
Asynchronous
Programming
with SwiftUI and
Combine

Functional Programming to
Build UIs on Apple Platforms
—
Peter Friese

Asynchronous
Programming with

SwiftUI and Combine
Functional Programming to

Build UIs on Apple Platforms

Peter Friese

Asynchronous Programming with SwiftUI and Combine: Functional

Programming to Build UIs on Apple Platforms

ISBN-13 (pbk): 978-1-4842-8571-8		 ISBN-13 (electronic): 978-1-4842-8572-5
https://doi.org/10.1007/978-1-4842-8572-5

Copyright © 2023 by Peter Friese

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/Asynchronous-
Programming-with-SwiftUI-and-Combine. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Peter Friese
Hamburg, Germany

https://doi.org/10.1007/978-1-4842-8572-5

For Anne

v

Part 1��1

Chapter 1: �SwiftUI: A New Beginning��3

Why a New UI Framework?��5

SwiftUI Principles���7

Declarative vs. Imperative��7

State Management���8

Composition over Inheritance���9

Everything Is a View—Except That It Isn’t��10

UIs Are a Function of Their State��10

A Quick Tour of SwiftUI���11

Prerequisites��11

Creating a New SwiftUI App���11

Adding Some Interaction to Your App���19

About the Author���xv

Foreword���xvii

Preface���xix

Acknowledgments��xxi

About This Book���xxiii

Table of Contents

vi

Using SwiftUI’s State Management to Keep UI and Model in Sync����������������25

Exercises��31

Summary���31

Chapter 2: �Getting Started with SwiftUI��33

What We’re Going to Build��34

Composing a View for Displaying a Book���36

Build the View with Static Data��40

Using the Preview to Make Sure Our View Works As Intended����������������������������51

Displaying a List of Books��53

Setting Up Data Binding���56

Adjusting the Preview Canvas��59

Making the Code Reusable��60

Refactoring the Code Using Extract Subview���60

Renaming ContentView��64

Keep Complexity in Check��65

Views and View Modifiers��65

Exercises��66

Tips and Tricks���66

Summary���67

Chapter 3: �SwiftUI Building Blocks��69

Views���70

User Interface Views���74

Container Views��78

Layout Behavior��79

Views Are Just Descriptions of the UI���80

View Modifiers���83

Configuring Views���84

Table of Contents

vii

Applying View Modifiers to Child Views��87

Using View Modifiers to Register Action Handlers��89

Summary���92

Chapter 4: �State Management���93

Managing State in SwiftUI���94

Binding Value Types���95

Binding Objects��98

ObservableObject���99

@StateObject���99

When to Use���101

@ObservedObject��101

When to Use���103

@EnvironmentObject���103

When to Use���106

Summary���106

Chapter 5: �Displaying Data in Lists��107

Getting Started with Lists in SwiftUI��107

Using Other SwiftUI Views Inside List Rows���109

Building Custom List Rows���111

More Complex List Rows��114

Dynamic Lists���117

Displaying a List of Elements���117

Using List Bindings to Allow Modifying List Items��121

Asynchronously Fetching Data���123

Pull-to-Refresh���126

Searching���130

Table of Contents

viii

Styling��134

List Styles���135

Headers and Footers��137

List Cells���139

Separators��140

Actions���143

Swipe-to-Delete���144

Moving and Deleting Items Using EditMode���145

Swipe Actions���147

Managing Focus in Lists��154

How to Manage Focus in SwiftUI��154

How to Manage Focus in Lists��156

Handling the Enter Key���158

What About MVVM?��159

Eliminating Empty Elements���163

Summary���165

Chapter 6: �Building Input Forms��167

Building Simple Forms���168

Showing Data in a Form���179

Make It Editable���182

Drill-Down Navigation��184

Input Validation��191

Using .onChange(of:)��192

Using a View Model to Handle Form Validation��193

Synchronizing a Local Source of Truth with the Global Source of
Truth by Using @Binding and @ObservableObject���������������������������������������196

Using Combine to Perform Form Validation��202

Summary���204

Table of Contents

ix

Part �2��205

Chapter 7: �Getting Started with Combine��207

What Is Functional Reactive Programming?��207

Publishers��209

Subscribers��211

Operators���213

Composing Operators��215

Combining Publishers��220

Summary���223

Chapter 8: �Driving UI State with Combine���225

Input Validation Using Combine���226

The Sign-Up Form View��227

The View Model��229

Validating the Username��232

Displaying Validation Messages���234

Encapsulating Combine Pipelines in Computed Properties��������������������������236

Validating the Password���238

Putting It All Together���241

Exercises��243

Summary���244

Chapter 9: �Networking with Combine��247

Fetching Data Using URLSession���248

Using Combine to Fetch Data���252

Destructuring Tuples Using Key Paths��254

Mapping Data���254

Fetching Data Using Combine, Simplified���255

Table of Contents

x

Connecting to the UI���256

Handling Multithreading���262

Optimizing Network Access���263

Finding the Root Cause��264

Using the share Operator to Share a Publisher��266

Using debounce to Further Optimize the UX���269

Using removeDuplicates to Avoid Sending the Same Request Twice�����������270

Bringing It All Together���271

Exercises��273

Summary���274

Chapter 10: �Error Handling in Combine���275

Error Handling Strategies���276

Ignoring the Error���276

Retrying (with Exponential Backoff)���276

Showing an Error Message��277

Replacing the Entire View with an Error View��277

Showing an Inline Error Message���278

Typical Error Conditions and How to Handle Them��278

Implementing a Fallible Network API��279

Calling the API and Handling Errors��282

Handling Device/Network Offline Errors���286

Handling Validation Errors��289

Handling Response Parsing Errors���293

Handling Internal Server Errors��298

Summary���305

Table of Contents

xi

Chapter 11: �Implementing Custom Combine Operators��������������������307

What Is a Combine Operator?��307

Implementing Custom Operators���309

Implementing a Retry Operator with a Delay���311

Conditionally Retrying��313

Implementing a Retry Operator for Exponential Backoff������������������������������������314

Summary���316

Chapter 12: �Wrapping Existing APIs in Combine�������������������������������317

A Case Study��317

Using Combine to Access Firestore���321

Using View Models and Published Properties��322

Using Combine to Wrap APIs��325

Creating Your Own Publishers��327

Using PassthroughSubject to Wrap Snapshot Listeners�������������������������������328

Using Future to Implement One-Time Fetching from Firestore��������������������332

Summary���335

Chapter 13: �Combine Schedulers and SwiftUI�����������������������������������337

What Is a Scheduler���338

Types of Schedulers���340

Default Behavior��341

Switching Schedulers��344

Controlling Upstream Publishers Using subscribe(on:)��������������������������������346

Controlling Downstream Subscribers Using receive(on:)�����������������������������349

Other Operators That Influence Scheduling��351

Performing Asynchronous Work���353

Table of Contents

xii

Integrating with Other APIs��354

URLSession���355

Firebase��356

Summary���358

Part 3��361

Chapter 14: �Getting Started with async/await����������������������������������363

Synchronous Programming with Functions���367

Asynchronous Programming with Closures���371

Asynchronous Programming with async/await���377

Defining and Calling Asynchronous Functions���377

Calling Asynchronous Functions in Parallel��381

Summary���383

Chapter 15: �Using async/await in SwiftUI���385

Fetching Data Asynchronously Using URLSession���386

Calling Asynchronous Code��387

The Task View Modifier��388

Calling Asynchronous Code When the User Taps a Button���������������������������������390

Using Pull-to-Refresh to Update Views Asynchronously������������������������������������390

Searchable Views and async/await���391

Updating the UI from the Main Thread���394

Summary���402

Chapter 16: �Bringing It All Together: SwiftUI, async/await, and
Combine���405

Fetching Data Using Combine��406

Fetching Data Using async/await���407

Is This the End of Combine?���409

Table of Contents

xiii

Connecting the UI…���410

…to a Combine Pipeline��410

…to an async/await Method���413

Calling Asynchronous Code from Combine��415

Summary���420

�Index��423

Table of Contents

xv

About the Author

Peter Friese is a software engineer with over

30 years of experience in building software for

a wide range of platforms—from Windows,

J2EE, the Web, Android, to iOS and the Mac. He

works as a Senior Developer Advocate on the

Firebase team at Google, where he is in charge

of making sure iOS developer have a great

experience using the Firebase SDK on iOS and

Apple’s other platforms. 

Peter writes about SwiftUI, Swift, and Firebase development on his

blog, peterfriese.dev, and can be found on Twitter as @peterfriese.

http://www.peterfriese.dev

xvii

Foreword

I’ve been developing iOS apps for a while and started learning SwiftUI

almost as soon as it was released back in 2019. I remember that I couldn’t

wait to start using it because it just seemed so much more intuitive for me

than UIKit.

There wasn’t much SwiftUI documentation at first and those of us who

jumped straight in had to figure out a lot of things for ourselves. So I started

sharing what I learned while building apps with SwiftUI on a blog.

Just a few months later, the SwiftUI team at Apple reached out to me to

join them in working on the framework. It was an invaluable experience

and it gave me a great perspective on the inner workings of SwiftUI and

the decisions behind the APIs. Sure, SwiftUI is not perfect and still needs

time to mature, but it’s already making many developers happier and more

excited about building apps for Apple platforms. A lot of thought goes into

making SwiftUI APIs as simple and as streamlined as they are, so that we

can get the right behavior for the platform by default.

I left Apple in April 2022 and joined Nil Coalescing as a cofounder and

a software engineer. Though I’m a little sad that I don’t get to contribute

to the SwiftUI framework directly anymore, I’m really happy that I’m

now able to use the APIs I helped to develop and to share my SwiftUI

knowledge with other iOS developers.

Seeing how much Apple is betting on SwiftUI by introducing new

frameworks that require using it like WidgetKit and Swift Charts, I believe

it has a great potential. It’s also nice to see how many more developers are

starting to use SwiftUI and how much more great SwiftUI-related content is

now available both from Apple and from the community.

xviii

I believe that Asynchronous Programming with SwiftUI and Combine

is a valuable addition to your book collection if you are going to work with

SwiftUI. I like its unique focus on calling asynchronous APIs from SwiftUI

applications, since it’s usually a major part of a real-world project. And

Peter Friese is certainly the right person to talk about it given his work as a

Developer Advocate for Firebase where he gets to experiment a lot with the

Firebase asynchronous APIs and teach how to use them with SwiftUI. This

book is full of practical examples using both Combine and Swift async/

await APIs and will serve as a great foundation for developing SwiftUI apps

with networking or local asynchronous data processing.

Natalia Panferova

Author of Integrating SwiftUI into UIKit Apps

and Founder of Nil Coalescing (https://nilcoalescing.com/about/)

Foreword

https://nilcoalescing.com/about/

xix

Preface

I started developing for iPhone OS (as it was called back then) in 2009.

I had just upgraded from an iPhone 3 to an iPhone 3GS, and I was

super excited to kick the tires and build my first app—using Xcode and

Objective-C!

I already had practice using a variety of other IDEs, languages,

and operating systems: starting out with GW-BASIC on MS-DOS, to

Visual Basic and Delphi on Windows, to Java with Jbuilder, Websphere

Application Developer, and Eclipse (for building J2EE and Spring

applications for enterprise customers).

But using Xcode and Objective-C was a bit of a shock. All the other

IDEs that I’d used before were a lot more powerful (e.g., they all offered

refactoring support), and Objective-C with all its square brackets looked a

bit strange to me.

Looking back at all the years of building software, Delphi was one of

the most productive environments I’ve used to build software. It combined

a mature, object-oriented language (Object Pascal) and a powerful IDE

that allowed developers to quickly put together UIs for Windows apps.

Plus, the tagline “Rapid Application Development” certainly had a

ring to it.

But Xcode and Objective-C were the future, so I buckled up and

continued my journey to learn how to use them.

Fast forward ten years—I had just watched WWDC 2019 and was

thrilled by SwiftUI and its ease of use. Building UIs with SwiftUI felt so

snappy, and reminded me of Delphi in many ways. I started thinking about

how amazing it would be to combine SwiftUI with a framework that makes

building backend systems easier.

xx

When the Firebase team at Google was looking for a person to join

their Developer Relations team to specifically focus on the iOS developer

ecosystem, I realized the opportunity this meant for me: bring together

a language I love (Swift), a UI toolkit that enables developers to quickly

build great-looking UIs (SwiftUI), and an SDK that makes developers more

efficient by removing the need to run and operate your own backend

system (Firebase). With all these tools, I could help people build better

apps, faster.

On day one after joining the Firebase DevRel team as a Developer

Advocate, I started building demos to showcase the features of the Firebase

iOS SDK. And I quickly learned that writing demos using SwiftUI was so

much easier than using UIKit. This ease of use meant that I could focus on

what I actually wanted to teach: how to use the Firebase SDK and its APIs.

SwiftUI’s declarative approach to building UIs is a lot more

opinionated about how your code should be structured when building UIs

programmatically, making it a lot easier for other developers to understand

what your code is supposed to do.

And thanks to using a state management model that is based on

functional reactive programming, SwiftUI and Combine make it a lot easier

to build UIs that are in sync with the underlying data model and other

parts of your app all of the time. I’m pretty sure we all know of apps for

which this is not the case and can attest to the terrible UX this means.

The goal of this book is to introduce you to building applications with

SwiftUI, Combine, and async/await. I also aim to provide some guidance

that helps you architect apps that reap the benefits of using declarative

and functional reactive approaches for building UI-heavy applications that

interface with asynchronous backend systems, such as Firebase.

Thanks for buying this book! I hope it turns out to be useful for you,

and I would love to hear from you. You can tweet me (I am @peterfriese on

Twitter), or leave a comment on the GitHub repo1 of this book.

1 https://github.com/peterfriese/SwiftUI-Combine-Book/issues

Preface

https://github.com/peterfriese/SwiftUI-Combine-Book/issues

xxi

Acknowledgments

Writing a book is a cross-functional effort, and the result of contributions

from many different people, and this book is no different.

First and foremost, I must thank Todd Kerpelman for believing in me

and giving me the opportunity to join the Firebase Developer Relations

team and become the resident iOS expert.

Additionally, I’d like to thank the many people who provided feedback,

encouragement, guidance, and technical expertise for the topics covered

in this book, including Heiko Behrens, Paul Beusterien, Bas Broek,

Marina Coelho, David East, Rosário Fernandes, Todd Kerpelman, Shai

Mishali, Rachel Myers, Laurence Moroney, Natalia Panferova, Donny

Wals, and Ryan Wilson. The conversations with you were invaluable input

to this book and helped inform my thinking about SwiftUI, Combine,

asynchronous programming, and how to present these topics in a

written form.

This book simply wouldn’t have been possible without the various

teams at Apress/Springer who guided me through the process and helped

shape this book into what it is now. I am particularly grateful to Aaron

Schwarz for convincing me to write this book in the first place, Clement

Wilson for helping me stay on track, and Jessica Vakili for shaping the

content into great teaching material.

I also owe a huge debt of gratitude to all the reviewers who provided

feedback along the way, including Tunde Adegoroye, Paul Beusterien,

Marcus Ficner, Adam Fordyce, Dominik Hauser, Rachel Saunders,

Florian Schweizer, and Ryan Wilson. They did an amazing job at finding

inconsistencies, typos, grammatical issues, and coding errors that the

compiler didn’t spot. Any remaining errors and mistakes are entirely mine.

xxii

If you spot any, I would be grateful if you filed an issue1 on this book’s

GitHub repository, so I can fix them for any future editions.

Finally, my deepest thanks go to my wife Anne and my sons Sören,

Lennart, and Jonas. You endured the time I put into creating this book and

its companion code, and my focus when writing it. Your encouragement

and company is what kept me going—I couldn’t have done this

without you!

1 https://github.com/peterfriese/Asynchronous-Programming-with-
SwiftUI-and-Combine/issues

Acknowledgments

https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine/issues
https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine/issues

xxiii

About This Book

Asynchronous Programming with SwiftUI and Combine was written to

provide a practical guide to building UIs using the latest APIs and toolkits

available from Apple. It begins by introducing SwiftUI as a modern and

easy-to-use framework for building reactive UIs in a declarative way. After

covering the basic concepts you need to understand to build efficient user

interfaces in SwiftUI, it then dives into functional reactive programming

and how you can use Combine to solve many of the challenges developers

face when building UI-heavy applications that interact with asynchronous

backend services. Finally, the book covers Swift’s new structured

concurrency features, how they relate to Combine, and when you should

use one or the other.

�Who Should Read This Book
Asynchronous Programming with SwiftUI and Combine is for anyone who

builds applications with SwiftUI.

If you have some SwiftUI experience, and would like to better

understand how its state management works, and how you can build your

apps more efficiently using view models and Combine, then this book is

probably for you.

�How This Book Is Organized
This book is organized into three main parts, each covering a different

aspect of building reactive UIs on Apple’s platforms.

xxiv

Part 1 covers SwiftUI and its state management. You will learn how

to build user interfaces with SwiftUI’s declarative approach, and how

SwiftUI’s reactive state management makes it easier to write apps that keep

their application state in sync even across multiple screens.

–– Chapter 1 explains why SwiftUI is an important build-

ing block in Apple’s strategy for making app develop-

ment easier. It also provides a quick introduction of

some of the key concepts this book will cover in more

detail in the following chapters.

–– Chapter 2 walks you through building a simple applica-

tion from scratch. In this chapter, you will learn some

key SwiftUI concepts, as well as some useful techniques

for keeping your code maintainable.

–– Chapter 3 dives deeper into key SwiftUI concepts such

as views, view modifiers, and layout behavior.

–– Chapter 4 covers one of the center pieces of SwiftUI:

state management. It explains the different ways for

managing state in SwiftUI apps and provides practical

examples for when to use which approach.

–– Chapter 5 provides an in-depth look at one of the most

common types of UI: lists. SwiftUI provides a very

flexible and powerful API for building List views, and

this chapter will be your guide for navigating it.

–– Chapter 6 explains how to build another very popular

type of UI: (input) forms.

Part 2 focuses on Combine, Apple’s reactive framework. You will

learn how Combine works and how to use it for both UIs and code that

interfaces with the backend.

About This Book

xxv

–– Chapter 7 provides an introduction to functional

reactive programming and Combine’s key concepts.

You will lean what publishers, subscribers, and opera-

tors are, and how you can use them to process events

over time.

–– Chapter 8 explains how to use Combine to implement

complex UIs. You will learn how to use multiple

Combine pipelines to drive the UI state of an input

form with several input fields.

–– Chapter 9 shows you how to use Combine to access the

network. You will then learn how to integrate this with

the pipelines you built in the previous chapters to build

a more complex input validation pipeline.

–– Chapter 10 covers the important topic of error handling

and will equip you with a number of progressively more

powerful strategies for handling errors and looping in

the user for error mitigation in a meaningful way.

–– Chapter 11 picks up where Chapter 10 left off and will

demonstrate how to build a custom Combine operator

for implementing incremental backoff—an error-han-

dling strategy that is useful especially for accessing

networked resources.

–– Chapter 12 teaches you how to wrap existing APIs in

Combine so you can use them in Combine pipelines.

As a case study, this chapter will wrap some of

Firebase’s asynchronous APIs to demonstrate two

common strategies for wrapping APIs in Combine.

–– Chapter 13 explains what schedulers are and how they

will help you write multithreaded code in a declara-

tive way.

About This Book

xxvi

The third and final part covers Swift’s new structured concurrency

(better known as async/await), how it relates to Combine, and how you

can use it to build apps that feel snappy but are able to interface with

asynchronous APIs such as URLSession and other asynchronous APIs such

as Firebase.

–– Chapter 14 provides an introduction to asynchronous

programming, covering traditional ways

(using closures) and async/await.

–– Chapter 15 explains how to use Swift’s new concur-

rency APIs with SwiftUI, specifically covering the

custom view modifiers (such as task, refreshable, and

searchable) that have been added for this task.1

–– When Apple released Swift’s new structured concur-

rency model, people were confused about whether or

not they should continue using Combine in their apps,

or make the switch to async/await. Chapter 16 focuses

on this and provides some guidance for when to use

which (spoiler: it depends on your use case).

�About the Code
You can find the code for this book in the book’s GitHub repository at

https://github.com/peterfriese/Asynchronous-Programming-with-

SwiftUI-and-Combine.

All sample projects can be compiled with the latest stable version of

Xcode (at the time of this writing, Xcode version 14) and run on the latest

released version of iOS (at the time of this writing, iOS 16).

1 Please forgive the pun.

About This Book

https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine
https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine

xxvii

Great care was taken to make sure the sample code compiles with

the latest versions of Xcode and iOS. Should you run into any issues, or

find any mistakes, please file an issue on the issue tracker2 of this book’s

repository:

–– For any typos or mistakes in the book itself, please use

the typos issue template.

–– For any issues with the code, please use the code issue

template.

You’re also very welcome to send PRs to fix any issues in the code.

If you do so, I will make sure to mention you in any future version of

the book.

2 https://github.com/peterfriese/Asynchronous-Programming-with-
SwiftUI-and-Combine/issues/

About This Book

https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine/issues/
https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine/issues/

Part 1

3

CHAPTER 1

SwiftUI: A New
Beginning
Every year at the Worldwide Developers Conference (WWDC), Apple

introduces new features and capabilities to their platforms and operating

systems. The event is met with great anticipation, as it means developers

will finally be able to get their hands on the new APIs and frameworks

Apple engineers have been working on for the past year, and incorporate

them into their own apps.

To enable developers to make use of the new features, Apple provides

new APIs, SDKs to use them, and often new tooling, such as Xcode.

While all those new features Apple has launched at WWDC throughout

the years have been exciting and often breathtaking, sometimes they ship

an update of extraordinary significance.

Every once in a while, a revolutionary product comes along
that changes everything.

—Steve Jobs, 2007

Obviously, the unveiling of the original iPhone in 2007 was such

a moment.

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_1

https://doi.org/10.1007/978-1-4842-8572-5_1

4

The release of the Swift programming language in 2014 was another

moment of significance. Swift made software development much easier

and a lot more approachable for developers who might have been scared

away by Objective-C and its rather special syntax and Smalltalk-esque

call semantics. It’s no exaggeration to say that Swift and Swift Playgrounds

brought more developers to Apple’s platforms than ever before. Swift

Playgrounds—an interactive programming environment geared toward

explorative and playful interaction with Swift—has positioned Swift as a

great language for anyone who is looking for a low-barrier way to explore

and learn programming. Swift and Swift Playgrounds have democratized

software development. And the results of this bold move are visible each

year at WWDC, when Tim Cook takes the stage to announce how many

apps are on the App Store and which percentage of those use Swift. At

WWDC 2021, Susan Prescott (VP of Developer Relations) unveiled that

“the majority of the top 1000 apps on the App Store are built using Swift.”1

The release of SwiftUI in 2019 was another such moment. When Josh

Shaffer stepped out onto the stage to announce SwiftUI,2 people were

stunned by its ease of use and the speed at which it was possible to build

UIs from scratch. But also, and maybe even more importantly, people

were thrilled by the fact that SwiftUI included a native way to manage

application state—something notoriously complicated. Apple even

went so far as to implement their own version of RxSwift: Combine—a

functional reactive framework centered around the idea that applications

can be seen as a piece of software that transforms events over time.

To better understand what all of this means and why exactly Apple

chose to implement a new UI toolkit, let’s dive a little deeper.

1 WWDC 2021 Keynote—https://youtu.be/0TD96VTf0Xs?t=5800
2 WWDC 2019 Keynote—https://youtu.be/psL_5RIBqnY?t=7782

Chapter 1 SwiftUI: A New Beginning

https://youtu.be/0TD96VTf0Xs?t=5800
https://youtu.be/psL_5RIBqnY?t=7782

5

�Why a New UI Framework?
Why implement a new UI toolkit, if there are already UIKit and AppKit,

you might ask, and you’d be forgiven for doing so. After all, implementing

a UI toolkit is no small feat, much less bringing it to production quality,

shipping it, and asking an entire community of app developers to adopt it.

Here are some of the driving factors that might have influenced Apple’s

decision.

First and foremost, we have to acknowledge that Apple positions

SwiftUI as a cross-platform UI toolkit. The introduction on the SwiftUI

landing page3 specifically mentions that “SwiftUI helps you build great

looking apps across all Apple platforms with the power of Swift — and

surprisingly little code. You can bring even better experiences to everyone,

on any Apple device, using just one set of tools and APIs.” Apple now has

no less than five consumer-facing platforms (iOS, iPadOS, watchOS, tvOS,

and macOS), and as anyone who has tried to ensure feature parity across

platforms will be able to tell you, supporting more than just one platform is

becoming increasingly burdensome for developers. By providing a unified

way to reason about and build UIs for as many of these platforms as

possible, Apple is relieving developers of this burden. It should be noted,

however, that SwiftUI is not trying to fit a “write once, run everywhere”

paradigm—on the contrary, it does have platform-specific parts. But it’s

much easier to learn one UI toolkit and use it across all those platforms

than having to learn a new paradigm for each individual platform.

Secondly, SwiftUI aligns with Apple’s investment in helping

developers to write better software and reduce the number of potential

bugs in the apps on the App Store. Apps with fewer bugs tend to get better

ratings on the App Store—and consequently return a higher revenue.

3 https://developer.apple.com/xcode/swiftui/

Chapter 1 SwiftUI: A New Beginning

https://developer.apple.com/xcode/swiftui/

6

The Swift language contains many features that make it easier to write

bug-free software. Its language designers and compiler engineers have

been working hard on eliminating potential causes for bugs, such as

–– Null dereferencing

–– Type mismatches

–– Incomplete decision trees

–– …and more

SwiftUI has two major attributes that help increase software quality:

	 1.	 It has built-in state management, an aspect of

UI development that is notoriously challenging.

SwiftUI’s state management makes it easier to build

UIs that reflect the state of the app at all times—even

across multiple screens.

	 2.	 It is centered around a domain-specific language

(DSL4) that makes it easier to describe the UI,

eliminating any issues that might be caused by

incorrectly instantiating and structuring UIs, and

making it easier to write and reason about UIs.

And lastly, SwiftUI makes software development more approachable.

It is not without reason that we’ve seen a lot more web developers

and designers start building UIs in SwiftUI. Putting together a working

prototype in SwiftUI has become increasingly feasible and has helped to

improve the collaboration between UI designers and developers. Xcode’s

preview canvas for SwiftUI has dramatically shortened turnaround times

and provides developers and designers with instant feedback to the

4 Specifically, a so-called internal DSL. See DSL Engineering: Designing,
Implementing and Using Domain-Specific Languages by Markus Voelter to learn
more about DSLs.

Chapter 1 SwiftUI: A New Beginning

7

changes they make. This instant feedback has enabled more students

and beginners to get started with app development and achieving results

within minutes rather than hours or even days.

�SwiftUI Principles
Before we take the first steps in SwiftUI, it is worth taking a look at some of

its key properties.

�Declarative vs. Imperative
Traditionally, there have been two main ways how developers build UIs:

	 1.	 Using visual tools (such as Interface Builder) to lay

out the UI elements, and then connecting their app’s

code to the UI elements

	 2.	 Programmatically laying out the UI elements

In the past couple of years, there has been an increasing number of UI

toolkits that follow a declarative approach to building UIs. These toolkits

make use of so-called internal or external domain-specific languages

(DSLs) to let developers specify the structure of the UI. Examples for such

toolkits are Angular5, React6 and JetPack Compose7.

In an imperative world, you need to implement everything yourself:

layout, behavior, data binding. In contrast, a declarative approach allows

you to simply tell the framework what to do, and it will take care of the

specifics for you. It’s a bit like cooking a meal by yourself (imperative) or

going to a restaurant, where you place your order and receive a nicely

cooked meal in return (declarative).

5 https://angular.io/guide/glossary#domain-specific-language-dsl
6 https://reactjs.org/
7 https://developer.android.com/jetpack/compose

Chapter 1 SwiftUI: A New Beginning

https://angular.io/guide/glossary#domain-specific-language-dsl/
https://reactjs.org/
https://developer.android.com/jetpack/compose/

8

�State Management
Managing state is one of the major challenges when writing an application.

It’s quite simple when your app only has one screen, but as the number of

screens increases, so does the complexity of keeping all parts of the UI and

the underlying data model in sync.

It becomes even more of a challenge in apps that share data with

a backend and synchronize data via the Internet. Not to mention the

challenges you will face when writing a multiuser app that needs to ensure

the data is up to date and in sync for all users who simultaneously work on

the same piece of data (e.g., a shared document in Google Docs, or a task

lists in a to-do list application).

Probably all of us have used an app that, despite the fact you updated

your address in a detail dialog, didn’t reflect that change of address in the

shopping basket. Excruciating!

Data binding is not an entirely new concept on Apple’s

platforms—Cocoa Bindings8 on macOS has been around for a number

of years now, providing developers with the basic tools to map data

between UI elements and the underlying data model. Despite developers

clamoring for a data-binding framework for iOS, Apple never provided

one—so far. Left to their own devices, developers had to come up

with their own, homegrown solutions, and it didn’t take long for the

community to come up with iOS-specific implementations of functional

reactive frameworks such as RxSwift9 or ReactiveSwift10.

8 https://bit.ly/3PBVoOZ
9 https://github.com/ReactiveX/RxSwift
10 https://github.com/ReactiveCocoa/ReactiveSwift

Chapter 1 SwiftUI: A New Beginning

https://bit.ly/3PBVoOZ
https://github.com/ReactiveX/RxSwift/
https://github.com/ReactiveCocoa/ReactiveSwift/

9

With SwiftUI, Apple finally acknowledged the need for a native

framework for keeping your data model and UI in sync. SwiftUI comes with

a number of tools to help you build UIs that reflect the state of your model

at all times, and keep in sync across your entire app.

Most importantly, SwiftUI combines well with Combine, Apple’s

own implementation of a reactive framework, making it possible to

express the flow of data in your apps as a stream of events over time

that are transformed by business rules and logic operators to meet the

requirements of the app.

�Composition over Inheritance
In contrast to UIKit and many other UI frameworks, SwiftUI encourages

developers to compose their UIs by piecing together many small UI

components. Developers who come to SwiftUI from UIKit will find

this rather surprising, as they’ve learned to minimize the number of

UI elements—in particular in scrolling views such as UITableView or

UICollectionView to optimize their app’s performance.

The reason for this is that SwiftUI is a DSL that describes the look of a

UI, rather than prescribing the UI primitives it is made up of. The SwiftUI

team has encouraged developers to make liberal use of views to compose

their UIs right from the onset—in their first-ever public presentation of

SwiftUI on the WWDC 2019 stage, Jacob Xiao, SwiftUI Engineer, says “and

with SwiftUI, views are really lightweight so you don’t have to worry about

creating extra views to better encapsulate or separate your logic.”11

11 WWDC 2019 Session 204, Introducing SwiftUI: Building Your First App, time
code 11:56 (https://bit.ly/3FSaz3k)

Chapter 1 SwiftUI: A New Beginning

https://bit.ly/3FSaz3k

10

�Everything Is a View—Except That It Isn’t
Once you start building UIs in SwiftUI, you will quickly notice that all

the UI elements are called Views—even a screen is considered a View! It

is tempting to think that all those views are equivalent to UIView (or the

respective subclass). SwiftUI might in fact choose to render some parts of

your UI using one of UIView’s subclasses. However, it is worth noting that

when SwiftUI talks about Views, it doesn’t refer to the specific instances of

a UI element on the screen, but rather a description of that element.

In fact, it might have been easier if the SwiftUI team had decided to say

“everything is a view description”—but of course, that’s not as catchy.

�UIs Are a Function of Their State
One of the biggest challenges in building UIs is making sure the UI reflects

the state of the underlying data model at all times. Previously, developers

had to use a variety of tools and mechanisms to ensure any changes to

the model are reflected in the UI, and vice versa. A variety of architectural

patterns for dealing with this challenge have been devised: MVC (Model

View Controller), MVVM (Model, View, ViewModel), MVP (Model View

Presenter), VIPER (View, Interactor, Presenter, Entity, and Routing), etc.

With SwiftUI, Apple decided to bake state management right into the

framework. In SwiftUI, the UI is a function of the model’s state. This is

worth keeping in mind.

In SwiftUI, the UI is a function of the model’s state

To update the UI, you no longer directly manipulate the individual

UI components. Instead, you bind the UI elements to underlying models.

Every time you change an attribute on the model, SwiftUI will refresh the

UI elements that are bound to this attribute, making sure the UI and model

are always in sync.

Chapter 1 SwiftUI: A New Beginning

11

This also means it becomes very difficult to accidentally forget to

update parts of the UI: all parts of the UI that are bound to an underlying

model will be updated automatically by SwiftUI for you.

�A Quick Tour of SwiftUI
To get a better understanding of SwiftUI and how it works, let’s build the

traditional “Hello World” sample application. But instead of just displaying

“Hello World,” we will use SwiftUI’s built-in state management capabilities

to greet you by name.

By following this little tutorial, you will learn how to

–– Create a new SwiftUI project in Xcode

–– Use the code editor and the Attributes inspector to make

two-way changes to the UI

–– Use SwiftUI’s simple state management capabilities to

ensure UI and model are kept in sync

�Prerequisites
To follow this tutorial (and all others in this book), you will need the

following:

–– A recent version of Xcode (14 or higher)

–– A Mac running macOS Monterey

�Creating a New SwiftUI App

	 1.	 Launch Xcode and click Create a new Xcode project.

Chapter 1 SwiftUI: A New Beginning

12

Figure 1-1.  Creating a new project in Xcode

	 2.	 Make sure to select the iOS section, and then choose

the App template.

Chapter 1 SwiftUI: A New Beginning

13

Figure 1-2.  Choosing the iOS App template

	 3.	 Provide a name for your project (I chose Hello

SwiftUI), and make sure the following options

are set:

–– Interface: SwiftUI

–– Life Cycle: SwiftUI App

–– Language: Swift

Chapter 1 SwiftUI: A New Beginning

14

Figure 1-3.  Setting the project name and other project options

For now, you can leave the Include Tests option unchecked.

	 4.	 Click Next and choose where to store your project.

You can leave the Create Git repository on my Mac

option checked, or turn it off if you like.

Chapter 1 SwiftUI: A New Beginning

15

Figure 1-4.  Choosing a folder to save the project to

Xcode will create the project for you, and you should find yourself in

the editor for ContentView.swift:

Chapter 1 SwiftUI: A New Beginning

16

Figure 1-5.  Xcode source editor and preview canvas

To the right of the editor, you will find the Canvas, which will display

a preview of your UI. If it shows a message saying “Preview paused”, click

the Resume button or press Option + Command + P. After a short moment,

you will see a preview of your UI:

Chapter 1 SwiftUI: A New Beginning

17

Figure 1-6.  Xcode editor and UI preview

Let’s make a few changes to get a feeling for SwiftUI’s two-way tooling:

–– In the code editor, update the text of the greeting so it

says your name instead of world. So for me, "Hello,

world!" becomes "Hello Peter!".

–– Observe how the preview is updated immediately with

every single keystroke you make—without requiring

you to compile and relaunch the app on your phone or

Simulator.

Let’s now change how the text looks:

–– Make sure the cursor is still on line 16 (the line that says

Text("Hello, (your name)").

–– In the Attributes inspector (on the right-hand side of

the Xcode window), open the Color drop-down menu

and choose a different color.

Chapter 1 SwiftUI: A New Beginning

18

–– Observe how, as you make changes, Xcode immediately

reflects this change in both the preview canvas and the

code editor.

Let’s make one more change before we move on:

–– In the source code editor, Command + Click the

Text view.

–– In the pop-up, choose Show SwiftUI Inspector.

–– Xcode will display the inspector in a pop-up window.

–– Change the font from Inherited to Title.

–– Observe how Xcode updates the source code and the

preview simultaneously.

Figure 1-7.  The updated text color is reflected in the editor as well as
the preview canvas

Chapter 1 SwiftUI: A New Beginning

19

Figure 1-8.  Updating the font using the SwiftUI Inspector

Congrats, you have just experienced Xcode’s two-way editing tools

for SwiftUI! Note that you can use any of them at any time. The SwiftUI

Inspector is a great tool for exploring the attributes and capabilities of

SwiftUI’s views. Once you get more acquainted with the individual SwiftUI

views, you might find it more efficient to use the source code editor and its

code completion to modify the views directly.

The modifications you’ve applied to the Text view are called View

Modifiers, and we’ll talk about them in more depth in Chapter 3.

�Adding Some Interaction to Your App
Let’s add some interactivity to your app—and learn how to use the Xcode

Library along the way!

–– Make sure you’re still in the source code editor and that

the preview pane is still visible.

Chapter 1 SwiftUI: A New Beginning

20

–– Make the elements in the canvas selectable by clicking on

the small icon with a mouse pointer on it.

–– Click the + icon in the Xcode toolbar (right above the

preview pane), or hit Command+Shift+L to open the

Library window.

–– Make sure the Views library is selected (the leftmost icon).

Figure 1-9.  Making the elements on the canvas selectable

Chapter 1 SwiftUI: A New Beginning

21

Figure 1-10.  The Views library

–– Find the Button view and drag it out of the library and into

the preview canvas, right below the Hello, (your name) text.

–– Notice how Xcode will highlight the drop location as you

drag the button view around on the preview canvas.

Chapter 1 SwiftUI: A New Beginning

22

Figure 1-11.  Dragging a button underneath the text view on the
preview canvas

Once you drop the Button into the code editor, Xcode will

automatically update the source—it should now look like this:

struct ContentView: View {

 var body: some View {

 VStack {

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

 Text("Hello, Peter!")

 .font(.title)

 .foregroundColor(Color.pink)

Chapter 1 SwiftUI: A New Beginning

23

 Button("Button") {

 Action

 }

 }

 .padding()

 }

}

Notice how both Action and Content are colored slightly different—

this indicates these two pieces of text are an editor placeholder. You can

navigate between those placeholders by pressing the Tab key on your

keyboard.

–– Click the Action placeholder and press Enter to replace it

with the following text: { print("Hello") }.

–– Click the Content placeholder (or press the Tab key), and

replace it with the following text: Text("Tap me").

The source code of your ContentView should now look like this:

struct ContentView: View {

 var body: some View {

 VStack {

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

 Text("Hello, Peter!")

 .font(.title)

 .foregroundColor(Color.pink)

Chapter 1 SwiftUI: A New Beginning

24

 Button("Tap me") {

 print("Hello")

 }

 }

 .padding()

 }

 }

}

To see the result of your work so far in action, we need to run the app

on the Simulator:12

–– Drop down the Destination menu in the Xcode toolbar (or

press CTRL + Shift + 0), and select one of the iOS

Simulators.

–– Click the Run button (or press CMD+R).

–– Open the Debug Console (View ➤ Debug Area ➤ Activate

Console, or press the Command+Shift+C keys.

–– Once the app has started up in the Simulator, tap the Tap

me button.

–– You should see the text “Hello” appear in the

debug output.

12 In previous versions of Xcode, it used to be possible to run the application in
Live Preview in order to see the debug output. This is no longer possible, as this
feature has been turned off by Apple in Xcode 13: https://bit.ly/3hmRKMc

Chapter 1 SwiftUI: A New Beginning

https://bit.ly/3hmRKMc

25

Figure 1-12.  The app running on the Simulator, with some output in
the Debug Console

�Using SwiftUI’s State Management to Keep UI
and Model in Sync
To whet your appetite for more SwiftUI, as a final step in this chapter, let’s

make use of SwiftUI’s state management to update the greeting whenever

the user enters their name.

Here is the UI we want to achieve.

Chapter 1 SwiftUI: A New Beginning

26

Figure 1-13.  Automatically updating greeting

Let’s first update the existing UI:

–– Remove the Button from the source code—we don’t need

it anymore, as we’ll be updating the UI whenever the user

enters a text.

–– Open the Library (using either the + button or by pressing

Command+Shift+L).

Chapter 1 SwiftUI: A New Beginning

27

–– Find the Text Field view (by typing Text into the library’s

search field).

–– Drag the Text Field view into the preview canvas, right

above the label which reads Hello, Peter!.

The ContentView source code should now look like this:

 struct ContentView: View {

 var body: some View {

 VStack {

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

Figure 1-14.  Filtering the list of views

Chapter 1 SwiftUI: A New Beginning

28

 TextField("Placeholder", text: Value)

 Text("Hello, Peter!")

 }

 .padding()

 }

 }

Again, Placeholder and Value are highlighted to indicate these are just

editor placeholders:

–– Replace the “Placeholder” text with "Enter your

name here".

–– Just above the line starting with var body, insert the

following text: @State var name = "". This will define an

empty instance variable named name and tell SwiftUI to

handle its state for you13.

–– Replace the Value editor placeholder with $name—this will

tell SwiftUI to bind the name variable to the TextField.

Whenever the user enters some text, the value of the name

variable will be updated. Vice versa, if the value of the

variable is changed, SwiftUI will update the TextField

instance and display the updated value. You have now

essentially set up a two-way binding14.

–– Change the content of the Text view to "Hello, \(name)!".

This is called string interpolation—Swift will replace

\(name) with the current value of the name variable.

13 Don’t worry if you’re not familiar with @State—we will be discussing in Chapter 4
14 Again, this is something we’ll be covering in Chapter 4.

Chapter 1 SwiftUI: A New Beginning

29

To make the input field a bit more pleasing to the eye, let’s add some

padding and a border:

–– Make sure the TextField is selected by placing the cursor

somewhere within the line starting with TextField.

–– In the SwiftUI Inspector, click into the small circle at the

right edge of the Padding section. This will add some

padding around the text field.

–– At the bottom of the SwiftUI Inspector, place the cursor

within the input field labelled Add Modifier.

–– Type border, and then click the Border drop-down menu

item to add a border to your TextField. You can choose a

color of your liking.

–– Finally, add some padding around the border by typing

padding into the Add Modifier field once more. Click the

Padding drop-down menu item to insert the padding.

Your code should now look like this:15

struct ContentView: View {

 @State var name = ""

 var body: some View {

 VStack {

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

15 You might see some of the values you just inserted be highlighted. This means
they’re placeholders. If that’s the case, click on the placeholders and then press
the Enter key to commit the value. You can use the Tab key to cycle through all the
placeholders in your file.

Chapter 1 SwiftUI: A New Beginning

30

 TextField("Enter your name here", text:$name)

 .padding(.all)

 .border(Color.pink, width: 1)

 .padding(.all)

 Text("Hello, \(name)!")

 .font(.title)

 .foregroundColor(Color.pink)

 }

 .padding()

 }

}

To see your code in action, click the Live button on the bottom toolbar

of the preview canvas. After a short moment, you can start interacting with

the live preview. Try typing your name and observe how the greeting is

updated instantaneously with every single keystroke.

Figure 1-15.  Running the app in live preview

Chapter 1 SwiftUI: A New Beginning

31

To run the app on the iOS Simulator or a physical device, choose the

device in the run destination dropdown in Xcode’s title bar, and then press

the Run button.

Congratulations! You’ve just implemented your first SwiftUI

application driven by SwiftUI’s powerful state management.

�Exercises

–– Add a button to reset the name variable to an empty string.

–– When the name variable is empty, the greeting will read

Hello, !, which looks a bit awkward. Using what you’ve

learned in this chapter, can you try to think of a way to

only show the comma if name contains at least one letter?

Summary
In this chapter, we looked at some of SwiftUI’s specific properties and why

Apple launched a completely new UI toolkit in the first place. We learned

what the differences are between declarative vs. imperative UI frameworks,

that SwiftUI favors composition over inheritance, and that everything is

a view. We talked about SwiftUI’s state management, and how this is the

basis for SwiftUI’s premise that the UI is a function of an app’s state.

Next, you experienced first-hand how easy it is to build a SwiftUI

application. You learned how to use Xcode’s two-way tooling for building

SwiftUI user interfaces, and started to develop an understanding of when to use

the graphical tools, and when the source code editor might be more efficient.

Finally, you dipped your toes into using SwiftUI’s state management,

which hopefully got you excited about how much easier this is than having

to wire up UI updates manually.

With this under your belt, it is now time to take a closer look at SwiftUI

and some of its key UI elements.

Chapter 1 SwiftUI: A New Beginning

33

CHAPTER 2

Getting Started
with SwiftUI
In the previous chapter, you’ve learned about the basic principles of

SwiftUI and some of the reasons why Apple implemented a new UI

framework when they already had a number of UI toolkits that work

perfectly fine. We also took a whirlwind tour of SwiftUI and the tooling

Xcode provides for building SwiftUI apps.

In this chapter, we’re going to dive deeper into using SwiftUI. The best

way to learn is by doing, so we will be building a simple app that might

turn out to be useful for you.

We will look at using simple SwiftUI views such as Text and Image

and how to use stacks to build both simple and more complex UIs by

composing simple UI elements into reusable views.

SwiftUI puts a strong focus1 on building reusable UI components, so

we will take some time to understand how this works and which tools

Xcode provides to make this easy. Composing views and decomposing

them into reusable components is a central concept of developing SwiftUI

apps and will help you to write code that is easy to manage and maintain.

Later in this chapter, we will start looking at how to build List views,

which are a staple in many iOS apps.

1 Forgive the pun.

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_2

https://doi.org/10.1007/978-1-4842-8572-5_2

34

Throughout the chapter, we will be working with Views, View

Modifiers, and Property Wrappers. At the end of the chapter, you will have

learned what these are and how they work together to make SwiftUI a

magical experience.

�What We’re Going to Build
The sample app we’re going to build in this chapter will display a list of

books, including their title, author name, and the book cover.

To keep things simple, we will focus on the UI aspects and leave the

data access layer for a later moment. So instead of fetching book data from

a remote API, we’ll define a static array of books and retrieve the book

covers from the app’s asset catalog.

Drawing on what you’ve learned in Chapter 1, we’ll start by putting

together a view for displaying a book’s cover, its title, author, and some

other details.

In the next step, we will use this custom view inside a list view to

display multiple books as a list.

Figure 2-1.  A view for displaying details about a book

Chapter 2 Getting Started with SwiftUI

35

Figure 2-2.  The app we’re going to build in this chapter

Chapter 2 Getting Started with SwiftUI

36

Finally, we will refactor the code to make it more reusable. In this

step, you will learn about the pyramid of doom and how to avoid it by

composing your UI of many small, use case–specific components.

Let’s get started!

�Composing a View for Displaying a Book
To help you get started, I’ve prepared a starter project for this chapter that

already contains some book covers and a simple data model for books.

Clone the GitHub repository that accompanies this book2

–– Navigate into the folder for the starter project for

this chapter

–– Open the project in Xcode.

In the project’s Model folder, you will find Book.swift, which contains

the Book struct that defines the data model for this app.

struct Book {

 var title: String

 var author: String

 var isbn: String

 var pages: Int

}

The same file contains an extension on Book with a few computed

properties that will make it easier to determine the names of the cover

images for each book.

2 https://github.com/peterfriese/SwiftUI-Combine-Book

Chapter 2 Getting Started with SwiftUI

https://github.com/peterfriese/SwiftUI-Combine-Book

37

extension Book {

 var smallCoverImageName: String { return "\(isbn)-S" }

 var mediumCoverImageName: String { return "\(isbn)-M" }

 var largeCoverImageName: String { return "\(isbn)-L" }

}

And finally, there is a global constant sampleBooks that contains a

collection of sample books—this allows us to display some demo data

without having to fetch data from an API.

extension Book {

 static let sampleBooks = [

 �Book(title: "Changer", author: "Matt Gemmell", isbn:

"9781916265202", pages: 476),

 �Book(title: "SwiftUI for Absolute Beginners", author:

"Jayant Varma", isbn: "9781484255155", pages: 200),

 �Book(title: "Asynchronous Programming with SwiftUI and

Combine", author: "Peter Friese", isbn: "9781484285718",

pages: 367),

 �Book(title: "Modern Concurrency on Apple Platforms",

author: "Andy Ibanez", isbn: "9781484286944", pages: 368)

]

}

The app’s asset catalog contains cover images for the books defined

in sampleBooks—as you can see, they’re provided in three different sizes:

small, medium, and large.

Chapter 2 Getting Started with SwiftUI

38

Figure 2-3.  The asset catalog contains cover images for the books in
the sample array

The app’s entry point is defined in BookShelfApp.swift—this is

where you instantiate the main view your users will see when they launch

the app.

import SwiftUI

@main

struct BookShelfApp: App {

 var body: some Scene {

 WindowGroup {

 ContentView()

 }

 }

}

Chapter 2 Getting Started with SwiftUI

39

This main view, ContentView, can be found in ContentView.swift,

and this is where we will spend most of our time for the rest of this chapter.

import SwiftUI

struct ContentView: View {

 var body: some View {

 Text("Hello, world!")

 }

}

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 }

}

Whenever you create a new SwiftUI view using Xcode, it will create

a file looking similar to this one, so it’s worth taking a closer look at the

anatomy of a SwiftUI View.

The preceding code snippet creates a new struct named ContentView,

which conforms to the View protocol. The name of the view is

ContentView, so it can be instantiated like this: ContentView().

Inside the view, you will notice one property, named body. The type of

the property is some View. If you’ve developed in Swift before, you might

be wondering what’s the meaning of some. The short answer is that this

denotes a so-called opaque return type, which indicates that body returns a

value of type View.

body has a significant role in SwiftUI—inside, you will define how the view

looks like. In this code snippet, the view contains just a simple Text view that

displays “Hello, world”, but later in this chapter, you will learn how to compose

more complex layouts by assembling several views inside the body property.

Chapter 2 Getting Started with SwiftUI

40

The second structure in this source code file is named ContentView_

Previews and conforms to PreviewProvider. This is a special construct

SwiftUI uses to display a preview of your view in the Preview Canvas on the

right side of the Xcode window. Later on in this chapter, you will learn how

to modify the preview to display your view in light mode and dark mode.

�Build the View with Static Data
Now that we’ve got a basic understanding of what SwiftUI views are, it is

time to look at another very important aspect of views: composability.

SwiftUI views can be made up of other views. It’s hard to overstate this,

but it essentially means that you can build arbitrarily complex UIs from

SwiftUI views, just by composing individual primitive views into larger,

more complex ones.

SwiftUI makes this possible by providing a handful of container

components (HStack, VStack, and ZStack), a component that dynamically

takes up space between other components (Spacer), and an easy and

straightforward way to nest views inside other views.

To give you a better idea of what this means and how it works in action,

let’s take a look at building a view for displaying book details.

Along the way, you will learn several different ways for building SwiftUI

views using the tooling Xcode provides.

Figure 2-4.  A view for displaying book details

Chapter 2 Getting Started with SwiftUI

41

Let’s first display the title of a book by making the following changes in

the code editor:

–– Change the label of the Text view from "Hello world"

to "Asynchronous Programming with SwiftUI and

Combine".

–– Change the font of the text by adding .font(.headline)

to the Text view.

The code should now look like this:

struct ContentView: View {

 var body: some View {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 }

}

To display the author, add another Text view just beneath the book

title. Instead of coding this manually, let’s use Xcode’s graphical tooling to

make sure we get the layout right.

–– Make sure the preview is active. If the preview canvas

is not visible, select Editor ➤ Canvas from the main

menu (or press CMD + Option + Enter). In case

Xcode has stopped the preview, you can restart it by

clicking on the Resume preview button or pressing

CMD + Option + P.

–– Make sure the canvas is in selectable mode by clicking

on the mouse pointer icon at the bottom of the

preview canvas

Chapter 2 Getting Started with SwiftUI

42

Figure 2-5.  Canvas in selectable mode

–– Open Xcode’s Library by clicking the + button in the

toolbar (or by pressing CMD+Shift+L).

–– In the Library window, type text to find the Text view.

–– Drag the Text view element from the Library window

into the preview canvas. Don’t let go of the mouse

button yet!

–– As you drag the Text view around the preview canvas,

you will notice Xcode highlights the current drop

position to indicate where the element will be placed if

you let go.

Chapter 2 Getting Started with SwiftUI

43

Figure 2-6.  Inserting a new Text view below an existing view

Chapter 2 Getting Started with SwiftUI

44

–– Drop the new Text view just below the text

Asynchronous Programming with SwiftUI and

Combine.

–– Notice how Xcode’s two-way tooling automatically

updates the source code.

struct ContentView: View {

 var body: some View {

 VStack {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 Text("Placeholder")

 }

 }

}

–– Replace the placeholder text with "by Peter Friese"

–– While the cursor is still on the same line, use the

Attributes Inspector to change the font of this Text to

Subheadline.

Chapter 2 Getting Started with SwiftUI

45

Figure 2-7.  Attribute Inspector

Chapter 2 Getting Started with SwiftUI

46

Xcode updates the source code accordingly and refreshes the preview.

In case the preview doesn’t refresh, click the Refresh button at the top

of the preview pane, or press CMD+Option+P.

import SwiftUI

struct ContentView: View {

 var body: some View {

 VStack {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 Text("by Peter Friese")

 .font(.subheadline)

 }

 }

}

Figure 2-8.  Updated UI

Chapter 2 Getting Started with SwiftUI

47

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 }

}

Notice how Xcode automatically inserted a VStack container to nest

the two Text views inside a vertical stack.

Use the code editor to insert another Text view to display the number

of pages:

import SwiftUI

struct ContentView: View {

 var body: some View {

 VStack {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 Text("by Peter Friese")

 .font(.subheadline)

 Text("451 pages")

 .font(.subheadline)

 }

 }

}

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 }

}

Chapter 2 Getting Started with SwiftUI

48

To match our desired layout, let’s update the alignment of the text

views inside the vertical stack.

–– In the code editor, select the VStack, and then use the

Attributes Inspector to left align the text views.

–– This will change the alignment attribute of the VStack

to .leading.

To insert an image to the left of the two Text views, we’ll need to nest

the VStack and an Image view inside a horizontal stack. Instead of using

drag’n’drop, this time we’ll use the code editor.

–– In the code editor, CMD+click the VStack and select

Embed in HStack.

–– Inside the HStack, just before the VStack, insert an

Image view: Image("9781484285718-M"). This will fetch

the image named 9781484285718-M from the asset

catalog.

Your code should now look like this:

struct ContentView: View {

 var body: some View {

 HStack(alignment: .top) {

 Image("9781484285718-M")

 VStack(alignment: .leading) {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 Text("by Peter Friese")

 .font(.subheadline)

 Text(“451 pages”)

 .font(.subheadline)

Chapter 2 Getting Started with SwiftUI

49

 }

 }

 }

}

However, as you’ll notice, the image is much too large, so we need to

scale it down a bit.

–– Open the library (by pressing the + button or hitting

CMD+Shift+L), tap the dials icon to switch to the

Modifiers library, and type resi to find the Image

Resizable modifier.

–– Grab the modifier, drag it out of the library, and drop it

on the book cover in the preview. The image will now

occupy the entire height of the preview.

–– We’re not done yet. Open the library again, type aspect,

and drag the Aspect Ratio modifier onto the

cover image.

–– In the code editor, change the contentMode value from

.fill to .fit.

–– Finally, find the Frame modifier in the library and drag

it onto the image.

–– Using the code editor, remove the width attribute (up

to and including the comma), and set the height

attribute to 90.

–– Use the Attribute Inspector to set the alignment of the

HStack to .top, so that the image and the book title

align nicely.

Chapter 2 Getting Started with SwiftUI

50

Your code should now look like this:

import SwiftUI

struct ContentView: View {

 var body: some View {

 HStack(alignment: .top) {

 Image("9781484285718-M")

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

 VStack(alignment: .leading) {

 �Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 Text("by Peter Friese")

 .font(.subheadline)

 Text(“451 pages”)

 .font(.subheadline)

 }

 }

 }

}

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 }

}

Chapter 2 Getting Started with SwiftUI

51

�Using the Preview to Make Sure Our View
Works As Intended
Until now, the preview window showed the view inside a device frame,

which makes it hard to tell how much space it takes up. As the preview

canvas is just a SwiftUI view, we can easily fix that.

–– In the code editor, select the ContentView() line in the

preview provider (line 31)

–– In the Attribute Inspector, find the Layout attribute in

the Preview section and set it to Size that fits

The device frame will disappear, and the preview will now allocate

the exact space required for the view. You’ll notice that the view actually

consumes less space than we intended:

To fix this, we need to insert a Spacer view at the right of the view. This

is a transparent view that expands to consume as much space as possible

in the layout orientation of the surrounding container. You can think of it

as a spring that pushes your view apart.

–– The easiest way to add a spacer to our layout is to use

the code editor and add Spacer() after the closing

brace of the VStack containing the Text views.

Figure 2-9.  Preview of the book details view being too narrow

Chapter 2 Getting Started with SwiftUI

52

The code should now look like this:

import SwiftUI

struct ContentView: View {

 var body: some View {

 HStack(alignment: .top) {

 Image("9781484285718-M")

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

 VStack(alignment: .leading) {

 �Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 Text("by Peter Friese")

 .font(.subheadline)

 Text("451 pages")

 .font(.subheadline)

 }

 Spacer()

 }

 }

}

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 .previewLayout(.sizeThatFits)

 }

}

Chapter 2 Getting Started with SwiftUI

53

In the preview, we can see the view now takes up the entire width of

the device3.

�Displaying a List of Books
Now that we’ve got a view for displaying book details, let’s turn this into a

list of books. As you will see in a moment, this turns out to be surprisingly

simple, and Xcode facilitates the process of doing so.

–– In the code editor, CMD+Click the outer HStack of the

book view.

–– Select Embed in List from the pop-up menu.

Xcode wraps the view inside a list that iterates over a half open range

from 0 to 5 (excluding), which results in five instances of the book view

displayed in a vertically scrolling list. In a moment, we will connect

the List view to our array of sample books to display something more

meaningful than the same book repeated over and over again.

But before we do that, I’d like to draw your attention to the layout of the

text views. As you can see, the book title is no longer top-aligned with the

book cover. Looking at the source code, you might notice that the HStack

3 Note that this only works when the preview is in selectable mode. In live mode,
Xcode will display the entire device frame.

Figure 2-10.  Preview of the book details view with the correct width

Chapter 2 Getting Started with SwiftUI

54

that surrounded the Image view and the VStack disappeared when we

asked Xcode to wrap the HStack in a List. While you might argue that this

is a bug in Xcode’s editor, this is actually by design, as a List view contains

an implicit HStack. However, as there is no way we can modify this implicit

HStack, we’ll have to manually reinsert the same HStack we used before.

Figure 2-11.  Broken layout after wrapping the view inside a List

Chapter 2 Getting Started with SwiftUI

55

There are three ways to fix this:

	 1.	 Wrap the original HStack(alignment: .top) in

another HStack before wrapping the additional

HStack in a List view.

	 2.	 Manually wrap the inner views of the book view in

HStack(alignment: .top) { ... }.

	 3.	 Instead of making use of Xcode’s help, wrap the

book view in a List view manually.

Which one you choose is largely a matter of personal preference, and

you’ll quickly become well versed in choosing the most efficient way to

building your UIs with SwiftUI once you become more familiar with the

API and Xcode’s quirks.

For now, let’s manually insert HStack(alignment: .top) { right after

the List view, as well as a closing } in the line after the Spacer().

Let’s also append .listStyle(.plain) to the closing curly brace of the

List view to display the list as a plain list view.

Your code should now look like this:4

struct ContentView: View {

 var body: some View {

 List(0 ..< 5) { item in

 HStack(alignment: .top) {

 Image("9781484285718-M")

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

4 Xcode 14 automatically re-indents your code when you type a closing curly brace,
but you also trigger this manually: select the code you want to format (or press
CMD + A to select the entire file), and then press Control + i (for indent) to
re-indent the code.

Chapter 2 Getting Started with SwiftUI

56

 VStack(alignment: .leading) {

 �Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline)

 Text("by Peter Friese")

 .font(.subheadline)

 Text("367 pages")

 .font(.subheadline)

 }

 Spacer()

 }

 }

 .listStyle(.plain)

 }

}

�Setting Up Data Binding
Of course, displaying five identical copies of the same book is not what

we wanted to achieve. Instead, let’s connect the view to the collection of

sample books defined in Book.swift.5

SwiftUI’s List view is capable of displaying elements from a

RandomAccessCollection. Conveniently, Swift arrays conform to this

protocol, which means we can provide an array of Book to the book

list view.

Before we can connect the List view to the collection of sample books

defined in Book.swift, we need to declare a property on ContentView that

holds a reference to the sampleBooks array.

5 This file is contained in the starter version of the code for this chapter you can
download from the GitHub repository for this book: https://github.com/
peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine

Chapter 2 Getting Started with SwiftUI

https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine
https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine

57

–– Add var books: [Book] to the top of ContentView.

–– Fix the compiler errors by updating the call to

ContentView() both in the preview and in

BookShelfApp to ContentView(books: sampleBooks).

We can now connect the List view to this new property. First of all,

let’s replace the closed range 0..<5 with a reference to the books property.

–– Change List(1..<5) to List(books).

–– Rename the closure parameter item to book.

The compiler will complain that Book is not Identifiable. This is

because List needs to be able to identify the elements it displays in order

to display them in a deterministic order. If the elements weren’t uniquely

identifiable, the list rows would jump all over the place whenever there is

an update to the data collection.

Follow these steps to ensure Book conforms to the Identifiable

protocol:

–– In Book.swift, change struct Book { to

struct Book: Identifiable {.

–– Add var id = UUID().uuidString to the

Book’s attributes.

This should fix the compile errors. You might have to compile the code

again (press CMD+B).

In the next step, we’ll connect the individual UI elements to the

respective attributes of the Book structure.

–– To display the book cover specified in the current Book

instance, change Image("9781484285718-M") to

Image(book.mediumCoverImageName).

–– For the title change the hard-coded strings to

book.title.

Chapter 2 Getting Started with SwiftUI

58

–– For the author and number of pages, we can make use

of string interpolation. Replace "by Peter Friese"

with "by \(book.author)" and "367 pages" with

"\(book.pages) pages".

Finally, let’s change the preview configuration to make sure the list

view will be displayed in a device frame. To do so, just delete the line

previewLayout(.sizeThaFits).

Your code should now look like this:

import SwiftUI

struct ContentView: View {
 var books: [Book]
 var body: some View {
 List(books) { book in
 HStack(alignment: .top) {
 Image(book.mediumCoverImageName)
 .resizable()
 .aspectRatio(contentMode: .fit)
 .frame(height: 90)
 VStack(alignment: .leading) {
 Text(book.title)
 .font(.headline)
 Text("by \(book.author)")
 .font(.subheadline)
 Text("\(book.pages) pages")
 .font(.subheadline)
 }
 Spacer()
 }
 .listStyle(.plain)
 }
 }
}

Chapter 2 Getting Started with SwiftUI

59

�Adjusting the Preview Canvas
To monitor whether the UI looks great in both light mode and dark mode,

use the Variants button in the preview canvas toolbar, and select the Color

Scheme Variants option. The preview canvas will now show the UI in both

light and dark mode.

Figure 2-12.  previewing light and dark mode side by side

Chapter 2 Getting Started with SwiftUI

60

�Making the Code Reusable
Before we can finish this chapter and move on to the next topic, we need to

talk about a critical issue: the pyramid of doom.

The ease with which views can be composed in this way can quickly

lead to deeply nested code that’s difficult to navigate—hence the term

“pyramid of doom.”

The good news is that SwiftUI comes with a number of mechanisms

that allow us to decompose view structures into smaller blocks, making

our code easier to read and maintain:

–– Extract Subview

–– Extract to Method

–– Extract to Property

Throughout the book, we’ll use several of these techniques, but for

now, we’ll use the most popular one, Extract Subview.

�Refactoring the Code Using Extract Subview
Probably the most important technique to manage complexity in SwiftUI

views is to extract reusable parts of your view hierarchy into subviews.

Obviously, the book view in our sample application is a prime

candidate for this refactoring—if you recall, we even started out by

building this as a separate view.

Chapter 2 Getting Started with SwiftUI

61

Here’s how you apply the Extract Subview refactoring:

–– Make sure the Preview Canvas is visible. Otherwise,

SwiftUI refactorings aren’t active.6

–– In the code editor, CMD + click the HStack that con-

tains the list row making up the book view.

–– In the context menu, select Extract Subview.

Xcode extracts the entire view structure into a new view at the bottom

of the current source code file, naming it ExtractedView.

6 In case the preview canvas is not visible, press CMD+Option+Enter to show it.

Figure 2-13.  Using the Extract to Subview refactoring

Chapter 2 Getting Started with SwiftUI

62

You will notice that there is a compile error in the extracted view:

“Cannot find ‘book’ in scope”—this is because the Book instance in this

view displays isn’t in scope.

To fix this, we’ll have to define a new property in the new view:

–– Inside BookRowView, declare a new property named

book of type Book.

struct BookRowView: View {

 var book: Book

 var body: some View {

 ...

 }

}

The compile error will disappear, but there will be a new one instead—

at the call site, the compiler tells us that there is a missing argument for the

book parameter.

To fix this, add the current book instance to the ExtractedView() call.

Since ExtractedView is not a great name for our view, let’s rename it to

BookRowView. To do so, put the cursor somewhere inside the symbol name

ExtractedView, and then bring up the Code Actions context menu using the

CMD + Shift + A key binding.

Once you choose the Rename refactoring, Xcode will show all

occurrences of the selected symbol. Type the new name (BookRowView)

and hit Enter to apply your changes.

The code should now look like this:

import SwiftUI

struct ContentView: View {

 var books: [Book]

 var body: some View {

 List(books) { book in

 BookRowView(book: book)

Chapter 2 Getting Started with SwiftUI

63

 }

 .listStyle(.plain)

 }

}

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView(books: Book.sampleBooks)

 }

}

struct BookRowView: View {

 var book: Book

 var body: some View {

 HStack(alignment: .top) {

 Image(book.mediumCoverImageName)

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

 VStack(alignment: .leading) {

 Text(book.title)

 .font(.headline)

 Text("by \(book.author)")

 .font(.subheadline)

 Text("\(book.pages) pages")

 .font(.subheadline)

 }

 Spacer()

 }

 }

}

Chapter 2 Getting Started with SwiftUI

64

With this, the Extract Subview refactoring is basically complete, but

there are two optional steps you might want to consider:

	 1.	 Marking the extracted subview as private. This

is useful if you’re not going to use this view in any

other context.

	 2.	 If you are going to use the extract subview

elsewhere, move it to a separate file. To do so,

create a new SwiftUI View file using Xcode’s

New File dialog, and then choose BookRowView

as the file name. This makes sure that the

new file contains a preview provider named

BookRowView_Previews. It also contains a view name

BookRowView, which you can just replace with the

BookRowView implementation we extracted in the

preceding steps7.

�Renaming ContentView
Once you start adding new features and screens to your app, it might feel a

bit odd that one of your screens is still named ContentView, so you should

rename this and choose a name that reflects the functionality of the screen

more closely.

To do so, place the cursor on the name ContentView, and choose

Refactor ➤ Rename from the editor context menu. Xcode will fold your

code and show a preview of how the refactored code will look like. Just

start typing the new name (e.g., BooksListView), and hit Enter when

you’re done.

7 Unfortunately, there is no Extract to File refactoring in Xcode.

Chapter 2 Getting Started with SwiftUI

65

�Keep Complexity in Check
Decomposing nested view structures into smaller components is a SwiftUI

best practice, and Apple themselves actively encourage this in their

WWDC videos8 and developer documentation.9 When building UIs with

SwiftUI, keep the techniques I showed you in mind and remember to

refactor your code as soon as you recognize it’s starting to get out of hand.

�Views and View Modifiers
Let’s pause here for a moment and recap what we’ve just learned so far.

Views are the core building blocks of SwiftUI—each view defines a

piece of the UI.

Views can be composed into new view, resulting in more feature-rich

and complex UIs. A composition might be as simple as putting an image

next to a text label, but things can easily become more complex.

Instead of positioning UI elements using absolute coordinates, SwiftUI

promotes using a system of vertical and horizontal stacks and spacers to

lay out UI elements.

Most views hug their content (e.g., Text), whereas others push out to

consume all available space (such as Spacer).

There are two main ways to configure views:

	 1.	 The main properties of a view can be configured

using constructor arguments (e.g., the text displayed

on a Text view, or the alignment of a HStack).

	 2.	 Secondary properties of a view are configured using

View Modifiers.

8 For example, in WWDC 21 Session “Demystify SwiftUI),
https://developer.apple.com/videos/play/wwdc2021/10022
9 https://developer.apple.com/documentation/swiftui/

Chapter 2 Getting Started with SwiftUI

https://developer.apple.com/videos/play/wwdc2021/10022
https://developer.apple.com/documentation/swiftui/

66

View Modifiers are functions that you call on SwiftUI views (e.g.,

Text("hello").font(.headline)). Most of these allow you to specify the

look of a view (e.g., by setting the font, foreground and background colors,

frame size, etc.). As we will see in the next chapters, there are also view

modifiers that allow you to register closures that are called upon certain

events (such as a button tap).

�Exercises

	 1.	 Add another Text view to display the ISBN of each

book on the same line that displays the number

of pages.

	 2.	 Align the page number text to the left, and the ISBN

to the right of the view.

�Tips and Tricks
If you’re not sure how a certain view works or how it can be configured,

you can use the Library to learn how to use the view. Drag a view from

the Library into the preview canvas (or the code editor) to get an initial

implementation. Or, drag a modifier from the library and drop it onto a

view to see how to use it. After you’ve done this a couple of times, you’ll

understand how the individual views and view modifiers work, and

can then use the code editor to enter the code manually (or using code

completion).

Chapter 2 Getting Started with SwiftUI

67

Summary
In this chapter, you learned how to use simple SwiftUI views to

incrementally build an application for displaying information from a data

model in a list view.

We looked at composing a cell for displaying a book’s cover, title, and

other details using Image and Text views, and you used HStack, VStack, and

Spacer to lay out the UI elements.

Using Xcode’s two-way tooling, you experienced firsthand how to

quickly put together a UI by making use of the Library, the Preview Canvas,

the code editor, and its context menus.

Finally, you used Xcode’s refactorings to organize the code into

reusable components, making it easier to read and maintain.

If you’re coming from UIKit and are used to building your views

programmatically, the ease with which you can build the equivalent of a

UITableView with a custom cell should be a pleasant surprise. This is not

all, though—as you will see in the next chapters, SwiftUI’s state handling

makes it a lot easier to make sure all parts of your app reflect the current

state of your data model—no more running out of sync!

This chapter provided a good overview of how to build UIs with

SwiftUI, but we’ve barely scratched the surface. In the next chapters, we

will dive deeper in to the individual topics to get a better understanding

of how (and why) SwiftUI works and how to build better apps thanks to its

reactive state management system.

Chapter 2 Getting Started with SwiftUI

69

CHAPTER 3

SwiftUI Building
Blocks
In the previous chapter, you learned how to use SwiftUI to build a simple

UI and how to use Xcode’s refactoring tools to keep your code nicely

organized and reusable. You also used SwiftUI’s state management system

which keeps your app’s views and its data model in sync all the time.

Now that you’ve used SwiftUI’s key components, like views, view

modifiers, and property wrappers, let’s take a closer look and understand

how they work.

In this chapter, we will look at SwiftUI’s building blocks, learn how they

work, and how they allow developers to efficiently build UIs. Specifically,

–– You will learn what views really are and how they help you

describe your UI declaratively

–– We will talk about different kinds of views in SwiftUI—user

interface views and container views

–– We will also look at view modifiers and their role in

configuring views

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_3

https://doi.org/10.1007/978-1-4842-8572-5_3

70

By the end of the chapter, you will have a more profound

understanding of how SwiftUI works and how the individual concepts play

together to make SwiftUI an easy-to-use DSL1 for building UIs.

�Views
SwiftUI follows a declarative approach for describing UIs. Instead of

manually instantiating the elements of your UI, such as buttons, labels,

lists, and so on, you declare how you want your UI to look like. Views

are the most basic components for building UIs in SwiftUI. To define the

UI of your application, you create a lightweight description of your user

interface, making use of SwiftUI’s built-in views. By doing so, you compose

your own views, which you can then use in your app.

In addition to using these views in your own app, you can make them

reusable by extracting them into s Swift package. This enables you to use

them in your other apps, or share them with other developers on your

team. You can even make them available to other developers by uploading

them to GitHub and registering them with the Swift Package Index.2

In Chapters 1 and 2, you have already used the following techniques

for building reusable SwiftUI components:

–– You used some of SwiftUI’s built-in views (such as Text

and Image) to create simple UIs (such as the Hello World

sample in Chapter 1).

–– In Chapter 2, you created a reusable view (BookRowView)

for displaying details about books, and then reused it

inside a List view.

1 Domain-specific language
2 https://swiftpackageindex.com/

Chapter 3 SwiftUI Building Blocks

https://swiftpackageindex.com/

71

Let’s look at the basic anatomy of a SwiftUI view. When you create a

new SwiftUI file in Xcode, you will end up with a piece of code like the

following:

import SwiftUI

struct ContentView: View {

 var body: some View {

 VStack {

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

 Text("Hello, world!")

 }

 .padding()

 }

}

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 }

}

The PreviewProvider is responsible for displaying the view in Xcode’s

preview canvas.

Chapter 3 SwiftUI Building Blocks

72

Figure 3-1.  A simple view in Xcode’s preview canvas

Leaving the PreviewProvider aside for a moment, let’s focus on a

simplified version of ContentView:

struct ContentView: View {

 var body: some View {

 Text("Hello, world!")

 }

}

This short snippet defines a simple view, named ContentView, that

contains a Text view which displays Hello World.

Despite being such a short code snippet, we can learn a lot about the

power of SwiftUI from it.

SwiftUI views are structs that need to conform to the View protocol.

Looking at the source code for the View protocol, we can see that

conformers need to implement a computed property named body that

returns a single View:

Chapter 3 SwiftUI Building Blocks

73

@available(iOS 13.0, macOS 10.15, tvOS 13.0, watchOS 6.0, *)

public protocol View {

 associatedtype Body : View

 @ViewBuilder @MainActor var body: Self.Body { get }

}

Our simple Hello World snippet contains a computed body property

that returns a simple Text view, so it meets the requirements of the View

protocol.

To implement more complex views, such as a label with a leading icon,

we can make use of SwiftUI’s container views, such as Group, HStack, or

VStack. Container views allow us to group child views and arrange them in

a specific layout, for example, horizontally or vertically. The following code

snippet uses a VStack to arrange an Image and a Text vertically:

struct ContentView: View {

 var body: some View {

 VStack {

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

 Text("Hello, world!")

 }

 .padding()

 }

}

By using container views, we can meet the View protocol’s requirement

of returning a single View from the body computed property. We’ll talk

more about container views later in this chapter.

You might be wondering why the return type is some View, and not just

View, and why the return type of body cannot be plainly View.

Chapter 3 SwiftUI Building Blocks

74

When composing views, like in the preceding example, the concrete

return type depends on the types of the individual views and in which

order we put them together. For example, the type of the view that

we return from the body property in the preceding code snippet is

HStack<TupleView<(Image, ModifiedContent<Text, _PaddingLayout>)>>.

Changing the order of the views will result in a different type: putting the

Image after the Text will change the result type to HStack<TupleView<

(ModifiedContent<Text, _PaddingLayout>, Image)>>.

This obviously is a bit unwieldy, and this is where the some keyword

comes in: it turns a type into a so-called opaque type. This means

that the compiler still has access to the underlying concrete type (e.g.,

HStack<TupleView<(Image, ModifiedContent<Text, _PaddingLayout>)>>,

but clients of the module don’t3—they just see the protocol of the

return value.

This means: by returning the result of a view’s body as some View,

the caller will only see a view and doesn’t get any insight into how this

view is structured. Consequently, we can refer to custom types by their

regular type name (for the earlier code snippet: ContentView), instead

of the concrete type of the view structure being returned from the body

property (for the earlier code snippet: HStack<TupleView<(Image,

ModifiedContent<Text, _PaddingLayout>)>>).

�User Interface Views
SwiftUI comes with a broad range of views for most of the UI elements that

are common in iOS, iPadOS, macOS, watchOS, and tvOS, such as Text,

Image, Button, TextField, and more.

These views are the basic building blocks that you can use to compose

the UI of your application. You can also use these building blocks to create

3 See https://docs.swift.org/swift-book/LanguageGuide/OpaqueTypes.html

Chapter 3 SwiftUI Building Blocks

https://docs.swift.org/swift-book/LanguageGuide/OpaqueTypes.html

75

your own custom components, just like the List row for displaying the

cover and title of a book that we created in Chapter 2.

Here is an overview of SwiftUI’s user interface elements:

�Text Input and Output

Text Output

Name Description

Text Displays one or more lines of read-only text

Label Displays an image and read-only text

Text Input

Name Description

TextField Displays editable text

SecureField Lets the user securely enter text

TextEditor A control that can display and edit long-form text

�Images

Images

Name Description

Image Displays an image

AsyncImage Asynchronously downloads and displays an

image

Chapter 3 SwiftUI Building Blocks

76

�Controls and Indicators

Buttons

Name Description

Button A control that initiates an action

EditButton A button that toggles the edit mode

environment value

Links

Name Description

Link A control for navigating to a URL

Menus

Name Description

Menu A control for presenting a menu of actions

Value Inputs

Name Description

Slider A control for selecting a value from a bounded

linear range of values

Stepper A control that performs increment and decrement

actions

Toggle A control that toggles between on and off states

Chapter 3 SwiftUI Building Blocks

77

Pickers

Name Description

Picker A control for selecting from a set of mutually

exclusive values

DatePicker A control for selecting an absolute date

ColorPicker A control used to select a color from the system

color picker UI

Indicators

Name Description

Gauge A view that shows a value within a range

ProgressView A view that shows the progress toward

completion of a task

�Shapes

Shapes

Name Description

Shape A 2D shape that you can use when drawing a view

InsettableShape A shape type that is able to inset itself to produce another

shape

Rectangle A rectangular shape aligned inside the frame of the view

containing it

RoundedRectangle A rectangular shape with rounded corners, aligned inside

the frame of the view containing it

(continued)

Chapter 3 SwiftUI Building Blocks

78

Name Description

Circle A circle centered on the frame of the view containing it

Ellipse An ellipse aligned inside the frame of the view containing

it

Capsule A capsule shape aligned inside the frame of the view

containing it

Path The outline of a 2D shape

�Container Views
Most user interfaces are more complex than just a simple Text or Image

in the center of a screen. In fact, the majority of user interfaces are

constructed from several individual views. Instead of requiring developers

to manually position views at an absolute or relative position on the

screen, SwiftUI uses view containers4 to make it easier to create complex

layouts by grouping multiple views together and arranging them on screen.

SwiftUI has several categories of container views:

–– Layout containers such as HStack, VStack, or ZStack allow

us to lay out their child views horizontally, vertically, or by

overlaying them on top of each other.

–– Collection Containers, such as List, Form, Table, Group,

or ScrollView provide built-in features like scrolling,

swiping, filtering, and more.

4 Apple calls them view containers and container views interchangeably in their
own documentation: https://developer.apple.com/documentation/swiftui/
picking-container-views-for-your-content

Chapter 3 SwiftUI Building Blocks

https://developer.apple.com/documentation/swiftui/picking-container-views-for-your-content
https://developer.apple.com/documentation/swiftui/picking-container-views-for-your-content

79

–– Presentation Containers (NavigationView,

NavigationStack, NavigationSplitView, TabView,

Toolbar and others) are intended to define the structure

of your app’s UI.

Since container views themselves are views, we can nest them,

allowing us to build even complex user interfaces with ease.

On top of that, each view also has an overlay and a background, which

can be accessed using the overlay and background view modifiers (more

about view modifiers in the next section). This can be used to create some

advanced layouts.

�Layout Behavior
You will notice that some views seem to have a different layout behavior

than others.

On a high level, the SwiftUI layout process works like this:

	 1.	 The parent view offers some size to its child view.

	 2.	 The child view then decides how much space it

requires, taking into consideration its own size

(the intrinsic size) and the space that the parent

view offered (which the child view is free to

ignore completely). It then returns this size to the

parent view.

	 3.	 The parent view uses the size returned by the child

to lay out the child view somewhere within the

bound of the space it offered in step 1. It will respect

the size that the child requested for itself.

SwiftUI uses two different strategies in step 2 when determining how

much space a child view consumes:

Chapter 3 SwiftUI Building Blocks

80

�Hugging

The view chooses the best size to fit its content, without consulting the

size offered by its parent view. Text is an example of a view with this

behavior: it will consume just as much space as the text requires, even if

the container offers more space.

�Expanding

The view tries to use up as much space as offered by its parent view. Color

is an example for a view with this behavior: it will take up the entire space

offered by the parent view.

�Views Are Just Descriptions of the UI
In the very first presentation of SwiftUI at WWDC 2019,5 Apple put a lot of

emphasis on the fact that SwiftUI views are cheap to create. In fact, they

encouraged6 developers to make liberal use of views and to decompose

views into subviews to keep the code for individual screens and views easy

to read and maintain.

The reason for this is that SwiftUI views aren’t views—instead, they are

just descriptions of views.

Or, as Apple puts it in their SwiftUI documentation7: “[…] with a

declarative approach, you create a lightweight description of your user

5 See https://developer.apple.com/videos/play/wwdc2019/204/?time=1020
6 “Behind the scenes, SwiftUI aggressively collapses your view hierarchy into an
efficient data structure for rendering. Because of this, we make liberal use of small
single-purpose views in SwiftUI, and you should too. What I want you to take
away from the last couple slides is that views in SwiftUI are incredibly lightweight.
As Jacob said, you should never hesitate to refactor your SwiftUI code because
extracting a subview has virtually no runtime overhead.”
7 https://developer.apple.com/documentation/swiftui/declaring-a-
custom-view

Chapter 3 SwiftUI Building Blocks

https://developer.apple.com/videos/play/wwdc2019/204/?time=1020
https://developer.apple.com/documentation/swiftui/declaring-a-custom-view
https://developer.apple.com/documentation/swiftui/declaring-a-custom-view

81

interface by declaring views in a hierarchy that mirrors the desired layout of

your interface. SwiftUI then manages drawing and updating these views in

response to events like user input or state changes.”

To demonstrate this, let’s take a look at a simple view and the resulting

view hierarchy that will be rendered on screen.

struct ContentView: View {

 @State var text = ""

 var body: some View {

 List {

 Label("Hello World", systemImage: "globe")

 HStack {

 Image(systemName: "globe")

 .imageScale(.large)

 .foregroundColor(.accentColor)

 Text("Hello, world!")

 }

 TextField("TextField", text: $text)

 }

 }

}

Chapter 3 SwiftUI Building Blocks

82

Figure 3-2.  View hierarchy of the code snippet above running on iOS
(using the Reveal app)

Note how the TextField view is mapped to a UITextField, whereas

the Text view is mapped to a SwiftUI.DisplayList.ViewUpdater.

Platform.CGDrawingView.

This is also one of the key reasons why SwiftUI can be used to define

cross-platform UIs. As a view merely is a description of the UI, SwiftUI can

use different primitives to render the UI on different platforms. Let’s look at

another example to understand this. Here is the same code as earlier, but

running on tvOS. Note how the view hierarchy shows UI controls native

to tvOS.

Chapter 3 SwiftUI Building Blocks

83

Figure 3-3.  View hierarchy of the same code snippet running on tvOS
(using the Reveal app)

When creating UIs in SwiftUI, you should always keep in mind that views

are just a description of the UI, not the actual UI elements themselves. Also

keep in mind that SwiftUI may call your views several times throughout

the rendering process—this is why you should not perform any expensive

processing or computations inside the initializers of your views.

�View Modifiers
View modifiers are another key concept in SwiftUI—they allow us to

customize the appearance and behavior of our app’s views. For example,

you can use view modifiers to

Chapter 3 SwiftUI Building Blocks

84

–– Style your views

–– Respond to events (like the user tapping on a button)

–– Configure secondary views (like swipe actions, context

menus, or toolbars)

View modifiers are Swift methods that can be called on any SwiftUI

View. They are implemented as extensions on the View protocol, which

means you can call them on any View—both built-in views like Text or

Image and also on your own custom views.

Let’s take a closer look to understand how they work.

�Configuring Views
To modify the appearance or behavior of a view, just call one of SwiftUI’s

built-in view modifiers on the view instance. For example, here is how you

can change the foreground color of a Text view to red:

Text("Hello World")

 .foregroundColor(.red)

By calling a modifier on a view, the modifier will create a new view that

wraps the original view, and replaces it in the view hierarchy. For example,

the type of the modified Text view will be ModifiedContent<Text,

_PaddingLayout>.

You can apply multiple view modifiers to the same view to change

multiple aspects of its appearance. For example, to change the font of the

text in addition to its foreground color, just call the font view modifier:

Text("Hello, world!")

 .foregroundColor(.red)

 .font(.title)

Chapter 3 SwiftUI Building Blocks

85

It is worth pointing out that the order in which view modifiers are

added to a view is significant. In the following code snippet, the view

modifiers on the Text view are applied in a different order, resulting in a

different output:

struct ContentView: View {

 var body: some View {

 HStack(spacing: 20) {

 // left

 Text("Hello, world!")

 .background(.red)

 .padding()

 Divider()

 // right

 Text("Hello, world!")

 .padding()

 .background(.red)

 }

 .frame(maxHeight: 50)

 }

}

Chapter 3 SwiftUI Building Blocks

86

Figure 3-4.  The order in which you apply view modifiers has an
impact on the view’s appearance

In the first example, the background color is applied to the Text view

before applying the padding. This results in just the text being underlaid

with the red background.

In the second code snippet, the padding is applied first. As mentioned

earlier, applying a view modifier results in an altered version of the view

taking the position of the original view. This means that the padded

version of the Text view is now taking the position of the original Text

view. Applying the background view modifier to this modified version of

the view results in the entire, padded, background being filled with the red

background color.

Chapter 3 SwiftUI Building Blocks

87

�Applying View Modifiers to Child Views
View modifiers work on the view they are applied to. For example, in the

previous code snippets, we applied the background view modifier to a

Text view.

However, most view modifiers also impact the children of the view

they are applied to. Consider the following code snippet, which applies the

same monospace font to all labels inside the VStack:

VStack(alignment: .leading) {

 Text("Hello, World!")

 Text("How are you today?")

}

.font(.system(.body, design: .monospaced))

This is useful when you want to configure the appearance of several

views at once. By applying the respective view modifier to a shared

container view of the views you want to configure, you change the

appearance of all contained views at once.

There are also a few view modifiers that propagate their value up the

view hierarchy, for example, navigationTitle:

NavigationStack {

 HStack {

 Text("Hello, World!")

 .navigationTitle("Inner title")

 }

 .navigationTitle("Outer title")

}

Chapter 3 SwiftUI Building Blocks

88

Figure 3-5.  Setting the navigation title on a child view

Chapter 3 SwiftUI Building Blocks

89

In this case, the inner navigationTitle takes precedence—

you can try this for yourself by commenting out the line that says

.navigationTitle("Inner title")—as a result, the title of the screen will

change to “Outer title”.

�Using View Modifiers to Register Action Handlers
So far, most of the view modifiers we’ve looked at modify how a view looks

like. These view modifiers usually take parameters of type String, Int,

Color, Font, or any of Swift’s other types.

In addition to being able to declare the look of a view, we also need

to be able to specify what happens when the user taps on a button, enters

text into an input field, or performs other actions. To enable this, SwiftUI

also allows us to register closures for specific events, such as when a view

appears or disappears, when the user taps on a button or menu item,

triggers a swipe action in a List view, and more.

For example, here is how you can register a closure that gets called

whenever the user taps a button:

Button("Tap me", action: {

 self.message = "You tapped me!"

})

Thanks to Swift’s trailing closure syntax, we can further

condense this to

Button("Tap me") {

 self.message = "You tapped me!"

}

Similar to view modifiers that affect the look of a view, these action

handler view modifiers can be applied to a container view and will

consequently be applied to all child views. The following example shows

an input form with two TextField views, allowing the user to enter

Chapter 3 SwiftUI Building Blocks

90

their first and last name. Whenever the user makes a change to one of

the TextFields, the code updates the dirty property. We achieve this by

applying the onChange(of:perform:) view modifier to the respective

TextField, which allows us to specify which model property to watch for

changes. Similarly, we apply the onSubmit view modifier and register a

closure to call the save method on the view model to save the data to disk.

import SwiftUI

private class PersonViewModel: ObservableObject {

 @Published var firstName = ""

 @Published var lastName = ""

 func save() {

 print("Save to disk")

 }

}

struct ClosuresDemoView: View {

 @State var message = ""

 @State var dirty = false

 @StateObject private var viewModel = PersonViewModel()

 var body: some View {

 Form {

 Section("\(self.dirty ? "* " : "")Input fields") {

 TextField("First name", text: $viewModel.firstName)

 .onChange(of: viewModel.firstName) { newValue in

 self.dirty = true

 }

 .onSubmit {

 viewModel.save()

 }

 TextField("Last name", text: $viewModel.lastName)

Chapter 3 SwiftUI Building Blocks

91

 .onChange(of: viewModel.lastName) { newValue in

 self.dirty = true

 }

 .onSubmit {

 viewModel.save()

 }

 }

 }

 }

}

Since both of these onSubmit closures do the same, we can refactor

the previous code and move the onSubmit view modifiers to the enclosing

Section:

struct ClosuresDemoView: View {

 @State var message = ""

 @State var dirty = false

 @StateObject private var viewModel = PersonViewModel()

 var body: some View {

 Form {

 Section("\(self.dirty ? "* " : "")Input fields") {

 TextField("First name", text: $viewModel.firstName)

 .onChange(of: viewModel.firstName) { newValue in

 self.dirty = true

 }

 TextField("Last name", text: $viewModel.lastName)

 .onChange(of: viewModel.lastName) { newValue in

 self.dirty = true

 }

 }

Chapter 3 SwiftUI Building Blocks

92

 .onSubmit {

 viewModel.save()

 }

 }

 }

}

�Summary
SwiftUI is a flexible internal DSL for building UIs, and in this chapter, you

learned more about its basic building blocks:

SwiftUI views are just a description of the UI, so we

can make liberal use of them to construct our UI—just

keep in mind to not perform any long-running or

memory-intensive operations in a View’s initializer.

Views can be composed to create more complex
views, and we looked at some of SwiftUI’s container

views, such as HStack, VStack, and ZStack, that

make this possible.

View modifiers can be used to customize views—

we can use them to modify a view’s look and feel,

such as the foreground color or the font of a Label.

But we can also register closures that get called

when certain events occur (e.g., when a view

appears, or the user hits enter to submit a form).

With this knowledge under your belt, it is now time to dive into the

important topic of state management. In the next chapter, you will learn

how SwiftUI makes use of a functional reactive approach to ensure that the

UI is always in sync with the underlying data model.

Chapter 3 SwiftUI Building Blocks

93

CHAPTER 4

State Management
SwiftUI is different from many other UI toolkits you might have worked

with before: you cannot manipulate the UI views directly. Any changes you

see on screen are determined by the state of the application’s data model

and its transitions. You might have heard “in SwiftUI, the view is a function

of the application’s state.”

What does this mean, and why is this such a big deal?

Imperative UI toolkits suffer from one very big flaw: they allow

developers to update model and view independently. This often results in

inconsistent states and partial updates. You’ve probably used apps before

that exhibit this behavior. For example, you make a change in a details

screen, but this change isn’t reflected on the main screen.1

The designers of SwiftUI decided to choose a different approach: a

view in SwiftUI is either static, or it displays information that is driven by a

model element. It is impossible to manipulate a SwiftUI view directly. The

data that determines the state of the UI is called Source of Truth and there

can only be one source of truth for each UI element.

This results in deterministic states and consistent user interfaces.

SwiftUI provides a number of ways to manage state in your application.

In this chapter, we’re going to learn about the different techniques and

discuss their benefits and when to use them.

1 You’re laughing, but I use several apps (and websites) that have this exact
behaviour.

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_4

https://doi.org/10.1007/978-1-4842-8572-5_4

94

To give you a better understanding of this complex topic, we’re going

to look at a few real-world scenarios and discuss the state management

patterns you can use in each scenario.

�Managing State in SwiftUI
SwiftUI views are structs, which means they are value types. One of the

major reasons for choosing value types for defining the UI of your app is

that when copying a value type, you can be sure no other part of the app

is changing the data under the covers.2 As we will later see, the body of

a view is a computed property, making it impossible for developers to

accidentally modify a view directly.

However, updating the UI is a crucial feature for almost any app, so

how can we build apps that dynamically update their UI?

SwiftUI provides two complementary tools that ensure you can freely

manage and update your data model, while making sure the UI is always in

sync with the data model.

Both mechanisms build upon property wrappers.

The first one helps you to define your data model in such a way that it

is capable of publishing its state.

And secondly, SwiftUI manages the state of the UI for you in a memory

area that only SwiftUI has control over.

SwiftUI therefore allows you to define your data model in an easy-

to-build and reusable way. By making UI updates unidirectional, SwiftUI

relieves you from the burden of having to make sure to always update the

view and the model at the same time.

Let’s first look at the different ways on how you can connect your data

model to your app’s user interface.

2 See https://developer.apple.com/swift/blog/?id=10

Chapter 4 State Management

https://developer.apple.com/swift/blog/?id=10

95

SwiftUI provides several ways for storing and passing data around.

Which one is most appropriate depends on which part of your app owns

the data, whether you’re working with value types or objects, and whether

the view requires read/write access or read-only access to the data.

�Binding Value Types
If the data you want to display in a view is an enum, struct, or a simple

type, you can use either @State or @Binding to wrap the variable or bind to

the variable directly.

If you just want to display the value of a variable, you can connect the

variable to the view directly. For example:

let name = "Peter"

...

Text("Hello, \(name), how are you?")

This also works for complex types, like an address:

struct Address {

 let street: String

 let postCode: String

 let city: String

 let country: String

}

let appleHQ = Address(street: "One Infinite Loop",

 postCode: "CA 95014",

 city: "Cupertino",

 country: "United States")

...

Text("Apple HQ: \(appleHQ.street)")

Chapter 4 State Management

96

This approach works great in many situations, such as displaying

attributes of a complex object in list view rows. However, structs are

immutable when they’re assigned to a let constant, so you cannot change

their attributes after initialization. This means you cannot manipulate

attributes of a struct from inside a SwiftUI view. In addition, plain structs

and attributes do not offer a mechanism to publish changes, which means

that SwiftUI cannot track any changes to simple variables or structs.

If you want SwiftUI to manage updating the UI to reflect changes in the

underlying data, you need to use its state management property wrappers.

The first one we’ll look at is @State which is also the easiest to use.

Applying @State to a property allows the SwiftUI framework to manage

the state of the property and respond to updates by redrawing dependent

views. Conversely, any changes the user makes in the UI (for example by

dragging a slider or entering text in a TextField) will be applied to the

property.

The following code snippet shows a user interface for the infamous

“Hello World” example: it defines a name variable that the user can change

by typing in their name in the TextField view. As a result, the Text view

will display a greeting with the user’s name.

@State var name = "Peter"

...

TextField("Enter your name", text: $title)

Text("Hello \(title), nice to meet you!")

By prefixing the name variable with @State, SwiftUI creates a Binding

for that variable, which can be accessed using the projected value using

the $-prefixed version of the variable, $name. We use this Binding in the

TextField view to allow the user to manipulate the underlying value. In

the line below, we directly access the name property to display the greeting

in a Text view.

We will take a closer look at how all of this works behind the scenes

later in this chapter.

Chapter 4 State Management

97

If your view needs access to data that is defined elsewhere (e.g., in a parent

view), it doesn’t own the data. In this case, you can use @Binding to connect

the data to the view. This enables the view to read, write, and observe the data.

We’ve already used bindings in the previous example: a TextField requires

a Binding as its second parameter: TextField(_ title: StringProtocol,

text: Binding<String>). In the example, we used @State to create a binding

for the name variable and passed it to the TextField view.

A binding can refer to an @State variable or an @Observable object

(more on this later).

Bindings are especially useful when assembling a view from several

smaller, specialized views. They are an important tool to help create

reusable views.

The following code sample shows how a parent view and a child view

can share the same state by using @State in the parent view and @Binding

in the child view:

struct ParentView: View {

 @State var favouriteNumber: Int = 42

 var body: some View {

 VStack {

 Text("Your favourite number is \(favouriteNumber)")

 ChildView(number: $favouriteNumber)

 }

 }

}

struct ChildView: View {

 @Binding var number: Int

 var body: some View {

 Stepper("\(number)", value: $number, in: 0...100)

 }

}

Chapter 4 State Management

98

Both @State and @Binding are best suited for managing local UI state.

For example, you can use @State to manage a Boolean property that

determines whether a modal sheet is shown. @Binding in particular can

also be used to connect views to individual attributes of more complex

objects, as we will see later in this chapter.

However, you should avoid using @State or @Binding for complex

objects that you want to persist on disk or send across the network. SwiftUI

has more powerful tools to manage objects like these.

Since properties marked as @State are commonly used for handling

local UI state, you should make them private to make sure they cannot

accidentally be modified from the outside.

�Binding Objects
If the data you want to use in a SwiftUI view lives in a reference type (i.e.,

a class), you should use one of @StateObject, @ObservedObject, or

@EnvironmentObject to manage its state. You also need to conform the

class to ObservableObject.

A class that conforms to ObservableObject acts as a publisher and

notifies its subscribers about changes to its properties which are marked as

@Published.

From the perspective of the consumer (i.e., the view that subscribes

to the updates an ObservableObject sends), all three of these property

wrappers behave exactly the same: the view (and its subviews) can

subscribe to individual properties of the ObservableObject (by either

using direct property access or bindings) and receive updates whenever

any of the published properties of the object changes.

The only way @StateObject, @ObservedObject, and

@EnvironmentObject differ from each other is how they manage data.

Before we look at how exactly they manage data, we need to

understand how ObservableObject works.

Chapter 4 State Management

99

�ObservableObject
To turn a simple Swift class into an observable object, you need to conform

it to the ObservableObject protocol. As this is a class protocol, you can

only use it on classes, not on value types (such as structs or enums).

It’s certainly no coincidence that SwiftUI doesn’t define

ObservableObject itself, but instead imports it from the Combine

framework. SwiftUI makes use of Combine’s publishers without requiring

developers to have deep knowledge about the Combine framework

and Functional Reactive Programming. It’s definitely possible to build

SwiftUI apps without knowing anything about Combine or using any of

its advanced features. That being said, Combine provides many useful

features such as debouncing, error handling, retrying, and other useful

features. Once you are past the initial learning curve, integrating features

like these in your applications will be much easier using Combine than

implementing them manually.

Conforming a class to ObservableObject and marking some of its

properties as @Published turns a class into a Combine Publisher that emits

events whenever one of its published properties changes. Once you have

declared a property on your view that is an ObservableObject and marked

it as a @StateObject, @ObservedObject, or @EnvironmentObject, you can

connect its properties to the view or its subviews.

SwiftUI will start observing the objects and rerender the view as

needed to keep it in sync with the state of the model.

�@StateObject
When using @StateObject, SwiftUI handles the life cycle of the underlying

object, making sure it will only be created once, even if SwiftUI has to

re-create the entire view in response to a model update.

Chapter 4 State Management

100

This is important for views that can change in response to events

outside of the view. Consider the following code snippet. It shows a screen

that allows the user to pick a number using a Stepper. In addition, the

user can change the foreground color of the screen by tapping on the

ColorPicker view. The developer of this screen has decided to move the

stepper and the object containing the data into a separate view, named

StateStepper.

class Counter: ObservableObject {

 @Published var count = 0

}

struct StateStepper: View {

 @StateObject var stateCounter = Counter()

 var body: some View {

 Section(header: Text("@StateObject")) {

 �Stepper("Counter: \(stateCounter.count)", value:

$stateCounter.count)

 }

 }

}

struct ContentView: View {

 @State var color: Color = Color.accentColor

 var body: some View {

 VStack(alignment: .leading) {

 StateStepper()

 ColorPicker("Pick a color", selection: $color)

 }

 .foregroundColor(color)

 }

}

Chapter 4 State Management

101

As soon as the color is changed, SwiftUI will re-render all elements

that need to change their color. This will result in StateStepper to be

re-created.

Since stateCounter is marked as @StateObject, the Counter

object will only be created once, and SwiftUI will manage its life cycle.

Consequently, the value of stateCounter.count will not be reset to zero

when the user decides to change the color of the screen.

Had the developer chosen to use @ObservedObject instead, changing

the color would result in the stateCounter being re-created, and the data

inside being lost.

�When to Use
Use @StateObject,

–– when you need to listen to changes or updates in an

ObservableObject

–– and you create the instance you want to listen to in the

view itself

That is, when the view you want to use the object in is the owner of

the data.

�@ObservedObject
Similar to @StateObject, an @ObservedObject wraps an

ObservableObject, making it available in a view so that the view (and its

subviews) can subscribe to published properties of the object.

Other than @StateObject, an object wrapped by @ObservedObject

will be re-created every single time the view is re-created. Let’s take the

previous code snippet, but this time use a @ObservedObject instead of

@StateObject:

Chapter 4 State Management

102

class Counter: ObservableObject {

 @Published var count = 0

}

struct ObservedStepper: View {

 @ObservedObject var counter = Counter()

 var body: some View {

 Section(header: Text("@ObservedObject")) {

 �Stepper("Counter: \(counter.count)", value:

$counter.count)

 }

 }

}

struct ContentView: View {

 @State var color: Color = Color.accentColor

 var body: some View {

 VStack(alignment: .leading) {

 ObservedStepper()

 ColorPicker("Pick a color", selection: $color)

 }

 .foregroundColor(color)

 }

}

When running this code, counter will be re-created whenever the user

picks a color, resulting in count being reset to zero. For the user, it appears

as if the UI has amnesia.

In the first release of SwiftUI, @ObservedObject was the only way to create

and observe an object inside a view. You can still do this (at least the compiler

doesn’t throw a warning, and presumably there are quite a few SwiftUI apps

out there that still use this approach), but using @ObservedObject to create a

model object is an antipattern that you should avoid.

Chapter 4 State Management

103

So if you see code like this: @ObservedObject var foo = Bar(), you

should refactor your code and use @StateObject instead.

�When to Use
Use @ObservedObject,

–– when you need to listen to changes and updates in an

ObservedObject

–– and the object you want to observe in a view is not created

by the view, but outside of the view (e.g., in a parent view

or the app struct)

�@EnvironmentObject
Theoretically, @StateObject and @ObservedObject should give you

enough flexibility to build any sort of app that requires access to shared

state. In most cases, you can create an object somewhere in your app—for

example, in the app object itself, or in one of its top-level views, such as the

main navigation view. You can then pass on this object through the view

hierarchy by injecting it into the constructor of any subview that requires

access to it.

However, not all views might need access to all of the data. For

example, your app might have a shared state that represents the logged-in

user. You might want to display the user’s avatar on the main screen, and

you also might want to display their first and last name on a profile screen,

but to get to the profile screen, the user might need to navigate through a

couple of settings screens first. And those screens might not require access

to the user object at all. Hauling the user object through the navigation

hierarchy not only is unnecessary, but it would also create a tight coupling

between the intermediary screens and the user object where it is not

required.

Chapter 4 State Management

104

For situations like these, you can use @EnvironmentObject. As the

name implies, it fetches an ObservableObject from the environment and

makes it available to the view. To inject an object into the environment,

call .environmentObject(myObject) on any view. This will make myObject

available to all sub views. To retrieve an object from the environment,

declare a property on a view, and mark it as @EnvironmentObject.

class UserProfile: ObservableObject {

 @Published var name: String

}

struct EnvironmentObjectSampleScreen: View {

 @StateObject var profile = UserProfile(name: "Peter")

 @State var isSettingsShown = false

 var body: some View {

 VStack(alignment: .leading) {

 // ...

 }

 .sheet(isPresented: $isSettingsShown) {

 NavigationView {

 SettingsScreen()

 }

 �.environmentObject(profile) // very important to put

this here, NOT inside the NavigationView! See https://

developer.apple.com/forums/thread/653367

 }

 }

}

struct SettingsScreen: View {

 var body: some View {

 VStack(alignment: .leading) {

 NavigationLink(destination: UserProfileScreen()) {

Chapter 4 State Management

105

 Text("User Profile")

 }

 }

 }

}

struct UserProfileScreen: View {

 @EnvironmentObject var profile: UserProfile

 var body: some View {

 VStack(alignment: .leading) {

 Form {

 Section(header: Text("User profile")) {

 TextField("Name", text: $profile.name)

 }

 }

 }

 }

}

While it might be tempting to use @EnvironmentObject for all your

state objects, it is worth noting that this approach has a serious drawback:

the compiler has no way to check if you injected an ObservableObject into

the environment before trying to fetch it using @EnvironmentObject. When

trying to retrieve an object from the environment that doesn’t exist, your

app will crash with a runtime error.

The SwiftUI environment is a very powerful mechanism that we’ll dive

into much deeper detail in one of the following chapters.

Chapter 4 State Management

106

�When to Use
Use @EnvironmentObject,

–– when you need to listen to changes and updates in an

ObservedObject

–– and you’d have to pass an ObservedObject through

several views that don’t need this object before it reaches

the view where you need access to the object

�Summary
In this chapter, you learned how SwiftUI handles state and makes sure that

the user interface always stays in sync with application’s state.

We briefly touched on SwiftUI’s relation to the Combine framework

and learned that an ObservableObject really is a Combine publisher that

communicates all updates to its published properties to the SwiftUI views

that are subscribed to it.

You learned about the three different property wrappers—

@StateObject, @ObservedObject, and @EnvironmentObject—how they

manage the life cycle of the observable objects they wrap, and when you

should know which to connect your views to your application’s state.

Congrats, you’ve mastered one of the key building blocks of

SwiftUI apps!

Chapter 4 State Management

107

CHAPTER 5

Displaying Data
in Lists
List views are probably one of the most important UI structures in iOS apps,

and you’ll be hard-pressed to find an app that doesn’t use some sort of list.

SwiftUI makes it particularly easy to build list views: it just takes three

lines of code to create a simple list! At the same time, SwiftUI’s List view is

extremely powerful and versatile, so it pays off to get to know it in a little bit

more detail.

In this chapter, you will learn everything you need to know about List

views, from simple lists, styling lists and their items, displaying collections

of data in list views, implementing actions on lists and individual list items,

iOS, iPadOS, and macOS.

�Getting Started with Lists in SwiftUI
When you create a new SwiftUI view, Xcode will use a template that looks

like this:

struct ContentView: View {

 var body: some View {

 Text("Hello, world!")

 }

}

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_5

https://doi.org/10.1007/978-1-4842-8572-5_5

108

The simplest way to build a list is to create a new SwiftUI view and

wrap the Hello World text in a List:

struct StaticListView: View {

 var body: some View {

 List {

 Text("Hello, world!")

 }

 }

}

This will show a static text inside a list view.

Figure 5-1.  A simple list view with one static text item

Chapter 5 Displaying Data in Lists

109

To add more items to the list, we can just add another line:

List {

 Text("Hello, world!")

 Text("Hello, SwiftUI!")

}

�Using Other SwiftUI Views Inside List Rows
The cool thing about the List view is that you can use any type of SwiftUI

view as a list row, not just Text. Labels, Sliders, Steppers, Toggles,

TextFields, SecureFields for entering passwords, ProgressViews, and

Pickers—you name it.

struct StaticListView2: View {

 @State var number: Int = 42

 @State var degrees: Double = 37.5

 @State var toggle = true

 @State var name = "Peter"

 @State var secret = "s3cr3t!"

 var fruits = ["Apples", "Bananas", "Mangoes"]

 @State var fruit = "Mangoes"

 var body: some View {

 List {

 Text("Hello, world!")

 Label("The answer", systemImage: "42.circle")

 Slider(value: $degrees, in: 0...50) {

 Text("\(degrees)")

 } minimumValueLabel: {

 Text("min")

 } maximumValueLabel: {

Chapter 5 Displaying Data in Lists

110

 Text("max")

 }

 Stepper(value: $number, in: 0...100) {

 Text("\(number)")

 }

 Toggle(isOn: $toggle) {

 Text("Checked")

 }

 TextField("Name", text: $name)

 SecureField("Secret", text: $secret)

 ProgressView(value: 0.3)

 �Picker(selection: $fruit, label: Text("Pick your

favourite fruit")) {

 ForEach(fruits, id: \.self) { fruit in

 Text(fruit)

 }

 }

 }

 }

}

Chapter 5 Displaying Data in Lists

111

Figure 5-2.  List with advanced SwiftUI views

�Building Custom List Rows
And thanks to SwiftUI’s stack-based layout system, you can easily create

custom rows as well. In this example, we’re using VStack to lay out two

Text views on top of each other, replicating the typical title and details

layout that is widely used in many iOS apps.

struct StaticListWithSimpleCustomRowView: View {

 var body: some View {

 List {

 VStack(alignment: .leading) {

Chapter 5 Displaying Data in Lists

112

 Text("Apples")

 .font(.headline)

 Text("Eat one a day")

 .font(.subheadline)

 }

 VStack(alignment: .leading) {

 Text("Bananas")

 .font(.headline)

 Text("High in potassium")

 .font(.subheadline)

 }

 }

 }

}

Adding custom rows like this is quick and easy, but the code will grow

rapidly as we add more rows, and this will make it harder to understand and

update it when we need to make changes. To prevent this from happening, we

can extract the code for the list rows into a separate view, making it reusable:

struct StaticListWithSimpleCustomRowView: View {

 var body: some View {

 List {

 CustomRowView(title: "Apples", subtitle: "Eat one a day")

 �CustomRowView(title: "Bananas", subtitle: "High in

potassium")

 }

 }

}

private struct CustomRowView: View {

 var title: String

 var subtitle: String

Chapter 5 Displaying Data in Lists

113

 var body: some View {

 VStack(alignment: .leading) {

 Text(title)

 .font(.headline)

 Text(subtitle)

 .font(.subheadline)

 }

 }

}

Figure 5-3.  Custom List Rows

Chapter 5 Displaying Data in Lists

114

To learn more about refactoring SwiftUI code, check out this video1, in

which I show the process of refactoring SwiftUI views in more detail.

�More Complex List Rows
SwiftUI’s layout system is both flexible and easy to use and makes it easy

to create even complex layouts using a combination of HStack, VStack,

ZStack, and other SwiftUI views. Here is how you can create list rows with

a title, a subtitle, a leading image, and a trailing number:

struct StaticListWithCustomRowView: View {

var body: some View {

List {

CustomRowView("Apple", description: "Eat one a day",

titleIcon: " ", count: 2)

CustomRowView("Banana", description: "High in potassium",

titleIcon: " ", count: 3)

CustomRowView("Mango", description: "Soft and sweet",

titleIcon: " ")

}

}

}

private struct CustomRowView: View {

 var title: String

 var description: String?

 var titleIcon: String

 var count: Int

1 www.youtube.com/watch?v=UhDdtdeW63k

Chapter 5 Displaying Data in Lists

http://www.youtube.com/watch?v=UhDdtdeW63k

115

 �init(_ title: String, description: String? = nil, titleIcon:

String, count: Int = 1) {

 self.title = title

 self.description = description

 self.titleIcon = titleIcon

 self.count = count

 }

 var body: some View {

 HStack {

 Text(titleIcon)

 .font(.title)

 .padding(4)

 .background(Color(UIColor.tertiarySystemFill))

 .cornerRadius(10)

 VStack(alignment: .leading) {

 Text(title)

 .font(.headline)

 if let description = description {

 Text(description)

 .font(.subheadline)

 }

 }

 Spacer()

 Text("\(count)")

 .font(.title)

 }

 }

}

Chapter 5 Displaying Data in Lists

116

Notice how we made use of a custom initializer for CustomRowView,

allowing us to get rid of the parameter name for the title property and

to define defaults for some of the properties. As a result, it is now more

convenient to use the custom row view.

Figure 5-4.  Complex List Rows

Chapter 5 Displaying Data in Lists

117

�Dynamic Lists
So far, we looked at how to use List views to create static list views. Static

list views are useful for creating menus or settings screens in iOS apps,

but List views become a lot more useful when we connect them to a

data source.

Let’s now look at a couple of examples on how you can use List views

to display a dynamic list of data, such as a list of books. We will also learn

how to use some of the new features that Apple added to the latest version

of SwiftUI in iOS 15, such as pull-to-refresh, a search UI, and an easy way

to use async/await to fetch data from asynchronous APIs, such as remote

services.

�Displaying a List of Elements
There are a number of ways to create lists, and you can create both flat

lists as well as hierarchical, nested lists. Since all list rows are computed on

demand, List views perform well even for collections with many items.

The easiest way to create a List view based on a collection of elements

is to use its constructor that takes a RandomAccessCollection and a view

builder for the row content:

List(collection) { element in

 �// use SwiftUI views to render an individual row to display

`element`

}

Inside the view builder, we get access to the individual elements of

the collection in a type-safe way. This means we can access the properties

of the collection elements and use SwiftUI views like Text to render the

individual rows, like in the following example:

Chapter 5 Displaying Data in Lists

118

struct Book: Identifiable {

 var id = UUID()

 var title: String

 var author: String

 var isbn: String

 var pages: Int

 var isRead: Bool = false

}

extension Book {

 static let samples = [

 Book(title: "Changer", author: "Matt Gemmell", isbn:

"9781916265202", pages: 476),

 Book(title: "SwiftUI for Absolute Beginners", author:

"Jayant Varma", isbn: "9781484255155", pages: 200),

 Book(title: "Why we sleep", author: "Matthew Walker", isbn:

"9780141983769", pages: 368),

 Book(title: "The Hitchhiker's Guide to the Galaxy", author:

"Douglas Adams", isbn: "9780671461492", pages: 216)

]

}

private class BooksViewModel: ObservableObject {

 @Published var books: [Book] = Book.samples

}

struct BooksListView: View {

 @StateObject fileprivate var viewModel = BooksViewModel()

 var body: some View {

 List(viewModel.books) { book in

 Text("\(book.title) by \(book.author)")

 }

 }

}

Chapter 5 Displaying Data in Lists

119

As this view acts as the owner of the data we want to display, we use a

@StateObject to hold the view model. The view model exposes a

published property which holds the list of books. In the interest of

simplicity, this is a static list, but in a real-world application, you would

fetch this data from a remote API or a local database.

Notice how we can access the properties of the Book elements inside

the List by writing book.title or book.author. Here, we use a Text view

to display the title and the author of a book using string interpolation.

Thanks to SwiftUI’s declarative syntax, we can easily build more

complex custom UIs to present data.

Let’s replace the Text view in the preceding snippet with a more

elaborate row that displays the book cover, title, author, and number of pages:

// ...

List(viewModel.books) { book in

 HStack(alignment: .top) {

 Image(book.mediumCoverImageName)

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

 VStack(alignment: .leading) {

 Text(book.title)

 .font(.headline)

 Text("by \(book.author)")

 .font(.subheadline)

 Text("\(book.pages) pages")

 .font(.subheadline)

 }

 Spacer()

 }

}

// ...

Chapter 5 Displaying Data in Lists

120

Using Xcode’s refactoring tools for SwiftUI, we can extract this code

into a custom view, to make our code easier to read2.

private struct BookRowView: View {

 var book: Book

 var body: some View {

 HStack(alignment: .top) {

 Image(book.mediumCoverImageName)

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

 VStack(alignment: .leading) {

 Text(book.title)

 .font(.headline)

 Text("by \(book.author)")

 .font(.subheadline)

 Text("\(book.pages) pages")

 .font(.subheadline)

 }

 Spacer()

 }

 }

}

Since we’re not planning to modify the data inside the list row (or

inside a details view), we pass the list item to the row as a simple reference.

If we wanted to modify the data inside the list row (e.g., by marking a book

as a favorite, or passing it on to a child screen where the user can edit the

book details), we’d have to use a list binding.

2 Check out my video (Building SwiftUI Components—Getting Started
http://www.youtube.com/watch?v=UhDdtdeW63k) on building SwiftUI views to
see this (and other) refactoring in action.

Chapter 5 Displaying Data in Lists

http://www.youtube.com/watch?v=UhDdtdeW63k

121

�Using List Bindings to Allow Modifying List Items
Normally, data inside a view is unmodifiable. To modify data, it needs to be

managed as a @State property or a @ObservedObject view model. To allow

users to modify data in a child view (e.g., a TextField or a details screen),

we need to use a binding to connect the data in the child view to the state

in the parent view.

Until SwiftUI 3, there wasn’t a direct way to get a binding to the

elements of the list, so people had to come up with their own solutions.

I’ve written about this before in this blog post3, in which I discuss incorrect

and correct ways to do this.

With SwiftUI 3, Apple has introduced a straightforward way to access

list items as bindings, using the following syntax:

List($collection) { $element in

 TextField("Name", text: $element.name)

}

To allow users of our sample app to edit the title of a book inline in the

list view, all we have to do is to update the book list view as follows:

List($viewModel.books) { $book in

 TextField("Book title",

 text: $book.title,

 prompt: Text("Enter the book title"))

}

Of course, this also works for custom views—here is how to update the

BookRowView to make the book title editable:

3 https://peterfriese.dev/posts/swiftui-list-item-bindings-
behind-the-scenes/

Chapter 5 Displaying Data in Lists

https://peterfriese.dev/posts/swiftui-list-item-bindings-behind-the-scenes/
https://peterfriese.dev/posts/swiftui-list-item-bindings-behind-the-scenes/

122

struct EditableBooksListView: View {

 // ...

 var body: some View {

 List($viewModel.books) { $book in

 EditableBookRowView(book: $book)

 }

 }

}

private struct EditableBookRowView: View {

 @Binding var book: Book

 var body: some View {

 HStack(alignment: .top) {

 Image(book.mediumCoverImageName)

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

 VStack(alignment: .leading) {

 �TextField("Book title", text: $book.title, prompt:

Text("Enter the book title"))

 .font(.headline)

 Text("by \(book.author)")

 .font(.subheadline)

 Text("\(book.pages) pages")

 .font(.subheadline)

 }

 Spacer()

 }

 }

}

Chapter 5 Displaying Data in Lists

123

The key point here is to use @Binding in the child view. By doing so,

the parent view retains ownership of the data that you pass in to the child

view while letting the child view modify the data. The source of truth is the

@Published property on the ObservableObject in the parent view.

To read more about list bindings, and how this feature works under the

hood, check out my article SwiftUI List Bindings4.

�Asynchronously Fetching Data
The next sections of this chapter have one thing in common—they’re all

based on Apple’s new APIs for handling asynchronous code.

At WWDC 21, Apple introduced Swift’s new concurrency model as part

of Swift 5.5.

In the previous examples, we used a static list of data. The advantage

of this approach is that we didn’t have to fetch (and wait for) this data, as

it was already in memory. This was fine for the examples, as it allowed us

to focus on what’s relevant, but it doesn’t reflect reality. In a real-world

application, we usually display data from remote APIs, and this usually

means performing asynchronous calls: while we’re waiting for the results

to come in from the remote API, the app needs to continue updating the

UI. If it didn’t do so, users might get the impression the app was hanging or

even crashed.

So in the next examples, I’m going to demonstrate how to make use of

Swift’s new concurrency model to handle asynchronous code.

A good moment to fetch data is when the user navigates to a new

screen and the screen just appears. In previous versions of SwiftUI, using

the .onAppear view modifier was a good place to request data. Starting

with iOS 15, SwiftUI includes a new view modifier that makes this even

4 https://peterfriese.dev/posts/swiftui-list-item-bindings-
behind-the-scenes/

Chapter 5 Displaying Data in Lists

https://peterfriese.dev/posts/swiftui-list-item-bindings-behind-the-scenes/
https://peterfriese.dev/posts/swiftui-list-item-bindings-behind-the-scenes/

124

easier: .task. It will start an asynchronous Task when the view appears

and will cancel this task once the view disappears (if the task is still

running). This is useful if your task is a long-running download that you

automatically want to abort when the user leaves the screen.

Using .task is as easy as applying it to your List view:

struct AsyncFetchBooksListView: View {

 �@StateObject fileprivate var viewModel =

AsyncFetchBooksViewModel()

 var body: some View {

 List(viewModel.books) { book in

 AsyncFetchBookRowView(book: book)

 }

 .overlay {

 if viewModel.fetching {

 ProgressView("Fetching data, please wait...")

 �.progressViewStyle(CircularProgressViewStyle(tint:

.accentColor))

 }

 }

 .animation(.default, value: viewModel.books)

 .task {

 await viewModel.fetchData()

 }

 }

}

In the view model, you can then use asynchronous APIs to fetch data.

In this example, I’ve mocked the backend to make the code a bit easier to

read, and added an artificial delay:

Chapter 5 Displaying Data in Lists

125

private class AsyncFetchBooksViewModel: ObservableObject {

 @Published var books = [Book]()

 @Published var fetching = false

 func fetchData() async {

 fetching = true

 await Task.sleep(2_000_000_000)

 books = Book.samples

 fetching = false

 }

}

If you’d try and run the code like this, you would end up with a runtime

warning, saying that “Publishing changes from background threads is not

allowed; make sure to publish values from the main thread (via operators

like receive(on:)) on model updates.”

The reason for this runtime error is that the code inside fetchData is

not executed on the main thread. However, UI updates must be executed

on the main thread. In the past, we would’ve had to use DispatchQueue.

main.async { ... } to make sure any UI updates are executed on the

main thread. However, with Swift’s new concurrency model, there is an

easier way: all we have to do is to mark any methods (or classes) that

perform UI updates using the @MainActor property wrapper. This instructs

the compiler to switch to the main actor when executing this code

and thus make sure any UI updates run on the main thread. Here’s the

updated code:

private class AsyncFetchBooksViewModel: ObservableObject {

 @Published var books = [Book]()

 @Published var fetching = false

Chapter 5 Displaying Data in Lists

126

 @MainActor

 func fetchData() async {

 fetching = true

 await Task.sleep(2_000_000_000)

 books = Book.samples

 fetching = false

 }

}

To learn more about Swift’s new concurrency model, check out my

video series5, as well as the following articles on my blog:

–– Getting Started with async/await in SwiftUI6

–– Cooperative Task Cancellation - SwiftUI Concurrency

Essentials7

�Pull-to-Refresh
Unless you use an SDK like Cloud Firestore8 that allows you to listen

to updates in your backend in real time, you will want to add some UI

affordances to your app that make it easy for your users to request the

latest data. One of the most common ways to let users refresh data is pull-

to-refresh, made popular in. 2008 by Loren Brichter in the Tweetie app9

(later acquired by Twitter and relaunched as Twitter for iOS).

5 https://bit.ly/swift-concurrency-video-series
6 https://peterfriese.dev/swiftui-concurrency-essentials-part1/
7 https://peterfriese.dev/swiftui-concurrency-essentials-part2/
8 https://firebase.google.com/docs/firestore
9 https://www.imore.com/hall-fame-loren-brichter-and-tweetie

Chapter 5 Displaying Data in Lists

https://bit.ly/swift-concurrency-video-series
https://peterfriese.dev/swiftui-concurrency-essentials-part1/
https://peterfriese.dev/swiftui-concurrency-essentials-part2/
https://firebase.google.com/docs/firestore
https://www.imore.com/hall-fame-loren-brichter-and-tweetie

127

SwiftUI makes it easy to add this functionality to your app with just

a few lines of code, thanks to its declarative nature. And as mentioned

earlier, this feature also makes use of Swift’s new concurrency model to

ensure that your app’s UI remains responsive even while it needs to wait

for any updates to arrive.

Adding the refreshable view modifier to your List view is all it takes

to add pull-to-refresh to your app:

struct RefreshableBooksListView: View {

 @StateObject var viewModel = RefreshableBooksViewModel()

 var body: some View {

 List(viewModel.books) { book in

 RefreshableBookRowView(book: book)

 }

 .refreshable {

 await viewModel.refresh()

 }

 }

}

As indicated by the await keyword, refreshable opens an

asynchronous execution context. This requires that the code you’re calling

from within refreshable can execute asynchronously (if the code you’re

calling can execute nonasynchronously, because it returns immediately,

that’s fine as well, but more often than not you’ll want to communicate

with a remote API that requires being called asynchronously).

To give you an idea of how this might look like, I’ve created a view

model that simulates an asynchronous remote API by adding some

artificial wait time:

class RefreshableBooksViewModel: ObservableObject {

 @Published var books: [Book] = Book.samples

Chapter 5 Displaying Data in Lists

128

 private func generateNewBook() -> Book {

 let title = Lorem.sentence

 let author = Lorem.fullName

 let pageCount = Int.random(in: 42...999)

 �return Book(title: title, author: author, isbn:

"9781234567890", pages: pageCount)

 }

 func refresh() async {

 await Task.sleep(2_000_000_000)

 let book = generateNewBook()

 books.insert(book, at: 0)

 }

}

Let’s take a look at this code to understand what’s going on.

	 1.	 As in the previous samples, books is a published

property that the view subscribes to.

	 2.	 generateNewBook is a local function that produces

a random new Book instance using the excellent

LoremSwiftum10 library.

	 3.	 Inside refresh, we call generateBook to produce

a new book and then insert it into the published

property books, but before we do so, we tell the app

to sleep for 2 seconds, using the Task.sleep call.

This is an asynchronous call, so we need to use

await to call it.

10 https://github.com/lukaskubanek/LoremSwiftum

Chapter 5 Displaying Data in Lists

https://github.com/lukaskubanek/LoremSwiftum

129

Just the same as in the previous example, this code will produce a

purple runtime warning: “Publishing changes from background threads

is not allowed; make sure to publish values from the main thread (via

operators like receive(on:)) on model updates”, so we need to use

@MainActor to ensure all updates happen on the main actor. This time,

instead of marking just the refresh method, we’re going to mark the entire

view model as @MainActor:

@MainActor

class RefreshableBooksViewModel: ObservableObject {

 // ...

 func refresh() async {

 // ...

 }

}

One final adjustment before we can wrap up this section: you will

notice that when adding new items to the list by pulling to refresh, the

newly added items will appear instantly, without a smooth transition.

Thanks to SwiftUI’s declarative syntax, adding animations to make this

feel more natural is super easy: all we need to do is adding an animation

view modifier to the List view:

// ...

List(viewModel.books) { book in

 RefreshableBookRowView(book: book)

}

.animation(.default, value: viewModel.books)

// ...

By providing the value parameter, we can make sure this animation is

only run when the contents of the list view change, for example, when new

items are inserted or removed.

Chapter 5 Displaying Data in Lists

130

To perfect the animations, we’ll also add a short pause to the end of the

refresh function on the view model—this makes sure that the new rows

appear with a smooth transition before the progress spinner disappears:

func refresh() async {

 await Task.sleep(2_000_000_000)

 let book = generateNewBook()

 books.insert(book, at: 0)

 �// the following line, in combination with the `.animation`

modifier, makes sure we have a smooth animation

 await Task.sleep(500_000_000)

}

�Searching
SwiftUI makes it easy to implement search in List views—all you need to

do is apply the .searchable view modifier to the list view, and SwiftUI will

handle all the UI aspects for you automatically: it will display a search field

(and make sure it is offscreen when you first display the list view, just like

you’d expect from a native app). It also has all the UI affordances to trigger

the search and clear the search field).

The only thing that’s left to do is to actually perform the search and

provide the appropriate result set.

Generally speaking, a search screen can either act locally (i.e., filter

the items being displayed in a list view) or remotely (i.e., perform a query

against a remote API and only display the results of this call).

For this section, we’re going to look at filtering the elements being

displayed in the list view. To do so, we’ll be using a combination of async/

await and Combine.

To get started, we’ll build a simple List view that displays a list of

books from a view model. This should look very familiar to you, as we’re in

fact reusing much of the code we’ve used for the previous examples:

Chapter 5 Displaying Data in Lists

131

struct SearchableBooksListView: View {

 @StateObject var viewModel = SearchableBooksViewModel()

 var body: some View {

 List(viewModel.books) { book in

 SearchableBookRowView(book: book)

 }

 }

}

struct SearchableBookRowView: View {

 var book: Book

 var body: some View {

 HStack(alignment: .top) {

 Image(book.mediumCoverImageName)

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

 VStack(alignment: .leading) {

 Text(book.title)

 .font(.headline)

 Text("by \(book.author)")

 .font(.subheadline)

 Text("\(book.pages) pages")

 .font(.subheadline)

 }

 Spacer()

 }

 }

}

Chapter 5 Displaying Data in Lists

132

The view model is very similar to the ones we used previously, with

one important difference—the collection of books is empty initially:

class SearchableBooksViewModel: ObservableObject {

 @Published var books = [Book]()

}

To add a search UI to SearchableBooksListView, we apply the

.searchable view modifier and bind its text parameter to a new

searchTerm property on the view model:

class SearchableBooksViewModel: ObservableObject {

 @Published var books = [Book]()

 @Published var searchTerm: String = ""

}

struct SearchableBooksListView: View {

 @StateObject var viewModel = SearchableBooksViewModel()

 var body: some View {

 List(viewModel.books) { book in

 SearchableBookRowView(book: book)

 }

 .searchable(text: $viewModel.searchTerm)

 }

}

This will install the search UI in the List view, but if you run this code,

nothing will happen. In fact, you won’t even see any books in the list view.

To change this, we will add a new private property to the view model

which holds the original unfiltered list of books. And finally, we will set up

a Combine pipeline that filters this list based on the search term entered

by the user:

Chapter 5 Displaying Data in Lists

133

class SearchableBooksViewModel: ObservableObject {

 �@Published private var originalBooks = Book.samples

 @Published var books = [Book]()

 @Published var searchTerm: String = ""

 init() {

 �Publishers.CombineLatest($originalBooks,

$searchTerm) // (1)

 .map { books, searchTerm in // (2)

 books.filter { book in // (3)

 searchTerm.isEmpty

 ? true

 : (book.title.matches(searchTerm)

 || book.author.matches(searchTerm))

 }

 }

 .assign(to: &$books)

 }

}

How does this Combine pipeline work?

	 1.	 We use Publishers.CombineLatest to take the

latest state of the two publishers, $originalBooks

and $searchTerm. In a real-world application, we

might receive updates to the collection of books in

the background, and we’ll want these to be included

in the search result as well. The CombineLatest

publisher will publish a new tuple containing the

latest value of originalBooks and searchTerm every

time one of those publishers sends a new event.

Chapter 5 Displaying Data in Lists

134

	 2.	 We then use the .map operator to transform the

(books, searchTerm) tuple into an array of

books that we eventually assign to the published

$books property, which is connected to the

SearchableBooksListView.

	 3.	 Inside the .map closure, we use filter to return

only the books that contain the search term either

in their title or in the author’s name. This part of the

process actually is not Combine-specific—filter is

a method on Array.

If you run this code, you will notice that everything you type into the

search field will be autocapitalized. To prevent this, we can apply the

.autocapitalization view modifier—after the searchable view modifier:

struct SearchableBooksListView: View {

 @StateObject var viewModel = SearchableBooksViewModel()

 var body: some View {

 List(viewModel.books) { book in

 SearchableBookRowView(book: book)

 }

 .searchable(text: $viewModel.searchTerm)

 .autocapitalization(.none)

 }

}

�Styling
Lists offer a wide range of styling options, and with SwiftUI 3, it is now

possible to configure almost all aspects of list views:

Chapter 5 Displaying Data in Lists

135

–– The overall appearance of the list itself (i.e., the

list style)

–– The look of the list cells

–– The dividers (finally!)

–– …and much more

Let’s look at what’s possible.

�List Styles
The overall look and feel of list views can be controlled with the

.listStyle view modifier. SwiftUI supports six different looks:

	 1.	 .automatic

	 2.	 .grouped

	 3.	 .inset

	 4.	 .insetGrouped

	 5.	 .plain

	 6.	 .sidebar

List(items) { item in

 Text("\(item.label)")

}

.listStyle(.plain)

If you don’t provide a style, SwiftUI will assume .automatic. On iOS,

.automatic and .insetGrouped have the same look.

Instead of trying to describe in words how each of the styles looks like,

here are the images that show each of the styles.

Chapter 5 Displaying Data in Lists

136

Figure 5-5.  List Styles

Figure 5-6.  More List Styles

Chapter 5 Displaying Data in Lists

137

�Headers and Footers
All of the List view styles support headers and footers. To specify a header

and/or footer for a section, use one of the constructors that take a header

or footer parameter.

It seems like my favorite way of creating headers and footers has been

marked for deprecation:

@available(iOS 13.0, macOS 10.15, tvOS 13.0, watchOS 6.0, *)

extension Section where Parent : View, Content : View,

Footer : View {

 �/// Creates a section with a header, footer, and the

provided section content.

 /// - Parameters:

 /// - header: A view to use as the section's header.

 /// - footer: A view to use as the section's footer.

 /// - content: The section's content.

 �@available(iOS, deprecated: 100000.0, renamed: "Section

(content:header:footer:)")

 �@available(macOS, deprecated: 100000.0, renamed: "Section

(content:header:footer:)")

 �@available(tvOS, deprecated: 100000.0, renamed:

"Section(content:header:footer:)")

 �@available(watchOS, deprecated: 100000.0, renamed: "Section

(content:header:footer:)")

 �public init(header: Parent, footer: Footer, @ViewBuilder

content: () -> Content)

}

Chapter 5 Displaying Data in Lists

138

Here is my preferred way of setting up header and footer for a section:

List {

 �Section(header: Text("Fruits"), footer: Text("\(fruits.count)

fruits")) {

 ForEach(fruits, id: \.self) { fruit in

 �Label(fruit, systemImage: "\(fruits.firstIndex(of: fruit)

?? 0).circle.fill")

 }

 }

}

And here is the new way of doing the same:

List {

 Section {

 ForEach(fruits, id: \.self) { fruit in

 �Label(fruit, systemImage: "\(fruits.firstIndex(of: fruit)

?? 0).circle.fill")

 }

 } header: {

 Text("Fruits")

 } footer: {

 Text("\(fruits.count) fruits")

 }

}

I leave it up to you to decide which one looks cleaner—when executed,

they do exactly the same.

Chapter 5 Displaying Data in Lists

139

�List Cells
Designing custom cells used to be a pretty complicated affair in the early

days of UITableViewController, and thankfully, things have gotten a lot

easier since then.

In SwiftUI, designing custom List rows is easy to get started (just

use a plain Text view to represent the current item), but the possibilities

are endless, as you can make use of SwiftUI’s flexible stack-based layout

system. For a general introduction to building custom List rows, check out

the first part of this series, which covers some basic techniques.

In addition, SwiftUI supports a number of ways for styling common

aspects of List rows, such as their background, their inset, accent color,

tint, and badges.

Here is a code snippet that shows how you can configure a list row:

List(items, id: \.title) { item in

 Label(item.title, systemImage: item.iconName)

 .badge(item.badge)

 // listItemTint and foregroundColor are mutually exclusive

 // .listItemTint(listItemTintColor)

 .foregroundColor(foregroundColor)

 �.listRowSeparator(showSeparators == true ? .visible :

.hidden)

 .listRowSeparatorTint(separatorTintColor)

 .listRowBackground(rowBackgroundColor)

 }

}

Chapter 5 Displaying Data in Lists

140

Figure 5-7.  List Styles

�Separators
As any designer will be able to tell you, the space between items is as

important as the items themselves. With SwiftUI 3, it is now possible to

influence the style of row separators and section separators: both the tint

color and the visibility can be controlled. SwiftUI’s flexible DSL makes

it easy to control this for an entire List view or for individual rows and

sections.

To control the appearance of row separators, you can use

.listRowSeparator() and .listRowSeparatorTint(). You can specify

which edges (.top or .bottom) you want to configure. If you don't provide

any value for the edges parameter, both top and bottom will be modified.

List {

 Text("Row 1")

 Text("Row 2 (separators hidden)")

 .listRowSeparator(.hidden)

 Text("Row 3")

Chapter 5 Displaying Data in Lists

141

 Text("Row 4 (separators tinted red)")

 .listRowSeparatorTint(.red)

 Text("Row 5")

 Text("Row 6 (bottom separator hidden)")

 .listRowSeparator(.hidden, edges: .bottom)

 Text("Row 7")

 Text("Row 8 (top separator tinted blue)")

 .listRowSeparatorTint(.blue, edges: .top)

 Text("Row 9")

 Text("Row 10")

}

To control the appearance of section separators, use

.listSectionSeparator() and .listSectionSeparatorTint(). Just

like the view modifiers for list rows, both of these view modifiers support

specifying the edges you’d like to modify.

Figure 5-8.  Styling List Rows

Chapter 5 Displaying Data in Lists

142

List {

 �Section(header: Text("Section 1"), footer: Text("Section 1 -

no styling")) {

 Text("Row 1")

 }

 �Section(header: Text("Section 2"), footer: Text("Section 2 -

section separators hidden")) {

 Text("Row 1")

 }

 .listSectionSeparator(.hidden)

 �Section(header: Text("Section 3"), footer: Text("Section 3 -

section separator tinted red")) {

 Text("Row 1")

 }

 .listSectionSeparatorTint(.red)

 �Section(header: Text("Section 4"), footer: Text("Section 4 -

section separators tinted green")) {

 Text("Row 1")

 }

 .listSectionSeparatorTint(.green, edges: [.top, .bottom])

 �Section(header: Text("Section 5"), footer: Text("Section 5 -

section separator (bottom) hidden")) {

 Text("Row 1")

 }

 .listSectionSeparator(.hidden, edges: .bottom)

 Section("Section 6") {

 Text("Row 1")

 }

}

Chapter 5 Displaying Data in Lists

143

Figure 5-9.  Styling List Sections

�Actions
Let’s now look at Swipe Actions. Swipe Actions are used in many apps,

most prominently in Apple’s own Mail app. They provide a well-known

and easy-to-use UI affordance to allow users to perform actions on

list items.

UIKit has supported Swipe Actions since iOS 11, but SwiftUI didn’t

support Swipe Actions until WWDC 2021.

In this post, we will look at the following features:

–– Swipe-to-delete using the onDelete modifier

–– Deleting and moving items using EditButton and the

.editMode environmental value

–– Using Swipe Actions (this is the most flexible

approach, which also gives us a wealth of styling

options)

Chapter 5 Displaying Data in Lists

144

�Swipe-to-Delete
This feature was available in SwiftUI right from the beginning. It is pretty

straightforward to use, but also pretty basic (or rather inflexible). To add

swipe-to-delete to a Listview, all you need to do is apply the onDelete

modifier to a ForEach loop inside a List view. This modifier expects a

closure with one parameter that contains an IndexSet, indicating which

rows to delete.

Here is a code snippet that shows a simple List with an onDelete

modifier. When the user swipes to delete, the closure will be called, which

will consequently remove the respective row from the array of items

backing the List view:

struct SwipeToDeleteListView: View {

 @State fileprivate var items = [

 �Item(title: "Puzzle", iconName: "puzzlepiece", badge:

"Nice!"),

 �Item(title: "Controller", iconName: "gamecontroller",

badge: "Clicky!"),

 �Item(title: "Shopping cart", iconName: "cart",

badge: "$$$"),

 Item(title: "Gift", iconName: "giftcard", badge: ":-)"),

 �Item(title: "Clock", iconName: "clock", badge:

"Tick tock"),

 Item(title: "People", iconName: "person.2", badge: "2"),

 Item(title: "T-Shirt", iconName: "tshirt", badge: "M")

]

 var body: some View {

 List {

 ForEach(items) { item in

 Label(item.title, systemImage: item.iconName)

 }

Chapter 5 Displaying Data in Lists

145

 .onDelete { indexSet in

 items.remove(atOffsets: indexSet)

 }

 }

 }

}

It’s actually quite convenient that onDelete passes an IndexSet to

indicate which item(s) should be deleted, as Array provides a method

remove(atOffsets:) that takes an IndexSet.

It is worth noting that you cannot apply onDelete to List directly—you

need to use a ForEach loop instead and nest it inside a List11.

�Moving and Deleting Items Using EditMode
For some applications, it makes sense to let users rearrange items by

dragging them across the list. SwiftUI makes implementing this super

easy—all you need to do is apply the onMove view modifier to a List and

then update the underlying data structure accordingly.

Here is a snippet that shows how to implement this for a simple array:

List {

 ForEach(items) { item in

 Label(item.title, systemImage: item.iconName)

 }

 .onDelete { indexSet in

 items.remove(atOffsets: indexSet)

 }

11 I am not entirely sure why the SwiftUI team decided to implement it this way—if
you have any clue (or work on the SwiftUI team), please get in touch with me!

Chapter 5 Displaying Data in Lists

146

 .onMove { indexSet, index in

 items.move(fromOffsets: indexSet, toOffset: index)

 }

}

Again, this is made easy thanks to Array.move, which expects exactly

the parameters that we receive in onDelete’s closure.

To turn on edit mode for a List, there are two options:

–– Using the .editMode environment value

–– Using the EditButton view

Under the hood, both approaches make use of SwiftUI’s environment.

The following snippet demonstrates how to use the EditButton to allow

the user to turn on edit mode for the list:

List {

 ForEach(items) { item in

 Label(item.title, systemImage: item.iconName)

 }

 .onDelete { indexSet in

 items.remove(atOffsets: indexSet)

 }

 .onMove { indexSet, index in

 items.move(fromOffsets: indexSet, toOffset: index)

 }

}

.toolbar {

 EditButton()

}

Chapter 5 Displaying Data in Lists

147

�Swipe Actions
For anything that goes beyond swipe-to-delete and EditMode, SwiftUI now

supports Swipe Actions. This new API gives us a lot of control over how to

display swipe actions:

–– We can define different swipe actions per row.

–– We can specify the text, icon, and tint color to use for

each individual action.

–– We can add actions to the leading and trailing edge

of a row.

–– We can enable or disable full swipe for the first action

on either end of the row, allowing users to trigger the

action by completely swiping the row to the respec-

tive edge.

�Basic Swipe Actions

Let’s look at a simple example on how to use this new API. To register

a Swipe Action for a List row, we need to call the swipeActions view

modifier. Inside the closure of the view modifier, we can set up one (or

more) Buttons to implement the action itself.

The following code snippet demonstrates how to add a simple swipe

action to a List view:

List(viewModel.items) { item in

 Text(item.title)

 .fontWeight(item.isRead ? .regular : .bold)

 .swipeActions {

 Button (action: { viewModel.markItemRead(item) }) {

 if let isRead = item.isRead, isRead == true {

 Label("Read", systemImage: "envelope.badge.fill")

 }

Chapter 5 Displaying Data in Lists

148

 else {

 Label("Unread", systemImage: "envelope.open.fill")

 }

 }

 .tint(.blue)

 }

}

It’s worth noting that the swipeActions modifier is invoked on the view

that represents the row. In this case, it is a simple Text view, but for more

advanced lists, this might as well be a HStack or VStack. This is different

from the onDelete modifier (which needs to be applied to a ForEach loop

inside a List view), and it gives us the flexibility to apply a different set of

actions depending on the row.

Also note that each swipe action is represented by a Button. If you use

any other view, SwiftUI will not register it, and no action will be shown.

Likewise, if you try to apply the swipeActions modifier to the List or a

ForEach loop, the modifier will be ignored.

�Specifying the Edge

By default, swipe actions will be added to the trailing edge of the row.

This is why, in the previous example, the mark as read/unread action

was added to the trailing edge. To add the action to the leading edge (just

like in Apple’s Mail app), all we have to do is specify the edge parameter,

like so:

List(viewModel.items) { item in

 Text(item.title)

 .fontWeight(item.isRead ? .regular : .bold)

 .swipeActions(edge: .leading) {

 Button (action: { viewModel.markItemRead(item) }) {

Chapter 5 Displaying Data in Lists

149

 if let isRead = item.isRead, isRead == true {

 Label("Read", systemImage: "envelope.badge.fill")

 }

 else {

 Label("Unread", systemImage: "envelope.open.fill")

 }

 }

 .tint(.blue)

 }

To add actions to either edge, we can call the swipeActions modifier

multiple times, specifying the edge we want to add the actions to.

If you add swipe actions to both the leading and trailing edge, it is a

good idea to be explicit about where you want to add the actions. In the

following code snippet, we add one action to the leading edge and another

one to the trailing edge:

List(viewModel.items) { item in

 Text(item.title)

 .fontWeight(item.isRead ? .regular : .bold)

 .swipeActions(edge: .leading) {

 Button (action: { viewModel.markItemRead(item) }) {

 if let isRead = item.isRead, isRead == true {

 Label("Read", systemImage: "envelope.badge.fill")

 }

 else {

 Label("Unread", systemImage: "envelope.open.fill")

 }

 }

 .tint(.blue)

 }

Chapter 5 Displaying Data in Lists

150

 .swipeActions(edge: .trailing) {

 �Button(role: .destructive, action: { viewModel.

deleteItem(item) }) {

 Label("Delete", systemImage: "trash")

 }

 }

 }

You might notice that we used the role parameter on the Button to

indicate it is .destructive—this instructs SwiftUI to use a red background

color for this button. We still have to implement deleting the item

ourselves, though. And since the action closure of the Button is inside

the scope of the current row, it is now much easier to directly access the

current list item—another advantage of this API design over the previous

design for onDelete.

�Swipe Actions and onDelete

After reading the previous code snippet, you might be wondering why

we didn’t use the onDelete view modifier instead of implementing a

delete action ourselves. The answer is quite simple: as stated in the

documentation, SwiftUI will stop synthesizing the delete functionality

once you use the swipeActions modifier.

�Adding More Swipe Actions

To add multiple swipe actions to either edge, we can call the swipeActions

modifier multiple times:

List(viewModel.items) { item in

 Text(item.title)

 .fontWeight(item.isRead ? .regular : .bold)

 .swipeActions(edge: .leading) {

Chapter 5 Displaying Data in Lists

151

 Button (action: { viewModel.markItemRead(item) }) {

 if let isRead = item.isRead, isRead == true {

 Label("Read", systemImage: "envelope.badge.fill")

 }

 else {

 Label("Unread", systemImage: "envelope.open.fill")

 }

 }

 .tint(.blue)

 }

 .swipeActions(edge: .trailing) {

 �Button(role: .destructive, action: { viewModel.

deleteItem(item) }) {

 Label("Delete", systemImage: "trash")

 }

 }

 .swipeActions(edge: .trailing) {

 Button (action: { selectedItem = item }) {

 Label("Tag", systemImage: "tag")

 }

 .tint(Color(UIColor.systemOrange))

 }

}

If this makes you feel uneasy, you can also add multiple buttons to the

same swipeActions modifier. The following code snippet results in the

same UI as the previous one:

List(viewModel.items) { item in

 Text(item.title)

 .fontWeight(item.isRead ? .regular : .bold)

 .badge(item.badge)

Chapter 5 Displaying Data in Lists

152

 .swipeActions(edge: .leading) {

 Button (action: { viewModel.markItemRead(item) }) {

 if let isRead = item.isRead, isRead == true {

 Label("Read", systemImage: "envelope.badge.fill")

 }

 else {

 Label("Unread", systemImage: "envelope.open.fill")

 }

 }

 .tint(.blue)

 }

 .swipeActions(edge: .trailing) {

 �Button(role: .destructive, action: { viewModel.

deleteItem(item) }) {

 Label("Delete", systemImage: "trash")

 }

 Button (action: { selectedItem = item }) {

 Label("Tag", systemImage: "tag")

 }

 .tint(Color(UIColor.systemOrange))

 }

}

If you add multiple swipe actions to the same edge, they will be shown

from the outside, that is, the first button will always appear closest to the

respective edge.

Please note that, although there doesn’t seem to be any limit as
to how many swipe actions you can add to either edge of a
row, the number of actions that a user can comfortably use
depends on their device. For example, a list row on an iPhone
13 in portrait orientation can fit up to five swipe actions, but
they completely fill up the entire row, which not only looks

Chapter 5 Displaying Data in Lists

153

strange but also leads to some issues when trying to tap the
right button. Smaller devices, like an iPhone 6 or even and
iPhone 5, can fit even fewer swipe actions. Three or four swipe
actions seem to be a sensible limit that should work on most
devices.

�Full Swipe

By default, the first action for any given swipe direction can be invoked

by using a full swipe. You can deactivate this behavior by setting the

allowsFullSwipe parameter to false:

.swipeActions(edge: .trailing, allowsFullSwipe: false) {

 �Button(role: .destructive, action: { viewModel.

deleteItem(item) }) {

 Label("Delete", systemImage: "trash")

 }

}

�Styling Your Swipe Actions

As mentioned before, setting the role of a swipe action’s Button to

.destructive will automatically tint the button red. If you don’t specify a

role, the Button will be tinted in light gray. You can specify any other color

by using the tint modifier on a swipe action’s Button—like so:

.swipeActions(edge: .trailing) {

 Button (action: { selectedItem = item }) {

 Label("Tag", systemImage: "tag")

 }

 .tint(Color(UIColor.systemOrange))

}

Inside the Button, you can display both text labels and/or icons, using

Image, Text, or Label.

Chapter 5 Displaying Data in Lists

154

�Managing Focus in Lists
Managing focus is an important aspect for almost any sort of UI—getting

this right helps your users to navigate your app faster and more efficiently.

In desktop UIs, we have come to expect being able to navigate through

the input fields on a form by pressing the Tab key, and on mobile it’s no

less important. In Apple’s Reminders app, for example, the cursor will

automatically be placed in any new reminder you create and will advance

to the next row when you tap the Enter key. This way, you can add new

elements very efficiently.

Apple added support for focus management to SwiftUI in iOS 15—this

includes both setting and observing focus.

Most examples both in Apple’s own documentation and on other

people’s blogs and videos only discuss how to use this in simple forms,

such as a login form. Advanced use cases, such as managing focus in an

editable list, aren’t covered.

In the following, I will show you how to manage focus state in an app

that allows users to edit elements in a list. As an example, I am going to

use Make It So, a to-do list app I am working on. Make It So is a replica of

Apple’s Reminders app, and the idea is to figure out how close we can get

to the original using only SwiftUI and Firebase (for the backend services

such as storage)12.

�How to Manage Focus in SwiftUI
At WWDC 2021, Apple introduced @FocusState, a property wrapper that

can be used to track and modify focus within a scene.

12 You can download the latest version of the app from its GitHub repository at
https://github.com/peterfriese/MakeItSo

Chapter 5 Displaying Data in Lists

https://github.com/peterfriese/MakeItSo

155

You can either use a Bool or an enum to track which element of your UI

is focused.

The following example makes use of an enum with two cases to track

focus for a simple user profile form. As you can see in the Button’s closure,

we can programmatically set the focus, for example, if the user forgot to fill

out a mandatory field.

enum FocusableField: Hashable {

 case firstName

 case lastName

}

struct FocusUsingEnumView: View {

 @FocusState private var focus: FocusableField?

 @State private var firstName = ""

 @State private var lastName = ""

 var body: some View {

 Form {

 TextField("First Name", text: $firstName)

 .focused($focus, equals: .firstName)

 TextField("Last Name", text: $lastName)

 .focused($focus, equals: .lastName)

 Button("Save") {

 if firstName.isEmpty {

 focus = .firstName

 }

 else if lastName.isEmpty {

 focus = .lastName

 }

Chapter 5 Displaying Data in Lists

156

 else {

 focus = nil

 }

 }

 }

 }

}

This approach works fine for simple input forms that have all but a few

input elements, but it’s not feasible for List views or other dynamic views

that display an unbounded number of elements.

�How to Manage Focus in Lists
To manage focus in List views, we can make use of the fact that Swift

enums support associated values. This allows us to define an enum that can

hold the id of a list element we want to focus:

enum Focusable: Hashable {

 case none

 case row(id: String)

}

With this in place, we can define a local variable focusedReminder that

is of this type and wrap it using @FocusState:

struct Reminder: Identifiable {

 var id: String = UUID().uuidString

 var title: String

}

struct FocusableListView: View {

 @State var reminders: [Reminder] = Reminder.samples

Chapter 5 Displaying Data in Lists

157

 @FocusState var focusedReminder: Focusable?

 var body: some View {

 List {

 ForEach($reminders) { $reminder in

 TextField("", text: $reminder.title)

 �.focused($focusedReminder, equals: .row(id:

reminder.id))

 }

 }

 .toolbar {

 ToolbarItemGroup(placement: .bottomBar) {

 Button(action: { createNewReminder() }) {

 Text("New Reminder")

 }

 }

 }

 }

 // ...

}

When the user taps the New Reminder toolbar button, we add a new

Reminder to the reminders array. To set the focus into the row for this

newly created reminder, all we need to do is create an instance of the

Focusable enum using the new reminder’s id as the associated value, and

assign it to the focusedReminder property:

struct FocusableListView: View {

 // ...

 func createNewReminder() {

 let newReminder = Reminder(title: "")

Chapter 5 Displaying Data in Lists

158

 reminders.append(newReminder)

 �focusedReminder = .row(id: newReminder.id)

 }

}

�Handling the Enter Key
Let’s now turn our focus to another feature of Apple’s Reminder app that

will improve the UX of our application: adding new elements (and focusing

them) when the user hits the Enter key.

We can use the .onSubmit view modifier to run code when the user

submits a value to a view. By default, this will be triggered when the user

taps the Enter key:

...

TextField("", text: $reminder.title)

 .focused($focusedTask, equals: .row(id: reminder.id))

 .onSubmit {

 createNewTask()

 }

...

This works fine, but all new elements will be added to the end of the

list. This is a bit unexpected in case the user was just editing a to-do at the

beginning or in the middle of the list.

Let’s update our code for inserting new items and make sure new items

are inserted directly after the currently focused element:

...

func createNewTask() {

 let newReminder = Reminder(title: "")

Chapter 5 Displaying Data in Lists

159

 �// if any row is focused, insert the new task after the

focused row

 if case .row(let id) = focusedTask {

 �if let index = reminders.firstIndex(where: { $0.id ==

id }) {

 reminders.insert(newReminder, at: index + 1)

 }

 }

 // no row focused: append at the end of the list

 else {

 reminders.append(newReminder)

 }

 // focus the new task

 focusedTask = .row(id: newReminder.id)

}

...

This works great, but there is a small issue with this: if the user hits the

Enter key several times in a row without entering any text, we will end up

with a bunch of empty rows—not ideal. The Reminders app automatically

removes empty rows, so let’s see if we can implement this as well.

If you’ve followed along, you might notice another issue: the code for

our view is getting more and more crowded, and we’re mixing declarative

UI code with a lot of imperative code.

�What About MVVM?
Now those of you who have been following my blog and my videos know

that I am a fan of using the MVVM approach in SwiftUI, so let’s take a look

at how we can introduce a view model to declutter the view code and

implement a solution for removing empty rows at the same time.

Chapter 5 Displaying Data in Lists

160

Ideally, the view model should contain the array of Reminders, the

focus state, and the code to create a new reminder:

class ReminderListViewModel: ObservableObject {

 @Published var reminders: [Reminder] = Reminder.samples

 @FocusState

 var focusedReminder: Focusable?

 func createNewReminder() {

 let newReminder = Reminder(title: "")

 �// if any row is focused, insert the new reminder after the

focused row

 if case .row(let id) = focusedReminder {

 �if let index = reminders.firstIndex(where: { $0.id ==

id }) {

 reminders.insert(newReminder, at: index + 1)

 }

 }

 // no row focused: append at the end of the list

 else {

 reminders.append(newReminder)

 }

 // focus the new reminder

 �focusedReminder = .row(id: newReminder.id)

 }

}

Notice how we’re accessing the focusedReminder focus state inside of

createNewReminder to find out where to insert the new reminder, and then

set the focus on the newly added/inserted reminder.

Chapter 5 Displaying Data in Lists

161

Obviously, the FocusableListView view needs to be updated as well to

reflect the fact that we’re no longer using a local @State variable, but an

@ObservableObject instead:

struct FocusableListView: View {

 �@StateObject var viewModel = ReminderListViewModel().

 var body: some View {

 List {

 �ForEach($viewModel.reminders) { $reminder in

 TextField("", text: $reminder.title)

 �.focused(viewModel.$focusedReminder, equals:

.row(id: reminder.id))

 .onSubmit {

 viewModel.createNewReminder()

 }

 }

 }

 .toolbar {

 ToolbarItem(placement: .bottomBar) {

 �Button(action: { viewModel.createNewReminder() }) {

 Text("New Reminder")

 }

 }

 }

 }

}

Chapter 5 Displaying Data in Lists

162

This all looks great, but when running this code, you will notice the

focus handling no longer works, and instead we receive a SwiftUI runtime

warning that says Accessing FocusState’s value outside of the body of a

View. This will result in a constant Binding of the initial value and will

not update.

This is because @FocusState conforms to DynamicProperty, which can

only be used inside views.

So we need to find another way to synchronize the focus state between

the view and the view model. One way to react to changes on properties of

views is the .onChange(of:) view modifier.

To synchronize the focus state between the view model and the

view, we can

	 1.	 Add the @FocusState back to the view

	 2.	 Mark focusedReminder as a @Published property on

the view model

	 3.	 And sync them using onChange(of:)

Like this:

class ReminderListViewModel: ObservableObject {

 @Published var reminders: [Reminder] = Reminder.samples

 @Published var focusedReminder: Focusable?

 // ...

}

Figure 5-10.  Runtime warning when accessing FocusState outside
the body of a view

Chapter 5 Displaying Data in Lists

163

struct FocusableListView: View {

 @StateObject var viewModel = ReminderListViewModel()

 @FocusState var focusedReminder: Focusable?

 var body: some View {

 List {

 ForEach($viewModel.reminders) { $reminder in

 // ...

 }

 }

 �.onChange(of: focusedReminder) {

 � viewModel.focusedReminder = $0

 �}

 �.onChange(of: viewModel.focusedReminder) {

 �focusedReminder = $0

 �}

 // ...

 }

}

Side note: this can be cleaned up even further by extracting the
code for synching into an extension on View.

And with this, we’ve cleaned up our implementation—the view focuses

on the display aspects, whereas the view model handles updating the data

model and translating between the view and the model.

�Eliminating Empty Elements
Using a view model gives us another nice benefit—since the

focusedReminder property on the view model is a published property, we

can attach a Combine pipeline to it and react to changes of the property.

Chapter 5 Displaying Data in Lists

164

This will allow us to detect when the previously focused element is an

empty element and consequently remove it.

To do this, we will need an additional property on the view model to

keep track of the previously focused Reminder and then install a Combine

pipeline that removes empty Reminders once their row loses focus:

class ReminderListViewModel: ObservableObject {

 @Published var reminders: [Reminder] = Reminder.samples

 @Published var focusedReminder: Focusable?

 var previousFocusedReminder: Focusable?

 private var cancellables = Set<AnyCancellable>()

 init() {

 $focusedReminder

 .compactMap { focusedReminder -> Int? in

 �defer { self.previousFocusedReminder =

focusedReminder }

 guard focusedReminder != nil else { return nil }

 �guard case .row(let previousId) = self.

previousFocusedReminder else { return nil }

 �guard let previousIndex = self.reminders.

firstIndex(where: { $0.id == previousId }) else { return nil }

 �guard self.reminders[previousIndex].title.isEmpty else

{ return nil }

 return previousIndex

 }

 �.delay(for: 0.01, scheduler: RunLoop.main)

 �// <-- this helps reduce visual jank

 .sink { index in

 self.reminders.remove(at: index)

 }

Chapter 5 Displaying Data in Lists

165

 .store(in: &cancellables)

 }

 // ...

}

Summary
Congratulations, you made it until the end of one of the longest chapters in

this book! Lists are not only one of the more frequently used UI patterns in

SwiftUI; they also are very flexible and can be customized in many ways.

In this chapter, you learned a lot about Lists and their look and feel;

we talked about static and dynamic lists (and how to connect them to your

app’s data model), how to style the lists themselves and their cells, and we

talked about how to add interaction to lists by adding swipe actions.

Finally, we brought together what you learned so far and dived into

how to manage focus in dynamic list views.

With this under your belt, you will be able to build even more

sophisticated UIs.

In the next chapter, we will take a look at List view’s cousin, Form,

and you will learn how to build elegant input forms with surprisingly

little effort.

Chapter 5 Displaying Data in Lists

167

CHAPTER 6

Building Input Forms
When you hear the term “forms,” you probably don’t think your app needs

many forms, and you most definitely won’t get excited (unless you’re a

person who likes filling out forms). However, you might be surprised to

hear that forms are an important way to build UIs, especially on Apple’s

platforms.

Just think about it: your app most likely has a setting screen—and

that’s technically a form. Your app might also have a login screen—again,

that’s a form! And if you have any sort of data entry—guess what, that’s a

form too.

When Apple first released the iPhone iOS SDK (as it was called

back then), they didn’t provide a first-class way to build input forms.

Developers quickly figured out that UITableView, originally built for

tabular representations of data, could also be used to display input

forms. However, as UITableView’s APIs (UITableViewDataSource and

UITableViewDelegate) weren’t built with this use case in mind, it has

always been a bit cumbersome to build forms based on these APIs—for

example, you had to keep track of which row you’re currently on to decide

which subclass of UITableViewCell to vend to display the correct form cell.

SwiftUI gave Apple the opportunity to start from a clean slate and come

up with concepts and APIs that better meet modern application’s needs

and finally address what developers had been telling them for years.

Being such an important part of many iOS apps, Apple added a

dedicated API for building forms to SwiftUI.

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_6

https://doi.org/10.1007/978-1-4842-8572-5_6

168

In this chapter, you will see that it is straightforward to build great-

looking forms, and—who knows?—by the end of it maybe you’ll be really

excited about forms too!

�Building Simple Forms
We’ll first cover the basics and look at how to build a simple form for

displaying static data. We will also learn how to bind a form’s UI elements

to your data model. From there, it’s just a small step to learn how to use

input elements like TextField or Toggle to edit form data. This will also

give us the opportunity to discuss whether (or rather when) to use @State

or @StateObject.

Getting started with forms is remarkably simple—the SwiftUI team has

designed the forms API so that you can continue using the UI elements you

already know (such as Text, Label, Button, Image, etc.), and SwiftUI will

take care of rendering them so that they look like the stock forms UI we all

know from the iOS settings app.

This is a recurring theme in SwiftUI—you as a developer/designer

specify what you want to display, and SwiftUI will figure out how to best

do this on the respective platform. In the end, it’s a mixture of both—you’ll

end up tweaking your code quite a bit to make the UI look exactly as you’d

like it to.

The simplest form you can build in SwiftUI is to wrap the Hello World

text from the SwiftUI application template in a Form, like this:

struct ContentView: View {

 var body: some View {

 Form {

 Text("Hello, world!")

 }

 }

}

Chapter 6 Building Input Forms

169

This turns the Text view into a simple tabular form.

Figure 6-1.  Hello World in a form

Chapter 6 Building Input Forms

170

If you’ve done any UIKit development before, this will look
remarkably like a UITableView to you, and Apple might actu-
ally be using a UITableView under the hood to achieve this
look and feel—but we shouldn’t make any assumptions, as
Apple doesn’t make any guarantees about how they render
SwiftUI views on screen.

Let’s build a simple form for displaying information about a book to get

to know some additional form elements.

We’ll start out by using static text, but as we progress, we will replace

this with a data model to enable our users to actually edit the data on

the form.

You can use most SwiftUI view inside a Form view, and you already

learned how to use a simple Text view in a form. We can also use view

modifiers to style our views, so here’s a red headline text:

struct ContentView: View {

 var body: some View {

 Form {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline).foregroundColor(.red)

 }

 }

}

Not everything that’s possible is also always a good idea, so please use

good judgment when styling form elements.

It’s also possible to use Images inside a form, so let’s display the book

cover, like this:

struct ContentView: View {

 var body: some View {

 Form {

 Text("Asynchronous Programming with SwiftUI and Combine")

Chapter 6 Building Input Forms

171

 .font(.headline).foregroundColor(.red)

 Image("book-cover-combine")

 }

 }

}

Chapter 6 Building Input Forms

172

Figure 6-2.  Displaying an image inside a form

Chapter 6 Building Input Forms

173

Now, we could display the book’s author and the number of pages

using a Text view, but wouldn’t it be nice to display a little icon next to the

text to make it easier for the user to quickly distinguish these fields at a

glance? For this, we can use Label:

struct ContentView: View {

 var body: some View {

 Form {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline).foregroundColor(.red)

 Image("book-cover-combine")

 �Label("Peter Friese",

 �systemImage: "person.crop.rectangle")

 Label("451 pages", systemImage: "book")

 }

 }

}

Chapter 6 Building Input Forms

174

Figure 6-3.  Using Label to display an icon alongside a text

Chapter 6 Building Input Forms

175

To track whether the user has already read the book, we might want to

display a toggle, like this:

struct ContentView: View {

 var body: some View {

 Form {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline).foregroundColor(.red)

 Image("book-cover-combine")

 La�bel("Peter Friese",

 systemImage: "person.crop.rectangle")

 Label("451 pages", systemImage: "book")

 Toggle("Read", isOn: .constant(true))

 }

 }

}

As we’re not yet binding any real data to the form, we’re making use of

the .constant() binding to bind the Toggle view to a true constant.

Chapter 6 Building Input Forms

176

Figure 6-4.  Displaying a toggle inside a form

Chapter 6 Building Input Forms

177

Often, users need to take action on the form, and there is an easy way

to add buttons to forms, too:

struct ContentView: View {

 var body: some View {

 Form {

 Text("Asynchronous Programming with SwiftUI and Combine")

 .font(.headline).foregroundColor(.red)

 Image("book-cover-combine")

 �Label("Peter Friese",

 �systemImage: "person.crop.rectangle")

 Label("451 pages", systemImage: "book")

 Toggle("Read", isOn: .constant(true))

 Button(action: {}) {

 Label("Share", systemImage: "square.and.arrow.up")

 }

 }

 }

}

In this example, I’ve used a Label to show an icon next to the button

label, but you can use a regular Text just as well if you’d rather not show

an icon.

Chapter 6 Building Input Forms

178

Figure 6-5.  Displaying a button in a form

Chapter 6 Building Input Forms

179

�Showing Data in a Form
Being able to display static data is useful for UIs that don’t require any

dynamic updates, such as your app’s settings screen. However, most apps

need to display data that is dynamically updating, so let’s look at binding a

forms UI to a data model and—in a second step—make it editable as well.

As the Forms API makes use of SwiftUI’s regular UI views, all of their

features continue to work as expected—the only thing that the Forms API

influences is how the UI elements look inside a form.

Thanks to this, we can use all of SwiftUI’s state management tools

to bind the UI elements such as Text, Label, and Image and even more

complex ones such as the pickers to our data model.

To continue with our example, let’s assume we’ve got the following

data model to represent books:

struct Book: Hashable, Identifiable {

 var id = UUID()

 var title: String

 var author: String

 var isbn: String

 var pages: Int

 var isRead: Bool = false

}

extension Book {

 var smallCoverImageName: String { return "\(isbn)-S" }

 var mediumCoverImageName: String { return "\(isbn)-M" }

 var largeCoverImageName: String { return "\(isbn)-L" }

}

To display data from a Book instance, we need to replace the static texts

we used in the previous code snippets and access the model attributes

instead. All of Swift’s string interpolation capabilities work in SwiftUI

Chapter 6 Building Input Forms

180

as well, so the following syntax: "\(book.pages) pages" will inject the

current value of the pages property of the Book instance into the Text.

There is one notable exception—Toggle expects a binding, so it can

update the underlying property whenever the user flips the switch. Since

we want to display all information on BookDetailsView in read-only mode,

we will use .constant() to turn the binding into a constant value. This

effectively prevents the user from making any changes to the read status of

the model.

Whenever the model (book) is updated, SwiftUI will rerender all UI

elements that are bound to this model.

struct BookDetailsView: View {

 @State var book: Book

 var body: some View {

 Form {

 Text(book.title)

 Image(book.largeCoverImageName)

 Label(book.author, systemImage: "person.crop.rectangle")

 Label("\(book.pages) pages", systemImage: "book")

 Toggle("Read", isOn: .constant(book.isRead))

 �Button(action: { /* add code to display the edit

screen */ }) {

 Label("Edit", systemImage: "pencil")

 }

 }

 .navigationTitle(book.title)

 }

}

As expected, the result looks exactly like our static example.

Chapter 6 Building Input Forms

181

Figure 6-6.  Displaying dynamic data

Chapter 6 Building Input Forms

182

�Make It Editable
Displaying information is only part of the way to a fully data-driven app,

and in the next step, we’re going to create an editable version of this form.

Part of the iPhone’s success is due to its slick and powerful UI, and

most of its UI elements have been around since the unveiling of the

original iPhone in 2007. Just like UIKit, SwiftUI contains a core set of input

elements that allow developers to build easy-to-use, yet powerful and

flexible UIs for entering data on (relatively) small screens.

We’ll be using just a few of these input elements to build a form

for editing a book, but we’ll cover the remaining ones at the end of this

chapter.

Probably the most versatile (and most often used) input element is

TextField—it accepts alphanumeric input and can be customized to

support a variety of data types such as email addresses, phone numbers,

URLs, and many more.

To create a TextField in SwiftUI, you have to provide a title and a

binding to a value to display and edit: TextField("title", $model.

property).

Here is the basic version of a form to edit a book:

struct BookEditView: View {

 @State var book: Book

 var body: some View {

 Form {

 TextField("Book title", text: $book.title)

 Image(book.largeCoverImageName)

 TextField("Author", text: $book.author)

 }

 }

}

Chapter 6 Building Input Forms

183

As you can see, we’re using TextFields to edit the title and author

properties of the current Book instance.

But what about the number of pages?

If you look at TextFields API, you will notice it supports editing

arbitrary data types—all you have to do is provide a Formatter instance

that translates between the data type and its textual representation that the

user edits.

To edit an Int property like the number of pages, we can use a

NumberFormatter, like so:

struct BookEditView: View {

 @State var book: Book

 var body: some View {

 Form {

 TextField("Book title", text: $book.title)

 Image(book.largeCoverImageName)

 TextField("Author", text: $book.author)

 �TextField("Pages", value: $book.pages, formatter:

NumberFormatter())

 }

 }

}

If you recall, the book also has a Boolean property, isRead, to track

whether the user has read this book. Previously, we used a constant to

display the state of this property, but now let’s make it editable:

struct BookEditView: View {

 @State var book: Book

 var body: some View {

 Form {

 TextField("Book title", text: $book.title)

Chapter 6 Building Input Forms

184

 Image(book.largeCoverImageName)

 TextField("Author", text: $book.author)

 �TextField("Pages", value: $book.pages, formatter:

NumberFormatter())

 Toggle("Read", isOn: $book.isRead)

 }

 }

}

To see this in action, we’ll need to update the preview provider to inject

one of the sample books into the view:

struct BookEditView_Previews: PreviewProvider {

 static var previews: some View {

 BookEditView(book: Book.samples[0])

 }

}

�Drill-Down Navigation
Drill-down navigation is a popular UI pattern in iOS apps, probably best

known from the built-in Contacts app: starting from the list of all their

contacts, users can navigate into individual contacts to see their details

and perform actions such as initiating a call or face-timing them. The

contact details screen also features an Edit button, which will open the

currently displayed contact in an editable form. Once the user has finished

editing the contact, the updated contact details will be updated throughout

the entire Contacts app.

In this section, we will take a quick look on how to implement this

pattern for our Book management app based on the building blocks we’ve

already got: the BookDetailsView and the BookEditView.

Chapter 6 Building Input Forms

185

In addition to the Book struct, which serves as the model for an

individual book, we need to establish a source of truth that contains a

collection of all the books in our app. As we haven’t implemented any data

storage or backend connector yet, we’re going to use a static list of books to

initialize this source of truth.

As discussed in Chapter 4, the best way to hold a collection of

elements and update any subscribers about changes to this list is to use an

ObservableObject with a property that is marked as @Published:

class BooksViewModel: ObservableObject {

 @Published var books: [Book] = Book.samples

}

At a later stage, we might want to connect this view model to a

database, but for now, we’re assigning a static list of books, as defined here:

extension Book {

 static let sampleBooks = [

 �Book(title: "Changer", author: "Matt Gemmell", isbn:

"9781916265202", pages: 476),

 �Book(title: "SwiftUI for Absolute Beginners", author:

"Jayant Varma", isbn: "9781484255155", pages: 200),

 �Book(title: "Asynchronous Programming with SwiftUI and

Combine", author: "Peter Friese", isbn: "9781484285718",

pages: 451),

 �Book(title: "Modern Concurrency on Apple Platforms",

author: "Andy Ibanez", isbn: "9781484286944", pages: 368)

]

}

This view model now needs to be instantiated and passed around to

the individual views in our app. A good place to do this is in the main App

struct—this makes sure our source of truth is shared among all windows

Chapter 6 Building Input Forms

186

of our application. This becomes important when your users run your

application on a device that allows them to show multiple windows of your

application at once (such as an iPad): any changes the user makes in one

window of the app will be reflected in the other window immediately.

As mentioned in Chapter 4, we need to use @StateObject to tell

SwiftUI that it needs to ensure to keep this instance of BooksViewModel

alive across any screen redraws.

To pass the view model down the view hierarchy, we can either use the

environment or inject the instance into a view’s initializer.

Personally, I prefer using initializer injection, as it tends to be more

explicit than using the environment.

import SwiftUI

@main

struct BookShelfApp: App {

 @StateObject var booksViewModel = BooksViewModel()

 var body: some Scene {

 WindowGroup {

 NavigationStack {

 BooksListView(booksViewModel: booksViewModel)

 .navigationTitle("Books")

 }

 }

 }

}

The root view of our navigation hierarchy is BooksListView, which

displays a list of books. As our app’s view model is owned by BookShelfApp,

we can refer to it here using ObservableObject:

Chapter 6 Building Input Forms

187

import SwiftUI

struct BooksListView: View {

 @ObservedObject var booksViewModel: BooksViewModel

 var body: some View {

 List {

 ForEach($booksViewModel.books) { $book in

 BookRowView(book: $book)

 }

 .onDelete { indexSet in

 booksViewModel.books.remove(atOffsets: indexSet)

 }

 }

 .navigationTitle("Books")

 }

}

You will notice we’re using List bindings to ensure the individual

items of the list are editable. See Chapter 5 if you need a refresher for how

this works.

The binding to the current Book instance can now be passed down to

the BookRowView, which displays the book details within the BookListView:

struct BookRowView: View {

 @Binding var book: Book

 var body: some View {

 NavigationLink(destination: BookDetailsView(book: $book)) {

 HStack(alignment: .top) {

 Image(book.mediumCoverImageName)

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(height: 90)

Chapter 6 Building Input Forms

188

 VStack(alignment: .leading) {

 Text(book.title)

 .font(.headline)

 Text("by \(book.author)")

 .font(.subheadline)

 Text("\(book.pages) pages")

 .font(.subheadline)

 }

 Spacer()

 }

 }

 }

}

You’ll notice how we make use of NavigationLink to specify

the destination view when the user taps on one of the books in

the list. To pass on the binding, we make use of the $ syntax:

NavigationLink(destination: BookDetailsView(book: $book)).

In the BookDetailsView, we need to change @State to @Binding to

indicate that the parent view owns the data:

struct BookDetailsView: View {

 @Binding var book: Book

 @State var showEditBookView = false

 var body: some View {

 Form {

 Text(book.title)

 Image(book.largeCoverImageName)

 .resizable()

 .scaledToFit()

 .shadow(radius: 10)

 .padding()

 Label(book.author, systemImage: "person.crop.rectangle")

Chapter 6 Building Input Forms

189

 Label("ISBN: \(book.isbn)", systemImage: "number")

 Label("\(book.pages) pages", systemImage: "book")

 Toggle("Read", isOn: .constant(book.isRead))

 Button(action: { showEditBookView.toggle() }) {

 Label("Edit", systemImage: "pencil")

 }

 }

 .sheet(isPresented: $showEditBookView) {

 BookEditView(book: $book)

 }

 .navigationTitle(book.title)

 }

}

When the user taps on the Edit button on the BookDetailsView, we

open a modal sheet to display BookEditView.

To pass a modifiable Book instance to the BookEditView, we make use

of the same pattern used previously: BookEditView(book: $book).

And finally, here is the code for BookEditView:

struct BookEditView: View {

 @Binding var book: Book

 var body: some View {

 Form {

 TextField("Book title", text: $book.title)

 Image(book.largeCoverImageName)

 .resizable()

 .scaledToFit()

 .shadow(radius: 10)

 .padding()

 TextField("Author", text: $book.author)

 �TextField("Pages", value: $book.pages, formatter:

NumberFormatter())

Chapter 6 Building Input Forms

190

 Toggle("Read", isOn: .constant(true))

 }

 .navigationTitle(book.title)

 }

}

Any changes the user makes in this screen will be reflected

immediately in the entire app. You can try this yourself by running the app

on an iPad Simulator, opening two windows of the app side-by-side, and

then updating a book title: as you type, the book title will be updated in the

details view and the other window as well.

Figure 6-7.  Side-by-side editing a book, all updates are reflected in
all instances of the app

Chapter 6 Building Input Forms

191

�Input Validation
Quite often, in our input forms, we need some level of input validation.

Some well-known examples for validating input are password fields on

sign-up forms, where you want to make sure that the password the user

enters meets certain criteria. Other apps don’t enforce input validation—

for example, you will find that the iOS Contacts app doesn’t perform any

input validation at all.

In our sample app, there is one field that would benefit from input

validation: the ISBN field. ISBNs (short for International Standard Book

Number) follow a specific scheme, with the last digit being the check

number. Making sure the user enters a valid ISBN is important, as we use

the ISBN to look up the cover for the book, so let’s add a simple validation

routine.

We’re going to do this in multiple steps:

–– First, we’re going to add the validation directly to the

BookEditView. This is the easiest and most straightfor-

ward way to implement this, but it is also the least

maintainable and scalable, as we will see.

–– Second, we’re going to extract the validation logic into

a view model. This might look like a lot of extra work,

but you will see that this approach is a lot more scalable

and makes it much easier to add validation for addi-

tional fields.

–– And lastly, we’re going to sprinkle some Combine over

this second approach. This allows us to compose

multiple validation steps into one, which is useful for

forms that require several criteria to be met at once

(sign-up forms are a well-known example: passwords

need to meet certain criteria, and both the password

and the password confirmation need to match).

Chapter 6 Building Input Forms

192

�Using .onChange(of:)
You can call .onChange(of:) on any SwiftUI view to trigger side effects

whenever a property changes. This can be any Environment key or Binding

on the view.

To observe changes to the ISBN attribute of the currently edited book, we

can add .onChange(of: book.isbn) to any of the views in BookEditView. It’s

up to you whether you’d like to add it to the ISBN TextField or rather to the

Form itself. Inside the closure, you will receive the new value:

struct BookEditView: View {

 @Binding var book: Book

 @State var isISBNValid = false

 var body: some View {

 Form {

 // ...

 VStack(alignment: .leading) {

 if !isISBNValid {

 Text("ISBN is invalid")

 .font(.caption)

 .foregroundColor(.red)

 }

 TextField("ISBN", text: $book.isbn)

 }

 // ...

 }

 .onChange(of: book.isbn) { value in

 self.isISBNValid = checkISBN(isbn: book.isbn)

 }

 .navigationTitle(book.title)

 }

}

Chapter 6 Building Input Forms

193

We use checkISBN (which is a function in the Utils folder) to verify the

ISBN and store the result of the check in the state attribute isISBNValid.

This is bound to a conditional which will show or hide a Text with a

warning message as appropriate.

While this approach does work, it doesn’t scale well. Just imagine what

happens if you try to implement validation logic for more than a handful of

input fields—this will quickly become unmanageable.

�Using a View Model to Handle Form Validation
So far, we’ve been using @State and @Binding to access the data we want

to display or edit on a screen. This follows the guidelines discussed in

Chapter 4:

If the data you want to display in a view is an enum, struct, or
a simple type, you can either use @State or @Binding to wrap
the variable, or bind to the variable directly.

However, now that we want to add some business logic, we need to

make a few changes. Adding validation logic to the data model might

sound like a good idea, but we’d eventually pollute our data model with

code that is only required in very specific locations in your app: it’s

appropriate to validate data in an input form, but you probably don’t need

to do that in your persistence of network layer.

Instead, let’s use a view model to encapsulate the view-specific business

logic. In addition to being able to perform data validation, this also gives us

the opportunity to define additional properties for any warnings or error

messages we might want to display.

To be able to bind the properties of the view model to the view, the

view model needs to implement the ObservableObject protocol:

class BookEditViewModel: ObservableObject {

}

Chapter 6 Building Input Forms

194

We can then move the Book variable into the view model, marking it as

@Published. Classes don’t have automatic memberwise initializers,1 so we’ll

have to implement an initializer ourselves that takes a Book instance, like this:

class BookEditViewModel: ObservableObject {

 @Published var book: Book

 init(book: Book) {

 self.book = book

 }

}

And finally, we can move the isISBNValid check to the view model

as well:

class BookEditViewModel: ObservableObject {

 @Published var book: Book

 var isISBNValid: Bool {

 checkISBN(isbn: book.isbn)

 }

 init(book: Book) {

 self.book = book

 }

}

1 Structs do have memberwise initializers, but classes don’t. The main reason is
that classes support inheritance, and it would be pretty difficult to implement
memberwise initializers in a way that doesn’t break if you add new properties to
one of the parent classes.

Chapter 6 Building Input Forms

195

To use the view model inside the BookEditView, we need to first set it

up using @ObservedObject and declare an initializer that BookEditView

can call:

struct BookEditView: View {

 @ObservedObject var bookEditViewModel: BookEditViewModel

 init(book: Book) {

 self.bookEditViewModel = BookEditViewModel(book: book)

 }

 var body: some View {

 // ...

 }

}

Inside body, all views that were previously connected to book now need

to be connected to $bookEditViewModel.book:

 var body: some View {

 NavigationView {

 Form {

 �TextField("Book title", text: $bookEditViewModel.

book.title)

 �Image(bookEditViewModel.book.largeCoverImageName)

 �TextField("Author", text: $bookEditViewModel.

book.author)

 VStack(alignment: .leading) {

 if !bookEditViewModel.isISBNValid {

 Text("ISBN is invalid")

 .font(.caption)

 .foregroundColor(.red)

 }

 TextField("ISBN", text: $bookEditViewModel.book.isbn)

Chapter 6 Building Input Forms

196

 }

 �TextField("Pages", value: $bookEditViewModel.book.

pages, formatter: NumberFormatter())

 Toggle("Read", isOn: $bookEditViewModel.book.isRead)

 }

 .navigationTitle(bookEditViewModel.book.title)

 }

 }

�Synchronizing a Local Source of Truth
with the Global Source of Truth by Using
@Binding and @ObservableObject
If you run this application now, you will notice something odd: the drill-

down navigation works as expected, and you’re able to edit a book using

the BookEditView. But any changes aren’t reflected in BookDetailsView or

BooksListView.

This is because we create a new @ObservableObject every time the

BookEditView is displayed, effectively installing a new source of truth.

To understand why this is the case, let’s take a closer look at the flow of

information:

–– BookShelfApp holds a reference to BooksViewModel. By

using the @StateObject property wrapper, we make

sure this ObservableObject is only instantiated once,

effectively turning it into the root source of truth for the

application.

–– BookShelfApp then passes a reference to this source of

truth to BooksListView, which stores it in a local

property as an @ObservedObject. Since this is a refer-

ence to the root source of truth, all changes we make to

it inside BooksListView will not only be reflected in

Chapter 6 Building Input Forms

197

BooksListView and its child views, but also on the app

and any child view that is connected to the

@StateObject in BookShelfApp.

–– BooksListView uses list bindings to iterate over the

individual books contained in the array of books on

BooksViewModel, and instantiates a new BookRowView,

passing a Binding to the book.

–– BookRowView displays some of the properties of the

book and passes the Binding to BookDetailsView.

–– BookDetailsView passes this Binding to BookEditView.

So far, the flow of information is still connected both ways: any

changes to the source of truth in BookShelfApp will percolate down the

view hierarchy and will be reflected on the respective views. Likewise, any

changes to the book instance (which is a @Binding inside BookEditView)

will be reflected on the source of truth in BookShelfApp.

However, by instantiating a new @ObservedObject of

BookEditViewModel in BookEditView, we establish a new source of truth.

All UI elements in BookEditView are connected to this local source of

truth, so all changes the user makes in the UI will only be reflected on this

instance.

Chapter 6 Building Input Forms

198

Figure 6-8.  Using @Binding to update the source of truth

There are a couple of ways to work around this:

First, we could change the book property in BookEditViewModel to be a

@Binding instead of an @Published property. However, this would prevent

us from using this property as a Combine publisher (which we will get to in

a minute).

The second option is to add a completion handler to

BookEditViewModel, which we can call once the user finished editing

the book. When the completion handler is called, we can update the

edited book on the original source of truth. This option doesn’t feel very

SwiftUI-y, though. If you look at other SwiftUI components that are similar,

such as ColorPicker, you will notice that they accept a Binding.

So let’s look at another option: let’s try passing in a Binding, copy its value

into an @Published property on a view model that is local to the BookEditView

only, and, once the user finishes editing, assign it back to the Binding.

Chapter 6 Building Input Forms

199

To properly implement this functionality, let’s first add a Cancel and

Save button to the BookEditView and add handlers for their tap events:

struct BookEditView: View {

 @ObservedObject var bookEditViewModel: BookEditViewModel

 @Environment(\.dismiss) var dismiss

 // ...

 func cancel() {

 dismiss()

 }

 func save() {

 // (add code to update the binding)

 dismiss()

 }

 var body: some View {

 NavigationStack {

 Form {

 // ...

 }

 .navigationTitle(bookEditViewModel.book.title)

 .toolbar {

 ToolbarItem(placement: .navigationBarLeading) {

 Button(action: cancel) {

 Text("Cancel")

 }

 }

Chapter 6 Building Input Forms

200

 ToolbarItem(placement: .navigationBarTrailing) {

 Button(action: save) {

 Text("Save")

 }

 }

 }

 }

 }

}

By pulling in the dismiss action from the environment, we’re able to

programmatically dismiss the BookEditView when the user taps on either

of the buttons.

Note: If you want to prevent the user from dismissing a dialog,
you can use the interactiveDismissDisabled() view
modifier.

With this in place, we can now implement handling the binding. To do

this, we need to add the binding to the view and then use it to create the

view model in the initializer:

struct BookEditView: View {

 @Binding var book: Book

 @ObservedObject var bookEditViewModel: BookEditViewModel

 @Environment(\.dismiss) var dismiss

 init(book: Binding<Book>) {

 self._book = book

 �self.bookEditViewModel = BookEditViewModel(book: book.

wrappedValue)

 }

 // ...

}

Chapter 6 Building Input Forms

201

By using the underscore, we can assign the binding we receive in the

initializer to the book property (which is a Binding<Book> itself).

Then, by creating the view model using the wrappedValue of the

binding, we pass the underlying value object to the view model, where we

use the @Published property wrapper to turn it into a publisher.

The missing piece to send any of the user’s changes back to the caller

(BookDetailsView in our case) is to update the save function:

 func save() {

 self.book = bookEditViewModel.book

 dismiss()

 }

This takes the updated Book from the view model and assigns it back

to the binding. This will cause the source of truth to be updated, and the

update will be reflected throughout the app.

Figure 6-9.  Using @ObservedObject and @Binding to update local
and global source of truth

Chapter 6 Building Input Forms

202

�Using Combine to Perform Form Validation
In this final step, we’re going to use Combine to improve the

validation logic.

At the moment, the validation logic lives in a computed property in the

view model:

class BookEditViewModel: ObservableObject {

 @Published var book: Book

 var isISBNValid: Bool {

 checkISBN(isbn: book.isbn)

 }

 init(book: Book) {

 self.book = book

 }

}

While this does work, it is less than ideal: SwiftUI will only cause your

views to be updated if it receives an event from the published properties

the views are subscribed to.

As isISBNValid is not an @Published property, it will not send any

notifications when it is updated. So, why does the view update and reflect

the correct state of this property anyway? Well, this is just by coincidence,

actually: the view model will send an update event whenever the book

(or any of its properties) is updated. It just so happens that the ISBN is a

property of Book as well, so when you edit the ISBN of a book, the book will

send an event which will cause SwiftUI to rerender. In the process of doing

this, it will also rerender the VStack that conditionally shows an error

message based on the state of the isISBNValid property.

To make this more solid and less coincidental, let’s use Combine to

compute the state of isISBNValid.

Chapter 6 Building Input Forms

203

Let’s first turn isISBNValid into a published property:

class BookEditViewModel: ObservableObject {

 @Published var book: Book

 @Published var isISBNValid: Bool = true

 // ...

}

Then, in the initializer, we can subscribe to any changes that are

sent by the book publisher. These events will contain the current value of

the book property. To determine whether the current ISBN of a book is

valid, we will then map over the book value, verify its ISBN, and assign the

resulting Bool value to the isISBNValid property:

 init(book: Book) {

 self.book = book

 self.$book

 .map { book in

 return checkISBN(isbn: book.isbn)

 }

 .assign(to: &$isISBNValid)

 }

We can condense the map closure even further thanks to implicit

returns and implicit parameters:

 self.$book

 .map { checkISBN(isbn: $0.isbn) }

 .assign(to: &$isISBNValid)

And with this, we’ve got a fully functional drill-down navigation

for a data-driven application, including a simple Combine pipeline for

validating form input.

Chapter 6 Building Input Forms

204

�Summary
In this chapter, you saw how easy it is to build form-based UIs in

SwiftUI. By using the Form view, SwiftUI adapts regular views to match

the look and feel we all know from the iOS settings screen. The SwiftUI

DSL really comes into its own here, and you can see how the SwiftUI

team harnesses the power of the DSL to allow developers to quickly build

flexible and feature-rich UIs.

After looking at static forms, we jumped in at the deep end and took a

closer look at how to use SwiftUI’s state management tools to build drill-

down navigation for a data-driven app—a UI pattern that you will find in

many apps.

And finally, we implemented a simple business logic for validating

form input. By using a view model, we were able to encapsulate this logic

and avoid polluting the view. Using a view model added some challenges

to our drill-down navigation, which we were able to overcome by using @

Binding and @ObservableObject together to allow users to edit data while

giving them the flexibility to change their mind and cancel any changes

they made. Thanks to using Combine, we were able to implement this in a

SwiftUI-compatible way.

This was quite a lot, but we’re only getting started! In the next chapter,

we will look at Functional Reactive Programming, why it’s so cool, and how

it relates to Combine!

Chapter 6 Building Input Forms

Part 2

207

CHAPTER 7

Getting Started
with Combine
Now, we have already used a bit of Combine in the previous chapters,

and hopefully, they were easy enough to understand in the context of

the SwiftUI UIs we used them with. But you might wonder how Combine

really works and what goes on under the hood of SwiftUI’s reactive state

management system. In this chapter, we’re going to dive into Combine,

and you will learn about the underlying principles and why it works so well

in combination with SwiftUI.

The source code for the code snippets in this chapter can be
found in the GitHub repository for the book.1

�What Is Functional Reactive Programming?
Everything that happens in our computers can be thought of as an

event—users tapping on a button, time passing, an API request returning

some value, a network request failing. Most of these events happen

asynchronously, which makes dealing with them challenging.

1 https://github.com/peterfriese/SwiftUI-Combine-Book

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_7

https://github.com/peterfriese/SwiftUI-Combine-Book
https://doi.org/10.1007/978-1-4842-8572-5_7

208

There are several ways to deal with asynchronous behavior. As iOS

developers, we are well accustomed to using delegates and callbacks, but

they have several drawbacks and result in code that is all over the place

and hard to reason about.

Reactive programming is another way to deal with this situation. The

basic idea in reactive programming is that everything is an event, and

these happen asynchronously. Events are sent by an event source, and

interested parties can register to receive certain events. More often than

not, these streams of events need to be transformed to make them more

useful for the respective subscriber.

There are numerous implementations of reactive programming. The

most well known is probably Reactive Extensions (ReactiveX2), “an API

for asynchronous programming with observable streams.” The beauty of

ReactiveX is that it is available for a wide range of platforms and languages:

Java,3 JavaScript,4 C#,5 Kotlin,6 Swift,7 and more.8

Apple introduced Combine as their take on reactive programming at

WWDC 2019, and it is pretty similar to RxSwift. The main reason to use

Combine over RxSwift is that it is more deeply integrated into Apple’s

platforms. It works especially well with SwiftUI, so if you’re targeting iOS

13 or higher (which is the minimum target platform for both Combine and

SwiftUI), you should take a closer look.

Combine is a unified, declarative API for processing values
over time.

2 http://reactivex.io/
3 https://github.com/ReactiveX/RxJava
4 https://github.com/ReactiveX/rxjs
5 https://github.com/Reactive-Extensions/Rx.NET
6 https://github.com/ReactiveX/RxKotlin
7 https://github.com/kzaher/RxSwift
8 http://reactivex.io/languages.html

Chapter 7 Getting Started with Combine

http://reactivex.io/
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/rxjs
https://github.com/Reactive-Extensions/Rx.NET
https://github.com/ReactiveX/RxKotlin
https://github.com/kzaher/RxSwift
http://reactivex.io/languages.html

209

Combine defines three main concepts to implement the idea of

reactive programming:

	 1.	 Publishers

	 2.	 Subscribers

	 3.	 Operators

Publishers deliver values over time, and subscribers act on these values

as they receive them. Operators sit in the middle between publishers and

subscribers and can be used to manipulate the stream of values.

Let’s take a closer look.

�Publishers
As the name suggests, publishers emit values over time. To signal error

conditions, publishers may also publish errors. Each publisher defines

which kinds of values and errors (if any) it publishes.

The most basic publisher is Just—it emits just one value and never fails:

Just(42)

Sending a single value is certainly useful in many situations, but most

of the time, we’ll want to send several values. Combine makes it easy to

turn almost anything into a publisher. For example, here is how you would

turn an array of the ten most popular9 pizza toppings10 into a publisher:

9 Sausage—really? I mean, Salami, yes—but Sausage?
10 www.huffpost.com/entry/popular-pizza-toppings_n_4261085

Figure 7-1.  A publisher that emits a single value

Chapter 7 Getting Started with Combine

http://www.huffpost.com/entry/popular-pizza-toppings_n_4261085

210

["Pepperoni", "Mushrooms", "Onions", "Sausage", "Bacon", "Extra
cheese", "Black olives", "Green peppers"].publisher

Using simple values or sequences as publishers might seem a bit

boring, but it is definitely something that comes in handy later when we

need to compose pipelines from multiple Combine publishers.

Time to spice it up a bit!

Let’s imagine we’re building a pizza ordering app. Here is some code

that creates an order and sets up a publisher. This particular publisher will

emit events whenever NotificationCenter sends a notification named

.didUpdateOrderStatus to the pizzaOrder object.

// create the order
let pizzaOrder = Order()

let pizzaOrderPublisher = NotificationCenter
 .default
 .publis�her(�for: .didUpdateOrderStatus,

object: pizzaOrder)

When the user wants to place the order, a different part of the app will

use NotificationCenter to send this notification. This might be called

when the user taps on the Place order button.

// once the user is ready to place the order
NotificationCenter
 .default
 .post(name: .didUpdateOrderStatus,
 object: pizzaOrderPublisher,
 userInfo: ["status": OrderStatus.processing])

Figure 7-2.  A publisher that emits a number of pizza toppings and
then terminates

Chapter 7 Getting Started with Combine

211

If you run this code, nothing will happen—this is because publishers

will only start to emit events once a subscriber has been registered with the

publisher. So let’s now take a look at subscribers.

�Subscribers
Subscribers receive values from the upstream publisher they are

subscribed to. Each subscriber defines which types of values and errors it

is willing to receive.

The Combine framework comes with two main subscribers that are

extremely versatile—sink and assign.

–– sink is the most generic one; you can use it to receive

values from a Combine publisher and then execute

whatever code you like inside its closure.

–– assign lets you assign any received values to a property or

to another Publisher.

In the earlier examples, the publishers didn’t really do anything. Let’s

use sink to subscribe to the list of most popular pizza toppings and print

the emitted values to the console.

["Pepperoni", "Mushrooms", "Onions", "Salami", "Bacon", "Extra

cheese", "Black olives", "Green peppers"]

 .publisher

 .sink { topping in

 print("\(topping) is a popular topping for pizza")

 }

You will notice I’ve taken the liberty to replace Sausage with Salami…

Coming back to our pizza ordering example, here is how you can

subscribe to the pizzaOrderPublisher and print any order status updates:

Chapter 7 Getting Started with Combine

212

// create the order

let pizzaOrder = Order()

let pizzaOrderPublisher = NotificationCenter

 �.default

.publisher(for: .didUpdateOrderStatus, object: pizzaOrder)

pizzaOrderPublisher.sink { notification in

 print(notification)

}

// once the user is ready to place the order

NotificationCenter

 .default

 .post(name: .didUpdateOrderStatus,

 object: pizzaOrder,

 userInfo: ["status": OrderStatus.processing])

Printing values to the console is all nice and dandy, but let’s take it one

step further and assign the order status to the order. To do so, we will use

the assign subscriber.11

A first attempt at assigning the order status to the status field on our

pizza order might look like this:

pizzaOrderPublisher

 .assign(to: \.status, on: pizzaOrder)

However, this code doesn’t compile. Instead, the compiler issues an

error: Key path value type 'OrderStatus' cannot be converted

to contextual type 'NotificationCenter.Publisher.Output' (aka

'Notification')

11 You will find yourself using assign a lot when working with @Published
properties on view models, as we will see later.

Chapter 7 Getting Started with Combine

213

Figure 7-3.  pizzaOrderPublisher emits Notification, but OrderStatus
was expected

This is because pizzaOrderPublisher emits Notification values, but

the property status is of type OrderStatus. We somehow need to extract

the OrderStatus from the UserInfo dictionary on the Notification.

To convert values from upstream publishers, Combine provides a

concept named Operators.

�Operators
Often, you will need to modify the values before they can be used by the

subscriber. These can be simple transformations, such as extracting a

specific property from a more complex value, or filtering elements, so the

subscriber only receives elements that meet a certain condition. Combine

has a wide range of operators that can be combined (excuse the pun) to

form powerful pipelines.

The names of many of the operators will sound familiar to you, as the

Combine team decided to name them after existing operations in other

parts of the Swift Standard Library.

One such operator is map—you might have already used its namesake

sibling12 to transform elements of an array or some other sequence.

Similarly, in Combine, map is used to transform elements13 from upstream

publishers.

12 https://developer.apple.com/documentation/swift/array/3017522-map
13 https://bit.ly/3uXNzcO

Chapter 7 Getting Started with Combine

https://developer.apple.com/documentation/swift/array/3017522-map
https://bit.ly/3uXNzcO

214

In our example, we can use map to transform the Notifications

we receive to the OrderStatus values we want to assign to the status

property:

pizzaOrderPublisher

 .map { notification in

 �notification.userInfo?["status"] as?

OrderStatus ?? OrderStatus.placing

 }

 .assign(to: \.status, on: pizzaOrder)

Inside the map closure, we extract the OrderStatus enum from the

UserInfo dictionary of the notification. Since this is optional and might

be nil, we need to perform this rather clumsy-looking check and return a

default value in case there is no status.

Fortunately, Combine has an operator that allows us to handle

situations like these much more elegantly and safer: .compactMap.

CompactMap calls a closure with each received element and publishes any

returned optional that has a value (Apple docs14). This means two things:

	 1.	 All nil values will be removed from the result.

	 2.	 The result will no longer be optional.

pizzaOrderPublisher

 .compactMap { notification in

 notification.userInfo?["status"] as? OrderStatus

 }

 .assign(to: \.status, on: pizzaOrder)

The resulting code is much more concise and … compact15.

14 https://bit.ly/3i8PRU0
15 alright—no more puns, I promise ;-)

Chapter 7 Getting Started with Combine

https://bit.ly/3i8PRU0

215

�Composing Operators
Let’s take a closer look at operators to better understand how they work.

Operators are so special because they can subscribe to a publisher and

act as a publisher at the same time. For example, here is the simplified

declaration of CompactMap, and the extension to the Publisher protocol

that enables us to compose Combine pipelines using a fluent syntax:16

extension Publishers {

 publ�ic struct CompactMap<Upstream, Output> : Publisher

where Upstream : Publisher {

 public typealias Failure = Upstream.Failure

 public let upstream: Upstream

 pu�blic let transform: (Upstream.Output) ->

Output?

 }

}

extension Publisher {

 �pu�blic func compactMap<T>(_ transform: @escaping

(Self.Output) -> T?) -> Publishers.CompactMap<Self, T>

}

And since all operators follow this pattern, this means we can chain

several operators to create more powerful pipelines.

To show this in action, let’s create a new publisher for our pizza

delivery service. This time, we want to implement adding new toppings to

an existing order.

16 https://en.wikipedia.org/wiki/Fluent_interface#Swift

Chapter 7 Getting Started with Combine

https://en.wikipedia.org/wiki/Fluent_interface#Swift

216

Let’s start with a plain Margherita:

let margheritaOrder = Order(toppings: [

 Topping("tomatoes", isVegan: true),

 Topping("vegan mozarella", isVegan: true),

 Topping("basil", isVegan: true)

])

Now, let’s create a publisher on NotificationCenter that publishes all

Notifications that contain a message named .addTopping:

let extraToppingPublisher = NotificationCenter

 .default

 .publisher(for: .addTopping,

 object: margheritaOrder)

extraToppingPublisher

 .compactMap { notification in

 notification.userInfo?["extra"] as? Topping

 }

 .sink { value in

 if margheritaOrder.toppings != nil {

 margheritaOrder.toppings!.append(value)

 print("Adding \(value.name)")

 �pr�int("Your order now contains \(margheritaOrder.

toppings!.count) toppings")

 }

 }

// send some notifications to add extra toppings

NotificationCenter

 .default

 .post(name: .addTopping,

 object: margheritaOrder,

 userInfo: ["extra": Topping("salami", isVegan: false)])

Chapter 7 Getting Started with Combine

217

NotificationCenter

 .default

 .post(name: .addTopping,

 object: margheritaOrder,

 userInfo: ["extra": Topping("olives", isVegan: true)])

NotificationCenter

 .default

 .post(name: .addTopping,

 object: margheritaOrder,

 userInfo: ["extra": Topping("pepperoni", isVegan: true)])

NotificationCenter

 .default

 .post(name: .addTopping,

 object: margheritaOrder,

 userInfo: ["extra": Topping("capers", isVegan: true)])

Just like in our previous example, we use .compactMap to extract the

Topping. Eventually, we use a sink subscriber to receive the topping and

add it to the order.

So far, this is pretty similar to what we’ve done before. But recently,

the owners of the delivery service decided to go vegan. So let’s update our

pipeline to make sure we only accept vegan toppings. We can do so by

inserting the filter operator into our pipeline:

let extraToppingPublisher = NotificationCenter

 .default

 .publisher(for: .addTopping,

 object: margheritaOrder)

extraToppingPublisher

 .compactMap { notification in

 notification.userInfo?["extra"] as? Topping

 }

Chapter 7 Getting Started with Combine

218

 .filter{ topping in

 return topping.isVegan

 }

 .sink { value in

 if margheritaOrder.toppings != nil {

 margheritaOrder.toppings!.append(value)

 print("Adding \(value.name)")

 �pr�int("Your order now contains \(margheritaOrder.

toppings!.count) toppings")

 }

 }

// send some notifications to add extra toppings

NotificationCenter

 .default

 .post(name: .addTopping,

 object: margheritaOrder,

 userInfo: ["extra": Topping("salami", isVegan: false)])

NotificationCenter

 .default

 .post(name: .addTopping,

 object: margheritaOrder,

 �userInfo: ["extra": Topping("extra cheese",

isVegan: true)])

And thanks to implicit parameters and implicit returns, we can

simplify this even further:

extraToppingPublisher

 .compactMap { notification in

 // ...

 }

Chapter 7 Getting Started with Combine

219

 .filter { $0.isVegan }

 .sink { value in

 // ...

 }

How about making sure people can only add three extra toppings?

That’s easy enough by using the .prefix operator—this operator only

publishes up to a certain number of values:

extraToppingPublisher

 .compactMap { notification in

 // ...

 }

 .filter { $0.isVegan }

 .prefix(3)

 .sink { value in

 // ...

 }

And of course, it’d be a good idea to make sure to only accept changes

to the list of toppings as long as the pizza isn’t in the oven (or out for

delivery) yet:

extraToppingPublisher

 .compactMap { notification in

 // ...

 }

 .filter { $0.isVegan }

 .prefix(3)

 .prefix(while: { topping in

 margheritaOrder.status == .placing

 })

 .sink { value in

 // ...

 }

Chapter 7 Getting Started with Combine

220

�Combining Publishers
When building applications, we find ourselves quite often in need of

observing multiple events. In the pizza delivery service, we want to make

sure to not keep our delivery couriers waiting. So, we will only ask them

to get ready once the order has actually been placed and the address has

been validated.

Updating the order status and validating the address are two different

processes, so we have two separate publishers for them:

let orderStatusPublisher = NotificationCenter

 .default

 .publisher(for: .didUpdateOrderStatus, object: margheritaOrder)

 .compactMap { notification in

 notification.userInfo?["status"] as? OrderStatus

 }

 .eraseToAnyPublisher()

let shippingAddressValidPublisher = NotificationCenter

 .default

 .publisher(for: .didValidateAddress,

 object: margheritaOrder)

 �.c�ompactMap { notification in

notification.userInfo?["addressStatus"] as? AddressStatus

 }

 .eraseToAnyPublisher()

By calling the .eraseToAnyPublisher() operator at the end of a

pipeline, the type of the pipeline gets erased to AnyPublisher<Output,

Never>. The unerased type of this publisher is Publishers.CompactMap

<NotificationCenter.Publisher, OrderStatus>, which is a lot harder

to read. It is a good idea to type-erase the result type of any pipelines you

want to pass on to a different part of your code, for example, as a return

type of a function or a property.

Chapter 7 Getting Started with Combine

221

To determine whether we can ship the order, we need to evaluate

the results of both of these pipelines. We only want to allocate a delivery

courier if the order has been placed and the address is valid.

To achieve this, we need to create a new publisher that subscribes to

orderStatusPublisher and shippingAddressValidPublisher and returns

true once the order is .placed and the address is .valid. Combining

several pipelines into one is a task that is rather common in Combine, and

there are several publishers that we can choose from:

–– Zip

–– Merge

–– CombineLatest

–– …and more

The one that’s most suitable for our use case is CombineLatest—it

takes the latest value from each of the upstream publishers.

let readyToProducePublisher = Publishers

 .CombineLatest(orderStatusPublisher,

 shippingAddressValidPublisher)

readyToProducePublisher

 .print()

 .map { (orderStatus, addressStatus) in

 orderStatus == .placed && addressStatus == .valid

 }

 .sink {

 print("- Ready to ship order: \($0)")

 }

Chapter 7 Getting Started with Combine

222

To make it easier to see the flow of events, I’ve added the .print()

operator to the pipeline. Let’s send a couple of events to simulate a pizza

ordering process:

NotificationCenter

 .default

 .post(name: .didValidateAddress,

 object: margheritaOrder,

 userInfo: ["addressStatus": AddressStatus.invalid])

NotificationCenter

 .default

 .post(name: .didUpdateOrderStatus,

 object: margheritaOrder,

 userInfo: ["status": OrderStatus.placed])

NotificationCenter

 .default

 .post(name: .didValidateAddress,

 object: margheritaOrder,

 userInfo: ["addressStatus": AddressStatus.valid])

In the beginning, the address isn’t valid yet, and the order is placed

before we can verify the address (we might be using a third-party service

that takes a moment to perform the check).

Here is the output:

receive subscription: (CombineLatest)

request unlimited

receive value: ((Combine_Playground_Sources.OrderStatus.placed,

Combine_Playground_Sources.AddressStatus.invalid))

- Ready to ship order: false

receive value: ((Combine_Playground_Sources.OrderStatus.placed,

Combine_Playground_Sources.AddressStatus.valid))

- Ready to ship order: true

receive cancel

Chapter 7 Getting Started with Combine

223

The lines not starting with a dash are the debug output of the .print()

operator. You can see how the order is deemed ready for shipment only

once we receive an OrderStatus of .placed and an AddressStatus

of .valid.

�Summary
In this chapter, you learned the basics of Combine:

–– Publishers emit values (such as the text a user enters into

a text input field) over time.

–– Subscribers can receive values, and can either assign

them to variables (using the .assign subscriber), or

process them further (using the .sink subscriber).

–– Often, you need to transform values to make them useful

for subscribers, and this is where Operators come

into play.

You learned how to use Combine’s operators to transform events they

receive from upstream publishers and how this makes consuming events

easier for subscribers. Apps often need to observe multiple event streams

(e.g., the state of the fields on a shipping form), and you learned how to use

Combine’s operators to combine multiple event streams into one.

Combine almost feels like a DSL (domain-specific language) for

describing the processing of the events that occur in our apps. This

declarative approach makes it very similar to SwiftUI, and that’s one of the

reasons why they go together well.

In the next chapter, we will dive deeper into how you can combine

SwiftUI and Combine and how using Combine in your SwiftUI apps will

make it easier to implement your user-facing application logic.

Chapter 7 Getting Started with Combine

225

CHAPTER 8

Driving UI State
with Combine
Modern UIs have to respond to a multitude of input signals at the

same time: users can communicate with an app using keyboard input,

multitouch, physical gestures, and even voice commands. On top of this,

applications might receive data from remote servers and local APIs.

Juggling all these input sources and the plethora of events they’re

sending is a challenging task for us developers, as we often find ourselves

in situations that require us to combine several input sources, and making

sure the app and its user interface always stay in sync.

In this and the following chapters, we’re going to look at how Combine

helps us build UIs that handle several event sources at the same time,

such as the user’s input and results from local and remote validation logic,

making sure the UI reflects the state of the app at all times.

At the end of Chapter 6, you already saw how to use Combine to

implement input validation for a single input field on an input form.

Back then, we implemented validation logic for an ISBN field, both using

onChange(of:) and Combine. To demonstrate the power of Combine,

we are going to implement a more complex example with multiple event

sources.

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_8

https://doi.org/10.1007/978-1-4842-8572-5_8

226

�Input Validation Using Combine
Let’s assume that we’ve decided to add some social features to our book

tracking app. To do so, we will ask users to sign up and create a user

account. When signing up, users will need to choose a username and a

password:

To keep our users’ data safe and secure, there are a couple of

preconditions that need to be met:

–– The username should consist of at least three characters.

This is something we can check locally while the user

types in their desired username.

Figure 8-1.  A simple sign-up form

Chapter 8 Driving UI State with Combine

227

–– Usernames need to be unique, and we need to ensure the

chosen username isn’t already taken by any other user.

This is a check we need to perform on our backend—there

needs to be some API endpoint we can query to see if the

name is still available.

–– The user’s password needs to meet certain complexity

criteria (i.e., it needs to be strong enough).

–– And to make sure the user can recall their password, we

will ask them to repeat the password in a second password

input field.

Only if all of these conditions are met, we can create a new user

account. The button for creating a new user account should remain

disabled until all conditions are met.

As you can see, we have a number of events that we need to route:

–– The Sign up button must only be enabled if the form

is valid.

–– The Username input field needs to display a warning if the

username is too short, or if it is no longer available.

–– The Password fields need to display a warning if the

password isn’t strong enough, or if they don’t match.

�The Sign-Up Form View
In this chapter, we will use a Form to handle all user input. To display

any error messages or warnings, we will use the header/footers of the

respective form Section. In Chapter 14, we will take it one step further and

build a reusable and configurable text input field with a floating label that

can display error messages inline.

Chapter 8 Driving UI State with Combine

228

Note  You will find the code for the sample app in the Git-
Hub repository1 for this book, in the folder Chapter 8—Driving
UI State with Combine. The individual steps can be found in
the steps folder, and the final version in the final folder.

struct SignUpForm: View {

 @StateObject var viewModel = SignUpFormViewModel()

 var body: some View {

 Form {

 // Username

 Section {

 TextField("Username", text: $viewModel.username)

 .autocapitalization(.none)

 .disableAutocorrection(true)

 } footer: {

 Text(viewModel.usernameMessage)

 .foregroundColor(.red)

 }

 // Password

 Section {

 SecureField("Password",

 text: $viewModel.password)

 SecureField("Repeat password",

 text: $viewModel.passwordConfirmation)

 } footer: {

 Text(viewModel.passwordMessage)

 .foregroundColor(.red)

 }

1 https://github.com/peterfriese/Asynchronous-Programming-with-
SwiftUI-and-Combine

Chapter 8 Driving UI State with Combine

https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine
https://github.com/peterfriese/Asynchronous-Programming-with-SwiftUI-and-Combine

229

 // Submit button

 Section {

 Button("Sign up") {

 print("Signing up as \(viewModel.username)")

 }

 .disabled(!viewModel.isValid)

 }

 }

 }

}

Handling all the input fields and making sure all form elements display

the correct information (or warnings) for all the different states of the

form usually require writing a lot of code, and it is easy to get things wrong

and miss an important condition—especially when having to deal with

asynchronous event sources like a remote API.

By using Combine and functional reactive programming, it will be

much easier to implement this sign-up form.

In this chapter, we will focus on validating the username length

requirement and the password strength requirements. In the next chapter,

we will look at how to use Combine for networking and how we can use it to

connect to a server and find out the username the user chose is still available.

�The View Model
To perform input validation, our code needs to react to any

changes the user makes to the sign-up form. In particular, we are

interested in observing changes to the username, password, and

passwordConfirmation text input fields. As we have already seen in the

previous chapters, it is not possible to manipulate SwiftUI views directly or

ready their state by accessing their properties. Instead, SwiftUI manages UI

state outside of the view elements, in what is called the source of truth.

Chapter 8 Driving UI State with Combine

230

To make this possible, SwiftUI provides a number of property wrappers

we can use to connect the source of truth to the views of an application.

In Chapter 4, we discussed how those property wrappers work and which

ones to use in which situation.

You might recall that we can use @State to handle local state in a view, so

you might be tempted to use a local @State property to hold the username,

password, and password confirmation for the sign-up form. However, @State

is not a publisher, so we cannot use it to drive any Combine pipelines.

Instead, we will create a view model with username, password, and

passwordConfirmation published properties that we can bind to the

respective UI views.

class SignUpFormViewModel: ObservableObject {

 // Input

 @Published var username: String = ""

 @Published var password: String = ""

 @Published var passwordConfirmation: String = ""

 // Output

 @Published var usernameMessage: String = ""

 @Published var passwordMessage: String = ""

 @Published var isValid: Bool = false

}

Marking a property as @Published turns it into a Combine publisher.

Not only does this allow us to bind the property to a UI element—we can

also attach a Combine pipeline to it and run our validation logic inside the

pipeline. We can then assign the result of the pipeline to another published

property, which allows us to drive the UI with the result. For example, we

can disable the Submit button as long as the form input is invalid.

By conforming the view model to ObservableObject, we make it

observable. Whenever one of the published properties changes, the view

model will emit the changes values, telling SwiftUI to update all affected views.

Chapter 8 Driving UI State with Combine

231

Using Combine in this way helps us to define the behavior of

our application in a functional way, making sure that the UI and the

application state are always in sync.

On a high level, the flow of information looks like this:

–– The user types their preferred username into the

username text input field.

–– Every time the user types a character, the TextField view

assigns the text entered so far to the username published

property of the SignUpFormViewModel.

–– Since username is a publisher, it sends events for any

change to all of its subscribers.

–– One of those subscribers is a Combine pipeline that

checks if the length of the username is greater than three

characters.

–– The result of this pipeline is then used together with the

result of other pipelines to determine the overall valida-

tion result of the input form.

The basic version of our view model is already connected to the views

of the sign-up form, so let’s now look at how to implement the validation

logic using Combine.

Chapter 8 Driving UI State with Combine

232

�Validating the Username
Let’s start with a simple verification and check the username length. We

can access the publisher of a published property using the $propertyName

syntax2. This will allow us to subscribe to any events the publisher sends

(e.g., when the underlying property is changed because the user starts

typing their username).

The input to our pipeline is a String, but we want to return a Bool

indicating whether the length of the username is valid. For transformations

like these, we can use Combine’s map operator. Inside its closure, we can

operate on the elements it receives from the upstream publisher and

transform them into the required result.

So to verify if the username has at least three characters, we can check

whether the count property of the input string is three or more. This check

will either return true or false:

$username

 .map { username in

 return username.count >= 3

 }

And since this check is the only statement3 we execute inside the

closure, we can use an implicit return to simplify the code:

$username

 .map { username in

 username.count >= 3

 }

2 The $ indicates we would like to access the property’s so-called projected value.
This is a concept introduced by Swift’s property wrappers.
3 This was introduced in SW-0255, “Implicit returns from single-expression
functions”: https://bit.ly/3ZgWDrd

Chapter 8 Driving UI State with Combine

https://bit.ly/3ZgWDrd

233

Or, by using positional arguments:

$username

 .map { $0.count >= 3 }

Ultimately, the result of this pipeline (and others) needs to be assigned

to the isValid property of the view model. As this currently is our only

pipeline, we can do this in the view model’s initializer:

class SignUpFormViewModel: ObservableObject {

 // Input

 @Published var username: String = ""

 @Published var password: String = ""

 @Published var passwordConfirmation: String = ""

 // Output

 @Published var usernameMessage: String = ""

 @Published var passwordMessage: String = ""

 @Published var isValid: Bool = false

 init() {

 $username

 .map { $0.count >= 3 }

 .assign(to: &$isValid)

 }

}

At the end of the pipeline, we use the assign(to:) operator to assign

the result of the pipeline to the isValid property.

Chapter 8 Driving UI State with Combine

234

Figure 8-2.  The Combine pipeline for validating the username length

If you run the app now, you will be able to see that the Submit button

is disabled until you enter a username that has at least three characters.4

However, there is no feedback for the user, and they might be wondering

why the button is disabled, or what’s the minimum username length.

�Displaying Validation Messages
So, before we move on to implementing the password validation,

let’s make sure to provide some guidance for the user and display a

suitable validation message. The view model already has a property

usernameMessage that is bound to the footer of the form section that

contains the username input field. All that’s left to do for us is to implement

the Combine pipeline that computes the validation message based on the

length of the username.

4 The code for the current state of the app can be found in the steps/step 1
subfolder of Chapter 8.

Chapter 8 Driving UI State with Combine

235

A naive implementation might look like this:

class SignUpFormViewModel: ObservableObject {

 // ...

 init() {

 $username

 .map { $0.count >= 3 }

 .assign(to: &$isValid)

 $username

 .map {

 $0.count >= 3

 ? ""

 : "Username must be at least three characters!"

 }

 .assign(to: &$usernameMessage)

 }

}

While this solution works fine, it has a number of drawbacks:

	 1.	 It contains duplicate logic for checking the

username length. This might not be an issue now,

but it might end up becoming a maintenance

burden once we add more pipelines that contain

a hard-coded version of the requirement that

usernames must have at least three characters.

	 2.	 It is not scalable. At the moment, there is just one

rule, but what happens if we add another rule, such

as that usernames have to be unique, which will

require us to communicate with a backend system.

Combining several rules will be very complicated or

even impossible with this approach.

Chapter 8 Driving UI State with Combine

236

To address these issues, we will make our Combine pipelines reusable

by encapsulating them in computed properties.

�Encapsulating Combine Pipelines
in Computed Properties
An easy way to make Combine publishers reusable is to encapsulate them

in private computed properties.

As you have learned in Chapter 7, a Publisher is a generic type that

has two associated types for specifying the result and error cases. In our

case, the result is of type Bool, and the pipeline will never fail, so the

failure type is Never.

When putting together pipelines, the type of the pipeline will be a nested

generic type representing the return types of all the publishers and operators

we assembled along the way. In our case, this would be Publishers.

Map<Published<String>.Publisher, Bool>. To avoid having to deal

with such a complicated type, we can use type erasure. Combine provides

an operator eraseToAnyPublisher that erases the type of a pipeline to

AnyPublisher, which allows us to wrap our pipeline in a computed property

like this:

private var isUsernameLengthValidPublisher:

 AnyPublisher<Bool, Never>

{

 $username

 .map { $0.count >= 3 }

 .eraseToAnyPublisher()

}

Chapter 8 Driving UI State with Combine

237

Having moved the pipeline into a computed property, we can now

update the call site in the view model’s initializer:

init() {

 isUsernameLengthValidPublisher

 .assign(to: &$isValid)

}

The next step is to reuse the publisher to drive the pipeline for

computing the validation message:

init() {

 isUsernameLengthValidPublisher

 .assign(to: &$isValid)

 isUsernameLengthValidPublisher

 .map {

 $0 ? ""

 : �"Username too short. Needs to be at least 3 characters."

 }

 .assign(to: &$usernameMessage)

 }

By refactoring our code like this, we have moved the business logic

(“usernames must have at least three characters”) to one single location,

where it is easier to update. This also enables us to reuse the publisher for

composing more complex rules, as we will see shortly.

But before we do so, I’d like to call your attention to a small,

but potentially serious aspect: the code we moved into the

isUsernameLengthValidPublisher property will create a new pipeline

every time it gets called. When using this publisher in more than one

context—like we just did—we would end up not with one, but multiple

instances of the same pipeline. Not only would this waste memory,

but it’d also become a more serious issue once we build a pipeline that

Chapter 8 Driving UI State with Combine

238

makes network calls or accesses a database. Creating and using multiple

instances of a pipeline that performs a network access each time it

processes an event would result in duplicate network requests for each

extra instance of the pipeline—definitely not what we want.

To prevent this from happening, we need to convert the computed

property into a lazy property. Lazy properties are computed once, and only

the first time you access them. Converting a computed property into a lazy

property requires only a few changes:

private lazy var isUsernameLengthValidPublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .map { $0.count >= 3 }

 .eraseToAnyPublisher()

}()

The great thing is that we can use lazy properties just like any other

property—no need to change the call site. With this change in place, we’ve

made sure that we only create the pipeline once, when the view model is

initialized.

�Validating the Password
A valid username is just one requirement for being able to create a new

user account in our app—providing a password is another one. In this

section, we will build on what you’ve learned in the previous section to

implement a Combine pipeline that allows us to implement a flexible and

easily enhanceable mechanism for validating passwords.

Chapter 8 Driving UI State with Combine

239

The first step is to make sure the password is not empty. We can

implement this verification using a simple publisher, similar to how we

implemented the username length check:

private lazy var isPasswordEmptyPublisher:

 AnyPublisher<Bool, Never> =

{

 $password

 .map { $0.isEmpty }

 .eraseToAnyPublisher()

}()

Just like before, we’re using a lazy computed property to make sure we

only create one instance of the pipeline.

As a small optimization, we can access the isEmpty property of the

password string using a key path. Combine includes an extension on

Publisher with overloaded versions of the map function that allow us to

address up to three key paths in the map operator.

private lazy var isPasswordEmptyPublisher:

 AnyPublisher<Bool, Never> =

{

 $password

 .map(\.isEmpty)

 .eraseToAnyPublisher()

}()

In the next step, we will compare the password and the password

confirmation field to make sure the user enters the same password twice.

Both password and passwordConfirmation are published properties, so we

can subscribe to them to receive events whenever the user types in their

password.

But how can we consume the latest password and the latest password

confirmation?

Chapter 8 Driving UI State with Combine

240

Combine provides a number of operators that allow us to combine

several publishers in the same pipeline. Publishers.CombineLatest allows

us to use the latest events sent by two upstream publishers. The following

code snippet subscribes to $password and $passwordConfirmation and

compares their latest output (which is the text the user entered into the

password fields) using the equality operator ==:

private lazy var isPasswordMatching:

 AnyPublisher<Bool, Never> =

{

 Publishers.CombineLatest($password, $passwordConfirmation)

 .map(==)

 .eraseToAnyPublisher()

}()

You will notice I used the key path version of the map operator—the

closure version would look like this: map { $0 == $1 }. Which one you use

is largely a matter of style and personal preference.

Now that we can determine if the password is not empty and that both

password and its confirmation match, we need to determine the overall

password validity: the password is valid if it is not empty and if it matches

the password confirmation.

You might have guessed it: we will use Publishers.CombineLatest

to combine the latest state of the isPasswordEmptyPublisher and the

isPasswordMatching publishers into yet another publisher that we’re going

to name isPasswordValidPublisher:

private lazy var isPasswordValidPublisher:

 AnyPublisher<Bool, Never> =

{

 Publishers.CombineLatest(

 isPasswordEmptyPublisher,

 isPasswordMatchingPublisher

)

Chapter 8 Driving UI State with Combine

241

 .map { !$0 && $1 }

 .eraseToAnyPublisher()

}()

By now, this code should look familiar to you. To display a meaningful

validation message, add the following code to the initializer of your

view model:

Publishers.CombineLatest(

 isPasswordEmptyPublisher,

 isPasswordMatchingPublisher

)

.map { isPasswordEmpty, isPasswordMatching in

 if isPasswordEmpty {

 return "Password must not be empty"

 }

 else if !isPasswordMatching {

 return "Passwords do not match"

 }

 return ""

}

.assign(to: &$passwordMessage)

�Putting It All Together
As a final step, we need to combine the username validation and password

validation and assign the result to the isValid property of the view model.

This will enable the submit button if the form is valid.

Chapter 8 Driving UI State with Combine

242

Similar to how we computed the overall validation state of the

password, we will use Publishers.CombineLatest to determine the overall

state of the form based on the isUsernameLengthValidPublisher and the

isPasswordValidPublisher:

private lazy var isFormValidPublisher:
 AnyPublisher<Bool, Never> =
{
 Publishers.CombineLatest(
 isUsernameLengthValidPublisher,
 isPasswordValidPublisher
)
 .map { $0 && $1 }
 .eraseToAnyPublisher()
}()

In the initializer of the view model, replace the first line

(which uses just the isUsernameLengthValidPublisher) and use

isFormValidPublisher to drive the submit button state:

init() {
 isFormValidPublisher
 .assign(to: &$isValid)

 isUsernameLengthValidPublisher
 .map {
 $0 ? ""
 : �"Username too short. Needs to be at least 3

characters."
 }
 .assign(to: &$usernameMessage)

 Publishers.CombineLatest(
 isPasswordEmptyPublisher,
 isPasswordMatchingPublisher
)

Chapter 8 Driving UI State with Combine

243

 .map { isPasswordEmpty, isPasswordMatching in

 if isPasswordEmpty {

 return "Password must not be empty"

 }

 else if !isPasswordMatching {

 return "Passwords do not match"

 }

 return ""

 }

 .assign(to: &$passwordMessage)

}

�Exercises5

Choosing a strong password is not easy, and many sign-up forms provide a

visual clue to help users pick a strong password. Our sign-up form is pretty

lenient in this regard and allows users to pick anything as a password,

which isn’t very secure. Use what you’ve learned so far to encourage users

to pick a strong password:

	 1.	 Implement a password length requirement: make

sure the user’s password has at least eight characters.

If it has less than eight characters, display a warning

in the footer of the password section of the form.

5 The solutions for the exercises can be found in the exercises sub-folder of this
chapter.

Chapter 8 Driving UI State with Combine

244

	 2.	 Verify the password strength and reject any

passwords that aren’t strong enough. An easy way to

do this is to use a library like Navajo-Swift,6 which

computes the strength on a scale of very weak,

weak, reasonable, strong, very strong. Make

sure the sign-up form only becomes valid if the user

picks password with at least reasonable strength.

	 3.	 Add a progress bar to the footer of the password

section and display the password strength, coloring

the progress bar in red, yellow, and green to indicate

the password strength.

Summary
In this chapter, you learned how to use Combine publishers to drive the

state of a UI with complex business logic, and how breaking down the logic

of your app into smaller Combine pipelines can help to keep your code

manageable.

We looked at separating the business logic from your UI by moving it

into a view model. This helped us keep our view lean and easy to read.

You then learned about several techniques for creating Combine

pipelines and how to manage them in your view model. For simple

pipelines, it is OK to create them in your view model’s initializer. Once

you need to reuse pipelines, it’s a good idea to move them into private

properties. Keep in mind that you should use lazy computed properties

to make sure you don’t create multiple instances of the same pipeline,

resulting in memory waste and potentially extra network calls.

6 See https://github.com/jasonnam/Navajo-Swift

Chapter 8 Driving UI State with Combine

https://github.com/jasonnam/Navajo-Swift

245

Combine offers a wide range of operators to transform the output you

receive from upstream publishers. In this chapter, we used the following:

–– map allows us to transform input from one publisher into

a different format. You saw how you can either use map

with a closure to perform more complex transformation

logic, or use its key path overload to create concise, yet

powerful transformations that directly access attributes

of the input.

–– Publishers.CombineLatest is another operator you will

use frequently—it combines the latest events from

several upstream publishers and makes them available to

its closure. You can think of it as a sort of Y-shaped

junction that allows you to join several streams of events,

converting them into a single unified output stream.

This chapter provided a first glimpse into what’s possible with

Combine and SwiftUI and how using Combine will make it easier to write

SwiftUI apps.

In the next chapter, we will switch gears and look at how we can use

Combine to access the network and combine the results of remote API

calls with local events in your app’s UI.

Chapter 8 Driving UI State with Combine

247

CHAPTER 9

Networking
with Combine
We live in a networked world, and most modern applications need to

access the network to retrieve information stored on a server running on

the Internet (or on the user’s local network).

Even on a superfast connection, a request usually takes several

milliseconds. Using blocking I/O and waiting for a response on the

foreground thread of the application is not an option, as it would freeze the

app and result in a pretty terrible user experience. Users would probably

assume your app has died, and kill it. To prevent this behavior, we need

to offload asynchronous work to a background thread, so the foreground

thread is free to perform UI updates and respond to user interactions. This

is why modern networking APIs need to be called asynchronously.

The most popular way to implement asynchronous APIs in Swift is to

use callbacks. Usually, these are implemented as closures, and thanks to

Swift’s trailing closure syntax, they look rather elegant and are easy to use

once you understand how they work.

Other ways to call asynchronous APIs are async/await and Combine.

In this chapter, we will dive into how to use Combine to implement a

networking layer for your app. We will first look at the traditional, callback-

driven way to fetch data from the network using URLSession. Then, we will

refactor this code to make use of Combine’s DataTaskPublisher. You will

learn how Combine makes mapping data and handling errors easier that

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_9

https://doi.org/10.1007/978-1-4842-8572-5_9

248

will result in more readable and more bug-free code. In Chapters 14 and 15,

you will learn how to use async/await to perform asynchronous calls, and

we will look at the differences between Combine and async/await.

Keeping your application’s user interface in sync with the application’s

state has always been difficult, and the development community has come

up with a plethora of approaches to address this challenge.

Reactive programming is one such approach, and SwiftUI’s reactive

state management makes this a lot easier by introducing the notion of a

source of truth that can be shared across your app using SwiftUI’s

property wrappers such as @EnvironmentObject, @StateObject, and

@ObservedObject.

This source of truth is usually your in-memory data model, and

combining your local source of truth to the network might sound

complicated. In this chapter, you will learn how you can use Combine to

make combining your local source of truth with data from a remote service

a lot easier than you maybe think.

You will first learn how to connect a network-driven Combine pipeline

to a SwiftUI user interface. We will then optimize the implementation

to ensure your app doesn’t overwhelm your backend server. Combine

provides a couple of operators that will help us significantly reduce the

number of requests your app sends to the server. This will also improve the

user experience of your application, leaving you to wonder how you ever

got by without using Combine.

Let’s kick things off by looking into how to use Combine to fetch data

from a server and map the result to a Swift struct.

�Fetching Data Using URLSession
We will continue working on the sign-up form we started building in the

previous chapter. Let’s assume one of the requirements is to check if the

user’s preferred username is still available.

Chapter 9 Networking with Combine

249

This requires us to communicate with our authorization server to check if

the desired username already is taken by someone else. Here is a request that

shows how we might try to find out if the username sjobs is still available:

GET localhost:8080/isUserNameAvailable?userName=sjobs HTTP/1.1

The server will reply with a short JSON document stating whether the

username is still available or not:

HTTP/1.1 200 OK

content-type: application/json; charset=utf-8

content-length: 39

connection: close

date: Thu, 06 Jan 2022 16:09:08 GMT

{"isAvailable":false, "userName":"sjobs"}

To perform this request in Swift, we can use URLSession. The

traditional way to fetch data from the network using URLSession looks

like this:

func checkUserNameAvailableOldSchool(userName: String,

completion: @escaping (Result<Bool, NetworkError>) -> Void) {

 �guard let url = URL(string: "http://localhost:8080/

isUserNameAvailable?userName=\(userName)") else { // (2)

 completion(.failure(.invalidRequestError("URL invalid")))

 return

 }

 �let task = URLSession.shared.dataTask(with: url) { data,

response, error in

 if let error = error { // (3)

 completion(.failure(.transportError(error)))

 return

 }

Chapter 9 Networking with Combine

250

 �if let response = response as? HTTPURLResponse,

!(200...299).contains(response.statusCode) { // (4)

 completion(.failure(.serverError(

 statusCode: response.statusCode

)))

 return

 }

 guard let data = data else { // (5)

 completion(.failure(.noData))

 return

 }

 do {

 let decoder = JSONDecoder()

 let userAvailableMessage =

 try decoder.decode(UserNameAvailableMessage.self,

 from: data)

 completion(.success(

 userAvailableMessage.isAvailable)) // (1)

 }

 catch {

 completion(.failure(.decodingError(error)))

 }

 }

 task.resume() // (6)

}

And while this code works fine and nothing is inherently wrong with it,

it does have several issues:

	 1.	 It’s not immediately clear what the happy path is—

the only location that returns a successful result is

pretty hidden (1).

Chapter 9 Networking with Combine

251

	 2.	 Developers who are new to using completion

handlers might be confused by the fact that the

happy path doesn’t even use a return statement to

deliver the result of the network call to the caller.

	 3.	 Error handling is scattered all over the place (2,

3, 4, 5).

	 4.	 There are several exit points, and it’s easy to

forget one of the return statements in the if let

conditions.

	 5.	 Overall, it is hard to read and maintain, even if

you’re an experienced Swift developer.

	 6.	 It’s easy to forget you have to call resume() to

actually perform the request (6). I am pretty sure

most of us have been frantically looking for bugs

when using URLSession, only to find out we forgot to

actually kick off the request using resume. And yes,

I think resume is not a great name for an API that is

supposed to send the request.

RUNNING THE CODE SAMPLES

You will find all the code samples in the accompanying GitHub repository,1
in the Networking folder. To be able to benefit the most, I’ve also provided
a demo server (built with Vapor) in the server subfolder. To run it on your
machine, do the following:

$ cd server

$ swift run

1 https://github.com/peterfriese/SwiftUI-Combine-Book

Chapter 9 Networking with Combine

https://github.com/peterfriese/SwiftUI-Combine-Book

252

�Using Combine to Fetch Data
When they introduced Combine, Apple added publishers for many of

their own asynchronous APIs. Developers can now use these publishers to

replace their existing, callback-driven code.

The resulting code has fewer exit points, follows a straight line, and

thus is easier to read and maintain. It’s also less prone to subtle bugs.

To get a better understanding of what this means, let’s look at how the

previous (callback-based) code snippet looks like after refactoring it to

make use of Combine:

func checkUserNameAvailableNaive(userName: String) ->

 AnyPublisher<Bool, Never>

{

 guard let url = URL(string: "http://127.0.0.1:8080/

isUserNameAvailable?userName=\(userName)") else {

 return Just(false).eraseToAnyPublisher()

 }

 return URLSession.shared.dataTaskPublisher(for: url) // (1)

 .map { data, response in // (2)

 do {

 let decoder = JSONDecoder()

 let userAvailableMessage =

 try decoder.decode(UserNameAvailableMessage.self,

 from: data)

 return userAvailableMessage.isAvailable

 }

 catch {

 return false // (4)

 }

 }

Chapter 9 Networking with Combine

253

 .replaceError(with: false) // (5)

 .eraseToAnyPublisher()

}

Let’s walk through the code step by step:

	 1.	 We use dataTaskPublisher to perform the request.

This publisher is a one-shot publisher and will emit

an event once the requested data has arrived. It’s

worth keeping in mind that Combine publishers

don’t perform any work if there is no subscriber.

This means that this publisher will not perform

any call to the given URL until you add at least one

subscriber. I will later show you how to connect this

pipeline to the UI and make sure it gets called every

time the user enters text into the username field.

	 2.	 Once the request returns, the publisher emits a

value that contains both the data and the response.

In this line, we use the map operator to transform

this result. As you can see, we can reuse most of the

data mapping code from the previous version of the

code, except for a couple of minor changes.

	 3.	 Instead of calling the completion closure, we can

return a Boolean value to indicate whether the

username is still available or not. This value will be

passed down the pipeline.

	 4.	 In case the data mapping fails, we catch the error

and return false, which seems to be a good

compromise.

	 5.	 We do the same for any errors that might occur

when accessing the network. This is a simplification

that we might need to revisit in the future.

Chapter 9 Networking with Combine

254

Also note that (except for the guard statement that makes sure we’ve

got a valid URL) there is just one exit point.

This looks a lot better and easier to read than the initial version. We

could leave it there and use this code in our app.

But we can do better. In the following three sections, we will look

at a few changes that will make the code more linear and easier to

reason about.

�Destructuring Tuples Using Key Paths
We often find ourselves in a situation where we need to extract a specific

attribute from a variable. In the preceding code, dataTaskPublisher

returns a result containing the data and the response for the URL

request we sent. The type of the result is a tuple, as we can see from

DataTaskPublisher’s declaration:

public struct DataTaskPublisher : Publisher {

 /// The kind of values published by this publisher.

 public typealias Output = (data: Data, response: URLResponse)

 ...

}

Extracting the individual elements from the tuple is called destructuring.

Combine provides an overloaded version of the map operator that allows us

to destructure the tuple and access just the attribute we care for:

return URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

�Mapping Data
Since mapping data is such a common task, Combine comes with a

dedicated operator to make this easier: decode(type:decoder:).

Chapter 9 Networking with Combine

255

return URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

This will extract the data value from the upstream publisher and

decode it into a UserNameAvailableMessage instance.

And finally, we can use the map operator again to destructure the

UserNameAvailableMessage and access its isAvailable attribute:

return URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

 .map(\.isAvailable)

�Fetching Data Using Combine, Simplified
With all these changes in place, we now have a version of the pipeline that

is easy to read and has a linear flow:

class AuthenticationService {

 func checkUserNameAvailable(userName: String) ->

 AnyPublisher<Bool, Never>

 {

 guard let url = URL(string: "http://127.0.0.1:8080/

isUserNameAvailable?userName=\(userName)") else {

 return Just(false).eraseToAnyPublisher()

 }

 return URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

Chapter 9 Networking with Combine

256

 .map(\.isAvailable)

 .replaceError(with: false)

 .eraseToAnyPublisher()

 }

}

It’s a good idea to keep this code in a separate type, together with any

other further code that communicates directly with the authentication

server. Modularizing our code like this helps us to keep our code base

neatly organized.

�Connecting to the UI
Let’s now look at how to integrate this new Combine pipeline in the sign-

up form we started in the previous chapter.

Here is a condensed version of the sign-up form. I’ve removed some

of the code to avoid distracting you from what we want to focus on in

this chapter. For the discussion in this chapter, we just care about the

username field, the Text label to display a message, and a sign-up button.

I’ve commented out the code for the password fields we discussed in the

previous chapter.

struct SignUpForm: View {

 @StateObject private var viewModel = SignUpFormViewModel()

 var body: some View {

 Form {

 // Username

 Section {

 TextField("Username", text: $viewModel.username)

 .autocapitalization(.none)

 .disableAutocorrection(true)

Chapter 9 Networking with Combine

257

 } footer: {

 Text(viewModel.usernameMessage)

 .foregroundColor(.red)

 }

 // (code for password fields removed for brevity)

 // Submit button

 Section {

 Button("Sign up") {

 print("Signing up as \(viewModel.username)")

 }

 .disabled(!viewModel.isValid)

 }

 }

 }

}

Here are the parts of the view model that are relevant for our

discussion—again, some of the code from the previous chapter is stripped

out for simplicity.

class SignUpScreenViewModel: ObservableObject {

 private var authenticationService = AuthenticationService()

 // MARK: Input

 @Published var username: String = ""

 // MARK: Output

 @Published var usernameMessage: String = ""

 @Published var isValid: Bool = false

 ...

}

Chapter 9 Networking with Combine

258

Since @Published properties are Combine publishers, we can

subscribe to them to receive updates whenever their value changes.

This will allow us to take the user’s most recent input and pass it to

the checkUserNameAvailable publisher to see if this username is still

available.

To pass events from one publisher to another one, we can use the

flatMap operator:

$username

 .flatMap { username -> AnyPublisher<Bool, Never> in

 se�lf.authenticationService.checkUserNameAvailable(userName:

username)

 }

This pipeline takes input events from the username publisher (i.e.,

what the user types into the username text input field) and sends them to

the checkUserNameAvailable publisher. This publisher will return a Bool

for each input event, indicating whether the respective username is still

available. This means that subscribers will receive a stream of Bools.

Figure 9-1.  Combine pipeline for calling the authentication service to
check if the username is available

Chapter 9 Networking with Combine

259

We want to use the result of this pipeline to drive the state of the sign-

up form: as long as the pipeline returns true to indicate that the chosen

username is available, we want to enable the Submit button. At the same

time, we want to display an error message as soon as the result of the

pipeline is false.

This means we need to add two different subscribers to the

pipeline: the enabled state of the Submit button and the text of the error

message label.

To preserve memory and avoid wasting CPU cycles, let’s make the

pipeline reusable. One way to do this to wrap it inside a lazy computed

property. Lazy computed properties are computed only once, and only if

they are accessed.

As a reminder, the general form of a lazy computed property is as

follows:

lazy var propertyName: Type = {

 // compute the property's value inside the closure

}() // <- don't forget the parentheses

Using a lazy computed property ensures that the pipeline will only be

instantiated once, making sure we’re using the same instance for every

subscriber.

private lazy var isUsernameAvailablePublisher:

 Publishers.FlatMap<AnyPublisher<Bool, Never>,

Published<String>.Publisher> = {

 $username

 .flatMap { username in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

}()

Chapter 9 Networking with Combine

260

At this point, the result type of the pipeline is Publishers.

FlatMap<AnyPublisher<Bool, Never>, Published<String>.Publisher>.

Not only is this hard to read, but it’s also difficult to use in the calling

code. To prevent having to use a complicated signature like this, Combine

provides the eraseToAnyPublisher operator that allows us to erase

the type of a pipeline to AnyPublisher<Type, Error>. By appending

this operator to the end of our pipeline, we erase the pipeline’s type

toAnyPublisher<Bool, Never>—much easier to use.

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .flatMap { username in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

 .eraseToAnyPublisher()

}()

In the next step, we will connect the result of the

isUsernameAvailablePublisher to the UI. Take a look at the view model:

we’ve got two properties in the output section of the view model—one

for any message related to the username and another one that holds the

overall validation state of the form.

Combine publishers can be connected to more than one subscriber,

so we can connect both isValid and usernameMessage to the

isUsernameAvailablePublisher:

class SignUpScreenViewModel: ObservableObject {

 ...

 init() {

 isUsernameAvailablePublisher

Chapter 9 Networking with Combine

261

 .assign(to: &$isValid)

 isUsernameAvailablePublisher

 .map {

 $0 ? ""

 : "Username not available. Try a different one."

 }

 .assign(to: &$usernameMessage)

 }

}

Using this approach allows us to reuse the

isUsernameAvailablePublisher and use it to drive both the overall

isValid state of the form (which will enable/disable the Submit button)

and the usernameMessage label, which informs the user whether their

chosen username is still available or not.

Ensure the demo server is running, launch the app, and try typing

in a few different usernames. The demo server has a hard-coded list

of usernames that it regards as unavailable, so try these to see how the

Combine pipeline we developed so far drives the UI: peterfriese,

johnnyappleseed, page, johndoe.

Observe the server’s console output while typing, and you will notice a

few things:

	 1.	 The API endpoint gets called several times for each

character you type.

	 2.	 Xcode tells you that you shouldn’t update the UI

from a background thread.

Let’s look at these and try to understand how we can fix them.

Chapter 9 Networking with Combine

262

�Handling Multithreading
When building Combine pipelines that access the network, you might end

up seeing error messages like the following in Xcode’s console output:

[SwiftUI] Publishing changes from background threads is not

allowed; make sure to publish values from the main thread (via

operators like receive(on:)) on model updates.

Sometimes,2 Xcode will display a purple warning in the code editor,

making it easier to find the offending piece of code.

The reason for this error message is that URLSession will execute the

network request on a background thread. When the request is fulfilled,

dataTaskPublisher will send an event with the result of the request onto

the pipeline. Our code retrieves this result, maps it to the data type we

need for our UI, and assigns it to one of the published properties of the

view model. This, in turn, will prompt SwiftUI to update the UI with the

new value of the property.

All of this happens on the same thread—a background thread.

However, accessing the UI from a background thread is discouraged, and

this is why SwiftUI raises a warning.

To prevent this from happening, we need to instruct Combine to

switch to the foreground thread once it has received the result of the

network request. To tell Combine to receive an event on a specific thread,

we can use the receive(on:) operator:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

2 Technically, this should work for all versions of Xcodes starting with version 12.
However, I found that in some combinations of Xcode and iOS, this sometimes
doesn’t work. As the error messages show up in the console, I am inclined to think
this is an IPC issue that hopefully should be resolved in future Xcode versions.

Chapter 9 Networking with Combine

263

 $username

 .flatMap { username -> AnyPublisher<Bool, Never> in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

 .receive(on: DispatchQueue.main)

 .eraseToAnyPublisher()

}()

We will dive deeper into the topic of threading in the chapter about

Combine schedulers, but for now, this line will fix our threading issues.

�Optimizing Network Access
With high-speed, low-latency Internet available in most places, it is easy to

forget that not all of our users might be on a fast, low-latency uplink when

using our apps. Even in cities like Hamburg or London, you will find areas

with patchy or no connectivity at all.

When building apps that access the Internet, we should be mindful of

this and make sure we don’t waste bandwidth.

When running the app and inspecting the logs of our test server, you

saw that the isUserNameAvailable endpoint got called multiple times for

each character typed. This is clearly not ideal: not only does it waste CPU

cycles on our server (which might become an issue if you’re hosting your

server with a cloud provider that charges you by the number of calls or

CPU uptime), but it also means we’re adding extra network overhead to

our application.

You might barely notice this when running the test server locally, but

you will definitely notice it when you’re on an Edge connection, talking to

a remote instance of your server.

Chapter 9 Networking with Combine

264

The problem gets worse if your API endpoints aren’t idempotent: imagine

calling an API endpoint for reserving a seat or buying a concert ticket. By

sending two (or more) requests instead of one, you would end up reserving

more seats than you require, or buying more concert tickets than you wanted.

�Finding the Root Cause
First of all, we need to find out what’s causing all those extra requests.

An easy way to figure out what’s going on with a Combine pipeline is to

add some debugging code. Let’s add the print() operator to the pipeline:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .print("username")

 .flatMap { username -> AnyPublisher<Bool, Never> in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

 .receive(on: DispatchQueue.main)

 .eraseToAnyPublisher()

}()

This operator logs a couple of useful things to the console:

	 1.	 Any life-cycle events of the pipeline (e.g.,

subscriptions being added)

	 2.	 Any values being sent/received

We can specify a prefix (”username”) to make the log statements stand

out on the console.

Rerunning the app, we immediately see the following output—even

without typing anything into the text field:

Chapter 9 Networking with Combine

265

username: receive subscription: (PublishedSubject)

username: request unlimited

username: receive value: ()

username: receive subscription: (PublishedSubject)

username: request unlimited

username: receive value: ()

This indicates we’ve got two subscribers for our pipeline!

Looking at our code, we can spot those subscribers in the initializer of

the view model:

init() {

 isUsernameAvailablePublisher

 .assign(to: &$isValid)

 isUsernameAvailablePublisher

 .map {

 $0 ? ""

 : "Username not available. Try a different one."

 }

 .assign(to: &$usernameMessage)

}

The first subscriber is the pipeline that feeds the isValid property,

which we ultimately use to enable/disable the submit button on the

sign-up form.

The second subscriber is the pipeline that produces an error message

in case the chosen username is not available. The result of this pipeline

will be displayed on the sign-up form as well.

Every time the user types a character, the

isUsernameAvailablePublisher pipeline needs to process the current

value of the username field, so the result can ultimately be assigned to the

subscribers.

Chapter 9 Networking with Combine

266

No big deal for a pipeline that runs locally (although we should try to

not waste CPU cycles), but this becomes a much bigger issue for pipelines

that access the network, like ours does.

Now that we’ve identified what’s causing multiple subscriptions to our

publisher, let’s see what we can do to fix the problem.

�Using the share Operator to Share a Publisher
Having multiple subscribers for a single publisher is a common pattern,

especially in UIs, where a single UI element might have an impact on

multiple other views.

If you need to share the results of a publisher with multiple

subscribers, you can use the share() operator. According to Apple’s

documentation:

The publisher returned by this operator supports multiple
subscribers, all of whom receive unchanged elements and
completion states from the upstream publisher.

This is exactly what we need. By applying the share operator to the

end of the pipeline in isUsernameAvailablePublisher, we share the result

of the pipeline for each event (i.e., each character the user enters in the

username input field) with all subscribers of the publisher:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .print("username")

 .flatMap { username -> AnyPublisher<Bool, Never> in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

Chapter 9 Networking with Combine

267

 .receive(on: DispatchQueue.main)

 .share()

 .eraseToAnyPublisher()

}()

When running the updated code, we can see that the $username

publisher no longer has two subscribers, but instead just one:

username: receive subscription: (PublishedSubject)

username: request unlimited

username: receive value: ()

Now, you might be wondering why it’s only one subscriber, since we

clearly still have two published properties (isValid and usernameMessage)

subscribed to the pipeline.

Well, the answer is simple: the share operator ultimately is this

one subscriber, and it in turn is being subscribed to by isValid and

isUsernameAvailablePublisher. To prove this, let’s add another print()

operator to the pipeline:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .print("username")

 .flatMap { username -> AnyPublisher<Bool, Never> in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

 .receive(on: DispatchQueue.main)

 .share()

 .print("share")

 .eraseToAnyPublisher()

}()

Chapter 9 Networking with Combine

268

In the resulting output, we can see that share receives two

subscriptions (1, 2) and username just one (3):

share: receive subscription: (Multicast) // (1)

share: request unlimited

username: receive subscription: (PublishedSubject) // (3)

username: request unlimited

username: receive value: ()

share: receive subscription: (Multicast) // (2)

share: request unlimited

share: receive value: (true)

share: receive value: (true)

You can think of share() as a fork that receives events from its

upstream publisher and multicasts them to all of its subscribers.

IS IT A BUG OR A FEATURE?

Go ahead and type a few characters into the username field, and you will find
that for every character you type, you will still see two requests being made to
the server.

This might be an issue in iOS 15—I debugged into this a bit, and it seems
like TextField emits every keystroke twice. In prior versions of iOS,
this wasn’t the case, and I am inclined to think this is a bug in iOS 15, so
I created a sample project to reproduce this issue (see AppleFeedback/
FB9826727 at main · peterfriese/AppleFeedback (https://github.com/
peterfriese/AppleFeedback/tree/main/FB9826727)), and filed a
Feedback (FB9826727) with Apple.

If you agree with me that this is a regression, consider filing a feedback as
well—the more duplicates a bug receives, the more likely it will be addressed.

Chapter 9 Networking with Combine

https://github.com/peterfriese/AppleFeedback/tree/main/FB9826727
https://github.com/peterfriese/AppleFeedback/tree/main/FB9826727

269

�Using debounce to Further Optimize the UX
When building UIs that communicate with a remote system, we need to

keep in mind that the user usually types a lot faster than the system can

deliver feedback.

For example, when picking a username, I usually type my favorite

username without stopping to type in the middle of the word. I don’t care

if the first few letters of this username are available—I am interested in the

full name. Sending the incomplete username over to the server after every

single keystroke doesn’t make a lot of sense and seems like a lot of waste.

To avoid this, we can use Combine’s debounce operator: it will drop all

events until there is a pause. It will then pass on the most recent event to

the downstream publisher:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .debounce(for: 0.8, scheduler: DispatchQueue.main)

 .print("username")

 .flatMap { username -> AnyPublisher<Bool, Never> in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

 .receive(on: DispatchQueue.main)

 .share()

 .print("share")

 .eraseToAnyPublisher()

}()

By doing so, we tell Combine to disregard all updates to username until

there is a pause of 0.8 seconds and then send the most recent username on

to the next operator on the pipeline (in this case, the print operator, which

will then pass the event on to the flatMap operator).

Chapter 9 Networking with Combine

270

This suits a normal user input behavior much more and will result in

the app sending fewer requests to the server.

�Using removeDuplicates to Avoid Sending
the Same Request Twice
Have you ever spoken to a person and asked them the same question

twice? It’s a bit of an awkward situation, and the other person probably

wonders if you’ve been paying attention to them at all.

Now, even though AI is making advances, I am sure that computers

don’t have emotions, so they won’t hold a grudge if you send the same API

request twice. But to give our users the best experience possible, we should

try to eliminate sending duplicate requests if we can.

Combine has an operator for this: removeDuplicates—it will remove

any duplicate events from the stream of events if they follow each other

subsequently.

This works really well in conjunction with the debounce operator,

and we can use those two operators combined (sorry, I guess you’ll have

to live with the puns) for a little further optimization of our username

availability check:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .debounce(for: 0.8, scheduler: DispatchQueue.main)

 .removeDuplicates()

 .print("username")

 .flatMap { username -> AnyPublisher<Bool, Never> in

 self.authenticationService

 .checkUserNameAvailable(userName: username)

 }

Chapter 9 Networking with Combine

271

 .receive(on: DispatchQueue.main)

 .share()

 .print("share")

 .eraseToAnyPublisher()

}()

Together, they will further reduce the number of requests we send to

our server in case the user mistypes and then corrects their spelling.

Let’s look at an example:

jonyive [pause] s [backspace]

This will send the following requests:

	 1.	 jonyive

	 2.	 No request for jonyives (as the s got deleted before

the debounce timed out)

	 3.	 No second request for jonyive, as this got filtered by

removeDuplicates

It’s just a tiny change, and the impact might not be huge—but every

little helps.

�Bringing It All Together
In the last chapter, we implemented a check to ensure usernames have at

least three characters. To verify that the username has at least characters

and is still available, we need to combine the isUsernameLengthPublisher

and isUsernameAvailablePublisher. Just like we did before, we can use

Publishers.CombineLatest() for this.

Let’s create a new publisher, isUsernameValidPublisher, that

combines the events that isUsernameLengthValidPublisher and

isUsernameAvailablePublisher send:

Chapter 9 Networking with Combine

272

enum UserNameValid {

 case valid

 case tooShort

 case notAvailable

}

private lazy var isUsernameValidPublisher:

 AnyPublisher<UserNameValid, Never> =

{

 Publishers.CombineLatest(

 isUsernameLengthValidPublisher, isUsernameAvailablePublisher

)

 .map { longEnough, available in

 if !longEnough {

 return .tooShort

 }

 if !available {

 return .notAvailable

 }

 return .valid

 }

 .share()

 .eraseToAnyPublisher()

}()

Introducing the UserNameValid enum helps us to return a semantically

meaningful result to the subscribers of the pipeline.

To use this new publisher, we need to update isFormValidPublisher

accordingly:

private lazy var isFormValidPublisher:

 AnyPublisher<Bool, Never> =

{

Chapter 9 Networking with Combine

273

 Publishers.CombineLatest(

 isUsernameValidPublisher,

 isPasswordValidPublisher

)

 .map { ($0 == .valid) && $1 }

 .eraseToAnyPublisher()

}()

�Exercises

	 1.	 isUsernameValidPublisher is a bit inefficient:

it will ping the server even if the username is too

short. Try improving this by gating the pipeline on

the length of the username.

	 2.	 Improve error handling. Instead of mapping a

server error to the username not being available,

return a Result from checkUsernameAvailable.

In case of a success, the result should contain

the UserAvailableMessage, otherwise the server

error. Update the pipelines to inform the user that,

because the server is not available, we cannot

determine whether the username is available, and

we’ll just assume it is available for now, and we

will perform a final availability check once the user

actually hits the submit button.

Chapter 9 Networking with Combine

274

�Summary
In this chapter, I showed you how to access the network using Combine

and how this enables you to write straight-line code that should be easier

to read and maintain than the respective callback-driven counterpart.

We also looked at how to connect a Combine pipeline that makes

network requests to SwiftUI by using a view model and attaching the

pipeline to an @Published property.

We also discussed how Combine can make communicating with a

remote server (or any asynchronous API, in fact) more efficient.

By using the share operator, we can attach multiple subscribers to

a publisher/pipeline and avoid running expensive/time-consuming

processing for each of those subscribers. This is particularly useful when

accessing APIs with a higher latency than an in-process module, such as a

remote server or anything involving I/O.

The debounce operator allows us to deal more efficiently with any

events that occur in short bursts, like user input. Instead of processing

every single event coming down the pipeline, we wait for a pause and only

operate on the most recent event.

We can use the removeDuplicates operator to avoid processing

duplicate events. As the name suggests, it removes any directly subsequent

duplicate events, such as the user adding and then removing a character

when we also use the debounce operator.

Together, these operators can help us build clients that access remote

servers and other asynchronous APIs more efficiently.

One thing we need to spend more time on is how to properly deal

with errors and other unexpected situations. In this chapter, we used

replaceError(with:) to replace any errors with a nil value. This helped

us to get unblocked, but in a real-world application, we need a more

flexible way to handle errors. In the next chapter, we’re going to discuss a

couple of options for doing this.

Chapter 9 Networking with Combine

275

CHAPTER 10

Error Handling
in Combine
As developers, we tend to be a rather optimistic bunch of people. At least

that’s the impression you get when looking at the code we write—we

mostly focus on the happy path and tend to spend a lot less time and effort

on error handling.

Even in the previous chapter, we’ve been neglecting error handling. In

fact, we’ve mostly ignored it: we replaced any errors with a default value,

which was OK for prototyping our app, but this probably isn’t a solid

strategy for any app that goes into production.

In this chapter, let’s take a closer look at how we can handle errors

appropriately!

We will continue working on the sign-up form we started working on

in the previous chapters. As a reminder, we use Combine to validate the

user’s input, and as part of this validation, the app also calls an endpoint

on the app’s authentication server to check if the username the user chose

is still available. The endpoint will return true or false depending on

whether the name is still available. In addition, the server will return the

appropriate HTTP status codes and an error payload in case anything goes

wrong when validating the username.

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_10

https://doi.org/10.1007/978-1-4842-8572-5_10

276

�Error Handling Strategies
Before we dive deeper into how to handle errors, let’s talk about a couple of

error-handling strategies and whether they are appropriate in our scenario.

�Ignoring the Error
This might sound like a terrible idea at first, but it’s actually a viable option

when dealing with certain types of errors under specific circumstances.

Here are some examples:

–– The user’s device is temporarily offline or there is

another reason why the app cannot reach the server.

–– The server is down at the moment, but will be back

up soon.

In many cases, the user can continue working offline, and the app can

sync with the server once the device comes back online. Of course, this

requires some sort of offline capable sync solution (like Cloud Firestore)1.

It is good practice to provide some user feedback to make sure users

understand their data hasn’t been synchronized yet. Many apps show an

icon (e.g., a cloud with an upward pointing arrow) to indicate the sync

process is still in progress, or a warning sign to alert the user they need to

manually trigger the sync once they’re back online.

�Retrying (with Exponential Backoff)
In other cases, ignoring the error is not an option. Imagine the booking

system for a popular event: the server might be overwhelmed by the

amount of requests. In this case, we want to make sure that the system

1 A NoSQL cloud database with realtime sync capabilities that is part of Firebase,
see https://firebase.google.com/products/firestore

Chapter 10 Error Handling in Combine

https://firebase.google.com/products/firestore

277

will not be thrashed by the users hitting “refresh” every couple of

seconds. Instead, we want to spread out the time between retries. Using

an exponential backoff strategy is both in the user’s and the system’s

operator’s best interest: the operator can be sure their server will not be

overwhelmed even more by users trying to get through by constantly

refreshing, and the users should eventually get their booking through

thanks to the app automatically retrying.

�Showing an Error Message
Some errors require the user’s action—for example, if saving a document

failed. In this case, it is appropriate to show a model dialog to get the user’s

attention and ask them how to proceed. For less severe errors, it might be

sufficient to show a toast (an overlay that shows for a brief moment and

then disappears).

�Replacing the Entire View with an Error View
Under some circumstances, it might even be appropriate to replace the

entire UI with an error UI. A well-known example for this is Chrome—if

the device is offline, it will display the Chrome Dino to let users know their

device is offline, and to help them spend the time until their connection

restores with a fun jump-and-run game.

Figure 10-1.  The Chrome Dino game

Chapter 10 Error Handling in Combine

278

�Showing an Inline Error Message
This is a good option in case the data the user has provided isn’t valid. Not

all input errors can be detected by a local form validation. For example, an

online store might have a business rule that mandates shipments worth

more than a certain amount must be shipped using a specific transport

provider. It’s not always feasible to implement all of these business rules in

the client app (a configurable rules engine definitely might help here), so

we need to be prepared to handle these kinds of semantic errors.

Ideally, we should show those kind of errors next to the respective

input field to help the user provide the correct input.

�Typical Error Conditions and How
to Handle Them
To give you a better understanding of how to apply this in a real-world

scenario, let’s add some error handling to the sign-up form we created

earlier in this series. In particular, we’ll deal with the following error

conditions:

–– Device/network offline

–– Semantic validation errors

–– Response parsing errors/invalid URL

–– Internal server errors

If you want to follow along, you will find the code for this
chapter in the GitHub repository2 for the book, in the folder for
this chapter. The server subfolder contains a local server that
helps us simulate all the error conditions we will cover.

2 https://github.com/peterfriese/SwiftUI-Combine-Book

Chapter 10 Error Handling in Combine

https://github.com/peterfriese/SwiftUI-Combine-Book

279

�Implementing a Fallible Network API
In the previous chapter, we implemented an AuthenticationService that

interfaces with an authentication server. This helps us to keep everything

neatly organized and separated by concerns:

–– The view (SignUpScreen) displays the state and takes

the user’s input.

–– The view model (SignUpScreenViewModel) holds the

state the view displays. In turn, it uses other APIs to

react to the user’s actions. In this particular app, the

view model uses the AuthenticationService to

interact with the authentication server.

–– The service (AuthenticationService) interacts with

the authentication server. Its main responsibilities are

to bring the server’s responses into a format that the

client can work with. For example, it converts JSON

into Swift structs, and (most relevant for this post) it

handles any network-layer errors and converts them

into UI-level errors that the client can better work with.

The following diagram provides an overview of how the individual

types work together.

Chapter 10 Error Handling in Combine

280

Figure 10-2.  The components making up the sign-up form

If you take a look at the code we wrote in the previous chapter, you will

notice that the checkUserNamerAvailablePublisher has a failure type of

Never—that means it claims there is never going to be an error.

func checkUserNameAvailablePublisher(userName: String) ->

AnyPublisher<Bool, Never> { ... }

That’s a pretty bold statement, especially given network errors are

really common! We were only able to guarantee this because we replaced

any errors with a return value of false:

func checkUserNameAvailablePublisher(userName: String)

 -> AnyPublisher<Bool, Never> {

Chapter 10 Error Handling in Combine

281

 �guard let url = URL(string: "http://127.0.0.1:8080/

isUserNameAvailable?userName=\(userName)") else {

 return Just(false).eraseToAnyPublisher()

 }

 return URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

 .map(\.isAvailable)

 .replaceError(with: false)

 .eraseToAnyPublisher()

}

To turn this rather lenient implementation into something that returns

meaningful error messages to the caller, we first need to change the failure

type of the publisher, and stop glossing over any errors by returning false:

enum APIError: LocalizedError {

 /// Invalid request, e.g., invalid URL

 case invalidRequestError(String)

}

struct AuthenticationService {

 func checkUserNameAvailablePublisher(userName: String)

 -> AnyPublisher<Bool, Error> {

 guard let url =

 �URL(string: "http://127.0.0.1:8080/

isUserNameAvailable?userName=\(userName)") else {

 �return Fail(error: APIError.invalidRequestError("URL

invalid"))

 .eraseToAnyPublisher()

 }

Chapter 10 Error Handling in Combine

282

 return URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

 .map(\.isAvailable)

// .replaceError(with: false)

 .eraseToAnyPublisher()

 }

}

We also introduced a custom error type, APIError. This will allow us

to convert any errors that might occur inside our API (be it network errors

or data mapping errors) into a semantically rich error that we can handle

more easily in our view model.

�Calling the API and Handling Errors
Now that the API has a failure type, we need to update the caller as well.

Once a publisher emits a failure, the pipeline will terminate—unless

you capture the error. A typical approach to handling errors when using

flatMap is to combine it with a catch operator:

somePublisher

 .flatMap { value in

 callSomePotentiallyFailingPublisher()

 .catch { error in

 return Just(someDefaultValue)

 }

 }

 .eraseToAnyPublisher()

Chapter 10 Error Handling in Combine

283

Applying this strategy to the code in our view model results in the

following code:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Bool, Never> =

{

 $username

 .debounce(for: 0.8, scheduler: DispatchQueue.main)

 .removeDuplicates()

 .flatMap { username -> AnyPublisher<Bool, Never> in

 self.authenticationService

 .checkUserNameAvailablePublisher(userName: username)

 .catch { error in // (1)

 return Just(false) // (2)

 }

 .eraseToAnyPublisher()

 }

 .receive(on: DispatchQueue.main)

 .share()

 .eraseToAnyPublisher()

}()

And just like that, we end up where we started! If the API emits a failure

(e.g., the username was too short), we catch the error (1) and replace it

with false (2)—this is exactly the behavior we had before. Except, we

wrote a lot more code…

Seems like we’re getting nowhere with this approach, so let’s take a

step back and look at the requirements for our solution:

–– We want to use the emitted values of the pipeline to

drive the state of the submit button and to display a

warning message if the chosen username is not

available.

Chapter 10 Error Handling in Combine

284

–– If the pipeline emits a failure, we want to disable the

submit button and display the error message in the

error label below the username input field.

–– How exactly we handle the errors will depend on the

type of failure, as we will discuss later in this chapter.

This means

–– We need to make sure we can receive both failures and

successes

–– We need to make sure the pipeline doesn’t terminate if

we receive a failure

To achieve all of this, we will map the result of the

checkUserNameAvailablePublisher to a Result type. Result is an enum

that can capture both success and failure states. Mapping the outcome

of checkUserNameAvailablePublisherto Result also means the pipeline

will no longer terminate in case it emits a failure.

Let’s first define a typealias for the Result type to make our life a

little easier:

typealias Available = Result<Bool, Error>

To turn the result of a publisher into a Result type, we can use the

following operator that John Sundell implemented in his article “The

power of extensions in Swift”3:

extension Publisher {

 func asResult() ->

 AnyPublisher<Result<Output, Failure>, Never>

 {

 self

3 https://bit.ly/3GH1WZT

Chapter 10 Error Handling in Combine

https://bit.ly/3GH1WZT

285

 .map(Result.success)

 .catch { error in

 Just(.failure(error))

 }

 .eraseToAnyPublisher()

 }

}

This allows us to update the isUsernameAvailablePublisher in our

view model like this:

private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Available, Never> =

{

 $username

 .debounce(for: 0.8, scheduler: DispatchQueue.main)

 .removeDuplicates()

 .flatMap { username -> AnyPublisher<Available, Never> in

 self.authenticationService

 .checkUserNameAvailablePublisher(userName: username)

 .asResult()

 }

 .receive(on: DispatchQueue.main)

 .share()

 .eraseToAnyPublisher()

}()

With this basic plumbing in place, let’s look at how to handle the

different error scenarios I outlined earlier.

Chapter 10 Error Handling in Combine

286

�Handling Device/Network Offline Errors
On mobile devices, it is pretty common to have spotty connectivity:

especially when you’re on the move, you might be in an area with bad or

no coverage.

Whether or not you should show an error message depends on the

situation:

For our use case, we can assume that the user at least has intermittent

connectivity. Telling the user that we cannot reach the server would be

rather distracting while they’re filling out the form. Instead, we should

ignore any connectivity errors for the form validation (and instead run our

local form validation logic).

Once the user has entered all their details and submits the form, we

should show an error message if the device is still offline.

Catching this type of error requires us to make changes at two different

places. First, in checkUserNameAvailablePublisher, we use mapError to

catch any upstream errors and turn them into an APIError:

enum APIError: LocalizedError {

 /// Invalid request, e.g. invalid URL

 case invalidRequestError(String)

 /// Indicates an error on the transport layer,

 /// e.g. not being able to connect to the server

 case transportError(Error)

}

struct AuthenticationService {

 func checkUserNameAvailablePublisher(userName: String)

 -> AnyPublisher<Bool, Error>

 {

 �guard let url = URL(string: "http://127.0.0.1:8080/

isUserNameAvailable?userName=\(userName)") else {

Chapter 10 Error Handling in Combine

287

 �return Fail(error: APIError.invalidRequestError("URL

invalid"))

 .eraseToAnyPublisher()

 }

 return URLSession.shared.dataTaskPublisher(for: url)

 .mapError { error -> Error in

 return APIError.transportError(error)

 }

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

 .map(\.isAvailable)

 .eraseToAnyPublisher()

 }

}

Then, in our view model, we map the result to detect if it was a

failure (1, 2). If so, we extract the error and check if it is a network

transport error. If that’s the case, we return an empty string (3) to suppress

the error message:

class SignUpScreenViewModel: ObservableObject {

 // ...

 init() {

 isUsernameAvailablePublisher

 .map { result in

 switch result {

 case .failure(let error): // (1)

 if case APIError.transportError(_) = error {

 return "" // (3)

Chapter 10 Error Handling in Combine

288

 }

 else {

 return error.localizedDescription

 }

 case .success(let isAvailable):

 return isAvailable ? ""

 : "This username is not available"

 }

 }

 .assign(to: &$usernameMessage) // (4)

 isUsernameAvailablePublisher

 .map { result in

 if case .failure(let error) = result { // (2)

 if case APIError.transportError(_) = error {

 return true

 }

 return false

 }

 if case .success(let isAvailable) = result {

 return isAvailable

 }

 return true

 }

 .assign(to: &$isValid) // (5)

 }

}

In case isUsernameAvailablePublisher returned a success, we

extract the Bool telling us whether or not the desired username is available

and map this to an appropriate message.

Chapter 10 Error Handling in Combine

289

And finally, we assign the result of the pipeline to the usernameMessage

(4) and isValid (5) published properties which drive the UI on our view.

Keep in mind that ignoring the network error is a viable option for this

kind of UI—it might be an entirely different story for your use case, so use

your own judgment when applying this technique.

So far, we haven’t exposed any errors to the user, so let’s move on to a

category of errors that we actually want to make the user aware of.

�Handling Validation Errors
Most validation errors should be handled locally on the client, but

sometimes we cannot avoid running some additional validation steps on

the server. Ideally, the server should return a HTTP status code in the 4xx

range, and optionally a payload that provides more details.

In our example app, the server requires a minimum username length

of four characters, and we have a list of usernames that are forbidden (such

as “admin” or “superuser”).

For these cases, we want to display a warning message and disable the

submit button.

Our backend implementation is based on Vapor and will respond

with a HTTP status of 400 and an error payload for any validation errors. If

you’re curious about the implementation, check out the code in routes.

swift in the implementation of the server.

Handling this error scenario requires us to make changes in two

places: the service implementation and the view model. Let’s take a look at

the service implementation first.

Since we should handle any errors before even trying to extract the

payload from the response, the code for handling server errors needs to

run after checking for URLErrors and before mapping data:

struct APIErrorMessage: Decodable {

 var error: Bool

Chapter 10 Error Handling in Combine

290

 var reason: String

}

// ...

struct AuthenticationService {

 �func checkUserNameAvailablePublisher(userName: String) ->

AnyPublisher<Bool, Error> {

 �guard let url = URL(string: "http://127.0.0.1:8080/

isUserNameAvailable?userName=\(userName)") else {

 �return Fail(error: APIError.invalidRequestError("URL

invalid"))

 .eraseToAnyPublisher()

 }

 return URLSession.shared.dataTaskPublisher(for: url)

 �// handle URL errors (most likely not able to connect to

the server)

 .mapError { error -> Error in

 return APIError.transportError(error)

 }

 // handle all other errors

 �.tryMap { (data, response) -> (data: Data, response:

URLResponse) in

 �print("Received response from server, now checking

status code")

 �guard let urlResponse = response as?

HTTPURLResponse else {

 throw APIError.invalidResponse // (1)

 }

Chapter 10 Error Handling in Combine

291

 if (200..<300) ~= urlResponse.statusCode { // (2)

 }

 else {

 let decoder = JSONDecoder()

 let apiError = try decoder.decode(APIErrorMessage.self,

 from: data) // (3)

 if urlResponse.statusCode == 400 { // (4)

 throw APIError.validationError(apiError.reason)

 }

 }

 return (data, response)

 }

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

 .map(\.isAvailable)

// .replaceError(with: false)

 .eraseToAnyPublisher()

 }

}

Let’s take a closer look at what the code in this snippet does:

	 1.	 If the response isn’t a HTTPURLResonse, we return

APIError.invalidResponse.

	 2.	 We use Swift’s pattern matching to detect if the

request was executed successfully, that is, with a

HTTP status code in the range of 200 to 299.

Chapter 10 Error Handling in Combine

292

	 3.	 Otherwise, some error occurred on the server. Since we

use Vapor, the server will return details about the error

in a JSON payload (https://docs.vapor.codes/4.0/

errors/), so we can now map this information to

an APIErrorMessage struct and use it to create more

meaningful error message in the following code.

	 4.	 If the server returns a HTTP status of 400, we

know that this is a validation error (see the server

implementation for details), and return an

APIError.validationError including the detailed

error message we received from the server.

In the view model, we can now use this information to tell the user that

their chosen username doesn’t meet the requirements:

init() {

 isUsernameAvailablePublisher

 .map { result in

 switch result {

 case .failure(let error):

 if case APIError.transportError(_) = error {

 return ""

 }

 �else if case APIError.validationError(let reason)

= error {

 return reason

 }

 else {

 return error.localizedDescription

 }

 case .success(let isAvailable):

Chapter 10 Error Handling in Combine

https://docs.vapor.codes/4.0/errors/
https://docs.vapor.codes/4.0/errors/

293

 �return isAvailable ? "" : "This username is not

available"

 }

 }

 .assign(to: &$usernameMessage)

That’s right—just three lines of code. We’ve already done all the hard

work, so it’s time to reap the benefits.

�Handling Response Parsing Errors
There are many situations in which the data sent by the server doesn’t

match what the client expected:

–– The response includes additional data, or some fields

were renamed.

–– The client is connecting via a captive portal (e.g., in

a hotel).

In these cases, the client receives data, but it’s in the wrong format. To

help the user resolve the situation, we’ll need to analyze the response and

then provide suitable guidance, for example:

–– Download the latest version of the app.

–– Sign in to the captive portal via the system browser.

The current implementation uses the decode operator to decode

the response payload and throw an error in case the payload couldn’t

be mapped. This works well, and any decoding error will be caught and

show on the UI. However, an error message like The data couldn't be read

because it is missing isn’t really user friendly. Instead, let’s try to show a

message that is a little bit more meaningful for users and also suggest to

upgrade to the latest version of the app (assuming the server is returning

additional data that the new app will be able to leverage).

Chapter 10 Error Handling in Combine

294

To be able to provide more fine-grained information about decoding

errors, we need to part ways with the decode operator and fall back to

manually mapping the data (don’t worry, thanks to JSONDecoder and

Swift’s Codable protocol, this is pretty straightforward):

// ...

.map(\.data)

// .decode(type: UserNameAvailableMessage.self,

// decoder: JSONDecoder())

.tryMap { data -> UserNameAvailableMessage in

 let decoder = JSONDecoder()

 do {

 return try decoder.decode(UserNameAvailableMessage.self,

 from: data)

 }

 catch {

 throw APIError.decodingError(error)

 }

}

.map(\.isAvailable)

// ...

By conforming APIError to LocalizedError and implementing the

errorDescription property, we can provide a more user-friendly error

message (I included custom messages for the other error conditions as well):

enum APIError: LocalizedError {

 /// Invalid request, e.g. invalid URL

 case invalidRequestError(String)

 �/// Indicates an error on the transport layer, e.g. not being

able to connect to the server

 case transportError(Error)

Chapter 10 Error Handling in Combine

295

 /// Received an invalid response, e.g. non-HTTP result

 case invalidResponse

 /// Server-side validation error

 case validationError(String)

 /// The server sent data in an unexpected format

 case decodingError(Error)

 var errorDescription: String? {

 switch self {

 case .invalidRequestError(let message):

 return "Invalid request: \(message)"

 case .transportError(let error):

 return "Transport error: \(error)"

 case .invalidResponse:

 return "Invalid response"

 case .validationError(let reason):

 return "Validation Error: \(reason)"

 case .decodingError:

 �re�turn "The server returned data in an unexpected format.

Try updating the app."

 }

 }

}

Now, to make it abundantly clear to the user that they should update

the app, we will also display an alert. Here is the code for the alert:

struct SignUpScreen: View {

 @StateObject private var viewModel = SignUpScreenViewModel()

 var body: some View {

 Form {

Chapter 10 Error Handling in Combine

296

 // ...

 }

 // show update dialog

 �.alert("Please update", isPresented: $viewModel.

showUpdateDialog, actions: {

 Button("Upgrade") {

 // open App Store listing page for the app

 }

 Button("Not now", role: .cancel) { }

 }, message: {

 �Text("It looks like you're using an older version of this

app. Please update your app.")

 })

 }

}

You’ll notice that the presentation state of this alert is driven by a

published property on the view model, showUpdateDialog. Let’s update

the view model accordingly (1) and also add the Combine pipeline that

maps the results of isUsernameAvailablePublisher to this new property:

class SignUpScreenViewModel: ObservableObject {

 // ...

 @Published var showUpdateDialog: Bool = false // (1)

 // ...

 private lazy var isUsernameAvailablePublisher:

 AnyPublisher<Available, Never> =

 $username

 .debounce(for: 0.8, scheduler: DispatchQueue.main)

 .removeDuplicates()

Chapter 10 Error Handling in Combine

297

 .flatMap { username -> AnyPublisher<Available, Never> in

 self.authenticationService

 .checkUserNameAvailablePublisher(userName: username)

 .asResult()

 }

 .receive(on: DispatchQueue.main)

 .share() // (3)

 .eraseToAnyPublisher()

 }()

 init() {

 // ...

 // decoding error: display an error message

 // suggesting to download a newer version

 isUsernameAvailablePublisher

 .map { result in

 if case .failure(let error) = result {

 if case APIError.decodingError = error // (2) {

 return true

 }

 }

 return false

 }

 .assign(to: &$showUpdateDialog)

 }

}

As you can see, nothing too fancy—we essentially just take any events

coming in from the isUsernameAvailablePublisher and convert them

into a Bool that only becomes true if we receive a .decodingError (2).

Chapter 10 Error Handling in Combine

298

We’re now using isUsernameAvailablePublisher to drive three

different Combine pipelines, and I would like to explicitly call out that—

since isUsernameAvailablePublisher eventually will cause a network

request to be fired—it is important to make sure we’re only sending at most

one network request per keystroke. The previous chapter explains how to

do this in depth using the share() operator (3).

�Handling Internal Server Errors
In some rare cases, the backend of our app might be having some issues—

maybe part of the system is offline for maintenance, some process died, or

the server is overwhelmed. Usually, servers will return a HTTP status code

in the 5xx range to indicate this.

SIMULATING ERROR CONDITIONS

The sample server includes code that simulates some of the error
conditions discussed in this article. You can trigger the error condi-
tions by sending specific username values:

•	 Any username with less than four characters will result in a

tooshort validation error, signaled via a HTTP 400 status
code and a JSON payload containing a detailed error message.

•	 An empty username will result in an emptyName error
message, indicating the username mustn’t be empty.

•	 Some usernames are forbidden: “admin” or “superuser” will
result in an illegalName validation error.

Chapter 10 Error Handling in Combine

299

•	 Other usernames such as “peterfriese”, “johnnyappleseed”,
“page”, and “johndoe” are already taken, so the server will tell
the client these aren’t available any more.

•	 Sending “illegalresponse” as the username will return a JSON
response that has too few fields, resulting in a decoding error
on the client.

•	 Sending “servererror” will simulate a database problem
(databaseCorrupted) and will be signaled as a HTTP 500
with no retry hint (as we assume that this is not a temporary
situation, and retrying would be futile).

•	 Sending “maintenance” as the username will return a
maintenance error, along with a retry-after header that
indicates the client can retry this call after a period of time
(the idea here is that the server is undergoing scheduled
maintenance and will be back up after rebooting).

Let’s add the code required to deal with server-side errors. As we did

for previous error scenarios, we need to add some code to map the HTTP

status code to our APIError enum:

if (200..<300) ~= urlResponse.statusCode {

}

else {

 let decoder = JSONDecoder()

 let apiError = try decoder.decode(APIErrorMessage.self,

 from: data)

 if urlResponse.statusCode == 400 {

 throw APIError.validationError(apiError.reason)

 }

Chapter 10 Error Handling in Combine

300

 if (500..<600) ~= urlResponse.statusCode {

 let retryAfter = urlResponse.value(

 forHTTPHeaderField: "Retry-After")

 throw APIError.serverError(

 statusCode: urlResponse.statusCode,

 reason: apiError.reason,

 retryAfter: retryAfter)

 }

}

To display a user-friendly error message in our UI, all we need to do is

add a few lines of code to the view model:

isUsernameAvailablePublisher

 .map { result in

 switch result {

 case .failure(let error):

 if case APIError.transportError(_) = error {

 return ""

 }

 �else if case APIError.validationError(let reason)

= error {

 return reason

 }

 �else if case APIError.serverError(statusCode: _, reason:

let reason, retryAfter: _) = error {

 return reason ?? "Server error"

 }

 else {

 return error.localizedDescription

 }

 case .success(let isAvailable):

Chapter 10 Error Handling in Combine

301

 �return isAvailable ? "" : "This username is not

available"

 }

 }

 .assign(to: &$usernameMessage)

So far, so good.

For some of the server-side error scenarios, it might be worthwhile to

retry the request after a short while. For example, if the server underwent

maintenance, it might be back up again after a few seconds.

Combine includes a retry operator that we can use to automatically

retry any failing operation. Adding it to our code is a simple one-liner:

return URLSession.shared.dataTaskPublisher(for: url)

 .mapError { ... }

 .tryMap { ... }

 .retry(3)

 .map(\.data)

 .tryMap { ... }

 .map(\.isAvailable)

 .eraseToAnyPublisher()

However, as you will notice when you run the app, this will result in

any failed request to be retried three times. This is not what we want—for

example, we want any verification errors to bubble up to the view model.

Instead, they will be captured by the retry operator as well.

What’s more, there is no pause between retries. If our goal was to

reduce the pressure on a server that is already overwhelmed, we’ve made

it even worse by sending not one, but four requests (the original request,

plus three retries).

So how can we make sure that

	 1.	 We only retry certain types of failures?

	 2.	 There is a pause before we retry a failed request?

Chapter 10 Error Handling in Combine

302

Our implementation needs to be able to catch any upstream errors and

propagate them down the pipeline to the next operator. When we catch a

serverError, however, we want to pause for a moment and them start the

entire pipeline again so it can retry the URL request.

Let’s first make sure we can (1) catch all errors, (2) filter out the

serverError, and (3) propagate all other errors along the pipeline. The

tryCatch operator “handles errors from an upstream publisher by either

replacing it with another publisher or throwing a new error.” This is exactly

what we need:

return URLSession.shared.dataTaskPublisher(for: url)

 .mapError { ... }

 .tryMap { ... }

 �.tryCatch { error -> AnyPublisher<(data: Data, response:

URLResponse), Error> in // (1)

 �if case APIError.serverError(_, _, let retryAfter) = error

{ // (2)

 // ...

 }

 throw error // (3)

 }

 .map(\.data)

 .tryMap { ... }

 .map(\.isAvailable)

 .eraseToAnyPublisher()

When we catch a serverError, we want to wait for a short amount of

time and then restart the pipeline.

We can do this by firing off a new event (using the Just publisher),

delaying it for a few seconds, and then using flatMap to kick off a new

dataTaskPublisher. Instead of pasting the entire code for the pipeline

inside the if statement, we assign the dataTaskPublisher to a local

variable:

Chapter 10 Error Handling in Combine

303

let dataTaskPublisher = URLSession.shared.

dataTaskPublisher(for: url)

 .mapError { ... }

 .tryMap { ... }

return dataTaskPublisher

 �.tryCatch { error -> AnyPublisher<(data: Data, response:

URLResponse), Error> in

 if case APIError.serverError = error {

 return Just(()) // (1)

 .delay(for: 3, scheduler: DispatchQueue.global())

 .flatMap { _ in

 return dataTaskPublisher

 }

 .retry(10) // (2)

 .eraseToAnyPublisher()

 }

 throw error

 }

 .map(\.data)

 .tryMap { ... }

 .map(\.isAvailable)

 .eraseToAnyPublisher()

A couple of notes about this code:

	 1.	 The Just publisher expects some value it can

publish. Since it really doesn’t matter which value

we use, we can send anything we want. I decided

to send an empty tuple, which is often used in

situations when you mean “nothing”.

Chapter 10 Error Handling in Combine

304

	 2.	 We retry sending the request 10 times, meaning it

will be sent up to 11 times in total (the original call

plus the 10 retries).

The only reason why this number is so high is to make it easier to see

that the pipeline comes to an end as soon as the server returns a successful

result. The demo server can simulate recovering from scheduled

maintenance when you send maintenance as the username: it will throw

InternalServerError.maintenance (which is mapped to HTTP 500)

for every first and second request. Every third request, it will return a

success (i.e., HTTP 200). The best way to see this in action is to run the

server from inside Xcode (run open the server project and press the Run

button). Then, create a Sound breakpoint for the line that contains throw

InternalServerError.maintenance.

Every time the server receives a request for username=maintenance,

you will hear a sound. Now, run the sample app and enter maintenance as

the username. You will hear the server responding with an error two times,

before it will return a success.

Figure 10-3.  Setting up a sound breakpoint

Chapter 10 Error Handling in Combine

305

�Summary
After using a rather lenient approach to handle errors in the recent chapter,

we took things a lot more serious this time around.

In this chapter, we used a couple of strategies to handle errors and

expose them to the UI. Error handling is an important aspect of developer

quality software, and there is a lot of material out there. However, the

aspect of how to expose errors to the user isn’t often discussed, and I

hope this article provided you with a better understanding of how you can

achieve this.

In comparison to the original code, the code became a bit more

complicated, and this is something we’re going to address in the next

chapter when we will look at implementing your own Combine operators.

To demonstrate how this works, we will implement an operator that makes

handling incremental backoff as easy as adding one line to your Combine

pipeline!

Chapter 10 Error Handling in Combine

307

CHAPTER 11

Implementing Custom
Combine Operators
In the previous chapters, you learned how to use Combine to access the

network, handle errors, and expose any errors that might occur in a way

that’s meaningful for the users of your app.

Not surprisingly, we ended up with code that looked a bit more

complicated than what we had in the beginning. After all, properly

handling errors will take up more lines of code than not handling errors at

all (or just ignoring them).

In this chapter, we are going to improve this situation by making use

of one of Combine’s most powerful tools: operators. You’ve already used

operators in the previous chapters, and in this chapter, we’re going to take

a closer look at what they are, how they work, and—most importantly—

how refactoring our code into a custom Combine operator will make it

easier to reason about and more reusable at the same time.

�What Is a Combine Operator?
Combine defines three main concepts to implement the idea of reactive

programming:

	 1.	 Publishers

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_11

https://doi.org/10.1007/978-1-4842-8572-5_11

308

	 2.	 Subscribers

	 3.	 Operators

Publishers deliver values over time, and subscribers act on these

values as they receive them. Operators sit in the middle between

publishers and subscribers and can be used to manipulate the stream

of values.

There are a few reasons why we need operators:

–– Publishers don’t always produce events in the format that is

required by the subscriber. For example, a publisher might

emit the result of a HTTP network request, but our sub-

scriber needs a custom data structure. In this situation, we

can use an operator like map or decode to turn the output of

the publisher into the data structure the subscriber expects.

–– Publishers might produce more events than the sub-

scriber is interested in. For example, when typing a

search term, we might not be interested in every single

keystroke but only the final search term. In this situation,

we can use operators like debounce or throttle to reduce

the number of events our subscriber has to handle.

Operators help us to take the output produced by a publisher and turn

it into something that the subscriber can consume. We’ve already used a

number of built-in operators in previous chapters, for example:

–– map (and its exceptional friend, tryMap) to transform

elements

–– debounce to publish elements only after a pause between

two events

–– removeDuplicates to remove duplicate events

–– flatMap to transform elements into a new publisher

Chapter 11 Implementing Custom Combine Operators

309

�Implementing Custom Operators
Usually, when creating Combine pipelines, we will start with a publisher

and then connect a bunch of Combine’s built-in operators to process the

events emitted by the publisher. At the end of any Combine pipeline is a

subscriber that receives the events. As you saw in Chapter 10, pipelines

can become complicated quite quickly.

Technically, operators are just functions that create other publishers

and subscribers which handle the events they receive from an upstream

publisher.

This means we can create our own custom operators by extending

Publisher with a function that returns a publisher (or subscriber) that

operates on the events it receives from the publisher we use it on.

Let’s see what this means in practice by implementing a simple

operator that allows us to inspect events coming down a Combine pipeline

using Swift’s dump() function. This function prints the contents of a

variable to the console, showing the structure of the variable as a nested

tree—similar to the debug inspector in Xcode.

You might be aware of Combine’s print() operator, which works

very similarly. However, it doesn’t provide as much detail and—more

importantly—doesn’t show the result as a nested structure.

To add an operator, we first need to add an extension to the Publisher

type. As we don’t want to manipulate the events this operator receives,

we can use the upstream publisher’s types as the result types as well and

return AnypPublisher<Self.Output, Self.Failure> as the result type:

extension Publisher {

 func dump() -> AnyPublisher<Self.Output, Self.Failure> {

 }

}

Chapter 11 Implementing Custom Combine Operators

310

Inside the function, we can then use the handleEvents operator to

examine any events this pipeline processes. handleEvents has a bunch

of optional closures that get called when the publisher receives new

subscriptions, new output values, a cancellation event, when it is finished,

or when the subscriber requests more elements. As we are only interested

in new Output values, we can ignore most of the closures and just

implement the receiveOutput closure.

Whenever we receive a value, we will use Swift’s dump() function to

print the contents of the value to the console:

extension Publisher {

 func dump() -> AnyPublisher<Self.Output, Self.Failure> {

 handleEvents(receiveOutput: { value in

 Swift.dump(value)

 })

 .eraseToAnyPublisher()

 }

}

We can use this operator like any of Combine’s built-in operators. In

the following example, we attach our new operator to a simple publisher

that emits the current date:

Just(Date())

 .dump()

// prints:

▿ 2022-03-02 09:38:49 +0000
 - timeIntervalSinceReferenceDate: 667906729.659255

Chapter 11 Implementing Custom Combine Operators

311

�Implementing a Retry Operator with a Delay
Now that we’ve got a basic understanding of how to implement a simple

operator, let’s see if we can refactor the code from the previous episode.

Here is the relevant part:

return dataTaskPublisher

 �.tryCatch { error -> AnyPublisher<(data: Data, response:

URLResponse), Error> in

 if case APIError.serverError = error {

 return Just(Void())

 .delay(for: 3, scheduler: DispatchQueue.global())

 .flatMap { _ in

 return dataTaskPublisher

 }

 .print("before retry")

 .retry(10)

 .eraseToAnyPublisher()

 }

 throw error

 }

 .map(\.data)

Let’s begin by constructing an overloaded extension for the retry

operator on Publisher:

extension Publisher {

 func retry<T, E>(_ retries: Int, withDelay delay: Int)

 -> Publishers.TryCatch<Self, AnyPublisher<T, E>>

 where T == Self.Output, E == Self.Failure

 {

 }

}

Chapter 11 Implementing Custom Combine Operators

312

This defines two input parameters, retries and withDelay, which

we can use to specify how many times the upstream publisher should be

retried and how much time (in seconds) should be left between each retry.

Since we are going to use the tryCatch operator inside our new

operator, we need to use its publisher type, Publishers.TryCatch, as the

return type.

With this in place, we can now implement the body of the operator by

pasting the existing implementation:

extension Publisher {

 func retry<T, E>(_ retries: Int, withDelay delay: Int)

 -> Publishers.TryCatch<Self, AnyPublisher<T, E>>

 where T == Self.Output, E == Self.Failure

 {

 return self.tryCatch { error -> AnyPublisher<T, E> in

 return Just(Void())

 .delay(for: .init(integerLiteral: delay),

 scheduler: DispatchQueue.global())

 .flatMap { _ in

 return self

 }

 .retry(retries)

 .eraseToAnyPublisher()

 }

 }

}

You might have noticed that we removed the error check. This is

because APIError is an error type that is specific to our application. As we

are interested in making this an implementation that can be used in other

apps as well, let’s see how we can make this more flexible.

Chapter 11 Implementing Custom Combine Operators

313

�Conditionally Retrying
To make this code reusable in other contexts, let’s add a parameter for

a trailing closure that the caller can use to control whether the operator

should retry or not.

func retry<T, E>(_ retries: Int, withDelay delay: Int,

condition: ((E) -> Bool)? = nil) -> Publishers.TryCatch<Self,

AnyPublisher<T, E>> where T == Self.Output, E == Self.Failure {

 return self.tryCatch { error -> AnyPublisher<T, E> in

 if condition?(error) == true {

 return Just(Void())

 .delay(for: .init(integerLiteral: delay),

 scheduler: DispatchQueue.global())

 .flatMap { _ in

 return self

 }

 .retry(retries)

 .eraseToAnyPublisher()

 }

 else {

 throw error

 }

 }

}

If the caller doesn’t provide the closure, the operator will retry using

the parameters retries and delay.

With this in place, we can simplify the original call:

// ...

return dataTaskPublisher

 .retry(10, withDelay: 3) { error in

Chapter 11 Implementing Custom Combine Operators

314

 if case APIError.serverError = error {

 return true

 }

 return false

 }

 .map(\.data)

 // ...

�Implementing a Retry Operator
for Exponential Backoff
Now, let’s take this one step further and implement a version of the retry

operator with exponential backoff.

Exponential backoff is commonly utilised as part of rate
limiting1 mechanisms in computer systems such as web
services2, to help enforce fair distribution of access to
resources and prevent network congestion3. (Wikipedia4)

To increment the delay between two requests, we introduce a local

variable that holds the current interval and double it after each request. To

make this possible, we need to wrap the inner pipeline that kicks off the

original pipeline in a pipeline that increments the backoff variable:

func retry<T, E>(_ retries: Int,

 withBackoff initialBackoff: Int,

 condition: ((E) -> Bool)? = nil)

 -> Publishers.TryCatch<Self, AnyPublisher<T, E>>

 where T == Self.Output, E == Self.Failure

{

1 https://en.wikipedia.org/wiki/Ratelimiting
2 https://en.wikipedia.org/wiki/Web_service
3 https://en.wikipedia.org/wiki/Networkcongestion
4 https://en.wikipedia.org/wiki/Exponential_backoff

Chapter 11 Implementing Custom Combine Operators

https://en.wikipedia.org/wiki/Ratelimiting
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Networkcongestion
https://en.wikipedia.org/wiki/Exponential_backoff

315

 return self.tryCatch { error -> AnyPublisher<T, E> in

 if condition?(error) ?? true {

 var backOff = initialBackoff

 return Just(Void())

 .flatMap { _ -> AnyPublisher<T, E> in

 let result = Just(Void())

 .delay(for: .init(integerLiteral: backOff),

 scheduler: DispatchQueue.global())

 .flatMap { _ in

 return self

 }

 backOff = backOff * 2

 return result.eraseToAnyPublisher()

 }

 .retry(retries - 1)

 .eraseToAnyPublisher()

 }

 else {

 throw error

 }

 }

}

To use exponential backoff only for certain kinds of errors, we can

implement the closure to inspect the error, just like before. Here is a code

snippet that shows how to use incremental backoff with an initial interval

of 3 seconds for any APIError.serverError:

return dataTaskPublisher

 .retry(2, withBackoff: 3) { error in

 if case APIError.serverError(_, _, _) = error {

 return true

 }

Chapter 11 Implementing Custom Combine Operators

316

 else {

 return false

 }

 }

 // ...

To use exponential backoff regardless of the error, this becomes even

more compact:

return dataTaskPublisher

 .retry(2, withIncrementalBackoff: 3)

 // ...

�Summary
Combine is a very powerful framework that allows us to put together very

efficient data and event processing pipelines for our apps.

In this chapter, you learned how to refactor your existing Combine

pipelines into reusable Combine operators, making your code more

readable.

Chapter 11 Implementing Custom Combine Operators

317

CHAPTER 12

Wrapping Existing
APIs in Combine
Apple provides Combine publishers for many of their APIs, making it easy

for us to integrate those APIs in our Combine pipelines. However, there are

many APIs that don’t support Combine even though they produce events

over time. Thankfully, Apple gives us the tools we need to wrap APIs in

Combine publishers and make them accessible to Combine pipelines.

In this chapter, I’m going to walk you through the process of wrapping

existing APIs using Combine.

�A Case Study
We’re going to use a Firebase API as a case study. Firebase is a backend

as a service (BaaS) that provides a whole range of services that make

developing apps easier. For example, it provides an authentication service

(Firebase Authentication), a document-based NoSQL database (Cloud

Firestore), a service for storing large files in the cloud (Cloud Storage), a

crash reporting service (Crashlytics), and much more.1

1 https://firebase.google.com/

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_12

https://firebase.google.com/
https://doi.org/10.1007/978-1-4842-8572-5_12

318

Most of Firebase’s APIs are asynchronous, meaning that whenever

you make a call, it will get sent to one of the Firebase backend services,

where it will be processed. Once the result is ready, it will be returned to

the client SDK, and your code will be called back. There are multiple ways

to asynchronously call Firebase services: completion handlers, Combine,

and async/await. I’ve written about this before in Calling asynchronous

Firebase APIs from Swift - Callbacks, Combine, and async/await2—and also

published a video about this topic3 as well.

For this chapter, we will take two methods from Cloud Firestore and

turn them into Combine publishers. Cloud Firestore is a horizontally

scaling document-based NoSQL database in the cloud. Similar to

CloudKit,4 but as a truly cross-platform solution: you can access Cloud

Firestore from iOS, Android, the Web, and via a REST API.5 Data stored in

Firestore is organized in documents—a document is like a Swift struct:

it can have any number of fields of different data types. Documents are

organized in collections, and documents can contain subcollections,

allowing you to build nested data structures.

The Firestore SDK provides methods to access data in single

documents and collections. For example, here is a code snippet that shows

how to fetch data from a collection of Firestore documents and map them

to an array of Swift structs using Swift’s Codable API:

db.collection("books").getDocuments { querySnapshot, error in

 guard let documents = querySnapshot?.documents else {

 return

 }

2 https://peterfriese.dev/posts/firebase-async-calls-swift/
3 https://youtu.be/j5htIyxmmzA
4 https://developer.apple.com/icloud/cloudkit/
5 https://firebase.google.com/docs/firestore/use-rest-api

Chapter 12 Wrapping Existing APIs in Combine

https://peterfriese.dev/posts/firebase-async-calls-swift/
https://youtu.be/j5htIyxmmzA
https://developer.apple.com/icloud/cloudkit/
https://firebase.google.com/docs/firestore/use-rest-api

319

 �let books = documents.compactMap { [weak self]

queryDocumentSnapshot in

 let result = Result {

 try queryDocumentSnapshot.data(as: Book.self)

 }

 switch result {

 case .success(let book):

 return book

 case .failure(let error):

 return nil

 }

 }

 print(books.count)

}

In addition to being able to fetch data on demand, Firestore also

supports real-time live sync. This means your app will receive updates for

any document or collection of document it subscribes to in real time. This

is a great feature for any app that allows users to share data with other users

(e.g., a chat app), or with the user’s other devices (e.g., a to-do list app that

you can use on your iPhone, iPad, an Mac and in a web application).

To receive updates, you register a snapshot listener for a specific

document or collection of documents. Whenever the document or one of the

documents in the collection is updated or deleted, or a document is inserted

into the collection, Firestore will trigger the snapshot listener, and you will

receive the update in the closure of the listener. The following code snippet

shows how to receive updates for any changes on a collection of books:

db.collection("books")

 .addSnapshotListener { [weak self] (querySnapshot, error) in

 guard let documents = querySnapshot?.documents else {

 return

 }

Chapter 12 Wrapping Existing APIs in Combine

320

 �self?.books = documents.compactMap {

queryDocumentSnapshot in

 let result = Result {

 try queryDocumentSnapshot.data(as: Book.self)

 }

 switch result {

 case .success(let book):

 return book

 case .failure(let error):

 return nil

 }

 }

 }

The sample code for this chapter is an application that demonstrates how

to use both the closure-based APIs and the Combine-based version that we

build in this chapter. Note that the Firebase SDK for Apple platforms includes

experimental support for Combine—you can use this in your own apps by

importing the respective modules. This chapter is intended to explain how the

Firebase team implemented this Combine support.

In order to run the sample application, follow these steps:

	 1.	 Create a new Firebase projects via the Firebase console.6

	 2.	 Add your Xcode project to the Firebase project.

	 3.	 Download the GoogleService-Info.plist file and

add it to your project.

	 4.	 Install the local Firebase Emulator Suite.7

	 5.	 Run the Firebase Emulator Suite by executing start.sh

in the root of the sample project.

6 https://console.firebase.google.com
7 https://firebase.google.com/docs/emulator-suite/install_and_configure

Chapter 12 Wrapping Existing APIs in Combine

https://console.firebase.google.com
https://firebase.google.com/docs/emulator-suite/install_and_configure

321

	 6.	 Launch the iOS app on a Simulator (so it can attach

to the Emulator).

The start.sh script will make sure to populate the Firebase Emulator

with some seed data so you can fetch data from Firestore.

Once the application has started, go into one of the menu items that

use a snapshot listener for live syncing. Then, open the Emulator console

at http://localhost:4000/firestore and make changes to the Firestore

documents. Once you commit a change in the Emulator UI, observe how

the data immediately updates in the app’s UI.

�Using Combine to Access Firestore
Let’s now look at how we can make the data we receive from Firestore

accessible from Combine. A common reason for doing this is to transform

the data and combine it with events we receive from other Combine

publishers, for example, the filter criteria on a search/filter dialog.

Figure 12-1.  Making changes in the Firebase Emulator UI will reflect
in the app’s UI as soon as you you click on Save

Chapter 12 Wrapping Existing APIs in Combine

322

�Using View Models and Published Properties
An easy and rather common way to feed data into a Combine pipeline is to

create a published property in a view model. You might have seen this in

many of the code samples on my blog8 or in the Firebase Quick Starts.9

In code, this looks as follows:

private class BookListViewModel: ObservableObject {

 @Published var books = [Book]()

 @Published var errorMessage: String?

8 https://peterfriese.dev/
9 https://github.com/firebase/quickstart-ios/tree/master/firestore

Figure 12-2.  Conceptual overview of the app’s architecture

Chapter 12 Wrapping Existing APIs in Combine

https://peterfriese.dev/
https://github.com/firebase/quickstart-ios/tree/master/firestore

323

 private var db = Firestore.firestore()

 private var listenerRegistration: ListenerRegistration?

 public func unsubscribe() {

 if listenerRegistration != nil {

 listenerRegistration?.remove()

 listenerRegistration = nil

 }

 }

 func subscribe() {

 if listenerRegistration == nil {

 listenerRegistration = db.collection("books")

 �.addSnapshotListener { [weak self] (querySnapshot,

error) in

 guard let documents = querySnapshot?.documents else {

 self?.errorMessage =

 "No documents in 'books' collection"

 return

 }

 �self?.books = documents.compactMap {

queryDocumentSnapshot in

 let result = Result {

 try queryDocumentSnapshot.data(as: Book.self)

 }

 switch result {

 case .success(let book):

 �// Value successfully initialized from

// DocumentSnapshot

 self?.errorMessage = nil

 return book

Chapter 12 Wrapping Existing APIs in Combine

324

 case .failure(let error):

 �// Value could not be initialized from

// DocumentSnapshot

 self?.errorMessage =

 "\(error.localizedDescription)"

 return nil

 }

 }

 }

 }

 }

}

By conforming BookListViewModel to ObservableObject and marking

the books property with the @Published property wrapper, we can connect

a SwiftUI List view to the property and make sure the UI updates whenever

we receive an update.

struct LiveBooksListViewWithClosures: View {

 @StateObject private var viewModel = BookListViewModel()

 var body: some View {

 List(viewModel.books) { book in

 Text(book.title)

 }

 .onAppear {

 viewModel.subscribe()

 }

 .onDisappear {

 viewModel.unsubscribe()

 }

 }

}

Chapter 12 Wrapping Existing APIs in Combine

325

With just a few lines of code, we’ve build a UI that will automatically

refresh whenever someone makes a change to the data—no matter if this

change happens on the frontend or on the backend.

But we can do more! For example, let’s say we wanted to display the

number of books, making sure this number is updated on the UI as people

add new books to the books collection in Cloud Firestore.

Remember that a published property exposes a Combine publisher.

We can access this publisher via the property’s projected value—in this

case, $books. This allows us to create a Combine pipeline to determine the

number of books. Using the assign(to:) subscriber, we can then assign

the result to another publisher which we can connect to the UI to show an

always-up-to-date number. A good place to set up Combine pipelines like

this is in the view model’s initializer.

private class BookListViewModel: ObservableObject {

 @Published var books = [Book]()

 @Published var numberOfBooks = 0

 ...

 init() {

 $books.map { books in

 books.count

 }

 .assign(to: &$numberOfBooks)

 }

 ...

}

�Using Combine to Wrap APIs
This is the most commonly used approach for integrating data sources in

SwiftUI apps that make use of Combine, and it works really well. However,

it is rather verbose and requires a lot of boilerplate.

Chapter 12 Wrapping Existing APIs in Combine

326

Instead of explicitly setting up a snapshot listener, let’s see if we

can wrap the code in a Combine publisher so we can call it in a more

declarative way.

Looking at the code we’ve discussed so far, we can see we’ve got two

different kinds of calls:

–– Fetching a single document, all documents of a

collection, or the results of a query are so-called

single-shot calls: we make the call to fetch a document

(or all documents in a collection/query) and then use

the callback handler to receive the result of the call.

–– Listening to updates on a single document, a

collection, or a query is different: instead of receiving

the result of the call just once, we will receive a new

snapshot every time there has been an update. We’re

receiving a stream of updates. This sounds very similar

to Combine’s definition:

The Combine framework provides a declarative Swift API for
processing values over time.10

Let’s see if we can implement our own publishers to handle these

streams of events!

However, Apple actively discourages developers from implementing

their own publishers using Combine’s low-level primitives (such as

Publisher, Subscription, and Subscriber).

10 https://developer.apple.com/documentation/combine

Chapter 12 Wrapping Existing APIs in Combine

https://developer.apple.com/documentation/combine

327

�Creating Your Own Publishers
Rather than implementing the Publisher11 protocol yourself, you can

create your own publisher by using one of several types provided by the

Combine framework:

–– Use a concrete subclass of Subject,12 such as

PassthroughSubject,13 to publish values on demand

by calling its send(_:)14 method.

–– Use a CurrentValueSubject15 to publish whenever you

update the subject’s underlying value.

–– Add the @Published annotation to a property of one of

your own types. In doing so, the property gains a

publisher that emits an event whenever the property’s

value changes. See the Published16 type for an example

of this approach.

So instead of building publishers from scratch, let’s follow Apple’s

advice and create our custom publishers using Combine’s higher-level

building blocks like PassthroughSubject and Future.

11 https://developer.apple.com/documentation/combine/published
12 https://developer.apple.com/documentation/combine/subject
13 https://developer.apple.com/documentation/combine/passthroughsubject
14 https://bit.ly/3BMDSC6
15 https://bit.ly/3vDdIOq
16 https://developer.apple.com/documentation/combine/published

Chapter 12 Wrapping Existing APIs in Combine

https://developer.apple.com/documentation/combine/published
https://developer.apple.com/documentation/combine/subject
https://developer.apple.com/documentation/combine/passthroughsubject
https://bit.ly/3BMDSC6
https://bit.ly/3vDdIOq
https://developer.apple.com/documentation/combine/published

328

�Using PassthroughSubject to Wrap
Snapshot Listeners
To make integrating with existing code easier, Combine includes the

Subject protocol. Subjects are a special kind of publisher that allow

outside callers to inject events into a Combine pipeline. The Subject

protocol defines a send(_:) method that can be used to send specific

values to the pipeline.

There are two types of built-in Subjects in Combine:

CurrentValueSubject and PassthroughSubject. The main difference

between them is that CurrentValueSubject remembers the most recently

published element, whereas PassthroughSubject doesn’t keep track of the

values it passes on.

Subjects are particularly useful for adapting existing imperative code

to Combine. In our case, we don’t need to keep track of the most recently

sent event, so we can use PassthroughSubject to create custom publishers

for Firebase APIs that send a continuous stream of events, such as a

Firestore snapshot listener.

Let’s take a look at the steps required to implement a custom

Combine publisher for a snapshot listener on a Firestore collection or a

Firestore query.

We will implement this as an extension on Query. Since

CollectionReference extends the Query interface, the publisher will work

for Firestore collections and queries alike:

public extension Query {

 func snapshotPublisher(includeMetadataChanges: Bool = false)

 -> AnyPublisher<QuerySnapshot, Error>

 {

 ...

 �addSnapshotListener(includeMetadataChanges:

includeMetadataChanges) { snapshot, error in

Chapter 12 Wrapping Existing APIs in Combine

329

 ...

 }

 ...

 }

}

This code fragment adds a method to the Query interface, which

returns an AnyPublisher that is generic over a QuerySnapshot and an

Error type. Inside the method, we call the original addSnapshotListener

method, which takes a closure that we need to implement in order to

handle the result of the call. As discussed earlier, the closure will be called

whenever the collection or query we’re observing is changed (e.g., by

adding, changing, or deleting a document). The snapshot parameter of

the closure will contain a snapshot of all the documents in the collection

or the query. If an error occurs, this will be communicated via the error

parameter.

To inject the result of the closure into a Combine pipeline, we

need to set up a PassthroughSubject and return it to the caller of

snapshotPublisher:

public extension Query {

 func snapshotPublisher(includeMetadataChanges: Bool = false)

 -> AnyPublisher<QuerySnapshot, Error>

 {

 let subject = PassthroughSubject<QuerySnapshot, Error>()

 �addSnapshotListener(includeMetadataChanges:

includeMetadataChanges) { snapshot, error in

 ...

 }

 return subject.eraseToAnyPublisher()

 }

}

Chapter 12 Wrapping Existing APIs in Combine

330

By erasing the type of the subject, we make sure the return type of the

snapshotPublisher method stays clean.

Finally, inside the closure, we can use the PassthroughSubject to send

events to our subscribers. There are two cases we need to cover: when

receiving a snapshot, we can send this to the subject. Should there be an

error, we’ll have to send a failure to the subject to signal to Combine that

the pipeline should be cancelled.

public extension Query {

 func snapshotPublisher(includeMetadataChanges: Bool = false)

 -> AnyPublisher<QuerySnapshot, Error>

 {

 let subject = PassthroughSubject<QuerySnapshot, Error>()

 �addSnapshotListener(includeMetadataChanges:

includeMetadataChanges) { snapshot, error in

 if let error = error {

 subject.send(completion: .failure(error))

 } else if let snapshot = snapshot {

 subject.send(snapshot)

 }

 }

 return subject.eraseToAnyPublisher()

 }

}

This is looking good so far, but there is one last detail we need to take

care of. When calling addSnapshotListener, we receive a handle that

we can later use to remove the snapshot listener. You should remove any

Firestore snapshot listeners when you’re no longer interested in listening

to a query or collection.

But how can we store and manage the snapshot listener handle inside

the snapshotPublisher method? It turns out, we can make use of Combine’s

handleEvents operator. This operator allows us to listen to the life-cycle

Chapter 12 Wrapping Existing APIs in Combine

331

events of a Combine pipeline, for example, when the pipeline is cancelled.

So we can store the snapshot listener handle in a local variable and later use

it to remove the snapshot listener once the pipeline is cancelled.

public extension Query {

 func snapshotPublisher(includeMetadataChanges: Bool = false)

 -> AnyPublisher<QuerySnapshot, Error>

 {

 let subject = PassthroughSubject<QuerySnapshot, Error>()

 let listenerHandle =

 �addSnapshotListener(includeMetadataChanges:

includeMetadataChanges) { snapshot, error in

 if let error = error {

 subject.send(completion: .failure(error))

 } else if let snapshot = snapshot {

 subject.send(snapshot)

 }

 }

 return

 subject

 .handleEvents(receiveCancel: listenerHandle.remove)

 .eraseToAnyPublisher()

 }

}

And this is how you can adapt an existing API to Combine!

Let’s update the previous code sample to make use of the new publisher:

private class BookListViewModel: ObservableObject {

 @Published var books = [Book]()

 @Published var errorMessage: String?

 private var db = Firestore.firestore()

 private var cancellable: AnyCancellable?

Chapter 12 Wrapping Existing APIs in Combine

332

 func subscribe() {

 cancellable = db.collection("books").snapshotPublisher()

 .tryMap { querySnapshot in

 �try querySnapshot.documents.compactMap {

documentSnapshot in

 try documentSnapshot.data(as: Book.self)

 }

 }

 .replaceError(with: [Book]())

 .handleEvents(receiveCancel: {

 print("Cancelled")

 })

 .assign(to: \.books, on: self)

 }

 func unsubscribe() {

 cancellable?.cancel()

 }

}

�Using Future to Implement One-Time Fetching
from Firestore
Effortless real-time sync is one of the key features of Firestore, but it’s

not always necessary or appropriate to get real-time updates. Often, it is

sufficient to fetch data on demand. Firestore supports fetching data (either

a single document, a collection, or a query) once, and you saw an example

for this in the beginning of this chapter.

How can this be implemented in Combine? We essentially want to

make a request, wait until it is finished, and then send the result into a

Combine pipeline.

Chapter 12 Wrapping Existing APIs in Combine

333

This is exactly what Futures are there for. A Future is a Publisher that

“eventually produces a single value and then finishes or fails.”17

Let’s use a Future to create a single-shot publisher to get a single

document from Firestore. This time, we will create an extension on

DocumentReference:

extension DocumentReference {

 func getDocument(source: FirestoreSource = .default)

 -> Future<DocumentSnapshot, Error>

 {

 ...

 self.getDocument(source: source) { snapshot, error in

 ...

 }

 ...

 }

}

Just like every other publisher, Futures are generic over a value and an

error type. In our case, the value type is a DocumentSnapshot. You might be

wondering why we return a Future instead of an AnyPublisher. Futures

have some special properties that set them apart from other publishers.

For example, Futures will fire immediately. A normal publisher will only

fire if there is a subscriber. To make this transparent to the caller, we

explicitly return a Future instead of type erasing to AnyPublisher.

Let’s now wrap the call to the closure-based getDocument method

inside a Future:

extension DocumentReference {

 func getDocument(source: FirestoreSource = .default)

 -> Future<DocumentSnapshot, Error>

17 https://developer.apple.com/documentation/combine/future

Chapter 12 Wrapping Existing APIs in Combine

https://developer.apple.com/documentation/combine/future

334

 {

 Future { promise in

 self.getDocument(source: source) { snapshot, error in

 ...

 }

 }

 }

}

The code in the closure will be called when Firestore returns either

an error or a document snapshot. The promise parameter of the Future’s

closure can be used to communicate with the caller:

extension DocumentReference {

 func getDocument(source: FirestoreSource = .default)

 -> Future<DocumentSnapshot, Error>

 {

 Future { promise in

 self.getDocument(source: source) { snapshot, error in

 if let error = error {

 promise(.failure(error))

 } else if let snapshot = snapshot {

 promise(.success(snapshot))

 }

 }

 }

 }

}

We check to see if we received a snapshot or an error and call the

promise accordingly. This might look familiar, as it resembles the code

we wrote for snapshotPublisher earlier, but I’d like to call out that the

promise expects a Result type, so .failure and .success are cases on the

Result type.

Chapter 12 Wrapping Existing APIs in Combine

335

And with that, we’ve successfully adapted the closure-based Firestore

API for fetching a single document for Combine by wrapping it in a Future.

Here is how you can call it to fetch a document and map it to a custom

Swift struct using our new single-shot Combine publisher:

private class BookListViewModel: ObservableObject {

 @Published var book = Book.empty

 private var db = Firestore.firestore()

 func fetchBook() {

 db.collection("books").document("hitchhiker").getDocument()

 .tryMap { documentSnapshot in

 try documentSnapshot.data(as: Book.self)

 }

 .replaceError(with: Book.empty)

 .assign(to: &$book)

 }

}

�Summary
Apple has done a great job providing Combine publishers for many of

their own APIs, but for third-party APIs, we might need to do this work

ourselves.

In this chapter, we discussed a couple of approaches we can take to

adapt existing imperative code to Combine:

–– You saw how you can implement an ObservableObject

with a @Published property to expose data via a pub-

lisher. This not only allows us to connect SwiftUI views

to the published property, but it also enables us to

connect a Combine pipeline to the published property.

Chapter 12 Wrapping Existing APIs in Combine

336

–– It’s also possible to create custom publishers using

Combine’s low-level primitives (such as Publisher,

Subscription, and Subscriber). However, Apple

explicitly discourages developers from doing so, as this

approach requires us to manage back pressure

ourselves.

–– Instead, Apple recommends using convenience pub-

lishers like PassthroughSubject and Future to imple-

ment custom publishers, and we had an in-depth look

at how to wrap an existing, closure-based API using this

approach.

Which approach you use depends on your use case—using a view

model might be the most practical and efficient way in most situations.

However, if you’re an SDK provider, you should definitely consider

implementing Combine publishers for your API. This is what we did

at Firebase: we implemented Combine publishers for most of the

asynchronous Firebase APIs using PassthroughSubject and Future.

Chapter 12 Wrapping Existing APIs in Combine

337

CHAPTER 13

Combine Schedulers
and SwiftUI
By default, any code that you run in response to a UI event in SwiftUI will

run on the main thread. Since a lot of our code deals with updating other

UI elements in response to some user interaction, this is fine in most cases.

For example, you might want to validate the user’s input to make sure they

filled out all required fields of a multistep form. This is a memory-bound

process that runs fast enough to be executed on the main thread without

causing any issues.

However, once you want to perform more complex computations or

need to access local storage, the network, or any API that has a higher

latency than accessing the local memory, you risk blocking the UI if you

execute this code on the main thread.

Blocking the UI leads to all sorts of issues: the UI of your application

becomes unresponsive, animations will start to stutter, and eventually your

users will become unhappy and start leaving negative reviews on the App

Store or start complaining about it on Twitter.

This is why you should offload any long-running pieces of code to a

background thread. While your code runs in the background, the main

thread is free for handling UI events. The user can continue using the

app until the background process eventually finishes. Some of these

background processes might have a result that you might want to display

on the UI. However, since UI updates need to happen on the main thread,

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_13

https://doi.org/10.1007/978-1-4842-8572-5_13

338

you will need to switch back to the main thread before you can update the

UI with the results you received on the background thread.

Combine provides an elegant and declarative mechanism for controlling

where the individual parts of a pipeline run. This mechanism is built on the

concept of schedulers, which help us reason about where our code should

be executed without having to directly deal with the intricacies of threads.

In this chapter, you will learn how to use this mechanism effectively to

help you build apps that make better use of the system’s resources so that

your apps’ UI stays responsive.

�What Is a Scheduler
Combine uses Scheduler as an abstraction that allows us to specify when

and where our code is run, so we don’t have to work directly with threads.

According to Apple’s documentation, Scheduler, is a protocol that defines

when and how to execute a closure1.

The Scheduler protocol itself defines a number of methods that allow

callers to run code immediately, or at a future date and time:

public protocol Scheduler {

 /// Describes an instant in time for this scheduler.

 associatedtype SchedulerTimeType : Strideable where

 Se�lf.SchedulerTimeType.Stride :

SchedulerTimeIntervalConvertible

 /// A type that defines options accepted by the scheduler.

 ///

 /// This type is freely definable by each `Scheduler`.

 /// Typically, operations that take a `Scheduler` parameter

 /// will also take `SchedulerOptions`.

1 https://developer.apple.com/documentation/combine/scheduler

Chapter 13 Combine Schedulers and SwiftUI

https://developer.apple.com/documentation/combine/scheduler

339

 associatedtype SchedulerOptions

 /// This scheduler’s definition of the current

 /// moment in time.

 var now: Self.SchedulerTimeType { get }

 /// The minimum tolerance allowed by the scheduler.

 var minimumTolerance: Self.SchedulerTimeType.Stride { get }

 /// Performs the action at the next possible opportunity.

 func schedule(options: Self.SchedulerOptions?,

 _ action: @escaping () -> Void)

 /// Performs the action at some time after the specified date.

 func schedule(after date: Self.SchedulerTimeType,

 tolerance: Self.SchedulerTimeType.Stride,

 options: Self.SchedulerOptions?,

 _ action: @escaping () -> Void)

 /// Performs the action at some time after the specified

 /// date, at the specified frequency, optionally taking into

 /// account tolerance if possible.

 func schedule(after date: Self.SchedulerTimeType,

 interval: Self.SchedulerTimeType.Stride,

 tolerance: Self.SchedulerTimeType.Stride,

 options: Self.SchedulerOptions?,

 _ action: @escaping () -> Void) -> Cancellable

}

Different schedulers implement this time-keeping aspect differently,

using the associated type SchedulerTimeType. This associated type needs

to conform to SchedulerTimeIntervalConvertible, which is a means to

express relative time.

Let’s look at some of the schedulers that you will run into when using

Combine and discuss when to use them.

Chapter 13 Combine Schedulers and SwiftUI

340

�Types of Schedulers
Here are the schedulers that are most relevant when working with SwiftUI:

–– ImmediateScheduler is the default scheduler which

will be used if you don’t specify any other scheduler. It

will execute code immediately on the same thread that

triggered the pipeline. We will discuss this scheduler in

more detail in the next section.

–– RunLoop is a scheduler which you will see being used

quite often. It performs work on a specific run loop.

–– DispatchQueue allows us to execute code on specific

dispatch queues. The most commonly used ones are

the main dispatch queue and the background dispatch

queues (you can specify different quality of service

classes, ranging from background to userInteractive),

but you can create your own dispatch queues as well,

and configure them according to your needs.

So which Scheduler should you be using?

The most commonly used schedulers that are being used in the

context of SwiftUI are RunLoop and DispatchQueue. Although they seem to

be very similar (see Philippe Hausler’s answer on the Swift forums2), there

is one difference that is relevant for any Combine pipeline that needs to

schedule code that runs on the main thread for accessing the UI.

As explained in this StackOverflow answer3, a Combine pipeline will

not deliver events while the user is dragging or touching the UI when

using RunLoop. When using DispatchQueue as the scheduler, however, the

pipeline will deliver events.

2 https://forums.swift.org/t/runloop-main-or-dispatchqueue-main-when-
using-combine-scheduler/26635/2
3 https://stackoverflow.com/a/61107764/281221

Chapter 13 Combine Schedulers and SwiftUI

https://forums.swift.org/t/runloop-main-or-dispatchqueue-main-when-using-combine-scheduler/26635/2
https://forums.swift.org/t/runloop-main-or-dispatchqueue-main-when-using-combine-scheduler/26635/2
https://stackoverflow.com/a/61107764/281221

341

So if you want to make sure your Combine pipelines continue to

deliver events even if the user is interacting with the UI of your app (such

as scrolling a list, tapping on buttons, or dragging elements across the

screen), you should use DispatchQueue.

�Default Behavior
If you don’t explicitly tell Combine how to schedule your code, it will

default to running your code on the same thread as the event that triggered

the pipeline. When using Combine in SwiftUI, most of your pipelines will

subscribe to a published property on one of your view models. SwiftUI

runs on the main thread, so any events that originate on the UI will be sent

from the main thread.

In the following example, we change the value of a published property

in response to a button click. The closure that handles the button click

runs on the main thread, so the Combine pipeline in the view model will

run on the main thread as well.

class ViewModel: ObservableObject {

 @Published var demo = false

 private var cancellables = Set<AnyCancellable>()

 init() {

 $demo

 .sink { value in

 print("Main thread: \(Thread.isMainThread)")

 }

 .store(in: &cancellables)

 }

}

Chapter 13 Combine Schedulers and SwiftUI

342

struct DemoView: View {

 @StateObject var viewModel = ViewModel()

 var body: some View {

 Button("Toggle from main thread") {

 viewModel.demo.toggle()

 }

 .buttonStyle(.action)

 }

}

When you run this code4 and click the button, you will see the

following output, which confirms that SwiftUI sends events on the

main thread:

Main thread: true

This scheduling behavior is caused by Combine’s default scheduler,

ImmediateScheduler. It will execute code immediately on the current

thread. So if you send an event from a background thread, the pipeline will

run on that specific background thread as well. Let’s make a small change

to our example and wrap the code that changes the published property in

a call to DispatchQueue.global().async { }. As a result, the Combine

pipeline will run on the same background thread.

class ViewModel: ObservableObject {

 @Published var demo = false

 private var cancellables = Set<AnyCancellable>()

 init() {

4 The code (in a slightly enhanced form) is available in
UpdatePublishedPropertyView.swift in the source code sample accompanying
this chapter in the source code repo for this book.

Chapter 13 Combine Schedulers and SwiftUI

343

 $demo

 .sink { value in

 print("Main thread: \(Thread.isMainThread)")

 }

 .store(in: &cancellables)

 }

}

struct DemoView: View {

 @StateObject var viewModel = ViewModel()

 var body: some View {

 Button("Toggle from main thread") {

 DispatchQueue.global().async {

 viewModel.demo.toggle()

 }

 }

 .buttonStyle(.action)

 }

}

Running this code and clicking the button result in the

following output:

2022-05-14 12:19:32.093826+0200

SwiftUICombineSchedulers[41912:2513626] [SwiftUI] Publishing

changes from background threads is not allowed; make sure

to publish values from the main thread (via operators like

receive(on:)) on model updates.

Main thread: false

Chapter 13 Combine Schedulers and SwiftUI

344

This default behavior works well for most cases. For example, if you

want to validate the user’s input, this can usually run on the main thread,

as you’ll be combining several pieces of UI state into the isValid state of

the input form.

However, as soon as you need to access the network (or any other

asynchronous data source), things become more complicated, and you

will want to run parts of the pipeline on a background thread before

coming back to the main thread to update the UI.

One approach for switching threads is to explicitly use DispatchQueue

and its methods to switch between the main queue (DispatchQueue.main)

and one of the global background queues (DispatchQueue.global()) or a

queue you create and manage yourself.

�Switching Schedulers
Using explicit calls to switch to the most appropriate DispatchQueue

certainly works, but this approach will lead to rather verbose code.

Wouldn’t it be much nicer if there was a declarative way to make sure

the individual parts of your pipelines run on the appropriate thread?

Combine provides a number of operators that allows us to switch

between threads by declaring which scheduler to use.

The most important one is receive(on:), which you will find yourself

using a lot, especially when accessing the network: it allows us to tell

Combine which scheduler to use when receiving events in our subscribers,

such as sink or assign.

Another key operator for scheduling is subscribe(on:)—we can use

it to specify which scheduler Combine should use when subscribing to an

upstream publisher.

Other operators that affect which schedulers are used in our pipelines

include debounce, throttle, and delay.

Chapter 13 Combine Schedulers and SwiftUI

345

In the following sections, we’ll explore how those operators affect the

progression of a Combine pipeline that receives an event from a SwiftUI

event handler. We’ll use the following publisher to simulate a piece of code

that performs a long-running computation5:

func performWork() -> AnyPublisher<Bool, Never> {

 �print("[performWork:start] isMainThread: \(Thread.

isMainThread)")

 return Deferred {

 Future { promise in

 �print("[performWork:Future:start] isMainThread:

\(Thread.isMainThread)")

 sleep(5)

 �print("[performWork:Future:finished] isMainThread:

\(Thread.isMainThread)")

 promise(.success(true))

 }

 }

 .eraseToAnyPublisher()

}

Since Futures will run their closure immediately without waiting for a

subscriber to be attached, we need to wrap it inside a Deferred publisher.

Doing so ensures the code in the closure will only be executed once we

connect a subscriber, which allows us to influence which scheduler this

publisher will use.

5 See SchedulerDemoViewModel.swift in the sample project for this chapter.

Chapter 13 Combine Schedulers and SwiftUI

346

�Controlling Upstream Publishers Using
subscribe(on:)
By using the subscribe(on:) operator, you can control on which dispatch

queue the upstream publisher runs on.

This is useful if you want to make sure the publisher runs on

a background thread. Instead of wrapping your code in a call to

DispatchQueue.global().async { }, you can add a call to receive(on:).

This declarative approach will make your code easier to read and

reason about.

The subscribe(on:) operator specifies the scheduler that is used to

perform the subscribe, cancel, and request operations of the upstream

publisher.

In the following code snippet,6 we make sure the publisher in

performWork() runs on a background thread by adding a call to

subscribe(on: DispatchQueue.global(qos: .background) to the

pipeline:

func start() {

 �print("[start:at beginning] isMainThread: \(Thread.

isMainThread)")

 self.performWork()

 .handleEvents(receiveSubscription: { sub in

 p�rint("[receiveSubscription] isMainThread: \(Thread.

isMainThread)")

 }, receiveOutput: { value in

 �print("[receiveOutput] isMainThread: \(Thread.

isMainThread)")

 }, receiveCompletion: { completion in

6 See LaunchOnBackgroundViewModels.swift in the sample project for this
chapter.

Chapter 13 Combine Schedulers and SwiftUI

347

 �print("[receiveCompletion] isMainThread: \(Thread.

isMainThread)")

 }, receiveCancel: {

 �print("[receiveCancel] isMainThread: \(Thread.

isMainThread)")

 }, receiveRequest: { demand in

 �print("[receiveRequest] isMainThread: \(Thread.

isMainThread)")

 })

 .map { value -> Bool in

 print("[map 1] isMainThread: \(Thread.isMainThread)")

 return value

 }

 .subscribe(on: DispatchQueue.global(qos: .background))

 .map { value -> Int in

 print("[map 2] isMainThread: \(Thread.isMainThread)")

 return self.times + 1

 }

 .sink { value in

 print("[sink] isMainThread: \(Thread.isMainThread)")

 self.times = value

 }

 .store(in: &self.cancellables)

 print("[start:at end] isMainThread: \(Thread.isMainThread)")

}

When calling this code from the main thread (e.g., from inside a

Button’s action handler), you will see the following output on the console:

Chapter 13 Combine Schedulers and SwiftUI

348

[start:at beginning] isMainThread: true

[performWork:start] isMainThread: true

[start:at end] isMainThread: true

[performWork:Future:start] isMainThread: false

[performWork:Future:finished] isMainThread: false

[receiveSubscription] isMainThread: false

[receiveRequest] isMainThread: false

[receiveOutput] isMainThread: false

[map 1] isMainThread: false

[map 2] isMainThread: false

[sink] isMainThread: false

2022-05-10 09:59:07.514607+0200

SwiftUICombineSchedulers[80945:27603444] [SwiftUI] Publishing

changes from background threads is not allowed; make sure

to publish values from the main thread (via operators like

receive(on:)) on model updates.

[receiveCompletion] isMainThread: false

As you can see, the call originates on the main thread, but then

execution switches to a background thread. As a result, the publisher will

be executed on a background thread, freeing the main thread for other UI-

related work.

As mentioned before, calling subscribe(on:) will impact the upstream

publisher. However, the rest of the pipeline will also be executed using the

scheduler you specified, which is the reason why SwiftUI issues a runtime

warning saying we shouldn’t update the UI from a background thread.

Remember, all UI updates should be performed from the main thread.

Chapter 13 Combine Schedulers and SwiftUI

349

�Controlling Downstream Subscribers Using
receive(on:)
By using the receive(on:) operator, you can influence which scheduler

Combine will use for all downstream operators and subscribers.

This is useful for making sure the subscribers of a Combine pipeline

run on the main thread—for example, when assigning values to a

published property that is connected to a SwiftUI view: making any

changes to this property will result in a UI update and thus needs to

happen on the main thread.

Let’s update the previous code snippet by adding a call to

.receive(on: DispatchQueue.main) right before the sink operator:

override func start() {

 �print("[start:at beginning] isMainThread: \(Thread.

isMainThread)")

 self.performWork()

 .handleEvents(receiveSubscription: { sub in

 �print("[receiveSubscription] isMainThread: \(Thread.

isMainThread)")

 }, receiveOutput: { value in

 �print("[receiveOutput] isMainThread: \(Thread.

isMainThread)")

 }, receiveCompletion: { completion in

 �print("[receiveCompletion] isMainThread: \(Thread.

isMainThread)")

 }, receiveCancel: {

 �print("[receiveCancel] isMainThread: \(Thread.

isMainThread)")

 }, receiveRequest: { demand in

Chapter 13 Combine Schedulers and SwiftUI

350

 �print("[receiveRequest] isMainThread: \(Thread.

isMainThread)")

 })

 .map { value -> Bool in

 print("[map 1] isMainThread: \(Thread.isMainThread)")

 return value

 }

 .subscribe(on: DispatchQueue.global(qos: .background))

 .map { value -> Int in

 print("[map 2] isMainThread: \(Thread.isMainThread)")

 return self.times + 1

 }

 .receive(on: DispatchQueue.main)

 .sink { value in

 print("[sink] isMainThread: \(Thread.isMainThread)")

 self.times = value

 }

 .store(in: &self.cancellables)

 print("[start:at end] isMainThread: \(Thread.isMainThread)")

}

This will tell Combine to use the main dispatch queue for any

downstream operators and subscribers. In our case, this means that the

sink subscriber will be executed on the main thread, as you can see in the

resulting console output. You will also notice that SwiftUI no longer issues

a warning about publishing model changes from the background:

[start:at beginning] isMainThread: true

[performWork:start] isMainThread: true

[start:at end] isMainThread: true

[performWork:Future:start] isMainThread: false

Chapter 13 Combine Schedulers and SwiftUI

351

[performWork:Future:finished] isMainThread: false

[receiveSubscription] isMainThread: false

[receiveRequest] isMainThread: false

[receiveOutput] isMainThread: false

[map 1] isMainThread: false

[map 2] isMainThread: false

[receiveCompletion] isMainThread: false

[sink] isMainThread: true

�Other Operators That Influence Scheduling
Combine has a number of operators that affect the timing with which

events are passed on to the downstream pipeline:

–– debounce publishes elements only after a specified

time interval elapses between events.

–– throttle publishes either the most recent or the first

element published by the upstream publisher in the

specified time interval.

–– delay delays delivery of all output to the downstream

receiver by a specified amount of time on a particular

scheduler.

All of these take a time interval and a scheduler on which the operator

delivers its output elements. Let’s look at a quick example to understand

what this means.

A commonly used timing operator in SwiftUI is debounce—it allows us

to specify a time interval that needs to elapse between two events that the

operator will send to its downstream subscribers. This is particularly useful

for search dialogs that call remote APIs to perform a search based on the

user’s input. To avoid overloading the remote API with too many requests,

we typically install a debounce operator on the published property that

holds the search term.

Chapter 13 Combine Schedulers and SwiftUI

352

Let’s look at the code we used in one of the previous chapters about

optimizing your network layer:

$input

 .debounce(for: 0.8, scheduler: DispatchQueue.main)

 .handleEvents { subscription in

 self.logEvent(tag: "handleEvents")

 } receiveOutput: { value in

 self.logEvent(tag: "receiveOutput - {\(value)}")

 } receiveCompletion: { completion in

 self.logEvent(tag: "receiveCompletion")

 } receiveCancel: {

 self.logEvent(tag: "receiveCancel")

 } receiveRequest: { demand in

 self.logEvent(tag: "receiveRequest")

 }

 .sink { value in

 self.logEvent(tag: "sink - {\(value)}")

 print("Value: \(value)")

 self.output = value

 }

 .store(in: &cancellables)

This piece of code takes the input the user types into a text input field

and then uses the debounce operator to reduce the number of events

that are passed on to downstream subscribers. This means downstream

subscribers will only receive the current value of the input property once

the user stops typing for 0.8 seconds.

Using DispatchQueue.global(qos: .background) instead will result

in all events arriving on a background thread.

This means providing a scheduler to one of the scheduling operators is

equivalent to adding a call to subscribe(on:).

Chapter 13 Combine Schedulers and SwiftUI

353

�Performing Asynchronous Work
Performing computationally intensive work on the main thread is not a

good idea—as we saw in the previous examples, running such code on the

main thread might result in a janky UI, or even completely blocking the UI.

Just like accessing asynchronous APIs (like the network, a cloud service

like Firebase, or even local APIs that process events asynchronously), you

should offload any such code to a background thread by subscribing to the

respective publisher (or operator) on a background scheduler. When the

background process has finished, and the publisher emits an event, you

will eventually want to switch to the main thread to update the UI.

Here is the general pattern to use:

publisher

 .subscribe(on: DispatchQueue.global())

 .receive(on: DispatchQueue.main)

 .sink { }

You can use the overloaded version of DispatchQueue.global(qos:)

to indicate the quality of service you would like to use for the code that’s

run in the background

–– background: Background tasks have the lowest priority

of all tasks. Assign this class to tasks or dispatch queues

that you use to perform work while your app is running

in the background.

–– utility: Utility tasks have a lower priority than default,

user-initiated, and user-interactive tasks, but a higher

priority than background tasks. Assign this quality-of-

service class to tasks that do not prevent the user from

continuing to use your app. For example, you might

assign this class to long-running tasks whose progress

the user does not follow actively.

Chapter 13 Combine Schedulers and SwiftUI

354

–– default: Default tasks have a lower priority than

user-initiated and user-interactive tasks, but a higher

priority than utility and background tasks. Assign this

class to tasks or queues that your app initiates or uses

to perform active work on the user’s behalf.

–– userInitiated: User-initiated tasks are second only to

user-interactive tasks in their priority on the system.

Assign this class to tasks that provide immediate results

for something the user is doing, or that would prevent

the user from using your app. For example, you might

use this quality-of-service class to load the content of

an email that you want to display to the user.

–– userInteractive: User-interactive tasks have the

highest priority on the system. Use this class for tasks or

queues that interact with the user or actively update

your app’s user interface. For example, use this for class

for animations or for tracking events interactively.

For a sample showing this in action, see SchedulerDemoView.swift in

the sample project for this chapter.

�Integrating with Other APIs
We usually have full control over the code we write ourselves, so we

can apply the technique outlined in the previous section to control the

scheduling of a pipeline. When consuming code that someone else

wrote, we might not always have that luxury. In this section, we will look

at a number of examples in which the upstream publisher controls the

scheduling—and how we can influence how the rest of the pipeline is

scheduled—which is particularly important when assigning the result of a

pipeline to a published property that might be connected to the UI.

Chapter 13 Combine Schedulers and SwiftUI

355

�URLSession
Let’s first take a look at accessing the network. We discussed using

URLSession in detail in Chapter 9, and you might remember that we ran

into some scheduling issues. Here is a typical code snippet that fetches

data from a URL and then assigns it to a published property that is

connected to a SwiftUI view:

URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

 .map(\.isAvailable)

 .replaceError(with: false)

 .assign(to: &$isUsernameAvailable)

Running this code will result in a warning:

[SwiftUI] Publishing changes from background threads is not

allowed; make sure to publish values from the main thread (via

operators like receive(on:)) on model updates.

This warning is caused by the fact that URLSession executes on a

background thread, and so the rest of the pipeline, including the assign

operator, will be executed on the same thread. This means that the UI will

be updated form the background thread, which triggers the warning.

To avoid this, all we need to do is add a receive(on:) operator before

the assign operator, to make sure we access the UI from the main thread:

URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: UserNameAvailableMessage.self,

 decoder: JSONDecoder())

Chapter 13 Combine Schedulers and SwiftUI

356

 .map(\.isAvailable)

 .replaceError(with: false)

 .receive(on: DispatchQueue.main)

 .assign(to: &$isUsernameAvailable)

�Firebase
Another example for an API that managers scheduling on its own is

Firebase, Google’s app development platform. Most of Firebase’s services

(like Cloud Firestore, Cloud Storage, Firebase Authentication, etc.) are

asynchronous, and that means any calls to Firebase should be executed

on a background thread. Let’s look at an example and see how Firestore

manages this.

The following code snippet shows how you can fetch a single

document from Firestore:

let docRef = Firestore.firestore()

 .collection("books")

 .document(documentId)

docRef.getDocument(as: Book.self) { result in

 switch result {

 case .success(let book):

 self.book = book

 self.errorMessage = nil

 case .failure(let error):

 self.errorMessage = "\(error.localizedDescription)

 }

}

Chapter 13 Combine Schedulers and SwiftUI

357

Firestore creates a serial dispatch queue (see executor_libdispatch.

mm, line 3627) and uses it to perform all operations that make remote calls

to the Cloud Firestore backend:

std::unique_ptr<Executor> Executor::CreateSerial(const char*

label) {

 dispatch_queue_t queue =

 dispatch_queue_create(label,

 DISPATCH_QUEUE_SERIAL);

 return absl::make_unique<ExecutorLibdispatch>(queue);

}

Once this call finishes, Firestore will use the main dispatch queue for

calling the completion handler. In case you would like to use a different

dispatch queue for returning the result, you can use FirestoreSettings.

dispatchQueue8 to set a custom dispatch queue:

let settings = Firestore.firestore().settings

settings.dispatchQueue = DispatchQueue.global(qos: .background)

Firestore.firestore().settings = settings

This might be useful when you need to perform several dependent

operations on a background thread before updating the UI.

In the previous code snippet, we used a completion handler to handle

the result of the call to getDocument. Firebase also supports Combine. Here

is how the code snippet earlier would look like when using Combine:

7 https://bit.ly/3uVR5Vn
8 See the documentation at https://bit.ly/3W9FFZS

Chapter 13 Combine Schedulers and SwiftUI

https://bit.ly/3uVR5Vn
https://bit.ly/3W9FFZS

358

db.collection("books").document("hitchhiker").getDocument()

 .tryMap { documentSnapshot in

 try documentSnapshot.data(as: Book.self)

 }

 .replaceError(with: Book.empty)

 .assign(to: &$book)

Since Firestore takes care of dispatching all operations on the most

appropriate dispatch queue (a serial background queue for fetching data

and the main dispatch queue for returning results), there is usually no

need to switch the dispatch queue.

�Summary
Traditionally, developers had to handle multithreading manually, often

requiring them to switch thread using DispatchQueue and other similar

mechanisms. On top of requiring an in-depth understanding of thread, this

inevitably leads to more verbose code that is difficult to read and maintain.

Combine uses schedulers as a declarative alternative that helps

developers abstract away from having to manually wrap your code in calls

to DispatchQueue.main.async { } etc. Instead, we can use Combine

operators like subscribe(on:) and receive(on:) to declare which

scheduling strategy Combine should use.

The key takeaways from this chapter are as follows:

	 1.	 If you don’t specify a scheduler, Combine will run

your code on the same thread as the one you are

calling from.

	 2.	 For SwiftUI, this will most likely be the main thread.

	 3.	 However, asynchronous APIs, such as URLSession,

might switch to a background thread.

Chapter 13 Combine Schedulers and SwiftUI

359

	 4.	 In this case, you should use receive(on:) to switch

back to the main thread before making any updates

to the UI.

	 5.	 On the other hand, some APIs (like Firebase) might

switch back to the main thread before returning a

result. You need to be aware of this so you can avoid

excessive thread jumping.

	 6.	 If you want to offload a long-running process

to the background, you can do so using the

subscribe(on:) operator.

Overall, Combine’s schedulers make working with asynchronous code

easier and less error prone. Xcode’s purple warning messages turn out to

be particularly helpful when writing code for SwiftUI.

Chapter 13 Combine Schedulers and SwiftUI

Part 3

363

CHAPTER 14

Getting Started
with async/await
We live in an asynchronous world. As users, we have come to expect that

interactions with our devices and apps yield almost instant results. But we

are pretty much neglecting the fact that more often than not, the systems

we interact with are distributed systems: liking a Tweet or an Instagram

story, archiving an email, putting an item into your shopping basket—all

these actions ultimately result in a network call, an update in a database

table, and sometimes even running a piece of business logic on a server.

When dealing with distributed, independently executing systems,

asynchronous behavior is the norm, not the exception: anything involving

I/O (be it disk or network bound), and even communicating with other

processes on the local system happens asynchronously.

The Cambridge Dictionary defines asynchronous as not happening or

done at the same time or speed,1 and we can observe this kind of behavior

in many situations:

–– A server needs to handle many clients at the same time,

but it might have fewer processors or processor cores

than the number of clients it needs this to deal with at

the same time.

1 See https://dictionary.cambridge.org/dictionary/english/asynchronous

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_14

https://dictionary.cambridge.org/dictionary/english/asynchronous
https://doi.org/10.1007/978-1-4842-8572-5_14

364

–– Multicore systems run multiple independently execut-

ing operations in parallel.

–– A client app receives results from a network call it made

earlier.

–– A local app needs to handle the user’s input while at

the same time rendering UI updates.

As developers, we are used to most method and function calls to

execute and return almost immediately, allowing us to write linear,

straight-line code like this example taken from the Swift Programming

Language Guide2:

func greet(person: String) -> String {

 let greeting = "Hello, " + person + "!"

 return greeting

}

print(greet(person: "Anna"))

// Prints "Hello, Anna!"

print(greet(person: "Brian"))

// Prints "Hello, Brian!"

The calls to the greet function return immediately, and the greetings

to Anna and Brian are printed consecutively. Brian will always be greeted

after Anna.

The greet function in this example executes synchronously. This is

possible because it doesn’t perform any complex work and doesn’t depend

on any other (remote) subsystems.

But there are functions that execute asynchronously. The most

common reasons why functions execute asynchronously are that they

require a response from a slow resource (e.g., a server that needs to be

2 See https://docs.swift.org/swift-book/LanguageGuide/Functions.html

Chapter 14 Getting Started with async/await

https://docs.swift.org/swift-book/LanguageGuide/Functions.html

365

accessed via the network, or even a file on the local file system), or they

perform expensive work (i.e., a long-running computation).

Computing the thumbnail for an image is an operation that

takes a little while—depending on the size of the original image.

UIImage has two methods for doing this: the synchronous version

(preparingThumbnail(of:)3) will block the calling thread until the method

returns. When using this method in a UI with many thumbnails (such as a

collection view), this will inevitably lead to stuttering when the user scrolls

quickly. To prevent this, UIImage has a second version of this method that

allows developers to call this API asynchronously: prepareThumbnail(of

:completionHandler:)4. This method will not block the main thread, but

instead execute asynchronously, so scrolling will be smooth even with a

large number of thumbnails being computed in the background.

When calling functions on a slow resource, blocking the caller is not an

option in most cases. On most operating systems, the UI runs on the main

thread, and blocking a call will result in the UI to become unresponsive and

freeze. iOS might event terminate your app if it doesn’t respond within a

certain amount of time.5 We’ve all experienced this, and it is not a great user

experience. Blocking calls on a server will result in more threads being spun

up to handle any other requests that might come in, resulting in a thread

explosion,6 and the server running out of resources quickly. Likewise, if the

server isn’t able to spin up more threads, it will not be able to handle incoming

request, resulting in HTTP 503 (Service Unavailable) error messages.

3 See https://developer.apple.com/documentation/uikit/
uiimage/3750835-preparingthumbnail
4 See https://developer.apple.com/documentation/uikit/
uiimage/3750845-preparethumbnail
5 See Apple’s documentation about Watchdog Terminations for more
details: https://developer.apple.com/documentation/xcode/
addressing-watchdog-terminations
6 This is covered in the WWDC 2021 session “Swift concurrency:
Behind the scenes”. See https://developer.apple.com/videos/play/
wwd-c2021/10254?time=500

Chapter 14 Getting Started with async/await

https://developer.apple.com/documentation/uikit/uiimage/3750835-preparingthumbnail
https://developer.apple.com/documentation/uikit/uiimage/3750835-preparingthumbnail
https://developer.apple.com/documentation/uikit/uiimage/3750845-preparethumbnail
https://developer.apple.com/documentation/uikit/uiimage/3750845-preparethumbnail
https://developer.apple.com/documentation/xcode/addressing-watchdog-terminations
https://developer.apple.com/documentation/xcode/addressing-watchdog-terminations
https://developer.apple.com/videos/play/wwd-c2021/10254?time=500
https://developer.apple.com/videos/play/wwd-c2021/10254?time=500

366

This is why we need a way to handle asynchronicity in our apps. In

the following, we will take a look at how to implement asynchronous

code using different techniques. The example we will be using is a simple

sandwich store that produces artisanal sandwiches.7

The general algorithm looks like this:

–– Toast the bread.

–– Slice the other ingredients (cucumbers, onions,

tomatoes).

–– Once the bread has been toasted,

–– spread condiments on the bread.

–– layer ingredients on top of one slice of bread.

–– put lettuce on top.

–– put the second slice of bread on top.

–– Wrap it all up and hand it to the customer.

You will notice that some of these need to be sequential, while others can

be performed in parallel. For example, we don’t need to wait idly while the

bread is toasted—we can use the time to slice the vegetables in the meantime.

The code for this chapter can be found in the GitHub repository8
for the book, in the folder Chapter 14. Inside the folder, you
will find a .playground file. Open this file in the Swift
Playgrounds app,9 and expand the project navigator (CMD+1)
and the debug console (CMD+Shift+Y) to make it easier to
navigate between the examples.

7 The code samples for this chapter can be found in a Swift Playground in the
folder for this chapter on the book’s code repository on GitHub: https://github.
com/peterfriese/SwiftUI-Combine-Book
8 https://github.com/peterfriese/SwiftUI-Combine-Book
9 Some of the features used in this playground require the latest version of the Swift
Playground app on macOS Ventura. If you’re not able to run Version 4.2 of the Swift
Playgrounds app on macOS Ventura, you can also open the playground in Xcode.

Chapter 14 Getting Started with async/await

https://github.com/peterfriese/SwiftUI-Combine-Book
https://github.com/peterfriese/SwiftUI-Combine-Book
https://github.com/peterfriese/SwiftUI-Combine-Book

367

Figure 14-1.  The playground in the Swift Playgrounds app

�Synchronous Programming with Functions
Let’s first look at a synchronous implementation of the sandwich-making

algorithm:

public func customerSays(_ message: String) {

 print("[Customer] \(message)")

}

Chapter 14 Getting Started with async/await

368

public func sandwichMakerSays(_ message: String, waitFor time:

UInt32 = 0) {

 print("[Sandwich maker] \(message)")

 if time > 0 {

 print(" ... this will take \(time)s")

 sleep(time)

 }

}

func makeSandwich(bread: String, ingredients: [String],

condiments: [String]) -> String {

 sandwichMakerSays("Preparing your sandwich...")

 let toasted = toastBread(bread)

 let sliced = slice(ingredients)

 �sandwichMakerSays("Spreading \(condiments.joined(separator:

", and ")) on \(toasted)")

 �sandwichMakerSays("Layering \(sliced.joined(separator:

", "))")

 sandwichMakerSays("Putting lettuce on top")

 sandwichMakerSays("Putting another slice of bread on top")

 �return "\(ingredients.joined(separator: ", ")), \(condiments.

joined(separator: ", ")) on \(toasted)"

}

func toastBread(_ bread: String) -> String {

 �sandwichMakerSays("Toasting the bread... Standing by...",

waitFor: 5)

 return "Crispy \(bread)"

}

Chapter 14 Getting Started with async/await

369

func slice(_ ingredients: [String]) -> [String] {

 let result = ingredients.map { ingredient in

 sandwichMakerSays("Slicing \(ingredient)", waitFor: 1)

 return "sliced \(ingredient)"

 }

 return result

}

//: The main program follows

sandwichMakerSays("Hello to Cafe Synchronous, where we execute

your order serially.")

sandwichMakerSays("Please place your order.")

// We're using a `ContinuousClock` to determine how long it

took to make the sandwich.

let clock = ContinuousClock()

let time = clock.measure {

 let sandwich = makeSandwich(bread: "Rye", ingredients:

["Cucumbers", "Tomatoes"], condiments: ["Mayo", "Mustard"])

 customerSays("Hmmm.... this looks like a delicious \

(sandwich) sandwich!")

}

// This should be roughly 7 seconds (5 for toasting, and 1 for

each ingredient we sliced)

print("Making this sandwich took \(time)")

Chapter 14 Getting Started with async/await

370

The main work10 happens in makeSandwich, which takes some

parameters that allow the customer to tell us the type of bread, ingredients,

and condiments to use.

All steps are executed sequentially, even the ones that take some time,

such as toasting the bread. Toasting the bread is simulated by sleeping for

a few seconds. This will effectively block the thread, and the toastBread

function will only return to the caller once 5 seconds has passed.

The output of this program will look like this:

[Sandwich maker] Hello to Cafe Synchronous, where we execute

your order serially.

[Sandwich maker] Please place your order.

[Sandwich maker] Preparing your sandwich...

[Sandwich maker] Toasting the bread... Standing by...

 ... this will take 5s

[Sandwich maker] Slicing Cucumbers

 ... this will take 1s

[Sandwich maker] Slicing Tomatoes

 ... this will take 1s

[Sandwich maker] Spreading Mayo, and Mustard on Crispy Rye

[Sandwich maker] Layering sliced Cucumbers, sliced Tomatoes

[Sandwich maker] Putting lettuce on top

[Sandwich maker] Putting another slice of bread on top

[Customer] Hmmm.... this looks like a delicious Cucumbers,

Tomatoes, Mayo, Mustard on Crispy Rye sandwich!

Making this sandwich took 7.00992275 seconds

10 I realize that “work” is a grand word for this simulated sandwich-making
algorithm, but bear with me—the principles apply no matter if you’re doing real
work or just using print statements to simulate the work.

Chapter 14 Getting Started with async/await

371

Since we executed all steps serially, the whole program took about 7

seconds (5 seconds for toasting, 1 second each for slicing the tomatoes and

cucumbers).

This version of the algorithm was easy to write and understand, since

it follows a linear flow—one statement follows the other. When we called a

function, we knew that the program will only continue the main flow once

the function returns.

This is great for a lot of the code we write, but as soon as we need to

deal with asynchronous APIs, using blocking calls won’t work anymore for

the reasons mentioned earlier.

�Asynchronous Programming with Closures
The initial versions of Swift didn’t include any language-level, first-class

concurrency features. This was in fact a conscious decision by the core

team (see the Swift Concurrency Manifesto11), so developers had to come

up with other ways to deal with asynchronous code.

A common way to implement code that needs to run asynchronously

is to use GCD (Grand Central Dispatch) together with closures. Closures

are self-contained blocks of functionality that can be passed around and

used in your code.12 Closures are typically used to implement callbacks

and completion handlers, and this makes them a great fit for handling

asynchronous code: once a long-running process has finished, we can use

the closure to pass the result back to the caller.

11 https://bit.ly/3PF61k3
12 See the Swift Language Guide, Closures - https://docs.swift.org/swift-
book/LanguageGuide/Closures.html

Chapter 14 Getting Started with async/await

https://bit.ly/3PF61k3
https://docs.swift.org/swift-book/LanguageGuide/Closures.html
https://docs.swift.org/swift-book/LanguageGuide/Closures.html

372

When using a closure, the toastBread function from the previous

section would like this:

func toastBread(_ bread: String,

 completion: (String) -> Void) {

 �sandwichMakerSays("Toasting the bread... Standing by...",

waitFor: 5)

 completion("Crispy \(bread)")

}

To call this method, you’ll have to update the call site like this:

toastBread(bread, completion: { toasted in

 print("\(bread) is now \(toasted)")

 // prints "Rye is now Crispy Rye"

})

When you compare this to the original version of the function, you will

notice a couple of things:

	 1.	 The toastBread function no longer has a

return value.

	 2.	 Instead, there is now an additional parameter completion

with a somewhat more complicated looking signature.

	 3.	 completion: (String) -> Void) means that the

completion parameter takes a function as an input

value. This function expects one parameter of type

String and does not return any value (i.e., Void).

	 4.	 When the toastBread function is ready to return

the result of its operation to the caller, it invokes the

closure by calling completion and passing in a String.

	 5.	 At the call site, we pass in a closure that has the

signature expected by the completion parameter.

Chapter 14 Getting Started with async/await

373

When dealing with asynchronous code, closures are most commonly

used as trailing closures. This is a Swift language feature which allows us to

simplify the call site:

toastBread(bread) { toasted in

 print("\(bread) is now \(toasted)")

}

So far, our code isn’t really asynchronous yet; the only thing that has

changed is how we return the result to the caller.

Let’s update the toastBread and slice functions to run asynchronously

on the global dispatch queue by wrapping their body inside a call to

DispatchQueue.global().async { }:

func toastBread(_ bread: String,

 completion: @escaping (String) -> Void)

{

 DispatchQueue.global().async {

 sandwichMakerSays("Toasting the bread... Standing by...",

 waitFor: 5)

 completion("Crispy \(bread)")

 }

}

func slice(_ ingredients: [String],

 completion: @escaping ([String]) -> Void)

{

 DispatchQueue.global().async {

 let result = ingredients.map { ingredient in

 sandwichMakerSays("Slicing \(ingredient)", waitFor: 1)

 return "sliced \(ingredient)"

 }

 completion(result)

 }

}

Chapter 14 Getting Started with async/await

374

At the call site, we can now use the completion handler semantics.

Since we want to call slice only once the call to toastBread has finished,

we need to nest them, like this:

toastBread(bread) { toasted in

 slice(ingredients) { sliced in

 �sandwichMakerSays("Spreading \(condiments.joined(separator:

", and ")) om \(toasted)")

 // ...

 }

}

print("This code will be executed *before* the bread is toasted

and the ingredients are sliced.")

One reason why we might want to run toastBread and slice

asynchronously on the global thread might be that we’re calling separate

subsystems of our app to perform those operations, or that we need to

access a remote server to fulfill this functionality.

Using closures for handling asynchronous code is a well-established

practice, and both Apple’s own APIs and many third-party SDKs such as

Firebase make use of this approach.

That doesn’t mean that it is perfect. In fact, there are many problems

with using closures for handling asynchronous behavior in our apps:

It is easy to end up in a pyramid of doom. This refers to the fact that

you have to nest any code that depends on the result of a call inside a

closure. In our example, we only had to go two levels deep, but have a look

at this example from the Swift Concurrency Manifesto13:

func processImageData1(completionBlock: (result: Image)

-> Void) {

13 See https://bit.ly/3WtF0SQ

Chapter 14 Getting Started with async/await

https://bit.ly/3WtF0SQ

375

 loadWebResource("dataprofile.txt") { dataResource in

 loadWebResource("imagedata.dat") { imageResource in

 decodeImage(dataResource, imageResource) { imageTmp in

 dewarpAndCleanupImage(imageTmp) { imageResult in

 completionBlock(imageResult)

 }

 }

 }

 }

}

This is a typical example for code that needs to call several

asynchronous APIs, passing the result from one call to the next.

If you turn the code sideways, you will see why this is called pyramid of

doom. Compare this with the linear code from our first example, and you

will understand why this kind of code will be much harder to understand.

Error handling will make the code even harder to read. Here is

the same code snippet from the Swift Concurrency Manifesto, with error

handling added:

func processImageData2(completionBlock: (result: Image?, error:

Error?) -> Void) {

 loadWebResource("dataprofile.txt") { dataResource, error in

 guard let dataResource = dataResource else {

 completionBlock(nil, error)

 return

 }

 loadWebResource("imagedata.dat") { imageResource, error in

 guard let imageResource = imageResource else {

 completionBlock(nil, error)

 return

 }

Chapter 14 Getting Started with async/await

376

 �decodeImage(dataResource, imageResource) { imageTmp,

error in

 guard let imageTmp = imageTmp else {

 completionBlock(nil, error)

 return

 }

 dewarpAndCleanupImage(imageTmp) { imageResult in

 guard let imageResult = imageResult else {

 completionBlock(nil, error)

 return

 }

 completionBlock(imageResult)

 }

 }

 }

 }

}

Not only is this code a long more verbose, it also requires the caller to

check if the callback returned a result or an error. This is easy to forget, and

unfortunately, the compiler cannot enforce this kind of error handling at

the call site.

It is not always clear which thread a callback is on. Callers of

toastBread and slice have no way of telling which thread they will

be called back on—unless they have access to the source code, or the

documentation of the functions specifically mentions the threading model

being used. Callers can solve this by wrapping those invocations inside

a call to DispatchQueue.main.async { }, but this might lead to thread

hopping if you call several functions that run on different threads.

There is no way to enforce a completion handler be called. This is

particularly problematic for callers. Can they expect that the completion

handler will be called at all? Will it be called more than once? How will

Chapter 14 Getting Started with async/await

377

errors be handled? Will the callback receive an error handle? Apple

provides some guidelines in their documentation,14 but it is impossible

for the compiler to make any guarantees about them. This makes building

good APIs more difficult than it should be.

Overall, using closures will inevitably result in code that is convoluted,

hard to read, and error prone.

�Asynchronous Programming
with async/await
Swift’s new concurrency model, introduced with Swift 5.5, makes

asynchronous programming a lot easier. It introduces a number of

language-level concepts (most prominently the async/await keywords)

that allow us to make the asynchronous nature of our code explicit. This

allows the compiler to perform some compile-time checking, which helps

us write better, more error-free programs.

In the remainder of this chapter, we will take a look at some of the new

concepts and refactor the closure-based code to an async/await–based

implementation that is easier to read and maintain.

�Defining and Calling Asynchronous Functions
In Swift, an asynchronous function (or an asynchronous method) can

be suspended while it is executing. This is particularly useful when the

function needs to wait for a slow resource, for example, a network call:

instead of blocking the thread while it is waiting for the network call to

return, the function can pause execution and give up the thread to other

parts of the application. This allows for a better utilization of the system

resources and allows for a stutter-free UI.

14 See https://bit.ly/3W9vQeH

Chapter 14 Getting Started with async/await

https://bit.ly/3W9vQeH

378

The places where a function can be suspended are called suspension

points, and you indicate them by using the await keyword when calling an

asynchronous function or method:

let result = await someAsyncFunction()

To define an asynchronous function or method, you use the async

keyword:

func someAsyncFunction() async -> String {

 let result = // ... async code here

 return result

}

Let’s take a look at how the code for our sandwich maker would look

like when using async/await.

Let’s first update the code for toasting a bread. If you recall, we assume

that we will be using some subsystem for toasting the bread (i.e., a toaster)

and that this process will take some amount of time. In the code, this is

represented by sleeping for 5 seconds:

func toastBread(_ bread: String) async -> String {

 sandwichMakerSays("Toasting the bread... Standing by...")

 await Task.sleep(5_000_000_000)

 return "Crispy \(bread)"

}

When comparing this code with the completion handler–based version

of the code, you will notice a couple of things:

	 1.	 We no longer have to provide a parameter for the

trailing closure. Instead, we use the async keyword

to indicate that this is an asynchronous function.

This makes the function signature a lot easier

to read.

Chapter 14 Getting Started with async/await

379

	 2.	 We can now specify the return value of this function.

Remember, when using the completion handler,

the return value had to be part of the completion

handler signature. This makes the method signature

even easier to read, and as you will see in a minute,

it makes the call site cleaner as well.

	 3.	 No need to use DispatchQueue.global().async { }—

SwiftUI’s new concurrency model uses a thread pool

and will automatically manage threads for us.

The code for the updated slice function looks very similar:

func slice(_ ingredients: [String]) async -> [String] {

 var result = [String]()

 for ingredient in ingredients {

 sandwichMakerSays("Slicing \(ingredient)")

 await Task.sleep(1_000_000_000)

 result.append("sliced \(ingredient)")

 }

 return result

}

Let’s now see how we can call those two updated functions. At the

call site, we need to use the await keyword to indicate that the calls to

toastBread and slice are potential suspension points:

func makeSandwich(bread: String, ingredients: [String],

condiments: [String]) async -> String {

 sandwichMakerSays("Preparing your sandwich...")

Chapter 14 Getting Started with async/await

380

 let toasted = await toastBread(bread)

 let sliced = await slice(ingredients)

 sa�ndwichMakerSays("Spreading \(condiments.joined(separator:

", and ")) om \(toasted)")

 �sandwichMakerSays("Layering \(sliced.joined(separator:

", "))")

 �sandwichMakerSays("Putting lettuce on top")

 sandwichMakerSays("Putting another slice of bread on top")

 �return "\(ingredients.joined(separator: ", ")), \(condiments.

joined(separator: ", ")) on \(toasted)"

}

Notice how we can call toastBread and slice without having to use

nested closures. This results in straight-line code that almost reads like

normal, linear code such as the rest of the sandwich-making algorithm.

Since makeSandwich is now an asynchronous function, just like

toastBread and slice, we need to mark it as async as well.

But how can we call asynchronous code from a synchronous context?

Swift provides the Task API, which represents a unit of asynchronous

work. By wrapping a call to an asynchronous function inside a Task { },

you can call it from a synchronous context, like an action handler in your

UI, or a Swift Playground. Here is how the call to makeSandwich looks like:

Task {

 �let sandwich = await makeSandwich(bread: "Rye", ingredients:

["Cucumbers", "Tomatoes"], condiments: ["Mayo", "Mustard"])

 customerSays("Hmmm.... this looks like a delicious \

(sandwich) sandwich!")

 print("The end.")

}

Chapter 14 Getting Started with async/await

381

As makeSandwich is now an asynchronous function, we need to use

the await keyword to call it. The compiler will issue an error if we forget

to do so:

�Calling Asynchronous Functions in Parallel

You might have noticed that our sandwich-making process can be

optimized.

At the moment, we first call toastBread and wait for it to finish.

Then, we call slice to slice the ingredients and wait for it to finish

before we move on to assemble the sandwich. There clearly is room for

optimization—while the bread is being toasted, we can start slicing the

ingredients, reducing the overall waiting time for our customer.

Swift’s new concurrency model supports executing several

asynchronous functions simultaneously using the async let syntax.

To execute code in parallel, prefix a call to one or more asynchronous

functions with async let:

async let x = someAsyncFunction()

async let y = someAsyncFunction()

async let z = someAsyncFunction()

print("This code will be executed immediately")

Figure 14-2.  The compiler will issue an error when you call an
asynchronous function without the await keyword

Chapter 14 Getting Started with async/await

382

As long as there are enough resources available, the system will

run these at the same time, in parallel. None of these calls will create a

suspension point, meaning that any code that comes after will be executed

immediately—like the print statement in the code snippet.

To create a suspension point, use await for the constants (x, y, and z in

this case):

let result = await [x, y, z]

print("The result is \(result)"

Let’s look at how we can use this to optimize our sandwich-making

process:

func makeSandwich(bread: String, ingredients: [String],

condiments: [String]) async -> String {

 sandwichMakerSays("Preparing your sandwich...")

 async let toasted = toastBread(bread)

 async let sliced = slice(ingredients)

 �sandwichMakerSays("Spreading \(condiments.joined(separator:

", and ")) om \(await toasted)")

 �sandwichMakerSays("Layering \(await sliced.joined(separator:

", "))")

 sandwichMakerSays("Putting lettuce on top")

 sandwichMakerSays("Putting another slice of bread on top")

 �return "\(ingredients.joined(separator: ", ")), \(condiments.

joined(separator: ", ")) on \(await toasted)"

}

As you can see, it is possible to use await <constant> at any place

in our code—even inside a String interpolation. Using this approach,

toastBread and slice will now run in parallel. By instrumenting our code,

we can see that this does indeed reduce the waiting time for our customers:

Chapter 14 Getting Started with async/await

383

let clock = ContinuousClock()

Task {

 let time = await clock.measure {

 �let sandwich = await makeSandwich(bread: "Rye",

ingredients: ["Cucumbers", "Tomatoes"], condiments:

["Mayo", "Mustard"])

 �customerSays("Hmmm.... this looks like a delicious

\(sandwich) sandwich!")

 print("The end.")

 }

 print("Making this sandwich took \(time)")

}

Instead of waiting 7 seconds, the customer now only has to wait about

5 seconds—that’s a nice improvement!

�Summary
In this chapter, you learned about concurrency and how Swift’s new

concurrency model improves the way how we write and consume

asynchronous code.

You learned how to use completion handlers to build asynchronous

APIs and how to call them. Completion handlers and closures are a very

common way to implement asynchronous behavior, and to this day,

they are being used in many of Apple’s own APIs, and many third-party

libraries. They have served the community well, but come with a number

of drawbacks, such as the potential to end up in the pyramid of doom, and

some uncertainty around which thread you will be called back on. The

biggest drawback when using completion handlers for asynchronous code,

however, is that they are harder to read than straight-line code, especially

for developers new to the concept of asynchronous code.

Chapter 14 Getting Started with async/await

384

Swift’s new concurrency model (best known as async/await)

makes both implementing and using asynchronous APIs much easier.

In this chapter, you saw how you can use the async keyword to declare

asynchronous functions and methods and how to use the await keyword

to call those asynchronous functions. You learned what a suspension

point is and that Swift uses a thread pool to manage execution of

asynchronous code. We also looked at async let, which lets you run

several asynchronous functions or methods in parallel, and how to create

a suspension point (using await <constant> to wait for the result of the

call(s).

This was as quick introduction to Swift’s new concurrency model. To

learn more, I recommend reading the Concurrency chapter in the Swift

Programming Language Guide15 or watching my video series.16 In the next

chapter, we will look at how to use Swift’s new concurrency model together

with SwiftUI.

15 Available online at https://bit.ly/3BMEJCO
16 See bit.ly/swift-concurrency-video-series

Chapter 14 Getting Started with async/await

https://bit.ly/3BMEJCO
http://bit.ly/swift-concurrency-video-series

385

CHAPTER 15

Using async/await
in SwiftUI
Now that you’ve got a basic understanding of how Swift’s new concurrency

model works, let’s look at how to use it in a SwiftUI application.

The sample app we’re going to build in this chapter makes use of

the WordsAPI.1 This is a fun little API that provides a ton of interesting

information about words. You send it a word, such as “Swift”, and it will

return a bunch of information about this word—for example, “moving very

fast,” “a small bird that resembles a swallow,” or “an English satirist born in

Ireland.”

The sample app displays a list of suggested words the user can tap

on to get more information about them. The app will then fetch the

different meanings of the word from WordAPI.com and display them in a

details screen.

Throughout the chapter, we will look at how to call this asynchronous

code from different situations in the app, for example, when the user taps a

button, when they pull to refresh, etc.

1 See www.wordsapi.com

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_15

http://www.wordsapi.com
https://doi.org/10.1007/978-1-4842-8572-5_15

386

�Fetching Data Asynchronously
Using URLSession
URLSession is among the many APIs Apple has upgraded to support

async/await, so fetching data using URLSession is now a one liner:

let (data, response) =

 try await URLSession.shared.data(for: urlRequest)

With some minimal amount of error handling and JSON parsing (using

Codable), the code for fetching the details about a word from WordsAPI.

com looks like this:

private func search(for searchTerm: String) async -> Word {

 // build the request

 let request = buildURLRequest(for: searchTerm)

 do {

 let (data, response) =

 try await URLSession.shared.data(for: request)

 guard let httpResponse = response as? HTTPURLResponse,

 httpResponse.statusCode == 200 else

 {

 throw WordsAPIError.invalidServerResponse

 }

 let word = try JSONDecoder().decode(Word.self, from: data)

 return word

 }

 catch {

 return Word.empty

 }

}

Chapter 15 Using async/await in SwiftUI

387

By adding the async keyword to the signature of the method, we

declare that it is asynchronous. The compiler will use this information

to make sure this method is called from an asynchronous context and

issue compile-time errors if we forget to call the method using the await

keyword.

Calling an asynchronous method using await creates a so-called

suspension point. While the function is suspended, the runtime can reuse

the thread it was executing on to perform other code in your application.

You can imagine this like being on a call with a call center agent, and

being told to “hold the line”: while you’re listening to some more or less

entertaining elevator music, you can continue doing other business, such

as drinking a tea, daydreaming about your next vacation, or chatting

with other people in your room. Once the call center agent has finished

looking up that important information, you’ll give them all your attention,

essentially resuming the flow of conversation that was suspended when

they told you to hang on for a second.

�Calling Asynchronous Code
To call asynchronous code, we need to be in an asynchronous context.

As we saw in the previous chapter, there are several ways to establish an

asynchronous context. Creating a new Task is one of them:

Task {

 let result = search(for: "Swift")

}

While this is easy enough, it would be tedious to have to write this

again and again in our UI-facing code. Fortunately, Apple has updated

SwiftUI to make calling asynchronous code from inside a UI context as

Chapter 15 Using async/await in SwiftUI

388

easy as possible. In particular, they’ve added some APIs that allow us to

call asynchronous code:

–– When a view appears (using the .task view modifier)

–– When the user pulls to refresh inside a List view

For other situations, we will still need to create an asynchronous

context ourselves, for example:

–– When the user taps on a Button

–– When the user types a search term inside the search

bar of a View

In the following sections, we will look at some scenarios to see each of

these ways to call asynchronous code in action.

�The Task View Modifier
One of the most common situations for fetching data is when a view appears

on screen. Previously, you might have used the .onAppear view modifier to

run code when your views appear. When you try to call asynchronous code

from within .onAppear, the compiler will issue an error saying that it is not

permitted to call asynchronous code from a nonasynchronous context:

To fix this compile-time error, we could wrap the code in a new Task,

like this:

struct WordDetailsView: View {

 ...

Figure 15-1.  Trying to call an asynchronous function from a non-
asynchronous context

Chapter 15 Using async/await in SwiftUI

389

 var body: some View {

 List {

 ...

 }

 .navigationTitle(word)

 .onAppear {

 Task {

 await viewModel.executeQuery(for: word)

 }

 }

 }

}

While this works well, it is a bit verbose, and there is actually a better

solution: because fetching data when a view appears is such a common

scenario, SwiftUI has a new view modifier that will automatically create a

new Task and cancel it when the view disappears:

struct WordDetailsView: View {

 ...

 var body: some View {

 List {

 ...

 }

 .navigationTitle(word)

 .task {

 await viewModel.executeQuery(for: word)

 }

 }

}

This makes our code much more concise and easier to read.

Chapter 15 Using async/await in SwiftUI

390

�Calling Asynchronous Code When the User
Taps a Button
Often, when the user taps a Button, we need to execute code

asynchronously—for example, we might want to refresh the data in a

list view.

In some beta versions of Xcode 13, a few of Button’s initializers

supported registering asynchronous event handlers. It seems like this

might have been just an experiment, since the public release of Xcode 13.1

no longer contains these initializers. This means we need to use Task to

create an asynchronous context inside a Button’s event handler if we want

to run asynchronous code. Here is an example for a toolbar button that

initiates a refresh of the currently displayed data:

.toolbar {

 ToolbarItem(placement: .primaryAction) {

 Button("Refresh") {

 async {

 await viewModel.refresh()

 }

 }

 }

}

�Using Pull-to-Refresh to Update
Views Asynchronously
Tapping a button to refresh the UI is great, but have you tried pull-to-

refresh? This gesture has been around for several years, and SwiftUI makes

it easier than before to implement this in your apps. All you need to do is

add the .refreshable view modifier to the view. This view modifier takes

Chapter 15 Using async/await in SwiftUI

391

a closure that can run code asynchronously. Here is a simple example that

triggers a refresh of the data being displayed in a list view:

struct LibraryView: View {

 ...

 var body: some View {

 List {

 ...

 }

 .refreshable {

 await viewModel.refresh()

 }

 }

}

�Searchable Views and async/await
You can add a platform-specific search UI to a SwiftUI view by applying

the .searchable view modifier. This view modifier takes up to three

parameters: the first one is a Binding to a String, which will contain the

search term the user enters. The other parameters allow you to control the

placement of the search bar and provide a list of suggested search terms.

Since the first parameter is a Binding, you can use Combine to drive the

search. The following code snippet shows how you can filter the displayed

elements in the List view by using a Combine pipeline:

class LibraryViewModel: ObservableObject {

 @Published var searchText = ""

 @Published var tips: [String] =

 ["Swift", "authentication", "authorization"]

 @Published var favourites: [String] =

 ["stunning", "brilliant", "marvelous"]

Chapter 15 Using async/await in SwiftUI

392

 @Published var filteredTips = [String]()

 @Published var filteredFavourites = [String]()

 init() {

 Publishers.CombineLatest($searchText, $tips)

 .map { filter, items in

 items.filter { item in

 filter.isEmpty ? true : item.contains(filter)

 }

 }

 .assign(to: &$filteredTips)

 Publishers.CombineLatest($searchText, $favourites)

 .map { filter, items in

 items.filter { item in

 filter.isEmpty ? true : item.contains(filter)

 }

 }

 .assign(to: &$filteredFavourites)

 }

 ...

}

struct LibraryView: View {

 @StateObject var viewModel = LibraryViewModel()

 var body: some View {

 List {

 ...

 �SectionView("Peter's Tips", words:

viewModel.filteredTips)

 �SectionView("My favourites", words:

viewModel.filteredFavourites)

 }

Chapter 15 Using async/await in SwiftUI

393

 .searchable(text: $viewModel.searchText)

 .autocapitalization(.none)

 ...

 }

}

This is useful for UIs that require immediate feedback, such as filtering

a list of results locally, like in the previous example.

However, if you want to kick off the search only when the user has

tapped the Search button or pressed the Enter key, you need to use the

.onSubmit(of:) view modifier:

struct WordSearchView: View {

 @StateObject var viewModel = WordsAPIViewModel()

 var body: some View {

 List {

 ...

 }

 .searchable(text: $viewModel.searchTerm)

 .autocapitalization(.none)

 .onSubmit(of: .search) {

 Task {

 await viewModel.executeQuery()

 }

 }

 .navigationTitle("Search")

 }

}

In this code snippet, the searchTerm property on the viewModel will

be continuously updated as the user enters their search term. Only once

they hit the Enter key on their keyboard or tap the Search button will the

closure of the onSubmit modifier be executed. Again, as the closure isn’t

Chapter 15 Using async/await in SwiftUI

394

marked async, we need to create the required asynchronous context

ourselves before we can call the asynchronous executeQuery method on

the view model.

�Updating the UI from the Main Thread
When you run the code we’ve developed so far, you might notice that

Xcode issues runtime warnings for some parts of our code, for example,

the following snippet:

This code asynchronously fetches a random word from WordsAPI and

then assigns it to a @Published property:

class LibraryViewModel: ObservableObject {

 @Published var randomWord = "partially"

 ...

 private func fetchRandomWord() async -> Word {

 let request = buildURLRequest()

 do {

 let (data, response) =

 try await URLSession.shared.data(for: request)

 guard let httpResponse = response as? HTTPURLResponse,

 httpResponse.statusCode == 200 else

 {

 throw WordsAPIError.invalidServerResponse

Figure 15-2.  Updating the UI from a background thread

Chapter 15 Using async/await in SwiftUI

395

 }

 let word = try JSONDecoder().decode(Word.self,

 from: data)

 return word

 }

 catch {

 return Word.empty

 }

 }

 func refresh() async {

 let result = await fetchRandomWord()

 randomWord = result.word

 }

}

Why is this a problem?

To answer this question, let’s first look at the threads our code runs on.

There are several ways to do this, and we will look at two:

	 1.	 Using the Debug Inspector

	 2.	 Logging information about the current thread using

Thread.isMainThread

Let’s first instrument the code to log information about the current

thread it is executing on:

struct LibraryView: View {

 @StateObject var viewModel = LibraryViewModel()

 // ...

 var body: some View {

 List {

 // ...

 }

Chapter 15 Using async/await in SwiftUI

396

 // ...

 .refreshable {

 print("\(#function) is on main thread BEFORE await:

\(Thread.isMainThread)")

 await viewModel.refresh()

 print("\(#function) is on main thread AFTER await:

\(Thread.isMainThread)")

 }

 // ...

 }

}

class LibraryViewModel: ObservableObject {

 // ...

 private func fetchRandomWord() async -> Word {

 print("\(#function) is on main thread:

\(Thread.isMainThread)")

 ...

 }

 func refresh() async {

 print("\(#function) is on main thread BEFORE await:

\(Thread.isMainThread)")

 let result = await fetchRandomWord()

 randomWord = result.word

 print("\(#function) is on main thread AFTER await:

\(Thread.isMainThread)")

 }

 // ...

}

Chapter 15 Using async/await in SwiftUI

397

When running the app again, we can observe the following output in

the console:

body is on main thread BEFORE await: true

refresh() is on main thread BEFORE await: false

fetchRandomWord() is on main thread: false

2022-10-01 16:43:10.043735+0200 WordBrowser[44309:2075098]

[SwiftUI] Publishing changes from background threads is not

allowed; make sure to publish values from the main thread (via

operators like receive(on:)) on model updates.

refresh() is on main thread AFTER await: false

body is on main thread AFTER await: true

So it seems like the code starts off on the main thread when the user

pulls the view down to refresh (after all, this is a user-initiated interaction).

However, as soon as refresh() is called, we’re no longer on the main

thread. All non-UI code is executed on a background thread, and only once

the flow of execution returns to the view, will the code resume executing

on the main thread (see the last line of the log output).

Let’s now use the Debug Inspector to take a closer look at this.

Set a breakpoint on the five print statements and launch the app

again. When the debugger hits the first breakpoint in the closure of the

refreshable view modifier, you can see that this code is actually executed

on the main thread:

Chapter 15 Using async/await in SwiftUI

398

Figure 15-3.  The closure of the refreshable view modifier is executed
on the main thread

Figure 15-4.  The refresh method is executed on a background thread

Resume the app, and once it hits the second breakpoint (inside the

refresh() method of the LibraryViewModel, the code now executes on a

background thread:

Chapter 15 Using async/await in SwiftUI

399

Resume again and continue execution until the debugger hits the

first breakpoint inside fetchRandomWord, and observe that we’re still on a

background thread.

Resume again, and after a short while, the third breakpoint is hit—in

refresh(), just where we called out asynchronously to fetchRandomWord.

The code still runs on a background thread.

Figure 15-5.  Still executing on the background thread:
fetchRandomWord

Chapter 15 Using async/await in SwiftUI

400

Figure 15-6.  Back in refresh, still on the background thread

Figure 15-7.  Back in the closure of the refreshable view modifier, the
code continues executing on the main thread

Resume one more time, until the debugger hits the second breakpoint

in the closure of the refreshable view modifier, and we’re back on the

main thread!

Chapter 15 Using async/await in SwiftUI

401

If you compare the call stacks in Figure 15-3 and Figure 15-7, you will

realize that both execute on the same thread (Thread 1), but all the other

methods executed on different threads, so what happened here?

As mentioned in the previous chapter, Swift’s new concurrency model

will use as many threads as your computer/phone has cores, and it will

execute your code on any thread from this pool. In particular, when calling

await on the man thread, Swift will suspend the current function and

continue executing other UI-related code on the main thread (to make

sure the app feels responsive to the user). Once the code we’re awaiting on

resumes, it will be running on a different, non-main, thread.

To get your code back to the main thread, there are a couple of

strategies:

–– You can wrap any code that updates the UI in a call to

MainActor.run { }.

–– You can mark any functions that update the UI using

the @MainActor property wrapper.

–– You can mark the entire class that contains code

updating the UI using the @MainActor property

wrapper.

Each one of these strategies is more coarse-grained than the previous

one, so if you need fine-grained control over which parts of your code

run on the main thread, use MainActor.run { }. On the other hand, by

annotating your entire view model (which usually is a class conforming to

@ObservableObject) with @MainActor, you make sure that all of the code

inside runs on the main thread. Unless it is called using await, in which

case it runs on the concurrent thread pool.

Chapter 15 Using async/await in SwiftUI

402

So, to solve the issue in our code, we can annotate the refresh function

with @MainActor:

 @MainActor

 func refresh() async {

 �print("\(#function) is on main thread BEFORE await:

\(Thread.isMainThread)")

 let result = await fetchRandomWord()

 randomWord = result.word

 �print("\(#function) is on main thread AFTER await:

\(Thread.isMainThread)")

 }

This will resolve any issues with accessing the UI from a background

thread. Once we add more functions that access the UI to our view model,

it might be more efficient to just annotate the entire class, like so:

@MainActor

class LibraryViewModel: ObservableObject {

 ...

}

Summary
In this chapter, you learned how to use Swift 5.5’s new structured

concurrency model in SwiftUI. SwiftUI provides well thought-out

mechanisms that make calling asynchronous code from the UI as natural

as possible.

For example, you can use the .task view modifier to run asynchronous

code when a view appears. When using .task instead of .onAppear,

SwiftUI will automatically take care of cancelling the task as soon as the

view disappears.

Chapter 15 Using async/await in SwiftUI

403

Searching and refreshing data are other common situations in

which you often need to run asynchronous code. The .refreshable and

.searchable view modifiers create an asynchronous context for their

closures, so you can easily call asynchronous code inside.

And if you need to call asynchronous code from a nonasynchronous

context (such as the action handler of a Button), you can easily create an

asynchronous context yourself by wrapping your code in a Task { } block.

You also saw that it might sometimes be more appropriate to use

Combine to drive some of the UI instead of using async/await. The

.searchable() view modifier is a great example for an API that is more

suitable for being used with Combine.

Many of the examples made use of List views. Chapter 5 goes into

more detail of how to build simple and advanced List views.

Chapter 15 Using async/await in SwiftUI

405

CHAPTER 16

Bringing It All
Together: SwiftUI,
async/await,
and Combine
Mobile applications have to deal with a constant flow of events: user input,

network traffic, and callbacks from the operating system are all vying for

your app’s attention. Building apps that feel snappy is a challenging task, as

you have to efficiently handle all those events.

Combine and async/await are some fairly recent addition to the

collection of frameworks and language features that aim at making

this easier.

In this chapter, we will explore commonalities and differences of

Combine and async/await, and I will show you how you can efficiently use

both to call asynchronous APIs in your SwiftUI apps.

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5_16

https://doi.org/10.1007/978-1-4842-8572-5_16

406

To better understand the respective characteristics, we will look at a

couple of code snippets taken from a SwiftUI screen that allows users to

search for books by title. You will find the source code for this sample app

in this book’s GitHub repository.1

�Fetching Data Using Combine
Many of Apple’s APIs are Combine-enabled, and URLSession is one of

them. To fetch data from a URL, we can call dataTaskPublisher and then

use some of Combine’s operators to handle the response and transform

it into a data model our application can work with. The following code

snippet shows a typical Combine pipeline for fetching data from a

remote API, mapping the result, extracting the information we need, and

handling errors.

Error handling in this code snippet is rather basic. For a more
in-depth discussion of error handling in Combine and how to
expose error messages to the user in a meaningful way in
SwiftUI apps, have a look at Chapter 10, in which this we take
a closer look at this important topic.

private func searchBooks(matching searchTerm: String) ->

 AnyPublisher<[Book], Never>

{

 let escapedSearchTerm =

 searchTerm

 �.a�ddingPercentEncoding(withAllowedCharacters:

.urlHostAllowed) ?? ""

 let url =

 UR�L(string: "https://openlibrary.org/search.json?q=

\(escapedSearchTerm)")!

1 https://github.com/peterfriese/SwiftUI-Combine-Book

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

https://github.com/peterfriese/SwiftUI-Combine-Book

407

 return URLSession.shared.dataTaskPublisher(for: url)

 .map(\.data)

 .decode(type: OpenLibrarySearchResult.self,

 decoder: JSONDecoder())

 .map(\.books)

 .compactMap { openLibraryBooks in

 openLibraryBooks?.map { Book(from: $0) }

 }

 .replaceError(with: [Book]())

 .eraseToAnyPublisher()

}

For someone who is not familiar with Combine, it might not be

immediately obvious how this code works, let alone being able to put

together a pipeline like this. Getting into a functional reactive mindset

probably is one of the biggest hurdles when learning Combine.

�Fetching Data Using async/await
Let’s now look at how to implement the same method using async/

await. Apple has made sure that the most important asynchronous

APIs can be called using async/await. To fetch data from a URL, we can

asynchronously call await URLSession.shared.data(from: url). By

wrapping this call inside a try catch block, we can add the same kind of

error handling we implemented in the previous code snippet and return

an empty array in case an error occurred.

To make it easier for them (and other SDK providers like Firebase),

Apple implemented a concurrency interoperability with Objective-C.2

In a nutshell, this ensures that the Swift compiler emits an async version

2 See Swift Evolution Proposal SE-0297: https://bit.ly/3HJIBbg

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

https://bit.ly/3HJIBbg

408

of every Objective-C method that has a completion block. To learn more

about how this works, check out my video “Using async/await with

Firebase,”3 in which I explain this in more detail.

private func searchBooks(matching searchTerm: String) async

 -> [Book]

{

 let escapedSearchTerm =

 searchTerm

 �.a�ddingPercentEncoding(withAllowedCharacters:

.urlHostAllowed) ?? ""

 let url =

 �UR�L(string: "https://openlibrary.org/search.json?q=

\(escapedSearchTerm)")!

 do {

 let (data, _) = try await URLSession.shared.data(from: url)

 let searchResult =

 try OpenLibrarySearchResult.init(data: data)

 guard let libraryBooks = searchResult.books else {

 return []

 }

 return libraryBooks.compactMap { Book(from: $0) }

 }

 catch {

 return []

 }

}

3 https://youtu.be/sEKw2BMcQtQ

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

https://youtu.be/sEKw2BMcQtQ

409

If you’ve got some experience writing and reading Swift code, you

will be able to understand what this code does—even if you’ve got no

prior experience with async/await: all keywords related to async/await

blend in with the rest of the code, making it rather natural to read and

understand. This is not least due to the fact that the Swift language team

modeled Swift’s concurrency features similar to how error handling works

using try/catch.

Of course, to write code like this, you need a basic understanding of

Swift’s concurrency features, so there definitely is a learning curve.

�Is This the End of Combine?
Looking at these two code snippets, you might argue that the one making

use of async/await is easier to understand for developers who might not

be familiar with neither Combine nor async/wait, mostly due to the fact

you can read if from top to bottom in a linear way.

On the contrary, to understand the Combine version of the code, you

have to know what a publisher is, why some of the operations are nested

(e.g., the code for mapping a book inside the compactMap/map structure),

and why on earth you need to call eraseToAnyPublisher. This can look

very confusing if you’re new to Combine.

Add to that the lack of sessions about Combine at WWDC 2021—it really

seemed like Apple lost their enthusiasm for functional reactive programming.

So, given both code snippets seem to do the same, is this the end of Combine?

Well, I don’t think so, and this has to do with the fact SwiftUI is tightly

integrated with Combine. In fact, Combine makes a number of things in

SwiftUI a lot easier with surprisingly little code.

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

410

�Connecting the UI…
To better understand this, let’s look at how to call the earlier code snippets

from SwiftUI. The following code shows a typical way to implement

a search screen—we’ve got a List view to display the results and a

.searchable view modifier to set up the search field and connect it to the

searchTerm published property on a view model:

struct BookSearchCombineView: View {

 @StateObject var viewModel = ViewModel()

 var body: some View {

 List(viewModel.result) { book in

 BookSearchRowView(book: book)

 }

 .searchable(text: $viewModel.searchTerm)

 }

}

�…to a Combine Pipeline
By making the searchTerm a published property on the view model, it

becomes a Combine publisher, allowing us to use it as a starting point for

a Combine pipeline. The view model’s initializer is a good place to set up

this pipeline:

fileprivate class ViewModel: ObservableObject {

 @Published var searchTerm: String = ""

 @Published private(set) var result: [Book] = []

 @Published var isSearching = false

 private var cancellables = Set<AnyCancellable>()

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

411

init() {

 $searchTerm

 .debounce(for: 0.8, scheduler: DispatchQueue.main) // (1)

 .map { searchTerm -> AnyPublisher<[Book], Never> in // (2)

 self.isSearching = true

 return self.searchBooks(matching: searchTerm)

 }

 .switchToLatest() // (3)

 .receive(on: DispatchQueue.main) // (4)

 .sink(receiveValue: { books in // (5)

 self.result = books

 self.isSearching = false

 })

 .store(in: &cancellables) // (6)

}

 private func searchBooks(matching searchTerm: String)

 -> AnyPublisher<[Book], Never>

 {

 // ...

 }

Here, we subscribe to the searchTerm publisher and then use a couple

of Combine operators to take the user’s input, call the remote API, receive

the results, and assign them to a published property that is connected

to the UI:

	 1.	 The debounce operator will only pass on events after

there has been a 0.8s pause between event. This

way, we will only call the remote API when the user

has finished typing or pauses for a brief moment.

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

412

	 2.	 We use the map operator to call the searchBooks

pipeline (which itself is a publisher) and return its

results into the pipeline.

	 3.	 Even though we use the debounce operator to

reduce the number of events, we might run into

a situation where multiple network requests are

in flight at the same time. As a consequence, the

network responses might arrive out of order. To

prevent this, we use switchToLatest()—this

will switch to the latest output from the upstream

publisher and discards any other previous events.

	 4.	 To make sure we make changes to the UI only

from the main thread, we call receive(on:

DispatchQueue.main).

	 5.	 To assign the result of the pipeline (an array of Book

instances we receive from searchBooks) to the

published property result, we would normally use

the assign(to:) subscriber, but as we also want

to set the isSearching property to false (to turn

off the progress view on our UI), we need to use

the sink subscriber, as this will allow us to perform

multiple instructions.

	 6.	 Using the sink subscriber also usually means we

need to store the subscription in a Cancellable or a

Set of AnyCancellables.

Notice how easy it is to handle challenging tasks like discarding out-

of-order events or reducing the number of requests being sent by only

sending requests when the user stops typing. As you will see in a moment,

this is slightly more complicated when using async/await.

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

413

�…to an async/await Method
How would the same code look like when using async/await?

To call the async/await–based version of searchBooks, we need

to choose a slightly different approach. Instead of subscribing to the

$searchTerm publisher, we create an async method named executeQuery

and create a Task that calls searchBooks:

fileprivate class ViewModel: ObservableObject {

 @Published var searchTerm: String = ""

 @Published private(set) var result: [Book] = []

 @Published private(set) var isSearching = false

 private var searchTask: Task<Void, Never>? // (1)

 @MainActor // (7)

 func executeQuery() async {

 searchTask?.cancel() // (2)

 let currentSearchTerm =

 searchTerm.trimmingCharacters(in: .whitespaces)

 if currentSearchTerm.isEmpty {

 result = []

 isSearching = false

 }

 else {

 searchTask = Task { // (3)

 isSearching = true // (4)

 result = await searchBooks(matching: searchTerm) // (5)

 if !Task.isCancelled {

 isSearching = false // (6)

 }

 }

 }

 }

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

414

 �private func searchBooks(matching searchTerm: String)

async -> [Book] {

 // ...

 }

}

Inside the Task, we also handle the progress view’s state by updating

the view model’s isSearching published property according to the current

state of the process.

In the Combine-based version of this part of the app, we used a

combination of map and switchToLatest to make sure we only receive

results for the most recent user input. This is particularly important for

network requests, as they might return out of order.

To achieve the same using async/await, we need to use cooperative

task cancellation4: we keep a reference to the task in searchTask (1) and

cancel any potentially running task (2) before starting a new one (3).

Since searchBooks is marked as async, the Swift runtime can decide

to execute it on a non-main thread. However, in executeQuery, we want to

update the UI by setting published properties result (5) and isSearching

(4, 6). To ensure it runs on the main thread, we have to mark it using the

@MainActor attribute (7).

As a final step, we need to make a small but important change to the

UI: since we cannot subscribe an asynchronous method to a published

property, we need to find another way to call executeQuery for each

character the user types into the search field.

It turns out that Apple added a suitable view modifier to the most recent

version of SwiftUI—onReceive(_ publisher:). This view modifier allows

us to register a closure that will be called whenever the given publisher emits

an event:

4 To learn more about cooperative task cancellation, check out my blog post on this
topic: https://peterfriese.dev/posts/swiftui-concurrency-essentials-part2/)

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

https://peterfriese.dev/posts/swiftui-concurrency-essentials-part2/

415

List(viewModel.result) { book in

 BookSearchRowView(book: book)

}

.searchable(text: $viewModel.searchTerm)

.onReceive(viewModel.$searchTerm) { searchTerm in

 Task {

 await viewModel.executeQuery()

 }

}

Overall, using async/await requires more work on our part, and it

is easy to get things like cooperative task cancellation wrong or forget an

important step, like cancelling any tasks that might still be running. In

terms of developer experience, Combine follows a much more declarative

approach than async/await: you tell the framework what to do, not how

to do it.

�Calling Asynchronous Code from Combine
In the previous section, I claimed that we cannot subscribe to a Combine

publisher using async/await. But is this actually true? Let’s see if we can

implement a smart way to combine async/await and Combine.

The following snippet shows a view model that uses a Combine

pipeline that calls an asynchronous version of the searchBooks method:

fileprivate class ViewModel: ObservableObject {

 // MARK: - Input

 @Published var searchTerm: String = ""

 // MARK: - Output

 @Published private(set) var result: [Book] = []

 @Published var isSearching = false

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

416

 init() {

 $searchTerm

 .debounce(for: 0.8, scheduler: DispatchQueue.main) // (1)

 .removeDuplicates() // (2)

 .handleEvents(receiveOutput: { output in // (3)

 self.isSearching = true

 })

 .flatMap { value in

 Future { promise in

 Task {

 let result = await self.searchBooks(matching: value)

 promise(.success(result))

 }

 }

 }

 .receive(on: DispatchQueue.main)

 .eraseToAnyPublisher()

 .handleEvents(receiveOutput: { output in // (4)

 self.isSearching = false

 })

 .assign(to: &$result) // (5)

 }

private func searchBooks(matching searchTerm: String) async ->

[Book] {

 let escapedSearchTerm = searchTerm

 �.a�ddingPercentEncoding(withAllowedCharacters:

.urlHostAllowed) ?? ""

 let url =

 �URL(string: "https://openlibrary.org/search.json?q=

\(escapedSearchTerm)")!

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

417

 do {

 let (data, _) =

 try await URLSession.shared.data(from: url)

 let searchResult =

 try OpenLibrarySearchResult.init(data: data)

 guard let libraryBooks = searchResult.books else {

 return []

 }

 return libraryBooks.compactMap { Book(from: $0) }

 }

 catch {

 return []

 }

 }

}

This approach allows us to tap into the power of Combine to improve

the user experience with just a few lines of code:

–– By using the debounce operator (1), we can hold off on

sending search requests over the network until the user

has stopped typing for a second. This means we will

consume less bandwidth (good for the user) and cause

fewer API calls (good for us, esp. when calling APIs that

might be billed).

–– We can further reduce the number of requests by

removing any duplicate API calls using the removeDu-

plicates operator (2).

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

418

There are also some advantages on the code level:

–– By using the handleEvents operator (3, 4), we can

extract the code for handling the progress view from

the map and sink operators. This also allows us to

replace the sink/store combo by a much simpler and

easier to use assign subscriber.

–– There is only one place (5) in which we assign the result

of the pipeline to the result property, reducing the

chances to introduce subtle programming errors.

At the same time, we can use the advantages of async/await when

writing network access code: being able to read the code from top to

bottom in a linear way makes it a lot easier to understand than code that

makes use of callbacks or nested closures.

Let’s take a closer look at the code that allows us to call an

asynchronous method from a Combine pipeline:

somePublisher

 .flatMap { value in

 Future { promise in

 Task {

 let result = await self.searchBooks(matching: value)

 promise(.success(result))

 }

 }

 }

To call the asynchronous version of searchBooks, we need to establish

an asynchronous context. This is why we wrap the call in a Task. Once

searchBook returns, we resolve the promise by sending the result as a

.success case value.

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

419

We can simplify this code by extracting the relevant part into an

extension on Publisher:

extension Publisher {

 �/// Executes an asynchronous call and returns its result to

the downstream subscriber.

 ///

 �/// - Parameter transform: A closure that takes an element as

a parameter and returns a publisher that produces elements of

that type.

 �/// - Returns: A publisher that transforms elements from an

upstream publisher into a publisher of that element's type.

 �func `await`<T>(_ transform: @escaping (Output) async -> T)

-> AnyPublisher<T, Failure> {

 flatMap { value -> Future<T, Failure> in

 Future { promise in

 Task {

 let result = await transform(value)

 promise(.success(result))

 }

 }

 }

 .eraseToAnyPublisher()

 }

}

This allows us to call an asynchronous method using the

following code:

somePublisher

 .await { searchTerm in

 await self.searchBooks(matching: searchTerm)

 }

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

420

�Summary
The seeming lack of attention Apple paid to Combine at WWDC 2021

resulted in a lot of confusion and uncertainty in the community—should

you invest into learning Combine in the light of all the attention Apple put

on async/await?

To answer this question, we need to take a step back and understand

the value propositions of Combine and async/await.

At a cursory glance, they seem to address the same use case:

asynchronously calling APIs. However, when looking closer, it becomes

clear that they are very different indeed:

Combine is a reactive framework, with the notion of a stream of

events that you transform using operators before consuming them with

a subscriber. This side-effect-free way of programming makes is easier

to ensure your app is always in a consistent state. In fact, SwiftUI’s state

management system makes heavy use of Combine—every @Published

property is, as the name implies, a publisher, making it easy to connect a

Combine pipeline.

Async/await, on the other hand, aims at making asynchronous

programming and handling concurrency easier to implement and reason

about. While this makes it easier to create a linear control flow, it doesn’t

offer the same guarantees about state as Combine does.

My recommendation is to use whichever of the two makes the most

sense in any given situation. For any UI-related task, I personally prefer

using Combine, as it gives us unprecedented power and flexibility when

implementing otherwise difficult-to-implement aspects like debouncing

user input, combining multiple input streams into one, and efficiently

handling out-of-order execution of network requests.

Combine and async/await are two different kinds of tools in our tool

belt, and it is our responsibility to use them wisely and according to their

intended purpose.

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

421

My recommendation is to use Combine for UI-related features in your

app that needs to deal with handling input from a number of sources.

Some examples are as follows:

–– Input validation: Validating multiple input fields,

making sure the user filled in all the mandatory fields,

handling interfield dependencies (e.g., selecting credit

card payment requires you to fill out the card number,

but pay by invoice requires you to provide an additional

address for the invoice)

–– Searching and filtering: Making sure to search and filter

based on the latest values the user entered in the

search bar, along with any filter criteria they selected

–– Cleaning up user input before it reaches your data

layer: For example, making sure you don’t hit your API

endpoint for every single character the user types, or to

remove duplicate queries, to make your network layer

more efficient (and consume less bandwidth)

On the other hand, you might find using async/await easier to use

than Combine when calling asynchronous APIs, making network requests,

or interfacing with BaaS platforms like Firebase.

And finally, as you saw in this chapter, combining async/await and

Combine is possible, allowing you to mix and match the best aspects of

both approaches.

Chapter 16 Bringing It All Together: SwiftUI, async/await, and Combine

423

Index

A
Add Modifiers, 29
AppKit, 5
Apple, 3–5, 8–10, 24, 31, 33, 65, 78,

80, 117, 123, 154, 158, 167,
170, 208, 252, 320, 326, 327,
335, 336, 338, 377, 387, 407,
409, 414, 420

App Store, 4, 337
Aspect Ratio modifier, 49
Async/await, 412

APIs, 406
asynchronous, 387
characteristics, 406
code level, 418
and combine, 130, 415, 420
combine-based version, 414
combine’s operators, 406
concurrency model, 385
cooperative task

cancellation, 415
error handling and JSON

parsing, 386
frameworks and language, 405
parameter, 391
pipeline, 407
sample app, 385

searchBooks, 413, 414
searching and refreshing

data, 403
searchTerm property, 393
URLSession, 386

Asynchronous
algorithm, 366
APIs, 353
artisanal sandwiches, 366
execution, 127
greet function, 364
method, 377, 387, 414, 418, 419
network, 365
synchronous version, 365
task, 124
world, 363

Asynchronous code, 387
in action, 388
APIs, 388
compile-time error, 388
fetching data, 388
SwiftUI, 389
task, 387
Xcode 13, 390

Asynchronous executeQuery
method, 394

Asynchronous programming
APIs, 374, 380

© Peter Friese 2023
P. Friese, Asynchronous Programming with SwiftUI and Combine,
https://doi.org/10.1007/978-1-4842-8572-5

https://doi.org/10.1007/978-1-4842-8572-5

424

async/await–based, 377
behavior, 374
concepts, 377
concurrency model, 381, 384
definition, 378
functions, 379
handler–based version, 378
improvement, 383
language-level, 371
makeSandwich, 380, 381
slice function, 379
toastBread, 374, 376

function, 372
and slice, 380

Attributes inspector, 17, 44
Autocapitalization, 134

B
Backend as a service (BaaS),

317, 421
@Binding, 95, 97, 98, 123
BookRowView, 121
BookShelfApp.swift, 38
Building techniques, reusable

SwiftUI components, 70

C
Cambridge Dictionary, 363
Child view, 79, 87, 89
Cloud Firestore, 126, 276, 317, 318,

356, 357

Code refactoring, 60–62, 64
Code reusable, 60, 313
Combination, 114
Combine, 4, 9, 420

addSnapshotListener method,
329, 330

button click, 341
callback-driven code, 252
CollectionReference, 328
concepts, 307, 308
create publisher, 271
CurrentValueSubject, 328
demo server, 261
elegant and declarative

mechanism, 338
eraseToAnyPublisher

operator, 260
fetching data, 255, 256
flatMap operator, 258
futures, 345
handleEvents operator, 330, 331
isFormValidPublisher, 272
isUsernameAvailablePublisher,

260, 261
lazy computed property, 259
mapping data, 254
operators, 308, 344, 345,

351, 352
built-in operators, 308
implementation, 309, 310
retry operator, 311

PassthroughSubject, 328, 330
published property, 258, 341
publishers, 317

Asynchronous
programming (cont.)

INDEX

425

Publishers.
CombineLatest(), 271

refactoring, 252, 253
retrying, 313, 314
retry operator, 301
send(:) method, 328
server’s console output, 261
sign-up form, 256, 257, 259
snapshotPublisher, 329, 330
subjects, 328
subscribers, 259
tuples, key paths, 254
updation, 331
username, 275
username publisher, 258
UserNameValid enum, 272
user’s input, 275
view model, 257, 260
wrapping APIs, 325

Combine framework
features, 99
ObservableObject, 99
@Publishedturns, 99
SwiftUI’s relation, 106

CombineLatest, 133
Combine pipeline, 133, 163, 410
Combine-specific—filter, 134
Complex list rows, 116
Complex views, 92
Concurrency model, 123, 125–127,

377, 379, 381, 383–385,
401, 402

Consumer-facing platforms, 5
Container views

categories, 78
complex UI, 79
grouping, 73
return type, 73

ContentView, 23, 39, 56, 64
ContentView.swift, 15
Cross-platform UIs, 82
Custom list rows, 113
CustomRowView, 116

D
Data binding, 7, 8, 56–58
Developers, 275
Device/network offline errors

APIError, 286, 287
connectivity, 286
isUsernameAvailable

Publisher, 288
mapError, 286
mobile devices, 286
network error, 289
usernameMessage, 289
view model, 287, 288

DispatchQueue.global(qos:), 353
Displaying book details,

view, 53–55
Domain-specific language (DSL),

6, 7, 9, 92, 140, 204, 223
Drill-down navigation

App struct, 185
BookDetailsView, 188, 189
BookEditView, 189, 190
BookRowView, 187, 188

INDEX

426

Book struct, 185
Contacts app, 184
Edit button, 184
initializer injection, 186
list bindings, 187
NavigationLink, 188
ObservableObject, 185
root view, 186
@StateObject, 186
static list of books, 185
updation, 190
view model, 185

Dynamic lists
Apple, 117
asynchronous data

fetching, 123–125
bindings, 121, 123
displaying elements, 117,

119, 120
pull-to-refresh, 126, 127,

129, 130
searching, 130, 132–134

E
Editor placeholder, 23, 28
enum, 95, 155, 156
@EnvironmentObject, 98, 103–106
Error handling, 275

checkUserName
AvailablePublisher, 284

Chrome Dino game, 277
error conditions, 278

error message, 277
extensions, 284
flatMap, 282
ignoring error, 276
inline error, 278
isUsernameAvailable

Publisher, 285
network API

APIError, 281, 282
checkUserNamer

AvailablePublisher, 280
concerns, 279
network errors, 280, 281
sign-up form, 279, 280

requirements,
solution, 283, 284

retrying, 276, 277
typealias, 284
view model, 283

Expanding, 80
ExtractedView, 61
Extract Subview, 60, 62, 65

F
Firebase

asynchronous, 318
BookListViewModel, 324
Combine, 357
Combine pipeline, 325
definition, 317
published properties, 325
services, 318, 356
view model, 322, 324

Drill-down navigation (cont.)

INDEX

427

Firestore
cloud firestore, 318
collections/queries, 328, 329
combine, 321
data, 318
dispatch queue, 357, 358
documents, 318
fetching data, 318, 319, 332, 356
Future, 333

DocumentReference, 333
DocumentSnapshot, 333
getDocument method, 333
promise parameter, 334
properties, 333
single-shot Combine

publisher, 335
snapshot/error, 334

real-time live sync, 319, 332
SDK, 318
snapshot listener, 319, 328, 330
updatation, 319, 320

Flat lists, 117
FocusableListView view, 161
FocusedReminder property, 157,

160, 163
@FocusState, 154, 162
Forms, 167

BookDetailsView, 180
Boolean property, 183
buttons, 177, 178
data model, 179
display data, 179
dynamic data, 181
headline text, 170

Hello World, 168, 169
images, 170, 172
input elements, 168
label, 173, 174
NumberFormatter, 183
preview provider, 184
sign-up form

JSON document, 249
username, 248, 249

static data, 168, 170, 179
static forms, 204
TextField, 182
theme, 168
toggle, 175, 176, 180
UI elements, 168, 179, 180
UITableView, 170
version, 182

Frame modifier, 49
Full swipe, 147, 153
Functional reactive

frameworks, 4, 8
Functional reactive programming,

99, 207–209, 409

G
GitHub repository, 36, 56, 154, 251,

366, 406

H
Headers and footers, 137, 138
Hierarchical lists, 117
Horizontal stacks and spacers, 65

INDEX

428

HStack, 48, 53, 67, 148
Hug, 65
Hugging, 80

I, J, K
Image and Text views, 67
Imperative UI toolkits, 93
IndexSet, 145
Input forms, 167
Input validation

binding, 200
BookEditViewModel, 197
Book property, 198
BookShelfApp, 197
Bool value, 203
combine pipelines, 236, 237
completion handler, 198
contacts app, 191
dismiss action, 200
events, 227
flow of information, 196
form validation, 192, 193
functionality, 199, 200
binding, 198
initializer, 203
ISBN, 191
isISBNValid, 202
isValid property, 241
map closure, 203
@ObservableObject, 196
password, 238, 240, 241
Publishers.CombineLatest, 242

save function, 201
sign up form, 191, 227–229
social features, 226
source of truth, 197, 198, 201
steps, 191
SwiftUI, 202
user account, 227
username, 232, 233
users’ data, 226, 227
validation message, 234, 235
view model, 193, 194, 196, 202,

229, 231, 242
wrappedValue, 201

Interface Builder, 7
Internal server errors

APIError enum, 299, 300
dataTaskPublisher, 302, 303
demo server, 304
error message, 300, 301
HTTP status code, 298
implementation, 302
pressure, 301
retry operator, 301
Sound breakpoint, 304
tryCatch operator, 302
username, 304
verification errors, 301

International Standard Book
Number (ISBN), 66,
191–193, 202, 203, 225

Internet, 8, 247, 263
iPad Simulator, 190
iPhone, 182

INDEX

429

L
Layout behavior

expanding, 80
hugging, 80
SwiftUI layout process, 79

Library, 66, 67
List cells, 139
.listSectionSeparator(), 141
.listSectionSeparatorTint(), 141
.listStyle view modifier, 135
List views

complex list rows, 114, 116
custom list rows, 111, 112, 114
dynamic, 117
lines of code, 107
static text, 108
SwiftUI view creation, 108
SwiftUI Views inside list rows,

109, 111
UI structures, 107

M
@MainActor, 125, 129
Managing focus

Apple’s documentation, 154
editing, 154
eliminating empty elements,

163, 164
faster navigation, 154
@FocusState, 154, 156
handling the enter key, 158, 159

in List views, 156, 157
MVVM approach, 159, 160,

162, 163
SwiftUI, 154

Mark as read/unread action, 148
Memory-bound process, 337
Mobile applications, 405
Model View Controller (MVC), 10
Model View Presenter (MVP), 10
Model, View, ViewModel (MVVM),

10, 159, 160, 162, 163
Multiple swipe actions, 150, 152
Multithreading, 262–263, 358

N
Nested lists, 117
Network access

API endpoints, 264
Apple’s documentation, 266
CPU cycles, 263
debounce operator, 269
edge connection, 263
removeDuplicates, 270, 271
root cause, 264, 265
share() operator

events, 268
print() operator, 267
subscribers, 266
subscriptions, 268
$username publisher, 267

subscribers, 266
test server, 263

INDEX

430

New SwiftUI app creation
Canvas, 16
iOS section selection, 12
naming the project, 13
two-way tooling, 17
Xcode, 11, 12, 15, 18

O
Objective-C method, 408
ObservableObject, 98, 99, 106, 123
@ObservedObject, 98, 101, 103
@ObservedObject view model, 121
onDelete modifier, 144, 148
onDelete’s closure, 146
onDelete view modifier, 150
onMove view modifier, 145
.onSubmit view modifier, 158
Opaque return type, 39
Opaque type, 74
Operators, 308

.addTopping, 216
combine, 214
CompactMap, 214, 215, 217
filter operator, 217, 218
map, 213, 214
names, 213
parameters, 218, 219
pipelines, 215
.prefix operator, 219
publisher, 215
toppings, 219

P, Q
Parent view, 79
Placeholder, 28
Preview canvas, 51, 59, 67
Preview configuration, 58
PreviewProvider, 40, 71, 72
Property wrappers, 94, 95, 106
@Publishedturns, 99
Publishers, 308

CombineLatest, 221
creation, 327
errors, 209
events, 353
long-running

computation, 345
pizza delivery service

address, 220
.eraseToAnyPublisher()

operator, 220
order status, 220
pipelines, 220

pizza ordering app, 210
pizza toppings, 209
place order button, 210
.print() operator, 222, 223
subscribe(on:)

operator, 346–348
types, 221
values, 209, 210

Publishers.CombineLatest, 133
Pull-to-refresh, 126, 127, 129, 130
Pyramid of doom, 36, 60

INDEX

431

R
RandomAccessCollection, 56, 117
Reactive programming, 248
ReactiveX, 208
Rendering process, 83
Response parsing errors

alert, 295, 296
data, 293
decode operator, 293
decoding errors, 294
error message, 293–295
events, 297
guidance, 293
isUsernameAvailable

Publisher, 298
network request, 298
situations, 293
view model, 296, 297

Retry operator
code, 311
exponential backoff, 314–316
extension, 311
implementation, 312
parameters, 312
Publishers.TryCatch, 312

RxSwift, 4

S
SampleBooks, 37
Sandwich-making process,

381, 382
Schedulers

access network, 344

combine pipeline, 342
default behavior, 344
definition, 338
ImmediateScheduler, 342
output, 343
protocol, 338, 339
receive(on), 344
SchedulerTimeType, 339
subscribe (on), 344
threads, 344
types, 340

Scrolling views, 9
Searchable

BooksListView, 134
SearchTerm publisher, 411
Separators, 140, 141
Single View, 72
Smalltalk-esque call semantics, 4
Source of truth, 93, 248
Spacer, 67
Spacer view, 51
@State, 95–98, 121
@StateObject, 98, 99, 101, 119
StateStepper, 100
String interpolation, 28
Struct, 95, 96
Styling

headers and footers, 137, 138
list cells, 139
list styles, 135
separators, 140, 141
SwiftUI 3, 134

Subscribers, 211, 212, 308
receive(on:) operator, 349, 350

INDEX

432

Swift Concurrency Manifesto, 375
Swift language, 6

feature, 373
team, 409

Swift Package Index, 70
Swift Playgrounds, 4, 366, 367
Swift programming

language, 4, 364
Swift’s new concurrency model,

123, 125–127
SwiftUI, 390, 402, 410

application, 385
Apple’s investment, 5
async/await, 247, 248
attributes, 6
bugs, 6
callbacks, 247
collaboration, UI designers and

developers, 6
combine, 247, 248
cross-platform UI toolkit, 5
declarative syntax, 129
flexible stack-based layout

system, 139
input elements, 182
inspector, 29
interactivity, 19, 21–24
key components, 69
network-driven Combine

pipeline, 248
property wrappers, 248
reactive state management

system, 207, 248
reusable UI components, 33

software development, 6
text and image, 33
traditional application, 11
tutorial, 11
UIs, 207
user interface elements, 75
“write once, run everywhere”

paradigm, 5
Xcode’s preview canvas, 6

SwiftUI properties
composition over inheritance, 9
declarative vs. imperative, 7
state function, 10, 11
state management, 8, 9
views, 10

SwiftUI’s state management,
27–29, 31

applications data model, 93
binding objects, 98
binding value types, 95–98
@EnvironmentObject, 103–106
live preview button, 30
ObservableObject protocol, 99
property wrappers, 94, 95
@StateObject, 99, 101
user greeting, 25, 26
views and data model sync, 69

SwiftUI View file, 64
code editor, 41
complex UIs, 40
container components, 40
image scaling, 49
preview, 46
source code update, 46

INDEX

433

text view, 41, 48
VStack and Image view, 48
VStack container, 47
Xcode tooling, 40

swipeActions modifier, 147,
148, 151

Swipe actions
adding, 150–152
Apple’s Mail app, 143
controls, 147
easy-to-use UI affordance, 143
features, 143
full swipe, 153
list row, 147
modifiers, 148
moving and deleting, 145, 146
onDelete, 150
styling, 153
swipe-to-delete, 144, 145
trailing edge, 148–150
UIKit, 143

Swipe-to-delete, 144, 145
Synchronous programming

makeSandwich, 370
sandwich-making algorithm,

367, 370
toastBread function, 370

T
TextField view, 96
Text Field, 27
ToastBread function, 372

U
UIKit, 5, 9, 67, 143, 182
UI-related task, 420
UITextField, 82
UI views

controls and indicators, 76
elements, 74
images, 75
shapes, 77

URLSession, 386
fetching data, 249, 250, 355
issues, 250, 251
publishing, 355
receive(on:) operator, 355
thread, 355

User interface (UI), 74, 78
aspects, 34
blocking, 337
elements, 337
events, 337
framework, 33
updates, 338, 353

Users, 247

V
Validation errors

backend implementation, 289
URLErrors, 289–291
username, 289
view model, 292, 293

Value, 28
View composing, 36, 37, 39, 40

INDEX

434

View, Interactor, Presenter, Entity,
and Routing (VIPER), 10

View modifiers
app customization, 83
child views, 87, 89
configuring views, 84–86
registering action

handlers, 89–92
Swift methods, 84

View modifiers, 19, 65–66, 83–92, 123,
127, 130, 132, 134, 135, 141,
145, 147, 150, 158, 162, 170,
388–389, 400, 403, 410, 414

View protocol, 39, 72, 73, 84
Views, 10, 65

composing, 74
ContentView, 72
custom types, 74
decomposing, 80
hierarchy, 81, 82
just descriptions, 80, 92
PreviewProvider, 71, 72
primitives, 82, 83
structs, View protocol, 72, 73

structure, 71
Swift package, 70
SwiftUI documentation, 80
SwiftUI’s building UIs, 70
UI (see UI views)

Views library, 20, 21
VStack, 54, 67, 73, 148

W
Worldwide Developers Conference

(WWDC), 3, 66

X, Y, Z
Xcode, 11, 18, 21, 22

editor, 17
graphical tooling, 41
Library, 19
New File dialog, 64
preview canvas, 72
refactoring tools, 120
source editor, 16
two-way tooling, 31

INDEX

	Table of Contents
	About the Author
	Foreword
	Preface
	Acknowledgments
	About This Book
	Part: 1
	Chapter 1: SwiftUI: A New Beginning
	Why a New UI Framework?
	SwiftUI Principles
	Declarative vs. Imperative
	State Management
	Composition over Inheritance
	Everything Is a View—Except That It Isn’t
	UIs Are a Function of Their State

	A Quick Tour of SwiftUI
	Prerequisites
	Creating a New SwiftUI App
	Adding Some Interaction to Your App
	Using SwiftUI’s State Management to Keep UI and Model in Sync

	Exercises
	Summary

	Chapter 2: Getting Started with SwiftUI
	What We’re Going to Build
	Composing a View for Displaying a Book
	Build the View with Static Data
	Using the Preview to Make Sure Our View Works As Intended
	Displaying a List of Books
	Setting Up Data Binding
	Adjusting the Preview Canvas
	Making the Code Reusable
	Refactoring the Code Using Extract Subview
	Renaming ContentView
	Keep Complexity in Check

	Views and View Modifiers
	Exercises
	Tips and Tricks
	Summary

	Chapter 3: SwiftUI Building Blocks
	Views
	User Interface Views
	Text Input and Output
	Images
	Controls and Indicators
	Shapes

	Container Views
	Layout Behavior
	Hugging
	Expanding

	Views Are Just Descriptions of the UI

	View Modifiers
	Configuring Views
	Applying View Modifiers to Child Views
	Using View Modifiers to Register Action Handlers

	Summary

	Chapter 4: State Management
	Managing State in SwiftUI
	Binding Value Types
	Binding Objects
	ObservableObject
	@StateObject
	When to Use

	@ObservedObject
	When to Use

	@EnvironmentObject
	When to Use

	Summary

	Chapter 5: Displaying Data in Lists
	Getting Started with Lists in SwiftUI
	Using Other SwiftUI Views Inside List Rows
	Building Custom List Rows
	More Complex List Rows

	Dynamic Lists
	Displaying a List of Elements
	Using List Bindings to Allow Modifying List Items
	Asynchronously Fetching Data
	Pull-to-Refresh
	Searching

	Styling
	List Styles
	Headers and Footers
	List Cells
	Separators

	Actions
	Swipe-to-Delete
	Moving and Deleting Items Using EditMode
	Swipe Actions
	Basic Swipe Actions
	Specifying the Edge
	Swipe Actions and onDelete
	Adding More Swipe Actions
	Full Swipe
	Styling Your Swipe Actions

	Managing Focus in Lists
	How to Manage Focus in SwiftUI
	How to Manage Focus in Lists
	Handling the Enter Key
	What About MVVM?
	Eliminating Empty Elements

	Summary

	Chapter 6: Building Input Forms
	Building Simple Forms
	Showing Data in a Form
	Make It Editable
	Drill-Down Navigation
	Input Validation
	Using .onChange(of:)
	Using a View Model to Handle Form Validation
	Synchronizing a Local Source of Truth with the Global Source of Truth by Using @Binding and @ObservableObject
	Using Combine to Perform Form Validation

	Summary

	Part: 2
	Chapter 7: Getting Started with Combine
	What Is Functional Reactive Programming?
	Publishers
	Subscribers
	Operators
	Composing Operators
	Combining Publishers
	Summary

	Chapter 8: Driving UI State with Combine
	Input Validation Using Combine
	The Sign-Up Form View
	The View Model
	Validating the Username
	Displaying Validation Messages
	Encapsulating Combine Pipelines in Computed Properties
	Validating the Password
	Putting It All Together

	Exercises�
	Summary

	Chapter 9: Networking with Combine
	Fetching Data Using URLSession
	Using Combine to Fetch Data
	Destructuring Tuples Using Key Paths
	Mapping Data
	Fetching Data Using Combine, Simplified

	Connecting to the UI
	Handling Multithreading
	Optimizing Network Access
	Finding the Root Cause
	Using the share Operator to Share a Publisher
	Using debounce to Further Optimize the UX
	Using removeDuplicates to Avoid Sending the Same Request Twice

	Bringing It All Together
	Exercises
	Summary

	Chapter 10: Error Handling in Combine
	Error Handling Strategies
	Ignoring the Error
	Retrying (with Exponential Backoff)
	Showing an Error Message
	Replacing the Entire View with an Error View
	Showing an Inline Error Message

	Typical Error Conditions and How to Handle Them
	Implementing a Fallible Network API
	Calling the API and Handling Errors
	Handling Device/Network Offline Errors
	Handling Validation Errors
	Handling Response Parsing Errors
	Handling Internal Server Errors

	Summary

	Chapter 11: Implementing Custom Combine Operators
	What Is a Combine Operator?
	Implementing Custom Operators
	Implementing a Retry Operator with a Delay
	Conditionally Retrying
	Implementing a Retry Operator for Exponential Backoff
	Summary

	Chapter 12: Wrapping Existing APIs in Combine
	A Case Study
	Using Combine to Access Firestore
	Using View Models and Published Properties
	Using Combine to Wrap APIs

	Creating Your Own Publishers
	Using PassthroughSubject to Wrap Snapshot Listeners
	Using Future to Implement One-Time Fetching from Firestore

	Summary

	Chapter 13: Combine Schedulers and SwiftUI
	What Is a Scheduler
	Types of Schedulers
	Default Behavior
	Switching Schedulers
	Controlling Upstream Publishers Using subscribe(on:)
	Controlling Downstream Subscribers Using receive(on:)
	Other Operators That Influence Scheduling

	Performing Asynchronous Work
	Integrating with Other APIs
	URLSession
	Firebase

	Summary

	Part: 3
	Chapter 14: Getting Started with async/await
	Synchronous Programming with Functions
	Asynchronous Programming with Closures
	Asynchronous Programming with async/await
	Defining and Calling Asynchronous Functions
	Calling Asynchronous Functions in Parallel

	Summary

	Chapter 15: Using async/await in SwiftUI
	Fetching Data Asynchronously Using URLSession
	Calling Asynchronous Code
	The Task View Modifier
	Calling Asynchronous Code When the User Taps a Button
	Using Pull-to-Refresh to Update Views Asynchronously
	Searchable Views and async/await
	Updating the UI from the Main Thread
	Summary

	Chapter 16: Bringing It All Together: SwiftUI, async/await, and Combine
	Fetching Data Using Combine
	Fetching Data Using async/await
	Is This the End of Combine?
	Connecting the UI…
	…to a Combine Pipeline
	…to an async/await Method
	Calling Asynchronous Code from Combine
	Summary

	Index

