<packh

s LY
0o 1
0 19
00"
0 ' 01!
000 010 1 11
011 010 001 ¢
11100 10 11010
11110 1160 10000
110111 101 100110
so 1011 10 l1T001 10
e 11001 vy R 100 010010
6010071 o o0 00 1 » 1110101
coo111C I T i = O 1'0 J00O0O 110
01101 B T S T 101101 ¢
111001 v RolyaTe 1 Y 110011
01100 '@ g o v ' 10011
00110« 00001

Mastering

iOS 18 Development

Take your iOS development experience to the next level
with iOS, Xcode, Swift, and SwiftUI

AVI TSADOK

<packn

Mastering iOS 18 Development

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

The author acknowledges the use of cutting-edge Al in this case Grammarly, with the sole aim of
enhancing the language and clarity within the book, thereby ensuring a smooth reading experience
for readers. It's important to note that the content itself has been crafted by the author and edited by a

professional publishing team.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for

any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot

guarantee the accuracy of this information.
Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Chayan Majumdar
Book Project Manager: Sonam Pandey

Senior Editor: Rashi Dubey

Technical Editor: K Bimala Singha

Copy Editor: Safis Editing

Indexer: Subalakshmi Govindhan

Production Designer: Ponraj Dhandapani

DevRel Marketing Coordinator: Nivedita Pandey

First published: November 2024

Production reference: 1091024

Published by Packt Publishing Ltd.

Grosvenor House 11 St Paul’s Square Birmingham B3 1RB, UK
ISBN 978-1-83546-810-4

www.packtpub.com

http://www.packtpub.com/

This book was a year in the making, filled with countless hours of research, investigation, and a few

too many late-night coffee runs. While I loved every minute of it, I have to give a big shoutout to my
amazing wife, Tammy, for her endless support and understanding, and to my kids, Harel and Maya,

who heroically endured my “just five more minutes” promises. And last but not least, a huge thank
you to my trusty alarm clock, which somehow managed to drag me out of bed at 5 A.M. every day to

pursue my passion for writing.

Contributors

About the author

Avi Tsadok, a seasoned iOS developer with a 14-year career, has proven his expertise by leading
projects for notable companies, such as Any.do, a top productivity app. He is currently at Melio
Payments, where he steers the mobile team. Known for his ability to simplify complex tech concepts,
Avi has written 4 books and published 40+ tutorials and articles that enlighten and empower aspiring
iOS developers. His voice resonates beyond the page, as he’s a recognized public speaker and has
conducted numerous interviews with fellow iOS professionals, furthering the field’s discourse and

development.

It was a challenging year for me and my family, and writing this book became a source of strength during
those difficult times. I want to express my deepest gratitude to Packt for their unwavering support and
professionalism, with special thanks to Sonam, Chayan, and Rashi - your efforts did not go unnoticed.
Finally, a heartfelt thank you to my family - Tammy, Harel, and Maya - who gave me the strength to

complete this incredible project.

About the reviewers

Hritik Raj is an iOS developer-turned-product manager at meShare, with extensive experience
working on IoT apps used by millions of users. Passionate about learning, Hritik taught himself
SwiftUI through books and tutorials during his time at the University of Illinois at Urbana-
Champaign, where he graduated with a degree in computer engineering. His expertise spans both

development and product management, giving him a unique perspective on building user-centric
apps.

Ruy de Ascengio Neto is an alumnus of the Apple Developer Academy in Brazil with six years of
experience in Objective-C, Swift, and SwiftUI. He has experience in developing applications for
iPhone, Apple TV, and Apple Watch. He has worked at both national and international banks, as well

as streaming companies.

Table of Contents

Preface

Part 1: Getting Started with iOS 18 Development

What's New in iOS 18

Technical requirements

Understanding iOS 18 background

Introducing Swift Testing

Introducing Swift Data Improvements

Unique value

History API

Custom data stores in Swift Data

Introducing zoom transition

Adding a floating tab bar

Having more control over scroll views

Observing the scroll view position

Observing items’ visibility

Changing the text rendering behavior

Positioning sub-views from another view

Entering the Al revolution

Simplifying Our Entities with SwiftData

Technical requirements

Understanding SwiftData’s background

Defining a SwiftData model

Expanding the @Model macro

Adding relationships

SwiftData relationship deletion rules

Defining the inverse relationship

Adding the @Attribute macro

Going non-persistent with transient

Exploring the container

Setting up ModelContainer

Connecting the container using the modelContainer modifier

Working with ModelConfiguration

Fetching and manipulating our data using model context

Saving new objects

Fetching objects

Migrating our data to a new schema

Learning the basic migration process

Creating a version schema

Creating the migration stages and plan

Connecting the migration plan to our container

Understanding SwiftUl Observation

Technical requirements

Going over the SwiftUl observation system

Conforming to the ObservableObject protocol

Explaining the problem with the current observation situation

Adding the @Observable macro

Learning how the @Observable macro works

Excluding properties from observation using @Observationlignored

Observing computed variables

Working with environment variables

Adding an environment variable by type

Adding environment variable by key

Binding objects using @Bindable

Migrating to Observable

Advanced Navigation with SwiftUI

Technical requirements

Understating why SwiftUl navigation is a challenge

Exploring NavigationStack

Separating the navigation destination using the
navigationDestination view modifier

Using data models to trigger navigation

Responding to the path variable

Working with different types of data using NavigationPath

Working with the Coordinator pattern

Understanding the Coordinator’s principles

Building the Coordinator object

Adding CoordinatorView

Calling the coordinator straight from the view

Navigating with columns with NavigationSplitView

Creating NavigationSplitView

Moving to three columns

Enhancing iOS Applications with WidgetKit

Technical requirements

The idea of widgets

Understanding how widgets work

Adding a widget

Configuring our widget

Working with static configuration

Understanding the Timeline Provider for Widgets

Building our widget Ul

Working with timeline entries

Adding animations

Customize our widget

Using the AppEntity in our Widget

Keeping our widgets up to date

Reload widgets using the WidgetCenter

Go to the network for updates

Interacting with our widget

Opening a specific screen using links

Adding interactive capabilities

Adding a control widget

SwiftUl Animations and SF Symbols

Technical requirements

The importance of animations

Understanding the concept of SwiftUl animations

Performing basic animations

Using the animation view modifier

Using the withAnimation function

Bringing some life to our animations with spring animations

Performing advanced animations

Performing transitions

Executing keyframe animations

Animating SF Symbols

Modifying symbol colors

Localizing our symbols

Improving Feature Exploration with TipKit

Technical requirements

Learning the importance of tips

Understanding the basics of TipKit

What do tips look like?

Adding our first tip

Dismissing tips

Defining the tip ID

Customizing our tips

Customizing our tips’ appearance

Adding actions

Adding tips rules

Adding a rule based on a state

Adding a rule based on events

Grouping tips with TipGroup

Customizing display frequency

Setting the max display count for a specific tip

Setting our tips’ display frequency

Connecting and Fetching Data from the Network

Technical requirements

Understanding mobile networking

Handling an HTTP request

Basic HTTP request methods

Working with URLSession

Handling the response

Integrating network calls within app flows

Just-in-time fetching

Read-through cache

Incremental loading

Full data sync with delta updates

Exploring Networking and Combine

Creating Dynamic Graphs with Swift Charts

Technical requirements

Why charts?

Introducing the Swift Charts framework

Creating charts

Creating BarMark chart

Creating LineMark charts

Creating a SectorMark chart

Creating an AreaMark chart

Creating a PointMark chart

Visualizing functions with Charts

Allowing interaction using ChartProxy

Adding an overlay to our chart

Responding to the user’s gesture

Finding the closest data point to the user’s touch

Conforming to the Plottable protocol

Part 2: Refine your iOS Development with Advanced

Techniques

Swift Macros

Technical requirements

What is a Swift macro?

Exploring SwiftSyntax

Parsing and AST

Setting up SwiftSyntax

Building our Abstract Syntax Tree

Creating our first Swift macro

Adding a new Swift macro

Examining our Swift Macros package structure

Declaring our macro

Implementing the macro

Handling macros errors

Adding tests

Practice exercises

Creating Pipelines with Combine

Technical requirements

Why use Combine?

Going over the basics

Starting with the publisher

Setting up the subscriber

Connecting operators

Delving into Combine components

Creating a custom publisher

Working with Subjects

Creating a custom subscriber

Connecting the custom publisher and subscriber

Working with operators

Learning about Combine using examples

Managing UlKit-based view state in a view model

Performing searches from multiple sources

Validating forms

Being Smart with Apple Intelligence and ML

Technical requirements

Going over the basics of Al and machine learning

Learning the differences between Al and machine learning

Delving into the ML model

Training the model

Apple intelligence and ML

Exploring built-in ML frameworks

Interpreting text using NLP

Analyzing images using the Vision framework

Classifying audio using the Sound Analysis framework

Performing a semantic search with Core Spotlight

Integrating custom models using CoreML

Getting to know the Create ML application

Building our Spam Classifier model

Using our model with Core ML

Where to go from here

Exposing Your App to Siri with App Intents

Technical requirements

Understanding the App Intents concept

Creating a simple app intent

Running the intent with the Shortcuts app

Creating an app shortcut

Adding a parameter to our app intent

Returning a custom view

Having multiple result types

Adding confirmation and conditions

Formalizing our content using app entities

Conforming to AppEntity

Creating an Open a task intent

Chaining app intents

Integrating our intent to other intents

Adjusting our app intents to work with Apple Intelligence

Exploring the Assistant Schema

Creating AssistantEntity

Improving the App Quality with Swift Testing

Technical requirements

Understanding the importance of testing

Learning the testing history in Apple platforms

Exploring the Swift Testing basics

Adding a basic test

Providing names to our test functions

Enabling and disabling tests

Tagging our test functions

Working with arguments

Managing our tests

Going over the testing structure

Grouping our test functions into test suites

Building test plans

Setting up a Scheme

Tips to write testable code

Writing pure functions

Separating your code based on concerns

Performing mocking using protocols

Exploring Architectures for iOS

Technical requirements

Understanding the importance of architecture

Learning what exactly architecture is

Going over the different architectures

Separating our project into layers

Separating our project into modules

Combining the multi-layer architecture with modules

Building hexagonal architecture

Comparing the different architectures

By separation of concerns

By testing

Other Books You May Enjoy

Preface

Before we begin our journey, let me welcome you to iOS 18 development!

Looking back at 2008 and trying to recall how the iOS SDK was then, I'm amazed at how it has
developed and evolved over the years. Back then, all we had to know as iOS developers was how to
create a uITableview, add some buttons, and be an expert in a fantastic design pattern called MVC.

That was enough to make a standard app and even get hired as an iOS developer.

But we are not in 2008, and things have changed a bit—well, maybe more than just a bit. What has
changed? Everything! The programming language, the UI framework, the design patterns, and even

the IDE. But it’s not only what has changed but also what was added.

In 2008, the iOS SDK (previously known as the iPhone SDK) contained less than 25 frameworks.

Now, we have over 200 frameworks—that’s nearly ten times more!

We have frameworks for animation, gaming, testing, machine learning and Al, security, data, and
many more. These days, being an i0S developer is much more than adding a list and a button—it is

understanding the capabilities of the iOS SDK and choosing the right approach and technology.

And that’s precisely the book’s goal. It is not a reference or documentation of Apple’s technology - you
can get that online, and it’s probably more up to date. This book is a window into what the iOS SDK is

capable of so you can improve your development skills even further.

This book’s information was carefully selected to cover the most exciting and valuable parts of modern
iOS development, including a persistent store, testing, advanced SwiftUI concepts, networking,
macros, architectures, and even machine learning and Al It is impossible to cover everything, and

that’s not the intention.

However, understanding the topics in this book will help you get the most out of the iOS SDK.

Who this book is for

The book is not for starters! Developers who read it must have a basic knowledge of Swift, SwiftUI,
Xcode, and basic concepts in iOS development, such as animation, networking, and persistent data.
So, this is not a “get started with iOS development” book - I assume you have written a few lines in

Swift and created some great UT in SwiftUI.
Three primary personas are the target audience of this book:
108 senior developers who want to stay up to date with the latest Apple technologies

o 108 team tech leads who want to leverage their team skills

o Mid-level developers who want to step up to the senior’s area

What this book covers

Core Data for having persistent storage. This chapter covers everything from setup, performing

operations, queries, and migration.

This chapter discusses Apple’s new observation framework, restructures our understanding of the

different property wrappers’ roles, and dives deep into how they work underneath.

maintain, and design widgets; and covers the new capabilities of widgets, such as interactions and

control widgets in iOS 18.

will understand the importance of animations and their concept in SwiftUI, perform basic

animations, and animate SF Symbols.

gap between the developer and product perspectives. We will learn how to add tips to our app, design

them, and control their appearance rules.

in iOS: retrieving data from the network. We will understand how to handle HTTP requests and

connect the Combine framework to our flows.

will learn about the different types of charts available, create different charts, and even implement user

interactions so our users can gain even more value.

Chapter 10, Swift Macros, is an advanced chapter that covers a complex yet powerful topic. This
chapter dives into the SwiftSyntax framework, which stands behind Swift Macros and helps us add
and test our first Swift Macro. This topic becomes crucial as many frameworks” APIs are based on

Swift Macros.

Chapter 11, Creating Pipelines with Combine, covers the fundamental concepts of declarative
programming. The chapter discusses the Combine framework basics, delving into the different
Combine components such as publishers, subscribers, and operators, and also provides tools to

integrate Combine into real-life flows.

Chapter 12, Being Smart with Apple Intelligence and ML, explores the fascinating world of machine
learning. We will review the basics of machine learning and Al and try the built-in machine learning
frameworks in iOS, such as NLP, vision, and sound analysis. Not only that, the chapter also explains

how to train our own model and use it in our apps.

Chapter 13, Exposing Your App to Siri with App Intents, takes our existing apps and exposes their

capabilities, such as actions and contents, to Siri. This chapter provides a great way to prepare our apps

for the Al era.

Chapter 14, Improving the App Quality with Swift Testing, touches on a critical but unpopular topic in
iOS development. The new Swift Testing frameworks make testing more straightforward and more
natural. We will set up a testing target, write our first test function, and understand how to manage the

different test plans, suites, and configurations.

Chapter 15, Exploring Architectures for iOS, aims to explain the different architectural concepts and
help you choose an exemplary architecture that can balance simplicity, scale, and maintainability over
time. There’s no point in having an excellent idea for a room if you don’t know how to build your

house, right?

To get the most out of this book

You will need to understand Apple’s platform engineering—Xcode, Swift, SwiftUI—and have some
experience writing an iOS app—having experience writing a simple screen is not enough for the

book’s content to be valuable.

Software/hardware covered in the book Operating system requirements
Xcode macOS

iOS SDK

Create ML

If you are using the digital version of this book, we advise you to type the code yourself or access the
code from the booK’s GitHub repository (a link is available in the next section). Doing so will help you

avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Mastering-iOS-18-Development.

If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In
NavigationStack, there’s a new view modifier called navigationDestination, which allows us to define

a destination separately according to a state change.”

A block of code is set as follows:

enum Screen: Hashable {
case signin
case onboarding
case mainScreen
case settings

}

@State var path: [Screen] = []

When we wish to draw your attention to a particular part of a code block, the relevant lines or items

are set in bold:

struct CoordinatorView: View {
@ObservedObject private var coordinator = Coordinator ()
var body: some View {
NavigationStack (path: S$coordinator.path) {
AlbumListView ()
.navigationDestination (for: PageAction.self, destination: { pageAction
in
coordinator.buildView (forPageAction: pageAction)
i3]
}

.environmentObject (coordinator)

}

Any command-line input or output is written as follows:

https://github.com/PacktPublishing/Mastering-iOS-18-Development
https://github.com/PacktPublishing/

@testable import Chapterl4

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “The code creates a blue circle and a button
saying Start”

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at

customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please

visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at

copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are

interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

Once you've read Mastering iOS 18 Development, wed love to hear your thoughts! Please click here to

go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering

excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

mailto:customercare%40packtpub.com?subject=
http://www.packtpub.com/support/errata
mailto:copyright%40packt.com?subject=
http://authors.packtpub.com/
https://packt.link/r/1835468101
https://packt.link/r/1835468101

Is your eBook purchase not compatible with the device of your choice?
Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835468104

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835468104

Part 1: Getting Started with iOS 18 Development

In this part, you will review all the new capabilities of iOS 18. We will explore exciting topics, such as
SwiftData, Observation, and SwiftUI navigation. In addition, we will build widgets with WidgetKit,

animate our views, add tips and graphs to our apps, and learn how to build a great network layer.

This part contains the following chapters:

o Chapter 1, What's New in iOS 18

1
What's New in iOS 18

Apple introduced iOS 18 in WWDC 2024 as part of its annual developer’s conference, alongside
macOS§, tvOS, iPadOS, watchOS, and visionOS.

Utilizing our app’s latest features and capabilities in each major OS release gives us a competitive
advantage. Here are the reasons why Apple chose to improve particular domains in the SDK - market

research or technology trends are good enough reasons to adopt new technologies.

However, to understand iOS 18 improvements, we first must understand the background for this

version — thats one of this chapter’s goals.

In this chapter, we will cover the following topics:
o Understanding iOS 18 background
« Exploring Swift Testing
o Learning about the new Swift Data improvements
o Trying the new zoom transition
o Adding a floating tab bar to our iPad apps
» Having more control over scroll views in SwiftUI
« Changing the text rendering behavior
« Positioning sub-views from another view

« Entering the Al revolution

If that sounds like an exciting chapter, you are not wrong. Let’s start by understanding the background
of iOS 18.

Technical requirements

For this chapter, it’s essential to download Xcode version 16.0 or higher from the App Store.

Ensure that you're operating on the most recent version of macOS (Ventura or newer). Just search for
Xcode in the App Store, choose the latest version, and proceed with the download. Open Xcode and
complete any further setup instructions that appear. After Xcode is completely up and running, you

can begin.
This chapter includes many code examples, and can be found in the following GitHub repository:

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%201

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%201

Understanding iOS 18 background

Releasing a major iOS version is always a big deal, even if it’s the 18" already. Let’s try to analyze the
iOS SDK before iOS 18:

o SwiftUI is becoming more mature and capable. However, some features, such as complex animations or transitions, gesture

handling, navigation, and drawing, remain challenging to implement using SwiftUL
« Core Data is the go-to framework for most iOS developers as a solution for storing data persistently.

o While XCTest is considered a robust and convenient testing framework, it lacks features that are commonly available on other

platforms, such as parameterized testing and better testing organization.

« WidgetKit's popularity proves that the ability to show information at a glance is crucial in today’s world.

No one can argue that this list is important. However, one critical topic that Apple didn’t focus on

until WWDC 2024 is artificial intelligence.

The rise of OpenATIs ChatGPT, followed by thousands of machine learning and Al tools, put Apple in
a weird situation. This is not the first time Apple has left behind some temporary trend, but this time it
was different. AT’s potential influence on humanity indicates that this is not a regular trend or

technology evolution; it is practically a revolution that will change the world.

The question is, where is Apple with its set of platforms and technologies? Does it have an answer to

the AI revolution?

Before diving into that question, let’s first review the new features and frameworks introduced in iOS
18 and explore how the latest version tackles some of the key challenges we face in iOS development.
Don’t worry, though — well cover the Al revolution in the final section and throughout the book.

Now, let’s discuss a new framework — Swift Testing.

Introducing Swift Testing

Swift Testing is a new framework with a new and refreshing approach to testing. Swift Testing contains
modern features such as macros, which work with structs instead of classes and can tag tests and test

suites.

Swift Testing is supposed to replace XCTest, which was introduced in 2013 as part of Xcode 5. XCTest
belongs to older times when Objective-C was the dominant language. However, Swift took over, and

Apple understood that iOS developers needed a modern testing framework.

Here’s a simple test function:

@Test ("Test view model increment function", .enabled(if: AppSettings.CanDecrement),
.tags(.critical))
func testViewModelIncrement () async throws {

// preparation
let viewmodel = CounterViewModel ()
viewmodel.count = 5
// execution
viewmodel.increment (by: 1)
// verification
#expect (viewmodel.count == 6)
}.

We can see how simple it is to write a test function in Swift Testing. Notice the preceding Swift macro,

which configures and tags the function as critical in addition to providing the test description.

If your app doesn’t have a test function, Swift Testing is a great way to start (to read more about Swift

Testing, go to Chapter 14).

Now, let’s discuss another new framework that handles our persistent store.

Introducing Swift Data Improvements

Swift Data was introduced in WWDC 2023 as part of iOS 17, and its goal was to replace the old but

popular Core Data framework.

Swift Data provides a modern API based on Swift, which can help reduce friction when working with
persistent stores. One of the trends we see in Apple development tools is moving away from GUI to
code-based tools. A good example is SwiftUI — even though it is possible to drag and drop
components to build a user interface, the primary way to do this is in code. The same goes for App
Intents and Swift Package Managers. The data layer goes through the same concept - in Swift Data, we

don’t have any data model editor, so we build our data model using only code.

For example, here’s how to create a data model for a Book entity:

@Model
class Book ({
var author: String
var title: String
var publishedDate: Date

}

At first glance, it seems like a regular Book class — and it is! This time, we added the eMode1 macro,

which does all that magic.

When Swift Data was introduced, it already had many features, such as relationships and deletion
rules. Despite that, many developers felt that the framework wasn’t mature enough to replace Core

Data.

In i0OS 18, Apple added some features to Swift Data that, if it is not already there, will bring it closer to
where it should be.

Unique value

The first and maybe most important new feature in iOS 18 is the ability to construct a unique value for

the model based on its attributes:

#Unique<Book> ([\.name, \.publicationName])

In this case, the Book class’s unique identifier is based on combining the name and publicationName

attributes.

History API

Another new and exciting feature is the History API. Using the History API, we can fetch transactions
and changes that have been made to our Swift Datastore over a particular time range. This capability
allows us to update our app when we work with extensions such as widgets or sync changes to the

Server.

Reading the transaction history is not the only “pro” feature added to Swift Data. Let’s talk about Core

Data for a second.

Custom data stores in Swift Data

Core Data fundamentals included the ability to work with any data store type we wanted - XML,
SQLite, CSV files, or even a remote server. Although almost all apps that implement Core Data work

with SQLite as their data store, it was built to be agnostic to whatever happens underneath.
Starting with iOS 18, Apple also brings custom data stores to Swift Data.

For example, let’s say that we want to base our data store on a CSV file. We start by creating a new data

store configuration specifically for CSV data stores:

final class CSVStoreConfiguration: DataStoreConfiguration (
typealias Store = CSVDataStore
var name: String
var schema: Schema?
var fileURL: URL
init (name: String, schema: Schema? = nil, fileURL: URL)

self.name = name
self.schema = schema
self.fileURL = fileURL

}

static func == (lhs: CSVStoreConfiguration, rhs:
CSVStoreConfiguration) -> Bool
return lhs.name == rhs.name

}
func hash(into hasher: inout Hasher) ({
hasher.combine (name)

}
The csvstorecontiguration class is a new data store configuration that accepts the name and the
schema (similar to how Swift Data configuration setup works today), and we added an additional

parameter, which is £i1eurL - the location of our CSV file.

In the init () function, we can also check whether the CSV file exists or whether we need to create a

new one.

Notice that there’s a typealias named store, which represents a new type called csvpatastore. This is

the actual store class where everything happens. Let’s create it now:

final class CSVDataStore: DataStore {
typealias Configuration = CSVStoreConfiguration
typealias Snapshot = DefaultSnapshot
var configuration: CSVStoreConfiguration
var name: String
var schema: Schema
var identifier: String

required init(_ configuration: CSVStoreConfiguration,
migrationPlan: (any SchemaMigrationPlan.Type)?)
throws {

self.configuration = configuration
self .name = configuration.name
self.schema = configuration.schema!
self.identifier =

configuration.fileURL. lastPathComponent

}
Our csvpatastore class conforms to the patastore protocol and has similar properties, such as name

and schema.

The csvpatastore class must handle a persistent store’s basic operations, such as inserting new items

and deleting or updating existing ones.

Notice that the init () function includes a migration type, so we can even handle migrations when

our schema changes.

To handle all of these operations, we need to implement two important methods that are part of the

DataStore protocol — fetch() and save():

func fetch<T>(_ request: DataStoreFetchRequest<T>)
throws -> DataStoreFetchResult<T, DefaultSnapshot>
where T : PersistentModel {
let predicate = request.descriptor.predicate
return DataStoreFetchResult (descriptor:
request .descriptor, fetchedSnapshots: [],
relatedSnapshots: [:])
// perform fetch operations
}
func save(_ request:
DataStoreSaveChangesRequest<DefaultSnapshot>)

throws -> DataStoreSaveChangesResult<DefaultSnapshot>

{

var remappedIdentifiers = [PersistentIdentifier:
PersistentIdentifier] ()
for snapshot in request.inserted {
// insert new items
}

for snapshot in request.updated {
// update existing items
}

for snapshot in request.deleted {
// delete items
}

return
DataStoreSaveChangesResult<DefaultSnapshot> (for:
self.identifier,
remappedIdentifiers: remappedIdentifiers)

}

These two functions perform all the magic underneath. In this code example, I left the function
implementation empty - it is up to you to fill it in according to the specific data store implementation.

Once we modify our CSV file, we can return the results to the app.

The History AP, the patastore protocol, and the ability to provide uniqueness to entities make Swift

Data much more mature and capable. To get started with Swift Data, read Chapter 2.

Next, let’s talk about an exciting improvement in SwiftUI transition.

Introducing zoom transition

This is a small improvement, but it may indicate an interesting direction Apple is taking with SwiftUI.
In general, UIKit’s transitioning capabilities are very robust and provide us with the flexibility to create
any transition we want. Even before that, from the beginning, UIKit had some nice built-in transitions

we could use to make our navigation more appealing.

In iOS 18, Apple added a new transition that allows us to navigate to a new view using a zoom

animation.

Let’s create an album grid that, when tapping on the album, transitions to a full album screen with a

zoom animation:

@Namespace () var namespace
var body: some View {
NavigationStack ({
Scrollview {

LazyVGrid (columns: [
GridItem(.adaptive (minimum: 150)) 1) {
ForEach (Album.albums) { album in
NavigationLink {
Image (album. imageName)
.resizable ()
.navigationTransition(.zoom(sourceID: album.id, in:
namespace))

} label: {

Image (album. imageName)
.resizable ()
.scaledToFit ()

.frame (minWwidth: 0,
maxWidth: .infinity)

.frame (height: 150)

.cornerRadius (8.0)

1
.matchedTransitionSource (id:
album.id, in: namespace)
}

1
}
.padding ()

}
This example shows a simple grid view of albums, a NavigationStack, and a NavigationLink. The idea
of performing the zoom transition is to match the source (the image we tapped on) to the destination

(the image we zoomed into).

We do that by adding two view modifiers:

» navigationTransition: We add this modifier to the source view. The source view, in our case, is the album view in the grid.

We select the type of animation (currently, it’s a zoom animation) and the source ID.

« matchedTransitionSource: We add this modifier to the destination view. In our example, the destination view is the full-
screen view of the album. Again, we provide the ID of the album we want to present so SwiftUI can perform the zoom animation

between these views.

Creating the match between the views allows SwiftUI to perform a nice zoom animation, similar to

what we see in the Photos app. Look at Figure 1.1:

I i) B 7 R iINT'SHOOL

LIS) ROCK'#

Figure 1.1: Zoom transition between photos grid and a full-screen view

Figure 1.1 shows how the zoom animation looks in a couple of frames based on the preceding code

example.

Zoom transitions serve more than aesthetic purposes. They inform the user about the changes

occurring on the screen, helping them stay oriented.

Speaking of navigation, iPadOS navigation gained a unique and valuable capability - the floating bar.

Adding a floating tab bar

iPad is not the focus of this book. This is not because iPadOS is unimportant but because most, if not

all, of the topics we discuss here are also suitable for iPadOS.

However, there are special features that are relevant to iPadOS that are worth mentioning. One of

them is the float tab bar.

The tab bar has existed in iOS since its very beginning. It allows users to navigate between different
sections of an app. In both iOS and iPadOS, the tab is located at the bottom of the screen. While it
looks perfectly fine on small devices, a tab bar on big screens seems stretched and doesn’t use the large

space.

One solution for handling navigation in a iPadOS is to implement a sidebar - a view on the side that

displays the different sections of the app.

In iPadOS 18, the position of the sidebar changed, and it is now located at the top of the screen,
floating over the app content. Not only that; the user can also transition between a tab bar and a

sidebar. Let’s see how to do that in code:

struct ContentView: View {
var body: some View {
TabView {
Tab ("Home", systemImage: "house.fill") { }
Tab ("Profile", systemImage:
"person.crop.circle") { }
Tab ("Settings", systemImage: "gear") { }

}

.tint (.red)
.tabViewStyle(.sidebarAdaptable)

}

This code example looks straightforward but includes a view modifier called tabviewstyle. Currently,
it has only one option to choose from — sidebaradaptable. When we add this view modifier, a button

is added to the tab bar that allows the user to change the layout. Let’s see how it looks (Figure 1.2):

13:20. Fel 2 A wes 100 - 2220 P2 Aue = R —

o ome Profile Settings

Side bar Tab bar

Figure 1.2: The Tab bar adapts a sidebar layout

Figure 1.2 shows the two layouts for our tab bar. The new sidebar improves the user experience and
makes navigating and focusing on content easier. It also resembles Apple’s apps, such as the TV app,

which aligns with what users can expect from our app.

Another important aspect of SwiftUI that required improvement is scroll views. Let’s go over major

changes in that area.

Having more control over scroll views

Controlling and observing scroll view behavior was part of the reason why UIKit developers hadn't

moved to SwiftUI yet.

Scroll views are crucial in mobile apps, not just because of the small screen, which often requires the
user to scroll for more content, but also because they help reuse visible content to minimize memory

usage or adjust our UI based on scroll position.

However, why is handling scroll views in SwiftUI more complex than in UIKit? We can think of two

reasons:

1. SwiftUTI is relatively new: SwiftUI is still considered to be a new framework. Think how much time it took for UIKit to become a

mature framework. Obviously, we can achieve this in several years and 17 years of development.

2. Flexibility: Due to the imperative approach, UIKit gives us direct control over views. This means that we can adjust particular view
parameters based on the scroll state. SwiftUT’s declarative nature sometimes makes achieving the same level of control challenging

- we don’t have direct access to views. We can adjust their state using a @State variable or a view modifier.

These reasons lead to many workarounds that developers use to achieve the desired user experience.
Fortunately, iOS 18 gives us two view modifiers that make SwiftUT scroll views more appealing than

ever. We'll start with onscrollGeometrychange.

Observing the scroll view position

Up until now, SwiftUI hasn't provided any direct API to observe the scroll view position. Many
developers had to find a workaround or use UIKit as a solution. Now, we have an

onscrollGeometryChange view modifier that allows us to observe any change in the scroll position.

Let’s say we have a vstack view within a scroll view, and we wish to show a Scroll to the top button

whenever the user scrolls down to allow them to return to the top of the list.

Let’s look at the following code:

ScrollViewReader { proxy in
Scrollview {
VStack (alignment: .leading, spacing: 16) {
ForEach (albums) { album in
ExtractedView (album: album)
.id(album. id)

}
}

.overlay(alignment: .bottom) {
if showScrollToTop {
Button ("Scroll to top") {
proxy.scrollTo (albums [0] .id,
anchor: .top)

}

.buttonStyle (.borderedProminent)

.onScrollGeometryChange (for: Bool.self) {
geometry in
geometry.contentOffset.y <
geometry.contentInsets.bottom + 300
} action: { oldvValue, newValue in
withAnimation {
showScrollToTop = !newValue
}

}

In this code example, we can see a vstack view inside a scroll view. The vstack view contains a list of
albums. Notice that we have an onscrollceometrychange view modifier for the scroll view itself. The
view modifier has a closure that runs each time the scroll position changes with a geometry parameter.
Within the closure, we inspect the scroll view content offset, and if it reaches a specific threshold, we

show/hide the Scroll to top button using a specific state variable.

The scrollviewreader view, which wraps the scroll view, provides a proxy to the scroll view so we can

scroll to the top when the user presses the button.

We can use the onscrollGeometrychange method for more use cases than just toggling a button. For
example, we can use it to perform a network request in an infinity list where we need to load more
content from the server when the user reaches the bottom. Additional examples would be having a
sticky header or a progress indicator, or even just sending analytics. These use cases were complex to

implement before iOS 18 and are now extremely simple.

The improvement in the second scroll view seems to belong to the same family. Let’s review it now.

Observing items’ visibility

Checking whether a view is visible inside a scroll view is not easy. Up until now, we had to calculate
the view frame versus the scroll view content offset, not to mention observe that during a scroll view.

Lucky for us, we now have a new modifier called onscrol1visibilityChange.

Suppose we want to change a view while it enters our scroll view. For example, we might want to

report analytics or print to the console.

Let’s look at the following example:

ForEach (albums) { album in
ExtractedView (album: album)
.id(album.id)
.onScrollVisibilityChange (threshold: 0.9) {
visible in
if visible {
print ("\ (album.title) appears")

}

This code example shows the same album row we created in the previous example (in the Observing
the scroll view position section). This time, we added a new view modifier to the view itself -
onScrollVisibilityChange. This view modifier has two parameters — threshold and closure with a
Bool parameter (named visible in our case). Let’s review them now:
o threshold: The threshold parameter defines how much the change must occur for the closure to run. For example, a
threshold of 0.2 means that we need 20% of the view to be visible or hidden before it runs the closure and reports the change.

o closure: The closure with the Bool parameter runs each time the view reaches the threshold. The Bool parameter contains the

change - true for visible and false for hidden.

In our code example, we set the threshold to o.9. This means that we need to view it to reveal 90% of
its size before the closure runs. Inside the closure, we check whether the view is visible before we

report it to the console.

We can use this view modifier for many purposes. For example, we can perform a specific animation
when the view enters, load additional information, or adjust the screen interface if needed. Something

that was complex to do before is now simple to accomplish using one view modifier.

Scroll view is not the only topic we have more control of. Let’s talk about texts.

Changing the text rendering behavior

Handling texts on screen was also a very mature area where UIKit provided great frameworks such as

TextKit. We could manipulate texts and create almost any effect that we wanted.

In i0OS 18, Apple introduced TextRenderer, a protocol that can help us change the default behavior of

our texts in SwiftUI.

Let’s say that we want a title with a different opacity for each line and even rotate the lines a bit. This

creates a nice effect for the titles in our app. So, let’s see how to do that in SwiftUI:

struct CustomTextRenderer: TextRenderer {
func draw(layout: Text.Layout, in ctx: inout
GraphicsContext) {
for (index, line) in layout.enumerated() {
ctx.opacity = Double(index + 1) * 0.1
ctx.rotate(by: Angle(degrees: Double (index) *
1))

ctx.draw(line)

}
}
struct ContentView: View {
var body: some View {
Text ("Great new features come to texts in SwiftUI")
.font (.system(size: 60))
.textRenderer (CustomTextRenderer ())

This code example has a new structure called customTextrender, which conforms to the TextrRenderer
protocol. We have one important function to implement — the draw () function. In this function, we
receive an important parameter — ctx — the graphic context. The TextrRenderer protocol also provides
us access to the different lines and slices we have in our text. In our example, we can iterate the

different lines using the 1ayout parameter, change their opacity, and even rotate them.

Once we have the customTextRender structure, we can add it to our Text component using the

textRenderer view modifier.

Let’s see how it looks (Figure 1.3):

Figure 1.3: The Text component with custom text rendering

Figure 1.3 shows our text with a different opacity and rotation for each line. Adding effects to text can

give a dynamic visualization for titles and paragraphs and add more life to our apps.

Next, let’s see how SwiftUI has become more mature and capable than ever with positioning sub -iews

from other views.

Positioning sub-views from another view

What does it mean to position sub-views from another view? While this description sounds weird and

unclear, it is a nice addition to SwiftUI that can help us provide more dynamic and reusable content.

To understand what it means, let’s take the following code as an example:

struct NewsView: View {
var body: some View {

Text ("Major Breakthrough in Renewable Energy: New Solar Panel Technology
Promises 30% Efficiency Increase")

Text ("lobal Markets React to Sudden Interest Rate Hike: Stocks Tumble Across the
Board")

Text ("Historic Peace Agreement Reached: Leaders Sign Pact to End Decades-Long
Conflict™")

Text ("Innovative AI Tool Revolutionizes Healthcare: Doctors Embrace Machine
Learning for Diagnosis")

Text ("Natural Disaster Strikes: Massive Earthquake Hits Coastal City, Rescue
Efforts Underway")

}
}
This code example shows a view called Newsview with a list of Text components, each containing a

news headline. If we look closely, we can see that there’s no layout — no VStack, group, or List. We are

not used to this in SwiftUI, and that’s okay because that view is for display.

The Newsview job is to be a container for components. Let’s see how we can use this container:

struct ContentView: View {
var body: some View {
Scrollview {
VStack {
Text ("Latest headlines")
.font (.title)
Group (subviews: NewsView()) { collection in
if let firstHeadline = collection.first

{

firstHeadline
.font (.title2)
Spacer ()
}
ForEach(collection.dropFirst()) {
newsItem in
newsItem

.font (.headline)
Spacer ()

}
}

.padding ()

}

In this example, we added a SwiftUT group, but this time, from the Newsview view:

Group (subviews: NewsView()) { collection in
This line creates a group that iterates over the specific view’s sub-views and allows us to position and

modify them ourselves.

In our example, we change the font of the first sub-view and present all the views with a spacer

between them.

The ability to reposition views within other views unlocks new possibilities. For instance, we can reuse
the same views but with different layouts, sequences, or styles. Treating our views as containers for

smaller components makes our code more reusable.

Now, let's move to our chapter’s last section — the Al revolution.

Entering the Al revolution

AT and machine learning are not new areas for Apple and the iOS platform. Apple uses Al to adjust
photos taken, suggest apps to users according to their usage, optimize battery charging, and many

more.

For developers, Apple provides the CoreML framework and tools such as Create ML to help users

train and create their own machine learning models.

However, the rising popularity of services such as ChatGPT and Gemini proved that CoreML is

insufficient, and that Apple needs to integrate Al deeper into the system.
So, what did Apple prepare for us, the developers, regarding Al in iOS 18?

Apple integrated Al into iOS 18 by letting iOS understand what’s happening in the system and helping

the user perform common tasks using natural language understanding, similar to ChatGPT.

For example, let’s say we're working on a word-processing app and created an App Intent that allows

the user to add an image to a document.

Until iOS 18, we would have had to define a specific phrase for the user to use with Siri. However, in
iOS 18, the user can say something such as “Add this image to the page I'm working on,” and Siri uses

a set of machine-learning models to convert this phrase to our app intent model. Not only that, but

Siri can also understand the current context on screen and even search our app by indexing our app

content in the spotlight.

Integrating our app into Siri requires little effort. We mainly need to focus on structuring our main

actions and entities. Apple Intelligence does all the rest.

To read more about using App Intents with Siri, go to Chapter 13.

Summary

There’s no other way of looking at iOS 18 than as an exciting one. The addition of Apple Intelligence is
only part of the story — Apple took care of many system and SDK aspects such as testing, persistent

data, UL, and more.

In this chapter, we explored the basics of the new Swift Testing framework, learned about Swift Data
improvements, and discussed enhancements in SwiftUI such as zoom transition, floating tab bar,
scroll views, and text rendering. We even scratched the surface of Apple Intelligence and tried to
understand how it is integrated with App Intents. By now, you should be familiar with the most

exciting and new topics in i0S 18.

A few code examples are just not enough. We are developers, and we need more! So, let’s jump straight

into SwiftData and explore Apple’s new persistent data framework in the next chapter.

2
Simplifying Our Entities with SwiftData

Let’s start our journey to mastering iOS 18 with one of the most important and useful frameworks

Apple has released in the last few years — SwiftData.

SwiftData is an excellent example of Swift macro usage, taking the old and beloved Core Data
framework to a whole new level of simplicity and adapting it to the modern world of Swift and

declarative programming.

In this chapter, we will do the following:

« Understand the SwiftData background

o Define a data model, including its relationships and attributes
 Learn about the SwiftData container and configurations

« Fetch and manipulate data using the model context

« Migrate our data to new version schemas

It’s going to be a long ride with an exciting new framework! So, after the technical requirements, let’s

start with some background on the framework.

Technical requirements

This chapter includes many code examples, some of which can be found in the following GitHub

repository:

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%202

To run them, we will need Xcode 16 or newer.

Understanding SwiftData’s background
To understand SwiftData’s background and its roots, it's important to go one step backward and learn
about the Core Data framework.

Core Data has been the primary data framework for Apple platforms for many years, even before iOS

was born.

Core Data was added to iOS in iOS 3, bringing the power of handling a data graph to mobile devices

flexibly and efficiently. Note that I haven't mentioned the word database or persistency, and that’s for a

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%202

good reason. We should remember that Core Data is not an SQLite wrapper, even though its
persistent store is based on SQLite in most cases. The primary goal of Core Data is to handle our app’s

data layer.

But what does it mean to handle the app’s data layer? Well, most apps work with several layers - the
UI, business logic, and data layer. The data layer is built upon data entities that define the core items
that our app works with. For example, a to-do app can have entities such as a list, task, or reminder. A

music app can have entities such as an album, song, or playlist.

The data layer defines the different entities and how they are related. For example, an album can
contain many songs, and a list can contain many tasks. if there’s a need for persistence, the data layer
also handles how the different entities’ data is saved to disk. According to our understanding of a data
layer, Core Data fulfills its role as an app data layer by defining its data model, handling persistency,
migrations, and even undo operations. So, if Core Data is such an excellent framework for handling

data, why do we need SwiftData?

Core Data is a great framework, but it was designed for different times when we used to code with
Objective-C, and Ulkit hadn’t even been created. Ever since then, the iOS development world has
changed significantly — we now have Swift, and moreover, we have SwiftUI. Even though Core Data
has received updates to support Swift and SwiftU], it still felt outdated in a world of type-safety,
multithreading, and declarative programming. Fetching and observing data changes have become
cumbersome in Core Data, as we use design patterns more suitable for the Ulkit/Objective-C era. In
this context, SwiftData promises to bring a modern, straightforward framework to handle data much

more flawlessly, using the full power of Swift and Combine.

One of the best things about SwiftData is that it uses Swift macros — the same Swift macros we learned
about in Chapter 10. The macros help us elegantly implement SwiftData without using boilerplate

code.

It’s time to get into business and create our first SwiftData models!

Defining a SwiftData model

Usually, when discussing a data framework, it is common to start with the basic setup. However, this
time, we will begin with the model itself. Why is that? Because I want to demonstrate how simple and

easy it is to convert an existing data model to a SwiftData model, using the following piece of code:

import SwiftData
@Model
class Book {
var author: String
var title: String

var publishedDate: Date
init (author: String, title: String, publishedDate:
Date) {
self.author = author
self.title = title
self.publishedDate = publishedDate

}

In this code, we see a standard Book class, with the addition of a macro named emodel. Before we

expand the eMode1l macro and see what it does precisely, let’s focus on what happens when we add it.

Adding the eMode1 macro is all it takes to convert a regular class into a model backed with a persistent
store. Similar to how Core Data entities work, the class name is the entity name, and its variables are

the entity attributes.

When we compare that to Core Data, we can see that the model declaration process is backward - in
Core Data, we declare the model in the model editor and then generate its class, whereas in SwiftData,

we take a regular class and make it a model.

But what does eMode1 macro really do? Let’s expand it and see.

Expanding the @Model macro

We already know what a Swift Macro is capable of, and SwiftData is a great chance to explore a new

macro implementation.

To expand the macro, we can right-click on the eMode1 name and select Expand Macro from the pop-

up menu. The class body now looks like this:

@Transient
private var _$backingData: any SwiftData.BackingData<Book>
= Book.createBackingData ()
public var persistentBackingData: any
SwiftData.BackingData<Book>
get {
_SbackingData
}

set {
_SbackingData = newValue
1
}

static var schemaMetadata:
[SwiftData.Schema.PropertyMetadatal {
return [

SwiftData.Schema.PropertyMetadata (name: "author",
keypath: \Book.author, defaultValue: nil, metadata:
nil),

SwiftData.Schema.PropertyMetadata (name: "title",
keypath: \Book.title, defaultValue: nil, metadata:
nil),

SwiftData.Schema.PropertyMetadata (name:
"publishedDate", keypath: \Book.publishedDate,
defaultValue: nil, metadata: nil)

}

required init (backingData: any SwiftData.BackingData<Book>)

_author = SwiftDataNoType ()
_title = SwiftDataNoType ()
_publishedDate = SwiftDataNoType ()

self .persistentBackingData = backingData

}

@Transient
private let $observationRegistrar = Observation.ObservationRegistrar ()
struct SwiftDataNoType {

}

extension Book: SwiftData.PersistentModel (

}

extension Book: Observation.Observable {

}

So, what happened to our beautiful and minimal Book class? It appears that the eMmode1 macro has been

quite active here.

To simplify it, let’s try to break it down:

o Our Book class now conforms to two protocols: These fundamental protocols are PersistentModel and Observable. The
PersistentModel protocol helps SwiftData work with our style and access its attributes. The Observable protocol allows us

to be notified of changes to the data.

« Having backing data and metadata properties: If we go even deeper with our exploration and try to understand what the
PersistentModel protocol is, we will discover that it requires the implementation of two variables -backingData and
schemaMetaData. We can see their implementation directly in our macro-expanded code. These variables help SwiftData to
store and retrieve our entity information specifically for our properties. And perhaps this is where the real power of Swift Macro

comes into play - the ability to generate code that is custom-made for our class.

« We have property macros: If we look at the class properties, we can see that they have their macros now. Expanding them reveals
that they have now become a computed variable, so we can store and retrieve data not from just our memory but also from our

backing data store:

@ PersistedProperty
var author: String

@ PersistedProperty
var title: String

@ PersistedProperty
var publishedDate: Date

Additional lines of code wrap everything together, such as the observation and registering attributes.

Is this complicated? A little bit. But that’s one of the benefits of having a macro - to simplify complex
implementations. What’s important to understand is that every class marked with a eMode1 macro

immediately receives a store of its own and is added to the SwiftData schema.

However, to add a more complex data model, we need to be able to define relationships between our

models. Let’s see how it works.

Adding relationships

Unlike real life, in SwiftData, relationships are simple.

A relationship is a database scheme that defines how entities are linked to each other, and in Core
Data, we have two types of relationships — to-one and to-many. In short, a to-one relationship means
that we will have one instance of the other kind for each entity instance. An example of that would be
cars and engines — every car has one, and only one, engine, so that will make the relationship between
them a fo-one relationship. However, cars and wheels have a to-many relationship because a car can

have multiple wheels.

Even though the explanation is simple enough, it gets even simpler in SwiftData. If we want to define a

relationship between models, we just need to create another variable, as shown here:

@Model
class Book ({
var title: String
var publishedDate: Date
var author: Authorvar pages: [Pagel
init (author: Author, title: String, publishedDate:
Date) {
self.title = title
self.publishedDate = publishedDate
self.author = authorself.pages = []

}

In our example, we added the following two properties to the Book class:
o Author: This is a fo-one relationship to the Author entity because, in our case, each book has only one author

« pages: In the case of Page entity, we have a to-many relationship, since a book can contain multiple pages

One thing to note is that we also need to mark both page and author entities with the eMode1 macro, as

they must be part of our schema. This can be seen in the following code:

@Model
class Author ({
var name: String
init () {
self.name = ""
}
}

@Model
class Page ({
var content: String
var order: Int
init (content: String, order: Int)
self.content = content
self.order = order

}

Is adding models so simple? The short answer is, yes! Linking entities to each other in SwiftData is as

easy as adding a property.

The longer answer is, well, we'll have to do extra work to customize the relationships a little bit. Let’s

meet the @Relationship macro.

If you're familiar with Core Data relationships, you probably know there is more than declaring to-

many and to-one.

TO-MANY AND TO-ONE RELATIONSHIPS

To-one relationships represent associations between entities where one instance of an entity is related to another single instance of a
different entity. Conversely, to-many relationships represent associations where one instance of an entity can be related to multiple
instances of another entity. For example, in a bookstore database, a to-one relationship could connect a “book” entity to an ‘author” entity,
as each book has one author. In contrast, a to-many relationship could connect a "book” entity to a ‘category” entity, as a book can

belong to multiple categories.

We can customize our relationship using the erelationship macro in two primary ways.

Let’s start with defining the deletion rules.

SwiftData relationship deletion rules

What happens to pages and author entities if we delete a book? Logically, all the book pages need to
be deleted, but the author needs to be retained because they might be linked to another book. We can
represent this logic with deletion rules; if you're familiar with Core Data, it is basically the same as in
SwiftData.

This is how we can define the logic to a property in SwiftData:

@Relationship(.unique, deleteRule: .cascade) var pages: [Page]

In our code example, we defined the delete rule as cascade.

We have four different deletion rules:
« cascade: Deletes any related objects
« deny: Prevents deletion of an object if it contains one or more references to other objects
o nullify: Nullifies the related object’s reference to the deleted object

» noAction: In this case, nothing will happen to the other object

We should remember that a deletion rule is not arbitrary; it should be based on our app business

ideas.

For example, the reason why a book has a to-one connection to an author sounds logical, but there are

books with co-authors as well. So, this is something that should be aligned with our product manager.

Most of us are more familiar with the term one-to-many than to-many. This is because relationships
between objects go both ways - the fact that each book has one author doesn’t mean that each author
has only one book. So, as part of the relationship definition, we also need to define its inverse

relationship.

Defining the inverse relationship

Why do we need to define the inverse relationship? We need to realize that relationships always have

two sides (like in real life!), and we need to maintain them to have a proper data schema.

When establishing a relationship between a book and its pages, it’s better to define the inverse

relationship as well. This way, we can create a proper reference back to the book.
Let’s see how to create an inverse relationship between a book and its pages through the following
code:

@Model
class Book ({

@Relationship (inverse: \Page.book) var pages: [Page] =
[1

}
@Model
class Page ({
var content: String
var book: Book?
init (content: String) {
self.content = content
}

}

Looking at the code, we can see that we define the relationship as a keypath:

\Page .book
A keypath can help us avoid typos and mistakes when defining the inverse property.

Moreover, if we add a new page to the pages property, SwiftData will automatically set the Page’s book

property to the new book:

let newPage = Page (content: "Swift Data")
newPage.book = book
// book.pages property contains 'newPage'

SwiftData knows how to do that using our inverse declaration.

The inverse relationship may sound like an obvious feature — if we have a book with several pages, and

each page is related to a book, isn’t it obvious that the book property in the page class is the inverse

relationship? However, in reality, it's not obvious. There are several real-world use cases when

relationships can be much more complex.

Let’s take, for example, the data structure of a folder tree — each folder has its sub-folders. This means
that a folder has a to-one relationship to its parent and a to-many relationship to its children. Let’s see
that in the code:
@Model
class Folder {
var parent: Folder?
@Relationship (inverse: \Folder.parent) var subFolders:
[Folder]
var name: String
var id: UUID
init (parent: Folder? = nil, subFolders: [Folder], name:
String, id: UUID) ({
self.parent = parent
self.subFolders = subFolders

self.name = name
self.id = id

}

This example demonstrates what a Folder class looks like when trying to create a multi-level

hierarchical structure. In this case, we must define the inverse relationship to avoid cycles.

Now that we know how relationships work in SwiftData, let’s see more ways to customize our model,

using the eattribute macro.

Adding the @Attribute macro

So far, we have learned how to declare new entities, properties, and even relationships between our
entities. It looks like we can do anything with our data entities! Now, it’s essential to drill down to the

property level.

Along with our eModel and erelationship macros, we now have the eattribute macro to define the

behavior of a specific property.

If you remember from Core Data, each attribute has an inspector window where we can configure an

attribute’s behavior (Figure 2.1):

L F

i

Attribute

wame firsthName

Type String 8
Optional Transient
Derived
Allows Cloud Encryption
Dafault Value Default String

validation b =
Min Length Max Length
Reg. Ex.

Advanced Index in Spotlight
Presarve After Deletion

Deprecated
Spotilght Store in External Record Fila

Usar Info

Key ~ Value

o -
Versioning

Hash Modifier

Renaming 1D |

Figure 2.1: The Attribute inspector in Core Data

Figure 2.1 shows what it looks like when we select one of the attributes (£irstName in this example)

and how we can customize its behavior.

We can define some of these settings in SwiftData as part of the property declaration. For example, the
Optional feature, as seen in Figure 2.1, is defined by marking a property as Swift optional type, and the

default value is part of variable initialization:
var firstName: String? = "MyName"
However, other settings need to be declared as part of the eattribute macro.

Let’s start with the most common one, unique, and making attributes unique is an important feature of

many databases, including SQLite.

The following are a few reasons why:

o Setting up a primary key: A primary key represents a record’s unique identifier. We use a primary key to ensure that there are no

duplicates in our table.
« Supporting indexing: Unique attributes can help us index our database for searching and retrieval.

« Helping with data validation: Utilizing unique attributes goes beyond primary keys and extends to other distinctive attributes,

enhancing our ability to validate data during insertion.

Even though SQLite supports unique attributes, Core Data doesn’'t have a built-in way to support

unique identifiers, derived from its design philosophy to offer complete flexibility to developers.

Conversely, SwiftData supports unique attributes out of the box:

@Attribute(.unique) var id: UUID = UUID()

Adding the eattribute macro with the .unique option makes our database’s specific property values

unique.

vuID is a classic example of a unique value for a property, but we can apply that to any other type of

property, such as user IDs and names.

But what does it really mean to make a property unique? What will happen when we try to insert an

instance with an already existing unique attribute?

In the case of a unique property, SwiftData performs an upsert, which is also called an INsgrT or
upDATE operation. This means that if an instance with a unique value already exists, SwiftData will not

create a new object in its store but, rather, update the existing instance.

Declaring a property as unique using the eattribute macro is straightforward. However, sometimes
we need something more sophisticated. For example, let’s say we have a Book model with name and
publicationName properties. In our case, we can have two books with the same name or the same
publicationName, but we can’t have two books when both properties are identical. The combination of

publicationName and name creates the book’s unique identity.

One solution is maintaining a property that tries to build a unique ID from these two properties.

Another elegant option is to use the #unique macro to define more complex uniqueness requirements:

@Model

class Book ({
#Unique<Book> ([\.name, \.publicationName])
var publicationName: String = "Packt"
var name: String

}

In this code example, we enforce the uniqueness of the Book model by combining two key paths. Just

like the attribute parameter, .unique, if we try to insert a new book instance when we already have one

with the same name and publication name, SwiftData will perform an upsert operation and update

that instance.

Even though SwiftData handles unique attributes well, it is important to ensure we carefully pick
unique attributes and key paths according to an application’s requirements. Too many unique

attributes can cause complexity and performance issues.

Unique attributes are great for simplifying the task of handling duplicate instances. Another attribute

feature that can make our life simpler is transient.

Going non-persistent with transient

The nice thing about working with SwiftData is that all properties automatically become the entity’s
attributes and are saved persistently to the local data store. However, sometimes, there are cases where
we want to have a property that is memory-only and not saved persistently. A formatted version of one
of the values is an excellent example of such a property. One option to achieve that is to create a
function or a computed variable, and then return a value based on the relevant property. However,
there are other cases where a computed variable or a function is not a convenient solution. Lets say we

want a temporary counter or to maintain a flag relevant only to an application’s current life cycle.

For these kinds of cases, we have a transient attribute. Transient attribute is not a new idea — Core
Data had transient properties from its early versions. Since SwiftData is based on Core Data

fundamentals, it supports transient properties out of the box.

Here is how we declare a transient property in SwiftData:

@Transient
var openCounter: Int = 0

In this code snippet, the opencounter variable will not be saved locally to the persistent store and will

be initialized each time we fetch the entity from our database.

Transient properties may sound like a minor feature, but there are many cases where it really makes
the difference, and the transient macro provides this flexibility. Full names or calculated ages are great

examples of that.

Exploring the container

Until now, we discussed how to declare the different entities using the eMode1 macro, define their
relationships using the erelationship macro, and customize their attributes using the eattribute

macro.

However, we haven't discussed setting up SwiftData to work with a schema and a persistent store.

When we delved into the eMode1 macro, drawing parallels with Core Data was straightforward and
remains so now. In Core Data, we set up the stack using NsPersistentcContainer, which encapsulates
the different components, such as the data model, the store, and the context, into one stack that we

can work with.
In SwiftData, we use ModelContainer, which has the same responsibility.

Let’s try to understand how it works.

Setting up ModelContainer

ModelContainer is essential for working with SwiftData. The reason is that SwiftData has three main

components that the container encapsulates and wraps together:
o The data model: This is what we defined in the Defining a SwiftData model section, adding the @Model macro to our entities

« The store: The backend store where we will save our data

« The context: This is our link to the store and the sandbox, where we can add, edit, and delete different records

Here is the basic and minimal way to create a container:

var container: ModelContainer = {
do {
return try ModelContainer (for:
Schema ([Book.self, Author.self, Page.self]))
} catch {
fatalError ("Could not create ModelContainer:
\ (error)")

}
1O

In this code, we create an object from the Modelcontainer type and provide it with the three models

we made earlier in the Defining a SwiftData Model section.

Note that, in our case, we have one parameter, schema, which holds all the different models relevant to

our container — Book, Author, and Page.

The fact that we need to provide a list of models may raise some eyebrows — why do we need to do
that? Can’'t Xcode locate all the models and add them automatically? The eMode1 macro indeed
expands code at compile time, but it doesn't mean SwiftData is aware of all our entities when we set it
up at the beginning of the app run. So, whenever we add a new model, we must add it to the list of

models in our schema parameter.

Regarding including the Book entity independently from the author entity - when we add the Book

model to the models’ list, it automatically consists of all associated models, including those related to

the models further down the hierarchy. It means that, theoretically, we can include only the root

object while doing something like that:

Schema ([Book.self])

And that will be enough to include author and page.

So, what will we do with the container instance we just created? Let’s see in the next section.

Connecting the container using the modelContainer
modifier

Now that we have a model container, we want to link it somehow to our UI so that we can start using
it.
To do that, we will use the modelcontainer modifier to connect the container to our scene:

var body: some Scene {
WindowGroup {
ContentView ()
}

.modelContainer (container)

}

In our code example, we add the modelcontainer modifier to our windowGroup, thus making it

available to the whole app.

Instead of creating a connector and connecting it to windowGroup, we can use another modecontainer
init method and pass only the list of entities:

.modelContainer (for: [Book.self, Author.self, Page.self])

Passing the list of entities can be a simple and easy way of setting up a container. So, why do we need
the Modelcontainer class? The simple answer is, as always, to provide more customization. Let’s see

how!

Working with ModelConfiguration

The Modelcontainer offers us more than just scheme passing; it empowers us to configure our

swiftbData store for specific models and customize it to our particular requirements.

To do that, we will use the Modelconfiguration struct, as follows:

var modelContainer: ModelContainer =
do {
let schema = Schema ([Book.self, Author.self,
Page.self])

let modelConfiguration =

ModelConfiguration (schema: schema,
isStoredInMemoryOnly: true)
return try ModelContainer (for: schema,
configurations: [modelConfiguration])
} catch {
fatalError ("Could not create ModelContainer:
\ (error) ")

}
1O

Let’s try to understand what is happening in this code snippet. First, we create a schema with a list of
our models. Then, we declare a model configuration struct, pass the schema, and set its backend store
to in-memory. Finally, we return a model container based on our schema and a set containing the

configuration we just created.

All this process feels a little bit awkward, clumsy, and redundant — why do we need to create a
configuration if we're passing the same schema again? And why is it a set? The main configuration

idea is to provide different behavior for a different set of models.

Here’s an example. Imagine we have a brainstorm sketch app. We want to sketch and store our
concepts in the app’s persistent storage while all drawings on the whiteboard canvas remain in

memory.

In this case, we can create two configurations, one for in-memory and one for persistent storage and

CloudKit integration:

var modelContainer: ModelContainer = {
do {

let brainstormDataConfiguration =
ModelConfiguration ("brainstorm configuration",
schema: schemaForBrainstorm,
isStoredInMemoryOnly: true)

let projectsDataConfiguration =
ModelConfiguration ("projects configuration",
schema: schemaForProjects,
cloudKitDatabase: .automatic)

return try ModelContainer (for: fullSchema,
configurations: [brainstormDataConfiguration,
projectsDataConfiguration])

} catch {
fatalError ("Could not create ModelContainer:
\ (error)")

}
}O

In our example, we created two different schemas - a list of models for brainstorming and a list of

models for the user projects.

Based on these models, we create two different configurations. The idea brainstorming configuration

is saved in memory, and the projects’ configuration is saved locally and syncs to CloudKit.

Working with two different configurations and schemas for two app features is a great example of
model configuration usage. We can use the model configuration for additional customization, such as
the following:

« Different store files

« Different group containers

« Different auto-saving mechanisms

However, let’s suppose we don’t need the model configuration to configure different behavior for
different groups of models. In that case, we can work directly with the model container and initiate it

with the entire schema.

We now know how to declare and group our models for a schema to be used in a model container. But
there’s one crucial thing missing — how to insert, update, and fetch data. We will do that by placing the

missing piece in the puzzle - the context.

Fetching and manipulating our data using model
context

Developers familiar with Core Data are also familiar with the idea of context. Context is our data
sandbox. This is the place where we can manipulate and fetch data, and it’s the link between our

models and the persistent store.

To gain access to our context from our SwiftUI view, we can use an environment variable named

modelContext:

struct ContentView: View {
@Environment (\.modelContext) private var modelContext

The modelcontext environment variable is available whenever we set up our scene using the
modelContainer modifier.
In non-SwiftUI instances, we can access the context using our model container maincontext property:

let modelContext = modelContainer.mainContext

To understand how to work with a model context, we’ll start with the most basic operation, saving

new objects for our store.

Saving new objects

At the beginning of this chapter, in the Defining a SwiftData model section, we learned that our

models are just Swift classes marked with a eMode1 macro.

The way we define a model in SwiftData also means that the creation of a new instance is

straightforward for us:

let newBook = Book (name: "Mastering i0S 18 - the future")

Our next step is adding that book instance to our context:

modelContext .insert (newBook)

Adding newBook to the model context doesn’t necessarily mean it is being saved to our persistent store,
but it does mean that it is in our context and is ready to be pushed forward to our store. Having our
entity in our context helps us manage the interaction between our app and the underlying persistent
store. In our context, we can make changes, adding and deleting information without actually saving
these actions to our data store. The context is beneficial when working with concurrency operations or

when we want to manage undo operations.

To actually save to the persistent store, we can use the context save () method:

try? modelContext.save()

The save () method pushes changes to the store for each model, according to its configuration.

The way the save () method works resembles how Core Data works. But there’s one difference here.
SwiftData allows us to have an auto-save feature for the model container:
var body: some Scene {

WindowGroup {
ContentView ()
}

.modelContainer (for: Book.self, isAutosaveEnabled:
false)

}

In our code example, we set the isautosaveEnabled parameter to false. By default, SwiftData auto-
saves every change we make to the persistent store, so there’s no need to call the save () function

unless you have a perfect reason.

Due to performance considerations, SwiftData doesn't save every single time we perform a change to

the context but, rather, in the following two situations:

« During the app life cycle - for example, when moving from the foreground to the background

o Ina certain time period after we perform the change

Now that we know how to create and insert new objects, we can move on to fetching.

Fetching objects

Fetching objects in SwiftData is slightly different than what we know from Core Data, as there are two

primary ways to retrieve data.

The first way is to fetch an object, or objects, based on a predicate as part of an app flow - for example,

fetching objects to sync with the server or to make some kind of calculation.

The second way is to fetch objects based on a query and bind them to the SwiftUI view. An example

would be when we want to bind a collection of objects to a list.

Let’s go over both ways and explore new structures and macros that SwiftData brings to our project.

Fetching objects using FetchDescriptor
FetchDescriptor i$ a struct equivalent to NsFetchrequest in Core Data.

Like NSFetchRequest, FetchDescriptor also works with a specific type of object; to use it, we can pass

an optional predicate and sort descriptor.

Here’s an example of how to use Fetchpescriptor:

let fetchDesciprtor = FetchDescriptor<Books> (predicate:
#Predicate { $0.name == "My Book"})
let book = try?
modelContext.fetch(fetchDesciprtor) .first

If you look closely, you can see that Fetchpescriptor is not the only new type we encounter in this
context, as we also have a new predicate macro that creates PredicateExpression (a new type in i0S

17).

Unlike the familiar Nspredicate, the Predicate macro works a little bit differently. Instead of creating
a query, we have a closure where we define the condition of the return instances, like the array filter

method.

The following example returns books with more than 10 pages:

let fetchDesciprtor = FetchDescriptor<Books> (predicate:
#Predicate { book in
return book.pages.count > 10
3]

Using the #predicate macro is simple and doesn’t require us to use a special syntax to perform

complex queries.

In most cases, we won’t have to use FetchDescriptor. If we want to connect data to our SwiftUI views,

SwiftData has a better solution — the eguery macro.

Connecting data to a view using the @Query macro

Data is there to be seen. Showing information to the user is perhaps the most common task for iOS

developers, and SwiftData’s goal is just to simplify that.

As part of the SwiftData package, we now have an eguery macro that helps us present information in
SwiftUI views:

@Query private var books: [Book]

var body: some View {

List {

ForEach (books) { book in
Text (book.name)
}

}

This example displays a simple list of Book items based on the books variable. The eguery macro before
the variable declaration makes the variable a state of the view, ensuring that data is constantly
updated. This means that we get an instant UI update whenever we insert a new book into our

persistent store.
This is pretty remarkable for just one additional word!

The eguery macro also has two important additional features - filter and sorting.

Filtering the query

The chances that we will fetch all the items of a particular entity are pretty low, and the previous
example of fetching all the books and presenting them is more common in tutorials and demo

presentations.

In real life, we want to filter our queries. To do that, we can use #predicate, which we learned about in
the Fetching objects using FetchDescriptor section:
@Query (filter: #Predicate<Book> {

$0.pages.count > 300
}) private var bigBooks: [Book]

In this example, we added a filter to our eguery that returns only books that contain more than 300
pages.
Of course, we can perform even more complex queries by upgrading our Swift expression inside the
predicate:
@Query (filter: #Predicate<Book> {
$0.pages.count > 300 && (!$0.isRead ||

$0.isFavorite)
}) private var bigBooks: [Book]

In this example, we filter books that contain more than 300 pages, but this time, we also want to
receive books that we haven't read or are marked as favorites. The fact that we use a Swift expression to

filter our results makes our queries more descriptive and powerful than Nspredicate.

However, when displaying data in a list, it is not enough to filter it; it is also crucial to sort it. That's the

job of our second main eguery feature.

Sorting the data

Sorting is an essential aspect of presenting information to our users. We should remember that sorting

is not a lightweight task; it requires a complex algorithm to be done efficiently.

That’s why we need to ensure that we can sort by a property whose type conforms to the

SortComparator protocol, introduced as part of iOS 15.

Let’s see how we can sort our filtered books:

@Query (filter: #Predicate<Books> {
$0.pages.count > 300
}, sort: [SortDescriptor (\Book.name),
SortDescriptor (\Book.pages.count)]) private var
bigBooks: [Book]

In this example, we pass an array of sortbescriptor — we first sort by the book name and then by its
number of pages. It’s pretty easy to use sortDescriptor — we initialize it using a key path to the desired

property, just like in the preceding example.

Performing sorting with SwiftData is extremely simple. However, under the hood, it requires running
algorithms that must be optimized for performance in order to work efficiently. We don’t need these
optimizations when working with 100 or 200 records. However, there are cases when our data store

contains thousands of records. For these cases, we need to index our data.

Adding the #Index macro for performance

Before we index our data, let’s try to understand what it means exactly. When performing read
operations such as sorting or querying, we expect our app to work seamlessly with thousands of
records. Obviously, performing a full-table scan to find a book named Mastering iOS 18 is inefficient.
So, what do we do? Like a book index, the database index contains keys that help it locate a specific
record. For example, if we want to index our book’s name property, we can create a data structure, such

as a B-tree, which can help us locate the exact instance according to its name.

In SwiftData, we don’t need to create any structure to index our data. All we need to do is add the

#Index Macro to our model:

@Model

class Book {
#Index<Book> ([\.name]l, [\.name, \.publicationName])
var publicationName: String = "Packt"
var name: String

}

If the preceding code looks familiar, that’s because we did something similar when we added the

#Unique macro to our model in the Adding the @Attribute macro section.

In this case, we decided to add two indexes to our model:
o The first is to index the name property, allowing an app to sort records by name or query data for a specific book name.

o The second index is based on the combination of the name and publicationName properties

If you remember from the Adding the @Attribute macro section, we decided that this combination
defines our book’s uniqueness. Creating an index for this combination can help us quickly find a

specific book when needed.

Indexing looks like magic — we add another key path to the list of indexes, and everything works

faster. So, why not do that for all properties? What's the catch?

It’s because indexing comes with a price. First, we need to duplicate some of our data. If we need to
index the name property, we need to create a structure that contains all the names. This results in
additional storage for our app. But adding an index doesn't stop with storage - it also affects
performance. Indexing is not a one-time operation, as it requires maintenance. Each insert, update,
or delete Operation requires SwiftData to maintain the index structure, impacting the operation

performance.

In summary, indexing is a great SwiftData feature. However, use it carefully and balance its benefits

with its costs.

We've learned so many things so far! We've learned how to define models, create instances, fetch them,

and connect them to the UL

But we know that maintaining a persistent store is much more than that. Our first app version is so
much different than our 50th version, and it also means that our data schema will change during our
app versionss life cycle. But what should we do once we already have a store full of data? Thats our next

topic — how to perform data migration.

Migrating our data to a new schema

Data migration is not a weird expression for those who have worked with Core Data. It is obvious that

we need to change our schema as our app evolves.

There are two types of migrations — lightweight and custom migration. With lightweight migration, we
perform changes that don’t require custom logic. For example, adding an entity, a property, and a
relationship are all good examples of lightweight migration. Conversely, changing a property type,
making a property unique, and creating a new property based on other properties are examples of
custom migrations. Now that we know what migration types we have, it’s important to understand

when it is relevant to perform a migration.

When we're in our development stage, migration is unnecessary before we have an official version of
our app on the App Store. We only need to perform migration when an end user holds a version with
an older schema. This also means that if we perform schema changes in several versions, we must

ensure that SwiftData knows how to migrate throughout all these versions.

Now, let’s discuss how SwiftData migration works and what the essential migration components are.

Learning the basic migration process

A SwiftData migration has three main components:
o VersiondSchema: Describes a specific schema version
o MigrationStage: Describes the migration process between two versions of the same schema

o SchemaMigrationPlan: Describes how the schema migration stages are based on the migration stages

Let’s try to describe how everything is connected, using Figure 2.2:

VersionSchema V1 MigrationPlan

\

VersionSchema V2

\: Migration Stage V1 to V2

VersionSchema V3

Migration Stage V1 to V2

Figure 2.2: A migration process between three different versions

Figure 2.2 shows three different version schemas for three different versions. We create a migration
stage each time we migrate the app from one version to another. Once we have the various stages, we

can wrap them into one big migration plan.

Returning to our book’s app, let’s try to migrate our schema to support a subtitle for our Book entity.

First, we need to create our version schemas.

Creating a version schema

To migrate our book to a new schema, we need to create two version schemas - the first is our current
schema, and the second is the destination schema:
enum BookSchemaVl: VersionedSchema {
static var versionIdentifier: Schema.Version
{ return .init(1, 0, 0) }

static var models: [any PersistentModel.Typel
[Book.self]
}

@Model class Book {
var name: String
init (name: String)
self.name = name
}

enum BookSchemaV2: VersionedSchema {
static var versionIdentifier: Schema.Version
{return .init(1, 1, 0) }

static var models: [any PersistentModel.Typel
[Book.self]

@Model class Book {
var subtitle: String = ""
var name: String
init (subtitle: String, name: String)
self.subtitle = subtitle
self.name = name

}

In this code, we created two enums that conform to the versionedschema protocol. As part of the

protocol definition, we need to define the version identifier and what models will change.

We added a new subtitle property to the second version in this case. We need to update the schema

we use across the app, with the new property included.

Our next step is to define the different stages and the migration plan.

Creating the migration stages and plan

We should consider the versioned schemas as the building blocks of our migration process. Figure 2.2

shows that we create the migration stages based on the versioned schemas.

Here’s an example of a migration stage:

static let migrateVlitov2 =
MigrationStage.lightweight (fromVersion:
BookSchemaVl.self, toVersion: BookSchemaV2.self)

The migratevitov2 stage handles the migration from Bookschemavi to BooksSchemav2. Note that this is a

lightweight migration — we only added a property, so this is all that we need to create the stage.

What about a custom migration? With a custom migration, we need to provide a closure that handles

data before and after the migration stage, where we perform all the required changes.

Here’s an example of a custom transition from version V2 to V3, where we have removed the subtitle

property and added it as part of the book name:

static let migrateV2tovV3 =
MigrationStage.custom(fromVersion: BookSchemaV2.self,
toVersion: BookSchemaV3.self, willMigrate: { context in
if let books = try?
context.fetch (FetchDescriptor<Book> ()) {
for book in books {
let newName = book.name + " " +
book.subtitle
book.name = newName
1
}
try? context.save ()
}, didMigrate: nil)

As we can see in the code example, our willmigrate closure receives a context to work with, and

SwiftData performs that closure when needed.

We fetch all the books and assemble a new name from the book name and its subtitle property. At the

end of the closure code, we call context.save ().

Now that we have both migration steps, we can create our migration plan:

enum MyMigrationPlan: SchemaMigrationPlan (

static var schemas: [VersionedSchema.Type] {

[BookSchemaVl.self, BookSchemaV2.self,
BookSchemaV3.self]

}

static var stages: [MigrationStagel {
[migrateVltoV2, migrateV2toV3]

}

static let migrateVlitov2 =
MigrationStage.lightweight (fromVersion:
BookSchemaVl.self, toVersion: BookSchemaV2.self)
static let migrateV2toV3 =
MigrationStage.custom(fromVersion: BookSchemaV2.self,
toVersion: BookSchemaV3.self, willMigrate:{context in
if let books = try?
context .fetch (FetchDescriptor<Books> ()) {
for book in books {
let newName = book.name + " " +
book.subtitle
book .name = newName

}

try? context.save()
}, didMigrate: nil)

}

The migration plan is just another Enum conforming to schemaMigrationplan, with static variables

describing the list of schemas and stages (not something we haven’t seen before).

Now, we have a migration plan, but SwiftData doesn’t know what to do with it. Our next step will be

connecting the migration plan to our SwiftData container.

Connecting the migration plan to our container

Connecting the migration plan to our container is perhaps the most straightforward step in the

process.

The Modelcontainer struct has a migrationplan property specifically for that, and we need to pass the
migration plan Enum type:
return try ModelContainer (for: schema, migrationPlan:

MyMigrationPlan.self, configurations:
[modelConfiguration])

Note the way that migrations work in SwiftData in terms of a language paradigm. We don’t have to
initialize anything, since we only pass the schemas, stages, and plan types. The reason is the way
SwiftUI works — since we work in an immutable environment, it is much more convenient to work

with static variables and types instead of instances.

Migration in SwiftData is not a simple task. It involves conforming to multiple protocols, maintaining
schema versions, and understanding how a store is built to switch between lightweight and custom

migration.

But this is because migration, in general, is a complex and sensitive process. Trying to carefully plan
beforehand how our schema looks can reduce the number of schema versions and stages, easing our

process when considering that we will have to migrate our store at some point.

Summary

SwiftData holds significance for iOS developers looking to support iOS 17 and above, representing a
natural progression from Apple’s previous framework, Core Data. Within the context of a declarative

Swift environment, SwiftData aligns more seamlessly than before.

In this chapter, we've learned about SwiftData’s background, defined the different SwiftData models,

created relationships, and customized the model attributes. We moved on to the container - a

component that wraps everything together, performs fetches, and saves. Lastly, we migrated our data
from different schema versions using lightweight and custom migrations. Throughout the chapter, we
saw the heavy use of Swift macros and protocols, which are more suitable for the modern world of

Swift compared to Objective-C.

That’s a lot for one chapter! Remember that the data layer is complex to manage and maintain, and
there’s much more to learn. The data layer is one side of our project; the other side is, of course, the
UL To complete our understanding of the data layer, it’s essential to explore how the UI can monitor

changes. This is why our forthcoming chapter will focus on the observation framework.

3

Understanding SwiftUl Observation

data management to be effective, we need something on the other side that can observe changes and

display them for the user.

SwiftUI contains tools that allow us to observe these changes effectively and bind them to actions and

UI updates. However, these tools have become complex and confusing over the years.

Now, we're about to explore how observation has become significantly more straightforward, all while

delving into the heart of SwiftUT’s data flow.

In this chapter, we will cover the following topics:
o Go over the SwiftUT observation system and discuss its problems
« Add the @0bservable macro and learn how it works
« Discuss observing properties, including computed variables

o Work with environment variables and adapt them to the new framework

o Talk about the new @Bindable property wrapper

o Learn how to migrate our app to work with the Observation framework

Are you ready to start?

Technical requirements

This chapter includes many code examples, some of which can be found in the following GitHub

repository: https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter3

To run them, we will need Xcode 15 or newer.

Going over the SwiftUl observation system

Before we discuss the current SwiftUI observation system, let’s recap the SwiftUI observation system.
Before Xcode 15, nine property wrappers handled state and data updates in SwiftUT.

Let’s try to group them by app levels:
« Sub-View level: @Binding, @Environment

« Viewlevel: @State, @Binding, @StateObject, @Environment

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter3

« Business Logic level: @0bservableObject, @Published

o App/Datalevel: @AppStorage, @SceneStorage, @EnvironementObject

The different levels give us an idea of the different roles of the different wrappers. Let’s touch on some

of these wrappers to understand how the system works.

A local estate property wrapper manages the state of primitive properties within the view. For
example, whether a specific view is hidden, the number of available buttons, the current sorting

method, and more are managed by this wrapper.

The reason why we use a estate property wrapper is because SwiftUI views are immutable. This
means that SwiftUT rebuilds the view each time a change occurs, but the estate values don't change

between one rendering session and another.

The problem begins when we base our view on data model information. An example of this would be
a bookstore app that displays a list of books from a local data file. In this case, our view must work

with another data model object using the observableobject protocol.

Let’s go over it now.

Conforming to the ObservableObject protocol

We can use the observableobject protocol in conjunction with the eobservedobject property

wrapper for classes that need to be observed.

Here’s an example of a userpata class which becomes an eobservedobject property wrapper:

class UserData: ObservableObject {
@Published var username = "Avi Tsadok"
}

struct ContentView: View {
@ObservedObject var userData = UserData()
var body: some View {
Text ("Welcome, \ (userData.username) !")
.padding ()

}
There are three parts to implementing a data class observation:

1. Conforming to ObservableObject: If we want a class to be observed in SwiftUT, it must conform to the

ObservableObject protocol. This indicates to SwiftUI that any instance derived from this class can be observed in a view.

2. Adding the @Published property wrapper: When we mark a property with a @Published property wrapper, SwiftUI creates a

publisher and uses it inside the SwiftUT views.

3. Marking variables with the @0bservedObject property wrapper: The @0bservedObject property wrapper establishes a

connection between the view and the object, allowing the view to be notified of changes.

It’s essential to remember that the eobservedobject property wrapper is solely for observation

purposes — this means that the view cannot modify the observed object properties directly.

If we want to change the observed object properties, we must use another property wrapper —

@StateObject.

A estateobject property wrapper is similar to estate, only that it works with observable objects and

not primitive values.

However, that doesn’t end here - if we want to create a two-way connection between the view and its
subview, we need to add a eBinding property wrapper to the subview and a estate property wrapper

to the parent view.

Explaining the problem with the current observation
situation

The short recap of the current way observation works in SwiftUI emphasizes how complex and

confusing it is to observe data in SwiftUL

Take, for example, the observableobject protocol - in most cases, we want to mark all of our
properties with the epublished property wrapper. If that’s the case, why do we need to work hard?

Don’t we have a way to add a epublished property wrapper to all our properties?

The observation framework uses Swift macros here, a feature that can help us reduce boilerplate code.

To read more about it, go to Chapter 10 and read about Swift macros.

Adding the @Observable macro

The primary goal of the Observation framework is to simplify our work as much as possible, and it

does that with the heavy use of macros.

Let’s take a Book class, for example:

class Book: ObservableObject {
@Published var title:String = ""
@Published var author: String = ""
@Published var publishedYear: Date = Date()
@Published var numberOfPages: Int = 0

}

The Book class is a standard observableobject class that contains four properties with a @published

property wrapper.

Using the observation framework, we can get rid of all the property wrappers and the

Observableobject protocol and just add a macro attached to the class declaration:

@Observable
class Book ({
var title:String = ""
var author: String = ""
var publishedYear: Date = Date()
var numberOfPages: Int = 0

}

The @observable macro, like most macros, handles the tedious work on our behalf. It makes the Book

struct observable and adds a publisher to its properties.

Let’s try to use the Book class in a view:

struct ContentView: View {
var book:Book = Book()
var body: some View {
vstack {
Text (book.title)
Button ("Change")
book.title = "Mastering iOS 17"
1

}

.padding ()

}

In the preceding code, we have a button and a view with a Text view that displays the book title.

Tapping on the button changes the book title.

The change of the book title updates the text; however, the updates happen even though the book is

not marked with a eobserverdobject Or estateobject property wrapper!
How can this be?

Let’s dive a little bit deeper to find out!

Learning how the @Observable macro works

I know speaking about macros might get on your nerves, but do you remember that eobservable is a

macro, and that we can expand it?

So, let’s expand it and see what’s going on there:

@Observable
class Book {
@ObservationTracked
var title:String = ""
@ObservationIgnored private var _title: String = ""
{

@storageRestrictions(initializes: _title)
init(initialvalue) {
_title = initialValue

get {

access (keyPath: \.title)
return _title

}
set {
withMutation (keyPath: \.title) {
_title = newValue
}

}
}
@ObservationTracked
var author: String = ""
@ObservationTracked
var publishedYear: Date = Date()
@ObservationTracked
var numberOfPages: Int = 0
@ObservationIgnored private let $observationRegistrar
= Observation.ObservationRegistrar ()
internal nonisolated func access<Member> (
keyPath: KeyPath<Book , Member>

) {
_$observationRegistrar.access(self, keyPath:
keyPath)

}

internal nonisolated func withMutation<Member,
MutationResults> (
keyPath: KeyPath<Book , Member>,
_ mutation: () throws -> MutationResult

) rethrows -> MutationResult {
try $observationRegistrar.withMutation(of: self,

keyPath: keyPath, mutation)
}
}

extension Book: Observation.Observable {

}

That’s a lot of work for one tiny macro!

It looks like there are also internal macros, such as @observationTracked, one of which I expanded.
So, what’s going on here?

There are five things we can see here:

« Our class conforms to the Observable protocol: Don't be confused; we discussed a macro named Observable, not a protocol.
The protocol itself is empty, but SwiftUI uses that to mark the class as observed. Using an extension, you can see the protocol

conformation at the end of the macro code.

» Having a reference to observationRegistrar: The observationRegistrar variable is a singleton struct responsible
for managing the registration of observed class properties. SwiftUI relies on this struct to detect when an observed property is

accessed or modified.

« Our variables became computed: We now have a setter and a getter for each variable. The Observation framework needs these

getters and setters to track every access or modification attempt.

« Each variable has a private variable for storage: Since our variables are now computed, we need to store the actual values somehow.
Our @0bservable macro added a private variable for each original variable just for that. The getter and the setter use the private

variable to return and mutate the stored values.

« Two private methods were added: We now have the access () and withMutation () methods. The computed variables call

these methods to notify the observationRegistrar instance about any data modification access. Afterward, the

observationRegistrar instance tells SwiftUI about these changes.

The reason we have so much code underneath is that the Observation framework’s goal is to simplify
the process of observing data models. Conforming the class to the Observable protocol without the
macro is not enough — marking the actual model with eobservedobject would still be required in the
SwiftUI view. The Observation framework tracks each property using its getter and setter methods,

making it much cleaner to implement in our views.

Notice that there’s a small macro inside that expanded code we haven't discussed -

@ObservationIgnored.

Excluding properties from observation using
@Observationignored

We already understand that, unlike the previous pattern of adding the epublished property wrapper

for each variable, in the eobservable macro, all the properties are observed by default.
Let’s think of the consequences of that — how can it affect our work?

The fact that every property is now observed means that each time it appears in our SwiftUI view and

we modify it, our view gets updated.

SwiftUI is indeed a highly optimized framework, but it is optimized because it only updates views
when needed. If a particular data model property doesn’t need to be dynamic and observed, we
should exclude it from tracking. It’s essential to balance observing many properties to keep our Ul

responsive and impact its performance.

Let’s try to add a property that is not supposed to be observed:

@Observable

class Book ({
var title:String = ""
var author: String = ""
var publishedYear: Date = Date()
var numberOfPages: Int = 0
@ObservationIgnored
var lastPageRead: Int = 0

}
In this code example, we added a property named 1astPageread. It's an important property, but it
doesn’t affect our U state, and we don’t display or even consider it when laying our views. Therefore,

we will ignore it using the eobservationIgnored macro.

Unlike the eobservationTracked macro, which the eobservable macro uses to create the getters and

the setters for the observed properties, @observationignored doesn’t modify the property. SwiftUI

uses that macro only to determine which property it doesn't register using the observationRegister

object.

The default observation of all properties gives us another exciting and powerful feature out of the box

- observing computed variables.

Observing computed variables

First, a reminder — a computed variable is a property that has a getter and an optional setter. This
means that a computed variable doesn't have its storage, and its value is derived from other variables

(which can also be computed variables).

Look at the following code:

class Book: ObservableObject {
@Published var pages: Int = 0
@Published var averageWordsPerPage: Int = 0
@Published var totalWordsInBook: Int {
return pages * averageWordsPerPage
}

}

The Book class conforms to the good old observableobject protocol.

Notice that the totalwordsinBook property is a computed variable — it multiplies the pages and

averageWordsPerPage variables to return the total number of words in the book.

We want to observe the computed variable to present its results in one of our SwiftUI views, so we

have marked it with the epublished property wrapper.

Unfortunately, this is impossible. Try to compile results with the following error:

Property wrapper cannot be applied to a computed property

That’s a big downside for conforming to the observableobject protocol, as it can be a helpful use case.

Working with the Observable macro works this out quite nicely:

@Observable
class MyBook {
var pages: Int = 0
var averageWordsPerPage: Int = 0

var totalWordsInBook: Int {
return pages * averageWordsPerPage

}

In the preceding code, we just added the computed variable, and we can observe it in our view with no

problems.

How does it work? How can we observe a computed variable if it doesn’t have a back store for its

value?

So, there’s a reason why I always make sure to explain how things work underneath. If we go back to
the Learning how the @Observable macro works section, we expanded the eobservable macro and saw
interesting details of how the observation and tracking work. Every observed property becomes a

computed value and is tracked using a getter and a setter.

So, when we add a computed variable whose value is derived from another observed property, it
means that whenever we access this computed variable, we also access the other properties. This

access triggers the observation framework.

Figure 3.1 shows how observing computed variables works in a visual way:

pages *
averageWordsPerPage

pages averageWordsPerPage

get set get set

access

observationRegister

Figure 3.1: How SwiftUl observes computed variables

Figure 3.1 nicely shows how the computed variables are derived from other properties and how

accessing them would eventually go down to the observationregister object.

Let’s try to see that in action:

@Observable
class Book ({
var title:String = ""
var pages: Int = 0
var averageWordsPerPage: Int = 0
var totalWordsInBook: Int {
return pages * averageWordsPerPage
}
}

struct ContentView: View {
var book:Book = Book ()
var body: some View {
Vstack {
Text (book.title)
Button ("Change")
book.averageWordsPerPage = 300
book.pages = 200

}

Text ("number of pages in the book:
\ (book.totalWordsInBook) ")
.padding ()

}

In the preceding code, we update the averagewordsperpage and pages properties when tapping the

Change button.

The update triggers the observation framework and updates the view because we access

totalWordsInBook in the following line, even though it's a computed variable.

However, adding the eobservationIgnored property to both of these properties (averagewordsperrage
and pages) won't trigger the totalwordsInBook computed property because the eobservation
framework can’t tell that something has changed. The nice thing is that we've learned how it works by

expanding our eobservable macro.

By now, we know very well how the eobservable macro works and how variables and computed

variables are observed.

Now, let's move one step further and see how to use these observed variables as environment variables.

Working with environment variables

A view that works directly with an observed object is a common use case. For example, a view can
work with a viewModel class or have a SwiftData query that fetches data models from the persistent

store.

However, there are cases where we have an observed object shared across different views.

Some examples of such a use case are as follows:
o App settings: The user profile is part of app settings and can be stored in an environment variable
« Themes and styling: Primary color tint font style, spaces, and more

« User authentication state: The login state is a good example of an environment variable

Sharing the same object down a view hierarchy can be cumbersome, but SwiftUT offers a helpful
feature known as environment variables. While environment variables aren’t a recent addition to iOS
(they have been available before iOS 17), the Observation framework provides comprehensive

support.

There are two ways of adding an environment variable to our project - by type or by keys. Let’s start

with the more straightforward way: by type.

Adding an environment variable by type

Let’s try to add theming support for our books project. We'll start by creating our Themes class:

@Observable
class Themes

var primaryColor: Color = .red
}

Our Themes class has only one property for now: the primary color. Notice that we added the

@observable macro to update our UI when the theme changes.

Next, we will add our observed object to our Bookapp struct:

@main
struct BookApp: App {
var themes: Themes = Themes ()
var body: some Scene {
WindowGroup {
ContentView ()
.environment (themes)

}

In the Bookapp struct, we're making two changes:

o Creating a new Themes object: That object stores the current value theme value and state. Notice that we don’t need to mark it as

@State or @ObservedObject.

« Adding the environment modifier: The environment modifier allows the child views to make use of the themes object easily.
Now, let’s turn to our view and see how we can use it:

struct ContentView: View {

@Environment (Themes.self) var themes

var book: Book = {
let book = Book ()
book.title = "Mastering iOS 17"

return book

3O

var body: some View {
vStack {
Text (book.title) . foregroundStyle (themes.primaryColor)
}

}
}

Adding the themes instance to our contentview struct is straightforward. We're using the

@Environment property wrapper to inject the themes object we created earlier.
We use the theme’s primary color in the body part to color our book title.

Now, we must note that we can use the environment variable in every view in the hierarchy, even if we

haven’t initialized it with the environment modifier.

Here’s an example of that:

struct ContentView: View {
var body: some View {
Vstack {
MyTitle (text: "Mastering i0OS 17")
}

}

struct MyTitle: View {
@Environment (Themes.self) var themes
let text: String

var body: some View {
Text (text) . foregroundStyle (themes.primaryColor)
}

}

In the preceding code, we created another SwiftUI component called myTitie, which has the

environment variable themes.

The myTitle view is part of the contentview hierarchy. Therefore, it has direct access to the themes

variable.

Passing environment variables by type is simple! However, when working on a big scale, it has some
drawbacks. I believe that the main disadvantage is that we are coupling our code to a specific type. In

the themes example, we work with an explicit variety (Themes).

SwiftUI provides us with a better way to manage environment variables, and that’s working with

environment keys.

Adding environment variable by key

Managing environment variables is much better when our project becomes more significant.
Using environment keys improves the separation between our view and the actual variable.

To better manage environment values, SwiftUT has two primary components:

o EnvironmentValues struct: This is a container of different environment values structured in a key-value form. It can be

accessed from any view in the app. We can extend the struct and add new variables.

« EnvironmentKey protocol: It allows us to add a key for a new variable and use that key to add a new environment value.
Let’s see how it works in practice:

struct ThemesKey: EnvironmentKey {
static let defaultValue = Themes ()
}

extension EnvironmentValues {
var themes: Themes {
get { self[ThemesKey.self]}
set { self[ThemesKey.self] = newValue}

}

The first thing that we did was add a new Environmentkey type named Themeskey. Part of the

EnvironmentKey protocol is setting the variable default value, which is, in this case, a Themes instance.

Once we have a new environment key, we must add it to our Environmentvalues container. We do that

by extending the container and adding a new computed variable named themes.

The getter and the setter are straightforward - the get function returns the value according to the

relevant key (Themeskey), and the set function stores a new variable on that key.

After we have extended the container, we can easily access that key from any view that we have:

struct ContentView: View {
@Environment (\.themes) var themes
// rest of the view

}

Remember the environment modifier from earlier? We can remove it now:

ContentView ()
.environment (themes)

When we extended the Environmentvalues struct, we extended the global variables container of our

app. That’s the reason why we have access from any view.

Other than accessing the values from any view, working with environment variable keys has several
additional advantages:
o Quickly replacing the variable type in the future: Unlike adding an environment value by type, we are not tied to a specific type

when adding the variable by key. We can easily replace the type itself in one place and not have to replace it in all views as long as

we keep the same interface.

o Great for testing: Another advantage of not being coupled to a specific type is the ability to create mocks and add unit tests.

« Adding more flexibility: Since the instance creation is not in the view hierarchy, it is easier to have more control. Remember the

get and set functions in the EnvironmentValues struct? Now, we can customize them the way we want to.

We can understand why environment keys are essential for big projects by looking at the list of

advantages.

No matter how we work with environment variables, they are crucial for a clean and simple SwiftUI

code, especially when we combine them with eobservable objects.

By now, we already know how to create an observed object and inject it into child views using

environment variables.

Our next topic revolves around the compatibility problem that the Observation framework created for

us, specifically regarding binding.

Binding objects using @Bindable

Let’s start with a short recap of what binding is.

In some cases, a view and its child must share a state and create a two-way connection for reading and

modifying a value. To do that, we use something called binding.

One classic example is TextField — a TextField view is a SwiftUI component with a text variable.

Both TextField and its parent view share the same value of text. Therefore, it’s a binding variable:

struct ContentView: View {
@State var email: String = ""
var body: some View {
vStack {
TextField ("Email", text: $email)
}

}

We see that the email variable is marked as a state, but the TextField view is the one that updates it.

The binding occurs using the ¢ character.

We can create a binding variable ourselves using the eBinding property wrapper:

struct MyCounter: View {
@Binding var value: Int
var body: some View {
Vstack {
Button ("Increase") {
value += 1
}

struct ContentView: View {
@State var count: Int = 0
var body: some View {
VStack {
MyCounter (value: $count)
Text ("Value = \ (count)")

}

The count variable in the parent view (contentview) and the value variable in the child view

(contentview) share the same state, and now we have a two-way connection between them.

We can connect a binding variable to a estate property wrapper (such as in the example we just saw)

Or a @observedobject variable.

Can you guess what the problem is with trying to create a binding connection using the observation

framework?

So, apparently, classes that are marked with the eobserved macro are not eligible for estate or

@observedObject, SO We can't use @Binding with them.
Fortunately, with the Observation framework, we have a new property wrapper called @Bindable.

Let’s see a short example of how to use eBindable with a counter object:

struct ContentView: View {
var counter = Counter()
var body: some View {

vStack {
CounterView (counter: counter)
Text ("Value = \ (counter.value)")

}
}
struct CounterView: View {
@Bindable var counter: Counter
var body: some View {
vStack {
Button ("Increase") {
counter.increment ()
1

}
The code example has two views as before — a contentview view and a child view named counterview.
The contentview view has a variable called counter of the counter type. The counter class is marked

with eobserved, so we don't need to mark the property as estate or eobservedobject.

In the counterview structure, we also have a counter from the same type, but it is marked with

eBindable. This means we need to bind it to an object with a similar type.

The counterview.counter and contentView.counter variables are linked — whenever we change the
value in the child view, it automatically reflects in the parent view. Notice that with eBindable, we

don’t need to add any $ signs to the variable expression. Everything just works.

Binding is a critical usage of SwiftUI - it stands at the heart of many input views such as text fields,

toggles, sheets, and more.

Working with the eBindable macro can be confusing — we now have both eBinding and eBindable at
the same time! eBinding is used for states and observable objects and eBindab1e is used for... observed

objects?

So yes, it feels like we are in a transition era. The good news is that we can solve the issue easily by

migrating our project to Observable.

Migrating to Observable

Before migrating to Observable, we must ensure that our app deployment target is at least 17.
Remember that this feature (and most of the new features described in this book) are from iOS 17,

and some are irrelevant if our app deployment target is not 17.

Let’s try to recap the different Observable attributes:

o @State: This is used to manage the state within a specific view. A change to a @State property triggers a view update. For

example, data related to a list or view visibility can be marked as @State.

« @Observable: This can be applied to a class to make the class observable. Each class property is automatically marked with
@Published unless we mark them as @bservataionIgnored. @bservable can be added to view models or business

logic classes.

« @Bindable: This creates a two-way connection between a property and another value. Text field input, toggles, or a counter are

examples of views for implementing a @Bindable connection.
o @Environment: Mark an object to be shared down the view hierarchy with this attribute. For example, configuration or a theme

can be shared with all views in the hierarchy using the @Environemnt attribute.

This list aims to summarize the different attributes in the Observable framework and their use cases.

Once we decide to move to the Observable framework, there are a few things we need to do:
o Remove the protocol conformation to ObservableObject and add the @bservable macro for all the relevant classes
« Remove the @Published property wrapper and add @bservationIgnored for the properties we don’t want to observe
o Remove the @0bservedObject property wrapper

o Rename @Binding to @Bindable for the properties that are based on classes

Once we finish migrating to the observable framework, things will be clearer and more

straightforward, with fewer property wrappers and less protocol conformation. The binding can also

be simple — now it’s @Binding for primitive values and eBindab1e for classes. That’s not perfect, but not

too bad either. It’s time to enjoy Observable!

Summary

This was another chapter that made use of Swift macros and other advanced Swift techniques. A small
note: to understand topics such as Observable, I recommend having good knowledge of Swift.
Otherwise, it becomes just another boring tutorial. Knowing how things work on the inside is

fascinating and can only make us better.

In this chapter, we did a recap of the SwiftUT observation system, and we discussed its problem. We
added the eobservable macro and explored how it works. We talked about computed variables,
environment variables, and bindable. Ultimately, we discussed migrating from the “old” observation

system to the new Observable framework.

Remember - observation is a core feature of SwiftUI and is crucial to delivering a superior experience

to our users.

In the next chapter, we will learn about another critical feature, especially in mobile — navigation and

search.

4
Advanced Navigation with SwiftUl

helps to manage communication between different parts of our app and is one of the fundamental
building blocks of SwiftUI declarative programming. However, it is also one of the tools we will use to

implement a good navigation system.

Why do we have a whole chapter about navigation? Isn't it just showing a different view when the user

selects an item in a list?

Navigation is a massive topic in mobile development. A standard app may have dozens of screens, and
a more extensive one may have hundreds. Understanding how to manage the different routes in our

app, which has so many screens, is crucial to our app’s success.

In this chapter, we will be doing the following:
« Understating why SwiftUI navigation is a challenge
« Exploring SwiftUl's NavigationStack
o Working with different data models to trigger navigation
o Working with the Coordinator pattern to manage our concerns better

o Implementing SwiftUI's NavigationSplitView to create a column-based navigation

We've got a lot to cover! But before we begin, let’s try to understand why SwiftUI navigation can be a

challenge.

Technical requirements

For this chapter, you'll need to download Xcode version 16.0 or above from Apple’s App Store.

You'll also need to be running the latest version of macOS (Ventura or above). Simply search for
Xcode in the App Store and select and download the latest version. Launch Xcode and follow any
additional installation instructions that your system may prompt you with. Once Xcode has fully

launched, you’re ready to go.

Download the sample code from the following GitHub link:
https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%204.

Understating why SwiftUl navigation is a challenge

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%204

To answer that question, we need to understand how navigation works intuitively. The user taps on a
button, link, or some other event that may occur. Then, the app responds to that event and transitions

the view to another screen.

In a sense, we understand this sounds like an event-driven paradigm. When we discuss the differences
between SwiftUI and UIKit, we actually discuss the differences between declarative and imperative
programming.

Imperative UL, such as UIKit, is also event-driven, while declarative UI, such as SwiftUI, represents

the current state. As a result, we can understand why navigation can be seen as simpler in UIKit and

may feel more natural there.

Many developers struggle with SwiftUI navigation. They wrap a SwiftUI view inside
UIHostingController and use the UIKit navigation system. That’s a fair solution for achieving some
advanced navigation techniques that are hard to do in SwiftUI. However, we need to remember that

SwiftUT has evolved over the years and offers great navigation tools.

Let’s start with the basic navigation tool - Navigationstack.

Exploring NavigationStack

When SwiftUI was introduced, the basic navigation mechanism was based on a view called
Navigationview. However, NavigationView was too simple for most apps, and NavigationStack

replaced it. In fact, Apple deprecated Navigationview, starting with iOS 18.

Compared to NavigationView, Navigationstack adds a little bit of complexity to the pile, which

provides us with new capabilities.

Let’s see a simple example of a NavigationStack usage:

struct ContentView: View {
var body: some View {
NavigationStack {
NavigationLink ("Tap here to go to the next
screen") {
Text ("Next Screen!")
}

}

This code example looks pretty simple!
However, NavigationStack is much more powerful than it seems.

How? The concept of NavigationStack is constructed from four components:

1. Separate NavigationLink from its destination: This is a major change from NavigationView. In NavigationStack,

NavigationLink describes what happened, and the navigationDestination view modifier describes where we go.

2. Linking between data and destinations: In a way, this is a development of the preceding point. The destination is linked to a data

type. This means that we can have several navigation links that point to the same destination just because they share the same data
type.
3. Allowing us to read and update the path: Here, we have another development of our idea. Because the data and the screen are now

linked, we can represent the path as an array of data instances. Modifying the path array also changes our views stack.

4. Presenting views without navigation links: Prior to iOS 16, NavigationLink also had this capability, but the introduction of

NavigationStack made it obsolete.

Let’s cover each of these four components in detail now, and we’ll start with destinations.

Separating the navigation destination using the
navigationDestination view modifier

If you've read my previous books (Pro iOS Testing and Mastering Swift Package Manager by Apress, and
The Ultimate iOS Interview Playbook by Packt Publishing) there’s an important principle I keep
nagging about: separation of concerns (SoC). In SoC, we break our code into distinct modules or
components, each with a specific and well-defined responsibility. This makes our code more modular,

flexible, and easy to maintain.

When we look back at NavigationLink, we can see that it has more than one responsibility - it is the

actual control that the user taps on and also contains the next screen view.

In NavigationStack, there’s a new view modifier called navigationDestination, which allows us to

define a destination separately according to a state change.

Let’s see an example of navigationDestination, based on a binding variable:

struct ContentView: View {
@State var isNextScreenDisplayed: Bool = false
var body: some View {
NavigationStack {
Button ("Go to next screen") {
isNextScreenDisplayed = true
}

.navigationDestination (isPresented:
$isNextScreenDisplayed) {
Text ("Next Screen!")

}
In our code example, we can see a NavigationsStack view containing a button. Notice that there’s no
NavigationLink view at all, and that’s because we don't need it. We trigger the navigation by changing

the estate property named isNextScreenDisplayed rather than using a NavigationLink View.

The button also has a view modifier called navigationDestination. The navigationDestination View
modifier has a binding Boolean variable that is linked to the isNextscreenDisplayed state variable. It

also has a view builder that contains our next screen (similar to NavigationLink).
Tapping on the button toggles isNextscreenDisplayed and navigates our next screen.

This capability of triggering navigation using NavigationLink was available in earlier versions of
SwiftUI, but it is deprecated now. But don’t worry — decoupling the destination from the actual control

makes our code much more flexible and provides us with more opportunities.

For example, imagine we're doing an asynchrony operation such as a network request or image
processing, and we want to move to the next screen — that can be done easily by toggling a Boolean

variable.

Another important aspect of having a separate destination is that we can trigger the same navigation
from different places. We can toggle the Boolean from an asynchronous operation and a button as
well. Responding to a state follows a declarative approach rather than the Navigationview approach,

which was responding to a button tap.

Toggling a Boolean variable is great when navigating to a new screen unrelated to any data. For

example, moving to the settings from our main screen is a classic example of using a Boolean binding.
But I promised that Navigationstack has more than that, didn't I?

So, let’s see how we can bind our navigation destinations to data models.

Using data models to trigger navigation

Developers who are used to UIKit navigation may find the idea of using data models weird. After all,
toggling a Boolean for navigation is quite similar to imperative programming, but how does a data

model have anything to do with navigation?

We understand that many screens are related to a specific data model. For example, tapping on a
movie leads us to a single movie screen if we have a list of movies. Another example is a trips app,

where tapping on a specific trip leads us to a screen dedicated to that trip.

If we think even deeper than that, we can represent many screens in our app using a data model. We

can distinguish between screens using a data model containing an enum.

Before we set sail with our thoughts, exploring potential possibilities and implementations, let’s see

what basic data-based navigation looks like:

struct ContentView: View {
private let countries = ["England", "France", "Spain",

“Italy"]
var body: some View {
NavigationStack {
List (countries, id: \.self) { country in
NavigationLink (country, value: country)
}

.navigationDestination (for: String.self) { item
in
Text (item)

}
As always, I have highlighted the interesting parts in the preceding code. We have a SwiftUI view that

displays a list of countries (based on a constant variable).

Each row has a NavigationLink view that displays the country name, but it doesn't have its own

destination this time. Instead, it uses the country as the link’s value parameter.

We can understand what sending the country as a value means only when we look down at the
navigation destination. In the code example in the Separating the navigation destination using the
navigationDestination view modifier section, the navigation destination was linked to a Boolean state
variable. In this case, the navigation destination performs only when there’s a link with a specific data

type — in this case, a string type (just like a country value).

In other words, tapping on a country sends its value to the navigation stack using NavigationLink. The

navigation destination catches that and defines what will be our next screen.

We can use the data models to navigate to different places by defining multiple navigation

destinations, each responding to a different data model type.

Here’s another example of using a navigation destination to add a navigation to a profile screen:

struct Profile: Hashable ({
let firstName: String
let lastName: String
let email: String

}

struct ContentView: View {

let profile = Profile(firstName: "Avi", lastName:
"Tsadok", email: "myemail@domain.com")
let countries = ["England", "France", "Spain", "Italy"]

var body: some View {
NavigationStack {
List (countries, id: \.self) { country in
NavigationLink (country, value: country)
} .toolbar (content: {
NavigationLink ("Go to profile", wvalue:
profile)
1y
.navigationDestination (for: String.self) { item
in
Text (item)

.navigationDestination(for: Profile.self) {
profile in
VStack ({
Text (profile.firstName)
Text (profile.lastName)
Text (profile.email)

}

In the preceding code, we see another navigation destination for a data model from the type of
profile. To navigate the profile screen, we added another NavigationLink view in the screen toolbar

and sent the profile data model.

Our navigation system is dynamic because we can work with different data models. But that doesn’t
stop here. Navigationstack can also reveal and even modify the current view’s stack. We do that using

the path binding variable.

Responding to the path variable

Separating the destination from its navigation link is great, but Navigationstack’s ability to observe

and update its stack of views is very powerful.

As mentioned, a Navigationstack view has a binding variable called path, and the path variable can

contain the list of views by their data models.

It is easy to demonstrate that using a linked list:

struct ContentView: View {
let list: LinkedList<Int> = {
let list = LinkedList<Ints>()
list.head = ListNode (1)
list.head?.next = ListNode (2)
list.head?.next?.next = ListNode (3)
return list
1O
@State var path: [ListNode<Int>] = []
var body: some View {
NavigationStack (path: $path)
vStack {
NavigationLink ("Start", wvalue: list.head)
1

.navigationDestination (for: ListNode<Ints>.self)
{ node in
NavigationLink ("\ (node.value)", value:
node .next)

}

I chose to demonstrate working with path using a linked list since it’s a great data structure that is

similar to a navigation stack (linked items from the same type).

If we observe the path variable during navigation, we can see it contains a collection of the list nodes

currently active as views.

What’s great about the fact that the path variable is bound to the Navigationstack is that we can

manipulate and modify it:

path.append (ListNode (4))

Appending a new list node to path triggers the navigation and directs the user to a new screen.

We can also create a whole stack using the path variable:

path = [ListNode (1), ListNode (2)]

Setting a new array of nodes creates a new stack of corresponding views. This is a great way to

implement a deep link or direct the user to a specific location within the app.

You are probably scratching your head right now and thinking, how can we implement it inside an
app? What are the use cases where we navigate a few levels down the hierarchy with the same data

model type?

So, a data model type doesn’t have to be Task, Album, Or contact. A data model can also describe a

screen or a feature. In this way, data collection can describe a navigation path inside an app.

Here’s an example of a data type that can describe a screen, followed by a navigation path:

enum Screen: Hashable {
case signin
case onboarding
case mainScreen
case settings

}

@State var path: [Screen] = []

The Enum screen describes the type of screen we want to navigate to, and it’s an easy way to build a

stack:

path = [.mainScreen, .settings]

That short line of code builds a stack of views when the first view is the main screen followed by a

settings screen.

Using an Enum to display different kinds of screens is great. However, working with different types of
data is less convenient with Enum. To solve that issue, we have a more complex solution than a

collection of instances, and it’s called NavigationPath.

Working with different types of data using
NavigationPath

NavigationPath was introduced along with Navigationstack, and it allows us to have more control of
our navigation flows. In fact, Navigationpath makes navigation with SwiftUI a mix of declarative and

imperative programming and is much more similar to the UIKit navigation pattern.

Let’s say we have a music app with a list of songs and albums on its main screen. Tapping on a song
leads to a song view while tapping on an album navigates to an album view. In the previous section, we
managed that using an Enum, trying to map the Enum value to a screen view. With Navigationpath,

we can append whatever value we want to the path variable as long as its type conforms to Hashable.

Let’s have a look at the following code:

struct ContentView: View {
@State private var navigationPath = NavigationPath()

@State private var albums: [Album] = [Album(title:
"Album 1"), Album(title: "Album 2")]

@State private var songs: [Song] = [Song(title: "Song
1"), Song(title: "Song 2")]

var body: some View {
NavigationStack (path: $navigationPath) {

vStack {
List {
Section (header: Text ("Songs"))
ForEach (songs) { song in
Button (action: ({
navigationPath.append (song)
b
Text (song.title)
}
}
}
Section (header: Text ("Albums")) {

ForEach (albums) { album in
Button (action:
navigationPath.append (album)

b A

Text (album.title)
}

}
}
.navigationDestination(for: Song.self) {
song in
SongDetailView(song: song,
navigationPath: $navigationPath)

}
.navigationDestination (for: Album.self) {
album in
AlbumDetailView(album: album)
}

}

Note that the preceding code example is partial and does not include the child views.

Our music app’s main screen contains four important parts that handle our navigation system:

We start with declaring a state variable that holds our patnh variable called Navigationpath:

@State private var navigationPath = NavigationPath ()
As mentioned earlier, unlike the previous path variable we used, in the Navigationpath case, we don't

need to define its type. It can hold any type we want as long as it conforms to Hashable.

Next, we will initiate NavigationStack with our new Navigationpath similar to what we did in the

previous example:

NavigationStack (path: $navigationPath) {

Notice that we use a similar signature but with a different type — Binding<Navigationpath> instead of

Binding<Datas>.

Now that we have NavigationPath, we can navigate to a song view or to an album view by appending

the corresponding object to the navigation path:

navigationPath.append (song)

Or, you can do it like so:

navigationPath.append (album)

The appending operation triggers the navigationDestination view modifier, passing the song or the
album that was selected:
.navigationDestination (for: Song.self) { song in

SongDetailView(song: song, navigationPath:
SnavigationPath)

}

.navigationDestination (for: Album.self) { album in
AlbumDetailView (album: album)
}

In this example, we have a different navigationbestination view modifier for each type we pass.

The fact that we can append any entity we want makes NavigationPath an ideal component for a

flexible navigation system.

We can also use NavigationPath to perform a Back operation by removing the last component:

Button ("Back") ({
navigationPath.removelast ()
}

In this example, we added a back button that removes the navigation path’s last components when

tapped.

Because we are still in a declarative world, any change we perform to the navigation stack by

appending or removing components reflects the change in our UL

Working with the Coordinator pattern

The NavigationPath and Navigationstack combination is robust and provides flexibility in managing
navigation. However, as our app scales, controlling how the user moves from screen to screen

becomes more complex.

For example, let’s say we have an onboarding flow and want a different set of screens for different user
profiles. Or, we want to reuse the same screen within different flows. In each flow, the screen should

continue to a different screen.

In each case, it becomes difficult to understand our next view when we are within the screen context.
In fact, this problem of managing our navigation is not related only to SwiftUI, and most developers

know that from UIKit.

To try and improve our navigation mechanism, we can use what’s called a Coordinator pattern - a

pattern that delegates the navigation logic to a dedicated component.

Let’s try to understand what it means.

Understanding the Coordinator’s principles

Before we write our first Coordinator together, let’s review some fundamental principles:

o The Coordinator is a component that holds the current navigation path and general context. It knows what screen is displayed and

the general current flow. The Coordinator also adds a new view to the stack, pops, and shows modal or sheet views.

o A view doesn't know the following view the user should navigate to. What it does know is only the action the user performed. In a

way, the view is isolated from the navigation logic and is unaware of the general context.

o A coordinator represents a flow. We can have several flows in our app with several coordinators.

As a result of these principles, we can understand that the Coordinator pattern is an improved way of

separating our app concerns.

Look at Figure 4.1:

Go to album
: detail view . .
Coordinator — » | NavigationPath
Build Album
Album selected Detail View
Albums List Album Detail

Figure 4.1: The Coordinator pattern

Figure 4.1 shows a basic Coordinator pattern. We have an Albums List view, and when the user selects
an album, the action is sent to the Coordinator. Then, the Coordinator decides to navigate to the

Album Detail view by sending the action to NavigationPath.

In this pattern, the Albums List is unaware of what should happen next. For example, the Coordinator
can decide that, in some cases, we should show the user an upsell screen. Or, if it’s part of onboarding,
the Coordinator can determine that the Albums List is just a demonstration and that we should

proceed to the next step in the onboarding flow.
But how do we structure a Coordinator pattern? How does it work, especially in the SwiftUI world?

There are many ways to build a Coordinator in SwiftUI. The Coordinator pattern I describe here is
just an example that demonstrates the basic principles, and we can take that example and adjust it to

. >
our project’s needs.

We will start with the most fundamental component - the Coordinator itself.

Building the Coordinator object

The Coordinator is the central object that defines the different user actions and navigation options. It

also holds the navigation path so it can perform the navigation operations.

We will start by defining a basic Coordinator class:

class Coordinator: ObservableObject {
@Published var path = NavigationPath/()
}

We created a Coordinator class that holds a Navigationpath object. The NavigationPath object is

essential — it allows the Coordinator to add more items to the stack, perform pop operations, and

understand the current stack. Notice that the Coordinator conforms to the observableobject protocol
and that the path is a published object — that’s because we want the path to be part of Navigationstack

when we use it.

Next, we define the different user and page actions:

enum PageAction: Hashable {
case gotoAlbumView (album: Album)
case gotoSettingsView

}

enum UserAction (
case albumTappedInAlbumsList (album: Album)
case settingButtonTapped

}

In this example, we created two Enums:

» PageAction: This Enum describes a navigation action our Coordinator needs to perform, such as navigating to an album view

or a settings view.

o UserAction: This Enum describes an action the user performed, such as tapping on an album in the Albums List or tapping on

the settings button.
Notice that some Enums contain associated values, such as the related a1bum object.

Now that we have our Enums, we will create two important functions:

func performedAction(action: UserAction) {
switch action {
case .albumTappedInAlbumsList (let album) :
path.append (PageAction.gotoAlbumView (album:
album))
case .settingButtonTapped:
path.append (PageAction.gotoSettingsView)
}
}

@ViewBuilder
func buildView (forPageAction pageAction: PageAction) ->
some View {
switch pageAction {
case .gotoAlbumView (let album) :
AlbumDetailView (album: album)
case .gotoSettingsView:
SettingsView ()

}

The first is the performaction () function. This function receives useraction as a parameter and
appends the corresponding page action to Navigationpath. This function is the Coordinator’s “brain”

— where we decide where to navigate when the user performs a particular action.

In this example, when the user taps the album in the Albums List, we navigate to the album view,
passing the album object. When the user taps the settings button, we navigate to the settings screen.

This logic may sound evident and like over-engineering. Still, in a complex world, we have

permissions, A/B tests, and other changes, and a centralized place that handles all of these can be

extremely valuable.

The second function maps a page action to a SwiftUI view. We will use that now when we build

CoordinatorView.

Adding CoordinatorView

The Coordinator class is robust and contains all of our navigation logic. However, we can’t use the
Coordinator to perform the actual navigation. To do that, we must wrap our views with

Coordinatorview, which knows how to work with our Coordinator.

So, let’s see what coordinatorview looks like:

struct CoordinatorView: View {
@ObservedObject private var coordinator = Coordinator ()
var body: some View {
NavigationStack (path: $coordinator.path) {
AlbumListView ()
.navigationDestination (for:
PageAction.self, destination: { pageAction in
coordinator.buildView (forPageAction:
pageAction)
i3]
}

.environmentObject (coordinator)

}
CoordinatorView is a simple SwiftUI view that has three components:

o coordinator: In the CoordinatorView, we added an instance of our Coordinator class that we had just built. We made

that coordinator an observable object so we can use its path to add and remove views from the stack.

o NavigationStack: This is the same NavigationStack we met in this chapter. As mentioned, we use the coordinator path
as NavigationStack, but more importantly, two additional things — we initialize the stack with the root view
(AlbumListView), and we use the Coordinator buildView function that maps the page action to view to add the

corresponding view to the stack.

o EnvironmentObject: We add an environmentObject view modifier to declare an environment object in the coordinator.
We do that to provide all the views under NavigationStack with access to the Coordinator so they can call the different user

actions.

These three components are responsible for connecting our views to the Coordinator logic we have
built.

Now, let’s see how albumListview works with the Coordinator.

Calling the coordinator straight from the view

Remember one of our coordinator principles — the view’s concern is only to say what happened, not

what will happen next. What will happen is the Coordinator’s concern.

Let’s have a look at how albumListview deals with it:

struct AlbumListView: View {
@EnvironmentObject private var coordinator: Coordinator
var body: some View {
List (albums) { album in
VStack (alignment: .leading) {
Text (album.title)
.font (.headline)
Text (album.artist)
.font (.subheadline)

1
.onTapGesture {
coordinator.performedAction (action:
.albumTappedInAlbumsList (album: album))

1
}
.navigationTitle ("Albums")

.toolbar {
ToolbarItem(placement: .navigationBarTrailing)

{

Button (action:
coordinator.performedAction (action:
.settingButtonTapped)

b

Image (systemName: "gear")
}

}

The albumListview struct contains a list of the user albums and a navigation bar with a settings

button.

Tapping on one of the albums calls the Coordinator’s performedaction () function, which returns the

corresponding Enum and the selected album.

In addition, tapping on the settings button calls the same performedaction () function with a different

Enum value.

Returning to the beginning of this section under the Building the Coordinator object part, we can now

understand how everything is connected.

We can also understand why the coordinator instance is an environment object — so we can call it

straight from the view.

Until now, we discussed Navigationstack and the Coordinator pattern. We might think that

navigation is only about changing the current view. However, navigation on big screens, such as an

iPad screen, often involves working with different columns. So, let’s meet Navigationsplitview to see

how we nail that down (I told you that navigation is a complex topic, didn’t I?).

Navigating with columns with NavigationSplitView

One of the things that we know when building apps for padOS or macOS is that we need to take
advantage of the big screen. But what does it mean? Sometimes, it might mean working with a grid
instead of a list. However, in the context of navigation, it means that we can work with several
columns when each of the columns shows a different view instead of replacing the whole screen each

time the user navigates.
In other words — we need to split the screen.

To do that, we can work with a view called Navigationsplitview, which presents views in two or three

columns.

When a user selects an item of one view, it updates the view in the other columns.

Creating NavigationSplitView

To demonstrate how to use Navigationsplitview, we will use our music app example and adjust it to

padOS.

Let’s start with some important terms — we have three different column types:

o Sidebar: The first column from the left. That’s the main column where we start our navigation.
e Content: When there are three columns, the Content column shows data related to the selected item in the Sidebar column.

o Detail: The Detail column presents the selected item in the Content column or the Sidebar column. In general, it is the

item that is last in the split view hierarchy.

These three terms may initially sound slightly confusing, so let’s jump straight to the code to
understand how they all fit together. Here’s an example of Navigationsplitview that shows a list of

albums, and when tapping on an album, the app shows a list of its songs:

var body: some View {
NavigationSplitView {
List (albumsg, selection: S$selectedAlbum) { album
in
NavigationLink (album.title, value: album)
1

} detail: {
if let selectedAlbum = selectedAlbum {
List (selectedAlbum.songs, selection:
$selectedSong) { song in
Text (song.title)

.navigationTitle (selectedAlbum.title)

} else {
Text ("Select an album")
1

}
Our code shows Navigationsplitview with two parts - the sidebar (the first block) and the detail. The
sidebar shows a list of albums. Tapping on an album updates the selectedalbum state variable. The

detail block presents a list of songs about the selected album.

Let’s see how it looks on an iPad within landscape orientation (Figure 4.2):

827 sat27 Jul = 100% -
]

Album 1 Album 1

Album 2 Sang1-1

Song 1-2

Figure 4.2: Two columns in SplitView on iPad — landscape

Here is how it appears in portrait orientation (Figure 4.3):

(B:26 Sat27 Jul

Album 1
u.'t'l_ 1'.] 2

Figure 4.3: Two columns in SplitView in portrait orientation

Figures 4.2 and 4.3 show how our code runs on an iPad in portrait and landscape orientations. In
portrait orientation, the sidebar view shows up in a drawer, and in landscape orientation, the screen is

split, and both views are visible.

But what happens on an iPhone? Do we need to create a dedicated view for smaller devices? Let’s see

what happens with the same code on an iPhone (Figure 4.4):

8:23 - * - 8:23 - v -
¢ Bach Albsum 1
AlLM 1
Album 2 Song 1-1

Song 1-2

v

Figure 4.4: NavigationSplitView on an iPhone

Figure 4.4 shows that the same Navigationsplitview just works when running on an iPhone. On small
devices, the Navigationsplitview constructs a one-page navigation mechanism, similar to what is

seen in NavigationStack Or even in UIKit’s UINavigationController.

Now, let'’s make things a little bit more complex and add a third column.

Moving to three columns

In many apps, the data hierarchy is based on two levels. In our example, it is albums and songs, but in
other cases, we can find groups and users, teams and players, or projects and tasks. Based on that, we
will have to work with a three-level navigation system:

o Level 1: List of the first level items

o Level 2: Based on the first-level selection, the list of second-level items

o Level 3: Details of the selected second-level item

Even though we can present the details of the selected first-level item in a modal screen, we can

consider showing it in a third column on an iPad screen.

In the Creating a NavigationSplitView section, we said that the petai1 column shows information
about the last selected item. This means that if we want to add another column, it will be between the

Detail column and the sidebar column - this is the content column.

So, let’s add a content column to our music app:

var body: some View {
NavigationSplitView {
List (albumg, selection: S$selectedAlbum) { album
in
NavigationLink (album.title, value: album)

} content: {
if let selectedAlbum = selectedAlbum {
List (selectedAlbum.songs, selection:
$selectedSong) { song in
NavigationLink (song.title, value: song)
}

.navigationTitle (selectedAlbum.title)
} else {

Text ("Select an album")
1

} detail: {
if let selectedSong = selectedSong {
Vstack {
Text ("Song Title:
\ (selectedSong.title)")
Text ("Artist: \ (selectedSong.artist)")
}
.padding ()
.navigationTitle (selectedSong.title)
} else {

Text ("Select a song")

}
}

In the preceding code example, we put the list of songs in our new content block and the song details
in the petail column. We also used the same technique of selectedsong state variable and updated

our UT accordingly.

Let’s see how it looks now on an iPad (Figure 4.5):

50 Sat 27 Jul wF 00% .

Alra ! Album 1 Song 1-1
B
Song 1-2

Song Title: Song 1-1
Artist: Artist 1

Figure 4.5: Three-columns NavigationSplitView on an iPad

Figure 4.5 shows a three-column Navigationsplitview on an iPad, now with the content column

showing the list of albums in the middle.

Summary

This chapter touches on a crucial topic in mobile development. Navigation has always been an issue,
also in UIKit. However, we can achieve an effective navigation mechanism with thoughtful planning

based on the product requirements and a balanced approach to flexibility and simplicity.

In this chapter, we went over the reasons why SwiftUT is a challenge, explored Navigationstack,
reviewed the Coordinator pattern, and even discussed a column-based navigation with

NavigationSplitView.
By now, we are more than capable of creating an amazing navigation in our app!

Our next chapter discusses something completely different but exciting: how to break our app’s

borders and add features outside our sandbox with WidgetKit.

5
Enhancing iOS Applications with WidgetKit

As iPhones have evolved over the years, new capabilities have been added to take advantage of the big

screen, the memory capacity, and the powerful processor.

One of those capabilities is the home screen widgets — a great way to extend our apps and provide

information and even interaction in new places.

In this chapter, we will cover the following topics:
o The idea of widgets
« Understanding how widgets work
o Add our first widget and build a timeline of entries
o Add a user-configurable widget
o Ensure our widgets are up to date
« Customize the widget animations
o Add user interactions such as buttons and toggles

o Add a control widget to the control center and lock screen

So, let’s start with the basics — what is the idea of widgets?

Technical requirements

For this chapter, it’s essential to download Xcode version 15.0 or higher from the App Store.

Ensure you're operating on the most recent version of macOS (Ventura or newer). Just search for
Xcode in the App Store, choose the latest version, and proceed with the download. Open Xcode and
complete any further setup instructions that appear. After Xcode is completely up and running, you

can begin.

To gain additional capabilities, such as sharing data between the widget and the app, you must set up

AppGroups and define your AppGroups in your profile.
Download the sample code from the following GitHub link:

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%205

The idea of widgets

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%205

Adding a widget is not a new concept in iOS or, in fact, in the Apple ecosystem.

Widgets existed long ago in 2005 in the Tiger version of macOS, as part of the Dashboard feature.
Apple took that idea and introduced Today Widgets in the Notification Center in iOS 8, and in iOS 14,
Apple introduced the home screen widgets, similar to the widgets that already exist in the Android
operating system. In iOS 18, Apple added the ability for third-party applications to add widgets to the

control center and the home screen.

The idea of widgets is not to act as a full-blown application — widgets are not supposed to be a mini-

version of our app or one of its screens, but rather an extension of our current app’s capabilities.
Widgets exist to enhance user convenience and productivity and, in general, the overall experience.

There are three key roles for widgets in iOS:

« Information at a glance - Widgets provide up-to-date and important information to the user about our app. It can be a delivery

status, stock values, event calendars, or any other information that is useful on a day-to-day basis.

« A shortcut to our app - Tapping on a widget opens our app, and in many cases, a specific screen of our app. Opening our app using
widgets is even more important in watchOS, where, unlike i0S, the springboard is not the user’s default view. For many app

developers, it’s a great way of promoting their app and fighting for the user’s attention on the home screen.

o Performing basic actions - Starting iOS 17, Apple added interactive widgets, allowing users to perform basic actions without
opening their app, such as completing a task, opening the garage door, or accepting a payment request. In iOS 18, this capability
went even further, and it’s possible to add our widgets to the control center, or open them using the action button on iPhone 15

devices.

Going over the different Apple platforms, we can see that the idea of showing information at a glance
is widespread — we’'ve got home and lock screen widgets, complications, and live activities in iOS,
padOS, macOS, and watchOS.

For example, the Yahoo! Weather app shows the weather in the user’s current location and Apple’s

Reminders app shows the user’s uncompleted reminders.

It’s only natural for Apple to straighten the line between the different platforms into a single

framework — WidgetKit.

Understanding how widgets work

As mentioned at the beginning of this chapter, widgets are not mini applications. Instead, widgets are
simple views that show relevant information and are updated according to a declared timeline or app

events.

Widgets run on a different process than the app. They receive a runtime to perform any code, so they
work as static views, showing pre-made information to our users. But, since our user’s data is being

constantly updated, we can create an array of entries, each with information and a date. The

WidgetCenter is responsible for creating a different view for each one of the entries, storing it, and

replacing the widget Ul according to the entries” dates. This array of entries is called a timeline.

One good example is the Next Event widget. The Next Event widget shows the next event in our
calendar, and since we have access to our user’s calendar, we can build a timeline and refresh the
widget data based on the calendar event’s list. All we need to provide is the timeline including the

different data for each timeline entry.

Using a timeline to update the widget’s content makes the widget an extremely effective way to present

information to the user, both in battery usage and processing time.

However, the timeline also produces some challenges in the way we work with widgets because, unlike

the Next Event widget, not every timeline can be built up front.

But let’s wait before we dive into the solution to our problems and try to add our first widget.

Adding a widget
Widgets operate and live outside of our app, therefor they are considered to be an extension of our
app.

To add a new widget — we need to a new Widget Extension target by selecting File -> New ->
Target....

Then, in the Choose a template for your new target window, we search for a widget and add the widget

extension (see Figure 5.1):

Choose a template for your new target:
Multiplatform 105 mac0S watchDS twOS DriverKit Other (=] widgei []

Application Extension

-

Widget Extension

Figure 5.1: The Choose a template for your new target window

After clicking on Next, we should provide a name for our widget, just like any target we add. In

addition, uncheck the Include Configuration App Intent checkbox.

Once the widget is added, we can see a new target with the name we provided. Xcode creates a few

files for us as part of the widget template (assuming that the target name is Mywidget):

« MyWidgetBundle - The widget bundle is a container for the different widgets our extension holds. Currently, we have only one

widget, but it is possible to add more.
« MyWidget - Contains the widget code itself, including its UI and configuration.
o Assets - An asset catalog specifically for the widget extension.
o Info.plist - Justlike any target, the widget extension contains a plist file with general information about the widget

extension.

Now, it’s time to clarify what a widget is — the fact that we have different sizes for a widget doesn't
mean they are different widgets, as the same widget can have multiple sizes. A different widget is
usually a different product, a different UI, and a different use case. In our case, the widget bundle

describes the different widgets and not the different widget sizes.

Now that we have added a widget to our project, we can run our app and add the new widget to our

springboard (Figure 5.2):

Contacts

MyApp Shﬂ-l‘lems

Figure 5.2: Our new template widget in the springboard

We can see in Figure 5.2 that the new widget consists of the current time and some emoji. This is a

good time to play with it and to try adding additional widget sizes.

Configuring our widget

The way we set up our widget’s look and behavior is by determining its configuration. We have several

configurations to work with, and they all conform to a protocol named widgetconfiguration.

One of the configurations available for us is staticConfiguration. StaticConfiguration allows us to

create a widget that has no user-configurable options.

Let’s have a look at the staticconfiguration that Xcode provides when we add a new widget:

struct MyWidget: Widget ({

let kind: String = "MyWidget™"
var body: some WidgetConfiguration
StaticConfiguration (kind: kind, provider:
Provider()) { entry in
MyWidgetEntryView (entry: entry)
.containerBackground(.fill.tertiary, for:
.widget)

}

.configurationDisplayName ("My Widget")
.description("This is an example widget.")

}
We can see that staticconfiguration has several properties shared with all configuration types. Let’s

see them in depth, here:

o kind - This is the widget configuration unique identifier. It helps us send requests to a specific widget configuration using the

WidgetCenter.

o configurationDisplayName - This is the widget display name as it appears for the user when he wants to pick the right

widget to add.

o description - This is the widget’s description that is shown to the user, next to its display name.

Besides these three parameters, we have additional important parameters. supportedFamilies
determines the different sizes the widget supports. Here’s an example of how to limit the widget to

appear only in medium size:

.supportedFamilies ([.systemMedium])
Another property is backgroundTask, which allows our widget to perform a background operation

when the system gives it time.

Notice that widgetconfiguration is just a protocol — when creating a widget, we need to return, in the

widget body, a structure that conforms to that protocol, and staticconfiguration is just one way to

do that.

Currently, there are three configurations available for us:
o StaticConfiguration - As mentioned earlier, this configuration allows us to create a non-user configurable widget

« AppIntentConfiguration - This enables the user to customize their widget, for example, selecting a city for a weather

widget, or a specific list for the reminders app

o ActivityConfiguration - This configuration shows live data for the Live Activity widget

A widget can contain only one configuration. If we need to have more than one configuration, that’s a
good sign we need to create several widgets with different configurations and share some of our code

between them.

All these widget configurations sound exciting! Let’s start exploring them by starting with the

StaticConfiguration.

Working with static configuration

A static widget is a widget that has no user-configurable options. For example, a widget that shows the
current time in a specific city cannot be static because the user needs to specify a city or a location for

the widget.

However, a good example of a static widget is a calendar widget that shows a view of the whole month

and marks the current day, or a music app widget that shows the songs that have been played recently.

Even though both the calendar and the music app widgets show information not updated by the user,

they need to update themselves every once in a while.

If we look back at the static configuration example (in the Configuring our widget section), we can see

a parameter called provider, which contains a parameter for the view builder closure named entry.
Using provider and entry, we can provide data to our widget across time in an efficient way.

One key aspect of Widgets is providing data over time, and we do that using the Timeline provider.

Now, let’s understand what Timeline Provider means.

Understanding the Timeline Provider for Widgets

There’s a reason why it took Apple almost 14 years to support widgets on the iOS home screen. The
primary reason is performance, both power and memory performance. While today’s devices are
highly capable, having numerous active widgets on the Springboard can consume a significant amount

of power. Hence, we need to find more efficient ways to load our widgets efficiently.

We mentioned efficiency in the Understanding how widgets work section, so let’s get down to the
details. Unlike apps, widgets are not active even when they are visible. We can “wake” these widgets at
specific times to reload their views. To set the specific periods, we need to create a timeline - an array

of entries that contain points in time and relevant data.

For example, if we want to reload a calendar widget that displays the next event, we can create a
timeline that holds an array of entries, one for each event. Each entry holds an event time and the

name of the event that comes afterward.

Conversely, if we want a calendar widget that displays full-day information, we may want to create a
timeline with an entry for each day. In this case, each entry holds the time of the beginning of the day
and the list of events that day.

Creating a longer timeline can maximize the frequency of updates for our widget.

Now, let’s turn to code and create our first timeline. Here is an example of a timeline provider that

displays the next event:

struct EventEntry: TimelineEntry {
let date: Date
let nextEvent: String
itruct Provider: TimelineProvider ({
func placeholder (in context: Context) -> EventEntry {
EventEntry (date: Date(), nextEvent: "Loading")
}

func getSnapshot (in context: Context, completion:
@escaping (EventEntry) -> Void)
let entry = EventEntry(date: Date (), nextEvent: "Go
to the book store")
completion (entry)

}

func getTimeline (in context: Context, completion:

@escaping (Timeline<EventEntry>) -> Void) {
let entries: [EventEntry] = getListOfEnties()
let timeline = Timeline (entries: entries, policy:
.atEnd)

completion (timeline)

}

func getListOfEnties()->[EventEntry] {

.-
}

The preceding code consists of two structs — EventEntry and provider.

EventEntry is a struct that conforms to TimeLineEntry protocol. The TimeLineEntry protocol

represents a single entry in the widget timeline. The protocol contains a required variable named date:

var date: Date { get }

The aate variable contains the entry point in time where we expect our widget to reload. Other than

date, we added another variable that represents the entry’s next event title named nextEvent.

Our second struct is provider. The Provider struct conforms to TimeLineProvider. The goal of the
Provider struct is to generate a timeline so the WidgetCenter can reload the widget when needed. Let’s

see how the provider does that.

Generating a timeline

I mentioned earlier that a timeline is an array of timeline entries, but the reality is a little bit more
complex than that. Looking at the timeline provider implementation, we can see several functions that

help us to deliver a static UI at any given time.

THE PROVIDER STRUCT IS A PROTOCOL IMPLEMENTATION

There’s no need to call the Provider functions directly. We pass the timeline provider to the widget configuration, and the configuration

uses the Provider functions when needed.

The first and primary function is getTimeLine. Let’s look at the implementation of the getTimeline

function here:

func getTimeline (in context: Context, completion: @escaping

(Timeline<EventEntrys) -> Void) {
let entries: [EventEntry] = getListOfEntries()
let timeline = Timeline (entries: entries, policy:
.atEnd)

completion(timeline)

}

The getTimeline () function creates an array of entries, wraps them in a Timeline struct, and returns it
using the completion closure. There are two interesting things we can see here — the context

parameter and the Timeline reload policy:

o Context - The Context parameter contains information about the widget environment, such as the widget family (is it a small
widget? Perhaps medium?), or the actual widget size. If the widget UI shows more information when it is large, we probably want
to load more data into our timeline entry. But the most important information here is probably the i sPreview property, which
indicates whether the widget appears in the widget gallery. Generally speaking, it is best practice to show real user data in our
widget in the widget gallery, but that’s not only possible due to security or networking issues. Therefore, we can provide mock data

for the widget gallery by checking the i sPreview property.

o policy - The timeline we provide to our widget has a final number of entries. So, what happens when they are done, and the
timeline reaches its end? That’s exactly the role of the policy parameter when it describes the timeline reload behavior. There are
several options — atEnd (WidgetKit requests a new timeline), never (WidgetKit doesn't ask for a new timeline), and
after (date:Date) (WidgetKit generates a new timeline in a specific date). The policy helps the WidgetCenter to optimize the

timeline reloading mechanism better.

Before we continue, a few words about timeline reloading optimization. The fact that we want to build
our timeline as long as possible doesn’t mean that our widget needs to constantly reload. The
WidgetCenter has a “budget” for each widget on the home screen, specifying times during the day
when it performs refreshes. It's in our interest to optimize the way our timeline is structured and to
“save” the system budget. Carefully planning the timeline entries and reload policy can help us achieve

relevant, event-driven refresh intervals.

Going back to the TimelineProvider protocol, we can see additional two functions - placeholder and

getSnapshot. Let’s implement them.

The first function is getTimeline, which returns a Timeline structure containing a list of entries with

actual data for specific periods. But is it enough for our widget to be fully functional?
The answer is no - there are two more cases when providing actual data may not be sufficient.

The placeholder function answers the first use case. When the user adds a widget to their home
screen, WidgetKit needs to display something immediately, before the widget fetches or updates real

data from our app. The placeholder function returns temporary data just to show something to the

user:
func placeholder (in context: Context) -> EventEntry {
EventEntry(date: Date(), nextEvent: "English
class")

}

In our example, we can see a placeholder function that returns the English class text.

It is important to return temporary data instead of a loading indicator, for example, and that’s because
we want our user experience to be consistent and smooth. It is also better to be creative and come up
with elegant information. For example, if our widget has a timer or a time, it is a good idea to show

00:00 to indicate to the user that a timer should appear here.

The second function is getsnapshot. The getsnapshot function is even more important than
placeholder. When the user browses the widget gallery, the system presents the different widgets.

These widgets are being presented without the system-generated timelines.

The getsnapshot function returns a TimelineEntry-based struct with data to present in the widget

gallery.

Here’s an example of a getsnapshot function:

func getSnapshot (in context: Context, completion:
@escaping (EventEntry) -> Void) {
let entry = EventEntry(date: Date (), nextEvent: "Go
to the book store")
completion (entry)

In this code, the getsnapshot function returns an example event with the current date. This snapshot

demonstrates to the user the purpose of our widget easily.

Note that in both p1aceholder and getsnapshot, we have the same context parameter as the one we
had in the getTimeline function. We need the context for the same reason as before — to understand

the environment surrounding our widget.

Now that we understand how to generate a timeline provider, let’s discuss the TimelineEntry.

Building our TimelineEntry structure

We can see by now that the TimelineProvider protocol is straightforward as there are only three
functions to implement. One of the things we need to design here is TimelineEntry, and the reason for
its importance is that it holds the information we need not only to determine when to present

information but also what to present.

The structure of TimelineEntry needs to fit our widget goal and be aligned with its UI. Because we
pre-generate all the entries according to a timeline, we should perform all the calculations in advance

and generate a structure that can help update the widget content easily.

In fact, TimelineEntry may consist of four components:

» date - The date when we want our widget to reload the specific entry information. Notice that in most cases, the date property
is not part of the information presented on the screen. For example, in a calendar widget, we probably have a date property as part

of the TimelineEntry protocol, and something like eventDate for the actual event time.

« Information to display - It is better to add properties that will make rendering our widget easier later on. For example, adding

properties such as title, bodyText, and timeString, can simplify our code and even increase performance.

« Metadata - If we want to support some interaction with the widget, we need to hold some metadata related to the widget data
model. For example, a calendar widget might hold some metadata containing the event ID, a contacts widget might have metadata
containing the contact ID, and so on. Remember that once the widget is presented, TimelineEntry is all that we have when the

user interacts with it.

« Relevance - The relevance property is an optional property that we have as part of the TimelineEntry protocol. In the
relevance property, we can determine the relevance priority of the entry to the user. For example, a to-do app that shows the
next task to the user may want to set a high score to an entry with a critical task. Or, a sports app that shows the latest news in a
widget may want to set a high score for entries that contain news about the user’s favorite team. The entries’ relevance values help
WidgetKit to decide how and when to present widgets in the system. For example, WidgetKit may decide to rotate the stack widget

and show a widget with high-relevance information. Let’s see an example how to set relevance for a TimeLineEntry:

struct EventEntry: TimelineEntry {
let date: Date
let nextEvent: String
var relevance: TimelineEntryRelevance?
1
let entry = EventEntry(date: date, nextEvent: "Go to
the book store", relevance:
TimelineEntryRelevance (score: 1.0))

In this code, we added the relevance property to our EventEntry struct and set a score of 1.0. It is
worth noting that any efforts to manipulate the system and set high scores for all entries won't
succeed — Apple has built an algorithm that filters out widgets that have unrealistic values. As with
many iOS frameworks, this is a situation where we need to follow the platform’ intended usage

guidelines.

Now that we have created a timeline, let’s turn to the main topic, which is building our widget UL

Building our widget Ul

Creating a timeline of entries is critical for our widget to provide accurate and relevant information to
the user. But to do that, we also need to render the widget UI. The place where we do that is in the

widget’s structure, as we saw at the beginning of this chapter in the Configuring our widget section.

Let’s see the configuration again:

StaticConfiguration (kind: kind, provider: Provider()) ({
entry in
MyWidgetEntryView (entry: entry)
.containerBackground(.fill.tertiary, for:
.widget)

}

As we can see, the staticconfiguration has a view builder that returns a SwiftUI view, and this is
probably the first thing we need to understand in WidgetKit — widgets are built with SwiftUI only. If
you still haven’t got any experience with SwiftUI, WidgetKit is a great opportunity to start.

Something that might have caught your attention is the containerBackground view modifier. If you
remember, we have discussed how widgets now can be shown in different places in the Apple
ecosystem — iOS (both home screen and lock screen), padOS, macOS, and watchOS. But the primary

issue with having our widgets on different platforms might be the widget’s background.

Adding the containerBackground view modifier ensures that the widget’s background adjusts itself to

its container and always looks good, no matter where it appears.

If we look at our code example again, we can see that MywidgetEntryView receives one parameter,

which is the current timeline entry. Let’s see what we can learn from it.

Working with timeline entries

Connecting the timeline entry to the widget view is the core of how widgets work. The main role of
WidgetCenter is to generate a timeline and provide our widget with the right timeline entry at the

right time.

The widget configuration view builder has one parameter, a specific timeline entry, so we can return a

widget view with relevant data.

Here’s an example of a widget view that uses a specific timeline entry:

struct MyWidgetEntryView: View {
let entry: EventEntry
var body: some View {
VStack (alignment: .leading) {
Text ("Next Event:")
.font (.headline)
Text (entry.nextEventTitle)
.font (.title)
. foregroundColor (.blue)
Text ("Time: \ (entry.nextEventTime)")
.font (.subheadline)
Spacer ()

}

.padding ()

}

This code example shows a simple view that shows the next event title and time while using the

timeline entry.

There are two things we can learn from the way the timeline entry works with the widget view:

o 'The entry should contain all the widget’s data - We discussed it when we talked about the timeline provider, but now we can see
why. Widgets need to be as static and simple as possible. We don’t want to perform any data fetching operations while the view is

displayed.

« There is no state - Unlike regular SwiftUI views, our widget view doesn’t have a state. There are cases where we probably would
want to see different views for different situations. For example, in our next event widget example, maybe we want to show a
connect to your calendar message if the user hasn't approved his calendar permissions. To do that, we need to generate different
timeline entries and perhaps show a different view in the static configuration closure. Either way, we should do these checks in

advance.

Even though the widgets are naturally static, their UI doesn’t have to stay static and bold. In

widgetKit, it is possible to bring life to our widget by animating the changes.

Adding animations

We already know how animations in iOS development work - view animations work by transitioning
between two or more states. For example, if a specific view has an opacity of 1.0 and we change it to

0.5, UIKit and SwiftUI can animate that change if we like.

Widgets are written in SwiftUI, and in SwiftUI, we can animate state changes. However, widgets don’t
use state at all. Instead, we change the widget content using the timeline provider (perhaps we can say

that, in a way, the timeline entry is our widget state).

Starting with iOS 16, whenever the WidgetCenter reloads a widget and changes its content using a new

entry, it performs this transition automatically.

Can we customize this animation even if we don’t have a state in widgets? Of course we can, using

contentTransition.

As mentioned, in most cases, SwiftUTI performs animations based on a state change. For example, look
at the following code:
@State private var isRed = false
var body: some View {
Vstack {
Color(isRed ? .red : .blue)
.frame (width: 100, height: 100)
.cornerRadius (10)
Button ("Change Color") {

withAnimation {
self.isRed.toggle()
}

}
In this code example, we have a view and a button. Tapping on the button changes the view color, and
it does that using the withanimation function. Clearly, that can’t work in a widget because we need a

state to do that.

Instead, what we need to do is define how the content changes when it’s animated. To do that, we can
uS€ contentTransition:
Color(isRed ? .red : .blue)
.frame (width: 100, height: 100)
.cornerRadius (10)
.contentTransition (.opacity)
Button ("Change Color") (

withAnimation () ({
self.isRed.toggle ()
}

}

contentTransition is a view modifier we can add to views to define their transition method. Imagine
that all content changes in widgets are done with withanimation in mind and all we have to do is to

change the transition method.
Take, for example, the following code snippet:

Text (text) .contentTransition (.numericText ())

When changing the text using the withanimation () function, it will change its content with a nice

numeric transition (you can try it yourself). If you are not familiar with the withanimation function,

In widgets, all we need to do is to add these to views with content that is based on our timeline entry,

and SwiftUI will take care of the animation itself.

Look at our widget again, now with contentTransition:

struct MyWidgetEntryView : View {

var entry: Provider.Entry
var body: some View {

vstack {

Text

Text

Text

Text

"Time:")

entry.nextEventTime, style: .time)
"Next Event")

entry.nextEvent)
.contentTransition (.numericText ())

}

Even though there is no state or withanimation function, the nextevent title will animate its
transition. The contentTransiton view modifier has additional options, such as opacity and symbol
effects. Despite the fact that it is not designed explicitly for widgets, it’s the best way to make our

widgets more alive.

Customize our widget

Up until now, we have discussed widgets based on a staticconfiguration. The staticConfiguration
set is great for most widgets. However, there are cases where we want to provide our users the ability

to customize and configure their widgets with additional entities.

Going back to our calendar widget, we want to allow the user to filter the next event information

based on a specific calendar.

To do that, we'll start by creating a new file and add a struct called calendarwidgetIntent that

conforms to widgetConfigurationIntent.

Adding intent

A widgetConfigurationIntent is an App Intent we can use to configure widgets, and our

CalendarWidgetIntent contains all the configuration information we need.

Here is a basic calendarwidgetIntent implementation:

struct CalendarWidgetIntent: WidgetConfigurationIntent {
static var title: LocalizedStringResource = "Select
Calendar"
@Parameter (title: "Calendar") var calendar:
CalendarEntity

In the preceding code, we can see two properties:

o title - The title of the intent. It is important to note that we don't see the title in the widget configuration string but rather in Siri
Shortcuts. But we must add it since it is part of the AppIntent protocol (the WidgetConfigurationIntent inheritance

from AppIntent protocol).

o calendar- This is the widget parameter that allows the user to configure the calendar the event belongs to. We can see that the

calendar variable is prefixed by the @Parameter macro, which manages this property for the user’s configuration.

Now, let’s add the App Intent.

Adding AppEntity
As you have noticed, the calendar variable is based on a type called calendarEntity.

If we want to support our own entity type, it needs to conform to appEntity. Lets see the
CalendarEntity type implementation:
struct CalendarEntity: AppEntity {
let id: String
let name: String
static var typeDisplayRepresentation:
TypeDisplayRepresentation = "Calendar"
static var defaultQuery = CalendarQuery ()

var displayRepresentation: DisplayRepresentation {
DisplayRepresentation(title: name)
}

}

The calendarEntity struct represents the data model for the intent parameter. First, we need to add
the parameters we need in order to support the item when displaying the widget, such as id and name.
Next, we'll add some representation variables, such as typepisplayRepresentation and

displayRepresentation.

Finally, we'll add a static variable that handles the actual data fetching, and that’s the defaultquery
property. Remember that the user needs to select the desired calendar based on a list of calendars. To

do that, we need to provide WidgetKit with a way to query our data to support the selection UI flow.

So, what does the query look like? Let’s find out.

Building the EntityQuery

Sometimes, having a list of options for the user relies on a data store, and sometimes on static

information.

Regardless of the model type, if we want to provide options to the user, we need to have a simple and

effective interface to work with, and that’s what the Entityguery protocol is for.

In our current appIntent example, we let the user choose one of its calendars, so we need to build a

struct named calendargQuery that conforms to EntityQuery.
Let’s look at a simple calendarQuery example:

struct CalendarQuery: EntityQuery {
func entities(for identifiers: [CalendarEntity.ID])
async throws -> [CalendarEntity]
allCalendars.filter { identifiers.contains($0.id) }

}
func suggestedEntities () async throws ->
[CalendarEntity] {
allCalendars

}

func defaultResult() async -> CalendarEntity?
nil
}

}

Assume that allcalendars is an array containing all the user calendars.

In this case, calendarguery implements three methods. Let’s quickly go over them:

o entities(for identifiers:) - This function returns calendar entities based on a list of IDs. WidgetKit uses it to show
the selected calendar

o suggestedEntities () - This returns the list of entities in the pop-up menu

o defaultResult () - This returns the value when nothing is selected

Now, let’s see how it looks (Figure 5.3):

Calendar Choose

Personal

Work

Family

Figure 5.3: The widget configuration menu

In Figure 5.3, we can see the Widget configuration screen with the parameter we declared (Calendar)
and the calendar names in the pop-up menu. It is worth mentioning that we can define different types

of parameters, such as Bool or string, and WidgetKit will create their corresponding input control.

Let’s flip to the other side now and go to the widget UI to use the appEntity the user selected.

Using the AppEntity in our Widget
Going back to our widget code, let’s examine the widget configuration code again:

AppIntentConfiguration(kind: kind, intent:
CalendarWidgetIntent.self, provider:
ConfigurableProvider (), content: { entry in

ConfigurableWidgetView (entry: entry)
3]

The appIntentConfiguration struct has an important property, which is the intent type it uses, and in
this case, it is calendarwidgetIntent. If we go back to the Customize our widget section, we can see
that calendarwidgetIntent contains all the information we need to present our widget according to

the user configuration.

Indeed, the timeline provider is now conforming to a different protocol, aAppIntentTimelineprovider,
which supports the intent configuration now. Let’s see how it creates a timeline:
struct ConfigurableProvider: AppIntentTimelineProvider {
func timeline (for configuration: CalendarWidgetIntent,

in context: Context) async ->
Timeline<ConfiguredNextEventEntrys>

We can see that the timeline function inside configurableprovider now receives the configuration
parameter. From this point, all we need to do is use the information we have inside the configuration

and create the relevant timeline entries.

By now, we know how to set up a new widget, animate it, create its timeline, and even let the user

configure it. Next, we'll learn how to ensure our widgets stay up to date.

Keeping our widgets up to date
We have learned that we need to look ahead and create a timeline with different entries and dates to
keep our widget up to date. But how does our widget work under the hood?

Widgets don't get any running time — once we generate the timeline entries, WidgetCenter generates

their different views, keeps them persistently, and just switches them according to the provided

timeline.

So, there’s no way to update our widget without reloading the timeline, and when we created our

timeline, we had to define its reload policy:

let timeline = Timeline (entries: entries, policy: .atEnd)

However, sometimes, we want to instruct widgetcenter to reload the timeline immediately, due to

data changes or any other alterations.

Let’s see how it happens.

Reload widgets using the WidgetCenter
Throughout the chapter, I have mentioned WidgetCenter frequently but I haven't explained what it

means.

WidgetCenter is an object that holds information about the different configured widgets currently

used, and it also provides an option to reload them.
To use widgetcenter, we need to call the shared property to access its singleton reference:

WidgetCenter.shared

The difference between WidgetCenter and the rest of the code we have handled up until now is the fact
that we call WidgetCenter from the app and not the widget extension.

Let’s see how we can call the widgetcenter to get a list of active widgets:

func getConfigurations() {
WidgetCenter.shared.getCurrentConfigurations { result
in

if let widgets = try? result.get() ({
// handle our widgets
}

}
The getcurrentconfigurations function uses a closure to return an array of active widgets. Each one
of them is the widgetInfo type — a structure that contains information about a specific configured
widget.
The widgetinto structure has three properties — kind, family, and configuration:
o kind - This is the string we set when we created the widget configuration (look again at the Configuring our widget section).
o family - The family size of the widget — small, medium, or large.

o configuration - The intent that contains user configuration information. The configuration property is optional.

If needed, we can use that information to reload the timeline of a specific kind of widget. For example,

if we want to reload widgets with the kind of Mywidget, we need to call the following:

WidgetCenter.shared.reloadTimelines (ofKind: "MyWidget")

Notice that the function says Timelines and not Timeline, as it is possible to have several widgets of

the same kind.
If we want to reload all our app widgets, we can call the reloadallTimelines () function:
WidgetCenter.shared.reloadAllTimelines ()

There are several great use cases for reloading our widget timeline, such as when we get a push
notification, or when the user data or settings have changed. If you remember, when we discussed the
widget timeline in the Generating a timeline section, we talked about the fact that widgets have a
certain budget for the amount of reloading they can do each day. But the good news is that calling the
reloadTimelines OI reloadAllTimelines functions doesn’t count in this budget if our app is in the

foreground or uses some other technique, such as playing audio in the background.

In most cases, reloadTimelines works well when the updated data is already on the device or in our

app. But what should we do when the local persistent store is not updated?

We perform a network request, of course!

Go to the network for updates

Performing a network request to update local data is a typical operation in mobile apps. But how does

it work in widgets?
Let’s look at the getTimeline function again:

func getTimeline (in context: Context, completion: @escaping (Timeline<Entry>) -> ())

We can see that the getTimeline function is an asynchronous function. It means that when we build

our timeline, we can perform async operations such as open URL sessions and fetching data.

Let’s see an example of requesting the next calendar events:

func getTimeline (in context: Context, completion: @escaping
(Timeline<SimpleEntry>) -> Void) {
var entries: [SimpleEntry] = []
calendarService.fetchNextEvents { result in
switch result
case .success (let events):
for event in events
let entry = SimpleEntry(date:
event.alertTime, nextEvent:
event.title, nextEventTime:
event .date)

entries.append (entry)

}

case .failure(let error):
print ("Error fetching next events:
\ (error.localizedDescription)")

}

let timeline = Timeline (entries: entries, policy:
.atEnd)
completion (timeline)

}

The getTimeline function implementation is similar to the previous getTimeline implementation we
saw in the Generating a timeline section, and this time, we are fetching the events using the
calendarService instance. The calendarservice goes to our server and returns an array of events.
Afterward, we loop the events, generate timeline entries, and return a timeline using the completion

block.

Up until now, we have seen how to create a widget, animate it, and ensure it is updated as much as we

can. But if we want to make our widget shine, we need to add some user-interactive capabilities.

Interacting with our widget

Besides providing us with a glance at our app information, widgets are a great way to open our app in

a specific location or manipulate data without even opening the app.

As mobile developers, we sometimes wonder why implementing user interaction with a widget is such
a big deal. After all, our users interact with our app daily, so why is it such a problem? But when we

remember that widgets don’t really run, we can understand the challenge.

The most basic way we have to allow interaction with our widgets is by using deep links.

Opening a specific screen using links

If you are not familiar with the concept of deep links, now is the time to straighten things out. A deep
link is a link that opens our app on a specific screen. Today’s deep links format is similar to website
URLs. For example, a deep link that opens our app in a specific calendar event screen can look

something like this:

http://www.myGreatCalendarAp.com/event/<eventID>/
To do that, the app needs to do three things:
o Register to that specific domain by placing a special JSON file on the relevant server

o Add the domain entitlement to our app

« Respond to launching the app from a deep link, parse the URL, and direct the user to the corresponding location within the app

To learn more about deep links, I recommend reading about it in the Apple Developer website:

https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-

content

Going back to our topic, let’s see an example of adding a deep link to our Next Event widget:

struct MyWidgetEntryView : View {
var entry: Provider.Entry
var body: some View {

vstack {
Text ("Time:")
Text (entry.nextEventTime, style: .time)

(
(
Text ("Next Event")
Text (entry.nextEvent)
.widgetURL (URL (string:
"https://www.myGreatCalendarApp.com/event/\ (entry.eventID) /"))

}
}
}

In the preceding code example, we can see that we added a view modifier called widgeturL to the Next

Event Text component.

The Next Event Text component is indeed the view that accepts the user’s touch and opens the app in
the specific deep link. But when the widget is small (. systemsma11), we can add only one deep link

that is acceptable in the whole widget.
In widgets with medium and large sizes, we can add multiple links to multiple components.

It is worth noting that in terms of security, deep links work even when the device is locked, but

require FaceID or passcode when tapping on them.

In iOS 17, deep links are not the only option we have to allow users to interact with our widget, as it is

possible to add buttons and toggles as well.

Adding interactive capabilities

Deep links in widgets are great, but they have one big problem - tapping on the widget always opens
the app. But, sometimes, we want to update data or confirm something without entering the app. For
example, maybe we want to accept a calendar invitation, approve a payment, or mark a task as

completed.

Because widgets don't actually run, it’s a challenge to respond to a user interaction. Fortunately, there

is a solution that we have already encountered in configurable widgets, and that's App Intents.

Using App Intents to add interactive widgets

https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content
https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content

App Intents made especially for this kind of use case - to allow runtime for specific actions.

So, how do App Intents help us? Let’s look at Figure 5.4:

) Tapping a button Updating data
Widget » | App Intent
Persistent
Updating Ul Stors
Tlme_llne «— | WidgetCenter Return success
Provider _
Requesting to

reload timeline

Figure 5.4: App Intent event flow

In Figure 5.4, we can see that the first stage is tapping on a button inside the widget. Starting from iOS
17, the WidgetKit framework has its own type of button, which can be linked to a specific App Intent:

Button ("Turn \ (entry.isAlarm ? "Off" : "On") Alarm" , role:
nil, intent: MyWidgetIntent (eventID: entry.eventID))

The goal of the button here is to toggle the alarm for the event on and off. We can see that the title is
changed according to the entry.isalaram value. But what's more interesting here is that we have an
additional parameter called Intent, where we pass a struct named MyWidgetIntent along with the

eventID.

Let’s talk about the App Intent, but this time, in the context of user interaction.

Performing the data change using the intent

We have already said that the widget doesn’t manage any state. Therefore, the real widgets state is

some kind of a combination between a local store and the timeline provider.

The MywidgetIntent receives an eventin and is responsible for reaching out to Eventkit and updating

the actual event alarm information.

Let’s look at the App Intent:

struct MyWidgetIntent: AppIntent {
init () {

var eventID: String = ""
init (eventID: String) {
self.eventID = eventID

static var title: LocalizedStringResource = "Changing '
event alarm settings."
func perform() async throws -> some IntentResult {
// working with EventKit and updating the event alarm data.
return .result ()

}

Besides the LocalizedstringResource static property that we discussed in the Customize our widget
section, we have one primary function called perform(). The perform() function executes when the
user taps on the button that is linked to that App Intent. Notice that the perform() function is also an
async function that lets us perform heavier tasks, such as writing to the database or even performing a

URL request.

Once the perform() function completes its execution, the App Intent triggers the WidgetCenter.

Updating the widget Ul

Now that the local store is updated, it’s time for the WidgetCenter to reload the Timeline Provider. We
should already be familiar with that process — the Timeline Provider fetches the relevant local data
and builds a timeline based on the changes we just performed. At the end, the widget Ul is being
updated.

Working with App Intent is also great if we want to share code execution between different app

components. For example, we can share logic code between our widget and the Siri Shortcut.

We should remember that even if the widget could have a runtime of its own, it is still a good practice

to separate our code for better flexibility and modularity.

Another great usage for App Intent is the control widget, another great addition to iOS 18. Let’s go

over it now.

Adding a control widget

WidgetKit provides ways to present our apps in the springboard. However, it doesn't stop there.
Starting iOS 18, it is possible to present widgets in the control center and on the lock screen and even

attach an App Intent to the action button in iPhone 15 Pro.
Adding a widget to the control center or the lock screen is easy.

Similar to how we create a widget by conforming to the Widget protocol, we need to conform to the

controlwidget protocol to create a control widget. For example, imagine we have an app that helps us

control smart home accessories, and we want to create a widget that opens and closes our home’s main
door. Let’s start by creating a simple control widget called Maindoorcontro1:
struct MaindoorControl: ControlWidget
var body: some ControlWidgetConfiguration {

StaticControlConfiguration (
kind: "com.avitsadok.MaindoorControl"
) A

// rest of the widget goes here
}
}
}
In this code example, the Maindoorcontrol widget contains the body variable from the time of

ControlWidgetConfiguration. This is very similar to how we created a home screen widget under the

Configuring our widget section.

In this case, we return an instance of the staticcontrolconfiguration type, which means we don’t
give the user the ability to configure it. However, similar to the home screen widget, we can also add a
user-configurable control widget by returning appintentcontrolconfiguration (look in the Customize

our widget section).

We can add two control widget controls - a toggle and a button. In the case of controlling our home’s
main door state, we need to add a toggle. Let’s modify our code and add a controlwidgetToggle

instance:

struct MaindoorControl: ControlWidget
var body: some ControlWidgetConfiguration {
StaticControlConfiguration (
kind: "com.avitsadok.MaindoorControl"
) A

ControlwWidgetToggle (
"Main door control",
isOn: HouseManager.shared.isOpen,
action: MaindoorIntent ()
) { isOn in
Label (isOn ? "Opened" : "Closed",
systemImage: isOn ?
"door.left.hand.open" :
"door.left.hand.closed")

}
In this code example, we add the controlwidgetToggle, containing the following parameters:
o A title - The widget title that appears for the widget in the widget gallery.
« isOn - Here, we connect the widget to the actual state in our app.
« action - The App Intent that runs when the user taps our control widget. We'll cover that later in this section.

« A view builder - In the view builder, we define how a Label displays the control state’s title and an image.

The widget instance is straightforward. Let’s see how it looks in our control center (Figure 5.5):

Figure 5.5: Our control widget in the control center

Figure 5.5 shows the control center’s main door control widget. However, there’s another side to our

control widget — connecting the control widget to the action of opening and closing the main door.

Lets look at the MaindoorIntent struct we saw in the action parameter:

struct MaindoorIntent: SetValuelIntent {

static let title: LocalizedStringResource = "Maindoor
opening"

@Parameter (title: "is open")
var value: Bool
func perform() throws -> some IntentResult {

HouseManager.shared.isOpen = value
return .result ()

}

In this code example, we see the MaindoorIntent implementation. The MaindoorIntent structure

conforms to the setvalueintent protocol, which contains a value we can set. In this example, the

value is from the Boo1 type, which we can use to perform the desired operation.

Adding a control widget to our app involves similar practices that we saw when we added a home

screen widget and app intents that allow us to share code between widgets and other app components.

Summary

Widgets are enjoyable and fun UI elements we can work with in iOS development. They provide sleek
UI, great animation, and a glanceable user experience. We have seen that each iOS version has added

interesting new widget capabilities to make widgets more powerful than ever.

In this chapter, we learned about the idea of widgets, how to add widgets, creating a timeline, and
adding user-configurable options. Also, we learned how to create custom animations and even add
user interaction. WidgetKit has become a fascinating framework to work with. In the next chapter,

we'll continue to discover how to improve the user experience, this time with SwiftUI animations.

6
SwiftUl Animations and SF Symbols

The previous chapter dealt with a delightful topic — widgets. Their aesthetic level is both enjoyable and
effective, which makes working with them fun and easy. Now, we will take that feeling even further

with SwiftUI animations.

Animation is a crucial topic in iOS development, as it enriches the experience and makes our app
more intuitive and enjoyable to use. If you are used to Ulkit animations, you will notice that SwiftUI

animations take a different approach than UIKkit, providing a declarative API to animate state changes.

With these new challenges also come opportunities that ensure our logic state and Ul are always
aligned.
In this chapter, we will do the following:

o Discuss the importance of animations

o Understand the SwiftUT animation concept
o Perform basic animations with the view modifier and the withAnimation function
o Perform advanced animations such as transitions and keyframe animations

o Animate SF symbols

Explaining why we need animations sounds weird and some may raise eyebrows about this topic. So,
our first mission is to take this topic off the table before we move one pixel on the screen. So, let’s

answer the following question — why do we need to care about animations?

Technical requirements

For this chapter, it’s essential to download Xcode version 16.0 or higher from the App Store.

Ensure that you're operating on the most recent version of macOS (Ventura or newer). Just search for
Xcode in the App Store, choose the latest version, and proceed with the download. Open Xcode and
complete any further setup instructions that appear. After Xcode is completely up and running, you

can begin.
Download the sample code from the following GitHub link:

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%206

The importance of animations

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%206

Some of you may think that executing animations is mainly for fun and doesn’t really impact an app’s
usability. But the truth is that animations play a crucial role in enhancing user engagement and

interface design, especially in mobile applications. Here are a few benefits of using animations:

« First, animations provide visual feedback in response to users’ actions - a button that grows when a user taps on it helps them

know that they touched the right place

« Animations can also provide guidance and navigation - transitions between pages indicate whether we move “forward” with our

flow or backward
» Animations also help in error handling - we can animate error messages and general issues and reduce a user’s frustration

o Most importantly, in many cases, animations are part of the app branding and uniqueness and provide that special touch that

strengthens the link between a user and an app

Now that we understand the importance of animation, let’s see how SwiftUT’s declarative approach

aligns with that concept.

Understanding the concept of SwiftUl animations

For a developer coming from Ulkit and taking their first steps in SwiftUI, the concept of writing
animations in a declarative framework could feel a little awkward. After all, performing animations in
Ulkit was extremely simple — all we had to do was respond to some event and change some view
properties within an animation closure. Here’s a simple example of how to fade out a view in UIKkit:
UIView.animate (withDuration: 2.0, animations: {
= o.

sampleView.alpha 0
}) { (finished) in

}

In this example, we modify the alpha level of samp1eview inside a vrview animation closure.

While this looks pretty simple, it comes with a significant drawback - the need to sync the animation
action to the screen state. The sampleview component is now hidden - but does that mean that our
view model or any other logic we incorporated in our screen is updated? This update is our
responsibility. While this is a general Ulkit problem, syncing between the view and the state can

worsen when working with animations.

However, in SwiftUI, the screen state is always synced with the UI, and that’s true for animations as
well. The basic concept of SwiftUI animations revolves around the idea of animating changes to the

view state, including properties such as position, size, opacity, and rotation.

There are several ways of implementing animations in SwiftUI; some are truly simple, while others let

us deliver advanced and complex animations.

Let’s warm up and start with some basic animations.

Performing basic animations

The fundamental way to understand how SwiftUI animations work is by associating a state value with

a particular animation flow.

There are three ways of performing basic animations in SwiftUT:

« Using the animation modifier - adding an animation to a specific view
« Using the withAnimation global function - performing animation by changing several states

« Usinganimation () method - attaching an animation to a binding value

Developers usually get confused and think there’s some duplication here — separate ways to perform
the same functionality. But the truth is that all three serve different purposes and needs. It’s up to us to
decide the suitable way, according to our specific code structure and flow. Sometimes, you want to
perform a particular animation to a specific view; occasionally, it is a shared experience with several
views. Understanding the different use cases can help us decide how to perform an animation

correctly.

Let’s start by adding an animation to a specific view.

Using the animation view modifier

The animation view modifier goal is to add animation to a specific view when a certain value changes.

Here’s an example of using the animation view modifier:

struct UsingAnimationModifier: View {
@State var width: CGFloat = 50
@State var height: CGFloat = 50
var body: some View {
ZStack {
Circle ()
.frame (width:width, height:height)
.foregroundColor (.blue)
.animation(.easeIn, value: width)
.onTapGesture {
width += 50
height += 50

}
The preceding code changes the circle size by adding 50 points to its width and height, and it does that
by using the animation view modifier. Note that the animation view modifier has a value parameter —

the value the animation modifier monitors for changes. In this case, we use the widtn state variable.

The animation view modifier is great for changing a specific view when a specific value changes.
However, there are cases where this approach can be confusing. In this case, we define the animation
in a specific place in the code but perform the change in another location. Moreover, using the

animation view modifier can be cumbersome if we want to perform multiple animations.

If we want to perform multiple changes, we can use the withanimation: function. Let’s see how to

utilize it.

Using the withAnimation function

In its basic form, the withanimation: function takes a closure as a parameter and animates any
changes made within that closure. Usually, that'’s done with a trigger to an event. Let’s see a simple

code example:

struct UsingWithAnimationFunction: View {
@State var greenCircleYPosition: CGFloat = 400
@State var redCircleYPosition: CGFloat = 800
var body: some View {
vsStack {
ZStack {
Circle ()
.size(width: 100.0, height: 100.0)
. foregroundColor (.green)
.position(x: 400, y:
greenCircleYPosition)
Circle()
.size(width: 100.0, height: 100.0)
.foregroundColor (.red)
.position(x: 200, y:
redCircleYPosition)
1
Button ("Animate") {
withAnimation {
greenCircleYPosition =
greenCircleYPosition == 400 ? 800 :
400
redCircleYPosition = redCircleYPosition
== 800 ? 400 : 800

}

This code example simultaneously animates the positions of two circles when a button is tapped. We
can see that, unlike the animation view modifier, by using the withanimation: function, we bind the

change to the animation more clearly and simply.

Another advantage that withanimation: has is the ability to execute a completion code once an

animation ends.

Let’s take a look at the following code example:

struct WithAnimationCompletionBlock: View {
@State var yPos: CGFloat = 300
@State var isReset: Bool = false
var body: some View {
Vstack {
Circle()
. foregroundColor (.blue)
.frame (width: 50, height:50)
.position(x: 200, y:yPos)
Button (isReset ? "Reset" : "Start") {
withAnimation {
if isReset {

yPos = 300
} else {
yPos = 500

}

} completion: {
isReset.toggle()
}

}

The code creates a blue circle and a button saying Start. Once the user taps the button, the circle
animates its position, and at the end, the button title changes to Reset. Then, tapping the button brings

back the circle, and at the end of the reverse animation, the button title returns to Start.

Completion blocks in animations are essential to sync flow stages. For example, collapsing a side

drawer and navigating to a new screen at the end is an excellent example of completion block usage.

Now, it’s time to bring some more life to our animation.

Bringing some life to our animations with spring
animations

If you have tried out the code examples you have seen so far, you have probably noticed that the
animations ran smoothly but were a little bit, well, boring. That’s because the animations ran linearly

and were not that interesting.

Try adding the following parameter to the previous example:

withAnimation (.bouncy (extraBounce: 0.3)) ({
if isReset

yPos = 300
} else {
yPos = 500

}

} completion:
isReset.toggle ()
}

}

In this example, we added .bouncy (extraBounce: 0.3) tO OUr withAnimation function. Running the
code shows the same animation as before, but now, the circle bounces when it reaches the end. It is a
small but significant addition - the bounce effect adds a realistic touch to our animation and can

improve user engagement.

There are several interesting visual transitions we can add to our animations. For example, we can

make the bouncing smoother using the . smooth function:

withAnimation (.smooth (extraBounce: 0.3))

We can also make the bouncing snappier by making the animation faster with a small bounce amount:

withAnimation (.snappy)

It is recommended to look at Apple’s documentation to discover more visual transitions that we can

apply easily to our animations: https://developer.apple.com/documentation/swiftui/animation.

So far, we have performed very basic animations. But modern apps require modern experiences. Let’s

move on to some more ways to create advanced animations.

Performing advanced animations

We mentioned that transitions are great for guidance and navigation, and part of that concept is
providing clarity about incoming and leaving views from our canvas. Sliding a view from the bottom
can provide a sense of a drawer being opened and closed, and scaling a view can visually represent the

progress of an ongoing process.

So far, we have discussed how to animate views from one state to another. Now, we will explore

transitions — a way to animate views when they appear or disappear.

Performing transitions
Implementing a view transition is easy — we have some nice built-in transitions to choose from, and if
that’s not enough, we can also create a custom transition.

Let’s start with some basic, built-in transitions.

Implementing built-in transitions

To add a transition, we should use the transition modifier with the specific view we want to animate,
triggering it using the withanimation function we learned about in the Using the withAnimation

function section.

https://developer.apple.com/documentation/swiftui/animation

Here's a simple example of a slide in transition:

struct BuiltInTransitionsView: View {
@State var showSlideText: Bool = false
var body: some View {
VStack {
Button("Slide in text") {
withAnimation {
showSlideText.toggle ()
}
}

if showSlideText {
Text ("Hello, slided
text") .transition(.slide)

}

The code example consists of vstack with a button and text. We also have a state determining whether

the text is visible or hidden.

Tapping on the button reveals the text using the withanimation function. But the text also has a
transition view modifier that describes how it is supposed to appear - in this case, using a sliding-in

transition.
The transition view modifier describes how the view appears and how it is supposed to disappear.

The s1ide transition inserts the view by moving it from the leading edge and removing it toward the
trailing edge. Note that the slide transition directions cannot be changed, and they are set by the
SwiftUI framework. However, there are several more transitions we can use to achieve our desired

behavior:
» move: Moves the view in/from a specific edge:
Text ("Hello, moved text")
.transition(.move (edge: .bottom))
o scale: Scales the view in a specific amount and from a specific anchor:
Text ("Hello, scaled text™")
.transition(.scale(scale: 0.5, anchor: .center))
o opacity: Performs a “fade in/out” effect on the view:

Text ("Hello, opacity text™)
.transition (.opacity)

These types of transitions are well documented in the Apple website and SDK, and we can also try

them using the chapter’s GitHub repository.

It's important to note that we can use these transitions to show and hide animations. Yet, in some

cases, we might prefer a different animation for hiding compared to showing. Having a different

animation for hiding and showing is called an asymmetric transition. Let’s see a code example for that:

Text ("Text scaled in. Now it will slide out")
.transition(.asymmetric(insertion: .scale, removal:
.slide))

This code example performs a scale animation for the insertion of text and a s1ide animation for the

removal of text.

Sometimes, we may want to combine several animations. For example, we may want to scale and slide
at the same time. We can do that using the combined function:
Text ("Scale and slide")

.transition(.scale.combined (with:
.slide))

We can even combine a combined transition!

.transition(.scale.combined(with: .slide.combined (with:
.opacity)))

However, if things become too complicated, it could be a sign that we should build a custom

transition.

Creating a custom transition

Building custom transitions gives us complete control and flexibility of how transitions work and is

useful when other compound transition methods don’t provide the expected results.

The idea of building a custom transition is built around providing two view modifiers:

o One that represents the identity state of the view (before we started the transition)

o One that represents the active state of the view (after the transition)

Both view modifiers must be of the same type so that SwiftUT has the same properties to transition.
Let’s create a custom transition that takes a view and inserts it with rotation, opacity, and scale.

We will start by creating a view modifier that handles all the three properties:

struct ViewRotationModifier: ViewModifier {

let angle: Angle

let opacity: CGFloat

let scale: CGFloat

func body (content: Content) -> some View {

content

.rotationEffect (angle)
.scaleEffect (scale)
.opacity (opacity)

The viewRotationModifier view modifier receives three properties, angle, opacity, and scale, and

applies them to the content. This view modifier is like any view modifier we're accustomed to.

Now, we can build our custom transition. If we look at the built-in transitions we covered in the
previous Implementing built-in transitions section and their code’s documentation, we can see that
they are from the type anyTransition. AnyTransition is a struct that describes a SwiftUT transition

between two states.

Let’s build our rotate AnyTransition:

let rotate = AnyTransition.modifier (
active: ViewRotationModifier (angle: .degrees(360),
opacity: 0.0, scale: 0.0),
identity: ViewRotationModifier (angle: .degrees(0),
opacity: 1.0, scale: 1.0)
)

The anyTransition struct we created receives the active and identity view modifiers, each with

different parameters.

We can use the new transition in the same way as the built-in transitions:

struct CustomizedTransitionView: View
@State private var showRectangle: Bool = false
var body: some View {

Vstack {
Spacer ()
if showRectangle {
Rectangle ()

.frame (width: 100, height: 100)
.foregroundColor (.blue)
.transition (rotate)

}

Spacer ()

Button ("Insert Rectangle")

withAnimation {
showRectangle.toggle ()
}

}

The preceding code creates a rectangle and a button. Tapping on the button toggles the showrectangle

state variable, which reveals the rectangle using our new transition.

So far, we have discussed great animations that were pretty simple and short. However, if we want to
provide more sophisticated animations that may require multiple stages and different timing,
AnyTransition structure is insufficient. For much more advanced animations, we should try to

implement keyframe animations.

Executing keyframe animations

The idea of keyframe animations in SwiftUI is similar to how they are implemented in UIKit.

With keyframe animations, we declare different changes in different properties over time. There are

four primary components in keyframe animations:

» Animations properties: A structure that defines the changes we want to perform during the animation phase. For example, the

AnimationsProperties struct can define the opacity, scale, or color in different animation phases.

o KeyFrameAnimator: The keyframe animator defines the different animation tracks we have and what happens with the view in

each track.

» KeyframeTrack: Each track handles a different animation property and defines the various phases (key frames) for that

property. Tracks work in parallel with each other. A keyframe animator can have multiple tracks.

o KeyFrame: Defines a single change for a specific property within the keyframe track.

With these four primary components, we can build amazing and complex animations. Let’s build our
first keyframe animation with SwiftUI, but we’ll start by explaining the concept behind keyframe

animations.

Understanding a keyframe animation

Describing a keyframe animation can be slightly confusing at first, mainly because it is a way to create

complex animations. Let’s try to explain it in a diagram (Figure 6.1):

Track (Scale) 0.7 1.0

Track (Opacity) 0.3 1.0

Figure 6.1: A key frame animation as a diagram

Figure 6.1 shows two tracks — scale and opacity — positioned on a timeline. In each track, we see two
keyframes. The number inside each keyframe describes the value, and the keyframe length describes
its duration. For example, in the scale track, we have two keyframes - the first sets the scale to 0.7, and
the second brings it back to 1.0. We can also see that the durations of both the scale and opacity tracks

are equal.

If you think that that resembles a video editing application such as iMovie or Premiere, that’s because it

is based on the same concept.

Let’s try to create a breathing animation using the concept of keyframe animation. A breathing

animation mimics the way something breathes, such as a balloon slowly inflating and deflating.

Let’s see how to do that in code:

struct AnimationProperties {
var scale = 1.0
var opacity = 1.0
}
struct KeyFrameAnimations: View {
var body: some View {
Circle ()
.foregroundColor (.red)
.frame (width:100, height:100)
.keyframeAnimator (initialvalue:

AnimationProperties(), repeating: true) ({
content, value in
content

.opacity (value.opacity)
.scaleEffect (value.scale)
} keyframes: { _ in
KeyframeTrack (\.scale) ({
CubicKeyframe (0.7, duration: 0.8)
CubicKeyframe (1.0,
duration: 0.8)

}

KeyframeTrack (\.opacity) ({
CubicKeyframe (0.3, duration: 0.8)
CubicKeyframe (1.0, duration: 0.8)

}

The code example seems long! However, upon closer examination, we can see that it is not that

complex and contains the different components we discussed earlier.

Let’s explain what we’ve done here:

1. We created a circle and added a view modifier called key frameAnimator, which handles the general animations. We initialized
it with the AnimationProperties struct that holds the properties we want to modify during the animation phases, and we

defined that animator to repeat by passing true in the corresponding parameter.

2. The animator has another closure parameter with the content view and the value. That’s where we can modify our view according to

the animation properties. In this example, we changed the view opacity and scale.

3. Right after the closure, we define our tracks. We have two properties we want to change over time, so we've created two tracks —
one for scale and one for opacity. Because we wanted a breathing animation, we've created two keyframes — one for exhaling (scale

down and reduce opacity) and one for inhaling (scale up and increase opacity).

4. We can see that each one of the frames is declared as CubicKeyframe. Before we explain what CubicKeyframe means, let’s

talk about keyframes, which are fundamental concepts in animations.

A keyframe specifies an object’s state at a particular point in time. The animator’s responsibility is to
perform the animations between these keyframes. In a way;, it’s like animating a state change, but in

this case, we define the different modifications upfront.

In the case of SwiftUT’s keyframeanimator, the keyframes align with the concept of states — each

keyframe defines a change in a specific property over time.

In SwiftUI, we have different types of keyframes, each representing a different experience:

o CubicKeyframe: This is the keyframe we used in our code example. CubicKeyframe provides a smooth transition to the
next keyframe while computing something called Catmull-Rom splines. Catmull-Rom splines are curves used in computer

animations to provide smooth movement.
« SpringKeyframe: This represents a transition that emulates a spring experience, including a bouncy effect.
o MoveKeyframe: This type of keyframe modifies the given value immediately.

o LinearKeyframe: This keyframe animates the change without a defined curve and, instead, does that in a simple linear

interpolation.

SwiftUI is intelligent enough to smoothly handle the combination of different keyframes on the same
track. For example, let’s see what happens when we define velocity on one of our keyframes:
CubicKeyframe (0.5, duration: 0.2, startVelocity: 0.5,

endVelocity: 0.8)
CubicKeyframe (0.7, duration: 0.5)

We can see that the end velocity of the first keyframe is 0. 8. However, we haven’t defined any initial
velocity for the second keyframe. In this case, the second keyframe’s startvelocity value will be the

end value of the previous keyframe, which means o.s.

Now, let’s discuss another crucial aspect of keyframe animations — animation duration.

Handling keyframe animation duration

The keyframe animator is a hierarchal structure with three levels — the animator, the tracks, and the
keyframe. This means that different keyframes can have different durations, and these duration values
don’t always add up nicely. That makes duration management complex, especially for long and

intricate animations.

How do we ensure that all the keyframe durations are always aligned with each other and maintain

the same scale? The answer is to use relative duration, not absolute duration.

An absolute duration specifies the exact time an animation should take, regardless of the initial state,

or without comparing it to the other keyframes.

Conversely, relative duration reflects the duration time, considering the total animation duration. For
example, if the relative duration is 0.5 and the total animation duration is 3 seconds, the actual

keyframe duration would be 1.5 (0.5 * 3.0 seconds).

By using relative duration, we can establish an animation’s overall duration and allocate specific

durations for each keyframe, relative to the total duration.

Let’s take our “breathing” example and try to implement relative duration:

let duration: TimeInterval = 1.8
var body: some View {
Circle()
. foregroundColor (.red)
.frame (width:100, height:100)
.keyframeAnimator (initialvalue:
AnimationProperties(), repeating: true) ({
content, value in
content
.opacity(value.opacity)
.scaleEffect (value.scale)
} keyframes: { _ in
KeyframeTrack (\.scale) {
CubicKeyframe (0.7, duration: 0.5 *
duration)
CubicKeyframe (1.0,
duration: 0.5 * duration)

}

KeyframeTrack (\.opacity)
CubicKeyframe (0.3, duration: 0.5 *
duration)
CubicKeyframe (1.0, duration: 0.5 *
duration)

}

In this code example, we have a keyframe animation with two keyframes, similar to our previous

example. The first keyframe handles the scale animation, and the second handles the opacity.

We can see that we have a total duration variable, currently set to 1.8. With each keyframe, we set the
duration relative to that value. In this case, it is 0.5 of the total duration, but this can vary from one

example to another.

Relative duration can help us set a dynamic overall duration time and change it according to our

needs, even at runtime.

SwiftUI animations are extremely powerful and easy to use, and keyframe animations make them

even more powerful by allowing us to build complex animations with multiple steps and durations.

However, in many cases, animating views is one of the many challenges that app developers face. After
all, animating simple shapes such as a rectangle or a circle isn’t always what we desire. So, what about
the assets? Fortunately, the iOS SDK contains a fantastic resource called SF Symbols. Let’s explore it

now.

Animating SF Symbols

SF Symbols is a library that contains over 5,000 symbols that developers can integrate within their

text, using the San Francisco font.

Don’t be confused — SF Symbols are not emojis. Emojis are meant to express feelings and emotions
within text. Conversely, SF Symbols are excellent replacements for icons that represent states, actions,

and tools.

Here’s a basic example of displaying a clock alarm symbol with text next to it:

var body: some View {
HStack
Image (systemName:
"alarm.waves.left.and.right.£fill")
Text ("Alarm")
} . font (.system(size: 30))

}

We can see no surprises here — we use a basic tmage view with the systemName parameter to provide

the image name.

As mentioned earlier in this section, there are thousands of symbols available. To get the full symbols
catalog, we need to download a Mac application called SF Symbols (what a coincidence, uh?) from

https://developer.apple.com/sf-symbols/.

The app is simple to use, as we can see in Figure 6.2:

eve [ot SF Pro £ Reguar § 8B = 3 E o

B Al T @ o] &
% What's Mow | | @ @ o
2 Muicchar g " ‘I ‘h
o8 Varable Color square.and. sguare.and. square.and. squere.and. square.and. J —l J
- ATOWAR arrow upfill AFFowW.uR.Circle arrow.up.eirel.., arrow,up,bad,, -
3 Communication
o Weathar
0 Maps T‘l l T Animation Automatic (B
T () LA I I @ Bounce B P Preview
D
i Animate: Whale Symbol
[Casrmea & Phatos square.and. square.and. square.and, square.and. square.and,
afrow.upbad .. arrowLp trign,., arrow.dawn arrow.down fill ATTOW, LRGN, O By Layer
(= Baming Direction: Down
" Connactivty o up
B Transportation ﬁ 1, n ;
@ Automothe l @ '
@ Acpessbilty
= 5 square.and, square.and sauare and, rectangie. rectangle.
- Privecy & Sucanity AMTOW.LLON. & arrow.down o, arraw.dawn.o... portraitand.a. portrait.and.a..
& Human
i} Home
i B & / @ @
= Matum
= Editing
rectangle, rectangle. pencil pencil.circle pencil.cirete Fill
A Text Formalting portraitand.a... portraitand.a..
2l Media
Koyboard
: X £ Q "4 94
Commerca ,
= N 2
' Health pencil slash pencil.line Eraser eraser fill eraserling,
1 Shapes dashed
-+ NTOWS

@& Indices

& O @ O o

Figure 6.2: The SF Symbol Mac app

https://developer.apple.com/sf-symbols/

By exploring the SF Symbol app, we can see how the symbols differ from emojis. They are not only

vector illustrations (meaning they can scale to any size) but also built as layers.

To understand why the SF symbols contain layers, try to perform a bounce animation using the app.

Doing so lets us see how the layers create a sense of depth, making them bounce at different intervals.

Other than the bounce effect, SF Symbols supports other effects such as pulse, scale, and replace. We

can perform the same animations in our SwiftUI code using the symbolEffect view modifier:

struct SFSymbolsAnimationView: View {

@State private var animate = false
var body: some View {
HStack {

Image (systemName :
"alarm.waves.left.and.right.fill")
.symbolEffect (.bounce, options: .repeating,
value: animate)
Text ("10:30")
}.font (.system(size: 40))
.onTapGesture {
animate = true

}

The symbolEffect view modifier has several parameters. The first is the effect type, the same as those
found in the SF Symbol app. The second parameter is options — we can make the effect repeat itself or

even set its speed.

The third parameter is the value parameter - the state variable that triggers the animation. In this
case, we trigger the animation by tapping on the ustack view that contains both the symbol and the

attached text.

To read more about SF Symbols, it is recommended to visit Apple’s website:

https://developer.apple.com/sf-symbols/.

Even though this chapter mainly concerns SwiftUI animations, there is much more to SF Symbols
than just animations, such as supporting multiple colors. Let’s see how we can modify different

symbol colors.

Modifying symbol colors

The fact that SF Symbols are built with different layers helps not only with animation but also with

coloring them.

Let’s take, for instance, the two persons waving symbol:

Image (systemName: "person.2.wave.2")

https://developer.apple.com/sf-symbols/

Figure 6.3 shows what the symbol looks like:

Figure 6.3: The person.2.wave.2 symbol

We can see two different types of image components — on the one hand, two people, and on the other
hand, their waves. So, unlike a regular image, we can set one color for the people and another for the

waves.
Every SF Symbol has a primary and secondary color, and SwiftUI knows how to color it accordingly.
For example, let’s set a primary color of brown and a secondary color of blue. We will use the

foregroundstyle view modifier for that:

Image (systemName: "person.2.wave.2")
.foregroundStyle (.brown, .blue)

There are symbols that even have a third color, such as in the case of the three-person symbol (Figure
6.4):

Figure 6.4: The person.3.sequencefill symbol

To use the third color, we just need to add one more color as a parameter:

Image (systemName: "person.3.sequence.fill")
.foregroundStyle (.red, .blue, .brown)

Anyone who has had to manage multi-color icons knows the complexity of supporting different

themes and colors, especially when we need to animate them.

So, we know how to add an SF Symbol, animate it nicely, and color it. However, we can also use vector

multi-layer symbols, which is known as localization.

Localizing our symbols
Localizing our apps is a crucial topic today, more than ever. However, how many of us pay attention to
icon localization and try to adjust them according to the app layout direction?

The excellent news about SF Symbols is that they can adjust to the current app locale. The even better

news is that we can force them to do that if we want.
But why do SF Symbols even need to support localization?

Let’s take the arrowshape. turn.up. forward SF Symbol (Figure 6.5):

Figure 6.5: The arrowshap.turn.up.forward SF Symbo

The forward icon arrow points to the right, which fits nicely in LTR (Left-to-Right) layout views. But
what about RTL (Right-to-Left) layouts, such as in Hebrew or Arabic localized applications?

Well, in this case, we will have to flip the icon direction. With SF Symbol, this adjustment is done

automatically for us.

Moreover, we can set the icon localization regardless of the view settings, using the environment view

modifier:

Image (systemName: "arrowshape.turn.up.forward")
.environment (\.layoutDirection, .rightToLeft)

In the preceding code, we force the SF Symbol to have an RTL layout direction, which flips the

forward arrow to the left direction.

Having localization support doesn’t stop with layout direction. Some symbols even change their look

according to the current locale.

For example, let’s take the character.book.closed SF Symbol (Figure 6.6):

Figure 6.6: The character.book.closed SF Symbol

In the case of the symbol in Figure 6.6, we can see that in addition to its layout direction (LTR), it also

has a letter on it.

In the case of the Hebrew locale, not only does the symbol’s direction change but also the letter (Figure

6.7):

Figure 6.7: The character.book.closed SF Symbol in a Hebrew locale
We can force the symbol to retrieve a specific locale using the environment view modifier, similar to

the layout direction:

Image (systemName: "character.book.closed")
.environment (\.locale, .init(identifier: "he"))

To sum up, SF Symbols contain so much power and valuable features. Trying to support standard
icons in different environments, such as locales and themes, can be a hassle, and animating them
without creating a dedicated image sequence is almost impossible. So, getting all these features for free

is like a massive present from Apple engineers.

Summary

iOS animations are like salt — they can enhance the user experience, but too much is overwhelming.

The great thing about SwiftUI animations is that they are aligned to the screen state because of the

declarative implementation. However, it’s a significant change to how they work in UlKkit.

Because of that, in this chapter, we went from understanding the basic concepts and performing
fundamental animations to custom transitions and keyframe animations, and we even discussed a

great present that Apple gave us, SF Symbols.
Now, we should be able to easily animate changes on our screen in a meaningful and expressive way!

In our next chapter, we'll explore enhancing user engagement using a built-in solution - TipKit.

7

Improving Feature Exploration with TipKit

In the previous chapter, we learned about SwiftUI animations. We know now that SwiftUI animations

are a great way to teach users how to use our app.

However, sometimes, it's not enough, and we need more than fancy animations. This is where TipKit
comes in. TipKit’s goal is to provide a solution for another important topic: feature exploration.
Feature exploration affects our app users’ engagement and usage, eventually affecting user satisfaction

and experience.

In this chapter, we will cover the following topics:
« Learning the importance of tips in a mobile app
« Adding a new tip - inline and popover
« Customizing our tip’s feel and look
« Supporting tip actions
o Defining display rules for our tips
» Grouping tips using TipGroup

« Adjusting display frequency

Now, let’s start with the fundamental question — why do we need TipKit?

Technical requirements

For this chapter, it’s essential to download Xcode version 16.0 or higher from the App Store.

Ensure that you're operating on the most recent version of macOS (Ventura or newer). Just search for
Xcode in the App Store, choose the latest version, and proceed with the download. Open Xcode and
complete any further setup instructions that appear. After Xcode is completely up and running, you

can begin.

Download the sample code from the following GitHub link:
https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%207

Learning the importance of tips

One of the challenges of creating an app for a small screen, such as a smartphone screen, is to provide

ways for the user to explore valuable features. Making users use more features is part of improving

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%207

user engagement — measuring how much the user is actively involved and connected to our product.

That feature exploration is a real challenge. On the one hand, we aim to create a clean and
straightforward user interface and, on the other hand, we aim to add more features that can be

extremely useful to our users.

Every product manager struggles with this challenge - sometimes, the solution is to create a What’s

new popup, send a marketing email, or add more information to the in-app FAQ screen.

One of the most valuable techniques is to provide a tip — a small text box that pops up in the right

place at the right time to explain a new feature and can even add an action to help the user use it.

Let’s try to drill down a bit and discuss the basics of tips in Apple’s TipKit framework.

Understanding the basics of TipKit

Some may think that the primary challenge with displaying tips is creating views that contain relevant

information and presenting it.

However, if that were the case, we wouldn’t need a whole framework. Instead, we should consider

TipKit a complete system.

Let’s look at Figure 7.1:
Tip Instance Tip View
/ Tip Model Tip Instance Tip View
Tip Center
\ Tip Model Tip Instance Tip View
Tip Instance Tip View

Figure 7.1: Tip infrastructure

Figure 7.1 presents the essential components of the structure of TipKit in iOS. First, there is the tip
center, a singleton that manages all the tips’ appearances in the app. The tip center has several
responsibilities:

« Ensures that a tip stops appearing once invalidated or dismissed by the user

o Triggers the tips such that tips don’t overlay each other

« Displays tips according to specific rules

Right after the tip center, we have the tip model - a structure representing a specific tip declaration.
Based on the tip model, we can create and display an instance using a tip view — a visual

representation of the tip.

The TipKit infrastructure looks more complex than it is — many iOS frameworks work with some
framework center, models, and views. However, the idea here is to show you that while TipKit
provides visual components, its core functionality lies in the rules that determine when and where

they appear.

Now, enough of the theoretical introduction. Let’s see what tips look like!

What do tips look like?

The result of adding a tip is a view that shows the new feature to the user (Figure 7.2):

< Back Inline Tip View

Save as a Favorite X
You can mark items as Favorite and add them
to your favorites list.

* Running ve
/7 Run outdoors ar on a treadmill.
Cycling
Ride a bike outdoors or use a 'fk

stationary bike.

. Yoga
Practice yoga poses for \ﬁ’
flexibility and relaxation.

Strength Training
Use weights or bodyweight b
exercises to build strength.

Swimming
Swim laps in a pool orin ﬁf{
open water.

< Back Popover Tip {53

Change your app settings <

D Tap here to customize your theme,
manage your favories change
account

Inline tip

Popover tip

Figure 7.2: Two different ways to display tips in TipKit

Based on Figure 7.2, we can see that there are two ways of displaying a tip:

o Inline tip: Inline tips embed themselves as part of the screen layout, and their appearance modifies and pushes the other views

accordingly. Inline tips are a great fit in VStacks or Lists, and we can view them without interfering with the screen interaction.

« Popover tip: Unlike inline tips, popover tips appear above the current screen, mostly linked to a button or another control. With

popover tips, the user must dismiss the tip or perform its action to continue with the app. Also, we cannot display multiple popover

tips at the same time.

At first glance, the two ways to display tips are just a matter of design. Showing a popover tip is not

only a different experience but also a different use case. In the inline tip, we include the view in a non-

intrusive way that allows the user to discover new features gradually. In contrast, the popover tip is

excellent for contextual help or complex features requiring guidance. Remember that adding more

views to our device’s small screen can sometimes be overwhelming, and we must make this decision

carefully.

Let’s add our first tip and convince users to use our new mark as favorite feature.

Adding our first tip
Even though we are excited and can’t wait to add our first tip, we still need to do a small amount of
preparation first, and that’s setting up our persistent store for the tips state.

Why do we need to set up a persistent store? TipKit needs to manage the tips’ state over time, even
after we close our app. This is because we don’t want our tips to show up again if the user (or the app)

decides to dismiss them.

We can set up the persistent store using a static function called configure ():

import TipKit

@main
struct MyApp: App {
init () {

try? Tips.configure()
}
}

In our code example, we can see that we call the configure function part of the app initialization

process because we need TipKit to have all its information once the first screen is loaded.
We can also share the tips’ states store with more of our apps and extensions by defining it in a group

container:

try? Tips.configure ([
.datastoreLocation (.groupContainer (identifier:
"MyAppGroupContainer"))])

In this example, we configured the tips’ state data store in a group container called
MyAppGroupContainer. Don’t worry — from the app’s perspective, the user experience will stay the

same.

WHAT IS A GROUP CONTAINER?

A group container is a directory shared among multiple apps and extensions within the same app group. It allows us to share data

between our apps.

Our next step is to define our Tip model.

Defining our Tip model

The Tip model (based on the Tip protocol) defines our tip’s behavior and appearance.

Let’s see a simple tip declaration:

struct MarkAsFavoriteTip: Tip {
var id: String { "InlineTipView"}
var title: Text ({
Text ("Save as a Favorite")
}

var message: Text?

Text ("You can mark items as Favorite and add them
to your favorites list.")

var image: Image? {
Image (systemName: "star")

}

In this code example, we declared a struct named MarkasFavoriteTip, which conforms to the Tip
protocol. We can see that MarkasFavoriteTip has several properties. The title, message, and image

define the content of the tip view, as we can see in Figure 7.3:

Save as a Favorite X

You can mark items as Favorite and add them
to your favorites list.

Figure 7.3: The Save as a Favorite tip view

In Figure 7.3, we can see the tip view with all the content we declared in MarkasFavoriteTip. Now, lets

see how we add this tip to our SwiftUT view:

struct InlineTipView: View {
var tip = MarkAsFavoriteTip ()
var body: some View {
Vstack {
TipView (tip)
List (workouts) { workout in
WorkoutView (workout: workout)

}

}

This code example has a SwiftUI view that presents a list of workouts. To display a tip on top of the
list, we created an instance of the MarkasFavoriteTip structure from earlier and then a Tipview view,

passing that tip instance.

Figure 7.4 shows what it looks like:

< Back Inline Tip View

Save as a Favorite
You can mark items as Favorite and add them
to your favorites list.

* Running S
/ Run outdoors or on a treadmill.
Cycling
Ride a bike outdoors or use a ‘Z}f

stationary bike.

. Yoga
Practice yoga poses for ‘ﬁ‘j’
flexibility and relaxation.

Strength Training
Use weights or bodyweight 'i‘,?
exercises to build strength.

Swimming
Swim laps in a pool or in 'iﬁi’
open water.

Figure 7.4: A workout list with an inline tip view

Figure 7.4 shows how the tip fits nicely on the screen, pushing the list down the vstack view. Tapping

on the tip’s close button removes the tip from the screen and pushes the list up to take its place.

Pretty simple, huh? Now, let’s see how to add a popover tip.

Adding a popover tip

As mentioned, a popover tip serves different use cases than an inline tip. It blocks the user’s
interaction with other elements on the screen and is more contextual. In a popover tip, we link the

popover view to a specific control on the screen — usually a button or a toggle.

The way we add a popover tip is by using a view modifier called popoverTip, passing our tip instance

(tip) (just like in an inline tip) and an optional arrow direction:

struct PopoverTipView: View {
var tip = PopoverTip ()
var body: some View {
List {
// some list information
}

.navigationTitle ("Popover Tip")
.toolbar (content:
Button ("Settings", systemImage: "gearshape")

}

.buttonStyle(.plain)
.popoverTip (tip, arrowEdge: .top)

H
}

Our code example shows a similar pattern to the one we saw in the inline tip. We create a tip instance,
and this time, we add the tip to our screen by using a view modifier attached to the screen toolbar

button. Figure 7.5 shows how it looks:

< Back Popover Tip {@}

Change your app settings

Tap here to customize your theme,
manage your favories change
account.

Figure 7.5: A popover tip

What's nice about the popover tip is that we don’t need to care about things such as positioning,

depth, or creating the popover pointer - this is all done for us, similar to the popover view modifier.

We see that both inline and popover tips have a close button. Let’s discuss it further because this is

where we start to reveal the tip’s real added value.

Dismissing tips

You are probably wondering how dismissing a tip view is related to the tip’s added value.

We discussed that the real power of tips is not the UI layer but its presentation logic. Whenever we
dismiss a tip, TipKit marks it as invalidated and won’t show it again. TipKit also stores the invalidation

status permanently, meaning it won’t be displayed after the app relaunch.

Another way to dismiss a tip, besides closing it, is to invalidate it in code. Let’s look at the inline tip
from the code example earlier again (under Defining our Tip Model). The tip in that example helps the
user explore the app’s favorites feature. It also means that whenever the user marks one of the

workouts as a favorite, we can assume that the tip is no longer needed and invalidate it ourselves.

To invalidate a tip, we need to call the tips invalidate () function:

List (workouts) { workout in
WorkoutView (workout: workout,
onFavoriteButtonTap: {
tip.invalidate (reason:

.actionPerformed)

H
}

In this code example, we call the invalidate () function whenever the user taps the favorite button.

Remember that SwiftUI is a declarative framework - the tip status is part of the view state, and

SwiftUI refreshes the screen after a change.

Another thing we can see in that code example is the reason for invalidation. In this case, we send
actionPerformed because this is precisely what happened - the user performed the action suggested

by the tip.

Another question may arise at this point: how does TipKit know whether that specific tip has already

been shown? Also, is there a way to reset the persistent data and show the tip again?

That’s where the tip ID comes in.

Defining the tip ID

If you went over the code example under the Defining our tip model section, you may have noticed the

following line:

var id: String { "InlineTipView"}

The id variable is part of the Tip protocol; we use that property to define a specific identifier for each

tip. TipKit uses that identifier to manage the different tip statuses.

You can do a small experiment: create a small app with a tip (or use the code examples in our GitHub
repository) and invalidate the tip. Relaunch the app and see that the tip doesn’t show again. Now,
modify the tip identifier to have a different name. Relaunch the app, and you’ll see that the tip is

visible again. Also, reinstalling the app (after deletion) will reset the local persistent store.

Another way to reset the local persistent store is to call the static resetpatastore function on app
launch:
struct MyApp: App {
init () {

try? Tips.resetDatastore()
try? Tips.configure ()

}

Notice that we call the resetpatastore function before the configure function.

The tip identifier is part of the Tip protocol, and in this example, the identifier is shared across all the

struct instances:

var id: String { "InlineTipView"}

Since the identifier is shared, all the tip views based on the struct instances will be dismissed once

you invalidate one of them.

In most cases, that’s considered normal behavior and best practice. If the user marks a specific row as

a favorite, they already know about this feature, even if it appears on another screen.
However, that’s not always the case, so plan identifiers accordingly.

Now we know how to present a tip, both inline and popover. We also know how to dismiss it and even
reset the persistent state. However, TipKit provides even more than that. Let’s see how we can

customize our tips.

Customizing our tips

So, TipKit provides an excellent infrastructure for presenting persistence-based tips in our app.
However, the TipKit framework’s developers knew that handling tips requires more thought than just

invalidating an ordinary view with an image and two texts.

Let’s see how we can customize tips to our own needs. We'll start with their appearance.

Customizing our tips’ appearance

Unlike many other Ul-based frameworks Apple has provided, TipKit lets us customize the tip views
nicely. This may be because SwiftUI is a declarative framework, and expressing visual content becomes
more natural. However, in the case of TipKit, Apple understood developers’ need to align the TipKit

design with their apps.

There are two ways to customize our tip’s appearance. The first is to modify the tip’s properties and

apply basic changes without changing the tip’s layout and components.

The second way is to implement a new tip view style, which allows you to fully control the tip’s feel

and look. Let’s start with the first way: modifying the tip properties.
Modifying the tip properties

As I mentioned earlier, one of the great things about SwiftUI is its expressive framework, and we can

use view modifiers to adjust the tip’s appearance to our style.

Let’s look at the tip’s title property again:

var title: Text { Text("Save as a Favorite") }

Notice that we are not returning a string but a Text value, which is a SwiftUI view. This means we can

modify its look to look like any other SwiftUT view.

For example, we can change the title text color by applying the foregroundstyle view modifier:

var title: Text ({
Text ("Save as a Favorite")
.foregroundsStyle (.red)

}

The code example is straightforward: we took the text view and changed its look. Moreover, because
we can build a Text view by compounding multiple text views, we can mix styles and colors:
var title: Text ({
Text ("Save as a ")
.fontWeight (.1light) +
Text ("Favorite")

.fontWeight (.bold)
.foregroundsStyle(.red)

}
In this example, we took our save as a Favorite text and changed the Favorite text to be red and

bold to distinguish it from the rest of the title.

We can also perform changes to the tmage property, such as changing its colors or rendering mode:

var image: Image? {
Image (systemName :
"externaldrive.fill.badge.icloud")
.symbolRenderingMode (.multicolor)

}

different layers. In this example, we changed the rendering mode for our symbol to multicolor.

Modifying the tip properties is a great way to add a basic touch to our tip view user interface.
However, we know how crucial design is in iOS apps, and sometimes, changing colors and font style

just isn’t enough. For this reason, we can use Tipviewstyle for further customization.

Using TipViewStyle
The given tip view design only works if we need a different UI layout or an even more complex tip

view. So, we must consider a different design pattern to meet that requirement.

One of the most critical development principles I love to mention is the separation of concerns

principle - the idea that different components should have other responsibilities.

Some responsibilities are mixed up when we look at how the Tip protocol works. On the one hand, the
Tip protocol structure defines the content of our tip - the title, message, and image. On the other

hand, the structure also defines its design, which may be a different responsibility.

The fact that these responsibilities are mixed also limits how we design our tips — we can’t define a new

layout as part of the structure.

However, content and design are part of SwiftUI's nature and one of its strengths as a declarative
language. Fortunately, we have a solution for that: View Styles. A View Style is a way to define the

appearance of a view component.

Here’s an example of defining a bordered button:

Button("Sign In", action: signIn)
.buttonStyle (.bordered)

In this code example, we stay with the same view (Button) but apply a specific style.

In TipKit, we can also define our tip appearance by applying a custom view style:

struct ImageAtTheCornerViewStyle: TipViewStyle {
func makeBody (configuration: Configuration) -> some
View {
vstack {
if let title = configuration.title, let message
= configuration.message {

title
.multilineTextAlignment (.center)
.font (.title2)

Divider ()

message
.multilineTextAlignment (.leading)
.font (.body)
}
HStack
Spacer ()
Image (systemName: "star")
}
.padding ()

}

The View Style we just created takes a Tip view and returns a new view with the same content but a
different layout and design. It even adds a new view component, such as a pivider and spacer
component. The magic happens in the makeBody function, which receives a configuration parameter

that contains all the tip information.

To apply our new View Style on a tip, we can use the tipviewstyle method:

TipView (tip)
.tipViewStyle (ImageAtTheCornerViewStyle())

Now, our Tipview view has our new custom style and layout, and it looks like this (Figure 7.6):

Save as a Favorite

You can mark items as Favorite and add them to
your favorites list.

pke

Figure 7.6: Customizing our tip with TipViewStyle

It is a good practice to name the Tipviewstyle protocol with a generic and descriptive name such as

ImageAtTheCornerViewStyle, SO it will be easier to share it with the rest of our tips.

Up to now, we've learned how to define a tip, present it in different places, and design it however we
want. However, our journey with enriching our tips doesn't end here, as we can also add some user

interactions by adding actions.

Adding actions

Actions are very valuable additions to tips. In many cases, our tips suggest that the user take an action
— go to the settings screen, add a new task, or enter our app’s new edit mode, for example. What’s

better than adding a button that performs that specific action inside the tip view?

Besides the title, message, and image, the tip protocol also contains an actions property — an array of

structures describing the buttons our tip will display.

Let’s see that property in an example:

struct ChangeEmailTip: Tip ({
var actions: [Action] {
Action(id: "go-to-settings", title: "Go to
settings")
Action(id: "change-now", title: "Change email now")

}

The code example shows a changeEmailTip structure with two actions. (Notice that this tip is partial;

assume that we already implemented the rest of the properties, such as title and message.)

Each action initialization function has two parameters: title and id. The title parameter represents
the title that appears on the button. The ia parameter describes the goal of this action, and we use it to

determine which button the user tapped.

Figure 7.7 shows how the actions look in a popover tip:

21:27

{ Back Popover Tip §o}

Change your email

D, You can change your email in the
settings screen

Go to settings

Change email now

Figure 7.7: Two actions in a popover tip view

Like the rest of the properties, TipKit decides what layout to present the actions in and how the
buttons look.

Now that we have defined and presented the actions, let’s see how we respond to user selection.
Responding to an action is easy now that we have an ID for each action. The popoverTip view modifier
we discussed in the Adding a popover tip section has an additional closure that handles action
selection. Let’s see a code example for that:

Button ("Settings", systemImage: "gearshape")
gotoSettings = true

.buttonStyle(.plain)
.popoverTip (tip, arrowEdge: .top) { action in
if action.id == "go-to-settings" {
gotoSettings = true
}

}

This code example shows the exact popover tip implementation, now with the closure that handles the

selected action. Within the closure, we check for the action ID and perform the desired action (for

example, navigate to the settings screen).

It's much nicer to add these ids in static constants for clarity:

struct ChangeEmailTip: Tip {
// rest of the tip
var actions: [Action] {
Action(id: ChangeEmailTip.goToSettingsAction,
title: "Go to settings")
Action(id: ChangeEmailTip.changeEmailAction, title:
"Change email now")

}

static let goToSettingsAction = "go-to-settings"
static let changeEmailAction = "change-now"

}

.popoverTip (tip, arrowEdge: .top) { action in
if action.id ==
ChangeEmailTip.goToSettingsAction
gotoSettings = true

}

This code example shows how beautiful Swift can be when applying best practices!

Speaking of beautiful, we discussed how to design our tips using Tipviewstyle, so we can also design
our actions using the same technique:
List (configuration.actions) { action in
Button (action:
// perform action

1)

action.label ()

}

In this code example, we create a list of buttons, each handling a different action. We need to add that

code snippet to the makeBody function we learned about in the Using Tip ViewStyle section.

At this point, we've learned so much about tips! The good news is that we have more surprises up our

sleeves. Let’s reveal them and discuss the rules feature.

Adding tips rules

Throughout this chapter, we have focused mainly on the Ul side of displaying tips so far. However, we
already know that tips are more than just nice views — they must correspond to some app logic or
states. For example, maybe there are tips that we present when the user is logged in. In a photo app, we

can show a tip suggesting adding an album after the user takes a certain number of photos.

Tips must often be made aware of users” flows and states. That’s why TipKit also contains a feature

called rules.

There are two rule types:

« Based on state: Show or hide the tip based on a specific state. The user logged in, performed a particular action, and more.
« Events tracking: Show or hide the tip based on the number of events the user performed. For example, if the user entered a specific

screen in the settings a few times in the past week, we could offer for them to create a shortcut for that screen.

Let’s start with adding a rule based on a state.

Adding a rule based on a state

Creating rules based on a state is the common way to establish tip display logic. What is a state? A
state can be an authentication state (is the user logged in?), unlocking goods, features usage, and

more.

There are three steps for implementing a rule that is based on a state:
1. Adding a parameter: We need to add a variable on which the rule will be based.
2. Define the rule: The rules are defined inside the tip and should consider the parameter we discussed.
3. Connect the parameter to the app logic: If we want the rule to be based on our app’s real state, we need to maintain and
synchronize it with the app state.
Believe it or not, implementing a rule-based tip is even easier than it looks! Let’s try to build a tip

encouraging our users to use a premium-only feature such as changing the app theme.

Adding a parameter

The rule needs to rely on persistent data that the app can easily modify to track an app state. To do

that, we use the eparameter macro to add a tracking state variable to our tip.

WHAT IS A MACRO?

Amacro is a Swift feature that helps the compiler generate code based on the current code and parameters. You can read about macros in
Chapter 10.

Let’s add a parameter called ispremiumuser to track premium eligibility:

struct ChangeAppThemeTip: Tip {
// rest of the tip implementation
@Parameter
static var isPremiumUser: Bool = false

}

Expanding the macro reveals a simple implementation:

static var $isPremiumUser: Tips.Parameter<Bools> =
Tips.Parameter (Self.self, "+isPremiumUser", false)

{
get {

}

set {

}

SisPremiumUser.wrappedValue

SisPremiumUser.wrappedValue = newValue

}

Let’s delve into the macro implementation. Since TipKit wants to work with a generic type, the macro
creates another variable called $isPremiumuser of the Tips. Parameter type (based on Boo1) and a

default value of £alse (as initially defined in our static variable).
The macro also creates a getter and a setter so our tip can respond to app state changes.

However, the macro handles another thing that helps us: making our parameter value persistent. In
this case, the answer to the question “Is the user premium?” is probably persistent anyway. However,
there are cases where it's not that obvious. For example, feature usage tracking is not normally

persistent.

Now that we have a parameter let’s add our first display rule.

Defining our display rules
Are we defining display “rules”, in plural?

Yes! TipKit supports multiple display rules to support more complex situations. However, first, let’s
start with one tip:
struct ChangeAppThemeTip: Tip {
@Parameter
static var isPremiumUser: Bool = false
var rules: [Rule] {
[

#Rule (Self.$isPremiumUser) {
$0 == true
}

}

In this code example, we use a macro to build a data type called rule that contains a predicate

expression. That predicate expression compares the given type to a specific value.
In this case, we compare the $isPremiuntUser value to true.

Now, let’s go back to the rules variable. We can add more rules that support our tip display logic.
TipKit performs an anp operator between the different tips, and if the result is true, then the tip is

displayed (unless the user or the app dismisses it, obviously).

How can we modify the value the rule is based on? Lets see.

Connecting the parameter to our app logic

We need to connect the tip parameters to our app logic to finalize our work. Notice that the parameter
is a static variable. This means that we can modify it from anywhere in our app, even if we don't have a

reference for the tip instance.

Let’s see an essential parameter modification:

let tip = ChangeAppThemeTip ()
var body: some View {
vstack {
Button ("Change isPremium parameter") {
ChangeAppThemeTip.isPremiumUser. toggle ()
}

TipView (tip)

}

This code example shows a basic UI with a button that toggles the static isPremiumuser variable,
which we created in our tip earlier. Toggling that value also shows and hides the Tipview view down

the VStack.

However, adding a button that toggles a tip is not a real-world example of using a rule parameter. A
more practical example would be connecting it directly to the user’s premium state using a combine
stream - something like the following code:
let premiumManager = PremiumPurchaseManager ()
let premiumStatusSubscription =
premiumManager .premiumPurchasePublisher

.assign(to: \.isPremiumUser, on:
ChangeAppThemeTip.self)

In this code example, we have a premium purchase publisher and we assign its output to our tips

isPremiumUser parameter. This is a more elegant way to link the rule logic to our app.

Now let’s discuss the other type of rules — events.

Adding a rule based on events

When we display a tip based on a state, it’s usually only displayed when the user can use a particular
feature. However, there are cases when we want to display a tip when we think the user is ready to take

our app to the following usage level.

For example, if we create a music app and the user adds a few songs, maybe it’s a good idea to tell
them about making a playlist. Or, if we are working on a dating app, maybe it is worth suggesting

modifying the search filter if the user hasn’t chosen any of the profiles viewed.

For these types of tips, we can create a rule based on tracking events. The idea is to define an event
representing the user’s relevant action. For example, I can add a task, view a profile, and more.

Afterward, we create a rule based on the number of events tracked within a time frame or generally.

Let’s see a code example for a tip suggesting the user add a list of to-dos. We'll start by defining our tip:

struct AddListTip: Tip {
static let didAddATaskEvent = Event (id:
"didAddATaskEvent")
var rules: [Rule] {
#Rule (Self.didAddATaskEvent) {
$0.donations.count > 3
}

}

The tip goal is to suggest the user add to a list of to-dos. We create an event called didappTaskEvent

that helps us track the number of times the user adds a new to-do.

The second thing we do here is to create a new rule that returns true if the number of tracked events

exceeds three.
This is a different rule constructor that handles event tracking instead of a state.

The last piece of the puzzle shows the tip and track of an event:

struct EventRuleTipExample: View {
let tip = AddListTip()

@State var todos: [Todo]l = []
var body: some View {
vStack {

TipView (tip)

List (todos) { todo in
Text (todo.title)

}

Spacer ()
Button ("Add task") {
todos.append (Todo (title: "New Task"))

Task{ await
AddListTip.didAddATaskEvent.donate () }

}

The event tracking operation is referred to as donate (), while the total number of tracked events is

known as donations.

We can also check for events tracked in a specific time range:

$0.donations.donatedWithin(.days (3)) .count > 3
$0.donations.donatedWithin (.week) .count < 3

This example checks whether the number of events exceeds three in the last three days or one week.

Now, it’s important to distinguish between the number of events tracked and just checking the

database for the number of to-dos.

We could easily check the user’s number of to-dos in their database and change that to a state-based
rule. However, this solves a different use case — not the number of times the user added a task with the

app, but rather the number of tasks the user has in general.

Grouping tips with TipGroup

When our app becomes more extensive and feature-rich, handling a large set of tips can become
cumbersome. Trying to coordinate all these tips using rules can lead to a situation wherein tips appear

outside the intended order and even together.

To address that, we can use the Tiperoup class to group tips and present them individually in a

particular order.

Let’s see an example for a Tiperoup class usage:

@State var tips = TipGroup (.ordered) {
FirstTip ()
SecondTip ()

}

var body: some View {
Button ("Settings") {
} .popoverTip (tips.currentTip)

In this example, we created a state variable called tips of the TipGroup type. We passed .ordered for
its priority parameter and added two tips using its builder. In the code itself, we attached our TipGroup

instance to a button using the popoverTip view modifier, passing the group’s current tip.

Using the .ordered parameter ensures that the tips will appear in the order in which we added them to

the builder. TipKit will show the next tip once all the previous tips have been invalidated.
The other parameter we can use is firstavailable, which shows the next tip that is eligible for display.

Grouping tips together can help manage a large collection of tips in our project. However, looking at
the code example again, we can see that there might be a problem with the way we implemented the
TipGroup in the view. Imagine we have a TipGroup with a settingsTip type and a profileTip type.

When using the TipGroup for settings and profile buttons, we can’t control which tip appears where.

To solve that, we can cast the currentTip variable to the desired tip type. Let’s see that in the following
code:
@State var tips = TipGroup (.ordered)

SettingsTip ()
ProfileTip ()

}
var body: some View {
Button ("Settings") {
} .popoverTip (tips.currentTip as? SettingsTip)
Button ("Profile")
} .popoverTip (tips.currentTip as? ProfileTip)

}

In this code example, we have a TipGroup with two tips — for the settings button and for the profile
button.

When we use the popoverTip view builder, we cast the currentTip instance to the corresponding type

according to the button. This technique takes advantage of how the popovertip signature looks:

public func popoverTip(tip: (any Tip)?...)

Since popoverTip accepts nil as an argument, we can ensure that only relevant tips will appear from

the TipGroup.

Rules are only one aspect of defining the appearance logic. Another crucial element is determining its

frequency. Let’s see how to customize that as well.

Customizing display frequency

In the previous section, we discussed creating display logic for our tips using rules and tip groups.
However, tips can overwhelm users; there’s a fine line between helping the user and disturbing them.
Adjusting all the rules to set a reasonable limit on the number of tips the user sees can be challenging.

For that problem, we can manage the frequency at which our tips display.

Let’s start with setting the max display count for a tip.

Setting the max display count for a specific tip

The first and essential thing we can do is set the maximum number of a specific tip type that can be

displayed.
We do that by adding a new variable to our tip called options:

struct AddListTip: Tip {
var options: [TipOption] {
Tips.MaxDisplayCount (2)
1

}

In this code example, we use the MaxDisplayCount static function of the Tips namespace. That

definition means that the tip will be displayed a maximum of two times, and afterward, it will be

invalidated, overriding the rest of the rule’s logic. That’s a great way to ensure that a specific tip doesn’t

overwhelm users.

However, there’s another excellent way to ensure a calmer user experience: display frequency.

Setting our tips’ display frequency
We just learned how to limit a particular tip to a certain number of appearances. Another way to
handle tip appearance is to define its frequency.

Let’s look at the following code:

struct MyApp: App {
init () {
try? Tips.configure([.displayFrequency(.daily)])
1

}

The code example shows how we can limit the total number of tips displayed to one per day.

The.displayFrequency (.daily) expression means that TipKit will show no more than one tip per day.

Obviously, we have additional frequency options: hourly, weekly, monthly, and immediate.

We can configure specific tips to ignore the system display frequency:

struct AddListTip: Tip {
var options: [TipOption] {
Tips.IgnoresDisplayFrequency (true)
}

}

In this code example, the addristTip tip ignores the system definition for general display frequency.

Setting the max display count for a specific tip and defining a display frequency for all tips is a great

way to fine-tune the user’s tips experience.

Summary

In this chapter, we discussed the importance of TipKit, added our first tip, customized its design and
behavior, learned how to manage tips better by grouping them, and minimized their appearance by

setting their display frequency. By now, we are fully prepared to implement TipKit in our apps.

TipKit touches on a severe app aspect: engagement and feature exploration. It looks like it supports

many product requirements!

In the next chapter, we'll discuss how to work seamlessly with one of our most important data sources:

the network.

8

Connecting and Fetching Data from the Network

Finding an app that isn’t connected to a server is extremely difficult. Most apps don’t operate alone—
they need to authenticate their users, fetch information, and allow their users to perform actions that

eventually will be synced back to the server.

Due to this, it is important to understand how networking works—not how HTTP works in general,
but how iOS apps work with the server efficiently and simply.
In this chapter, we will cover the following topics:

« Understanding mobile networking

« Handling HTTP requests, including their responses

o Integrating network calls within app flows

 Exploring how Combine works with networking

Let’s start understanding how the network fits into our app architecture.

Technical requirements

For this chapter, you must download Xcode version 15.0 or above from Apple’s App Store. Search for
Xcode in the App Store and select and download the latest version. Launch Xcode and follow any
additional installation instructions that your system may prompt you with. Once Xcode has fully

launched, you're ready to go.
You’'ll need to run the latest version of macOS (Ventura or above).

You can also download the sample code from the following GitHub link:

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%208

Understanding mobile networking

Working with the network is a crucial part of developing apps for iOS. Understanding how the
network fits into our app architecture is essential, but what does it mean? Watching simple tutorials

about performing a urRLsession request is fine, but real-world apps don’t work that way.

Before we dive any deeper, let’s recap what a basic app architecture looks like:

Ul layer: This is responsible for presenting Ul to the user, including responding to user inputs. The Ul layer consists of the

SwiftUI/UIKit views and view models.

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%208

« Business logic: This is responsible for manipulating data while managing the basic application logic.

« Data layer: This is responsible for storing and retrieving data entities related to the business logic.

I guess I'm not surprising you here with this three-layer architecture, as most mobile apps work in a

similar architecture.

When we begin to understand where the network job fits, we will have to look at the data layer and, in
some specific cases, the business logic layer (for example, when working with analytics or third-party
libraries). However, why do we need to look at the layers? To understand why our network activity is

relevant for the data layer, let's go over our main network goals:
« Syncing information to and from our backend
 Handling authentication
« Logical activity that requires a server
In most apps, networking is needed to sync data with our backend. The data layer functions as the

primary repository of truth for entities. Attempting to access entities directly from the network in

other layers will undermine this principle.

Figure 8.1 shows a basic app architecture and the network location:

Business logic

Data layer
Data store | Network

Figure 8.1: Basic app architecture

In Figure 8.1, we can see that the network is one of the components that build up the data layer. The

basic idea of most apps is for the network to become a data source and fill the app’s data store.

For example, in a music app, the network layer might reach out to the backend, fetch albums and
songs, and store them in local storage such as Core Data. The network layer is also built upon different

components to function correctly.

We can think of network operations as a factory production line. We request a piece of information
and take care of the returned data package, transferring it through several stages until we properly

store it in our local store or present it.

Before we review the stages a data package can undergo, let’s try to build a network request together.

We'll start by reviewing the basic HT TP request methods.

Handling an HTTP request

An HTTP request is a message the client sends to a server to request information and perform an
action. The server processes that request and returns a response to the client. Clients indeed perform
HTTP requests asynchronously to leave the main thread free. However, the connection between the
client and server is synchronous as the client waits for the server’s response to complete the request

operation.

The primary HTTP request component is the request method, which indicates the request’s main goal.

Let’s go over some of the basic HTTP methods now.

Basic HTTP request methods

The REST API is based on the idea of a request-response style, and it’s a one-directional
communication with our backend. The REST API has eight methods to use when communicating

with the backend. However, in most cases, we will use the following four methods:

o GET: This is used to retrieve information only from the server. It should be a safe call, meaning that performing a GET request

shouldn’t affect the backend data.

o POST: The POST method is often used to submit data to the backend. In many cases, the POST method performs changes in the

backend data store or changes a user state.

o PUT: We use PUT to create or update objects. Unlike the POST method, PUT is considered idempotent. We can send multiple

identical PUT requests and expect the same effect as sending one request.

o DELETE: As the name states, we use DELETE to delete objects. Obviously, we can use POST to do that, but with DELETE, we are

aligned with the standards.

It is worth mentioning that, technically, we can even use cer to make changes to the server. However,

the proper method ensures predictability and reliability and is aligned with the REST principles.

To perform a basic HTTP request, we should first be familiar with the vrLsession class.

Working with URLSession

We can use a class called urLsession to perform and manage network requests. urLSession is part of

what Apple calls the URL Loading System, which in turn is part of the Foundation framework.

The urLsession class is responsible for coordinating different URL requests in our app. Let’s see how

to perform a basic GeT response using urLSession:

let urlString =
"https://jsonplaceholder.typicode.com/posts"

if let url = URL(string: urlString)
var request = URLRequest (url: url)
request.httpMethod = "GET"
let session = URLSession(configuration: .default)
let task = session.dataTask(with: request) { (data,

response, error) in

}

task.resume ()

}

This code example creates an object called urLRequest based on a particular URL. The urLRequest
class encapsulates the information we need to perform a specific URL request. It usually consists of

the following information:
o The request base URL
o The request method - GET, POST, PUT, or DELETE

o The request HTTP headers

Notice that the urRLRequest structure doesn’t perform the actual HTTP request or contain its response
information. The urLsession class is responsible for conducting and managing the different HTTP

requests.

There are two ways to initialize a uRLSession instance:

o We can call the static shared property and use it as a singleton. We do that if we want to simplify our implementation without

needing to customize how we handle requests or have different requirements for different areas in the app:

let session = URLSession.shared

« If we need more flexibility, we can create an instance of URLSession (like in the last code example) and initialize it with our own

configuration.

A configuration object allows us to fine-tune our requests better. For example, we can define each
request as containing additional headers, setting the timeout and caching, or even cookie acceptance

policies.

Here’s a code example for setting up a urLsession class with a specific timeout duration and no
caching:
let configuration = URLSessionConfiguration.default
configuration.timeoutIntervalForRequest = 10
configuration.requestCachePolicy =

.reloadIgnoringLocalCacheData
let session = URLSession(configuration: configuration)

In this code example, we created a configuration object, set its timeoutIntervalForRequest value to

10, and defined the cache policy to be ignored.

When we work with a shared urLsession object, there’s no way to customize its configuration, and it

will use the default one.

Now that we know how to perform a basic GeT or post request, let’s see what we can do with the

response.

Handling the response

The request response is handled using three stages: error handling, serialization, and data storage. We
need to handle each one of the stages carefully and even consider having a dedicated class or function

to simplify the process and separate the concerns.

As mentioned, the first stage is error handling. Let’s discuss it, as it is a crucial part of networking.

Implementing error handling

I believe error handling wouldn’t get a whole section in many frameworks. It is usually a

straightforward topic: we perform a task, something goes wrong, and we receive an error.

However, with networking, we are working in a volatile environment where many things have the

potential to fail the process.

Here’s a partial list of things that can go wrong:
o There is no network
« There’s a network, but the device cannot reach the internet
o The device can reach the internet but with a very slow connection
o We have a stable connection, but the request cannot reach the backend

o The request found the backend, but it didn’t respond

The error list can go on and on, ranging from network issues to security to server errors.

To simplify the idea, we can divide the errors into two main groups: network-related issues and

server-side problems.

To understand the difference between network and server-related issues, let’s have another look at

how we created a data task:

let task = session.dataTask(with: request) { (data,
response, error)

We can see that the data task response contains three parameters — data, response, and error.

Network-related errors are part of the error object, and server-related errors are mostly part of the

response object and sometimes even part of the data object.

To handle a network error, we should look into vRLError:

if let error = error as? URLError {
switch error.code ({
case .cannotFindHost:
// notify the user.
default:
print ("Error: \ (error)")
}

return

}

In this code example, we performed a switch statement to understand our network error. In this case,
we decided to handle one use case of cannotFindsost. However, there are at least 20 different error
codes we can handle. To read the full and updated list, we should look at Apple documentation at

https://developer.apple.com/documentation/foundation/urlerror.

Unlike network-related errors, server-related errors are more complex. First, we are dependent on
another partner—our server. How the server implements its error-handling logic significantly

influences how we handle it in our app.

Let’s understand that by examining the server response:

if let httpResponse = response as? HTTPURLResponse {
switch httpResponse.statusCode {
case 200..<300:
print ("Success:
\ (httpResponse.statusCode) ")
case 400..<500:
print ("Client Error:
\ (httpResponse.statusCode) ")
case 500..<600:
print ("Server Error:
\ (httpResponse.statusCode) ")
default:
print ("Other Status Code:
\ (httpResponse.statusCode) ")

1
} else {

print ("Invalid HTTP Response")
}

We first cast the response into the HTTPURLResponse type, representing a general URL response.

The response includes a status code, which the server sends back to us. In most cases, the code will be
part of the following three groups:

e 200..299: The server successfully responded to our request

e 400..499: The server returns an error due to a bad client request

e 500..599: The server returned an error due to an internal server error

In short, there are three cases — everything went well, it is the client’s fault, or it is the server’s fault.

https://developer.apple.com/documentation/foundation/urlerror

However, in real life, things are more complex. Sometimes, the server returns a response code of 200
(success) but includes an error in the response data. There is nothing wrong with doing that - the

server can choose how to handle problems. It's our responsibility to parse the response correctly.

If we need to parse the response ourselves to extract the error, it is better to create a function that

receives the data, response, and error parameters and throws an error in case it finds one:

func handleResponse (data: Data?, response: URLResponse?, error: Error?) throws {
if let error = error {
throw error

guard let httpResponse = response as? HTTPURLResponse
else {
throw NetworkingError.invalidResponse

switch httpResponse.statusCode
case 200..<300:
if let responseData = data {
if let errorData = try?
JSONDecoder () .decode (ErrorResponse.self,
from: responseData)
throw NetworkingError.dataError

}

case 400..<500:
throw NetworkingError.clientError (statusCode:
httpResponse.statusCode)
case 500..<600:
throw NetworkingError.serverError (statusCode:
httpResponse.statusCode)
default:
throw NetworkingError.otherError

}

This long handleresponse function does precisely what we've discussed. In case of a successful

response, it checks the error object, the response code, and the data itself.

To use that function, we need to call it within the response closure:

let task = session.dataTask(with: request) { (data,
response, error) in

do {

try handleResponse (data: data, response: response,
error: error)

} catch let error ({
print ("Error: \ (error)")

}

}
The great thing about the hand1eresponse function is that we can ensure that we can continue

handling the response data after the try statement because we have dealt with any error.

If you look again at the hand1leresponse function, you'll see that we decode the response to look for an

€Iror.

Deserializing the response is a major step in handling a network response. Let’s discuss it a little bit

further.

Deserializing a network response

In most apps, the response we get from the server is based on JSON data structure. JSON is an

industry standard for delivering network responses along with XML.

Swift has built-in support for parsing JSON structures into Swift structures, using tools such as the

Codable protocol and ssoNpecoder classes.

In theory, it sounds perfect—all we need to do is decode our response to a data model. However, there

are more factors we need to consider:

o Supporting general responses: Not all responses are data models. There are network responses that include general messages. For
one, in our handleResponse function example, we saw a response that may have contained an error message. This means that

when we think about our data models, general network responses should be among them.

« Assuming there’s always an object array: Decoding a single object is straightforward, but in many cases, we also need to handle
decoding an array of objects. That sounds trivial, but supporting both formats can be a hassle. To simplify the decoding process, it

is better to always support an array of objects, which is a decision that we need to coordinate with our backend developers.

« Mixed structures: A response can contain different model types and even nested data structures. This is not always trivial, so our

data structures must be more dynamic and modular to support various responses.

o Model transformations: Our local app models are structured to be efficient and convenient to use with the business logic and UI
layers. However, who said that the backend response structure is aligned with what is suitable for our app? This means we must

transform the response data model to our local data model.

Deserializing data models is indeed a complex task, and trying to match our data models to the
response structure we receive from our backend is only sometimes the best idea. Remember that our

data models must suit our app needs and not necessarily follow the backend methodology.

Let’s take a simple JSON received from the server:

{

ridr: 1,
"name": "John Doe",
"email": "john@example.com"

That’s a contact structure. However, we want to use different names in our app so we can use the

codingkey protocol to ensure we perform the transformation correctly:

struct Contact: Codable ({
let id: Int
let fullName: String
let userEmail: String
// Define custom coding keys to match JSON keys
private enum CodingKeys: String, CodingKey {
case id

case fullName = "name"
case userEmail = "email"

}

Decoding the server response using the contact structure now becomes much simpler:

let errorData = try? JSONDecoder () .decode (Contact.self,
from: responseData)

In this example, we map the name value to fullName and email to userEmail. We decode it using the
JsoNDecoder class. Understanding the codingkey protocol is a crucial key to decoding server

responses.

There are cases where the whole structure of the server response is entirely different than our data
models, and in those cases, we need to create a dedicated structure to parse the response. However,

sometimes, we can still use our data model as part of the structure. Let’s look at the following example:

struct ServerResponse: Codable {
let responseID: String
let timestamp: String
let orgID: String
let contact: Contact

}

let jsonString = """

{

"responseID": "12345",
"timestamp": "2024-03-25T12:00:00Z",
"orgID": "5678",
"contact": {
nide: 1,
"fullName": "John Doe",
"userEmail": "johneexample.com"

}

let jsonData = jsonString.data(using: .utfs8)!
let response = try
JSONDecoder () .decode (ServerResponse.self, from: jsonData)

In this code example, the server returns additional information besides the contact object. So, we can
create a dedicated data structure for the response—serverresponse (in this case). In addition to
general information, the serverresponse struct contains the contact struct. So, we can see a modular
approach here—we can parse our server response using codable and still use our data model objects

to receive the information.

The next step is to store our data model in our data store.

Building a data store

A disclaimer: not every network call requires us to store the results in a data store. For instance,

authentication and logic calls have different goals. However, this chapter will focus mainly on data-

related calls responsible for building our local data store.
That leads us to our next point: what is the role of the data store?

So, a data store is a structured mechanism for managing and storing data that serves the application’s

main business logic and UL

Unlike many online examples, the application business logic usually doesn't work directly with the
network responses — these need to be adjusted and saved in our store, which acts as the UI data

source.

Let’s look at Figure 8.2:

Business Logic

Data Layer

Data Store |« Network Layer

Figure 8.2: Working with the datastore

Figure 8.2 shows how the data layer works directly with the data store, as the network layer fills the

data store with more information.

The data store doesn't have to be persistent—that’s an engineering decision. However, in most cases, it
is a structured store. A structured store has pre-defined models, relations between entities, and often
even query capabilities. These characteristics distinguish the data store from simply caching the

network responses.

To follow the separation of concerns principle, it is better to have dedicated classes to handle each step

of the process.

First, we’ll create a patastore class:

class DataStore {
private var contacts: [Contact] = []
func updateContacts (with newContacts: [Contact]) {
contacts = newContacts
}

func getAllContacts() -> [Contact] {
return contacts
}

}

The patastore class not only stores the data but also has methods that help store and retrieve entities.

Assuming we already have a network handler from the previous examples, we are now going to create

a sync class that coordinates the process of fetching the data and storing it:

class SyncManager {
private let dataStore: DataStore
init (dataStore: DataStore)
self.dataStore = dataStore
}

func syncData() {
NetworkHandler.fetchData { result in
switch result
case .success(let data):
do {
let contacts = try JSONDecoder () .decode ([Contact] .self, from: data)
self.dataStore.updateContacts (with: contacts)
print ("Data synced successfully")
} catch {
print ("Error decoding data:", error)
}

case .failure(let error):
print ("Error fetching data:", error)

}

The syncManager class uses the NetworkHandler class to fetch the information from our backend,
parses the results into contact entities, and stores them in our data store. Using this design pattern, we

can easily replace the data store implementation to be persistent without modifying the other classes.

Now that we have a data store, let’s try to understand how to make our app more efficient.

Integrating network calls within app flows

We already know how to perform a network call, parse it to data objects, and create a data store. We
also know how to handle errors, and we learned that it's important to separate the concerns into

different classes and components.

However, it feels like a technical discussion. Performing a URL connection in iOS is one of the most

basic tasks. Let’s try to upgrade our discussion and discuss methodology.

First, we should think of streaming data from the network as an atomic task in our app’s data
synchronization mechanism. It’s up to us to decide when to call our server for more data. From our
discussions, it looks like we need to contact the server just before we want to display the information,

but it doesn’t have to be like that.

Let’s discuss the different strategies we can use when working with our backend. We'll start with the

just-in-time fetching technique.

Just-in-time fetching

The just-in-time fetching technique is very common and also the simplest one. With it, we don't
present anything on the screen before we get a response from the server. Instead, we show a loader

indicating that we are fetching data.

In just-in-time fetching, we don't preserve the information in a data store; instead, we store the

information in the view state or the view model. Heres a simple example of just-in-time fetching:

import SwiftUI
struct ContactsView: View {
@State private var contacts: [Contact] = []
@State private var isLoading = false
var body: some View {
NavigationView {
List (contacts) { contact in
VStack (alignment: .leading) {
Text (contact.name) . font (.headline)
Text (contact.phoneNumber) . font (.subheadline)
}
}
.navigationTitle ("Contacts")

.onAppear {
fetchContacts ()
1

.overlay {
if isLoading {
ProgressView ("Loading...")
}

}
}
private func fetchContacts() {
isLoading = true
NetworkHandler () . fetchData { fetchedContacts in
contacts = fetchedContacts
isLoading = false

}

In this code example, we have a list that is based on the state variable of contacts. When the view
appears, we call the fetchcontacts method to fetch the list of contacts and, in the meantime, show a

loading message.

Besides its simplicity, the just-in-time technique is great for apps that must ensure that the data they
display is up to date, such as financial apps or live sports scores. The downside here is that we provide

a poor user experience and depend on the network state.

If possible, we should pick a slightly better technique, often called read-through cache.

Read-through cache

The read-through cache technique is also a popular way to present data to the user, even though most

developers are unaware of its name.

Using the read-through cache approach, we display our local data to the user while going to our

backend to refresh our data.

Let’s see a code example for that:

import SwiftUI
struct ContactsView: View {
@State private var contacts: [Contact] = []
var body: some View {
NavigationView {
List (contacts) { contact in
VStack (alignment: .leading) {
Text (contact.name) . font (.headline)
Text (contact .phoneNumber) . font (.subheadline)
}
}
.navigationTitle ("Contacts")
.onAppear {
loadContacts ()
}

}
}
private func loadContacts() {
contacts = loadFromCache ()
NetworkHandler () . fetchData { fetchedContacts in
contacts = fetchedContacts
saveToCache (contacts: fetchedContacts)

}

In this code example, we load the contacts from the cache (or from the local store) when the screen
appears and then go to the network to refresh our data set. The read-through cache technique is great

when quick access to data is crucial because it is not up-to-date, for example, in news or e-commerce
apps.

You've probably noticed that both the just-in-time and read-through cache techniques require us to

load the page information fully from the backend, regardless of the amount of information we have.

Now, what if we know upfront that we have a huge number of records to fetch, so big that it can even

cause our request to time out? In this case, we can choose the incremental loading technique.

Incremental loading

There are cases wherein we can expect to fetch a vast number of records. A social feed, for instance,
can have an infinite number of posts. Well, it's not really infinite, but we can relate to that number as

infinity.
When the number is too big to fetch in one request, we can use incremental loading.

With incremental loading, we fetch a set of records each time with each request and store the last

record index for the next time.

Here’s an example of incremental loading:

class Incrementalloader

var currentPage = 1
let itemsPerPage = 10
var contacts = [Contact] ()

func loadNextPage () {
guard let url = URL(string:
"https://api.example.com/contacts?page=\ (currentPage) &limit=\ (itemsPerPage)") else
print ("Invalid URL")
return
}
let task = URLSession.shared.dataTask (with: url) { [weak self] (data, response,
error) in
guard let self = self else { return }
do {
let newContacts = try JSONDecoder () .decode ([Contact] .self, from: data)
DispatchQueue.main.async {
self.contacts.append (contentsOf: newContacts)
print ("Fetched Contacts: \ (newContacts)")
self.currentPage += 1
}
} catch {
print ("Error decoding JSON: \ (error)")
}
}

task.resume ()

}

In this example, we have a class named IncrementalLoading, which is responsible for loading the next
set of records with the function named 10adNextpage. Incremental loading is also called pagination
loading because it mimics the concept of paging through a book. In our IncrementalLoading example,
we have an index that points to the last record index fetched, and a variable named itemsperpage that

defines how many items to fetch on each page.

While incremental loading solves handling a large amount of data, there are several factors we need to

consider:

« Complexity: Incremental loading is considered a relatively complex design pattern, mainly because we build our data collection in
stages according to user interaction. For example, one classic way to implement incremental loading is by having a SwiftUI List
view or a UIKit TableView view. In these cases, we would like to fetch the next set of records when the user reaches the bottom
of the list. However, things can become complex when we allow the user to edit or delete records since that can affect the index

variable.

« Memory consumption: It’s true that incremental loading is optimized to handle a significant amount of information. However, we
are still talking about storing a large amount of information in our memory. While the user is paging through our data, our local
data store can become bigger, mainly if it contains rich media such as images and videos. It is essential to have a mechanism that

can release records in case of high memory usage.

« Contextual relevance: We need to remember that our chosen design pattern needs to support a specific product need. Incremental
loading is relevant in cases wherein we don't need all the data at once. Social feeds or search results are great examples of data that
can be browsed chunk by chunk. However, in cases where the user requires immediate access to all the data, such as in data

analysis, incremental loading might not be suitable.
Considering the different factors mentioned, we understand that, similar to many design patterns in
computer science, incremental loading presents a tradeoff between different aspects such as

performance, complexity, experience, and more. It’s up to us to choose the right design pattern that

fits our needs.

The three design patterns we discussed now require different endpoints for different types of data and
other screens, which sounds logical. However, there’s another way to handle data that changes over

time and still provides an amazing experience to the user — delta updates.

Full data sync with delta updates

Before we discuss full data sync with the delta updates method, let’s talk about problems that we have
with multiple endpoints:
« Efficient network calls: The need to request the same data repeatedly, even if nothing has changed, seems inefficient. We can use the

cache to present previous results, but that only solves performance issues. We still need to perform the same request to understand

whether there are updates.

« Incomplete database: Each endpoint retrieves different data and sometimes different entities. We know that in many cases, the
entities are related (such as to-one and to-many relationships), and having multiple endpoints to fetch them probably means our
data won't be complete. That seems acceptable — we're focused on a mobile app and not a server. However, having an incomplete
data store can result in a poor experience. Users may encounter updated information on one screen, navigate to another, and view
outdated data while waiting for the screen to refresh from the server. If both screens contain related data, it can result in a poor

experience.

« App performance: We often believe that performance is only about CPU and Swift code efficiency. However, our devices are strong
enough to handle most tasks without a hiccup. In contrast, network requests cause users to wait even if they have the latest

hardware. Having a network call on each screen greatly impacts the user experience.

Delta updates are a solution that can handle some of the problems we described with endpoints in the
previous section. With delta updates, we fetch all the information at the app’s initial launch and, from

this point, retrieve only the changes.

We do that by storing a bookmark representing our data’s last updated timestamp. When we ask the
server, “Do you have any updates for me?”, we send this bookmark, get the new changes (if any),

receive a new bookmark, and store it.

Here’s a code example for contacts delta sync. We start with the synccontacts function:

class ContactsSyncManager {
let userDefaults = UserDefaults.standard
let lastUpdatedKey = "lastUpdatedTime"
let syncEndpoint = URL(string:
"https://example.com/api/sync/contacts") !
func syncContacts ()
var request = URLRequest (url: syncEndpoint)
request .httpMethod = "POST"
request.addValue ("application/json",
forHTTPHeaderField: "Content-Type")
let lastUpdatedTime = userDefaults.double (forKey:
lastUpdatedKey)
let requestBody = ["lastUpdatedTime":
lastUpdatedTime]
request.httpBody = try?
JSONSerialization.data (withJSONObject:
requestBody)
URLSession.shared.dataTask (with: request) { [weak
self] data, response, error in
self?.processDeltaUpdates (response: response)
} .resume ()

}

The code example does exactly what we described earlier—it saves a bookmark called
lastUpdatedDate. Initially, we fetch all the data and save the new 1astupdatedpate value we get from
the server. The next time we perform the sync operation, we get only the changes. Now, let’s
ankﬂnenttheprocessDeltaUpdatesfunCﬁon:
private func processDeltaUpdates (response:
ContactsDeltaUpdateResponse) {

// Here you can handle the new, deleted, and updated contacts as needed
print ("New Contacts:

\ (response.newContacts.count) ")
print ("Deleted Contacts:
\ (response.deletedContacts.count)")
print ("Updated Contacts:
\ (response.updatedContacts.count) ")
userDefaults.set (response.lastUpdated, forKey:
lastUpdatedKey)

}

The processbeltaUpdates function receives a response that contains only the changes that have

occurred in the server since the last sync.

That’s why the response is structured into three groups: deleted, new, and updated. With each one, we

need to handle the data differently.

Some critical notes we need to consider here are as follows:

o Extremally large data sets: The delta updates pattern is not relevant for very large data sets. For example, a social app feed can have

millions of records, and fetching all of them from the start is impossible. For that issue, we can use pagination.
« The initial loading can be long: Since we fetch all the data at the beginning, we need to deliver a corresponding user experience.

o Deleted items: Syncing deleted items is always a crucial topic. We need to actively delete items that no longer exist, so the response

from the server should contain items we need to delete.

« Sync triggers: Since we perform the sync operation at the beginning, it looks like it’s the only time we should do that. However,
there are more occasions when we need to refresh our data. For example, when we perform data changes such as calling the server
to add a new item or receiving a push notification, we should think about the different cases when something can change in our

server during the app runtime and try to refresh our data.

It's important to understand that none of the solutions are perfect. Sometimes, it is a good idea to
combine different approaches—for example, use delta sync in general, but maybe use pagination for a

specific screen.

We should consider the different approaches as a toolbox with several tools, each suitable for various

problems or data structures.

Now that we understand how to handle requests and use different patterns to incorporate the calls in

our app flows, let’s see another way to handle networking in iOS.

Exploring Networking and Combine

Networking is a great place to start if you haven't worked with Combine. Combine is a framework that
declaratively handles a stream of values over time while supporting asynchronous operations.

Based on that description, it looks like Combine was made for networking operations!

In this chapter, we are not going to discuss what Combine is - for that, we've got Chapter 11. However,

we are going to discuss it now because Combine is a great way to solve many networking operations

problems.

Since Combine is built upon publishers and operators, it is simple to create new publishers that stream

data from the network.

Let’s try to request the list of contacts from previous examples using a Combine stream. We'll start

with creating a publisher that performs data fetching from the network and publish a list of contacts:

class ContactRequest {
func fetchData() -> AnyPublisher<[Contact], Errors {
let url = URL(string:
"https://api.example.com/contacts") !
return URLSession.shared.dataTaskPublisher (for:
url)
.map { $0.data }
.decode (type: [Contact] .self, decoder:
JSONDecoder ())
.eraseToAnyPublisher ()

}

The publisher utilizes URLSession’s dataTaskpPublisher method to execute the network request and
publish the retrieved data. We then extract the data using the map operation and decode it into a list
of contact items. If something goes wrong, the publisher will report an Error. We wrap this function

in a class named contactRequest to maintain separation.

Now, let’s create a small patastore class so we can store the results and publish them:

class DataStore {
@Published var contacts: [Contact] = []
}

The epublished property wrapper creates a publisher for contacts so that we can observe the changes

easily.
Now, we can use the fetchpata () function to read the results and store them:

class ContactsSync {
let contactRequest = ContactRequest ()
let dataStore = DataStore()
func syncContacts ()
contactRequest.fetchData ()
.sink (receiveCompletion: { completion in
switch completion {
case .finished:
print ("Data fetch completed
successfully")
case .failure(let error):
print ("Error fetching data: \ (error)")
}

}, receivevValue: { [weak self] contacts in
self?.dataStore.contacts = contacts
1y

.store(in: &cancellables)

private var cancellables = Set<AnyCancellables ()

}

let contactsSync = ContactsSync ()
contactsSync.syncContacts ()

The contactssync job is to fetch contacts using the contactrequest class and to store them in the data

store using the patastore class.

The Combine example has several advantages:

« Clear and consistent interface: The publisher interface is consistent and known. It is always built from data/void and an optional

error. New developers don’t need to learn and understand how to read/use it.

o Built-in error handling: Not only do we have a consistent interface that also contains errors, but also, when one of the stages
encounters an error, it interrupts the flow and channels it downstream. We have already seen that error handling is a critical topic

in networking in many cases.

« Asynchronous operations support: We often think that a network operation contains one asynchronous operation: the request
itself. However, many steps in the stream can be asynchronous - including preparing the request by reading local data, processing
the response, and storing the data at the end of the stream. Combine streams are perfect for performing all those steps

asynchronously.

 Modularity: The capability of building a modular code is reserved not only for the Combine framework, but the custom publishers
and the different operators make Combine streams a joyful framework to implement when dealing with networking. Remember
that we said that networking is like a production line (under the Understanding mobile networking section)? So, Combine makes it

easier to insert more steps into the stream; some of them are even built into the framework.

Adding reactive methods to our code doesn’t mean we need to discard all the design patterns and

principles we discussed when we covered networking—it’s just another way to implement them.

For example, let’s try to implement the delta updates design pattern using the Combine framework:

URLSession.shared.dataTaskPublisher (for: request)
.tryMap { output in
guard let response = output.response as?
HTTPURLResponse, response.statusCode ==
200 else {
throw URLError (.badServerResponse)
}

return output.data
%decode(type: ContactsDeltaUpdateResponse.self,
decoder: JSONDecoder ())
.receive (on: DispatchQueue.main)
.sink (receiveCompletion: { completion in
switch completion
case .finished:
break
case .failure(let error):
print ("Error during sync:
\ (error.localizedDescription)")
}
}, receivevalue: { [weak self] response in
self?.processDeltaUpdates (response:
response)
3

.store(in: &cancellables)

Looking at the code example, we can see that it looks pretty much like the previous Combine code—
that’s part of the idea of consistent interface and modular code. We perform the request, check the

response code, decode it, change it to the main thread, and process the response data.

Summary

Connecting to our backend and retrieving data is a basic task in most mobile apps. Doing so lets us

present valuable and interesting information to our users.

Performing a simple request is easy — however, there are many other factors to bear in mind, and

doing that properly is crucial to having an efficient app.

This chapter reviewed the different network components, such as the request itself, error handling,
and data storage. We also discussed our different design patterns to work with our backend. We ended
up incorporating Combine into our flows. We should now be perfectly able to set up a fantastic

network infrastructure for our app.

Now, let’s flip to the other side of our architecture, the UI, and discuss a library that can enrich our

app easily - Charts!

9
Creating Dynamic Graphs with Swift Charts

Swift Charts is a framework by Apple that allows us to present data in beautiful and expressive charts.
Working with charts is not a minor topic — data is an essential topic in mobile apps, and the ability to

show glance information of insights and trends is crucial to our app’s user experience.

In this chapter, we will cover the following topics:
« Understanding why we need charts in our apps
o Meeting the Swift Charts framework
o Creating charts such as bar, line, pie, area, and point charts
o Visualizing functions with Charts
« Implementing user interaction to our charts using ChartProxy

« Allowing different data types to work with charts by conforming to the Plottable protocol

Before we create our first chart, let’s understand why charts are important and what value they bring.

Technical requirements

For this chapter, you must download Xcode version 15.0 or above from Apple’s App Store.

You'll also need to run the latest version of macOS (Ventura or above). Simply search for Xcode in the
App Store and select and download the latest version. Launch Xcode and follow any additional
installation instructions that your system may prompt you with. Once Xcode has fully launched,

you're ready to go.

Download the sample code from the following GitHub link:
https://github.com/PacktPublishing/Mastering-iOS-18-

Development/tree/main/Chapter9/Chapter9.swiftpm

Why charts?

The following is not necessarily a mobile-specific section but an important one nevertheless. Many
apps display helpful information in a textual way, such as tables, lists, or grids. While displaying

information in a list or a grid can be beneficial, it's much harder to tell the story that way.

Users sometimes struggle to process a textual representation of information, and visualizing it may

help them gain interesting insights and make decisions. There might be different types of insights,

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter9/Chapter9.swiftpm
https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter9/Chapter9.swiftpm

which can be relationships between data points, trends, and repeated patterns.

Data can be even more difficult to digest on a mobile phone due to the screen size and the challenge of
presenting information in grids. However, screen size is not the only challenge with mobile phones -
users often expect to glimpse data insights rather than analyze spreadsheets. A mobile user experience
differs from a desktop one because of different use cases and behavior. Due to that difference, charts
have even greater value on mobile than on desktop apps, as they provide a way to present information

visually.

Having said that, it is essential not to overuse charts or to use charts where a table or a list makes more
sense. For example, a banking app that shows the user’s latest transactions would use a list rather than
a chart. A list is a great way to present raw data in a scannable format that is also interactive and

allows users to perform actions or view more details.

Just as we have Lists, Tables, and Collection Views, we now have Swift Charts, a framework dedicated

to presenting data in an informative, visualized way.

Introducing the Swift Charts framework

Creating charts that are simple and easy to use was always a challenge. Unlike Tables, Collection

views, or Lists, most third-party chart frameworks never felt natural in UIKit/SwiftUL

In i0S 16, Apple announced Swift Charts, a SwiftUI framework that presents structured data in a

chart and fits nicely in a SwiftUI view.

Let’s see an example of a bar chart:

import Charts
struct BarMarkView: View {
struct Sales: Identifiable {
var id: UUID = UUID()
let itemType: String
let gty: Int

let data: [Sales] = [
Sales (itemType: "Apples", gty: 50),
Sales (itemType: "Oranges", gty: 60),
Sales (itemType: "Watermelons", gty: 30)

var body: some View {
Vstack {
Chart (data) {
BarMark (
x: .value("Fruit", $0.itemType),
y: .value("gty", $0.gty)

Even though the code example seems long, it is simple to read and understand. This example displays
a BarMark chart showing different sales figures for fruits. It has a sales structure that contains a single
sales information for a specific fruit type and a data array that contains sales information about

several fruit types.

In the SwiftUI body part, we add a new view called chart with the data array as a parameter. Inside
that chart view, we add a BarMark view — a way to present data information in bars - passing the x and

y values from our sales struct.

Figure 9.1 shows the result:

15:38

< Back

Crangas Watarmalons

Figure 9.1: A BarMark chart

Figure 9.1 shows our code result—a view with three red bars, including a legend and titles. We can see

how much easier it is to create a chart, similar to how we would make a List or a vstack view.

Lets explore and learn how to create the different chart types and understand their usage.

Creating charts

Before we continue, let’s understand the view structure of a chart in the Swift Charts framework. As
we can see from the last code example, the chart view is called chart:
Chart (data) {

BarMark (
x: .value("Fruit", $0.itemType),

y: .value("gty", $0.qgty)

}
Each data point in the chart is called a Mark. In this code example, we have a Chart with three data

points (marks) of the BarMark type. If the Chart receives an array as a parameter, it performs a ForEach

loop under the hood and creates several marks.

In fact, we could write the same code as the following:

Chart {
ForEach(data, id:\.id) { item in
BarMark (x: .value("Fruit",
item.itemType) ,
y: .value("gty", item.qgty))

}

In this code example, we take the same data array as before, iterate it using a Forach loop, and create
a BarMark view for each array item. This example is crucial to understanding how charts are built so

we can customize and configure them in the future.

Now, let’s explore the BarMark chart even further.

Creating BarMark chart
We can use a BarMark-based chart to compare different data points, such as sales figures and country
population sizes. We saw how simple creating a chart with multiple bar marks is.

However, implementing a chart with BarMark views doesn’t end here. We have more options to

expand that mark to provide even more information.

We'll start with a stacked bar chart.

Adding Stacked Marks

Standard marks represent two-dimensional data points, comparing one value to another. Sometimes,

datasets may have a deeper story, as each bar may be constructed from several values.

For example, let’s take the sales chart we have just created and discuss the sales of apples. The current
value of apple sales is 50 items. Perhaps we want to display how this value is divided between green

and red apples. In this case, we can use a stacked mark.

We will now add a stacked bar to our existing chart.

First, we need to adjust our sales structure to contain our fruit color:

struct Sales: Identifiable {
var id: UUID = UUID()
let itemType: String
let gty: Int
var fruitColor: String = ""

}

Now that we have added a £ruitcolor property to the sales structure, we can update our dataset:

let data: [Sales] = [
Sales (itemType: "Apples", gty: 20, fruitColor:
"Green") ,
Sales (itemType: "Apples", gty: 30, fruitColor:
"Red") ,
Sales (itemType: "Oranges", gty: 60),
Sales (itemType: "Watermelons", gty: 30)
]

Currently, our updated dataset has two records related to apple sales, each containing the color sold.

Now that we have all the data that we need, let’s create a chart and assign each of the properties to the

right role in the chart:

Chart (data)
BarMark (x: .value("Fruit", $0.itemType),
y: .value("gty", $0.qty))
.foregroundstyle (by: .value("Color",
$0.fruitColor))

}

In this code example, the only difference we have is the foregroundstyle view modifier, which helps

distinguish between the different fruit colors. Let’s see the result in Figure 9.2:

17114

< Back

Apples
B Grewr @ Redd @

Oranges

Watermeblons

Al

40

Figure 9.2: Stacked bar view

In Figure 9.2, we can see that the apples bar is built from two types of values. The blue represents green

apples, and the green represents red apples.

We saw that when we add several marks with the same x values, the Charts framework knows how to

stack them together.

Next, let’s see what happens when we don’t add y values to our data set.

Adding 1D bar marks

Most charts are two-dimensional, meaning they have an x and y axis that compares different data
categories. However, we can focus on one category (meaning the chart will have only one y axis value)

and create a one-dimensional chart.

For instance, let’s take the apple category from the previous example and try to create a 1D bar based

on it.

First, let’s enrich our data and add vel1ow as an additional fruit color:

let data: [Sales] = [
Sales (itemType: "Apples", gty: 20, fruitColor:

"Green") ,

Sales (itemType: "Apples", gty: 30, fruitColor:
"Red"),

Sales (itemType: "Apples", gty: 40, fruitColor:
"Yellow"),

]

Our dataset now includes the green, Red, and vellow fruit colors.

Next, let’s create our chart, but this time, we won't define the y-axis:

Chart (data)
BarMark (
x: .value("Qty", $0.gty)
)
.foregroundStyle (by: .value("Color",
$0.fruitColor))

}

In this code example, we passed only the x BarMark parameter. However, if we examine the BarMark
header, we can see that there’s a method that requires only the x parameter:
public init<X>(x: PlottableValue<X>, yStart: CGFloat? = nil, yEnd: CGFloat? = nil,

width: MarkDimension = .automatic, stacking: MarkStackingMethod = .standard) where X :
Plottable

The init () function in this code example is the method that we are using. Now, let’s see what the

chart we create looks like when it’s only one-dimensional (Figure 9.3):

0 25 50 75
® Green @ Red @ Yellow

Figure 9.3: A 1D chart

In Figure 9.3, our data is presented in a one-dimensional chart presenting three different types of

apples.

One thing still bothers us here: notice that the fruit colors don’t match the actual colors the Charts
framework assigned to each fruit when it created the chart. That’s because the Charts framework
generates the colors while encoding the value. If we want to match the fruit color to the chart

presented color, we need to use the chartForegroundstylescale view modifier:

Chart (data) {
BarMark (
x: .value("Qty", $0.qgty)
)
.foregroundStyle (by: .value("Color",
$0.fruitColor))

}

.chartForegroundStyleScale(["Green" :
Color.green, "Red" : Color.red,
"Yellow" : Color.yellow])

The chartForegroundstylescale function is a view modifier we can apply to the Chart and different
Shapestyle protocol to different values. In this case, we use colors that reflect the fruit colors and

improve clarity.

Figure 9.4 shows how the chart looks now that we matched the colors to the names:

0 25 50 75
® Green @ Red Yellow

Figure 9.4: A 1D chart with custom colors
We can use chartForegroundStylescale not only for 1D charts but also for all other types of charts.

We saw how to use BarMarks for stacked and one-dimensional marks. Yet another way we can use

BarMarks is for interval bar charts.

Adding interval bar charts

We use interval bar charts to represent data grouped into intervals, such as periods, age groups, or

numerical ranges.

For example, let’s say we want to display a list of workers and the time intervals they worked

throughout the day.

First, let’s create a data set that represents a list of working periods:

let emma = "Emma Johnson"
let liam = "Liam Patel™"
let sophia = "Sophia Garcia"

let data: [EmployeDayWork] = [
EmployeDayWork (name:emma, startTime: 10, endTime:
12),
EmployeDayWork (name:1liam, startTime: 8, endTime:
11),
EmployeDayWork (name: sophia, startTime: 10.5,
endTime: 11.5),
EmployeDayWork (name: emma, startTime: 14, endTime:
15),
EmployeDayWork (name: liam, startTime: 13.5,
endTime: 14.2),
EmployeDayWork (name: sophia, startTime: 15,
endTime: 16)
]

Each item in the data array represents one employee’s working period. Notice that we don't care about
the item’s order—the Charts framework is responsible for ordering them correctly. However, we care
about consistency with the employee’s name, so the Charts framework can also properly group the

items.

Let’s see how we can build an interval chart based on that dataset:

Chart (data) {

BarMark (
xStart: .value("Start", $0.startTime),
xEnd: .value("End", $0.endTime),
y: .value("Employee", $0.name)

}

In this code example, we create a BarMark initializer that includes new parameters—xstart, which
represents the value where the interval begins, xEnd, detailing where it ends, and y, the employee’s

name.

Now, let’s see how an interval chart looks when we run it (Figure 9.5):

Emma Johnson

————3 =
Liam Patel
e &=
Sophia Garcia
= [
0 5 10 15

Figure 9.5: An interval chart

In Figure 9.5, we can see a timeline when each of the employees is represented in a row, and their
working periods are intervals in this timeline. The interval bar chart is an excellent example of a
component that can be complex to build from the ground up, and the Charts framework can simplify

the process.

BarMark seems like a very flexible chart type, and that’s part of the reason it is so common. It allows
us to present different information types, whether comparing values or different trends over time, in

stacked, one-dimensional, or interval layouts.

However, sometimes, it’s a better choice to pick a more specific chart that expresses data more

precisely.

So, let’s meet the LineMark chart.

Creating LineMark charts

One of the challenges of presenting data in a table is showing trends and patterns. Even though the
BarMark chart type can do that better than a table, there are better ways to show trends, especially

when dealing with a large amount of information.

To show trends and patterns more efficiently, we can use the LineMark chart, which represents data

using a line representing a list of data points.

Let’s take, for example, a chart that shows phone sales over time. We create a structure named
salesFigure that contains information about the product type, the day of the sales, and the total

amount:

struct SalesFigure: Identifiable {
var id: UUID = UUID()
let product: String
let day: Date
let amount: Double

}

Now that we have a structure, let’s create our dataset like we did in all previous examples:

let phoneProduct = "Phone"
let salesFigures: [SalesFigure] = [
SalesFigure (product: phoneProduct, day:
Date (timeIntervalSincel970: 1714078800), amount:
100),
SalesFigure (product: phoneProduct, day:
Date (timeIntervalSincel970: 1714165200), amount:
120),
SalesFigure (product: phoneProduct, day:
Date (timeIntervalSincel970: 1714251600), amount:
90),
SalesFigure (product: phoneProduct, day:
Date (timeIntervalSincel970: 1714338000), amount:
70)
]

The salesFigures variable contains information about four days of sales. The LineMark chart is

suitable for working with many entries, but we use only four for demonstration purposes.

Now, let’s connect the salesFigures variable to a chart using the LinkMark view:

Chart (salesFigures) {
LineMark (
x: .value("time", $0.day),
y: .value("amount", $0.amount)

}

We created a LineMark inside the chart, setting the day as the x axis and the amount as the y axis.

Running that code should show us a chart that looks like Figure 9.6:

=18

1040

50

26 Apr 27 Apr 28 Apr
Figure 9.6: A LineMark chart

The chart in Figure 9.6 shows the declining trend of phone sales over the dataset period. What’s nice
about line charts is that it’s easy to compare one LineMark to another. All we need to do is to update

our dataset. So, let’s also add tablet sales to compare it with phone sales:

let tabletProduct = "Tablet™"
let salesFigures: [SalesFigure] = [
SalesFigure (product: phoneProduct, day:
Date (timeIntervalSincel970: 1714078800), amount:
100),
SalesFigure (product: tabletProduct, day:
Date(timeIntervalSincel970: 1714078800), amount:
70),
/]
SalesFigure (product: phoneProduct, day:
Date (timeIntervalSincel970: 1714338000), amount:
70) ,
SalesFigure (product: tabletProduct, day:
Date (timeIntervalSincel970: 1714338000), amount:
110)
1

In this code example, we updated our dataset by adding tablet sales figures items to the array.

To make the chart distinct between the two product types, we use the foregroundstyle view modifier:

LineMark (

x: .value("time", $0.day),
y: .value("amount", $0.amount)
) . foregroundStyle (by: .value("Product", $0.product))

Adding the foregroundstyle view modifier applies different styles to different product types. Looking

at the code, we can see that the chart can distinguish between these two types.

Let’s see what the chart looks like after we have added the tablet sales figures (Figure 9.7):

150

100

50

26 Apr 27 Apr 28 Apr
® Phone @ Tablet

Figure 9.7: LineMark chart with two types of product sales figures

Figure 9.7 shows tablet sales compared to phone sales. We can see that while the phone sales declined,

the tablet sales increased. That’s an insight that is difficult to get just from the dataset.

Thus far, we have created two primary types of charts: bar and line charts. These two types are pretty

popular, as they are simple to understand and work for many use cases.

Another popular chart type Apple added in iOS 17 is SectorMark, also known as a pie chart.

Creating a SectorMark chart

A SectorMark, or pie, chart provides a way to visualize the proportions of different values. Unlike the
other charts, the pie chart is based on a circular shape divided into slices, and each slide represents a

different item value.

Apparently, the SectorMark chart looks like another form of Stacked Marks we covered earlier (under
Adding Stacked Marks).

However, SectorMark charts became more popular than Stacked Marks as they are visually appealing
and easier to understand. Moreover, StackedMark and SectorMark charts are excellent for comparing
different parts and seeing their contribution to the whole. However, stacked marks are practical when
we want to compare one whole to another, and SectorMark charts are helpful when we want to focus

on one whole.

Like the previous examples, to create a SectorMark chart, we need to prepare a dataset. So, let’s create

a dataset representing a poll result about consuming fruits:

let data: [FavoriteFruit] = [
FavoriteFruit (name: "Apple", value: 30),

FavoriteFruit (name: "Banana", value: 25),
FavoriteFruit (name: "Orange", value: 20),
FavoriteFruit (name: "Strawberries", wvalue: 15),
FavoriteFruit (name: "Grapes", value: 10)

]

In this example, we created a structure named FavoriteFruit, which contains the name of the fruit

and the number of people who chose that fruit.

To use the data dataset, we will add a sectorMark view to our chart:

Chart (data) {item in
SectorMark (angle: .value("Value", item.value))
.foregroundStyle (by: .value("Fruit",
item.name))

}

The sectorMark structure has an angle parameter that reflects the numeric value of the slice. We also

added the foregroundstyle view modifier, which colors the slice according to the item’s fruit property.

Lets look at what the SectorMark chart looks like when running our code (Figure 9.8):

Figure 9.8: SectorMark chart

Figure 9.8 shows a beautiful, colorful pie chart, including the legend titles. We can even set an inner

radius to add a donut style to the chart:

Chart (data) {item in
SectorMark (angle: .value("Value", item.value),
innerRadius: 50)
.foregroundStyle (by: .value("Fruit", item.name))

}

The addition of the inner radius creates a hole in the pie chart, as we can see in Figure 9.9:

@® Apple ® Banana @ Orange @ Strawberries @ Crapes

Figure 9.9: A SectorMark chart with an inner radius

Figure 9.9 shows a donut-shaped SectorMark chart. This shape allows us to provide more information
in the center of the chart. Some even say that this form is more readable to users as it eliminates the

need to compare angles.

Until now, we have created BarMark, LineMark, and sectorMark charts. The following chart combines

two charts we discussed — the LineMark and stacked BarMark charts. That’s the areaMark chart.

Creating an AreaMark chart

The stacked BarMark chart we discussed under the Adding Stacked Marks section shows two
important figures - the total value of a category and how that total is divided into sub-categories while
observing the different proportions. The LineMark chart, on the other hand, shows the trend or

patterns between different data points.

However, what if we want to combine these two types of marks, showing how a value is composed of

different categories over time?
That’s what the AreaMark chart is for.

Let’s take our LineMark sales figures example. We have a dataset representing phone and tablet sales
over time. Now, we want to see the total sales of these two types of products over time while still

observing the different trends of each product.

So, we can create an areaMark chart based on the same dataset:

Chart (salesFigures) { data in
AreaMark (
x: .value("Date", data.day),
y: .value("Sales", data.amount)

)
.foregroundStyle (by: .value ("Product",
data.product))

}

Our code example is identical to the LineMark example we discussed under the Creating LineMark

charts section; the only difference is that we are now using AreaMark instead of LineMark.

However, the result is different (Figure 9.10):

M R T A
Fa v 1ol d Al a0 REr

W prae ™ 1
e i ¥-Ras LB
& Phone @& Tablet

Figure 9.10: An AreaMark chart for total sales

At first glance, Figure 9.10 shows similar information as Figure 9.7—trends of product sales figures.
However, there are differences. The filled area in Figure 9.10 represents the total sales of products for
both phones and tablets, and each color represents a different product type. On the other hand, Figure

9.7 only shows a comparison between these two product types, side by side.

The AreaMark chart is great for market share analysis, financial data visualization, and general

information, including data trends and cumulative totals.

However, charts can give us much more than data comparison and trends. Let’s meet our final chart,

PointMark, which can provide a different level of insight.

Creating a PointMark chart

Until now, we have discussed marks that have helped us compare sales figures or observe trends. What
about areas such as correlation analysis or predictive modeling? To fulfill that need, the PointMark

chart, also known as the scatterplot chart, aims to show the relationships between two variables.

Let’s find the correlation between students’ study hours and grades. First, we create a dataset

representing the data:

struct StudentData: Identifiable {
var id: UUID = UUID()
var hoursStudied: Double
var examScore: Double

let studentDataSet: [StudentData
StudentData (hoursStudied: 1.
StudentData (hoursStudied:

= [
, examScore: 61.
, examScore: 78.

1
7 8)
(7.9 6)
StudentData (hoursStudied: 4.1, examScore: 44.3),
StudentData (hoursStudied: 4.7, examScore: 63.4),
StudentData (hoursStudied: 7.8, examScore: 90.4),
StudentData (hoursStudied: 8.6, examScore: 83.2),
StudentData (hoursStudied: 2.8, examScore: 29.7),
StudentData (hoursStudied: 6.3, examScore: 72.9),
StudentData (hoursStudied: 6.4, examScore: 73.8),
StudentData (hoursStudied: 6.1, examScore: 77.6)

]

This code example has a studentpata structure containing information about student study time and

grades. studentsDataset is an array that contains information about ten students.

Now, let’s create a PointMark chart based on that array:

Chart (studentDataSet) {
PointMark(x: .value("hours", $0.hoursStudied),
y: .value("score", $0.examScore))

}

Like previous charts, the PointMark structure has x and y parameters. The x parameter represents the

hours studied, and the y parameter represents the score.

Figure 9.11 shows what the pointMark chart looks like when running the code:

100

a0

25

Figure 9.11: PointMark chart

Figure 9.11 shows that most students achieve high grades when studying more hours. We can also

identify one student who managed to achieve a mid-level grade almost without studying at all!

Even though PointMark is less common than the previous charts we reviewed, it can be helpful in

financial, CRM, or education apps.

Speaking of education apps, many apps require other types of charts. That includes charts that are
based on functions and not datasets. With Charts, we can also work more dynamically and

straightforwardly visualize functions. Let’s see how to do that.

Visualizing functions with Charts

Until now, we have discussed how to build charts using datasets, which include raw data information
such as sales figures, market shares, or usage trends. However, we don’t have to use datasets to create

charts, as functions can also perform as a data source for our charts.

For example, we may want to display a normal distribution line graph next to our BarMark chart. We
could also create an education app that displays mathematical functions such as circles or a sinus

function.
To do that, we need to use a different type of chart called plot.

The Charts framework has two types of plots — Lineplot and arearlot. Let’s see an example of
LinePlot showing a graph for a sinus function:
Chart

LinePlot (x:"x", y:"y") { x in
return sin(x)
}

}

In this (very!) short code example, we added a Linep1ot chart with a closure that returns the y value of
a given x value. In this case, we used a simple sin function. Figure 9.12 shows what the chart looks
like:

05

Figure 9.12: A LinePlot chart
In Figure 9.12, we can see the LinePlot chart generated from a simple mathematical function.

As mentioned earlier in this section, the second chart type we can use to visualize functions is
AreaPlot, the equivalent of AreaMark:
Chart

AreaPlot (x:"x", y:"y") { x in
return sin(x)
1

}

In this code example, we only changed the chart type from LinePlot to AreaPlot. AreaPlot visualizes

the function by filling the area it defines. Let’s see the output in Figure 9.13:

Figure 9.13: The AreaPlot chart type

Figure 9.13 shows the same sinus function graph, now filled with color.

Using the LinePlot and AreaPlot chart types to visualize math functions is about much more than just
showing how the sinus function behaves. It is excellent for education, scientific research, finance,
health, and business apps. Now that we know how to create LinePlot and AreaPlot, we have whole

new options.

We went over many chart types, and by now, we can quickly create charts, just like creating a simple

list!

The List type provides a way to interact with its items, allowing us to navigate or delve into more

information. So, let’s see how to make our charts interactive!

Allowing interaction using ChartProxy

Now that we know how to create charts, let’s discover more hidden tricks by adding user interaction
capabilities. User interaction in charts, with its many uses, allows users to explore the chart’s data

using touch. Here are some use cases for user interaction with charts:

o Drill down to a specific data mark: By touching a BarMark or SectorMark charts, the user can navigate to a new screen that
shows additional information about the particular data point. For example, if the BarMark chart shows information about

watermelon sales, we can navigate the user to a screen that details the watermelon sales deals.

« Exploring new data points: Enabling user interaction with LineMark charts, for example, provides insights to the user on data
points not originally part of the dataset if our LinkMark chart includes information about the growing population in a specific

city over time, touching a particular point the chart can display the population value on a specific date.
» Comparing data marks: The user can highlight and compare multiple data marks, which is extremely useful in BarMark-based
charts.
Moreover, learning how to add interaction capabilities can help us explore more things with our

charts, such as how the charts are built and how their calculation logic works.

To understand how interaction works, we need to get to know more Swift Charts framework

components:

o chartOverlay: This is a view modifier that helps us add an overlay view to a chart. We can use the chartOverlay view
modifier to add more graphic details to our chart, such as rulers and texts. We can also use the chartOverlay view modifier to

observe gestures and user interaction.

« ChartProxy: This is a proxy that lets us access the chart values based on the chart area. Using ChartProxy, we can convert

locations to values and vice versa.

Chartoverlay and chartProxy are essential components when handling user interaction; therefore,
they come hand in hand. When adding a chartoveriay view modifier, it comes with a proxy to have

complete access to the chart.

Let’s try to take a LineMark chart and add a horizontal ruler that allows users to drag their fingers

across it. We'll start by adding an overlay.

Adding an overlay to our chart

The solution for providing an overlay to our chart consists of a common practice in SwiftUI using a

view modifier. Look at the following code example:

Chart (salesFigures)

LineMark (
x: .value("time", $0.day),
y: .value("amount", $0.amount)

)
.foregroundStyle (by: .value ("Product",

$0.product))

}

.chartoverlay { proxy in

}

We took the LineMark example from the Creating LineMark charts section and added a chartoverlay

view modifier in this code example.

We can see that chartoverlay comes with a proxy variable, which is the chartproxy component we

discussed earlier.

Chartoverlay is not a view but a view modifier that lets us add new views to the chart. So, to recognize
gestures and add a ruler, we can add a transparent view with a drag gesture and add a ruler view:
.chartOverlay { proxy in
ZStack (alignment: .topLeading)
Rectangle() .fill(.clear)
.contentShape (Rectangle ())
.gesture (

DragGesture ()
.onChanged { value in
}
)

let lineHeight = proxy.plotSize.height
Rectangle ()
. £ill1(.red)
.frame (width: 2, height:
lineHeight)
.position(x: markerX, y:
lineHeight/2)

}

In this code example, we added a zstack view with a clear rectangle that covers the whole chart and,
on top of it, a red ruler view. The ruler view x axis is a state variable:
@State var markerX: CGFloat = 50

We are going to change it according to the user’s tap locations.

Notice that we used our proxy object to determine the chart size for the ruler view. This is crucial
proxy usage, as we will need it on other occasions, such as calculations for displaying different views

in particular locations.

To see our view structure, look at Figure 9.14:

Chart Overlay!

| Chart

Figure 9.14: Chart and chartOverlay structures

Figure 9.14 shows our chart view and the rectangle we added using the chartoverlay view modifier.

We can also see that they are connected using the proxy object.

Also, we added a drag gesture to the rectangle. Let’s see how to use it to change our ruler position

accordingly.

Responding to the user’s gesture

To respond to the user’s gesture and move the horizontal ruler to the closest data point, we need to

implement the onchanged closure:

.onChanged { value in
markerX = value.location.x
if let closestDate = getClosestDateForLocation (x:
value.location.x, proxy: proxy) {
if let positionX = proxy.position(forX:
closestDate) {
markerX = positionX

}
The onchanged closure implementation does three things:

o First, it finds the closest sales data point according to the tap location and the proxy. We will go over the

getClosestDateForLocation function in a minute.

o After we found the closest sales data point according to the tap location, we used the proxy object to retrieve its position on the

chart. One of the proxy’s capabilities is to convert data points to position and vice versa.

« When we have the position of the closest data point, we adjust the ruler location by setting the markerX state variable.

This piece of code is a good demonstration of what we can do with the proxy object.

For more proxy object usage, let’s see the getclosestbateForLocation function.

Finding the closest data point to the user’s touch

The getclosestDateForLocation function goal is to find the closest date with a data point according to

a specific position.
The function receives two parameters — the position (cerFioat) and the proxy object:

func getClosestDateForLocation(x: CGFloat, proxy: ChartProxy) -> Date? {
var returnedSalesFigure: SalesFigure?
if let date = proxy.value(atX: x) as Date? ({
var mDistance: TimeInterval = .infinity
for salesFigure in salesFigures
let distance =
abs (salesFigure.day.distance (to: date))
if distance < mDistance {
returnedSalesFigure = salesFigure
mDistance = distance

return returnedSalesFigure?.day

}

Remember what our chart looks like - the y axis represents the timeline, and the x axis represents the

total sales on a specific date.

So, we can use the proxy object to find the date for a specific x value, and that’s our first step:
if let date = proxy.value(atX: x) as Date? ({

The proxy’s value (atx:) function calculates the date value for a specific x value.

However, the returned value is arbitrary; to locate the closest data point, we must iterate through our

dataset and search for the nearest salesFigure object. Once identified, the function can then return it.

Even though allowing user interaction with charts is not complex, it includes interesting view

modifiers and objects that enable us to access the chart data, perform calculations, and display overlay

UI components. We don’t have to use the proxy object and the chartoverlay view modifier just for
interaction—we can show additional information, improve the chart design, and, in rare cases, even

create our chart.

Until now, we used data sets with foundation types — string, Double, and nate. However, when we
look at the Swift Charts framework headers, we see something interesting:
func position<P> (forX value: P) -> CGFloat? where P :
Plottable
public struct LineMark {

init<X, Y>(x: PlottableValue<X>, y: PlottableValue<Y>)
where X : Plottable, Y : Plottable

}

It seems that the different chart functions only work with types that conform to the piottable

protocol. Let’s find out what that is.

Conforming to the Plottable protocol

Until now, we have been under the assumption that any data set we threw on our charts would work.
However, we saw that the proxy object can perform interesting calculations that are not possible with
any data, and that’s only one reason why our data types need to support the ability to be drawn in a

chart.

Therefore, the Swift Charts framework only works with data types that conform to the p1ottabie

protocol, which allows data to be drawn in a chart.

First, every primitive data type already conforms to the p1ottable protocol. Also, the pate class that
we used in our last example conforms to the plottable protocol. We can even see that in the apple
header files:

extension Date : Plottable, PrimitivePlottableProtocol
extension String : Plottable, PrimitivePlottableProtocol

However, working only with primitive or Foundation types is not always practical.

Let’s take, for example, our sales structure from the Adding Stacked Marks section:

struct Sales: Identifiable ({
var id: UUID = UUID()
let itemType: String
let gty: Int
var fruitColor: String = ""

}
Declaring the itemType property as a string is not always a best practice. Typically, types are part of a
closed list, and using strings may lead to typos and duplicates. We probably would like to use an enum

for that, as it is more suitable for handling a list of types:

enum FruitType {
case Apples
case Oranges
case Watermelons

}

struct Sales: Identifiable {
var id: UUID = UUID()
let itemType: FruitType
let gty: Int
var fruitColor: String = ""

}

In this example, we created a FruitType enum to replace the itemType type from string.

Our next step is to make the FruitType enum conform to plottable:

extension FruitType: Plottable {
var primitivePlottable: String {
rawValue
1

}

In this example, we used the primitivePlottable variable getter to return the type’s primitive value.

That would make the FruitType type eligible to be used inside Charts.

Even though not every type can be used inside a chart, we can easily make them eligible for that.
Conforming to the plottable protocol is simple and straightforward and allows us to use our custom-

made types within charts.

Summary

The Swift Charts framework is exciting. It allows us to create amazing-looking charts using a simple

data set, making it much easier to display data insights, trends, and comparisons.

This chapter reviewed the different chart types of the Swift Charts framework, including BarMark,
LineMark, SectorMark, AreaMark, and PointMark.

We also discussed each chart’s different usage and goals, learned how to customize them, and added
user interaction to add more capabilities. At last, we went over the plottable protocol, which allows
our charts to use almost any data type we want. By now, we should be able to implement charts in our

apps quickly.

Our next chapter includes an advanced yet very powerful topic — Swift macros.

Part 2: Refine your iOS Development with Advanced
Techniques

In this part, you will step up your iOS development and explore advanced topics, such as Swift
macros, testing, Combine, architectures, machine learning (ML), and Al This part is a must-read if

you want to get the most from iOS 18.

This section contains the following chapters:

o Chapter 10, Swift Macros

10

Swift Macros

Developers frequently encounter various challenges with their IDEs, often related to missing
functionalities, mostly about missing functionalities. With each new Xcode or Swift version, Apple
introduces additional features that enhance productivity and simplify tasks. However, even Apple has
a hard time fulfilling our needs and demands. Fortunately, this time, we can create customized

functionalities using Swift Macros.

Swift Macros is an exciting new feature added to Xcode 15 and iOS 17, and this chapter will help us

increase our productivity by achieving more from our IDE.

In this chapter, we will cover the following topics:

o Learning about Swift Macros

« Exploring the Swi f tSyntax library, which stands behind Swift Macros
 Creating our first Swift macro

« Handling errors and providing more clarity when something goes wrong

« Testing our macro, making sure it runs as expected over time

But now, let’s start with the basics and discover Swift Macros.

Technical requirements

You must download Xcode version 16.0 or above for this chapter from Apple’s App Store.

You'll also need to run the latest version of macOS (Ventura or above). Search for Xcode in the App
Store and select and download the latest version. Launch Xcode and follow any additional installation

instructions that your system may prompt you with. Once Xcode has fully launched, you're ready to

go.

What is a Swift macro?
You probably heard the term “macro” before in the context of programming. That’s perhaps because
programming languages such as C/C++ have macros as well.

A macro is a structure that lets us define a code pattern that is being replaced by the compiler with a

specific set of instructions.

Let’s see a short C example:

#define SQUARE (x) ((x) * (x))
int num = 5;
int result = SQUARE (num) ;

In our preceding code, we declare a macro called square that receives one parameter named x, and

our compiler replaces it with (x) *(x).
The initial question that comes to mind is this: why? Can’t we just define a function?
So, in this case, a simple function that calculates a number’s square can be helpful here.

But a macro’s primary goal is not to replace functions, as they are great for several reasons:

« Code reuse: Notice that code reuse is not “functionality reuse” Code reuse is where we take an actual code snippet and reuse it in
different places. For example, if we constantly repeat the same line sequence when declaring a class, a macro can help us avoid

repeating ourselves.

« Improve abstraction: Macros can help us add another abstraction layer to our code. Imagine writing a macro that generates

functions declaration. That’s another level we can construct our code.

« Performance: In some cases, macros can help us optimize our code. Sometimes, the trade-off between optimization and
readability/simplicity can be solved using a macro. A macro can generate a piece of harder-to-read code and yet be optimized. One
feature that macro can optimize code for is loop unrolling - a way to iterate a loop faster with instruction-level parallelism. Loop

unrolling produces less readable code but is much quicker.

In the bottom line, a macro is just a tool that replaces one code with another and inserts a specific
code snippet before the compile time. But C macros are full of issues. They are difficult to test, not
type-safety, their errors are not clear enough, and sharing them with other developers is not trivial. As
part of Xcode 15, the Swift team released a new tool called Swift Macros - the Swift version of macros

that lets us create macros more efficiently and elegantly.
Let’s go over a simple example of macro usage.

In our project, we want to add a macro that adds a function named 1log(issue:string) to classes and
structs. That function prints an issue to our log and adds the class or the struct name. We can call that
macro eaddbebugLogger, and we can use it as follows:

@AddDebugerLogger
class MyClass

}
In the preceding code, we declared a class named myciass and attached a macro named

@AddpebugerLogger, Which expands to the following code:

class MyClass {
func printLog(issue: String) {
#if DEBUG
print ("In class named MyClass - \(issue)")
#endif

The macro adds a function named printLog (), which prints an issue to the console while mentioning
the class name as part of the log message. This serves as an example of primary macro usage,

illustrating the capabilities of this tool.

But how is the macro familiar with the class name? How does it generate a new function in the right
place inside the class? To answer these questions, we first need to meet swittSyntax, a library that

stands in the heart of Swift Macros.

Exploring SwiftSyntax
swiftSyntax is not a new library, and it’s part of Swift’s code base from its early beginnings. In fact,
Swift Macros is part of swiftsyntax, and it uses its capabilities.

Before we dive into swiftsyntax (and there’s enough to dive into it), let’s learn about how the Swift

compiler works (Figure 10.1):

ESwiftCodaE—r Parse |— AST —+: Sema I-—: SilGen i--*! IRGen -+ LLVM

e T R — L L.

mEnann
annun

Figure 10.1: The Swift compiler process

Don't fear the different expressions you see in Figure 10.1. This figure is a high-level overview of how
the compiler takes our source code and generates machine code our device can run (the *.o files). We
don’t have to understand every step in that flow, but knowing how it works is essential, especially

where swiftsyntax fits in the process.

Let’s go over the steps together:

1. Parse and abstract syntax tree (AST): The compiler takes our source code and builds an AST. The AST represents our code

hierarchical structure, including classes, structs, variables, and expressions.

2. Semantic analysis (sema): In this phase, the compiler takes our generated AST and performs semantic analysis. The analysis looks
out for semantic issues in our code and goes over issues such as type-checking name resolutions and more (when we see “semantic”

issues in our build phase; that’s the result of this phase).

w

. Swift Intermediate Language Generation (SILGen): In this phase, the compiler generates a representation that captures the

semantic structure of the code.

4. Intermediate Representation Generation (IRGen): In IRGen, the compiler takes the SILGen result and converts it to a binary close
to machine-level code. This process is done with the help of Low-Level Virtual Machine (LLVM), and the code goes through

several optimizations.

w

. LLVM linking: The LLVM links everything together and prepares our code for the final binary creation.

The process may look scary and complex, but remember that this is a significant enrichment for us as
iOS developers and is not required for Swift Macros understanding. I demonstrated it because of the

first two steps — parse and AST. Let’s talk about them for a second.

Parsing and AST

Parsing Swift code is not an easy task. In addition, building the AST is even more complex.

In the building process, we just saw the parsing, and the AST is handled by the swiftsyntax library.
So, when we work with the swiftsyntax library, we have the full compiler capabilities. This means we
can parse code, analyze it, and even generate new code like the compiler. The swittsyntax library is a
powerful and essential tool when working with Swift macros because when we think of it, it is what

Swift macros are all about - understanding the given code and generating a new one.

We understand that learning SwiftSyntax is a prerequisite for writing Swift macros, so let’s dive in.

Setting up SwiftSyntax

swiftsyntax is a Swift package, meaning it can be linked easily to an existing iOS or macOS project.

WHAT IS A SWIFT PACKAGE?

A Swift package is a unit of code distribution in Swift. It's a way to organize, share, and manage Swift code across different projects.

To play with and learn swiftsyntax, we will create a new project and add swiftsyntax as a Swift

package to that project, including a playground. To do so, follow these steps:

1. Let’s start with opening Xcode and adding a new project.

2. Then, we'll add our Swi £tSyntax Swift package by selecting File | Add Package Dependencies....

Now, we are in the adding dependencies window of Xcode (Figure 10.2):

Searching All Sources
Found 1 result

Q. https://github.comfapplefswift-syntax Q

swift-syntax Reposit github.comfapple/swift-syntax.git

.‘\' swift-syntax

Dependency Rule Up to Next Major Version 510.0.% <

Add to Project SwiftMacroProject

Swift Syntax

The swift-syntax package is a set of libraries that work on a source-accurate tree
representation of Swift source code, called the SwiftSyntax tree. The SwiftSyntax tree
forms the backbone of Swift's macro system — the macro expansion nodes are
represented as SwiftSyntax nodes and a macro generates a SwiftSyntax tree to be
inserted into the source file.

Documentation

You can read SwiftSyntax's documentation on swiftpackageindex.com.

A great way to interactively explore the SwiftSyntax tree of a source file is https:/fswift-
ast-explorer.com, developed by @kishikawakatsumi.

A set of example usages of swift-syntax can be found in Examples.

Releases

Add Local... Cancel Add Package

Figure 10.2: The adding dependencies Xcode window

DEPENDENCIES WINDOW?

If that’s the first time you've seen that window, then this is an excellent chance to perform a short introduction. When Swift Package

Manager had just started, its management was completely manual, using the Terminal.

Over the years, Swift Package Manager has become an integral part of Xcode, and now, it is even possible to manage collections and

search for packages right from Xcode.

You can learn more at https.//www.swift.org/documentation/package-managet/.

3. Back to Xcode - in the top-right corner of the adding dependencies window, we can fill the Swi £t Syntax GitHub repository:

https://github.com/apple/swift-syntax
4. We will choose the swi ft-syntax package from the left column and click the Add Package button.

5. Xcode will now resolve the Swift package and present its libraries so we can choose what we want to import to our project (Figure

10.3):

https://www.swift.org/documentation/package-manager/

— — e

Choose Package Products for swift-syntax.git

Package Product Kind Add to Target
SwiftParser Library SwiftSyntaxProject <
SwiftParserDiagnosti Library SwiftSyntaxProject -
SwiftRefactor Library SwiftSyntaxProject v
SwiftSyntax Library SwiftSyntaxProject -
SwiftSyntaxBuilder Library SwiftSyntaxProject e
SwiftSyntaxParser Library SwiftSyntaxProject -
QuiftQuntavhdacrae | ihrars QuriftCuntavDraiast A

Cancel Add Package

Figure 10.3: Choosing the SwiftSyntax package products

We will choose the swiftsyntax library and click on the Add Package button. That’s it. We added

SwiftSyntax to our project!

Now, let’s add a playground file (anywhere we like) and explore what swiftsyntax is.

Building our Abstract Syntax Tree

To try and analyze a piece of Swift code using the swiftsyntax library, we need to generate some Swift

code and work on it.

We open the playground file we created in the previous section, and add the following code:

import SwiftSyntax
import SwiftSyntaxParser
let sourceCode = """
func hello() {

print ("Hello World")
}

Our code starts with importing two important libraries — swiftsyntax and swiftsyntaxparser. The
swiftSyntaxParser library contains the swiftparser class, which helps convert a source code to a tree

we can traverse and analyze.

We added a string constant named sourcecode with a simple “Hello World” function to see how it

works. Imagine that sourcecode represents the content of a Swift file.

To parse the “Hello World” code, we'll use swiftparser:

do {
let syntax = try SyntaxParser.parse(source: sourceCode)

} catch {
print ("Error parsing code: \ (error)")
}

The parsing code is straightforward. syntaxparser calls the parse method with our sourcecode
constant from earlier and returns a syntax. But what is this syntax? Well, that’s our full code tree! The
syntax variable is from the type sourceFilesyntex, and that type represents the syntax structure of our
code. It’s the most high-level syntax node, encapsulating all our source code’s imports, classes, and

functions.

Now, it’s time to understand what this syntax tree looks like.

Investigating the tree
One of the best things about working with Swift Playgrounds is that it’s not only great for playing with

code snippets but also for examining their results without having to place breakpoints in our code.

After we run our Playground code, we can see the type sourceFilesyntax in the window’s right
column. When we tap the small square next to it, we can see how the syntax constant is built (see

Figure 10.4):

10 do {
11 let = try SyntaxParser.parse(source: sourceCode)

~syntax : SourceFileSyntax
SourceFileSyntax

unexpectedBeforeStatements - nil
Optional<SyntaxProtacol>

-statements : CodeBlockItemListSyntax

CodeBlockltemlistSyntax

“CodeBlockItemSyntax
CodeBlocklitemSyntax

unexpectedBeforeltem : nil
Optional<SyntaxProtocol>

~ijtem : FunctionDeclSyntax
FunctionDeclSyntax

unexpectedBeforeAttributes - nil
Optional<SyntaxProtocol>

attributes : nil
Optional<SyntaxProtocol>

unexpectedBetweenAttributesAndMaodifiers - nil
Optional<SyntaxProtocol>

modifiers : nil
Optional<SyntaxProtocol>

unexpectedBetweenModifiersAndFuncKeyword : nil
Optional<SyntaxProtocol>

>funcKeyword : funcKeyword

TokenSyntax

unexpectedBetweenFuncKeywordAndldentifier - nil

Optional<SyntaxProtocol>

‘identifier : identifier("hello")
TokenSyntax

unexpectedBetweenldentifierAndGenericParameterClause nil
Optional<SyntaxProtocol>

genericParameterClause - nil
Optional<SyntaxProtocol>

Figure 10.4: The syntax object structure

It’s an excellent time to take a moment, run it for yourself, and try to understand what we see in Figure

10.4. Notice that I marked all the juicy parts.

The syntax instance contains a list of statements. A statement is everything we can work with — an

import, a class declaration, or even an expression. A statement can contain its own statements.

The base statement class is codeBlockItemListSyntax, and each statement type comes with a different

subclass of codeBlockI temListSyntax.

In our case, we have one statement from the type of Functionbec1syntax, which indicates a function

declaration.

Expanding FunctionDeclSyntax reveals additional information about the function. For example, its

name is represented by the identifier property (highlighted with a box in Figure 10.4).

FunctionDeclSyntax has a body property, which contains the property of a statement with all the

function statements, including the call for the print function.

So, we can see that swiftparser has done all the dirty work for us! Now that we have a tree, we can

traverse it. Let’s extract the function statement:

if let funcDecl = syntax.statements.first?.item.as (FunctionDeclSyntax.self)
// We'll £ill that part soon
!

In the preceding code, we are taking the first statement item and trying to convert it to a function

declaration type.

There are various declaration types, each providing specific tools to help us traverse and extract more
information. Here are some of the most common types we can try to extract:

e VariableDeclSyntax: This is for variables

« EnumDeclSyntax: This is for enum declaration

¢ ClassDeclSyntax: This is for class declaration

« ProtocolDeclSyntax: This is for protocol declaration

« TypealiasDeclSyntax: This is for type alias declaration

e InitialzerDeclSyntax: This is for construct declaration

» OperatorDeclSyntax: This is for operator declaration

These are just some syntax node types available in swiftsyntax, and converting existing statement

items to their corresponding types can provide us with the needed functionality.

Let’s continue our code example and see what we can get from FunctionDeclSyntax:

if let funcCallExpression =
funcDecl.body?.statements.first?.item.as (FunctionCallExprSyntax.self) {
// Checking the print function

}

Let’s dissect the preceding code snippet to understand what it accomplishes. With a function
declaration, we can dig in and try to analyze the different statements that it contains. In this instance,
we can find a statement from the type of FunctioncalilExprsyntax. This type represents a function call,

specifically, a call to print ().

Now that we converted the statement to the right type, we can get more information about it:

let functionName = funcCallExpression.calledExpression.firstToken?.text
if functionName == "print" ({
let value =
funcCallExpression.argumentList.first?.expression.as (StringLiteralExprSyntax.self)?
.segments
.first?.firstToken?.text

}

funcCallExpression has a calledExpression property that encapsulates the information about actual

expression components.

f£irstToken contains the function name itself. But what does “token” mean? Well, tokens represent
small lexical units of the actual code, such as keywords, variable names, punctuation, or literals. Here,

the first token text property returns the function name.

Next, we check if the function name is indeed print, and now we can check the value being printed by
examining the function arguments list. Once we convert the first expression to

StringLiteralExprSyntax, We can extract its first segment token and store it in the value constant.

Does it sound confusing and a little bit cumbersome? Well, we should remember that the swiftsyntax
library is not considered easy to work with. It has a steep learning curve with many options and

features.

But this complexity is not a coincidence - parsing and analyzing programming language, especially an
advanced and full-featured language such as Swift, is not simple. Just like we have
funcCallExpression, calledExpression O StringLiteralExprSyntax, W€ have dozens of different
types for different expressions. Looking at the swiftsyntax documentation is the best way to learn to

traverse and analyze more of the language.

Now that we understand Swift code analysis using swiftsyntax, let’s explore how we can leverage

swiftSyntax in the reverse direction — how to generate Swift code.

Generating Swift Code

Generating code in swiftsyntax is based on the built-in types and string literals. We can try and

structure Swift code just by creating strings instances:

let initString: String = "init(title: String) {
self.title = title }"

We can also generate a piece of Swift code using the swittsyntax types:

let initSyntax = try InitializerDeclSyntax ("init(title: String)") {
ExprSyntax ("self.title = title")
}

In the preceding code, InitializerDeclSyntax is a constructor declaration, and Exprsyntax is a base

type for expressions.

In the context of Swift Macros, in most cases, using string literals will be enough. That’s because the
swiftSyntax types support string literals. However, using the built-in expressions will ensure the

generated code will be valid in future Swift updates.

Speaking of Swift Macros, let’s create our first Swift macro now that we know what swiftsyntax is and

how it works.

Creating our first Swift macro

As I mentioned earlier (in the What is a Swift macro? section), the Swift Macros feature is part of the

swiftsyntax library. Macros don't run as part of our app but as a plugin in the IDE.
Macros can be created by adding a new Swift package with a macro template.

It is obvious why Apple selected the Swift package feature to create macros — a Swift package is a great

way to encapsulate code, including tests and documentation.

Let’s add our first Swift macro by creating a new Swift package.

Adding a new Swift macro

To create a new Swift macro, we should open Xcode and follow these steps:
1. Select File | New | Package....

2. Then, select Swift Macro followed by tapping on Next (see Figure 10.5):

Choose a template for your new package:

Multiplatform macDS =

Library

.

II1

Library
Other
o P °_P o
1
L
Empty Build Tool Plug-in Command Plug-in Swift Macro

Figure 10.5: Selecting Swift Macro in the choose template window

3. In the opening screen, we will give a name for our struct and press the Create button. As part of our learning session, we will create
a macro that generates a struct constructor based on its properties. So, the name of our struct will be StructInit (see Figure
10.6):

Save As: [Structinit]

Tags:
S| B8 v 7 Macros B -~ Q Sea
Mama Date Modified w | Size Kind Dat

Source Control: | | Create Git repository on my Mac

New Folder Cancel

Figure 10.6: Adding a Structlnit macro

4. After saving, Xcode opens a window with our new package containing an example macro.

Let’s see how a Swift Macros package is built next!

Examining our Swift Macros package structure

Now that we have a Swift Macros package, we can reveal its file’s structure (Figure 10.7):

@oe [{] >
m X Q A @ 5 D [F

w g8 Structinit
3l Package
v @ Sources
v @ Structinit
A Structlnit
v @ StructinitClient
= main
v @ StructinitMacros
A StructinitMacro
» i Tests

{«} Package.resolved

Package Dependencies
* &8 swift-syntax 509.0.0-swift-DEVELOP...

Figure 10.7: The Swift Macros package file's structure

Looking at the Swift Macros package (Figure 10.7), we can see that swiftsyntax is defined as a
dependency of the package for us, with the latest stable version already linked to our package.
The macro itself is built upon three different source files:

o StructInit: Thats our macro definition file. Here, we define the macro name and type.

o StructInitClient: That’s our Swift Macros package executable product. This is where we add an executable code that uses

our macro.
o StructInitMacros: That’s our macro implementation and where all the magic happens.
In addition, we also have a Test target where we can test our macro code.

Our first step toward the structinit macro is by declaring its name and type.

Declaring our macro
If we open the structInit file, we can see it has a concise yet important declaration:

@freestanding (expression)
public macro stringify<T>(_ value: T) -> (T, String) = #externalMacro (module:
"StructInitMacros",

type: "StringifyMacro")

This short declaration has many components:

« @freestanding (expression): That’s the macro role. We'll go over roles in the Giving our macro a role section.

« public macro stringify<T>: The macro name.

e (_ value: T) -> (T, String):The macro parameters and output.

» #externalMacro: This means that the macro will be used as a plug in the compiler.
o module: "StructInitMacros":The name of the plugin that will be used.

e type: "StringifyMacro": That’s the macro type, as defined in the Package . swift file.

The first component is the macro role, so let’s discuss what roles are.

Giving our macro a role
Macro roles define the fundamental behavior of our macros. There are two primary role categories:

o Freestanding: These macros can be anywhere in our code and unrelated to a specific class or a function. Freestanding macros are

marked with the # sign.

Here’s an example of a freestanding macro:

#URL ("https://swift.org/")

The #urL macro checks whether the provided value is a valid URL. If not, it raises an error on

compile time. Otherwise, it returns a non-optional value.

We can see that the #urL macro can be anywhere in our code. That’s why it is called freestanding.

o Attached: The second macro type is attached. As its name states, the attached macro always comes next to a function, a class, or any

other declaration and is marked with a @ sign.

Here's an example of an attached macro:

@StructInit

struct Book {
var id: Int
var title: String
var subtitle: String
var description: String
var author: String

}

In the preceding code, the estructInit macro is “attached” to the Book struct and inserts an init

function based on the struct properties.

The two categories of macro types, namely freestanding and attached, represent distinct sets of roles.
Here is the list of all roles:

o #freestanding (expression): This just returns a new expression based on an existing one

« #freestanding(declaration): This creates a new declaration

¢« @attached (peer): This adds new declaration next to the attached one

+ @attached(accessor): This adds accessors to a property

o @attached (memberAttribute): This adds attributes to the declarations in the type it’s attached to
o @attached (member): This adds new declarations inside the type it’s attached to

+ @attached (conformance): This adds conformance to the type it’s attached to

The role we define when we declare the macro tells the created plugin how to change an existing code.

The role is the first part of declaring a macro. Let’s continue with the rest of the declaration.

Defining the Structinit macro

Our structInit macro goal is to create the init method for a struct. Our macro doesn’t exist
independently; its purpose is to insert new declarations into an existing struct. Therefore, we will

choose the @attached (member) macro from the roles list in the Giving our macro a role section:

@attached (member)

However, mentioning the role type is not enough. We also need to specify what declaration types we
expect our macro to generate. In this case, we expect the macro to generate an init function. Let’s add

that to the role declaration:

@attached (member, names: named (init))

Adding role types helps the compiler cover different cases where the macro generates something else

that was not declared. It also behaves as a documentation for our macro.
Here is another example of names argument usage:

@attached (member, names: named(rawValue))
In this case, the names argument declares a usage of the rRawvalue declaration.
We can also add arbitrary for general purposes:

@attached (member, names: arbitrary)
Using arbitrary counts for all types of declarations.

Moving forward, we will reconfigure the predefined macro with the following declaration:

@attached (member, names: named (init))
public macro StructInit() = #externalMacro (module:
"StructInitMacros", type: "StructInit")

Besides adding the role declaration, we also renamed both the macro name and type to structinit.

The macro is short but tells a lot about its goal and behavior. Here comes the important part — the

macro implementation.

Implementing the macro

Unlike other Swift types, in macros, we separate our declaration and implementation into different
files. In a way, it resembles Objective-C or C++, when the header and the implementation were other

parts.

We will open our structinitMacros file and clear its content for a clean start. Afterward, we can

proceed to import the relevant libraries:

import SwiftCompilerPlugin
import SwiftSyntax

import SwiftSyntaxBuilder
import SwiftSyntaxMacros

These are the standard libraries in most macros we will write. Notice that we have swiftsyntax and

SwiftSyntaxBuilder as part of what we've learned in the Exploring SwiftSyntax section.

Now, let’s move on to the main dish — the structInit struct.

Declaring the Structlnit struct

In Swift Macros, Apple continues its trend of working mainly with structs and protocols instead of

classes and inheritance.

To implement a new macro, we will add a new struct with the macro name that conforms to a

protocol named MemberMacro:

public struct StructInit: MemberMacro {
public static func expansion() {
//Implementation details are detailed in the next section

}

The compiler looks for a struct with an identical name to the macro name we declared earlier under
the Adding a new Swift macro section. We also declared the structInit as public — remember that a

macro is part of a Swift package, so we need to have it accessible from other modules as well.

So, what is the MemberMacro protocol? The MemberMacro protocol contains one crucial function that

performs the expansion operation, with the non-surprising name of expansion ().

However, we won't use MemberMacro every time we create a macro, as it is relevant only to the macro’s
attached (member) role. Each role has a different protocol we need to conform to.
Here is the list of the different roles and their corresponding protocol:

o @freestanding(expression) -> ExpressionMacro

o @freestanding(declaration) -> DeclarationMacro

¢ @attached(peer) -> PeerMacro

¢ @attached(accessor) -> AccessorMacro

¢ @attached (memberAttribute) -> MemberAttributeMacro
¢ @attached (member) -> MemberMacro

e @attached(conformance) -> ConformanceMacro

Since we are building a Swift macro with the eattached (member) role, we will focus only on

MemberMacro, even though the concept is similar to the other protocols.

Let’s go over it together!

Implementing the expansion function

I'll start by showing you the expansion function:

public static func expansion (
of node: AttributeSyntax,
providingMembersOf declaration: some
DeclGroupSyntax,
in context: some MacroExpansionContext
) throws -> [SwiftSyntax.DeclSyntax]

While the function may look a little bit complex, we need to remember two things:

1. Most types mentioned in the function signature should already be recognizable to us, as they are components of the

SwiftSyntax library.

2. There’s only one function in this protocol. No need to implement another one!

The expansion function aims to receive information about the attached object or the macro
parameters and return a piece of Swift code, represented by an array of swiftsyntax expressions
(DeclSyntax)
The expansion function has three parameters:

l.node: AtributeSyntax: This node represents that actual macro in the original piece of Swift code.

2.declaration: some DeclGroupSyntax: The declaration struct that describes the struct/class the macro is attached to.

3.context: some MacroExpansionContext: The context provides us with more information about the compiler.

Remember that the compiler serves as the “environment” in which the macro functions.

Now, we can start creating our struct init method.

First, we need to have a list of all the struct properties, including names and types. To do that, we need
to analyze the code using swiftsyntax, which we just learned in this chapter (in the Exploring

SwiftSyntax section).

So, let’s get all the struct information that we need:

let members = declaration.memberBlock.members // 1

let variableDecl = members.compactMap {
$0.decl.as (VariableDeclSyntax.self) } // 2

let variablesName = variableDecl.compactMap {
$0.bindings.first?.pattern } // 3

let variablesType = variableDecl.compactMap {
$0.bindings.first?.typeAnnotation?.type } // 4

Let’s explain the preceding code, line by line:
1. We use the declaration parameter to get all the struct members.
2. All the struct members also include their functions, so we filter it only to variables.
3. We create an array of all the variable’s names using their pattern attribute.

4. We create another variety with all the variable types, using their typeAnnotation attribute.

Now that we have all the information we need, we can generate our Swift code for the init function.

First, we generate the init function signature based on the list of variable names and types:

var code = "init ("

for (name, type) in zip(variablesName, variablesType) {
code += "\ (name): \(type), "

}

code = String(code.dropLast (2))
code += ")"

The preceding code starts by creating a mutable string, looping all the variable names and types, and
adding them to the function signature. Once the code adds all the function parameters, it closes with a

closing parenthesis.

Next, it’s time to add the function body. We can do that using a special swittsyntax struct that
represents an initializer declaration called tnitializerDeclsyntax:
let initializer = try InitializerDeclSyntax (SyntaxNodeString
(stringLiteral: code)) {

for name in variablesName {
ExprSyntax ("self.\ (name) = \ (name)")
}

}

The InitializerDeclSyntax “init” function receives two parameters — the function signature and a

closure with the “init” body represented by Exprsyntax.
Now that we have initializer, we can return an array of beclsyntax:

return [DeclSyntax(initializer)]

Let’s see the full code:

let members = structDecl.memberBlock.members
let variableDecl = members.compactMap {
$0.decl.as (VariableDeclSyntax.self) }

let variablesName = variableDecl.compactMap {
$0.bindings.first?.pattern }

let variablesType = variableDecl.compactMap {
$0.bindings.first?.typeAnnotation?.type }

var code = "init("

for (name, type) in zip(variablesName,
variablesType) {

code += "\ (name): \(type), "
}

code = String(code.droplLast (2))
code += ")"
let initializer = try InitializerDeclSyntax(SyntaxNodeString
(stringLiteral: code)) {
for name in variablesName {
ExprSyntax ("self.\ (name) = \ (name)")
}

}

return [DeclSyntax(initializer)]

The code takes the struct list of variables and generates its own init function.

How does it look? Let’s demonstrate that with a small struct:

struct Book {
var id: Int
var title: String

}

The expansion method creates the following init function:

init (id: Int, title: String) {
self.id = id
self.title = title

}

But the fact that we just defined the macro behavior doesn’t mean we can use it. Remember that the

macro runs as a compiler plugin. That’s our next step.

Adding the compiler plugin
The compiler plugin is our macro “product,” or, in other words, the macro entry point.

In iOS, macros are invoked in a sandbox without network access and system file changes. The

question is this: How does the compiler instantiate and store Swift macros to be used as a plugin?

The answer is that it doesn’t. If we have another look at our code, we’ll notice that Swift Macros

functions are all static, and that’s an important issue when creating a new macro.

So, to create a compiler plugin, we need to define a new struct that conforms to the compilerPlugin

protocol and has the emain attribute mark:

@main
struct struct initial macroPlugin: CompilerPlugin {
let providingMacros: [Macro.Typel]l = [

StructInit.self,

}

The preceding code shows that struct_initial macroPlugin implements one variable get method -

providingMacros — and returns an array of macro types instead of instances.

Another essential thing to notice here is the struct name (struct_initial macroPlugin). It doesn't
matter what name we give it as long as it conforms to the compilerplugin protocol and has the emain

attribute.

Now that we have a compiler plugin, our compiler is ready to run it.

Running our macro using a client

Macro executables are different than apps or libraries since they run in a compiler environment. If we
go back in our chapter to the section where we create the Swift Macros Swift package (Examining our
Swift Macros package structure section), we see that the Swift macro has another folder called

StructInitClient.

StructInitclient is our Swift macro executable, also defined in the macro’s package. swift manifest
file:

.executable (
name: "StructInitClient",
targets: ["StructInitClient"]

)

Now, we can change the code we have in the main. switt file to the following:

import StructInit
import Foundation
@StructInit
struct Book {
var id: Int
var title: String
var subtitle: String
var description: String
var author: String

}

In the preceding code, we have a simple struct named Book, but now, we have also attached the

@StructInit Macro we just created.

Right-click on the macro itself and choose Expand Macro, which reveals the generated code (Figure
10.8):

import Swiftul
import StructInitMacro

@Structlnit
struct Book {
var id: Int
var title: String
var subtitle: String
var description: String
var author: String
init(id: Int, title: String, subtitle: String, description: String, author: String) {
self.id = id
self.title = title
self.subtitle = subtitle
self.description = description
self.author = author

Figure 10.8: Swift macro expansion

Using our macro executable is a great way to see our macro in action! At this point, everything should

work as expected. It’s time to level up our macro implementation with some error handling.

Handling macros errors
When we create a Swift macro, things obvious to us, as the macro developers, are not obvious to our
Macro users.

Our structInit macro is designed to function exclusively with structs, not classes. Therefore, we need

to check whether the attached element is indeed a struct.

Inside the expansion () function, we can perform a simple guard statement and throw an error in case

the attached declaration is not a struct:

guard let structDecl = declaration.as(StructDeclSyntax.self)
else {
throw StructInitError.onlyStructs
}

In the preceding code, structInitError is an enum that conforms to Erroz:

enum StructInitError: CustomStringConvertible, Error {
case onlyStructs
var description: String {
switch self
case . onlyStructs: return "@StructInit can only be applied to a structure"

}
}

Having an enum with different error types and messages can make a developer’s life much easier.

Remember that this error appears in compile time (Figure 10.9):

® @Structinit can only be applied to a structure

BookClass {

Figure 10.9: An error message is thrown when implementing a Swift macro

But sometimes, we want to handle more complex errors. For example, sometimes we want to show a
warning, not just an error. Or, in other cases, we even want to offer our developer a fix for their

problem.

In these cases, we can add something called a piagnostic struct. A piagnostic struct is more suitable

for showing errors in a compiler environment and has more capabilities than just throwing errors.

Let’s create a piagnosticMessage enum and a Diagnostic struct:

enum CustomDiagnostic: String, DiagnosticMessage {
case notAStruct
var severity: DiagnosticSeverity { return .error}
var message: String
switch self (
case .notAStruct:
return "@StructInit can only be applied to a structure"
}
}

var diagnosticID: MessageID
return MessagelID (domain: "StructInitMacro",
id: rawValue)

let diagnostic = Diagnostic(node: node,
message: CustomDiagnostic.notAStruct)

The code is much longer now! However, it contains much more information and features and is also

structured in a way built for the swiftsyntax library.

If you wondered why we need the context parameter in the expansion function, now you’ll have the

answer:

context .diagnose (diagnostic)

Remember we said that context links us to the compiler environment? So, we use it to invoke a

diagnostic message.

Let’s see the guard declaration now that we have a diagnostic structure:

guard let structDecl = declaration.as(StructDeclSyntax.self) else ({
let diagnostic = Diagnostic(node: node,
message: MyLibDiagnostic.notAStruct)
context.diagnose (diagnostic)
throw StructInitError.onlyAStruct

We can see that swiftsyntax is like peeling an onion — we uncover new features every time we dig

deeper, and piagnostic is one of these features.

Now, we have a significant error handling — descriptive and precise. But what about checking our

macro in various use cases?

To see our macro at work, we used structInitclient. However, relying on the client to verify that our

macro works as expected is not sustainable over time.
So, another great feature we get from having a macro written in a Swift package is unit tests.

Let’s see how we test a macro.

Adding tests

The principle of testing a macro is to test a code block before and after the macro expansion.

As part of our Swift Macros package, we have a test target (Figure 10.10):

v & Structlnit
3 Package
v @& Sources

v @& Structlnit
3 Structinit

v @ StructinitClient
3 main

v @ StructlnitMacros

3 StructInitMacro

v @ Tests

v @ StructlnitTests
3 StructlnitTests

«; Package.resolved

Figure 10.10: A testing target for StructinitMacro

Each Swift package comes with a testing target, and in this case, we already have one test with the

stringify macro that comes when we create a new Swift Macros package.
Let’s clear the test file and start our own test.

To test a macro, we need to create the xcTestcase subclass and create a new method called testMacro.

Remember that test functions in xcTest always start with the phrase “test” followed by the test name.
To test a macro expansion, we will use a particular swiftsyntax function called
assertMacroExpansion. The most important function parameters are as follows:

« _originalSource: The original code before the expansion, including the macro attribute itself

» expandedSource: The code affer the expansion

« macros: The list of macro types being tested

Let’s see a basic test case for testing our structInit macro:

let testMacros: [String: Macro.Type] = [
"StructInit": StructInit.self,

]

final class StructInitTests: XCTestCase ({
func testMacro() {

assertMacroExpansion (
nnn

@StructInit

struct Book {
var id: Int
var title: String
var subtitle: String

}

nnn
’

expandedSource:
nnn

struct Book {

var id: Int

var title: String

var subtitle: String

init(id: Int, title: String,

subtitle: String)

self.id = id
self.title = title
self.subtitle = subtitle

}

nnn
’

macros: testMacros

}

We can see that assertMacroExpansion received the three parameters I mentioned earlier.

We compare the Book struct expansion with the Book struct desired structure, including the init

function.

assertMacroExpansion compares the expanded code of the macro to the expandedsource parameter,

and if there are any differences, it fails the test.

Testing is a crucial part of Swift packages in general. Swift packages are meant to be reusable and rely

on testing to ensure their stability.

Things get even more important when creating Swift macros since they run as a compiler plugin,

which makes it harder to debug. So, we shouldn’t give up tests, especially not in macros.

Practice exercises

Swift Macros is a complex topic, and it is a challenge to understand how to create a Swift macro

without trying it yourself. Here are two exercises that can help you get started:

o Create an attached Swift macro that adds a function called printVariables. The function prints the list of the class properties

and their values.

 Create a freestanding macro called #colorhex that receives a hex color value and generates an RGB color expression. For

example, #colorhex ("#FFFFFF") will generate Color (red: 0.0, green: 0.0, blue: 0.0).

In addition, here are some links that can help you get more insights about Swift Macros:

« Swift Macros documentation from the Swift.org projects: https://docs.swift.org/swift-book/documentation/the-swift-

programming-language/macros/

« A GitHub repository about great Swift macros we can use and learn from: https://github.com/krzysztofzablocki/Swift-Macros

Summary

This chapter covered a new and exciting feature of Xcode 15 and iOS 17 - Swift Macros.

We explored the swiftsyntax library and learned how to set up, parse, and generate Swift code. We

also created our first Swift macro, handled errors, and even wrote one test.

Swift Macros is a comprehensive, complex, yet effective feature, and by now, you are ready to

implement it in your own projects!

In the next chapter, we'll discuss another exciting framework — Combine.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/macros/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/macros/
https://github.com/krzysztofzablocki/Swift-Macros

11

Creating Pipelines with Combine

Data flow is a central programming topic, not just in iOS development. Indeed, we have many
solutions and design patterns to address data flow management. It was only in 1997 that the computer
science world introduced reactive programming - a programming paradigm focusing on data

streams, enabling declarative composition.

Apple’s version of reactive programming is Combine, a framework that provides infrastructure for
building data streams in our apps. It is also the infrastructure of SwiftUI, enabling it to be a declarative

framework.

In this chapter, we will do the following:
« Discuss the reasons to use Combine in our projects
« Go over the basics
o Delve into Combine

o Learn about Combine using examples

Before we start going over the Combine framework, let's understand why we should use Combine.

Technical requirements

For this chapter, it’s essential to download Xcode version 16.0 or higher from the App Store.

Ensure you're operating on the most recent version of macOS (Ventura or newer). Just search for
Xcode in the App Store, choose the latest version, and proceed with the download. Open Xcode and
complete any further setup instructions that appear. After Xcode is completely up and running, you

can begin.

Download the sample code from the following GitHub link:
https://github.com/PacktPublishing/Mastering-iOS-17-Programming-fifth-

edition/tree/main/Chapter%2011

Why use Combine?

Apple’'s Combine framework is considered to have a steep learning curve, but not because it is
technically complex. This is because many developers don’'t understand why, how, and where they

should use Combine in their apps.

https://github.com/PacktPublishing/Mastering-iOS-17-Programming-fifth-edition/tree/main/Chapter%2011
https://github.com/PacktPublishing/Mastering-iOS-17-Programming-fifth-edition/tree/main/Chapter%2011

To answer these questions, let’s try to understand Combine. Combine is Apple’s reactive framework

and provides a unified API for asynchronous events and data streams.
But why do we need a reactive framework? Don’'t we have everything we need?

Let’s see what we have in our i0OS SDK:

« Notifications allow us to send messages that any object can observe
« Delegates allow objects to respond to events or changes triggered by other objects
o Closures are self-contained functionality blocks we can pass around and call whenever we need

« Key-Value Observing (KVO) allows us to observe value changes in object property

That’s a powerful toolbox! But while we have a toolbox with so many options, these options have some

drawbacks we need to discuss.

For example, notifications might be considered to be an anti-pattern, mainly because they have
implicit communication. Imagine a project based on notifications, with objects that mainly
communicate with each other using the notification center. That project can take time to manage and

understand the data flow and dependencies.

Delegates help with some of these problems. But when we want to pass data between different objects
continuously, they require us to create many protocols and require each object to call another, making

it hard to understand what’s happening.

Closures are actually significant progress compared to delegates, but they also create complexity when

nested or captured by other closures.

Imagine we have a view controller with a view model. The view model has a message property, and we

always want UlILabel’s text to match the message property value.

With Combine, we would do the following:

messageSubscriber = viewModel.Smessage
.sink { [weak self] message in
self?.label.text = message
}

The sink operator receives an update of any change in the message property and has a closure with the

new message property. We store the new message property directly in the label’s text value.

This example binds the label’s text property to the viewModel text property. There is no need to define a

specific interface for delegating, observing, posting notifications, or defining a closure.

Combine has much more to offer, but before we delve into additional practical examples, let’s

understand the basics.

Going over the basics

As a reactive framework, Combine is built upon components that publish updates (the publishers)

and components that subscribe to updates (the subscribers).

In between, we've got the operators, which can manipulate data and control the stream flow. Let’s get

an overview of Combine by starting with the publisher.

Starting with the publisher

The best way to explain how Combine works is by talking about publishers. Publishers are types that

can deliver a sequence of values over time. We saw one example in Chapter 10:

URLSession.shared.dataTaskPublisher (for: url)
For a type to be a publisher, it needs to conform to the publisher protocol, and urLsession is not the
only type that does that. Timer and NotificationCenter are also types that have their publishers:

NotificationCenter.default.publisher (for:
Notification.Name ("DataValueChanged"))

Or, it can be a Timer publisher:

let timerPublisher = Timer.publish(every: 1.0, on: .main,
in: .default)
.autoconnect ()

For types that don’t have a publisher, we can add one as long as their property is KVO-compliant:

extension UserDefaults {
@objc dynamic var test: Int { return integer (forKey:
"myProperty") }

}

let userDefaultsPublisher = UserDefaults.standard
.publisher (for: \. myProperty)

We can also create a custom publisher, and we’ll learn how to do that shortly. The publisher emits

values only if a subscriber wants to receive them. So next, let's meet the subscriber.

Setting up the subscriber

A subscriber is a protocol for instances that can receive values from a publisher. The subscriber
instance is located at the end of the stream and handles the incoming values. The Combine framework

has two built-in subscribers, sink and assign; both simplify the use of Combine in most cases.

Let’s start with sink:

import Combine

import Foundation
let subscriber = Timer.publish(every: 1.0, on: .main, in:
.default)
.autoconnect ()
.sink (receivevalue: { value in
print ("Received value: \ (value)")
H

DispatchQueue.main.asyncAfter (deadline: .now() + 5) {
subscriber.cancel ()
}

In this code example, we created a Timer publisher that sends a value every second. The value it sends

is from the date type, but it doesn’t matter to us — the sink subscriber can receive any value.

The next thing we do is cancel the subscriber after five seconds. Once no subscriber is listening, the
publisher stops sending values. That’s an essential concept of Combine, called a demand-driven
model. With this approach, we ensure efficient resource management and avoid performing any work

without a goal.

In this code example, we printed the received value to the console. However, in many cases, we want
to assign it to a specific property. For example, we may download a file and receive an update on its

progress. In this case, we want to update a progress property to show the download status.

We could use the sink closure to receive the value and set it to the relevant property, but we've got a

more elegant way, and that’s the assign subscriber:

import Combine
import Foundation
class DateContainer {
var date: Date
init () { date = Date() }
}
let container = DateContainer ()
let cancellable = Timer.publish(every: 1.0, on: .main, in:
.default)
.autoconnect ()
.assign(to: \.date, on: container)
DispatchQueue.main.asyncAfter (deadline: .now() + 2) {
cancellable.cancel ()
}

In this example, we have the same timer as the previous example. However, this time, we've got an
instance of patecontainer with a date property. The assign subscriber at the end of the stream

ensures that we take the received value and assign it to a specific property using a key path.
In this case, the assign subscriber input value must match the publisher output value.

We obviously can achieve the same results using the sink closure:

.sink (receivevValue: { value in
container.date = value
)

However, using the assign subscriber is far more elegant and more than just semantic. Using key

paths improves our code type safety and makes it more declarative and concise.

We've learned that the publisher’s output should match the subscriber’s input. But what do we do if we
need to perform some transformations and processing to make that happen? That’s why we have the

operators.

Connecting operators

The third part of Combine streams is the operator. The operator takes upstream data (the output from
the previous step), processes it, and emits it downstream. Downstream means the next step — the

subscriber or another operator.
The operators are actually what helps us build what we call a pipeline or Combine stream.

Let’s try to build a simple stream:

let numbersPublisher = Array(l...20).publisher
let subscription = numbersPublisher

.filter { $0 % 2 == 0 }

.map { "The number is \($0)" }

.sink (receivevalue: { print($0) })

This simple code example takes an array of numbers between 1 and 20, making it a publisher using the

publisher variable.

numbersPublisher emits a new value from the array each time. The value goes downstream to the
filter operator, which republishes the value only if it’s even. The filtered value moves to the map

operator, which transforms it into a string message and republishes it again.
At the end of the stream, we have the sink subscriber, which prints the message to the console.

Congratulations! We've created our first pipeline. Look at Figure 11.1:

1..20 — Int Int | —» Int |String] — | String | ReceiveValue
Array Publisher filter map sink
Figure 11.1: Our first Combine timeline

Figure 11.1 shows the different pipeline operators, such as filter and map. I am highlighting the input
and output for each operator here. We can see that the output of one timeline component is the input

of the next element.

That leads us to something we haven’t discussed yet — what exactly are publishers and subscribers?

How do they work under the hood? Let’s delve in.

Delving into Combine components

Until now, we have created simple examples in Combine to warm up. However, if we want to use

Combine in a more advanced way, we need to understand better what happens under the hood.

The first thing we must understand is that Combine is not magic. Combine alone doesn’t include any
sophisticated code. Ultimately, we are talking about a group of protocols that helps us subscribe to

changes and create a pipeline of updates.

To delve in, we will review the different protocols and build our own custom publishers, operators,

and subscribers to understand how things work inside.

Let’s start with the publisher.

Creating a custom publisher

I just mentioned that Combine is a set of protocols that speak with each other, and the publisher is the

first protocol we will review.

Let’s see what we know up until now about the publisher:

o The publisher emits values to one or more subscribers
« The publisher output type must match the subscriber’s input

o The publisher can also deliver errors

Based on that, let’s take our 1nt array publisher example and try to create our own publisher that

delivers numbers:

class CustomNumberPublisher: Publisher {
typealias Output = Int
typealias Failure = Never
private let numbers: [Int]
init (numbers: [Int]) {
self .numbers = numbers
}

func receive<S: Subscribers (subscriber: S) where
S.Input == Output, S.Failure == Failure {
for number in numbers {

= subscriber.receive (number)

subscriber.receive (completion: .finished)

}

The customNumberPublisher class has three essential parts:

o Output - This is where we define the publisher output type. In this case, it is an Int type.
e Failure - This is where we define the publisher error type. In this case, the publisher never emits an error.

« receive - This is the main publisher method. Combine calls the receive method whenever a subscriber subscribes to the
publisher. We can see that the receive function has the subscriber’s parameter, and it also verifies that the subscriber input type

and error match the publisher definition.
When the publisher wants to emit a new value, it calls the subscriber’s receive method with the new

value. When the publisher completes sending values, it calls the subscriber’s receive function with the

completion parameter.

Let’s see how we use customNumberPublisher:

let subscriber = CustomNumberPublisher (numbers: [1, 2, 3,
4, 5]1)
.sink { value in
print (value)

}
Running this code will print 1, 2, 3, 4, 5 to the console as expected.
The customNumberPublisher example explains how a publisher works. But sometimes, we want to send

values imperatively. We may wish to implement Combine in an existing project code or simplify

things.

So, let’s meet a special publisher type called subject.

Working with Subjects

A Subject is a publisher we can use to send values into a Combine stream. We do that by calling its

send(_:) method.

Let’s start with the most basic Subject — Passthroughsubject.

Understanding PassthroughSubject

Let’s see a basic example of Subject usage:

import Combine

let subject = PassthroughSubject<Int, Nevers ()

let subscriber = subject.sink { value in
print ("Received value: \ (value)")

}

subject.send (1)
subject.send (2)
subject.send (3)

The code example is simple and easy to follow. We created a subject instance (which is a publisher) of

the Passthroughsubject type. Passthroughsubject can be initialized without any value, and the first

time we open a stream is after we call its send (_:) function.

Notice that our subject is just sending values but never closing the stream. However, we've learned
from our custom publisher implementation that, sometimes, the publisher closes its streams and

sends a completion to the subscriber.

We can also use the send (_:) function to close the Combine stream:

subject.send
subject.send
subject.send

)

)

ompletion: .finished)
subject.send (3)

In this code example, we use our Subject to send two values - 1 and 2. After sending these values, we

close the stream by calling the send function with the . finished parameter.

After that, the Subject tries to send another value (3), but the stream is already closed, and the

subscriber won't receive it.
The publisher life cycle is crucial to the Combine methodology and applies to our Subjects.

Passthroughsubject is excellent for sending values to subscribers. However, it’s not very good for
holding a state. For example, imagine we want to store the current authentication login status or a file
download progress. One solution is to store the received value in an instance variable. However, using

an instance variable can be cumbersome, especially with several subscribers.

Another option is to use another type of Subject called currentvaluesubject.

Preserving state with CurrentValueSubject Subject

Unlike passthroughSubject, CurrentValuesubject is excellent for holding a state. It has an initial state

and a value property representing the current value.

Let’s see a basic example of currentvaluesubject usage:

import Combine
let subject = CurrentValueSubject<String, Nevers>("Initial
Value")
let currentValue = subject.value
print ("Current value: \ (currentValue)")
let subscriber = subject.sink { value in
print ("Received value: \ (value)")

subject.send ("New Value")
In this code example, we create currentvaluesubject and initialize it with a value ("Initial valuen®).

We then print the Subject’s current value into the console and subscribe to it using a simple sink

function, printing each update as well.

In the last line, we send a new value using our Subject.

The console, in this case, will show the following:

Current value: Initial Value
Received value: Initial Value
Received value: New Value

At first glance, the console output looks weird. Why do we see Received value: Initial Value if we

have not sent it using the send (_:) function?

The answer is that currentvaluesubject already holds a value when we initialize it, and when we

subscribe to it for the first time, we already receive the current value.

This is why currentvaluesubject is excellent for state management. This behavior ensures that our

subscribers always sync with the current Subject value.

Passthroughsubject doesn’t have the value property, and we cannot read its current value. However,
the fact that it doesn't emit its values before we call the send(_:) function can be an advantage in some

cases.

Let’s see an example:

let subjectl = PassthroughSubject<Int, Nevers()
let subject2 = PassthroughSubject<Int, Nevers ()
let subscriber = subjectl
.merge (with: subject2)
.sink { value in
print ("Transformed value: \ (value)")
}

subjectl.send (1)
subjectl.send(2)
subject2.send (3)
subject2.send (4)

In this example, we have two Passthroughsubject publishers and the merge () operator in our
Combine stream. The merge () operator combines the values emitted by both publishers into a single

stream. If one of the Subjects sends a value, the merge () operator moves it down the stream.

So, in this case, the output will be as follows:

Transformed value:
Transformed value:
Transformed value:
Transformed value:

B w N

PassthroughSubject can act as an intermediate step in the Combine pipeline, allowing us to combine
multiple publishers and perform data transformations before it reaches the subscribers. This is

something we cannot do with currentvaluesubject.

Until now, we have used the built-in sink subscriber to handle the incoming value. But just like the
publisher, we can also create a custom subscriber. Learning how to make a custom subscriber can

enrich our knowledge of Combine. Let’s delve in!

Creating a custom subscriber

If the publisher is the element that delivers updates, the subscriber is the element that demands them.

We already understand that Combine works with a supply-and-demand model. This means the

subscriber needs a mechanism to handle and request incoming values.

Let’s build a subscriber for customNumberPublisher:

class CustomNumberSubscriber: Subscriber {
typealias Input = Int
typealias Failure = Never
func receive (subscription: Subscription) ({
subscription.request (.unlimited)
}

func receive(_ input: Int) -> Subscribers.Demand {
print ("Received: \ (input)™")
return .unlimited

}

func receive (completion: Subscribers.Completion<Nevers)

{
}

print ("Received completion: \ (completion)")

}

The subscriber protocol contains the publisher’s corresponding type aliases, Input and Failure. Both

need to match the publisher’s output and Failure data types.

Looking at the subscriber implementation, we can see three more receive functions, which we’ll look

at in the next subsections.

receive(subscription: Subscription)

receive (subscription: Subscription) is called when the subscriber subscribes successfully to the
publisher. The subscription object handles the subscription, and it has one important method - to

define the demand from the publisher. We do that by requesting unlimited values:

subscription.request (.unlimited)

We can also limit the number of items we're requesting. For example, let’s request a maximum of three

additional items:

subscription.request (.max(3))

We can also request no items at all:

subscription.request (.none)

Notice that the publisher needs to call the receive (subscription: Subscription) method explicitly.
This means that if we build a custom publisher (as in the Creating a custom publisher section), we

must ensure that we call that function ourselves.

We need to handle the incoming values now that we have established the subscription, and we do that

with the receive (_input:1Int) method.

receive(_ input: Int) -> Subscribers.Demand

If we look back at the customNumberPublisher subscriber we created in the Creating a custom publisher

section, we can see that our publisher calls the subscriber directly:

= subscriber.receive (number)

That’s the receive (_ input:Int) method we need to implement as part of the subscriber protocol.
This method handles the incoming updates, similar to the closure we saw in the sink function (in the

Setting up the Subscriber section).

Notice that the receive function returns subscribers.Demand. That’s the same demand type we
discussed in the previous function. When the subscriber finishes handling the input, it must inform
the publisher how many more items it demands. Demanding more items doesn't replace the demand
sent in the previous function when the subscriber first established its subscription to the publisher.

The new demand request is an additive value that needs to be handled by the publisher.

Look at the following code:

func receive (subscription: Subscription) {
subscription.request (.max(2))
}

func receive(_ input: Int) -> Subscribers.Demand {
print ("Received: \ (input)")
return .max(3)

}

Let’s try to follow the calls in this code example:

o The subscriber subscribes to the publisher, and the receive (subscription: Subscription) function is called,

returning a maximum of 1. The total demand is now 1.

o The publisher emits a value to the subscriber, and the receive (_ input:Int) function is called, returning a maximum of 3.

The total demand is now 4.

As mentioned, it is the publisher’s responsibility to manage the subscriber demand. If we create our

custom publisher, we need to consider that.

Now that we know how to start and manage a subscription, it's no less important to understand how

to complete it.

receive(completion: Subscribers.Completion<Never>)

The publisher calls the subscriber’s receive (completion:) function when it completes publishing. It

can be either because the publisher has no updates or an error.

That’s where the subscriber needs to perform cleanups, update Ul or application state, or print logs,

mainly when an error occurs.

Here’s an example of the receive (completion:) function:

func receive (completion: Subscribers.Completion<Nevers) {
switch completion {
case .finished:
print ("Subscription completed successfully.")
case .failure(let error):
print ("Subscription failed with error: \ (error)")
}

}

That’s a basic implementation of the receive (completion:) function.

We now know how to create a custom publisher and a custom subscriber. Now, let’s see how to

connect them.

Connecting the custom publisher and subscriber

To complete the picture of how the subscriber and the publisher work together, we must return to the

publisher and respond to our subscriber demand requests.

Let’s see an example of how to implement a receive function on the publisher side:

func receive<S: Subscribers (subscriber: S) where

S.Input == Output, S.Failure == Failure {
for number in numbers {
guard subscriber.receive (number) != .none else

{
subscriber.receive (completion: .finished)
return

}
}

subscriber.receive (completion: .finished)

}
In the code example, the publisher keeps sending more updates to the subscriber as long as the
subscriber keeps demanding them. When the subscriber stops demanding more updates, the

publisher closes the stream and calls the subscriber receive (completion:) function.

At this point, we should be familiar with how subscribers and publishers work together. We created
custom publishers and subscribers and performed basic subscriptions. Let’s improve these

subscriptions with operators, something we have barely discussed.

Working with operators

Subscriptions and publishers are great, but the true power of Combine comes from operators.

Unlike subscriptions and publishers, operators are not protocols or instances. Operators are just
publisher methods that republish the update downstream and create a chain of data manipulations

until the subscriber reaches the end of the pipeline.

Operators help us modify the updates, filter them, merge them, and perform many operations, which

allows us to achieve an ideal result.

The Combine framework comes with many built-in operators. We will go over only some of them
now, but you can go over the full list at the Apple website:

https://developer.apple.com/documentation/combine/publishers-catch-publisher-operators

Let’s start with some basic operators.

Starting with basic operators

One of the most basic use cases for operators in Combine is to filter the updates that the publisher

delivers.

For example, we can use the £ilter operator:

let cancellable = (1...10) .publisher
.filter{ $0 % 2 == 0 }
.sink { value in
print (value)
}

In this code example, we created a publisher that emits values from 1 to 10. The filter operator
ensures that only even numbers will continue downstream. This code will print 2, 4, 6, 8, and 10 to the

console.

Another example of a filtering operator is removeDuplicates:

let cancellable = [1,2,2,3,3,3,4,5] .publisher
.removeDuplicates ()
.sink { value in
print (value)

https://developer.apple.com/documentation/combine/publishers-catch-publisher-operators

The code example shows a publisher that emits duplicate values. The removebuplicates operator filters

out the values in case they were sent in the last update. The console will show the following:

Uk W N

Let’s try to create a custom operator to understand how an operator works underneath.

Creating a custom operator

When we try to examine the filter operator in Apple’s header files, we can see the following:

extension Publisher ({

public func filter(isIncluded: @escaping (Self.Output) ->
Bool) -> Publishers.Filter<Selfs>

}
filter () is a function that accepts a closure with a parameter of a generic type of output and returns a
publisher. This function extends the publisher protocol we discussed earlier under Creating a custom

publisher.

The important thing to notice here is that the £i1ter function republishes the values and allows

multiple operators to be chained together to create a complex data processing pipeline.

This is similar to how view modifiers work with SwiftUT - they modify the current view and return a

new view.

To create our own custom operator, let’s try to do the same thing and create a multiply operator. Our

multiply operator accepts an Int value and republishes it while multiplying with a certain factor:

extension Publisher where Output == Int
func multiply(by factor: Int) -> Publishers.Map<Self,
Int> {

return self.map { value in
return value * factor

}

In our code example, we also extended the publisher protocol while ensuring the output type needs

to be Int.
We then create amultiply function that accepts a factor as a parameter and returns a new publisher.

In our implementation, we use a map operator to transform our value into a new one, which means we

need to return a Map publisher. Let’s see how to use our new operator:

let cancellable = [1, 2, 3, 4, 5].publisher
.multiply (by: 2)
.sink { value in
print ("Received value: \ (value)")
1

We added our new multiply operator to a Combine stream that starts with an array of five numbers.
The output for this code would be as follows:

Received value: 2

Received value: 4

Received value: 6

8

1

Received value:

Received value: 10

We created our first operator!

However, if you are like me, the return of a new Map publisher may bother you. Let’s try to

understand why it happened and what we can do about it.

Working with AnyPublisher

Our intuition says that if multiply is a function that accepts an 1nt type and returns a new value, why

do we need to use a Map publisher?

So, we need to remember that operators republish our values. The function doesn’t return a value but
rather a publisher that publishes the new value. It might not sound obvious, but our goal is to create a

chain of publishers and multiply, despite its name, which is part of this chain.

So, our solution is to return some sort of a generic publisher, or what we call in Combine —

AnyPublisher.

AnyPublisher is a type-erased publisher, and we use it to present a more abstract interface to our

publishers.

Let’s see our multiply operator version, which now returns anypublisher instead of publisher.Map:

extension Publisher where Output == Int
func multiply(by factor: Int) -> AnyPublisher<Int,
Failure> {
return self.map { value in
return value * factor
}

.eraseToAnyPublisher ()
}
In this code example, we performed two changes:

o We changed the function’s return type to AnyPublisher<Int, Failure>.In this way, we hide the implementation details

and the fact that we used the Map publisher.

o We erased the publisher type using the eraseToAnyPublisher () function, which erases the publisher type and returns

AnyPublisher.

At first glance, it looks like anyPublisher is there only for semantic reasons. But when I said that
returning a Map publisher bothers me, it wasn't because it didn’t look nice. It’s because anyPublisher

has practical implications for how we build Combine streams.

One reason is API design. Using anypPublisher allows us to design a more flexible and polymorphic
APl interface. Our previous version of the multiply function returned a specific type of publisher.

Returning anypublisher makes it easier to chain publishers together because they are from the same
type.
Another reason is decoupling — by returning publishers as anypPublisher, were decoupling our

publisher’s implementation from its usage. By that, we make our code more modular and

maintainable.

The filter and removeDuplicates operators, along with map, are great for streamlining and
manipulating values along the pipeline. We also reviewed the merge operator when we discussed
Subjects in the Working with Subjects section. But Combine offers more advanced operators. Let’s go

over some of them now.

Exploring advanced operators

Let’s face it, up until now, we discussed operators that performed tasks that were easy to do even
without Combine. Yes, using map and £ilter operators is extremely valuable, but they don't reflect the

real Combine added value.

One of the Combine framework goals is to create much more sophisticated and complex streams that

can be error-prone to do without it.

Let’s understand what I mean and explore the zip operator.

Using the zip operator

The zip operator combines values from two publishers and emits a tuple only after each publisher

emits its value.

Once the zip operator receives values from all publishers, it emits a tuple and resets itself. This means

it waits again to receive values from all publishers before it emits a new tuple.

Let’s see a simple code example:

import Combine
let publisherl
let publisher2

PassthroughSubject<Int, Nevers ()
PassthroughSubject<Int, Nevers()

let cancellable = publisherl

.zip (publisher2)

.sink { value in

print ("Zipped value: \ (value)")
}
publisherl.send

(// no output
publisher2.send (

(

(

1)

10) // output is (1,10)
2) // no output

20) // output is (2,20)

publisherl.send
publisher2.send

In this code example, we used two Subjects to send values to our subscriber. We zipped them together

and printed the output.

We can see that after publisher1 sends a value, the stream doesn’t continue and waits for publisher2
to send its value. Only after publisher2 sends a value does the stream continue and print (1,10) to the

console. At this point, the zip operator is reset, and again, it waits for both publishers to emit values.

The zip operator is not limited to two publishers. We can also use zip for three publishers and receive

a tuple of three.

The zip operator belongs to a group of Combine operators that handles multiple publishers together.

We already saw the merge operator under the Working with Subjects section.

Another operator that belongs to this category is combineLatest. Let’s go over it now.

Combining multiple values using combineLatest

The zip operator combines multiple publisher outputs into a tuple. However, it waits for all publishers

to send values each time.

The combineLatest operator only waits for the first time for all publishers to emit values, and from this

point, it emits a new tuple each time one of the publishers sends a new value.

Let’s see an example of combineLatest:

let publisherl = PassthroughSubject<Int, Nevers()
let publisher2 = PassthroughSubject<Int, Nevers()
let cancellable = publisherl

.combineLatest (publisher2)

.sink { value in

print ("Combined value: \ (value)")

// no output

publisherl.send (1)
0) // output will be 1,10
)
0

publisher2.send
publisherl.send
publisher2.send

// output will be 2,10

(1
(1
(2
(20) // output will be 2,20

In this code example, we also have two Subjects that send values. This time, we combined them using

combineLatest.

After publisher1 sends its first value, combineLatest halts the stream as it waits for publisher2 to send

a value.

Once publisher2 sends its first value, combineLatest emits a tuple with the values of (1, 10).

Next, publisherl sends a new value — 2. This time, combineLatest doesn’t wait for publisher2 to send

a new value and emits a new tuple - (2, 10)

The behavior of emitting a new tuple each time one of the publishers sends a new value makes

combineLatest a top-rated operator for handling asynchronized operations.

Imagine you have a screen being updated by multiple sources, such as a search results screen of live
sports updates, and each time we get a new update, we want our screen to refresh its UT to reflect the

new state.

combineLatest is ideal for such a case, as it creates a new tuple downstream whenever one of the

publishers emits a new value.

We can use many more useful operators; you can find them all on Apple’s website. However, the real
challenge with adopting Combine in our projects is understanding how to implement them in real-life

use cases.

Learning about Combine using examples

Up until now, we have discussed several Combine components and delved into understanding how
Combine works underneath by creating our custom publishers, subscribers, and operators.

Despite that, many developers need help incorporating Combine frameworks in real-life scenarios.

The different publishers and operators are mostly clear in theory, but it can be difficult to imagine

them as part of the central design patterns we use in our projects.

Let’s review some examples to help us understand how to implement Combine in our projects. We'll

start with a basic example of managing a Ul state in a view model.

Managing UlKit-based view state in a view model

SwiftUI view states are naturally declarative. This means we can bind the view state, such as a list of

items, to a Ul component, such as a List view. That’s the only way to handle states in SwiftUI.
However, achieving that design pattern in UIKit takes time and effort.

Using Combine, we can create a publisher and bind our table view data source to reflect any changes

coming from the server.

Here’s a code example for such a view model:

class MyViewModel {

struct Item: Codable {
let title: String
let description: String
1
var dataPublisher: AnyPublisher<[Item], Error> {
return URLSession.shared.dataTaskPublisher (for:
URL (string: "https://api.example.com/data")!)
.map { $0.data }
.decode (type: [Item].self, decoder:
JSONDecoder ())
.eraseToAnyPublisher ()

}

We have already discussed the anypublisher form, and that’s a great example of its usage. We create a
publisher that starts with a URL request, extracts its data using the map operator, and decodes it into
an array of Items. To hide the publisher implementation, we erase its type for anypublisher.
Connecting the view model to the view controller is simple now that we have a publisher:
viewModel.dataPublisher
.sink (receiveCompletion: { completion in

}, receiveValue: { [weak self] data in
self?.updateTableView(with: data)
1y

.store(in: &cancellables)

In this code example, we subscribe to our new datapublisher and update our table view with the data.

To make our project even more modular, we can move the urRLSession dataTaskPublisher function to

a class of its own and keep the separation of concerns principle.

Performing searches from multiple sources

One of the most popular use cases of iOS development is performing a search from the server and the

local database.

The requirement for such a search is first to show results from the local data store and then go to the

server and return results.

This is a common requirement, and using Combine is also easy. Let’s see a simple example of that:

func searchLocalDatabase (query: String) -> AnyPublisher<[SearchResult], Nevers> {
return Just ([
SearchResult (id: 1, title: "Local Result 1"),
SearchResult (id: 2, title: "Local Result 2")
1)
.delay(for: .seconds(1l), scheduler: DispatchQueue.main)
.eraseToAnyPublisher ()
}
func searchServer (query: String) ->
AnyPublisher< [SearchResult], Nevers> {
return Future { promise in
DispatchQueue.global () .asyncAfter (deadline: .now()
+ 2) |

promise (.success ([
SearchResult (id: 3, title: "Server Result
lll) ,
SearchResult (id: 4, title: "Server Result
2!!)
1))
}
1
.eraseToAnyPublisher ()

}

var cancellables = Set<AnyCancellables ()
let query = "example"
var totalResults = [SearchResult] ()
searchLocalDatabase (query: query)
.merge (with: searchServer (query: query))
.sink (receiveCompletion: { _ in }, receiveValue: ({
results in
totalResults.append (contentsOf: results)
print ("Search results: \ (totalResults)")

3

.store(in: &cancellables)
In this code example, we performed three primary steps:

1. We created a publisher for each source - If were working with several sources that need to deliver values (in this case, the local data
source and the server), creating a publisher for each is useful. Once we have multiple publishers, combining them to create a
stream of updates is easy. We used two publishers to simulate this search - Just and Future. We can use Just to start a stream,

and Future is a publisher we use to perform a task and emit the value asynchronously.

2. We used the merge operator to receive updates - Now that we have a publisher for each source, we have merged them utilizing the
merge operator. Remember that the merge operator emits an update if one of its sources emits a new value. We could also use
combineLatest, but combineLatest waits for all the publishers to emit values before it emits the combined value

downstream.

W

. We collected the data received - Each time we got a new value, we appended its contents to the totalResults array. Our data
flow doesn’t have to end here. We can make totalResults a CurrentValueSubject instance and deliver the results to the
view model or the view itself. If we are working with SwiftUI, we can make totalResults a @Published variable to refresh

the search results UI automatically.

There’s a nice lesson here related to using Combine in our projects. If we create publishers for different
data sources and ensure they emit values, it becomes easy to create pipelines of updates and connect

them to the rest of the project.

The following example handles another everyday use case, which is form validation.

Validating forms

Forms are common use cases in any user-facing platform, not just iOS. One of the most essential

responsibilities of creating forms is the ability to validate their inputs.

Let’s see how to use Combine to validate a simple sign-in form:

struct FormView: View {
@ObservedObject var viewModel = FormViewModel ()

}

Our form contains two text fields — username and password. We also have a view model attached to the
view. The view model has several epublished variables, such as username, password, and isFormvalid.

The username and password variables are connected to the view text fields.

var body: some View {
vstack {
TextField ("Username", text:
SviewModel .username)
.padding ()
.textFieldStyle (RoundedBorderTextFieldStyle())
SecureField ("Password", text:
SviewModel .password)
.padding ()
.textFieldStyle (RoundedBorderTextFieldStyle())
Button ("Login") {
if viewModel.isFormvalid ({
print ("Login successful!")
} else {
print ("Please fill in all fields.")
1

}

.padding ()
.disabled(!viewModel.isFormvalid)

}

.padding ()

Now, let’s see the FormviewModel class:

class FormViewModel: ObservableObject {

}

When we initialize the view model, we create a Combine stream based on the combineLatest operator
to observe changes in the username and password variables. The map operator ensures that both

variables are not empty, and we assign the results (Boo1) to the isFormvalid variable.
The view observes the isFormvalid value and uses it to turn the login button on and off.

This stream is basic; we can achieve the same results without Combine. However, forms can become

very complex at some point. The Combine pipeline we created is an excellent infrastructure for more

@Published var username: String = ""
@Published var password: String = ""

@Published var isFormValid: Bool = false
private var cancellables = Set<AnyCancellables ()
init () {

Publishers.combinelLatest (Susername, S$password)
.map { username, password in
lusername.isEmpty && !password.isEmpty

.assign(to: \.isFormvalid, on: self)
.store(in: &cancellables)

complicated forms.

Even simple rules for username and password can be easily enforced using our stream, as in this
example:
Publishers.combinelLatest (Susername, $password)
.map { username, password in
let isUsernameValid = !username.isEmpty &&
username.count >= 6
let isPasswordvValid = !password.isEmpty &&
password.count >= 8 && password.contains (

where: { $0.isNumber })
return isUsernameValid && isPasswordvalid

}

.assign(to: \.isFormvValid, on: self)
.store(in: &cancellables)

In this code example, we used our Combine stream to enforce rules — the password needs at least eight
characters including a number, and the username needs at least six characters. The map operator is

great for centralizing this logic, outputting a Boolean value, and assigning it to the isFormvalid value.

Summary
Combine makes our code reactive beyond SwiftUI views. It’s a framework that can help us handle
complex tasks such as search, network requests, and state management.

This chapter reviewed the basic Combine components, such as the publisher, subscriber, and operator.
We also delved in and created custom versions of each of the components. We learned how to create
pipelines with data transforms and network requests. In the end, we learned how to incorporate

Combine in common use cases.
By now, we should be able to start working with Combine on our existing projects.

The next chapter touches on another topic many iOS developers feel irritated by — Core Data.

12
Being Smart with Apple Intelligence and ML

The launch of ChatGPT in November 2022 wasn't the first appearance of an Artificial Intelligence (AI)
tool, but it was the one that put the Al in the spotlight.

Some may argue that Apple entered the AI world later than others. Perhaps, but what's certain is that

iOS has machine-learning capabilities for both users and developers.

Machine learning opens up new capabilities in almost every area we can think of - from search,
statistics, and insights to understanding images and sounds. There are even apps that are based on Al

and machine learning capabilities.

Currently, most of these capabilities are server-based. Still, the ongoing improvements in mobile
phones” System On Chip (SoC) performance allow them to perform predictions on-device, which

opens up new opportunities.

In this chapter, we will do the following:

o Cover the basics of Al and machine learning, learn the different terms, how machine learning works, and what it means to train a

model
« Explore built-in machine learning frameworks such as Natural Language Processing (NLP), vision, and sound analysis
o Add a semantic search to our Core Spotlight implementation
o Build and integrate a custom machine learning model using the Create Machine Learning (ML) application and the Core ML

framework

Machine learning is a vast topic, and we’'ve got much to cover, so let’s jump right in to understand the

basics.

Technical requirements

You must download Xcode version 16.0 or above for this chapter from Apple’s App Store.

You'll also need to run the latest version of macOS (Ventura or above). Search for xcode in the App
Store and select and download the latest version. Launch Xcode and follow any additional installation

instructions that your system may prompt you with. Once Xcode has fully launched, you're ready to
go.

This chapter includes many code examples, some of which can be found in the following GitHub

repository: https://github.com/PacktPublishing/Mastering-iOS-18-

Development/tree/main/Chapter12.

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter12
https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter12

Note that some examples in this chapter need to be run on a device, not the simulator.

Going over the basics of Al and machine learning

Before we dive in, let’s acknowledge the complexity — AI and machine learning are two huge topics

that are impossible to cover in one chapter or even one book.

However, it is recommended that we understand the basics if we want to implement some machine-

learning capabilities in our projects.

So, let’s start with understanding the difference between machine learning and Al

Learning the differences between Al and machine
learning

Al is considered a rising topic in computer science, and this trend has been accelerated since the
launch of ChatGPT.

Even though ML is not a new technology, many people still need clarification about the difference
between ML and Al It’s not that they are not related —they are. Still, as iOS professional developers, it
is essential to have a clear overview of the differences now that Apple has integrated Al deeply into its

system.

So, what is ML? ML technology focuses on developing algorithms and statistical models to help
computers perform tasks such as prediction and classification. For example, a model can receive an
image and reply whether it contains a cat, or a model can take some text and locate the verbs and the

nouns.

The ML model is an algorithm that performs its predictions and classifications. In fact, a model can
use several algorithms to perform its calculations. For example, a vision model can use neural
networks to perform its image classification and a YOLO (You Only Look Once) algorithm to perform
real-time object detection. Each algorithm has its strengths and weaknesses. For example, the decision
tree algorithm is easy to interpret but is prone to overfitting, while KNN (K-Nearest Neighbors) is

simple and intuitive but computationally intensive.

Conversely, Al is an array of technologies and methods that create a system capable of performing

tasks similar to what humans usually do.

One great example is LLM (Large Language Model) services such as ChatGPT or Gemini. Another
example is the autonomous car driving projects that involve many ML models, such as object

detection and decision-making.

We now understand that the ML model is one building block in AI. Next, let’s dive into the ML model

to understand how it works.

Delving into the ML model

The ML model contains data to generate a prediction, classification, or decision. The ML models we
want to store on a device are relatively small. However, models such as GPT can be hundreds of
gigabytes.

But what does data mean here? How is it structured? The answer to that question depends on a
model’s algorithms. For example, if the model uses a linear regression algorithm, the data structure is
a 2D array, where the rows represent samples and the columns represent features. A model with a
decision tree algorithm contains a tree, where the leaves represent the different decisions or

predictions.

Going forward in this chapter, we will refer to building and creating a model’s data as training. Let’s

discuss that important topic.

Training the model

Two distinct ML models can have the same algorithms and structures, but the data can differ because
of the training process. Using the training process, we teach a model to make accurate predictions and
decisions based on the input data. This process involves optimizing the model’s data (parameters) to

accurately perform predictions on unseen data.

There are several steps we need to do to train a model:

1. Data collection: We need to prepare a relatively large dataset to train our model. We must also preprocess the data by handling

missing values, cleaning unrelated data items, and normalizing values.

2. Split the data collection: Now that we have the dataset, we must divide it into training data, validation, and test sets. We use each of

these sets in a different training stage.

3. Pick our ML algorithm: Each algorithm aims to solve a different problem. For example, the logistic regression algorithm solves

classification problems, and the linear regression algorithm solves regression problems.
4. Forward pass: We pass the training data through the model to make predictions.
5. Validation: We use validation datasets to assess the model’s performance and adjust the model based on the results.

6. Testing: We use the test data to evaluate our model’s performance in real-time use cases with unseen input data.

That was a schematic overview of the training process. In practice, the process contains even more

steps, such as calculating loss and optimizations. However, the goal is to give you a glimpse into

training so that you can understand the following topics. And don’t worry — we will build and train an

ML model together soon!

Now that we know what an ML model is, let’s try to understand how it relates to iOS.

Apple intelligence and ML

When ChatGPT gained popularity, many felt Apple had fallen behind in AI and ML. This book is not
the place to discuss that question; suffice it to say that ML has since been an integral part of iOS for
years. i0OS uses ML to optimize our photos according to their content. Keyboard predictions involve

ML models, and even the way iOS preserves a battery is based on ML.

All these features and capabilities are transparent to users and performed under the hood. However,
iOS 18 brought Al into the spotlight with many features, such as an improved Siri, an image

playground, and writing tools.

iOS 18 also provided some neat capabilities for us developers, but it especially brought the areas of ML
and AT to our attention. For example, semantic search is one of the new capabilities available to

developers using iOS ML features.

Before we dive into Core ML and learn how to train our models, let’s start with the models that come
with the iOS SDK, as there is a good chance that that is where well find what we need quickly without

training a new model.

Exploring built-in ML frameworks

When we reviewed the basics of Al and ML, we saw what it means to train a model - it’s a long and
complex process. This process requires us to prepare relatively big datasets, including the validation
and test datasets. Even after that, we have an ML model we need to fine-tune and include in our app

while trying to reduce its size.

However, don’t get me wrong. There are cases where training our ML model is essential, but before we

start the training process, it's important to be familiar with what iOS offers.

Working with ML frameworks in iOS isn’t new. These frameworks were introduced years ago, some
even in iOS 10 (2016). However, few developers use them, perhaps because they believe they are

complex to integrate.

We'll start with one of the most practical frameworks in the ML toolset — NLP.

Interpreting text using NLP

Interpreting and understanding texts can provide significant value to many apps. For example, NLP
can help us understand strings such as search phrases, text inputs, or extracting information from an

imported text.

The iOS SDK has a built-in NLP framework called NaturalLanguage:

import NaturalLanguage

The NaturalLanguage framework helps us interpret text efficiently on a device.
We must first know how NLP works under the hood and its basic terms to understand how it works.

The NLP model works by finding relationships between different parts of texts. Even though this task

is complex, it’s interesting to see how it works.

Understanding how NLP works

The NLP process involves text processing and several algorithms to extract the necessary information.
There are three basic steps — preprocessing, feature extraction, and modeling. Let’s go over them one

by one.

Preprocessing

In this step, the NLP model starts by cleaning the input, such as removing duplicates, splitting texts
into words and sentences, converting text to lowercase, and performing stemming and lemmatization.

Take the following text as an example:

"Running is fun! I love to run."

This will be preprocessed to something like the following:

"run fun love run".

In this example, the NLP removed stop words (such as is) and lowercased the whole string.

Feature extraction

After the string has been preprocessed, we transform it into a feature set that we can use with the ML
algorithm. In most cases, this involves capturing different patterns and word frequencies. For example,

the string from the previous step, run fun love run, can be transformed into the following:

"run": 2,
"fun": 1,
"love": 1

In this example, the NLP model takes the input string and analyzes the frequency of each word. This
technique is called Bag of Words (BoW), and the model uses it to determine the importance of the
different words in the string. Note there are many feature extraction techniques, and BoW is just an

example. We can select the model now that we have the feature extraction data.

Modeling

In the modeling step, we use string and feature extraction as input to the model algorithm. NLP uses
several algorithms to analyze the string - logistic regression, naive Bayes, and a neural network. The

algorithm that the model selects depends on the task it needs to achieve.

For example, if the NLP framework needs to perform sentiment analysis, it would use a neural

network-based model. Simple text processing tasks would use a rule-based system model.

These three steps demonstrate how complex it is to interpret a simple text. Fortunately, the

NaturalLanguage framework performs all of these steps for us.

Let’s see how to use the NaturalLanguage framework API.

Using the NaturalLanguage API

Finally, we are going to write some code! The NaturalLanguage framework has two primary uses —
classification and word tagging. Let’s start with classification.

Text classification

Using text classification, we can analyze the text sentiment to determine whether it is positive or

negative.

For example, let’s take a look at the following text:

The latest update made everything so much better. Great job!

To analyze the sentiment of this sentence using the NaturalLanguage framework, we'll use the

NLTagger class:

let sentimentAnalyzer = NLTagger (tagSchemes:

[.sentimentScore])
sentimentAnalyzer.string = userInput
let (sentiment,) = sentimentAnalyzer.tag(at:
userInput.startIndex, unit: .paragraph, scheme:
.sentimentScore)
if let sentiment = sentiment, let score =

Double (sentiment.rawValue)
// here we can use the analyzed score
} else {
print ("Unable to analyze sentiment")
}

NLTagger is the primary class we use to process texts in NLP. When we initialize it, we pass the
information we are interested in. In our example, we passed sentimentscore — a scheme that helps us

determine the text sentiment.

Our next step is to set the text input and call the tag function while passing relevant parameters, such

as range, unit type, and scheme we want it to analyze.

The tag function performs the text analysis and returns a score between -1 and 1, where a negative

score indicates a negative sentiment and a positive score indicates a positive sentiment.

If we run this code on our example sentence before the code example, we'll get a score of 1.0 — an

extremely positive text!

Even though text classification is very easy to use, it is also very powerful. We can use this capability to
analyze user feedback/reviews, chatbots, and surveys and even adapt an interface, based on the user’s

sentiments and emotions.

We mentioned that text classification is all about understanding the text sentiment. However, we can
use NLP to analyze text using word tagging.
Word tagging

Word tagging is the process of breaking a text into components and assigning tags to each phrase in

the text, indicating its grammatical category.
Let’s take the example of the following text:

She enjoys reading books in the library

If we try to break this sentence into grammatical categories, it will be something like She (pronoun),

enjoys (verb), reading (verb), books (noun), in (preposition), the (determiner), and library (noun).
The different parts of the text are called tokens, and their grammatical category is called a tag.
The NaturalLanguage framework helps us perform tokenization and tag its tokens.

Let’s look at the following code:

let inputText = "She enjoys reading books in the library"

let tagger = NLTagger (tagSchemes: [.lexicalClass])

tagger.string = inputText

let options: NLTagger.Options = [.omitPunctuation,
.omitWhitespace]

tagger.enumerateTags (in:
inputText.startIndex. .<inputText.endIndex, unit: .word,
scheme: .lexicalClass, options: options) { tag,
tokenRange in
if tag == .verb {
verb = String(inputText [tokenRangel])
return false

}

return true

}

The preceding code example takes the same sentence as earlier, tokenizes it, and locates the first verb it
finds.

We start by initializing NLTagger, similar to what we did in text classification. However, we do that this

time by passing 1exicalclass as its scheme.

Then, we provide the input text and omit punctuation and whitespaces. We do this because we want
our text to be as clean as possible. NLTagger can catch extra whitespace characters and punctuation as

additional tags.

After we clean our text, we call the enumerateTags function. This function iterates the words in the text
within a given range and extracts the different tags. We compare the tag type inside the passed closure

and store it in an instance variable.
In our example, we locate the first verb, which is enjoys.

Although word tagging and text classification are NLTagger’s two primary use cases, they can also be
used for additional cases, such as to identify a text’s language:
let tagger = NLTagger (tagSchemes: [.language])
tagger.string = inputText
if let language = tagger.dominantLanguage {
identifiedLanguage =
Locale.current.localizedString (forLanguageCode:
language.rawValue) ?7? "Unknown"

} else {
identifiedLanguage = "Unknown"
}

In the preceding example, the NLTagger receives input text and extracts its language. It can identify 50

different languages — impressive for an on-device NLP model!

We can use language identification to identify the user locale and offer to change an app’s preferred

language, or we can send that information as analytics data to our servers.

Another great example of NLP is word embedding. This feature can help our application become

smarter.

Each word in the dictionary is related to other words. For example, house is related to building and

apartment, and cat is associated with dog.

We can easily find related words, using a class called NLEmbedding:

guard let embedding = NLEmbedding.wordEmbedding (for:
.english) else ({
neighborsText = "Failed to load word
embedding."

return
}
let neighbors = embedding.neighbors (for:
embedding.vector (for: inputWord) ?? [], maximumCount: 5)
if neighbors.isEmpty {

neighborsText = "No neighbors found for
"\ (inputWord) ' ."
} else {
neighborsText = neighbors.map { "\ ($0.0)
(\($0.1))" }.joined (separator: ", ")

}
In the preceding example, NLEmbedding receives an input test, calculates its vector, and finds its closed
neighbors. If you ask yourself why this is practical, think of a search engine that can find related

content even if it isn’t exactly what the user searched for.

In this section, we analyzed text using the NaturalLanguage framework. We've learned how NLP
works, how to classify text, and extract additional information such as word tagging and even word
embedding. However, iOS apps contain more than just text; they also include images. Can we analyze

images as well?

Analyzing images using the Vision framework

Analyzing images is a fundamental topic in iOS apps. There are many use cases for analyzing images,

such as detecting barcodes, scanning documents, or image editing.

To analyze images in iOS, we need to use Apple’s Vision framework. Introduced in 2017 with the
release of iOS 11, the Vision framework provides high-level functionality to perform various image

analysis tasks.

Understanding how image analysis works

In a way, image analysis works similarly to text analysis, working with different steps that clean and

prepare data before inserting it into a model.

The image analysis works with a CNN (Convolutional Neural Network), a neural network designed

for visual data.

Consider CNN as a series of filters that can help a model better understand an image. CNN will
perform a similar process if the NaturalLanguage model preprocessed the text, removing whitespace

and duplicate words.

First, the CNN scans an image to detect similar patterns, such as lines, edges, and textures. It then
filters out what it thinks are non-important features and shrinks the image to contain the most

essential information.

Now that we have a smaller and cleaner image, the CNN tries to decide what the image is - for

example, “It’s a cat.”

Detecting patterns and edges, filtering them, and analyzing an image are complex techniques that

require extensive training. Luckily, the Vision framework performs all the heavy lifting for us.

Let’s see what it can do for us.

Exploring the Vision Framework’s capabilities

Since starting iOS 18, the Vision framework API has become extremely simple yet even more

powerful.

To understand how the Vision framework API works, we need to remember that it is based on two

types — request and observation.

To perform an image analysis, we first create a request. Then, we request the specific image and receive

an observation containing the result (if we have any).

Let’s take two popular use cases — detecting barcodes and faces.

Detecting barcodes

Look at the following code to see barcode detecting in action:

func analyze (url: URL) async {
let request = DetectBarcodesRequest ()
do {
let barcodeObservations = try await
request.perform(on: url)
barcodeIdentifier =
barcodeObservations.first?.payloadString ?? ""
} catch let error {
print ("error analyzing image -
\ (error.localizedDescription)")

}
}

The preceding code block performs barcode detection using the Vision framework. First, we create

DetectBarcodesRequest, Which represents a request to scan barcodes in a given image URL.

Then, we call the request’s per form function, which returns an array of observations in the case of

several barcodes.

Next, we take the first observation payload and store it in a variable. That payload represents the

barcode identifier.

Note that the scanning operation can be a heavy task, which is why it is an asynchronous function.

Another interesting example of a Vision framework usage is detecting faces in an image - let’s see an

example.

Detecting faces

Detecting faces works similarly to detecting barcodes. Let’s see a code example:

func analyze (url: URL) async {
let request = DetectFaceRectanglesRequest ()
do {
let observations = try await
request.perform(on: url)
if let observation = observations.first {
rect = observation.boundingBox.cgRect

}
} catch let error

print (error.localizedDescription)
}

}
The preceding code example looks almost identical to the previous barcode example. First, we create
the request. However, this time, the request is from type petectFaceRectanglesRequest. Next, we
perform the detection operation on the given image URL and retrieve an array of observations. Each
observation instance contains a rectangle of one of the faces in the image. If the image contains

multiple faces, we'll get one observation for each face.

Face detection and barcodes are two common examples of Vision framework use cases. However, the

Vision framework is full of surprises and detection capabilities. Let’s see what else we can do with it.

Exploring more detection capabilities

As mentioned, the Vision framework is full of machine-learning models capable of detecting almost

anything we want. Barcodes and faces are just the tip of the iceberg.

Here’s a list of additional detectors:
o Image aesthetics analysis: For analyzing an image from an aesthetic viewpoint
« Saliency analysis: For finding the most important object in an image
« Object tracking: For tracking an object’s movement across a sequence of images
« Body detection: Similar to face detection, for locating arms, humans, eyes, a mouth, and a nose in images
« Body and hand pose: For locating arms in an image as well as detecting their pose.
o Text detection: For detecting text in an image
« Animal detection: For detecting cats and dogs in an image as well as their pose

« Background removal and object extraction: For removing the background and extracting objects from images

The list of the different request types looks impressive, which it is. Reviewing the requests reflects how

powerful the Vision framework has become. We can see capabilities usually reserved for high-end

image editing applications, such as background removal or object extraction, now available with just

three lines of code.

This opens up new possibilities for unique features in our apps, such as working with a camera or

prioritizing images based on their information.

We've discussed analyzing text and images, which are considered the most common data sources we

usually use. The text and image analysis techniques are different but straightforward to implement.

Now, let’s turn to a different type of source we can analyze - sound.

Classifying audio using the Sound Analysis framework

Working with audio is not a popular expertise for many developers. In fact, audio is considered to be a

complex and unique world compared to what we developers are used to.

To mitigate this, the iOS SDK also includes an analysis framework that can classify audio using ML

models.

Working with the Sound Analysis framework differs from the simplicity we are used to with the

Vision framework. But don’t worry - it is still simple to use.

The Sound Analysis framework contains three different components:

« SNAudioFileAnalyzer: The main class that coordinates the analysis work
« SNClassifySoundRequest: The sound detection request

o SNResultsObserving: A protocol we need to implement to observe the results from the analyzer

To see these three components in action, take a look at the following code:

func analyze(at url: URL) ({
do {
let audioFileAnalyzer = try
SNAudioFileAnalyzer (url: url)
let request = try
SNClassifySoundRequest (classifierIdentifier:
.versionl)
let resultsObserver =
ClassificationResultsObserver ()
try audioFileAnalyzer.add (request,
withObserver: resultsObserver)
audioFileAnalyzer.analyze ()
} catch {
print ("Error: \ (error.localizedDescription)")
}

}

In this example, we first create the sNaudioFileanalyzer instance and initialize it with a URL to the

audio file. Then, we create a request for a classification sound request, passing versionl as a

parameter. The versionl parameter specifies the pre-trained classification version of the model. At the

time of writing, no additional versions are available.

Then, we create the resultsobserver instance (which we'll discuss briefly) and coordinate everything

together, using the analyzer we created earlier.

How do we get the results? Unlike the Vision framework, receiving the results can be streamlined. The
ClassificationResultsObserver is a custom class that conforms to sNResultsobserving. Let’s look at
the class implementation:

class ClassificationResultsObserver: NSObject,
SNResultsObserving {

func request (_ request: SNRequest, didProduce result:
SNResult)
guard let result = result as?

SNClassificationResult else { return }
if let classification =
result.classifications.first {
let result = classification.identifier

}
}

func request (_ request: SNRequest, didFailWithError
error: Error) { }
func requestDidComplete(request: SNRequest) {}

}

The sNresultsoObserving protocol has three essential request methods — didproduce,

didFailWithError,and;requestDidComplete

Great! However, unfortunately, in this case, it seems like we need to go back in time and use the

delegate pattern to observe results from the Sound Analysis framework.

The result is a string describing the sound we passed to the analyzer. The code example in this book’s
GitHub repository shows a sound file with a baby crying. In this case, the result would be

baby crying.

Apple has yet to officially publish the number of sound classes that the Sound Analysis framework can

recognize. However, in most cases, this should be enough for day-to-day usage.

The Sound Analysis framework can be great for monitoring apps, adding SDH (subtitles for the deaf

or hard of hearing) to video captions, and analyzing videos.

So far, we have discussed how to analyze different types of data — sound, images, and text. However,

ML is valuable in other areas, such as app search.

Performing a semantic search with Core Spotlight

When we discussed NLP in the Interpreting text using NLP section, we said that one of the most

common NLP use cases is analyzing a search phrase to build intelligent search queries.

Even though the NaturalLanguage Framework API is robust and straightforward, performing a

semantic search is considered a complex task.

Starting iOS 18, the Core Spotlight framework supports a semantic search. Before we dive into the

details, let’s clarify the term semantic search.

Understanding what semantic search is

Let’s think together about how search queries work in a standard app, and well do that using an

example.

Imagine that we have a course catalog app where a user can search for a particular course, and let’s say

we have the following list of courses in our local data store:

o Management for employees
o Data science
« Digital marketing

e ML and Al

Our user wants to improve their leadership skills, so they search for a management course within this

list of courses.

The search query’s basic form is to match a specific phrase. For example, if the user searches for
management, we filter only courses containing management. We also need to ensure that the output

query is case-insensitive.

However, what if the user searches for manager? In this case, our query returns no results, even though

a typical user can search for manager if they want a course about management.

In this case, we can use the NaturalLanguage framework to try and perform lemmatization of the
search phrase. Lemmatization is a technique that reduces words to their basic form. So, the basic form

of manager is manage.

However, if we want to match the search phrase manage, we also need all our records with the word
management to contain the word manage so that we can filter the results accordingly. It means we

must maintain the basic form for each word in each record.

But things can get even more complex than that. What if the user searches for a management course
using the phrase leadership? In this case, we will have to index our records with embedded words, as

we learned in the Word tagging section of this chapter.

The conclusion is that basic search is easy. However, semantic search, which is much more effective, is

also much more complex.

As mentioned, semantic search is built on top of the Core Spotlight framework, starting with iOS 18.
The Core Spotlight framework is not new - it was introduced in 2015 as part of iOS 9 and helps

developers index app content and make it searchable, using the Spotlight feature in iOS.

This chapter does not cover using the Core Spotlight framework. However, we will briefly review the

Core Spotlight principles to understand how to enable semantic search. Let’s begin.

Exploring the Core Spotlight framework

The Spotlight framework indexes local data and retrieves it by performing queries.

The Core Spotlight framework has three primary parts — creating searchable items, indexing, and

querying. Let’s go through the parts one by one.

Creating searchable items

Let’s say we have instances of a book structure in our local storage and want to implement Core

Spotlight to allow users to search for books.

First, we need to map all our Book instances to cssearchableItem:

let searchableItems: [CSSearchableItem] = books.map { book
in

let attributeSet =
CSSearchableItemAttributeSet (contentType:
.text)

attributeSet.title = book.title

attributeSet.contentDescription = book.author

let item = CSSearchableItem(uniqueIdentifier:
book.id, domainIdentifier: "books",
attributeSet: attributeSet)

return item

}
In the preceding code example, we took an array of Book and mapped it to an array of
cssearchableItem. We do that by creating a cssearchableItemaAttributeset — an item that contains
general information about the searchable item. Then, we initialize a new cssearchableItem, passing
our cssearchableItemAttributeset and providing a unique identifier that can help us retrieve the

Book record when needed.

Indexing

Now that we have an array of cssearchablertem, we need to index the array items for the Core

Spotlight framework. We do that by creating cssearchableIndex:

let index = CSSearchableIndex (name: "SpotlightSearchIndex")

index.indexSearchableItems (searchableItems) { error
in
if let error = error {
print ("Indexing error:
\ (error.localizedDescription)")

} else {
print ("Books successfully indexed!")
}

}

In the preceding example, we created a new cssearchableIndex and called the indexsearchableItems
function, with the array of cssearchablertem that we made in the previous step. Note that this is an

asynchronous operation and is considered to be quite intensive.

Querying

Now that we have an index, we can perform a query to retrieve data based on a search phrase:

let searchContext = CSUserQueryContext ()
searchContext.fetchAttributes = ["title"]
searchContext .enableRankedResults = true
var items: [CSSearchableItem] = []
let query = CSUserQuery (userQueryString: query,
userQueryContext: searchContext)
do {
for try await element in query.responses {
switch(element) {
case .item(let item) :
items.append (item.item)
break
case .suggestion(let suggestion) :
// handle suggestions.
break
@unknown default:
break
}

}

self.searchResults = items

} catch let error ({
print (error.localizedDescription)
}

In the preceding example, we create a search context containing various query information. Based on
the search context and the search phrase, we initialize an item of csuserguery and fetch the search

results by calling its responses getter.

The results are an array of cssearchableItem, and we can retrieve the original item by using the

unique identifier for each record.

Now that we know how to implement search using the Core Spotlight framework, let’s see how to

implement a semantic search.

Implementing semantic search

Adding semantic search capabilities to an existing Core Spotlight search is simple. All we need to do is

load the ML model once using the following static function:

CSUserQuery.prepare ()

The prepare function prepares the Core Spotlight framework to load its ML models for semantic

search.

If the search index has a protection level due to privacy concerns, we also need to call the

prepreProtectionClassesfuncﬁon:

CSUserQuery.prepareProtectionClasses ([.completeUnlessOpen])

This function prepares the search for indexes marked with the completeunlessopen protection level.

WHAT ARE PROTECTION LEVELS?

The term protection level refers to the accessibility level where users have specific resources, considering the device's security conditions.

There are three primary protection levels:

- NSFileProtectionNone: The indexis always accessible, even when the device is locked

-NSFileProtectionCompleteUntilFirstUserAuthentication: Once the useris authenticated for the first time after

a device restart, the index is accessible

-NSFileProtectionComplete: The indexis accessible only when the device is unlocked

Remember that preparing the ML models costs time and memory, so it’s better to call the prepare

function only immediately before the search user interface.

We have discussed various built-in ML models, and we can see that they cover many use cases where
we can use ML capabilities with our projects. However, there are cases where the iOS SDK doesn’t
provide the exact ML solution we need. Luckily, we can integrate our models using the CoreML

framework.

Integrating custom models using CoreML

Generally, ML models are trained to perform a specific task — recognizing a sentence’s sentiment,
detecting humans, or analyzing sounds are all examples of different tasks done using various models.
This means that even though the potential of the existing models is enormous, we are still limited in

what we can do.

This is where the CoreML framework enters the picture. Using CoreML, we can integrate ML models

that are not part of the iOS SDK, and we can even train our own models and add more intelligent

capabilities.
It’s best to explain how to do this by using an example, such as detecting spam messages.

Imaging we are developing a messaging app. One of the most popular messaging app features is the

ability to detect spam to improve the user experience and increase retention.
We must create an ML model to classify messages as spam to implement a spam detector.

To achieve this, we can use a desktop application called Create ML, which is part of the Xcode suite.

Let’s begin by learning more about Create ML!

Getting to know the Create ML application

Create ML was introduced in 2018 as part of Apple’s ongoing effort to make ML more accessible to

developers. We can build, train, and deploy ML models in various areas using Create ML.

To open Create ML, follow these steps:
1. Open Xcode.
2. Right-click on the Xcode icon on the dock.

3. Select Open Developer Tool | Create ML.
Another way to open create ML is by searching for it in Spotlight on your Mac and selecting it.

After opening it and clicking on the New Document button, we get the following screen (Figure 12.1):

o5 e
T———
a0 All
alas -
%, Now = a =
5 : . &

(©) e 4 %

= o 7 —"
() video

Image Classification M%T;L::zltmge Object Detection Style Transfer Hand Pose Classification
"*l* Motion
£]1) sound [-. p pr—
8 S N @ |
@ Table
Action Classification Hand Action Classification Activity Classification Sound Classification Text Classification
£33 Spatial
P) - e
cder, % .k
sty —= E 4=)
Word Tagging Tabular Classification Tabular Regrassion Recommendation Object Tracking
Text Classification
Classify the dominant topic, theme, or sentiment in natural language text,

Figure 12.1: The Create ML template picker

Figure 12.1 shows the Create ML template picker screen. Each template represents a different
configuration for our model, and each is designed to handle a different type of data. For example, the
Image Classification template is designed to handle images. Since we want to classify text messages, we
will pick the Text Classification template and click the Next button.

This will take us to the project details screen (Figure 12.2):

Project Name SpamClassifier
Author Avi Tsadok

License MIT License

Description The Spam Classifier for Text Messages is a cutting-edge machine
learning model specifically designed to identify and filter spam messages
in SMS and messaging apps. Utilizing advanced natural language
processing and pattern recognition, this model ensures accurate
detection and helps maintain a spam-free messaging environment. |

Cancel Previous

Figure 12.2: The project details form

In the project details form, we will fill in some general information about our ML model, such as the

name, author, license, and description, and then click Next.

Our next screen is the project window (Figure 12.3):

ene .

Saitings Training Evalation Preview Output @
Ay Tesining Validaticn Tesing
Tt Classifientsen Project
1 SpamClassifier Data Acihity 10 Juty 2024
Mol Scurma Cmated W3IE
Madal Sources (1] + SpamClassifier 1
= : Training Data Validaticon Data Testing Data R pre
1 SpamClassifier 1 il
Data Sources
| Auto R
Spilit tram Training Data |
Choose (2]
Parameters
Herations 10 2
Algorithm Maximum Entropy ®

T g i an the
Tragquencies of words Independent of contest

Model Avallabiity macOS 1014+ 05120+

@ Training date required

Figure 12.3: The SpamClassifier project window

In Figure 12.3, we can see the spamclassifier project window. The project window is the main
window where we will build our model. Let’s go over the different window components:
o Left pane: The left pane lists the project’s different sources — the ML model and its data sources, used for training and testing
o Settings tab: The Settings tab is where we define the different data sources for the various phases and general training parameters
« Training tab: The Training tab shows the progress of the training operation
« Evaluation tab: The Evaluation tab shows the performance of our model in the different phases
o Preview tab: We can play with our ML model and experience it in the Preview tab

o Output tab: The Output tab is the place where we can deploy our model

The list of the components reflects the phases we must go through when we build our model.

Now that we know what Create ML is, let’s start building our model.

Building our Spam Classifier model

Our Spam Classifier model-building process is based on three data sources - training, validation, and
testing data. These three data sources are something we covered earlier in this chapter in the Training

the model section.

First, let’s take a look at how we will prepare our data.

Preparing our data

Since we are building a Spam Classifier model, we must prepare a dataset containing both spam and
non-spam messages. The text classification template requires our dataset to be in the form of a CSV
file with two columns - text and 1abel. In our case, the text column represents the content of the
SMS message, and the 1abel column is the classification - true for a spam message and faise for non-

spam.

The ratio between the spam and the non-spam messages needs to reflect the real-world distribution.
In our case, we have a dataset file with 300,000 records, where 10% of them are spam messages and

90% are non-spam messages.

To set the training dataset, we can drag the CSV file into the Training Data box (Figure 12.4):

Settings Training Evaluation Preview Output mi
vl Acthity

Training Data Validation Data Testing Data

2 300,000

Classes Itams

Auto

Split fram Training Data

Parameters

lteraticns

Algorithm

Trains a text classifier uzsing a i ial logistic ion based on the
frequencies of words independen! of context

Model Availability macOS 1014+ i0512.0+

Figure 12.4: Training Data with 300,000 records

Figure 12.4 shows the Settings tab, with the training data now containing 300,000 records with 2
classes. The classes are true and false, as stated earlier. In addition, we also have a new data source in

the left pane - the file we imported as the training dataset.

We can handle the validation data now that we have the training data. As a reminder, as part of the
training process, we will use the validation data to tune the model. We can provide our own validation

data, but Create ML allows us to split it from the training dataset we've just supplied.

The third dataset is the testing data. We use the testing data to see how the model classifies unseen

text. We can add the testing dataset later in the evaluation step.

Apart from choosing the different datasets, we can also set the number of iterations our training will

go through and the model algorithm.

With each iteration, the training process can tune itself by reviewing the errors from the previous
iteration and adjusting its parameters (like weights in a neural network). Our intuition may say that
the more iterations we have, the more our model will be smarter. However, this is not so. First, at some
point, having another iteration stops improving the model and only consumes computational
resources. But the real problem is what we call overfitting. Overfitting is when an ML model learns the

training data too well, including its noise. In this case, there will be issues with analyzing unseen data.

Another parameter is the model algorithm (Figure 12.5):

lterations 10 &
Algorithr + Maximum Entropy i
Conditional Random Field regression based on the

Transfer Learning Static Embeddings
Model Availabilit Transfer Learning ELMo Embeddings
Transfer Learning BERT Embeddings

Figure 12.5: Choosing the model algorithm

Figure 12.5 shows the pop-up menu where we can choose the model learning algorithm from five
different options. The algorithm overview is not in this chapter’s scope, but in short, different
algorithms are suitable for different needs and consume other resources. For example, the BERT
algorithm is ideal for semantic understanding, and the Conditional Random Field is great for
sequence labeling. In our case, we will choose the Maximum Entropy algorithm, which is excellent for

classification.

Now that we have all our datasets ready, we can click the Train button in the top-left corner and start

our training.

Performing the training

Now, we have arrived at the main dish - the training phase. In the training phase, the Create ML app
goes over the training dataset using the algorithm we defined in the Preparing our data section. Let’s

try to describe that process:

« In each iteration, the model verifies itself using the validation dataset. Remember that the validation dataset can be distinct.

However, by default, it is a subset of the training dataset.

 The duration of the training phase is derived from three major factors - the dataset size, the number of iterations, and the chosen

algorithm.

o The model doesn’t have to perform the number of iterations we defined in the Settings tab. If the validation accuracy reaches a high

level, the training will stop earlier to save resources and avoid overfitting.

At the end of the training process, we'll see the following graph (Figure 12.6):

)

Activity

Settings Training Evaluation Preview Output

Text Classification Project

|| SpamClassifier ® Tralning ® Valigation A
100.0% 100.0%
Hteration 2

Model Sources (1) + 100 /.
@ SpamClassifier 1 =

Data Sources (1) 50

£l SMS_Spam_Da...set__Balanced_ 40

Aammnaoy

Iterations

& Completed training - converged early at 2 it

Figure 12.6: The Training tab at the end of the training process

Figure 12.6 shows how well we did in our training phase. We can see that we have reached a high
accuracy after only two iterations. In this case, it is because our training dataset is well-structured and

reliable. However, that won't always be the case, so we need patience in this step.

Now that our model has been trained, we need to test it. To do that, we will use our test dataset as part

of the evaluation step (Figure 12.7):

999 - : |
Settings Training Evaluation Preview Output
Activity
Text Classification Project
|l spamClassifier Training

SMS5_Spam_Dat...__Balanced_csv

| 5
Model Sources (1) + 20/07,/2024, 8:43

Testing Data
@ SpamClassifier 1

Validation
sataaquresiid) SMS_Spam_Dat...nced_csv (Auto) ? 1,000
20/07/2024, 8:43 Classes Items
© SMS_Spam_Da...set_Balanced U
View
£ iMessage_Spa..e_Test_Data.csv
Testing

iMessage_Spam_Classifi... o

iMessage_Spa...ge_Test_Data.csv

20/07/2024,9:04

Test

€ Completed training - converged early at 2 iterations

Figure 12.7:The model evaluation step

Figure 12.7 shows the evaluation step and the different datasets used to train and validate the model.
We can also see that the testing data contains a dataset of 1,000 items. The testing dataset structure is
similar to the training and validation datasets. Tapping on the Test button runs the classification on all

the 1,000 items in the dataset and measures their classification accuracy. Let’s see the test result (Figure
12.8):

Settings Training Evaluation Preview Output o
3in Activity
Text Classification Project
) spamClassifier Trsining iMessage_Spam_Classification_Large_Test_Data.csv @
20/07/2024, 9.04
SMS_Spam_Dat...__Balanced_csv 2 classes with 1000 items
Maode| Sources (1) = s sl X
20/07(72024, B:43
8 SpamClassifier 1 @
Validation
Class Count Precision Recall F1 5core hd
Data Saurces (2) SMS_Spam_Dat...nced_.csv (Auto) false 500 93% 100% 0.96
- 20/07/2024, 843
= SMS_Spam_Da...set__Balanced_ ’l true 500 100% 93% 0.96

5 iMessage_Spa..e_Test_Data.csv
Testing + Mew Tast

iMessage_Spa..ge_Test_Data.cev

20/07/2024, 3:04

@ Completed training - converged early at 2 iterations

Figure 12.8: The evaluation results

Figure 12.8 presents some terms that we need to be familiar with if we want to understand the report:

« Precision: Precision is the percentage of all messages that the model identified as true or false (depending on the specific class)

and that were correct. For example, 93% precision for the false class means that 93% of all the messages the model identifies as
false were actually false.

o Recall: Recall is the counterpart to precision. A recall of 93% for the true class means that the model correctly identified 93% of
all actual spam messages.

o F1 Score: The F1 score is the balance between precision and recall.

The F1 Score involves more than just measuring a model’s accuracy. It balances two important metrics
— precision and recall - and reflects a better model performance measurement. In our case, a score of

0.96 is considered a very high performance.

Our next tab is Preview, where we can play within a playground zone (Figure 12.9):

ev e >

Train

Settings Training
Text Classification Project
[l SpamClassifier || Callnowito getian invite.
Model Sources (1) +
@ SpamClassifier 1
Data Sources (2)

£ SMS_Spam_Da...set__Balanced_
£ iMessage_Spa...e_Test_Data.csv

o Clear All

Evaluation Preview Output (B
Activity

Call now to get an invite

true
92% confidence

false
8% confidence

@ Completed training - converged early at 2 iterations

Figure 12.9:The Preview tab

Figure 12.9 shows our model’s Preview tab, with an example message that says, Call now to get an

invite. Our model identified this message as spam with a 92% confidence. Good job!

Now, let’s see how we can deploy our model.

Deploying our model

There’s no point in having a great training process if we can’'t deploy it in Xcode. This is why we have

the Output tab (Figure 12.10):

L N » . B
- Settings Tralning Evaluation Preview Qutput -

Tram Activity
Text Classification Project

SpamClassifier

& SpamClassifier 1 i o
Gat Xeode
Model Sources [1) +
TR Model Type Text Classifier
. ISIMI&“““[Size 4 KB
Data Sources (2) Document Type Core ML Model

Availability mac0S 10,14+ | i0512.0+ watchO5 5.0+ | wOS512.0+
5 SMS_Spam_Da._set__Balanced_ \ision0S 104
£l iMessage_Spa..e_Test_Data.cev

General Predictions

Metadata Class Labels 2
Description Eabal
The Spam Classifier for Text Messages is a cutting-edge
machine learning model specifically designed to identify
and filtar spam messages in SMS and messaging apps.
Show More

false
true

Author
Avi Tsadok

Licensa
MIT License

Version

@ Completed training - converged early at 2 iterations

Figure 12.10: The Create ML Output tab

The Output tab shows a summary of our model, including a new detail we haven’t seen until now —

the model size.

More importantly, the Output tab also contains the option to export a model or open it in Xcode.

Clicking the Get button allows us to save the model locally in a file with an mimode1 extension.

To use the mimodel extension in our projects, we'll need to use Core ML. That’s our next topic.

Using our model with Core ML

The Core ML framework’s goal is to allow us to integrate ML models into our projects.

Our first step is to add the mimode1 file that we saved from the Create ML application to Xcode. We
can do that by dragging the file to the project navigator in Xcode.

The main class in the Core ML framework we will use is MuMode1, which represents a ML model

loaded into the system. To load our Spam Classifier model, we initialize the model in our code:

class MessageClassifier (
let model: MLModel
init (configuration: MLModelConfiguration =
MLModelConfiguration()) throws {
model = try SpamClassifier (configuration:
configuration) .model

}

In the preceding code example, we created a new class, called Messageclassifier, which encapsulates

our ML integration with the Spam Classifier model.

We then initiate the class, passing a new MLModelconfiguration. This contains different options, but

we can pass an empty instance at this stage.

Our class also contains an MLModel instance. To initiate the model instance, we use the spamclassifier

class, passing our configuration.
But wait — where did the spamciassifier class come from?

When we added the Spam Classifier mimode1 file into our Xcode project, Core ML generated three

interfaces — the SpamClassifier class, SpamClassifierInput, and SpamClassifierOutput.

Now that we have our model, let’s write a function that can predict whether a message is spam:

func prediction(text: String) throws -> Bool {
let input = SpamClassifierInput (text: text)
if let result = try? model.prediction(from: input)

{

let value = result.featurevValue(for:
"label")!.stringValue
return value == "true"

}

return false

}

In the preceding example, we created a prediction function that receives a text message as input and

returns a Boolean.

It starts by creating a spamClassifierInput instance with the text input. Then, it generates a prediction
result for this input by running the model’s prediction () function. We then get the value from the

feature, called 1abe1, and compare it to true.
This code example demonstrates how to easily use a custom ML model in our Xcode projects.

Now, let’s try to understand if using a custom ML in our Xcode is that simple.

Where to go from here

The Core ML part of this book is unique. In most cases, I have simplified complex topics to make

them more accessible for developers. However, I think the Core ML topic is different.

ML is a broad topic, beyond the scope of this chapter. Furthermore, it is a complex topic. Training is
more than just delivering datasets. It is essential to understand the dataset mix between the different

classes, pick the correct algorithm, and read the evaluation results carefully.

And remember that the model we created is a custom. This means that we don’'t have any control over

how its algorithm works and need to observe and fine-tune it over time.

In summary, ML is a complex topic, and if we want to enter this area, we need to approach it more in-

depth than reading 15 pages.

Summary

This was a long but fascinating chapter about one of the most exciting contemporary topics - ML and
AL

We reviewed the basics of Al and ML, understanding what it means to train an ML model. We
explored the built-in ML models in the iOS SDK, including NLP, analyzing images using the Vision
framework, and classifying audio with the Sound Analysis framework. We learned how to add
semantic search capabilities to the Core Spotlight framework, and if that wasn’t enough, we also

learned how to create and integrate custom ML models into our projects.
Now, we can add some intelligence features to our apps!

Speaking of intelligence, our next chapter discusses how we can integrate Siri using App Intents. The

ML phase is not over just yet!

13
Exposing Your App to Siri with App Intents

For many years, apps have lived and operated alone in system space. Each app is totally isolated from

the others, without the capability to communicate or expose data.

Over the years, things have changed a bit. One of the most exciting features apps gained was

enhancements in App Intents. At this point, you should be familiar with App Intents—we discussed

closely with Apple Intelligence and not just with WidgetKit. That's why we are going to cover App

Intents in more detail.

In this chapter, we will learn about the following:
« Understanding the App Intents concept
« Creating a simple app intent

« Formalizing our content using app entities

 Adjusting our app intents to work with Apple Intelligence

The ability of App Intents to open up our app is truly remarkable and full of potential. But first, let’s
understand the App Intents concept.

Technical requirements

For this chapter, it’s essential to download Xcode version 16.0 or higher from the App Store.

Ensure you're operating on the most recent version of macOS (Ventura or newer). Just search for
Xcode in the App Store, choose the latest version, and proceed with the download. Open Xcode and
complete any further setup instructions that appear. After Xcode is completely up and running, you

can begin.

This chapter includes many code examples, some of which can be found in the following GitHub

repository: https://github.com/PacktPublishing/Mastering-iOS-18-

Development/tree/main/Chapter%2013.

Notice that some examples in this chapter require running on a modern device, such as an iPhone 15
Pro/Max, iPad with M1 and above, or Apple Silicon Mac.

Understanding the App Intents concept

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%2013
https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter%2013

efforts to integrate Al deeply inside the system across many apps, including third-party apps.

To implement this integration, we need to create an API for our app that exposes the app’s core
content and main actions. For example, a to-do app can create an API that lets Siri or other system
components create a new task, complete an existing task, or pull the list of tasks stored in core data. A
delivery app can have an API that returns an answer to whether the delivery services are now open or

at what time the delivery arrives.

This API, called App Intents, is our way of exposing our app’s main use cases and content to the world.

It’s one of the tools we use to integrate our app with Apple Intelligence as well.

If this sounds complex, you'll be surprised how simple it is to create an app intent. Let’s see how it

works.

Creating a simple app intent

To demonstrate how to create an app intent, let's imagine we have an amazing to-do list. Not just

amazing, even mighty! So, we'll call it MightyTasksList.

Our MightyTasksList app is so great that our users demand that they use it with Siri while they are

driving. So, we decided to create an app intent.

To do that, we'll open a new file and write the following code:

import AppIntents
struct GetTasksIntent: ApplIntent {
static var title: LocalizedStringResource { "Get the number of opened tasks" }
@MainActor
func perform() async throws -> some ProvidesDialog {
let tasks = TaskManager () .tasks
return .result(dialog: "Number of the opened tasks is \(tasks.count)")

}
This is it? Yes! Writing a simple app intent is extremely easy. Let's narrow down what we did here:
o We imported the AppIntents framework. In this case, we need this framework to have the AppIntent protocol.

o We created a GetTasksIntent structure that conformed to the AppIntent protocol. This structure defines our intent

functionality.

o Aspart of the AppIntent protocol, we must implement two things. The first one is the intent’s title, which appears in the
intent gallery in the Shortcuts app (well get there shortly in the Running the intent in the Shortcuts app section). The second thing

we need to implement is the perform () function, which is the actual code that will be executed when the intent runs.

The perform() function always returns an Intentresult protocol-based type—in this case, we return a
ProvidesDialog instance that conforms to the Intentresult protocol and displays a message to the

user. However, there are additional types, and we'll discuss them in the following sections.

Next, let’s run our intent using the Shortcuts app.

Running the intent with the Shortcuts app

The Shortcuts app is a powerful automation tool that allows users to create shortcuts for routines and
actions in their system. Users can also use the Shortcuts app to create scripting, automation,

conditional statements, and complex logic.

Apple acquired the Shortcuts app back in 2017, which was initially developed by a start-up called
Workflows.

When we build and run our app, iOS scans for structures that conform to the appIntent protocol and

add them to the Shortcuts gallery in the Shortcuts app (Figure 13.1):

19:57 TR 620

OW @ MightyTasksList | © cancel

Get the number of opened tasks @

Figure 13.1: Our intent is shown in the Shortcuts app

In Figure 13.1, we can see the intent of the Get number of the opened tasks shortcut in the Shortcuts
app when searching for action for our app. Then, we can add the action as a new shortcut. Let’s see

what happens when we run our intent (Figure 13.2):

20:01 w TG

Number of the opened tasks is 3

Done

Get the number of Set the Avi's
opened tasks device AC

Figure 13.2: Running the Get number of opened tasks shortcut

Figure 13.2 shows what happens when we run our app intent. We can see the message we defined as

part of the perform() function results.
Way to go! We created our first app intent!

Now, let’s try to ease our users and create the shortcut as part of the app.

Creating an app shortcut

Instead of letting the user create a shortcut based on the action (intent) we provide, we can create a

shortcut for them to use.

To do that, we need to create a structure that conforms to the appshortcutsprovider protocol to create

a pre-configured shortcut:

import AppIntents
struct AppShortcuts: AppShortcutsProvider {
@AppShortcutsBuilder
static var appShortcuts: [AppShortcut] {
AppShortcut (intent: GetTasksIntent (),
phrases: ["What is left in \(.applicationName)?", "How many tasks left in \
(.applicationName) "], shortTitle: "My tasks", systemImageName: "circle.badge.checkmark")

}
}

In this code, we have a struct called appshortcuts. This struct has one variable to implement—

appshortcuts, which contains a list of the app shortcuts.

In this case, we create a new appshortcut instance that contains the following:
 The intent that will be executed. Here, we put the intent we created in the preceding section (GetTasksIntent).

« The exact phrases the user has to say to Siri. In our case, we added two phrases. Notice that the phrases must include the

application name.

o A title and a system image for the shortcut.

Once we run our app, the user doesn’t need to create a shortcut using the Shortcuts app—the shortcut

is ready for the user to use with Siri.

Now that we have created our first intent and shortcut, let’s dive in for more complex use cases.

Adding a parameter to our app intent

In the Creating a simple app intent section, we created a cetTasksIntent struct that went to the
persistent store and returned the user’s number of open tasks. Now, let’s see how we can use the

AppIntents framework to create an action that inserts a new task into the system.

We'll open a new file and add the following code:

struct AddTaskIntent: AppIntent {

static var title: LocalizedStringResource { "Create new task" }

@Parameter (title: "Title")var title: String

@MainActor

func perform() async throws -> some ReturnsValue<String>
TaskManager () .addTask (Task (title: title))
TaskManager () .saveTasks ()
return .result(value: title)

}

AddTaskIntent is a little bit more complex but not too complex.

To start, we create a new addTaskIntent that conforms to the appIntent protocol, similar to
GetTasksIntent. We also provide a readable title for the Shortcuts app. But then we see a new variable

—a title marked with a eparameter attribute.

We said that app intents are actually our application API. Some APIs require input, so when adding a
new task, the title is our Intent input. We can provide this input using Siri, a dialog, or even another

intent. When we run addTaskIntent, the user must provide a title for the task.

When we reach the perform() function, we can see how we use the title parameter to insert a new
task into the persistent store. We can also see a change compared to the cetTasksIntent example in

how the function returns a value.

In GetTasksIntent, we used the providespialog protocol. Now, we use Returnsvalue<String>, which
returns a value to our shortcut. We can use the returned value as input for other actions. For example,
in this case, we can use the task title to create a reminder in the Reminders app with the same title or

even send a message with this title to someone else. This feature makes App Intents and the Shortcuts

app extremely useful for power users.

Let’s see how it looks in the Shortcuts app:
. ~ _
0:26 == a T E

@ Send Message - Done

Create new task

Title

LJ Send” Createnewtask "to
Avi Tsadok + O)

Figure 13.3: Shortcuts with two actions
In Figure 13.3, we can see our shortcut with two actions:
1. The first is AddTaskIntent from our app.

2. The second is that the result of our intent is the task title and the input of the send message action from the messages app.

We can see that it is possible to chain actions together and create powerful streams.

Let’s see how it looks when we run our shortcut (Figure 13.4):

Figure 13.4: Running AddTaskintent

Figure 13.4 shows that the system asks for the task title when we run our shortcut by providing a
standard input field. Besides the Siri integration, this is part of what we get for free—a standard user

interface that handles all of that for us.

However, we can also create our own user interface for the shortcut! Let’s see how to do that.

Returning a custom view

We have added two important intents in the previous sections. The first receives a string containing
the number of opened tasks, and the second is an app intent that creates a new task in the persistent

store.

Let’s discuss another use case—getting the list of opened tasks. In this case, we want to present the

user with a custom view since Shortcuts and Siri don’t know how to deal with a list of entities natively.

So, let’s create a custom view:

struct MiniTasksList: View {

let tasks: [Taskl]
var body: some View {
VStack {
ForEach(tasks) { task in
TaskView (task: task)
}

}
Our code example contains a struct named MiniTasksList with a VStack that displays an array of

TaskView.

There are two weird things here:
1. First, why do we need to create a dedicated list view? Can’t we reuse the view we already have in our app?

2. Second, why do we use a VStack and not a List view?

These arguments are usually valid. We should aim to reuse our code as much as possible and use the
right view for the right behavior. However, one limitation is that we cannot use List or Scroll views as
part of our custom view. We also can’t display animations or allow user interaction. If we want to
achieve more functionality, we should use the app itself or create additional app intents to fulfill our

needs.

Now that we have a custom view, let’s create an app intent that uses it:

struct GetTasksListIntent: AppIntent {
static var title: LocalizedStringResource { "Get my Tasks's List" }
@MainActor
func perform() async throws -> some ShowsSnippetView {
let tasks = TaskManager () .tasks
return .result(view: MiniTasksList (tasks: tasks))

}

The GetTasksListIntent structure is similar to the previous intents we created in the previous
sections. It also has a title property and a perform() function.
There are two important changes here:

o The return type of the perform () function is now ShowsSnippetView. We use ShowsSnippetView if we want to present

a custom view as a result of our function.

o We returned a different intent result with the MiniTasksList view we created.

Now, let’s run our intent using the Shortcuts app and see what happens (Figure 13.5):

8:40 ll“i ? '

Sample Task 1

Description for sample task 1

Sample Task 2

Description for sample task 2

Sample Task 3

Description for sample task 3

-

device AC

Figure 13.5: The list of tasks as part of the intent response

opened tasks

Figure 13.5 shows MiniTasksList as our intent response. Looking at how the list is displayed, we can
understand why Apple limits how we can customize this view. The goal is for our view to be as simple

as possible and aligned with the rest of the intents.

Returning a view is great. But what if we want to return a custom view and a value that can be used for

other purposes? Is it possible? Let’s find out if and how to do that.

Having multiple result types

Imagine that, besides getting the tasks list, the user wants to add another step to its shortcut. If the

number of tasks is bigger than, let’s say, five, they want to open the calendar to re-arrange the day.

So, we would like to show the list of tasks and also return their quantity.

We can do that by returning multiple types:

struct GetTasksListIntent: AppIntent {
static var title: LocalizedStringResource { "Get my Tasks's List" }
@MainActor
func perform() async throws ->
some ShowsSnippetView & ReturnsValue<Int> {
let tasks = TaskManager () .tasks
return .result(value: tasks.count,
view: MiniTasksList(tasks: tasks))

}

In our code example, perform() returns two types of results — showssnippetview for displaying the

tasks list and Returnsvalue<Int> for the number of tasks to be used in other intents.

We also changed 1ntentresult at the function’s return statement:

return .result(value: tasks.count,
view: MiniTasksList (tasks: tasks))

Notice that the value we return needs to be the same as the returnsvalue instance we declare in the

function signature.

Adding confirmation and conditions

Having the app perform actions can lead to more complex use cases. For example, there are cases
where we need to confirm a specific action with the user, such as deleting or ordering something. In
other cases, we might want to inform the user that we cannot perform the action or even request more

information.

The appIntents protocol has the capability to create a dialog with our users. This dialog can be used

with Siri to make the process feel more conversational.

Let’s go back to our to-do app and create an app intent that allows the user to delete all of its tasks:

struct DeleteAllTasksIntent: AppIntent
static var title: LocalizedStringResource { "Delete all tasks" }
func perform() async throws -> some ProvidesDialog ({
let taskManager = TaskManager ()
if taskManager.tasks.count == {
return .result (dialog: .init ("Sorry, there are no tasks to delete"))
}

try await requestConfirmation(actionName: .go,

dialog: IntentDialog("Are you sure you want to delete all your tasks?"))
TaskManager () .deleteAllTasks ()
return .result (dialog: .init ("All of your tasks have been deleted."))

This intent is a bit more complex and smarter than our previous examples. At the beginning of the
perform() function, we check to see if there are any tasks in the persistent store to delete. If there are

no tasks to delete, we notify the user by returning a simple text dialog.

Next, since it is a destructive action, we want to confirm it with our user. So, we use the
requestConfirmation () function. This function presents a dialog with a given text and a confirmation

button (Figure 13.6):

5:51 4 (1 B "'3' '

Are you sure you want to delete all
your tasks?

Cancel

Figure 13.6: A confirmation dialog

Figure 13.6 shows a confirmation dialog that was derived from the requestconfirmation () function.
Notice that we can choose from a set of confirmation button titles. In our case, we selected the Go

title.

The next steps are straightforward: We perform the deletion action and notify our user that it has been

executed.

Up until now, our app intents returned primitive types such as strings and int. But what about
working with our app types? Is it possible to transfer them as part of the shortcut actions chain? This

is what appEntity is for.

Formalizing our content using app entities

In our app intents, when we created a task, we returned a string value of the tasK’s title. However, a
task is more than just a title - it contains a description, status, ID, and many more properties. In other
words, a task is not a string or a Universally Unique Identifier (UUID) value type - it’s a structure

named Task.

The problem with App Intents is that no other app or the system knows what a Task structure is since
it’s our app’s internal type. We need to expose the type to the system intent world to make Task a

known type by the system.

Let’s connect that to a use case: creating and opening a task in the app. To make it modular, we want to
create two intents: creating a task and opening a task. When we have the two intents, we can chain

them in a shortcut.

Let’s start by letting the system know what Task is.

Conforming to AppEntity

Conforming to the appEntity protocol makes app entities available to Siri and Shortcuts. It means that

when our app intent returns one of our entities, we can pass it as input to the next intent in the chain.

Let’s see how we can take our Task structure and make it conform to appEntity:

struct Task: Identifiable, Codable, AppEntity {
static var typeDisplayRepresentation: TypeDisplayRepresentation {
.init (stringLiteral: "Task") }
init (id: UUID = UUID(), title: String,
description: String = "") {
self.id = id
self.title = title
self.description = description
}
var displayRepresentation: DisplayRepresentation {
DisplayRepresentation (stringLiteral: "title: \(title)") }
let id: UUID
@Property (title: "Title")
var title: String
@Property (title:"Description")
var description: String
static var defaultQuery = TaskQuery ()

1
Let’s break down the appEntity protocol implementation:

« typeDisplayRepresentation: Our entity needs to have a name in the system so we can display it in the Shortcuts app. In

this case, we return Task.

o displayRepresentation: While typeDisplayRepresentation shows the entity type name, the
displayRepresentation property returns the entity value representation. In this case, this is the title value (e.g., Call my

mom).

« Exposing the entity’s properties using the @Property attribute: When we add the @ roperty attribute to some of the entity’s

properties, we define the entity structure for use in the Shortcuts app.

o defaultQuery: Declaring our app’s entities is not enough; we also need to provide the system with a way to retrieve them. Our

next step will be to create the query that the system will use to fetch our entities.

Now that our Task struct is known by the system, let’s finish the implementation by creating
TaskQuery:
struct TaskQuery: EntityQuery

func entities(for identifiers: [UUID]) async throws -> [Task] ({
return TaskManager () .tasks.filter {identifiers.contains($0.id) }
}

func suggestedEntities() async throws -> [Task] {
return TaskManager () .tasks
}

}

In this code example, we can see that the Taskguery structure conforms to the Entityguery protocol.

The system uses the first function, entities (), to retrieve the entities by identifiers. At this point, we
reach the app services (in this example, TaskManager) to fetch, filter, and return an array of entities.

That’s why this function is required.

The second function (suggestedEntities()) is not required, but it can help the system present the

user with a list of entities while we are fetching the list of entities.

We know how to define appEntity and its query at this point, but we need to connect it to an app

intent to understand how they are being used.

Let’s do that by creating an open a task intent.

Creating an Open a task intent

Creating an open a task intent is not that different from what we saw in the previous examples. This

time, we'll integrate the new app intent with the appEntity struct we've just created:

struct OpenTaskIntent: AppIntent {
static var title: LocalizedStringResource { "Open a task" }
@Parameter (title: "Task")
var task: Task?
static let openAppWhenRun: Bool = true
@MainActor
func perform() async throws -> some ProvidesDialog{
let taskToOpen: Task
if let task {
taskToOpen = task
} else {
taskToOpen = try await $task.requestDisambiguation (
among: TaskManager () .tasks,
dialog: "What task would like to open?")

Navigator.shared.path.append (taskToOpen)
return .result(dialog: "Opening your task")

}

Our open a task intent is structured like our previous intent examples. Still, there are additional
changes we need to discuss:
o Weadded @Parameter to Task. Using @Parameter is not new to us—we discussed it in the Adding a parameter to our app

intent section. However, this time, we do that with the Task structure itself. We can do that because Task now conforms to

AppEntity.
o We set openAppWhenRun property to true so we can open the app and display the task details.

o If the app intent doesn’t receive a task parameter, we can ask the user to select a task using the requestDisambiguation

function. This function presents a dialog to the user with a given list of tasks and asks them to select a task.

After we have a task, we call the app navigator to open the task details. (To read more about how

navigation works in SwiftUI, go to Chapter 4.)

Now, let’s see what happens when we run this intent (Figure 13.7):

What task would like to open? ‘mf:‘s o FE

Cyening your lesk

e G
|

Sample Task 1

title: Sample Task 3 Description for sample task 1

title: Sampie Task 2

taskToOpan = tey awalt $task.reguestDisambiguation(
a0p = e e Navigator.shared.path.append (taskToOpen)

among: TaskManager () .tasks,
return .result(dialog: "Opening your task")

dialog: "What task would like to open?")

Figure 13.7: The Open a task intent
Figure 13.7 shows how the open a task intent looks in the two stages where the task parameter is nil.
First, it opens the app (that’s because we set the openappWhenrun variable to true).

Then, it displays a native dialog where the user can pick a task. Notice that the task display name
(title:<title of tasks)is something we defined in the displayRepresentation variable when we

conformed to appEntity (in the Conforming to AppEntity section).

Later, we navigate to our task details screen and notify the user by returning a dialog with a

corresponding message.

Letting the user pick a task to display is a nice use case, but that's not where the real power of intents
is.

Lets try and integrate the open a task intent into another intent by chaining them together.

Chaining app intents

Let’s go back to addraskintent, which we created in the Adding a parameter to our app intent section,
and examine its perform() function:
func perform() async throws -> some ReturnsValue<String>
TaskManager () .addTask (Task (title: title))

TaskManager () .saveTasks ()
return .result(value: title)

}

The return type in the perform() function is Returnsvalue<string>. Let's modify this function to
return a Task instance:
func perform() async throws -> some ReturnsValue<Task> {
let newTask = Task(title: title)
TaskManager () .addTask (newTask)
)

TaskManager () .saveTasks ()
return .result (value: newTask)

}

In the new perform() function, we changed only two parts — the return type (now it’s

ReturnsValue<Task>) and the return statement, which now returns our newly created task.

Let’s go back to the Shortcuts app and chain addTaskIntent and openTaskiIntent together (Figure

13.8):

11:51 ol ? 53_].]

Create And Open ATask ¥ Done

Create new task

Title

Open a task

Task Create new...

Show When Run O

Figure 13.8: A shortcut with Create and Open a task intents

Now we have a shortcut that creates a new task and opens it in the app, and we've done this with very

little code!

But what about the properties we defined as part of the Task entity? We haven’t used them yet! Let’s

see how to use them with other intents.

Integrating our intent to other intents

We've seen how to chain the added task with the open a task intents, but that was straightforward -

we created both intents, so both were aware of the Task entity. But what do we do when we need to

return the Task entity to an intent from another app developer? The first option is to select one of the

properties.

Selecting one of the properties

One of the good things about appEntity is that it creates a structure that can be utilized across our
system:
struct Task: Identifiable, Codable, AppEntity {
static var typeDisplayRepresentation: TypeDisplayRepresentation {
.init (stringLiteral: "Task") }
@Property (title: "Title")
var title: String

@Property (title:"Description")
var description: String

Our Task structure contains a display name (task) and two properties — Title and Description. We

can use that to pass on one of these values to the next action in the Shortcuts app.

For example, let’s say we want to create a new task and send its title in a message. Because we defined

the title variable as an appEntity property, it will show up in the Shortcuts app (Figure 13.9):

10:28 al T

@ Send Message -~ Done

Create new task

Title

\s Send to
cipients ()

Create new task b4

Variable Name

a © =
Clear Vanable Reveal Action Return
Type Task >
Task
Title v
Description
MName

Figure 13.9: Choosing the Title property in the Shortcuts app

Figure 13.9 shows how we can select one of the appEntity properties to pass on to the send message

intent.

Passing on Title is obvious—rtitle is a string, and we can easily use it as an input for other actions.
But what if we used Task as an input for the send message action? We did that in the Chaining app
intents section, but that was between two actions from the same app. Can we share an entity between

two different apps?

That’s why we have the Transferable protocol. Let’s use it!

Use the Transferable protocol to pass the entire entity

Let’s step outside the framework of appIntent for a second. The idea of sharing data is not limited to
AppIntent—Wwe have more use cases when we need to share data. For example, dragging and dropping
between views or even between apps is one example of sharing data. Another example would be

copying and pasting between screens or apps.
The main challenge when performing sharing is finding a data type each app agrees on.

To address that sharing problem, Apple introduced the Transferable protocol in iOS 16, making

sharing data between apps or different spots easy.

Transferable’s main usages are copying and pasting and dragging and dropping, but it is also great for

sharing app entities in the Shortcuts app.

Now, let’s extend Task to conform to Transferable:

extension Task: Transferable {
static var transferRepresentation: some TransferRepresentation {

}
}

The Transferable protocol has one static variable called transferRepresentation. This variable allows

us to define how the structure is represented when sharing it with different apps or views.

When working with the appintent framework, we have several ways to fulfill the

transferRepresentation variable:

« DataRepresentation: We use DataRepresentation to convert our object to a data format such as RTF or an image

PNG
o FileRepresentation: We use FileRepresentation to export our entity as a file, such as a PDF

o ProxyRepresentation: This provides an alternative in case none of the other representations are suitable
Let’s see how we can support both RTF and plain text:

extension Task: Transferable {
static var transferRepresentation: some TransferRepresentation {
DataRepresentation (exportedContentType: .rtf)
{ task in
task.asRTF () !

}

ProxyRepresentation (exporting: \.title)

}
In our code example, we used both patarepresentation and pProxyRepresentation to support both

RTF and plain text.

This means that when we try to share the Task entity, the Transferable mechanism will try to export

the rTF first and turn to ProxyRepresentation as a fallback.

In addition, in the Shortcuts app, the user can select the data type they want to be exported to the next
step in the script (Figure 13.10):

10:26 w! T8 21:32 ol T
[Z) send Message ~ Done (E) Create Note 1 ~ Done
Create new task Create new task
Title Title
1 1
J Send " [[EEECHETRCES " to Create note with
s ® in ©)
Create new task X Create new task X
Varlable Name Variable Name
a © «ED Q © (=)
Clear Variable Reveal Action Roturn Cloar Variable Reveal Action Return
Type Task > Type Rich text >
Task W Rich text v
Title File Size
Description File Extension
Name Creation Date

Task Rich Test

Figure 13.10: The Shortcuts app with different data formats

Figure 13.10 shows how the user selects the data format for the exported item.

The more formats and data types we support in our app entities, the more choices our users have for

using our data.

At this stage, we know how to export our app intents and entities. In a way, the system knows what
our app is capable of. Let’s see how we can take this one step further and adjust it to work with Apple

Intelligence.

Adjusting our app intents to work with Apple
Intelligence

In the previous chapter, we discussed how we can take advantage of some of iOS’s machine learning
and Al capabilities. One of the things that evolved in that area in iOS 18 is Siri. Siri is now smarter

than ever and can allow users to perform tasks in natural language.

For example, the user can say something like Send this photo to my mom to Siri, and Siri can handle

that task without needing the exact phrase.

Siri’s new capabilities are exactly where our app intents come in. Imagine that on one side, we have
Siri, which can understand the user intent. On the other hand, we have the various actions we expose
to the system. So, we must find a way to bind between the user intent, as Siri understands it, and our

app actions. This is what we call an Assistant Schema.

Exploring the Assistant Schema

The Assistant Schema idea is simple yet advanced and full of potential.

Let’s look at Figure 13.11, which describes how Assistant Schema works:

Machine
Learning Toolbox Apps
models
[H I |]
Er;?aﬂ this G i
om _ itabl > matching e
wife’j’, soneme e
; o g struct My Mail Composer
.mail.createbraft SreateEmailDrarEe App

Figure 13.11: The Assistant Schema flow
Figure 13.11 describes how the Assistant Schema flow works:

1. The user requests Siri in a free and natural phrase for a specific action. In this case, the user says, “Email this to my wife”

2. Siri and Apple Intelligence convert the request to one of the system’s predefined schemas using sophisticated machine learning

models. In this case, Apple Intelligence translates the user request to the createDraft schema from the mail domain.

3. Now that Siri knows the selected schema, it looks to find a matching intent in its toolbox. We can associate some of our app intents

with a specific schema.

4. Siri launches and performs a corresponding app intent according to the decision taken in the previous step (the toolbox step).

The fact that Apple Intelligence takes responsibility for understanding our users and picking the right
action makes our job as developers simple — all we need to do is ensure our intents match a predefined

Assistant Schema.

Lets see how to do that. Imagine we have an amazing mail client app that we've built. Users can

browse their email accounts using our app and create and send new email messages.

One of the app’s main actions is creating a new draft; so, we've created an app intent to expose that

capability:

struct SendDraftIntent: AppIntent {
static var title: LocalizedStringResource { "Send new email" }
@Parameter (title: "Body")
var body: String?

@MainActor
func perform() async throws -> some ReturnsValue
<MailDraftEntity>{

let mailDraftEntity = MailDraftEntity(body: EntityProperty(title:
LocalizedStringResource (stringlLiteral: body!)))

ComposeDraftManager.shared.isPresentingCompose = true

return .result(value: mailDraftEntity)

}

In this code example, we created a sendprattIntent app intent that takes a body variable, creates a

mail draft entity, and launches the mail composer.

It’s great that we have a create draft action our users can add to their shortcuts. However, Siri doesn’t
care that we called our app intent sendprattIntent — we want our intent to be part of its Apple

Intelligence toolbox. In other words - add it to the Assistant Schema.

To do that, we add a special Swift macro called assistantintent (schema:):

@AssistantIntent (schema: .mail.createDraft)
struct SendDraftIntent: AppIntent {

Adding the assistantIntent Swift macro with the .mail.createbratt schema to our app intent

signals Apple Intelligence. This is a create draft app intent regardless of how we named it.

SWIFT MACROS - A REMINDER

Swift Macros is a new feature Apple added to iOS 17 that can inject new properties and functions and manipulate our code to various
needs. To learn more about Swift Macros, refer to Chapter 10.

The .mail.createdratt schema is built of two parts — the domain (mai1) and the schema
(createpraft). We can use more schemas in the mail domain, such as deletepraft, saveDraft, Or
replyMail. In addition, we have more domains and schemas to work with, such as presentations,
payments, browsing, photos, books, and more. To see the full list of domains and schemas, go to

Apple’s documentation at https://developer.apple.com/documentation/AppIntents/app-intent-

domains.

So, what does the assistantIntet Swift macro do?

The first thing it does is add a new static variable named _ assistantSchemaIntent:

static let assistantSchemalntent = AssistantSchema(.mail.createDraft)

This static variable marks our intent as a createbraft schema. It also ensures that our intent conforms

to the AssistantSchemaIntent protocol, which gives it more capabilities.

Once that happens, it’s time to adjust our code according to what the compiler requires:
o We can remove the title static variable, as the App Intents frameworks implement it for us.
o The same goes for the @Parameter argument. The App Intents framework implements that for us, so we can also remove that.

o We must add more properties to our app intent that are part of the createDraft assistant schema - account,

attachments, to, cc,becc, and subject
Our new modified sendpraftIntent now looks like this:

@AssistantIntent (schema: .mail.createDraft)
struct SendDraftIntent: AppIntent {

var account: MailAccountEntity?

var attachments: [IntentFile]

var to: [IntentPerson]

var cc: [IntentPerson]

var bcc: [IntentPersonl]

var subject: String?

var body: String?

@MainActor
func perform() async throws -> some ReturnsValue
<MailDraftEntity>{

let mailDraftEntity = MailDraftEntity (body:
EntityProperty(title: LocalizedStringResource
(stringLiteral: body!)))
ComposeDraftManager.shared.isPresentingCompose =
true
return .result(value: mailDraftEntity)

}

In this code example, we can see the new modified version of the sendprattintent struct. The new

properties, such as attachments, to, cc, and bee, have particular types, such as IntentFile and

https://developer.apple.com/documentation/AppIntents/app-intent-domains
https://developer.apple.com/documentation/AppIntents/app-intent-domains

IntentPerson. The AppIntent framework uses this type to identify people and files and have a clear
interface that the system can work with. Besides adding them to the sendprattintent struct, we don't

need to do anything with them except use them in our perform() function.

When we look at the code, one question arises: How do we know what properties to add for each

domain and schema?

At this time of writing, there is clear documentation of what properties each schema requires.
However, adding the assistantIntent Swift macro and building the project creates new errors that

provide information about the missing information.

One exception, though, is the account property, which requires us to declare an assistantEntity-

based struct. Let’s discuss it.

Creating AssistantEntity

When we discussed sendpraftintent, we reviewed several properties, such as attachments, to, and
bee. We saw that for each one, the appIntents framework provides a dedicated type, such as

IntentPerson and IntentFile.

The case of the account property is a little bit different:

var account: MailAccountEntity?

MailAccountEntity is not part of the framework of appIntent—it’s a type we define that must fulfill
the Assistant Schema requirements, similar to what we did in sendprattIntent. Let’s see how to

implement it:

@AssistantEntity (schema: .mail.account)
struct MailAccountEntity {
let id = UUID()
var emailAddress: String
var name: String
static var defaultQuery = AccountQuery ()
struct AccountQuery:EntityStringQuery
func entities (matching string: String)
async throws -> [MailAccountEntity] ({
} (]
init () {}

func entities(for identifiers: [MailAccountEntity.ID])
async throws -> [MailAccountEntity] ({

[1
}
}
var displayRepresentation: DisplayRepresentation
{ DisplayRepresentation(stringlLiteral: name) }

In this example, we can see that our MailaccountEntity struct has a Swift macro named
@AssistantEntity(schema: .mail.account). This macro makes our entity conform to
AssistantSchemaEntity and requires the struct to implement important properties, such as

emailAddress and name.

The Swift macro also requires us to add a default query to help the system fetch and locate accounts

when needed.

The second entity we need to implement is MailDraftEntity:

@AssistantEntity(schema: .mail.draft)
struct MailDraftEntity
static var defaultQuery = Query ()
struct Query: EntityStringQuery {

init () {}

func entities(for identifiers: [MailDraftEntity.ID])
async throws -> [MailDraftEntity] { [] }

func entities(matching string: String)
async throws -> [MailDraftEntity] { [] }

var displayRepresentation: DisplayRepresentation

{ DisplayRepresentation(stringlLiteral: "\ (subject 2?2 "m)") }
let id = UUID()
var to: [IntentPerson]
var cc: [IntentPerson]
var bcc: [IntentPerson]

var subject: String?

var body: String?

var attachments: [IntentFile]
var account: MailAccountEntity

}
MailDraftEntity contains properties such as those of sendbrattintent. Thats because it’s the result of
the sendpraftiIntent perform() function, and Siri can use it to chain the information to other actions

in its toolbox.

Adding both MailbraftEntity and MailaccountEntity can be annoying - it requires us to adjust our
information to a specific interface. However, doing that makes our Siri integration flawless and

effective.

Once we have everything set, the user can see a photo and say something like, “Email this photo using

MyMailComposer app,” and Siri will launch our app with a new draft.

AN IMPORTANT DISCLAIMER ABOUT THE CODE SNIPPETS OF THIS SECTION

Apple Intelligence has not yet been rolled out as of the time of writing this book. This means the code was successfully compiled but has
not yet been tested to work with Apple Intelligence. When Apple Intelligence reaches your region, you may need to make some

adjustments to your code in order for it to work with Siri as expected.

As one of Apple’s senior managers once said, we should consider all of our app actions to be app

intents. This approach makes the possibilities for users to interact with our app limitless.

Summary

That was an exciting chapter! This is not only because app intents are a very exciting topic but also
because it’s the first time we're truly integrating our code with one of Apple’s most significant

technologies.

In this chapter, we discussed the concept of app intents, created a simple app intent with different use
cases, formalized our content using app entities, and even adjusted them to work with Apple

Intelligence. By now, we should be ready to bring Siri to our app in no time!

The next chapter looks at our app from a different perspective — quality.

14
Improving the App Quality with Swift Testing

Why is testing part of a coding book? Isn’t testing part of the Quality Assurance (QA) team’s remit?

You will soon discover that testing is part of our development cycle and our culture as iOS developers.
Many developers see testing as an essential task that they don’t have time for. Unfortunately, they pay

the price later with bugs and long refactors.

In this chapter, we will do the following:
« Understand the importance of testing
o Learn the testing history of Xcode
« Explore the Swift Testing framework basics
o Understand how to manage tests with suites, test plans, and Schemes

o Learn tips that can help us maintain our tests

By the end of this chapter, you will be ready to leverage your testing skills with Swift Testing.

Before we answer the how question, let’s start with the why.

Technical requirements

You must download Xcode version 16.0 or above for this chapter from Apple’s App Store.

You'll also need to run the latest version of macOS (Ventura or above). Search for xcode in the App
Store, and select and download the latest version. Launch Xcode, and follow any additional
installation instructions that your system may prompt you with. Once Xcode has fully launched,

you're ready to go.

This chapter includes many code examples, some of which can be found in the following GitHub

repository: https://github.com/PacktPublishing/Mastering-iOS-18-

Development/tree/main/Chapter14

Understanding the importance of testing

For many developers, testing is an unnecessary overhead they must deal with when writing code.

This way of thinking is somehow understandable. We've finished writing our code, built an

application, and seen that everything runs as expected. Instead of moving to our next task, we need to

https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter14
https://github.com/PacktPublishing/Mastering-iOS-18-Development/tree/main/Chapter14

change the target, adding a test function just so we can see again that it works fine. Why waste our

time on it?

Also, in many cases, writing these test functions takes a lot of work. How can we test a SwiftUI view or

a network call? What does it even mean?
These all summarize why testing is not a common practice, or at least not enough.

The root of this problem is how developers approach testing and writing code in general. Testing is
more than checking whether our functions run as expected; it’s about code structure, separation of

concerns, the writing process, working culture, and how we treat our day-to-day jobs.

Let’s look at the following function:

func canUserAddTask (to list: List, user: User) -> Bool {
if list.isLocked {
return false

if !list.allowedRoles.contains (user.role) {
return false
}

return [.privatelList,
.publicList] .contains (list.sharingAttribute)

}

This function checks whether a user can add a task to a specific list based on criteria, such as
permissions, list type, and status. Now, imagine we need to ensure that this function works properly.

How can we do that? Do we need to run our app in different states to see the results?

We all know that ensuring our code runs correctly is part of our development process. This is a classic
example of how writing test cases and running an app in different states can ease our development
process. We understand why testing is so important when adding future tasks such as refactoring and

bug fixes.

Before we delve into Swift Testing, let’s understand the testing history in Apple platforms.

Learning the testing history in Apple platforms

As Apple development tools evolved over the years, the testing tools have also developed.

The first dedicated testing framework for Apple platforms was SenTestingKit, based on the OCUnit

open source framework.

SenTestingKit was introduced in 2005 and integrated into Xcode, providing basic functionality for

writing and running Objective-C code.

In 2013, Apple introduced XCTest, which takes a more modern approach to testing, with better Xcode
integration and support for Objective-C and Swift.

Let’s take the code example in the Understanding the importance of testing section and see an example
of an XCTest test:
class CanUserAddTaskTests: XCTestCase {
func testCanAddTaskWhenListIsLocked ()
let list = List(id: "1", isLocked: true,
sharingAttribute: .privateList, allowedRoles:
[.admin, .member])
let user = User(role: .admin)
XCTAssertFalse (canUserAddTask (to: list, user:

user), "User should not be able to add a task
when the list is locked")

}
In this user example, we see a simple test function that tests whether a user can add a task to a locked
list.
There are a few things worth noting:
o The test function is part of the CanUserAddTaskTests class, inherited from the XCTestCase superclass.

o The test function name starts with the test phrase. The test phrase indicates the XCTest framework, which is a testing

function.

« The test validation expression is done by a specific function (XCTAssertFalse) that checks whether a particular expression is

false. We have a list of functions for various conditions.

While these are all part of how we write tests in Xcode, they are not aligned with the modern
Swift/SwiftUTI approach - working with structs, macros, and more simple and generic Swift functions.

That’s where Swift Testing comes into the picture.

Let’s explore Swift Testing together.

Exploring the Swift Testing basics

We will start our journey by adding the Swift Testing framework to an existing project.

Select File | New | Target from the Xcode’s menu to do that. Then, in the template chooser, locate Unit
Testing Bundle and select it (Figure 14.1):

Choose a template for your new target:

Multiplatform i0s macOs walchOS wis

Test
80 @
- OOO
Ul Testing Bundle Unit Testing
Bundie
Cancel

vision0S DriverKit Oithves

Figure 14.1: The new target template chooser

Figure 14.1 shows the template chooser window in Xcode. When performing a search for testing, Unit
Testing Bundle is easy to locate. Note that we also have a UI Testing Bundle template. However, UI

testing isn't supported yet in Swift Testing, so we’ll focus now on unit testing.

HOW CAN WE PERFORM UI TESTING?

Ul testing, also known as end-to-end testing, is a different topic in app testing. It is also what we call “black-box” testing, meaning that the
test function doesn't know the internal code, only the user interface components. The basic way to conduct a Ul test is to use XCTest,

Apple’s previous testing framework. However, there are services that provide simpler or multi-platform ways of running Ul tests remotely.

Once you select the Unit Testing Bundle template, hit Next. Now, we'll need to fill in some details

about our new test target (Figure 14.2):

© tesi

Choose options for your new target:

Product Name: Chapter14Tests
Team: AviTsadok (&

Organization Identifier: com.avitsadok.www
Bundle Identifier: com.avitsadok.www.Chapterl14Tests

Language

XCTest
Testing Systerr B2]
Project: Chapter14
Target to be Tested: [3 Chapter14

Cancel Previous

Figure 14.2: Choosing options for our new test target

In Figure 14.2, we can fill in the target’s name, team, and bundle identifier. We can also choose

between the old XCTest and the new Swift Testing frameworks. In this case, well select Swift Testing.
Hit Save, and congratulations - you have a new testing target!

Let’s write our first test!

Adding a basic test

Our template comes with a basic, empty test function:

import Testing
struct Chapterl4Tests
@Test func testExample() async throws {
// Write your test here and use APIs like
“#expect (...) " to check expected conditions.

}
Even though the code is very minimal, we can see a couple of changes compared to XCTest:

« Import testing: The Swift Testing framework’s namespace is Testing, and we should import it into every file we want to test.

» Working with structs: Unlike XCTest, which requires creating a class that conforms to XCTestCase, we work with structs in
Swift Testing. Structs are not only lighter and easier to use but also more helpful when we try to run our tests in parallel.
Remember that structs are value types, meaning that each time we pass a struct, we get a copy of the data. This helps when trying

to check states when testing.

« Use of the @Test Swift macro: We mark the function with the @Cest macro, which helps the SwiftData framework manage its

tests.
« Use of the #expect macro: In XCTest, instead of XCTAssert functions, we use the #expect macro, which is helpful for any
expression we want to test.

We can run our test quickly by tapping the diamond button next to the test function or pressing £ U.

If everything works as expected, our test should pass.

Now, let’s fill our code with some actual tests. In our example, we have a view model that handles a

counter. We have increment and decrement functions and a count variable:

class CounterViewModel: ObservableObject {
@Published var count: Int = 0
func increment (by value: Int) { }
func decrement (by value: Int) {}
func reset () {}

}

Let’s test the counterviewModel functionality using Swift Testing.

The first thing we need to do is provide Swift Testing with access to our app target:
@testable import Chapterl4

We add the etestable attribute to the import command to enable access to internal entities.

Now, let’s write our first test function:

@Test func testViewModelIncrement () async throws {
// preparation
let viewmodel = CounterViewModel ()
viewmodel.count = 5
// execution
viewmodel.increment (by: 1)
// verification

#expect (viewmodel.count == 6)

}

In our test function, we initialize the view model, call its increment function, and verify the results.

The test fails if the expression inside the #expect macro function is false.

These three stages — preparation, execution, and verification — are part of any test flow, regardless of

whether we use Swift Testing or any other testing framework.

Now, let’s rename our struct (which contains this test) counterviewModelTests and run our test.

In Xcode, we can open the left pane on its tab (or just press 446), and then we can see our test list

(Figure 14.3):

ene [B Chapter14 Chapteri4) [] iPhone 15 Pro Test Completed + B
B8 0 a A & & 0 B 8B < 3 ChapteridTests 2 20 @
Chapter14 (Autocreated) o B ¢? [E Chapterl4) & ChapteridTests) 5 Chapteri4Tests) No Selection
~ @ Chapteri4 (Autocreated) L2 _ impcr‘t Tes‘l.:ing
@ ChapteriaTests 1 Test ® 2 [@testable import Chapterl4
~ € CounterViewModelTests & 3
& testViewModelincrement(} & & struct CounterViewModelTests {
& PTest func testViewModelIncrement() async throws {
d Wi preparation
let viewmodel = CounterViewModel()
9 viewmodel.count = 5§
10
18 // execution
12 viewmodel.increment(by: 1)
Y Wi verification
15 #expect(viewmodel.count == 6)
1 }
18 }
& |(==) Filtar () Line: 19 Cok:1 | [=)

Figure 14.3: The tests listed in Xcode

In Figure 14.3, we can see the structure of our tests on the testing pane, which is reflected in the way

we create our struct and test functions.

At the beginning of this chapter, we discussed the differences between Swift Testing and Xcode by

examining a simple code example. One of these changes was the usage of the etest macro.

Besides indicating a test function, the eTest macro has additional features to help us configure our

tests.

For example, let’s use the eTest macro to provide a name to our test function.

Providing names to our test functions

Providing expressive and meaningful names to test functions is crucial and can be valuable when we

have hundreds of tests in our project.
To do this in XCTest, we need to rename the test function to something like this:

func testViewModelIncremenetFunction_ incrementByl_ accept5_expecté6

The function name describes the test correctly, but it feels cumbersome and awkward, especially when

we have hundreds of test functions.

With the eTest Swift macro, we can provide a readable name for each test:

@Test ("Test the increment function. Accepts 5 and expect 6. ") func
testViewModelIncrement ()

Adding the test description to the eTest Swift macro makes it much more readable, and it also

integrates nicely with Xcode (Figure 14.4):

v & Chapter14 (Autocreated)
v & Chapter14Tests 1 Test
v © CounterViewModelTests

IR

€ Test the incremenet function. Accepts 5 and expect 6.

Figure 14.4: The test pane in Xcode, with a custom name
Figure 14.4 shows the same test function as before, now with a readable and meaningful name.

The erest Swift macro provides much more than just naming our functions. We can also use it to

disable and enable tests. Let’s see how to do that.

Enabling and disabling tests

Sometimes, a test can become irrelevant, and we want to remove it from our test list temporarily. We
can delete it or comment on it. However, these solutions may need to be more comfortable and

practical in the long run. So, let’s use the eTest macro to make that more elegant.
In Swift Testing, all tests are enabled by default. To disable a specific test, we can use the disabled ()
function:

@Test ("Test the incremenet function. Accepts 5 and expect 6. ", .disabled()) func
testViewModelIncrement ()

We can see that the disabled () function is now one of the eTest parameters. In this case, the test
function won't run, and we can also see that the function is now disabled in the test pane (Figure

14.5):

v & Chapter14 (Autocreated)
v & Chapter14Tests 1 Test
v © CounterViewModelTests

I

Test the incremenet function. Accepts b and expect 6.

Figure 14.5: A disabled test in the test pane

Figure 14.5 shows our test function grayed out. In this case, performing an entire test run will skip

that test.

However, there are cases where we need our test function to run only under specific conditions, such

as when a user is logged in or in one particular A/B test condition.

In this case, we will implement the condition within the test function as a guard statement, which
makes the test function succeed. But that doesn’'t sound like a good solution - having a test function

succeed when it’s not running.

Fortunately, enabling a test function based on specific criteria is a feature Swift Testing supports. All
we need to do is add the enabled function within the eTest macro head, including a Boolean
expression:

@Test ("Test the decrement function.", .enabled(if: AppSettings.CanDecrement)) func
testTheDecrementFunction() async throws

In this code example, we see a new test function called testTheDecrementFunction. We added a
condition to the test function that would run only if we enabled the ability to decrement in the app
settings. In this case, the Appsettings.canDecrement expression returns false. Therefore, Swift Testing

skips the test function at runtime.

When using the enabled function, precisely defining the test goal is essential. For example, when using
AppSettings, we may want to test the results of the decrement function when the feature is turned off.
We need to disable tests according to a Boolean expression only when it’s clear that the function is

irrelevant under specific conditions.

If we try to run a test when the enabled () function returns false, we'll see something like Figure 14.6:

v & Chapter14 (Autocreated)
v & Chapter14Tests 2 Tests
v © CounterViewModelTests

€ Test the incremenet function. Accepts 5 and expect 6.

Ol 0 0 O

€ Test the decrement function.

Figure 14.6: A skipped test function due to a specific false condition

In Figure 14.6, we can see that the test function is not grayed out, as in the case of using the

disabled() function. However, it wasn’t running, and we can also see the skipped icon on the right.

We have seen how to provide readable names to test functions and how to disable or enable tests.

Now, let’s discuss another excellent Swift Testing feature — tags.

Tagging our test functions

Generally, we group tests according to our project structure. For example, we could create a structure
of test functions for a specific class or a structure. Another example would be to create a test structure
for a particular feature or service. However, there are additional ways we can organize our test
functions. We could arrange them according to priority - critical or sanity tests — or according to their

system levels, such as UI or business logic layers.

Instead of finding workarounds for that organization problem, Swift Testing provides an organization

feature called tags.

We'll start by defining a new tag in the test bundle:

extension Tag {
@Tag static let critical: Self

We extended the Tag structure in this code and added a new static variable, named critical.

We can define and use as many tags as we want across our bundle. Therefore, it is a best practice to

manage all our tags in one place and a separate file.

Now that we have a new tag, let’s add it to one of our tests:

@Test ("Test the reset function", .tags(.critical))
func testResetFunction() {

In this code example, another etest macro function, called tags (), provides the new critical static

variable we created in the previous code example.

Note that we can provide multiple tags to the same test function:

.tags(.critical, .calculations, .performance))
In this example, we marked a specific function with three different tags.

The ability to mark a function with multiple tags can be powerful, as it provides flexibility with our

tests’ organization.

One thing is missing here - even though tagging functions look lovely, we haven’t discussed how to

actually use our tagging.

Let’s look at Figure 14.7:

v (& Chapter14 (Autocreated)
v & Chapter14Tests 3 Tests
v € CounterViewModelTests
0 Test the incremenet function. Accepts 5 and expect 6.
€ Test the decrement function.

€ Test the reset function

SO0 0O

Tags

() critical

Figure 14.7:The Tags section of the test pane in Xcode

Figure 14.7 shows a new section called Tags in the Xcode test pane. The Tags section now includes the
critical fag we defined for our reset () function in the last code example. Xcode scans our tags’

usage and organizes them for us. This is how deep the Swift Testing integration with Xcode is.

Now that we have all our tags listed, we can run all our critical tests (Figure 14.8):

Tags

Figure 14.8: Running all critical tests

In Figure 14.8, the run button is on the right. Tapping it will run all our critical marked tests.

Now, for the practical usage of tags in testing, working with tags is similar to how tagging works in

other places. When we group tests in files, we usually do that by concern - a layer, service, module,

and so on. Conversely, tagging helps us group tests by their types (sanity, smoke or regression,

integration, or unit) or a property (a priority, for example).

WHAT ARE SMOKE TESTS?

We write smoke tests to check a system’s operations by testing basic functionality. While they may sound like a sanity test, they are much
lighter and faster than that. For example, we can try to perform a login and a basic data sync, and the results can indicate whether we

have a severe problem with our app or the backend.

Working methodologically with the tagging system can enhance our testing and open new
possibilities.
Our etest macro features list doesn’t end with tagging. Let’s examine a Swift Testing feature that can

save us a lot of time — arguments.

Working with arguments

Imagine the following scenario. We wrote a Swift function that performs a very clever calculation -
for example, a function that converts meters to yards:

struct UnitConverter (
static func metersToYards(meters: Double) -> Double {

}

return meters * 1.09361

}

Our function takes a meters parameter and returns its value in yards. It looks like a straightforward

function, but we must perform several tests to see whether it works as expected.

So, let’s write tests for this function:

struct UnitConverterTests {
@Test func testConvertingMetersToYards lmeter()
#expect (UnitConverter.metersToYards (1.0) ==

1.09361)
}
@Test func testConvertingMetersToYards 3_Smeter () {
#expect (UnitConverter.metersToYards (3.5) ==
3.827635)

}

In this code example, we wrote two test functions that perform the same test but with different
parameters. They even have very similar names. Even though this solution works fine, it doesn’t scale
up very nicely. What if we want to test 10 different variants or parameters? And what if we need to

change the function name we are testing?

One option is to perform one test function that contains all of the different options:

@Test func testConvertingMetersToYards () {
#expect (UnitConverter.metersToYards (1.0) == 1.09361)
#expect (UnitConverter.metersToYards (3.5) == 3.827635)

}

We created one test function with two #expect statements in this code example. That will probably
work; however, managing and monitoring them is more challenging now that we have both

statements in one function.

To solve that, Swift Testing has a feature named arguments, which allows us to run our tests with

different values repeatedly.

Let’s see that in action:

@Test (arguments: [(1.0, 1.09361), (3.5, 3.827635)])
func testConvertingMetersToYards (data: (Double,
Double))
#expect (UnitConverter.metersToYards (data.0) ==
data.l)

}

This code example may look a little cumbersome, but it is straightforward. We performed three
changes here:
o We added the arguments parameter to the @T'est macro, which contains an array of tuples. Each tuple represents a few meters

and its corresponding number of yards. For example, the (1.0, 1.09361) tuple represents a conversion between 1 meter and

1.09361 yards. This array is the list of test variants we are going to do.

o We added a new tuple parameter called data to our test function. With each test run, Swift Testing passes a tuple from the

arguments list to the function using this parameter. The parameter type must be aligned with the argument type.

o Inthe #expect macro, we now compare the two tuple values instead of fixed sizes, like in the previous examples.

The term arguments can be misleading. In the context of testing, it means that arguments allow us to

run our code in different use cases and states.

And if passing all the different use cases within the eTest macro is cumbersome, we can store them in

a separate variable:

let convertingTests: [(Double, Double)] = [(1.0, 1.09361),
(3.5, 3.827635)]
struct UnitConverterTests {
@Test (arguments: convertingTests)
func testConvertingMetersToYards (data: (Double,
Double)) {
#expect (UnitConverter.metersToYards (data.0) ==
data.l)

}

In this code example, we moved our use cases into a dedicated constant for better readability.

If we look at the Xcode testing pane again, we can now see a list of our use cases and their states

(Figure 14.9):

B M N Q A & § O B
Chapter14 (Autocreated) < E 0

v & Chapter14 (Autocreated)
v & Chapter14Tests 4 Tests &
> © CounterViewModelTests
v © UnitConverterTests
v 0 testConvertingMetersToYards(data:)
<& (1.0, 1.09361)
& (3.5, 3.827635)

> O

I C IR v

Figure 14.9: Argument testing in the Xcode testing pane

Figure 14.9 shows why argument testing in Swift Testing is so powerful. Instead of having several test

functions in the list, we can see one with several use cases.

Argument testing adds another layer to our testing, something we don’t have in XCTest.

WHY DOESN’T XCTEST SUPPORT PARAMETRIZED TESTING?

Using attributes to perform parametrized testing is not new in the testing world. Most testing frameworks support adding arguments to
their test functions out of the box. However, even though it is possible to perform parametrized tests in XCTest, it requires creating several
test functions that call a central function that performs the actual test. This is an ad hoc and unnatural solution. The reason is that Apple
wanted to create a simple testing framework, and locating the test function in XCTest works according to a simple function signature
(functions that start with the phrase test). Adding arguments made the locating process complex.

Now that we have reviewed the Swift Testing basics, let’s see how to manage our tests.

Managing our tests

Anyone who has previously worked with tests knows that writing tests is one thing and managing

them in the long run is another.

If you don’t have testing experience, you might think that simply running all your tests one after the

other is sufficient. But down the road, things become much more complex - different configurations,

environments, and even test goals — all translating to a need for a more robust testing management

system.

Before managing our testing system, let’s review our Xcode testing structure.

Going over the testing structure

So far, we have discussed how to write testing functions, but besides grouping them in structures, we

haven't discussed anything related to managing them.

A whole set of tools can help us manage our test efficiency in Xcode. Let’s review the different blocks

that can help us adapt a flexible system to our needs:

A testing suite: A testing suite can group several testing functions and child suites.

o A test plan: A test plan groups different test functions and test suites. It can include or exclude test functions marked with tags. But
it doesn’t stop there — test plans can run multiple times in different configurations with different data and environments. This is a

powerful tool that can help scale up our testing strategy.

o A Scheme: Inside each Scheme, we have several build options. One is Test, where we must describe what will happen when testing

that specific Scheme. In the Test Build option, we can define precisely what test plans we will run and on which target.

When we look at the different testing building blocks, we can see that the testing structure is complex

and requires some thinking.

Let’s try to explain the hierarchy by examining Figure 14.10:

Scheme

/\

Test Plan

Test Suite

;'I

Test Suite

Test
L] Function

;'I

Test

Ll Function

Test Plan

Test Suite

;'I

Test Suite

Test

Ll Function

;'I

Test

Figure 14.10: Relations between the different building blocks of testing

| Function

Figure 14.10 shows the relations between the different building blocks of testing. Next, we will learn
how to build them together, starting with test suites.
Grouping our test functions into test suites

The first building block we are going to discuss is the test suite. In fact, we have already built a test

suite in this chapter:

struct UnitConverterTests

@Test func testConvertingMetersToYards lmeter () {
#expect (UnitConverter.metersToYards (1.0) ==
1.09361)

}
Do you remember this code example? We wrote it in the Working with arguments section and created
a similar test suite for earlier examples. So, yes, the struct containing our test functions is considered

to be a test suite, and Swift Testing recognizes and displays this in the test pane.

However, we can annotate a test suite with the esuite attribute for better customization. Let’s add it to

our latest test suite:

@Suite ("Unit converter tests")
struct UnitConverterTests {

@Test func testConvertingMetersToYards lmeter () {
#expect (UnitConverter.metersToYards (1.0) ==
1.09361}

}

In this code example, we added the esuite swift macro to our unitconverterTests structure and, by

doing so, gave it a more readable name.

Let’s see what our test suite looks like in the test pane in Xcode (Figure 14.11):

Chapter1d (Autocreated) o B &)

v (& Chapterid (Autocreated)
v o ChapterldTests 4 Tests
> € CounterViewModeiTests
~ ¥ Unit converter tests
€ testConvertingMetersToYards(data:)

Tags

{3 critical
Figure 14.11: The suite in the Xcode test pane

In Figure 14.11, we can see our new test suite displayed in the test pane.

If using the esuite macro sounds like how we used the eTest macro, you are not mistaken; it’s the

same idea - providing more information by using a macro.

And, just like the eTest macro, we can also mark test suites with tags:

@Suite ("Unit converter tests", .tags(.critical))
struct UnitConverterTests {

}

In this code example, we marked our new test suite with the critical tag we declared in the Tagging our

test functions section.

In addition, we can also disable the whole test suite using the same disabled () function we used in

the Enabling and disabling tests section:

@Suite ("Unit converter tests", .disabled())
struct UnitConverterTests {

}

In this code example, we disabled the unit converter tests test suite, and Swift Test will not execute

any of its tests in the next test run.

Another neat usage for a test suite is its ability to contain nested test suites:

@Suite ("Unit converter tests")
struct UnitConverterTests {
@Suite ("From meters to yards")
struct FromMetersToYardsTests {
// our test functions

}
}

In this code example, we have a test suite named From meters to yards, which is part of a bigger test

suite named vnit converter tests.

Let’s see how this is reflected in the Xcode pane (Figure 14.12):

Chaptar14 (Autocreated) A =

w (& Chapterid (Autocreated)
w &% ChapterldTests 4 Tests
O testConvertingMetersToYards (data;)
» £ CounterViewModelTests
v € Unit converter tests
w £ From meters to yards
o testConvertingMetarsToYards (data:)

Figure 14.12: Nested test suites in the test pane

Figure 14.12 shows how our new nested test suite is reflected in the test pane. We can also customize

the nested suites, such as adding tags and disabling them.

Now that we know how to define a test suite and tags, it is recommended that we remember each
feature’s role. We use test suites to group different test methods by concern - typically, by writing test

functions for a specific class or a structure.

Conversely, we use tags to mark our tests by their type — critical, performance, integration, and so
on. If these are the different roles for tags and test suites, what do we do when we want to manage

something such as a sanity or a regression test?

That’s what test plans are for.

Building test plans

To better understand the different testing components, we can think of an app with two layers - the
business logic and the UL The business logic layer is important, but it doesn’t describe how a user will

use our app - the different use cases and flows.

We must build the UI layer to complete our app, which handles user stories and flows. The business
logic is analogous to the different testing suites and functions. These are the building blocks of our

testing. However, testing is always in the context of a specific development process.

Let’s try to come up with different development processes:
« Feature development: We build new features, often adding new classes, structures, and entities
« Fixing bugs: We modify existing code
o Refactoring code: We modify existing code for better scalability, maintenance, or performance

« Deployment: We prepare an app for deployment for QA or production

This is only a partial list of different development processes, but it demonstrates that we are always in

the context of a process when we develop.

When we build our testing system, we can describe this process using a test plan. Let’s add a new test

plan to see how it works.

Adding a new test plan

Test plans are a new feature in Xcode, added to Xcode 11 in 2019. They allow us to pick tests or test
suites and run them in a specific configuration and environment. Test plans are our way of expressing

how our test functions will be executed.

We always run our tests as part of a test plan. By default, Xcode creates a test plan for us automatically

(Figure 14.13):

B M Jd Q A & & D [E

Chapter14 (Autocreated) ° E 0

v ¢ Chapter14 (Autocreated)
v ¢ Chapter14Tests 4 Tests
0 testConvertingMetersToYards(data:)
> © CounterViewModelTests
v © Unit converter tests
v © From meters to yards
0 testConvertingMetersToYards(data:)

plan, we can tap the test plan pop-up menu and select New Test Plan. After we provide a name for our

new test plan, we can see it in our Xcode main pane (Figure 14.14):

B EAO QA &€ 8¢ D B an < 3 ChapterldTests & Sanity s ContentView = UnitConverter a8 M

Sanity & B [E¥ chapter1d | <> Sanity | No Selection
<% Sanity Tesls Configurations
Other Tests <:> Sanity Choose Targets. .
v % ChapterldTests 4 Tests
v € CounterViewModelTests -3 Include Tags: (=)
& Testthei t function. Accepts 5 an... —
Exclude Tags: (5~}
& Testthe dacrement function. (3 xolude Tags: 12>

& Test the reset function

v € Unit converter tests B ncluded Exciuded [} Swift Testing XCTest =
i ~ €» From meters to yards included Tast Pratiew Toge
© testConvertingh ToYards(data:)
No Tests

Figure 14.14: The new test plan in Xcode
Figure 14.14 shows a new test plan called Sanity, which has its own customization screen.

There are many things we can do to customize our new test plan:

o We can define precisely which test target we want to run. So far, we have worked on a single test target, but it is possible to have
several test targets. Once we choose the different test targets, we will see the list of test suites and functions and mark what tests we

should include or exclude.

o We can include or exclude tests marked with specific tags. For example, we can choose to include only tests marked with the
critical tag for the Sanity test plan. Alternatively, for a stress test plan, we can include tests marked with a performance tag.

This is where the tags become extremely helpful.

« If we already have many tests written in XCTest, we can include them in our test plan. This capability is crucial to preserve

backward compatibility.

As we can see, the test plan is very flexible in deciding what tests will be included.

However, control over the list of test suites and functions is only a fraction of what we can do with test

plans. We can do even more with configurations.

Configuring our test plan

When we started explaining test plans, we said that part of the idea of creating one is defining the
environment in which the test plan runs. One example of such an environment is localization -

language, region, and location can influence our app in certain use cases.

Trying to simulate an environment for our test functions can be challenging; therefore, test plans have

a feature called Configurations (Figure 14.15):

BE QA & 5 O B 2] &b Sanity & H
Sanity (Default) ke B g 8 chapter14) & Sanity) Mo Selection

v @& Sanily (Default) Tests Cenfigurations
w &b ChapteriaTests 4 Tests f=] Shared Settings Setting us
M
Test the t function. Accepts 6. ¥ Arguments
o &4 incremenst func .IDﬂ cepls @ Euraie
€ Test the decrement function. Argumants Passed On Launch

£ Test the reset function
~ 4 Unit converter tests

Environment Variables

Target far Variable Expansion None &
w €3 From meters to yards
O tosiC
v Localization
1“‘_: Application Language System Language &
5 cotical
&7 critical Applicetion Region System Region ¢

Simulated Location None &

w Ul Testing

Automatic Screen Capture On, and delete il test succeeds &
Preferred Caplure Format Video =
Localization Screenshots off

v Distributlan

Distribution App Store o

w Attachments

AMtachments On, and delete If test succeeds &

w Diagnestics

Collect Test Diagnostics on Failure When testing with xcodebuild &

w Tast Execution

@ Execulion Order Alphabetical 2
Figure 14.15: The test plan’s Configurations tab
Figure 14.15 shows a tab bar at the top of the Sanity main pane. The Tests tab defines the included tests
in the test plan, and the Configurations tab defines the different configurations for the test plan.

To add a new configuration, we tap the plus button at the bottom of the window.

A test plan can have many configurations. Each configuration contains a list of settings that can affect

our test results. Let’s examine them briefly:

o Arguments: Each app can run with different Launch and environment variables. We can use them to override our A/B test

configuration or define a specific API endpoint. Arguments are powerful tools that help us adjust our app to our needs.

o Localization: Language, region, and location are all part of the localization list of settings that we can define. These settings can

influence available features, texts, measurement units, and other behavior.

o Ul testing: If our test plan includes UI tests (not supported yet in Swift Testing), we can decide what happens during screen

capturing if there is a test failure.

« Distribution: Some APIs can behave differently when running on the App Store than on TestFlight - for example, collecting beta

testers’ feedback, sandbox issues, and enabling/disabling beta testing features.

o Test Execution: Here, we can define the test plan execution behavior, including the execution order, timeouts, and repetition

settings.

« Runtime API Checking, Runtime Sanitization: Different runtime settings such as memory management, main thread checker, and

sanitization.

That’s a long list of settings! I felt that when I looked at Figure 14.15, but now we have confirmation

after reviewing almost each one.

However, the idea behind configurations is that we don’'t need to redefine all the settings each time we
create a new configuration. If you open your Xcode and create a new test plan, you can see something

called Shared Settings (Figure 14.16):

Tests Configurations

'é:z Shared Settings | Setting Shared Settings
@® us
@ Europe

Arguments Passed On Launch

Environment Variables

Figure 14.16: Shared Settings

Figure 14.16 focuses on the list of configurations with Shared Settings at the top. The Shared Settings
configuration contains the settings for all configurations unless we explicitly change a specific setting

for a particular configuration.

Consider a typical use case — we would probably want the same settings for all configurations except
for one or two (e.g., a configuration for different locations or distributions). In this case, we will have

the same settings except for the region or the distribution method.

Xcode executes all the configurations in a sequence when running a test plan. However, you can

disable a specific configuration by right-clicking on it in the configurations list and selecting Disable.

So, let’s say we created a sanity test plan and a regression test plan. What do we do from here? How

can we tell Xcode what to execute when running tests? This is where the Scheme comes into play.

Setting up a Scheme

This chapter is about Swift Testing, not the Xcode build system, but we can’t discuss testing and ignore

Schemes.

Schemes are fundamental to managing our project’s build and execution configurations. A Scheme

defines how our project is built, executed, and tested.

We can write dozens of test functions and create as many test plans as we want, but the bottom line is
that when we select Test from the Xcode menu or run tests from our CI/CD environment, the Scheme

defines precisely what will happen.

WHAT IS CI/CD?

CI/CD stands for Continuous Integrations/Continuous Deployment. We use these practices to automate our app build and deploy
process. A crucial part of this process is testing — before we deploy a build to TestFlight or the App Store, we want to perform testing to
ensure we don't have regressions or other issues. When we build our Cl/CD process, we often choose what Scheme to execute.

Looking at the Xcode window, we can locate the Scheme name next to the project name. Tapping it

will open a list of Schemes where we can change the current Scheme or edit it (Figure 14.17):

> chopteria B Chopiertd [Phane 15Po Buld Sussesded | 06/07/2024 ot 22:00 + (B
— —t e
B <> o 9‘ 0 = C
Shared Setlings
Target for Varaale Expansion MNora o
v Localization
Application Lenguage System Language 3
Application Region System Region &
Simulated Location Haore &
~ Ul Testing
Automatic Screen Caplure On, and delete if test succeeds 2
Fraterred Captura Format Videa ¢
Locakzation Screenshots off s
~ Distribution
| Distrivution App Storg
I N
it)

Figure 14.17: Editing the current Scheme

Figure 14.17 shows how to reach the pop-up Scheme menu. Tapping on the Edit Scheme... option
leads us to the Edit Scheme screen (Figure 14.18):

Bulid Corfiguration Debug
oeougger @ Debug executanle
Dobug Process Az = Lo [avitsadol)
ol

LLDE: it Fila 6(ERCA0OTILLDBInIT s

Test Plans

® °
1 test targat, 2 configuratinng

fon

@ tent targets, 1 sanfiguratian e

Duplicate Scheme Manage Schemes... Sharad

Figure 14.18: The Edit Scheme screen

Figure 14.18 shows that the Scheme has six different actions—Build, Run, Test, Profile, Analyze, and

Archive. In this screenshot, we will focus on the Test action.

Besides choosing the configuration (Debug or Release in our case), we can determine what test plans

to run. We can add an existing or new test plan using the plus button at the bottom left.

That’s where we decide what happens when executing the Test action on our Scheme. Having several
Schemes configured differently for various purposes can be valuable when we connect our project to a
CI/CD system.

For example, we can run a performance test once a month and sanity every night, just by creating two

different Schemes that run different test plans.

Now that we know how to create test functions, suites, test plans, and Schemes, let’s flip to the other

side of the equation and see how to write testable code.

Tips to write testable code

One of the biggest challenges developers face when they try to write tests for code is struggling to
write tests for existing functions that could be more testable — for example, functions that contain
code that performs network requests or functions that have external dependencies that are difficult to

set up.

Writing testable code usually goes hand in hand with writing clean and efficient code. However, we

should still follow some writing guidelines if we want our functions to be testable.

Let’s explore some of them now.

Writing pure functions

Pure functions are functions that, given the same input, always return the same output and don't rely

on external states or have any side effects.

For instance, take the following example:

class NumberFilter ({
var numbers: [Int] = []
var filteredNumbers: [Int] = []
func filterNumbers (predicate: (Int) -> Bool) {
self.filteredNumbers =
self .numbers.filter (predicate)

This code example contains a NumberFilter class with a function called £i1terNumbers. This class

performs a predicate on an instance variable and stores the results in another instance variable.

This is a classic example of a non-pure function, since it relies on an external variable and has a side
effect. Now, imagine we want to test this function - it requires us to set up a NumberFilter instance
and set the numbers variable. In addition, we need to check the result using the same NumberFilter

instance, with the £iltersNumbers instance.
The class can change down the road and may require more setup than before, breaking our test.

Instead, we can make this function pure, like this:

func filterNumbers(numbers: [Int], predicate: (Int) -> Bool) -> [Int] {
return numbers.filter (predicate)
}
In the modified example, our function receives the input as a parameter and returns the results as part

of its output. This change makes it agnostic to external states and easy to test.

Separating your code based on concerns

As always, a good separation is crucial for our project maintenance (which we will cover in more

detail in Chapter 15). However, separation is also essential for testing.

The fundamental separation of concerns idea states that each part of our code, whether a variable,

function, class, or module, should have one and only one responsibility.

Let’s take the following code as an example:

func processAndSaveData(_ input: String) -> Bool ({
// Data processing
let processedData = // <perform some data manipulation
code>
// Data saving
return databaseService.saveData (processedData)

}

The processandsaveData function is responsible for two tasks — processing the input data and saving it

to the database service.

We can see that the string processing code uses the same function that performs data saving. If we
want to test whether the string processing succeeded, we must also ensure that the output has been

saved successfully. These two responsibilities are coupled, which makes the code very difficult to test.

To solve that, we can separate the processing code into another function:

func processAndSaveData(_ input: String) -> Bool ({
// Data processing
let processedData = processData (input)

// Data saving
return databaseService.saveData (processedData)

}

private func processData(_ input: String) -> String {
return input.reversed()
}

In this example, we gave the processing data task its own function, and now it is possible to test it

regardless of the data-saving part.

Our last tip also discusses coupling but, in another context — protocols.

Performing mocking using protocols

Sometimes, we don’t have a choice but to test functions that reach our network or any external service

that can’t really simulate during tests.
To overcome that, we can easily create mocks for these services using protocols.

Look at the following code:

class UserViewModel ({
private let networkService: NetworkServiceProtocol
var user: User?
init (networkService: NetworkServiceProtocol)
self .networkService = networkService
}

func fetchUserDetails (for userId: String, completion:
@escaping () -> Void) {
networkService.fetchUserDetails (for: userId) {
[weak self] user in
self?.user = user
completion ()

}

This code example contains a userviewModel class that fetches user details from the server and stores
the results in an instance variable. Testing the fetchuserpetails function requires performing a

request to the server, which can make our test unstable.

To solve that, we can create a mock class that conforms to NetworkServiceProtocol and simulate the

network service:

class MockNetworkService: NetworkServiceProtocol {
var userToReturn: User?
func fetchUserDetails (for userId: String, completion:
@escaping (User?) -> Void) {
completion (userToReturn)
}

This example demonstrates a mock class that accepts a user’s return and can easily mock the whole
network process. We achieved that by using a protocol and dependency injection, and we can do the

same to store data, authenticate, and so on.

Summary

Testing is crucial to our mission to produce stable, high-quality code. Remember, writing tests is not
just a fundamental part of being a professional iOS developer - it is also part of a culture of doing

things right.

In this chapter, we've learned about the testing history in Xcode, covered the Swift Testing basics by
writing simple tests, learned how to manage our tests using suites, test plans, and Schemes, and even
discussed some useful tips to make our code more testable. Now, we should be able to set up a new

test plan for our project!

Our following and final chapter, on architecture, touches on some of the principles we discussed here

and will also help us create a stable project.

15
Exploring Architectures for iOS

In the previous chapter, we discussed Swift Testing, an essential framework that helps us test our Swift
code. App testing is not only a technical topic - it is also a culture. Part of this culture is looking at our
project as a set of classes and a whole structure with a certain logic. That’s why testing and architecture
go hand in hand - they both look at our project as a well-designed system. This holistic approach is
essential to meet our product requirements over time.
In this chapter, we will cover the following topics:

« Understanding the importance of architecture

o Learning what exactly architecture is

» Going over the different architectures, such as multi-layer, modular, and hexagonal

o Comparing the different architectures by separations, testing, and maintenance

First, let’s understand why architecture is so important.

Technical requirements

You must download Xcode version 16.0 or above from Apple’s App Store for this chapter.

You'll also need to run the latest version of macOS (Ventura or above). Search for Xcode in the App
Store and select and download the latest version. Launch Xcode and follow any additional installation

instructions that your system may prompt you with. Once Xcode has fully launched, you're ready to

go.

Understanding the importance of architecture
To understand the importance of architecture, let’s try to understand how the iOS development
knowledge is built.

Many think that iOS development is centralized around Swift - if we know Swift, we know iOS

development.

Nonetheless, iOS development contains many knowledge levels, and the Swift language is only one of

them.

Let’s try to structure the iOS development to different levels:

o IDE: Familiarity with Xcode, its debugging tools, configuration, simulator, builder, and code signing is crucial.

» Language: Whether it’s Swift, Objective C, or C++, language is a fundamental part of iOS development. It’s the basis for daily

implementing our app’s logic and design pattern.

« System: Understanding iOS’s unique characteristics, strengths, and limitations is key. Ultimately, we are developing in a particular

environment with its own rules and policies.

» SDK: The SDK provides the toolset to do whatever we want. SwiftUI, UIKit, Foundation, Core Animation, and many other

frameworks are part of the SDK, and with them, we can create beautiful screens with user input components and persistent storage.
« Design patterns: These are solutions to common problems and tasks we encounter daily.

o Architecture: The high-level organization of our code and project is called its architecture.

We can continue with more knowledge levels - testing, databases, networking, security, and more. The
knowledge spectrum has become huge over the years, with more and more capabilities and knowledge

required.

Still, many iOS developers don’t focus on architecture when they build their apps, and there are some
obvious reasons why. For example, developers prefer to see immediate results. Sometimes, it's not only
a matter of choice - there are deadlines to meet, and a lack of resources forces us to focus on releasing

our features as quickly as possible.

However, ignoring good architectural planning is usually a result of a lack of experience and short-

term focus, which gives a clue about how important architecture is.

Let’s list some of the influences of good architecture on our project:

 Maintainability: Our projects can easily become more extensive and challenging to maintain. A good architecture makes our code

base more straightforward to understand and read. It also makes it easier to modify and refactor.

o Scalability: The ability to add more features while keeping our project simple and stable is a crucial key to app success. A bad

architecture can require a significant overhaul whenever we want to add new features.

« Flexibility: A good architecture allows us to quickly change how our app works according to changes in requirements. It also helps

us add new features or replace third-party frameworks.

These are some benefits of good architecture, but the picture is clear - we will mainly discuss long-
term influence. Working hard to create more classes, layers, and protocols in the short term seems like
a big hassle. Besides coding, good architecture requires upfront efforts such as good planning, tech

design, and a good understanding of paradigms and patterns.

Before we discuss the different types of architecture, let’s define what architecture means and what

defines good architecture.

Learning what exactly architecture is

Many developers are confused between architecture and what we call a “design pattern”. We previously

touched on that when we discussed the different layers of knowledge (under the Understanding the

importance of architecture section), and even though it sounds like a semantic difference, it’s crucial to
understand the distinction. While architecture refers to the high-level organization of our app, such as

layers, modules, and components, design patterns are reusable solutions to common problems.

To explain that better, let’s imagine a building. When planning a private house, we must decide its

number of floors, entrance, roof, and garage In short, this is the house’s architecture.

In contrast, each floor has its own goal and designation. For example, one floor can be the kitchen and
living room, and the second would be the bedrooms. To accomplish that, we need to plan the internal
design for each floor, deciding the sizes of the rooms, the door locations, and the different wires and
water pipes. In most cases, there are no tricks here - there are standards to follow. These internal
designs of the floors can be considered as design patterns — a reusable, specific solution to common

problems.

Now, let’s go back to our mobile app. We should think of a mobile app’s structure as a private house.
The data flows in different layers — data, business logic, and User Interface (UI). We can look at each
layer as a different floor in our home. In each layer (or floor), we can use various design patterns to
solve other problems. For example, we can use Singleton to manage shared resources or a coordinator

to simplify complex navigation needs.
The more design patterns we know, the more solutions we have.

Moreover, let’s continue with the house metaphor. In that case, we can come to another conclusion —
our choice regarding architecture affects the different design patterns we use for our floors, including

the floors’ sizes and shapes, or even how they are connected.

So, what are the different types of architecture available, and how do we select an architecture that fits

our needs?

Going over the different architectures

Developers make two common mistakes when choosing their project architecture. First, they often

say, “What architecture am I using for my app? MVVM, of course!”

MVVM is not an architecture - it’s a design pattern that aims to solve state and logic management for
a particular screen. Not only does it not handle the app structure but it also doesn’t even describe how
we handle our screens in general. It only describes a particular screen, such as a login or a settings

screen.

The second mistake is the idea that we can only choose one of the most common and popular

architectures from the list for our project. Most of the architectures you read about are, in fact, a set of

principles that can help us decide how to structure our project.

Some principles provide flexibility and decoupling, and some may increase project overhead. We

should always consider tradeofts; these become even more important in architectural designs.

Let’s start with the most fundamental architectural idea: the multi-layer architecture.

Separating our project into layers

It's worthwhile to take a moment and discuss two important terms I'm using here. The first is a project
and not an app. The reason for that is that our architectural decisions are related to the whole project -
pods, Swift packages, extensions, or even other apps. When we talk about structures, an app is only

the expression of our product and how we deploy it.

The second term is using layers instead of tiers — a typical mistake developers make. When discussing
separating a system into tiers, we often refer to hardware separation — different computers, servers,
routers, or other hardware components. We should use the term layers when discussing separating

software such as an app or SDK.

Separating a project into layers, usually three, is a common architectural decision in many projects.
The idea is that a basic project has at least three different levels of data and logic handling (Figure
15.1):

Presentation layer

Business Logic layer

Data layer

Figure 15.1: The three-layer architecture
Figure 15.1 shows the three layers that we usually separate our app into.

Let’s try to understand these layers:

« Data can sometimes be called services. The Data layer handles the data persistent store, the model entities, network handling, and

primarily services that handle data at a low level regardless of the project logic.

« Business logic can sometimes be called domain. The Business Logic layer handles the app’s main logic, including rules and data

manipulations.

« Presentation handles the UI, user interaction, and navigation.

There are patterns that have even more layers — for example, an application layer, which handles the
different use cases and can be placed under the presentation layer, or an infrastructure layer that

handles class extensions, utils, and more.

If you are an experienced developer, the idea of separating a project should be obvious. Separating
code creates a testable and maintainable structure that can be scaled over time. However, the idea of

working with layers is not always evident.

Ultimately, it comes down to how the data flows around the app.

Controlling the app data flow

Data flow is a central topic in any program. To clarify that term, we must examine how messages and
data flow between the different app components. For example, when a user taps the Save button on
one of their screens, we need to transform that tap into an actual logic decision and continue that to
the persistent store, where we can save that information locally. The data flow doesn’t end here — at
this point, we need to send a message back to the UI that a change has been made in the persistent

store, and we should update what’s on the screen.

This example demonstrates only a single use case. A standard mobile app may have hundreds of such

cases, emphasizing the importance of considering how to divide our project.

Now that we understand data flow, let’s discuss the open and closed layers. In a three-layer
architecture, as described in Figure 15.1, the presentation layer communicates with the business logic
layer. However, does that mean that the presentation layer is also allowed to communicate with the

data layer?

For example, the presentation may receive updates about data changes directly from the data layer.
Working with business logic as middleware can be more complex and cumbersome in these cases. At

that point, we must decide whether our layers are open or closed.

An open layer allows direct interaction between the layer above and underneath. While open layers
provide higher flexibility and simplicity, they can also increase coupling and reduce the separation of

concerns.

A closed layer enforces strict interaction, and each communication between its adjacent layers must
go through the closed layer itself. A closed layer can increase the separation of concerns and loosen

the coupling while decreasing flexibility and increasing complexity.

Discussing closed and opened layers might sound a little weird when working with three-layer
architecture. The middle layer (business logic) is the only layer that can be either open or closed.

However, we can decide whether the layer is strictly or selectively closed.

Each layer is built from a set of components. For example, the presentation layer can be built from the
different app screens or flows. The business logic layer can be built from the different logic parts of the

app, and the data layer is built from the different services such as network, data, and security.

In some situations, components from the presentation layer must communicate directly with the data

layer.

Look at Figure 15.2, which shows the basic three-layer architecture of a messaging app:

Presentation , Login Onboarding Contacts List Thread .
) \ / \ / \‘,
ff ‘\
!]
Business Logic | Onboarding i Messaging { :
| i
] I
|I / / / -"lr
/ !
: - ,
| !
[
Data | Analytics Data Security Network

Figure 15.2: Selective closed layer

Figure 15.2 shows the same three layers we discussed earlier — presentation, business logic, and data.
However, this time, we break the layer into different components. In addition, we display the various
communication paths between the multiple components. For example, the login UI component
communicates with the onboarding logic part of the app, and the messaging logic part communicates
with the data and security components. Even though most communication goes through the business
logic layer, we see some exceptions. For example, the following exceptions might apply:

o The Login UI component approaches the Security component directly, probably to understand the current authentication status

o The Thread UI component communicates with the Network components to present the network status in the UI

We can scratch our heads to find a way for these cases to go through the business logic layer; however,

bypassing it and going directly to the data layer is perfectly acceptable in some cases.

The architecture we selected serves our project needs rather than vice versa. Yet we need to define a
policy of bypassing the business logic layer since each exception, including those described in Figure

15.2, creates another coupling in our structure.

We discussed the three layers of architecture, but is it always three? Do we have more layers? Let’s find

out whether creating a more complex yet useful architecture is possible.

Adding more layers

Working with three layers is the sweet spot between simplicity and good separations. However,
sometimes, the principle of separation of concerns still needs to be fulfilled in big projects. Even
though it looks very straightforward to have one layer for the presentation and another one for the

business logic, there are some dilemmas that need clarification.

Let’s take, for example, two different components we may have in an iOS app — a user service and a
payment service. Both are part of the app’s business logic. When the user wants to make a purchase,
we want to check their role using the user service and then go to the payment service to make the
purchase. Right after the purchase, we want to navigate the user to a screen and show them that the
payment was successful. So, we can see that we have a use case that involves incorporating different

business logic services and coordinating different screens (Figure 15.3):

Presentation s Success
Screen Screen

' i User . | Payment
Business Logic Saiics St

Figure 15.3: The payment use case, combining multiple components and layers

Do we need to manage that use case in the presentation logic, in the business logic, or half here and
half there? Well, chances are that this logic is spread across components or centralized in one of the
screen view models. Remember that a view model handles UT states rather than app logic in most

cases.

The problem of handling use cases bundled with navigation is not new, and in apps that are more
complex and require more flexibility, this needs to be taken into account when designing our app

structure.

So, to separate our concerns, we can add another layer - the Application layer, which can handle a

specific app use case (Figure 15.4):

Presentation Login Onboarding Contacts List Thread

N I Create Delete Create
Application Sign. Contact Contact group chat
Business Logic Onboarding Messaging Contacts
Data Analytics Data Security Network

Figure 15.4: A four-layer architecture

Figure 15.4 shows an architecture design similar to Figure 15.2, this time with the Application layer.
The Application layer has four use cases: Sign In, Create Contact, Delete Contact, and Create group
chat. These use cases handle everything from calling functions in other components to navigation.

The Application layer makes the business and presentation layers cleaner from specific app logic.
Do we have more layers we can add?

The Application layer coordinates multiple components to create an app-specific logic. We can
implement the same concept on the bottom side of the architecture, between the business logic and

the data layer.

For example, let’s discuss a data sync process. Retrieving data from the network and storing it in the
persistent store is a complex process that involves error handling and handling various edge cases. Is it

part of the business logic or the data layer?

Data manipulation and Create, Read, Update, and Delete (CRUD) operations are also tasks that are

unclear on which layer handles them.

So, to handle tasks that are not business logic but focus on accessing and managing data from various

sources, we can add another layer called the Data Access layer (Figure 15.5):

Presentation Login Onboarding Contacts List Thread

Application Sign in Gontact Contact oup chat
group cha
Business Logic Onboarding Messaging Contacts
Data Access Layer Sync CRUD Data Mapping
Data Analytics Data Security Network

Figure 15.5: Data Access layer

Figure 15.5 shows our architecture from Figure 15.4, now with an additional layer — the Data Access
layer, which handles sync service, CRUD operations, and data mapping, transforming data model

objects into business logic entities.

Having more than three layers may sound too complex and imply over-engineering. However, this
strategy ensures excellent separation of concerns between the different layers. The business logic
doesn't involve data manipulation, and the presentation layer doesn’'t handle complex use cases. In
medium and large apps, separating our project into four or five layers can pay oft when our app gets

bigger.

Separating into different layers is only one perspective we can consider in our project. I mentioned
earlier that architectural patterns such as this act more like principles. The real power comes when we

combine different patterns. Let’s explore the modular architectural pattern.

Separating our project into modules

I mentioned that separating into layers is only one perspective we can look at in our project. However,

what does it mean?

Let’s take our messaging app as an example. The different layers represent different concerns:

presentation, business logic, and data. Our app data flows through the layers from the UI to the data

and back.

Another way to look at our app is through code units that encapsulate a set of functionalities or a

specific business domain unit. We can call these code units modules.

Understanding the different considerations when working on
modules

Separating our project into modules requires careful consideration, as this step is crucial for the app’s
structure over time. In a messaging app, for example, the modules can be a user authentication
module, user profile module, contacts module, and messaging module. These modules reflect the app’s

different domains and the decision to divide our app is very flexible.

However, some key factors can help us decide:

« Functionality and business domain: We already mentioned this in the previous paragraph. Breaking down the app into core
features can be an excellent start to understanding our project’s different modules - logic, song player, reminders, onboarding, and

more.

« Reusability: Grouping functionalities we use across different parts of the app is another way of understanding how to create a
module. For example, if our app performs different HTTP requests, we may create a network module to manage all the API calls.
Another example can be shared components - if we use the same button on different screens, that can be a sign that it should be

part of a UI module that contains different reusable components.

« Decoupling: Our module should be decoupled from the other modules as much as possible. The level of interdependence the
module has can define whether it was an excellent call to create it as a module. In addition, if it's possible to make a clear interface

for the module, that’s another indication it can be a good module.

« Collaboration: Imagine that several teams are working on our project. The fact that they can work without stepping on each other’s
toes signals good module separation. Note that the relevance of this rule remains the same, whether we are a team of one person or

five teams with six developers each. The principle is what counts.

We must ask ourselves: can we create another app and use some of our modules in the new app, like
using Lego bricks? Can we test each module separately? These questions give some sense of whether

our modules are indeed independent or have tight coupling.

Organizing the code in our project

A few words about organizing our code into modules - modules are an abstract definition, as there’s
no official way of technically separating our code into modules. However, we can distinguish between

two approaches - physical and functional:

« In the physical approach, we create our modules using a dedicated tool. CocoaPods, Swift Packages, and XCFrameworks, for

example, provide a way of physically encapsulating our code into code units.

o In the functional approach, we do not use any specific tool but instead organize the code into folders. This simple approach is great

for small projects or teams.

The primary consideration here is obvious: reusability and independence in the physical approach
versus simplicity and flexibility in the functional approach. However, let’s delve deeper and make this

comparison more practical and relevant to our day-to-day work as iOS developers.

Creating a new project and understanding the different modules can be quite challenging. On the one
hand, good planning is crucial for the success of our project development over time. On the other
hand, it’s impossible to predict how our project will evolve over the years. So, what we need at the
beginning is flexibility. Therefore, starting with a functional approach, which involves creating

modules by folders, might be the right approach for most projects.

As the project grows, the advantage of having flexibility in our modules can become its downfall. One
of the great things about the physical approach is that we create clear boundaries between our
modules by encapsulating our code into pods or packages. These boundaries prevent us from
including external classes and types without handling the different dependencies correctly. They also
force us to declare a clear interface for the module, as private and internal functions and classes are
inaccessible from the outside. These restrictions are essential and valuable as the project evolves and
the development team grows. The different pods or packages allow other teams to work on each
module and build and test it separately. It even lets us share the same module between various

projects.

So, now that we are convinced that modules are important, how does the idea of layers fit in? Do we

have to choose between layers and modules? Or is it the same thing?

Let’s try to put things in order.

Combining the multi-layer architecture with modules

We previously said that multi-layers and modules are more like architectural patterns or concepts.
They are the guidelines for structuring our app and it is common practice to combine different

concepts and patterns in our projects rather than stick with only one pattern.

Let’s take the app onboarding module, for example (Figure 15.6):

Location Permission
screen

General details
screen

Presentation

Onboarding
Coordinator

Saving user details

Application use case

Onboarding

. - Profile Management
business logic

Business Logic

Data Network Locations Service

Figure 15.6: The onboarding module

Figure 15.6 shows the onboarding module structure divided into four different layers. One way to
combine modular and multi-layer architectures is to create a matrix structure separating each module
into different layers. In this case, the onboarding module has a presentation, coordinator, business

logic, and data.

The other case involves layers built from several modules. In this case, each layer is a business unit

built from several modules.

Let’s compare both architectures:

Layers built from multiple modules Modules comprising multiple layers

Presentation Business Logic Data User Module Messaging Module | Natifications Module
Profile Business Messages List Notifications
Profile Screen Logic Profile Screen Screen Screen
Data
Messages List Messaging Profile Business Messaging MNotifications
Screen Business Logic Logic Business Logic Business Logic
Motifications Notifications Notifications Data Data Notifications
Scraen Business Logic Service Service

Figure 15.7 shows the two approaches we discussed side by side. At first glance, these two approaches

Figure 15.7: Comparing the two approaches of combining modules and layers

look similar, just from different points of view. However, they represent two different project

requirements and dramatically influence scalability, independence, and coupling.

Let’s take, for example, the data modules. On the right side (Modules comprising multiple layers), we
can see that each module has its data module. However, on the left side (Layers built from multiple
modules), we have one data module that can serve various screens and business units. The same goes

for more data layer modules such as analytics, network, and security.

When we consider it, for a module to be truly independent, it needs to contain all the layers and

services. This also means that we'll have to duplicate some of the code in some cases.

As always, we have a tradeoft between encapsulation and independence versus centralized logic and
consistency. Therefore, in practice, we must balance that, create a hybrid approach, and combine

elements of both methods (Figure 15.8):

User Module || |Messages Modulel— |Notiﬁcations Modu!e]—

|
Profile Screen Messages List Screen | Notifications Screen
Profile Business | Messaging Business Notifications
Logic Logic Business Logic
Data Data Network Analytics
Layer

Figure 15.8: Combining layers built from modules and modules comprising multiple layers

Figure 15.8 presents the hybrid approach we discussed. Notice that we have several modules — User,
Messages, and Notifications — each containing screens and business logic. However, the data, network,

and analytics services are shared across the different modules.

The hybrid approach means that the different modules are only partially independent. On the other

hand, it expresses a nice balance between reusability and encapsulation.
We can take it even further and share more logic, utilities, and UI components.

The multi-layer and module architectures are straightforward for most developers. They represent a

logical way of examining apps and projects — either by levels of concerns, domains, or both.

Can we take a different approach to architecture? Let’s try looking at our app differently — using

hexagonal architecture.

Building hexagonal architecture

Multi-layer architecture describes an app as data flowing through different layers of concerns. The

module architecture describes the app as different modules communicating with each other.

To go over an architecture with a different approach, we discuss the meaning of an app. What is an

app? Is it the screens? Is it the logic?

In hexagonal architecture, we consider the business logic to be the heart and soul of the app. Let’s take
our messaging app example. The app’s core is the messaging logic, the way we authenticate, and the

different data models. We call that part of the business logic the domain model.

And what about the different screens, core data, and network layers? In the hexagonal architecture,
these app parts are not at the core. The Ul screens seem like the domain model’s clients, and the

network and core data parts provide services to the domain layer.

Look at Figure 15.9:
Login Screen Core Data
Messages screen Domain MOde| Network
Profile screen In-App Purchase

Figure 15.9: The domain model and its clients and services
Figure 15.9 shows the domain model at the center while its clients and services surround it.

Our next concept related to the hexagonal architecture is how the different actors connect to the

domain model. These actors connect using ports and adapters.

Learning the concept of ports and adapters

Think of our app as a computer system. The computer has its motherboard, CPU, GPU, and memory.
We can connect external input peripherals such as a keyboard, a mouse, or a trackpad. We can also

connect output devices such as a display, a speaker, or a printer.

We know how computers are built - if we need to point out what is considered to be the heart of the
computer, it wouldn’t be the printer or the displayer, but rather its motherboard and CPU. However,

can we connect any device we want to the computer?

To do that, we need two things:

o A port on the computer that allows us to connect devices; for example, UBC or HDMI

o A driver installed on the device that knows how to work with the port and the interface the computer requires

Each keyboard, printer, or mouse has a plug that fits the computer port and a driver that implements
some protocol that allows this device to communicate with the computer. In general, we can connect

any device we want as long as it conforms to the protocol the computer demands.

When we return to the hexagonal architecture, we can consider the domain model as the computer
itself and the network or the UI as the printer and keyboard. In addition, we have two more terms —
port and adapter:

o Port: This is an entry or exit point to/from the domain. In Swift, we use protocols to describe a port.

o Adapter: When a particular class wants to connect to a port, it needs to implement the port protocol.

Most iOS developers are familiar with the concept of a port and adapter. Eventually, this will be
another way to decouple two elements using a protocol. However, in hexagonal architecture, all the

elements that want to communicate with the domain model must use protocols.

There are two types of adapters — driving and driven. The distinction between them is fundamental to

understanding the concept of hexagonal architecture.

Understanding the driving adapters

The driving adapters act as the entry point for the external world and are responsible for initiating any

interaction with the domain model.

If we return to the computer example, adapters can be considered an external keyboard or mouse. We

call them driving because they drive the app by invoking its use cases.

The most common example of driving adapters is the UI. A screen usually performs actions that drive
our system to take meaningful action, such as logging in to the system, playing music, or fetching data

from the network or the local persistent store.

However, driving adapters are not limited to Ul screens. We can consider notification centers,

app/scene delegates, location services, and universal links as driving adapters.

The driving adapter depends on the domain model and communicates with it only with protocols

(ports).

Now, let’s understand what the driven adapter is.

Understanding the driven adapter
The domain model uses the driven adapters to communicate with external systems or services, such as
the network, persistent storage, or third-party services.

In the computer example, we can look at the driven adapter as an external display or a printer.

We can consider the whole hexagonal architecture as an I/O system — the driving adapters are the
input devices, and the driven adapters are the output devices, performing updates to the local storage

or executing API calls.

Let’s look at our architecture now that we understand what ports, driving adapters, and driven

adapters are (Figure 15.10):

Driving Adapters

Login Screen

Driven Adapters

Messages screen

Core Data

Network

Profile screen

In-App Purchase

Figure 15.10 shows the different adapters, divided into driving and driven. It also shows that we need a

Figure 15.10: The complete hexagonal architecture

port to access the domain model.

At this point, we have discussed the hexagonal architecture mostly in theory. Let’s examine some

examples of how to implement this concept in practice.

Implementing the hexagonal architecture in practice

Let’s demonstrate the hexagonal architecture using a simple flow such as login.

Defining different ports

We start by defining the different ports. The first port is the login use case itself:

protocol LoginUseCaseProtocol {
func login (username:
password: String,

completion:

->

Void)

String,

@escaping (Result<User,

Error>)

The LoginUsecaseProtocol protocol defines how the driving adapter or app UI communicates with

the app code, which is the domain model.

Our second port is one that we use to connect to a driven adapter, such as the network service:

enum NetworkRequestType{
case login
}

protocol NetworkServiceProtocol {
func performRequest (requestType: NetworkRequestType,
params: [String: Anyl],
completion: @escaping (Result<User,
Error>) -> Void)

}

The NetworkserviceProtocol protocol helps the domain model to communicate with external services

such as network services.

Creating a login use case

Now that we have defined the different ports, we can create the login use case that sits at the heart of
the domain model:
class LoginUseCase: LoginUseCaseProtocol
let authService: NetworkServiceProtocol

init (authService: NetworkServiceProtocol) {
self.authService = authService

func login(username: String, password: String,

completion: @escaping (Result<User, any Error>) ->
void) {
authService.performRequest (requestType: .login,
params: ["username" : username,
"password" : password],

completion: completion)

}

The LoginUsecase class implements the LoginusecaseProtocol protocol, one of the ports we discussed
earlier. It also uses the NetworkserviceProtocol protocol as a dependency. At this point, we have the
login logic wrapped with a protocol and also communicate with the network service using a protocol.
This means that the domain logic of our app is completely decoupled from the driving or driven

adapter we may have, which is exactly what we wanted.

Creating a network service

Now, let’s create a network service:

class NetworkService { }
extension NetworkService: NetworkServiceProtocol
func performRequest (requestType: NetworkRequestType,
params: [String : Any],
completion: @escaping (Result<User, any Error>) -> Void)

// implementation needed

}

The Networkservice class implements the NetworkserviceProtocol protocol so that we can use it as a

domain model dependency.

Creating a login screen

Now, let’s turn to the driving adapter and create a login screen:

import SwiftUI
struct LoginView: View {
@State var username: String = ""
@State var password: String = ""
let loginUseCase: LoginUseCaseProtocol
var body: some View {
vstack {
TextField ("Username", text: Susername)
SecureField ("Password", text: Spassword)
Button ("Login") {
loginUseCase.login (username: username,
password: password) { result in
// handle result

}
}
.padding ()
In this example, we create a simple login screen (username and password) that uses its protocol to
work with the login use case. If we need advanced state management, we can do that using a view

model.

Connecting everything together

Now, all we need to do is to connect everything together:

@main
struct HexagonalAppApp: App {
var body: some Scene {
WindowGroup {
let networkService = NetworkService ()
let loginUserCase =
LoginUseCase (networkService: networkService)
LoginView (loginUseCase: loginUserCase)

}
In the app initialization, we first create the driven adapters (the Networkservice class), inject them
into the domain model (the login use case), and then inject the domain model into the driving

adapter (the Loginview structure).

At first glance, it appeared wed created too many protocols and used more dependency injection than

usual. While it’s true that this is the cost of using architecture such as Hexagonal, let’s examine the

benefits here:

« The different concerns are very clear. We understand exactly what the app’s core logic is, what the external services are, and what

the client of these modules is.

« Maintaining each adapter or core logic case is extremely easy since they are decoupled from each other and communicate only with

a protocol. When we say maintain, we mean testing, refactoring, and bug fixes.

o Replacing parts in our app, such as services or use cases, becomes very easy. Let’s try to remember apps or even systems that we

have worked on. Imagine what it took to replace the network service, the persistent store, or even one screen.

« Adding more features and modules doesn’t require significant changes to our project. Reusing existing code when adding new

screens or use cases is easy.

Remember that, like the multi-layer and modular architectures, the hexagonal architecture provides a
set of guidelines and principles for conducting a well-structured and maintainable project

architecture.

So, how do these principles compare?

Comparing the different architectures
What is the best architecture we can use? Is there even right or wrong here? How do we digest all of
that?

So, we saw how to combine modular and multi-layer architecture and emphasize each architecture’s
advantage. The same goes for the hexagonal architecture - let’s pull out the different principles we've

learned:

o Use protocols to decouple the communication with the external services

o Make the domain model the core of the app

These principles are relevant not only to hexagonal architecture but also to other architectures.

Let’s try to compare the different architectures using several important metrics.

By separation of concerns

Separation of concerns is an important principle in project structuring, and all three architectures

implement it well.

However, each separates the concerns in a slightly different way. For example, the multi-layered
architecture separations are clear and straightforward, but they may lead to tight coupling if not

carefully implemented.

On the other hand, in modular architecture, the separations are easy to maintain and scale because
each module contains its own different layers and is self-contained. However, defining the distinct

boundaries between the modules can be complex.

The hexagonal architecture focuses on separating the application core from external services. This
approach is practical when adapting many external systems to the app. However, it requires a complex

setup that can be overhead in small apps.

All these architectures have great separations of concerns because that’s one of the most important
principles in designing an architecture. However, each does that using a different approach, and the

decision of the prominent architecture depends on the project requirements.

Let’s see how to compare the different architectures in terms of testing.

By testing

Testing and separation of concerns principles are related to each other. The separation of concerns
principle encourages the isolation of different classes and modules, which makes it simpler to write
unit tests for a specific part of our app. Separating our apps based on concerns also makes it easier to
manage dependencies, a critical factor in testing. However, since each architecture performs the

separation differently, it also influences the testing.

For example, in a multi-layer architecture, it becomes easier to test each layer independently. We can
perform core data or specific business logic testing in a simple way. However, if we want to write
integration tests (tests that involve working with multiple components), the multi-layer architecture

makes it much more complex because of the dependencies between the layers.

However, writing integration tests is one advantage of modular architecture, as the different interfaces
within the module are well-defined. On the other hand, trying to write a unit test for a specific app

layer can become much more complex now.

In the hexagonal architecture, we work with adapters and ports. This means loose coupling and many
protocols with external services, which allows us to mock external services easily and easily test the

application core.

To summarize, testing is a big topic in development, and each of the architectures supports it very
well. To understand how the choice of architecture affects testing, we need to ask ourselves what the
core unit we want to test is — is it a module, a layer, or the application core? Also, are integration tests
important to us? Answering these questions can help us understand which architecture fits our project

better.

What about maintenance and scalability? Let’s see now.

By maintenance and scalability

Before we see how each architecture stands out regarding maintenance and scalability, let’s understand
exactly what it means. Maintenance is ongoing to keep our project aligned with the changing
requirements. This involves fixing bugs, making new features and improvements, refactoring, and
optimizing. Scalability describes our ability to increase the number of features without redesigning
our project. In general, a well-maintained project is often considered to be scalable. However, like

testing and separations, each architecture has a different approach.

The multi-layer architecture is great for medium-sized projects. Due to the tight coupling between the
layers, maintaining a clear multi-layer architecture over time can be challenging in large projects.
Modular architecture is considered to be highly scalable in big projects, as there are clear boundaries

and independence between different business units. However, defining these units can be a challenge

in the early stages. The hexagonal architecture is excellent for scaling — the clear domain separations

help add more services to the project and test them over time. However, the maintenance can be

overhead due to the many adapters we need to manage.

Each of the architectures is suitable for a different scale of project and requirements. Medium projects

may work well with multi-layer architecture compared to modular, and hexagonal architecture can be

great for large projects with one application core that can increase over the years.

Let’s try to summarize by comparing the different architectures with different aspects:

Aspect Multi-layer Modular Hexagonal
Separation of | Clear, hierarchical layers | Independent, strong Clear separation from
concerns (UL logic, data); can separation, flexible external systems; core
become less flexible with | interfaces logic isolated via ports
dependencies and adapters
Testing Easy within the layers, Simple to test a single Core logic is very
complex between layers module, and the same goes | testable; easy to mock
for integration tests within | adapters
the module
Maintenance | Can be challenging due to | Easier due to modular; Easy due to isolation
tight coupling minimal impact across from external changes

modules

Scalability Limited by layer Highly scalable as modules | Scales by adding new
interactions can scale independently adapters; core remains
stable

This table can give us a sense of the different architectures’ performance in different aspects. There are

no scores here! We need to choose and mix the architectural concepts based on our needs.

Summary

Focusing on the correct architecture is a strategic decision that influences our project over time. If you
feel confused about what fits your app, that’s natural. Remember that the right thing to do is to look at
the different architectures as different principles — we should combine the best from all worlds in a

way that suits our project requirements.

In this chapter, we learned about the importance of architecture and what exactly it means. We also
compared the different architectures — multi-layer, modular, and hexagonal. By now, you should be

able to design your app’s different components to help you scale, maintain, and test it over time.

It’s not a coincidence that the book’s last chapter discusses architecture. In a way, architecture ties
together everything we've learned, providing a structure that allows all the elements to work together
harmoniously. In addition, the app architecture is the infrastructure where we implement all the
concepts we've learned throughout the book. Our journey ends; this is a good chance to start

experiencing all the advanced iOS capabilities. Good luck!

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference
only, based on the printed edition of this book.

Symbols

1D bar marks

adding 193-195
@Bindable property

used, for binding objects 63-65
@Observable macro

@ObservationIgnored property

used, for excluding properties from observation 55, 56

advanced animations

animation view modifier

using 121, 122

AnyPublisher

working with 261, 262

app data flow
app entities

properties, selecting 317, 318

AppEntity
conforming to 312, 313
app flows

Apple platforms

testing history 329, 330

Apple’s TipKit framework, tips appearance

tip properties, modifying 149, 150

app shortcut

creating 304, 305

AreaMark chart
creating 202-204
arguments
working with 338-340

AssistantEntity

creating 323-325

Stacked Marks, adding 191

C

ChartProxy
used, for allowing interaction 208
charts

closest data point

finding, to user’s touch 211, 212

Combine

advantages 184

combineLatest

used, for combining multiple values 263, 264

Combine stream 249

computed variables

observing 56-58

control widget

adding 114-117

Coordinator pattern

calling, coordinator straight from view 81, 82

custom data stores

in Swift Data 6-9

custom models

custom operator

creating 259-261

custom publisher

data fetching
with model context 36, 37

data flow 359

data manipulating

with model context 36, 37

delta updates 180

E

endpoints

issues 179, 180

environment variables

adding, by key 61-63

error handling

implementing 167-170

functions

visualizing, with charts 206-208

G

Gemini 273

History API 6

HTTP request

response handling 167

|

image analysis
Vision framework, using 279
working 279, 280

interval bar charts

adding 195, 196

keyframe types

CubicKeyframe 131

LineMark charts
creating 196-200
Lists 142

M
machine learning (ML) 274
basics 272

Macros errors
handling 238-240

Mark 190

ML model

delving into 273

model context

objects, fetching 38

multiple sources

searches, performing from 265-267

multiple values

combining, using combineLatest 263, 264

N
NaturalLanguage API

text classification 276, 277

using 276

Natural Language Processing (NLP)

feature extraction 275

navigationDestination view modifier

used, for separating navigation destination 69, 70

NavigationPath
used, for working with different types of data 75-77

NavigationSplitView

creating 83-85

NavigationStack

NavigationStack, components

data models, using to trigger navigation 71, 73

network response

deserializing 170-172

o)

objects

binding, with @Bindable property 63, 64

Open a task intent

creating 314, 315

operators

connecting 249, 250

custom operator, creating 259-261

working with 258, 259

overlay

adding, to chart 209, 210

P

pagination loading 179

path variable

responding to 73, 74

Plottable protocol
conforming to 213, 214

PointMark chart

creating 204, 205

protocols

used, for performing mocking 352, 353

publisher

working with 247, 248

searches

performing, from multiple sources 265-267

SectorMark chart

creating 200-202

Sound Analysis framework
used, for classifying audio 282-284
Spam Classifier model

SpringKeyframe 131

stacked bar

adding, to existing chart 191, 192

Structlnit macro
defining 231, 232

Structlnit struct

declaring 232, 233

Subjects

PassthroughSubject 252, 253

sub-views
positioning, from another view 17-19

Swift Charts framework 187-189

Swift code

History API 6
unique value 6
SwiftData model

@Attribute macro, adding 30-32

Swift Intermediate Language Generation (SILGen) 220

Swift Testing 5

basic test, adding 331-333

SwiftUI 4
navigation, challenge 68
SwiftUI animations

test functions

grouping, into test suites 342-344

testing

tests
managing 340

text rendering behavior

modifying 16, 17

TimelineEntry structure

building 99, 100

timeline, generating 97-99

tips rules

adding 154

Transferable protocol

using, to pass entire entity 318-320

U

UIKit-based view state

managing, in view model 264, 265

UIKit/SwiftUI 188
UT testing
performing 330

unique value 6

Universally Unique Identifier (UUID) 312

user’s gesture

Vision framework
barcodes, detect

capabilities 280

ing 280, 281

intent, adding 104

widget interaction, interactive capabilities

App Intents, using 113

WidgetKit 4

widget Ul

withAnimation function

using 122-124

z

zip operator

using 262, 263

<PACKD

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more

information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals
« Improve your learning with Skill Plans built especially for you

« Geta free eBook or video every month

o Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for

more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

http://packtpub.com/
http://packtpub.com/
mailto:customercare%40packtpub.com?subject=
http://www.packtpub.com/

{packt>

AniOS Developer's
Guide to SwiftUI

Design and build beautiful apps quickly
and easily with minimum code

WIICHELE FADDA

An iOS Developer’s Guide to SwiftUI
Michele Fadda

ISBN: 978-1-80181-362-4

https://www.amazon.com/dp/1801813620
https://www.amazon.com/dp/1801813620
https://www.amazon.com/dp/1801813620

Get to grips with UT coding across Apple platforms using SwiftUI

Build modern apps, delving into complex architecture and asynchronous programming
Explore animations, graphics, and user gestures to build responsive Uls

Respond to asynchronous events and store and share data the modern way

Add advanced features by integrating SwiftUI and UIKit to enhance your apps

Gain proficiency in testing and debugging SwiftUI applications

EXPERT INSIGHT

Kotlin Design Patterns
and Best Practices

Alexey Soshin

Kotlin Design Patterns and Best Practices
Alexey Soshin

ISBN: 978-1-80512-776-5

https://www.amazon.com/dp/1805127764
https://www.amazon.com/dp/1805127764
https://www.amazon.com/dp/1805127764

« Utilize functional programming and coroutines with the Arrow framework

o Use classical design patterns in the Kotlin programming language

« Scale your applications with reactive and concurrent design patterns

« Discover best practices in Kotlin and explore its new features

« Apply the key principles of functional programming to Kotlin

« Find out how to write idiomatic Kotlin code and learn which patterns to avoid

o Harness the power of Kotlin to design concurrent and reliable systems with ease

o Create an effective microservice with Kotlin and the Ktor framework

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply

for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Mastering iOS 18 Development, wed love to hear your thoughts! If you purchased

the book from Amazon, please click here to go straight to the Amazon review page for this book and

share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're delivering

excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

http://authors.packtpub.com/
https://packt.link/r/1835468101
https://packt.link/r/1835468101

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835468104

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835468104

Contents

1. Mastering 10S 18 Development
2. Contributors

3. About the author

4. About the reviewers

5. Preface

1.
. What this book covers

. To get the most out of this book

. Download the example code files
. Conventions used

. Get in touch

. Share Your Thoughts

NN BN

8.

Who this book is for

Download a free PDF copy of this book

6. Part 1: Getting Started with 10OS 18 Development

7. Chapter 1; What’s New in iOS 18

1.

AN DN

8.
9.
10.

11.

Technical requirements

2. Understanding 10S 18 background
3.
4. Introducing Swift Data Improvements

Introducing Swift Testing

1. Unique value
2. History API
3. Custom data stores in Swift Data

. Introducing zoom transition
. Adding a floating tab bar
. Having more control over scroll views

1. Observing the scroll view position
2. Observing items’ visibility
Changing the text rendering behavior
Positioning sub-views from another view
Entering the Al revolution
MW

1.

2.

Techmcal requirements
Understanding SwiftData’s background

3. Defining a SwiftData model
. Expanding the (@Model macro
. Adding relationships
. SwiftData relationship deletion rules
. Defining the inverse relationship
. Adding the @Attribute macro
. Going non-persistent with transient
4. Exploring the container
1. Setting up ModelContainer
2. Connecting the container using the modelContainer modifier
3. Working with ModelConfiguration
5. Fetching and manipulating our data using model context
1. Saving new objects
2. Fetching objects
6. Migrating our data to a new schema
1. Learning the basic migration process
2. Creating a version schema
3. Creating the migration stages and plan
4. Connecting the migration plan to our container
7. Summary,
9. Chapter 3: Understanding SwiftUI Observation
1. Technical requirements
2. Going over the SwiftUI observation system
1. Conforming to the ObservableObject protocol
2. Explaining the problem with the current observation
situation
3. Adding the @QObservable macro
1. Learning how the @QObservable macro works
2. Excluding properties from observation using
(@Observationlgnored
3. Observing computed variables
4. Working with environment variables
1. Adding an environment variable by type

[

N B~ W

)

2. Adding environment variable by key
5. Binding objects using (@Bindable
. Migrating to Observable
7. Summary,

N

10. Chapter 4: Advanced Navigation with SwiftUI
. Technical requirements
. Understating why_SwiftUI navigation is a challenge
. Exploring NavigationStack
1. Separating the navigation destination using the
navigationDestination view modifier
2. Using data models to trigger navigation
3. Responding to the path variable
4. Working with different types of data using NavigationPath
. Working with the Coordinator pattern
1. Understanding the Coordinator’s principles
. Building the Coordinator object
3. Adding CoordinatorView
4. Calling the coordinator straight from the view
6. Navigating with columns with NavigationSplitView
1. Creating NavigationSplitView
2. Moving to three columns
7. Summary,
11. Chapter 5: Enhancing 10S Applications with WidgetKit
1. Technical requirements
. The idea of widgets
. Understanding how widgets work
. Adding a widget
1. Configuring our widget
2. Working with static configuration
3. Understanding the Timeline Provider for Widgets
5. Building our widget Ul
1. Working with timeline entries
2. Adding animations
3. Customize our widget
4. Using the AppEntity_in our Widget
6. Keeping our widgets up to date
1. Reload widgets using the WidgetCenter
2. Go to the network for updates
7. Interacting with our widget
1. Opening a specific screen using links
2. Adding interactive capabilities

W N =

W

(\®)

B W

8. Adding a control widget
9. Summary,
12. Chapter 6: SwiftUI Animations and SF Symbols
1. Technical requirements
2. The importance of animations
3. Understanding the concept of SwiftUI animations
4. Performing basic animations
1. Using the animation view modifier
2. Using the withAnimation function
3. Bringing some life to our animations with spring animations
5. Performing advanced animations
1. Performing transitions
2. Executing keyframe animations
6. Animating SF Symbols
1. Modifying symbol colors
2. Localizing our symbols
7. Summary,
13. Chapter 7: Improving Feature Exploration with TipKit
1. Technical requirements
2. Learning the importance of tips
3. Understanding the basics of TipKit
1. What do tips look like?
2. Adding our first tip
3. Dismissing tips
4. Defining the tip ID
4. Customizing our tips
1. Customizing our tips’ appearance
2. Adding actions
5. Adding tips rules
1. Adding a rule based on a state
2. Adding a rule based on events

1. Setting the max display_count for a specific tip
2. Setting our tips’ display_frequency
7. Summary,
14. Chapter 8: Connecting and Fetching Data from the Network

. Technical requirements
. Understanding mobile networking
3. Handling an HTTP request
1. Basic HTTP request methods
2. Working with URIL Session
3. Handling the response
4. Integrating network calls within app flows
1. Just-in-time fetching
2. Read-through cache
3. Incremental loading
4. Full data sync with delta updates
5. Exploring Networking and Combine
6. Summary
15. Chapter 9: Creating Dynamic Graphs with Swift Charts
1. Technical requirements
. Why charts?
. Introducing the Swift Charts framework
. Creating charts
1. Creating BarMark chart
2. Creating LineMark charts
3. Creating a SectorMark chart
4. Creating an AreaMark chart
5. Creating a PointMark chart
. Visualizing functions with Charts
6. Allowing interaction using ChartProxy
1. Adding an overlay to our chart
2. Responding to the user’s gesture
3. Finding the closest data point to the user’s touch
7. Conforming to the Plottable protocol
8. Summary
16. Part 2: Refine your iOS Development with Advanced Techniques
17. Chapter 10: Swift Macros
1. Technical requirements
2. What is a Swift macro?
3. Exploring SwiftSyntax
1. Parsing and AST
2. Setting up SwiftSyntax

N —

B W

)

3. Building our Abstract Syntax Tree
4. Creating our first Swift macro
1. Adding a new Swift macro
2. Examining our Swift Macros package structure
3. Declaring our macro
4. Implementing the macro
. Handling macros errors
. Adding tests
. Practice exercises
8. Summary,
18. Chapter 11: Creating Pipelines with Combine
1. Technical requirements
2. Why use Combine?
3. Going over the basics
1. Starting with the publisher
2. Setting up the subscriber
3. Connecting operators
4. Delving into Combine components
1. Creating a custom publisher
. Working with Subjects
3. Creating a custom subscriber
4. Connecting the custom publisher and subscriber
5. Working with operators
5. Learning about Combine using_ examples
1. Managing UIKit-based view state in a view model
2. Performing searches from multiple sources
3. Validating forms
6. Summary,
19. Chapter 12: Being Smart with Apple Intelligence and ML
1. Technical requirements
2. Going over the basics of Al and machine learning
1. Learning the differences between Al and machine learning
2. Delving into the ML model
3. Training the model
. Apple intelligence and ML
4. Exploring built-in ML frameworks
1. Interpreting text using NLP

~ O\ D

(\®)

(8]

2. Analyzing images using the Vision framework
3. Classifying audio using the Sound Analysis framework
4. Performing a semantic search with Core Spotlight
5. Integrating custom models using CoreML
. Getting to know the Create ML application
. Building our Spam Classifier model
. Using our model with Core ML
4. Where to go from here
6. Summary
20. Chapter 13: Exposing Your App to Siri with App Intents
1. Technical requirements
2. Understanding the App Intents concept
3. Creating a simple app intent
1. Running the intent with the Shortcuts app
2. Creating an app shortcut
. Adding a parameter to our app intent

. Returning a custom view

b-)[\)»—al

AT S

6. Adding confirmation and conditions
4. Formalizing our content using app entities

2. Creating an Open a task intent
3. Chaining app intents
4. Integrating our intent to other intents
5. Adjusting our app intents to work with Apple Intelligence
1. Exploring the Assistant Schema
2. Creating AssistantEntity
6. Summary,
21. Chapter 14: Improving the App Quality with Swift Testing
1. Technical requirements
. Understanding the importance of testing
. Learning the testing history in Apple platforms
. Exploring the Swift Testing basics
1. Adding a basic test
2. Providing names to our test functions
3. Enabling and disabling tests
4. Tagging our test functions

B W

5. Working with arguments
5. Managing our tests
1. Going over the testing structure
2. Grouping our test functions into test suites
3. Building test plans
4. Setting up a Scheme
6. Tips to write testable code
1. Writing pure functions
2. Separating your code based on concerns
3. Performing mocking using protocols
7. Summary,
22. Chapter 15: Exploring Architectures for i0S
1. Technical requirements
Understanding the importance of architecture
. Learning what exactly architecture is
. Going over the different architectures
1. Separating our project into layers

3. Combining the multi-layer architecture with modules
4. Building hexagonal architecture
5. Comparing the different architectures
1. By_separation of concerns
2. By testing
3. By maintenance and scalability
6. Summary,
23. Index
1. Why subscribe?
24. Other Books You May Enjoy,
1. Packt is searching for authors like you
2. Share Your Thoughts
3. Download a free PDF copy_of this book

Landmarks

1. Cover
2. Table of Contents
3. Index

<packmn

Mastering
iI0S 18 Development

Take your iOS development experience to the next level
with iOS, Xcode, Swift, and SwiftUI

AVI TSADOK

	Mastering iOS 18 Development
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1: Getting Started with iOS 18 Development
	Chapter 1: What’s New in iOS 18
	Technical requirements
	Understanding iOS 18 background
	Introducing Swift Testing
	Introducing Swift Data Improvements
	Unique value
	History API
	Custom data stores in Swift Data

	Introducing zoom transition
	Adding a floating tab bar
	Having more control over scroll views
	Observing the scroll view position
	Observing items’ visibility

	Changing the text rendering behavior
	Positioning sub-views from another view
	Entering the AI revolution
	Summary

	Chapter 2: Simplifying Our Entities with SwiftData
	Technical requirements
	Understanding SwiftData’s background
	Defining a SwiftData model
	Expanding the @Model macro
	Adding relationships
	SwiftData relationship deletion rules
	Defining the inverse relationship
	Adding the @Attribute macro
	Going non-persistent with transient

	Exploring the container
	Setting up ModelContainer
	Connecting the container using the modelContainer modifier
	Working with ModelConfiguration

	Fetching and manipulating our data using model context
	Saving new objects
	Fetching objects

	Migrating our data to a new schema
	Learning the basic migration process
	Creating a version schema
	Creating the migration stages and plan
	Connecting the migration plan to our container

	Summary

	Chapter 3: Understanding SwiftUI Observation
	Technical requirements
	Going over the SwiftUI observation system
	Conforming to the ObservableObject protocol
	Explaining the problem with the current observation situation

	Adding the @Observable macro
	Learning how the @Observable macro works
	Excluding properties from observation using @ObservationIgnored
	Observing computed variables

	Working with environment variables
	Adding an environment variable by type
	Adding environment variable by key

	Binding objects using @Bindable
	Migrating to Observable
	Summary

	Chapter 4: Advanced Navigation with SwiftUI
	Technical requirements
	Understating why SwiftUI navigation is a challenge
	Exploring NavigationStack
	Separating the navigation destination using the navigationDestination view modifier
	Using data models to trigger navigation
	Responding to the path variable

	Working with different types of data using NavigationPath
	Working with the Coordinator pattern
	Understanding the Coordinator’s principles
	Building the Coordinator object
	Adding CoordinatorView
	Calling the coordinator straight from the view

	Navigating with columns with NavigationSplitView
	Creating NavigationSplitView
	Moving to three columns

	Summary

	Chapter 5: Enhancing iOS Applications with WidgetKit
	Technical requirements
	The idea of widgets
	Understanding how widgets work
	Adding a widget
	Configuring our widget
	Working with static configuration
	Understanding the Timeline Provider for Widgets

	Building our widget UI
	Working with timeline entries
	Adding animations
	Customize our widget
	Using the AppEntity in our Widget

	Keeping our widgets up to date
	Reload widgets using the WidgetCenter
	Go to the network for updates

	Interacting with our widget
	Opening a specific screen using links
	Adding interactive capabilities

	Adding a control widget
	Summary

	Chapter 6: SwiftUI Animations and SF Symbols
	Technical requirements
	The importance of animations
	Understanding the concept of SwiftUI animations
	Performing basic animations
	Using the animation view modifier
	Using the withAnimation function
	Bringing some life to our animations with spring animations

	Performing advanced animations
	Performing transitions
	Executing keyframe animations

	Animating SF Symbols
	Modifying symbol colors
	Localizing our symbols

	Summary

	Chapter 7: Improving Feature Exploration with TipKit
	Technical requirements
	Learning the importance of tips
	Understanding the basics of TipKit
	What do tips look like?
	Adding our first tip
	Dismissing tips
	Defining the tip ID

	Customizing our tips
	Customizing our tips’ appearance
	Adding actions

	Adding tips rules
	Adding a rule based on a state
	Adding a rule based on events
	Grouping tips with TipGroup

	Customizing display frequency
	Setting the max display count for a specific tip
	Setting our tips’ display frequency

	Summary

	Chapter 8: Connecting and Fetching Data from the Network
	Technical requirements
	Understanding mobile networking
	Handling an HTTP request
	Basic HTTP request methods
	Working with URLSession
	Handling the response

	Integrating network calls within app flows
	Just-in-time fetching
	Read-through cache
	Incremental loading
	Full data sync with delta updates

	Exploring Networking and Combine
	Summary

	Chapter 9: Creating Dynamic Graphs with Swift Charts
	Technical requirements
	Why charts?
	Introducing the Swift Charts framework
	Creating charts
	Creating BarMark chart
	Creating LineMark charts
	Creating a SectorMark chart
	Creating an AreaMark chart
	Creating a PointMark chart

	Visualizing functions with Charts
	Allowing interaction using ChartProxy
	Adding an overlay to our chart
	Responding to the user’s gesture
	Finding the closest data point to the user’s touch

	Conforming to the Plottable protocol
	Summary

	Part 2: Refine your iOS Development with Advanced Techniques
	Chapter 10: Swift Macros
	Technical requirements
	What is a Swift macro?
	Exploring SwiftSyntax
	Parsing and AST
	Setting up SwiftSyntax
	Building our Abstract Syntax Tree

	Creating our first Swift macro
	Adding a new Swift macro
	Examining our Swift Macros package structure
	Declaring our macro
	Implementing the macro

	Handling macros errors
	Adding tests
	Practice exercises
	Summary

	Chapter 11: Creating Pipelines with Combine
	Technical requirements
	Why use Combine?
	Going over the basics
	Starting with the publisher
	Setting up the subscriber
	Connecting operators

	Delving into Combine components
	Creating a custom publisher
	Working with Subjects
	Creating a custom subscriber
	Connecting the custom publisher and subscriber
	Working with operators

	Learning about Combine using examples
	Managing UIKit-based view state in a view model
	Performing searches from multiple sources
	Validating forms

	Summary

	Chapter 12: Being Smart with Apple Intelligence and ML
	Technical requirements
	Going over the basics of AI and machine learning
	Learning the differences between AI and machine learning
	Delving into the ML model
	Training the model

	Apple intelligence and ML
	Exploring built-in ML frameworks
	Interpreting text using NLP
	Analyzing images using the Vision framework
	Classifying audio using the Sound Analysis framework
	Performing a semantic search with Core Spotlight

	Integrating custom models using CoreML
	Getting to know the Create ML application
	Building our Spam Classifier model
	Using our model with Core ML
	Where to go from here

	Summary

	Chapter 13: Exposing Your App to Siri with App Intents
	Technical requirements
	Understanding the App Intents concept
	Creating a simple app intent
	Running the intent with the Shortcuts app
	Creating an app shortcut
	Adding a parameter to our app intent
	Returning a custom view
	Having multiple result types
	Adding confirmation and conditions

	Formalizing our content using app entities
	Conforming to AppEntity
	Creating an Open a task intent
	Chaining app intents
	Integrating our intent to other intents

	Adjusting our app intents to work with Apple Intelligence
	Exploring the Assistant Schema
	Creating AssistantEntity

	Summary

	Chapter 14: Improving the App Quality with Swift Testing
	Technical requirements
	Understanding the importance of testing
	Learning the testing history in Apple platforms
	Exploring the Swift Testing basics
	Adding a basic test
	Providing names to our test functions
	Enabling and disabling tests
	Tagging our test functions
	Working with arguments

	Managing our tests
	Going over the testing structure
	Grouping our test functions into test suites
	Building test plans
	Setting up a Scheme

	Tips to write testable code
	Writing pure functions
	Separating your code based on concerns
	Performing mocking using protocols

	Summary

	Chapter 15: Exploring Architectures for iOS
	Technical requirements
	Understanding the importance of architecture
	Learning what exactly architecture is
	Going over the different architectures
	Separating our project into layers
	Separating our project into modules
	Combining the multi-layer architecture with modules
	Building hexagonal architecture

	Comparing the different architectures
	By separation of concerns
	By testing
	By maintenance and scalability

	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

