify the image in your Docker registry to ensure it’s
been correctly pushed.

168

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Kaniko is mainly for rootless, daemonless, and secure image building
in environments that might not be suitable for Docker, such as in CI/CD
or Kubernetes environments. With Kaniko, developers and DevOps teams
can securely and efficiently streamline their CI/CD workflows.

Img

In the evolving landscape of containerization, the need for versatile,
secure, and easy-to-use tools for building container images has never been
greater. This is where img comes into play, offering a fresh approach to
image creation in Docker and container technology.

Why img?

img was developed to address several challenges and limitations posed by
traditional Docker image building methods:

Daemonless operation: The build process of a
Docker image requires the daemon. This may pose a
security problem—mainly in shared or multitenant

environments, CI systems.

Root privileges: Docker requires root privilege to
create the images, which is a great concern in terms
of security, of course. img does not require any

root access.

Simplicity and portability: img is a tool which
supports building, pushing, and pulling images
easily, and, therefore, becomes rather attractive to
developers and pipelines for CI/CD.

169

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Features of img

img stands out with its distinct features:

Unprivileged and daemonless: img runs totally
in userspace and does not require any daemon, so
it enhances security as well as reduces the attack
surface.

Compatibility with Docker and OCI images: It
can build images from Dockerfiles compatible with
Docker and other OCI image formats.

Efficient caching: Thanks to its efficient caching
mechanism, all repeated builds are faster via img.

Easy integration into CI/CD pipelines: It is
very simple and does not require privileged
requirements, so it quite easily fits into automated

workflows.

Using img to Build and Push Docker Images

Step 1. Installing img: First, install img on your system. It’s available for
various platforms and can be downloaded from its GitHub repository.
Step 2. Preparing your Dockerfile: Ensure your Dockerfile is ready
with all necessary instructions for building your image.
Step 3. Building the image with img: Navigate to the directory
containing your Dockerfile and run:

$ img build -t yourusername/yourimagename:tag .

170

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Replace yourusername/yourimagename:tag with your Docker Hub
username, image name, and tag. img will build the image based on your
Dockerfile.

Step 4. Pushing the image to a registry: Before pushing the image,
authenticate with your Docker registry:

$ img login -u yourusername -p yourpassword
Then, push the image to Docker Hub or another registry:
$ img push yourusername/yourimagename:tag

Step 5. Verifying the image: After pushing, check your Docker registry
to ensure the image has been uploaded successfully.

img emerges as a very powerful tool for building Docker and OCI
images, especially suited for environments where security, simplicity,
and integration with the existing pipelines are paramount. This allows
unprivileged, daemonless image creation, which solves key challenges in
the container ecosystem. It is a valuable asset for developers and DevOps
professionals because its adoption can streamline workflows, enhance
security, and efficiently manage container images.

Summary

This chapter presents four alternatives of Docker and points out what each
is useful for in the container ecosystems:

Podman is a standalone alternative for Docker. It supports daemonless
architecture combined with rootless container management. Podman
supports all native Docker commands but adds another feature: pod
management. This chapter deals with the installation of Podman in Mac
systems and then demonstrates it in practice by containerizing a Spring
Boot application.

171

CHAPTER 8 EXPLORING DOCKER ALTERNATIVES

Buildah is focused on creating container images, giving developers
more flexibility and control of the image-building process. It does not
require any root privileges and integrates well with other container
tools. This chapter explores some of the features of Buildah and provides
practical examples of building container images from scratch.

Kaniko solves the problem of constructing Docker images in restricted
environments where it is not feasible, especially within CI/CD pipeline
runs. It operates completely without a Docker daemon. It is designed
to run inside a container. Furthermore, the entire build process occurs
entirely in user space, which makes it perfectly legal to use when an
image has to be built in extremely constrained environments. It has been
specifically optimized for Kubernetes and cloud-native workflows.

img is a contemporary approach to creating container images, which is
based on simplicity and security. It runs in userspace and does not require
root privilege or daemon, so it is really very well suited for the CI/CD
environment. The chapter ends with practical advice on using img to build
and manage your container images.

Together, these tools demonstrate the diverse approaches available for
container management beyond Docker, each offering unique advantages
for specific use cases and environments. Understanding these alternatives
helps developers and organizations choose the most appropriate tools for

their containerization needs.

172

CHAPTER 9

Building Native
Images with GraalVM

Learn about building lightning-fast cloud Java
applications with GraalVM and Quarkus.

In a cloud-native world, the facility to convert Java applications into
efficient, lightweight executables has gained much importance. Docker
containers revolutionized application packaging and deployment but still
carry the overhead of running a full JVM inside each container, increasing
memory usage and slowing down startups. This is where GraalVM
shines as it overcomes these limitations by converting Java bytecode into
standalone native executables that start almost instantly and consume
significantly less memory—features especially valuable in microservices
architectures and serverless environments.

Furthermore, you will learn about: GraalVM Native Images, GraalVM
native image support in Spring Boot 3, and the Quarkus framework—all
unique in their approach to optimizing Java applications for modern

deployment environments.

© Ashish Choudhary 2025 173
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_9

https://doi.org/10.1007/979-8-8688-1300-9_9#DOI

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Demystifying Native Image and GraalVM

GraalVM is an Oracle Labs-developed, high-performance, polyglot
virtual machine designed to enable multiple programming languages to
be executed on a single runtime. It was made to make improvements in
performance while reducing the overhead of conventional JVM-based
execution.

A native image in the context of Java and GraalVM refers to a
standalone executable file created from Java bytecode. Before we go
deeper, let's understand this with a restaurant and kitchen analogy:

o Traditional JVM: A fully equipped kitchen with various
appliances and tools. It can cook any dish but takes
time to prepare and clean.

e Native image: A food truck tailored to a specific cuisine
type. It's smaller, starts cooking faster, and is more
efficient, but can’t change its menu easily.

Native Image Explained

e Conversion: Transforms Java bytecode into a platform-
specific executable.

e Components: Includes the application classes,
dependencies, and statically linked native code
from JDK.

e NoJVMrequired: The JVM is packaged into the
executable, eliminating the need for a Java Runtime
Environment on the target system.

174

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Java Source Code Compiled—¥{ Java Bytecode }—Converted by GraalVM—ﬂ Native Image

Figure 9-1. Native image creation steps

Native Image Benefits

Benefit Description

Instant Startup Native images start faster than traditional JVM-based
applications.

Reduced Memory Consumes less memory, enhancing performance, especially

Footprint in constrained environments like containers or serverless.

Lightweight Ideal for cloud-native applications due to smaller size and

Deployment compatibility with containerization.

Native Image Drawbacks

Drawback Description

Platform Each native image is specific to a platform, requiring multiple
Dependency builds for cross-platform compatibility.

Limited Java Some dynamic features of Java, like reflection, may not be fully
Features supported or require additional configuration.

Complex Debugging native images can be more challenging than traditional
Debugging Java applications.

175

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Differences Between Docker
and Native Image

Native images and Docker images serve different purposes and operate at
different levels in the software deployment process:

Term Scope Purpose Use Case

Native Specific to a compiled Create a platform- Optimizes Java

Image executable from Java code specific, standalone applications for
using tools like GraalVM. executable with faster startup and

necessary Java classes lower memory
and a reduced JVM. footprint.

Docker A lightweight, standalone, Ensures consistent Used for

Image executable package environments and containerizing
that includes everything portability across applications to run
needed to run software, different systems. them in isolated
including code, runtime, environments.
system tools, libraries, and
settings.

A native image focuses on optimizing a specific Java application, while
a Docker image is about packaging and running software consistently
in various environments. A native image can be part of a Docker image,
but they are fundamentally different in their core functionalities and
objectives.

Understanding GraalVM

GraalVM is a high-performance polyglot virtual machine developed by Oracle.
It enhances the capabilities of the standard Java Virtual Machine (JVM) by
offering the following features:

176

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Support for multiple languages: Apart from Java,
it can run applications written in JavaScript, Ruby,
Python, and other JVM languages.

Just-in-time compiler (JIT): Improves the
performance of Java applications by compiling
bytecode to machine code at runtime.

Ahead-of-time compiler (AOT): Through

the Native Image technology, it compiles Java
applications into standalone executables, which
start faster and require less memory.

Interoperability: Enables seamless integration
between different programming languages.

Extension and customization: Developers
can extend and customize the VM for specific
requirements.

JIT vs. AOT Compiler

Feature JIT AOT
Timing Compiles code during runtime. Compiles code before runtime,
during the build process.

Operation Translates bytecode into Produces a binary executable
machine code when a program specific to a platform.
is running.

Performance Optimizes code based on Faster startup times as code is
runtime data, potentially pre-compiled, but lacks runtime

achieving high performance. optimization.

(continued)

177

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Feature JIT

AOT

Flexibility More adaptable since it
compiles code as needed.

Memory Can increase memory usage
usage and startup time due to runtime
compilation.

Less flexible, as it's compiled
for specific architectures or
platforms.

Generally has a smaller memory
footprint and reduces runtime
overhead.

JVM vs. GraalVM

Feature JVM GraalVM
Language Primarily supports Javaand Supports additional languages
support JVM-based languages like like JavaScript, Ruby, Python, and

Scala or Kotlin.

Performance Uses just-in-time (JIT)
optimization compilation to optimize
bytecode at runtime.

Ahead-0f-Time Doesn't natively support AOT

compilation compilation.

Interoperability Limited to JVM-based
language interoperability.

R, making it a polyglot VM.

Includes an advanced JIT
compiler (Graal Compiler) for
more efficient performance
optimizations.

Offers Native Image technology
for AOT compilation, creating
standalone executables from
Java applications.

Enhanced interoperability
features, allowing for mixed-
language applications.

178

(continued)

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Feature

JVM

GraalVM

Code
elimination

Immutable
classpath

Dynamic code
awareness

No exclusion of unreachable
code from final executable.

In traditional JVUM
applications, the classpath
can be modified dynamically,
allowing the addition or
modification of where the
JVM searches for classes and
resources.

JVM has ability to adapt

to dynamic code changes,
including loading classes
that were unknown at
compile time, is one of its
core strengths, allowing for
flexible and dynamic Java
applications.

Unreachable code at the time of
native image creation is excluded
from the final executable.

The classpath is fixed at the time
of building and cannot be altered.

GraalVM requires explicit
instructions about dynamic
code aspects such as reflection,
resources, serialization, and
dynamic proxies.

GraalVM's ability to support multiple languages and improve

application performance makes it a versatile tool for modern software

development.

Spring Boot 3 and GraalVM

GraalVM is a version of OpenJDK enhanced with additional features,
including the “native-image” utility. This utility performs ahead-of-time (AOT)

compilation, efficiently processing your code to eliminate unneeded parts

179

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

and then converting the remainder into highly optimized, system-specific
native code. The performance improvements are remarkable, akin to those
seen in C or Go applications. It results in binaries that start almost instantly
and require significantly less RAM. With this technology, deploying a
Spring Boot application can consume tens of megabytes of RAM and start
in just a few hundred milliseconds.

To leverage this, use ./gradlew nativeCompile or ./mvnw -Pnative
native:compile. Both commands are used when creating native images in
the context of GraalVM—a virtual machine that enables just-in-time (JIT)
compilation of Java applications to platform-dependent executables, thus
reducing startup time and memory usage.

Spring Boot has officially supported this feature for production use
since the release of Spring Boot 3.0 in November 2022.

Building Native Images with Spring Boot

To initiate a new native Spring Boot project with ease, navigate to start.
spring.io, select the GraalVM Native Support dependency, and proceed
to generate your project.

Press 3 for multiple adds

DEVELOPER TOOLS

GraalVM Native Support
Support for compiling Spring applications to native executables using the GraalVM native-image compiler.

Figure 9-2. Adding GraalVM dependency

There are two main ways to build a Spring Boot native image
application, and they are:

Using Spring Boot support for cloud-native buildpacks: This method
generates a lightweight container containing a native executable.

180

https://start.spring.io
https://start.spring.io

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

This method is the most straightforward starting point for those
familiar with Spring Boot's container image support.

Note Docker installation on the target machine is required.

With Maven to create the image, run the following goal:
$ mvn -Pnative spring-boot:build-image

With Gradle to create the image, run the following goal:
$ gradle bootBuildImage

Then, you can run the app like any other container:
$ docker run --rm demo:0.0.1-SNAPSHOT

Using GraalVM native build tools: This approach generates a native
executable directly. Opt for this choice if you're interested in broader
capabilities, such as conducting tests within a native image environment.
It's essential to have the GraalVM native-image compiler installed and
ready on your system for this option.

Note GraalVM 22.3+ is required.

With Maven to create the executable, run the following goal:
$ mvn -Pnative native:compile
With Gradle to create the executable, run the following goal:
$ gradle nativeCompile
For executing a Maven-built native image, use this command:

$ target/demo

181

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM
For executing a Gradle-built native image, use this command:
$ build/native/nativeCompile/myproject

These methods offer different advantages and can be chosen based on
the specific needs and environment of the application.

Here is a diagram explaining the build process using both methods for
building native images with Spring Boot.

Maven: mvn -Pnative sps : mvn -Pnative native:compile Gradle: gradie nativeCompile

Run Container: docker run --rm

Figure 9-3. Spring Boot GraalVM build process

Testing GraalVM Native Image for Spring
Boot Application

In the realm of GraalVM native image applications, it's recommended

to run most unit and integration tests on the JVM for efficiency and
seamless IDE integration. Testing focuses on ensuring the Spring AOT
engine processes the application correctly and GraalVM can produce a
valid native image. Developers can test AOT processing using the JVM by
enabling the spring.aot.enabled property.

$ java -Dspring.aot.enabled=true -jar myapplication.jar

182

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Additionally, Spring Framework supports running tests in a native
image environment, a feature particularly useful in CI pipelines. This
approach requires setting up specific Maven or Gradle configurations and
using relevant build tools.

When setting up Maven for running native tests, make sure your pom.
xml file is configured with spring-boot-starter-parent as the parent.
This requires including a <parent> section in your pom.xml that aligns with
this specification.

<parent>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.2.0</version>

</parent>

You can also run your existing test suite in a native image. This is an
efficient way to validate the compatibility of your application.
To run your existing tests in a native image, run the following goal:

$ mvn test -PnativeTest

When using the Spring Boot Gradle plugin along with the GraalvVM
Native Image plugin, AOT test tasks are set up automatically. It's important
to ensure your Gradle build script includes a plugins block that contains
org.graalvm.buildtools.native.

For executing native tests using Gradle, you should utilize the
nativeTest task.

$ gradle nativeTest

183

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Understanding Quarkus a Kubernetes
Native Java Framework

In the ever-evolving world of software development, efficiency and
speed are paramount. Quarkus, a Kubernetes-native Java frameworlk, is
revolutionizing the way Java applications are developed and deployed
in cloud environments. This section will introduce you to the basics of
Quarkus and why it's becoming a game-changer for Java developers.

Knowing Quarkus

Quarkus is an open source Java framework designed for Kubernetes, the
widely used container orchestration platform. It optimizes Java specifically
for containers, enabling it to become an effective platform for serverless,

cloud, and Kubernetes environments.

Key Features of Quarkus

e Container first: Quarkus is built with container-based
environments in mind, ensuring low memory footprint
and fast startup times.

o Imperative and reactive: It seamlessly supports both
imperative and reactive programming models, catering
to a wide range of application architectures.

¢ Microservices ready: With built-in support for
microservices patterns, Quarkus is ideal for building
scalable and maintainable applications.

e Developer joy: Offers live coding, unified
configuration, and streamlined code for both
imperative and reactive coding.

184

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Need for Quarkus with Kubernetes

o Fast startup and low memory footprint: Quarkus
applications start in milliseconds and consume a
fraction of the memory compared to traditional Java
applications. This is crucial for Kubernetes, where
resources are scaled up and down frequently.

e Developer productivity: Quarkus enhances developer
productivity with hot-reload capabilities, meaning you
can see changes in real time without restarting your
application.

e Native compilation with GraalVM: Quarkus
can be compiled into a native executable using
GraalVM, further reducing the memory footprint and
startup time.

¢ Cloud-native ecosystem integration: It integrates
smoothly with Kubernetes, Docker, and cloud-native
databases and messaging systems.

Getting Started with Quarkus

The easiest way to get started with Quarkus is to use code.quarkus.

io which is an online platform provided by the Quarkus team that

significantly simplifies the process of creating a new Quarkus project. It's

designed to be user-friendly and efficient, especially helpful for beginners

or those looking to quickly bootstrap a new Quarkus-based application.
Here's an overview of what code. quarkus. io offers:

o User-friendly interface: The website has an intuitive
interface that makes it easy to create and configure a
Quarkus project without writing any boilerplate code.

185

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

o Customizable project setup: You can customize
various aspects of your project, such as the Maven
Group, Artifact, and Version. You can also choose the
build tool (Maven or Gradle).

« Extensions selection: One of the most powerful
features code.quarkus.io offered is the ability to
browse and select from a wide range of Quarkus
extensions. Extensions are add-ons or libraries
that integrate with Quarkus to provide additional
functionality, like database connectivity, security,
messaging, and more.

¢ Streamlined dependencies management: It
automatically manages dependencies for the selected
extensions, ensuring compatibility and reducing the
hassle of manual dependency management.

o Download or share your project: After configuring
your project, you can either download it as a ZIP file or
share it with others using a generated URL. This feature
is particularly useful for collaboration or for saving
project configurations for future use.

e Code generation: The platform generates some basic
code and configuration files based on your selections,
helping you jump-start development.

Steps to create your first project.

o Access the platform: Visit code.quarkus.io in your
web browser.

o Configure your project: Input your project's groupld,
artifactld, and version. Select your preferred build tool.

186

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

o Select extensions: Browse through the list of available
extensions. You can search for specific extensions or
filter them by category.

o Generate your project: Once you've made your
selections, click on the "Generate your application”
button. This will create a customized Quarkus project.

e Download/share: You can then download the
generated project as a ZIP file or copy the URL to share
with others.

e Start coding: Unzip the downloaded file and open it in
your favorite IDE or editor to start coding.

CONFIGURE YOUR APPLICATION

Group org.acme Version 1.0.0-SNAPSHOT

Artifact s Java Version

Build Tool av v Starter Code Yes 90 Generate your application (X ++) v

B cLose

Figure 9-4. Quarkus project onboarding

Quarkus marks a significant shift in the Java ecosystem, bringing Java
squarely into the modern cloud-native era. It's not just about running Java
in Kubernetes; it's about making Java a first-class citizen in this landscape.
With its unparalleled efficiency and developer-focused design, Quarkus is
undoubtedly a framework worth exploring for any Java developer looking
to step into the world of Kubernetes and cloud-native development.

187

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Building and Deploying Quarkus Application
on Kubernetes

In the world of cloud-native development, Kubernetes has emerged as the
de facto standard for orchestrating containerized applications. Quarkus,
known as "Supersonic Subatomic Java," is a Kubernetes-native Java
framework tailored for GraalVM and HotSpot. This section will guide you
through the process of building and deploying a Quarkus application on
Kubernetes.

Up and Running with Quarkus

Step 1: We can start by generating a new Quarkus project. We can use
code.quarkus.io to set up the project with the desired extensions, or use
Maven/Gradle directly:

mvn io.quarkus.platform:quarkus-maven-plugin:3.6.4:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=kubernetes-quickstart \
-Dextensions="resteasy-reactive, kubernetes,jib’

cd kubernetes-quickstart

This will create a new project containing the Kubernetes and Jib
extensions. Furthermore, the following dependencies are added to our
pom.xml file.

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-resteasy-reactive</artifactId>
</dependency>

188

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-kubernetes</artifactId>
</dependency>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-container-image-jib</artifactId>
</dependency>

By incorporating these dependencies, we facilitate the automatic
creation of Kubernetes manifests with each build and simultaneously
enable container image building using Jib. For instance, after executing the
following:

./mvnw install

Among the various generated files, we will observe two specific
files—kubernetes.json and kubernetes.yml—located in the target/
kubernetes/ directory. When examining either of these files, it becomes
apparent that they include definitions for a Kubernetes Deployment as well
asaService.

189

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Start: Develop Quarkus Application

Build Process

mvn install

Generate Kubernetes Manifests

l

Create Container Image

v
Push Image to Registry

v
Apply Manifests to Kubernetes

v
Deployment on Kubernetes

\ 4

Running Application in Kubernetes

Figure 9-5. Quarkus application deployment flow

190

CHAPTER 9 BUILDING NATIVE IMAGES WITH GRAALVM

Just to reiterate, Quarkus offers the ability to automatically generate
Kubernetes resources based on sane defaults and user-supplied
configuration using dekorate .

Furthermore, Quarkus can deploy the application to a target
Kubernetes cluster by applying the generated manifests to the target
cluster’s API Server.

kubectl apply -f target/kubernetes/kubernetes.json

Finally, when either one of the container image extensions is present,
Quarkus can create a container image and push it to a registry before
deploying the application to the target platform.

Summary

The chapter gave a detailed overview of how to build native images with
GraalVM and integrate them with popular frameworks like Spring Boot.
Although GraalVM native images have significant advantages, such as
faster startup times and lower memory footprint, some limitations limit
support of Java's dynamic features such as reflection.

Then, the discussion moves on to Spring Boot 3 native support which
offers two main ways of building native images: Cloud Native Buildpacks
and GraalVM Native Build Tools.

Last but not least, it covers Quarkus, a Kubernetes-native Java
framework built from the ground up for container environments, focusing
on its features like live coding and support for imperative and reactive
programming. Throughout the chapter, the focus remains on how these
technologies are transforming Java applications to meet the demands
of modern cloud-native architectures, particularly in containerized and
Kubernetes.

191

https://dekorate.io/

CHAPTER 10

Testing Java
Applications Using
Testcontainers

Explore the practical approach to building production-
like test environments for Dockerized applications using
Testcontainers

In a moving landscape of software development, comprehensive testing is
very critical to the reliability and robustness of any application. While unit
testing gives insight into individual components, integration testing poses
some unique challenges, especially when it comes to dependencies such
as databases and services.

Testcontainers is a strong solution to these challenges, offering a Java
library that leverages Docker containers to create lightweight, disposable
instances of databases, web browsers, and other services essential for
integration testing. This chapter shows how Testcontainers simplifies the
testing process—specifically, Spring Boot applications—by providing a
consistent, isolated testing environment that closely mimics production

scenarios.

© Ashish Choudhary 2025 193
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_10

https://doi.org/10.1007/979-8-8688-1300-9_10#DOI

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

Introduction to Testcontainers

In software development, integration testing is crucial in ensuring that
different parts of an application work together seamlessly. This is where
Testcontainers, a Java library, steps in. Testcontainers provides lightweight,
throwaway instances of common databases, Selenium web browsers, or
anything else that can run in a Docker container.

The library is designed to support our automated integration tests,
providing a higher level of confidence before moving to production. Using
Docker containers, Testcontainers ensure that the application behaves as
expected in an environment that closely mimics production.

Need for Testcontainers

Testcontainers is an open source framework for providing throwaway,
lightweight instances of databases, message brokers, web browsers, or
anything that can run in a Docker container.

Think of Testcontainers as a toy box for our computer programs.
When we are playing with toy blocks, we might want to see how they all
fit together to create a toy bridge. But we can’t complete our toy bridge
without missing blocks. Testcontainers allow our program to borrow
any blocks we might be missing, like a unique block, so we can see if our
creation works with those pieces too. Like we would test if our toy bridge
holds up when cars drive over it, Testcontainers lets our program check
if it works well with real pieces, not just pretend ones. And for programs
written with Spring Boot, it’s like getting the best toy blocks that fit
perfectly right out of the box.

With Testcontainers, integration testing becomes more realistic. It
allows us to conduct tests using the real versions of our application’s
databases and services, following the true behaviors our code is supposed
to perform, instead of using stand-ins that might oversimplify or skip over
important details.

194

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

‘ Testcontainers

Figure 10-1. Testcontainers logo

Testcontainers are needed for several reasons in the context of
integration testing:

o Environment parity: It provides a way to run tests
against real services and databases, ensuring that the

test environment closely mirrors production.

« Ease of use: Testcontainers manage the life cycle of
containers used in testing, simplifying the setup and

teardown process.

o Portability: Tests using Testcontainers can be run
on any system where Docker is available without

additional service configuration.

o Continuous integration (CI) friendly: Testcontainers
are ideal for CI pipelines as they allow tests to run in

isolation and in a repeatable manner.

o Flexibility: Developers can quickly test against
different database and service versions by changing

container versions.

« Resource efficiency: Containers can be started and
stopped quickly on-demand, which is more efficient
than managing dedicated test databases and services.

195

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

Testcontainers Features

These features make Testcontainers a powerful ally for developers looking
to ensure their applications will work as expected when deployed in a real-
world environment:

o Diverse container support: Offers lightweight,
throwaway instances for various services, including
databases, web browsers, and message brokers.

o JUnit integration: Seamlessly integrates with JUnit
test cases.

¢ Singleton containers: Supports singleton containers
that can be shared across multiple test classes.

¢ Custom containers: Allows the use of custom
Docker images.

o Database integration: Direct support for popular
databases with preconfigured JDBC URLs.

* Mocking external services: Facilitates testing
applications that interact with third-party services by
mocking those services in Docker containers.

¢ Environment replication: Provides a consistent
environment replicating production settings, reducing
"works on my machine" problems.

¢ Resource management: Handles the starting and
stopping of containers, ensuring no wasted resources.

e Service health checking: Waits for containers to
become healthy before proceeding with the tests.

e Reusable containers: Optimizes test runs by reusing
containers between test runs when possible.

196

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

e Log collection: Allows collection and observation of
container logs, which is helpful for debugging.

o Life cycle control: Gives developers control over
container life cycle events within the test code.

Testing Spring Boot Applications

Unit and integration testing in Spring Boot applications guarantee the
quality and reliability of the software. Focusing on individual components,
unit testing enables early bug detection, which makes a huge difference

in reducing rectification costs and complexity during later development
stages. Such tests also act as documentation, showing how to use the code.
This will even provide a safety net during refactoring, guaranteeing that
updates or changes don’t break existing functionality.

Integration testing, on the other hand, is necessary for ensuring that
different components interact perfectly, thereby guaranteeing a cohesive
working system. This also includes simulating the different environments,
such as databases and web servers, to ensure the application performs well
in real-world conditions. Unit and integration testing thus go a long way in
ensuring the maintainability, robustness, and general reliability of Spring
Boot applications.

Testing Spring Boot applications typically involves several layers of
testing:

e Unit testing: Testing individual components in
isolation using frameworks like JUnit and Mockito.
Spring Boot’s @SpringBootTest annotation can be
used for more integration-style unit tests where Spring
context is loaded.

197

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

o Integration testing: Testing the interaction between
different layers of the application. This can involve
using @DataJpaTest for repository layers,

@WebMvcTest for controllers, and @SpringBootTest with
TestRestTemplate or MockMvc for full context loading.

« End-to-end testing: Testing the entire application,
often with @SpringBootTest to run the application and
tools like Selenium for web UI testing.

o Testcontainers: For integration tests that require
real services like databases or message brokers,
Testcontainers provide a way to run these services in
Docker containers during testing.

Each testing layer serves a different purpose, from quick unit tests to
thorough end-to-end tests, ensuring that your Spring Boot application is
robust and ready for production.

Unit Testing of Spring Boot Application

Let’s say we have a simple EmployeeService class that we want to test:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class EmployeeService {
private final EmployeeRepository employeeRepository;
@Autowired
public EmployeeService(EmployeeRepository
employeeRepository) {
this.employeeRepository = employeeRepository;

198

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

public Employee addEmployee(Employee employee) {
return employeeRepository.save(employee);

The addEmployee method is a simple example that adds a new
employee to the repository. We can expand this class with additional
methods to handle other CRUD operations.

This EmployeeService class relies on EmployeeRepository to handle
data operations.

import org.springframework.data.repository.CrudRepository;
import org.springframework.stereotype.Repository;
@Repository

public interface EmployeeRepository extends
CrudRepository<Employee, Long> {

}

This repository interface provides basic CRUD operations for your
Employee entity. You can extend it with custom query methods as needed.

In the following example, Employee is your entity class, and Long is the
type of the entity’s primary key. Here @RedisHash("Employee") annotation
indicates that instances of Employee entity will be stored in Redis. The @Id
annotation marks the field to be used as the identifier in Redis. The name
and position fields are simple properties of the Employee entity.

import org.springframework.data.annotation.Id;

import org.springframework.data.redis.core.RedisHash;
@RedisHash("Employee")

public record Employee(@Id Long id, String name, String
position) {}

199

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

Java records automatically generate getters, equals(), hashCode(),
and toString() methods, making them a perfect fit for simple data carrier
classes like entities. Note that records are immutable, so every field is final.

In the following unit test, we are trying to mock the interaction
with EmployeeRepository. Here’s how you might write a unit test for
EmployeeService using JUnit and Mockito:

Mockito is a popular Java testing framework that allows the creation of
mock objects, simulating and verifying method invocations in unit tests.

public class EmployeeServiceTest {

private EmployeeService employeeService;

private EmployeeRepository mockRepository;

@BeforeEach

void setUp() {
mockRepository = Mockito.
mock (EmployeeRepository.class);
employeeService = new EmployeeService(mockRepository);

}

@Test

void testAddEmployee() {
Employee employee = new Employee("John Doe",
"Developer");
Mockito.when(mockRepository.save(employee)).
thenReturn(employee);
Employee result = employeeService.
addEmployee(employee);
assertEquals(employee.getName(), result.getName());

200

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

Integration Testing of Spring
Boot Application

Now, let’s consider a scenario where we want to test an
EmployeeRepository that interacts with a Redis database, but without
using Testcontainers. This typically involves more manual setup and can
be complex.

First, you'll need a running instance of Redis. This could be on your
local machine, a Docker container started manually, or a managed service.
Assuming we have a Redis instance running on localhost at the default
port 6379, here’s how the test might look:

@SpringBootTest
public class EmployeeRepositoryIntegrationTest {
@Autowired
private EmployeeRepository employeeRepository;
@Test
public void testEmployeeRepository() {
Employee employee = new Employee("John Doe",
"Developer");
employeeRepository.save(employee);
Optional<Employee> employee = employeeRepository.
findById(employee.getId());
assertTrue(employee.isPresent());
assertEquals(employee.getName(), employee.get().
getName());

}

application-test.properties:
spring.redis.host=localhost
spring.redis.port=6379

201

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

The application-test.properties file in a Spring Boot application is
used to define properties specifically for testing environments. When you
run tests, Spring Boot can be configured to use these properties instead
of the regular application.properties or application.yml. This allows
for setting up different configurations for testing, such as connecting to a
different database or using different application settings.

Adopting this manual approach to integration testing will introduce
several complexities:

o This integration test assumes Redis is already running
and accessible.

e We need to manually ensure that Redis is in a clean
state before and after tests.

o Handling different environments (CI server,
local development) can be challenging without
Testcontainers.

o This approach lacks the isolation and environment
parity provided by Testcontainers, potentially leading
to flaky tests.

This example illustrates the additional complexity and manual
intervention required when not using a tool like Testcontainers, which
automates these aspects.

Spring Boot and Testcontainers

The integration of Testcontainers with Spring Boot is quite a potent way
to facilitate comprehensive application testing, mainly when it comes to
interactions with external systems or databases. This integration allows
creating and managing containers dynamically during your tests while
providing an isolated environment similar to your production setup.

202

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

Testcontainers integrates with JUnit, allowing us to define a test class
that will start a container before the execution of any test. It is easy to use
for integration tests communicating with backend services like MySQL,
MongoDB, Redis, and so on.

‘ Testcontainers Sp rin g boot

&P redis

Figure 10-2. Testcontainers integration test

Here’s how we can utilize Testcontainers in a Spring Boot test.

Dependencies Setup

First, make sure the required dependencies are included in our Maven or
Gradle setup is crucial:
For Maven:

<dependency>

<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-testcontainers</artifactId>
<scope>test</scope>

203

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

</dependency>
<dependency>
<groupId>org.testcontainers</groupId>
<artifactId>junit-jupiter</artifactId>
<scope>test</scope>
</dependency>

For Gradle:

dependencies {
testImplementation 'org.springframework.boot:spring-boot-
starter-test’
testImplementation 'org.springframework.boot:spring-boot-
testcontainers'
testImplementation 'org.testcontainers:junit-jupiter'

Alternatively, we can add dependencies using start.spring.io.

23 start.spring.io

testcontainer| Press 38 for multiple adds

Testcontainers [zl

Provide lightweight, throwaway instances of common databases, Selenium web browsers, or anything else that «J
can run in a Docker container.

Figure 10-3. Adding Testcontainers dependency

Annotate Test Classes

Annotate your test classes with @SpringBootTest to enable Spring Boot
context loading for tests and @Testcontainers to activate Testcontainers
support.

204

https://start.spring.io

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

@Testcontainers
@SpringBootTest
class DemoApplicationTests {

}

Container Initialization

Create container instances in your test classes using Testcontainers’
utilities. For example, if you want to spin up an in-memory Redis cache
instance:

@Testcontainers
@SpringBootTest
class DemoApplicationTests {
@Container
@ServiceConnection
static RedisContainer container = new
RedisContainer(RedisContainer.DEFAULT IMAGE_ NAME);
@Test
void myTest() {
System.out.println(container.isRunning());
System.out.println(container.getRedisURI());

This code snippet demonstrates the integration of Testcontainers with
Spring Boot, showcasing how to use a Redis container in a test scenario.
Here’s a breakdown of what each part of the code does:

e (@Testcontainers: This annotation indicates that this
test class will utilize Testcontainers. It allows us to
manage the lifecycle of containers used within the
test class.

205

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

o @SpringBootTest: Indicates that this is a Spring Boot
test. It loads the complete application context and
allows integration testing with Spring components.

e @Container: This annotation marks a field as
a container Testcontainers manages. In this
case, it declares a static field container of type
RedisContainer. The RedisContainer is instantiated
with the default Redis image name (RedisContainer.
DEFAULT_IMAGE_NAME), which is pulled from the
DockerHub Registry.

e (@ServiceConncetion: Facilitates SpringBoot’s
autoconfiguration to dynamically enlist all the required
properties. In the background, this annotation
identifies the necessary properties from the container
class or the Docker image name.

o myTest(): Thisis a test method annotated with @Test.
Inside this method:

e container.isRunning() Prints whether the Redis
container is running or not.

o container.getRedisURI() Retrieves and prints the
URI of the running Redis container.

This code sets up a test class that utilizes Testcontainers to manage a
Redis container. It demonstrates basic functionalities like checking if the
container is running and retrieving its URI. This allows for integration
testing, ensuring the application works correctly with a Redis instance
managed by Testcontainers.

Here’s how we can modify our previous example where we created a
Redis cluster manually to use RedisContainer—a specialized container
class for Redis (from testcontainers-java library).

206

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

@SpringBootTest
@Testcontainers
public class EmployeeRepositoryIntegrationTest {
@Container
@ServiceConnection
static RedisContainer redis = new
RedisContainer (DockerImageName.parse("redis:latest"));
@Autowired
private EmployeeRepository employeeRepository;
@Test
public void testEmployeeRepository() {
Employee employee = new Employee(iL, "John Doe",
"Developer");
employeeRepository.save(employee);
Optional<Employee> foundEmployee = employeeRepository.
findById(employee.getId());
assertTrue(foundEmployee.isPresent(), "Employee should
be found");
assertEquals(employee.getName(), foundEmployee.get().
getName(), "Employee names should match");

This approach has several advantages:

o Testcontainers will automatically start a Redis

container.

o Noneed for application-test.properties for
containerized Redis instance.

o Thereis no need for a local Redis installation.

* You get a consistent and isolated test environment.

207

CHAPTER 10 TESTING JAVA APPLICATIONS USING TESTCONTAINERS

o Testcontainers automatically cleanups resources.

o Test suite works the same way in any environment
(local, CI).

Summary

This chapter covers the basics of Testcontainers and using it with Java, with
the focus on Spring Boot integration testing. It first explains what are the
core concepts behind Testcontainers, its necessity, and its major features:
support for diverse containers, integration with JUnit, and automatic
resource management. Then, it goes into the implementation details,
focusing on testing strategies for Spring Boot applications at unit and
integration levels.

This chapter provides practical examples of setting up and using
Testcontainers and demonstrates integration with Redis containers by
detailing the required configuration steps. The main emphasis throughout
the chapter is on the advantages of the Testcontainers way of doing
things compared to traditional ways of testing—namely, in obtaining
environment parity, portability, and efficient resource utilization. Practical
implementation guidelines are also covered, such as dependency setup
and proper annotation usage, to provide a complete understanding for
developers on how to harness Testcontainers to have more reliable and

maintainable integration tests.

208

CHAPTER 11

Docker Best Practices
for Java Developers

Mastering Docker best practices and strategies for Java
applications

Docker has become integral to modern Java development, providing
consistent, portable, and efficient ways to package and deploy
applications. Mastering the best practices involved in Docker is important
for creating optimized, secure, and production-ready containerized
applications for Java developers. This chapter shows how to use Docker
effectively with Java applications, detailing techniques and strategies

in important areas impacting container performance, security, and
efficiency.

The practices discussed in this chapter address the common
challenges that Java developers face when containerizing their
applications, from managing build processes and runtime environments
to optimizing resource usage and ensuring security. Best practices brought
out from real-world experience and industry standards provide a strong
foundation for the development of containerized Java applications that are
both robust and maintainable.

© Ashish Choudhary 2025 209
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_11

https://doi.org/10.1007/979-8-8688-1300-9_11#DOI

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Implementing Multistage Builds

Multistage build in Docker is a powerful technique that allows developers
to create lean and secure images using multiple stages in one Dockerfile,
each with its base image. We can significantly reduce the size of the final
image and minimize its attack surface, making it more secure.

Understanding Multistage Builds

Separate build stages: A multistage Dockerfile is divided into multiple
sections, each beginning with a FROM statement. These sections are called
stages. We can have as many stages as we need, and each stage can use a
different base image.

Building in layers: Each stage is built upon the layers from the
previous stages. It means we can compile or build our application in an
earlier stage using a base image that includes all our build dependencies
and then copy only the artifacts we need into a later stage with a slimmer
base image.

Artifact transfer between stages: We can copy artifacts from one stage
to another using the COPY --from=<stage> command. It is typically used
to move the compiled application from a build stage to a smaller run-
time stage.

Discarding intermediate layers: Once the final image is built, all
the intermediate layers created in the previous stages are discarded. This
results in a much smaller final image containing what’s needed to run the
application.

Reducing image size and security footprint: Compiling and building
the application in an initial stage and copying only the necessary artifacts
to the final stage minimizes the size of the final image. Smaller images
contain fewer components, translating to fewer potential vulnerabilities
and a smaller attack surface.

210

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Creating a Basic Multistage Build Dockerfile

Start with a build stage: Use a base image maven:3.6.3-jdk-11 or another
that suits our Java project. Add source code and any required build tools.
Compile the java code: Execute the build commands (mvn clean
package, for instance) to compile the Java application.
Setup the runtime stage: Use a lighter base image openjdk:11-
jre-slimfor the runtime. Copy the compiled JAR or classes from the
build stage.
Copying the compiled code to the runtime stage: Use the
COPY --from=build stage /path/to/compiled/artifact /path/in/
runtime/image command to copy the necessary files.

Best Practices

Tips on organizing stages: Name each stage for clarity (e.g., FROM
maven:3.6.3-jdk-11 as builder). Keep the build stage clean and focus
only on what’s necessary to compile the code.

Minimizing layers and cache usage: Minimize the number of layers
by combining commands where possible. Leverage Docker’s build cache
by organizing commands of least to most likely to change.

Example

Stage 1. Build: Using Maven image, add source code, and run mvn
package.

Stage 2. Runtime: Using the JRE image, copy the JAR file from the
build stage.

211

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS
Dockerfile structure:

Build stage

FROM maven:3.6.3-jdk-11 as builder

WORKDIR /app

COPY . .

RUN mvn clean package

Runtime stage

FROM openjdk:11-jre-slim

COPY --from=builder /app/target/myapp.jar /usr/local/lib/
myapp.jar

ENTRYPOINT ["java","-jar","/usr/local/lib/myapp.jar"]

Multistage builds are crucial for building light and secure Docker
images for Java applications. Separation of the build and runtime
environments can greatly reduce the size of the final image and minimize
the security vulnerabilities that come with large and bloated images.
That is a technique any serious Java developer should find invaluable in
using Docker.

Creating Slimmer Container Images
with Java Jlink

jlink, which was introduced in Java 9 as part of the Java Platform Module
System, is a tool that allows users to create a custom Java runtime image
containing only modules relevant to a particular application. Tailoring the
runtime environment allows users to realize various important benefits,
especially in terms of deployment in constrained environments, such as in
containers.

212

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Key Features and Benefits of jlink

e Custom runtime images: You can build a smaller,
optimized Java runtime specifically to your application,
including just the modules necessary and reducing
runtime size as opposed to that of a normal Java

Runtime Environment.

¢ Performance optimization: Application startup can be
faster and reduce the number of system resources used;
this is valuable in a cloud and microservices setup.

o Enhanced security: You reduce the surface area for
security vulnerabilities by including only the modules
that are required. Fewer modules mean fewer potential
points of attack.

e Modularization: jlink works with the module system
introduced in Java 9. This system allows for better
encapsulation and more organized dependency
management in Java applications.

Knowing jlink

e Modules identification: jlink works in terms of
modules. Identify which modules are needed for your
application. Analyze dependencies using tools such
as jdeps.

213

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

o Custom runtime creation: Now, once you have
identified which modules are needed, you create a
runtime image by including those modules using the
jlink command. That'’s a self-contained environment
for running your application; no other installation of
Java is needed to run it.

o Command line usage: jlink is used via the command
line, where you specify the modules to include and
other options, such as compression level or the output
directory.

The following command creates a custom Java runtime image that
includes only the specified Java platform modules and our modules, which
is ideal for making small and efficient runtime environments for our Java

applications.

jlink --module-path $JAVA HOME/jmods:path/to/your/modules
--add-modules com.example.yourmodule --output path/to/output/
directory

In this command:

o --module-path: This option specifies the module
path. The module path is a list of directories that j1link
searches for module definitions. In this command,
$JAVA_HOME/jmods the path to the jmods directory is in
the Java home directory. The jmods directory contains

214

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

definitions for the Java platform modules. And path /
to/your/modules path would replace this with the
path to any additional modules we want to include in
our runtime image that isn’t part of the standard Java
distribution.

e --add-modules: This option specifies the modules to
add to the custom runtime image. In this case, com.
example.yourmodule is the module name we want to
include. We would replace com.example.yourmodule it
with the actual name of the modules we have.

e --output: This specifies the path to the directory
where the custom runtime image will be created. We
would replace path/to/output/directory with the
path where we want the runtime image to be saved.

The following diagram shows the critical steps involved in the jlink

process.

215

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Start: Invoke jlink

legends

—Includes JDK modules
<€—and application modules

\ 4
Specify Module Path

l

Define Required Modules

— Modules to include
€¢———in the runtime

v
Customization Options

l

Create Runtime Image

l

Custom Java Runtime Image

Figure 11-1. jlink Java runtime image creation flow

216

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Use Cases for jlink

o Containerized applications: Especially designed for
Docker and other container platforms where image
size affects performance considerably as well as
resource usage.

e Creating minimal runtime environments:
Applications that only require a subset of the Java
platform modules can create a runtime much smaller
than the standard runtime. This is very helpful
for microservices, serverless functions, or for any
application where a small footprint is desirable.

e IoT and embedded systems: Useful in environments
with limited resources, such as IoT devices or
embedded systems.

e Security: Only necessary modules included, jlink
reduces the surface area of security vulnerabilities.
Applications are less prone to exploits that target
modules that they do not even have.

o Faster startup time: A smaller runtime can contribute
to faster application startup times, which is particularly
advantageous for desktop applications and tools that
benefit from quick launch times.

217

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Step-by-Step Guide

Using Jlink in Dockerfile

o Identify necessary modules: Determine your
application’s required modules.

¢ Create a Jlink Script: Incorporate a script in your
Dockerfile to execute Jlink with the identified modules.

e Assemble the runtime image: Use Jlink to create the
custom runtime.

Selecting necessary Java modules

o Use tools like jdeps to analyze your application’s
module dependencies.

e Include these modules in your Jlink command in the
runtime image.

Best Practices

e Minimal module set: Only include the necessary
modules.

o Compress the image: Use Jlink’s compression options
to reduce the size further.

o Layered Docker images: Structure your Dockerfile to
leverage Docker layer caching effectively.

218

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Example

e Scenario: A simple Java application that uses HTTP
and JSON processing.

e Dockerfile setup:

e Start with a JDK image to compile the application
and run Jlink.

o Use]Jlink to create a custom runtime including only
the required modules (java.base, java.net.http,
java.json).

o Construct the final image using a minimal base,
copying the custom runtime and application JAR.

e Sample Dockerfile:

Compile Stage

FROM openjdk:11 as build

WORKDIR /app

CoPY . .

RUN javac -d out --module-path 1lib --module-source-path
src $(find src -name "*.java")

RUN jlink --add-modules java.base,java.net.http,
java.json --output jre

Final Stage

FROM alpine:latest

COPY --from=build /app/jre /opt/jre

COPY --from=build /app/out /app

ENTRYPOINT ["/opt/jre/bin/java", "-m", "com.myapp/com.
myapp.Main"]

219

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Jlink significantly changes the way one dockerizes Java applications,
enabling the creation of slimmer, more efficient container images. It
is a powerful tool for Java developers, particularly in the context of
Docker, where image size and security are paramount. Mastering Jlink
enables developers to optimize their Java applications for modern cloud

environments.

Using Distroless Base Images

The base image is very significant in defining the security, efficiency,
and size of containerized applications. Distroless images have emerged
with much popularity from Google. In particular, Java developers widely
adopt it.

Understanding Distroless Images

Distroless images are minimalistic container images containing only the
application and its runtime dependencies. They do not include package
managers, shells, or other binaries typically found in a standard operating
system distribution. For Java applications, a distroless image would
typically include a JVM and the application’s JAR file, nothing more.

Creating Distroless Java Image

Write a Dockerfile: Start with a base image that contains only a Java
Runtime Environment (JRE).

FROM gcr.io/distroless/javal7-debian12
COPY target/myapp.jar /app.jar
CMD ["app.jar"]

220

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS
Build the image: Use Docker to build your image.
$ docker build -t my-java-app .
Run your container: Deploy your application.

$ docker run -d my-java-app

Benefits of Distroless Images

o Enhanced security: By removing unnecessary
operating system components, the attack surface of the
container is significantly reduced. Fewer components

in the image mean fewer potential vulnerabilities.

e Smaller image size: Distroless images are minimalistic,
making them smaller in size; they take less time to
be pulled and pushed in the CI/CD pipeline. They
use lesser storage spaces compared to other images.
Smaller images accelerate the deployment time in
orchestration systems such as Kubernetes.

¢ Simplicity and maintenance: With fewer components
in the image, there’s less need for patching and
updates. Provides a clean and minimal environment for
your application, ensuring consistency across different

deployment environments.

221

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Best Practices

e Understand your application’s dependencies: Ensure
all runtime dependencies are included in your image.

o Debugging challenges: With a shell or debugging
tools, troubleshooting running containers can be more
accessible. Consider using a debug version during the
development phase.

e Keep up with updates: Regularly update the base
image to ensure you have the latest security patches for
the Java runtime.

Distroless images have a compelling approach in terms of deploying
Java applications inside containers, balancing security, efficiency, and
simplicity. Embracing distroless images means that developers and
organizations reduce the risks of running large, complex container images
in production while enjoying streamlined and efficient deployment
processes. In the future, the industry will be more prone to distroless
images with its trend towards minimalism in containerization.

Applying JVM Arguments and Resource Limits
to Docker Containers

It is very important to optimize the JVM settings and container resource
limits when running Java applications in Docker containers. Optimized
configuration will ensure effective usage of resources, and consequently,
application performance will increase without common issues like out-of-

memaory errors.

222

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Importance of jvym Arguments
and Resource Limits

JVM arguments: Customize the behavior of the JVM to suit specific needs,
like garbage collection strategy, heap size, and other performance-related
settings.

Resource limits in Docker: Define the maximum amount of CPU and
memory resources a container can use, preventing any application from
exhausting the host system’s resources.

Setting memory limits: Use Docker’s -m or --memory flag to set a
memory limit.

Example: docker run -m 512m my-java-app caps the container at
512 MB of memory.

Setting cpu limits: Use --cpus to limit the number of CPU cores the
container can use.

Example: docker run --cpus=2 my-java-app limits the application to
2 CPU cores.

Passing jvm Arguments in Docker

Use the JAVA_OPTS environment variable or pass arguments directly in the
CMD or ENTRYPOINT in the Dockerfile.

docker run -e "JAVA OPTS=-Xmx256m -Xms256m" my-java-app
Or we can include it in the Dockerfile.

ENTRYPOINT ["java", "-Xmx256m", "-Xms256m", "-jar",
"myapp.jar"]

223

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Balancing Resources for Optimal Performance

e Understand application needs: Profile your
application to understand its resource usage patterns.

¢ Avoid over-allocation: Don’t allocate more resources
than necessary, as it could starve other containers or
processes.

e Monitor and adjust: Continuously monitor
performance and adjust settings as needed.

Configuring Java Applications for Efficiency

Consider a scenario with a Java web application running in a Docker
container. What do we need to take care of to get optimal performance
from our web application? Per the current application load, we only need
700 MB of memory and one CPU core.

Inside the Dockerfile, we can set the memory limit to 1 GB and the
CPU limit to 1 core. Even though the application needs ~700 MB of
memory, we should keep some buffer in case there are spikes in the usage.

We should also configure JVM arguments for garbage collection and
heap settings.

$docker build -t my-java-app .
$docker run -m 1g --cpus=1 -e "JAVA OPTS=-Xmx700m -Xms700m -XX:
+UseG1GC" my-java-app

Tuning JVM settings and setting resource limits in Docker is essential
for running Java applications efficiently and reliably in containerized
environments. These configurations help manage application
performance, ensure optimal use of resources, and maintain the stability

224

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

of both the application and the host system. Regular monitoring and
adjustments based on the application’s behavior are essential to optimal
performance.

Securing Docker Images

In containerization, Docker image security is paramount. With the
widespread adoption of Docker in deploying applications, ensuring the
security of Docker images is essential to protect against vulnerabilities that
attackers could exploit.

Common Security Vulnerabilities

Although versatile, Docker is also vulnerable if not managed appropriately.
This may offer attackers or hackers an entry point.
Common vulnerabilities include:

e Outdated software and libraries: Images containing
outdated operating systems, libraries, or frameworks
are vulnerable to known vulnerabilities.

o Insecure configuration: A misconfigured Dockerfile or
container setting might expose the container to risk.

o Embedded secrets: Secrets hardcoded into images
may cause unauthorized access.

o Unnecessary packages: The addition of unused
software in images raises the attack surface.

225

CHAPTER 11

DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Scanning for Vulnerabilities

Choose a scanning tool: Tools like Clair, Trivy, Synk, or
Docker’s scanning feature can be used.

Integrate scanning into ci/cd pipeline: Automate the
scanning process during image build or deployment.

Review and address findings: Analyze the
report generated by the scanner and address the
vulnerabilities identified.

Best Practices

226

Continuous monitoring: Regularly scan images for
vulnerabilities, even after deployment.

Dependency management: Keep track of the
dependencies used in your Docker images and update
them regularly.

Minimize attack surface: Use minimal base images
and avoid installing unnecessary packages.

Non-root user: Run your container as a non-root user
to reduce the risk of a container breakout attack.

.dockerignore file: Use a .dockerignore file to
exclude unnecessary files and directories from your
build context to prevent potential leaks of sensitive

information.

Private registries and signed images: Store images in
trusted, private container registries with strong access
controls. Use features like Docker Content Trust to sign
images and verify their integrity and origin.

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

o Implement the least privilege principle: Ensure that
files and executables within the Docker image have the
least privileges necessary to run the application. Where
possible, use read-only filesystems in your containers
to prevent unwanted changes.

e Securing application secrets: Never hardcode
sensitive information like passwords or API keys in
Docker images. To manage sensitive information,
use secret management tools like Docker Secrets,
HashiCorp Vault, or environment variables injected at
runtime.

e Keeping host system secure: Ensure the Docker
daemon is securely configured. Keep the host system
secure, as vulnerabilities in the host can affect all
containers.

Securing of Docker images is an ongoing process that demands
constant maintenance, vigilance, and best practices. By keeping up
with vulnerabilities, maintaining the latest images, and minimizing
attack surfaces, you can enhance your Docker deployments’ security
dramatically. The integration of security practices into the development
and deployment pipeline is the way to ensure robust and secure
containerized applications.

Choosing Maven vs. JDK vs. JRE
Base Image

In the Docker ecosystem, choosing a base image is critical for building
effective and efficient Java applications. Maven, JDK, and JRE images each
serve different purposes. Understanding their differences and use cases is
essential for optimal Docker image construction.

227

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Differences between Maven, JDK, and JRE Images

e Maven image: Includes the Maven build tool and
typically a JDK. Best for building Java applications

from source.

e JDK (Java Development Kit) image: Contains the Java
Runtime Environment (JRE), compilers, and tools to
build Java-based applications. Required for compiling
Java code.

e JRE (Java Runtime Environment) image: The runtime
needed to execute a Java application. It does not
contain the tools and compilers found in the JDK.

Pros and Cons

Image Pros Cons Use Case

Type

Maven Convenient for building Larger than JDK or Building Java

Image applications where JRE images, as it applications during
Maven is the build includes additional development or in CI/CD
tool
- Often build tools pipelines
includes the JDK

JDK Essential for compiling Larger size compared Application development

Image Java code and includes to JRE images and any situation where
necessary tools for Java code needs to be
development compiled

(continued)

228

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Image Pros Cons
Type

Use Case

JRE Smaller size, focused Cannot be used for

Image on runtime only, and compiling Java code
ideal for running Java or any development-
applications related tasks

Running Java
applications in
production or any
environment where
code compilation is not
required

Best Practices

e Analyze your requirements: Determine whether

your application needs to be compiled or if it’s only

being run.

o Consider the environment: Use JDK images for

development, CI/CD pipelines, and JRE images for

production.

o Size vs. functionality: Balance the need for a smaller

image size with the functionality required.

Example

e Maven image:

e Scenario: Building a Spring Boot application

using Maven.

229

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS
e Dockerfile example:

FROM maven:3.6-jdk-11 AS build

COPY src /usr/src/app/src

COPY pom.xml /usr/src/app

RUN mvn -f /usr/src/app/pom.xml clean package

e JDKimage:
e Scenario: Compiling a Java application.
¢ Dockerfile example:

FROM openjdk:11-jdk

COPY . /usr/src/myapp

WORKDIR /usr/src/myapp
RUN javac Main.java

¢ JREimage:
e Scenario: Running a pre-compiled Java application.

e Dockerfile example:

FROM openjdk:11-jre-slim
COPY --from=build /usr/src/app/target/app.jar /usr/app/
ENTRYPOINT ["java", "-jar", "/usr/app/app.jar"]

It depends on the needs of your Java application in Docker. Maven
images are most suitable for building scenarios that involve Maven, JDK
images are best suited for development and compilation tasks, and JRE
images are best optimized for running Java applications. Understanding
and aligning these choices with your application requirements ensures
efficiency, performance, and a streamlined development process.

230

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Summary

This chapter is a comprehensive review of Docker best practices that

are vital for Java developers in today’s containerized environments. The
chapter starts with multistage builds, which are advanced techniques for
creating lean and secure Docker images. Isolating the build environment
from the runtime environment greatly reduces the size of the final image
but still keeps all the functionality needed; it shows how to structure
Dockerfiles and handle artifacts between stages.

The discussion then moves on to Java runtime optimization using jlink,
a powerful tool introduced in Java 9. This section shows developers how to
create custom runtime images containing only the modules necessary for
their applications. Not only does this targeted approach reduce container
size, but it also improves security by minimizing the potential attack
surface; it provides practical examples and best practices for module
selection in real-world scenarios.

Moving on, the chapter on distroless base images covers the minimal
container image containing just the application and its dependencies
required at runtime. This proves to be very valuable for improving security
and efficiency in removing unnecessary components, which results in a
smaller, more secure, and easier-to-maintain and deploy container.

The chapter then goes into detail on JVM arguments and resource
management, providing deep insight into the optimization of memory
usage, CPU allocation, and garbage collection settings. The extensive
coverage helps developers realize how resource allocation can be
balanced for optimal performance and common pitfalls in containerized
Java applications. The guidance provided ensures that applications run
efficiently within their containerized environments while maintaining
stability and reliability.

231

CHAPTER 11 DOCKER BEST PRACTICES FOR JAVA DEVELOPERS

Finally, the chapter will summarize security considerations by offering
a comprehensive examination of Docker image security best practices,
including vulnerability scanning and secure configuration management,
implementing principles of least privilege, continuous monitoring, and
regular updating of containerized environments over the application
life cycle. Combined, these practices deliver a complete approach to
containerizing Java applications, enabling development teams to create
solutions that are efficient, secure, and maintainable, without falling into
common pitfalls in the implementation of Docker.

232

Index

A

Abstraction, 19, 83

addEmployee method, 199
add-modules, 215

Agility, 1, 7-8, 10

Ahead-of-time (AOT), 177-179
Alpine Linux image, 90

Amazon ECS, 19, 20
application-test.properties file, 202
Autoconfiguration, 115, 116, 206
Azure Kubernetes Service (AKS), 20

B

Bridge driver, 67-69
Buildah, 161, 162
building images, 164, 165
features, 162, 163
Podman and, 163, 164
Build Once, Run Anywhere
(BORA), 17,18, 36

C

Centralized repositories, 54
Clair, 92, 226

Clean up containers, 58
Client-server architecture, 20, 37

© Ashish Choudhary 2025

Cloud computing, 9, 17, 97
Cloud-native buildpacks
(CNBs), 180
autoconfiguration, 115, 116
configuration, 118-121
features, 116-118
spring-boot-starter-
data-jpa, 115
top-tier OCI, 116
Collaboration, 26, 50, 53, 186
Command-line interface (CLI), 20,
22,34, 161
Communication, 34, 65, 66,
69-71, 76
Constraints, 57
Containerization, 39, 53, 99, 100,
104,110, 111, 115, 122, 123,
158,175
Containerizing, 6, 11, 32, 96, 97,
132, 158, 209, 232
Containers, 1, 22-24, 27, 35, 40, 65,
104,110,117, 139, 147,
149, 162
agility, 7
analogy, 5, 6
black boxes, 4
cloud platforms, 8
communication, 66

233

A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9

https://doi.org/10.1007/979-8-8688-1300-9#DOI

INDEX

Containers (cont.)
copy data, 74
digital building blocks, 1
Docker, 83
Docker definition, 3
Docker’s interactive mode, 60
history, 2-4
initialization, 205-208
isolation, 7
Java, 4
management, 53
operating system, 5
physical machine, 5
portability, 7
resource utilization, 7
rm flag, 40
scaling, 8
setups, 70
visual representation, 5
VMs, 9, 10
Continuous integration (CI), 118,
166, 195
Continuous integration/
continuous deployment
(CI/CD), 51,118, 143-145
Cost savings, 11
Custom base images, 91, 101

D

Daemon process, 21, 22
Dangling images, 44
Data sharing, 72, 75

DataSourceAutoConfiguration, 115

234

Date-based tags, 52
Debugging, 27, 63, 175, 197, 222
Deployment, 50, 54, 123, 131, 135,
139, 143
Deployment time, 55, 221
Disaster recovery, 55
Distroless base images, 90-91,
220, 231
Distroless images, 220
benefits, 221
best practices, 222
creation, 220
Docker, 2, 3,11
architecture, 23
bridge driver, 67-69
commands, 21-23, 148
container orchestrator, 19
definition, 3
environment-specific
variations, 18
exclusive method, 19
host driver, 69
Java applications, 209
Java developers (see Java
developers)
multistage builds, 210-212
networking commands, 71
networking functions, 65, 66
none driver, 70
popularity, 11-14
virtualization technology, 18
Docker build command, 39,
46, 49, 53
Docker CLI, 20-25, 34, 37, 79

Docker Compose, 25, 35-37

action, 80-82

components, 79

configuration, 78

installation, 79

Java application, 80
management, 77
multi-container applications, 77
Spring Boot, 83-85

Docker container, 34, 56, 59, 97,

110, 173, 193, 194, 201
GitHub Actions (see GitHub
Actions)
Spring Boot application, 93

Docker daemon, 20-23, 34, 49, 65,

119,120

Docker Desktop, 69, 79

applications, 24
components, 25
documentation, 24
features, 26

graphical interface, 26-32
Hyper-V, 24

installation, 24

pre-built image, 28-32

Docker Engine, 20, 22-25, 37, 73, 79
Dockerfile, 33, 39, 58, 63, 77, 100,

110,111, 115, 116, 122, 210
Alpine Linux, 90
associated files, 40
base images, 87, 88
building and tagging, 46-49
build process, 39-41
commands, 41, 42

INDEX

creation flow, 41

custom base images, 91
distroless base images, 90
Eclipse Temurin, 90

facts exploring, 43-45

Java application, 132

JDK vs. JRE, 88, 89
multi-stage builds, 91, 92
official OpenJDK versions, 89
Security, 92, 93

source code, 49

Spring Boot application, 93-97
tagging, 49-53

writing, 132, 133

Dockerfile-Maven plugin, 110

addition, 112

building, 114

pushing to registry, 114
Spotify, 110,111

Docker Hub, 26, 28-32, 34, 46-49,

53,108, 114

Docker image, 46-49, 58, 99, 104,

105,108,111,114,132,138
best practices, 226
common pitfalls, 57, 58
Common vulnerabilities, 225
inspection, 59-61
Kaniko, 167-169
management, 62, 63
Maven, 227
pushing and running, 53-56
running, 56, 57
scanning vulnerabilities, 226

Docker Scout, 11

235

INDEX

Docker Swarm, 2, 19, 70, 71, 82 G
Docker Volumes, 71, 72

Git commit hash, 52
bulk volume deletion, 75, 76

GitHub Actions, 12, 118

copy containers, 74

creation, 73

deletion, 75

diagram, 73

host directories, 74

host filesystem, 72

inspection, 74

lists, 73

mounting, 74

ownership, 75
Documentation, 14, 24, 51, 58,

156, 197

dotCloud, 2

E

Eclipse Temurin, 90

EmployeeService class, 198-200

End-to-end testing, 198

Environment-specific tags, 52

Environment variables, 18, 27, 45,
58, 81,118, 139

F

Fabric8 Docker Maven plugin,
104, 105
benefits, 105, 106
image build process, 105
setting up, 106-110
FROM command, 40, 167

236

automation tool, 123
cache mechanism,
145, 146
CI/CD, 143-145
Dockerfile, 132, 133
elements, 125, 126
features, 124, 125
GCP (see Google Cloud
Platform (GCP))
Java Project, 128-131
security and performance
tests, 146
Setting up, 133-135
workflow Yaml file, 126-128

Google Cloud Platform

(GCP), 135
APIs, 138
applications, 139
GitHub secrets, 139
IAM permissions, 138
secret, 143
workflow, 136, 141
Workload Identity
Federation, 138

Google Container Registry (GCR),

114, 136

Google Jib

building, 101, 102
description, 100, 101
features, 100

image layers, 102-104

Google Kubernetes Engine
(GKE), 20, 136
GraalVM, 173
build tools, 181-183
diagram, 182
Native Image, 174-176
Spring Boot 3, 180

H

Host driver, 69, 71

Host network, 69

Host system, 34, 58, 60,
74-76, 225

Hykes, 2, 17

Hyperkit, 24

Hyper-V, 18, 24

IMAGE ID command, 40
Image labeling, 45
Image tagging, 49
benefits, 50, 51
strategies, 52, 53
Img, 169
build and push, 170, 171
Docker image, 169
features, 170, 171
Integration testing,
182, 193-195, 198,
201, 202, 206
Interoperability, 177, 178
Isolation, 7, 72, 195, 197, 202

INDEX

J

JAR file packages, 33
Java developers, 36, 77, 100, 111,
123, 184, 209, 212, 231
Java Development Kit (JDK), 228-230
Java Platform Module System, 212
Java Runtime Environment (JRE),
4,174, 213, 220, 228-230
Java Virtual Machine (JVM), 17, 34,
37,90, 116, 174-179, 220, 222
Java web application, 224, 225
Jib, see Google Jib
Jlink, 212
best practices, 218
command, 215
command line usage, 214
dockerizes, 220
example, 219, 220
features, 213
identification, 213
Java runtime image, 216
runtime creation, 214
step-by-step guide, 218
use cases, 217,218
JpaRepositoriesAuto
Configuration, 115
Just-in-time compiler (JIT), 177,
178, 180
JVM Arguments, 222
in Docker, 223, 224
memory limits, 223
optimal performance, 224
resource limits, 223

237

INDEX

K

Kaniko, 166
build and push, 167-169
challenges, 166
executor image, 167
features, 166, 167
Kubernetes, 12, 19, 25, 26, 28, 32,
37,70,71,93, 105, 118,
139, 166, 168, 172, 185,
186, 188

L

Latest tags, 53

Layer caching, 43, 218
Lego, 1

Linux Containers, 2

Macvlan driver, 70

Maven, 33-35, 96, 99, 110, 130,
183, 227-229

Maven image, 221, 228-230

Maven Jib plugin, 101, 102

Microservices, 3, 13, 24, 32, 51, 72,
78,173,184, 217

module-path, 214

Mounting, 28, 57, 58, 74,
75,168

Multi-cloud deployments, 13

Multi-host communication, 71

Multiple base images, 44

Multiple languages, 177, 179

238

Multistage builds, 91, 92
artifact, 210
best practices, 211
Dockerfile, 210, 211
image size, 210
JRE image, 211
in layers, 210
Maven image, 211
security footprint, 210
security vulnerabilities, 212

N

Native Image
benefits, 175
Docker and, 176
drawbacks, 175
explanation, 174, 175
Java and, 174
JIT vs. AOT compiler, 177, 178
JVM vs. GraalVM, 178, 179
Networking, 58, 60, 65, 66,
69-71, 81, 165
Nginx, 14, 35, 69

O

Open Container Initiative (OCI),
8,116,120, 161-164, 171

Orchestration, 2, 8, 12, 19, 148,
165, 184

Order matters, 43, 44

Out-of-date tags, 51

Overlay driver, 70

P

Persistence, 65, 72, 73, 76
Platform-as-a-Service market, 2
Pod concept, 148
Podman, 19
binary downloading, 150
dashboard, 152
Desktop, 151
.dmg file, 149-156
Engine, 156
features, 148
installation, 151
machine, 154
open-source software, 147
setting up, 148, 149
setup, 154
Portability, 7, 72, 104, 135, 169,
195, 208
Port mapping, 27, 57, 58, 160
PostgreSQL, 14, 84
Private registries, 53, 54, 226

Q

Quality assurance, 51
Quarkus, 184
code generation, 186
container image, 191
deployment flow, 190
downloading, 186
extension, 186
features, 184
Java framework, 184
with Kubernetes, 185, 186

INDEX

Maven/Gradle, 188
project onboarding, 187
project setup, 186
streamlined dependencies, 186
user-friendly, 185

R

REST API, 20-23
Rollbacks, 50

S

Scalability, 10, 55, 63, 104

Scaling, 8, 20, 55, 82, 85

Secrets, 45, 81, 124, 139, 145,

225,227
Security, 11, 69, 108, 117, 147, 148,
166,170, 171, 217

Dockerfile, 92, 93
vulnerabilities, 225

Security concerns, 45, 166

Self-contained entities, 6

Self-containment, 8

Semantic versioning, 52

Size optimization, 45, 93

Solomon Hykes, 2, 17

Spotify, 99, 110, 111, 114, 121

Spring Boot, 83-85, 194
annotation, 204
dependencies setup, 203, 204
systems, 202
Testcontainers, 203

Spring Boot 3, 180, 181

239

INDEX

Spring Boot application, 197, 198
building, 94-96
container image, 158, 159
containerization, 158
containerized
application, 159-161
containerizing, 96, 97
Docker container, 93
efficiency, 182
GraalVM, 182, 183
Maven Project, 156
Native Image, 180-182
running the project, 157
Spring Boot buildpack, 116, 119
Start Container, 160
System-specific native code, 180

T

Tagging, 46, 50-53, 93, 108, 163
Testcontainers, 193

features, 196, 197

integration testing, 195,

201, 202

library, 194

logo, 194

services, 198

software development, 194

Spring Boot, 197, 198, 202-205

240

testing, 193

toy box, 194

unit testing, 198-200
Trivy, 92, 146, 226

U

Unit testing, 193, 197-200
User-defined networks, 66, 71, 85

\'

Versatility, 14, 76
Versioning, 50, 52, 58
Versions, 4, 12, 55, 106, 114, 195
Virtualization technology, 18
Virtual machines (VMs), 19, 37,
139, 149
vs. containers, 9, 10
vs. Docker’snetworking, 65, 66
operating systems, 18
process, 2
VMware, 18

W XY,Z
Workflow Yaml file, 126-128, 134

Write Once, Run Anywhere
(WORA), 17

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Overview of Containers
	A Bit of History
	Definition of Containers
	Docker’s Definition
	Understanding Containers

	The Significance of Containers
	Key Advantages of Containers
	Portability
	Resource Utilization
	Isolation
	Agility
	Easy to Scale
	Improved Productivity
	Cloud Support

	Container vs. Virtual Machine
	Rise of Docker
	Key Reasons for Docker’s Popularity

	Summary

	Chapter 2: Docker High-Level Overview
	Docker’s Basic Principle
	Docker Is Not!!!
	How Does Docker Work?
	Key Docker Commands

	Understanding Docker Desktop
	Docker Desktop Features
	Docker Desktop in Action
	Key Docker Concepts
	Dockerfile
	Docker Image
	Docker CLI
	Docker Container
	Docker Daemon
	Docker Hub
	Docker Compose

	Summary

	Chapter 3: Up and Running with Docker
	Creating a Dockerfile
	Dockerfile Commands and Their Usage
	Exploring Facts About Dockerfiles
	Building and Tagging a Docker Image
	Example

	Tagging a Docker Image
	Benefits of Image Tagging
	Image Tagging Strategies

	Pushing and Running a Docker Image
	Running a Docker Image
	Common Pitfalls
	Inspecting and Managing a Docker Image
	Managing a Docker Image
	Summary

	Chapter 4: Learning Advanced Docker Concepts
	Exploring Docker’s Networking
	Docker’s Networking vs. VM Networking

	Types of Docker Network Drivers
	Bridge Driver
	Host Driver
	None Driver
	Overlay and macvlan Drivers

	Basic Docker Networking Commands
	Docker Volumes
	Getting Started with Docker Volumes
	Creating Docker Volumes
	Listing Available Volumes
	Volume Inspection
	Mounting Data Volumes
	Copy Containers Data
	Host Directories As Data Volumes
	Ownership and Permissions of Volumes
	Deleting Docker Volumes
	Bulk Volume Deletion

	Docker Compose
	Understanding Docker Compose
	Docker Compose File Components

	Setting Up Docker Compose
	Docker Compose in Action
	Docker Compose Support in Spring Boot
	Summary

	Chapter 5: Containerizing Java Applications with Dockerfile
	Understanding Base Images
	Choosing JDK vs. JRE As the Base Image
	Official OpenJDK Images
	Eclipse Temurin Images
	Alpine Linux Images
	Distroless Base Images
	Building Custom Base Images
	Multi-stage Builds for Optimization
	Security Considerations
	Containerizing and Running a Spring Boot Application
	Dockerizing a Spring Boot Application
	Building a Simple Spring Boot Application
	Containerizing Spring Boot Application with Buildpack

	Summary

	Chapter 6: Working with Container Builder Tools for Java Applications
	Building Container Images with the Google Jib
	Understanding Jib
	Building with Jib
	Understanding Jib Image Layering

	Building Container Images with Fabric8 Docker Maven Plugin
	Understanding Fabric8 Docker Maven Plugin

	Benefits of Fabric8 Docker Maven Plugin
	Setting Up Fabric8 Docker Maven Plugin

	Building Container Images with Spotify’s Docker-Maven-Plugin
	Understanding Spotify’s Docker-Maven-Plugin
	Getting Started
	Building Container Images with Cloud-Native Buildpacks
	Understanding Buildpacks
	Cloud-Native Buildpacks Features
	Configuring Buildpack

	Summary

	Chapter 7: Deploying Docker Containers Using GitHub Actions
	Understanding Github Actions
	GitHub Action Components
	Understanding Workflow Yaml File

	Building Java Application Using Github Actions
	Setting Up a Java Project

	Containerizing Java Application Using Docker GitHub Action
	Understanding the Process
	Writing a Dockerfile
	Setting Up Github Actions

	Deploying Java Application to GCP Using GitHub Action
	Understanding the Workflow
	Setting Up the Workflow

	GitHub Actions Best Practices for CI/CD with Docker
	Keep Workflows DRY (Don’t Repeat Yourself)
	Use Secrets for Sensitive Information
	Leverage Caching to Reduce Build Times
	Run Security and Performance Tests As Part of the CI Process

	Summary

	Chapter 8: Exploring Docker Alternatives
	Podman
	Setting Up Podman
	Using the .dmg File

	Developing a Simple Spring Boot Application
	Containerizing the Spring Boot Application
	Building Container Image with Podman
	Running Containerized Application
	Buildah
	Buildah Features

	Podman and Buildah Comparison
	Building Images with Buildah
	Kaniko
	Need for Kaniko

	Features of Kaniko
	Understanding Kaniko
	Using Kaniko to Build and Push Docker Images

	Img
	Why img?
	Features of img
	Using img to Build and Push Docker Images

	Summary

	Chapter 9: Building Native Images with GraalVM
	Demystifying Native Image and GraalVM
	Native Image Explained
	Native Image Benefits
	Native Image Drawbacks
	Differences Between Docker and Native Image
	Understanding GraalVM
	JIT vs. AOT Compiler
	JVM vs. GraalVM
	Spring Boot 3 and GraalVM
	Building Native Images with Spring Boot
	Testing GraalVM Native Image for Spring Boot Application
	Understanding Quarkus a Kubernetes Native Java Framework
	Knowing Quarkus
	Key Features of Quarkus

	Need for Quarkus with Kubernetes
	Getting Started with Quarkus
	Building and Deploying Quarkus Application on Kubernetes
	Up and Running with Quarkus
	Summary

	Chapter 10: Testing Java Applications Using Testcontainers
	Introduction to Testcontainers
	Need for Testcontainers
	Testcontainers Features
	Testing Spring Boot Applications
	Unit Testing of Spring Boot Application
	Integration Testing of Spring Boot Application
	Spring Boot and Testcontainers
	Dependencies Setup
	Annotate Test Classes

	Container Initialization
	Summary

	Chapter 11: Docker Best Practices for Java Developers
	Implementing Multistage Builds
	Understanding Multistage Builds
	Creating a Basic Multistage Build Dockerfile
	Best Practices
	Example

	Creating Slimmer Container Images with Java Jlink
	Key Features and Benefits of jlink
	Knowing jlink
	Use Cases for jlink
	Step-by-Step Guide
	Best Practices
	Example

	Using Distroless Base Images
	Understanding Distroless Images
	Creating Distroless Java Image
	Benefits of Distroless Images
	Best Practices
	Applying JVM Arguments and Resource Limits to Docker Containers
	Importance of jvm Arguments and Resource Limits
	Passing jvm Arguments in Docker
	Balancing Resources for Optimal Performance

	Configuring Java Applications for Efficiency
	Securing Docker Images
	Common Security Vulnerabilities
	Scanning for Vulnerabilities
	Best Practices

	Choosing Maven vs. JDK vs. JRE Base Image
	Pros and Cons
	Best Practices
	Example

	Summary

	Index

