

Swift Cookbook

Proven recipes for developing robust iOS applications
with Swift 5.9

Keith Moon

Chris Barker

Daniel Bolella

Nathan Lawlor

Swift Cookbook
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Nitin Nainani
Book Project Manager: Aishwarya Mohan
Senior Editor: Mudita S
Technical Editor: Reenish Kulshrestha
Copy Editor: Safis Editing
Proofreader: Mudita S
Indexer: Manju Arasan
Production Designer: Alishon Mendonca
DevRel Marketing Coordinators: Anamika Singh and Nivedita Pandey

First published: April 2015
Second edition: February 2021
Third edition: May 2024

Production reference: 1030524

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80323-958-3

www.packtpub.com

http://www.packtpub.com

To my wife and children, for their love, support, and inspiration. I love you all more than words can
ever capture.

– Danny Bolella

I would like to thank my mother, Sofia, and my father, Graham, for their continuous support
throughout my career and personal projects. Without them, I would not be where I am today.

– Nathan Lawlor

Contributors

About the authors
Keith Moon is an award-winning iOS developer, author, and speaker based in London. He has worked
with some of the biggest companies in the world to create engaging and personal mobile experiences.
Keith has been developing in Swift since its release, working on projects that are both fully Swift and
mixed Swift and Objective-C. Keith has been invited to speak about Swift development at conferences
from Moscow to Minsk and London.

Chris Barker is a Principal Software Engineer at Jaguar Land Rover, where he leads the Mobile
Application Engineering Team across the business. With over 22 years of experience in the IT industry,
Chris began his career developing .NET applications for the online retailer dabs.com (now BT Shop).

In 2014, Chris transitioned into mobile app development. Before joining Jaguar Land Rover, he worked
on mobile apps for clients such as Louis Vuitton, L'Oréal Paris, SimplyBe, JD Williams, and Jacamo.

Chris is the co-host of NS Manchester, a local iOS developer meet-up in Manchester, UK. He has been
involved in authoring, co-authoring, and reviewing books for Packt Publishing since 2020.

Daniel Bolella is a lead iOS engineer at a major financial services firm. With over a decade of experience
under his belt, he’s worked on everything from full stack web to mobile apps in a variety of industries,
including financial, energy, and medical devices. He also enjoys writing articles and was the technical
reviewer for the first and second editions of SwiftUI Cookbook.

Danny thanks his amazing wife and children, who give him the love, motivation, and drive to always
be better. He thanks his parents, who lovingly encourage him to pursue his passions. He gives thanks
to God, for always providing love and guidance. Lastly, he thanks all who have invested and mentored
him, culminating in all he has become and achieved thus far.

Nathan Lawlor is a highly skilled iOS developer with many years of experience, initially starting his
career as an apprentice in web development. Nathan has worked as a professional software developer in
the home and fashion retail industry, with N Brown Group plc., and is now working in the automotive
industry, with Jaguar Land Rover. He has published his own independent apps to the Apple App Store
and regularly posts articles on his blog. Nathan has a passion for exploring new technologies and
finding ways to improve code quality and best practices.

About the reviewers
Juan C. Catalan is a software engineer with more than 18 years of professional experience. He started
mobile app development back in the days of iOS 3. Juan has worked as a professional iOS developer
in many industries, including medical devices, financial services, real estate, document management,
fleet tracking, and industrial automation. He has contributed to more than 30 published apps in the
App Store, some of them with millions of users. Juan gives back to the iOS development community
with technical talks, mentoring developers, and reviewing and authoring technical books. He is the
author of SwiftUI Cookbook, Third Edition (Packt Publishing, 2023). Juan lives in Austin, Texas, with
his wife Donna, where they spend time with their kids.

George MacKay-Shore is the lead engineer at AND Digital’s Club Spärck in Halifax, UK, with over
a decade of experience in the embedded systems, games, and enterprise software sectors, in both the
public and private sector, and mobile, desktop, and web application spaces.

He is also an aspiring archer, a part-time comedian, and an avid walker, and when he’s not reviewing
books, he can be found learning new languages in the hope that he may one day use them!

Preface� xv

1
Swift Fundamentals� 1

Technical requirements� 2
Writing your first code in Swift� 2
Getting ready� 2
How to do it…� 2
There’s more…� 6
See also� 7

Using the basic types – strings, ints,
floats, and booleans� 7
Getting ready� 8
How to do it…� 8
How it works…� 10
There’s more…� 14
See also� 14

Reusing code in functions� 14
Getting ready� 15
How to do it…� 15
There’s more…� 17
See also� 19

Encapsulating functionality in object
classes� 19
Getting ready� 19
How to do it…� 20
How it works…� 22

There’s more…� 27
See also� 28

Bundling values into structs� 28
Getting ready� 29
How to do it…� 29
How it works…� 30
There’s more…� 31
See also� 32

Enumerating values with enums� 32
Getting ready� 33
How to do it…� 33
How it works…� 34
There’s more…� 35
See also� 37

Passing around functionality with
closures� 38
Getting ready� 38
How to do it…� 39
How it works…� 40
There’s more…� 42
See also� 44

Using protocols to define interfaces� 44
Getting ready� 44

Table of Contents

Table of Contentsviii

How to do it…� 45
How it works…� 45

There’s more…� 47
See also� 49

2
Mastering the Building Blocks� 51

Technical requirements� 51
Bundling variables into tuples� 52
Getting ready� 52
How to do it...� 52
How it works...� 53
There’s more...� 54
See also� 55

Ordering your data with arrays� 56
Getting ready� 56
How to do it...� 56
How it works...� 59
There’s more...� 62
See also� 63

Containing your data in sets� 63
Getting ready� 63
How to do it...� 63
How it works...� 65
See also� 70

Storing key-value pairs with
dictionaries� 70
Getting ready� 71
How to do it...� 72
How it works...� 73
There’s more...� 74
See also� 75

Subscripts for custom types� 76
Getting ready� 76
How to do it...� 77
How it works...� 80
There’s more...� 80

See also� 81

Changing your name with
a type alias� 81
Getting ready� 81
How to do it...� 81
There’s more...� 82
See also� 83

Getting property changing
notifications using
property observers� 83
Getting ready� 84
How to do it...� 84
How it works...� 85
There’s more...� 85
See also� 86

Extending functionality with
extensions� 86
Getting ready� 86
How to do it...� 86
How it works...� 87
There’s more...� 88
See also� 89

Controlling access with
access control� 89
Getting ready� 90
How to do it...� 94
How it works...� 97
There’s more...� 101
See also� 102

Table of Contents ix

3
Data Wrangling with Swift� 103

Technical requirements� 103
Making decisions with if/else� 104
Getting ready� 104
How to do it...� 104
How it works...� 105
There’s more...� 106
See also� 112

Handling all cases with switch� 112
Getting ready� 112
How to do it...� 112
How it works...� 115
See also� 118

Looping with for loops� 118
Getting ready� 118
How to do it...� 118
How it works...� 119
See also� 121

Looping with while loops� 121
Getting ready� 121
How to do it...� 122
How it works...� 122
There’s more...� 123
See also� 123

Handling errors with try, throw, do,
and catch� 124
Getting ready� 124
How to do it...� 124
How it works...� 126
There’s more...� 127
See also� 131

Checking upfront with guard� 131
Getting ready� 132
How to do it...� 132
How it works...� 134
There’s more...� 135
See also� 136

Doing it later with defer� 136
Getting ready� 137
How to do it...� 137
How it works...� 139
There’s more...� 140
See also� 142

Bailing out with fatalError
and precondition� 142
Getting ready� 142
How to do it...� 143
How it works...� 144
See also� 145

4
Generics, Operators, and Nested Types� 147

Technical requirements� 147
Using generics with types� 148
Getting ready� 148

How to do it...� 149
How it works...� 152
There’s more...� 152

Table of Contentsx

See also� 154

Using generics with functions� 154
Getting ready� 154
How to do it...� 154
How it works...� 155
There’s more...� 156
See also� 157

Using generics with protocols� 157
Getting ready� 157
How to do it...� 157
How it works...� 161
There’s more...� 165
See also� 166

Using advanced operators� 166
Getting ready� 167
How to do it...� 167
See also� 170

Defining option sets� 170
Getting ready� 170
How to do it...� 171
How it works...� 171
See also� 172

Creating custom operators� 172
Getting ready� 172
How to do it...� 173
How it works...� 175
There’s more...� 178
See also� 180

Nesting types and namespacing� 180
Getting ready� 180
How to do it...� 180
How it works...� 182
There’s more...� 183
See also� 183

5
Beyond the Standard Library� 185

Technical requirements� 185
Comparing dates with Foundation� 186
Getting ready� 186
How to do it…� 186
How it works…� 187
See also� 189

Fetching data with URLSession� 190
Getting ready� 190
How to do it…� 190
How it works…� 191
See also� 194

Working with JSON� 194
Getting ready� 195
How to do it...� 196
There’s more...� 204

Working with XML� 208
Getting ready� 208
How to do it...� 211
How it works...� 216
There’s more...� 223
See also� 225

Table of Contents xi

6
Understanding Concurrency in Swift� 227

Technical requirements� 228
Getting ready� 228
How to do it...� 229
How it works...� 232
See also� 233

Leveraging DispatchGroups� 233
Getting ready� 233
How to do it...� 233
How it works...� 237
See also� 239

Implementing the operation class� 239
Getting ready� 239
How to do it...� 239
How it works...� 246
See also� 247

Async/Await in Swift� 247
Getting ready� 248
How to do it...� 248
How it works...� 249
See also� 250

7
Building iOS Apps with UIKit� 251

Technical requirements� 251
Building an iOS app using UIKit
and storyboards� 252
Getting ready� 252
How to do it...� 254
How it works...� 270
There’s more...� 274
See also� 274

Unit and integration testing
with XCTest� 274

Getting ready� 274
How to do it...� 275
How it works...� 280
There’s more...� 281
See also� 282

UI testing with XCUITest� 282
Getting ready� 282
How to do it...� 283
There’s more...� 286
See also� 286

8
Building iOS Apps with SwiftUI� 287

Technical requirements� 287
Declarative syntax� 288
Getting ready� 288

How to do it…� 288
How it works...� 289
There’s more...� 290

Table of Contentsxii

See also� 290

Function builders, property
wrappers, and opaque return types� 290
Getting ready� 290
How to do it…� 291
There’s more...� 295
See also� 296

Building simple views in SwiftUI� 296
Getting ready� 296

How to do it...� 296
How it works...� 304
There’s more...� 306
See also� 309

Combine and data flow in SwiftUI� 309
Getting ready� 309
How to do it...� 310
How it works...� 313
See also� 314

9
Getting to Grips with Combine� 315

Technical requirements� 315
Using Reactive Streams� 316
Getting ready� 316
How to do it...� 316
How it works...� 318
See also� 318

Understanding Observable Objects� 318
How to do it...� 319
How it works...� 321

See also� 321

Understanding publishers and
subscribers� 321
How to do it...� 322
How it works...� 324
See also� 326

Combine versus Delegate pattern� 326
How to do it...� 327
How it works...� 328

10
Using CoreML and Vision in Swift� 329

Technical requirements� 330
Getting ready� 330
How to do it...� 330
How it works...� 333
There’s more...� 334
See also� 334

Using CoreML models to detect
objects in images� 334
Getting ready� 335
How to do it...� 335
How it works...� 336
There’s more...� 337
See also� 338

Table of Contents xiii

Building a video capture app� 338
Getting ready� 338
How to do it...� 338
How it works...� 340
There’s more...� 341
See also� 342

Using CoreML and the Vision
framework to detect objects in
real time� 342
Getting ready� 342
How to do it...� 343
How it works...� 349
See also� 350

11
Immersive Swift with ARKit and Augmented Reality� 351

Technical requirements� 351
Surface detection with ARKit� 352
Getting ready� 352
How to do it...� 352
How it works...� 354
There’s more…� 355
See also� 357

Using 3D models with ARKit� 358
Getting ready� 358
How to do it…� 358

How it works...� 361
There’s more…� 362

Using Reality Composer Pro
for visionOS� 362
Getting ready� 363
How to do it...� 363
How it works...� 367
There’s more…� 368
See also� 369

12
Visualizing Data with Swift Charts� 371

Technical requirements� 371
Building a chart with data� 372
Getting ready� 372
How to do it…� 372
How it works...� 374
See also� 374

Displaying multiple datasets� 374

How to do it...� 375
How it works...� 378

Exploring chart marks
and modifiers� 379
How to do it...� 380
How it works...� 382
There’s more...� 383

Table of Contentsxiv

Index� 389

Other Books You May Enjoy� 396

Preface

The Swift programming language, developed by Apple, has quickly become one of the most popular
choices for building apps and services, specifically on the iOS platform. Swift, with its modern and
expressive syntax, has an open source and robust library that can be used to create high-quality and
efficient code for any scenario.

Swift 5.9 allows developers to take advantage of performant and responsive app-building techniques,
using safe and clean code.

This book will guide you through the various features and capabilities that Swift offers, building up
your knowledge, one step at a time, so that you can confidently build brilliant apps and services.

You will be given useful, easy-to-follow recipes to accomplish real-world tasks using Swift. Each recipe
will build on the knowledge from previous topics that have been covered in the book.

Explore the limitless possibilities of the Swift programming language, empowering you to bring your
ideas to life.

Who this book is for
If you are an aspiring developer looking to delve into the world of app development with the Swift
programming language, then this book is for you. Whilst no solid experience with Swift is required,
a basic understanding of programming concepts will be beneficial.

What this book covers
Chapter 1, Swift Fundamentals, introduces you to the basic concepts of Swift, its syntax, and the
functionality of basic components. Additionally, you will be introduced to Apple’s Xcode IDE and
Swift Playgrounds, which provide developers with powerful tools to create, execute, and debug their
code efficiently, while also preparing you to follow the recipes throughout this book. You will learn
how to write your first lines of code using Swift and understand the various basic elements that the
Swift programming language has to offer.

Prefacexvi

Chapter 2, Mastering the Building Blocks, teaches you how to create more complex structures, building
on top of the basic components covered in the first chapter, as well as utilizing some more advanced
functionality available in the Swift standard library. You will learn how to use arrays, dictionaries,
tuples, and some more abstract concepts, such as extensions and property observers.

Chapter 3, Data Wrangling with Swift, explains the importance of making decisions within programming
and how to alter the control flow of your code. You will learn how to conditionally execute code
with the if/else and switch statements. Additionally, you will have the chance to explore other
approaches with for and while loops, and even how to handle Swift errors with the try, throw,
do, and catch statements.

Chapter 4, Generics, Operators, and Nested Types, covers two advanced features of Swift, which are
generics and operators. These features will aid you in building functionality that is both flexible and
well-defined. Moreover, you will understand how nested types can be beneficial by allowing you to
group types logically, control access to your constructs, and use namespacing.

Chapter 5, Beyond the Standard Library, assesses the frameworks that sit outside of the standard library,
specifically the Foundation framework. Learning how to take advantage of these broader functionalities
will help you make full use of the Swift programming language, taking your projects to the next level.

Chapter 6, Understanding Concurrency in Swift, outlines the concept of concurrency in programming
and how it can be used to increase the performance and responsiveness of your code. You will learn
the fundamental approach of concurrency in Swift, with Dispatch Queues and Dispatch Groups.
Then, you will look at the modern concurrency approach in Swift, with the Async/Await framework.

Chapter 7, Building iOS Apps with UIKit, starts your journey of learning how to build your very own
iOS applications, using the traditional UIKit framework. You will understand how to use storyboards to
create a user interface. Then, you will explore the approach of testing behaviors and visual components
within your app, using the XCTest and XCUITest frameworks.

Chapter 8, Building iOS Apps with SwiftUI, welcomes you to the modern and declarative user interface
framework that is SwiftUI. You will expand your knowledge of the concepts used to build an app,
covered in the previous chapter, by using a simplified process to create beautiful, interactive, and
dynamic user interfaces. Additionally, you will learn how to take advantage of live previews within
Xcode when building your SwiftUI application.

Chapter 9, Getting to Grips with Combine, discusses reactive programming and how to use the
Combine framework to handle events and data changes in a functional and simplified manner. You
will understand how to use a wide range of operators to manipulate streams of data, as well as handling
errors and canceling operations.

Chapter 10, Using CoreML and Vision in Swift, dives into the concepts of machine learning and also
looks at the CoreML and Vision frameworks, covering how to process machine learning models to
use within your apps. You will learn how to build an app for intelligent image recognition and adapt
powerful techniques for a live video streamed on your device.

Preface xvii

Chapter 11, Immersive Swift with ARKit and Augmented Reality, explores how to blend the virtual
and physical worlds with 3D objects through the lens of your device’s camera. You will learn the
fundamentals of the ARKit framework and how to leverage the Augmented Reality tools available
to create beautiful virtual scenes. Moreover, you will have the opportunity to create your first scene
for visionOS.

Chapter 12, Visualizing Data with Swift Charts, shows you how to create visually appealing and easily
understandable charts to represent data, using the Charts and SwiftUI frameworks. You will learn about
the different types of chart markings, how to handle multiple datasets, and how to use visual modifiers.

To get the most out of this book
To follow along with the examples in this book, you will need a computer running macOS Sonoma
(version 14.0) or greater. You also need an Apple ID to download and install Xcode 15 from the Mac
App Store.

The code in this book has been tested using Swift 5.9 and should work with any new versions of Swift.

Software/hardware covered in the book OS requirements
macOS 14.0+ (Sonoma)
Xcode 15

If you are using the digital version of this book, we advise you to type the code yourself or access
the code via the GitHub repository (link available in the next section). Doing so will help you
avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition. If there’s an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We define
a new constant value by using the let keyword.”

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexviii

A block of code is set as follows:

let phrase: String = "The quick brown fox jumps over the lazy dog"

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

let steve = Person.init(givenName: "Steven",

Any command-line input or output is written as follows:

<#What to append#> >> <#Where to append it#>

Bold: Indicates a new term, an important word, or words that you see on screen. For example, words
in menus or dialog boxes appear in the text like this. Here is an example: “From here, in the toolbar
on your Mac, click File > New > Playground…”

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How
it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

Preface xix

There’s more…

This section consists of additional information about the recipe in order to make you more knowledgeable
about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the
subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site that
you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase
decisions, we at Packt can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://packtpub.com

Prefacexx

Share Your Thoughts
Once you’ve read Swift Cookbook, we’d love to hear your thoughts! Please https://packt.
link/r/1803239581 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1803239581
https://packt.link/r/1803239581

Preface xxi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835463260

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835463260

1
Swift Fundamentals

Since Apple announced the Swift programming language back in 2014 at the Worldwide Developer
Conference (WWDC), it has gone on to become one of the fastest-growing programming languages.

Swift is a modern, general-purpose programming language that focuses on type safety and expressive
and concise syntax. Positioned as a modern replacement for Objective-C, it has taken over from Apple’s
older language as the future of development across all their platforms.

Since open-sourcing Swift, Apple has provided support for running your Swift code on a whole host
of platforms including Linux. Despite these alternative ways to use and write Swift code, the simplest
is still on a Mac using Apple’s Xcode.

In this chapter, we will look at the fundamentals of the Swift language and examine the syntax and
functionality of the basic Swift component.

In this chapter, we will cover the following recipes:

•	 Writing your first code in Swift

•	 Using the basic types – strings, ints, floats, and booleans

•	 Reusing code in functions

•	 Encapsulating functionality in object classes

•	 Bundling values into structs

•	 Enumerating values with enums

•	 Passing around functionality with closures

•	 Using protocols to define interfaces

Swift Fundamentals2

Technical requirements
We will walk you through setting up Xcode 15.0 and use this development environment unless otherwise
stated. Xcode 15.0 can be downloaded from the Apple App Store on a Mac running the latest OS.

We will be using Swift 5.9. This version will also be more compatible with future versions of Swift, which
means that code written now with Swift 5.9 can run alongside code written with future versions of Swift.

We will be using Playgrounds in Xcode to implement the recipes contained in this book unless
otherwise stated. The benefit of using Xcode Playgrounds is its simplicity of quickly writing and
compiling Swift syntax.

All the code for this chapter can be found in the book’s GitHub repository at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%201.

Writing your first code in Swift
In this recipe, we’ll get you started with the Xcode integrated development environment (IDE) and
get you ready to write your first lines of Swift code… buckle up!

Getting ready

For this recipe, you will need Xcode 15 or newer.

How to do it…

Once you have successfully downloaded Xcode from the Apple App Store, we’ll need to launch
the application:

1.	 Launch Xcode from the dock or via the Apple App Store, as shown in the following screenshot:

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%201
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%201

Writing your first code in Swift 3

Figure 1.1 – Xcode in the App Store

2.	 You’ll be presented with the following splash screen:

Figure 1.2 – Xcode splash screen

Swift Fundamentals4

3.	 From here, in the toolbar on your Mac, click File > New > Playground…:

Figure 1.3 – Selecting Playground…

4.	 Select Blank from the iOS tab and press Next:

Figure 1.4 – Choose Blank, but notice the other options

Writing your first code in Swift 5

5.	 Choose a name and file location (this can be anything and anywhere you want) and press Create:

Figure 1.5 – Provide a name and location for our project

6.	 You should now see the following playground:

Figure 1.6 – Our new playground

7.	 Change the text to anything you want:

Figure 1.7 – Changing the string is as simple as replacing its text

8.	 Now, press play at the bottom on the left just under the line numbers:

Swift Fundamentals6

Figure 1.8 – Click the blue play button on the left

9.	 You should now see the output of your program in the right-hand column:

Figure 1.9 – Our output is now on the right

Congratulations, your first Swift program is now complete!

There’s more…

If you put your cursor over the output column on the right-hand side, you will see two buttons, one
that looks like an eye and another that is a rounded square:

Figure 1.10 – Two icons are available on our output

Using the basic types – strings, ints, floats, and booleans 7

Click on the eye button to get a Quick Look box of the output. This isn’t particularly useful for a text
string, but can be useful for more visual output, such as colors and views:

Figure 1.11 – The Quick Look box could quickly provide more details about our output

Click on the square button, and a box will be added inline, under your code, showing the output of
the code. This can be useful if you want to see how the output changes as you change the code:

Figure 1.12 – Now we can see our output directly where it is called from

See also

For those curious about Swift’s predecessor, the following link to Apple’s documentation will be
interesting: https://developer.apple.com/library/archive/documentation/
Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.
html.

Using the basic types – strings, ints, floats, and booleans
Many of the core operations in any programming language involve manipulating text and numbers,
and determining true and false statements.

Let’s learn how to accomplish these operations in Swift by looking at its basic types and learning how to
assign constants and variables. In doing so, we will touch upon Swift’s static typing and mutability system.

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

Swift Fundamentals8

Getting ready

Just like we did in the previous recipe, open Xcode and create a new playground (again, call it what
you want).

How to do it…

Let’s start by writing some code that explores the basic types available to us in Swift.

1.	 Write the following code into your newly opened Swift Playground; we’ll start with an example
of Strings:

let phrase: String = "The quick brown fox jumps over the lazy
dog"

2.	 Now, let’s add an example of an integer:

let numberOfFoxes: Int = 1
let numberOfAnimals: Int = 2

The following is an example of how we use floating points in Swift:
let averageCharactersPerWord: Float = (3+5+5+3+5+4+3+4+3) / 9
print(averageCharactersPerWord) // 3.8888888

/*
phrase = "The quick brown ? jumps over the lazy ?"
// Doesn't compile
*/

3.	 Now, add some code that handles concatenation in Swift and multiline expressions:

var anotherPhrase = phrase
anotherPhrase = "The quick brown 🦊 jumps over the lazy 🐶"
print(phrase)
// "The quick brown fox jumps over the lazy dog"
print(anotherPhrase) // "The quick brown 🦊 jumps over the lazy
🐶"

var phraseInfo = "The phrase" + " has: "
print(phraseInfo) // "The phrase has: "

phraseInfo = phraseInfo + "\(numberOfFoxes) fox and \
(numberOfAnimals) animals"
print(phraseInfo)

// "The phrase has: 1 fox and 2 animals"

Using the basic types – strings, ints, floats, and booleans 9

print("Number of characters in phrase: \(phrase.count)")

let multilineExplanation = """
Why is the following phrase often used?
"The quick brown fox jumps over the lazy dog"
This phrase contains every letter in the alphabet.
"""

let phrasesAreEqual = phrase == anotherPhrase
print(phrasesAreEqual) // false

let phraseHas43Characters = phrase.count == 40 + 3
print(phraseHas43Characters) // true

4.	 Press the play button at the bottom of the window to run the playground and verify that Xcode
doesn’t show any errors.

Your playground should look like the following screenshot, with an output for each line in the timeline
on the right-hand side and printed values in the console at the bottom:

Figure 1.13 – Output in Swift Playground

Swift Fundamentals10

How it works…

Let’s step through the preceding code line by line to understand it.

In the following line of code, we are assigning some text to a constant value:

let phrase: String = "The quick brown fox jumps over the lazy dog"

We define a new constant value by using the let keyword, and we give that constant a name: phrase.

The colon (:) shows that we want to define what type of information we want to store in the constant,
and that type is defined after the colon.

In this case, we want to assign a String type (String is how most programming languages refer
to text).

The = sign indicates that we are assigning a value to the constant we have defined, and "The quick
brown fox jumps over the lazy dog" is a String literal, which means that it’s an easy
way to construct a string.

Any text contained within "" marks is treated as a String literal by Swift.

We are assigning the String literal on the right-hand side of the = sign to the constant on the left-
hand side of the = sign.

Next, we are assigning two more constants, but this time, they are of the Int type, or integers:

let numberOfFoxes: Int = 1
let numberOfAnimals: Int = 2

Rather than assigning a value directly, we can assign the outcome from a mathematical expression
to the constant.

This constant is a Float type, or floating-point number:

let averageCharactersPerWord: Float = (3+5+5+3+5+4+3+4+3) / 9

In other words, it can store fractions rather than integers. Notice that in the timeline on the right of
this line, the value is displayed as 3.88889.

The print function allows us to see the output from any expression printed to the console or
displayed in the playground:

print(averageCharactersPerWord)

We will cover functions in a later recipe, Reusing code in functions, but for now, all you need to know is
that in order to use a function, you type its name (in this case, print) and then enclose any required
input to the function within brackets, ().

Using the basic types – strings, ints, floats, and booleans 11

When our code calls this function, the timeline to the right of the code displays the output of the
statement as 3.88888, which differs from the line above it.

The actual value of the mathematical expression we performed is 3.88888888... with an infinite number
of 8s. However, the print function has rounded this up to just five decimal places and rounded it
in a different way than the timeline for the line above.

This potential difference between the true value of a floating-point number and how it’s represented
by the Swift language is important to remember when dealing with floats.

Next, you’ll see the following lines colored gray:

/*
phrase = "The quick brown ? jumps over the lazy ?" // Doesn't compile
*/

The playground doesn’t produce an output for these lines because they are comments. The /* syntax
before the line of code and the */ syntax after the line of code denotes that this is a comment block
and, therefore, Swift should ignore anything typed in this block.

Remove /* and */ and you’ll see that // Doesn't compile is still colored gray. This is because
// also denotes a comment. Anything after this on the same line is also ignored.

If you now try and run this code, Xcode will tell you that there is a problem with this line, so let’s look
at the line to determine the issue.

On the left-hand side of the = sign, we have phrase, which we declared earlier, and now we are
trying to assign a new value to it.

We can’t do this because we defined phrase as a constant using the let keyword. We should only
use let for things we know will not change.

This ability to define something as unchanging, or immutable, is an important concept in Swift, and
we will revisit it in later chapters.

If we want to define something that can change, we declare it as a variable using the var keyword
as follows:

var anotherPhrase = phrase

Since anotherPhrase is a variable, we can assign a new value to it:

anotherPhrase = "  The quick brown 🦊 jumps over the lazy 🐶"

Strings in Swift are fully Unicode compliant, so we can have some fun and use emojis instead of words.

Swift Fundamentals12

Now, let’s print out the values of our strings to see what values they hold:

print(phrase)
// "The quick brown fox jumps over the lazy dog"
print(anotherPhrase)
// "The quick brown 🦊 jumps over the lazy 🐶"

In this section, up till this point, we have done the following:

•	 Defined a string called phrase

•	 Defined a string called anotherPhrase as having the same value as phrase

•	 Changed the value of anotherPhrase

•	 Printed the value of phrase and anotherPhrase

In our output, we see that only anotherPhrase prints the new value that was assigned, even though
the values of phrase and anotherPhrase were initially the same.

Although phrase and anotherPhrase had the same value, they do not have an intrinsic connection;
so, when anotherPhrase is assigned a new value, this does not affect phrase.

Strings can be easily combined using the + operator:

var phraseInfo = "The phrase" + " has: "
print(phraseInfo) // "The phrase has: "

The preceding code gives the result you would expect; the strings are concatenated.

You will often want to create strings by including values derived from other expressions. We can do
this with string interpolation:

phraseInfo = phraseInfo + "\(numberOfFoxes) fox and \(numberOfAnimals)
animals"
print(phraseInfo) // "The phrase has: 1 fox and 2 animals"

The values inserted after \(and before) can be anything that can be represented as a string, including
other strings, integers, floats, or expressions.

We can also use expressions with string interpolation, such as displaying the number of characters
in a string:

print("Number of characters in phrase: \(phrase.count)")

Strings in Swift are collections, which are containers of elements; in this case, a string is a collection
of characters.

Using the basic types – strings, ints, floats, and booleans 13

We will cover collections in more depth in Chapter 2, Mastering the Building Blocks, but for now, it’s
enough to know that your collections can tell you how many elements they contain through their
count property.

We use this to output the number of characters in the phrase.

Multiline string literals can be defined using """ at the beginning and end of the string:

let multilineExplanation = """

Interesting note
Why is the phrase, “The quick brown fox jumps over the lazy dog” often used in code?

This phrase contains every letter in the alphabet!

The contents of the multiline string must be on a separate line from the start and end with signifiers.
Within a multiline string literal, you can use a single quote character (") without needing to use an
additional escape character, as you would with a single-line string literal.

Boolean or Bool values represent either true or false. In the next line, we evaluate the value of a
Boolean expression and assign the result to the phrasesAreEqual constant:

let phrasesAreEqual: Bool = phrase == anotherPhrase
print(phrasesAreEqual) // false

In the preceding code, the equality operator, ==, compares the values on its left and right and evaluates
to true if the two values are equal, and false otherwise.

As we discussed earlier, although we assigned anotherPhrase the value of phrase initially, we
then assigned a new, different value to anotherPhrase; therefore, phrase and anotherPhrase
are not equal and the expression assigns the value of false.

Each side of the == operator can be any expression that evaluates to match the type of the other side,
as we do with the following code:

let phraseHas43Characters: Bool = phrase.characters.count == 40 + 3
print(phraseHas43Characters) // true

In this case, the character count of phrase equals 43. Since 40 + 3 also equals 43, the constant
is assigned the value of true.

Swift Fundamentals14

There’s more…

During this recipe, we defined a number of constants and variables, and when we did this, we also
explicitly defined their type. For example, consider the following line of Swift code:

let clearlyAString: String = "This is a string literal"

Swift is a statically typed language. This means any constant or variable that we define has to have a
specific type, and once defined, it cannot be changed to a different type.

However, in the preceding line of code, the clearlyAString constant is clearly a string! The
right-hand side of the expression is a string literal, and therefore, we know that the left-hand side
will be a string.

More importantly, the Swift compiler also knows this (a compiler is the program that turns Swift code
into machine code).

Swift is all about being concise, so since the type can be inferred by the compiler, we do not need to
explicitly state it.

Instead of the preceding code, we can use the following code and it will still run, even though we
didn’t specify the type:

let clearlyAString = "This is a string literal"

In fact, all the type declarations that we have made so far can actually be removed.

Go back through the code we have already written and remove all type declarations (:String, :Int,
:Float, and :Bool), as all these can be inferred.

Now, run the playground to confirm that this is still valid Swift code.

See also

Further information regarding these base types in Swift can be found in Apple’s documentation of
the Swift language:

Integers, Floats, and Booleans: http://swiftbook.link/docs/the-basics

Strings and characters: http://swiftbook.link/docs/strings

Reusing code in functions
Functions are a building block of almost all programming languages, allowing functionality to be
defined and reused.

Swift’s syntax provides an expressive way to define your functions, creating concise and readable code.

http://swiftbook.link/docs/the-basics
http://swiftbook.link/docs/strings

Reusing code in functions 15

In this recipe, we will run through the different types of functions we can create and understand how
to define and use them.

Getting ready

In this recipe, we can use the playground from the previous recipe. Don’t worry if you didn’t work
through the previous recipe, as this one will contain all the code you need.

How to do it…

Let’s look at how functions are defined in Swift:

func nameOfFunction(parameterLabel1 parameter1: ParameterType1,
parameterLabel2 parameter2: ParameterType2,...) -> OutputType {
    // Function's implementation
    // If the function has an output type,
    // the function must return a valid value return output
}

Let’s look at this in more detail to see how a function is defined:

•	 func: This indicates that you are declaring a function.

•	 nameOfFunction: This will be the name of your function and, by convention, is written in camel
case (this means that each word, apart from the first, is capitalized and all spaces are removed).

The name should describe what the function does and should provide some context to the value
returned by the function, if one is returned. This will also be how you will invoke the method
from elsewhere in your code, so bear that in mind when naming it.

•	 parameterLabel1 parameter1: ParameterType1: This is the first input, or parameter, into
the function.

You can specify as many parameters as you like, separated by commas. Each parameter has a
parameter name (parameter1) and type (ParameterType1). The parameter name is how the
value of the parameter will be made available to your function’s implementation.

You can optionally provide a parameter label in front of the parameter name (parameterLabel1)
that will be used to label the parameter when your function is used (at the call site).

•	 -> OutputType: This indicates that the function returns a value and indicates the type of that
value. If no value is returned, this can be omitted.

•	 { }: The curly brackets indicate the start and end of the function’s implementation; anything
within them will be executed when the function is called.

•	 return output: If the function returns a value, you type return and then specify the value to return.
This ends the execution of the function; any code written after the return statement is not executed.

Swift Fundamentals16

Now, let’s put our learning about functions into action.

Imagine that we are building a contacts app to hold the details of your family and friends, and we
want to create a string of a contact’s full name.

Let’s explore some of the ways in which functions can be used:

// Input parameters and output
func fullName(givenName: String,
              middleName: String,
              familyName: String) -> String {
    return "\(givenName) \(middleName) \(familyName)"
}

The preceding function takes three string parameters and outputs a string that puts all these together
with spaces in between.

The only thing this function does is take inputs and produce an output without causing any side effects;
this type of function is often called a pure function.

To call this function, we enter the name of the function followed by the input parameters within
brackets, (), where each parameter value is preceded by its label:

let myFullName = fullName(givenName: "Mandy",
                          middleName: "Mary",
                          familyName: "Barker")
print(myFullName) // Mandy Mary Barker

Since the function returns a value, we can assign the output of this function to a constant or a variable,
just like any other expression.

The next function takes the same input parameters, but its purpose is not to return a value. Instead,
it prints out the parameters as one string separated by spaces:

// Input parameters, with a side effect and no output
func printFullName(givenName: String,
                   middleName: String,
                   familyName: String) {
    print("\(givenName) \(middleName) \(familyName)")
}

We can call this function in the same way as the preceding function, although it can’t be assigned to
anything since it doesn’t have a return value:

printFullName(givenName: "Mandy",
             middleName: "Mary",
             familyName: "Barker")

Reusing code in functions 17

The following function takes no parameters as everything it needs to perform its task is contained
within it, although it does output a string.

This function calls the fullName function we defined earlier, taking advantage of its ability to
produce a full name when given the component names.

Reusing functionality is the most useful feature that functions provide. Let us see how to take advantage
of this feature through the following code:

func fullName() -> String {
    return fullName(givenName: "Mandy",
                    middleName: "Mary",
                    familyName: "Barker")
}

Since fullName takes no parameters, we can execute it by entering the function name followed by
empty brackets, (), and since it returns a value, we can assign the outcome of fullName to a variable:

let personsFullName = fullName()

Our final example takes no parameters and returns no value:

// No inputs, no output
func printFullName() {
    let personsFullName  = fullName()
    print(personsFullName)
}

You can call this function in the same way as the previous functions with no parameters, and there
is no return value to assign:

printFullName()

As you can see from the preceding example, having input parameters and providing an output value
are not required when defining a function.

There’s more…

Now, let’s look at a couple of ways of making your use of functions more expressive and concise.

Default parameter values

One convenience in Swift is the ability to specify default values for parameters. These allow you to
omit the parameter when calling, as the default value will be provided instead.

Let’s use the same example as earlier in this recipe, where we are creating a contacts app to hold
information about our family and friends.

Swift Fundamentals18

Many of your family members are likely to have the same family name as you, so we can set the family
name as the default value for that parameter. Therefore, the family name only needs to be provided
if it is different from the default.

Enter the following code into a playground:

func fullName(givenName: String,
              middleName: String,
              familyName: String = "Pendlebury") -> String {

    return "\(givenName) \(middleName) \(familyName)"
}

Defining a default value looks similar to assigning a value to the familyName: String =
"Pendlebury" parameter.

When calling the function, the parameter with the default value does not have to be given:

let chris = fullName(givenName: "Chris",
                     middleName: "Brian",
                    familyName: "Barker")
let madeleine = fullName(givenName: "Madeleine",
                       middleName: "Rose",
                       familyName: "Barker")
let mandy = fullName(givenName: "Mandy",
                    middleName: "Mary")

print(chris) // Chris Brian Barker
print(madeleine) // Madeleine Rose Barker
print(mandy) // Mandy Mary Pendlebury

Parameter overloading

Swift supports parameter overloading, which allows for functions to have the same name and only
be differentiated by the parameters that they take.

Let’s learn more about parameter overloading by entering the following code into a playground:

func combine(_ string1: String, _ string2: String) -> String {
    return "\(string1) \(string2)"
}

Encapsulating functionality in object classes 19

func combine(_ integer1: Int, _ integer2: Int) -> Int {
    return integer1 + integer2
}

let combinedString = combine("Madeleine", "Barker")
let combinedInt = combine(6, 10)

print(combinedString) // Madeleine Barker
print(combinedInt) // 16

Both the preceding functions have the name combined, but one takes two strings as parameters, and
the other takes two integers.

Therefore, when we call the function, Swift knows which implementation we intended by the values
we pass as parameters.

We’ve introduced something new in the preceding function declarations under Default parameter
values: anonymous parameter labels such as _ givenName: String.

When we declare the parameters, we use an underscore, _, for the parameter label. This indicates that
we don’t want a parameter name shown when calling the function. This should only be used if the
purpose of the parameters is clear without the labels.

See also

Further information about functions can be found at https://docs.swift.org/swift-
book/documentation/the-swift-programming-language/functions/.

Encapsulating functionality in object classes
Object-oriented programming (OOP) is a programming paradigm common to most software
development. At its core is the object class. Objects allow us to encapsulate data and functionality,
which can then be stored and passed around.

In this recipe, we will build some class objects, to break down their components, and understand how
they are defined and used.

Getting ready

In this recipe, we can use the playground from the previous recipe. Don’t worry if you didn’t work
through the previous recipe, as this one will contain all the code you need.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/functions/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/functions/

Swift Fundamentals20

How to do it…

Let’s write some code to create and use class objects, and then we will walk through what the code
is doing:

1.	 First, let’s create a Person class object:

class Person {
}

2.	 Within the curly brackets, { }, add three constants representing the person’s name, and one
variable representing their country of residence:

let givenName: String
let middleName: String
let familyName: String
var countryOfResidence: String = "UK"

3.	 Below the properties, yet still within the curly brackets, add an initialization method for our
Person object:

init(givenName: String, middleName: String, familyName: String)
{
    self.givenName = givenName
    self.middleName = middleName
    self.familyName = familyName
}

4.	 Now, add a variable as a property of the class, with a computed value:

    var displayString: String {
             return "\(self.fullName()) - Location: \(self.
countryOfResidence)"
    }

5.	 Add a function within the Person object that returns the person’s full name:

func fullName() -> String {
    return "\(givenName) \(middleName) \(familyName)"
}

6.	 Next, create a Friend object that extends the functionality of the Person object:

final class Friend: Person {
}

Encapsulating functionality in object classes 21

7.	 Within the Friend class object, add a variable property to hold details of where the user met the
friend, and override the display string property to customize its behavior for Friend objects:

    var whereWeMet: String?
    override var displayString: String {
            let meetingPlace = whereWeMet ?? "Don't know where
we met"
            return "\(super.displayString) - \(meetingPlace)"
    }

8.	 In addition to the Friend object, create a Family object that extends the functionality of
the Person object:

final class Family: Person {
}

9.	 Add a relationship property to the Family object and create an initializer method to
populate it in addition to the other properties from Person:

final class Family: Person {
    let relationship: String
            init(givenName: String,
         middleName: String,
         familyName: String = "Barker",
         relationship: String) {

        self.relationship = relationship
        super.init(givenName: givenName,
                   middleName: middleName,
                   familyName: familyName)
    }
}

10.	 Give the Family object a custom displayString method that includes the value of the
relationship property by adding this code within the Family object definition (within
the curly brackets):

    override var displayString: String {
            return "\(super.displayString) - \(relationship)"
    }

11.	 Finally, create instances of the new objects and print the display string to see how its value differs:

let steve = Person(givenName: "Steven",
                   middleName: "Paul",
                   familyName: "Jobs")

Swift Fundamentals22

let sam = Friend(givenName: "Sam",
                 middleName: "Wow",
                 familyName: "Rowley")
sam.whereWeMet = "Work together at Jaguar Land Rover"

let maddie = Family(givenName: "Madeleine",
                    middleName: "Barker",
                    relationship: "Daughter")

let mark = Family(givenName: "Mark",
                  middleName: "David",
                  familyName: "Pendlebury",
                  relationship: "Brother-In-Law")
mark.countryOfResidence = "UK"

print(steve.displayString)
// Steven Paul Jobs

print(sam.displayString)
// Sam Wow Rowley - Work together at Jaguar Land Rover

print(maddie.displayString)
// Madeleine Barker - Daughter

print(mark.displayString)
// Mark David Pendlebury - Brother-In-Law

How it works…

Classes are defined with the class keyword. Class names start with a capital letter by convention,
and the implementation of the class is contained (or scoped) within curly brackets:

class Person {
    //...
}

An object can have property values, which are contained within the object.

These properties can have initial values, as countryOfResidence does in the following code:

    let givenName: String
    let middleName: String
    let familyName: String
    var countryOfResidence: String = "UK"

Encapsulating functionality in object classes 23

However, bear in mind that constants (defined with let) cannot be changed once the initial value
has been set:

If your class were to just have the preceding property definitions, the compiler would raise a warning,
as givenName, middleName, and familyName are defined as non-optional strings. However,
we have not provided any way to populate those values.

The compiler needs to know how the object will be initialized so that we can be sure that all the
non-optional properties will indeed have values:

class Person {
    let givenName: String
    let middleName: String
    let familyName: String
    var countryOfResidence: String = "UK"

    init(givenName: String,
         middleName: String,
         familyName: String) {
        self.givenName = givenName
        self.middleName = middleName
        self.familyName = familyName
    }
    //...
}

The init method is a special method (functions defined within objects are called methods) that’s
called when the object is initialized. In the Person object of the preceding code, givenName,
middleName, and familyName must be passed in when the object is initialized, and we assign
those provided values to the object’s properties.

The self. prefix is used to differentiate between the property and the value passed in, as they have
the same name.

We do not need to pass in a value for countryOfResidence as this has an initial value. This isn’t
ideal though, as when we create a Person object, it will always have the countryOfResidence
variable set to "UK", and we will then have to change that value, if different, after initialization.

Another way to do this would be to use a default parameter value, as seen in the previous recipe.
Amend the Person object initialization to the following:

class Person {
    let givenName: String
    let middleName: String
    let familyName: String

Swift Fundamentals24

    var countryOfResidence: String

    init(givenName: String,
         middleName: String,
         familyName: String,
         countryOfResidence: String = "UK") {

        self.givenName = givenName
        self.middleName = middleName
        self.familyName = familyName
        self.countryOfResidence = countryOfResidence
    }
    //...
}

Now, you can provide a country of residence in the initialization or omit it to use the default value.

Next, let’s look at the displayString property of our Person class:

class Person {
    //...
    var displayString: String {
        return "\(self.fullName()) - Location: \(self.
countryOfResidence)"
    }
    //...
}

This property declaration is different from the others. Rather than having a value assigned to it, it is
followed by an expression contained within curly braces.

This is a computed property; its value is not static but is determined by the given expression every
time the property is accessed. Any valid expressions can be used to compute the property but must
return a value that matches the declared type of the property.

The compiler will enforce this, and you can’t omit the variable type for computed properties. In constructing
the preceding return value, we use self.fullName() and self.countryOfResidence.

As we did in the preceding init method, we use self. to show that we are accessing the method
and property of the current instance of the Person object.

However, since displayString is already a property on the current instance, the Swift compiler
is aware of this context and so those self-references can be removed:

var displayString: String {
    return "\(fullName()) - Location:\(countryOfResidence)"
}

Encapsulating functionality in object classes 25

Objects can do work based on the information they contain, and this work can be defined in methods.

Methods are just functions that are contained within classes and have access to all the object’s properties.
The Person object’s fullName method is an example of this:

class Person {
    //...
    func fullName() -> String {
        return "\(givenName) \(middleName) \(familyName))"
    }
    //...
}

All the abilities of a function are available, which we explored in the last recipe, Reusing code in
functions, including optional inputs and outputs, default parameter values, and parameter overloading.

Having defined a Person object, we want to extend the concept of Person to define a friend. A
friend is also a person, so it stands to reason that anything a Person object can do, a Friend object
can also do.

We model this inherited behavior by defining Friend as a subclass of Person. We define the class
that our Friend class inherits from (or the superclass), after the class name, separated by :, as follows:

final class Friend: Person {
    var whereWeMet: String?
    //...
}

By inheriting from Person, our Friend object inherits all the properties and methods from its
superclass. We can then add any extra functionality we require. In this case, we add a property for
details of where we met this friend.

The final prefix tells the compiler that we don’t intend for this class to be subclassed; it is the final
class in the inheritance hierarchy. This allows the compiler to make some optimizations as it knows
it won’t be extended.

In addition to implementing new functionalities, we can override functionalities from the superclass
using the override keyword:

final class Friend: Person {
    //...
    override var displayString: String {
        let meetingPlace = whereWeMet ?? "Don't know where we met"
        return "\(super.displayString) - \(meetingPlace)"
    }
}

Swift Fundamentals26

In the preceding code, we override the displayString computed property from Person as we
want to add the "where we met" information.

Within the computed property, we can access the superclass’s implementation by calling super.,
and then referencing the property or method.

Next, let’s look at how we can customize how our subclasses are initialized:

final class Family: Person {
    let relationship: String
    init(givenName: String,
         middleName: String,
         familyName: String = "Barker",
         relationship: String) {

        self.relationship = relationship
        super.init(givenName: givenName,
                   middleName: middleName,
                   familyName: familyName)
    }
    //...
}

Our Family class also inherits from Person, but we want to add a relationship property,
which should form part of the initialization. So, we can declare a new init that also takes a
relationship string value.

That passed-in value is then assigned to the relationship property because the superclass’s
initializer is called.

With all our class objects defined, we can create instances of these objects and call methods and access
properties of these objects:

let steve = Person(givenName: "Steven",
                   middleName: "Paul",
                   familyName: "Jobs")

let sam = Friend(givenName: "Sam",
                 middleName: "Wow",
                 familyName: "Rowley")
sam.whereWeMet = "Work together at Jaguar Land Rover"

let maddie = Family(givenName: "Madeleine",
                      middleName: "Barker",
                      relationship: "Daughter")

Encapsulating functionality in object classes 27

let mark = Family(givenName: "Mark",
                  middleName: "David",
                  familyName: "Pendlebury",
                  relationship: "Brother-In-Law")
mark.countryOfResidence = "US"

print(steve.displayString)
// Steven Paul Jobs

print(sam.displayString)
// Sam Wow Rowley - Work together at Jaguar Land Rover

print(maddie.displayString)
// Madeleine Barker - Daughter

print(mark.displayString)
// Mark David Pendlebury - Brother-In-Law

To create an instance of an object, we use the name of the object like a function, passing in any required
parameters. This returns an object instance that we can then assign to a constant or variable.

When creating an instance, we are actually calling the object’s init method, and you can do this
explicitly, as follows:

let steve = Person.init(givenName: "Steven",
                        middleName: "Paul",
                        familyName: "Jobs")

However, to be concise, this is usually omitted.

There’s more…

Class objects are reference types, which is a term that refers to the way they are stored and referenced
internally. To see how these reference type semantics work, let’s look at how an object behaves when
it is modified:

class VideoGameReview {
    let videoGameTitle: String
    var starRating: Int // Rating out of 5

    init(videoGameTitle: String, starRating: Int) {
        self.videoGameTitle = videoGameTitle
        self.starRating = starRating
    }

Swift Fundamentals28

}

// Write a review
let monkeyIslandReview = VideoGameReview(videoGameTitle: "The Secret
of Monkey Island", starRating: 4)

// Post it to social media
let referenceToReviewOnTwitter = monkeyIslandReview
let referenceToReviewOnFacebook = monkeyIslandReview

print(referenceToReviewOnTwitter.starRating) // 4
print(referenceToReviewOnFacebook.starRating) // 4

// Reconsider the review
monkeyIslandReview.starRating = 5

// The change is visible from anywhere with a reference to the object
print(referenceToReviewOnTwitter.starRating) // 5
print(referenceToReviewOnFacebook.starRating) // 5

In the preceding code, we have defined a VideoGameReview class object, created an instance of
that VideoGameReview object, and then assigned that review to two separate constants.

As a class object is a reference type, it is a reference to the object that is stored in the constant, rather
than a new copy of the object.

Therefore, when we reconsider our review, to give the classic game The Secret of Monkey Island five
stars, we are changing the underlying object. All references that access that underlying object will
receive the updated value when the starRating property is accessed.

See also

Further information about classes can be found at https://docs.swift.org/swift-book/
documentation/the-swift-programming-language/classesandstructures.

Bundling values into structs
Class objects are great for encapsulating data and functionality within a unifying concept, such as
a person, as they allow individual instances to be referenced. However, not everything is an object.

We may need to represent data that is logically grouped together, but there isn’t much more than that.
It’s not more than the sum of its parts; it is the sum of its parts.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/classesandstructures
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/classesandstructures

Bundling values into structs 29

For this, there are structs. Short for structures, structs can be found in many programming languages.
Structs are value types (as opposed to classes, which are reference types) and, as such, behave differently
when passed around. In this recipe, we will learn how structs work in Swift, and when and how to
use them.

Getting ready

In this recipe, we will build on top of the previous recipe, so open the playground you have used
for the previous recipe. Don’t worry if you didn’t work through the previous recipe, as this one will
contain all the code you need.

How to do it…

We have already defined a Person object as having three separate string properties relating to the
person’s name. However, these three separate strings don’t exist in isolation from each other, as together
they define a person’s name.

Currently, if you want to retrieve a person’s name, you have to access three separate properties and
combine them. Let’s tidy this up by defining a person’s name as its own struct:

1.	 Create a struct called PersonName:

struct PersonName {
}

2.	 Add three properties to PersonName, for givenName, middleName, and familyName.
Make the first two into constants, and the last one into a variable, as a family name can change:

struct PersonName {
    let givenName: String
    let middleName: String
    var familyName: String
}

3.	 Add a method to combine the three properties into a fullName string:

    func fullName() -> String {
        return "\(givenName) \(middleName) \(familyName)"
    }

4.	 Provide a method to change the familyName property and prefix this method with the
mutating keyword:

    mutating func change(familyName: String) {
            self.familyName = familyName
    }

Swift Fundamentals30

5.	 Create a PersonName struct, passing in the property values:

var duncansName = PersonName(givenName: "Duncan",
                             middleName: "Zowie",
                             familyName: "Jones")

How it works…

Defining a struct is very similar to defining an object class, and that is intentional. Much of the
functionality available to a class is also available to a struct. Therefore, you will notice that aside from
using the struct keyword instead of class, the definitions of a class and a struct are almost identical.

Within the PersonName struct, we have properties for the three components of the name and the
fullName method we saw earlier to combine the three name components into a fullName string.

The method we created to change the familyName property has a new keyword that we haven’t
seen before, mutating:

    mutating func change(familyName: String) {
        self.familyName = familyName
    }

This keyword must be added to any method in a struct that changes a property of the struct.

This keyword is to inform anyone using the method that it will change or mutate the struct. Unlike
class objects, when you mutate a struct, you create a copy of the struct with the changed
properties. This behavior is known as value-type semantics.

To see this in action, let’s first create a struct and then check that it behaves as we expect when we
assign it to different values:

let duncansBirthName = PersonName(givenName: "Duncan",
                                  middleName: "Zowie",
                                  familyName: "Jones")
print(duncansBirthName.fullName()) // Duncan Zowie Jones

var duncansCurrentName = duncansBirthName
print(duncansCurrentName.fullName()) // Duncan Zowie Jones

So far, so good. We have created a PersonName struct, assigned it to a constant called
duncansBirthName, and then assigned that constant to a variable called duncansCurrentName.

Now, let’s see what happens when we mutate duncansCurrentName:

duncansCurrentName.change(familyName: "Bowie")
print(duncansBirthName.fullName()) // Duncan Zowie Jones
print(duncansCurrentName.fullName()) // Duncan Zowie Bowie

Bundling values into structs 31

When we call the mutating method on the duncansCurrentName variable, only that variable
is changed. This change is not reflected in duncansBirthName, even though these structs were
once the same.

This behavior would be different if PersonName was an object class, and we explored that behavior
in the previous recipe.

There’s more…

We can use how this value-type behavior interacts with constants and variables to restrict
unintended changes.

To see this in action, first, let’s amend our Person class to our new PersonName struct:

class Person {
    let birthName: PersonName
    var currentName: PersonName
    var countryOfResidence: String

    init(name: PersonName,
         countryOfResidence: String = "UK") {
        birthName = name
        currentName = name
        self.countryOfResidence = countryOfResidence
    }

    var displayString: String {
        return "\(currentName.fullName()) - Location: \
(countryOfResidence)"
    }

}

We’ve added the birthName and currentName properties of our new PersonName struct type,
and we initiate them with the same value when the Person object is created.

Since a person’s birth name won’t change, we define it as a constant, but their current name can change,
so it’s defined as a variable.

Now, let’s create a new Person object:

var name = PersonName(givenName: "Duncan", middleName: "Zowie",
familyName: "Jones")
let duncan = Person(name: name)
print(duncan.currentName.fullName()) // Duncan Zowie Jones

Swift Fundamentals32

Since our PersonName struct has value semantics, we can use this to enforce the behavior that we
expect our model to have. We would expect to not be able to change a person’s birth name, and if you
try, you will find that the compiler won’t let you.

As we discussed earlier, changing the family name mutates the struct, and so a new copy is made.
However, we defined birthName as a constant, which can’t be changed, so the only way we would be
able to change the family name would be to change our definition of birthName from let to var:

duncan.birthName.change(familyName: "Moon") // Does not compile.
// Compiler tells you to change let to var

When we change currentName to have a new family name, which we can do since we defined it as
var, it changes the currentName property but not the birthName property, even though these
were assigned with the same value:

print(duncan.birthName.fullName()) // Duncan Zowie Jones
print(duncan.currentName.fullName()) // Duncan Zowie Jones
duncan.currentName.change(familyName: "Bowie")
print(duncan.birthName.fullName()) // Duncan Zowie Jones
print(duncan.currentName.fullName()) // Duncan Zowie Bowie

We have used a combination of objects and structs to create a model that enforces our expected
behavior. This technique can help to reduce potential bugs in our code.

See also

Further information about structs can be found at https://docs.swift.org/swift-book/
documentation/the-swift-programming-language/classesandstructures.

Enumerating values with enums
An enumeration is a programming construct that lets you define a value type with a finite set of
options. Most programming languages have enumerations (usually abbreviated to enums), although
the Swift language takes the concept further than most.

An example of an enum from the iOS/macOS SDK is ComparisonResult, which you would
use when sorting items. When comparing for the purposes of sorting, there are only three possible
results from a comparison:

•	 Ascending: The items are ordered in ascending order

•	 Descending: The items are ordered in descending order

•	 Same: The items are the same

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/classesandstructures
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/classesandstructures

Enumerating values with enums 33

There are a finite number of possible options for a comparison result; therefore, it’s a perfect candidate
for being represented by an enum:

enum ComparisonResult : Int {
    case orderedAscending
    case orderedSame
    case orderedDescending
}

Swift takes the enum concept and elevates it to a first-class type. As we will see, this makes enums a
very powerful tool for modeling your information.

This recipe will examine how and when to use enums in Swift.

Getting ready

This recipe will build on top of the earlier recipes, so open the playground you have used for the
previous recipes. Don’t worry if you haven’t tried out the previous recipes, as this one will contain all
the code you need.

How to do it…

In the Encapsulating functionality in object classes recipe, we created a Person object to represent
people in our model, and in the Bundling values into structs recipe, we made a PersonName struct
to hold information about a person’s name.

Now, let’s turn our attention to a person’s title (for example, Mr. or Mrs.), which precedes someone’s
full name. There are a small and finite number of common titles that a person may have; therefore,
an enum is a great way to model this information:

1.	 Create an enum to represent a person’s title:

enum Title {
    case mr
    case mrs
    case mister
    case miss
    case dr
    case prof
    case other
}

Swift Fundamentals34

2.	 We define our enumeration with the enum keyword and provide a name for the enum. As with
classes and structs, the convention is that this starts with a capital letter, and the implementation
is defined within curly brackets. We define each enum option with the case keyword, and, by
convention, these start with a lowercase character. Assign the mr case of our Title enum to a value:

let title1 = Title.mr

3.	 Enums can be assigned by specifying the enum type, then a dot, and then the case. However, if the
compiler can infer the enum type, we can omit the type and just provide the case, preceded by a dot.

4.	 Define a constant value of the Title type and then assign a case to it with the type inferred:

let title2: Title
title2 = .mr

How it works…

In many programming languages, including C and Objective-C, enums are defined as a type definition
on top of an integer, with each case being given a defined integer value. In Swift, enums do not need
to represent integers under the hood.

In fact, they do not need to be backed by any type and can exist as their own abstract concepts.
Consider the following example:

enum CompassPoint {
    case North, South, East, West
}

It doesn’t make sense to map the compass points as integers, and in Swift, we don’t have to.

For Title also, an Int-based enum doesn’t seem appropriate; however, a String-based one may
be. So, let’s declare our enum to be String-based:

enum Title: String {
    case mr = "Mr"
    case mrs = "Mrs"
    case mister = "Master"
    case miss = "Miss"
    case dr = "Dr"
    case prof = "Prof"
    case other // Inferred as "other"
}

The enum’s raw underlying type is declared after its name and a : separator. The raw types that can
be used to back the enum are limited to types that can be represented as a literal.

Enumerating values with enums 35

This includes the following Swift base types:

•	 String

•	 Int

•	 Float

•	 Bool

Cases can be assigned a value of the raw type; however, certain types can be inferred and so do not
need to be explicitly declared. For Int-backed enums, the inferred values are sequentially assigned
starting at 0:

enum Rating: Int {
    case worst // Inferred as 0
    case bad    // Inferred as 1
    case average // Inferred as 2
    case good // Inferred as 3
    case best // Inferred as 4
}

For String-based enums, the inferred value is the name of the case, so the other case in our Title
enum is inferred to be other.

We can get the underlying value of the enum in its raw type by accessing its rawValue property:

let title1 = Title.mr
print(title1.rawValue) // "Mr"

There’s more…

As mentioned in the introduction to this recipe, Swift treats enums as a first-class type; therefore, they
can have functionality that is not available to enums in most programming languages. This includes
having computed variables and methods.

Methods and computed variables

Let’s imagine that it is important for us to know whether a person’s title relates to a professional
qualification that the person holds.

Let’s add a method to our enum to provide that information:

enum Title: String {
    case mr = "Mr"
    case mrs = "Mrs"
    case mister = "Master"

Swift Fundamentals36

    case miss = "Miss"
    case dr = "Dr"
    case prof = "Prof"
    case other // Inferred as "other"

    func isProfessional() -> Bool {
        return self == Title.dr || self == Title.prof
    }
}

For the list of titles that we have defined, Dr and Prof relate to professional qualifications, so we
have our method return true if self (the instance of the enum type this method is called on) is
equal to the dr case, or equal to the prof case.

This functionality feels more appropriate as a computed property since whether isProfessional
applies or not is intrinsic to the enum itself, and we don’t need to do much work to determine the
answer. So, let’s change this into a property:

enum Title: String {

    case mr = "Mr"
    case mrs = "Mrs"
    case mister = "Master"
    case miss = "Miss"
    case dr = "Dr"
    case prof = "Prof"
    case other // Inferred as "other"

    var isProfessional: Bool {
        return self == Title.dr || self == Title.prof
    }

}

Now, we can determine whether a title is a professional title by accessing the computed property on it:

let loganTitle = Title.mr
let xavierTitle = Title.prof
print(loganTitle.isProfessional) // false
print(xavierTitle.isProfessional) // true

We can’t store any additional information on an enum, over and above the enum value itself, but being
able to define methods and computed properties that provide extra information about the enum is
a really powerful option.

Enumerating values with enums 37

Associated values

Our String-based enum seems perfect for our title information, except that we have a case called
other. If the person has a title that we hadn’t considered when defining the enum, we can choose
other, but that doesn’t capture what the other title is.

In our model, we would need to define another property to hold the value given for other, but
that splits our definition of Title over two separate properties, which could cause an unintended
combination of values.

Swift enums have a solution for this situation: associated values. We can choose to associate a value
with each enum case, allowing us to bind a non-optional string to our other case.

Let’s rewrite our Title enum to use an associated value:

enum Title {
    case mr
    case mrs
    case mister
    case miss
    case dr
    case prof
    case other(String)
}

We have defined the other case to have an associated value by putting the value’s type in brackets
after the case declaration. We do not need to add associated values for every case. Each case declaration
can have associated values of different types or none at all.

Now, let’s look at how we assign an enum case with an associated type:

let mister: Title = .mr
let dame: Title = .other("Dame")

The associated value is declared in brackets after the case, and the compiler enforces that the type
matches the type declared in our enum definition.

As we declared the other case to have a non-optional string, we are ensuring that a title of other
cannot be chosen without providing details of what the other title is, and we don’t need another
property to fully represent Title in our model.

See also

Further information about enums can be found at http://swiftbook.link/docs/enums.

http://swiftbook.link/docs/enums

Swift Fundamentals38

Passing around functionality with closures
Closures are also referred to as anonymous functions, and this is the best way to explain them.
Closures are functions without a name and, like other functions, they can take a set of input parameters
and can return an output.

Closures behave like other primary types. They can be assigned, stored, passed around, and used as
input and output to functions and other closures.

In this recipe, we will explore how and when to use closures in our code.

Getting ready

We will continue to build on our contacts app example from earlier in this chapter, so you should use
the same playground as in the previous recipes.

If, however, you are implementing this in a new playground, first add the relevant code from the
previous recipes:

struct PersonName {
    let givenName: String
    let middleName: String
    var familyName: String

    func fullName() -> String {
        return "\(givenName) \(middleName) \(familyName)"
    }

    mutating func change(familyName: String) {
        self.familyName = familyName
    }
}

class Person {
    let birthName: PersonName
    var currentName: PersonName
    var countryOfResidence: String

    init(name: PersonName, countryOfResidence: String = "UK") {
        birthName = name
        currentName = name
        self.countryOfResidence = countryOfResidence
    }

    var displayString: String {

Passing around functionality with closures 39

        return "\(currentName.fullName()) - Location: \
(countryOfResidence)"
    }
}

How to do it…

Now, let’s define a number of types of closures, which we will then work through step by step:

1.	 Define a closure to print this author’s details that takes No input and returns no output:

// No input, no output
let printAuthorsDetails: () -> Void = {
    let name = PersonName(givenName: "Chris",
                          middleName: "Brian",
                          familyName: "Barker")
    let author = Person(name: name)
    print(author.displayString)
}
printAuthorsDetails() // "Chris Brian Barker - Location: UK"

2.	 Define a closure that creates a Person object. The closure takes No input, but returns a
Person object as the output:

// No input, Person output
let createAuthor: () -> Person = {
    let name = PersonName(givenName: "Chris",
                          middleName: "Brian",
                          familyName: "Barker")
    let author = Person(name: name)
    return author
}
let author = createAuthor()
print(author.displayString) // "Chris Brian Barker - Location:
UK"

3.	 Define a closure that prints a person’s details, taking the three components of their name as
String inputs, but returning no output:

// String inputs, no output
let printPersonsDetails: (String, String, String) -> Void = {
(given,     middle,     family) in
        let name = PersonName(givenName: given,
                          middleName: middle,
                          familyName: family)

Swift Fundamentals40

    let author = Person(name: name)
    print(author.displayString)
}
printPersonsDetails("Mandy", "Mary", "Barker")
// "Mandy Mary Barker - Location: UK"

4.	 Finally, define a closure to create a person, taking the three name components as String
inputs and returning a Person object as the output:

// String inputs, Person output
let createPerson: (String, String, String) -> Person = {
(given,     middle,     family) in
    let name = PersonName(givenName: given,
                          middleName: middle,
                          familyName: family)
    let person = Person(name: name)
    return person
}

let felix = createPerson("Madeleine", "Rose", "Barker")
print(felix.displayString) // "Madeleine Rose Barker - Location:
UK"

How it works…

Let’s take a look at the different types of closures we just implemented:

// No input, no output
let printAuthorsDetails: () -> Void = {
    let name = PersonName(givenName: "Chris",
                          middleName: "Brian",
                          familyName: "Barker")
    let author = Person(name: name)
    print(author.displayString)
}
printAuthorsDetails() // "Chris Brian Barker - Location: UK"

As a first-class type in Swift, closures can be assigned to constants or variables, and constants and
variables need a type.

To define a closure’s type, we need to specify the input parameter types and the output type, and for
the closure in the preceding code, the type is () -> Void. The Void type is another way of saying
nothing, so this closure takes no inputs and returns nothing, and the closure’s functionality is defined
within the curly brackets, as with other functions.

Passing around functionality with closures 41

Now that we have this closure defined and assigned to the printAuthorsDetails constant, we
can execute it like other functions, but with the variable name instead of the function’s name.

We can use the following closure, which will cause this author’s details to be printed:

printAuthorsDetails() // "Chris Brian Barker - Location: UK"

The next closure type takes No input parameters, but returns a Person object, as you can see with
the () -> Person type definition:

// No input, Person output
let createAuthor: () -> Person = {
    let name = PersonName(givenName: "Chris",
                          middleName: "Brian",
                          familyName: "Barker")
    let author = Person(name: name)
    return author
}
let author = createAuthor()
print(author.displayString) // "Chris Brian Barker - Location: UK"

Since it has an output, the execution of the closure returns a value that can be assigned to a variable
or constant. In the preceding code, we execute the createAuthor closure and assign the output
to the author constant.

Since we defined the closure type as () -> Person, the compiler knows that the output type is
Person, and so the type of constant can be inferred.

Since we don’t need to declare it explicitly, let’s remove the type declaration:

let author = createAuthor()
print(author.displayString) // "Chris Brian Barker - Location: UK"

Next, let’s take a look at a closure that takes input parameters:

// String inputs, no output
let printPersonsDetails: (String, String, String) -> Void = {
(given, middle, family) in
    let name = PersonName(givenName: given,
                          middleName: middle,
                          familyName: family)
    let author = Person(name: name)
    print(author.displayString)
}

Swift Fundamentals42

You will remember, from the Reusing code in functions recipe, that we can define parameter labels,
which determine how the parameters are referenced when the function is used, and parameter names,
which define how the parameter is referenced from within the function.

In closures, these are defined a bit differently:

1.	 Parameter labels cannot be defined for closures, so, when calling a closure, the order and
parameter type have to be used to determine what values should be provided as parameters:

(String, String, String) -> Void

2.	 Parameter names are defined inside the curly brackets, followed by the in keyword:

(given, middle, family) in

3.	 Putting it all together, we can define and execute a closure with inputs and an output, as follows:

// String inputs, Person output
let createPerson: (String, String, String) -> Person = {
(given, middle, family) in
    let name = PersonName(givenName: given,
                          middleName: middle,
                          familyName: family)
    let person = Person(name: name)
    return person
}

There’s more…

We’ve seen how we can store closures, but we can also use them as method parameters. This pattern
can be really useful when we want to be notified when a long-running task is completed.

Let’s imagine that we want to save the details of our Person object to a remote database, maybe for
backup or use on other devices.

We may want to be notified when this process has been completed, so we execute some additional code,
perhaps printing a completion message, or updating some UI. While the actual saving implementation
is outside the scope of this recipe, we can amend our Person class to allow this save functionality
to be called, passing a closure to execute on completion.

Add a method to save to a remote database, taking in a completion Handler, and store it for
subsequent execution:

class Person {
    //....
    var saveHandler: ((Bool) -> Void)?

Passing around functionality with closures 43

    func saveToRemoteDatabase(handler: @escaping (Bool) -> Void) {
        saveHandler = handler
        // Send person information to remove database
        // Once remote save is complete, it calls saveComplete(Bool)
        // We'll fake it for the moment, and assume the save is
        // complete.
        saveComplete(success: true)
    }
    func saveComplete(success: Bool) {
        saveHandler?(success)
    }
}

We define an optional variable to hold on to saveHandler during the long-running save operation.
Our closure will take a Bool value to indicate whether the save was a success:

var saveHandler: ((Bool) -> Void)?

Let’s now define a method to save our Person object, which takes a closure as a parameter:

func saveToRemoteDatabase(handler: @escaping (Bool) -> Void) {
    saveHandler = handler
    // Send person information to remove database
    // Once remote save is complete, it calls saveComplete(Bool)
    // We'll fake it for the moment, and assume the save is complete.
    saveComplete(success: true)
}

Our function stores the given closure in the variable and then starts the process of saving to the remote
database (the actual implementation of this is outside the scope of this recipe). This save process
will call the saveComplete method when completed.

We added a modifier, @escaping, just before the closure type definition. This tells the compiler
that, rather than using the closure within this method, we intend to store the closure and use it later.
The closure will be escaping the scope of this method.

This modifier is needed to prevent the compiler from doing certain optimizations that would be
possible if the closure was nonescaping. It also helps users of this method understand whether
the closure they provide will be executed immediately or at a later time.

With the save operation complete, we can execute the saveHandler variable, passing in the
success Boolean:

func saveComplete(success: Bool) {
    saveHandler?(success)
}

Swift Fundamentals44

Since we stored the closure as an optional, we need to unwrap it by adding a ? character after the variable
name. If saveHandler has a value, the closure will be executed; if it is nil, the expression is ignored.

Now that we have a function that takes a closure, let’s see how we call it:

let fox = createPerson("Mandy", "Mary", "Barker")
fox.saveToRemoteDatabase(handler: { success in
    print("Saved finished. Successful: \(success)")
})

Swift provides a more concise way to provide closures to functions.

When a closure is the last (or only) parameter, Swift allows it to be provided as a trailing closure.
This means the parameter name can be dropped and the closure can be specified after the parameter
brackets. So, we can rewrite the preceding code with the following neater syntax:

let fox = createPerson("Mandy", "Mary", "Barker")
fox.saveToRemoteDatabase() { success in
    print("Saved finished. Successful: \(success)")
}

See also

Further information about closures can be found at https://docs.swift.org/swift-book/
documentation/the-swift-programming-language/closures/.

Using protocols to define interfaces
Protocols are a way to describe the interface that a type provides. They can be thought of as a contract,
defining how you can interact with instances of that type.

Protocols are a great way to abstract what something does from how it does it. As we will see in
subsequent chapters, Swift adds functionalities to protocols that make them even more useful and
powerful than in many other programming languages.

Getting ready

We will continue to build on examples from the previous recipes, but don’t worry if you haven’t followed
these recipes yet as all the code you need is listed in the upcoming sections.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/closures/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/closures/

Using protocols to define interfaces 45

How to do it…

In the previous recipe, we added a method to our Person class that (given the full implementation)
would save it to a remote database. This is a very useful functionality, and as we add more features to
our app, there will likely be more types that we also want to save to a remote database:

1.	 Create a protocol to define how we will interface with anything that can be saved in this way:

protocol Saveable {
    var saveNeeded: Bool { get set }
    func saveToRemoteDatabase(handler: @escaping (Bool) -> Void)
}

2.	 Update our Person class so that it conforms to the Saveable protocol:

class Person: Saveable {
    //....
    var saveHandler: ((Bool) -> Void)?
    var saveNeeded: Bool = true
    func saveToRemoteDatabase(handler: @escaping (Bool) -> Void)
{
        saveHandler = handler
        // Send person information to remove database
        // Once remote save is complete, it calls
        // saveComplete(Bool)
        // We'll fake it for the moment, and assume the save is
        // complete.
        saveComplete(success: true)
    }
    func saveComplete(success: Bool) {
        saveHandler?(success)
    }
}

How it works…

Protocols are defined with the protocol keyword, and the implementation is contained within curly
brackets. As we have seen with other type definitions, it is conventional to begin a protocol name
with a capital letter. It is also conventional to name a protocol as either something that the type is or
something that it does. In this protocol, we are declaring that any type of implementation is Saveable.

Types conforming to this protocol have two parts of the interface to implement. Let’s look at the first:

var saveNeeded: Bool { get set }

Swift Fundamentals46

The Saveable protocol declares that anything implementing it needs to have a variable called
saveNeeded, which is a Bool type.

This property will indicate that the information held in the remote database is out of date and a save
is needed. In addition to the usual property declaration, a protocol requires us to define whether
the property can be accessed (get) and changed (set), which is added in curly brackets after the
type declaration.

Removing the set keywords makes it a read-only variable.

The second part of our protocol definition is to describe the method we can call to save the
information to the remote database:

func saveToRemoteDatabase(handler: @escaping (Bool) -> Void)

This func declaration is exactly the same as other function declarations we have seen. However, the
implementation of this function, which would have been contained in curly brackets, is omitted. Any
type conforming to this protocol must provide this function and its implementation.

Now that we have defined our protocol, we need to implement the Saveable protocol on our
Person class that we have been using throughout this chapter:

class Person: Saveable {
    //....
    var saveHandler: ((Bool) -> Void)?

    func saveToRemoteDatabase(handler: @escaping (Bool) -> Void) {
        saveHandler = handler
        // Send person information to remove database
        // Once remote save is complete, it calls
        // saveComplete(Bool)
        // We'll fake it for the moment, and assume the save is
        // complete.
        saveComplete(success: true)
    }

    func saveComplete(success: Bool) {
        saveHandler?(success)
    }
}

Conforming to a protocol looks similar to how a class inherits from another class, as we saw earlier
in this chapter.

Using protocols to define interfaces 47

The protocol name is added after the type name, separated by :. By adding this conformance, the
compiler will complain that our Person object doesn’t implement part of the protocol, as we haven’t
declared a saveNeeded property. So, let’s add that:

class Person: Saveable {
    //....
    var saveHandler: ((Bool) -> Void)?

    func saveToRemoteDatabase(handler: @escaping (Bool) -> Void) {
        saveHandler = handler
        // Send person information to remove database
        // Once remote save is complete, it calls
        // saveComplete(Bool)
        // We'll fake it for the moment, and assume the save is
        // complete.
        saveComplete(success: true)
    }

    func saveComplete(success: Bool) {
        saveHandler?(success)
    }
}

We’ll add a default value of true since when an instance of this object is created, it won’t be in the
remote database, so it will need to be saved.

There’s more…

Protocol conformance can be applied to classes, structs, enums, and even other protocols. The benefit
of a protocol is that it allows an instance to be stored and passed without needing to know how it’s
implemented under the hood.

This provides many benefits, including testing using mock objects and changing implementations
without changing how and where the implementations are used.

Let’s add a feature to our app that lets us set a reminder for a contact’s birthday, which we will also
want to save to our remote database.

We can use protocol conformance to give our reminder the same consistent save functionality
interface, even though a reminder may have a very different implementation for saving.

Let’s create our Reminder object and have it conform to the Saveable protocol:

class Reminder: Saveable {
    var dateOfReminder: String // There is a better way to store
dates, but this will suffice currently.

Swift Fundamentals48

    var reminderDetail: String // eg. Ali's birthday
    init(date: String, detail: String) {
        dateOfReminder = date
        reminderDetail = detail
    }
    var saveHandler: ((Bool) -> Void)?
    var saveNeeded: Bool = true

    func saveToRemoteDatabase(handler: @escaping (Bool) -> Void) {
saveHandler = handler
        // Send reminder information to remove database
        // Once remote save is complete, it calls
        // saveComplete(success: Bool)
        // We'll fake it for the moment, and assume the save is
        // complete.
        saveComplete(success: true)
    }

    func saveComplete(success: Bool) {
        saveHandler?(success)
    }
}

Our Reminder object conforms to Saveable and implements all the requirements.

We now have two objects that represent very different things and have different functionalities, but
they both implement Saveable; therefore, we can treat them in a common way.

To see this in action, let’s create an object that will manage the saving of information in our app:

class SaveManager {
    func save(_ thingToSave: Saveable) {
        thingToSave.saveToRemoteDatabase { success in
            print("Saved! Success: \(success)")
        }
    }
}

let maddie = createPerson("Madeleine", "Rose", "Barker")
// This closure was
// covered in the previous recipe

let birthdayReminder = Reminder(date: "08/06/2006", detail: "Maddie's
Birthday")
let saveManager = SaveManager()

Using protocols to define interfaces 49

saveManager.save(maddie)
saveManager.save(birthdayReminder)

In the preceding example, SaveManager doesn’t know the underlying type that it is being passed,
but it doesn’t need to. It receives instances that conform to the Saveable protocol and, therefore,
can use that interface to save each instance.

See also

Further information about protocols can be found at https://docs.swift.org/swift-
book/documentation/the-swift-programming-language/protocols/.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/protocols/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/protocols/

2
Mastering the Building Blocks

The previous chapter explained the basic types that form the building blocks of the Swift language. In
this chapter, we will build on this knowledge to create more complex structures, such as arrays and
dictionaries, before moving on and looking at some of the little gems Swift offers, such as tuples and
type aliases. Finally, we’ll round off this chapter by looking at extensions and access control – both of
which are key components that contribute to a sound yet efficient code base.

By the end of this chapter, you will be better equipped to organize and handle any data you’ll want to work
with in your apps, plus the ability to make the code that interacts with your data more flexible to your needs!

In this chapter, we will cover the following recipes:

•	 Bundling variables into tuples

•	 Ordering your data with arrays

•	 Containing your data in sets

•	 Storing key-value pairs with dictionaries

•	 Subscripts for custom types

•	 Changing your name with a type alias

•	 Getting property-changing notifications using property observers

•	 Extending functionality with extensions

•	 Controlling access with access control

Let’s get started!

Technical requirements
All the code for this chapter can be found in this book’s GitHub repository at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%202.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%202
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%202

Mastering the Building Blocks52

Bundling variables into tuples
A tuple is a combination of two or more values that can be treated as one. If you have ever wished
you could return more than one value from a function or method, without defining a new struct or
class, you should find tuples very interesting.

Getting ready

Create a new playground and add the following statement:

import Foundation

This example uses one function from Foundation. We will delve into Foundation in more detail
in Chapter 5, Beyond the Standard Library, but for now, we just need to import it.

How to do it...

Let’s imagine that we are building an app that pulls movie ratings from multiple sources and presents
them together, helping a user decide which movie to watch. These sources may use different rating
systems, such as the following:

•	 The number of stars out of 5

•	 Points out of 10

•	 The percentage score

We want to normalize these ratings so that they can be compared directly and displayed side by side.
We want all the ratings to be represented as the number of stars out of 5, so we will write a function
that will return the number of whole stars out of 5. We will then use this to display the correct number
of stars in our user interface (UI).

Our UI also includes a label that will read x Star Movie, where x is the number of stars. It would be
useful if our function returned both the number of stars and a string that we can put in the UI. We
can use a tuple to do this. Let’s get started:

1.	 Create a function to normalize the star ratings. The following function takes a rating and a total
possible rating, and then returns a tuple of the normalized rating and a string to display in the UI:

func normalizedStarRating(forRating rating: Float,
ofPossibleTotal total: Float) -> (Int, String) {

}

Bundling variables into tuples 53

2.	 Inside the function, calculate the fraction of the total score. Then, multiply that by our normalized
total score, 5, and round it up to the nearest whole number:

let fraction = rating / total
let ratingOutOf5 = fraction * 5
let roundedRating = round(ratingOutOf5) // Rounds to the nearest
// integer.

3.	 Still within the function, take the rounded fraction and convert it from Float into Int. Then,
create the display string and return both Int and String as a tuple:

let numberOfStars = Int(roundedRating) // Turns a Float into an
Int
let ratingString = "\(numberOfStars) Star Movie"
return (numberOfStars, ratingString)

4.	 Call our new function and store the result in a constant:

let ratingAndDisplayString = normalisedStarRating(forRating: 5,
ofPossibleTotal: 10)

5.	 Retrieve the number of stars rating from the tuple and print the result:

let ratingNumber = ratingAndDisplayString.0
print(ratingNumber) // 3 - Use to show the right number of stars

6.	 Retrieve the display string from the tuple and print the result:

let ratingString = ratingAndDisplayString.1
print(ratingString) // "3 Star Movie" - Use to put in the label

With that, we have created and used a tuple.

How it works...

A tuple is declared as a comma-separated list of the types it contains, within brackets. In the
preceding section, in step 1, you can see a tuple being declared as (Int, String). The function,
normalizedStarRating, normalizes the rating and creates numberOfStars as the closest
round number of stars and ratingString as a display string. These values are then combined
into a tuple by putting them, separated by a comma, within brackets – that is, (numberOfStars,
ratingString) in step 3. This tuple value is then returned by the function.

Now, let’s look at what we can do with that returned tuple value:

let ratingAndDisplayString = normalizedStarRating(forRating: 5,
ofPossibleTotal: 10)

Mastering the Building Blocks54

Calling our function returns a tuple that we store in a constant called ratingAndDisplayString.
We can access the tuple’s components by accessing the numbered member of the tuple:

let ratingNumber = ratingAndDisplayString.0
print(ratingNumber) // 3 - Use to show the right number of stars

let ratingString = ratingAndDisplayString.1
print(ratingString) // "3 Star Movie" - Use to put in the label

Note
As is the case with most numbered systems in programming languages, the member numbering
system starts with 0. The number that’s used to identify a certain place within a numbered
collection is called an index.

There is another way to retrieve the components of a tuple that can be easier to remember than the
numbered index. By specifying a tuple of variable names, each value of the tuple will be assigned to
the respective variable names. Due to this, we can simplify accessing the tuple values and printing
the result:

let (nextNumber, nextString) = normalizedStarRating(forRating: 8,
ofPossibleTotal: 10)
print(nextNumber) // 4
print(nextString) // "4 Star Movie"

Since the numerical value is the first value in the returned tuple, this gets assigned to the nextNumber
constant, while the second value, the string, gets assigned to nextString. These can then be used
like any other constant, eliminating the need to remember which index refers to which value.

There’s more...

As we mentioned previously, accessing a tuple’s components via a number is not ideal, as we have to
remember their order in the tuple to ensure that we are accessing the correct one. To provide some
context, we can add labels to the tuple components, which can be used to identify them when they are
accessed. Tuple labels are defined in a similar way to parameter labels, preceding the type and separated
by :. Let’s add labels to the function we created in this recipe and then use them to access the tuple values:

func normalizedStarRating(forRating rating: Float,
ofPossibleTotal total: Float) -> (starRating: Int, displayString:
String) {

 let fraction = rating / total
 let ratingOutOf5 = fraction * 5
 let roundedRating = round(ratingOutOf5) // Rounds to the nearest
integer

Bundling variables into tuples 55

 let numberOfStars = Int(roundedRating) // Turns a Float into an Int
 let ratingString = "\(numberOfStars) Star Movie"
 return (starRating: numberOfStars,
   displayString: ratingString)
}

let ratingAndDisplayString = normalizedStarRating(forRating: 5,
ofPossibleTotal: 10)
let ratingInt = ratingAndDisplayString.starRating
print(ratingInt) // 3 - Use to show the right number of stars
let ratingString = ratingAndDisplayString.displayString
print(ratingString) // "3 Stars" - Use to put in the label

As part of the function declaration, we can see the tuple being declared:

(starRating: Int, displayString: String)

When a tuple of that type is created, the provided values are preceded by the label:

return (starRating: numberOfStars, displayString: ratingString)

To access the components of the tuple, we can use these labels (although the number of indexes
still works):

let ratingValue = ratingAndDisplayString.starRating print(ratingValue)
// 3 - Use to show the right number of stars

let ratingString = ratingAndDisplayString.displayString
print(ratingString) // "3 Stars" - Use to put in the label

Tuples are a convenient and lightweight way to bundle values together.

Tip
In this example, we created a tuple with two components. However, a tuple can contain any
number of components.

See also

Further information about tuples can be found in Apple’s documentation on the Swift language
at https://docs.swift.org/swift-book/documentation/the-swift-programming-
language/types.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/types
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/types

Mastering the Building Blocks56

Ordering your data with arrays
So far in this book, we have learned about many different Swift constructs – classes, structs, enums,
closures, protocols, and tuples. However, it is rare to deal with just one instance of these on their own.
Often, we will have many of these constructs, and we need a way to collect multiple instances and
place them in useful data structures. Over the following few recipes, we will examine three collection
data structures provided by Swift – that is, arrays, sets, and dictionaries (dictionaries are often called
hash tables in other programming languages):

Figure 2.1 – A collection of data structures

While doing this, we will look at how to use them to store and access information, and then examine
their relative characteristics.

Getting ready

First, let’s investigate arrays, which are an ordered list of elements. We won’t be using any components
from the previous recipes, so you can create a new playground for this recipe.

How to do it...

Let’s use an array to organize a list of movies to watch:

1.	 Create an array called gamesToPlay. This will hold our strings:

var gamesToPlay = [String]()

2.	 Append three movies to the end of our movie list array:

gamesToPlay.append("The Secret of Monkey Island")
gamesToPlay.append("Half Life 2")
gamesToPlay.append("Alien Isolation")

Ordering your data with arrays 57

3.	 Print the names of each movie in the list, in turn:

print(gamesToPlay[0]) // "The Secret of Monkey Island"
print(gamesToPlay[1]) // "Half Life 2"
print(gamesToPlay[2]) // "Alien Isolation"

4.	 Print a count of the number of movies in the list so far:

print(gamesToPlay.count) // 3

5.	 Insert a new movie into the list so that it’s the third one in it. Since arrays are zero-based, this
is done at index 2:

gamesToPlay.insert("Breath of the Wild", at: 2)

6.	 Print the list count to check that it has increased by one, and print the newly updated list:

print (gamesToPlay.count) // 4
print(gamesToPlay)
// "The Secret of Monkey Island"
// "Half Life 2"
// "Breath of the Wild"
// "Alien Isolation"

7.	 Use the first and last array properties to access their respective values and print them:

let firstGameToPlay = gamesToPlay.first ?? ""
print(firstGameToPlay) // "The Secret of Monkey Island"
let lastGameToPlay = gamesToPlay.last ?? ""
print(lastGameToPlay as Any) // "Alien Isolation"

8.	 Use an index subscript to access the second movie in the list and print it. Then, set a new value
to that same subscript. Once you’ve done that, print the list count to check the number of movies
that haven’t changed, and print the list to check that the second array element has changed:

let secondMovieToWatch = gamesToPlay[1]
print(secondMovieToWatch) // "Ghostbusters"

gamesToPlay[1] = "Half Life 2 (2004)"
print(gamesToPlay.count) // 4
print(gamesToPlay)
// "The Secret of Monkey Island"
// "Half Life 2 (2004)"
// "Breath of the Wild"
// "Alien Isolation"

Mastering the Building Blocks58

9.	 Create a new array of spy movies by initializing it with some movies, using the array literal syntax:

let graphicAdventureGames: [String] = ["Monkey Island 2",
   "Loom",
   "Sam & Max"]

10.	 Combine the two arrays we have created, using the addition operator (+), and assign them
back to the gamesToPlay variable. Then, print the array count so that it reflects the two lists
combined, and print the new list:

gamesToPlay = gamesToPlay + graphicAdventureGames
print(gamesToPlay.count) // 7
print(gamesToPlay)
// "The Secret of Monkey Island"
// "Half Life 2 (2004)"
// "Breath of the Wild"
// "Alien Isolation"
// "Monkey Island 2"
// "Loom"
// "Sam & Max"

11.	 Now, use an array convenience initializer to create an array that contains three entries that
are the same. Then, update each array element so that the rest of their movie titles are shown:

var batmanGames = Array<String>(repeating: "Batman: ", count: 3)
batmanGames[0] = batmanGames[0] + "Arkham Asylum"
batmanGames[1] = batmanGames[1] + "Arkham City"
batmanGames[2] = batmanGames[2] + "Arkham Knight"
print(batmanGames)
// Batman: Arkham Asylum
// Batman: Arkham City
// Batman: Arkham Knight

12.	 Let’s replace part of our existing movie list with our batmanGames list, and then print the
count and list:

gamesToPlay.replaceSubrange(2...4, with: batmanGames)
print(gamesToPlay.count) // 7
print(gamesToPlay)
// "The Secret of Monkey Island"
// "Half Life 2 (2004)"
// Batman: Arkham Asylum
// Batman: Arkham City

Ordering your data with arrays 59

// Batman: Arkham Knight
// "Breath of the Wild"
// "Alien Isolation"

13.	 Lastly, remove the last movie in the list and check that the array count has reduced by one:

gamesToPlay.remove(at: 6)
print(gamesToPlay.count) // 6
print(gamesToPlay)
// "The Secret of Monkey Island"
// "Half Life 2 (2004)"
// Batman: Arkham Asylum
// Batman: Arkham City
// Batman: Arkham Knight
// "Breath of the Wild"

With that, we’ve looked at many ways we can create and manipulate arrays.

How it works...

When creating an array, we need to specify the type of elements that will be stored in the array. The
array element type is declared in angular brackets as part of the array’s type declaration. In our case,
we are storing strings:

var gamesToPlay = Array<String>()
gamesToPlay.append("The Secret of Monkey Island")
gamesToPlay.append("Half Life 2")
gamesToPlay.append("Alien Isolation")

The preceding code uses a Swift language feature called generics, which can be found in many
programming languages and will be covered in detail in Chapter 4, Generics, Operators, and Nested Types.

The append method of Array will add a new element to the end of the array. Now that we have put
some elements in the array, we can retrieve and print those elements:

print(gamesToPlay[0]) // "The Secret of Monkey Island"
print(gamesToPlay[1]) // "Half Life 2"
print(gamesToPlay[2]) // "Alien Isolation"

Elements in an array are numbered with a zero-based index, so the first element in the array is at
index 0, the second is at index 1, the third is at index 2, and so on. We can access the elements in the
array using a subscript, in which we provide the index of the element we want to access. A subscript
is specified in square brackets, after the array instance’s name.

Mastering the Building Blocks60

When an element is accessed using the index subscript, no check is done to ensure you have provided
a valid index. In fact, if an index is provided that the array doesn’t contain, this will cause a crash.
Instead, we can use some index helper methods on Array to ensure that we have an index that is
valid for this array. Let’s use one of these helper methods to check an index that we know is valid for
our array, and then another that we know is not valid:

let index5 = gamesToPlay.index(gamesToPlay.startIndex,
offsetBy: 5,
limitedBy: gamesToPlay.endIndex) print(index5 as Any) // Optional(5)

let index10 = gamesToPlay.index(gamesToPlay.startIndex,
offsetBy: 10,
limitedBy: gamesToPlay.endIndex)
print(index10 as Any) // nil

The index method lets us specify the index we want as an offset of the first index parameter, but
as something that’s limited by the last index parameter. This will return the valid index if it is within
the bounds, or nil if it is not. By the end of the playground, the gamesToPlay array contains six
elements, in which case retrieving index 5 is successful, but index 10 returns nil.

In Chapter 3, Data Wrangling with Swift, we will cover how to make decisions based on whether this
index exists, but for now, it’s just useful to know that this method is available.

Arrays have a count property that tells us how many elements they store. So, when we add an
element, this value will change:

print(gamesToPlay.count) // 3

Elements can be inserted anywhere in the array, using the same zero-based index that we used in the
preceding code:

gamesToPlay.insert("Breath of the Wild ", at: 2)

So, by inserting "Breath of the Wild" at index 2, it will be placed at the third position in our
array, and all the elements at position 2 or greater will be moved down by one.

This increases the array’s count:

print(gamesToPlay.count) // 4

Ordering your data with arrays 61

The array also provides some helpful computed properties for accessing elements at either end of
the array:

let firstGameToPlay = gamesToPlay.first ?? ""
print(firstGameToPlay) // "The Secret of Monkey Island"
let lastGameToPlay = gamesToPlay.last ?? ""
print(lastGameToPlay as Any) // "Alien Isolation"

These properties are optional values, as the array may be empty, and if it is, these will be nil. However,
accessing an array element via an index subscript returns a non-optional value.

Note
In the preceding example, we used a nil-coalescing operator (??). This operator allows us to
handle situations where the value is nil (e.g., if gamesToPlay was empty), but we need a
default returned value (in this case, we return an empty string, "").

In addition to retrieving values via the subscript, we can also assign values to an array subscript:

gamesToPlay[1] = "Half Life 2 (2004)"

This will replace the element at the given index with the new value.

When we created our first array, we created an empty array and then appended values to it. Additionally,
an array literal can be used to create an array that already contains values:

let graphicAdventureGames: [String] = ["Monkey Island 2",
   "Loom",
   "Sam & Max"]

An array type can be specified with the element type enclosed by square brackets, and the array literal
can be defined by comma-separated elements within square brackets. So, we can define an array of
integers like this:

let fibonacci: [Int] = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

As we learned in Chapter 1, Swift Fundamentals, in the Using the basic types – strings, ints, floats, and
booleans recipe, the compiler can often infer the type from the value we assign, and when the type
is inferred, we don’t need to specify it. In both the preceding arrays, graphicAdventureGames
and fibonacci, all the elements in the array are of the same type – that is, String and Int,
respectively. Since these types can be inferred, we don’t need to define them:

let graphicAdventureGames = ["Monkey Island 2", "Loom", "Sam & Max"]

let fibonacci = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Mastering the Building Blocks62

Arrays can be combined using the + operator:

gamesToPlay = gamesToPlay + graphicAdventureGames

This will create a new array by appending the elements in the second array to the first.

The array provides a convenience initializer that will fill an array with repeating elements. We can use
this initializer to create an array with the name of a well-known movie trilogy:

var batmanGames = Array<String>(repeating: "Batman: ", count: 3)

We can then combine subscript access, string appending, and subscript assignment to add the full
movie name to our trilogy array:

batmanGames[0] = batmanGames[0] + "Arkham Asylum"
batmanGames[1] = batmanGames[1] + "Arkham City"
batmanGames[2] = batmanGames[2] + "Arkham Knight"

The array also provides a helper to replace a range of values with the values contained in another array:

gamesToPlay.replaceSubrange(2...4, with: batmanGames)

Here, we have specified a range using ... to indicate a range between two integer values, inclusive
of those values. So, this range contains the 2, 3, and 4 integers.

We will specify ranges in this way in subsequent chapters. Alternatively, you can specify a range that
goes up to, but not including, the top of the range. This is known as a half-open range:

gamesToPlay.replaceSubrange(2..<5, with: batmanGames)

For our arrays, we’ve added elements, accessed them, and replaced them, so we need to know how to
remove elements from an array:

gamesToPlay.remove(at: 6)

Provide the index of the element to the remove method. By doing this, the element at that index will
be removed from the array, and all the subsequent elements will move up one place to fill the empty
space. This will reduce the array’s count by 1:

print(gamesToPlay.count) // 6

There’s more...

If you are familiar with Objective-C, you will have used NSArray, which provides similar functionalities
to a Swift array. You may also remember that NSArray is immutable, which means its contents
can’t be changed once it’s been created. If you need to change its contents, then NSMutableArray
should be used instead. Due to this, you may be wondering if Swift has similar concepts of mutable

Containing your data in sets 63

and immutable arrays. It does, but rather than using separate mutable and immutable types, you create
a mutable array by declaring it as a variable and an immutable array by declaring it as a constant:

let evenNumbersTo10 = [2, 4, 6, 8, 10] evenNumbersTo10.append(12) //
Doesn't compile

var evenNumbersTo12 = evenNumbersTo10 evenNumbersTo12.append(12) //
Does compile

To understand why this is the case, it’s important to know that an array is a value type, as are the other
collection types in Swift.

As we saw in Chapter 1, Swift Fundamentals, a value type is immutable in nature and creates a changed
copy whenever it is mutated. Therefore, by assigning the array to a constant using let, we prevent
any new value from being assigned, making mutating the array impossible.

See also

Further information about arrays can be found in Apple’s documentation on the Swift language
at https://developer.apple.com/documentation/swift/array.

Arrays use generics to define the element type they contain. Generics will be discussed in detail in
Chapter 4, Generics, Operators, and Nested Types.

Further information about the nil-coalescing operator can be found at https://docs.swift.
org/swift-book/documentation/the-swift-programming-language/
basicoperators/#Nil-Coalescing-Operator

Containing your data in sets
The following collection type we will look at is a set. Sets differ from arrays in two important ways.
The elements in a set are stored unordered, and each unique element is only held once. In this recipe,
we will learn how to create and manipulate sets.

Getting ready

In this recipe, we can use the playground from the previous recipe. Don’t worry if you didn’t work
through the previous recipe, as this one will contain all the code you need.

How to do it...

First, let’s explore some ways we can create sets and perform set algebra on them:

1.	 Create an array that contains the first nine Fibonacci numbers, and also a set containing the same:

let fibonacciArray: Array<Int> = [1, 1, 2, 3, 5, 8, 13, 21, 34]
let fibonacciSet: Set<Int> = [1, 1, 2, 3, 5, 8, 13, 21, 34]

https://developer.apple.com/documentation/swift/array
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/basicoperators/#Nil-Coalescing-Operator
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/basicoperators/#Nil-Coalescing-Operator
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/basicoperators/#Nil-Coalescing-Operator

Mastering the Building Blocks64

2.	 Print out the number of elements in each collection using the count property. Despite being
created with the same elements, the count value is different:

print(fibonacciArray.count) // 9
print(fibonacciSet.count) // 8

3.	 Insert an element into a set of animals, remove an element, and check whether a set contains
a given element:

var animals: Set<String> = ["cat", "dog", "mouse", "elephant"]
animals.insert("rabbit")
print(animals.contains("dog")) // true animals.remove("dog")
print(animals.contains("dog")) // false

4.	 Create some sets containing common mathematical number groups. We will use these to
explore some methods for set algebra:

let evenNumbers = Set<Int>(arrayLiteral: 2, 4, 6, 8, 10)
let oddNumbers: Set<Int> = [1, 3, 5, 7, 9]
let squareNumbers: Set<Int> = [1, 4, 9]
let triangularNumbers: Set<Int> = [1, 3, 6, 10]

5.	 Obtain the union of two sets, and print the result:

let evenOrTriangularNumbers = evenNumbers.
union(triangularNumbers)
// 2, 4, 6, 8, 10, 1, 3, unordered
print(evenOrTriangularNumbers.count) // 7

6.	 Obtain the intersection of two sets, and print the result:

let oddAndSquareNumbers = oddNumbers.intersection(squareNumbers)
// 1, 9, unordered
print(oddAndSquareNumbers.count) // 2

7.	 Obtain the symmetric difference of two sets, and print the result:

let squareOrTriangularNotBoth = squareNumbers.
symmetricDifference(triangularNumbers)
// 4, 9, 3, 6, 10, unordered
print(squareOrTriangularNotBoth.count) // 5

8.	 Obtain the result of subtracting one set from another, and print the result:

let squareNotOdd = squareNumbers.subtracting(oddNumbers) // 4
print(squareNotOdd.count) // 1

Containing your data in sets 65

Now, we will examine the set membership comparison methods that are available:

1.	 Create some sets with overlapping memberships:

let animalKingdom: Set<String> = ["dog", "cat", "pigeon",
"chimpanzee", "snake", "kangaroo", "giraffe", "elephant",
"tiger", "lion", "panther"]
let vertebrates: Set<String> = ["dog", "cat", "pigeon",
"chimpanzee", "snake", "kangaroo", "giraffe", "elephant",
"tiger", "lion", "panther"]
let reptile: Set<String> = ["snake"]
let mammals: Set<String> = ["dog", "cat", "chimpanzee",
"kangaroo", "giraffe", "elephant", "tiger", "lion", "panther"]
let catFamily: Set<String> = ["cat", "tiger", "lion", "panther"]
let domesticAnimals: Set<String> = ["cat", "dog"]

2.	 Use the isSubset method to determine whether one set is a subset of another. Then, print
the result:

print(mammals.isSubset(of: animalKingdom)) // true

3.	 Use the isSuperset method to determine whether one set is a superset of another. Then,
print the result:

print(mammals.isSuperset(of: catFamily)) // true

4.	 Use the isStrictSubset method to determine whether one set is a strict subset of another.
Then, print the result:

print(vertebrates.isStrictSubset(of: animalKingdom)) // false
print(mammals.isStrictSubset(of: animalKingdom)) // true

5.	 Use the isStrictSuperset method to determine whether one set is a strict superset of
another. Then, print the result:

print(animalKingdom.isStrictSuperset(of: vertebrates)) // false
print(animalKingdom.isStrictSuperset(of: domesticAnimals))// true

6.	 Use the isDisjoint method to determine whether one set is disjointed with another. Then,
print the result:

print(catFamily.isDisjoint(with: reptile)) // true

How it works...

Sets are created in almost the same way as arrays, and like arrays, we have to specify the element type
that we will be stored in them:

let fibonacciArray: Array<Int> = [1, 1, 2, 3, 5, 8, 13, 21, 34]
let fibonacciSet: Set<Int> = [1, 1, 2, 3, 5, 8, 13, 21, 34]

Mastering the Building Blocks66

Arrays and sets store their elements differently. If you provide multiple elements of the same value
to an array, it will store them multiple times. A set works differently; it will only store one version of
each unique element. Therefore, in the preceding Fibonacci number sequence, the array stores two
elements for the first two values, 1, 1, but the set will store this as just one 1 element. This leads to
the collections having different counts, despite being created with the same values:

print(fibonacciArray.count) // 9
print(fibonacciSet.count) // 8

This ability to store elements uniquely is made possible due to a requirement that a set has, regarding
the type of elements it can hold. A set’s elements must conform to the Hashable protocol. This
protocol requires a hashValue property to be provided as Int, and the set uses this hashValue
to do its uniqueness comparison. Both the Int and String types conform to Hashable, but any
custom types that will be stored in a set will also need to conform to Hashable.

A set’s insert, remove, and contains methods work as you would expect, with the compiler
enforcing that the correct types are provided. This compiler type checking is done thanks to the
generics constraints that all the collection types have. We will cover generics in more detail in
Chapter 4, Generics, Operators, and Nested Types.

Union

The union method returns a set containing all the unique elements from the set that the method is
called on, as well as the set that was provided as a parameter:

let evenOrTriangularNumbers = evenNumbers.union(triangularNumbers)
// 2,4,6,8,10,1,3,unordered

The following diagram depicts the union of Set A and Set B:

Figure 2.2 – A union of sets

Containing your data in sets 67

Intersection

The intersection method returns a set of unique elements that were contained in both the set
that the method was called on and the set that was provided as a parameter:

let oddAndSquareNumbers = oddNumbers.intersection(squareNumbers)
// 1, 9, unordered

The following diagram depicts the intersection of Set A and Set B:

Figure 2.3 – The set intersection

Symmetric difference

The symmetricDifference method returns a set of unique elements that are in either the set
the method is called on or the set that’s provided as a parameter, but not elements that are in both:

let squareOrTriangularNotBoth = squareNumbers.
symmetricDifference(triangularNumbers)
// 4, 9, 3, 6, 10, unordered

Note
This set operation is sometimes referred to as an exclusiveOr method by other programming
languages, including previous versions of Swift.

The following diagram depicts the symmetric difference between Set A and Set B:

Mastering the Building Blocks68

Figure 2.4 – The symmetric difference

Subtracting

The subtracting method returns a unique set of elements that can be found in the set the method
was called on, but not in the set that was passed as a parameter. Unlike the other set manipulation
methods we’ve mentioned, this will not necessarily return the same value if you swap the set that the
method is called on with the set provided as a parameter:

let squareNotOdd = squareNumbers.subtracting(oddNumbers) // 4

The following diagram depicts the set that’s created by subtracting Set B from Set A:

Figure 2.5 – Subtracting a set

A membership comparison

In addition to set manipulation methods, there are a number of methods we can use to determine
information about set membership.

The isSubset method will return true if all the elements in the set that the method is called on
are contained within the set that’s passed as a parameter:

print(mammals.isSubset(of: animalKingdom)) // true

Containing your data in sets 69

The following diagram depicts Set B as the subset of Set A:

Figure 2.6 – The subset

This will also return true if the two sets are equal (i.e., they contain the same elements). If you only
want a true value when the set that the method is called on is a subset and not equal, then you can
use isStrictSubset:

print(vertebrates.isStrictSubset(of: animalKingdom)) // false
print(mammals.isStrictSubset(of: animalKingdom)) // true

The isSuperset method will return true if all the elements in the set that have been passed as a
parameter are within the set that the method is called on:

print(mammals.isSuperset(of: catFamily)) // true

The following diagram depicts Set A as the superset of Set B:

Figure 2.7 – The superset

This will also return true if the two sets are equal (i.e., they contain the same elements). If you only
want a true value when the set that the method is called on is a superset and not equal, then you
can use isStrictSuperset:

print(animalKingdom.isStrictSuperset(of: vertebrates)) // false
print(animalKingdom.isStrictSuperset(of: domesticAnimals)) // true

Mastering the Building Blocks70

The isDisjoint method will return true if there are no common elements between the set that
the method is called on and the set that was passed as a parameter:

print(catFamily.isDisjoint(with: reptile)) // true

The following diagram shows that Set A and Set B are disjointed:

Figure 2.8 – A disjoint

As with arrays, a set can be declared immutable by assigning it to a let constant instead of a var variable:

let planets: Set<String> = ["Mercury", "Venus", "Earth", "Mars",
"Jupiter", "Saturn", "Uranus", "Neptune", "Pluto"]
planets.remove("Pluto") // Doesn't compile

This declaration is possible because a set, like the other collection types, is a value type. Removing an
element would mutate the set, which creates a new copy, but a let constant can’t have a new value
assigned to it, so the compiler prevents any mutating operations.

See also

Further information about arrays can be found in Apple’s documentation on the Swift language
at https://docs.swift.org/swift-book/documentation/the-swift-programming-
language/collectiontypes/.

Sets use generics to define the element types they contain. Generics will be discussed in detail in
Chapter 4, Generics, Operators, and Nested Types.

Storing key-value pairs with dictionaries
The last collection type we will look at is the dictionary. This is a familiar construct in programming
languages, where it is sometimes referred to as a hash table. A dictionary holds a collection of pairings
between a key and a value. The key can be any element that conforms to the Hashable protocol
(just like elements in a set), while the value can be any type. The contents of a dictionary are not
stored in order, unlike an array; instead, key is used both when storing a value and as a lookup when
retrieving a value.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/collectiontypes/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/collectiontypes/

Storing key-value pairs with dictionaries 71

Getting ready

In this recipe, we will use a dictionary to store details of people at a place of work. We need to store and
retrieve a person’s information based on their role in an organization, such as a company directory. To
hold this person’s information, we will use a modified version of our Person class from Chapter 1,
Swift Fundamentals.

Enter the following code into a new playground:

struct PersonName {
 let givenName: String
 let familyName: String
}

enum CommunicationMethod {
 case phone
 case email
 case textMessage
 case fax
 case telepathy
 case subSpaceRelay
 case tachyons
}

class Person {
 let name: PersonName
 let preferredCommunicationMethod: CommunicationMethod

 convenience init(givenName: String, familyName: String,
commsMethod: CommunicationMethod) {
 let name = PersonName(givenName: givenName, familyName:
familyName)
 self.init(name: name, commsMethod: commsMethod)
 }

 init(name: PersonName, commsMethod: CommunicationMethod) {
 self.name = name
 preferredCommunicationMethod = commsMethod
 }

 var displayName: String {
 return "\(name.givenName) \(name.familyName)"
 }
}

Mastering the Building Blocks72

How to do it...

Let’s use the Person object we defined previously to build up our workplace directory using a dictionary:

1.	 Create a Dictionary for the employee directory:

var crew = Dictionary<String, Person>()

2.	 Populate the dictionary with employee details:

crew["Captain"] = Person(givenName: "Jean-Luc", familyName:
"Picard", commsMethod: .phone)
crew["First Officer"] = Person(givenName: "William", familyName:
"Riker", commsMethod: .email)
crew["Chief Engineer"] = Person(givenName: "Geordi", familyName:
"LaForge", commsMethod: .textMessage)
crew["Second Officer"] = Person(givenName: "Data", familyName:
"Soong", commsMethod: .fax)
crew["Councillor"] = Person(givenName: "Deanna", familyName:
"Troi", commsMethod: .telepathy)
crew["Security Officer"] = Person(givenName: "Tasha",
familyName: "Yar", commsMethod: .subSpaceRelay)
crew["Chief Medical Officer"] = Person(givenName: "Beverly",
familyName: "Crusher", commsMethod: .tachyons)

3.	 Retrieve an array of all the keys in the dictionary. This will give us an array of all the roles in
the organization:

let roles = Array(crew.keys)
print(roles)

4.	 Use a key to retrieve one of the employees, and print the result:

let firstRole = roles.first! // Chief Medical Officer
let cmo = crew[firstRole]! // Person: Beverly Crusher
print("\(firstRole): \(cmo.displayName)") // Chief Medical
Officer: Beverly Crusher

5.	 Replace a value in the dictionary by assigning a new value against an existing key. The previous
value for the key is discarded when a new value is set:

print(crew["Security Officer"]!.name.givenName) // Tasha
crew["Security Officer"] = Person(givenName: "Worf", familyName:
"Son of Mogh", commsMethod: .subSpaceRelay)
print(crew["Security Officer"]!.name.givenName) // Worf

With that, we have learned how to create, populate, and look up values in a dictionary.

Storing key-value pairs with dictionaries 73

How it works...

As with the other collection types, when we create a dictionary, we need to provide the types that
the dictionary will hold. For dictionaries, there are two types that we need to define. The first is the
type of the key (which must conform to Hashable), while the second is the type of the value being
stored against the key. For our dictionary, we are using String for the key and Person for the
values being stored:

var crew = Dictionary<String, Person>()

As with an array, we can specify a dictionary type using square brackets and create one using a
dictionary literal, where : separates the key and the value:

let intByName: [String: Int] = ["one": 1, "two": 2, "three": 3]

Therefore, we can change our dictionary definition so that it looks like this:

var crew: [String: Person] = [:]

The [:] symbol denotes an empty dictionary as a dictionary literal.

Elements are added to a dictionary using a subscript. Unlike an array, which takes an Int index
in the subscript, a dictionary takes the key and then pairs the given value with the given key. In the
following example, we assign a Person object to the "Captain" key:

crew["Captain"] = Person(givenName: "Jean-Luc",
familyName: "Picard", commsMethod: .phone)

If no value currently exists, the assigned value will be added. If a value already exists for the given key,
the old value will be replaced with the new value, and the old value will be discarded.

There are properties in the dictionary that provide all the keys and values. These properties are of a
custom collection type, which can be passed to an array initializer to create an array:

let roles = Array(crew.keys) print(roles)

To display all the dictionary’s keys, as provided by the keys property, we can either create an array
or iterate over the collection directly. We will cover iterating over a collection’s values in Chapter 3,
Data Wrangling with Swift, so for now, we will create an array.

Now, we will use one of the values from an array of keys, alongside the crew, to retrieve full details
about the associated Person:

let firstRole = roles.first! // Chief Medical Officer
let cmo = crew[firstRole]! // Person: Beverly Crusher
print("\(firstRole): \(cmo.displayName)") // Chief Medical Officer:
Beverly Crusher

Mastering the Building Blocks74

We get the first element using the first property, but since this is an optional type, we need to
force-unwrap it using !. We can pass firstRole, which is now a non-optional String to the
dictionary subscript, to get the Person object associated with that key. The return type to retrieve the
value via subscript is also optional, so it also needs to be force-unwrapped before we print its values.

Note
Force unwrapping is usually an unsafe thing to do, as if we force unwrap a value that turns out
to be nil, our code will crash. We advise you to check that a value isn’t nil before unwrapping
the optional. We will cover how to do this in Chapter 3.

There’s more...

In this recipe, we used strings as the keys for our dictionary. However, we can also use a type that
conforms to the Hashable protocol.

One downside of using String as a key for our employee directory is that it is very easy to mistype
an employee’s role or look for a role that you expect to exist but doesn’t. So, we can improve our
implementation by using something that conforms to Hashable and is better suited to being used
as a key in our model.

We have a finite set of employee roles in our model, and an enumeration is perfect for representing a
finite number of options, so let’s define our roles as an enum:

enum Role: String {
 case captain = "Captain"
 case firstOfficer = "First Officer"
 case secondOfficer = "Second Officer"
 case chiefEngineer = "Chief Engineer"
 case councillor = "Councillor"
 case securityOfficer = "Security Officer"
 case chiefMedicalOfficer = "Chief Medical Officer"
}

Now, let’s change our Dictionary definition so that it uses this new enum as a key, and then insert
our employees using these enum values:

var crew = Dictionary<Role, Person>()
crew[.captain] = Person(givenName: "Jean-Luc", familyName: "Picard",
commsMethod: .phone)
crew[.firstOfficer] = Person(givenName: "William", familyName:
"Riker", commsMethod: .email)
crew[.chiefEngineer] = Person(givenName: "Geordi", familyName:
"LaForge", commsMethod: .textMessage)
crew[.secondOfficer] = Person(givenName: "Data", familyName: "Soong",

Storing key-value pairs with dictionaries 75

commsMethod: .fax)
crew[.councillor] = Person(givenName: "Deanna", familyName: "Troi",
commsMethod: .telepathy)
crew[.securityOfficer] = Person(givenName: "Tasha", familyName: "Yar",
commsMethod: .subSpaceRelay)
crew[.chiefMedicalOfficer] = Person(givenName: "Beverly", familyName:
"Crusher", commsMethod: .tachyons)

You will also need to change all the other uses of crew so that they use the new enum-based key.

Let’s take a look at how and why this works. We created Role as a String-based enum:

enum Role: String {
 //...
}

Defining it in this way has two benefits:

•	 We intend to display these roles to the user, so we will need a string representation of the Role
enum, regardless of how we defined it.

•	 Enums have a little bit of protocol and generics magic in them, which means that if an enum
is backed by a type that implements the Hashable protocol (as String does), the enum
also automatically implements the Hashable protocol. Therefore, defining Role as being
String-based satisfies the dictionary requirement of a key being Hashable, without us
having to do any extra work.

With our crew dictionary now defined as having a Role-based key, all subscript operations have
to use a value in the enum role:

crew[.captain] = Person(givenName: "Jean-Luc", familyName: "Picard",
commsMethod: .phone)
let cmo = crew[.chiefMedicalOfficer]

The compiler enforces this, so it’s no longer possible to use an incorrect role when interacting with our
employee directory. This pattern of using Swift’s constructs and type system to enforce the correct use
of code is something we should strive to do, as it can reduce bugs and prevent our code from being
used in unexpected ways.

See also

Further information about dictionaries can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/collections.

http://swiftbook.link/docs/collections

Mastering the Building Blocks76

Subscripts for custom types
By using collection types, we have seen that their elements are accessed through subscripts. However,
it’s not just collection types that can have subscripts; your own custom types can provide subscript
functionality too.

Getting ready

In this recipe, we will create a simple game of tic-tac-toe, also known as noughts and crosses. To do
this, we need a three-by-three grid of positions, with each position being filled by either a nought
from player 1, a cross from player 2, or nothing. We can store these positions in an array of arrays.

The initial game setup code uses the concepts we’ve already covered in this book, so we won’t go into
its implementation. Enter the following code into a new playground so that we can see how subscripts
improve its usage:

enum GridPosition: String {
 case player1 = "o"
 case player2 = "x"
 case empty = " "
}

struct TicTacToe {
 var gridStorage: [[GridPosition]] = []
 init() {
  gridStorage.append(Array(repeating: .empty,
    count: 3))
  gridStorage.append(Array(repeating: .empty,
    count: 3))
  gridStorage.append(Array(repeating: .empty,
    count: 3))
 }
 func gameStateString() -> String {
  var stateString = "\n"
  stateString += printableString(forRow: gridStorage[0])
  stateString += "\n"
  stateString += printableString(forRow: gridStorage[1])
  stateString += "\n"
  stateString += printableString(forRow: gridStorage[2])
  stateString += "\n"
  return stateString
 }
 func printableString(forRow row: [GridPosition]) -> String {
  var rowString = "| \(row[0].rawValue) "

Subscripts for custom types 77

  rowString += "| \(row[1].rawValue) "
  rowString += "| \(row[2].rawValue) |\n"
  return rowString
 }
}

How to do it...

Let’s run through how we can use the tic-tac-toe game defined previously, as well as how we can
improve how it is used, using a subscript. We will also examine how this works:

1.	 Let’s create an instance of our TicTacToe grid:

var game = TicTacToe()

2.	 For a player to make a move, we need to change the GridPosition value that’s been assigned
to the relevant place in the array of arrays. This is used to store the grid positions. Player 1 will
place a nought in the middle position of the grid, which would be row position 1 and column
position 1 (since it’s a zero-based array):

// Move 1
game.gridStorage[1][1] = .player1
print(game.gameStateString())
/*

	o	
*/

Figure 2.9 – The grid positions

3.	 Then, player 2 places their cross in the top-right position, which is row position 0 and column
position 2:

// Move 2
game.gridStorage[0][2] = .player2
print(game.gameStateString())
/*

||| x |

|| o ||

Mastering the Building Blocks78

||||

*/

We can make moves in our game. We can do this by adding information directly to the
gridStorage array, which isn’t ideal. The player shouldn’t need to know how the moves are
stored, and we should be able to change how we store the game information without having
to change how the moves are made. To solve this, let’s create a subscript of our game struct so
that making a move in the game is just like assigning a value to an array.

4.	 Add the following subscript method to the TicTacToe struct:

struct TicTacToe {
 var gridStorage: [[GridPosition]] = []
 //...
 subscript(row: Int, column: Int) -> GridPosition {
  get {
   return gridStorage[row][column]
  }
  set(newValue) {
   gridStorage[row][column] = newValue
  }
 }
 //...
}

5.	 So, now, we can change how each player makes their move and finish the game:

// Move 1
game[1, 1] = .player1 print(game.gameStateString())
/*

	o	
*/
// Move 2
game[0, 2] = .player2
print(game.gameStateString())
/*

||| x |

|| o ||

Subscripts for custom types 79

||||

*/

// Move 3
game[0, 0] = .player1
print(game.gameStateString())
/*

| o || x |

|| o ||

||||

*/

// Move 4
game[1, 2] = .player2
print(game.gameStateString())
/*

| o || x |

|| o | x |

||||

*/

// Move 5
game[2, 2] = .player1
print(game.gameStateString())
/*

| o || x |

|| o | x |

||| o |

*/

Mastering the Building Blocks80

6.	 Just like when using an array, we can use a subscript to access the value, as well as assign a value
to it:

let topLeft = game[0, 0]
let middle = game[1, 1]
let bottomRight = game[2, 2]
let p1HasWon = (topLeft == .player1) && (middle == .player1) &&
(bottomRight == .player1)

How it works...

Subscript functionality can be defined within a class, struct, or enum, or declared within a protocol
as a requirement. To do this, we can define subscript (which is a reserved keyword that activates
the required functionality) with input parameters and an output type:

subscript(row: Int, column: Int) -> GridPosition

This subscript definition works like a computed property, where get can be defined to allow you
to access values through subscript, and set can be defined to assign values using subscript:

subscript(row: Int, column: Int) -> GridPosition {
 get {
  return gridStorage[row][column]
 }
 set(newValue) {
  gridStorage[row][column] = newValue
 }
}

Any number of input parameters can be defined, and these should be provided as comma-separated
values in the subscript:

game[1, 2] = .player2 // Assigning a value
let topLeft = game[0, 0] // Accessing a value

There’s more...

Just like parameters defined in a function, subscript parameters can have additional labels. If defined,
these become required at the call site, so the subscript we added can alternatively be defined as follows:

subscript(atRow row: Int, atColumn column: Int) -> GridPosition

In this case, when using subscript, we would also provide the labels in it:

game[atRow: 1, atColumn: 2] = .player2 // Assigning a value
let topLeft = game[atRow: 0, atColumn: 0] // Accessing a value

Changing your name with a type alias 81

See also

Further information about subscripts can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/subscripts.

Changing your name with a type alias
The typealias declaration allows you to create an alias for a type (and is, therefore, pretty accurately
named!). You can specify a name that can be used in place of any given type of definition. If this type
is quite complex, a type alias can be a useful way to simplify its use.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

We will use a type alias to replace an array definition:

1.	 First, let’s create something we can store in an array. In this instance, let’s create a Pug struct:

struct Pug {
 let name: String
}

2.	 Now, we can create an array that will contain instances of a Pug struct:

let pugs = [Pug]()

Note
You may or may not know that the collective noun for a group of pugs is called grumble.

3.	 We can set up typealias to define an array of pugs as Grumble:

typealias Grumble = [Pug]

4.	 With this defined, we can substitute Grumble wherever we would use [Pug] or Array<Pug>:

var grumble = Grumble()

5.	 However, this isn’t some new type – it is just an array with all the same functionalities:

let marty = Pug(name: "Marty McPug")
let wolfie = Pug(name: "Wolfgang Pug")

http://swiftbook.link/docs/subscripts

Mastering the Building Blocks82

let buddy = Pug(name: "Buddy")
grumble.append(marty)
grumble.append(wolfie)
grumble.append(buddy)

There’s more...

The preceding example allows us to use types in a more natural and expressive way. In addition, we
can use typealias to simplify a more complex type that may be used in multiple places.

To see how this might be useful, we can partially build an object to fetch program information:

enum Channel {
 case BBC1
 case BBC2
 case BBCNews
 //...
}

class ProgrammeFetcher {
 func fetchCurrentProgrammeName(forChannel channel: Channel,
resultHandler: (String?, Error?) -> Void) {
  // ...
  // Do the work to get the current programme
  // ...
  let exampleProgramName = "Sherlock"
  resultHandler(exampleProgramName, nil)

}
 func fetchNextProgrammeName(forChannel channel: Channel,
resultHandler: (String?, Error?) -> Void) {
  // ...
  // Do the work to get the next programme
  // …
  let exampleProgramName = "Luther"
  resultHandler(exampleProgramName, nil)
 }
}

In the ProgrammeFetcher object, we have two methods that take a channel and a result handler closure.
The result handler closure has the following definition. We have to define this twice, once for each method:

(String?, Error?) -> Void

Getting property changing notifications using property observers 83

Alternatively, we can define this closure definition with a typealias called FetchResultHandler
and replace each method definition with a reference to this typealias:

class ProgrammeFetcher {
 typealias FetchResultHandler = (String?, Error?) -> Void
 func fetchCurrentProgrammeName(forChannel channel: Channel,
resultHandler: FetchResultHandler) {
  // Get next programme
  let programmeName = "Sherlock"
  resultHandler(programmeName, nil)
 }

 func fetchNextProgrammeName(forChannel channel: Channel,
resultHandler: FetchResultHandler) {
  // Get next programme
  let programmeName = "Luther"
  resultHandler(programmeName, nil)
 }
}

Not only does this save us from defining the closure type twice, but it is also a better description of
the function that the closure performs.

Using typealias also doesn’t affect how we provide closure to the method:

let fetcher = ProgrammeFetcher()
fetcher.fetchCurrentProgrammeName(forChannel: .BBC1,
resultHandler: { programmeName, error in
 print(programmeName as Any)
})

See also

Further information about type alias can be found in Apple’s documentation on the Swift language
at https://docs.swift.org/swift-book/documentation/the-swift-programming-
language/declarations/.

Getting property changing notifications using property
observers
It’s common to want to know when a property’s value changes. Perhaps you want to update the value of
another property or update some UI element. In Objective-C, this was often accomplished by writing
your own getter and setter or using Key-Value Observing (KVO). However, in Swift, we have native
support for property observers.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/declarations/.
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/declarations/.

Mastering the Building Blocks84

Getting ready

To examine property observers, we should create an object with a property that we want to observe.
Let’s create an object that manages users and a property that holds the current user’s name.

Enter the following code into a new playground:

class UserManager {
 var currentUserName: String = "Emmanuel Goldstein"
}

We want to present some friendly messages when the current user changes. We’ll use property
observers to do this.

How to do it...

Let’s get started:

1.	 Amend the currentUserName property definition so that it looks as follows:

class UserManager {
 var currentUserName: String = "Guybrush Threepwood" {
  willSet (newUserName) {
   print("Goodbye to \(currentUserName)")
   print("I hear \(newUserName) is on their way!")
  }
  didSet (oldUserName) {
   print("Welcome to \(currentUserName)")
   print("I miss \(oldUserName) already!")
  }
 }
}

2.	 Create an instance of UserManager, and change the current username. This will generate
friendly messages:

let manager = UserManager()
manager.currentUserName = "Elaine Marley"
// Goodbye to Guybrush Threepwood
// I hear Elaine Marley is on their way!
// Welcome to Elaine Marley
// I miss Guybrush Threepwood already!

manager.currentUserName = "Ghost Pirare LeChuck"

Getting property changing notifications using property observers 85

// Goodbye to Elaine Marley
// I hear Ghost Pirare LeChuck is on their way!
// Welcome to Ghost Pirare LeChuck
// I miss Elaine Marley already!

How it works...

Property observers can be added within curly brackets after the property declaration, and there are
two types – willSet and didSet.

The willSet observer will be called before the property is set and provides the value that will be set
on the property. This new value can be given a name within brackets – for example, newUserName:

willSet (newUserName) {
 //...
}

The didSet observer will be called after the property is set and provides the value that the property
had before being set. This old value can be given a name within brackets – for example, oldUserName:

didSet (oldUserName) {
 //...
}

There’s more...

The new value and old value that are passed into the property observers have implicit names, so there
is no need to explicitly name them. The willSet observer is passed a value with an implicit name
of newValue, and the didSet observer is passed a value with an implicit name of oldValue.

Therefore, we can remove our explicit names and use the implicit value names:

class UserManager {
 var currentUserName: String = "Guybrush Threepwood" {
  willSet {
   print("Goodbye to \(currentUserName)")
   print("I hear \(newValue) is on their way!")
  }
  didSet {
   print("Welcome to \(currentUserName)")
   print("I miss \(oldValue) already!")
  }
 }
}

Mastering the Building Blocks86

See also

Further information about property observers can be found in Apple’s documentation on the Swift
language at http://swiftbook.link/docs/properties.

Extending functionality with extensions
Extensions let us add functionality to our existing classes, structs, enums, and protocols. These can
be especially useful when the original type is provided by an external framework, which means you
aren’t able to add functionality directly.

Imagine that we often need to obtain the first word from a given string. Rather than repeatedly writing
the code to split the string into words and then retrieving the first word, we can extend the functionality
of String to provide its own first word.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

Let’s get started:

1.	 Create an extension of String:

extension String {

}

2.	 Within the extension’s curly brackets, add a function that returns the first word from the string:

func firstWord() -> String {
 let spaceIndex = firstIndex(of: " ") ?? endIndex
 let word = prefix(upTo: spaceIndex)
 return String(word)
}

3.	 Now, we can use this new method on String to get the first word from a phrase:

let llap = "Ask me about Loom"
let firstWord = llap.firstWord()
print(firstWord) // Ask

http://swiftbook.link/docs/properties

Extending functionality with extensions 87

How it works...

We can define an extension using the extension keyword and then specify the type we want to
extend. The implementation of this extension is defined within curly brackets:

extension String {
 //...
}

Methods and computed properties can be defined in extensions in the same way that they can be defined
within classes, structs, and enums. Here, we will add a firstWord function to the String struct:

extension String {
 func firstWord() -> String {
  let spaceIndex = firstIndex(of: " ") ?? endIndex
  let word = prefix(upTo: spaceIndex)
  return String(word)
 }
}

The implementation of the firstWord method is not important for this recipe, so we’ll just touch
on it briefly.

In Swift, String is a collection, so we can use the collection methods to find the first index of an
empty space. However, this could be nil, since the string may contain only one word or no characters
at all, so if the index is nil, we must use endIndex instead. The nil coalescing operator (??) is
only used to assign endIndex if firstIndex(of: " ") is nil.

More generally, the operation will evaluate the value on the left-hand side of the operator, unless it is
nil, in which case it will assign the value on the right-hand side.

Then, we use the index of the first space to retrieve the substring up to the index, which has a
SubString type. We then use that to create and return String.

Extensions can implement anything that uses the existing functionality, but they can’t store information
in a new property. Therefore, computed properties can be added, but stored properties cannot. Let’s
change our firstWord method so that it’s a computed property instead:

extension String {
 var firstWord: String {
  let spaceIndex = firstIndex(of: " ") ?? endIndex
  let word = prefix(upTo: spaceIndex)
  return String(word)
 }
}

Mastering the Building Blocks88

There’s more...

Extensions can also be used to add protocol conformance, so let’s create a protocol that we want to
add conformance to:

1.	 The protocol declares that something can be represented as Int:

protocol IntRepresentable {
 var intValue: Int { get }
}

2.	 We can extend Int and have it conform to IntRepresentable by returning itself:

extension Int: IntRepresentable {
 var intValue: Int {
  return self
 }
}

3.	 Now, we’ll extend String, and we’ll use an Int constructor that takes String and returns
Int if our String contains digits that represent an integer:

extension String: IntRepresentable {
 var intValue: Int {
  return Int(self) ?? 0
 }
}

4.	 We can also extend our own custom types and add conformance to the same protocol, so let’s
create an enum that can be IntRepresentable:

enum CrewComplement: Int {
 case enterpriseD = 1014
 case voyager = 150
 case deepSpaceNine = 2000
}

5.	 Since our enum is Int-based, we can conform to IntRepresentable by providing rawValue:

extension CrewComplement: IntRepresentable {
 var intValue: Int {
  return rawValue
 }
}

Controlling access with access control 89

6.	 We now have String, Int, and CrewComplement all conforming to IntRepresentable,
and since we didn’t define String or Int, we have only been able to add conformance through
the use of extensions. This common conformance allows us to treat them as the same type:

var intableThings = [IntRepresentable]()
intableThings.append(55)
intableThings.append(1200)
intableThings.append("5")
intableThings.append("1009")
intableThings.append(CrewComplement.enterpriseD)
intableThings.append(CrewComplement.voyager)
intableThings.append(CrewComplement.deepSpaceNine)
let over1000 = intableThings.compactMap {
 $0.intValue > 1000 ? $0.intValue: nil }
print(over1000)

The preceding example includes the use of compactMap and the ternary operator (?), which haven’t
been covered in this book. Further information can be found in the See also section.

See also

Further information about extensions can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/extensions.

The documentation for compactMap can be found at https://developer.apple.com/
documentation/swift/sequence/compactmap(_:).

Further information about the ternary operator can be found at https://docs.swift.
org/swift-book/documentation/the-swift-programming-language/
basicoperators/#Ternary-Conditional-Operator.

Controlling access with access control
Swift provides fine-grained access control, allowing you to specify the visibility that your code has to
other areas of code. This enables you to be deliberate about the interface you provide to other parts
of the system, thus encapsulating implementation logic and helping separate the areas of concern.

Swift has five access levels:

•	 Private: Only accessible within the existing scope (defined by curly brackets) or extensions
in the same file

•	 File private: Accessible to anything in the same file, but nothing outside the file

•	 Internal: Accessible to anything in the same module, but nothing outside the module

http://swiftbook.link/docs/extensions
https://developer.apple.com/documentation/swift/sequence/compactmap(_:)
https://developer.apple.com/documentation/swift/sequence/compactmap(_:)
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/basicoperators/#Ternary-Conditional-Operator
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/basicoperators/#Ternary-Conditional-Operator
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/basicoperators/#Ternary-Conditional-Operator

Mastering the Building Blocks90

•	 Public: Accessible both inside and outside the module, but cannot be subclassed or overwritten
outside of the defining module

•	 Open: Accessible everywhere, with no restrictions in terms of its use, and can therefore be
subclassed and overwritten

These can be applied to types, properties, and functions.

Getting ready

To explore each of these access levels, we need to step outside our playground comfort zone and
create a module. To have something that will hold our module and a playground that can use it, we
will need to create an Xcode workspace:

1.	 In Xcode, select File | New | Workspace... from the menu:

Figure 2.10 – Xcode – a new project

2.	 Give your workspace a name, such as AccessControl, and choose a save location. You will
now see an empty workspace:

Controlling access with access control 91

Figure 2.11 – Xcode – a new project structure

In this workspace, we need to create a module. To illustrate the access controls that are available,
let’s have our module represent something that tightly controls which information it exposes,
and which information it keeps hidden. One thing that fits this definition is Apple – that is,
the company.

3.	 Create a new project from the Xcode menu by selecting File | New | Project...:

Figure 2.12 – A new project

Mastering the Building Blocks92

4.	 From the template selector, select Framework:

Figure 2.13 – A new project framework

5.	 Name the project AppleInc:

Figure 2.14 – Naming the project

Controlling access with access control 93

6.	 Choose a location. Then, at the bottom of the window, ensure that Add to: has been set to the
workspace we just created:

Figure 2.15 – The new project workspace group

7.	 Now that we have a module, let’s set up a playground to use it in. From the Xcode menu, select
File | New | Playground...:

Figure 2.16 – A new playground

8.	 Give the playground a name, and add it to your workspace:

Mastering the Building Blocks94

Figure 2.17 – A new project

9.	 Press the run button on the Xcode toolbar to build the AppleInc module:

Figure 2.18 – The Xcode toolbar

10.	 Select the playground from the file navigator, and add an import statement to the top of the file:

import AppleInc

We are now ready to look into the different access controls that are available.

How to do it...

Let’s investigate the most restrictive of the access controls – private. Structures marked as private
are only visible within the scope of the type they have been defined in, as well as any extensions of
that type that are located in the same file. We know that Apple has super-secret areas where it works
on its new products, so let’s create one:

1.	 Select the AppleInc group in the file navigator, and create a new file by selecting File | New
| File... from the menu. Let’s call it SecretProductDepartment.

2.	 In this new file, create a SecretProductDepartment class using the private access control:

class SecretProductDepartment {
 private var secretCodeWord = "Titan"
 private var secretProducts = ["Apple Glasses", "Apple Car",

Controlling access with access control 95

"Apple Brain Implant"]

 func nextProduct(codeWord: String) -> String? {
  let codeCorrect = codeWord == secretCodeWord
  return codeCorrect ? secretProducts.first : nil
 }
}

3.	 Now, let’s look at the fileprivate access control. Structures marked as fileprivate are
only visible within the file that they are defined in, so a collection of related structures defined in
the same file will be visible to each other, but anything outside the file will not see these structures.

When you buy an iPhone from the Apple Store, it’s not made in-store; it’s made in a factory
that the public doesn’t have access to. So, let’s model this using fileprivate.

Create a new file called AppleStore. Then, create structures for AppleStore and Factory
using the fileprivate access control:

public enum DeviceModel {
 case iPhone13
 case iPhone13Mini
 case iPhone13Pro
 case iPhone13ProMax
}

public class AppleiPhone {
 public let model: DeviceModel
 fileprivate init(model: DeviceModel) {
  self.model = model
 }
}

fileprivate class Factory {
 func makeiPhone(ofModel model: DeviceModel) -> AppleiPhone {
  return AppleiPhone(model: model)
 }
}

public class AppleStore {
 private var factory = Factory()
 public func selliPhone(ofModel model: DeviceModel)
-> AppleiPhone {
  return factory.makeiPhone(ofModel: model)
 }
}

Mastering the Building Blocks96

To investigate the public access control, we will define something that is visible outside the
defining module but cannot be subclassed or overridden.

Apple itself is the perfect candidate to model this behavior, as certain parts of it are visible to
the public. However, it closely guards its image and brand, so subclassing Apple to alter and
customize it will not be allowed.

4.	 Create a new file called Apple, and then create a class for Apple that uses the public
access control:

public class Person {
 public let name: String
 public init(name: String) {
  self.name = name
 }
}

public class Apple {
 public private(set) var ceo: Person
 private var employees = [Person]()
 public let store = AppleStore()
 private let secretDepartment = SecretProductDepartment()

 public init() {
  ceo = Person(name: "Tim Cook")
  employees.append(ceo)
 }

 public func newEmployee(person: Person) {
  employees.append(person)
 }

 func weeklyProductMeeting() {
  var superSecretProduct = secretDepartment.
nextProduct(codeWord: "Not sure… Abracadabra?") // nil
  // Try again superSecretProduct =
  secretDepartment.nextProduct(givenCodeWord: "Titan")
  print(superSecretProduct as Any) // "Apple Glasses"
 }
}

5.	 Lastly, we have the open access control. Structures defined as open are available outside the
module and can be subclassed and overridden without restriction. To explain this last control,
we want to model something that exists within Apple’s domain but is completely open and free
from restrictions. So, for this, we can use the Swift language itself!

Controlling access with access control 97

Swift has been open sourced by Apple, so while they maintain the project, the source code is
fully available for others to take, modify, and improve.

Create a new file called SwiftLanguage, and then create a class for the Swift language that
uses the open access control:

open class SwiftLanguage {
 open func versionNumber() -> Float {
  return 5.1
 }

 open func supportedPlatforms() -> [String] {
  return ["iOS", "macOS", "tvOS", "watchOS", "Linux"]
 }
}

We now have a module that uses Swift’s access controls to provide interfaces that match our model
and the appropriate visibility.

How it works...

Let’s examine our SecretProductDepartment class to see how its visibility matches our model:

class SecretProductDepartment {
 private var secretCodeWord = "Titan"
 private var secretProducts = ["Apple Glasses", "Apple Car", "Apple
Brain Implant"]

 func nextProduct(codeWord: String) -> String? {
  let codeCorrect = codeWord == secretCodeWord
  return codeCorrect ? secretProducts.first : nil
 }
}

The SecretProductDepartment class is declared without an access control keyword, and when no
access control is specified, the default control of internal is applied. Since we want the secret product
department to be visible within Apple, but not from outside Apple, this is the correct access control to use.

The two properties of the secretCodeWord and secretProducts classes are marked as private,
thus hiding their values and existence from anything outside the SecretProductDepartment
class. To see this restriction in action, add the following to the same file, but outside the class:

let insecureCodeWord = SecretProductDepartment().secretCodeWord

When you try to build the module, you are told that secretCodeWord can’t be accessed due to
the private protection level.

Mastering the Building Blocks98

While these properties are not directly accessible, we can provide an interface that allows information
to be provided in a controlled way. This is what the nextProduct method provides:

func nextProduct(codeWord: String) -> String? {
 let codeCorrect = codeWord == secretCodeWord
 return codeCorrect ? secretProducts.first : nil
}

If the correct codeword is passed, it will provide the name of the next product from the secret
department, but the details of all other products, and the codeword itself, will be hidden. Since this
method doesn’t have a specified access control, it is set to the default of internal.

Note
It’s not possible for contents within a structure to have a more permissive access control than
the structure itself. For instance, we can’t define the nextProduct method as being public
because this is more permissive than the class it is defined in, which is only internal.

Thinking about it, this is the obvious outcome, as you cannot create an instance of an internal
class outside of the defining module, so how can you possibly call a method on a class instance
that you can’t even create?

Now, let’s look at the AppleStore.swift file we created. The purpose here is to provide people
outside of Apple with the ability to purchase an iPhone through the Apple Store, restricting the creation
of iPhones to just the factories where they are built, and then restricting access to those factories to
just the Apple Store:

public enum DeviceModel {
 case iPhone13
 case iPhone13Mini
 case iPhone13Pro
 case iPhone13ProMax
}

public class AppleiPhone {
 public let model: DeviceModel
 fileprivate init(model: DeviceModel) {
  self.model = model
 }
}

public class AppleStore {
 private var factory = Factory()
 public func selliPhone(ofModel model: DeviceModel) -> AppleiPhone {

Controlling access with access control 99

  return factory.makeiPhone(ofModel: model)
 }
}

Since we want to be able to sell iPhones outside of the AppleInc module, the DeviceModel enum
and the AppleiPhone and AppleStore classes are all declared as public. This has the benefit
of making them available outside the module but preventing them from being subclassed or modified.
Given how Apple protects the look and feel of their phones and stores, this seems correct for this model.

The Apple Store needs to get their iPhones from somewhere – that is, from the factory:

fileprivate class Factory {
 func makeiPhone(ofModel model: DeviceModel) -> AppleiPhone {
  return AppleiPhone(model: model)
 }
}

By making the Factory class fileprivate, it is only visible within this file, which is perfect
because we only want the Apple Store to be able to use the factory to create iPhones.

We have also restricted the iPhone’s initialization method so that it can only be accessed from structures
in this file:

fileprivate init(model: DeviceModel)

The resulting AppleiPhone is public, but only structures within this file can create AppleiPhone
class objects in the first place. In this case, this is done by the factory.

Now, let’s look at the Apple.swift file:

public class Person {
 public let name: String
 public init(name: String) {
  self.name = name
 }
}

public class Apple {
 public private(set) var ceo: Person
 private var employees = [Person]()
 public let store = AppleStore()
 private let secretDepartment = SecretProductDepartment()
 public init() {
  ceo = Person(name: "Tim Cook")

Mastering the Building Blocks100

  employees.append(ceo)
 }

 public func newEmployee(person: Person) {
  employees.append(person)
 }

 func weeklyProductMeeting() {
  var superSecretProduct = secretDepartment.nextProduct(givenCodeWord:
"Not sure... Abracadabra?") // nil
  // Try again superSecretProduct =
  secretDepartment.nextProduct(givenCodeWord: "Titan")
  print(superSecretProduct) // "Apple Glasses"
 }
}

The preceding code made both the Person and Apple classes public, along with the newEmployee
method. This allows new employees to join the company. The CEO, however, is defined as both
public and private:

public private(set) var ceo: Person

We can define a separate, more restrictive, access control to set a property than the one that was set
to get it. This has the effect of making it a read-only property from outside the defining structure.
This provides the access we require, since we want the CEO to be visible outside of the AppleInc
module, but we want to only be able to change the CEO from within Apple.

The final access control is open. We applied this to the SwiftLanguage class:

open class SwiftLanguage {
 open func versionNumber() -> Float {
  return 5.0
 }

 open func supportedPlatforms() -> [String] {
  return ["iOS", "macOSX", "tvOS", "watchOS", "Linux"]
 }
}

By declaring the class and methods as open, we allow them to be subclassed, overridden, and modified
by anyone, including those outside the AppleInc module. With the Swift language being fully open
source, this matches what we are trying to achieve.

Controlling access with access control 101

There’s more...

With our module fully defined, let’s see how things look from outside the module. We need to build
the module to make it available to the playground. Select the playground; it should contain a statement
that imports the AppleInc module:

import AppleInc

First, let’s look at the most accessible class that we created – that is, SwiftLanguage. Let’s subclass
the SwiftLanguage class and override its behavior:

class WinSwift: SwiftLanguage {
 override func versionNumber() -> Float {
  return 5.9
 }

 override func supportedPlatforms() -> [String] {
  var supported = super.supportedPlatforms()
  supported.append("Windows")
  return supported
 }
}

Since SwiftLanguage is open, we can subclass it to add more supported platforms and increase
its version number.

Now, let’s create an instance of the Apple class and see how we can interact with it:

let apple = Apple()
let keith = Person(name: "Keith Moon")
apple.newEmployee(person: keith)
print("Current CEO: \(apple.ceo.name)")
let craig = Person(name: "Craig Federighi")
apple.ceo = craig // Doesn't compile

We can create Person and provide it to Apple as a new employee, since the Person class and the
newEmployee method are declared as public. We can retrieve information about the CEO, but we
aren’t able to set a new CEO, as we defined the property as private(set).

Another one of the public interfaces provided by the module, selliPhone, allows us to buy an
iPhone from the Apple Store:

// Buy new iPhone
let boughtiPhone = apple.store.selliPhone(ofModel: .iPhone13ProMax)
// This works

Mastering the Building Blocks102

// Try and create your own iPhone
let buildAniPhone = AppleiPhone(model: .iPhone6S)
// Doesn't compile

We can retrieve a new iPhone from the Apple Store because we declared the selliPhone method
as public. However, we can’t create a new iPhone directly, since the iPhone’s init method is
declared as fileprivate.

See also

Further information about access control can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/access-control.

http://swiftbook.link/docs/access-control

3
Data Wrangling with Swift

Programming is all about making decisions. The purpose of most code involves taking information,
inspecting it, making decisions, and producing an output. So far, we have seen a lot of ways to represent
information, but in this chapter, we will explore how to make decisions based on that information,
using a number of Swift’s control flow statements. We will find out how they differ and the situations
where each is appropriate.

Once we’ve learned how Swift’s control flow works, we will have opened up a world of possibilities
and paths for any information we wish to work with in Swift!

In this chapter, we will cover the following recipes:

•	 Making decisions with if/else

•	 Handling all cases with switch

•	 Looping with for loops

•	 Looping with while loops

•	 Handling errors with try, throw, do, and catch

•	 Checking upfront with guard

•	 Doing it later with defer

•	 Bailing out with fatalError and precondition

Technical requirements
All the code for this chapter can be found in this book’s GitHub repository at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%203.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%203
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%203

Data Wrangling with Swift104

Making decisions with if/else
The if/else statement is a cornerstone of almost every programming language. It enables code to
be executed conditionally, based on the outcome of a Boolean statement. In this recipe, we will see
how if/else can be used, including some ways that are unique to Swift.

Getting ready

If you have ever played pool, you’ll know that the aim of the game (when playing standard eight-ball
pool) is to pot all the balls of one type and then to pot the black ball. When using American pool balls,
they are numbered 1–15 and have a different pattern, depending on their type. Balls 1–7 have a solid
color, balls 9–15 are white with a colored stripe around them, and ball 8 is black:

Figure 3.1 – American pool balls

In this recipe, we will write a function that will take the number on a pool ball and return the type
of ball it is.

Let’s create a new playground for this recipe.

How to do it...

Let’s use an if/else control flow statement to write a function to return the right pool ball type:

1.	 Create an enum to describe the possible ball types:

enum PoolBallType {
case solid
case stripe
case black
}

Making decisions with if/else 105

2.	 Create the method that will take Int and return PoolBallType:

func poolBallType(forNumber number: Int) -> PoolBallType {
       if number < 8 {
               return .solid
       } else if number > 8 {
               return .stripe
       } else {
               return .black
       }
}

3.	 Use this function, and check that we get the expected results:

let two = poolBallType(forNumber: 2) // .solid
let eight = poolBallType(forNumber: 8) // .black
let twelve = poolBallType(forNumber: 12) // .stripe

How it works...

Within the function, we define three code paths – if, else if, and else:

if <#a boolean expression#> {
       <#executed if boolean expression above is true#>
} else if <#other boolean expression#> {
       <#executed if other boolean expression above is true#>
} else {
       <#executed if neither boolean expressions are true#>
}

First, we want to determine whether the ball is solid. Since we know that the balls numbered 1–7 are
solid, we can test whether the ball number is less than 8, with number <8. If this is true, we return
the .solid case of our enum. If it is false, the else if Boolean expression is evaluated.

As balls 9–15 are striped, we can test whether the ball number is more than 8, with number > 8. If
this is true, we return the .stripe case of our enum.

Lastly, if both the preceding Boolean expressions are false, we return the .black case of our
enum, since that can only happen if the number is exactly 8.

The else if and else blocks are optional, and you can declare multiple else if to cover
additional conditions. Let’s expand our preceding example with an extra else if to better decide
the pool ball type.

Data Wrangling with Swift106

As we stated previously, pool balls are numbered between 1 and 15, but we don’t take into account
those upper and lower bounds in our implementation. So, if we were to provide the function with
ball number 0, it would return .solid, and if we were to provide ball number 16, it would return
.stripe, which doesn’t accurately reflect our intention:

let zero = poolBallType(forNumber: 0) // .solid
let sixteen = poolBallType(forNumber: 16) // .stripe

Let’s modify our function to only return a pool ball type if the number is between 1 and 15, returning
nil otherwise:

func poolBallType(forNumber number: Int) -> PoolBallType? {
 if number > 0 && number < 8 {
 return .solid
 } else if number > 8 && number < 16 {
 return .stripe
 } else if number == 8 {
 return .black
 } else {
 return nil
 }
}

Now, we have four code branches in our if statement, and we can use the AND operator, &&, to
combine Boolean statements (the OR operator, ||, is also available).

We can now call our function for both numbers within the expected 1–15 range and outside it:

let two = poolBallType(forNumber: 2) // .solid
let eight = poolBallType(forNumber: 8) // .black
let twelve = poolBallType(forNumber: 12) // .stripe
let zero = poolBallType(forNumber: 0) // nil
let sixteen = poolBallType(forNumber: 16) // nil

Our improved function will produce nil for numbers outside of the expected range.

There’s more...

There are some other ways we can use if/else statements.

Understanding conditional unwrapping

The function we created earlier returns an optional value, so if we want to do anything useful with
the resulting value, we need to unwrap the optional. So far, the only way we have seen how to do this
is by force-unwrapping, which will cause a crash if the value is nil.

Making decisions with if/else 107

Instead, we can use an if statement to conditionally unwrap the optional, turning it into a more
useful, non-optional value.

Let’s create a function that will print information about a pool ball of a given number. If the provided
number is valid for a pool ball, it will print the ball’s number and type; otherwise, it will print a message
explaining that it is not a valid number.

Since we will want to print the value of the PoolBallType enum, let’s make it String-backed,
which will make printing its value easier:

enum PoolBallType: String {
       case solid
       case stripe
       case black
}

Now, let’s write the function to print the pool ball details:

func printBallDetails(ofNumber number: Int) {
       let possibleBallType = poolBallType(forNumber: number)
       if let ballType = possibleBallType {
               print("\(number) - \(ballType.rawValue)")
       } else {
               print("\(number) is not a valid pool ball number")
       }
}

The first thing we do in our printBallDetails function is get the ball type for the given number:

let possibleBallType = poolBallType(forNumber: number)

In our improved version of this function, this returns an optional version of the PoolBallType
enum. We want to include the rawValue of the returned enum as part of printing the ball details.
Since the returned value is optional, we need to unwrap it first:

if let ballType = possibleBallType {
       print("\(number) - \(ballType.rawValue))")
}

In the preceding if statement, instead of defining a Boolean expression, we assign our optional value
to a constant; the if statement uses this to conditionally unwrap the optional value. The optional
value is checked to see whether it is nil; if it is not nil, then the value is unwrapped and assigned
to the constant as a non-optional value. That constant becomes available within the scope of the curly
brackets following the if statement. We use that ballType non-optional value to obtain the raw
value for the print statement.

Data Wrangling with Swift108

Since the if branch of the if/else statement is followed when the optional value has a value, then
the else branch is followed when the optional value is nil.

As this means that the given number is not valid for a pool ball, we print a relevant message:

else {
       print("\(number) is not a valid pool ball number")
}

We can now call our new function with the same values as before to print out the pool ball type:

printBallDetails(ofNumber: 2) // 2 - solid
printBallDetails(ofNumber: 8) // 8 - black
printBallDetails(ofNumber: 12) // 12 - stripe
printBallDetails(ofNumber: 0) // 0 is not a valid pool ball number
printBallDetails(ofNumber: 16) // 16 is not a valid pool ball number

We’ve used conditional unwrapping to print the pool ball type, if valid, or explain if it’s not valid.

Note
Note that we unwrap our optional into a newly named constant. Even though it’s only available
within the scope of the if statement, we now have to track our value under a new name, which
can be confusing. However, as of Swift 5.7, we can now use a new let shorthand to shadow our
optional value.

Therefore, we can write the preceding example like this:

if let possibleBallType = poolBallType(forNumber: ballNumber) {

 print("\(ballNumber) - \(possibleBallType.rawValue)")

}

Chaining optional unwrapping

The ability of if statements to conditionally unwrap optionals can be chained together to produce
some useful and concise code. The following example is a bit contrived, but it illustrates how we can
use a single if statement to unwrap a chain of optional values.

When you play a game of pool, called a frame, the type of the first ball you pot becomes the type you
need to pot for the rest of the frame, and your opponent has to pot the opposite type.

Making decisions with if/else 109

Let’s define a frame of pool and say that we want to track what type of ball each player will be potting:

class PoolFrame {
       var player1BallType: PoolBallType?
       var player2BallType: PoolBallType?
}

We will also create a PoolTable object that has an optional currentFrame property, which will
contain information about the current frame if one is in progress:

class PoolTable {
       var currentFrame: PoolFrame?
}

We now have a pool table that has an optional frame and a frame that has an optional ball type for
each player.

Now, let’s write a function that prints the ball type for player 1 in the current frame. It is possible that
the current frame is nil because there is no frame currently being played, or that player 1’s ball type
is nil because a ball hasn’t yet been potted. Therefore, we need to account for either of those values
being nil:

func printBallTypeOfPlayer1(forTable table: PoolTable) {
       if let frame = table.currentFrame, let ballType = frame.
player1BallType {
               print(ballType.rawValue)
       } else {
               print("Player 1 has no ball type or there is no current
frame")
       }
}

Our function is given PoolTable, and to print player 1’s ball type, we first need to check and
unwrap the currentFrame property, and then we need to check and unwrap the current frame’s
player1BallType property.

We can do this by nesting our if statements:

func printBallTypeOfPlayer1(forTable table: PoolTable) {
       if let frame = table.currentFrame {
               if let ballType = frame.player1BallType {
                      print(ballType.rawValue)
               } //... handle else
       } //... handle else
}

Data Wrangling with Swift110

Alternatively, we can handle this chained unwrapping in one if statement by performing the
unwrapping statement sequentially, separated by commas, and ensuring that each statement can
access the unwrapped values from the previous statements:

func printBallTypeOfPlayer1(forTable table: PoolTable) {
       if let frame = table.currentFrame, let ballType = frame.
player1BallType {
               print("\(ballType)")
       } //... handle else
}

The first statement unwraps the currentFrame property, and the second statement uses that
unwrapped frame to unwrap player 1’s ball type.

Let’s use the function we’ve just created:

1.	 First, we’ll create a table, without a current frame, and print player 1’s ball type, which won’t
be available:

//
// Table with no frame in play
//
let table = PoolTable()
table.currentFrame = nil
printBallTypeOfPlayer1(forTable: table)
// Player 1 has no ball type or there is no current frame

2.	 Then, we can create a current frame, but as player 1’s ball type is still nil, the function prints
the same output:

//
// Table with frame in play, but no balls potted
//
let frame = PoolFrame()
frame.player1BallType = nil
frame.player2BallType = nil
table.currentFrame = frame
printBallTypeOfPlayer1(forTable: table)
// Player 1 has no ball type or there is no current frame

3.	 If we set player 1’s ball type, our function now prints the type:

//
// Table with frame in play, and a ball potted
//
frame.player1BallType = .solid

Making decisions with if/else 111

frame.player2BallType = .stripe
printBallTypeOfPlayer1(forTable: table)
// solid

We’ve created a method that can chain conditional unwrappings, only printing a value when all the
values in the chain are non-nil.

Using enums with associated values

As we saw in the Enumerating values with enums recipe of Chapter 1, enums can have associated
values, and we can use an if statement to both check an enum’s case and extract the associated value
in one expression.

Let’s create an enum to represent the result of the pool game, with each case having an associated message:

enum FrameResult {
       case win(congratulations: String)
       case lose(commiserations: String)
}

Now, we’ll create a function that takes Result and prints either the congratulatory message or the
commiseration message:

func printMessage(forResult result: FrameResult) {
       if case Result.win(congratulations: let winMessage) = result {
               print("You won! \(winMessage)")
       } else if case Result.lose(commiserations: let loseMessage) =
result {
               print("You lost :(\(loseMessage)")
       }
}

Calling this function will print the result, followed by the relevant message:

let result = Result.win(congratulations: "You're simply the best!")
printMessage(forResult: result) // You won! You're simply the best!

The if case block will be executed if the value on the right-hand side of = matches the case on the
left-hand side. In addition, you can specify a local constant for the associated value (winMessage
in the following example), which is then available within the subsequent block:

if case Result.win(congratulationsMessage: let winMessage) = result {
       print("You won! \(winMessage)")
}

We’ve used the if case statement to both check the case of an enum value and access its associated
value in one go.

Data Wrangling with Swift112

See also

Further information about if/else can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/statements.

Handling all cases with switch
switch statements allow you to control the flow of execution by testing one specific value in
multiple ways. In Objective-C and other languages, switch statements can only be used on values
that can be represented by an integer, and they are most commonly used to make decisions based on
enumeration cases.

As we have seen, enumerations have become a lot more powerful in Swift, as they can be based on
more than just integers, and so too can switch statements.

switch statements in Swift can be used on any type and have advanced pattern-matching functionality.

In this recipe, we will explore both simple and advanced usage of switch control flow statements
to control logic.

Getting ready

If you are old enough to remember the early days of the home computer, you may also remember
text-based adventures. These were simple games that usually described a scene and then let you move
around, by typing a command to move north, south, east, or west. You would find and pick up items,
and you could often combine them to solve puzzles.

We can use switch statements to control the logic of a simple text adventure.

Let’s create a new playground for this recipe.

How to do it...

Let’s create parts of a text-based adventure and use switch statements to make the decisions:

1.	 Define an enum to represent the directions we can travel in:

enum CompassPoint {
       case north
       case south
       case east
       case west
}

http://swiftbook.link/docs/statements

Handling all cases with switch 113

2.	 Create a function that describes what the player of the text adventure will see when they look
in that direction:

func lookTowards(_ direction: CompassPoint) {
       switch direction {
       case .north:
               print("To the north lies a winding road")
       case .south:
               print("To the south is the Prancing Pony tavern")
       case .east:
               print("To the east is a blacksmith")
       case .west:
               print("To the west is the town square")
       }
}
lookTowards(.south) // To the south is the Prancing Pony tavern

3.	 In our text adventure, users can pick up items and attempt to combine them, to produce new
items and solve problems. Define our available items as an enum:

enum Item {
       case key
       case lockedDoor
       case openDoor
       case bluntKnife
       case sharpeningStone
       case sharpKnife
}

4.	 Write a function that takes two items and tries to combine them into a new item. If the items
cannot be combined, it will return nil:

func combine(_ firstItem: Item, with secondItem: Item) -> Item?
{
       switch (firstItem, secondItem) {
       case (.key, .lockedDoor):
               print("You have unlocked the door!")
               return .openDoor
       case (.bluntKnife, .sharpeningStone):
               print("Your knife is now sharp")
               return .sharpKnife
       default:
               print("\(firstItem) and \(secondItem) cannot be
combined")
               return nil
       }

Data Wrangling with Swift114

}
let door = combine(.key, with: .lockedDoor) // openDoor
let oilAndWater = combine(.bluntKnife, with: .lockedDoor) // nil

5.	 In our text adventure, the player will meet different characters and can interact with them.
Define the characters that the player can meet:

enum Character: String {
       case wizard
       case bartender
       case dragon
}

6.	 Write a function that allows the player to say something, and optionally provide a character
to whom it will be said. The interaction that will occur will depend on what is said and the
character it is said to:

func say(_ textToSay: String, to character: Character? = nil) {
       switch (textToSay, character) {
       case ("abracadabra", .wizard?):
               print("The wizard says, \"Hey, that's my
line!\"")
       case ("Pour me a drink", .bartender?):
               print("The bartender pours you a drink")
       case ("Can I have some of your gold?", .dragon?):
               print("The dragon burns you to death with his
fiery breath")
       case (let textSaid, nil):
               print("You say \"\(textSaid)\", to no-one.")
       case (_, let anyCharacter?):
               print("The \(anyCharacter) looks at you,
blankly")
       }
}

say("Is anybody there?")
// You say "Is anybody there?", to no-one.
say("Pour me a drink", to: .bartender)
// The bartender pours you a drink
say("Can I open a tab?", to: .bartender)
// The bartender looks at you, blankly

Handling all cases with switch 115

How it works...

Within the lookTowards function, we want to print a different message for each possible
CompassPoint case; to do this, we use a switch statement:

func lookTowards(_ direction: CompassPoint) {
       switch direction {
       case .north:
               print("To the north lies a winding road")
       case .south:
               print("To the south is the Prancing Pony tavern")
       case .east:
               print("To the east is a blacksmith")
       case .west:
               print("To the west is the town square")
       }
}

At the top of the switch statement, we define the value that we want to switch on; then, we define
what we want to be done when that value matches each of the defined cases, using the case keyword
and then the matching pattern:

switch <#value#> {
case <#pattern#>:
       <#code#>
case <#pattern#>:
       <#code#>
//...
}

Each case statement is evaluated in turn, and if the pattern matches the value, the subsequent code
is executed.

Note
If you are familiar with switch statements from Objective-C, you may remember that you needed
to add break; at the end of each case statement to stop the execution from falling through
to the next case statement. This is not needed in Swift; the break in execution is implied by
the beginning of the next case statement. The only time this isn’t the case is when your case
statement is intentionally empty; in these cases, you need to add break to tell the compiler that
it is intentionally blank for this case. If you do want execution to fall through to the next case
statement, you can add fallthrough at the end of the case statement.

Data Wrangling with Swift116

In our combine function, we have two values that we want to switch based on their values. We can
provide multiple values to the switch statement in the form of a tuple:

func combine(_ firstItem: Item, with secondItem: Item) -> Item? {
       switch (firstItem, secondItem) {
               //....
       }
}

For each case statement, we define the valid value for each part of the tuple:

case (.key, .lockedDoor):
       print("You have unlocked the door!")
       return .openDoor

A switch statement in Swift requires that every possible case is covered; however, you can cover all
the remaining possibilities in one go using the default case:

switch (firstItem, secondItem) {
//...
default:
       print("\(firstItem) and \(secondItem) cannot be combined")
       return nil
}

For our preceding combine function, you will notice that the player will only be able to combine
the items if they provide them in the right order:

let door1 = combine(.key, with: .lockedDoor) // openDoor
let door2 = combine(.lockedDoor, with: .key) // nil

This is not the desired behavior, as there is no way for the player to know the correct order. To solve
this, we can add multiple patterns to each case statement. So, when the player provides the key
and lockedDoor items, we can handle the key and lockedDoor order and the lockedDoor
and key order with the same case statement, using the following format:

switch <#value#> {
case <#pattern#>, <#pattern#>:
       <#code#>
default:
       <#code#>
}

Handling all cases with switch 117

So, we can add the opposite item order as another pattern to each case:

func combine(_ firstItem: Item, with secondItem: Item) -> Item? {
       switch (firstItem, secondItem) {
       case (.key, .lockedDoor), (.lockedDoor, .key):
               print("You have unlocked the door!")
               return .openDoor
       case (.bluntKnife, .sharpeningStone),
               (.sharpeningStone, .bluntKnife):
               print("Your knife is now sharp")
               return .sharpKnife
       default:
               print("\(firstItem) and \(secondItem) cannot be
combined")
               return nil
       }
}

Now, the items can be combined in any order:

let door1 = combine(.key, with: .lockedDoor) // openDoor
let door2 = combine(.lockedDoor, with: .key) // openDoor

For our say method, we again have two values that we want to switch on – the text that the player
says, and the character to whom it is said. Since the character value is optional, we will need to unwrap
the value to compare it with non-optional values:

func say(_ textToSay: String, to character: Character? = nil) {
       switch (textToSay, character) {
       case ("abracadabra", .wizard?):
               print("The wizard says, "Hey, that's my line!"")
               //...
       }
}

In a switch statement, when the value is optional, you can compare it to a non-optional value by
adding ? to wrap it as an optional, making the comparison valid. In the preceding instance, we compare
the optional character value to .wizard?.

Data Wrangling with Swift118

Where we have two values for a certain set of options, we may only care about one of the values, and
the other value could be anything and the case would still be valid. In our example, once all the specific
textToSay and character pairings have been handled, and the case where there is no character
is handled, we want to unwrap and retrieve the character, but we don’t care about the textToSay
value, so we can use _ to indicate that any value is acceptable:

func say(_ textToSay: String, to character: Character? = nil) {
       switch (textToSay, character) {
       //...
       case (_, let anyCharacter?):
               print("The \(anyCharacter) looks at you, blankly)")
       }
}

To retrieve the value of the character entered as part of this case statement rather than declaring a
value to be matched, we define a constant that will receive the value, and since the value we are switching
on is optional, we also add ?, which will unwrap the value if it’s not nil, and assign it to the constant.

See also

Further information about switch can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/switch.

Looping with for loops
for loops allow you to execute code for each element in a collection or range. In this recipe, we will
explore how to use for loops to perform actions on every element in a collection.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

Let’s create some collections and then use for loops to act on each element in the collection:

1.	 Create an array of elements so that we can do something with every item in the array:

let ledZeppelin = ["Robert", "Jimmy", "John", "John Paul"]

http://swiftbook.link/docs/switch

Looping with for loops 119

2.	 Create a loop to go through our theBeatles array, and print each string element that the for
loop provides:

for musician in ledZeppelin {
       print(musician)
}

3.	 Create a for loop that executes some code a set number of times, instead of looping through
an array. We can do this by providing a range instead of a collection:

// 5 times table
for value in 1...12 {
       print("5 x \(value) = \(value*5)")
}

4.	 Create a for loop to print the keys and values of a dictionary. Dictionaries contain pairings
between a key and a value, so when looping through a dictionary, we will be provided with
both the key and the value in the form of a tuple:

let zeppelinByInstrument = ["vocals": "Robert",
                                      "lead guitar": "Jimmy",
                                      "drums": "John",
                                      "bass guitar": "John Paul"]
for (key, value) in zeppelinByInstrument {
       print("\(value) plays \(key)")
}

How it works...

Let’s look at how we looped through our ledZeppelin array:

for musician in ledZeppelin {
       print(musician)
}

We specify the for keyword, and then we provide a name for the local variable that will be used for
each element in the collection or range. Then, the in keyword is provided, followed by the collection
or range that will be looped through:

for <#each element#> in <#collection or range#> {
       <#code to execute#>
}

Data Wrangling with Swift120

For range-based loops, the value provided for each loop is the next integer in the range:

for value in 1...12 {
       print("5 x \(value) = \(value*5)")
}

A range can be a closed range, where the range includes the start value and the end value, like the one
specified previously. Alternatively, it can be a half-open range, which goes up to, but doesn’t include,
the last value, as in the following code:

for value in 1..<13 {
       print("5 x \(value) = \(value*5)")
}

When looping through a dictionary, we need to be provided with both the key and value properties.
To do this, we provide a tuple that will receive each key and value in the dictionary:

for (key, value) in zeppelinByInstrument {
       print("\(value) plays \(key)")
}

We can define the tuple and name each of the values. This name can then be used in an execution
block. Let’s change the tuple labels to better describe the values:

for (instrument, musician) in zeppelinByInstrument {
       print("\(musician) plays \(instrument)")
}

Giving the tuple meaningful names in the preceding example makes the code easier to read.

Note
An alternative way to loop through each element in a sequence is to call the forEach method
directly on the sequence itself:

ledZeppelin.forEach { musician in

      print(musician)

}

zeppelinByInstrument.forEach { (key, value) in

      print(«\(value) plays \(key)»)

}

Looping with while loops 121

See also

Further information about for-in loops can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/for-in.

Looping with while loops
for loops are great when you know how many times you intend to loop, but if you want to loop until
a certain condition is met, you need a while loop.

A while loop has the following syntax:

while <#boolean expression#> {
       <#code to execute#>
}

The code block will execute over and over until the Boolean expression returns false. Therefore,
it’s a common pattern to change some value in the code block that may cause the Boolean expression
to change to false.

Note
If there is no chance of the Boolean expression becoming true, the code will loop forever, which
can lock up your app.

In this recipe, we will look at situations where a while loop can be useful to repeat actions.

Getting ready

This recipe will involve simulating the random flip of a coin. To flip our coin, we will need to randomly
pick either heads or tails, so we will need to use a random number generator from the Foundation
framework. We will discuss Foundation further in Chapter 5, Beyond the Standard Library, but for
now, let’s just import the Foundation framework at the top of a new playground:

import Foundation

This will give us the ability to generate a random number to use in this recipe.

http://swiftbook.link/docs/for-in

Data Wrangling with Swift122

How to do it...

Let’s work out how many times in a row we can flip a coin and get heads:

1.	 Create an enum to represent a coin flip, and use the random number generator to randomly
choose heads or tails:

enum CoinFlip: Int {
       case heads
       case tails
       static func flipCoin() -> CoinFlip {
               return CoinFlip(rawValue: Int(arc4random_
uniform(2)))!
       }
}

2.	 Create a function that will return the number of heads in a row from coin flips. The function
will flip the coin within a while loop and continue to loop while the coin flip results in heads:

func howManyHeadsInARow() -> Int {
       var numberOfHeadsInARow = 0
       var currentCoinFlip = CoinFlip.flipCoin()
       while currentCoinFlip == .heads {
               numberOfHeadsInARow = numberOfHeadsInARow + 1
               currentCoinFlip = CoinFlip.flipCoin()
       }
       return numberOfHeadsInARow
}

let noOfHeads = howManyHeadsInARow()

How it works...

In our function, we start by keeping track of how many coin flips in a row are heads and keep a
reference to the current coin flip, which will form the condition for the while loop:

func howManyHeadsInARow() -> Int {
       var numberOfHeadsInARow = 0
       var currentCoinFlip = CoinFlip.flipCoin()
       //...
}

Looping with while loops 123

In our while loop, we will continue to loop and execute the code in the following block while the
current coin flip is heads:

while currentCoinFlip == .heads {
       numberOfHeadsInARow = numberOfHeadsInARow + 1
       currentCoinFlip = CoinFlip.flipCoin()
}

Within the code block, we add one to our running total, and we re-flip the coin. We flip the coin and
assign it to currentCoinFlip, which will get rechecked on the next loop, and if it is still heads,
the next loop will be executed. Since we are changing something that affects the while condition,
such that it could eventually be false, we can be sure that we won’t be stuck in the loop forever.

As soon as the coin flip is tails, the while loop condition will be false, and so the execution will
move on and return the running total we have been keeping:

return numberOfHeadsInARow

Now, every time you call the function, the coin will be randomly flipped, and the number of heads
in a row will be returned, so each time it’s called, you may get a different value returned. Try it out a
few times:

let noOfHeads = howManyHeadsInARow()

There’s more...

We can actually simplify our while loop by doing the coin flip as part of the loop continuation checking:

func howManyHeadsInARow() -> Int {
       var numberOfHeadsInARow = 0
       while CoinFlip.flipCoin() == .heads {
               numberOfHeadsInARow = numberOfHeadsInARow + 1
       }
       return numberOfHeadsInARow
}

Each time through the loop, the while condition is evaluated, which involves re-flipping the coin
and checking the outcome.

This is more concise and removes the need to track currentCoinFlip.

See also

Further information about while loops can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/while.

http://swiftbook.link/docs/while

Data Wrangling with Swift124

Handling errors with try, throw, do, and catch
Errors happen during programming. These errors may be due to your own code behaving in
unexpected ways, or due to unexpected information or behavior from external systems. When these
errors happen, it’s important to handle them appropriately. Good error handling can separate a good
app from a great app.

Swift provides a deliberate and flexible pattern to handle errors, allowing specific errors to be cascaded
through a complex system.

In this recipe, we will discover how to define errors and throw them when necessary.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

To examine error handling, we will model a process that can go wrong, and for me, that is cooking
a meal:

1.	 First, let’s define the steps involved in cooking a meal as states that the meal will transition through:

enum MealState {
       case initial
       case buyIngredients
       case prepareIngredients
       case cook
       case plateUp
       case serve
}

2.	 Create an object to represent the meal we will be cooking. This object will hold the state of the
meal as it moves through the process:

class Meal {
       var state: MealState = .initial
}

We want to allow the meal to transition between states, but not all state transitions should be
possible. For instance, you can’t move from buying ingredients to serving the meal. The meal
should move sequentially from one state to the next. We can provide these restrictions by
only allowing the state to be set from within the object itself, using access controls, which we
explored in the previous chapter.

Handling errors with try, throw, do, and catch 125

3.	 Define the state property as only being privately settable:

class Meal {
       private(set) var state: MealState = .initial
}

4.	 To allow the state to be changed from outside the object, create a function inside the class that
will throw an error if the state transition isn’t possible:

func change(to newState: MealState) throws {
       switch (state, newState) {
       case (.initial, .buyIngredients),
               (.buyIngredients, .prepareIngredients),
               (.prepareIngredients, .cook),
               (.cook, .plateUp),
               (.plateUp, .serve):
                      state = newState
       default:
               throw MealError.canOnlyMoveToAppropriateState
       }
}

5.	 In keeping with Swift’s protocol-orientated approach, errors in Swift are defined as a protocol,
Error. This approach allows you to construct your own type to represent errors within your
code, and you just have it conform to the Error protocol.

A common approach is to define errors as enums, with the enum cases representing the different
types of errors that can occur.

Define the error thrown in the preceding Meal class:
enum MealError: Error {
       case canOnlyMoveToAppropriateState
}

6.	 Try to execute our error-throwing method within a do block, and catch any errors that may occur:

let dinner = Meal()
do {
       try dinner.change(to: .buyIngredients)
       try dinner.change(to: .prepareIngredients)
       try dinner.change(to: .cook)
       try dinner.change(to: .plateUp)
       try dinner.change(to: .serve)
       print("Dinner is served!")

Data Wrangling with Swift126

} catch let error {
       print(error)
}

How it works...

The terminology used in Swift error handling (as well as other languages) is throwing and catching. A
method can throw an error if a problem occurs during its execution, at which point nothing further
in the method will be executed, and the error is passed back to where the method was called from.

In order to receive this error (perhaps to provide the details of the error to the user), you must catch
the error at the place the method is called.

To throw an error, you have to declare that the method has the potential to throw an error. Declaring
that a method throws allows the compiler to expect potential errors from the method, and ensure
that you don’t forget to catch these errors.

Methods can be declared as potentially throwing an error using the throws keyword:

func change(to newState: MealState) throws {
       //...
}

Within our change state method, we only change the state if we are moving to the next sequential state.
Anything else isn’t allowed and should throw an error. We can do this using the throw keyword,
followed by a value that conforms to the Error protocol:

func change(to newState: MealState) throws {
       //...
       default:
               throw MealError.canOnlyMoveToAppropriateState
       }
}

When we create the Meal object and move through the states of preparing the meal, each change
of state can throw an error. When we call a method that is marked as possibly throwing an error, we
have to do it a certain way. We define a do block, within which we can call methods that can throw,
and we then define a catch block that will be executed if any of these methods do throw an error.
Each call to a throwing method must be prefixed with the try keyword:

let dinner = Meal()
do {
       try dinner.change(to: .buyIngredients)
       try dinner.change(to: .prepareIngredients)
       try dinner.change(to: .cook)

Handling errors with try, throw, do, and catch 127

       try dinner.change(to: .plateUp)
       try dinner.change(to: .serve)
       print("Dinner is served!")
} catch let error {
       print(error)
}

If any of these methods does throw an error, execution will immediately move to the catch block.
Therefore, by placing code after the try methods are called, we guarantee that it will only be
executed if the methods do not throw an error. By printing Dinner is served! after all the
state transitions are called, we know this will only print if we have successfully moved through all the
states. Try changing the order of these state change calls, and you’ll see that the error is printed, and
Dinner is served! is not.

In our catch block, after the catch keyword, we can define the local constant that we want the
caught error to be assigned to. However, if we don’t specify a local constant here, Swift will implicitly
create one for us called error, so we can actually omit the constant declaration in the catch block
and still print the value of the error:

do {
       //...
} catch {
       print(error)
}

Swift has defined the error for us, so we can still print the value.

There’s more...

We have seen how we can throw and catch errors, but we mentioned in the introduction that we can
cascade errors through a system, so let’s look at how we can do this.

In our meal preparation example, we allow the meal state to be changed externally through a change
method that can throw an error. Instead, let’s change it to a private method, so we can only call it
from within the class:

class Meal {
       private(set) var state: MealState = .initial
       private func change(to newState: MealState) throws {
               switch (state, newState) {
               case (.initial, .buyIngredients),
                      (.buyIngredients, .prepareIngredients),
                      (.prepareIngredients, .cook),
                      (.cook, .plateUp),
                      (.plateUp, .serve):

Data Wrangling with Swift128

                      state = newState
               default:
                      throw MealError.canOnlyMoveToAppropriateState
               }
       }
}

Now, let’s create some specific methods to move to each state:

class Meal {
       //...
       func buyIngredients() throws {
               try change(to: .buyIngredients)
       }
       func prepareIngredients() throws {
               try change(to: .prepareIngredients)
       }
       func cook() throws {
               try change(to: .cook)
       }
       func plateUp() throws {
               try change(to: .plateUp)
       }
       func serve() throws {
               try change(to: .serve)
       }
}

Note that when we call the change method from within each of the new methods, we don’t need to
use do and catch blocks to catch the error; this is because we have defined each of the new methods
as potentially throwing an error. So, if the call to the change method throws an error, this error will
be passed to the caller of our new method as though it were throwing an error.

This mechanism allows errors that may occur several levels deep in your code to surface and be
handled appropriately.

We now need to amend our meal preparation code to use these new methods:

let dinner = Meal()
do {
       try dinner.buyIngredients()
       try dinner.prepareIngredients()
       try dinner.cook()
       try dinner.plateUp()

Handling errors with try, throw, do, and catch 129

       try dinner.serve()
       print("Dinner is served!")
} catch let error {
       print(error)
}

Let’s add the ability to actually affect our meal. We’ll add a method to add salt to the meal and a
property to allow us to track how much salt is added. Add these to the end of the Meal class:

class Meal {
       //...
       private(set) var saltAdded = 0 func addSalt() throws {
               if saltAdded >= 5 {
                      throw MealError.tooMuchSalt
               } else if case .initial = state, case .buyIngredients =
state {
                      throw MealError.wrongStateToAddSalt
               } else {
                      saltAdded = saltAdded + 1
               }
       }
}

There are two ways in which adding salt can throw an error, either because we are in the wrong state
to add salt (we can’t add salt until after we have bought the ingredients), or because we have added
too much salt. Let’s add these two new errors to our MealError enum:

enum MealError: Error {
       case canOnlyMoveToAppropriateState
       case tooMuchSalt
       case wrongStateToAddSalt
}

We now have three possible errors that can occur during the preparation of a meal, and we may want
to handle those errors differently. We can use multiple catch blocks to filter just specific errors that
we want to catch, allowing us to handle each error separately:

let dinner = Meal()
do {
       try dinner.buyIngredients()
       try dinner.prepareIngredients()
       try dinner.cook()
       try dinner.plateUp()
       try dinner.serve()
       print("Dinner is served!")

Data Wrangling with Swift130

} catch MealError.canOnlyMoveToAppropriateState {
       print("It's not possible to move to this state")
} catch MealError.tooMuchSalt {
       print("Too much salt!")
} catch MealError.wrongStateToAddSalt {
       print("Can't add salt at this stage")
} catch {
       print("Some other error: \(error)")
}

Note
It is important to ensure that all possible errors are handled by the catch blocks, as an unhandled
error will result in a crash. It is, therefore, safest to add an unfiltered catch block at the end to
catch any errors not caught by the previous blocks.

Since functions can throw an error, and closures are a type of function that can be passed as a parameter,
we can have a function that takes a throwing closure where it can also throw an error. It may be that
the only errors our function will throw are errors produced by the throwing closure that was passed
as a parameter.

When that is true, a function can be defined as re-throwing, using the rethrows keyword. This
situation is quite confusing, so let’s look at an example:

func makeMeal(using preparation: (Meal) throws -> ()) rethrows -> Meal
{
       let newMeal = Meal()
       try preparation(newMeal)
       return newMeal
}

This makeMeal function takes a closure as a parameter; that closure takes a Meal object as a
parameter and doesn’t return anything, but it may throw an error.

The purpose of this function is to handle the creation of the meal object for you, just leaving you
to do any meal preparation within the block; it then returns the meal that was created and prepared.
Let’s see it in use:

do {
       let dinner = try makeMeal { meal in
               try meal.buyIngredients()
               try meal.prepareIngredients()
               try meal.cook()
               try meal.addSalt()
               try meal.plateUp()

Checking upfront with guard 131

               try meal.serve()
       }
       if dinner.state == .serve {
               print("Dinner is served!")
       }
} catch MealError.canOnlyMoveToAppropriateState {
       print("It's not possible to move to this state")
} catch MealError.tooMuchSalt {
       print("Too much salt!")
} catch MealError.wrongStateToAddSalt {
       print("Can't add salt at this stage")
}

The makeMeal function only throws errors thrown by the closure parameter, so it can be declared
as re-throwing. Declaring a function of this type with the rethrows keyword isn’t required; it can
be declared with throws instead. However, the compiler can make additional optimizations for a
re-throwing function.

See also

Further information about error handling can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/error-handling.

Checking upfront with guard
We have seen in previous recipes how we can use if statements to check Boolean expressions and
unwrap optional values. It’s a common use case to want to do some checks and conditional unwrapping
at the beginning of a block of code, and then only execute the subsequent code if everything is as
expected. This usually results in wrapping the whole block of code in an if statement:

if <#boolean check and unwrapping#> {
       <#a block of code#>
       <#that could be quite long#>
}

Swift has a better solution expressly for this purpose – the guard statement.

In this recipe, we will learn how to use the guard statement to return early from a method.

http://swiftbook.link/docs/error-handling

Data Wrangling with Swift132

Getting ready

Let’s imagine that we have some data that came from an external source, and we want to turn it into
model objects that our code can understand, with the intention of displaying it to the user. We can
use guard statements to ensure the data is correctly formatted, bailing early if it isn’t correct.

Let’s create a new playground for this recipe.

How to do it...

We will take some information about the planets of the solar system, which could have come from
an external source, and turn it into a model we can understand:

1.	 Create the planet data in the form of an array of dictionaries:

// From https://en.wikipedia.org/wiki/Solar_System

let inputData: [[String: Any]] = [
["name": "Mercury", "positionFromSun": 1,
"fractionOfEarthMass": 0.055,
"distanceFromSunInAUs": 0.4, "hasRings": false],

["name": "Venus", "positionFromSun": 2,
"fractionOfEarthMass": 0.815,
"distanceFromSunInAUs": 0.7, "hasRings": false],

["name": "Earth", "positionFromSun": 3,
"fractionOfEarthMass": 1.0,
"distanceFromSunInAUs": 1.0, "hasRings": false],

["name": "Mars", "positionFromSun": 4,
"fractionOfEarthMass": 0.107,
"distanceFromSunInAUs": 1.5, "hasRings": false],

["name": "Jupiter", "positionFromSun": 5,
"fractionOfEarthMass": 318.0,
"distanceFromSunInAUs": 5.2, "hasRings": false],

["name": "Saturn", "positionFromSun": 6,
"fractionOfEarthMass": 95.0,
"distanceFromSunInAUs": 9.5, "hasRings": true],

["name": "Uranus", "positionFromSun": 7,
"fractionOfEarthMass": 14.0,
"distanceFromSunInAUs": 19.2, "hasRings": false],

Checking upfront with guard 133

["name": "Neptune", "positionFromSun": 8,
"fractionOfEarthMass": 17.0,
"distanceFromSunInAUs": 30.1, "hasRings": false]

]

2.	 Define a Planet struct that will be created from the data:

struct Planet {
       let name: String
       let positionFromSun: Int
       let fractionOfEarthMass: Double
       let distanceFromSunInAUs: Double
       let hasRings: Bool
}

3.	 Taking this one step at a time, create a function that will take one-planet dictionaries and
make a Planet struct, if it can. We’ll use a guard statement to ensure that the dictionary
has all the values we expect:

func makePlanet(fromInput input: [String: Any]) -> Planet? {
       guard let name = input["name"] as? String,
               let positionFromSun = input["positionFromSun"]
as? Int,
               let fractionOfEarthMass =
input["fractionOfEarthMass"] as? Double,
               let distanceFromSunInAUs =
input["distanceFromSunInAUs"] as? Double,
               let hasRings = input["hasRings"] as? Bool else {
               return nil
       }
       return Planet(
               name: name,
               positionFromSun: positionFromSun,
               fractionOfEarthMass: fractionOfEarthMass,
               distanceFromSunInAUs: distanceFromSunInAUs,
               hasRings: hasRings)
}

4.	 Now that we can handle individual planet data, create a function that will take an array of
planet dictionaries and make an array of Planet structs, using a guard statement to ensure
that we successfully create a Planet struct:

func makePlanets(fromInput input: [[String: Any]]) -> [Planet] {
       var planets = [Planet]()

Data Wrangling with Swift134

       for inputItem in input {
               guard let planet = makePlanet(fromInput:
inputItem) else { continue }
               planets.append(planet)
       }
       return planets
}

How it works...

The guard statement works in a very similar way to an if statement, as optional values can be
unwrapped and chained together in the same way. Since our planet data contains strings, ints, floats,
and Booleans, the dictionary is of the [String: Any] type. So, to create our Planet struct, we
will need to check whether the expected values exist for given keys and cast them to the correct type.

In our makePlanet function, we use the guard keyword and then access and conditionally cast
all the values we require from the planet data dictionary. If any of these conditional casts fail, the
else block, which is defined after the guard statement, is executed. We have defined our function
to return an optional Planet, so if we don’t have the information expected, the guard will fail,
and return nil:

func makePlanet(fromInput input: [String: Any]) -> Planet? {
       guard let name = input["name"] as? String,
               let positionFromSun = input["positionFromSun"] as? Int,
               let fractionOfEarthMass = input["fractionOfEarthMass"]
as? Double,
               let distanceFromSunInAUs =
input["distanceFromSunInAUs"] as? Double,
               let hasRings = input["hasRings"] as? Bool else {
               return nil
       }
       return Planet(
               name: name,
               positionFromSun: positionFromSun,
               fractionOfEarthMass: fractionOfEarthMass,
               distanceFromSunInAUs: distanceFromSunInAUs,
               hasRings: hasRings)
}

Any value unwrapped by the guard statement is made available to any code below the guard
statement in the same scope; this makes the guard statement perfect for ensuring that input values
are as expected before continuing. This removes the need to nest our code within an if block. The
unwrapped values are then used to initialize the Planet struct.

Checking upfront with guard 135

As we have seen, a guard statement is for breaking execution when the guard condition fails, and
therefore, the compiler ensures that an execution breaking statement is placed in the else block;
this could be, for example, return, break, or continue.

In the makePlanets function, we use a for loop to iterate through the dictionaries and try to
create a Planet struct from each one. If our makePlanet call returns nil, we call continue
to skip this iteration of the for loop and jump to the next iteration:

func makePlanets(fromInput input: [[String: Any]]) -> [Planet] {
       //...
       for inputItem in input {
               guard let planet = makePlanet(fromInput: inputItem)
else { continue }
               planets.append(planet)
       }
       //...
}

There’s more...

The makePlanets function accepts an array of planet data dictionaries and returns an array of
Planet structs. If the array provided is empty, we may decide that this is not a valid input to our
function and want to throw an error; guard can help with this too.

Note
Since our array of planet information happens to resemble our Planet struct, we could utilize
the Codable protocol to automatically serialize our data into an instance of Planet:

extension Planet: Codable {

      init(dictionary: [String: Any]) throws {

            self = try JSONDecoder().decode(Planet.self, from:
JSONSerialization.data(withJSONObject: dictionary))

      }

}

do {

      let planet = try Planet(dictionary: inputData.first!)

} catch {

      print(error)

}

We’ll learn more about working with JSON and Codable in Chapter 5, but it’s always fun to
learn different ways to control and handle information!

Data Wrangling with Swift136

We can check that any conditional statement is true with guard, and if it isn’t, we can throw an error:

enum CreationError: Error {
       case noData
}

func makePlanets(fromInput input: [[String: Any]]) throws -> [Planet]
{
       guard input.count > 0 else {
               throw CreationError.noData
       }
       //...
}

See also

Further information about guard statements can be found in Apple’s documentation on the Swift
language at http://swiftbook.link/docs/guard.

Doing it later with defer
Typically, when we call a function, control passes from the call site to the function, and then the
statements within the function are executed sequentially until either the end of the function or until
a return statement. Control then returns to the call site.

In the following diagram, the print statements are executed in the order 1, 2, and 3:

Figure 3.2 – The print statements

Sometimes, it can be useful to execute some code after the function has returned, but before control
has been returned to the call site. This is the purpose of Swift’s defer statement. In the following
example, step 3 is executed after step 2, even though it is defined above it:

http://swiftbook.link/docs/guard

Doing it later with defer 137

Figure 3.3 – The defer statement

In this recipe, we will explore how to use defer and when it can be helpful.

Getting ready

A defer statement can be useful to change the state once a function’s execution is complete or
to clean up values that are no longer needed. Let’s look at an example of updating the state with a
defer statement.

Let’s create a new playground for this recipe.

How to do it...

Imagine that we have video game reviews and we want to classify them based on their star rating.
Let’s see how:

1.	 Define the options that a video game review may be classified into:

enum VideoGameReviewClass {
       case bad
       case average
       case good
       case brilliant
}

2.	 Create an object to do the classification:

class VideoGameReviewClassifier {
       func classify(forStarsOutOf10 stars: Int) ->
VideoGameReviewClass {
               if stars > 8 {
                      return .brilliant // 9 or 10
               } else if stars > 6 {
                      return .good // 7 or 8

Data Wrangling with Swift138

               } else if stars > 3 {
                      return .average // 4, 5 or 6
               } else {
                      return .bad // 1, 2 or 3
               }
       }
}

3.	 Use classifier to classify the review:

let classifier = VideoGameReviewClassifier()
let review1 = classifier.classify(forStarsOutOf10: 9)
print(review1) // brilliant

4.	 This works great, but for the purpose of this example, let’s imagine that this classification was
a long-running process, and we wanted to keep track of the state of the classifier, so we could
externally check whether the classifier was in the middle of classifying or was completed. Define
the possible classification states:

enum ClassificationState {
       case initial
       case classifying
       case complete
}

5.	 Update our class classifier to hold and update the state, using a defer statement to move to the
complete state:

class VideoGameReviewClassifier {
       var state: ClassificationState = .initial

       func classify(forStarsOutOf10 stars: Int) ->
VideoGameReviewClass {
               state = .classifying
               defer {
                      state = .complete
               }
               if stars > 8 {
                      return .brilliant // 9 or 10
               } else if stars > 6 {
                      return .good // 7 or 8
               } else if stars > 3 {
                      return .average // 4, 5 or 6
               } else {
                      return .bad // 1, 2 or 3

Doing it later with defer 139

               }
       }
}

6.	 Use classifier to classify the review and check the state:

let classifier = VideoGameReviewClassifier()
let review1 = classifier.classify(forStarsOutOf10: 9)
print(review1) // brilliant
print(classifier.state) // complete

How it works...

The classify method we defined in the preceding steps takes an input rating and then returns
VideoGameReviewClass, based on this rating:

func classify(forStarsOutOf10 stars: Int) -> VideoGameReviewClass {
       //...
       if stars > 8 {
               return .brilliant // 9 or 10
       } else if stars > 6 {
               return .good // 7 or 8
       } else if stars > 3 {
               return .average // 4, 5 or 6
       } else {
               return .bad // 1, 2 or 3
       }
}

While doing that, it also updates a state value to indicate where the method is in the classification process:

state = .classifying
defer {
       state = .complete
}

The defer statement allows the state to be updated once the method has returned.

If we were to write this method without the defer statement, we would have to transition to the
complete state within each branch of the if statement before returning a value, as nothing after this
will be executed. The end of that method will look as follows:

if stars > 8 {
       state = .complete
       return .brilliant // 9 or 10
} else if stars > 6 {

Data Wrangling with Swift140

       state = .complete
       return .good // 7 or 8
} else if stars > 3 {
       state = .complete
       return .average // 4, 5 or 6
} else {
       state = .complete
       return .bad // 1, 2 or 3
}

This repetition of updating the state can be avoided when we use the defer statement:

defer {
       state = .complete
}

To defer code, simply use the defer keyword, with the code to be deferred defined in curly brackets;
this code will be run after the method has returned, but before the control flow is returned to the caller.

There’s more...

You can define multiple defer statements within a method, and they are executed in the reverse
order that they were defined, so the last defer statement defined is the first one executed after the
method returns.

To demonstrate, add a new state that we’ll switch to when completing classifications subsequent to
the first:

enum ClassificationState {
       case initial
       case classifying
       case complete
       case completeAgain
}

Now, let’s amend our classifier to keep track of the number of classifications it makes, and
changes to the completeAgain state if more than one classification has been completed:

class VideoGameReviewClassifier {
       var state: ClassificationState = .initial
       var numberOfClassifications = 0

       func classify(forStarsOutOf10 stars: Int) ->
VideoGameReviewClass {
               state = .classifying

Doing it later with defer 141

               defer {
                      numberOfClassifications += 1
               }
               defer {
                      if numberOfClassifications > 0 {
                              state = .completeAgain
                      } else {
                              state = .complete
                      }
               }

               if stars > 8 {
                      return .brilliant // 9 or 10
               } else if stars > 6 {
                      return .good // 7 or 8
               } else if stars > 3 {
                      return .average // 4, 5 or 6
               } else {
                      return .bad // 1, 2 or 3
               }
       }
}

Now, we change how we use classifier; the second time we use it, it will complete with a
different state:

let classifier = VideoGameReviewClassifier()
let review1 = classifier.classify(forStarsOutOf10: 9)
print(review1) // brilliant
print(classifier.state) // complete
print(classifier.numberOfClassifications) // 1

let review2 = classifier.classify(forStarsOutOf10: 2)
print(review2) // bad
print(classifier.state) // completeAgain
print(classifier.numberOfClassifications) // 2

Since we have now defined two defer statements, let’s take another look to understand the order
in which they are executed:

defer {
       numberOfClassifications += 1
}
defer {

Data Wrangling with Swift142

       if numberOfClassifications > 0 {
               state = .completeAgain
       } else {
               state = .complete
       }
}

As discussed earlier, the last defined defer statement is executed first. So, on the first classification,
once the method returns, the last defer statement is executed, and the state is changed to complete
because numberOfClassifications will be 0. Then, the first defer statement is executed,
adding 1 to the numberOfClassifications variable, which will now be 1.

On the second classification, once the method returns, the last defer statement will execute and
change the state to completeAgain, since numberOfClassifications is greater than 0.
Finally, the first defer statement will execute, incrementing numberOfClassifications
and making it 2.

If the defer statements had been the other way around, the state would always change to
completeAgain, as numberOfClassifications would have incremented to 1 before the
check was made.

See also

Further information about defer statements can be found in Apple’s documentation on the Swift
language at http://swiftbook.link/docs/defer.

Bailing out with fatalError and precondition
It’s comforting to think that in the code you write, everything will always happen as expected, and
your program can handle any eventuality. However, sometimes things can go wrong – really wrong.
A situation could arise that you know is possible but don’t expect to ever happen, and the program
should terminate if it does. In this recipe, we will look at two issues like this – fatalError
and precondition.

Getting ready

Let’s reuse our example from the previous recipe – we have an object that can be used to classify
video game reviews, based on how many stars out of 10 the review gave the video game. However,
let’s simplify its use, and say that we only intend for a classifier object to classify one, and only one,
video game review.

http://swiftbook.link/docs/defer

Bailing out with fatalError and precondition 143

How to do it...

Let’s set up our video game classifier to only be used once, and only accept ratings out of 10:

1.	 Define the classification state and the video game review class:

enum ClassificationState {
       case initial
       case classifying
       case complete
}

enum VideoGameReviewClass {
       case bad
       case average
       case good
       case brilliant
}

2.	 Redefine our classifier object, using precondition and fatalError to indicate situations
that are not expected to occur and would cause a problem:

class VideoGameReviewClassifier {
       var state: ClassificationState = .initial

       func classify(forStarsOutOf10 stars: Int) ->
VideoGameReviewClass {
               precondition(state == .initial, "Classifier state
must be initial")
               state = .classifying
               defer {
                      state = .complete
               }
               if stars > 8 && stars <= 10 {
                      return .brilliant // 9 or 10
               } else if stars > 6 {
                      return .good // 7 or 8
               } else if stars > 3 {
                      return .average // 4, 5 or 6
               } else if stars > 0 {
                      return .bad // 1, 2 or 3
               } else {
                      fatalError("Star rating must be between 1
and 10")
               }
       }

Data Wrangling with Swift144

}

let classifier = VideoGameReviewClassifier()
let review1 = classifier.classify(forStarsOutOf10: 9)
print(review1) // brilliant
print(classifier.state) // complete

How it works...

We only want to use the classifier once; therefore, when we begin to classify a video game review, the
current state should be initial, as this object has never been classified before and shouldn’t be in
the middle of classifying. If that is not the case, the classifier is being used incorrectly, and we should
terminate the execution of the code:

func classify(forStarsOutOf10 stars: Int) -> VideoGameReviewClass {
       precondition(state == .initial, "Classifier state must be
initial")
       //...
}

We state a precondition using the precondition keyword, and we provide a Boolean statement that
we expect to be true and an optional message. If this Boolean statement is not true, the execution
of the code will terminate, and the message will be displayed in the console.

In our example, we are making it a precondition that the state must be initial when calling this method.
When our classifier performs the classification, it expects a number of stars between 1 and 10. However,
the method accepts Int as a parameter, so any integer value can be provided, positive or negative.

If the value provided is not between 1 and 10 , and the classifier cannot provide a valid
VideoGameReviewClass, then the classifier is being used incorrectly, and we should terminate
the execution of the code:

func classify(forStarsOutOf10 stars: Int) -> VideoGameReviewClass {
       //...
       if stars > 8 && stars <= 10 {
               return .brilliant // 9 or 10
       } else if stars > 6 {
               return .good // 7 or 8
       } else if stars > 3 {
               return .average // 4, 5 or 6
       } else if stars > 0 {
               return .bad // 1, 2 or 3
       } else {

Bailing out with fatalError and precondition 145

               fatalError("Star rating must be between 1 and 10")
       }
}

The if-else statement covers all the valid VideoGameReviewClass options for the provided stars,
so if none of these are triggered, we use a fatal error to indicate incorrect usage. This is done using the
fatalError keyword, and an optional message can be provided.

See also

Further information about fatalError can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/fatalerror.

http://swiftbook.link/docs/fatalerror

4
Generics, Operators, and

Nested Types

Swift provides a number of advanced features for building functionality that is flexible but well-defined
so that it feels like you are extending the language itself. In this chapter, we will examine two of these
features: generics and operators. We will also see how nested types allow logical grouping, access
control, and namespacing for your constructs.

By the end of this chapter, you will be empowered with advanced tooling that can help you achieve
some neat goals with your Swift code!

In this chapter, we will cover the following recipes:

•	 Using generics with types

•	 Using generics with functions

•	 Using generics with protocols

•	 Using advanced operators

•	 Defining option sets

•	 Creating custom operators

•	 Nesting types and namespacing

Technical requirements
All the code for this chapter can be found in this book’s GitHub repository at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%204.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%204
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%204

Generics, Operators, and Nested Types148

Using generics with types
When we build things in Swift that interact with other types, we often specify the type we are interacting
with directly. This is helpful because it means we know the capabilities that the type has. We can put
those capabilities to use and ensure that the outputs have the correct type. However, we then have a
construct that can only interact with the specified type; it can’t be reused with other types, even if the
concepts are the same.

Generics give us the advantage of having a defined type while being generically applicable to other
types. It is, perhaps, best illustrated with an example.

In this recipe, we will create a generic class that stores the last five things it was given and returns
them all upon request.

Getting ready

In this recipe, we will create a custom collection object that will store the last five strings that the
user copied so that they can paste not just the last string copied, but any of the last five. You can add
strings to the list and ask for all the strings in the list, which will be returned from newest to oldest.

Add the following code to a new playground:

class RecentList {
      var slot1: String?
      var slot2: String?
      var slot3: String?
      var slot4: String?
      var slot5: String?

      func add(recent: String) {
            // Move each slot down 1
            slot5 = slot4
            slot4 = slot3
            slot3 = slot2
            slot2 = slot1
            slot1 = recent
      }

      func getAll() -> [String] {
            var recent = [String]()
            if let slot1 = slot1 {
                  recent.append(slot1)
            }
            if let slot2 = slot2 {
                  recent.append(slot2)

Using generics with types 149

            }
            if let slot3 = slot3 {
                  recent.append(slot3)
            }
            if let slot4 = slot4 {
                  recent.append(slot4)
            }
            if let slot5 = slot5 {
                  recent.append(slot5)
            }
            return recent
      }
}

let recentlyCopiedList = RecentList()
recentlyCopiedList.add(recent: "First")
recentlyCopiedList.add(recent: "Next")
recentlyCopiedList.add(recent: "Last")
var recentlyCopied = recentlyCopiedList.getAll()
print(recentlyCopied) // Last, Next, First

This is great – it does just what we want. Now, let’s say that we want to add a list of five recent contacts
to a contacts app. The concept is exactly the same as the list of copied strings, as we want to do
the following:

•	 Add something to a list

•	 Get all the things on the list so that we can present them to the user

However, because we specified that the RecentList object can only work with strings, it can’t work
with my custom Person object. We can use generics to make this more useful.

Let’s see how to do this by making RecentList use generics.

How to do it...

We will update our RecentList code to use generics, so it can be used with other types:

1.	 Amend the RecentList object to define a generic type, ListItemType, which we use
in place of String:

class RecentListGeneric<ListItemType> {
      var slot1: ListItemType?
      var slot2: ListItemType?
      var slot3: ListItemType?

Generics, Operators, and Nested Types150

      var slot4: ListItemType?
      var slot5: ListItemType?

      func add(recent: ListItemType) {
            // Move each slot down 1
            slot5 = slot4
            slot4 = slot3
            slot3 = slot2
            slot2 = slot1
            slot1 = recent
      }

      func getAll() -> [ListItemType] {
            var recent = [ListItemType]()
            if let slot1 = slot1 {
                  recent.append(slot1)
            }
            if let slot2 = slot2 {
                  recent.append(slot2)
            }
            if let slot3 = slot3 {
                  recent.append(slot3)
            }
            if let slot4 = slot4 {
                  recent.append(slot4)
            }
            if let slot5 = slot5 {
                  recent.append(slot5)
            }
            return recent
      }
}

2.	 Provide a specified type, String, when creating RecentList, which will be used to replace
the generic type for this instance of RecentList:

let recentlyUsedWordList = RecentListGeneric<String>()
recentlyUsedWordList.add(recent: "First")
recentlyUsedWordList.add(recent: "Next")
recentlyUsedWordList.add(recent: "Last")
var recentlyUsedWords = recentlyUsedWordList.getAll()
print(recentlyUsedWords) // Last, Next, First

Using generics with types 151

Note
Instead of using generics, we could have replaced all the String references in RecentList
with Any, which would allow it to accept any type. However, this would allow the list to be
made up of different types of things, which is not what we want. It would also require us to
cast values that are returned, to make them useful.

Let’s examine how our newly genericized RecentList can be used for the other example we discussed
earlier, the list of recent contacts:

1.	 Create a simple Person object:

class Person {
      let name: String
      init(name: String) {
            self.name = name
      }
}

2.	 Create some people to add to our recent contact list:

let rod = Person(name: "Rod")
let jane = Person(name: "Jane")
let freddy = Person(name: "Freddy")

3.	 Create a new RecentList object, providing the specific Person type:

let lastCalledList = RecentList<Person>()

4.	 Add person objects to this list:

lastCalledList.add(recent: freddy)
lastCalledList.add(recent: jane)
lastCalledList.add(recent: rod)

5.	 Get all the people in the list, and since this is typed as an array of Person objects, print their
name property:

let lastCalled = lastCalledList.getAll()
for person in lastCalled {
      print(person.name)
}
// Rod
// Jane
// Freddy

We now have a generic RecentList class that we have used with both strings and a custom
Person class.

Generics, Operators, and Nested Types152

How it works...

To add generics to a class or struct, the generic type is defined in angle brackets after the class or
struct name, and can be given any type name, although it should begin with a capital letter like other
type names:

class RecentList<ListItemType> {
     //...
}

This generic type now becomes a stand-in for the specific type that will be specified when it is used,
and we can use this wherever we would use the specific type.

It can be used as a property type:

var slot1: ListItemType?

It can be used as a parameter value:

func add(recent: ListItemType)

And it can be used as a return type:

func getAll() -> [ListItemType]

In many other programming languages that have a generics system, the generic type is often given a
one-letter type name, usually T. Swift aims to be concise, but not at the expense of clarity, so I suggest
using a more descriptive type name.

A descriptive type name becomes especially important if you have multiple generic types, which you
can have as a comma-separated list within the angle brackets:

class RecentList<ListItemType, SomeOtherType> {
     //...
}

We have now created a generic RecentList object that can be used with any type.

There’s more...

While being extremely generic has its advantages, you may wish to constrain which types can be used
for the generic type, especially if you need to use some features of that constrained type.

Let’s say that in addition to returning an array of items from RecentList, we want to be able to print
out the list directly. To do this, we need to ensure that the type of item used in RecentList is something
that can be converted into a string to be printed. There is already a CustomStringConvertible

Using generics with types 153

protocol that defines this behavior, so we want to ensure that any specific type used with RecentList
conforms to CustomStringConvertible:

class RecentList<ListItemType: CustomStringConvertible> {
     //...
}

We add the constraint after the generic type name, separated by a colon, similar to how we specify
protocol conformance and class inheritance. Indeed, while this example constrains the generic type
to implement a protocol, we can instead specify a class that the specific type must be, or inherit from.

Now that we have this constraint, we can be sure that any specific type given will conform to
CustomStringConvertible, and will therefore have a description string that we can print, so
let’s create a method to do that:

class RecentList<ListItemType: CustomStringConvertible> {
     func printRecentList() {
          for item in getAll() {
               let printableItem = String(describing: item)
               print(printableItem)
     }
}
//...

The only thing left to do is to make our Person class conform to CustomStringConvertible
so that it can continue to be used as a specific type in RecentList:

extension PersonPrintable: CustomStringConvertible {
      public var description: String {
            return name
      }
}

Now we can use this functionality with our String type’s RecentList and our Person
type’s RecentList:

// Using Strings type
let recentlyUsedWordList = RecentListPrintable<String>()
recentlyUsedWordList.add(recent: "First")
recentlyUsedWordList.add(recent: "Next")
recentlyUsedWordList.add(recent: "Last")
recentlyUsedWordList.printRecentListPrintable()
// Last
// Next
// First

Generics, Operators, and Nested Types154

// Using PersonPrintable type
let rod = PersonPrintable(name: "Rod")
let jane = PersonPrintable(name: "Jane")
let freddy = PersonPrintable(name: "Freddy")

let lastCalledList = RecentListPrintable<PersonPrintable>()
lastCalledList.add(recent: freddy)
lastCalledList.add(recent: jane)
lastCalledList.add(recent: rod)
lastCalledList.printRecentListPrintable()
// Rod
// Jane
// Freddy

By constraining the generic type, we could use features that we knew the type would have, to provide
additional functionality.

See also

Further information about generic types can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/generics.

Using generics with functions
In addition to being able to specify generic types, you can use generics to build functions that are both
widely applicable and strongly typed. In this recipe, we will use generics with functions.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

We will use generics to create a function to help with placing values into a dictionary:

1.	 Create a generic function that inserts the same value into a dictionary for multiple keys:

func makeDuplicates<ItemType>(of item: ItemType, withKeys keys:
Set<String>) -> [String: ItemType] {
      var duplicates = [String: ItemType]()
      for key in keys {
            duplicates[key] = item
      }

http://swiftbook.link/docs/generics

Using generics with functions 155

      return duplicates
}

2.	 Use this function, passing in a single value and multiple keys, and the value is stored against
each of the given keys:

let awards: Set<String> = ["Best Visual Effects",
  "Best Cinematography",
  "Best Original Score",
  "Best Film Editing"]

let oscars2022 = makeDuplicates(of: "Dune", withKeys: awards)
print(oscars2022["Best Visual Effects"] ?? "")
// Dune
print(oscars2022["Best Cinematography"] ?? "")
// Dune

How it works...

Just like generics for types, the generic type for a function is specified within angle brackets:

func makeDuplicates<ItemType>(of item: ItemType, withKeys keys:
Set<String>) -> [String: ItemType] {
     //...
}

The defined generic type name can then be used as a type definition within the rest of the function
definition. In our example, we want to define the type of our input item to be duplicated, and we also
want the values that are held in the dictionary to be returned to be of the same type.

Instead of using generics, we could have used the Any type in place of the generic type:

func makeDuplicates(of item: Any, withKeys keys: Set<String>) ->
[String: Any] {
     //...
}

However, this approach presents a few problems for anyone using this function:

•	 They will get back a dictionary containing values of the Any type, which will need to be cast
to a more useful type.

•	 Without seeing the implementation, they can’t be sure that the dictionary contains values of
the same type. One key may have a String stored against it, and another may have an Int.

•	 Without seeing the implementation, they can’t be sure that the values of the returned dictionary
are of the same type as the item provided.

Generics, Operators, and Nested Types156

By using a generic type, we allow the functionality to be widely applicable while enforcing our type
logic at compile time.

You’ll notice that unlike instantiating a type with generics, we don’t need to explicitly state the specific
type to use when executing the function:

let oscars2022 = makeDuplicates(of: "Dune", withKeys: awards)

This is because the compiler is able to infer it from the type of the first parameter provided. Since
Dune is a string, and the compiler knows that the parameter has the ItemType generic type, the
compiler infers that for this use of the method, the ItemType generic type becomes the specific
type of String.

There’s more...

We can increase the usability of our function by providing a generic type for the set of keys we provide
as the second parameter:

func makeDuplicates<ItemType, KeyType>(of item: ItemType, withKeys
keys: Set<KeyType>) -> [KeyType: ItemType] {
     var duplicates = [KeyType: ItemType]()
     for key in keys {
          duplicates[key] = item
     }
     return duplicates
}

Multiple generic types are defined just as they were in the previous recipe, as a comma-separated list
within angle brackets.

All the collection types in Swift (array, dictionary, set, and so on) use generics, and in the preceding
function, we are passing the generic type from our function into the set.

Therefore, KeyType must conform to Hashable, since this is required for use in a set.

If we wanted to make this constraint explicit or constrain the generic type for some other reason, this
is defined after a colon:

func makeDuplicates<ItemType, KeyType: Hashable>(of item: ItemType,
withKeys keys: Set<KeyType>) -> [KeyType: ItemType] {
     var duplicates = [KeyType: ItemType]()
     for key in keys {
          duplicates[key] = item
     }
     return duplicates
}

Using generics with protocols 157

Just as with the previous example, if both specific types we are using can be inferred from the input
or output, we don’t need to specify them:

let awards: Set<String> = ["Best Visual Effects",
  "Best Cinematography",
  "Best Original Score",
  "Best Film Editing"]
let oscars2022Generic = makeDuplicatesGeneric(of: "Dune", withKeys:
awards)
print(oscars2022Generic["Best Visual Effects"] ?? "")
print(oscars2022Generic["Best Cinematography"] ?? "")

We have used two generic types to improve the flexibility of our function.

See also

Further information about generic functions can be found in Apple’s documentation on the Swift
language at https://docs.swift.org/swift-book/documentation/the-swift-
programming-language/generics/#Generic-Functions.

Using generics with protocols
So far in this chapter, we have seen how to use generics within types and functions. In this recipe, we
will round off our journey through generics in Swift by looking at how they can be used in protocols.
This will allow us to produce abstract interfaces while maintaining strongly typed requirements that
allow for a more descriptive model.

In this recipe, we will build a model for a transport app in the UK with the goal of providing the
distance and duration of a journey for different methods of transport.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

The ways that people travel are very different, so let’s start by defining transport methods in a generic
way, and then specify what those travel methods are:

1.	 Define a protocol to define the features of a transport method:

protocol TransportMethod {
      associatedtype CollectionPoint: TransportLocation

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/generics/#Generic-Functions
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/generics/#Generic-Functions

Generics, Operators, and Nested Types158

      var defaultCollectionPoint: CollectionPoint { get }
      var averageSpeedInKPH: Double { get }
}

2.	 Create a struct for traveling by train that implements the TransportMethod protocol:

struct Train: TransportMethod {
      typealias CollectionPoint = TrainStation

      // User's home or nearest station
      var defaultCollectionPoint: CollectionPoint {
            return TrainStation.BMS
      }

      var averageSpeedInKPH: Double {
            return 100
      }
}

3.	 We need to define the TrainStation type that we put as CollectionPoint. Let’s do
that as an enum:

enum TrainStation: String, TransportLocation {
      case BMS = "Bromley South"
      case VIC = "London Victoria"
      case RAI = "Rainham (Kent)"
      case BTN = "Brighton (East Sussex)"
}

4.	 Since we plan to calculate the distance and duration of a journey, let’s create a Journey object
to represent that journey from a starting point to an endpoint:

class Journey<TransportType: TransportMethod> {
      let start: TransportType.CollectionPoint
      let end: TransportType.CollectionPoint

      init(start: TransportType.CollectionPoint,
            end: TransportType.CollectionPoint) {
            self.start = start
            self.end = end
      }
}

Using generics with protocols 159

5.	 Add the transport method as a property of the journey as this will be used for the
duration calculation:

class Journey<TransportType: TransportMethod> {
      let start: TransportType.CollectionPoint
      let end: TransportType.CollectionPoint
      let method: TransportType

      init(method: TransportType,
            start: TransportType.CollectionPoint,
            end: TransportType.CollectionPoint) {
            self.start = start
            self.end = end
            self.method = method
      }
}

6.	 To calculate the distance of our journey, we need the start and end to have definite locations.
So, define a protocol that provides these locations:

protocol TransportLocation {
      var location: CLLocation { get }
}

7.	 Import the CoreLocation framework at the top of the playground:

import CoreLocation

8.	 Constrain the CollectionPoint associated type on TransportMethod, so that it must
conform to the TransportLocation protocol we have just created:

protocol TransportMethod {
      associatedtype CollectionPoint: TransportLocation
      var defaultCollectionPoint: CollectionPoint { get }
      var averageSpeedInKPH: Double { get }
}

9.	 Use the locations of the start and end of the CollectionPoint object to calculate the
distance and duration of the journey:

class Journey<TransportType: TransportMethod> {
     var start: TransportType.CollectionPoint
     var end: TransportType.CollectionPoint

     let method: TransportType
     var distanceInKMs: Double
     var durationInHours: Double

Generics, Operators, and Nested Types160

     init(method: TransportType, start: TransportType.
CollectionPoint, end: TransportType.CollectionPoint) {
          self.start = start
          self.end = end
          self.method = method
          // CoreLocation provides the distance in meters, so we
divide by 1000 to get kilometers
          distanceInKMs = end.location.distance(from: start.
location) / 1000
          durationInHours = distanceInKMs / method.
averageSpeedInKPH
     }
}

10.	 Ensure our TrainStation enum conforms to TransportLocation, which is now
a requirement:

enum TrainStation: String, TransportLocation {
      case BMS = "Bromley South"
      case VIC = "London Victoria"
      case RAI = "Rainham (Kent)"
      case BTN = "Brighton (East Sussex)"
      // Full list of UK train stations codes can be found at
      // http://www.nationalrail.co.uk/static/documents/content/
station_codes.csv

      var location: CLLocation {
            switch self {
            case .BMS: return CLLocation(latitude: 51.4000504,
longitude: 0.0174237)
            case .VIC: return CLLocation(latitude: 51.4952103,
longitude: -0.1438979)
            case .RAI: return CLLocation(latitude: 51.3663,
longitude: 0.61137)
            case .BTN: return CLLocation(latitude: 50.829,
longitude: -0.14125)
            }
      }
}

11.	 Use our Journey object to calculate the distance and duration of a train journey:

let trainJourney = Journey(method: Train(), start: TrainStation.
BMS, end: TrainStation.VIC)
let distanceByTrain = trainJourney.distanceInKMs

Using generics with protocols 161

let durationByTrain = trainJourney.durationInHours
print("Journey distance: \(distanceByTrain) km")
print("Journey duration: \(durationByTrain) hours")

How it works...

At the outset, it may not be clear which is the best structure to use to define a transport method, and
there might be different structures appropriate for different travel methods. Therefore, we can define
a transport method as a protocol that appropriate types can conform to:

protocol TransportMethod { associatedtype CollectionPoint
     var defaultCollectionPoint: CollectionPoint { get }
     var averageSpeedInKPH: Double { get }
}

We define an associated generic type that we name CollectionPoint, which will represent the
type of location that someone can be collected from when using this transport method. By using
generics, we have ultimate flexibility in how a transport method chooses to define what can serve as
a collection point.

Having defined an associated type, it can then be used as a placeholder in properties and methods for
the specific type that will be defined when the protocol is used. We use it to define a default collection
point that each transport method should provide.

Each transport method also provides an average speed, which will be used later in calculating the
travel time.

Let’s look at a concrete example of a transport method to help define the model further:

struct Train: TransportMethod {
     typealias CollectionPoint = TrainStation
     // User's home or nearest station
     var defaultCollectionPoint: TrainStationPoint {
          return TrainStation.BMS
     }

     var averageSpeedInKPH: Double {
          return 100
     }
}

Generics, Operators, and Nested Types162

For Train to conform to the TransportMethod protocol, we must provide a specific version of
the CollectionPoint generic type that is required by the protocol. In the case of traveling by
train, the collection point will be a train station, so we now have to define the TrainStation type:

enum TrainStation: String {
     case BMS = "Bromley South"
     case VIC = "London Victoria"
     case RAI = "Rainham (Kent)"
     case BTN = "Brighton (East Sussex)"
     // Full list of UK train stations codes at
     // http://www.railwaycodes.org.uk/stations/station1.shtm
}

Since there are a finite number of train stations that are discretely definable, an enum is a good way
to represent them. I’ve only listed a small number in the preceding code block, for brevity.

Our goal is to model a journey and calculate the duration of the journey over specific transport
methods, so let’s create a Journey object:

class Journey<TransportType: TransportMethod> {
     let start: TransportType.CollectionPoint
     let end: TransportType.CollectionPoint

     init(start: TransportType.CollectionPoint, end: TransportType.
CollectionPoint) {
          self.start = start
          self.end = end
     }
}

A journey takes place from one point to another, so we take the journey’s start and end as input
parameters. We need to have the flexibility to provide any type as the start and end, but we need
them to be types connected to a transport method, with the same type for the start and end values.
To accomplish this, we can have a generic type constrained to conform to the TransportMethod
protocol. We can then define our start and end property types by referencing the CollectionPoint
associated type of the generic type.

Our goal is to calculate the duration of a journey. To do this, we will need the speed of travel during
the journey and the distance from start to end. Our TransportMethod protocol defines that it will
provide an average speed, so let’s also take the transport method as an input to our journey:

class Journey<TransportType: TransportMethod> {
     let start: TransportType.CollectionPoint
     let end: TransportType.CollectionPoint
     let method: TransportType

Using generics with protocols 163

     init(method: TransportType, start: TransportType.CollectionPoint,
end: TransportType.CollectionPoint) {
          self.start = start
          self.end = end
          self.method = method
     }
}

To get the distance of the journey, we need to calculate the distance between the start and end, but the
type of both the start and end of the journey is the generic CollectionPoint type, which could
be any type, and so does not have any location information that we can use to calculate the distance.

To solve this, let’s constrain CollectionPoint so that it must conform to a new
protocol, TransportLocation:

protocol TransportLocation {
     var location: CLLocation { get }
}

Anything conforming to TransportLocation must provide a location in the form of a CLLocation
object. The CLLocation object is part of the CoreLocation framework on iOS. Further
investigation of the CoreLocation framework is outside the scope of this book, but it’s enough
to know that it provides ways to calculate the distance between two CLLocation objects, and we
need to include the following at the top of this playground to use it:

import CoreLocation

With our TransportLocation protocol defined, we can constrain the CollectionPoint
associated type on the TransportMethod protocol:

protocol TransportMethod {
     associatedtype CollectionPoint: TransportLocation
     var defaultCollectionPoint: CollectionPoint { get }
     var averageSpeedInKPH: Double { get }
}

Since our CollectionPoint will now conform to TransportLocation, and therefore must
have a location property, we can go back to our Journey object and use this to calculate the distance
of the journey and the duration:

class Journey<TransportType: TransportMethod> {
     var start: TransportType.CollectionPoint
     var end: TransportType.CollectionPoint
     let method: TransportType
     var distanceInKMs: Double

Generics, Operators, and Nested Types164

     var durationInHours: Double

     init(method: TransportType, start: TransportType.CollectionPoint,
end: TransportType.CollectionPoint) {
          self.start = start
          self.end = end
          self.method = method
          // CoreLocation provides the distance in meters, so we
divide by 1000 to get kilometers
          distanceInKMs = end.location.distance(from: start.location)
/ 1000
          durationInHours = distanceInKMs / method.averageSpeedInKPH
     }
}

The last thing we need to do is to ensure that our TrainStation enum conforms to
TransportLocation as this is now a requirement. To do this, we just need to declare conformance
and add a location property:

enum TrainStation: String, TransportLocation {
     case BMS = "Bromley South"
     case VIC = "London Victoria"
     case RAI = "Rainham (Kent)"
     case BTN = "Brighton (East Sussex)"
     // Full list of UK train stations codes can be found at
     // http://www.railwaycodes.org.uk/stations/station1.shtm

     var location: CLLocation {
          switch self {
          case .BMS:
               return CLLocation(latitude: 51.4000504, longitude:
0.0174237)
          case .VIC:
               return CLLocation(latitude: 51.4952103, longitude:
-0.1438979)
          case .RAI:
               return CLLocation(latitude: 51.3663, longitude:
0.61137)
          case .BTN:
               return CLLocation(latitude: 50.829, longitude:
-0.14125)
          }
     }
}

Using generics with protocols 165

Let’s see how we would use our travel model to create a journey with specific types:

let trainJourney = Journey(method: Train(), start: TrainStation.BMS,
end: TrainStation.VIC)
let distanceByTrain = trainJourney.distanceInKMs
let durationByTrain = trainJourney.durationInHours
print("Journey distance: \(distanceByTrain) km")
print("Journey duration: \(durationByTrain) hours")

We have used generics with protocols to create a generic system without prescribing the type of Swift
construct we need to use.

There’s more...

In this recipe, we made one type conform to TransportMethod – this was our Train struct. Let’s
look at another to see how tackling things in a protocol-oriented way allows flexibility in implementation.

In the next TransportMethod, we will implement Road, but there are a number of different vehicle
types that we can use to travel by road, and they may have different average speeds.

1.	 Since we have a finite list of options for travel by road, let’s define it using an enum:

enum Road: TransportMethod {
     typealias CollectionPoint = CLLocation
     case car
     case motobike case van
     case hgv

     // The users home or current location
     var defaultCollectionPoint: CLLocation {
          return CLLocation(latitude: 51.1, longitude: 0.1)
     }

     var averageSpeedInKPH: Double {
          switch self {
          case .car: return 60
          case .motobike: return 70
          case .van: return 55
          case .hgv: return 50
     }
}

Generics, Operators, and Nested Types166

2.	 A journey by train has a finite list of collection points, which is the train stations, but almost
anywhere can be a collection point when traveling by road. Therefore, we can define the
collection point for Road to be any CLLocation, but CLLocation doesn’t conform to
TransportLocation. We can solve this by extending CLLocation to add conformance:

extension CLLocation: TransportLocation {
     var location: CLLocation {
          return self
     }
}

Now, we can define a journey by road and calculate the duration:
let start = CLLocation(latitude: 51.3994669, longitude:
0.0116888)
let end = CLLocation(latitude: 51.2968654, longitude: 0.5053609)
let roadJourney = Journey(method: Road.car, start: start, end:
end)
let distanceByRoad = roadJourney.distanceInKMs
let durationByRoad = roadJourney.durationInHours
print("Journey distance: \(distanceByRoad) km")
print("Journey duration: \(durationByRoad) hours")

By taking a protocol-orientated approach to tackling the task of calculating a journey’s duration, and
by using protocol generics, we were able to use completely different, but appropriate, implementations
for two transport methods while providing an interface so that they can be handled in a common way.

For a train journey, we used an enum to model the train stations and a struct to model the transport
method, and for a road journey, we implemented an enum for the transport method and used the
CLLocation object for the transport location.

See also

Further information about associated types can be found in Apple’s documentation on the Swift
language at http://swiftbook.link/docs/associated-types.

Using advanced operators
Swift is a programming language that takes a relatively small number of well-defined principles and
builds on them to create expressive and powerful language features. The concept of mathematical
operators, such as +, -, *, and / for addition, subtraction, multiplication, and division, respectively,
seems so fundamental as to not warrant a mention. However, in Swift, this common mathematical
functionality is built on top of an underlying operator system that is extensible and powerful.

In this recipe, we will look at some of the more advanced operators provided by the Swift standard
library, and in the next recipe, we will create our own custom operators.

http://swiftbook.link/docs/associated-types

Using advanced operators 167

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

The operators we will explore are known as bitwise operators and are used to manipulate numerical
bit representations.

An integer value in Swift can be represented in its binary form by prefixing the integer literal with 0b:

let zero: Int = 0b000
let one: Int = 0b001
let two: Int = 0b010
let three: Int = 0b011
let four: Int = 0b100
let five: Int = 0b101
let six: Int = 0b110
let seven: Int = 0b111

A bit is the smallest value in a computer system, consisting of either a 1 or 0. The integers mentioned
here can be represented by three bits, which are clearly visible when represented in binary form, as
illustrated in the preceding snippet. The integer six can be represented by the three bits 1, 1, and 0.

These binary representations are really useful when you need to represent multiple options in one
value. For example, let’s say that we want to indicate which devices are supported for a specific feature
of an app. The available devices are as listed:

•	 Phone

•	 Tablet

•	 Watch

•	 Laptop

•	 Desktop

•	 TV

•	 Brain implant

Certain features may be appropriate for all the devices; you may still be working on a feature, which
means it isn’t currently appropriate for any device; or it may be appropriate for a combination of
different devices. We can have Boolean values for each of the devices to indicate whether the feature
is supported for that device, but this is not the best solution as there is nothing intrinsically tying the
properties to each other, and you could forget to update some of the values as circumstances change.

Generics, Operators, and Nested Types168

Instead, we can represent all the supported devices with one integer value, and use each bit of the
integer to represent a different device:

let phone: Int = 0b0000001
let tablet: Int = 0b0000010
let watch: Int = 0b0000100
let laptop: Int = 0b0001000
let desktop: Int = 0b0010000
let tv: Int = 0b0100000
let brainImplant: Int = 0b1000000

To see how this enables us to store multiple devices in one value, let’s add together a number of
device values:

phone = 0b0000001
tablet = 0b0000010
tv = 0b0100000
phone + tablet + tv = 0b0100011

As each device is represented by a different bit, the device values are combined by adding the values,
and they don’t overlap.

To test whether a particular device or combination of devices is supported, we can use a bitwise AND
operation. A bitwise AND operation will compare the corresponding bits for two different binary values
and will set that bit to 1 in a new binary value if both bit input values are 1. As an example, let’s test
whether phones are supported in the combined value we created earlier:

Supported Devices = 0b 0 1 0 0 0 1 1

Phone = 0b 0 0 0 0 0 0 1

AND Operation Result = 0b 0 0 0 0 0 0 1

The result only has a 1-bit value for the rightmost bit because this is the only bit that was set to 1 in
both the Supported Devices value and the Phone value.

Once we have that result, we can directly compare it to the value for Phone, and if they are equal, then
we know that the value of Supported Devices included the Phone value:

•	 AND Operation Result = 0b 0 0 0 0 0 0 1

•	 Phone = 0b 0 0 0 0 0 0 1

We now have a way to combine the possible options into one value, and a way to compare those
values to see whether one is contained in another, using bitwise operations. The Swift standard library
contains bitwise operators that allow us to perform these operations as easily as other mathematical
operations, such as +, -, *, and /.

Using advanced operators 169

Typically, an operator will be in the following form:

<#left hand side value#> <#operator#> <#right hand side value#>

As it is when adding two numbers together, for example:

2 + 3

In the preceding example, we have these:

•	 2: This is the left-hand side value

•	 3: This is the right-hand side value

The bit shift operator (<<) will take an integer value on the left-hand side and shift it by the number
of bit positions to the right-hand side. Therefore, we can use this to express our intention better when
declaring device values:

let phone: Int = 1 << 0 // 0b0000001
let tablet: Int = 1 << 1 // 0b0000010
let watch: Int = 1 << 2 // 0b0000100

let laptop: Int = 1 << 3 // 0b0001000

let desktop: Int = 1 << 4 // 0b0010000
let tv: Int = 1 << 5 // 0b0100000
let brainImplant: Int = 1 << 6 // 0b1000000

The bitwise AND operator (&) will perform the same bit comparison that was previously described
manually, and we can use this to create a function to determine whether a particular device exists
within the value for the supported devices:

var supportedDevices = phone + tablet + tv

func isSupported(device: Int) -> Bool {
     let bitWiseANDResult = supportedDevices & device
     let containsDevice = bitWiseANDResult == device
     return containsDevice
}

let phoneSupported = isSupported(device: phone)
print(phoneSupported) // true

let brainImplantSupported = isSupported(device: brainImplant)
print(brainImplantSupported) // false

Generics, Operators, and Nested Types170

The Swift standard library also provides operators for the following logical operations:

•	 OR: The OR operation, denoted by |, compares bits and sets the corresponding bit to 1 if
either value has the bit set to 1. For our devices, this will mean creating a union between two
device combinations:

let deviceThatSupportUIKit = phone + tablet + tv
let stationaryDevices = desktop + tv
let stationaryOrUIKitDevices = deviceThatSupportUIKit |
stationaryDevices
let orIsUnion = stationaryOrUIKitDevices == (phone + tablet + tv
+ desktop)
print(orIsUnion) // true

•	 XOR (exclusive or): The XOR operation, denoted by ^, will only set the bit to 1 if either value
has the bit set to 1, but not if they both do:

let onlyStationaryOrUIKitDevices = deviceThatSupportUIKit ^
stationaryDevices
let xorIsUnionMinusIntersection = onlyStationaryOrUIKitDevices
== (phone + tablet + desktop)
print(xorIsUnionMinusIntersection) // true

We have seen some of the advanced operators available to us, provided by the Swift standard library.

See also

Further information about advanced operators can be found in Apple’s documentation on the Swift
language at http://swiftbook.link/docs/advanced-operators.

Defining option sets
The use of bitwise operations to hold multiple options in one value is a common pattern and is used
throughout the Cocoa Touch framework, with one example being UIDeviceOrientation. In Swift,
there is a protocol, OptionSet, that formalizes this pattern and provides additional convenience.
In this recipe, we will explore how to define your own option sets.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

http://swiftbook.link/docs/advanced-operators

Defining option sets 171

How to do it...

Let’s rewrite our example from the last recipe, which defined supported device values, to use OptionSet:

struct Devices: OptionSet {
 let rawValue: Int

 static let phone = Devices(rawValue: 1 << 0)
 static let tablet = Devices(rawValue: 1 << 1)
 static let watch = Devices(rawValue: 1 << 2)
 static let laptop = Devices(rawValue: 1 << 3)
 static let desktop = Devices(rawValue: 1 << 4)
 static let tv = Devices(rawValue: 1 << 5)
 static let brainImplant = Devices(rawValue: 1 << 6)

 static let none: Devices = []
 static let all: Devices = [.phone, .tablet, .watch, .laptop,
.desktop, .tv, .brainImplant]
 static let stationary: Devices = [.desktop, .tv]
 static let supportsUIKit: Devices = [.phone, .tablet, .tv]
}

let supportedDevices: Devices = [.phone, .tablet, .watch, .tv]]

How it works...

The OptionSet protocol requires a rawValue property, and the convention is to define static
constants for each of the options. Additionally, convenient combinations of options can also be defined
as static constants, and OptionSet provides a convenience initializer, which allows an array of options
to be provided, then the options are combined through bitwise addition and stored as one value.

The OptionSet protocol provides set-like manipulation and comparison methods that perform
the same bitwise operations that we covered in the last recipe:

// Contains / AND and comparison
let phoneIsSupported = supportedDevices.contains(.phone)

// Union / OR
let stationaryOrUIKitDevices = Devices.supportsUIKit.union(Devices.
stationary)

// Intersection / AND
let stationaryAndUIKitDevices = Devices.supportsUIKit.
intersection(Devices.stationary)

Many of the set methods that we examined in Chapter 2, Mastering the Building Blocks, are also provided.

Generics, Operators, and Nested Types172

See also

Further information about the OptionSet protocol can be found in Apple’s documentation on the
Swift language at http://swiftbook.link/docs/optionset.

Creating custom operators
In an earlier recipe, we looked at some of the advanced operators that Swift offers on top of the common
mathematical operators. In this recipe, we will look at how we can create our own operators, enabling
very concisely expressive behaviors that feel like part of the language.

The custom operator we will create will be used to append the information in one value to the
information in another value, producing a new value that contains the second value, followed by the
first. The functionality we are looking to achieve is similar to the >> Unix command.

Getting ready

Let’s understand how the >> Unix command works, and in this recipe, we will implement something
similar in Swift using a custom operator.

Since macOS is Unix-based, we can provide Unix commands within Terminal. Open up the Terminal
application on your Mac:

Figure 4.1 – Spotlight search

http://swiftbook.link/docs/optionset

Creating custom operators 173

Type cd ~/Desktop and press Enter to move to the folder containing all the files and folders on
your desktop. Type touch Tasks.txt and then press Enter to create a blank text file on your
desktop called Tasks.txt.

To add tasks to our tasks text file we can type the following command, followed by Enter:

echo "buy milk" >> Tasks.txt

If you open the text file on your desktop, you’ll see that we have added buy milk on the first line.

Enter another task in the same way:

echo "mow the lawn" >> Tasks.txt

Reopen the Tasks.txt file, and you will see that mow the lawn has been added on the second line:

Figure 4.2 – Task result

Add a few more tasks in the same way, and you’ll see that each task is appended to the text file on
the next line.

The command we issued in Terminal takes the following form:

<#What to append#> >> <#Where to append it#>

Let’s create a similar behavior in Swift; however, we can’t use the same command string, >>, as this is
already defined as bit shifting to the right, so let’s make it >>>.

Let’s create a new playground for this recipe.

How to do it...

We will define and then use a new append operator, >>>:

1.	 Declare an infix operator:

infix operator >>>

Generics, Operators, and Nested Types174

2.	 Define the behavior of our operator when used with two strings:

func >>> (lhs: String, rhs: String) -> String {
     var combined = rhs
     combined.append(lhs)
     return combined
}

3.	 Define the behavior of our operator when appending a String to an array of strings:

func >>> (lhs: String, rhs: [String]) -> [String] {
     var combined = rhs
     combined.append(lhs)
     return combined
}

4.	 Define the behavior of our operator when appending an array of strings to another array of strings:

func >>> (lhs: [String], rhs: [String]) -> [String] {
     var combined = rhs
     combined.append(contentsOf: lhs)
     return combined
}

5.	 With these implementations in place, use our new operator to append things:

let appendedString = "Two" >>> "One"
print(appendedString) // OneTwo
let appendedStringToArray = "three" >>> ["one", "two"]
print(appendedStringToArray) // ["one", "two", "three"]
let appendedArray = ["three", "four"] >>> ["one", "two"]
print(appendedArray)     // ["one", "two", "three", "four"]

Refactor the preceding two operator implementations to use a generic element type for arrays:
func >>> <Element>(lhs: Element, rhs: Array<Element>) ->
Array<Element> {
     var combined = rhs
     combined.append(lhs)
     return combined
}

func >>> <Element>(lhs: Array<Element>, rhs: Array<Element>) ->
Array<Element> {
     var combined = rhs
     combined.append(contentsOf: lhs)
     return combined
}

Creating custom operators 175

6.	 Use the operator with arrays of any type:

let appendedIntToArray = 3 >>> [1, 2]
print(appendedIntToArray) // [1, 2, 3]

let appendedIntArray = [3, 4] >>> [1, 2]
print(appendedIntArray) // [1, 2, 3, 4]

We can implement our custom append operator for our own custom types too.

7.	 Create a Task struct and a TaskList class to hold it:

struct Task {
     let name: String
}

class TaskList: CustomStringConvertible {
     private var tasks: [Task] = []
     func append(task: Task) {
          tasks.append(task)
     }
     var description: String {
          return tasks.map{ $0.name }
                     .joined(separator: "\n")
     }
}

8.	 Extend TaskList to add support for our new append operator:

extension TaskList {
     static func >>> (lhs: Task, rhs: TaskList) {
          rhs.append(task: lhs)
     }
}

9.	 Append a Task to a TaskList using our custom operator:

let shoppingList = TaskList()
Task(name: "get milk") >>> shoppingList print(shoppingList)
Task(name: "get teabags") >>> shoppingList print(shoppingList)

How it works...

First, we declared an infix operator:

infix operator >>>

Generics, Operators, and Nested Types176

Operators can come in three types:

•	 prefix: Operates on one value and is placed before the value. An example is the NOT operator:

let trueValue = !falseValue

•	 postfix: Operates on one value and is placed after the value. An example is the force
unwrap operator:

let unwrapped = optional!

•	 infix: Operates on two values and is placed between them. An example is the addition operator:

let five = 2 + 3

Once we have defined the operator, we can write top-level functions that implement the behavior for
each pair of types: one on the left-hand side (LHS) and one on the right-hand side (RHS). Method
parameter overloading allows us to specify the operator implementation for multiple-type pairings.

We can define how to append one string to another when our operator is used with strings:

func >>> (lhs: String, rhs: String) -> String {
     var combined = rhs
     combined.append(lhs)
     return combined
}

We can implement appending a string to an array of strings:

func >>> (lhs: String, rhs: [String]) -> [String] {
     var combined = rhs
     combined.append(lhs)
     return combined
}

We can also implement appending the elements in an array of strings to another array of strings:

func >>> (lhs: [String], rhs: [String]) -> [String] {
     var combined = rhs
     combined.append(contentsOf: lhs)
     return combined
}

This allows us to use the operator with strings and arrays of strings, as those are the implementations
we defined:

let appendedString = "Two" >>> "One" print(appendedString) // OneTwo
let appendedStringToArray = "three" >>> ["one", "two"]

Creating custom operators 177

print(appendedStringToArray) // ["one", "two", "three"]
let appendedArray = ["three", "four"] >>> ["one", "two"]
print(appendedArray)     // ["one", "two", "three", "four"]

We can implement our appending operator on every type of array that we think might be useful, or
instead, we can implement it as a generic function and have it work for all arrays.

So, we can refactor the preceding two array implementations to use a generic element type:

func >>> <Element>(lhs: Element, rhs: Array<Element>) ->
Array<Element> {
     var combined = rhs
     combined.append(lhs)
     return combined
}

func >>> <Element>(lhs: Array<Element>, rhs: Array<Element>) ->
Array<Element> {
     var combined = rhs
     combined.append(contentsOf: lhs)
     return combined
}

This allows us to use arrays of integers without having to explicitly define them for integer arrays:

let appendedIntToArray = 3 >>> [1, 2]
print(appendedIntToArray) // [1, 2, 3]

let appendedIntArray = [3, 4] >>> [1, 2]
print(appendedIntArray)     // [1, 2, 3, 4]

We can also implement it for our own custom types. Let’s create Task and TaskList, which might
benefit from using the operator:

struct Task {
     let name: String
}

class TaskList: CustomStringConvertible {
     private var tasks: [Task] = []
     func append(task: Task) {
          tasks.append(task)
     }
     var description: String {
     return tasks.map { $0.name }
                .joined(separator: "\n")

Generics, Operators, and Nested Types178

     }
}

We’ve added CustomStringConvertible conformance so that we can easily print out the result.

An alternative to implementing the use of an operator as a top-level function is to declare it within
the relevant type as a static function. We’ll declare it within an extension on our TaskList object,
but we could just as easily declare it within the main TaskList class declaration:

extension TaskList {
     static func >>> (lhs: Task, rhs: TaskList) {
          rhs.append(task: lhs)
     }
}

Implementing this within a type has a few advantages: the implementation code is right next to the type
itself, making it easier to find, and taking advantage of any values or types that might have a private, or
otherwise restricted, access control, which will prevent them from being visible to a top-level function.

Now we can use our >>> operator to append a Task to a TaskList:

let shoppingList = TaskList()
Task(name: "get milk") >>> shoppingList
print(shoppingList)
Task(name: "get teabags") >>> shoppingList print(shoppingList)

We have created a custom operator, to allow more concise and expressive code.

There’s more...

Operators don’t just work individually – they are often used within the same expression as other
operators; the mathematical operators are a helpful example of this:

let result = 6 + 8 / 2 / 4

The order that these operations are performed in will affect the result. To understand the order in
which the operations are performed, we can add brackets that will perform the same function:

let result = 6 + ((8 / 2) / 4)

In Swift, the decision about how to order operations is made using two concepts – precedence
and associativity:

•	 Precedence: This defines how important the operation type is. Therefore, the operations with the
highest precedence are performed first; for example, multiplication (*) has higher precedence
than addition (+) and is therefore always performed first.

Creating custom operators 179

•	 Associativity: This defines which side, left or right, a value should associate itself with for
evaluation when it has an operation with the same precedence on either side. This has the
effect of defining the order that operations of the same precedence should be evaluated in: left
to right or right to left.

Let’s use this information to understand the operation ordering of the preceding mathematical operation.
We have an expression comprising one addition and two division operations. Division operations
have higher precedence than addition operations; therefore, the division operations are evaluated first:

let result = 6 + (8 / 2 / 4)

We now have two division operations that need to be evaluated before the addition operation. Since
both are division operators, they have the same precedence, so we have to look at associativity to know
in which order to evaluate them. The division operation has an associativity of left, so they should be
evaluated from left to right. Therefore, 8 / 2 is evaluated first and 4 / 4 is evaluated next. This
gives us the following:

let result = 6 + ((8 / 2) / 4)

We need to define precedence and associativity for our custom operator, as the compiler does not
currently know how it should be ordered within an expression containing multiple operations. Because
of this, the following expression will not compile:

let multiOperationArray = [5,6] >>> [3,4] >>> [1,2] + [9,10] >>> [7,8]
print(multiOperationArray)

Precedence and associativity are defined within a precedence group, and an operator can either
conform to an existing group or one that has been newly defined.

Let’s define a new precedence group for our appending operator:

precedencegroup AppendingPrecedence {
     associativity: left
     higherThan: AdditionPrecedence
     lowerThan: MultiplicationPrecedence
}

Here, we give it the name AppendingPrecedence and define its values within curly brackets.
We’ll set its associativity to the left to match mathematical operations, and to establish precedence,
we define that this precedence group is higher than another precedence group and lower than some
other precedence groups. For the appending operator, we’ll set the precedence to be higher than
addition, so it will be evaluated before the addition operators but after the multiplication operators.
Both the AdditionPrecendence and MultiplicationPrecedence groups are defined
by the standard library.

Generics, Operators, and Nested Types180

Now that we have a precedence group defined, we can ensure that our custom operator conforms to it:

infix operator >>> : AppendingPrecedence

With precedence and associativity declared, the composite expression previously created will now compile:

let multiOperationArray = [5,6] >>> [3,4] >>> [1,2] + [9,10] >>> [7,8]
print(multiOperationArray) // [1,2,3,4,5,6,7,8,9,10]

We have defined how our custom operator works alongside other operators, allowing for
complex combinations.

See also

Further information about custom operators can be found in Apple’s documentation on the Swift
language at http://swiftbook.link/docs/custom-operators.

Nesting types and namespacing
In Objective-C, all objects are at the top level and are given a global scope. They can be said to be in
the same namespace. This is one reason for the convention among Objective-C developers, including
Apple, of prefixing their class names with two- or three-letter identifiers.

These prefix characters allow similarly named classes from different frameworks to be differentiated,
for example, UIView from UIKit and SKView from SpriteKit. Swift solves this problem by allowing
types to be nested within other types, providing namespacing with nested types and modules.

Any type can be defined as being nested within another type. This allows us to tightly associate one
type with another, in addition to providing namespacing, which helps differentiate types with the
same name. In this recipe, we will create some nested types to see if it affects how they are referenced.

Getting ready

In this recipe, we won’t be using any components from the previous recipes, so you can create a new
playground for this recipe.

How to do it...

Let’s build a system to monitor a physical device and the user interface that it displays. Both the device
and the user interface have the concept of orientation, although each has a differing definition:

1.	 Define a class to represent the device:

class Device {
     enum Category {

http://swiftbook.link/docs/custom-operators

Nesting types and namespacing 181

          case watch
          case phone
          case tablet
     }
     enum Orientation {
          case portrait
          case portraitUpsideDown
          case landscapeLeft
          case landscapeRight
     }
     let category: Category
     var currentOrientation: Orientation = .portrait
     init(category: Category) {
          self.category = category
     }
}

Within this class, we have defined two enums, which only have value when used in relation
to the Device class. Nesting the types also allows us to simplify the names of these types.
It would be customary to name them DeviceCategory and DeviceOrientation to
avoid confusion, but since they are nested, we can remove the Device prefix.

Any use of the nested types within the type that contains them can be done without any qualifiers;
however, this is not the case for use outside of the containing type.

2.	 Access nested types from outside the containing type using dot syntax:

let phone = Device(category: .phone)
let desiredOrientation: Device.Orientation = .portrait
let phoneHasDesiredOrientation = phone.currentOrientation ==
desiredOrientation

To reference a nested type, we must first specify the containing type, so the Orientation
enum, within the Device class, becomes Device.Orientation.

3.	 Define a struct to represent a user interface:

struct UserInterface {
     struct Version {
          let major: Int
          let minor: Int
          let patch: Int
     }
     enum Orientation {
          case portrait
          case landscape
     }

Generics, Operators, and Nested Types182

     let version: Version
     var orientation: Orientation
}

Our UserInterface struct also includes a nested Orientation enum, but as these two
enums lie in different namespaces, there is no naming conflict. As before, the nested types can
be used without any qualifiers in the containing type.

4.	 Let’s see how these two nested types can be used in conjunction with one another. Create a
function to convert from device orientation to user interface orientation:

func uiOrientation(for deviceOrientation: Device.Orientation) ->
UserInterface.Orientation {
     switch deviceOrientation {
     case Device.Orientation.portrait, Device.Orientation.
portraitUpsideDown:
          return UserInterface.Orientation.portrait
     case Device.Orientation.landscapeLeft, Device.Orientation.
landscapeRight:
          return UserInterface.Orientation.landscape
     }
}
let phoneUIOrientation = uiOrientation(for: phone.
currentOrientation)
print(phoneUIOrientation) // UserInterface.Orientation.portrait

How it works...

Our orientation conversion function specifies the full enum case for the switch statement and the
return statements, for example:

Device.Orientation.portrait UserInterface.Orientation.portrait

However, as we’ve seen previously, when the compiler knows the type of the enum, only the case needs
to be specified; the enum type can be removed. For our function, the input parameter type is Device.
Orientation and the return type is UserInterface.Orientation, so the compiler does
know enum types, and therefore we can remove the types:

func uiOrientation(for deviceOrientation: Device.Orientation) ->
UserInterface.Orientation {
     switch deviceOrientation {
     case .portrait, .portraitUpsideDown:
          return .portrait
     case .landscapeLeft, .landscapeRight:
          return .landscape
     }
}

Nesting types and namespacing 183

Note that the switch case contains .portrait and returns .portrait, but these are cases from
different enums, and the compiler knows the difference.

There’s more...

We’ve seen how namespacing separates types nested within different containing types, but types
within modules are also namespaced. This allows you to name your types without fear of collision
with types in other modules.

Let’s imagine that we are building an app for hospitals to keep track of their events and resources. As
part of this, we create a class to represent surgical operations that we intend to track:

class Operation {
     let doctorsName: String
     let patientsName: String
     init(doctorsName: String, patientsName: String) {
          self.doctorsName = doctorsName
          self.patientsName = patientsName
     }
}

There is another class called Operation, provided by the Foundation framework, that can be
used to execute and manage a long-running task. We can use both types of Operation side by side
because the Foundation framework is exposed as a module, and so the long-running Operation
class can be used by referencing the Foundation module:

import Foundation
let medicalOperation = Operation(doctorsName: "Dr. Crusher",
patientsName: "Commander Riker")
let longRunningOperation = Foundation.Operation()

We’ve seen how you can disambiguate two types with the same name, using the module they are within.

See also

Further information about nested types can be found in Apple’s documentation on the Swift language
at http://swiftbook.link/docs/nested-types.

http://swiftbook.link/docs/nested-types

5
Beyond the Standard Library

Apple’s intention when open sourcing Swift was to provide a cross-platform, general- purpose
programming language that is ready to use. The Swift standard library provides core language features
and common collection types. However, the library does not provide everything needed to get up
and running.

Therefore, Apple provides a framework called Foundation to help you perform common programming
tasks that aren’t covered by the core Swift language and the standard library.

The Foundation framework that you will use when developing for Apple platforms is closed sourced,
which means the underlying code is not accessible and only the API is visible. However, when Apple
open sourced Swift and made it available for Linux, it became necessary to provide the Foundation
framework as well. To this end, Apple has released an open source, Swift-based version of Foundation as
a core library, available here: https://github.com/apple/swift-corelibs-foundation.

By the end of this chapter, you will have gained experience using some of the most common tools in
Foundation, particularly fetching and massaging data from the network/web!

In this chapter, we will cover the following recipes:

•	 Comparing dates with Foundation

•	 Fetching data with URLSession

•	 Working with JSON

•	 Working with XML

Technical requirements
All the code for this chapter can be found in this book’s GitHub repository at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%205.

https://github.com/apple/swift-corelibs-foundation
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%205
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%205

Beyond the Standard Library186

Comparing dates with Foundation
This recipe will focus on one area of Foundation that is very widely used, that is, date and time
manipulation and formatting.

We will create a function that determines how long there is until Halloween and return this information
as a string that can be displayed to a user.

Getting ready

Create a new iOS playground and import the Foundation framework at the top of the playground:

import Foundation

How to do it…

Let’s create a function that will return a string telling us how long there is until Halloween. We can
then print the result:

1.	 Define the function:

func howLongUntilHalloween() -> String {

}

2.	 Within the function, get the current calendar and time zone:

let calendar = Calendar.current
let timeZone = TimeZone.current

3.	 Get the current date and time and use the calendar to get the current year:

let now = Date()
let yearOfNextHalloween = calendar.component(.year, from: now)

4.	 Define date components that correspond to midnight on Halloween:

var components = DateComponents(
     calendar: calendar,
     timeZone: timeZone,
     year: yearOfNextHalloween,
     month: 10,
     day: 31,
     hour: 0,
     minute: 0,
     second: 0)

Comparing dates with Foundation 187

5.	 Get a Date object from those components:

var halloween = components.date!

6.	 If we have already passed Halloween for this year, we need to adjust the component to refer to
Halloween of the next year:

// If we have already had Halloween this year, then we need to
use Halloween next year.
if halloween < now {
     components.year = yearOfNextHalloween + 1
     halloween = components.date!
}

7.	 Create DateComponentsFormatter to format how the time until Halloween is displayed:

let componentFormatter = DateComponentsFormatter()
componentFormatter.unitsStyle = .full
componentFormatter.allowedUnits = [.month, .day,
.hour, .minute, .second]

8.	 Use DateComponentsFormatter to return a string for the time between now and
next Halloween:

return componentFormatter.string(from: now, to: halloween)!

9.	 Below the howLongUntilHalloween function, use the following function to create a
string, and print the outcome:

let timeUntilHalloween = howLongUntilHalloween()
print("Time until Halloween: \(timeUntilHalloween)")

How it works…

In step 1, we created our howLongUntilHalloween function, then in step 2, we fetched the
currently set calendar and time zone as these will be needed for the date calculations to come:

let calendar = Calendar.current
let timeZone = TimeZone.current

While retrieving the current time zone is self-explanatory, it is not immediately obvious what the
Calendar type represents and why we need to retrieve it.

How dates are represented is not as universally agreed on as you might believe. Certain time components
are mostly universal, such as the length of years and days, as they are connected to astronomical
events, such as the time it takes for the Earth to perform one revolution of the Sun, and for the Earth
to complete one rotation around its own axis, respectively. However, other time components, such as
months and weeks and how years are numbered, are rooted in the culture that created them.

Beyond the Standard Library188

Interesting fact
The calendar used throughout Europe and most of the world is known as the Gregorian calendar,
introduced in 1582 by Pope Gregory XIII, replacing the Julian calendar. There are about 40
different calendars currently in use around the world, including Gregorian, Chinese, Hebrew,
Islamic, Persian, Ethiopian, and Balinese Pawukon.

The way in which we present how long there is until Halloween will depend on the calendar that is
relevant to the user. This is why we ask for the current calendar, which the user can change if they
want a different representation.

Our next task is to get the current date and time:

let now = Date()

In step 3, the default initializer for the Date value type uses the current date and time as its value.
Note that this date value is set at the point of creation; it does not continually update with the current
date and time.

In this step, we get a date and time for the next Halloween. We know the time, day, and month of
Halloween, so to construct a date for Halloween, we just need to know the year. There is a method
on Calendar called component that allows us to retrieve specific components from a Date value:

let yearOfNextHalloween = calendar.component(.year, from: now)

We now have the current year, within the user’s current calendar; we can use it to create the Halloween date.

In step 4, we create an instance of DateComponents, passing in the calendar, time zone, and the
fact that we are defining October 31 at midnight, for the current year:

var components = DateComponents(
     calendar: calendar,
     timeZone: timeZone,
     year: yearOfNextHalloween,
     month: 10,
     day: 31,
     hour: 0,
     minute: 0,
     second: 0)

In step 5, we create a Date object from DateComponents. This is of an optional type as we may
not have provided enough information to the components to generate a date; however, since we know
that we have the information in this instance, we can force-unwrap this optional:

var halloween = components.date!

Comparing dates with Foundation 189

Next, we need to handle an edge case; what if we have already had Halloween this year? For example,
let’s imagine that the current date is November 2, 2022. We are trying to find the date of the next
Halloween, but if we use the current year, we will get October 31, 2022, which is the Halloween just
gone. So, in step 6, we add 1 to the current year to get next Halloween, October 31, 2023:

if halloween < now {
     components.year = yearOfNextHalloween + 1
     halloween = components.date!
}

To account for this, we check whether the Halloween for this year is before now; if it is, we bump the
year component to next year and recreate the Halloween date from DateComponent.

We now have the current date and the next Halloween date, and Foundation provides functionality
to calculate the time difference between two dates and format it to display to a user, through the use
of DateComponentsFormatter.

In step 7, we create DateComponentsFormatter, and set unitStyle to full, which will
provide a string using the full unit name, without abbreviation. We configure how we want the date
and time divided for display, using allowedUnits:

let componentFormatter = DateComponentsFormatter()
componentFormatter.unitsStyle = .full
componentFormatter.allowedUnits = [.month, .day, .hour,
.minute, .second]

In step 8, we can retrieve a string from the formatter that describes the time between the two dates
given, with the settings provided to the formatter. Since DateComponentsFormatter returns
an optional string, we unwrap and return it:

return componentFormatter.string(from: now, to: halloween)!

Our howLongUntilHalloween method will provide a string describing how long until Halloween,
which we can then print out.

See also

There is a lot more to discover in Foundation, so check out the documentation for further functionality:

•	 Swift documentation for Foundation: https://developer.apple.com/
documentation/foundation

•	 Open source repository for Foundation: https://github.com/apple/swift-
corelibs-foundation

https://developer.apple.com/documentation/foundation
https://developer.apple.com/documentation/foundation
https://github.com/apple/swift-corelibs-foundation
https://github.com/apple/swift-corelibs-foundation

Beyond the Standard Library190

Fetching data with URLSession
Every app worth building will need to send or receive information from the internet at some point,
and therefore, networking support is a critical part of any development platform. In Swift, this support
for networking is provided by the Foundation framework.

When we need to retrieve information from the internet, we send out a request to a server on the
internet, and that server sends a response that hopefully contains the information we requested.

In this recipe, we will learn how to send network requests and receive a response using the
Foundation framework.

Getting ready

It is helpful to know about the different components that Foundation provides that deal with networking
and what they do:

•	 URL: The address of a resource on a remote server. It contains information about the server
and where the resource can be found on the server.

•	 URLRequest: Represents the request that will be made to the remote server. Defines the URL
of the resource, how the request should be sent, metadata in the form of headers, and data that
should be sent with it.

•	 URLSession: Manages the communication with remote servers, holds the configuration for
that communication, and creates and optimizes the underlying connections.

•	 URLSessionDataTask: An object that manages the state of the request and delivers the response.

•	 URLResponse: Holds the metadata of the response from the remote server.

How to do it…

Let’s use these networking tools to retrieve an image from a remote server:

Import PlaygroundSupport and set up indefinite execution for this playground:

import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true

1.	 Import Foundation and create an instance of URLSession:

import Foundation
let config = URLSessionConfiguration.default
let session = URLSession(configuration: config)

Fetching data with URLSession 191

2.	 Next, we will construct a request for a remote image:

let urlString = "https://imgs.xkcd.com/comics/api.png"
let url = URL(string: urlString)!
let request = URLRequest(url: url)

3.	 Now that we have our URLRequest, we can create a data task to retrieve the image from the
remote server:

let task = session.dataTask(with: request, completionHandler: {
(data, response, error) in
     // More code to follow
})

4.	 We will take the image data and put it in a UIImage object to display it. We need to import
the UIKit framework, which provides UIImage. So, let’s import UIKit at the top of
the playground:

import UIKit

5.	 Check for image data in the completion handler and create a UIImage object:

let task = session.dataTask(with: request) { (data, response,
error) in
     guard let imageData = data else {
          return // No Image, handle error
     }
     _ = UIImage(data: imageData)
}

6.	 Call resume on the task to start it:

task.resume()

How it works…

Let’s walk through the previously mentioned steps to understand what we are doing:

import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true

Playgrounds execute the code they contain from top to bottom. When the end of the playground
page is reached, the playground stops executing. In our example, the task is created and started, but
then the playground reaches the end of the page before the image has been fully retrieved because
this happens asynchronously. If the playground were to stop execution here, the completion handler
would never be executed, and we wouldn’t see the image. This isn’t a problem in a normal app that is
continually running while it is in use; it is just specific to how Swift playgrounds work.

Beyond the Standard Library192

To solve this, we need to tell the playground that we don’t want it to stop executing when it reaches the
end of the page, and instead, it should run indefinitely while we wait for the response to be received.
This is done by importing the PlaygroundSupport framework.

in step 1, needsIndefiniteExecution is set to true on the current PlaygroundPage:

import Foundation
let config = URLSessionConfiguration.default
let session = URLSession(configuration: config)

 In step 2, when creating URLSession, we pass in a URLSessionConfiguration object, which
allows configuring the time it takes for a request to time out and cache responses, among other things.
For our purposes, we will just use the default configuration:

let urlString = "https://imgs.xkcd.com/comics/api.png"
let url = URL(string: urlString)!
let request = URLRequest(url: url)

In step 3, we will be requesting the image from the excellent webcomic XKCD (http://xkcd.
com). We can create the URL from a string, and then create a URLRequest request from the URL:

let task = session.dataTask(with: request, completionHandler: { (data,
response, error) in
     // More code to follow
})

In step 4, we do not create a data task directly; instead, we ask our URLSession instance to create
the data task, and we pass in URLRequest and a completion handler. The completion handler will
be fired once a response has been received from the remote server or an error has occurred.

The completion handler has three inputs, each with its own data type (shown after the colon), which
are all optional to use:

•	 data: Data - The data returned in the body of the response; if our request was successful,
this will contain our image data.

•	 response: URLResponse - The response metadata, including response headers. If the
request was over HTTP/HTTPS, then this will be HTTPURLResponse, which will contain
the HTTP status code.

•	 error: Error - If the request was unsuccessful, due to a network issue, for example, this value
will have the error, and the data and response value will be nil. If the request was successful,
this error value will be nil:

let task = session.dataTask(with: request) { (data, response, error) in
     guard let imageData = data else {
          return // No Image, handle error

http://xkcd.com
http://xkcd.com

Fetching data with URLSession 193

     }
     _ = UIImage(data: imageData)
}

In step 6, we check for response data and turn it into an image. To do this, we will need to construct a
UIImage object from the data. UIImage is a class that represents an image on iOS and can be found in the
UIKit framework. So, we also needed to import UIKit at the top of the playground, as we did in step 5.

Note
Since we don’t plan on doing anything with the image in this example, we are just going to view
it in a playground preview; the compiler will complain if we assign it to a value that is never
used. Therefore, we replace a normal value assignment with _, which allows the UIImage
object to be generated without it being assigned to anything.

In step 7, we created the data task to retrieve the image, but we need to actually start the task to make
the request. To do that, we call resume() on the task.

task.resume()

When we run the playground, you will eventually see that the image value has been populated in the
playground’s right sidebar, and you can click on the preview icon to see the image that has been downloaded:

Figure 5.1 – Retrieved image displayed in the playground timeline

Beyond the Standard Library194

See also

•	 Further information about networking can be found in Apple’s networking overview: http://
swiftbook.link/docs/networking

•	 More information can also be found in Apple’s URLSession programming guide: http://
swiftbook.link/docs/urlsession-guide

Working with JSON
As discussed in the last recipe, almost every app will need to exchange information with the internet
at some point, and in that recipe, we retrieved an image from a remote server. Very often, your app
will need to retrieve more varied data, perhaps relating to the result of a search, or information about
a shared state held on the server.

This information can be represented in any number of ways, but one of the most common ways is
as JavaScript Object Notation (JSON), which is a text-based structure for representing information.
A JSON object contains key-value pairs, where the keys are strings and the values can be strings,
numbers, Booleans, null, other objects, or arrays.

For example, information about a person could be expressed with this JSON object:

{
     "name": {
          "givenName": "Keith",
          "middleName": "David",
          "familyName": "Moon"
     },
     "age": 40,
     "heightInMetres": 1.778,
     "isBritish": true,
     "favouriteFootballTeam": null
}

The following is an example of an array of JSON objects:

[
     {
          "name": {
               "givenName": "Keith",
               "middleName": "David",
               "familyName": "Moon"
          },
          "age": 40,
          "heightInMetres": 1.778,

http://swiftbook.link/docs/networking
http://swiftbook.link/docs/networking
http://swiftbook.link/docs/urlsession-guide
http://swiftbook.link/docs/urlsession-guide

Working with JSON 195

          "isBritish": true,
          "favouriteFootballTeam": null
     },
     {
          "name": {
               "givenName": "Alissa",
               "middleName": "May",
               "familyName": "Moon"
          },
          "age": 35,
          "heightInMetres": 1.765,
          "isBritish": false,
          "favouriteFootballTeam": null
     }
]

Foundation provides tools for reading information from and writing information as JSON data. In
this recipe, we will interact with a JSON-based Application Programming Interface (API), to both
send and receive information.

Getting ready

Our goal is to interact with the GitHub API and create an issue for this book’s repository. A full
explanation of Git and GitHub is beyond the scope of this book; suffice it to say that it’s a service that
stores versioned copies of your source code. Resources relevant to this book are stored in repositories
on GitHub, and a GitHub user can create issues that serve as bug reports or feature requests.

If you don’t already have one, then you will need to sign up for a GitHub account:

1.	 Go to https://github.com.

2.	 Click Sign up and enter your email address to continue.

3.	 Once you have created a GitHub account, you will need to create a personal access token, which
we will use to authenticate some of the requests to the GitHub API.

4.	 To create a personal access token, use the following steps:

5.	 Go to the settings page (https://github.com/settings/tokens) and click on
Generate new token.

6.	 Give the token a name and check the box next to repo:

https://github.com
https://github.com/settings/tokens

Beyond the Standard Library196

Figure 5.2 – Creating a personal access token

7.	 Click on Generate token at the bottom of the page. You will now see your newly generated
personal access token.

8.	 Copy this token and paste it somewhere, as we will need it later:

Figure 5.3 – The generated personal access token

How to do it...

To create our issue, we will first retrieve all of Packt Publishing’s public repositories, and then find the
relevant repository for this book. We will then create a new issue in this repository.

Working with JSON 197

As in the preceding recipe, we will need a URLSession object to perform our requests, and we need
to tell the playground not to finish executing when it reaches the end of the playground, so that we
have a chance to handle our request:

import Foundation
import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true
let config = URLSessionConfiguration.default
let session = URLSession(configuration: config)

Our first step is to fetch all the public repositories for a given user:

1.	 Let’s create a function to do that:

func fetchRepos(forUsername username: String) {
     let urlString = "https://api.github.com/users/\(username)/
repos"
     let url = URL(string: urlString)!
     var request = URLRequest(url: url)
     request.setValue("application/
vnd.github.v3+json", forHTTPHeaderField: "Accept")
     let task = session.dataTask(with: request) { (data,
response, error) in
          // More code to follow
     }
     task.resume()
}

You will note that after creating URLRequest, we set an HTTP header; this particular header
ensures that we will always get back version 3 of the GitHub API.

Note
We know from the GitHub API documentation (https://developer.github.com/
v3/) that this response data is in JSON format. We need to parse the JSON data to turn it
into something that we can use; enter JSONSerialization. JSONSerialization is
part of the Foundation framework and provides class methods for turning Swift dictionaries
and arrays into JSON data (known as serialization) and back again (known as deserialization).

2.	 Let’s use JSONSerialization to turn our JSON response data into something more useful:

func fetchRepos(forUsername username: String) {
     let urlString = "https://api.github.com/users/\(username)/
repos"
     let url = URL(string: urlString)!
     var request = URLRequest(url: url)
     request.setValue("application/vnd.github.v3+json",

https://developer.github.com/v3/
https://developer.github.com/v3/

Beyond the Standard Library198

forHTTPHeaderField: "Accept")
     let task = session.dataTask(with: request) { (data,
response, error) in
       // Once we have handled this response, the Playground can
finish executing
       defer {
           PlaygroundPage.current.finishExecution()
       }
       // First unwrap the optional data
       guard let jsonData = data else {
          // If the data is nil, there was probably a network
error
          print(error ?? "Network Error")
          return
       }
       do {
          // Deserialisation can throw an error, so we have to
use `try` and catch the errors
          let deserialised = try JSONSerialization.
jsonObject(with: jsonData, options: [])
          print(deserialised)
       } catch {
          print(error)
        }
     }
     task.resume()
}

3.	 Now, let’s fetch the public Packt repositories by executing our function and passing
PacktPublishing in as the GitHub username:

fetchRepos(forUsername: "PacktPublishing")

 Once executed, the print output should look like this:

Figure 5.4 – Public GitHub repositories API response

Working with JSON 199

JSONSerialization has turned our JSON data into familiar arrays and dictionaries that can be
used to retrieve the information we need in the normal way. The JSON data is deserialized with the
Any type, as the JSON can have a JSON object or an array at its root.

Since, from the preceding output, we know that the response has an array of JSON objects at its root,
we need to turn the value from type Any to an array of dictionaries of the [String: Any] type.
This is referred to as casting from one type to another, which we can do by using the as keyword and
then specifying the new type. This keyword can be used in three different ways:

•	 as will perform a trivial cast. This is possible if the existing type is synonymous with the
intended type, for instance, casting from a subclass to a superclass.

•	 as? will conditionally perform a cast, returning an optional value. If it is not possible to
represent the value as the intended type, the value will be nil.

•	 as! will perform a forced cast. If it is not possible to represent the value as the intended type,
you will get a crash.

So, let’s cast the deserialized data to an array of dictionaries with string keys, with the[[String:
Any]] type:

func fetchRepos(forUsername username: String) {
     //...
     let task = session.dataTask(with: request) { (data, response,
error) in
       //...
       do {
          // Deserialisation can throw an error, so we have to `try`
and catch the errors
          let deserialised = try JSONSerialization.jsonObject(with:
jsonData, options: [])
          print(deserialised)
          // As `deserialised` has type `Any` we need to cast
          guard let repos = deserialised as? [[String: Any]] else {
               print("Unexpected Response")
               return
          }
          print(repos)
       } catch {
          print(error)
       }
     }
     //...
}

Beyond the Standard Library200

Now, we have an array of dictionaries for the repositories in the API response, which we need to
provide as input for this function. A common pattern for providing results for asynchronous work is
to provide a completion handler as a parameter. A completion handler is a closure that can be executed
once the asynchronous work is completed.

Since the output we want to provide is the array of repository dictionaries, we will define this as an
input for the closure if the request was successful, and an error if it wasn’t:

func fetchRepos(forUsername username: String, completionHandler:
@escaping ([[String: Any]]?, Error?) -> Void) {
     let urlString = "https://api.github.com/users/\(username)/repos"
     let url = URL(string: urlString)!
     var request = URLRequest(url: url)
     request.setValue("application/vnd.github.v3+json",
forHTTPHeaderField: "Accept")
     let task = session.dataTask(with: request) { (data, response,
error) in
          // Once we have handled this response, the Playground can
finish executing
          defer {
               PlaygroundPage.current.finishExecution()
          }
          // First unwrap the optional data
          guard let jsonData = data else {
               // If the data is nil, there was probably a network
error
               completionHandler(nil, ResponseError.
requestUnsuccessful)
               return
          }

          do {
          // Deserialisation can throw an error, so we have to `try`
and catch the errors
               let deserialised = try JSONSerialization.
jsonObject(with: jsonData, options: [])
               // As `deserialised` has type `Any` we need to cast
               guard let repos = deserialised as? [[String: Any]] else
{
                    completionHandler(nil, ResponseError.
unexpectedResponseStructure)
                    return
               }
               completionHandler(repos, nil)
          } catch {
               completionHandler(nil, error)

Working with JSON 201

          }
     }
     task.resume()
}

Now, whenever an error is generated, we execute completionHandler, passing in the error and
nil for the result. Also, when we have the repository results, we execute the completion handler,
passing in the parsed JSON and nil for the error.

We passed in a few new errors in the preceding code, so let’s define those errors:

enum ResponseError: Error {
     case requestUnsuccessful
     case unexpectedResponseStructure
}

This changes how we call this fetchRepos function:

fetchRepos(forUsername: "PacktPublishing") { (repos, error) in
     if let repos = repos {
          print(repos)
     } else if let error = error {
          print(error)
     }
}

Now that we have retrieved the details of the public repositories, we will submit an issue to the repository
for this chapter. This issue can be any feedback you would like to give about this book; it can be a review,
a suggestion for new content, or you can tell me about a Swift project you are currently working on.

This request to the GitHub API will be authenticated against your user account and, therefore, we will
need to include details of the personal access token that we created at the beginning of this recipe.
There are a number of ways to authenticate requests to the GitHub API, but the simplest is basic
authentication, which involves adding an authorization string to the request header.

Let’s create a method to format the personal access token correctly for authentication:

func authHeaderValue(for token: String) -> String {
     let authorisationValue = Data("\(token):x-oauth-basic".utf8).
base64EncodedString()
     return "Basic \(authorisationValue)"
}

Beyond the Standard Library202

Next, let’s create our function to submit our issue. From the API documentation at https://
developer.github.com/v3/issues/#create-an-issue, we can see that unless you
have push access, you can only create an issue with the following components:

•	 title (required)

•	 body (optional)

So, our function will take this information as input, along with the repository name and username:

func createIssue(inRepo repo: String, forUser user: String, title:
String, body: String?) {
     // More code to follow
}

Creating an issue is achieved by sending a POST request, and information about the issue is provided
as JSON data in the request body. To create our request, we can use JSONSerialization, but we
will take our intended JSON structure and serialize it into Data this time:

func createIssue(inRepo repo: String, forUser user: String, title:
String, body: String?) {
     // Create the URL and Request
     let urlString = "https://api.github.com/repos/\(user)/\ (repo)/
issues"
     let url = URL(string: urlString)!
     var request = URLRequest(url: url)
     request.httpMethod = "POST"
     request.setValue("application/vnd.github.v3+json",
forHTTPHeaderField: "Accept")
     let authorisationValue = authHeaderValue(for: <#your personal
access token>)
     request.setValue(authorisationValue, forHTTPHeaderField:
"Authorization")
     // Put the issue information into the JSON structure required
     var json = ["title": title]
     if let body = body {
          json["body"] = body
     }
     // Serialise the json into Data. We can use try! as we know it is
valid JSON.
     // Just be aware that the this will fail if provided value can't
be converted into valid JSON.
     let jsonData = try! JSONSerialization.data(withJSONObject: json,
options: .prettyPrinted)
     request.httpBody = jsonData
     session.dataTask(with: request) { (data, response, error) in

https://developer.github.com/v3/issues/#create-an-issue
https://developer.github.com/v3/issues/#create-an-issue

Working with JSON 203

          // More code to follow
     }
}

As with the previous API request, we need a way to provide the result of creating the issue, so let’s provide
a completion handler, try to deserialize the response, and provide it to the completion handler:

func createIssue(inRepo repo: String, forUser user: String, title:
String, body: String?, completionHandler: @escaping ([String: Any]?,
Error?) -> Void) {
     //...
     session.dataTask(with: request) { (data, response, error) in
          guard let jsonData = data else {
               completionHandler(nil, ResponseError.
requestUnsuccessful)
               return
          }
          do {
               // Deserialisation can throw an error, so we have to
`try` and catch the errors
               let deserialised = try JSONSerialization.
jsonObject(with: jsonData, options: [])
               // As `deserialised` has type `Any` we need to cast
               guard let createdIssue = deserialised as? [String: Any]
else {
                    completionHandler(nil, ResponseError.
unexpectedResponseStructure)
                    return
               }
               completionHandler(createdIssue, nil)
          } catch {
               completionHandler(nil, error)
          }
     }
}

The API response to a successfully created issue provides a JSON representation of that issue. Our
function will return this representation if it was successful, or an error if it was not.

Now that we have a function to create issues in a repository, it’s time to use it to create an issue:

createIssue(inRepo: "Swift-Cookbook-Third-Edition",
           forUser: "PacktPublishing",
           title: <#The title of your feedback#>,
           body: <#Extra detail#>) { (issue, error) in
     if let issue = issue {

Beyond the Standard Library204

          print(issue)
     } else if let error = error {
          print(error)
     }
}

Note
I will check these created issues, so please provide genuine feedback on this book. How have
you found the content? Too detailed? Not detailed enough? Anything I’ve missed or not fully
explained? Any questions that you have? This is your opportunity to let me know!

There’s more...

When we created our completion handlers, we gave them two inputs: the successful result (either
the repository information or the created issue) or an error if there is a failure. Both these values are
optional; one will be nil, and the other has a value. However, this convention is not enforced by the
language, and a user of this function will have to consider the possibility that it may not be the case.
What should the user of this function do if the fetchRepos function fires the completion handler
with non-nil values for both the repository and the error? What if both are nil?

The user of this function, without viewing the function’s internal code, can’t be sure that this won’t
happen, which means they may need to write functionality and tests to account for this possibility,
even though it may never happen.

It would be better if we could more accurately represent the intended behavior of our function, providing
the user with a clear indication of the possible outcomes and leaving no room for ambiguity. We know
that there are two possible outcomes from calling the function: it will either succeed and return the
relevant value, or it will fail and return an error to indicate the reason for the failure.

Instead of optional values, we can use an enum to represent these possibilities, and the Foundation
framework provides a generic enum for this purpose, called Result.

The Result enum has a success case, which has an associated type for a successful result, and a
failure case with an associated type for the relevant error. Both associated types are defined as generic
constraints, with the failure type needing to conform to the Error protocol.

We can now define the success and failure states and use associated values to hold the value that is relevant
for each state, which is the repository information for the success state and the error for the failure state.

Now, let’s amend our fetchRepos function to provide a Result enum in completionHandler:

func fetchRepos(forUsername username: String, completionHandler: @
escaping (Result<[[String: Any]], Error?) -> Void) {
     //...
     let task = session.dataTask(with: request) { (data, response,

Working with JSON 205

error) in
          //...
          // First unwrap the optional data
          guard let jsonData = data else {
          // If the date is nil, there was probably a network error
               completionHandler(.failure(ResponseError.
requestUnsuccessful))
               return
          }

          do {
               // Deserialisation can throw an error, so we have to
`try` and catch the errors
               let deserialised = try JSONSerialization.
jsonObject(with: jsonData, options: [])
               // As `deserialised` has type `Any` we need to cast
               guard let repos = deserialised as? [[String: Any]] else
{
                      let error = ResponseError.
unexpectedResponseStructure
                    completionHandler(.failure(error))
                    return
               }
               completionHandler(.success(repos))
          } catch {
               completionHandler(.failure(error))
          }
     }
     task.resume()
}

We need to update how we call the fetchRepos function:

fetchRepos(forUsername: "PacktPublishing", completionHandler: { result
in
     switch result {
     case .success(let repos):
          print(repos)
     case .failure(let error):
          print(error)
     }
})

We now use a switch statement instead of if/else, and we get the added benefit that the compiler
will ensure that we have covered all possible outcomes.

Beyond the Standard Library206

Having made this improvement to the fetchRepos function, we can similarly improve the
createIssue function:

func createIssue(inRepo repo: String, forUser user: String, title:
String, body: String?, completionHandler: @escaping (Result<[[String:
Any]], Error?) -> Void) {
     //...
     let task = session.dataTask(with: request) { (data, response,
error) in
          guard let jsonData = data else {
            let error = ResponseError.requestUnsuccessful
            completionHandler(.failure())
            return
          }

           do {
// Deserialisation can throw an error, so we have to `try` and catch
the errors
               let deserialised = try JSONSerialization.
jsonObject(with: jsonData, options: [])

               // As `deserialised` has type `Any` we need to cast
               guard let createdIssue = deserialised as? [String: Any]
else {
                    let error = ResponseError.
unexpectedResponseStructure
                    completionHandler(.failure(error))
                    return
               }
               completionHandler(.success(createdIssue))
          } catch {
               completionHandler(.failure(error))
          }
     }
     task.resume()
}

Lastly, we need to update the contents of the completion handler that we provide to the
createIssue function:

createIssue(inRepo: "Swift-Cookbook-Third-Edition",
           forUser: "PacktPublishing",
           title: <#The title of your feedback#>,
           body: <#Extra detail#>) { result in
     switch result {
     case .success(let issue):

Working with JSON 207

          print(issue)
     case .failure(let error):
          print(error)
     }
}

Working with JSON data and extracting relevant information from it can be frustrating. Consider
the JSON response for our fetchRepos function:

[
     {
          "id": 68144965,
          "name": "JSONNode",
          "full_name": "keefmoon/JSONNode",
          "owner": {
               "login": "keefmoon",
               "id": 271298,
               "avatar_url": "https://avatars.githubusercontent.
com/u/271298?v=3",
               "gravatar_id": "",
               "url": "https://api.github.com/users/keefmoon",
               "html_url": "https://github.com/keefmoon",
               "followers_url": "https://api.github.com/users/
keefmoon/followers",
               //... Some more URLs
               "received_events_url": "https://api.github.com/users/
keefmoon/received_events",
               "type": "User",
               "site_admin": false
          },
          "private": false,
          //... more values
     },
     //... more repositories
]

If we want to get the username for the owner of the first repository, we need to deserialize the JSON
and then conditionally unwrap multiple nested layers to get the username string:

let jsonData = //... returned from the network
guard let deserialised = try? JSONSerialization.jsonObject(with:
jsonData, options: []),
      let repoArray = deserialised as? [[String: Any]],
      let firstRepo = repoArray.first,
      let ownerDictionary = firstRepo["owner"] as? [String: Any],

Beyond the Standard Library208

      let username = ownerDictionary["login"] as? String else {
     return
}
print(username)

That’s a lot of optional unwrapping and casting just to get one value! Swift’s strongly typed nature
doesn’t work well with JSON’s loosely defined schema, which is why you have to do a lot of work to
turn loosely typed information into strongly typed values.

Fortunately, there’s a built-in solution that simplifies serialization and deserialization JSON: Codable.
Using the Codable protocol, you can define a struct that conforms to the protocol, and then simply
decode your data!

struct Owner : Codable {
    var userName: String
    // ...
}

let jsonData = // returned from the network guard
if let jsonOwners = try? JSONDecoder().decode(Owner.self, from:
jsonData) {
    print(jsonOwners.userName)
}

Working with XML
XML stands for eXtensible Markup Language and is a popular way of representing data for storage
and transfer across a network. XML is a very flexible format and is used to represent many types of
data. The current specification of HTML, which powers most of the web, is an implementation of XML.

The version of XML that we will concern ourselves with in this recipe is RSS, which stands for Really
Simple Syndication. RSS is used to define a collection of time-ordered pieces of digestible content;
these RSS feeds can then be used to aggregate content from a number of different sources. RSS is
typically used as a distribution mechanism for news articles and podcasts.

In this recipe, we will learn how to read and write XML data by fetching and parsing the BBC News
RSS feed.

Getting ready

The functionality to deal with XML data is provided by the Foundation framework. However, while
the classes that help with reading XML data are available on all of Apple’s platforms, the classes that
assist with writing XML data are only available on the macOS platform.

Working with XML 209

This is an unfortunate oversight and means that if you need to write XML data within an iOS app,
you will likely need to look for a third-party helper or build your own. We will investigate third-party
helpers at the end of this recipe.

To investigate both reading and writing XML using the Foundation framework, we need to create
a new macOS-based playground instead of an iOS-based playground, which we have been using so
far in this book.

Create a new Swift playground as usual, but choose a Blank template from the macOS tab:

Figure 5.5 – Choosing a template

The RSS feed that we will retrieve and parse is from the front page of the BBC News website, which
is http://feeds.bbci.co.uk/news/rss.xml.

Our first step is to retrieve the data at this URL so that we can start making sense of it. Since we
previously covered retrieving information over the network, I’ll add the code without further comment;
check out the Fetching data with URLSession recipe in this chapter for more information:

import Foundation
import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true

func fetchBBCNewsRSSFeed() {
     let session = URLSession.shared
     let url = URL(string: "http://feeds.bbci.co.uk/news/rss.xml")!
     let dataTask = session.dataTask(with: url) { (data, response,
error) in
          guard let data = data, error == nil else {
               print(error ?? "Unexpected response")
               return
          }

          let dataAsString = String(data: data, encoding: .utf8)!
          print(dataAsString)

http://feeds.bbci.co.uk/news/rss.xml

Beyond the Standard Library210

     }
     dataTask.resume()
}

fetchBBCNewsRSSFeed()

When you run the playground, you will get an output that looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet title="XSL_formatting" type="text/xsl" href="/shared/
bsp/xsl/rss/nolsol.xsl"?>
<rss xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:content="http://purl.org/rss/1.0/modules/content/"
xmlns:atom="http://www.w3.org/2005/Atom" version="2.0"
xmlns:media="http://search.yahoo.com/mrss/">
<channel>
     <title><![CDATA[BBC News - Home]]></title>;
     <description><![CDATA[BBC News - Home]]></description>
     <link>https://www.bbc.co.uk/news/</link>
     
     <generator>RSS for Node</generator>
     <lastBuildDate>Sat, 15 Aug 2020 00:41:41 GMT</lastBuildDate>
     <copyright><![CDATA[Copyright: (C) British Broadcasting
Corporation, see http://news.bbc.co.uk/2/hi/help/rss/4498287.stm for
terms and conditions of reuse.]]></copyright>
     <language><![CDATA[en-gb]]></language>
     <ttl>15</ttl>
     <item>
          <title><![CDATA[Coronavirus: Thousands return to UK to beat
France quarantine]]></title>
          <description><![CDATA[Holidaymakers have just hours to
return to the UK to avoid the 14-day self-isolation requirement.]]></
description>
          <link>https://www.bbc.co.uk/news/uk-53782019</link>
          <guid isPermaLink="true">https://www.bbc.co.uk/news/uk-
53782019</guid>
          <pubDate>Fri, 14 Aug 2020 21:21:54 GMT</pubDate>
     </item>
     //... More items
</channel>
</rss>

Working with XML 211

How to do it...

The overall structure should be familiar to anyone who has seen HTML. Apart from the first two lines,
which define the version and formatting of the XML, the information is structured with opening and
closing tags. Consider the following example:

<link>https://www.bbc.co.uk/news/uk-53782019</link>

The name of the opening tag defines the content of this element of XML; in this case, it is a link. Then
follows the content of the element, and the end of the content is defined by a closing tag that has a /
character before its name.

In addition to this simple example, an XML element can have attributes that describe extra information
about the content of the element:

<guid isPermaLink="true">https://www.bbc.co.uk/news/uk-53782019</guid>

These are defined as key-value pairs within the opening tag. The content of the XML element may be
a string, as in the preceding examples, or it can be nested child XML elements:



Lastly, the content of an XML element can be data. This data might be represented as a string, especially
if the string is likely to be longer, and may include line breaks, special characters, and other components
that may be confused as being part of the enclosing XML formatting:

<title><![CDATA[Coronavirus: Thousands return to UK to beat France
quarantine]]></title>

Now that we have retrieved the XML, we want to parse it into something useful. The parser we will
be using is provided by the Foundation framework and is available on iOS and macOS. It is called
XMLParser. XMLParser is a SAX parser, which stands for Simple API for XML. The features of
a SAX parser are as follows:

•	 Event-driven

•	 Low memory overhead

•	 Only retains relevant information

•	 One pass

Beyond the Standard Library212

The parser takes a delegate object that it will deliver event information to as it parses the document.
It is the delegate object’s responsibility to take and retain the relevant information from these delegate
callbacks as the XML data is parsed, as the parser will not retain the parsed data.

We will step through a simple example to see how the parser reports events to the delegate. Here’s the
simple XML that we intend to parse:

<xml version="1.0" encoding="UTF-8"?>
<quotes>
     <quote attribution="Homer Simpson">
          Press any key to continue, where's the any key?
     <;/quote>
     <quote attribution="Unknown">
          Why do nerds confuse Halloween and Christmas? Because
OCT31=DEC25
     </quote>
</quotes>

The parser will start parsing the XML, character by character, and as an event is triggered, the delegate
will be informed:

1.	 The first event will be the start of the document, where the parser will call this:

func parserDidStartDocument(_ parser: XMLParser)

Here, we can do any setup or resetting of the state that is required.

2.	 Then, the parser will move through the document until it reaches this point:

<?xml version="1.0" encoding="UTF-8"?>
<quotes>
     ** Parser is here **
     <quote attribution="Homer Simpson">
          Press any key to continue, where's the any key?
     </quote>
     <quote attribution="Unknown>
          Why do nerds confuse Halloween and      Christmas?
Because OCT31=DEC25
     </quote>
</quotes>

3.	 The parser has finished parsing the opening tag for the first element and so it fires the
delegate callback:

func parser(_ parser: XMLParser, didStartElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?,
attributes attributeDict: [String : String] = [:]) {
     /*

Working with XML 213

     elementName = quotes
     namespaceURI = nil
     qName = nil
     attributeDict = [:]
     */
}

4.	 The parser then continues until it reaches this point:

<?xml version="1.0" encoding="UTF-8">
<quotes>
     <quote attribution="Homer Simpson">
          ** Parser is here **
          Press any key to continue, where's the any key?
     </quote>
     <quote attribution="Unknown">
          Why do nerds confuse Halloween and Christmas? Because
OCT31=DEC25
     </quote>
</quotes>

5.	 Since the parser has seen another starting tag, it fires the same delegate callback with information
about this new element:

func parser(_ parser: XMLParser, didStartElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?,
attributes attributeDict: [String : String] = [:]) {
     /*
     elementName = quote
     namespaceURI = nil
     qName = nil
     attributeDict = ["attribution": "Homer Simpson"]
     */
}

This time, as the element has attribute information, it is provided by the delegate callback in
the attributeDict dictionary.

6.	 The parser now moves through the content of the first quote element. At some point, it fires
the delegate callback with the content it has collected up to that point:

<?xml version="1.0" encoding="UTF-8"?>
<quotes>
     <quote attribution="Homer Simpson">
          Press any key to continue, ** Parser is here **where's
the any key?
     </quote>

Beyond the Standard Library214

     <quote attribution="Unknown>
          Why do nerds confuse Halloween and Christmas? Because
OCT31=DEC25
     </quote>
</quotes>

It then provides the content collected so far to the delegate:
func parser(_ parser: XMLParser, foundCharacters string: String)
{
     /*
     string = "Press any key to continue, "
     */
}

The reason the parser stops halfway through the content to fire the delegate callback is to make
the most efficient use of memory. All the data that the parser processes must be kept in memory
by the parser until it can be delivered to the delegate. Therefore, if the parser determines that
memory usage is getting high, it will take the content it has collected so far and deliver it to the
delegate. Once it has done this, it can free up the memory and start collecting further content afresh.

In this simple example, it is very unlikely that the parser will not provide all the content of the
element in one delegate callback. It is, however, useful to see an example of this, as we have to
account for the possibility, and it will affect how we implement the delegate later.

7.	 The parser will fire the same foundCharacters delegate callback until all of the content
of an element has been delivered to the delegate:

<?xml version="1.0" encoding="UTF-8"?>
<quotes>
     <quote attribution="Homer Simpson">
          Press any key to continue, where's the any key?
          ** Parser is here **
     </quote>
     <quote attribution="Unknown">
          Why do nerds confuse Halloween and Christmas? Because
OCT31=DEC25
     </quote>
</quotes>

8.	 It then provides the new content since the last call to the delegate:

func parser(_ parser: XMLParser, foundCharacters string: String)
{
     /*
     string = "where's the any key?"
     */
}

Working with XML 215

9.	 The parser now processes the closing tag for the first quote element:

<?xml version="1.0" encoding="UTF-8"?>
<quotes>
     <quote attribution="Homer Simpson">
          Press any key to continue, where's the any key?
     </quote>
     ** Parser is here **
     <quote attribution="Unknown">
          Why do nerds confuse Halloween and Christmas? Because
OCT31=DEC25
     </quote>
</quotes>

10.	 Then, it fires the delegate callback, signaling the end of the element:

func parser(_ parser: XMLParser, didEndElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?) {
     /*
     elementName = "quote"
     namespaceURI = nil
     qName = nil
     */
}

The parser will then continue to process the next quote element in the same way, firing the same
sequence of didStartElement, followed by a number of foundCharacters callbacks,
and finishing with a call to didEndElement.

11.	 Having finished processing the last quote element, the parser will process the closing tag of
the quotes element:

<?xml version="1.0" encoding="UTF-8"?>
<quotes>
     <quote attribution="Homer Simpson">
          Press any key to continue, where's the any key?
     </quote>
     <quote attribution="Unknown">
          Why do nerds confuse Halloween and Christmas? Because
OCT31=DEC25
     </quote>
</quotes>
** Parser is here **

Beyond the Standard Library216

It will fire another didEndElement callback for the quotes element:
func parser(_ parser: XMLParser, didEndElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?) {
     /*
     elementName = "quotes"
     namespaceURI = nil
     qName = nil
     */
}

12.	 Finally, the parser will fire a delegate callback to indicate that the parsing of the document
is complete:

func parserDidEndDocument(_ parser: XMLParser) {

}

Now that you understand how the parser passes information to the delegate, we can return to our
RSS example.

How it works...

You will remember that we retrieved XML data that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet title="XSL_formatting" type="text/xsl" href="/shared/
bsp/xsl/rss/nolsol.xsl"?>
<rss xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:content="http://purl.org/rss/1.0/modules/content/"
xmlns:atom="http://www.w3.org/2005/Atom" version="2.0"
xmlns:media="http://search.yahoo.com/mrss/">
<channel>
     <title><![CDATA[BBC News - Home]]></title>
          <description><![CDATA[BBC News - Home]]></description>
     <link>https://www.bbc.co.uk/news/</link>
     
     <generator>RSS for Node</generator>
     <lastBuildDate>Sat, 15 Aug 2020 00:41:41 GMT</lastBuildDate>
     <copyright><![CDATA[Copyright: (C) British Broadcasting
Corporation, see http://news.bbc.co.uk/2/hi/help/rss/
4498287.stm for terms and conditions of reuse.]]></copyright>

Working with XML 217

     <language><![CDATA[en-gb]]></language>
     <ttl>15</ttl>
     <item>
          <title><![CDATA[Coronavirus: Thousands return to UK to beat
France quarantine]]></title>
          <description><![CDATA[Holidaymakers have just hours to
return to the UK to avoid the 14-day self-isolation requirement.]]></
description>
          <link>https://www.bbc.co.uk/news/uk-53782019</link>
          <guid isPermaLink="true">https://www.bbc.co.uk/news/uk-
53782019</guid>
          <pubDate>Fri, 14 Aug 2020 21:21:54 GMT</pubDate>
     </item>
     //... More items
</channel>
</rss>

From this, we want to extract the news articles in a usable form, so let’s define a NewsArticle model
containing some useful information and place it near the top of the playground:

struct NewsArticle {
     let title: String
     let url: URL
}

Since the information we require will be spread over multiple delegate callbacks, our delegate will need
to keep track of the information it has received, so it can be pieced together at the appropriate time.

Let’s create a class object to be the delegate for the parser and have it conform to XMLParserDelegate:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {

}

In the preceding XML, each news article is contained in an item element, so our delegate will need to
keep track of when the parser is delivering content for the item element so that it can ignore content
from other elements:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {
     var inItem = false
     func parser(_ parser: XMLParser, didStartElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?,
attributes attributeDict: [String : String] = [:]) {
          switch elementName {
          case "item":
               inItem = true

Beyond the Standard Library218

          default:
               break
          }
     }

     func parser(_ parser: XMLParser, didEndElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?) {
          switch elementName {
          case "item":
               inItem = false
          default:
               break
          }
     }
}

The two parts we want to extract from the item element to create our NewsArticle are the title and
the URL. As we can see from the XML, the title is contained in a CDATA wrapper within a title
element, and the URL is within a link element:

<item>
     <title><![CDATA[Coronavirus: Thousands return to UK to beat
France quarantine]]></title>
     <description><![CDATA[Holidaymakers have just hours to return
to the UK to avoid the 14-day self-isolation requirement.]]></
description>
     <link>https://www.bbc.co.uk/news/uk-53782019</link>
     <guid isPermaLink="true">https://www.bbc.co.uk/news/uk-53782019</
guid>
     <pubDate>Fri, 14 Aug 2020 21:21:54 GMT</pubDate>
</item>

We will, therefore, also need to keep track of when the parser is in the link element, and while it is
within the link element, append the received content to a String property.

Similarly, we need to keep track of when the parser is in the title element, and when it is, append
the received content to a Data property.

Let’s add the extra properties we need to our RSSNewsArticleBuilder object:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {
     var inItem = false
     var inTitle = false
     var inLink = false
     var titleData: Data?

Working with XML 219

     var linkString: String?
     //...
}

In the didStartElement method, we can check for these new element names we need to track. We
must also remember to reset the link and title properties as we start the relevant element. This way, we
don’t continue to append content meant for the next item element to content from the previous one:

func parser(_ parser: XMLParser, didStartElement elementName: String,
namespaceURI: String?, qualifiedName qName: String?, attributes
attributeDict: [String : String] = [:]) {
     switch elementName {
     case "item":
          inItem = true
     case "title":
          inTitle = true
     titleData = Data()
     case "link":
          inLink = true
          linkString = ""
     default:
          break
     }
}

Now that we know when we are in the right elements, we can implement two of the

XMLParserDelegate methods to receive the relevant content and store it:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {
     //...
     func parser(_ parser: XMLParser, foundCDATA CDATABlock: Data) {
          if inTitle {
               titleData?.append(CDATABlock)
          }
     }
     func parser(_ parser: XMLParser, foundCharacters string: String)
{
          if inLink {
               linkString?.append(string)
          }
     }
}

Beyond the Standard Library220

In the didEndElement method, we need to update our new properties and we can print out the
values we have retrieved from the XML:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {
     //...
     func parser(_ parser: XMLParser, didEndElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?) {
          switch elementName {
          case "item":
               inItem = false
               guard let titleData = titleData,
                     let titleString = String(data: titleData,
encoding: .utf8),
                     let linkString = linkString,
                     let link = URL(string: linkString)
               else {
                    break
               }
               print(titleString) print(link)
          case "title":
               inTitle = false
          case "link":
               inLink = false
          default:
               break
          }
     }
     //...
}

Now that we have extracted the title and URL of the news article, we can use this to create a NewsArticle
model object. First, let’s create an array to hold the NewsArticle objects we will be creating:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {
     var inItem = false
     var inTitle = false
     var inLink = false
     var titleData: Data?
     var linkString: String?
     var articles = [NewsArticle]()
     //...
}

Working with XML 221

We can create the NewsArticle object at the end of the item element as this is when we will have
all the relevant content:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {
     //...
     func parser(_ parser: XMLParser, didEndElement elementName:
String, namespaceURI: String?, qualifiedName qName: String?) {
          switch elementName {
          case "item":
               inItem = false
               guard let titleData = titleData,
                     let titleString = String(data: titleData,
encoding:.utf8),
                     let linkString = linkString,
                     let link = URL(string: linkString)
               else {
                    break
               }
               let article = NewsArticle(title: titleString, url:
link)
               articles.append(article)
          case "title":
               inTitle = false
          case "link":
               inLink = false
          default:
               break
          }
     }
     //...
}

Lastly, when the document starts, we should ensure that all the properties are reset:

class RSSNewsArticleBuilder: NSObject, XMLParserDelegate {
     //...
     func parserDidStartDocument(_ parser: XMLParser) {
          inItem = false
          inTitle = false
          inLink = false
          titleData = nil
          linkString = nil
          articles = [NewsArticle]()
     }
     //...
}

Beyond the Standard Library222

Now that we have completed the parser delegate, let’s go back to our fetchBBCNewsRSSFeed function:

func fetchBBCNewsRSSFeed() {
     let session = URLSession.shared
     let url = URL(string: "http://feeds.bbci.co.uk/news/rss.xml")!
     let dataTask = session.dataTask(with: url) { (data, response,
error) in
          guard let data = data, error == nil else {
               print(error ?? "Unexpected response")
               return
          }
          let dataAsString = String(data: data, encoding: .utf8)!
          print(dataAsString)
     }
     dataTask.resume()
}

Once the XML data has been retrieved, we’ll pass it to XMLParser, set up the delegate, and tell the
parser to parse the data:

func fetchBBCNewsRSSFeed() {
     let session = URLSession.shared
     let url = URL(string: "http://feeds.bbci.co.uk/news/rss.xml")!
     let dataTask = session.dataTask(with: url) { (data, response,
error) in
          guard let data = data, error == nil else {
               print(error ?? "Unexpected response")
               return
          }
          let parser = XMLParser(data: data)
          let articleBuilder = RSSNewsArticleBuilder()
          parser.delegate = articleBuilder
          parser.parse()
          let articles = articleBuilder.articles
          print(articles)
     }
     dataTask.resume()
}

We want to provide the articles as an output from this function, so we can add a completion handler
to provide an array of news articles or an error:

func fetchBBCNewsRSSFeed(completion: @escaping ([NewsArticle]?,
Error?) -> Void) {
     let session = URLSession.shared
     let url = URL(string: "http://feeds.bbci.co.uk/news/rss.xml")!

Working with XML 223

     let dataTask = session.dataTask(with: url) { (data, response,
error) in
          guard let data = data, error == nil else {
               completion(nil, error)
               return
          }
          let parser = XMLParser(data: data)
          let articleBuilder = RSSNewsArticleBuilder()
          parser.delegate = articleBuilder
          parser.parse()
          let articles = articleBuilder.articles
          completion(articles, nil)
     }
     dataTask.resume()
}

Finally, we can call this function, which will retrieve the RSS feed, parse it, and return an array of
news articles:

fetchBBCNewsRSSFeed() { (articles, error) in
     if let articles = articles {
          print(articles)
     } else if let error = error {
          print(error)
     }
}

There’s more...

Foundation also provides the ability to write XML data, although currently, this functionality is only
available on macOS.

Having retrieved the RSS feed and created our news articles, let’s write this information to an XML
data structure and save it to disk. This XML will take the following form:

<articles>
     <article>
          <title>Donald Trump calls Fidel Castro 'brutal dictator'</
title>
          <url>http://www.bbc.co.uk/news/world-latin-america-
38118739</url>
     </article>
     <article>
          <title>Fidel Castro: Jeremy Corbyn praises 'huge figure'</
title>

Beyond the Standard Library224

          <url>http://www.bbc.co.uk/news/uk-38117068</url>
     </article>
</articles>

At the root of the XML structure is an articles element, which contains multiple article
elements, which in turn contain a title element and a url element.

To write the XML data, we will recreate the preceding structure using the XMLDocument and
XMLElement objects. Once constructed, the xmlData property of the XMLDocument object
provides the document as data.

Let’s create a function to produce XML data from an array of NewsArticle:

func createXML(representing articles: [NewsArticle]) -> Data {
     let root = XMLElement(name: "articles")
     let document = XMLDocument(rootElement: root)
     for article in articles {
          let articleElement = XMLElement(name: "article")
          let titleElement = XMLElement(name: "title", stringValue:
article.title)
          let urlElement = XMLElement(name: "url", stringValue:
article.url.absoluteString)
          articleElement.addChild(titleElement)
          articleElement.addChild(urlElement)
          root.addChild(articleElement)
     }
     print(document.xmlString)
     return document.xmlData
}

We create each XMLElement and add it as a child to the element that we want to nest it within.

If you are building this in a storyboard, ensure that you place this function after
RSSNewsArticleBuilder, and before the code that calls fetchBBCNewsRSSFeed, as this
function will need to be available to the completion handler soon.

Our call to fetchBBCNewsRSSFeed will provide an array of NewsArticle, so we can pass this
to our new function to write this information to XML data:

fetchBBCNewsRSSFeed() { (articles, error) in
     if let articles = articles {
          let articleXMLData = createXML(representing: articles)
          print(articleXMLData.length)
     } else if let error = error {
          print(error)
     }
}

Working with XML 225

Now that we have the data, we can obtain a URL for the documents directory, append the name of
the file we will create, and write it to disk:

fetchBBCNewsRSSFeed() { (articles, error) in
     if let articles = articles {
          let xmlData = createXML(representing: articles)
          let documentsURL = FileManager.default.urls(for:
.documentDirectory, in: .userDomainMask).first!
          let writeURL = documentsURL.
appendingPathComponent("articles.xml")
          print("Writing data to: \(writeURL)")
          try! xmlData.write(to: writeURL)
     } else if let error = error {
          print(error)
     }
}

We have now retrieved an RSS feed, extracted useful information from it, written that information to
a custom XML format, and saved that data to disk. Give yourself a pat on the back!

See also

Further information about XMLParser can be found in Apple’s Foundation reference at http://
swiftbook.link/docs/xmlparser.

Other XML parsers are available, which may have advantages over Apple’s, including being able to
write XML on iOS. They are as follows:

•	 RaptureXML: https://github.com/ZaBlanc/RaptureXML

•	 TBXML: https://github.com/71squared/TBXML

http://swiftbook.link/docs/xmlparser
http://swiftbook.link/docs/xmlparser
https://github.com/ZaBlanc/RaptureXML
https://github.com/71squared/TBXML

6
Understanding Concurrency

in Swift

As we continue to learn more about Swift, eventually we will begin to build complex projects. With
that complexity comes a lot more code for our apps to think through and execute. Over time, this
could mean that our apps begin to feel weighty, slow, and unresponsive at runtime. Concurrency in
Swift allows us to increase the performance and responsiveness of our code by allowing different tasks
to be run seemingly at the same time, when possible.

In this chapter, we will learn how we can perform asynchronous tasks using Grand Central Dispatch
(GCD) through the Dispatch framework and the higher-level operations in the Foundation framework
that are also built on GCD. We will also take a look at the more current Async/Await framework,
which brings a more modern approach, look, and feel to concurrency in Swift.

By the end of this chapter, you will know how to unlock the performance potential of your apps through
concurrency. Understanding the multithreaded environment available on all Apple platforms, and
the ways we can leverage them, is vital to building a fast and responsive app.

In this chapter, we have the following recipes:

•	 Using Dispatch queues for concurrency

•	 Leveraging DispatchGroups

•	 Implementing the operation class

•	 Async/Await in Swift

Understanding Concurrency in Swift228

Technical requirements
All the code for this chapter can be found in this book’s GitHub repository at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206.

Using Dispatch queues for concurrency
We live in a multicore computing world. Multicore processors are found in everything, from our laptops
and mobile phones to our watches. With these multiple cores comes the ability to work in parallel.
These concurrent streams of work are known as threads, and programming in a multithreaded way
enables your code to make the best use of the processor’s cores. Deciding how and when to create
new threads and manage the available resources is a complex task, so Apple has built a framework to
do the hard work for us. It is called Grand Central Dispatch, or GCD.

GCD handles thread maintenance and monitors the available resources while providing a simple, queue-
based interface for getting concurrent work done. With the open sourcing of Swift, Apple also open
sourced GCD in the form of libdispatch as Swift does not yet have built-in concurrency features.

In this recipe, we will explore some of the features of libdispatch, also known as the Dispatch
framework, and see how we can use concurrency to build apps that are efficient and responsive.

Getting ready

We will see how we can improve the responsiveness of an app using GCD. So first, we need to start
with an app that requires some improvement.

Go to https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/
tree/main/Chapter%206/PhotobookCreator_DispatchGroups. Here, you will find
the repository of an app that takes a collection of photos and turns them into a PDF photo book. You
can download the app source files directly from GitHub or by using git:

git clone https://github.com/PacktPublishing/Swift-Cookbook-Third-
Edition/tree/main/Chapter%206/PhotobookCreator_DispatchGroups

If you build and run the app, you will see a collection of sample images, with the ability to add more:

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206/PhotobookCreator_DispatchGroups
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206/PhotobookCreator_DispatchGroups

Technical requirements 229

Figure 6.1 – Sample images

When you tap on Generate Photo Book, the app will take the photos you have chosen, resize them
to the same size, and save them as a multi-page PDF that can then be exported or shared. Depending
on how many photos are included and the performance of the device, this process can take a little
time to complete. During this time, the whole interface is unresponsive; for example, you can’t scroll
through the pictures.

How to do it...

Let’s examine why the app is unresponsive during photo book generation and how we can fix this:

1.	 Open up the PhotoBookCreator project and navigate to PhotoCollectionView-
Controller.swift. In this file, you will find the following method:

func generatePhotoBook(with photos: [UIImage]) {
     let resizer = PhotoResizer()
     let builder = PhotoBookBuilder()

Understanding Concurrency in Swift230

     // Scale down (can take a while)
     var photosForBook = resizer.scaleToSmallest(of: photos)
     // Crop (can take a while)
     photosForBook = resizer.cropToSmallest(of: photosForBook)
     // Generate PDF (can take a while)
     let photobookURL = builder.buildPhotobook(with:
photosForBook)
     let previewController =
UIDocumentInteractionController(url: photobookURL)
     previewController.delegate = self
     previewController.presentPreview(animated: true)
}

In this method, we call three functions that can take quite a long time to complete. We take
the output of one function and feed it into the next function, and the result is a URL for our
photo book, which we then launch with some UI to preview and export.

This work to resize and crop the photos, and then generate the photo book, is taking place in
the same queue where UI touch events are processed, the main queue, which is why our UI
is unresponsive.

2.	 To free up the main queue for UI events, we can create our own private queue, which we can
use to execute our long-running functions:

import Dispatch

class PhotoCollectionViewController: UIViewController {
     //...
     let processingQueue = DispatchQueue(label: "Photo
processing queue")

     func generatePhotoBook(with photos: [UIImage]) {
          processingQueue.async { [weak self] in
               let resizer = PhotoResizer()
               let builder = PhotoBookBuilder()
               // Get smallest common size
               let size = resizer.smallestCommonSize(for:
photos)
               // Scale down (can take a while)
               var photosForBook = resizer.
scaleWithAspectFill(photos, to: size)
               // Crop (can take a while)
               photosForBook = resizer.centerCrop(photosForBook,
to: size)
               // Generate PDF (can take a while)
               let pbURL = builder.buildPhotobook(with:
photosForBook)

Technical requirements 231

               // Show preview with export options
               let previewController =
UIDocumentInteractionController(url: pbURL)
               previewController.delegate = self
               previewController.presentPreview(
animated: true)
          }
     }
}

By calling the async method on our DispatchQueue and providing a block of code, we are
scheduling that block to be executed. GCD will execute that block when resources are available.
Now, our long-running code isn’t blocking the main queue, so our UI will remain responsive;
however, if you were to run the app with just this change, you would get some very odd behavior
when the app tries to show the preview view controller.

We just discussed the fact that UI touch events are delivered to the main queue, which is why
we wanted to avoid blocking it; however, UIKit expects all UI events to happen on the main
queue. Since we are currently creating and presenting the preview view controller from our
private queue, we are defying this UIKit expectation, which can produce a number of bugs,
including UI elements that never appear, or appear long after they were presented.

3.	 To solve this problem, we need to ensure that when we are ready to present our UI, we do that
operation on the main queue:

func generatePhotoBook(with photos: [UIImage], using builder:
PhotoBookBuilder) {
     processingQueue.async { [weak self] in
          let resizer = PhotoResizer()
          let builder = PhotoBookBuilder()
          // Get smallest common size
          let size = resizer.smallestCommonSize(for: photos)
          // Scale down (can take a while)
          var photosForBook = resizer.
scaleWithAspectFill(photos, to: size)
          // Crop (can take a while)
          photosForBook = resizer.centerCrop(photosForBook, to:
size)
          // Generate PDF (can take a while)
          let pbURL = builder.buildPhotobook(with:
photosForBook)
          DispatchQueue.main.async {
               // Show preview with export options
               let previewController =
UIDocumentInteractionController (url: pbURL)
               previewController.delegate = self
               previewController.

Understanding Concurrency in Swift232

presentPreview(          animated: true)
          }
     }
}

Now, if you run the app, you will find that you can generate a photo book while still being able to
interact with the UI, for instance, being able to scroll the table view.

How it works...

GCD uses queues to manage blocks of work in a multithreaded environment. Queues operate on a
first in first out (FIFO) policy. When GCD determines that resources are available, it will take the
next block from the queue and execute it. Once the block has finished executing, it will be removed
from the queue:

Figure 6.2 – FIFO policy

There are two types of DispatchQueue: serial and concurrent. With the simplest form of a queue,
a serial queue, GCD will only execute one block at a time from the top of the queue. When each block
finishes executing, it is removed from the queue, and each block moves up one position.

The main queue, which processes all UI events, is an example of a serial queue, and this explains why
performing a long-running operation on the main queue will cause your UI to become unresponsive.
While your long-running operation is executing, nothing else on the main queue will be executed
until the long-running operation has finished.

With the second type of queue, a concurrent queue, GCD will execute as many blocks on different
threads as resources allow. The next block to execute will be the block closest to the top of the stack
that isn’t already executing, and blocks are removed from the stack when finished:

Leveraging DispatchGroups 233

Figure 6.3 – Execution when the second type of queue is added

Concurrent queues can be useful when you have numerous operations that are independent of each
other. We will look into concurrent queues further in the Leveraging DispatchGroups recipe.

See also

•	 The GitHub repository for libdispatch: https://github.com/apple/swift-
corelibs-libdispatch

•	 Documentation for dispatch queues: http://swiftbook.link/docs/dispatchqueue

Leveraging DispatchGroups
In the previous recipe, we looked into using a private serial queue to keep our app responsive by moving
long-running operations off the main queue. In this recipe, we will break our operations down into
smaller, independent blocks and place them on a concurrent queue.

Getting ready

We are going to build on the app we improved in the last recipe, which is an app that will produce
a PDF photo book from a collection of photos. You can get the code for this app at https://
github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/
Chapter%206 and choose the PhotobookCreator_DispatchGroups folder.

Open the project in Xcode and navigate to the PhotoCollectionViewController.swift file.

How to do it...

In the last recipe, we saw how dispatch queues operate on a FIFO policy. GCD will execute a block
from the top of the queue and remove it from the queue when it has finished executing. The number
of blocks that GCD will allow to execute at the same time will depend on the type of queue being
used. Serial queues will only have one block of code being executed at any time; other blocks in the

https://github.com/apple/swift-corelibs-libdispatch
https://github.com/apple/swift-corelibs-libdispatch
http://swiftbook.link/docs/dispatchqueue
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206

Understanding Concurrency in Swift234

queues will have to wait until the block at the top of the queue has finished executing. However, for
a concurrent queue, GCD will concurrently execute as many blocks as there are resources available.
We can make more efficient use of a concurrent queue by breaking down the work into smaller,
independent blocks, allowing them to be executed concurrently.

Take a look at the current implementation of the generatePhotoBook method. The only thing
that has changed since the last recipe is that we now present the preview UI within a completion that
is passed to the generatePhotoBook method. This simplifies the method and prevents us from
needing to weakly capture self within the async block:

func generatePhotoBook(with photos: [UIImage], completion: @escaping
(URL) -> Void) {
     processingQueue.async {
          let resizer = PhotoResizer()
          let builder = PhotoBookBuilder()
          // Get smallest common size
          let size = resizer.smallestCommonSize(for: photos)
          // Scale down (can take a while)
          var photosForBook = resizer.scaleWithAspectFill(photos, to:
size)
          // Crop (can take a while)
          photosForBook = resizer.centerCrop(photosForBook, to: size)
          // Generate PDF (can take a while)
          let photobookURL = builder.buildPhotobook(with:
photosForBook)
          DispatchQueue.main.async {
               // Fire completion handler which will show the preview
UI
               completion(photobookURL)
          }
     }
}

The work we are doing is in one block of code that we place in a queue. Let’s see whether we can
break this down into smaller, independent pieces of work that can be executed concurrently. We can’t
perform the scale and crop operations concurrently, as they will be operating on the same UIImage
objects, and we will not get the intended result if the image is cropped before it’s scaled.

However, we can apply the scale and crop operation to each photo separately and perform that
operation concurrently on the other photos. Once each photo has been scaled and cropped, we can
use the processed images to generate the photo book:

Leveraging DispatchGroups 235

Figure 6.4 – Serial approach and concurrent approach

Note
Splitting the work up in this way may not make the overall operation faster, as there is an
overhead to each block of work. The efficiency improvement of dividing the work into concurrent
blocks will depend on the operation involved, and how many concurrent operations can run.

We now have blocks of work that can run concurrently, but we have given ourselves a new problem;
how do we coordinate all these concurrent pieces of work so that we know they are all completed and
we can start generating the photo book? Here, GCD can help us. We can use DispatchGroup to
coordinate our operations on each of the images and be notified when they are all completed.

A dispatch group is like a turnstile at a stadium. Every time someone enters the stadium, they pass
through the turnstile, and one extra person is counted as being in the stadium; then, at the end of the
day, as people leave the stadium and pass through the turnstile, the number of people in the stadium
decreases. Once there is no one left in the stadium, the lights can be turned off.

Understanding Concurrency in Swift236

Let’s use a dispatch group to coordinate the work of our photo book creator:

1.	 First, we will create a dispatch group:

let group = DispatchGroup()

2.	 Every time we start a block of work to resize a photo, we will enter the group:

group.enter()

3.	 Once the work is finished, we will leave the group:

group.leave()

4.	 Finally, we will ask the group to notify us when the last resize operation has finished and left
the group. Then, we can take the processed files and generate the photo book:

group.notify(queue: processingQueue) {
     //.. generate photo book
     //.. execute completion handler
}

5.	 Let’s take a look at our generatePhotoBook method, now using a concurrent queue and
dispatch groups:

let processingQueue = DispatchQueue(label: "Photo processing
queue", attributes: .concurrent)

func generatePhotoBook(with photos: [UIImage], completion: @
escaping
(URL) -> Void) {
     let resizer = PhotoResizer()
     let builder = PhotoBookBuilder()
     // Get smallest common size
     let size = resizer.smallestCommonSize(for: photos)
     let processedPhotos = NSMutableArray(array: photos)
     let group = DispatchGroup()
     for (index, photo) in photos.enumerated() {
          group.enter()
          processingQueue.async {
               // Scale down (can take a while)
               var photosForBook = resizer.
scaleWithAspectFill([photo], to: size)
               // Crop (can take a while)
               photosForBook = resizer.centerCrop([photo], to:
size)

Leveraging DispatchGroups 237

               // Replace original photo with processed photo
               processedPhotos[index] = photosForBook[0]
               group.leave()
          }
     }
     group.notify(queue: processingQueue) {
          guard let photos = processedPhotos as? [UIImage] else
{
               return
          }
          // Generate PDF (can take a while)
          let photobookURL = builder.buildPhotobook(with:
photos)
          DispatchQueue.main.async {
               completion(photobookURL)
          }
     }
}

How it works...

Dispatch queues are serial by default, so to create a concurrent queue instead, we pass the .concurrent
attribute when it is created:

let processingQueue = DispatchQueue(label: "Photo processing queue",
attributes: .concurrent)

Before we loop through all the photos, we set up anything that isn’t specific to each photo:

let resizer = PhotoResizer()
let builder = PhotoBookBuilder()
// Get smallest common size
let size = resizer.smallestCommonSize(for: photos)
let processedPhotos = NSMutableArray(array: photos)
let group = DispatchGroup()

This includes creating DispatchGroup, which we will use to coordinate the work. Since our photo
resizing will now be happening concurrently, we need a place to collect the photos once they have been
processed. We can use a Swift array for this; however, a Swift array is a value type, so we can’t use it
from within multiple blocks, as each block will be taking a copy of the array, not the original array itself.

Understanding Concurrency in Swift238

To solve this with a Swift array, we would need to make the processedPhotos array property on
the view controller, which would require us to weakly capture self in the blocks and later unwrap the
processedPhotos array to access it. A simpler way to solve this problem is to use a collection
that has reference semantics; the Foundation framework provides that in the form of NSArray and
NSMutableArray. As we saw earlier in this chapter, it’s important to understand the semantics of
the construct being used and pick the right tool for the right job:

for (index, photo) in photos.enumerated() {
     group.enter()
     processingQueue.async {
          // Scale down (can take a while)
          var photosForBook = resizer.scaleWithAspectFill([photo], to:
size)
          // Crop (can take a while)
          photosForBook = resizer.centerCrop([photo], to: size)
          // Replace original photo with processed photo
          processedPhotos[index] = photosForBook[0]
          group.leave()
     }
}

For each photo, we enter the group and place the resize work on the concurrent queue. We can use
the same scale and crop methods that we used previously, just passing an array containing one photo.
Once the work is completed, we’ll replace the original photo with the processed photo in the array
and leave the group.

Once every block has left the group, this notify block will execute. We retrieve the processed photos
and use them to generate the photo book. Finally, we ensure that the completion handler is executed
on the main queue:

group.notify(queue: processingQueue) {
      guard let photos = processedPhotos as? [UIImage] else {
            return
      }
      // Generate PDF (can take a while)
      let photobookURL = builder.buildPhotobook(with: photos)
      DispatchQueue.main.async {
            completion(photobookURL)
      }
}

Implementing the operation class 239

If you build and run the app, you can still generate a photo book and the UI is still responsive, and
now GCD can make the best use of the available resources to generate our photo book.

See also

•	 Documentation relating to dispatch queues: https://developer.apple.com/
documentation/dispatch/dispatchqueue

•	 Documentation relating to dispatch groups: https://developer.apple.com/
documentation/dispatch/dispatchgroup

Implementing the operation class
In this chapter so far, we have taken our long-running operations and scheduled them as blocks of
code, called closures, on dispatch queues. This has made it really easy to move long-running code
off of the main queue, but if we intend to reuse this long-running code, pass it around, track its state,
and generally deal with it in an object-orientated way, a closure is not ideal.

To solve this, the Foundation framework provides an object, Operation, that allows us to wrap up
our block of work within an encapsulated object.

In this recipe, we will take the photo book app we used throughout this chapter and convert our long-
running blocks into an Operation instance.

Getting ready

We are going to build on the app we improved in the last recipe, which is an app that will produce
a PDF photo book from a collection of photos. You can get the code for this app at https://
github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/
Chapter%206 and choose the PhotobookCreator_StartOperations folder.

Open the folder and navigate to the PhotoCollectionViewController.swift file.

How to do it...

Let’s recap how we broke the work down into independent parts:

https://developer.apple.com/documentation/dispatch/dispatchqueue
https://developer.apple.com/documentation/dispatch/dispatchqueue
https://developer.apple.com/documentation/dispatch/dispatchgroup
https://developer.apple.com/documentation/dispatch/dispatchgroup
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206

Understanding Concurrency in Swift240

Figure 6.5 – Concurrent approach blocks

We can turn each of these blocks of work into separate operations:

1.	 Let’s create an operation to scale and crop each photo.

2.	 We define an operation by sub-classing the Operation class, so in the project, create a new
Swift file and call it PhotoResizeOperation.swift.

3.	 In the simplest Operation implementation, we only need to override one method, main().
So, let’s copy and paste the relevant code from our generatePhotobook method. This
main() method will be executed when the operation starts:

import UIKit

class PhotoResizeOperation: Operation {
     override func main() {
          // Scale down (can take a while)
          var photosForBook = resizer.
scaleWithAspectFill([photo], to: size)
          // Crop (can take a while)
          photosForBook = resizer.centerCrop([photo], to: size)

Implementing the operation class 241

          // Replace original photo with processed photo
          processedPhotos[index] = photosForBook[0]
     }
}

4.	 Copying and pasting the code is not enough, as there are a number of dependencies that were
previously captured by the block. Now, we have to explicitly provide these dependencies to
the operation:

class PhotoResizeOperation: Operation {
     let resizer: PhotoResizer
     let size: CGSize
     let photos: NSMutableArray
     let photoIndex: Int

     init(resizer: PhotoResizer, size: CGSize, photos:
NSMutableArray, photoIndex: Int) {

          self.resizer = resizer
          self.size = size
          self.photos = photos
          self.photoIndex = photoIndex
     }

     override func main() {
          // Retrieve the photo to be resized.
          guard let photo = photos[photoIndex] as? UIImage else
{
               return
          }
          // Scale down (can take a while)
          var photosForBook = resizer.
scaleWithAspectFill([photo], to: size)
          // Crop (can take a while)
          photosForBook = resizer.centerCrop(photosForBook, to:
size)
          photos[photoIndex] = photosForBook[0]
     }
}

5.	 We have converted our resize block into an operation. We now need to do the same for the
block that generates the photo book:

import UIKit

class GeneratePhotoBookOperation: Operation {

Understanding Concurrency in Swift242

     let builder: PhotoBookBuilder
     let photos: NSMutableArray
     var photobookURL: URL?

     init(builder: PhotoBookBuilder, photos: NSMutableArray) {
          self.builder = builder
          self.photos = photos
     }

     override func main() {
         guard let photos = photos as? [UIImage] else {
               return
         }
         // Generate PDF (can take a while)
         photobookURL = builder.buildPhotobook(with: photos)
     }
}

We pass the dependencies into the operation, just like in PhotoResizeOperation. The
output of this operation is a URL for the resulting photo book. We expose that as a property
in the operation so that it can be retrieved outside the operation.

6.	 With our blocks of work converted into operations, let’s switch over to
PhotoCollectionViewController.swift and update our generatePhotoBook
method to use this new operation:

let processingQueue = OperationQueue()

func generatePhotoBook(with photos: [UIImage], completion: @
escaping (URL) -> Void) {
     let resizer = PhotoResizer()
     let builder = PhotoBookBuilder()
     // Get smallest common size
     let size = resizer.smallestCommonSize(for: photos)
     let processedPhotos = NSMutableArray(array: photos)
     let generateBookOp = GeneratePhotoBookOperation(builder:
builder, photos: processedPhotos)
     for index in 0..<processedPhotos.count {
          let resizeOp = PhotoResizeOperation(resizer: resizer,
size: size, photos: processedPhotos, photoIndex: index)
          generateBookOp.addDependency(resizeOp)
          processingQueue.addOperation(resizeOp)
     }
     generateBookOp.completionBlock = { [weak generateBookOp] in
          guard let pbURL = generateBookOp?.photobookURL else {

Implementing the operation class 243

               return
          }
          OperationQueue.main.addOperation {
               completion(pbURL)
          }
     }
     processingQueue.addOperation(generateBookOp)
}

Let’s walk through the changes step by step:

1.	 Where we were previously using DispatchQueue to manage the execution of our blocks,
operations are now managed with OperationQueue:

let processingQueue = OperationQueue()

2.	 The method signature in the following code and the dependencies we need to generate upfront
remain the same:

func generatePhotoBook(with photos: [UIImage], completion: @
escaping (URL) -> Void) {
     let resizer = PhotoResizer()
     let builder = PhotoBookBuilder()
     // Get smallest common size
     let size = resizer.smallestCommonSize(for: photos)
     let processedPhotos = NSMutableArray(array: photos)

3.	 Next, we create the operation to generate the photo book, passing in the dependencies:

let generateBookOp = GeneratePhotoBookOperation(builder:
builder, photos: processedPhotos)

Although the operation will be executed last, we create it first so that we can make it dependent on the
resize operations we are about to create. An operation does not execute immediately upon creation. It
will only execute when the start() method of Operation is called, which can be called manually;
or, if Operation is placed on OperationQueue, it will be called by the queue as appropriate:

for index in 0..<processedPhotos.count {
     let resizeOp = PhotoResizeOperation(resizer: resizer, size: size,
photos: processedPhotos, photoIndex: index)
     generateBookOp.addDependency(resizeOp)
     processingQueue.addOperation(resizeOp)
}

Now, as you can see from the preceding code, we loop through the number of photos that we intend
to process and create a resize operation for each, passing in the dependencies.

Understanding Concurrency in Swift244

With our move to use Operation, one thing we have lost is the use of DispatchGroup, which we
used to ensure that we only generated the photo book once all the photo resize blocks had completed.
We can, however, achieve the same goals using operation dependencies. An operation can be declared
as dependent on a set of other operations, so it will not begin executing until the operations it depends
on have finished. To ensure that the generateBookOp operation, which we just created, only
executes when all the PhotoResizeOperation operations are complete, we add each of them
as a dependency of generateBookOp.

With this done, we can place each PhotoResizeOperation in OperationQueue:

generateBookOp.completionBlock = { [weak generateBookOp] in
     guard let pbURL = generateBookOp?.photobookURL else {
          return
     }
     OperationQueue.main.addOperation {
          completion(pbURL)
     }
}

Operation has a completionBlock property; any block set here will be executed once the operation
has completed. We can use this to fire our completion handler on the main queue. Since we need to
provide the completion handler with the URL to the photo book created by generateBookOp, we
can retrieve this from within the block, as we know that the operation will be finished and the URL
will be there. However, we need to be careful.

We are providing a closure to generateBookOp, which will be retained, and we are using, and
therefore capturing and retaining, the generateBookOp operation in the same block. This will lead
to a retain cycle, and generateBookOp will never get released from memory. To avoid this retain
cycle, we specify that we want to weakly capture generateBookOp in the block we provide, using
the [weak generateBookOp] capture list. This won’t increment the retain count, preventing
the retain cycle from happening.

Much like DispatchQueue, OperationQueue has an available property that provides a
reference to the main queue, upon which the UI events are processed. Also, OperationQueue
has a convenience method that will take a block of code, bundle it into an Operation class, then
add it to the queue. We use this to ensure that the completion handler is executed on the main queue:

processingQueue.addOperation(generateBookOp)

As the final step, we put the generateBookOp operation in the processing queue. It’s important
that we do this as the last step because once placed in the queue, the operation may be executed
immediately, but we don’t want it to be executed immediately. We only want generateBookOp to
be executed once all the resize operations are complete, and if we place the operation on the queue
before setting up the dependencies, this could happen.

Implementing the operation class 245

Now that we have transitioned our app over to using Operation, let’s build and then run and verify
that everything works just as it did before.

Users of our photo book app currently do not have the ability to cancel the generation of a photo book
once the process has started, so let’s add that functionality:

1.	 We will examine our two operations and look for opportunities to check the isCancelled
property and exit early. Switch to PhotoResizeOperation.swift and add isCancelled
checks to the main() method:

override func main() {
     // Check if operation has been cancelled
     guard isCancelled == false else {
          return
     }
     guard let photo = photos[photoIndex] as? UIImage else {
          return
     }
     // Scale down (can take a while)
     var photosForBook = resizer.scaleWithAspectFill([photo],
to: size)
     // Check if operation has been cancelled
     guard isCancelled == false else {
          return
     }
     // Crop (can take a while)
     photosForBook = resizer.centerCrop(photosForBook, to: size)
     photos[photoIndex] = photosForBook[0]
}

Before each piece of long-running work, we check the isCancelled property, and if it is
true, we return early, which will finish the operation.

2.	 We can do the same in GeneratePhotoBookOperation.swift:

override func main() {
     // Check if operation has been cancelled
     guard isCancelled == false else {
          return
     }
     guard let photos = photos as? [UIImage] else {
          return
     }
     // Generate PDF (can take a while)
     photobookURL = builder.buildPhotobook(with: photos)
}

Understanding Concurrency in Swift246

3.	 Next, as an exercise for the reader, we might want to add some UI that allows the user to cancel
the photo book generation once it is in progress.

4.	 Once the user chooses to cancel generating a photo book, we can call the following command:

processingQueue.cancelAllOperations()

This will fire the cancel() method on all the operations in the queue.

We now have an app with a cancelable, long-running operation.

How it works...

How does OperationQueue know when to start an operation and when to remove it from the
queue? It knows by monitoring the operation’s state. The Operation class goes through a number
of state transformations during its life cycle. The following diagram describes how these state
transformations occur:

Figure 6.6 – Operation life cycle

Information about the operation’s state is exposed through a number of Boolean properties on
Operation, and the operation queue uses the properties to know when to perform certain actions
on the operations. Let’s look at these properties one by one:

var isReady: Bool

Async/Await in Swift 247

An operation will return true for isReady when all its dependencies are finished. If it doesn’t
have any dependencies, it will always return true. The queue will only start executing an operation
if isReady is true:

var isExecuting: Bool

Once start is called on an operation, either manually or by a queue, isExecuting will return
true, and when the operation has finished executing, isExecuting will revert to returning false.

Since operations remain on the queue until they have finished, the queue uses the isExecuting
property to ensure that it doesn’t call start on an operation that has already started:

var isFinished: Bool

Once the operation has finished doing whatever processing is required, isFinished should return
true. When isFinished starts to return true, it will be removed from the queue, and the queue
will no longer maintain a reference to the operation. For the simplest implementation of Operation,
as we implemented earlier, isFinished returns true automatically when the main() method
has finished executing:

var isCancelled: Bool

Operations can be canceled by calling the cancel() method on the operation. Once called, the
isCancelled property will return true. This can be used to exit early from a long-running
operation, but it is up to you to check the isCancelled method and interrupt any long-running
code if it returns true.

See also

Documentation relating to the Operation class: http://swiftbook.link/docs/operation

Async/Await in Swift
Starting with Swift 5.5, we were introduced to yet another, though helpful, way to write and perform
asynchronous code using Async/Await. For anyone who has worked in JavaScript or C# before, this
may seem familiar and welcomed. What Async/Await does is allow us to write async functions just
like we would any other synchronous code, and then call them using the await keyword.

In this recipe, we will take our PhotobookCreator app and swap out how we use Dispatch for
Async/Await, highlighting some of the advantages it brings to Swift.

http://swiftbook.link/docs/operation

Understanding Concurrency in Swift248

Getting ready

We will see how we can improve the responsiveness, readability, and safety of an app using Async/
Await, so we will work with an improved version of our app. Go to https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206/
PhotobookCreator_AsyncAwait. Here, you will find the repository of an app that takes a
collection of photos and turns them into a PDF photo book, but using Async/Await. You can download
the app source files directly from GitHub or by using git:

git clone   https://github.com/PacktPublishing/Swift-Cookbook-
Third-Edition/tree/main/Chapter%206/PhotobookCreator_AsyncAwait/
PhotobookCreator

How to do it...

While using Dispatch, we were able to achieve asynchronous code, but there were a few inconveniences.
We had to create DispatchQueue, pass in a completion handler, and ensure that we returned to
the main queue to run our completion.

As we’ll see, Async/Await handles some of those details for us and makes much of what we’re trying
to achieve more readable:

1.	 First, in PhotoCollectionViewController, let’s refactor generatePhotoBook.
Instead of taking a closure, let’s return what we would’ve passed into the handler: a URL. To
signal that we’ll be running this asynchronously, let’s use the async keyword:

func generatePhotoBook(with photos: [UIImage]) async -> URL {
     //...
}

2.	 Now, we’ll refactor the body of our function. Since async functions are made to look like
synchronous functions, you’ll notice it reads very straightforward. However, we’ll add the
await keyword in front of the calls we expect to be waiting on. Lastly, we’ll simply return the
URL we’re looking for:

func generatePhotoBook(with photos: [UIImage]) async -> URL {
     let resizer = PhotoResizer()
     let builder = PhotoBookBuilder()
           // Get smallest common size
     let size = await resizer.smallestCommonSize(for: photos)
     // Scale down (can take a while)
     var photosForBook = await resizer.
scaleWithAspectFill(photos, to: size)
     // Crop (can take a while)
     photosForBook = await resizer.centerCrop(photosForBook, to:
size)

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206/PhotobookCreator_AsyncAwait
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206/PhotobookCreator_AsyncAwait
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%206/PhotobookCreator_AsyncAwait

Async/Await in Swift 249

     // Generate PDF (can take a while)
     let photobookURL = await builder.buildPhotobook(with:
photosForBook)
     return photobookURL
      }

3.	 The compiler will start complaining that we’re awaiting non-async functions. Let’s fix this by
simply adding the async keyword to each function we plan to call asynchronously:

func smallestCommonSize(for photos: [UIImage]) async -> CGSize

func scaleWithAspectFill(_ photos: [UIImage], to size: CGSize)
async -> [UIImage]

func centerCrop(_ photos: [UIImage], to size: CGSize) async ->
[UIImage]

func buildPhotobook(with photos: [UIImage]) async -> URL

4.	 Lastly, we update our caller, generateButtonPressed. Since it is IBAction, which is
synchronous, we cannot use the async keyword. Instead, we’ll wrap our asynchronous code
using a Task closure:

@IBAction func generateButtonPressed(sender: UIBarButtonItem) {
     activityIndicator.startAnimating()
     Task {
                let photobookURL = await generatePhotoBook(with:
photos)
          activityIndicator.stopAnimating()
          let previewController =
UIDocumentInteractionController(url: photobookURL)
          previewController.delegate = self
          _ = previewController.presentPreview(
animated: true)
     }
}

How it works...

A huge advantage of using Async/Await is that it allows us to clearly mark code that will be used
asynchronously (using async) and that we must wait for before moving on (using await).

This is exceptionally helpful when looking at the body of generatePhotoBook. First, there’s no
need for any closure since the entire function has been marked as asynchronous. Next, we can clearly
see the steps our code will be executing by taking note of where await appears. Lastly, we simply
return the value our caller wants to use.

Understanding Concurrency in Swift250

Returning a value instead of calling a closure (specifically on the main thread as we do using Dispatch)
introduces not only better readability but also safety. It puts the responsibility of the callers’ code back
where it belongs: in the hands of the caller itself.

We achieve this in generateBackButtonPressed. Yes, we still end up using a closure, specifically
a Task closure. However, we use it to simply signify that we want to execute an asynchronous call, as
opposed to packaging up and sending off our code to be called and executed elsewhere:

Task {
     let photobookURL = await generatePhotoBook(with: photos)
     activityIndicator.stopAnimating()
     let previewController = UIDocumentInteractionController(url:
photobookURL)
     previewController.delegate = self
     _ = previewController.presentPreview(animated: true)
}

We simply await the call to generatePhotoBook, soundly trusting that once it completes execution,
we can safely move forward with updating our UI with a URL.

The syntax changes between using Dispatch and Async/Await provide a dramatic difference in
readability, simplicity, and safety, even in the simple use case we used them in. We’ve only scratched
the surface of the capabilities offered by Async/Await.

See also

Documentation relating to Async/Await: https://docs.swift.org/swift-book/
documentation/the-swift-programming-language/concurrency/

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/concurrency/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/concurrency/

7
Building iOS Apps with UIKit

In the previous chapter, we got to play with a pre-made app so we could learn more about concurrency
in Swift. Now, we’ll be building our very own iOS app from scratch using Swift and the Xcode IDE.
To do this, we’ll use UIKit and storyboards, the more traditional way of building out an app UI. Once
we’ve built our app, we’ll look at how we can incorporate unit tests and UI tests.

By the end of this chapter, you will understand how to build a complete app and a UI so that anyone
who uses it can trigger, interact with, and see the results of the Swift code that lies beneath.

In this chapter, we will cover the following recipes:

•	 Building an iOS app using UIKit and storyboards

•	 Unit and integration testing with XCTest

•	 UI testing with XCUITest

Technical requirements
For this chapter, you’ll need the latest version of Xcode from the Mac App Store.

All the code for this chapter can be found in this book’s GitHub repository at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%207/
CocoaTouch.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%207/CocoaTouch
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%207/CocoaTouch
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%207/CocoaTouch

Building iOS Apps with UIKit252

Building an iOS app using UIKit and storyboards
The focus of this book is ultimately on the Swift programming language itself, as opposed to the use
of the language to produce apps for Apple platforms or to build server-side services. That being said,
it can’t be ignored that the vast majority of the Swift code being written is for building, or building
upon, iOS and iPadOS apps.

In this recipe, we will take a brief look at how we can interact with Apple’s Cocoa Touch frameworks
using Swift and begin to build and create our very own iOS app.

Cocoa Touch is the name given to the collection of UI frameworks available as part of the iOS SDK.
Its name derives from the Cocoa framework on macOS, which provides UI elements for macOS apps.
While Cocoa on macOS is a framework in its own right, Cocoa Touch is a collection of frameworks that
provide UI elements for iOS apps and handle the app’s life cycle; the core of these frameworks is UIKit.

Getting ready

First, we’ll need to create a new iOS app project:

1.	 From the Xcode menu, choose File, then New.

2.	 From the dialog box that opens, choose App from the iOS tab:

Figure 7.1 – Choosing a template

Building an iOS app using UIKit and storyboards 253

The next dialog box asks you to enter details about your app, pick a product name and organization
name, and add an organization identifier in reverse DNS style.

Reverse DNS style means to take a website that you or your company owns and reverse the
order of the domain name components. So, for example, http://maps.google.com
becomes com.google.maps:

Figure 7.2 – Options for a new project

Pay attention to the preceding choices as not all of them may be selected by default. For this
recipe, the ones that are important to us are Interface and Include Tests, both of which we’ll cover
later on in this chapter when we look at unit testing with XCTest and UI testing with XCUITest.

3.	 Once you’ve chosen a save location on your Mac, you will be presented with the following
Xcode layout:

http://maps.google.com

Building iOS Apps with UIKit254

Figure 7.3 – New project template

Here, we have the start of our project – it’s not much, but it’s where all new iOS apps begin.

From this menu, press Product | Run. Xcode will now compile and run your app in a simulator.

How to do it...

Continuing from a previous recipe, we’ll build our app based on data that is returned from the public
GitHub API:

1.	 In the file explorer, click on Main.storyboard; this view is a representation of what the app
will look like and is called Interface Builder. At the moment, there is only one blank screen
visible, which matches what the app looked like when we ran it earlier. This screen represents
a view controller object; as the name suggests, this is an object that controls views.

2.	 We will display our list of repositories in a table. We actually want to create a view controller
class that is a subclass of UITableViewController. So, from the menu, choose File, then
New, and select a Cocoa Touch Class template:

Building an iOS app using UIKit and storyboards 255

Figure 7.4 – New file template

3.	 We will be displaying repositories in this view controller, so let’s call it ReposTableView-
Controller. Specify that it’s a subclass of UITableViewController and ensure that
the language is Swift:

Figure 7.5 – New filename and subclass

Now that we have created our view controller class, let’s switch back to Main.storyboard
and delete the blank view controller that was created for us.

Building iOS Apps with UIKit256

4.	 From the object library, find the Table View Controller option and drag it into the
Interface Builder editor:

Figure 7.6 – Object library

5.	 Now that we have a table view controller, we want this controller to be part of our custom subclass.
To do this, select the controller, go into the class inspector, enter ReposTableViewController
as the Class type, and press Enter:

Figure 7.7 – Custom class inspector

Although we have the view controller that will be displaying the repository names, when a user selects
a repository, we want to present a new view controller that will show details about that particular
repository. We will cover what type of view controller that is and how we present it shortly, but first,
we need a mechanism for navigating between view controllers.

Building an iOS app using UIKit and storyboards 257

If you have ever used an iOS app, you will be familiar with the standard push and pop way of navigating
between views. The following screenshot shows an app in the middle of that transition:

Figure 7.8 – Push and pop view controller

Building iOS Apps with UIKit258

The management of these view controllers, as well as their presentation and dismissal transitions,
is handled by a navigation controller, which is provided by Cocoa Touch in the form of
UINavigationController. Let’s take a look:

1.	 To place our view controller inside a navigation controller, select ReposTableViewController in
Interface Builder. Then, from the Xcode menu, go to Editor | Embed In | Navigation Controller.

This will add a navigation controller to the storyboard and set the selected view controller as
its root view controller (if there is an existing view controller already inside the storyboard
from the initial project we created, this can be highlighted and deleted).

2.	 Next, we need to define which view controller is initially on the screen when the app starts.
Select Navigation Controller on the left-hand side of the screen and within the property
inspector, select Is Initial View Controller. You will see that an entry arrow will point toward
the navigation controller on the left, indicating that it will be shown initially.

3.	 With this set up, we can start working on our ReposTableViewController by selecting
it from the File navigator menu.

When we created our view controller, the template gave us a bunch of code, with some of
it commented out. The first method that the template provides is viewDidLoad. This is
part of a set of methods that cover the life cycle of the root view that the view controller is
managing. Full details about the view life cycle and its relevant method calls can be found
at https://developer.apple.com/documentation/uikit/view_controllers/
displaying_and_managing_views_with_a_view_controller/#3370691.

viewDidLoad is fired quite early on in the view controller’s life cycle but before the view
controller is visible to the user. Due to this, it is a good place to configure the view and retrieve
any information that you want to present to the user.

4.	 Let’s give the view controller a title:

class ReposTableViewController: UITableViewController {
     override func viewDidLoad() {
          super.viewDidLoad()
          self.title = "Repos"
     }
     //...
}

Now, if you build and run the app, you’ll see a navigation bar with the title we just
added programmatically.

5.	 Next, we’ll fetch and display a list of GitHub repositories. Implement the following snippet of
code in order to fetch a list of repositories for a specific user:

@discardableResult
internal func fetchRepos(forUsername username: String,

https://developer.apple.com/documentation/uikit/view_controllers/displaying_and_managing_views_with_a_view_controller/#3370691
https://developer.apple.com/documentation/uikit/view_controllers/displaying_and_managing_views_with_a_view_controller/#3370691

Building an iOS app using UIKit and storyboards 259

completionHandler: @escaping (FetchReposResult) -> Void)->
URLSessionDataTask? {
     let urlString = "https://api.github.com/users/\ (username)/
repos"
     guard let url = URL(string: urlString) else {
          return nil
     }
     var request = URLRequest(url: url)
     request.setValue("application/vnd.github.v3+json",
forHTTPHeaderField: "Accept")
     let task = session.dataTask(with: request) { (data,
response, error) in
       // First unwrap the optional data
       guard let data = data else {
         let error = ResponseError. requestUnsuccessful
         completionHandler(.failure(error))
         return
          }
       do {
         let decoder = JSONDecoder()
         let responseObject = try decoder. decode([Repo].self,
from: data)
         completionHandler(.success(responseObject))
          } catch {
         completionHandler(.failure(error))
       }
     }
     task.resume()
     return task
}

6.	 Let’s add the following highlighted code to the top of the file, before the start of the class
definition. We will also add a session property to the view controller, which is needed for the
network request:

import UIKit

struct Repo: Codable {
     let name: String?
     let url: URL?
     enum CodingKeys: String, CodingKey {
          case name = "name"

          case url = "html_url"
     }

Building iOS Apps with UIKit260

}

enum FetchReposResult {
     case success([Repo])
     case failure(Error)
}

enum ResponseError: Error {
     case requestUnsuccessful
     case unexpectedResponseStructure
}

class ReposTableViewController: UITableViewController {
     internal var session = URLSession.shared
     //...
}

You may notice something a little different about the preceding functions since we’re now
making full use of Swift’s Codable protocol. With Codable, we can map the JSON response
from our API straight to our struct models, without the need to convert this into a dictionary
and then iterate each key-value pair to a property.

7.	 Next, in our table view, each row of the table view will display the name of one of the repositories
that we retrieve from the GitHub API. We need a place to store the repositories that we retrieve
from the API:

class ReposTableViewController: UITableViewController {
     internal var session = URLSession.shared
     internal var repos = [Repo]()
     //...
}

The repos array has an initially empty array value, but we will use this property to hold the
fetched results from the API.

We don’t need to fetch the repository data right now. So, instead, we’ll learn how to provide
data to be used in the table view. Let’s get started.

8.	 Let’s create a couple of fake repositories so that we can temporarily populate our table view:

class ReposTableViewController: UITableViewController {
     let session = URLSession.shared
     var repos = [Repo]()

     override func viewDidLoad() {
          super.viewDidLoad()

Building an iOS app using UIKit and storyboards 261

          let repo1 = Repo(name: "Test repo 1", url: URL(string:
"http://example.com/repo1")!)
          let repo2 = Repo(name: "Test repo 2", url: URL(string:
"http://example.com/repo2")!)
          repos.append(contentsOf: [repo1, repo2])
     }
     //...
}

The information in a table view is populated from the table view’s data source, which can be
any object that conforms to the UITableViewDataSource protocol.

When the table view is displayed and the user interacts with it, the table view will ask the
data source for the information it needs to populate the table view. For simple table view
implementations, it is often the view controller that controls the table view that acts as the
data source. In fact, when you create a subclass of UITableViewController, as we have,
the view controller already conforms to UITableViewDataSource and is assigned as the
table view’s data source.

9.	 Some of the methods defined in UITableViewDataSource were created as part of the
UITableViewController template; the three we will take a look at are as follows:

override func numberOfSections(in tableView: UITableView) -> Int
{
     // #warning Incomplete implementation, return the number of
sections
     return 0
}

override func tableView(_ tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
     // #warning Incomplete implementation, return the number of
rows
     return 0
}

/*
override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {
     let cell = tableView.dequeueReusableCell(
withIdentifier: "RepoCell", for: indexPath)
     // Configure the cell...
     return cell
}

*/

Building iOS Apps with UIKit262

Data in a table view can be divided into sections, and information is presented in rows within
those sections; information is referenced through IndexPath, which consists of a section
integer value and a row integer value.

10.	 The first thing that the data source methods ask us to provide is the number of sections that
the table view will have. Our app will only be displaying a simple list of repositories, and as
such, we only need one section, so we will return 1 from this method:

override func numberOfSections(in tableView: UITableView) -> Int
{
     return 1
}

11.	 The next thing we have to provide is the number of rows the table view should have for a given
section. If we had multiple sections, we could examine the provided section index and return
the right number of rows, but since we only have one section, we can return the same number
in all scenarios.

We are displaying all the repositories we have retrieved, so the number of rows is simply the
number of repositories in the repos array:

override func tableView(_ tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
     return repos.count
}

Tip
Notice that in the preceding two functions, we no longer use the return keyword. This is because,
starting with Swift 5.1, you can now use implicit returns in functions. As long as your function
doesn’t carry ambiguity about what should and should not be returned, the compiler can work
this out for you. This allows for more streamlined syntax.

Now that we have told the table view how many pieces of information to display, we must be able to
display that information. A table view displays information in a type of view called UITableViewCell,
and this cell is what we have to provide next.

For each index path within the section and row bounds that we have provided, we will be asked to
provide a cell that will be displayed by the table view. A table view can be very large in size as it may need
to represent a large amount of data. However, there are only a handful of cells that can be displayed to
the user at any one time. This is because only a portion of the table view can be visible at any one time:

Building an iOS app using UIKit and storyboards 263

Figure 7.9 – Table view cell overview

In order to be efficient and prevent your app from slowing down as the user scrolls, the table view
can reuse cells that have already been created but have since moved off-screen. Implementing cell
reuse happens in two stages:

•	 Registering the cell’s type with the table view with a reuse identifier.

•	 Dequeuing a cell for a given reuse identifier. This will return a cell that has moved off-screen
or create a new cell if none are available for reuse.

Building iOS Apps with UIKit264

How a cell is registered will depend on how it has been created. If the cell has been created and its
subviews have also been laid out in the code, then the cell’s class is registered with the table view
through this method on UITableView:

func register(_ cellClass: AnyClass?, forCellReuseIdentifier
identifier: String)

If the cell has been laid out in .xib (usually called a “nib” for historical reasons), which is a visual
layout file for views that’s similar to a storyboard, then the cell’s nib is registered with the table view
through this method on UITableView:

func register(_ nib: UINib?, forCellReuseIdentifier identifier:
String)

Lastly, cells can be defined and laid out within the table view in a storyboard. One advantage of this
approach is that there is no need to manually register the cell, as with the previous two approaches;
registering with the table view is free. However, one disadvantage of this approach is that the cell layout is
tied to the table view, so it can’t be reused in other table views, unlike the previous two implementations.

Let’s lay out our cell in the storyboard since we will only be using it with one table view:

1.	 Switch to our Main.storyboard file and select the table view in our ReposTableView-
Controller.

2.	 In the attributes inspector, change the number of prototype cells to 1; this will add a cell to
the table view in the main window. This cell will define the layout of all the cells that will be
displayed in our table view. You should create a prototype cell for each type of cell layout you
will need; we are only displaying one piece of information in our table view, so all our cells
will be of the same type.

3.	 Select a cell in the storyboard. The attributes inspector will switch to showing the attributes for
the cell. The cell style will be set to custom, and often, this will be what you want it to be. When
you are displaying multiple pieces of information in a cell, you will usually want to create a
subclass of UITableViewCell, set this to be the cell’s class in the class inspector, and then
lay out subviews in this custom cell type. However, for this example, we just want to show
the name of the repository. Due to this, we can use a basic cell style that just has one text label,
without a custom subclass, so choose Basic from the Style dropdown.

4.	 We need to set the reuse identifier that we will use to dequeue the cell later, so type an appropriate
string, such as RepoCell, into the reuse Identifier box of the attributes inspector:

Building an iOS app using UIKit and storyboards 265

Figure 7.10 – Table view cell identifier

5.	 Now that we have a cell that is registered for reuse with the table view, we can go back to our
view controller and complete our conformance with UITableViewDataSource.

6.	 Our ReposTableViewController contains some commented code that was created as
part of the template:

/*
override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {
     let cell = tableView.dequeueReusableCell(
withIdentifier: "RepoCell", for: indexPath)
     // Configure the cell...
     return cell
}
*/

7.	 At this point, you can remove the /* */ comment signifiers as we are ready to implement
this method.

This data source method will be called every time the table view needs to place a cell on-screen;
this will happen the first time the table is displayed as it needs cells to fill the visible part of the
table view. It will also be called when the user scrolls the table view in a way that will reveal a
new cell so that it becomes visible.

8.	 Regarding the method’s definition, we can see that we are provided with the table view in question
and the index path of the cell that is needed, and we are expected to return UITableViewCell.

Building iOS Apps with UIKit266

The code provided by the template actually does most of the work for us; we just need to provide
the reuse identifier that we set in the storyboard and set the title label of the cell so that we have
the name of the correct repository:

override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {
     let cell = tableView.dequeueReusableCell(
withIdentifier: "RepoCell", for: indexPath)
     // Configure the cell...
     let repo = repos[indexPath.row]
     cell.textLabel?.text = repo.name
     return cell
}

The cell’s textLabel property is optional because it only exists when the cell’s style is not custom.

9.	 Since we’ve now provided everything the table view needs to display our repository information,
let’s click on Build and Run and take a look:

Figure 7.11 – Our app’s first run

Building an iOS app using UIKit and storyboards 267

Great! Now that we have our two test repositories displayed in our table view, let’s replace our test
data with real repositories from the GitHub API.

We added our fetchRepos method earlier, so all we need to do is call this method, set the results
to our repos property, and tell our table view that it needs to reload since the data has changed:

class ReposTableViewController: UITableViewController {
     internal var session = URLSession.shared
     internal var repos = [Repo]()

     override func viewDidLoad() {
          super.viewDidLoad()
          title = "Repos"
          fetchRepos(forUsername: "SwiftProgrammingCookbook"){ [weak
self] result in
               switch result {
               case .success(let repos):
                    self?.repos = repos
               case .failure(let error):
                    self?.repos = []
                    print("There was an error: \(error)")
               }
               self?.tableView.reloadData()
          }
     }
     //...
}

As we did in previous recipes, we fetched the repositories from the GitHub API and received a result
in enum informing us of whether this was a success or a failure. If it was successful, we store the
resulting repository array in our repos property. Once we have handled the response, we call
the reloadData method on UITableView, which instructs the table view to requery its source
for cells to display.

We also provided a weak reference to self in our closure’s capture list to prevent a retain cycle. You
can find out more about why this is important in the Passing around functionality with closures recipe
of Chapter 1, Swift Fundamentals.

At this point, there is an important consideration that needs to be addressed. The iOS platform is a
multithreaded environment, which means that it can do more than one thing at once. This is critical
to being able to maintain a responsive UI, while also being able to process data and perform long-
running tasks. The iOS system uses queues to manage this work and reserves the “main” queue for
any work involving the UI. Therefore, any time you need to interact with the UI, it is important that
this work is done from the main queue.

Building iOS Apps with UIKit268

Our fetchRepos method presents a situation where this might not be true. The fetchRepos
method performs networking, and we provide closure to URLSession as part of creating a
URLSessionDataTask instance, but there is no guarantee that this closure will be executed on
the main thread. Therefore, when we receive a response from fetchRepos, we need to dispatch
the work of handling that response to the main queue to ensure that our updates to the UI happen
on the main queue. We can do this using the Dispatch framework, so we need to import that at
the top of the file:

class ReposTableViewController: UITableViewController {
     let session = URLSession.shared
     var repos = [Repo]()
     override func viewDidLoad() {
          super.viewDidLoad()
          title = "Repos"
          fetchRepos(forUsername: "SwiftProgrammingCookbook"){ [weak
self] result in
               DispatchQueue.main.async {
                    switch result {
                    case .success(let repos):
                         self?.repos = repos
                       case .failure(let error):
                         self?.repos = []
                         print("There was an error: \(error)")
                    }
                    self?.tableView.reloadData()
               }
          }
     }
}

We discussed multithreading and the Dispatch framework in greater depth in Chapter 6, Understanding
Concurrency in Swift. So, let’s jump right in:

1.	 Click on Build and Run. After a few seconds, the table view will be filled with the names of
various repositories from the GitHub API.

Now that we have repositories being displayed to the user, the next piece of functionality we’ll
implement for our app is the ability to tap on a cell and have it display the repository’s GitHub
page in a WebView.

Actions triggered by the table view, such as when a user taps on a cell, are provided to the table
view’s delegate, which can be anything that conforms to UITableViewDelegate. As was the
case with the table view’s data source, our ReposTableViewController already conforms
to UITableViewDelegate because it is a subclass of UITableViewController.

Building an iOS app using UIKit and storyboards 269

2.	 If you take a look at the documentation for the UITableViewDelegate protocol, you will
see a lot of optional methods; this documentation can be found at https://developer.
apple.com/reference/uikit/uitableviewdelegate. The one that’s relevant
for our purposes is as follows:

func tableView(_ tableView: UITableView, didSelectRowAt
indexPath: IndexPath)

3.	 This will be called on the table view’s delegate whenever a cell is selected by the user, so let’s
implement this in our view controller:

override func tableView(_ tableView: UITableView, didSelectRowAt
indexPath: IndexPath) {
     let repo = repos[indexPath.row]
     let repoURL = repo.url
     // TODO: Present the repo's URL in a webview
}

4.	 For the functionality it provides, we will use SFSafariViewController, passing it the
repository’s URL. Then, we will pass that view controller to the show method, which will
present the view controller in the most appropriate way:

override func tableView(_ tableView: UITableView, didSelectRowAt
indexPath: IndexPath) {
     let repo = repos[indexPath.row]
     guard let repoURL = repo.url else {
          return
     }
     let webViewController = SFSafariViewController(
url: repoURL)
     show(webViewController, sender: nil)
}

5.	 Make sure you import SafariServices at the top of the file.

6.	 Click on Build and Run, and once the repositories are loaded, tap on one of the cells. A new
view controller will be pushed onto the screen, and the relevant repository web page will load.

Congratulations – you’ve just built your first app and it looks great!

https://developer.apple.com/reference/uikit/uitableviewdelegate
https://developer.apple.com/reference/uikit/uitableviewdelegate

Building iOS Apps with UIKit270

How it works...

Currently, our app fetches repositories from a specific, hardcoded GitHub username. It would be great
if, rather than hardcoding the username, the user of the app could enter the GitHub username that
the repositories will be retrieved for. So, let’s add this functionality:

1.	 First, we need a way for the user to enter their GitHub username; the most appropriate way to
allow a user to enter a small amount of text is through the use of UITextField.

2.	 In the main storyboard, find Text Field in the object library, drag it over to the main window,
and drop it onto the navigation bar of our ReposTableViewController. Now, you
need to increase the width of Text Field. For now, just hardcode this to around 300px by
highlighting Text Field and selecting the Size Inspector option:

Figure 7.12 – Adding a UITextField instance

Like a table view, UITextField communicates user events through a delegate, which needs
to conform to UITextFieldDelegate.

3.	 Let’s switch back to ReposTableViewController and add conformance to
UITextFieldDelegate; it is a common practice to add protocol conformance to an
extension, so add the following at the bottom of ReposTableViewController:

extension ReposTableViewController: UITextFieldDelegate {

}

4.	 With this conformance in place, we need to set our view controller to be the delegate of
UITextField. Head back over to the main storyboard, select the text field, and then open
Connections Inspector. You will see that the text field has an outlet for its delegate property.
Now, click, hold, and drag from the circle next to our delegate over to the symbol representing
our Repos Table View Controller:

Building an iOS app using UIKit and storyboards 271

Figure 7.13 – UITextField with IBOutlet

The delegate outlet should now have a value:

Figure 7.14 – UITextField delegate outlet

By taking a look at the documentation for UITextFieldDelegate, we can see that the
textFieldShouldReturn method is called when the user presses the Return button on
their keyboard after entering text, so this is the method we will implement.

Building iOS Apps with UIKit272

5.	 Let’s switch back to our ReposTableViewController and implement this method in
our extension:

extension ReposTableViewController: UITextFieldDelegate {
     public func textFieldShouldReturn(_ textField: UITextField)
-> Bool {
          // TODO: Fetch repositories from username entered into
text field
          // TODO: Dismiss keyboard
          // Returning true as we want the system to have the
default behaviour
          return true
     }
}

6.	 Since repositories will be fetched here instead of when the view is loaded, let’s move the code
from viewDidLoad to this method:

extension ReposTableViewController: UITextFieldDelegate {
     public func textFieldShouldReturn(_ textField: UITextField)
-> Bool {
          // If no username, clear the data
          guard let enteredUsername = textField.text else {
               repos.removeAll()
               tableView.reloadData()
               return true
          }
          // Fetch repositories from username entered into text
field
          fetchRepos(forUsername: enteredUsername) { [weak self]
result in
               switch result {
               case .success(let repos):
                    self?.repos = repos
               case .failure(let error):
                    self?.repos = []
                    print("There was an error: \(error)")
               }
               DispatchQueue.main.async {
                    self?.tableView.reloadData()
               }
          }

          // TODO: Dismiss keyboard
          // Returning true as we want the system to have the
default behaviour

Building an iOS app using UIKit and storyboards 273

          return true
     }
}

Cocoa Touch implements the programming design pattern MVC, which stands for Model View
Controller; it is a way of structuring your code to keep its elements reusable, with well-defined
responsibilities. In the MVC pattern, all code related to displaying information falls broadly into
three areas of responsibility:

•	 Model objects hold the data that will eventually be displayed on the screen; this might be data
that was retrieved from the network or device, or that was generated when the app was running.
These objects may be used in multiple places in the app, where different view representations
of the same data may be required.

•	 View objects represent the UI elements that are displayed on the screen; these may just display
information that they are provided, or capture input from the user. View objects can be used
in multiple places where the same visual element is needed, even if it is showing different data.

•	 Controller objects act as bridges between the models and the views; they are responsible for
obtaining the relevant model objects and for providing the data to be displayed to the right
view objects at the right time. Controller objects are also responsible for handling user input
from the views and updating the model objects as needed:

Figure 7.15 – MVC overview

With regard to displaying web content, our app provides us with a number of options:

•	 WKWebView, provided by the WebKit framework, is a view that uses the latest rendering and
JavaScript engine for loading and displaying web content. While it is newer, it is less mature in
some respects and has issues with caching content.

•	 SFSafariViewController, provided by the SafariServices framework, is a view
controller that displays web content and also provides many of the features that are available
in Mobile Safari, including sharing and adding to reading lists and bookmarks. It also provides
a convenient button for opening the current site in Mobile Safari.

Building iOS Apps with UIKit274

There’s more...

The last thing we need to do is dismiss the keyboard. Cocoa Touch refers to the object that is currently
receiving user events as the first responder. Currently, this is the text field.

It’s the act of the text field becoming the first responder that caused the keyboard to appear on-screen.
Therefore, to dismiss the keyboard, the text field just needs to resign its place as first responder:

extension ReposTableViewController: UITextFieldDelegate {
     public func textFieldShouldReturn(_ textField: UITextField) ->
Bool {
          textField.resignFirstResponder()
          return true
     }
}

Now, click on Build and Run. At this point, you can enter any GitHub account name in the text
field to retrieve a list of its public repositories. Note that if your Xcode simulator doesn’t have soft
keyboard enabled, you can just press Enter on your physical keyboard to search for the repo.

See also

For more information regarding what was covered in this recipe, please refer to the following links:

•	 Apple documentation for GCD: https://developer.apple.com/documentation/
dispatch

•	 Apple documentation for UIKit: https://developer.apple.com/documentation/
uikit

Unit and integration testing with XCTest
Testing plays a massive role in the software development life cycle. Primarily, there should be a lot
of focus on physical user testing – putting your piece of code in the hands of those who use it day
in and day out. This should be one of our main focuses, but what about testing what we, as software
developers, do? How do we test and check the integrity of our code base?

This is where unit testing and integration testing come in. In this recipe, we’ll cook up a unit and integration
test for our previously written Cocoa Touch app. This will be written entirely in Swift, using the Xcode IDE.

Getting ready

Back in our existing CocoaTouch project, in the File inspector, look for a folder called
CocoaTouchTest. Expand this and select the CocoaTouchTests.swift file. Inside this file,
you’ll notice a CocoaTouchTests class, which, in turn, inherits from the XCTestCase class.
XCTestCase offers a suite of functions that we can use when writing our unit tests.

https://developer.apple.com/documentation/dispatch
https://developer.apple.com/documentation/dispatch
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit

Unit and integration testing with XCTest 275

So, what exactly is a unit test? Well, it’s a test (or in our case, just a function) that checks that another
function is doing what it’s supposed to be doing. Writing tests or functions using XCTestCase
allows us to not only use the previously mentioned suite of helpers but also allows Xcode to visualize
and report on metrics such as test coverage.

With that, let’s get stuck into cooking up our first unit test! In the CocoaTouchTests.swift file,
you’ll see some override functions that have already been generated by Xcode. Just ignore these for
now; we’ll work on them as and when we need to.

How to do it...

Let’s start by creating the following function:

func testThatRepoIsNotNil() {
     XCTAssertNotNil(viewControllerUnderTest?.repos)
}

So, let’s go through this one bit at a time. We’ll start with the testThatRepoIsNotNil function. The
common practice when naming a unit test is for the name to be as descriptive as possible. Depending
on your coding standard, you can choose to either camel case these or snake case them (I much prefer
camel case), but when writing tests with Xcode, you always have to prefix these tests with test.

So, what are we testing? Here, we’re checking that our repos array is not nil.

Looking back at our ReposTableViewController, you’ll remember that we instantiated our
repo model where the variable was declared, so this is a great test to start with. Let’s say someone
tries to change this to an optional, like this:

internal var repos: [Repo]?

If this happens, the code in our CocoaTouch app will compile, but the test will fail.

Let’s take another look at our test. Note that the function we’re calling to check our repo model is
viewControllerUnderTest. This is how we access our RepoTableViewContoller. We
can achieve this by adding the following class-level variable to our file:

var viewControllerUnderTest: ReposTableViewController?

Now, we need to instantiate this. Add the following override method from XCTestCase to your class:

override func setUp() {
     viewControllerUnderTest = ReposTableViewController()
}

Building iOS Apps with UIKit276

When running your unit test for this particular class, setUp() will run before any of your test cases
run, allowing you to prep anything you may need, such as instantiating a class. Once the tests are
complete and you want to free anything up or close anything down, you can simply do this with the
tearDown() function.

This was and is a very basic test, but the main purpose here was not necessarily to look at testing
practice, but at how we’d do it in Swift. However, before we go any further, let’s take a look at the
Assert options that are available to us.

Previously, we used XCTAssertNotNil, which worked perfectly for our scenario. However, the
following options are also available:

•	 XCTAssert

•	 XCTAssertEqual

•	 XCTAssertTrue

•	 XCTAssertGreaterThan

•	 XCTAssertGreaterThanOrEqual

•	 XCTAssertLessThan

•	 XCTAssertLessThanOrEqual

•	 XCTAssertNil

These are just a handful of the common ones and they are pretty self-explanatory – an added bonus
is that each one has an optional message parameter, which allows you to add a custom string. This
allows you to be more specific about the assertion that took place (this is ideal for reporting in a
CI/CD world).

Now that we understand the basics of how to write tests in Swift, we need to learn how to run them.
There are two ways we can achieve this:

•	 First, we can run all the tests in our class in one go. We can do this by simply clicking on the
diamond to the left of the class’s declaration:

Figure 7.16 – Class test case

•	 If we want to run tests individually, then we can simply select the icon next to our individual
test case, like this:

Figure 7.17 – Method test case

Unit and integration testing with XCTest 277

If everything goes to plan and our tests pass, we’ll see the icon turn green:

Figure 7.18 – Method passed test case

However, if one or more of the tests in our class fail, we’ll see the icon turn red:

Figure 7.19 – Method failed test case

Alternatively, the CMD + U keyboard shortcut will also get Xcode to run any tests associated with the
main project. Remember, only functions that start with test will be treated as a test case (excluding
the class name), so feel free to add a private function in your test case should you need to.

Next, let’s take a look at how we would test networking logic in Swift, using mock data to help us out:

1.	 We’ll start by creating the following test function:

func testThatFetchRepoParsesSuccessfulData() { }

2.	 Let’s start by figuring out how we are going to call this. Once again, we’ll take advantage of our
viewControllerUnderTest variable:

func testThatFetchRepoParsesSuccessfulData() {
       viewControllerUnderTest?.fetchRepos(forUsername: "",
completionHandler: { (response) in
          print("\(response)")
         })
}

This works as expected, but unfortunately, it’s not that simple; this will simply call the API just
like our app would. If we were to add any XCAssert instances inside our code, they wouldn’t
be executed as our test and function would have finished and been torn down before the API
had a chance to respond.

3.	 To do this, we need to mock some objects in our viewControllerUnderTest, starting
with URLSession and URLSessionDataTask. So, why do we need to mock these two?
Let’s start by taking a look at where we use them in our CocoaTouch app:

let task = session.dataTask(with: request) { (data, response,
error) in

Here, we are using URLSession and one of its functions, URLSessionDataTask,
by mocking URLSession. We’re creating our own local session here that we can then
use to call our MockURLSessionDataTask. So, the real question here is, what is our

Building iOS Apps with UIKit278

MockURLSessionDataTask doing? We’re using this to pass in some mock data – data
that we should expect from the API – and then running this through our logic. This guarantees
the integrity of our tests every time!

4.	 We could create the following input in our own files, but for now, we’ll just append them to the
bottom of our CocoaTouchTests.swift file. First, let’s look at our MockURLSession:

class MockURLSession: URLSession {
     override func dataTask(with request: URLRequest,
completionHandler: @escaping (Data?, URLResponse?, Error?) ->
Void) -> URLSessionDataTask {
          return MockURLSessionDataTask(
completionHandler: completionHandler, request: request)
     }
}

The preceding function is pretty self-explanatory – we simply override the dataTask()
function with the following MockURLSessionDataTask:

class MockURLSessionDataTask: URLSessionDataTask {
     var completionHandler: (Data?, URLResponse?, Error?) ->
Void
     var request: URLRequest
     init(completionHandler: @escaping (Data?, URLResponse?,
Error?) -> Void, request: URLRequest) {
          self.completionHandler = completionHandler
          self.request = request
          super.init()
     }

     var calledResume = false
     override func resume() {
          calledResume = true
     }
}

At first glance, this looks a little complex, but all we are really doing here is adding our own
completionHandler. T﻿his will allow it to be called synchronously from our test (stopping
our test from running away from us).

Let’s put this all together and head back over to our new test:

1.	 Let’s start by setting our MockURLSession for our viewControllerUnderTest. This
is nice and simple. Now, line by line, add the following:

func testThatFetchRepoParsesSuccessfulData() {
     viewControllerUnderTest?.session = MockURLSession()
     // ...
}

Unit and integration testing with XCTest 279

2.	 Let’s start by adding in our main responseObject. This is what we are going to perform
our XCAssert instances against. Declare this as an optional variable:

var responseObject: FetchReposResult?

3.	 Now, we can call our function, much like we tried to earlier in this section. However, this time,
we’ll assign the result to a variable and cast this as a MockURLSessionDataTask instance:

let result = viewControllerUnderTest?.fetchRepos(
forUsername: "", completionHandler: { (response) in
     responseObject = response
}) as? MockURLSessionDataTask

4.	 Remember that we can pass in anything we want to the userName variable as we’re not going to be
calling the API. Now, let’s fire the completion handler we created and force through our mockData:

result?.completionHandler(mockData, nil, nil)

I’ve highlighted the mockData variable in the preceding code as we’ll need to add this to the
JSON response we want to test against. You can get this by simply visiting the GitHub URL
and copying this into a new, empty file in the project. I did this for my username and created
a file called mock_Data.json:

Figure 7.20 – Adding an empty file

Remember to select the CocoaTouch target when you’re saving the file to disk; otherwise,
the following steps won’t work.

Building iOS Apps with UIKit280

5.	 Now, create a computed property in our Test class that simply reads in the file and spits out
the Data() object:

var mockData: Data {
     if let path = Bundle.main.path(forResource: "mock_Data",
ofType: "json"),
        let contents = FileManager.default.contents(atPath:
path) {
          return contents
     }
     return Data()
}

6.	 At this point, we can successfully pass our mock data through our fetchRepos function
without the need to call the API. All we need to do now is write some asserts:

switch responseObject {
case .success(let repos):
     // Our test data had 3 repos, lets check that parsed okay
     XCTAssertEqual(repos.count, 9)
     // We know the first repo has a specific name... let's
check that
     XCTAssertEqual(repos.first?.name, "aerogear-ios-oauth2")
     default:
          // Anything other than success is a failure
          XCTFail()
}

What you test for here is really up to you – it’s all based on the test cases you choose. Sometimes,
thinking about what to test when you’ve already written a function can be a hard task. As a developer,
it is easy for you to get too close to the project. This is where test-driven development (TDD) comes
in, a methodology for writing tests before writing any code at all. Let’s take a look at this and what
we can achieve with it.

How it works...

Testing networking logic can be troublesome. I find that questions always arise, such as, what should
you test? What exactly is being tested? However, if you can get your head around these questions, then
you’re well on your way to understanding the core fundamentals of unit testing.

Let’s try and break this down. The logic we want to test is our fetchRepos() function. This is
easy – we just call it with a repository username that we know and write some XCAssert instances
against the list of repositories that come back.

Unit and integration testing with XCTest 281

While that will work for now, what happens when the user removes a repository? Your test will fail.
This isn’t good because your logic is not actually flawed – it’s just the data that is wrong, much like if
the API decided to return some malformed JSON due to an internal server error. This isn’t your code’s
fault – it’s the API’s fault, and it’s the API’s job to make sure that it works.

All you want to do is check that if the server gives you a specific response, with a specific piece of data,
your logic does what it says it should do. So, how can we guarantee the integrity of the data coming
back from an API? We can’t – that’s why we mock up the data ourselves and, in turn, don’t actually
call the service at all.

There’s more...

TDD is a methodology that includes writing your unit test first, before actually writing your desired
function. Some believe this is the only way to write code, while others say it should be used only when
necessary. For the record, I prefer the latter, but we’re not here to get into the theory – we’re here to
learn how to achieve this in Swift using XCTest.

Going back to our CocoaTouch app, let’s say we’d like to write a function that validates UITextField
for whitespaces. Perform the following steps to achieve this:

1.	 We’ll start by writing out a stub function, which will look something like this:

func isUserInputValid(withText text: String) -> Bool {
     return false
}

Normally, here, I would litter my function with comments about what I’d like to achieve, but
for TDD, we’re going to do this the other way around.

2.	 Back inside the CocoaTouchTests.swift file, add the following test:

func testThatTextInputValidatesWithSingleWhitespace() {
}

Again, taking the name of our test as a literal description, we’re going to check that our function
correctly detects whitespaces in the middle of a String() variable.

3.	 So, let’s write a test against the current function:

func testThatTextInputValidatesWithSingleWhitespaces() {
     let result = viewControllerUnderTest?.
isUserInputValid(withText: "multiple white spaces")
     XCTAssertFalse(result!)
}

4.	 With that, we’re happy we’ve asserted everything we set out to do in our test cases. Now, we
can go ahead and run our test.

Building iOS Apps with UIKit282

As expected, our test will fail, which is obvious for two reasons. First, we didn’t really write up our
function, and second, we hardcoded the return type as false.

We actually hardcoded the return type as false on purpose, because the TDD methodology is done
in three stages:

1.	 Fail test: Done, we did that.

2.	 Pass test: Can be as messy as you like.

3.	 Refactor code: We can do this with the utmost confidence.

The idea is to write your unit test to cover all the scenarios and asserts that may be required for that
test case and make it fail (like we did).

With the foundations set up, we can now confidently move over to our function and code away, safe
in the knowledge that we’ll be able to run our test to check whether our function is broken or not:

func isUserInputValid(withText text: String) -> Bool {
     return !text.contains(" ")
}

This is nothing special, but for the purposes of this section, it doesn’t need to be. TDD with Swift
doesn’t have to be daunting. After all, it’s just a methodology that works perfectly well with XCTest.

See also

You can find more information about unit testing at https://developer.apple.com/
documentation/xctest.

UI testing with XCUITest
UI testing has been around for a while. In theory, it’s done every day by anyone who is using, testing,
or checking an app, but in terms of automation, it’s had its fair share of critics.

However, with Swift and XCTest, UI testing has never been easier, and the beauty of this approach is
that it also has an amazing hidden benefit.

Getting ready

Unlike unit testing, when we are testing against a function, piece of logic, or algorithm, UI tests are
exactly what they say on the tin. They are a way for us to test the UI and UX of the app – things that
might not necessarily have been generated programmatically.

Head on over to the CocoaTouchUITests.swift file that was automatically generated when
we created our project. Again, much like the unit tests, you’ll notice some placeholder functions in
there. We’ll start by taking a look at one called testExample().

https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest

UI testing with XCUITest 283

How to do it...

With what we mentioned in the Getting ready section in mind, let’s take a look at our app and see what
we would like to test. The first thing that comes to my mind is the search bar:

Figure 7.21 – Search bar selected

Now that we’ve made it mandatory to populate this in order for our app to work, we want to make
sure it is here all the time, so let’s write a UI test for this:

func testExample() throws {
     // UI tests must launch the application that they test.
     let      app = XCUIApplication()
     app.launch()
}

Building iOS Apps with UIKit284

As the comment correctly states, in order for the tests to be successful, the app needs to be launched,
which is taken care of by the launch() function. However, once our app has been launched, how
do we tell it to check for a UITextField instance and, more importantly, a specific one (in the
future, we could have multiple instances on our screen)?

To do this, we must start with the basics:

1.	 I’ve edited the name of the function to make it more applicable to what we are testing here. As
you can see from the following highlighted code, we’ve told our test to select the textFields
element and tap it:

func testThatUsernameSearchBarIsAvailable() throws {
     let app = XCUIApplication()
     app.launch()
     app.textFields.element.tap()
}

2.	 Go ahead and run the test by clicking on the diamond to the left to watch your app come to
life in the simulator. If you’re quick enough, you’ll see the cursor enter the text box just before
the app closes.

Great work! The test passed, which means you’ve written your first UI test.

Regarding our previous test, we weren’t specific about the element being identified. For now, this is
okay, but building a much bigger and more complex app may require that you test certain aspects of
specific elements. Let’s take a look at how we could achieve this:

1.	 One way would be to set an accessibility identifier for our UITextField – a specific identifier
that’s required for accessibility purposes that, in turn, will allow our UI test to identify the
control we want to test.

2.	 Back over in our RepoTableViewController.swift file, create an IBOutlet instance
for the UITextField object in question and add the following code, remembering to hook
up the outlet to your ViewController:

@IBOutlet weak var usernameTextField: UITextField! {
     didSet {
          usernameTextField.accessibilityIdentifier = "input.
textfield.username"
     }
}

3.	 With that in place, comment out or replace our generic UTextField tap test with the following:

app.textFields.element(matching: .textField, identifier: "input.
textfield.username").tap()

UI testing with XCUITest 285

4.	 Now, run your test and watch it pass. Great stuff!

Notice that we are identifying a textField variable and then matching a control type from
textField. This approach will work wonders when we’re testing for nested components
in specific views of your app. For example, you might want to search and match for a specific
UIButton instance that you know is embedded within a specific UIScrollView instance:

app.scrollViews.element(matching: .button, identifier: "action.
button.stopscrolling").tap()

5.	 With that done, let’s take our test a little further. Notice the .tap() function we’re calling at
the end of our element identification. There are plenty more options to choose from, but we’ll
start by creating a reference of element by capturing it, in its own variable:

let textField = app.textFields.element(matching: .textField,
identifier: "input.textfield.username")

6.	 Notice that we’ve removed the .tap() function. Now, we can simply call this and any other
available function via our textField variable:

textField.tap()
textField.typeText("MrChrisBarker")

7.	 Run this to see it in action for yourself. Now, what if we go a little further? Add the following
line and run the code once more:

app.keyboards.buttons["return"].tap()

Hopefully, at this point, you can see where we are going. One thing to bear in mind is that,
since we are not mocking up data here, we’re making a live, asynchronous API call, which,
depending on your connection speed or the API, could vary from test to test.

8.	 To check the results, we need our UI test to wait for a specific element to come into view. By
design, we know that we are expecting a UITableView instance with populated cells, so let’s
write our test based on that:

let tableView = app.tables.staticTexts["XcodeValidateJson"]
XCTAssertTrue(tableView.waitForExistence(timeout: 5))

Line 1 of the preceding code should now be all but familiar to us – we’re building an element
based on cells within a UITableView instance (we’re not being specific at this time) to look
for a specific cell with a label of XcodeValidateJson.

Then, we’re using an XCAssert instance against this element. Allow for a timeout of five
seconds for this to appear. If it appears beforehand, the test will pass; if not, it will fail.

Building iOS Apps with UIKit286

There’s more...

So far, we’ve seen how functions such as .tap() and .typeText() can be used when we’re
interacting with our app. However, these are not standard functions that we may use for UIButton
and UITextField. When we’re identifying our controls, the return type we get back is that of
an XCUIElement()type.

There are more options available that we can use to enhance our UI tests, thus allowing for an intricate
yet worthy automated test. Let’s take a look at some of the additional options available to us:

•	 tap()

•	 doubleTap()

•	 press()

•	 twoFingerTap()

•	 swipeUp()

•	 swipeDown()

•	 swipeLeft()

•	 swipeRight()

•	 pinch()

•	 rotate()

Each comes with additional parameters that allow you to be specific and cover all the aspects of your
user experience in the app (for example, press() has a duration parameter).

At the beginning of this section, I mentioned that UI tests come with a great additional benefit, and
this is something we have seen already: accessibility. Accessibility is an important factor when building
mobile apps, and Apple gives us the best possible tools to do this with Xcode and the Swift programming
languages. However, from a theoretical perspective, if you take the time to build our accessibility
into your app, you’re indirectly making it much easier to build and shape the UI test around these
identifiers – it will almost do a good 50% of the work for you – while including an amazing feature.

Alternatively, writing a good UI test can lead to improved accessibility in your app, making it really
easy to have the one complement the other when building your app.

See also

You can find more information about XCUITest at https://developer.apple.com/
documentation/xctest/xcuielement.

https://developer.apple.com/documentation/xctest/xcuielement
https://developer.apple.com/documentation/xctest/xcuielement

8
Building iOS Apps with SwiftUI

At the Apple Worldwide Developers Conference (WWDC) in 2019, Apple took a lot of us by surprise
with the announcement of SwiftUI, a brand-new UI framework written from the ground up, entirely
in Swift.

Making use of the declarative programming paradigm, SwiftUI not only offers a powerful way to
programmatically create and design your UI but a functional and logical approach too.

Alongside many other announcements at WWDC 2019, Apple also announced its very own entry
into the reactive programming stream with a new framework called Combine.

Combine replaces the traditional delegate pattern most of us will be accustomed to in iOS and macOS
development. With SwiftUI’s changes to the dynamics of how UI patterns are written programmatically,
Combine is a welcome addition alongside the SwiftUI framework.

In this chapter, we’ll take a tour of the inner workings of SwiftUI and how to build our very own app—
alongside this, we’ll integrate the power of Combine to give us a truly unique and reactive workflow.
(We’ll dive even deeper into Combine in Chapter 9, Getting to Grips with Combine.)

In this chapter, we will cover the following recipes:

•	 Declarative syntax

•	 Function builders, property wrappers, and opaque return types

•	 Building simple views in SwiftUI

•	 Combine and data flow in SwiftUI

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Swift-Cookbook-Third-Edition/tree/main/Chapter%208.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%208
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%208

Building iOS Apps with SwiftUI288

Declarative syntax
With the introduction of SwiftUI comes a more modern coding paradigm called declarative syntax.
In this section, we’ll take a look at what exactly declarative syntax is and how it compares to the style
of syntax we might be used to seeing already.

Getting ready

For this section, you’ll need the latest version of Xcode available from the Mac App Store.

How to do it…

1.	 Open Xcode and select File | New | Playground, then select Blank in order to open a new
playground canvas to work from.

2.	 Once that’s open, add in the following syntax:

import PlaygroundSupport
import SwiftUI

We’ve seen the first import statement before, so it should be familiar. The next one is for
SwiftUI—pretty self-explanatory as to why we need this.

3.	 Now, let’s create a view in SwiftUI by adding the following code:

struct MyView: View {
     var body: some View {
           VStack {
               Text("Swift Cookbook")
          }
     }
}

All SwiftUI views are built in a struct that conforms to the View type—this then houses another
struct, which looks a bit like a computed property, called body, which in turn conforms to
some View. Inside this property—or “function builder,” as it’s known (which we’ll touch on
later in this chapter)—we have certain elements that start to make up our UI.

There is VStack or vertical stack, which will wrap all enclosing views “vertically” within itself.
VStack is, again, a view.

Inside here, we have a Text() view where we set our text to be displayed.

4.	 If we add the following to our playground, we’ll be able to see SwiftUI in action:

PlaygroundPage.current.setLiveView(MyView())

However, where does the declarative syntax come into all this? Well, it already has—you’ve written it,
right there in your struct. Let’s dig a little deeper into how declarative syntax works.

Declarative syntax 289

How it works...

In SwiftUI everything is made up of views—from the main container that is presented to the app’s
window, to text, a button, or even a toggle.

Thinking back to how UIKit works, this theory isn’t too dissimilar—most objects are a subclass
of UIView().

The only fundamental difference is that with SwiftUI, the layout and construction of all this is much
more visible; this is the declarative syntax coming into play. The best way to think about declarative
syntax is in a functional and logical way.

I want to vertically align items in my view:

VStack {
     //...
}

I then want to add a Text box:

Text("Swift Cookbook")

Then, let’s add a button:

Button(action: {
     print("Set Action Here...")
}, label: {
     Text("I'm going to perform an action")
})

Even the construction of the button is declarative itself: set an action; set a label. Everything is
just... functional.

Another way to think of this would be similar to how we would work through a food recipe:

1.	 Chop onions.

2.	 Fry onions.

3.	 Add seasoning.

4.	 And so on...

With our more traditional style of programming (or imperative programming, as it’s known), you
might perform things a little differently and a little less logically:

1.	 Get seasoning.

2.	 Get onion.

Building iOS Apps with SwiftUI290

3.	 Peel onion.

4.	 Chop onion.

5.	 Heat pan.

6.	 And so on...

While with declarative syntax all the preceding steps still need to exist to make it work, the framework
that it is written in does a lot of the work for you—we just simply tell it what to do.

There’s more...

Declarative syntax has been around for a while now; you may have used it before without even realizing
it. Let’s take a look at the following Structured Query Language (SQL) syntax:

SELECT column1, column2, ... FROM table_name WHERE condition;

Notice anything familiar? That’s right: declarative syntax right there... give me column1 and column2
from a particular table where this condition is met.

Most recently, declarative syntax has been making its way into even more UI frameworks, such as
Google’s Flutter and, most recently, Android’s new Jetpack Compose, both of which use a declarative
syntax style to allow developers and designers to build a UI.

We’ve mentioned a few times already that declarative syntax gives us a much more functional and
logical approach to programming. There are paradigms that sit beneath the declarative paradigm as
a whole. SQL, for example, sits within Domain-Specific Language (DSL), along with HTML and
other markup languages.

See also

•	 Android Jetpack Compose: https://developer.android.com/jetpack/compose

•	 Google’s Flutter: https://flutter.dev/

Function builders, property wrappers, and opaque return
types
SwiftUI certainly brings a lot to the table, especially as it’s been built from the ground up using Swift
at its core. This itself has a plethora of benefits, which include making use of some of the features we
are about to cover in this section.

Getting ready

For this section, you’ll need the latest version of Xcode available from the Mac App Store.

https://developer.android.com/jetpack/compose
https://flutter.dev/

Function builders, property wrappers, and opaque return types 291

How to do it…

1.	 Continuing with our existing playground project, let’s take another look at how things stack
up. We’ll start by taking another look at VStack:

VStack {
     Text("Swift Cookbook")
     Button(action: {
          print("Set Action Here...")
     }, label: {
          Text("I'm going to perform an action")
     })
}

Here is a block of code, which in SwiftUI terms is a view to be displayed. The view is a vertical
stack—think UITableView, but at the same time don’t think UITableView, as it’s bad
practice to try to compare SwiftUI to UIKit.

All the code sitting within VStack will be displayed vertically and then presented back to the
main view, but where is the logic that adds our Text() and Button() views to VStack?
There’s no item or row for index (see, it’s bad to compare this to UITableView); there’s no
.add() or .append() function that you would see when building an array. Everything just
sits inside what are called function builders.

2.	 Let’s add another in for good measure:

VStack {
     Text("Swift Cookbook")
     Button(action: {
          print("Set Action Here...")
     }, label: {
          Text("I'm going to perform an action")
     })
     HStack {
          Text("By Keith, Chris, & Danny")
          Image(systemName: "book")
     }
}

In the preceding code, we’ve added HStack, which (yep, you guessed it) gives us a horizontal stack
of views—another function builder like before, this time housing a Text() and an Image() view.

Notice how we’ve added our HStack function builder inside the existing VStack? This is
like we said before: our stacks are just views, so the top-level VStack just treats it like that and
HStack does all the work of arranging its Text() and Image() views.

But what is being returned here? When building views in functions programmatically, you might
expect to see the return keyword, with the return type specific to the object type being returned.

Building iOS Apps with SwiftUI292

3.	 However, we can harness the power of opaque return types. Let’s look back at the body of our
SwiftUI view:

struct MyView: View {
     var body: some View {
          //...
     }
}

Notice the some View return type. This is an opaque return type and allows SwiftUI to return
any type that conforms to the View protocol, such as Text, Button, Image, and so on.
Without this, SwiftUI would not be as versatile in terms of allowing us to build up a view, and
our view builder would simply not exist.

But the beauty of opaque return types is that they are not SwiftUI-specific; they are just a natural
evolution of the Swift language, again demonstrating how much SwiftUI has been built from
the core Swift programming language.

Another thing we see here is the omission of the return keyword. Our SwiftUI code can interpret
a final return type to be passed back up the View hierarchy. But what about HStack and
VStack? Well, as these are function builders, they are not returned, as such; it is more that
they are added to the stack, which then, in turn, is passed back up.

However, there is always the possibility that you may need HStack sitting alongside VStack, like so:
VStack {
     //...
}
HStack {
     Text("I'm sitting underneath a HStack")
}

At this point, the compiler will need a little help. Unfortunately, we can’t just add in a return
keyword as we want both to be returned, so we could add these into another stack—but as
we don’t really need one, that would be unnecessary, so we simply wrap these in a Group()
view instead:

Group {
     VStack {
          //...
     }
     HStack {
          Text("I'm sitting underneath a HStack")
     }
}

A Group() view is another view that can then be passed back up as some View to
our body—nice!

Function builders, property wrappers, and opaque return types 293

4.	 We’re certainly getting all the ingredients together in order to make a start with SwiftUI, but
before we get stuck in, let’s take a look at another feature introduced in SwiftUI, again from
our ever-evolving Swift programming language.

Property wrappers in SwiftUI are one of the features that really help make it shine and are used for a
wide variety of things. The main purpose that each one holds is to reduce the amount of maintenance
required for your specific view. Let’s take a look at some of the more common ones you might use:

	� @State: @State allows SwiftUI to modify specific properties of specific views without the
need to call a specific function to do so. For example, make the following changes to your code:

struct MyView: View {
    @State var count: Int = 0
    
    var body: some View {
        Group {
            VStack {
                Text("Swift Cookbook")
                
                Button(action: {
                    count += 1
                }, label: {
                    if count > 0 {
                        Text("Performed \(count) times")
                    } else {
                        Text("I'm going to perform an action")
                    }
                })
                
                HStack {
                    Text("By Keith, Chris, & Danny")
                    Image(systemName: "book")
                }
            }
            
            HStack {
                Text("I'm sitting underneath a HStack")
            }
        }
    }
}

We’ve added a variable called count and have given this the @State property wrapper, and
we updated our button click to increase the integer by 1. Next, we added some logic based on
the value of count.

Building iOS Apps with SwiftUI294

By changing the value of count, we have bound our property that is being used within SwiftUI
to the value and any changes that are made, thus invalidating the SwiftUI layout and rebuilding
our view using the new value.

Go ahead—run this in the playground and try it out for yourself.

	� @Binding: @Binding is another well-used property wrapper specifically used in
conjunction with passing values to state properties that may live in another view. Let’s take
a look at how we might do this, starting by separating out some code and creating another
SwiftUI view. We can do this just underneath the current MyView:

struct ResultView: View {
     @Binding var count: Int
     var body: some View {
          Text("Performed \(count) times")
     }
}

Here, we’re simply creating a SwiftUI view that returns a Text view, but this is a great way to
see how easy it is to separate out specific view logic that you might want to work on separately
(or make reusable).

Notice here that we also used the count variable, although this time with the @Binding
wrapper. This is because we won’t be controlling the value of count from within this view;
this will be done externally back in MyView:

struct MyView: View {
      @State var count: Int = 0
      var body: some View {
            Group {
                  VStack {
                        Text("Swift Cookbook")
                        ResultView(count: $count)
                        Button(action: {
                              count += 1
                        }, label: {
                              Text("Perform Action")
                        })
                        HStack {
                              Text(«By Keith, Chris, & Danny»)
                              Image(systemName: «book»)
                        }
                  }
                  HStack {
                       Text("I'm sitting underneath a HStack")
                  }

Function builders, property wrappers, and opaque return types 295

            }
      }
}

In the preceding highlighted code, notice we still have our @State variable, and our Button
action is still updating this value on each press. We’ve also added in a new ResultView,
passing in the @State variable and binding this to our variable in ResultView, thus forcing
a change to that view every time count is updated. Go ahead and try it for yourself.

There’s more...

We’ve covered some of the property wrappers that you are more than likely to be exposed to with
SwiftUI from the outset, but there are plenty more where they came from—some of which we’ll cover
later on in this chapter, specifically when it comes to working with the Combine framework. However,
here is a run-through of some of the others and what they have to offer:

•	 @EnvironmentObject: Think of this as a global object—sometimes you might want to keep
track of certain things throughout your app that you might not necessarily need or feel the need
to pass through to every view. However, it’s important to know that EnvironmentObject
isn’t a single source of truth; it’s data—it’s merely referencing it from the source, and should the
source change, EnvironmentObject will trigger a state change (which is what we want).

Here’s an example of how we could use this to create a class we want to observe, conforming
to ObservableObject:

class BookStatus: ObservableObject {
     @Published var released = true
     @Published var title = ""
     @Published var authors = [""]
}

Then, reference it from anywhere in our SwiftUI project, like this:
@EnvironmentObject var bookStatus: BookStatus

•	 @AppStorage: Another great and certainly convenient property wrapper is @AppStorage,
used as a way to access data stored within UserDefaults. We can incorporate this straight
into our SwiftUI views, without the need for additional logic or functions. Let’s take a look at
how we would do this:

@AppStorage("book.title")
var title: String = "Book Title"

Notice here that we have a default value should there be no data already persisted. If we want
to write to this, we simply assign the property a value:

title = "Swift Cookbook"

Building iOS Apps with SwiftUI296

Go ahead and try this in your playground. If you get stuck, have a look at the GitHub resource
to see how I did it.

Due to the architecture of SwiftUI, there is—and will be—an ever-growing list of available property
wrappers. We’ll cover some more later on in this chapter, but here are some others to be aware of:

•	 @GestureState: Tracks the current gesture that is being performed

•	 @FetchRequest: Performs a fetch for Core Data entities

See also

•	 States: https://developer.apple.com/documentation/swiftui/state

•	 Bindings: https://developer.apple.com/documentation/swiftui/binding

Building simple views in SwiftUI
We’ve covered some of the fundamentals of how SwiftUI is built up from the Swift programming
language, but it’s time now to get into how we build an actual app in SwiftUI.

In this section, we’ll take everything we’ve learned so far and apply it, in order for us to build a list
app similar to the one we created previously.

Getting ready

For this section, you’ll need the latest version of Xcode from the Mac App Store.

How to do it...

1.	 Let’s get going. First, we’ll create a brand new project—in Xcode, click on File | New | Project.
Then, select Single View App and make sure you’ve selected SwiftUI for the Interface style,
just like I’ve done here:

https://developer.apple.com/documentation/swiftui/state
https://developer.apple.com/documentation/swiftui/binding

Building simple views in SwiftUI 297

Figure 8.1 – Creating a new project

2.	 Click Next and select a location on your disk. Once that is done, the familiar sight of Xcode should
appear; however, you may notice something new. On the right-hand side, you’ll see the Live
Preview screen - with the simulator. Go ahead and click Resume—you should see the following:

Figure 8.2 – Xcode and Live Window screen

Building iOS Apps with SwiftUI298

Here, we’ve got a generated preview of our boilerplate SwiftUI code. Notice our ContentView()
struct, just as we expect with its body. Now, look at the struct below it:

struct ContentView_Previews: PreviewProvider {
     static var previews: some View {
          ContentView()
     }
}

This is our PreviewProvider struct, allowing us to test out our SwiftUI views at design
time, without the need to keep rerunning the simulator and rebuilding our application—neat!

Now, for our initial list, we’re going to need some mock data.

3.	 Create the following struct (this can be in a new file if you want):

struct Task: Identifiable {
     var description: String
     var category: String
     var id = UUID()
}

Notice that we made our struct conform to Identifiable and be given a unique ID—this
is required by SwiftUI for anything that we are going to iterate around.

4.	 Next, let’s create a little helper function for some mock data:

struct MockHelper {
     static func getTasks() -> [Task] {
          var tasks = [Task]()
          tasks.append(Task(description: "Get Eggs", category:
"Shopping"))
          tasks.append(Task(description: "Get Milk", category:
"Shopping"))
          tasks.append(Task(description: "Go for a run",
category: "Health"))
          return tasks
     }
}

This mock data will come in handy in SwiftUI in more than one way, but we’ll get to that shortly.
Let’s hook this up to our app.

5.	 Back over to our ContentView, replace the Hello World text view with the following:

List(MockHelper.getTasks()) { task in
     Text(task.description)
}

Building simple views in SwiftUI 299

Notice something about our List() view? That’s right—another function builder accepts
an argument of an array of items, where the items conform to Identifiable. A variable
is given back to us in the closure, representing each one of these items so that we can then use
them inside our list builder as we see fit.

Here, we are just adding the description to a text view for now. If not already showing in the live
preview, click Resume (sometimes this is needed in Xcode), and you should now see the following:

Figure 8.3 – Preview screen

Building iOS Apps with SwiftUI300

6.	 Now, run this in the simulator, and you should see the exact same thing—great job!

7.	 It’s time for a little refactoring now, so make the following highlighted changes to
the ContentView:

var tasks = [Task]()
var body: some View {
     List(tasks) { task in
          Text(task.description)
     }
}

Here, we’re removing our call to our mock data helper as, for production code, we shouldn’t
be calling this in here. With this change, let’s head on over to PreviewProvider and make
the following highlighted changes there:

struct ContentView_Previews: PreviewProvider {
     static var previews: some View {
          ContentView(tasks: MockHelper.getTasks())
     }
}

As our ContentView struct now has a non-optional tasks variable, it requires us to pass
some data in; here, we’ll pass in our MockHelper function.

8.	 If not already showing, go ahead and resume the live preview. All being well, everything
should be working as expected. However, let’s see what happens when we try to run this in the
simulator—that’s right: no data.

If you take a closer look at the change we just made, you’ll see why we’re now only injecting
our mock data into our ContentView via SwiftUI PreviewProvider, so that when our actual
app runs, our tasks array is empty.

But this is right, as we’ll be pulling our data from a network source in the next recipe. But for
now, by injecting the mock data via Preview Provider, we can continue to build our UI long
before we build in any networking functionality. So, let’s continue.

9.	 Remember from the previous section how we refactored our Result view? We’re going to do
the same again here for each row in our list view.

Building simple views in SwiftUI 301

Create a new SwiftUI file and call it ListRowView, then update the boilerplate code to look
like the following:

var description: String = ""
var category: String = ""
var body: some View {
     VStack {
          Text(description)
Text(category)
     }
}

10.	 From here, head back over to ContentView.swift and make the following changes to
the code:

var body: some View {
    List(tasks) { task in
        ListRowView(description: task.description, category:
task.category)
    }
}

As we did previously, we’re replacing our text view with the view we just created. Click Resume
to view the live preview and see for yourself.

11.	 Now, we know that’s working, and we want to work on the style of our ListRowView a little,
so let’s head back on over there now and start by updating the Preview Provider so that we
can work from there:

struct ListRowView_Previews: PreviewProvider {
     static var previews: some View {
          ListRowView(
               description: "Description Field",
               category: "Category Field")
     }
}

As you can see from the preceding highlighted code, we’ve added some mock data for use in
our live preview. If this is not already showing, click Resume and you should see the following:

Building iOS Apps with SwiftUI302

Figure 8.4 – Live preview screen with some mock data

12.	 It works but doesn’t look much like a list row, but that’s fine—we just need to tell the Preview
Provider what we intend to use it for:

List {
    ListRowView(description: "Description Field", category:
"Category Field")
}

It really is that simple. We just wrap it around a ListView and SwiftUI does the rest, and we
can now get to work on decorating our row.

Building simple views in SwiftUI 303

Back in the body of our ListRowView, make the following highlighted changes:
var body: some View {
     VStack(alignment: .leading) {
          Text(description)
          .font(.title)
          .padding(EdgeInsets(top: 0, leading: 0, bottom: 2,
trailing: 0))
          .foregroundColor(.blue)

          Text(category)
          .font(.title3)
          .foregroundColor(.blue)
     }
}

Here, we’ve added modifiers to our views. Modifiers allow us to decorate and style our views just
like we would with properties in UIKit, and each modifier is tied specifically to its type of view.

SwiftUI has gone a little further with some of the modifiers available, giving us a wide variety
of options. Let’s take the .font modifier, for example:

.font(.largeTitle) // A font with the large title text style.

.font(.title) // A font with the title text style.

.font(.title2) // Create a font for second level hierarchical
headings.
.font(.title3) // Create a font for third level hierarchical
headings.
.font(.headline) // A font with the headline text style.
.font(.subheadline) // A font with the subheadline text style.
.font(.footnote) // A font with the footnote text style.
.font(.caption) // A font with the caption text style.
.font(.caption2) // Create a font with the alternate caption
text style.

The preceding fonts are all available to use straight out of the box; however, if you still want to
specify your own font, you can do so by using the following:

public static func system(_ style: Font.TextStyle, design: Font.
Design = .default) -> Font

13.	 Let’s finish off the base of our app by adding in an image based on the category type:

HStack {
     VStack(alignment: .leading) {
          Text(description)
          .font(.title)
          .padding(EdgeInsets(top: 0, leading: 0, bottom: 2,
trailing: 0))

Building iOS Apps with SwiftUI304

          .foregroundColor(.blue)

          Text(category)
          .font(.title3)
          .foregroundColor(.blue)
     }

     Spacer()

     Image(systemName: "book")
     .foregroundColor(.blue)
     .padding()
}

Note how, in the preceding code, we’ve now introduced an HStack and wrapped this around
our current VStack, which allows us to add views outside of our original VStack and align
them horizontally, just like we’ve done with the image view.

The use of the Spacer() view in SwiftUI has pushed out our two horizontal views (VStack on
the left and Image on the right), so that they act as leading and trailing views to the parent view (the
body, in this case).

How it works...

The base of our app is now ready to hook up to an external data source, but first, let’s go over how modifiers
work and how we can create our very own. Either add the following code to your ListRowView.
swift file or create a new file (it’s up to you):

struct CategoryText: ViewModifier {
     func body(content: Content) -> some View {
          content
          .font(.title3)
          .foregroundColor(.blue)
     }
}

Here, we’ve created a struct called CategoryText that conforms to the ViewModifier protocol.
In here, there is a function called body for which we are setting the modifiers of .font and
.foregroundColor. These modifiers are available on anything that inherits from View.

Feel free to have a play around with some of the modifiers available. You could add the following and
really give the category label a little punch:

struct CategoryText: ViewModifier {
     func body(content: Content) -> some View {

Building simple views in SwiftUI 305

          content
          .font(.footnote)
          .foregroundColor(.blue)
          .padding(4)
          .overlay(
               RoundedRectangle(cornerRadius: 8)
               .stroke(Color.blue, lineWidth: 2)
          )
          .shadow(color: .grey, radius: 2, x: -1, y: -1)
     }
}

Let’s now add this to our text view:

Text(category)
.modifier(CategoryText())

We’re using .modifier in order to call our custom struct; this is good from a readability point
of view as it allows you to quickly identify anything that could potentially be custom as opposed to
anything that is a system API. However, if you are like me and want it to look just right, simply create
an extension of View:

extension View {
     func styleCategory() -> some View {
          self.modifier(CategoryText())
     }
}

Then, use it like this:

Text(category)
.styleCategory()

You might have noticed we glossed over assigning a specific image to a category. This was with good
reason, as this is a perfect opportunity for us to use SF Symbols within SwiftUI.

Also available for use with UIKit, SF Symbols works exceptionally well in SwiftUI, especially when
used with modifiers like the ones we’ve just been playing with.

SF Symbols, as the name suggests, is a library of symbols (not images). They are fonts and can be
treated just like fonts too, as seen in the following code:

Image(systemName: "book")
.font(.system(size: 32, weight: .regular))
.foregroundColor(.blue)
.padding()

Building iOS Apps with SwiftUI306

No need for stretching images or 2x or 3x image assets. SF Symbols will handle this just like having
your own vector right in the app, with the added benefit that it’s all included in the Swift API without
extra assets bulking up your app.

As the name of the symbol is just written in plain text, let’s write a little function that works out what
we need to display:

struct Helper {
     static func getCategoryIcon(category: String) -> String {
          switch category.lowercased() {
          case "shopping":
               return "bag"
          case "health":
               return "heart"
          default:
               return "info.circle"
          }
     }
}

In an ideal world, our categories would be enums with String values that we could cast to, but for
this demo, a basic string match will suffice. Now, replace the static text in the image constructor to
call this new static function:

Image(systemName: Helper.getCategoryIcon(category: category))

The only drawback is the following: is the image you want to use included in the library?

With iOS 14, Apple introduced a much wider range of SF Symbols. There’s even a Mac app you can
download that catalogs all these for you in a nice graphical UI (GUI).

There’s more...

We’ve touched on the Preview Provider a couple of times so far, but this handy little feature of SwiftUI
does have a couple more tricks up its sleeve.

By default, the device it will preview on will be that of the one currently selected in Xcode, but if you
want to change this, simply add the following:

struct ListRowView_Previews: PreviewProvider {
     static var previews: some View {
          List {
               ListRowView(
                    description: "Description Field",
                    category: "Category Field")
          }

Building simple views in SwiftUI 307

          .previewDeice(PreviewDevice(rawValue: "iPhone 12 Pro Max"))
          .previewDisplayName("iPhone 12 Pro Max")
     }
}

Let’s break the preceding code down:

•	 .previewDevice: This specifies the device you want to use—the raw value string matches
that of an internal enum for that specific device (basically the string name as you would see
in the simulator list)

•	 .previewDisplayName: This is a custom name given for that device, as shown in the
Live Preview window

The display name can come in handy for other reasons too, specifically if we have more than one
preview running:

struct ListRowView_Previews_MockData2: PreviewProvider {
     static var previews: some View {
          List {
               ListRowView(
                    description: "Very Long Description Field, Very
Long Description Field",
                    category: "Very Long Category Field, Very Long
Category Field")
          }
          .previewDevice(PreviewDevice(rawValue: "iPhone 12 Pro"))
          .previewDisplayName("iPhone 12 Pro - Data #2")
     }
}

As highlighted, we’ve created an additional preview to run in our Live Preview window, which in
turn passes in different data and tests on a different device.

With this, we could create mock data for every condition or style we wanted and have them previewing
on all manner of device types, allowing us to test right there without the need to launch each version
on a simulator.

SwiftUI is no doubt powerful and brings a more modern approach to building out our UI. However,
there are still a number of use cases where we may need to use components and such from UIKit.
Luckily for us, Apple has us ready to go with UIViewRepresentable, a protocol that we can use
to harness UIKit components and return them as SwiftUI views.

A good example would be UITextView(), currently not available in SwiftUI or any direct equivalent
(although the SwiftUI TextEditor component now does a lot of what we want, but is still not a
direct replacement as such).

Building iOS Apps with SwiftUI308

Create a new SwiftUI file and call it TextView, then start by pasting the following methods in one
by one:

struct TextView: UIViewRepresentable {
     @Binding var text: String
     func makeUIView(context: Context) -> UITextView {
          let textView = UITextView()
          return textView
     }
}

The UIViewRepresentable protocol requires us to conform to certain functions such as
makeUIView(), which is, in turn, responsible for instantiating the UIKit component we want to wrap.

Next, add the following:

struct TextView: UIViewRepresentable {
     // ...
     func updateUIView(_ uiView: UITextView, context: Context) {
          uiView.text = text
     }

     func makeCoordinator() -> Coordinator {
          Coordinator($text)
     }
     // ...
}

With updateUIView(), we set our UITextView instance with whatever we want. Here, we are
setting the text value from our variable.

Next, we’ll add the makeCoordinator() function, which returns a Coordinator instance,
padding in our @Binding text field. The best way to think about Coordinator is as a way of
handling the delegate methods we might use for our UIKit component. Add in the following, and
this should make more sense:

struct TextView: UIViewRepresentable {
     // ...
     class Coordinator: NSObject, UITextViewDelegate {
          var text: Binding<String>
          init(_ text: Binding<String>) {
               self.text = text
          }

          func textViewDidChange(_ textView: UITextView) {

Combine and data flow in SwiftUI 309

               self.text.wrappedValue = textView.text
          }
     }
}

See how our Coordinator instance conforms to UITextViewDelegate, and we have
textViewDidChange() in there. As our text variable being passed in is a Binding string,
changes made will reflect in the delegate method being called, just as they would in UIKit:

@State var textViewString = ""
TextView(text: $textViewString)

In order to call this, we would simply add this as we would any other SwiftUI view.

See also

•	 SF Symbols: https://developer.apple.com/design/human-interface-
guidelines/sf-symbols/overview/

•	 UIViewRepresentable: https://developer.apple.com/documentation/
swiftui/uiviewrepresentable

Combine and data flow in SwiftUI
For many years, the reactive programming stream has played a big part in development architecture
in terms of iOS and macOS. You may have heard of RxSwift and RxCocoa, a massive community
committed to the reactive stream that allows for asynchronous events to be processed.

If you are not familiar with the terminology of Rx or reactive programming, you may have seen the
use of Publishers, Subscribers, and Operators in your code base. If you have, then you’ve
most likely been subject to reactive programming at some point.

In this section, we are going to take a look at Apple’s offering for reactive programming, called Combine.
Introduced alongside SwiftUI at WWDC 2019, Combine is the perfect accompaniment for the new
layout and structure of SwiftUI (although not bound solely to SwiftUI). We’ll take a look at how we
can create a seamless flow of data from an online resource, right up to our UI layer.

Getting ready

For this section, you’ll need the latest version of Xcode from the Mac App Store and the project from
the previous section.

https://developer.apple.com/design/human-interface-guidelines/sf-symbols/overview/
https://developer.apple.com/design/human-interface-guidelines/sf-symbols/overview/
https://developer.apple.com/documentation/swiftui/uiviewrepresentable
https://developer.apple.com/documentation/swiftui/uiviewrepresentable

Building iOS Apps with SwiftUI310

How to do it...

1.	 First, we’ll start by updating our Task model to a class, by making the following highlighted changes:

class Task: Identifiable {
     var id = UUID()
     let response: TaskResponse

     init(taskResponse: TaskResponse) {
          self.response = taskResponse
     }

     var category: String {
          return response.category ?? ""
     }

     var description: String {
          return response.description ?? ""
     }
}

2.	 Here, we’ve converted our model to a class (more on that later), and have added a custom
initializer and a couple of computed properties too.

We’ve also added a variable of type TaskResponse, so let’s go ahead and create that now
in a new file:

struct TaskResponse: Codable {
     let category: String?
     let description: String?
}

3.	 Here, we have a basic codable response. Now, for a bit of boilerplate networking code, create a
new file called NetworkManager.swift, and add the following code into it:

class NetworkManager {
     static func loadData(url: URL, completion: @escaping
([TaskResponse]?) -> ()) {
          URLSession.shared.dataTask(with: url) { data,
response, error in
               guard let data = data, error == nil else {
                    completion(nil)
                    return
               }
               if let response = try? JSONDecoder().
decode([TaskResponse].self, from: data) {

Combine and data flow in SwiftUI 311

                    DispatchQueue.main.async {
                         completion(response)
                    }
               }
          }.resume()
     }
}

4.	 Here, we have a basic implementation of URLSession, which is being passed as a Uniform
Resource Locator (URL), parsing the JavaScript Object Notation (JSON) response into a
codable object (our TaskResponse model). The function we’ve created has a completion
handler that returns an array of our TaskResponse model, should the response and decoding
be successful.

Next, create a file called TaskViewModel, and add in the following code:
class TaskViewModel: ObservableObject {
     init() {
          getTasks()
     }

     @Published var tasks = [Task]()

     private func getTasks() {
          guard let url = URL(string: "https://raw.
githubusercontent.com/PacktPublishing/Swift-Cookbook-Third-
Edition/main/Chapter%208/TaskResponse.json") else {
               return
          }
          NetworkManager.loadData(url: url) {
taskResponse in
               if let taskResponse = taskResponse {
                    self.tasks = taskResponse.
map(Task.init)
               }
          }
     }
}

In the preceding code, I’ve highlighted some areas of interest. First is how we’ve conformed our
class to ObservableObject—this is required as our tasks variable has the @Published
wrapper and will be looking for changes as and when they occur.

Next is the local URL we’re passing into NetworkingManager—this is the address for a
JSON file hosted in this chapter’s repo.

Building iOS Apps with SwiftUI312

5.	 Now, head on back over to our ContentView.swift file and make the following
highlighted changes:

struct ContentView: View {
     @ObservedObject var model = TaskViewModel()
     var body: some View {
          List(model.tasks) { task in
               ListRowView(
                    description: task.description,
                    category: task.category)
          }
     }
}

We’ve now renamed our tasks variable to model, and this in turn has now created a new
TaskViewModel() instance.

6.	 As we’ve updated a few things here, the structure of how we inject our mock data will need
adjusting too, so make the following highlighted changes to our MockHelper function:

var task = [Task]()
task.append(Task(taskResponse: TaskResponse(category: "Get
Eggs", description: "Shopping")))
task.append(Task(taskResponse: TaskResponse(category: "Get
Milk", description: "Shopping")))
task.append(Task(taskResponse: TaskResponse(category: "Go for a
run", description: "Health")))

let taskViewModel = TaskViewModel()
taskViewModel.tasks = task
return taskViewModel

It’s time to see the magic happen. Launch the app, and if all’s going well, you should see something
like this:

Combine and data flow in SwiftUI 313

Figure 8.5 – Launching the app

Here is a simple yet exceptionally effective demonstration of how Combine can and should be used
within SwiftUI. Let’s take a look now at how all this actually works.

How it works...

Let’s start at ContentView and work our way back:

@ObservedObject var model = TaskViewModel()

Two things to note here—our model is that of @ObservedObject, meaning any changes made to
this model will result in an update being fired and thus forcing a refresh of our UI (just like we saw
with @State earlier).

Building iOS Apps with SwiftUI314

Next, we’re instantiating TaskViewModel() when ContentView is rendered. Let’s dive into
TaskViewModel and see why:

class TaskViewModel: ObservableObject {
     init() {
          getTasks()
     }
     @Published var tasks = [Task]()
     // ...
}

We already touched earlier on our class conforming to ObservableObject. This is what allows
us to use @ObservedObject when declaring this back over in ContentView (we’re creating a
data flow connection, so to speak).

Notice here that we’ve also added a call to our getTasks() function so that when we initialize the
class (back over in ContentView), we’ll kick off a networking request to get a list of tasks.

If we now have a quick look inside our getTasks() function, you’ll see that once we get a successful
response, we assign this to our @Published tasks variable:

NetworkManager.loadData(url: url) { tasksResponse in
     if let tasksResponse = tasksResponse {
          self.tasks = tasksResponse.map(Task.init)
     }
}

As soon as the variable is updated, our Observable object class lets anything listening know about
a change (@ObservedObject in ContentView, for example).

If you think back to how UITableView works, if there are any updates or changes to the data
source, we then have to call UITableView.reloadData() manually, and within our UI layer.

With this approach, everything has been handled the way it should be and is in the right place, passing
data changes from the source of truth up to the UI layer.

This is just a basic example of how Combine works, specifically in tandem with SwiftUI. In Chapter 9,
Getting to Grips with Combine, we will go deeper into how Combine works and even compare it to
the Delegate pattern!

See also

•	 Swift Combine: https://developer.apple.com/documentation/combine

https://developer.apple.com/documentation/combine

9
Getting to Grips with Combine

Reactive programming is a paradigm that involves designing systems that respond to changes in the
input data and automatically update their output. In reactive programming, changes to the data are
modeled as a stream of events, and operations are performed on these streams to produce new streams
of updated data. This allows developers to write more concise and maintainable code by abstracting
complex logic into simple operations on streams.

Combine is a reactive programming framework developed by Apple for use in iOS, iPadOS, and macOS
development. It provides a set of APIs for processing values over time as well as handling events and
data changes in a declarative and functional manner. Combine makes it easy to write reactive code
by providing a wide range of operators and publishers that can be used to manipulate streams of data.
It also provides a unified mechanism for handling errors and cancellations, making it easier to write
robust and reliable reactive code.

By the end of this chapter, you will have learned how to leverage Combine to build reactive apps that
read more declaratively and function more asynchronously.

In this chapter, we will cover the following recipes:

•	 Using Reactive Streams

•	 Understanding Observable Objects

•	 Understanding publishers and subscribers

•	 Combine versus Delegate pattern

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%209.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%209
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%209

Getting to Grips with Combine316

Using Reactive Streams
In this first recipe, we’re going to create a simple SwiftUI view to demonstrate a simple reactive flow.
Considering SwiftUI and Combine were released at the same time, it only makes sense to review
reactive programming using Apple’s first-party frameworks built specifically for it!

Getting ready

For all the recipes in this chapter, you’ll need the latest version of Xcode available from the Mac App Store.

How to do it...

With Xcode open, let’s get started:

1.	 Create a new project in Xcode. Go to File | New | Project | iOS App. Be sure to choose SwiftUI
for the interface.

2.	 First, create a view called FetchView that simply holds a Binding property and a body
that displays that property’s value:

struct FetchView: View {
      @Binding var nameDownStream: String

      var body: some View {
            VStack(alignment: .center) {
                  Text("Go fetch the 🎾\(nameDownStream)!")
            }
      }
}

3.	 In ContentView, first add a State property:

@State private var nameStream = ""

4.	 Replace the contents of body with Text, TextField, Divider, and our new FetchView,
all within VStack:

VStack {
      Text("Your Pets Name is: \(nameStream)")
      TextField("Enter name", text: $nameStream)
            .textFieldStyle(RoundedBorderTextFieldStyle())
      Divider()
      FetchView(nameDownStream: $nameStream)
}

Using Reactive Streams 317

As you’ll see in Figure 9.1, we have a very basic app layout that uses our nameStream State in
multiple sub-views.

Figure 9.1 – A simple yet reactive app!

Getting to Grips with Combine318

How it works...

This is a very simple recipe, but it proves a point: reactive programming, especially using Combine
and SwiftUI, makes things simpler!

In ContentView, the TextField view is bound to @State property text, which will automatically
update any view that points to that property when the user enters text into the field. The Text view
is then used to display the entered text, which is updated in real time as the user types. This is an
example of a reactive stream where the changes in the input are automatically reflected in the output,
without the need for manual intervention.

To further demonstrate a reactive flow, we also added FetchView. By adding a property wrapped
with Binding, we essentially declare that we want to subscribe (a key term in reactive programming)
to the updates of whatever State property is assigned:

@Binding var nameDownStream: String

Once we set the Text view to use that binding, that view will now reflect the updated value in real
time, even though it’s in a different view.

The key takeaway is that unlike in most other paradigms, there was no need for any functions or
added logic to take the input and pass it along to the appropriate UI destinations. We simply set the
property in the places we expected to input into and output from it. When we run our app, we can
begin typing, and our UI reacts accordingly.

The reactive programming paradigm and the Combine framework make it easy to build reactive
applications in SwiftUI, allowing developers to write more concise and maintainable code. The
combination of SwiftUI and Combine, especially its more advanced features that we’ll learn about
in the upcoming recipes, provides a powerful and streamlined way to build reactive UIs in our apps.

See also

For more information on State and Binding, refer to https://developer.apple.com/
documentation/swiftui/managing-user-interface-state.

Understanding Observable Objects
Now that we understand reactive flows, we can dive a little deeper into more complex situations.
In this recipe, we will look at Observable Objects and see how they can help make our apps more
reactive to data structures.

https://developer.apple.com/documentation/swiftui/managing-user-interface-state
https://developer.apple.com/documentation/swiftui/managing-user-interface-state

Understanding Observable Objects 319

How to do it...

Let’s start where we left off in our previous recipe:

1.	 First, create a new class that conforms to ObservableObject and will hold all of our
pet’s information:

class ObservablePet : ObservableObject {
      @Published var name = «»
      @Published var age = «»
      @Published var breed = «»

      init() { }
}

2.	 Next, in ContentView, change our State property to a StateObject property:

@StateObject var pet = ObservablePet()

3.	 In body, we want to account for our pet’s attributes, so add more Text and TextField
views, pointing to their respective properties:

Text("Your Pets Name is: \(pet.name)")
Text("Your Pets Age is: \(pet.name)")
Text("Your Pets Breed is: \(pet.name)")

TextField("Enter name", text: $pet.name)
      .textFieldStyle(.roundedBorder)
TextField("Enter age", text: $pet.age)
      .textFieldStyle(.roundedBorder)
TextField("Enter breed", text: $pet.breed)
      .textFieldStyle(.roundedBorder)

4.	 Over in FetchView, swap out our Binding for an ObservedObject property:

@ObservedObject var petDownStream: ObservablePet

5.	 And let’s update our Text to show off all our data:

Text("\(petDownStream.name), a \(petDownStream.age) year old \
(petDownStream.breed) will fetch the 🎾")

6.	 Lastly, update our declaration of FetchView back in ContentView:

FetchView(petDownStream: pet)

Getting to Grips with Combine320

As visible in Figure 9.2, the app now shows more information about the pet.

Figure 9.2 – Now we know more about Fido!

Understanding publishers and subscribers 321

How it works...

This recipe works very similarly to the last one, but with a few key differences that begin to open up
possibilities for us. Let’s examine our new class ObservablePet:

class ObservablePet : ObservableObject {
      @Published var name = «»
      @Published var age = «»
      @Published var breed = «»

      init() { }
}

The first thing to notice is that it looks like any other basic class. However, by conforming to
ObservableObject, we now attach it to Combine and signal that this is a reactive class. We can
also, then, specify which properties in our class we expect to be reactive by adding the Published
property wrapper. Not every property of a class may need to be published, so using the wrapper
allows us to be specific.

Back in our views, two major differences are that State was swapped out for StateObject,
and Binding for ObservableObject. These are the appropriate wrappers when working with
properties that are not basic types, such as ObservableObject, and have published properties
within them.

From there, we simply expanded our UI in both Views to account for our new data points, publishing
to and subscribing to each point where needed.

See also

For more information on observables, refer to https://developer.apple.com/
documentation/combine/observableobject.

Understanding publishers and subscribers
You may recall seeing the terms publish and subscribe in the previous recipes. In Combine,
these are the core concepts working behind the scenes to create reactive data streams.

When you think about it, it reveals a lot about how it all works. A publisher broadcasts information,
and subscribers choose to tune in and listen for relevant data to react to.

We’ll explore this idea in this recipe where we’ll publish the results of a network call for Puppy
information, and then subscribe to that publisher with some instructions on what to do.

https://developer.apple.com/documentation/combine/observableobject
https://developer.apple.com/documentation/combine/observableobject

Getting to Grips with Combine322

How to do it...

We will start with a new playground:

1.	 Create a new playground in Xcode. Go to File | New | Playground | iOS.

2.	 For this, we will need to import both Foundation and Combine at the top.

3.	 First, let’s make our Puppy struct. We expect to read three properties from JSON on our
network call:

struct Puppy: Decodable {
      let id: Int
      let name: String
      let breed: String
}

4.	 Then, let’s set the URL where we’ll find our data. A JSON file with Puppy information is already
available in the repo for this recipe, so you can just use the following:

let url = URL(string: "https://raw.githubusercontent.com/
PacktPublishing/Swift-Cookbook-Third-Edition/main/Chapter%209/
Chapter%209%20-%203/Pups.json")!

5.	 Next, it’s time to create our publisher. Fortunately, one is already provided as part of
URLSession, so we can use that as our base:

let publisher = URLSession.shared
      .dataTaskPublisher(for: url)

6.	 Then we’ll add a few operators right below dataTaskPublisher to process our data
before publishing:

      .map { $0.data }
      .decode(type: [Puppy].self, decoder: JSONDecoder())
      .eraseToAnyPublisher()

7.	 Now for our subscriber! To do this, we’ll call sink on publisher:

let subscriber = publisher
      .sink(receiveCompletion: { completion in
            // TODO
      }, receiveValue: { pups in
            // TODO
      })

Understanding publishers and subscribers 323

8.	 Notice the two closures. For the first, receiveCompletion, we’ll add a simple switch to
handle failure and finished states:

let subscriber = publisher
      .sink(receiveCompletion: { completion in
            switch completion {
            case .failure(let error):
                  print("Error: \(error.
localizedDescription)")
            case .finished:
                  print(«Completed»)
            }
      }, receiveValue: { pups in
            // TODO
      })

9.	 For the second closure, we hope to receive our Puppy information! We’ll simply print out that
information, giving each Puppy a treat as we share their info:

let subscriber = publisher
      .sink(receiveCompletion: { completion in
            switch completion {
            case .failure(let error):
                  print("Error: \(error.localizedDescription)")
            case .finished:
                  print(«Completed»)
            }
      }, receiveValue: { pups in
            for pup in pups {
                  print("Feeding \(pup.name) the \(pup.breed) a
treat!")
            }
      })

10.	 Lastly, we run our playground and should expect to feed three happy pups, as shown in Figure 9.3!

Getting to Grips with Combine324

Figure 9.3 – As our publisher receives values, we feed our pups!

How it works...

Setting up our Puppy struct and URL should be recognizable by now, so let’s jump right into how
the publisher works.

With Combine, Apple has automatically provided access to publishers straight from commonly used
objects found in Foundation. Fortunately for us, this includes a publisher based on URLSession
called dataTaskPublisher:

let publisher = URLSession.shared
      .dataTaskPublisher(for: url)

If we were to dig into dataTaskPublisher a bit, we’d find it conforms to the Publisher
protocol, which requires a defined output (in this case, a tuple of Data and URLResponse), failure
(URLError), and a receive function (where our subscriber will become attached). These make
up a core Publisher.

Understanding publishers and subscribers 325

Now, when dataTaskPublisher is run and our data is received, we could publish the data right
there and then, but it would be in a raw state. To format it into a Puppy struct, we call a series of
publisher operators. They help process information from upstream down until we’re satisfied with
the state we expect it to be in.

In our case, since we’re receiving JSON and Puppy is codable, we want to first map the data from
the response, then decode the data, and, lastly, create our Publisher as AnyPublisher, erased
of any of its types:

let publisher = URLSession.shared
      .dataTaskPublisher(for: url)
      .map { $0.data }
      .decode(type: [Puppy].self, decoder: JSONDecoder())
      .eraseToAnyPublisher()

Notice that we can call operators one after another. This allows our Publisher and its operators
to be sequential and readable.

From our publisher, we now want to create a subscriber or an object that will listen to what Publisher
sends out and carry out certain instructions when it does receive data. To do this, we can simply call
sink on our publisher:

let subscriber = publisher
      .sink(receiveCompletion: { completion in
            // TODO
      }, receiveValue: { pups in
            // TODO
      })

The sink method simply creates and then attaches a new Subscriber to a Publisher. The
Subscriber protocol, in correlation to a Publisher, requires input and failure. Because
sink is actually a publisher operator itself, it can determine the types for input and failure
automatically, creating a perfect Subscriber.

The only things left to define are the two completions offered by sink. The first, receiveCompletion,
simply provides the opportunity to handle different completion states:

receiveCompletion: { completion in
            switch completion {
            case .failure(let error):
                  print("Error: \(error.localizedDescription)")
            case .finished:
                  print(«Completed»)
            }
      },

Getting to Grips with Combine326

The second, receiveValue, is of more interest to us, as it allows us to take the data we’re expecting
(an array of Puppy) and do whatever we plan on using the data for (such as feeding our puppies treats!):

receiveValue: { pups in
            for pup in pups {
                  print("Feeding \(pup.name) the \(pup.breed) a
treat!")
            }
      })

Upon execution of this recipe, it should run rather quickly. However, behind the scenes, there are a
few things to note.

First, our publisher only cares about sending information to its subscribers. Even then, it’s not
necessarily concerned about what our subscribers do, but rather that when it has something to send,
it knows who to send it to.

Second, our subscriber is patiently waiting for information before doing anything. Its purpose
is to wait for information, and when (and only when) it receives any, then it will react. This is great
because we don’t have to anticipate or hold up anything should we, for instance, have a slow or bad
network and our network call doesn’t produce data so quickly.

See also

Use these links to learn more:

•	 Publishers: https://developer.apple.com/documentation/combine/
publisher

•	 Subscribers: https://developer.apple.com/documentation/combine/
subscriber

•	 Publisher operators: https://developer.apple.com/documentation/combine/
publishers-decode-publisher-operators

Combine versus Delegate pattern
When Swift was first released, it strongly urged protocol-oriented programming, which promoted
the Delegate pattern. The way the delegate pattern works is one object would act on behalf of, or in
coordination with, another object. In iOS development, delegate patterns have been used to handle
events and user interactions for years.

That is, until reactive programming came into view, especially with Combine. We’ll do a simple
comparison in playgrounds using Timer so we can observe the evolution between the two.

https://developer.apple.com/documentation/combine/publisher
https://developer.apple.com/documentation/combine/publisher
https://developer.apple.com/documentation/combine/subscriber
https://developer.apple.com/documentation/combine/subscriber
https://developer.apple.com/documentation/combine/publishers-decode-publisher-operators
https://developer.apple.com/documentation/combine/publishers-decode-publisher-operators

Combine versus Delegate pattern 327

How to do it...

We will start with a new playground:

1.	 Create a new playground in Xcode. Go to File | New | Playground | iOS.

2.	 On our first page, we’ll start with the Delegate approach. First, we’ll create our delegate protocol:

protocol TimerDelegate: AnyObject {
      func timerEventReceived()
}

3.	 Create a new class that will feed our delegate timer events:

class TimerSender {
      var timer = Timer()
      weak var delegate: TimerDelegate?
}

4.	 Add a function to be called at every event, and trigger the delegate call within it:

@objc func timerEvent() {
      delegate?.timerEventReceived()
}

5.	 Lastly, we’ll set up init to automatically start sending timer events:

init() {
      self.timer = Timer.scheduledTimer(timeInterval: 1, target:
self, selector: #selector(timerEvent), userInfo: nil, repeats:
true)
}

6.	 Now we’ll create another class that conforms to our delegate protocol and has a simple print
statement in its conformance:

class TimerReceiver: TimerDelegate {
      func timerEventReceived() {
            print("Timer event received")
      }
}

7.	 Lastly, we create an instance of both of our classes and then set our delegate. When we run the
playground, you’ll start to see the expected print statements in the console log!

var receiver = TimerReceiver()
var sender = TimerSender()
sender.delegate = receiver

Getting to Grips with Combine328

8.	 Let’s now do this using Combine! Create a new playground page by going to File | New |
Playground Page.

9.	 First, be sure we’re importing Combine and Foundation.

10.	 Next, set up a timer, this time capturing its publisher, which is already provided to us in Foundation:

let timer = Timer.publish(every: 1, on: .main, in: .default)

11.	 We then subscribe to the publisher, where we’ll simply print on every event:

let subscription = timer
      .map { _ in
            print("Timer event received")
      }
      .sink { _ in   }

12.	 Lastly, we start the timer as follows:

timer.connect()

How it works...

We’ll break this up into two parts. First, in our Delegate example, we set up our delegate protocol,
TimerDelegate, with a single function stub (timerEventReceived) to pass our events
through. This allows TimerSender to be able to trigger delegates:

delegate?.timerEventReceived()

Our delegate, TimerReceiver, conforms to the TimerDelegate protocol and simply implements
our stub with a print statement.

In our Combine example, things are much simpler, especially since Foundation provides a publisher
on Timer. From there, it’s incredibly easy to subscribe with a basic print statement that’s triggered
on every event.

While these are simple examples, let’s dive into the differences. Our Delegate example required a protocol,
two classes, and instances of those classes for us to achieve a data stream on our Timer. On the other
hand, through Combine, all we needed were two basic instances of Publisher (which happened
to already be available to us from Timer directly) and a Subscriber instance, which we got from
Publisher. That is significantly less code to compile, read, and instantiate to get the same result.

What better way to end our journey with Combine than to show how it has evolved Swift code?
Combine bringing first-party support for reactive programming to Swift is a leap forward for the
language and our apps!

10
Using CoreML and Vision

in Swift

The Swift programming language has come a long way since its first introduction, and in comparison
to many other programming languages, it’s still well within its infancy.

However, with this in mind, with every release of Swift and its place in the open source community,
we’ve seen it grow from strength to strength over such a short period of time. One of these core
strengths is machine learning.

In this chapter, we’re going to look at Apple’s offering for machine learning – CoreML – and how we can build
an app using Swift to read and process machine learning models, giving us intelligent image recognition.

We’ll also take a look at Apple’s Vision framework and how it works alongside CoreML to allow us to
process video being streamed to our devices in real time, recognizing objects on the fly.

This will lay the foundation for bringing machine learning into your apps and their features, a step
into the future of personalized and enhanced user experiences.

In this chapter, we will cover the following recipes:

•	 Building an image capture app

•	 Using CoreML models to detect objects in images

•	 Building a video capture app

•	 Using CoreML and the Vision framework to detect objects in real time

Using CoreML and Vision in Swift330

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2010/
Chapter%2010%20-%20Core%20ML.

Building an image capture app
In this first recipe, we’re going to create an app that captures either an image from your camera roll or
an image taken from your camera. This will set up our iOS app ready for us to incorporate CoreML
to detect objects in our photos.

Getting ready

For this recipe, you’ll need the latest version of Xcode available from the Mac App Store.

How to do it...

With Xcode open, let’s get started:

1.	 Create a new project in Xcode. Go to File | New | Project | iOS App.

2.	 In Main.storyboard, add the following:

I.	 Add UISegmentedControl with two options (Photo / Camera Roll and
Live Camera).

II.	 Next, add a UILabel view just underneath.

III.	 Add a UIImageView view beneath that.

IV.	 Finally, add a UIButton component.

3.	 Space these accordingly using AutoLayout constraints with UIImageView being the
prominent object:

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2010/Chapter%2010%20-%20Core%20ML
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2010/Chapter%2010%20-%20Core%20ML
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2010/Chapter%2010%20-%20Core%20ML

Technical requirements 331

Figure 10.1 – Camera/photo app

4.	 Once we have this in place, let’s hook these up to our ViewController.swift file:

@IBOutlet weak var imageView: UIImageView!
@IBOutlet weak var labelView: UILabel!
@IBAction func onSelectPhoto(_ sender: Any)

Using CoreML and Vision in Swift332

Note
Take note that in the preceding code block, we have two outlets, using the IBOutlet keyword,
and one action, using the IBAction keyword. We don’t need an outlet for the UIButton,
as we only care about its action at this stage.

5.	 Next, populate IBAction with the following code:

@IBAction func onSelectPhoto(_ sender: Any) {
    let picker = UIImagePickerController()
    picker.delegate = self
    picker.allowsEditing = false
    picker.sourceType = UIImagePickerController.
isSourceTypeAvailable(.camera) ? .camera : .photoLibrary
    present(picker, animated: true)
}

6.	 Now, let’s create an extension of UIViewController. You can do this at the bottom of the
ViewController class if you like:

extension ViewController: UIImagePickerControllerDelegate,
UINavigationControllerDelegate

7.	 Our extension needs to conform to the UIImagePickerControllerDelegate and
UINavigationControllerDelegate protocols. We can now go ahead and populate
our extension with the following delegate method:

func imagePickerControllerDidCancel(_ picker:
UIImagePickerController) {
    dismiss(animated: true, completion: nil)
}

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [UIImagePickerController.
InfoKey : Any]) {
    guard let image = info[UIImagePickerController.InfoKey.
originalImage] as? UIImage else { return }
    imageView.image = image
    labelView.text = "This is my image!"
    dismiss(animated: true, completion: nil)
}

8.	 Before we go any further, we’ll need to add a couple of lines to info.plist:

NSCameraUsageDescription
NSPhotoLibraryUsageDescription

Technical requirements 333

9.	 Add these in with the following string description: Chapter 10 wants to detect
cool Stuff. This is an iOS security feature that will prompt the user when any app/code
tries to access the camera, photo library, or location services. Failure to add this could result
in an app crash.

Note
For our app, we can add whatever we want, but for a production app, make sure the text you
enter is useful and informative to the user. Apple will check this when reviewing your app and
has been known to potentially block a release until this is resolved.

Go ahead and run your code, and then launch the app. Once the app has been launched, you will notice
a prompt that asks for permission to access the camera. This prompt should only appear once, as the
permission can be changed in the device settings at a later point if required. After acknowledging the
prompt, one of the following things should happen:

•	 If you are running the app from the simulator, our UIButton press should present the photo
picker (along with the default images supplied by the iOS simulator)

•	 If you are running from a device, then you should be presented with the camera view, allowing
you to capture a photo

Either way, whether a photo was selected or a picture was taken, the resulting image should show
in UIImageView!

How it works...

Let’s step through what we’ve just done. We’ll begin at IBAction and have a look at the UIPickerView
view we’ve created:

let picker = UIImagePickerController() // 1
picker.delegate = self // 2
picker.allowsEditing = false// 3
picker.sourceType = UIImagePickerController.isSourceTypeAvailable(.
camera) ? .camera : .photoLibrary // 4
present(picker, animated: true) // 5

Let’s go through this one line at a time:

1.	 We instantiate an instance of UIImagePickerController – an available API that will
allow us to choose an image based on a specific source.

2.	 We set the delegate as self, so we can harness any results or actions caused by UIImage-
PickerController.

3.	 We set allowEditing to false, which is used to hide controls when the camera is our source.

Using CoreML and Vision in Swift334

4.	 In this instance, we set the source type based on whether the camera is available or not (so it
works well with the simulator).

5.	 Finally, we present our view controller.

Now, let’s take a look at our delegate methods:

func imagePickerControllerDidCancel(_ picker: UIImagePickerController)
func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [UIImagePickerController.InfoKey:
Any])

The first method is pretty self-explanatory; imagePickerControllerDidCancel handles
any instances where UIImagePickerController is canceled by the users. In our case, we just
dismiss the instance returned – job done!

didFinishPickingMediaWithInfo is where interesting things happen. Notice how we are given
a dictionary of information in our response. Here, we have various segments of information. The one
we are looking for is under the UIImagePickerController.InfoKey.originalImage
key. This gives us an image of what we’ve just selected, in the form of UIImage, allowing us to assign
this straight back to UIImageView.

Now that we’ve got an app that allows us to take or choose a photo, we can apply it to some real work
with the power of CoreML and object detection.

There’s more...

A quick note to mention: you’ll also have noticed that we were required to conform our extension to
UINavigationControllerDelegate. This is required by iOS to allow UIImageController
to be handled and presented correctly from its presenting stack (ViewController, in our instance).

See also

For more information on UIImagePickerController, refer to https://developer.
apple.com/documentation/uikit/uiimagepickercontroller.

Using CoreML models to detect objects in images
In this recipe, we’ll take the app we just built and incorporate the CoreML framework in order to
detect objects in our images.

We’ll also take a look at the generated CoreML models available for us to use and download directly
from Apple’s Developer portal.

https://developer.apple.com/documentation/uikit/uiimagepickercontroller
https://developer.apple.com/documentation/uikit/uiimagepickercontroller

Using CoreML models to detect objects in images 335

Getting ready

For this recipe, you’ll need the latest version of Xcode available from the Mac App Store.

Next, head on over to the Apple Developer portal at the following address: https://developer.
apple.com/machine-learning/models/.

Here, you will find out a little bit more about the models available for us to download and use in our
Xcode project.

You’ll notice there are options for image models and text models. For this recipe, we’re going to be using
image models, specifically one called Resnet50, which uses a residual neural network that attempts
to identify and classify what it perceives to be the dominant object in an image.

Note
For more information on the different types of machine learning models, see the links in the
See also section at the end of this recipe.

From the URL provided in this section, download the Resnet50.mlmodel (32-bit) model.

Once downloaded, add this to your Xcode project by simply dragging it into the File Explorer tree
in our previous app.

How to do it...

Let’s make a start where we left off in our previous project:

1.	 With everything in place, head back into ViewController.swift and add the following
global variable and addition to our viewDidLoad() function:

var model: Resnet50!
override func viewDidLoad() {
    super.viewDidLoad()
    model = try? Resnet50(configuration: .init())
}

2.	 Now, head on over to the sample project and obtain a file called ImageHelper.
swift; add this to our project. Once this has been added, we’ll head on back over to our
didFinishPickingMediaWithInfo delegate and expand on this a little further.

3.	 Add in the following changes:

guard let image = info[UIImagePickerController.InfoKey.
originalImage] as? UIImage else {
    return
}

https://developer.apple.com/machine-learning/models/
https://developer.apple.com/machine-learning/models/

Using CoreML and Vision in Swift336

let (newImage, pixelBuffer) = ImageHelper.
processImageData(capturedImage: image)
imageView.image = newImage
var imagePredictionText = "no idea... lol"
guard let prediction = try? model.prediction(image:
pixelBuffer!) else {
    labelView.text = imagePredictionText
    dismiss(animated: true, completion: nil)
     return
}
imagePredictionText = prediction.classLabel
labelView.text = "I think this is a \(imagePredictionText)"
dismiss(animated: true, completion: nil)

With everything in place, run the app and select a photo. As long as you didn’t point it at a blank wall,
you should begin to receive predictions.

With all that in place, let’s break down the changes we just made to understand what just happened
a little more.

How it works...

The first thing is to take a look at the following line we added:

ImageHelper.processImageData(capturedImage: image)

Here, we added a call to a helper method we took from our sample project. This helper contains the
following two functions:

static func processImageData(capturedImage: UIImage) -> (UIImage?,
CVPixelBuffer?)
static func exifOrientationFromDeviceOrientation() ->
CGImagePropertyOrientation

These functions and what they do are a little out of the scope of this book, and this chapter in particular.
However, at a very high level, the first function, processImageData(), takes an instance of
UIImage and transforms this to CVPixelBuffer format.

This essentially returns the UIImage object back to the raw format that it was captured in (UIImage
is merely a UIKit wrapper for our true raw image).

During this process, we need to flip the orientation too, as with all captured images. This is almost certainly
in landscape mode (and more often than not, you’ve taken a picture or selected a photo in portrait mode).

Another reason for performing this is that our Resnet50 model is trained to observe images at only
224 x 224. So, we need to readjust the captured image to this size.

Using CoreML models to detect objects in images 337

Note
If you need more information on the model you have in your project, simply select the file in
the File Explorer and view the details in the main window. From here, the Predictions tab will
give you all the details you need about the input file required.

So, with our helper function implemented, we receive a new UIImage object (modified to our new
spec) and the image in the CVPixelBuffer format, all ready to pass over to CoreML for processing.

Now, let’s take a look at the following code:

guard let prediction = try? model.prediction(image: pixelBuffer!) else
{
    labelView.text = imagePredictionText
    dismiss(animated: true, completion: nil)
    return
}
imagePredictionText = prediction.classLabel

First is our prediction() function call on our model object. Here, we pass in our image in the
CVPixelBuffer format we got back from our helper method earlier. From this, wrapped in a try
statement, CoreML will now attempt to detect an object in the photo. If successful, we’ll exit our guard
statement gracefully and be able to access the properties available in our prediction variable.

If you take a look at the properties available in our Resnet50 model, by selecting the file and opening
the Predictions tab, you’ll see the various output options we have:

.classLabel

.classLabelProbs

The class label we’ve already seen, but the class label probability will return a dictionary of the most
likely category for our image with a value based on a confidence score (an automatically generated
percentage that the model has predicted correctly).

Each model will have its own set of properties based on its desired intention and how it’s been built.

There’s more...

At the beginning of this recipe, we obtained a model that allowed us to detect objects in our images.
Touching on this subject a little more, a model is a set of data that has been trained to identify a pattern
or characteristics of a certain description.

For example, we want a model that detects cats, so we train our model by feeding it images of around
10,000 various pictures of cats. Our model training will identify features and shapes common to each
other and categorize them accordingly.

Using CoreML and Vision in Swift338

When we then feed our model an image of a cat, we hope that it is able to pick up those categorized
features within our image and successfully identify the cat.

The more images you train with, the greater the performance; however, that depends on the integrity
of the images, too. Training with the same image of a cat (just in a different pose) 1,000 times might
give you the same results as if you take 10,000 images of the same cat (again in a different pose).

The same goes the other way, too; if you train with 500,000 images of a panther and then 500,000
images of a kitten, it’s just not going to work.

See also

For more information, please refer to the following link within the Apple CoreML
documentation: https://developer.apple.com/documentation/coreml.

Building a video capture app
So, what we have seen so far of CoreML is pretty neat, to say the least. But taking a look back over this
chapter so far, we have probably spent more time building our app to harness the power of CoreML
than actually implementing it.

In this section, we’re going to take our app a little further by streaming a live camera feed that, in turn,
will allow us to intercept each frame and detect objects in real time.

Getting ready

For this section, you’ll need the latest version of Xcode available from the Mac App Store.

Please note that, for this section, you’ll need to be connected to a real device for this to work. Currently,
the iOS simulator does not have a way to emulate the front or back camera.

How to do it...

Let’s begin:

1.	 Head over to our ViewContoller.swift file and make the following amendments:

import AVFoundation

private var previewLayer: AVCaptureVideoPreviewLayer! = nil
var captureSession = AVCaptureSession()
var bufferSize: CGSize = .zero
var rootLayer: CALayer! = nil
private let videoDataOutput = AVCaptureVideoDataOutput()
private let videoDataOutputQueue = DispatchQueue(

https://developer.apple.com/documentation/coreml

Building a video capture app 339

    label: "video.data.output.queue",
    qos: .userInitiated,
    attributes: [],
    autoreleaseFrequency: .workItem)

2.	 Now, create a function called setupCaptureSession(). We’ll start by adding the following:

func setupCaptureSession() {
    var deviceInput: AVCaptureDeviceInput!
    guard let videoDevice = AVCaptureDevice.DiscoverySession(
      deviceTypes: [.builtInWideAngleCamera],
      mediaType: .video,
      position: .back).devices.first else { return }
    do {
        deviceInput = try AVCaptureDeviceInput(device:
videoDevice)
    } catch {
        print(error.localizedDescription)
        return
    }

    // More code to follow
}

In the preceding code, we are checking our device for an available camera, specifically
.builtInWideAngleCamera at the back. If no device can be found, our guard will fail.

3.	 Next, we initialize AVCaptureDeviceInput with our new videoDevice object.

4.	 Now, continuing in our function, add the following code:

captureSession.beginConfiguration()
captureSession.sessionPreset = .medium
guard captureSession.canAddInput(deviceInput) else {
    captureSession.commitConfiguration()
    return
}
captureSession.addInput(deviceInput)
if captureSession.canAddOutput(videoDataOutput) {
    captureSession.addOutput(videoDataOutput)
    videoDataOutput.setSampleBufferDelegate(self,
        queue: videoDataOutputQueue)
} else {
    captureSession.commitConfiguration()
    return
}

Using CoreML and Vision in Swift340

do {
    try videoDevice.lockForConfiguration()
    let dimensions =
CMVideoFormatDescriptionGetDimensions(videoDevice.activeFormat.
formatDescription)
    bufferSize.width = CGFloat(dimensions.width)
    bufferSize.height = CGFloat(dimensions.height)
    videoDevice.unlockForConfiguration()
} catch {
    print(error)
}

Essentially, here, we are attaching our device to a capture session, allowing us to stream what
the device input (camera) is processing programmatically straight into our code. Now, we just
have to point this at our view so that we can see the output.

5.	 Add the following additional code to our function:

captureSession.commitConfiguration()
previewLayer = AVCaptureVideoPreviewLayer(session:
captureSession)
previewLayer.videoGravity = AVLayerVideoGravity.resizeAspectFill
rootLayer = imageView.layer
previewLayer.frame = rootLayer.bounds
rootLayer.addSublayer(previewLayer)

With the code we’ve just added, we are essentially creating a visible layer from our current capture
session. In order for us to process this on our screen, we need to assign this to rootLayer (the
CALayer variable we added earlier). While this seems a little overkill and we could just add this
to the layer of UIImageView, we’re prepping for something we need to do in our next recipe.

6.	 Finally, complete the code in our function with the following:

captureSession.startRunning()

Now, with our camera and device all set up, it’s time to set the camera rolling.

Go ahead and run the app. Note again that this will only work on a real device and not a simulator.
All going well, you should have a live stream from your camera.

How it works...

The best way to explain this would be to think of the capture session as a wrapper or a configuration
between the device’s hardware and software. The camera hardware has a lot of options, so we configure
our capture session to pick out what we want for our particular instance.

Building a video capture app 341

Let’s look back at this line of code:

AVCaptureDevice.DiscoverySession(deviceTypes:
[.builtInWideAngleCamera], mediaType: .video, position: .back)

Here, you could control the enum based on a UI toggle, allowing the user to specify which camera to
use. You could even add a way for the user to stop the session by using the following:

captureSession.stopRunning()

Once the session has been configured, you can then start the session by using the following:

captureSession.startRunning()

Essentially (albeit at a much more complex level), this is what happens when you switch from the
front to the back camera when taking a photo.

With the session captured, we can now stream the output directly to any view we like, just like we
did here:

previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)

The fun comes when we want to manipulate the image that is being streamed, by capturing them one frame
at a time. We do this by implementing the AVCaptureVideoDataOutputSampleBufferDelegate
protocol, which allows us to override the following delegate methods:

func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer:
CMSampleBuffer, from connection: AVCaptureConnection) { }

Notice something familiar here... we’re being given sampleBuffer, just like we got in
UIImagePickerDelegate. The difference here is that this will be called with every frame, not
just when one is selected.

There’s more...

Playing around with capture sessions and AVCaptureOutput is an expensive operation. Always
make sure you stop your session from running when it’s not needed, and make sure your delegates
are not unnecessarily processing data when they don’t need to be.

Another thing to note is that the initialization of a capture device can be slow in some instances, so
make sure you have the appropriate UI to handle the potential blocking it may cause.

Final note: if you are struggling with memory leaks and high CPU times, take a look at a suite of tools
called Instruments. The Xcode Instruments bundle can offer a wide range of performance tracing
tools that can really help you get the most out of your Swift code.

Using CoreML and Vision in Swift342

See also

For more information, refer to the following links:

•	 Instruments overview: https://help.apple.com/instruments/mac/current/#/
dev7b09c84f5

•	 AVFoundation: https://developer.apple.com/documentation/avfoundation

Using CoreML and the Vision framework to detect objects
in real time
We’ve seen what CoreML can do in terms of object detection, but taking everything we’ve done so
far into account, we can certainly go a step further. Apple’s Vision framework offers a unique set of
detection tools from landmark detection and face detection in images to tracking recognition.

With the latter, tracking recognition, the Vision framework allows us to take models built with CoreML
and use them in conjunction with CoreML’s object detection to identify and track the object in question.

In this section, we’ll take everything we’ve learned so far, from how AVFoundation works to
implementing CoreML, and build a real-time object detection app using a device camera.

Getting ready

For this section, you’ll need the latest version of Xcode available from the Mac App Store.

Next, head on over to the Apple Developer portal at the following address: https://developer.
apple.com/machine-learning/models/.

Here, you will find out a little bit more about the models available for us to download and use in our
Xcode project. You’ll notice there are options for image models or text models. For this recipe, we’re
going to be using image models, specifically one called YOLOv3, which uses a residual neural network
that attempts to identify and classify what it perceives to be the dominant object in the image.

Note
For more information on the different types of machine learning models, see the links in the
See also section at the end of this recipe.

From here, download the YOLOv3.mlmodel (32-bit) model.

Once downloaded, add this to your Xcode project by simply dragging it into the File Explorer tree
in our previous app.

https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://developer.apple.com/documentation/avfoundation
https://developer.apple.com/machine-learning/models/
https://developer.apple.com/machine-learning/models/

Using CoreML and the Vision framework to detect objects in real time 343

How to do it...

We’ll start by creating a new UIViewController for all our vision work, in Xcode:

1.	 Go to File | New | File.

2.	 Choose Cocoa Touch Class.

3.	 Name this VisionViewController.

4.	 Make this a subclass of UIViewController.

With that done, we can now head on over to our new VisionViewController and add the
following code. We’ll start by importing the Vision framework:

import Vision

Now, we’ll subclass our existing ViewController so that we can get the best of both worlds
(without the need for copious amounts of code duplication):

class VisionViewController: ViewController

With that done, we can now override some of our functions in ViewContoller.swift. We’ll
start with setupCaptureSession():

override func setupCaptureSession() {
    super.setupCaptureSession()
    setupDetectionLayer()
    updateDetectionLayerGeometry()
    startVision()
}

Note
When overriding from another class, always remember to call the base function first. In the case
of the preceding code, this can be done by calling super.setupCaptureSession(), as
used in the preceding code block.

You’ll notice some functions in the VisionViewControler.swift file that we’ve not yet created.
Let’s go through these now one by one:

1.	 First, we’ll add a detection layer to the rootLayer that we created earlier. This new CALayer
will be used as the drawing plane for our detected object area:

func setupDetectionLayer() {
    detectionLayer = CALayer()
    detectionLayer.name = "detection.overlay"
    detectionLayer.bounds = CGRect(x: 0.0, y: 0.0, width: buff-

Using CoreML and Vision in Swift344

erSize.width, height: bufferSize.height)
    detectionLayer.position = CGPoint(x: rootLayer.bounds.midX,
y: rootLayer.bounds.midY)
    rootLayer.addSublayer(detectionLayer)
}

As you can see from the code, we create bounds based on the height and width taken from our
bufferSize property (which is being shared back over in our ViewController class).

2.	 Next, we need to add some geometry to detectionLayer(). This will re-adjust and scale
the detection layer based on the device’s current geometry:

func updateDetectionLayerGeometry() {
    let bounds = rootLayer.bounds
    var scale: CGFloat
    let xScale: CGFloat = bounds.size.width / bufferSize.height
    let yScale: CGFloat = bounds.size.height / bufferSize.width
    scale = max(xScale, yScale)

    if scale.isInfinite {
        scale = 1.0
    }

    CATransaction.begin()
    CATransaction.setValue(kCFBooleanTrue, forKey: kCATransac-
tionDisableActions)

    detectionLayer.setAffineTransform(CGAffineTransform(rotatio-
nAngle: CGFloat(.pi / 2.0)).scaledBy(x: scale, y: -scale))

    detectionLayer.position = CGPoint(x: bounds.midX, y: bounds.
midY)

    CATransaction.commit()
}

3.	 Finally, let’s hook up our startVision() function:

func startVision(){
    guard let localModel = Bundle.main.url(forResource:
"YOLOv3", withExtension: "mlmodelc") else {
        return
    }
    
    do {

Using CoreML and the Vision framework to detect objects in real time 345

        let visionModel = try VNCoreMLModel(for:
MLModel(contentsOf: localModel))
        let objectRecognition = VNCoreMLRequest(model:
visionModel, completionHandler: { (request, error) in
            DispatchQueue.main.async(execute: {
                if let results = request.results {
                    self.visionResults(results)
                }
            })
        })
        self.requests = [objectRecognition]
    } catch let error {
        print(error.localizedDescription)
    }
}

4.	 With this comes a new function, visionResults(). Go ahead and create this function in
VisionViewController, too.

Note
We could have simply used an extension in our original ViewController to house all these
new functions, but we’d run the risk of overloading our view controller to the point where it
could become too unmaintainable.

Also, our logic and extension for UIImagePicker were in here, so the separation is nice.

5.	 With this, let’s build the visionResults() function. We’ll do this one section at a time
so it all makes sense:

func visionResults(_ results: [Any]) {
    CATransaction.begin()
    CATransaction.setValue(kCFBooleanTrue, forKey:
kCATransactionDisableActions)

    detectionLayer?.sublayers = nil

    // More code to follow
}

We start with some basic housekeeping; performing CATransaction locks in memory any
changes we’re going to make to CALayer before we finally commit them for use. In this code,
we’ll be modifying detectionLayer.

Using CoreML and Vision in Swift346

6.	 Next, we’ll iterate around our results parameter to pull out anything that is of the
VNRecognizedObjectObservation class type:

for observation in results where observation is
VNRecognizedObjectObservation {
    guard let objectObservation = observation as?
VNRecognizedObjectObservation else {
        continue
    }

    let labelObservation = objectObservation.labels.first
    let objectBounds =
VNImageRectForNormalizedRect(objectObservation.boundingBox,
Int(bufferSize.width), Int(bufferSize.height))

    let shapeLayer = createRoundedRectLayer(with: objectBounds)
    let textLayer = createTextSubLayer(with: objectBounds,
identifier: labelObservation?.identifier ?? "", confidence:
labelObservation?.confidence ?? 0.0)

    shapeLayer.addSublayer(textLayer)
    detectionLayer?.addSublayer(shapeLayer)

    updateDetectionLayerGeometry()
    CATransaction.commit()
}

From this, we’ll continue to use Vision to obtain Rect and position of the identified object(s)
using VNImageRectForNormalizedRect. We can also grab some text information about
the objects detected and use that too.

7.	 Finally, we’ll gracefully close off any changes to detectionLayer and update the geometry
to match the detected objects. You’ll notice there are two new functions we’ve just introduced:

createRoundedRectLayer()
createTextSubLayer()

8.	 These again are helper functions, one to draw the rectangle of the detected object and the other
to write the text. These functions are generic boilerplate sample code that can be obtained from
Apple’s documentation and can be found in the sample project on GitHub; just copy them into
your project (either in VisionViewController or your own helper file). Feel free to play
around with these to suit your needs.

9.	 One thing I will mention: you’ll notice how we do all this again using layers rather than
adding UIView and UILabel. This again is because UIKit is a wrapper around a lot of core
functionality. But adding a UIKit component on top of another component is unnecessary,
and with what is already an intense program, this could be performed much more efficiently
by updating and manipulating the layers directly on a UIKit object.

Using CoreML and the Vision framework to detect objects in real time 347

With our AVFoundation camera streaming in place and Vision and CoreML ready to do their
magic, there is one final override we need to add to VisionViewController:

override func captureOutput(_ output: AVCaptureOutput, didOutput
sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
    guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)
else {
        return
    }

    let exifOrientation = ImageHelper.
exifOrientationFromDeviceOrientation()
    
    let imageRequestHandler = VNImageRequestHandler(cvPixelBuffer:
pixelBuffer, orientation: exifOrientation, options: [:])

    do {
        try imageRequestHandler.perform(self.requests)
    } catch {
        print(error)
    }
}

Using the delegate for AVFoundation, we grab each frame again, converting this to CVPixelBuffer
in order to create VNImageRequestHander. This now kicks off the requests in our startVision()
function, stitching everything together nicely.

We’re almost done; let’s finish off with some bits and pieces to tie all this together now:

1.	 Head on over to ViewController.swift and add the following function, using the
IBAction keyword, then add the logic from UISegmentedControl, which we created earlier:

@IBAction func onInputTypeSelected(_ sender: UISegmentedControl)
{
    switch sender.selectedSegmentIndex {
    case 0:
        captureSession.stopRunning()
    case 1:
        startLivePreview()
    default:
        print("Default case")
    }
}

Using CoreML and Vision in Swift348

2.	 Now, create a function called startLivePreview():

func startLivePreview() {
    captureSession.startRunning()
}

3.	 Remove captureSession.startRunning() from setupCaptureSession().

4.	 Finally, in our Main.storyboard view controller, change the class from ViewController
to VisionViewController.

5.	 Now, go ahead and run the app. All going well, you should be live-detecting images with an
overlay that looks like this:

Figure 10.2 – Vision detection

Using CoreML and the Vision framework to detect objects in real time 349

As you can see, both Vision and CoreML have successfully detected my cell phone and its location
in the image (all in real time).

How it works...

A high-level overview goes something like this:

1.	 Capture a real-time camera feed (using AVFoundation).

2.	 Use a trained CoreML model to detect whether the image contains an object (that it recognizes).

3.	 Use Vision to detect the position of the object in the picture.

We covered the camera streaming elements in the previous recipe, but let’s take a deeper look at how
step 2 and step 3 work.

Let’s actually start with step 3. We saw in the last section how we use VNImageRequestHander to
pass back CVPixelBuffer of each image frame. This now fires off calls in our startVision()
function, so let’s take a closer look at this.

First, we grab our model from the app’s bundle, so that we can pass this over to Vision later on to
prepare the object recognition:

guard let localModel = Bundle.main.url(forResource: "YOLOv3",
withExtension: "mlmodelc") else {
    return
}

Next, we head back to step 2, where we create an instance of VNCoreMLModel(), passing in the
localModel that we just created.

let visionModel = try VNCoreMLModel(for: MLModel(contentsOf:
localModel))

With the newly created visionModel, which is our VNCoreMLModel, we can now create our
VNCoreMLRequest call, along with its completion handler, which will fire from requests that come
in via our AVFoundation delegate.

This one simple request does the work of both the Vision framework and CoreML – first detecting whether
an object is found, then supplying us with the details on where that object is located inside the image.

This is where the bulk of our work is done. If you look again at our visionResults() function
and all the helper functions within, these are merely ways of parsing data that has come back, and,
in turn, decorating our view.

In our results from the VNCoreMLRequest() response, we take an instance of VNRecognize-
dObjectObservation, which, in turn, gives us two properties: a label (of what CoreML thinks
it has found) along with a confidence score.

Using CoreML and Vision in Swift350

See also

For more information on CALayer, refer to https://developer.apple.com/
documentation/quartzcore/calayer.

https://developer.apple.com/documentation/quartzcore/calayer
https://developer.apple.com/documentation/quartzcore/calayer

11
Immersive Swift with ARKit and

Augmented Reality

Imagine being able to visualize data, images, 3D objects, or effects in tandem with the world around
you. It would be short of those experiences happening right before you, but when blended in with
your environment in real time, it can seem like it is happening before your eyes.

This is Augmented Reality (AR). It cannot alter reality itself. Nor does it try to replace it completely
and artificially like virtual reality. It simply serves to augment, or enhance, reality by building upon it.

With the computing power, cameras, and sensors we carry around with us in our devices, it’s no
wonder that AR is such a versatile and awesome feature. This is where ARKit, an Apple framework
that allows us to easily and quickly build AR experiences, comes in.

By the end of this chapter, you will know how to use ARKit to create simple yet immersive AR
experiences for your apps.

In this chapter, we will cover the following recipes:

•	 Surface detection with ARKit

•	 Using 3D models with ARKit

•	 Using Reality Composer Pro for visionOS

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2011.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2011
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2011

Immersive Swift with ARKit and Augmented Reality352

Surface detection with ARKit
In this first recipe, we’re going to create a simple ARKit app that detects horizontal surfaces (or planes).
Then, having that detection in place, we’ll use that information to display a 3D object in our AR world!

We’ll also do this in SwiftUI with ARView, which builds a view for our AR world to be displayed
through. ARView is primarily a UIKit component. But with a little help from UIViewRepresentable,
we can still take advantage of SwiftUI’s goodness (and with less code overall).

Getting ready

For this recipe, to run the app, you will need a physical device that is compatible with ARKit, as you
cannot test these apps in the simulator – due to needing a camera. Generally, any device that is running
on iOS 11 or later will be okay.

How to do it...

With Xcode open, let’s get started:

1.	 Create a new project in Xcode. Go to File | New | Project | iOS App. For this app, be sure to
choose SwiftUI for the interface.

2.	 We will need to declare a few attributes for our app in our app’s Info.plist. Simply select
our project in Navigator, select the project target, and go to Info. You’ll need to add Privacy,
Camera Usage Description, and Required Device Capabilities (Item 0 = ARKit).

Figure 11.1 – Adding the two attributes to the app under the Info tab

Surface detection with ARKit 353

3.	 In ContentView.swift, we’ll start by importing ARKit and RealityKit:

import ARKit
import RealityKit

4.	 Next, we’ll create a struct conforming to UIViewRepresentable that will wrap an ARView:

struct ARViewContainer: UIViewRepresentable {
    func makeUIView(context: Context) -> ARView {
        let arView = ARView(frame: .zero)
        // More code to follow
        return arView
    }

    func updateUIView(_ uiView: ARView, context: Context) {
        // No need to update the view in this example
    }
}

5.	 Before we return our ARView, we’ll add some configuration to it that explicitly states that we
want to track our device against objects in our environment, specifically looking for horizontal
planes (such as table tops, floors, etc.):

let configuration = ARWorldTrackingConfiguration()
configuration.planeDetection = [.horizontal]
arView.session.run(configuration)

6.	 To be able to see that we’re detecting planes, let’s add an object to our ARView. First, we’ll
create an entity in the form of AnchorEntity for our object so it knows where to place itself:

let anchorEntity = AnchorEntity(.plane(.horizontal,
classification: .any, minimumBounds: [0.2, 0.2]))

7.	 Then, we’ll create a basic red box, taking advantage of ModelEntity to whip one up in just
a few lines of Swift, and add it to our AnchorEntity:

let box = MeshResource.generateBox(width: 0.1, height: 0.1,
depth: 0.1)
let boxMaterial = SimpleMaterial(color: .red, isMetallic: false)
let boxModel = ModelEntity(mesh: box, materials: [boxMaterial])
anchorEntity.addChild(boxModel)

8.	 Next, add our anchor to our ARView:

arView.scene.anchors.append(anchorEntity)

Immersive Swift with ARKit and Augmented Reality354

9.	 Lastly, swap out the body of our ContentView to display our ARViewContainer:

struct ContentView: View {
    var body: some View {
        ARViewContainer()
    }
}

10.	 Now, with your device plugged in, run the app. The first time the app runs, we’ll need to give
permission to use the device’s camera. Once authorized, move your camera around and watch
a red box appear on any surface nearby:

Figure 11.2 – A red box appears on my coffee table!

How it works...

It may be surprising how little code it takes to get an ARView up and running. And that’s even
including wrapping it in a UIViewRepresentable. To summarize, UIViewRepresentable is
a protocol that wraps a UIKit-based view and, literally, represents it to SwiftUI. For more information,
check out the link in the See also section.

Surface detection with ARKit 355

Once we set our ARView and return it, we still have to start an AR session. To do that, we need to set
a configuration first. That’s where we created ARWorldTrackingConfiguration, telling our
AR that we want to define the relationship between where our device is located and the objects in the
environment around it. We then specify that we want to find horizontal planes in our environment by
setting planeDetection. Lastly, with our configuration set, we pass it in as we tell our ARView
to begin running its session:

let configuration = ARWorldTrackingConfiguration()
configuration.planeDetection = [.horizontal]
arView.session.run(configuration)

Next, we create an AnchorEntity that will tap into any horizontal plane detected during our
session. This will be used for any objects that we want to display in our AR world to decide where it’s
located relative to reality:

let anchorEntity = AnchorEntity(.plane(.horizontal, classification:
.any, minimumBounds: [0.2, 0.2]))

Then, we create a simple red box. For this, we take advantage of another framework, called RealityKit,
which provides an API that works together with ARKit for the purposes of simulating and rendering
3D objects. In three lines of Swift, we create a box (MeshResource.generateBox), define its
surface (SimpleMaterial), and put it together as a prepared ModelEntity, ready to be inserted
in our ARView:

let box = MeshResource.generateBox(width: 0.1, height: 0.1, depth:
0.1)
let boxMaterial = SimpleMaterial(color: .red, isMetallic: false)
let boxModel = ModelEntity(mesh: box, materials: [boxMaterial])

We then attach our new object to our AnchorEntity so it now knows where to rest in our AR world:

anchorEntity.addChild(boxModel)

Lastly, we attach our AnchorEntity to our ARView:

arView.scene.anchors.append(anchorEntity)

Once we declare our ARViewContainer in ContentView and run our app on a device, we see
our red box appear on the nearest horizontal surface in all its glory!

There’s more…

One thing about this implementation is, if someone were to walk in front of the camera, our box
would still show up in front of the person – even if, distance-wise, the person were standing closer
to the camera than the box.

Immersive Swift with ARKit and Augmented Reality356

We can account for this difference with a simple addition to the configuration!

configuration.frameSemantics.insert(.personSegmentationWithDepth)

ARKit provides the option to include person occlusion in the configuration of ARView. This means
that it will detect a person’s presence (could be a whole body or just part) and calculate the distance
and location relative to the AR world. It will then compare it to any AR objects, determine which
is closer to the camera, and decide what should be shown. In Figure 11.3, you’ll see that my hand is
behind the red box.

Figure 11.3 – Now my hand is behind!

In Figure 11.4, ARKit determines my hand is in front of the box. Therefore, it displays my hand
while still showing the box, though as if it were behind my hand. All of this, mind you, in real time!

Surface detection with ARKit 357

Figure 11.4 – And now that I’m closer to the camera, the box is behind!

See also

•	 For more information on ARKit, refer to https://developer.apple.com/
documentation/arkit

•	 For more information on RealityKit, refer to https://developer.apple.com/
documentation/realitykit

•	 For more information on UIViewRepresentable, refer to https://developer.
apple.com/documentation/swiftui/uiviewrepresentable

•	 For more information on people occlusion, refer to https://developer.apple.com/
documentation/arkit/arkit_in_ios/camera_lighting_and_effects/
occluding_virtual_content_with_people

https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/realitykit
https://developer.apple.com/documentation/realitykit
https://developer.apple.com/documentation/swiftui/uiviewrepresentable
https://developer.apple.com/documentation/swiftui/uiviewrepresentable
https://developer.apple.com/documentation/arkit/arkit_in_ios/camera_lighting_and_effects/occluding_virtual_content_with_people
https://developer.apple.com/documentation/arkit/arkit_in_ios/camera_lighting_and_effects/occluding_virtual_content_with_people
https://developer.apple.com/documentation/arkit/arkit_in_ios/camera_lighting_and_effects/occluding_virtual_content_with_people

Immersive Swift with ARKit and Augmented Reality358

Using 3D models with ARKit
In the previous recipe, we looked at how to detect horizontal planes in the environment, and how to
place a 3D object in the AR world. In this recipe, we are going to build on our existing knowledge
and use a more realistic object that we might find in the real world – something that is more fun and
recognizable. This is where AR really starts to come to life.

Getting ready

While this recipe builds on top of the previous recipe, it is recommended in this recipe that we create
a new Xcode project. This is because Xcode provides us with a more efficient way of setting up an AR
app that will look just like our previous recipe.

How to do it…

Let’s get started with the new recipe:

1.	 Create a new project in Xcode. Go to File | New | Project | Augmented Reality App. For this
app, be sure to choose SwiftUI for Interface and RealityKit for Content Technology:

Figure 11.5 – Selecting Augmented Reality App

Note that we’re not using App, but rather Augmented Reality App, which comes with AR-specific
boilerplate already in place.

Using 3D models with ARKit 359

2.	 In ContentView, you’ll notice a lot looks similar to our previous recipe, especially
ARViewContainer. We’re going to alter this code later on.

3.	 Next, we need to find a 3D model that we can use in our new AR app. To save us some time, we
can download one of these from Apple’s AR Quick Look Gallery: https://developer.
apple.com/augmented-reality/quick-look/.

4.	 For now, let’s use Toy Biplane, found under the 3D model section of the AR Quick Look
Gallery. Once the 3D model has been downloaded, we can then open up the file to see the
preview and look around.

Figure 11.6 – Preview of the downloaded 3D model from the AR Quick Look Gallery

5.	 We can then drop the 3D model file into our new Augmented Reality App project. Make sure
you select the option to copy the items if needed:

https://developer.apple.com/augmented-reality/quick-look/
https://developer.apple.com/augmented-reality/quick-look/

Immersive Swift with ARKit and Augmented Reality360

Figure 11.7 – The downloaded 3D model added to the Xcode project

6.	 Now, time for some code. Head on over to our ARViewContainer in ContentView
and replace any existing code with the following, to load our 3D model and attach it to our
ARView scene:

struct ARViewContainer: UIViewRepresentable {
    func makeUIView(context: Context) -> ARView {
        let arView = ARView(frame: .zero)
        let planeEntity = try! ModelEntity.loadModel(named:
"toy_biplane_idle")
        let anchorEntity = AnchorEntity(.plane(.horizontal,
classification: .any, minimumBounds: [0.2,0.2]))
        anchorEntity.addChild(planeEntity)
        arView.scene.anchors.append(anchorEntity)
        return arView
    }

    func updateUIView(_ uiView: ARView, context: Context) {
        // No need to update the view in this example
    }
}

Using 3D models with ARKit 361

7.	 Now, with your device plugged in, run the app. The first time the app runs, we’ll need to give
permission to use the device’s camera. Once authorized, move your camera around and watch
the 3D model appear on any surface nearby:

Figure 11.8 – The toy biplane appears on my desk!

How it works...

In not much additional time, we have swapped out our basic red box for a realistic and interactive
3D model. In this recipe, we used Toy Biplane, and now you have the knowledge to repeat this
again for any other 3D models you can find. Remember, you can always refer back to Apple’s AR
Quick Look Gallery.

To recap, we created a new AR app, downloaded a 3D model, imported it into our Xcode project, and
updated a few lines of code.

Firstly, we created our ARView, as we have done before:

let arView = ARView(frame: .zero)

Next, we loaded Toy Biplane as ModelEntity, which prepared our 3D model for the AR scene,
using the exact filename for the 3D model that can be seen in our project navigator:

let planeEntity = try! ModelEntity.loadModel(named: "toy_biplane_
idle")

Immersive Swift with ARKit and Augmented Reality362

Then, we created an AnchorEntity so that our ModelEntity can place itself in the AR world
– specifically on a horizontal plane:

let anchorEntity = AnchorEntity(.plane(.horizontal, classification:
.any, minimumBounds: [0.2,0.2]))
anchorEntity.addChild(planeEntity)

Finally, we can attach AnchorEntity to the ARView scene, before returning the ARView:

arView.scene.anchors.append(anchorEntity)
return arView

That’s all we needed to do to bring our AR world to life! Now, when we run the app, we will see the
3D models in action!

There’s more…

There is one very special feature about the Toy Biplane 3D model that we haven’t looked at yet,
which is that this particular 3D model has some animations – how exciting! You may have noticed
that the 3D model file has a USDZ format – which stands for Universal Scene Description Zipped.
With this being a scene file, animations can be described for the 3D object as part of the scene, which
can be executed when triggered correctly. By default, we do not see these animations after simply
loading ModelEntity.

We can add one additional snippet of code before we return our ARView in the makeUIView
function, to start seeing the animations in our AR world:

planeEntity.availableAnimations.forEach {
    planeEntity.playAnimation($0.repeat)
}

Now, once we run the app again, we’ll be able to see that the toy biplane is now hovering on the spot
– with its front propeller spinning around!

Using Reality Composer Pro for visionOS
As we saw in the last recipe, we can create 3D objects and display them in AR quite simply in Swift.
Another way in which we can create AR scenes is by using a GUI tool that automatically generates
an AR scene that we can use directly in our app.

Enter Reality Composer Pro, an Apple tool that does exactly that for the visionOS platform. For more
information, check out the link in the See also section.

Using Reality Composer Pro for visionOS 363

Getting ready

For this recipe, we will be using Reality Composer Pro, which is available with Xcode 15. This recipe
will focus more on creating an AR experience with the visionOS SDK, as there is currently a limitation
on using Reality Composer Pro with the standard SDKs (such as iOS).

How to do it...

Let’s get started with this recipe:

1.	 Create a new project in Xcode. Go to File | New | Project | VisionOS | App. For this app, be
sure to choose Volume for Initial Scene and RealityKit for Immersive Space Renderer:

Figure 11.9 – Selecting visionOS | App

Note that on this occasion, we are building a visionOS app, instead of an iOS app, which comes
with its own set of AR-specific boilerplate already in place. You may need to install the visionOS
simulator in order to run the app later on.

2.	 In ContentView, you’ll notice a whole lot of new code that you have not seen before. The
only thing you need to be aware of right now is that we have an Entity, called Scene, that is
being loaded into a RealityView.

3.	 Next, we can open up our Scene, which will be a Reality Composer Pro project. This can be
found inside Packages | RealityKitContent | Sources | RealityKitContent | RealityKitContent.

Immersive Swift with ARKit and Augmented Reality364

Figure 11.10 – The Reality Composer Pro previewer in Xcode with

a button to open in the Reality Composer Pro app

4.	 Go ahead and open up the scene in the Reality Composer Pro app, from the previewer in Xcode:

Figure 11.11 – The Reality Composer Pro app

Using Reality Composer Pro for visionOS 365

5.	 From the Reality Composer Pro app, we can now see our AR scene with a number of tools and
configurations available to us.

6.	 On the toolbar, hit +. Here, you’ll find all sorts of pre-made 3D objects available to use. For
now, search Plane and select the object listed as Toy Biplane:

Figure 11.12 – Choosing the Toy Biplane object to add to our scene

7.	 Once the Toy Biplane model has been added, click the Sphere in the component navigator,
on the left, then hit Delete. We should be left with just the Toy Biplane model in our scene.

Immersive Swift with ARKit and Augmented Reality366

Figure 11.13 – Replacing the sphere with the toy biplane in our scene

8.	 Save and go back to our project in Xcode. You may notice that the structure of the RealityKitContent
folder has changed slightly, with the scene now updated with our Toy Biplane.

9.	 We don’t need to add any additional code anywhere, as we are already loading our Scene
in RealityView.

10.	 Finally, with the visionOS simulator installed, hit Run and see how the 3D model of Toy
Biplane is added to the virtual room:

Using Reality Composer Pro for visionOS 367

Figure 11.14 – visionOS simulator with our Toy Biplane

How it works...

The first thing to notice is that choosing a visionOS app afforded us several boilerplate items, all still
using SwiftUI. This included the RealityKitContent package with a basic Reality Composer Pro project
already in place, along with the code needed to load our Scene into RealityView. We were then
able to add our own 3D model to the scene, all using Reality Composer Pro.

While we didn’t get to mess around much with Swift in this recipe, there are some key things to point
out. The main thing is how much code is already in place for us. We don’t require any code to determine
plane detection, or to set an anchor, as we did with the iOS app. The nature of visionOS means that
the system is able to handle all of the detection and placement for us.

Immersive Swift with ARKit and Augmented Reality368

RealityKitContent provided by Reality Composer Pro bundles up our scene into a package that can
be dropped right into our project. Reality Composer Pro as a GUI tool simplifies the process and
provides a way to build more complex and robust AR scenes with all the options and configurations
easily accessible.

The visionOS simulator gives us a way to preview our app without needing to run it on a physical device,
much like we can do for any iOS app. Apple Vision Pro devices are not yet mainstream; however, you
now know how to place 3D models using the visionOS SDK ahead of time.

There’s more…

You will have noticed that the scene we created appears quite small within the visionOS simulator as it
first launches. The simulator offers some navigation tools that make it easy for us to move around and
interact with the scene. These tools can be found in the bottom-right corner of the simulator window.

To name a few of the tools we have available to us, there is an interaction tool, a tilting tool, a panning
tool, an orbiting tool, and a zooming tool. Using these tools allows us to engage more with the scene.

Figure 11.15 – Using the navigation tools within the VisionOS simulator

Using Reality Composer Pro for visionOS 369

Additionally, you’ll have noticed two options available to us in the scene: Enlarge RealityView Content
and Show ImmersiveSpace. We can enlarge the content so that it appears more clearly to us, or we
can choose to merge our Scene into another immersive scene, which is also available to adjust within
the same Reality Composer Pro project.

See also

•	 For more information on AR tools, refer to https://developer.apple.com/
augmented-reality/tools/

•	 For more information on Reality Composer Pro, refer to https://developer.apple.
com/wwdc23/10083

•	 For more information on Vision Pro, refer to https://www.apple.com/apple-
vision-pro/

https://developer.apple.com/augmented-reality/tools/
https://developer.apple.com/augmented-reality/tools/
https://developer.apple.com/wwdc23/10083
https://developer.apple.com/wwdc23/10083
https://www.apple.com/apple-vision-pro/
https://www.apple.com/apple-vision-pro/

12
Visualizing Data with

Swift Charts

An important way for information and data to be presented more simply and effectively is by conveying
them in a more visually understandable way. Looking at a list of data such as a spreadsheet can be
difficult for a majority of users, especially the more robust and complex it becomes.

A way to make data more readable and understandable is through charts. They transform information
in a way that’s more aesthetically pleasing while providing opportunities to better represent data within
data (e.g., patterns, trends, etc.). Charts have helped visualize data in software for decades, even before
graphics were a thing and they needed to be built using text-based characters.

Charts are incredibly useful in apps today, as well. That’s why Apple introduced Swift Charts, a new
framework that offers to centralize and take on much of the heavy lifting when it comes to building charts.

By the end of this chapter, you will learn how to leverage Swift Charts to build informative and even
interactive charts so you can better inform and educate your app users.

In this chapter, we will cover the following recipes:

•	 Building a chart with data

•	 Displaying multiple datasets

•	 Exploring chart marks and modifiers

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2012.

https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2012
https://github.com/PacktPublishing/Swift-Cookbook-Third-Edition/tree/main/Chapter%2012

Visualizing Data with Swift Charts372

Building a chart with data
In this first recipe, we’re going to create a simple Swift Chart that will help us visualize work performance
based on the cups of coffee they’ve had (scientific accuracy questionable). We’ll do this in a barebones
SwiftUI app.

Getting ready

For all the recipes in this chapter, you’ll need the latest version of Xcode available from the Mac App Store.

How to do it…

With Xcode open, let’s get started:

1.	 Create a new project in Xcode. Go to File | New | Project | iOS App. Be sure to choose SwiftUI
for the interface.

2.	 In our project, select New File | SwiftUI View, and name this file CoffeePerformance.

3.	 In our new file, the first thing is to add Swift Charts by adding import Charts to the top
of our file.

4.	 Let’s create some data for our chart to consume. First, make a new struct called PerformanceInfo:

struct PerformanceInfo: Identifiable {
    var cups: Int
    var rating: Int
    var id = UUID()
}

5.	 Using struct, we’ll make a collection of data points:

var dannyPerfInfo: [PerformanceInfo] = [
    .init(cups: 0, rating: 1),
    .init(cups: 1, rating: 2),
    .init(cups: 2, rating: 4),
    .init(cups: 3, rating: 5),
    .init(cups: 4, rating: 3),
    .init(cups: 5, rating: 1),
    .init(cups: 6, rating: 0)
]

6.	 In body of CoffeePerformance, set up VStack with Text inside:

VStack (alignment: .leading) {
    Text("Danny's Coffee ☕")

Building a chart with data 373

}
.padding()

7.	 Below Text, let’s add Chart and provide the data we set up earlier. Then, BarMark can be
added inside the Chart, as follows:

Chart(dannyPerfInfo) { perfInfo in
    BarMark(
        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
}

We’ll immediately begin to see the bar chart in our Previews, as shown in Figure 12.1:

Figure 12.1 – A bar chart displaying Coffee Performance information in Xcode Previews

Visualizing Data with Swift Charts374

How it works...

Anyone who’s worked with charts in code before has probably been taken aback that it takes just six
lines of code to display data in a bar chart. What is even more amazing is that we can immediately see
the results in Xcode Previews. Let’s break down the small amount of code we've done so far.

We started by constructing our struct, PerformanceInfo, which simply defined a single point of
data. In our case, we added two variables capturing a performance rating reached at a specific number
of cups of coffee. For our chart to be able to iterate over our data, we also needed to make sure we
conformed to Identifiable, requiring us to also add id as a variable.

We then created a simple array of PerformanceInfo that held our scientifically-accurate data.

Jumping to Chart, we simply passed in our data (dannyPerfInfo) as a parameter into a new
Chart. Like ForEach, Chart will then provide us with each point of data in the collection we
pass in as perfInfo:

Chart(dannyPerfInfo) { perfInfo in

We then define the type of chart we want to display by declaring a type of Mark. To create a bar chart,
we used BarMark (we’ll look into different types of marks in the Exploring chart marks and modifiers
recipe). For a BarMark to know its own value, we feed it both an x and y value, based on the data
we’ve already defined and fed into our chart:

BarMark(
    x: .value("Cups of Coffee", perfInfo.cups),
    y: .value("Rating", perfInfo.rating)
)

This is all it takes to get started on building a comprehensive chart using Swift Charts. While this
may seem basic, it doesn’t take much to customize and build on this chart to display even more data
in an understandable and visually pleasing way. We’ll dive deeper into this in the next few recipes.

See also

For more information on Swift Charts, refer to https://developer.apple.com/
documentation/charts.

Displaying multiple datasets
In this recipe, we’ll take the chart we just built and enhance it so we can add another set of coffee
performance rating data. Charts are great for comparing sets of data because a viewer can better see
how the sets align or differ, and by how much.

https://developer.apple.com/documentation/charts
https://developer.apple.com/documentation/charts

Displaying multiple datasets 375

Because Swift Charts streamlines building charts for all kinds of data and scenarios, it won’t take much to
add our new set. However, we may want to make a few modifications to make our data stand out clearly.

How to do it...

Let’s start where we left off in our previous project:

1.	 We’ll first start by adding another set of coffee performance data:

var johnPerfInfo: [PerformanceInfo] = [
    .init(cups: 0, rating: 1),
    .init(cups: 1, rating: 1),
    .init(cups: 2, rating: 1),
    .init(cups: 3, rating: 3),
    .init(cups: 4, rating: 5),
    .init(cups: 5, rating: 2),
    .init(cups: 6, rating: 0)
]

2.	 Let’s add our new set and join it with our old set in a tuple array:

let multiplePerformers = [
    (name: "Danny", info: dannyPerfInfo),
    (name: "John", info: johnPerfInfo)
]

3.	 Because the structure of our data has changed, we will instead feed Chart with multi-
plePerformers:

Chart (multiplePerformers, id: \.name) { performer in

4.	 Next, we’ll wrap BarMark with ForEach based on each perfomer.info:

ForEach(performer.info) { perfInfo in
    BarMark(
        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
}

Visualizing Data with Swift Charts376

It may be hard to notice, but our chart will now reflect our multiple datasets as visible in
Figure 12.2:

Figure 12.2 – A chart displaying multiple sets of data

5.	 We’ll add one modifier to BarMark to change the foreground color of each set:

.foregroundStyle(by: .value("Performer", performer.name))

Displaying multiple datasets 377

This is demonstrated in Figure 12.3.

Figure 12.3 – A chart with multiple datasets distinguished by color

6.	 We’ll add another modifier to offset each set’s mark, as reflected in Figure 12.4:

.position(by: .value("Performer", performer.name), axis:

.horizontal, span: .inset(15))

Visualizing Data with Swift Charts378

Figure 12.4 – A chart that displays multiple datasets, distinguished

by color, clearly set apart from each other

With all that in place, let’s break down the changes we just made to understand what just happened
a little more.

How it works...

First, we created our new dataset (this time for John) and joined it together with our old (Danny’s)
dataset. We used an array of tuples (with the name and info named parameters) to avoid having
to define and use a new type of struct. Tuples are great for when we don’t need to overelaborate data
but still need to set a relationship between them:

let multiplePerformers = [
    (name: "Danny", info: dannyPerfInfo),
    (name: "John", info: johnPerfInfo)
]

Exploring chart marks and modifiers 379

Charts already know how to take in data as a parameter, as we saw in the previous recipe. However,
our data has changed and now comprises a collection of a collection. To adjust for this, we made a few
changes so that Chart would understand this composition better and display our data appropriately.

First, we pass into Chart our highest-level collection, multiplePerformers. Because we made
a simple tuple array, we also needed to define which value in the tuple for Chart to iterate over (in
this case, name is our identifier).

To then have Chart iterate over our lower-level collection, we wrapped BarMark in ForEach,
which iterates over the information of the current performer:

ForEach(performer.info) { perfInfo in
    BarMark(
        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
}

Notice that in just about everything from perfInfo in through our entire BarMark implementation,
the code stayed the same from our previous recipe. That’s because we only needed to define to Chart
how our new higher-level collection worked in relation to the collection it was already familiar with.

The last thing we did was add two view modifiers that helped Chart better distinguish between the
two sets of data. It’s hard to tell, but without modifications, the sets are stacked on top of each other;
this doesn’t help anyone reading the chart compare the datasets.

By adding the foregroundStyle modifier, we distinguished the sets based on the performer’s
name. From there, Swift Charts automatically assigns different colors to each dataset and even provides
a legend at the bottom of our chart that defines which color is for which set.

Similarly, we added the position modifier so that we could unstack the sets and see them side by
side. Again, by defining the value to be based on the performer’s name, Swift Charts automatically
handles assigning span insets by set.

There are a ton of modifiers available just for Swift Charts to alter and better display any data we want
to show to our users. We will dive into more of these, as well as different chart marks, in the next recipe.

Exploring chart marks and modifiers
Now that we’ve accomplished plugging data into Swift Charts, it’s time to learn how we can alter
how our chart displays our data. The two most significant ways we can alter the look of our chart are
through marks and modifiers. When combined, there are countless ways we can alter the look (and
feel) of a chart.

Visualizing Data with Swift Charts380

How to do it...

We will start where we left off in our previous project:

1.	 In CoffeePerformance.swift, let’s add a small enum of the marks we will be exploring:

enum ChartMark {
    case bar, line, area, point, rect
}

2.	 In CoffeePerformance (the View itself), we’ll place a new State:

@State var selectedChartMark: ChartMark = .bar

3.	 We’re going to replace BarMark and expand it with a switch over all the different types of Mark:

switch selectedChartMark {
case .bar:
    BarMark(
        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
    .foregroundStyle(by: .value("Performer", performer.name))
    .position(by: .value("Performer", performer.name), axis:
.horizontal, span: .inset(15))
case .line:
    LineMark(
        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
    .foregroundStyle(by: .value("Performer", performer.name))
case .area:
    AreaMark(
        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
    .foregroundStyle(by: .value("Performer", performer.name))
    .position(by: .value("Performer", performer.name), axis:
.horizontal, span: .inset(15))
case .point:
    PointMark(
        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
    .foregroundStyle(by: .value("Performer", performer.name))
case .rect:
    RectangleMark(

Exploring chart marks and modifiers 381

        x: .value("Cups of Coffee", perfInfo.cups),
        y: .value("Rating", perfInfo.rating)
    )
    .foregroundStyle(by: .value("Performer", performer.name))
}

4.	 Lastly, in VStack containing the Text title and Chart, add Picker below it to switch
between the marks:

Picker("Chart Mark", selection: $selectedChartMark.animation(.
easeInOut)) {
    Text("Bar").tag(ChartMark.bar)
    Text("Line").tag(ChartMark.line)
    Text("Area").tag(ChartMark.area)
    Text("Point").tag(ChartMark.point)
    Text("Rectangle").tag(ChartMark.rect)
}
.pickerStyle(.segmented)

Now, we can easily switch and see our chart with different mark styles, as we see in Figure 12.5 and
Figure 12.6.

Figure 12.5 – Our Bar and Line charts with various types of marks

Visualizing Data with Swift Charts382

Figure 12.6 – Our Area, Point, and Rectangle charts with various types of marks

How it works...

Changing Mark of our chart is as easy as declaring a different Mark. It’s as simple as switching
BarMark for LineMark, or any of the other types! However, for this recipe, I thought it would be
fun to be able to easily switch between the marks.

To do that, we created a simple enum, ChartMark, that would be the basis for our ability to switch.
By declaring a State variable (selectedChartMark) as ChartMark, we can then inform
Chart what state to be in. With these in place, we took two more steps.

First, we created a switch statement that takes in selectedChartMark. For every case that
selectedChartMark can be, we then simply declared the corresponding Mark:

switch selectedChartMark {
case .bar:
    BarMark(
        ...
    )

Exploring chart marks and modifiers 383

case .line:
    LineMark(
        ...
    )
case .area:
    AreaMark(
        ...
    )
case .point:
    PointMark(
        ...
    )
case .rect:
    RectangleMark(
        ...
    )

}

Second, we added Picker with a list of Text and a corresponding tag for each type of Mark. This
gives us a simple UI control on the user interface to change Chart’s state in our app:

Picker("Chart Mark", selection: $selectedChartMark.animation(.
easeInOut)) {
    Text("Bar").tag(ChartMark.bar)
    ...
}
.pickerStyle(.segmented)

There’s more...

You may have noticed that some marks have a position modifier while others don’t. That’s OK! The
Bar and Area marks are better served with that modifier. In fact, every mark can benefit from
different types of modifiers.

For example, we can edit the Bar marks to have rounded edges, like in Figure 12.7, by adding the
following code:

BarMark(
     // Existing code
)
.cornerRadius(10)

Visualizing Data with Swift Charts384

Figure 12.7 – A Bar chart with the lineStyle and cornerRadius modifiers

Or, we can change how the Line marks appear, like in Figure 12.8, by adding the following code:

LineMark(
     // Existing code
)
.lineStyle(StrokeStyle(lineWidth: 10))

Exploring chart marks and modifiers 385

Figure 12.8 – A Line chart with the lineStyle and interpolationMethod modifiers

A chart with an Area mark can take advantage of a gradient style, like in Figure 12.9, by adding the
following code:

let curGradient = LinearGradient(
     gradient: Gradient(
          colors: [Color(.red), Color(.yellow)]
     ),
     startPoint: top,

Visualizing Data with Swift Charts386

     endPoint: .bottom
)

AreaMark(
     // Existing code
)
.foregroundStyle(curGradient)

Figure 12.9 – An Area chart with a gradient as a foregroundStyle

Exploring chart marks and modifiers 387

Or, we can change the Point marks into star symbols, like the ones in Figure 12.10, by adding the
following code:

PointMark(
     // Existing code
)
.symbol {
     Image(systemName: "star")
}

Figure 12.10 – A Point chart with a symbol modifier

Visualizing Data with Swift Charts388

Lastly, we can mix marks together by declaring multiple marks in a chart. As a surprise, I’ll introduce
one more Mark called RuleMark, and we’ll use it to highlight peak coffee performance. Add this
below our switch statement:

if(perfInfo.rating == 5) {
    RuleMark(
        x: .value("Max Rating", perfInfo.cups)
    )
    .foregroundStyle(Color.pink)
    .annotation(position: .overlay, alignment: .leading) {
        Text("Peak")
            .foregroundColor(Color.pink)
    }
}

As we can see in Figure 12.11, it really helps point out our peaks!

Figure 12.11 – A Line chart with an added RuleMark to highlight peak performance

There’s plenty of customization and flexibility when it comes to Swift Charts. I encourage you to
explore, bring in your own data, and have fun with charts!

Index

Symbols
3D models

using, with ARKit 358-362
@AppStorage 295
@EnvironmentObject 295
@FetchRequest 296
@GestureState 296
.previewDevice 307
.previewDisplayName 307

A
access control

used, for controlling access 89-102
advanced operators

reference link 170
using 166-170

anonymous functions 38
Application Programming

Interface (API) 195
ARKit 351

3D models, using with 358-362
surface detection with 352-355

arrays 56
data, ordering with 56-63

ARView 352
associated types

reference link 166
associativity 179
Async/Await 227

in Swift 247-250
reference link 250

Augmented Reality (AR) 351
AVFoundation

reference link 342

B
Bindings

reference link 296
Bools

using 7-14

C
CALayer

reference link 350
chart

building, with data 372-374
marks and modifiers, exploring 379-388

class objects 27, 28
closed sourced 185

Index390

closures 38, 239
functionality, passing around 38-44
reference link 44

Cocoa Touch 252
Combine 287, 315

in SwiftUI 309-314
reference link 314
versus Delegate pattern 326-328

concurrency
Dispatch queues, using for 228-233

conditional unwrapping 106-108
CoreML

reference link 338
used, for detecting objects in

real time 342-349
CoreML models

used, for detecting objects in
images 334-337

custom operators
creating 172-179
reference link 180

custom types
subscripts for 76-81

D
data

chart, building with 372-374
fetching, with URLSession 190-193
ordering, with arrays 56-63

data flow
in SwiftUI 309-314

data, in sets
containing 63-66
intersection method 67
membership comparison 68-70
subtracting method 68

symmetricDifference method 67
union method 66

dates
comparing, with Foundation 186-189

decision making
with if/else statement 104-106

declarative syntax 288-290
default parameter values 17
defer statement

used, for doing it later 136-142
Delegate pattern

versus Combine 326-328
dictionaries 56

key-value pairs, storing with 70-75
Dispatch framework 228
DispatchGroups

leveraging 233-238
dispatch groups documentation

reference link 239
Dispatch queues

using, for concurrency 228-233
dispatch queues documentation

reference link 233
Domain-Specific Language (DSL) 290

E
enumerations 112
enums 32

associated values 37
computed variables and methods 35, 36
example 32
reference link 37
values, enumerating 32-35

error handling 124
catch block, using 126-131
do block, using 126-131

Index 391

throw keyword, using 126-131
try keyword, using 124-126

eXtensible Markup Language (XML)
working with 208-225

F
fatalError

bailing out with 142-145
first in first out (FIFO) policy 232
floats

using 7-14
Flutter 290

reference link 290
force-unwrapped 74
for loops

used, for looping 118-121
Foundation framework 121, 185

dates, comparing with 186-189
frame 108
functionality

encapsulating, in object classes 19-27
functionality, with extensions

extending 86-89
function builders 290-295
functions 14

code, reusing 14-17
reference link 19

G
generics 59

using, with protocols 157-166
generics functions

using 154-157
working 155

generics types
reference link 154
using 148-154
working 152

Grand Central Dispatch (GCD) 227, 228
guard statement

upfront, checking with 131-136

I
if/else statement

conditional unwrapping 106-108
decisions, making with 104-106
enums, using with associated values 111
optional unwrapping, chaining 108-110

image capture app
building 330-334

images
CoreML models, used for

detecting objects 334-337
index 54
Instruments 341
Instruments Overview

reference link 342
integrated development

environment (IDE) 2
Interface Builder 254
interfaces

defining, with protocols 44-47
intersection method 67
ints

using 7-14
iOS 14 306
iOS app

building, with UIKit and
storyboards 252-274

Index392

J
JavaScript Object Notation (JSON) 311

working with 194-208
Jetpack Compose 290

reference link 290

K
key 70
Key-Value Observing (KVO) 83
key-value pairs

storing, with dictionaries 70-75

L
Live Preview window 307
looping

for loops, using for 118-121
while loops, using for 121-123

M
Model View Controller (MVC) 273
multiple datasets

displaying 374-379

N
name

modifying, with type alias 81-83
nested types

reference link 183

O
object classes

functionality, encapsulating 19-27
reference link 28

object-oriented programming (OOP) 19
objects

detecting, in real time with CoreML 342-349
detecting, in real time with Vision

framework 342-349
Observable Objects 318

using 319
working 321

opaque return types 290-295
operation class

implementing 239-247
Operation class documentation

reference link 247
operators

infix 176
postfix 176
prefix 176

OptionSet protocol
reference link 172

option sets
defining 170, 171
working 171

OR operation 170

P
parameter overloading 18, 19
person occlusion 356
playgrounds 191
precondition

bailing out with 142-145
Preview Provider 306-309
property changing notifications

obtaining, with property observers 83-85
property observers

used, for obtaining property
changing notifications 83-85

property wrappers 290-295

Index 393

protocol conformance 47, 48
protocol-oriented programming 326
protocols 44

generics, using with 157-166
reference link 49
using, to define interfaces 44-47

publishers 321-326
pure function 16

R
reactive programming (Rx) 309, 315
Reactive Streams

using 316, 317
working 318

Reality Composer Pro
using, for visionOS 362-369

RealityKit 355
Really Simple Syndication (RSS) 208
reference types 27
Resnet50 335
RxCocoa 309
RxSwift 309

S
SAX parser 211
set 63
SF Symbols 305

reference link 309
States

reference link 296
storyboards

used, for building iOS app 252-274
strings

using 7-14
structs

reference link 32
values, bundling 28-32

Structured Query Language
(SQL) syntax 290

subscribers 321-326
subscripts

for custom types 76-80
subtracting method 68
surface detection

with ARKit 352-355
Swift

access levels 89
code, writing 2-7

Swift Charts 371
SwiftUI 287

Combine 309-314
data flow 309-314
simple views, building 296-306

switch statements
cases, handling with 112-118

T
test-driven development (TDD) 280

stages 282
threads 228
tuples

variables, bundling into 52-55
type alias

name, modifying with 81-83
types

namespacing, providing 180-183
nesting 180-183

U
UIImagePickerController

reference link 334
UIKit 251

used, for building iOS app 252-274

Index394

UI testing
with XCUITest 282-286

UIViewRepresentable 352
reference link 309

Uniform Resource Locator (URL) 311
union method 66
unit and integration testing

with XCTest 274-282
Universal Scene Description

Zipped (USDZ) 362
upfront

checking, with guard statement 131-136
URLSession

data, fetching with 190-193
user interface (UI) 52

V
value 70
value-type semantics 30
variables

bundling, into tuples 52-55
video capture app

building 338-341
view controller object 254
views

building, in SwiftUI 296-306
Vision framework

used, for detecting objects in
real time 342-349

visionOS
Reality Composer Pro, using for 362-369

W
while loops

used, for looping 121-123
Worldwide Developer Conference

(WWDC) 1, 287

X
Xcode 1
Xcode IDE 251
XCTest 253

integration testing with 274-282
unit testing with 274-282

XCUITest 253
UI testing with 282-286

XOR operation 170

Y
YOLOv3 342

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The Ultimate iOS Interview Playbook

Avi Tsadok

ISBN: 978-1-80324-631-4

•	 Gain insights into how an interview process works

•	 Establish and capitalize on your iOS developer brand

•	 Easily solve general Swift language questions

•	 Solve questions on data structures and code management

•	 Prepare for questions involving primary frameworks such as UIKit, SwiftUI, and Combine
Core Data

•	 Identify the "red flags" in an interview and learn strategies to steer clear of them

https://packt.link/1803246316

397Other Books You May Enjoy

Test-Driven iOS Development with Swift

Dr. Dominik Hauser

ISBN: 978-1-80323-248-5

•	 Implement TDD in Swift application development

•	 Detect bugs before you run code using the TDD approach

•	 Use TDD to build models, view controllers, and views

•	 Test network code with asynchronous tests and stubs

•	 Write code that s a joy to read and maintain

•	 Design functional tests to suit your software requirements

•	 Discover scenarios where TDD should be applied and avoided

https://packt.link/180323248X

398

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Swift Cookbook, we’d love to hear your thoughts! If you purchased the book from
Amazon, please https://packt.link/r/1803239581 for this book and share your feedback
or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803239581

399

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835463260

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835463260

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Chapter 1: Swift Fundamentals
	Technical requirements
	Writing your first code in Swift
	Getting ready
	How to do it…
	There’s more…
	See also

	Using the basic types – strings, ints, floats, and booleans
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Reusing code in functions
	Getting ready
	How to do it…
	There’s more…
	See also

	Encapsulating functionality in object classes
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Bundling values into structs
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Enumerating values with enums
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Passing around functionality with closures
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using protocols to define interfaces
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 2: Mastering the Building Blocks
	Technical requirements
	Bundling variables into tuples
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Ordering your data with arrays
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Containing your data in sets
	Getting ready
	How to do it...
	How it works...
	See also

	Storing key-value pairs with dictionaries
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Subscripts for custom types
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Changing your name with a type alias
	Getting ready
	How to do it...
	There’s more...
	See also

	Getting property changing notifications using property observers
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Extending functionality with extensions
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Controlling access with access control
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Chapter 3: Data Wrangling with Swift
	Technical requirements
	Making decisions with if/else
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Handling all cases with switch
	Getting ready
	How to do it...
	How it works...
	See also

	Looping with for loops
	Getting ready
	How to do it...
	How it works...
	See also

	Looping with while loops
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Handling errors with try, throw, do, and catch
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Checking upfront with guard
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Doing it later with defer
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Bailing out with fatalError and precondition
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4: Generics, Operators, and Nested Types
	Technical requirements
	Using generics with types
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Using generics with functions
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Using generics with protocols
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Using advanced operators
	Getting ready
	How to do it...
	See also

	Defining option sets
	Getting ready
	How to do it...
	How it works...
	See also

	Creating custom operators
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Nesting types and namespacing
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Chapter 5: Beyond the Standard Library
	Technical requirements
	Comparing dates with Foundation
	Getting ready
	How to do it…
	How it works…
	See also

	Fetching data with URLSession
	Getting ready
	How to do it…
	How it works…
	See also

	Working with JSON
	Getting ready
	How to do it...
	There’s more...

	Working with XML
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Chapter 6: Understanding Concurrency
in Swift
	Technical requirements
	Getting ready
	How to do it...
	How it works...
	See also

	Leveraging DispatchGroups
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing the operation class
	Getting ready
	How to do it...
	How it works...
	See also

	Async/Await in Swift
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 7: Building iOS Apps with UIKit
	Technical requirements
	Building an iOS app using UIKit and storyboards
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Unit and integration testing with XCTest
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	UI testing with XCUITest
	Getting ready
	How to do it...
	There’s more...
	See also

	Chapter 8: Building iOS Apps with SwiftUI
	Technical requirements
	Declarative syntax
	Getting ready
	How to do it…
	How it works...
	There’s more...
	See also

	Function builders, property wrappers, and opaque return types
	Getting ready
	How to do it…
	There’s more...
	See also

	Building simple views in SwiftUI
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Combine and data flow in SwiftUI
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 9: Getting to Grips with Combine
	Technical requirements
	Using Reactive Streams
	Getting ready
	How to do it...
	How it works...
	See also

	Understanding Observable Objects
	How to do it...
	How it works...
	See also

	Understanding publishers and subscribers
	How to do it...
	How it works...
	See also

	Combine versus Delegate pattern
	How to do it...
	How it works...

	Chapter 10: Using CoreML and Vision
in Swift
	Technical requirements
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Using CoreML models to detect objects in images
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Building a video capture app
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Using CoreML and the Vision framework to detect objects in real time
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 11: Immersive Swift with ARKit and Augmented Reality
	Technical requirements
	Surface detection with ARKit
	Getting ready
	How to do it...
	How it works...
	There’s more…
	See also

	Using 3D models with ARKit
	Getting ready
	How to do it…
	How it works...
	There’s more…

	Using Reality Composer Pro for visionOS
	Getting ready
	How to do it...
	How it works...
	There’s more…
	See also

	Chapter 12: Visualizing Data with
Swift Charts
	Technical requirements
	Building a chart with data
	Getting ready
	How to do it…
	How it works...
	See also

	Displaying multiple datasets
	How to do it...
	How it works...

	Exploring chart marks and modifiers
	How to do it...
	How it works...
	There’s more...

	Index
	Other Books You May Enjoy

