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Introduction

This book is aimed at beginner-level learners of MATLAB/Simulink packages. It covers 

the essential, hands-on tools and functions of the MATLAB and Simulink packages and 

explains them via interactive examples and case studies. The main principle of the book 

is “learning by doing,” and it progresses from simple to complex. It contains dozens of 

solutions and simulation models via M/MLX files/scripts and Simulink models, which 

help you learn the programming and modeling essentials. Moreover, there are many 

recommendations for avoiding pitfalls related to programming and modeling aspects of 

the MATLAB/Simulink packages. This second edition of the book has been updated with 

many interesting examples using the MATLAB 2022b version. Moreover, any errors that 

slipped into the first edition have been corrected.

Beginning MATLAB and Simulink explains various practical issues of programming 

and modeling in parallel by comparing the programming tools of MATLAB and blocks 

of Simulink. After studying this book, you’ll be proficient at using the MATLAB/Simulink 

packages. You can apply the source code and models from the book’s examples as 

templates to your own projects in data science, numerical analysis, modeling and 

simulation, or engineering.

Essential learning outcomes of the book include the following:

• Getting started using MATLAB and Simulink

• Performing data analysis and visualization with MATLAB

• Programming essentials of MATLAB and core modeling aspects of 

Simulink and how to associate scripts and models of the MATLAB 

and Simulink packages

• Developing GUI models and stand-alone applications in MATLAB

• Working with integration and numerical root-finding methods in 

MATLAB and Simulink

• Solving differential equations in MATLAB and Simulink

• Applying MATLAB for data analysis and data science projects
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The book contains eight logically interlinked chapters.

• Chapter 1 is dedicated to introducing the MATLAB environment and 

creating MATLAB recognized data types, including numeric, cell, 

structure, character, logical, and table arrays and function handles.

• Chapter 2 covers most of the essential programming tools and 

functions, such as for ... end and while ... end loop operators, 

if...elseif...else...end condition operators, symbol referencing, 

and most common errors and warnings. It also covers M-file 

debugging tools and options in MATLAB. Moreover, this chapter 

addresses MATLAB-specific programming tools, including function 

files, function handles, symbol references, and display operators.

• Chapter 3 covers GUI development and how to write and edit GUI 

model callback functions via several simple but appealing examples, 

such as solving and plotting quadratic equations, computing, and 

plotting the sine cardinal function. This chapter also shows how to 

use and adjust various GUI dialog boxes.

• Chapter 4 addresses the issues of how to develop MEX files, C/C++ 

code, and stand-alone applications from the existing M-files and 

code written in C.

• Chapter 5 is dedicated to Simulink modeling essentials. The 

examples in this chapter cover matrix operations, computing 

function values, modeling mechanical engineering examples, and 

solving ordinary differential equations. Moreover, it covers issues 

around how to associate Simulink models with MATLAB scripts.

• Chapter 6 is devoted to data visualization issues, such as building 2D 

and 3D plots and animated plots in MATLAB. The chapter examples 

and code show how to build various appealing 2D and 3D plots using 

symbolic expressions and numerical values using plot, bar, errorbar, 

pie, pie3, mesh, contour, fplot, fsurf, etc. Moreover, there are several 

examples showing how to create animated 2D and 3D graphs.

• Chapter 7 is dedicated to matrix algebra and array operations. 

It addresses solving systems of linear equations, eigen-value 

problems, matrix decompositions, matrix and vector operations, 
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and conversions of arrays and strings via examples in MATLAB and 

Simulink in parallel. Moreover, it addresses a dozen different ways 

to solve system linear equations and polynomials symbolically and 

numerically with MATLAB and Simulink. It also shows a few different 

interesting examples of how to use the least squares method.

• Chapter 8 covers some essential aspects of solving ordinary 

differential equations analytically and numerically and using 

MATLAB’s built-in functions and commands, as well as Simulink 

modeling essentials in association with MATLAB. This chapter covers 

MATLAB functions such as dsolve, laplace, ilaplace, ode23, ode45, 

and ode113. And it demonstrates how to use the Simulink functions 

simset, sim, etc.

All of the source code (scripts, M/MLX/MAT files, Simulink models, SLX/MDL files, 

C code, MEX-files, and installation *.exe files) discussed in the book are available to 

readers via GitHub (github.com/apress/beginning-matlab-simulink-2e).

Note The scripts in the book may not always be the best solutions to the given 
problems, but this is done intentionally to emphasize methods used to improve 
them. in some other cases, it is found to be the most appropriate solution. should 
i spot better alternative solutions to exercises, i will publish them via Mathworks’ 
MaTlab Central user Community’s file exchange, via my file exchange link there 
(under my name).

No matter how hard we worked to proofread this book, it is inevitable that there will 

be some typographical errors that might slip through and appear in print. My apologies.

Sulaymon Eshkabilov

October 2022
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CHAPTER 1

Introduction to MATLAB
The MATLAB package is employed in a wide range of engineering and scientific 

computing applications and is associated with the dynamic system simulation package 

Simulink. MATLAB has remarkable strengths, such as user-friendly and intuitive 

programming syntaxes, high-quality numerical algorithms for various numerical 

analyses, powerful and easy-to-use graphics, simple command syntax to perform 

computations, and many add-ons such as toolboxes and real and complex vectors and 

matrices, including sparse matrices as fundamental data types.

MATLAB is used in many diverse areas, including simulation of various systems 

such as vehicle performance, mapping of the human genome, financial analysis in 

emerging economies, and image analysis and processing applications. In addition, it is 

used in microbiology applications for the diagnosis and treatment of small organisms, 

in dynamic simulations of large ships in down-scaled laboratory models, in simulations 

of next-generation network audio products, in teaching computer programming for 

undergraduates with real-time laboratory tests and measurements, and in image 

processing for underwater archaeology and geology.

In this chapter, we discuss some essential features of the graphical user interface 

(GUI) of MATLAB, including how to use the help tools and library sources, how to adjust 

the format options and accuracy settings, how to create various variables and variable 

structures, and how to employ M/MLX-editors to write and edit scripts and programs.

© Sulaymon Eshkabilov 2022 
S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_1

https://doi.org/10.1007/978-1-4842-8748-4_1
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 Menu Panel and Help

You can launch the MATLAB application in the Windows operating system by clicking 

the icon/shortcut on the desktop or via Start  All Programs . As MATLAB 

loads, the user’s last preserved files, entries, and commands appear, along with the menu 

bar and tools with the latest preferences. MATLAB’s GUI tools and windows are 

customizable. Users can easily change the preferences of the package according to their 

needs. Figure 1-1 shows the default main window of MATLAB 2022a. Note that the 

package’s GUI menu and tools have been changed over the years to make the package 

more user friendly and the tools more intuitive. The default window shown in Figure 1-1 

contains the main menu tools (1), the current directory indicator (2), the Command 

window (3), the Workspace window (4), the Current Folder window (5), and the 

Command History window (not shown here). These windows can be docked/undocked, 

opened in a separate window, closed, or removed from the main window, and they can 

be dragged from one pane to another and maximized or minimized.

Figure 1-1. Default MATLAB desktop window, MATLAB (R2022a)

The main components of the package’s GUI tools are as follows:

• The menus and toolbars are grouped into three tabs: HOME, PLOTS, 

and APPS (Figure 1-2). The HOME tab (1) shown in Figure 1-1 

contains all the main tools, for creating new files and variables, 

importing data, analyzing code, and more.

Chapter 1  IntroduCtIon to MatLaB
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• The Current Directory window (5) shown in Figure 1-1 is in the left 

pane by default. This window displays all the files in the current 

directory and folder directory.

• The Command window (3) shown in Figure 1-1 is in the central pane 

by default. All commands and (small) scripts/code can be entered 

directly after . By clicking  (see Figure 1-4) in the Command 

window, you can view all the built-in functions of the package and 

the installed MATLAB toolboxes. This option is available starting 

from the MATLAB R2008a version. All installed toolboxes of the 

package can be also viewed or accessed by clicking the APPS tab (see 

Figure 1-2), which is available only in later versions of MATLAB 

starting from the R2010a version.

• In the Workspace pane (4) in Figure 1-1 of the default desktop 

window, MATLAB shows all the current entries and saved variables 

during the session. These entries will be saved temporarily until the 

MATLAB application is closed. All essential attributes and properties 

of entries/variables (variable names, values, types) are displayed in 

the workspace.

It should be noted that the GUI and tools of MATLAB are updated with new releases 

of the package. For example, a new GUI tool called Clean Data, , which is used for to 

import timetable data, was introduced in MATLAB R2022a (Figure 1-2). 

Figure 1-2. MATLAB main menu: HOME, PLOTS, APPS (MATLAB R2022a)

Chapter 1  IntroduCtIon to MatLaB
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The help documentation, help libraries, and help tools are one of the strengths of 

the program. They can be accessed by using GUI tools and entries from the Command 

window. It is always useful to start using the package by exploring the options of 

the Getting Started documentation by clicking Getting Started above the Command 

window. This will lead you to the help library documentation of the package, as shown 

in Figure 1-3, that contains the most essential documentation of the package and its help 

tools, such as examples and syntaxes of the functions.

Figure 1-3. Getting started with MATLAB and the help library documentation of 
MATLAB2022b

Note Before discussing the help options, it is worth highlighting one important 
point concerning comments. In MatLaB, users can write all necessary hints and 
help remarks as comments within the M/MLX files and in the Command window as 
well. Comments need to start with a % sign. there are some other options to add 
comments that we will discuss later while writing M/MLX files.

Chapter 1  IntroduCtIon to MatLaB
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There are a few other hands-on ways to obtain help. For example, to get quick help 

on how to use MATLAB’s built-in function tools and commands including the user-

generated functions, in the Command window a user should type the following:

>> doc size;         % extended help on the command SIZE

>> helpwin size;     % help shown in a separate window on the command SIZE

>> help clear        % quick help on how to use the command CLEAR

>> help matrix;      % quick help how to use the command ISMATRIX

>> help +            % quick help on "+"

>> help size;        % quick help on SIZE

>> lookfor size       % extensive search for a list of functions and files 

containing the command SIZE.

Figure 1-4 and Figure 1-5 show some of the results of the quick and extensive help. 

In addition, the application offers broad library resources, product descriptions, video 

tutorials, and open public forums on the MATHWORKS website.

Figure 1-4. Getting help

Chapter 1  IntroduCtIon to MatLaB
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Figure 1-5. Extensive help obtained from the >> doc size command

You can search for help in MATLAB using the Command window and using the help, 

lookfor, doc, docsearch, and helpwin commands, for example.

• Quick help can be obtained from the Command window with the 

help command. Note that in this case, help hints not only from 

MATLAB’s built-in commands/functions but also within a user’s 

created/developed function files are displayed. This is a quick step to 

obtain help. Here’s an example to get help with a clock:

>> help clock

• Extensive help with examples will open in the help library window 

with the next commands only if such a function (e.g., clock) 

file exists:

Chapter 1  IntroduCtIon to MatLaB
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>> doc clock

>> docsearch clock

• An extended list of M-files containing a searched keyword can be 

seen in the Command window with the next help command. Note 

that this option is much slower than the other two search options due 

to an exhaustive search for a keyword.

>> lookfor clock

• A function file explanation can be visualized in the help library 

by using the following command only if such a function file (e.g., 

clock) exists:

>> helpwin clock

• All extended help tips, examples, and command syntaxes can 

be viewed from the Help Library (the help browser displayed in 

Figure 1-3) that can be accessed by clicking Help menu options.

• The F1 functional key on the keyboard can be used to open the help 

browser and help documentation.

• By clicking the Help menu in the Main Menu panel, a user can get 

access to various help resources from MathWorks, such as Help 

Library resources, web resources, demo examples, updates, trials, 

and so forth.

There are numerous hands-on help resources available online, such as the 

MathWorks website, academia and the user community’s published scripts and file 

exchanges [1], and the MATLAB answers forum [2], where users and developers post 

their questions and seek answers or conversely post their answers to posted questions. 

Moreover, there are function files, Simulink models, online forums, tutorials of 

numerous universities [3], and personal web pages of professors and researchers [4], just 

to name a few.

Chapter 1  IntroduCtIon to MatLaB
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 The MATLAB Environment
Let’s start working in the MATLAB environment by making some changes to its layout 

and preferences. We’ll use the Layout, Preferences, and Set Path tools located on the 

HOME tab. To make changes in the layout (Figure 1-6) from the HOME tab’s main menu, 

a user has to click the Layout drop-down option (1), and a whole range of options of 

using different windows will be available to choose from. The Desktop window consists 

of Command, Command History, Current Directory, and Workspace windows if there 

are check marks before those window names. You can separate or drag any of these 

windows by clicking the title bar and dragging the window to the new location.

Figure 1-6. Changes in Layout (1) and Preferences (2)

To make changes to Preferences, you either click  on the main menu or 

type the following command in the Command window and press Enter:

>> preferences

Subsequently, the Preferences window (2) shown in Figure 1-6 will pop up. The 

directories/paths to the current directory can be altered, and new paths (3) can be added 

using the  GUI button in the HOME pane, as shown in Figure 1-7. 

Chapter 1  IntroduCtIon to MatLaB
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You can modify many options and tools including the GUI quick access tools and 

Editor/Command window displays from the Preferences window. For instance, you 

can adjust the fonts (size, type, color) of the Editor, Command, Workspace, Figure, and 

Command History windows and set up keyboard shortcuts, programming tools, and 

many more. To display the data tips and highlight the current line in the Editor window, 

you choose Preferences ➤ Editor/Debugger ➤ Display and then select Enable Data-Tips 

in Edit mode. In addition, many tools can be added to the main menu as shortcuts. Some 

of these key customizations in Preferences can also be attained by issuing commands 

from the Command window.

 Working in the Command Window
Your work in MATLAB generally starts in the Command window, but before you type any 

command, it is worth noting the current directory. The current directory address can be 

viewed directly from the main window (see Figure 1-8) or by typing this command in the 

Command window:

>> pwd

Figure 1-7. Setting a path (3), adding a folder, and removing a path

Chapter 1  IntroduCtIon to MatLaB
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If required, you can change the current directory using the >> cd command. Here’s 

an example:

>> cd C:\Users\David

Or you can click the path’s directory (Figure 1-8) (C: ➤ Users ➤ David).

In addition, you can add a few new paths to work within the working directory; 

you do this by using the next command, for instance, to add a path to an already 

existing folder:

>> addpath('C:\Users\David\Documents\MATLAB');

The command addpath() might be also helpful within scripts to read or load data 

from a specific folder or directory. For short commands and calculations or to view 

attributes of the available variables in the workspace and files in the current directory, 

you usually use the Command window. However, for a series of commands and longer 

scripts, it is much better and more efficient to use script editors, such as M-file and MLX-

file editors.

The MATLAB application has a few files that can be recognized with their extensions. 

They are the M, MLX, MAT, BI, and FIG formats. M-files are used to write programs/

scripts/function files, and files (Live M-files) are used to write programs/scripts/function 

files and see the computation results within the MLX file Editor window. MAT files are 

used to save all types of variables available in the workspace and can be accessed easily 

from M/MLX-files and the Command window. Among these files, BI files are used for the 

built-in files of MATLAB, and FIG files are used to save figure windows in MATLAB. In 

addition, the Simulink application has three types of files: MDL, SLX, and SLXC.  

Figure 1-8. Viewing and changing the current working directory
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They are used to build and simulate Simulink models and can also be recalled/simulated 

from MATLAB without opening them. I will discuss all the essential features of these files 

and how to use them in later chapters.

While using the Command window for simple calculations and data generation 

or processing, you can press the up-arrow key to avoid retyping the previously 

entered commands and entries. For example, if you entered the following in the 

Command window:

>> A1 = [1, 2, 4, -5, 6]; B = A+2

and then needed to make changes to these entries, you can use the up-arrow (↑) key 

after typing >>A and MATLAB will automatically recall the previous entry.

 Command Window and Variables
MATLAB is case-sensitive, and all its built-in commands are lowercase. When you 

perform computations or evaluations, you call, assign, or declare a name to the result of 

computation. The assigned name is the variable name. The result of your computations 

are saved in the MATLAB workspace under your given variable names. For example, >> 

A =13; B = A*2 means that the variable called A is equal to 13 and the variable called B 

is equal to 2 multiplied by A.

 Using Variables
Variable names must start with a letter and can be combined with any integer numbers, 

such as 0, 1, 2, ... 9, and the underscore (_) sign. No other symbols can be used for 

variable names. The maximum length of the variable name can be 63 characters in 

total. For example, if there are two variables with the same variable names in the 

first 63 characters, MATLAB cannot differentiate them any variable. MATLAB treats 

the variables a and A as two different variables because of their ANSI/ASCII symbol 

conversions. Now let’s get started working in the Command window by entering and 

assigning variable names, performing simple some basic arithmetic operations, and 

making changes in the output data formats.

>> A=3; B=-2; C=1/2; D = -1.5; ABCD=A^2+B/C+D;

>> ABCD               % ";" is missed and the content of the variable ABCD 

is displayed
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ABCD =

  3.5000

>> sqrt(ABCD)  % if a variable name is not assigned, "ans" is a default 

name by MATLAB

ans =

    1.8708

>> ans+1  % if a variable name is not assigned, "ans" will substitute the 

previous "ans".

ans =

   2.8708

As mentioned, the variable names cannot contain any symbols except for the 

underscore and cannot start with numbers or symbols. Here are a few examples of 

incorrect variable names starting with a number or a symbol and containing forbidden 

symbols:

>> % Wrong variable names

Did you mean:

>> 3A=2.8708

 3A=2.8708

  ↑
Invalid expression. Check for missing multiplication operator, missing or 

unbalanced delimiters, or other syntax error. To construct matrices, use 

brackets instead of parentheses.

Did you mean:

>> @A=2.8708

 @A=2.8708

   ↑
Incorrect use of '=' operator. Assign a value to a variable using '=' and 

compare values for equality using '=='.

>> A$=2.8708

 A$=2.8708

  ↑
Error: Invalid text character. Check for unsupported symbol, invisible 

character, or pasting of non-ASCII characters.

>> A#B=2.8708
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 A#B=2.8708

  ↑
Error: Invalid text character. Check for unsupported symbol, invisible 

character, or pasting of non-ASCII characters.

The results of the user entries are displayed in the Command window and can be 

altered using these display format options: format long, format short, format long g, 

format bank, format hexadecimal, format rational, etc. Here are some examples for 

format options. When you change the display format types, the actual variable values do 

not change.

>> A=3; B=-2; C=1/2; D = -1.5;

>> ABCD=A^2+B/C+D;

>> format bank

>> ABCD

ABCD =

          3.50

>> format long eng

>> ABCD

ABCD =

    3.50000000000000e+000

>> sqrt(ABCD)

ans =

    1.87082869338697e+000

>> format short

>> sqrt(ABCD)

ans =

    1.8708

>> format bank

>> sqrt(ABCD)

ans =

          1.87

>> format long eng

>> sqrt(ABCD)

ans =

    1.87082869338697e+000
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>> format compact

>> sqrt(ABCD)

ans =

    1.87082869338697e+000

>> format rat

>> sqrt(ABCD)

ans =

    1738/929

>> format hex

>> sqrt(ABCD)

ans =

   3ffdeeea11683f49

Note MatLaB is case sensitive, and thus, it recognizes the variables called a and 
A as two different variables.

After entering one or two or more starting letters in the variable names or built-in 

commands/function names in the Command window, you can use the Tab key from the 

keyboard and then all available commands/functions including your developed function 

files. For example, if you typed >> AB and then pressed the Tab key, the rest of the ABCD 

variable calculation expression would appear as an option.

Another useful feature of the Command window is using the keyboard’s up-arrow 

(↑) key to recall previously typed variables or commands. You simply type a few starting 

letters of any previously typed commands or function names and then press the up-

arrow, as in (↑) >> f↑, that recalls the previously typed command: >> format long. 

Moreover, the up-arrow (↑) key can be associated with the Tab key to recall previously 

entered commands in the Command window.

The values and attributes of all entered variables in the Command window will be 

saved in the workspace until a user cleans up the workspace by deleting the variables 

with the command clear or clearvars or clear all or by using the right and left 

mouse button options by selecting the variables and deleting them. In addition, all of 

the variables and their attributes are saved in the workspace until the MATLAB package 

is closed.

There are three common commands for housekeeping in MATLAB.
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• clc: For cleaning up the Command window and starting a blank 

Command window

• clear and clearvars: For removing all variables saved in the 

workspace

• clear all: For removing all variables and temporarily compiled and 

saved machine codes of M-files, breakpoints, and debug settings

All of these commands can be also used with M-files and MLX-files. It must be noted 

that the command clear all is not recommended to use within M-files and MLX-

files unless it is necessary, because it will decrease the efficiency of code/scripts and 

unwanted behaviors of our created M-files when you declare to the command clear 

global. Let’s look at some ways to employ these commands efficiently.

>> A=3; B=-2; C=1/2; D = -1.5; ABCD=A^2+B/C+D;

>>  clear               % Removes all of the entries in the workspace and 

workspace becomes all blank

>> clearvars          % The same as "clear"

>> clear variables    % The same as "clearvars"

>>  clear all           % The same as "clear" and also removes already 

compiled codes as well

>> clear  A B C D   % Removes variables: A B C D and leaves ABCD untouched

>> A=3; B=-2; C=1/2; D = -1.5; ABCD=A^2+B/C+D;

>> clearvars  –except A B C   % Removes all variables except for: A B C

MATLAB can use a wildcard asterisk (*) for variables and filenames. For example, 

to remove all variables whose names start with the letter A, then you would use the 

following command:

>> A=3; B=-2; C=1/2; D = -1.5; ABC=A^2+B/C; ABC=A^2+B*C+D;

>> clear  A*         % Removes all variables starting with A, i.e. A, ABC, 

ABCD are removed

>> clearvars A*  % The same as: clear A*

All entered and saved variable names can be viewed from the Workspace window by 

typing the who or whos command. Here’s an example:

 >> A=3; B=-2; C=1/2; D = -1.5; ABCD=A^2+B/C+D; ABC=A^2+B*C;

>> who                           % Variable names
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  A  B  C  D  ABCD  ABC

>> whos                        % Variable names including their attributes

Name      Size            Bytes  Class     Attributes

  A       1x1               8  double

  ABC     1x1               8  double

  ABCD    1x1               8  double

  B       1x1               8  double

  C       1x1               8  double

  D       1x1               8  double

From these examples, it is clear that MATLAB reads every entry as an array/matrix. 

For example, a scalar is read by MATLAB as an array of size 1-by-1. This attribute 

of MATLAB is logically linked with its name MATrix LABoratory. MATLAB’s default 

storage (memory allocation) is double precision, which is the maximum available space 

allocated. However, for memory efficiency and faster calculation purposes, other storage 

formats can be also used. MATLAB supports single precision or integer type int8…64 or 

uint8…64 formats. Table 1-1 shows how much data can be saved in every storage class 

type and what conversion function is used in MATLAB for each type.

Note MatLaB’s default storage type is a double. however, that can be changed 
into single precision or integer types such as int8…64 or uint8…uint64 by 
specifying or converting the values of variables/data.

Table 1-1. Data Storage Format Types in MATLAB
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When you have numerical data in a floating-point format, the double precision 

storage gives you the largest storage space for higher accuracy. Double precision 

can save up to 16 decimal digits. The double precision is the default storage format 

in MATLAB.

The single precision storage for floating-point data is more memory efficient and less 

accurate than the double precision. If only integers are used in your calculations or data 

processing, then it is more appropriate to use int8...int64 or uint8…uint64 depending on 

the largest value of your data. Here are some examples of how to specify the storage type 

while saving the values of the declared variables:

>> F01=127;Fint_08=int8(F01), Fnew1 = Fint_08+1

Fint_08 =

 int8

 127

Fnew =

 int8

 127

>> F16=65535; Fint_16=uint16(F16), Fnew2 = Fint_16+1

Fint_16 =

 uint16

 65535

Fnew2 =

 uint16

 65535

In calculations of the variables Fnew1 and Fnew2 from the int8- and uint16-formatted 

variable values, the allocated storage space (i.e., for the int8 maximum allocated storage 

space is 127 = 27 − 1 and for uint16 it is 65535 = 216 − 1) cannot accommodate any more 

values. Therefore, these errors in calculations have taken place. Note that in such cases 

MATLAB does not show an error. Figure 1-9 shows all data storage types and data 

formats supported in MATLAB.
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Figure 1-9. Data storage options in MATLAB

The Command History window is a good way to review all of the entries that will be 

kept unless you delete them. You can also change settings in the Preferences window to 

clear the history of entries after ending the session.

Finally, you can exit from MATLAB or quit the work session via one of these 

commands in the Command window:

>> exit

>> quit

Or press Ctrl+Q to quit.
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An alternative is to click the X in the upper-right corner of the main window. This will 

close the whole package.

 When to Use the Command Window
Use the Command window in these instances:

 – To perform short calculations

 – To view error and warning messages from the typed-in commands or 

after executing M-file and MLX-file and SLX/MDL Simulink models

 – To view attributes of variables saved in the workspace and files in the 

current directory

 – To view contents of the MATLAB-compatible files

 – To execute MATLAB files, such as M-files, MLX-files, SLX/MDL-files, 

and MAT-files

 – To get hands-on and quick help on the syntaxes of MATLAB com-

mands/functions and user-created function files

 – To adjust display formats of numerical data

 – To add/remove a path/directory

 – To create/delete or save variables and files

Let’s look at several examples to show other operations you can perform in the 

Command window.

• To view and analyze some common errors and interpret the error 

messages, use this:

>> F16=65535; Fint_16=uint16(F16); Fnew2 = Fint_16+1;

>> Fnew+2 % The variable Fnew does not exist in the workspace

Undefined function or variable 'Fnew'.

>> clar F16 % Typo error: "clar" instead of "clear"

Undefined function or variable 'clar'.

>> CLear % Typo error: "CLear" instead of "clear". Note: MATLAB case-

sensitive
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Undefined function or variable 'CLear'.

Did you mean:

>> clear % MATLAB automatically suggests closest command's correct syntax

>> B=-2; C=1/2; BC=B/.C; % Illegal operation: B/.C instead of B/C;

 B=-2; C=1/2; BC=B/.C;

                   ↑
Error: Unexpected MATLAB operator.

>> B=-2; C=1/2; BC=B /*C; % Illegal operation: B/*C instead of B/C;

 B=-2; C=1/2; BC=B /*C;

                    ↑
Error: Invalid use of operator.

>> % Let's create a two-row matrix containing two elements, viz. B, C in 

the     >> % first row and F16 in the second row.

>> BCF = [B, C; F16] % Number of elements in row 1 does not match with the 

ones in row 2

Error using vertcat

Dimensions of arrays being concatenated are not consistent.

>> % Let's try to create a row matrix with elements separated with "," 

and   >> % space and "."

>> BCF = [B, C. F16] % Error is a misused "." instead of "," but not dot 

indexing as shown

Dot indexing is not supported for variables of this type.

>> BCF = [B, C, F16] % This is the anticipated correct command.

• To save the variables saved in the Workspace window in a *.mat file, 

use this:

>> save MYdata.mat % Saves all variables residing in the workspace in 

MYdata.mat file

>> save('MYdata.mat') % The same as above

>> save MYdata.mat F16 Fnew2 % Saves the variables F16, Fnew2 in MYdata.

mat file

>> save('MYdata.mat', 'F16 ', 'Fnew2 ') % The same as above

>> save MYdata.mat F* % Saves all variables whose name starts with F (in 

the workspace)

Chapter 1  IntroduCtIon to MatLaB



21

• To obtain quick help, use this:

>> help format

 format Set output format.

 format with no inputs sets the output format to the default appropriate

 for the class of the variable. For float variables, the default is

 format SHORT. ...

>> help dir

 dir List directory.

 dir directory_name lists the files in a directory. Pathnames and

 asterisk wildcards may be used. A single asterisk in the path touching

>> help what

 what List MATLAB-specific files in directory.

 The command what, by itself, lists the MATLAB specific files found ...

>> help which

--- help for which ---

 which Locate functions and files.

 which ITEM displays the full path for ITEM. ITEM can include a partial

 path, complete path, relative path, or no path. If ITEM includes a

 partial path or no path, ...

• To view MATLAB-compatible files, use this:

>> type QQQ.txt % Note: the file QQQ.txt was available in the current 

directory

CY  bBb   88

AH  AAAA+ 98

CWW AAAA+ 98

...

>> type MYfile.mlx % Note: the file MYfile.mlx was available in the current 

directory

N=13;

M=randi(N,9);

stairs(M, 'bd-')
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>> type myfun.m % Note: the file myfun.m was available in the current 

directory

function f=myfun(x)

f=[2*x(1)-x(2)-exp(-x(1));

 -x(1)+2*x(2)-exp(-x(2))];

end

• To create, open, and execute the MATLAB files, such as M-files, MLX-

files, MDL/MLX-files, and MAT-files, use this:

>> edit TRY1.m % To create a new M-file called TRY1.mlx

>> edit MYfile.mlx % To create a new MLX-file called MYfile.mlx

>> open('TRY1.m') % To open the file if it is residing in the current 

directory

>> run('\...\TRY1.m') % Directory and a file name is needed, if it is 

outside of the current dir.

>> TRY1 % To execute the file if it is residing in the current directory

>> open('MYfile.mlx') % To open the file if it is residing in the current 

directory

>> MYfile % To execute the file if it is residing in the current directory

>> load MYdata.mat % Load contents of MYdata.mat (existing in the current 

directory)

>> load('MYdata.mat') % The same as above

• To delete any files in the current directory or variables residing in the 

workspace, use the following:

Warning Be careful when using the delete command because it deletes files 
that cannot be recovered.

>> delete TRY1.m % Deletes the file TRY1.m residing in the current 

directory

>> delete MYfile.mlx % Deletes the file MYfile.mlx residing in the current 

directory
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>> delete QQQ.txt % Deletes the file QQQ.txt residing in the current 

directory

>> delete *.txt % Deletes all *.txt files in the current directory

>> delete *.mlx % Deletes all *.mlx files in the current directory

>> delete DA*.txt % Deletes all *.txt files whose name starts with DA...

>> delete *.asv % Deletes all *.asv files (autosave) of MATLAB in the 

current directory

• To view the current directory, change a directory, create a new 

directory, and remove a directory from the MATLAB path, use this:

>> MD = pwd % Shows the current directory and assigns to a character type 

of variable: MD

>> cd C:\Users\sulaymon.eshkabilov\Documents\MATLAB % Change to this 

directory

>> cd('C:\Users\sulaymon.eshkabilov\Documents\MATLAB') % The same as above

>> mkdir MYBook % Creates a new folder (directory) inside the current 

directory

>> mkdir('MYBook') % The same as above

>> mkdir c:\Users\sulaymon.eshkabilov\BOOK % The same as above with a 

full path

>> addpath C:\Documents % Adds this path (C:\Documents) to the 

MATLAB's search

>> addpath('C:\Documents') % The same as above

>> rmdir('MYtask') % Removes the directory (folder: MYtask) including its 

contents from the hard disk

>> rmdir c:\Users\sulaymon.eshkabilov\TASK % Removes the directory: TASK

Note MatLaB supports wildcards (via the asterisk, *) when deleting and saving 
files and variables in the current directory and workspace. For example, >> 
delete M*.mat deletes all *.mat files whose name starts with M. >> save 
MYdata.mat B* saves all variables whose name starts with B. >> clearvars 
A* clears all variables whose name starts with a.
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Many of the operations performed in the Command window, such as performing 

calculations and analyses and viewing variables or file contents, can be also done by 

other ways. For example, most of the previously listed operations carried out in the 

Command window can be also done via GUI tools, such as creating new variables 

 or deleting them  or opening them . 

Similarly, creating any MATLAB files with  or M-files with  or opening existing 

MATLAB files with  GUI tools can be attained; and deleting the files can be done via 

right and left mouse button options, which is standard for Windows file manipulation 

operations. Viewing the current directory or changing it can be done also 

with.  

One of the most essential functions of the Command window that cannot be done 

easily with GUI tools or other options is to view error and warning messages obtained 

while and after executing M-files, MLX-files, and MDL/SLX-files. This is essential for 

good programming. Another good use of the Command window is to obtain quick help 

on the syntax of MATLAB commands/functions.

 Different Variables and Data Sets in MATLAB
MATLAB supports a few different data types, which can be numeric, character, logical, 

table, cell, structure, and function handle. The flowchart in Figure 1-10 shows the 

hierarchy of all data types that are supported in MATLAB and can be used for data 

storage. In the flow, there is one point worth mentioning, which is that function handles 

can also take vectors (row or column vectors) as well as scalar numbers.

As stated, MATLAB reads every entry (numerical and character types) as an array, 

and in the case of a storage type that is not specified, the default storage type is always 

double. Let’s look at several examples of how to generate various data types supported 

and recognized in MATLAB. We’ll work in the following order:

• Numerical data

• Logical arrays

• Character arrays/variables

• Table arrays
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• Cell arrays

• Structure arrays

• Function handles

• Classes and graphic handles

While demonstrating how to generate these arrays, all of the created variable/arrays 

types will be preserved up until the end of this section. Therefore, all variables/arrays 

are created once and preserved from all examples. Note that in some of the examples to 

generate random matrices, we employ random number generators of MATLAB, which 

will create different random numbers every time they are called. However, to have 

consistent random values for reproducibility purposes for variables and arrays, we set 

up the seed value of the random number generator: rng(). With the fixed seed value, 

the random number generators (rand(), randi(), randn(), and so forth) will generate 

permanent/fixed random values every time they are called.

Figure 1-10. Types of data (array) sets supported in MATLAB
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 Numerical Data/Arrays
There are many different ways to create and generate numerical arrays. For example, 

you can use direct entries from the Command window by typing all numerical values 

of an array and generating numerical entries using built-in functions and commands. 

Also, data can be imported from another file (.mat, .txt, .dat, .xls, .xlsx, .csv, 

.jpeg, .tiff, .png, .pdf, .au, etc.) or generated using existing data or imported data 

in MATLAB. Data can also be computed using specific mathematical expressions and 

arithmetic/matrix operations.

>> format short       % To display numerical elements of arrays in a 

short format

>> A = 2; B = -3.25; C=(A+B)^2; % Entries and arithmetic operations.

>> ABC=[A, B, C] % Use of Existing Data: 1-by-3 array

ABC =

    2.0000   -3.2500    1.5625

>> Drow=[1, 2, 3, -4] % Just entry: row array. Comma "," element 

separator in it.

Drow =

     1     2     3    -4

>> Erow=[-2 -1 0 Drow] % Entry and Use of existing data: Row Array. Space 

is a separator.

Erow =

    -2    -1     0     1     2     3    -4

>> Fcol=[1; 2; 3; -4] % Entry: Column Array. Elements are separated 

with ";".

Fcol =

     1

     2

     3

    -4

>> DE = [2*Drow; (3/4)*Drow] % Use of Existing Data and arithmetic 

operations: 2-by-4 array

DE =

    2.0000    4.0000    6.0000   -8.0000

    0.7500    1.5000    2.2500   -3.0000
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An alternative way of generating numerical arrays/data is to employ the built-in 

array generator functions of MATLAB.

>> Aone=ones(2, 6) % 2-by-6 array generated with elements of 1

Aone =

     1     1     1     1     1     1

     1     1     1     1     1     1

>> Bzero=zeros(5, 6) % 5-by-6 array generated with elements of 0

Bzero =

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

>> Ceye=eye(6) % 6-by-6 eye matrix array generated

Ceye =

 1.00 0 0 0 0 0

 0 1.00 0 0 0 0

 0 0 1.00 0 0 0

 0 0 0 1.00 0 0

 0 0 0 0 1.00 0

 0 0 0 0 0 1.00

>> Seed = 1; rng(Seed);    % Seed value of the random number generator 

rng() is set up in order to              % generate fixed random numbers

>> Dr1 =rand(9, 5)     % 9-by-5 array of uniform distributed random numbers 

generated

Dr1 =

    0.4170    0.5388    0.1404    0.0391    0.6865

    0.7203    0.4192    0.1981    0.1698    0.8346

    0.0001    0.6852    0.8007    0.8781    0.0183

    0.3023    0.2045    0.9683    0.0983    0.7501

    0.1468    0.8781    0.3134    0.4211    0.9889

    0.0923    0.0274    0.6923    0.9579    0.7482

    0.1863    0.6705    0.8764    0.5332    0.2804

    0.3456    0.4173    0.8946    0.6919    0.7893

    0.3968    0.5587    0.0850    0.3155    0.1032
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>> Dr2 =randn(4, 6) % 4-by-6 array of normally distributed random numbers 

generated

Dr2 =

   -0.1551   -1.1714   -0.5581   -2.0187   -0.4852    0.0407

    0.6121   -0.6856   -0.0285    0.1997    0.5943    0.2830

   -1.0443    0.9262   -1.4763    0.4259   -0.2765    0.0636

   -0.3456   -1.4817    0.2589   -1.2700   -1.8576    0.4334

>> Dr3 =randi([-5, 5], 5,5) % 5-by-5 array of integer numbers ranging 

between -5 ... 5

>> Dr3 =randi([-5, 5], 5,5)

Dr3 =

     1    -1     2    -3     1

     4    -4     4     4    -4

    -4     5     1    -1     5

    -4    -2     3     5    -1

     3     3    -2     2     1

Note that I have set up the seed value of the random number generator to generate 

the consistent values from the random number generators, such as rand(), randn(), and 

randi().

Moreover, there are many other standard matrix/array generators built into 

MATLAB, e.g., pascal(), krylov(), leslie(), cauchy(), clement(), lesp(), poisson(), 

neumann(), etc. To get some help on syntaxes of these array generators, type in the 

Command window:

>> help gallery

>> doc gallery

It must be noted that all these generated numerical entries/arrays are saved 

in double precision format. Changing the storage format type of any these created 

variables’ data is quite simple and straightforward.

>> Dr3new=int8(Dr3) % Dr3new is Saved in int8

Dr3new =

  5×5 int8 matrix

    1   -1    2   -3    1

    4   -4    4    4   -4
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   -4    5    1   -1    5

   -4   -2    3    5   -1

    3    3   -2    2    1

>> Dr2new=single(Dr3) % Dr2new is Saved in a single precision

Dr2new =

  5×5 single matrix

     1    -1     2    -3     1

     4    -4     4     4    -4

    -4     5     1    -1     5

    -4    -2     3     5    -1

     3     3    -2     2     1

>> A1New=uint8(Aone) % A1new is Saved in uint8

A1New =

  2×6 uint8 matrix

   1   1   1   1   1   1

   1   1   1   1   1   1

Now it is time to check the attributes/properties of the numerical entries created in 

the Command window and saved in the workspace. You can view them by typing the 

command whos command or viewing directly from the Workspace window, as shown in 

Figure 1-11.

Figure 1-11. Created numerical data types and variables residing in the 
workspace
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The most used data type in MATLAB is the numerical array. Therefore, it is essential 

to learn how to work with arrays of different sizes (many rows and many columns). 

To work with arrays, you should understand how to properly locate addresses of array 

elements, rows, and columns. Arrays are read as rows by columns. For example, >> 

DE(2, 1) means we are taking the element of DE residing on a second row and first 

column, i.e., 0.7500. As another example, >> DE(1, 4) means we have selected the 

element of DE residing on a first row and fourth columns, i.e., -8.

>> DE

DE =

    2.0000    4.0000    6.0000   -8.0000

    0.7500    1.5000    2.2500   -3.0000

>> DE(2,1)

ans =

    0.7500

>> DE(1,4)

ans =

    -8

Thus, an element in any array can be located with respect to the row and column. 

The colon operator (:) is very helpful to select all elements along rows or columns or 

both. For example, >> DE(1, :) selects all elements residing on the first row of DE, i.e., 

[2, 4, 6 -8], and DE(:, 3 ) selects all elements residing on the third column of DE, i.e., 

[6; 2.25].

>> DE(1, :)

ans =

     2     4     6    -8

>> DE(:, 3)

ans =

    6.0000

    2.2500

You can use the colon (:) operator to select all elements of matrices or arrays. For 

example, >> E(:,:) is equivalent to DE. The end keyword enables you to select elements 

up to the last one. For example, >> DE(1, 1:end) is equivalent to >> DE(1, :).
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>> DE(1, 1:end)

ans =

     2     4     6    -8

>> DE(1, :)

ans =

     2     4     6    -8

Another example of how to select elements of matrices is Dr3new; the element 

residing in a second row and first column is 0. An alternative way of locating any element 

in any given array is the order count. Elements in arrays are counted on a column 

basis. For example, the order of the element number 2 in Dr3new will be 0, or element 

number 6 in Dr3new is 2. Note that I have used the random number generator to create 

Dr3new, and thus, your created Dr3new will differ. Again, let’s look at several examples to 

manipulate arrays based on the previously created arrays, namely, Dr3new and Dr1.

>> Dr3new

Dr3new =

  5×5 int8 matrix

    3   -5    0    1   -3

    3   -5    1    5    3

    5   -5    4    1   -1

    2   -3   -4   -5    4

   -4    4   -2    3    3

>> Dr3new(2,1)

ans =

  int8

   3

>>Dr3new(2)

  int8

   3

>> Dr3new(6)

  int8

   -5

>>Dr3new(2, :) = 0 % This makes a second row of elements equal to 0

  5×5 int8 matrix

    3   -5    0    1   -3

    0    0    0    0    0
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    5   -5    4    1   -1

    2   -3   -4   -5    4

   -4    4   -2    3    3

>> Dr3new(:,5)=1 % This makes fifth column of elements equal to 1

Dr3new =

  5×5 int8 matrix

    3   -5    0    1    1

    0    0    0    0    1

    5   -5    4    1    1

    2   -3   -4   -5    1

   -4    4   -2    3    1

>> Dr3new(end,:)=-5 % This makes the last row of elements equal to -5

Dr3new =

  5×5 int8 matrix

    3   -5    0    1    1

    0    0    0    0    1

    5   -5    4    1    1

    2   -3   -4   -5    1

   -5   -5   -5   -5   -5

>> Dr2new(1:5, 4:5)=2+2 % This makes the last two columns of elements 

equal to 4

Dr2new =

  5×5 single matrix

     3    -5     0     4     4

     3    -5     1     4     4

     5    -5     4     4     4

     2    -3    -4     4     4

    -4     4    -2     4     4

>> Dr1(9, :)=[] % The last row elements are removed

>> Dr1(9,:) =[]

Dr1 =

    0.4479    0.4916    0.4142    0.1393    0.6237

    0.9086    0.0534    0.0500    0.8074    0.7509
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    0.2936    0.5741    0.5359    0.3977    0.3489

    0.2878    0.1467    0.6638    0.1654    0.2699

    0.1300    0.5893    0.5149    0.9275    0.8959

    0.0194    0.6998    0.9446    0.3478    0.4281

    0.6788    0.1023    0.5866    0.7508    0.9648

    0.2116    0.4141    0.9034    0.7260    0.6634

>> Dr1(:, 4)=[ ] % The fourth column elements are removed

Dr1 =

    0.4479    0.4916    0.4142    0.6237

    0.9086    0.0534    0.0500    0.7509

    0.2936    0.5741    0.5359    0.3489

    0.2878    0.1467    0.6638    0.2699

    0.1300    0.5893    0.5149    0.8959

    0.0194    0.6998    0.9446    0.4281

    0.6788    0.1023    0.5866    0.9648

    0.2116    0.4141    0.9034    0.6634

In addition, you can create a new array from the elements of the existing arrays. 

Here’s an example:

>> NewDr = [Dr1(1:3), Dr2new(1:3, 2:4)] % Some elements of Dr1 and Dr2new 

are taken

NewDr =

  3×7 single matrix

  Columns 1 through 6

    0.4170    0.5388    0.1404    0.6865   -1.0000    2.0000

    0.7203    0.4192    0.1981    0.8346   -4.0000    4.0000

    0.0001    0.6852    0.8007    0.0183    5.0000    1.0000

  Column 7

    4.0000

    4.0000

    4.0000

>> NewDr2 = [Dr3new(:,:); Dr2new(2:end, :)] % All elements of Dr3new and 

some from Dr2new
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NewDr2 =

  9×5 int8 matrix

    1   -1    2   -3    1

    0    0    0    0    1

   -4    5    1   -1    1

   -4   -2    3    5    1

   -5   -5   -5   -5   -5

    4   -4    4    4    4

   -4    5    1    4    4

   -4   -2    3    4    4

    3    3   -2    4    4

Note in these examples, the colon (:) is one of the essential operators in managing 

and manipulating matrix and array elements. For example, NewDr(2, :) is equivalent 

to NewDr(2, 1:end). Both select all the elements along row 2. Likewise, NewDr(:, :) is 

equal to NewDr(1:end, 1:end). They both select all elements starting from the first one 

up to the last one.

These are a few examples of how to create arrays in the Command window. As 

stated, numerical arrays can be imported from other formatted data files, such as *.dat, 

*.txt, *.xls, *.xlsx, and *.csv, as well as image, audio and video files, such as *.jpg, 

*.tif, *.eps, *.png, *.bmp, *.wav, *.au, *.aif, *.mp3, *.mp4, *.ogg, etc.

 Not a Number
While working and processing different data sets and analyzing experimental data, it is 

quite common to work with the not-a-number (NaN) values. NaN is the result of 0/0. 

There are also many other cases when NaN can be generated by MATLAB. The NaN is 

also present when some data is missing in the imported data set. So, how do you handle 

and work with NaN values in numerical arrays? There are a few ready-to-use functions/

tools of MATLAB to handle the NaN. Let’s take the following examples:

% Given:

A_var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10 -1 NaN]

A_var =
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 -8 10 NaN 9 4 -4 -7

 9 NaN 9 4 -10 9 0

 -8 10 NaN 5 -10 -1 NaN

How do you compute the summation of the given numerical array, A_var? Note that 

sum() computes the sum of columns of a matrix if the matrix has more than one row and 

column. If the matrix is the row matrix, then it computes the sum of all row elements.

>> sum(A_var)

ans =

 -7 NaN NaN 18 -16 4 NaN

Sometimes, you may need to remove NaN from our data. For instance, let’s say 

you are analyzing measured data with some missing points (NaN). You would need to 

remove the NaN from our data. How do you address this problem?

One solution is to remove all NaN components of the array A_var and substitute 

them with 0. Otherwise, the summation will not give numerical results. You can 

substitute all NaN components using element-wise substitution, one by one. Or you can 

do it with a single command by recalling the indexes of all NaN components.

>> A_var(5)=0 % Element by element change

A_var =

 -8 10 NaN 9 4 -4 -7

 9 0 9 4 -10 9 0

 -8 10 NaN 5 -10 -1 NaN

>> A_var([7 9 21])=[0, 0, 0] % All at once or % A_var([7 9 21])=0

A_var =

 -8 10 0 9 4 -4 -7

 9 0 9 4 -10 9 0

 -8 10 0 5 -10 -1 0

Now the summation can be performed:

>> sum(A_var)

ans =

 -7 20 9 18 -16 4 -7
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This answer is correct. This approach is quite straightforward, but for very large data 

sets it will become very tedious and too time-consuming or might be impossible.

Note You can assign new values to some selected elements/components of 
arrays element by element or all at once by specifying the indexes (e.g., A_var 
([7 9 21])=[0 0 0]) of the elements/components or using MatLaB’s built-in 
function isnan() (e.g., A_var(isnan(A_var))=0).

Here is a second solution. nansum() is the MATLAB built-in function that handles the 

summation of numerical arrays with NaN components (elements).

>> A_var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10 -1 NaN]

A_var =

 -8 10 NaN 9 4 -4 -7

 9 NaN 9 4 -10 9 0

 -8 10 NaN 5 -10 -1 NaN

>> nansum(A_var)

ans =

 -7 20 9 18 -16 4 -7

An alternative solution to nansum() is using sum() with an option of omitnan.

>> A_var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10 

-1 NaN];

>> sum(A_var, 'omitnan')

-7 20 9 18 -16 4 -7

Note that here using the omitnan option in sum() and nansum(), all NaN values are 

substituted with 0.

Moreover, there are several other MATLAB functions to compute mean values, 

standard deviations, covariance values, etc., of numerical data arrays with NaN elements.
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Note You can use the following MatLaB functions to compute maximum, mean, 
median, minimum, standard deviations, and variance values of a numerical array 
containing nan elements: nanmax(), nanmean(), nanmedian(), nanmin(), 
nanstd(), and nanvar(). they work by ignoring all of the nan elements in the 
given array.

There is also a third way, by using logical indexing with MATLAB’s built-in function 

isnan(). It is widely employed when working with large data sets to sum the data, 

compute mean or average values, plot the values, and perform some other arithmetical 

matrix/array operations.

>> Index1=isnan(A_var) % Finds which elements of A_var are NaN and sets 

them equal to 1

Index1 =

 3×7 logical array

 0 0 1 0 0 0 0

 0 1 0 0 0 0 0

 0 0 1 0 0 0 1

>> A_var(Index1)=0 % Assigning all NaN elements to "0"

A_var =

 -8 10 0 9 4 -4 -7

 9 0 9 4 -10 9 0

 -8 10 0 5 -10 -1 0

>> sum(A_var)

ans =

 -7 20 9 18 -16 4 -7

Here is another shorter way of using isnan() to find all NaN components of arrays 

and assign them equal to 0.

>> A_var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10 

-1 NaN];

>> A_var(isnan(A_var)) = 0
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A_var =

 -8 10 0 9 4 -4 -7

 9 0 9 4 -10 9 0

 -8 10 0 5 -10 -1 0

Here the function isnan() identifies which elements of A_var are NaN and which 

ones are not. The new logical array called Index contains 1s and 0s. The 1s represent 

NaN elements, and the 0s represent all other numerical elements.

There is an alternative logical indexing function introduced in recent versions 

of MATLAB: ismissing(). It is used to identify any missing data elements in 

numerical arrays.

Index2=ismissing(A_var) %Identifies all missing elements hidden behind NaN

Index2 =

 3×7 logical array

 0 0 1 0 0 0 0

 0 1 0 0 0 0 0

 0 0 1 0 0 0 1

>> A_var(Index2)    % Viewing the missing element values

ans =

 NaN

 NaN

 NaN

 NaN

>> A_var(Index2)=0 % Assigning the missing elements equal to 0

A_var =

 -8 10 0 9 4 -4 -7

 9 0 9 4 -10 9 0

 -8 10 0 5 -10 -1 0

Note there are some differences in detecting nan values using isnan() and 
ismissing(). If the variable containing nan (some missing data) is a timetable-
type array, ismissing() cannot detect nan (also nat) or ignores missing time 
data in the row vector of times.
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The logical indexing approach is very efficient and flexible and can be applied for 

many other cases as well. For instance, you can easily identify all negative elements 

of a given data set or all elements within certain value ranges. Let’s take the following 

numerical array (of size 7 – by -7) generated by randi() to separate out all elements that 

are greater than 3 but smaller than 9 and equate all them to 5.

>> B_var = randi([0, 25], 7) % Create uniform distributed integers within 

[0, 25] of 7-by-7 size

B_var =

 25 1 17 21 1 11 12

 18 13 13 2 10 0 8

 13 2 25 3 13 25 24

 12 21 16 4 10 4 23

 1 21 20 10 17 2 1

 17 18 11 21 16 9 19

 1 3 11 20 7 5 6

>> IndexB = find(B_var>3 & B_var<9)

IndexB =

 25

 35

 39

 42

 44

 49

>> B_var(IndexB)=5

B_var =

 25 1 17 21 1 11 12

 18 13 13 2 10 0 5

 13 2 25 3 13 25 24

 12 21 16 5 10 5 23

 1 21 20 10 17 2 1

 17 18 11 21 16 9 19

 1 3 11 20 5 5 5
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Note Logical indexing is a very powerful and efficient tool in identifying the 
certain elements of numerical data sets/arrays/matrices according to their values 
and then assigning them new values.

 Character Type of Variables
MATLAB can recognize characters based on ASCII/ANSI character symbols in the form 

of numerical arrays. Here’s an example:

>> Ach1 = 'matlab'           % Character type of variable

Ach1 =

 ' matlab '

>> Bch2 = ' mathworks ' % Character type of variable

Bch2 =

 ' mathworks '

>> Cch3= ' matlab belongs to mathworks ' % Character type of variable

Cch3 =

 'matlab belongs to mathworks'

>> Dch4 = 'www.mathworks.com' % Character type of variable

Dch4 =

 ' www.mathworks.com '

These are character types of variables, but when the arithmetical operations are 

performed on these variables, they will become numerical arrays.

>> format short

>> Aa1 =Ach1+0

Aa1 =

 109    97   116   108    97    98

>>Ba2 = Bch2+0

Ba2 =

 109    97   116   104   119   111   114   107   115    32

>> Ca3=Cch3+0

Ca3 =
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 Columns 1 through 12

   109    97   116   108    97    98    32    98   101   108   111   110

  Columns 13 through 24

   103   115    32   116   111    32   109    97   116   104   119   111

  Columns 25 through 28

   114   107   115    32

Da4 = Dch4+0

 Columns 1 through 12

   119   119   119    46   109    97   116   104   119   111   114   107

  Columns 13 through 17

   115    46    99   111   109

So, these numbers represent the characters according to ASCII/ANSI standards. It 

is possible to get the character representation of the new variables with the MATLAB 

function of char().

>> char(Aa1)

ans =

 'matlab'

>> char(Ba2)

ans =

 'mathworks'

>> char(Ca3)

ans =

 'matlab belongs to mathworks'

>> char(Da4)

ans =

 'www.mathworks.com'

The following variables reside in the workspace:

>> whos

A 1x1 8 double

 A1New 2x6 12 uint8

 ABC 1x3 24 double

 Aa1 1x6 48 double

 Ach1 1x6 12 char
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 Aone 2x6 96 double

 B 1x1 8 double

 Ba2 1x9 72 double

 Bch2 1x9 18 char

 Bzero 5x6 240 double

 Ca3 1x27 216 double

 Cch3 1x27 54 char

 Ceye 6x6 288 double

 DE 2x4 64 double

 Da4 1x17 136 double

 Dch4 1x17 34 char

 Dr1 8x4 256 double

 Dr2 4x6 192 double

 Dr2new 5x5 100 single

 Dr3 5x5 200 double

 Dr3new 5x5 25 int8

 Drow 1x4 32 double

 Erow 1x7 56 double

 Fcol 4x1 32 double

 NewDr 3x7 84 single

 NewDr1 3x7 84 single

 NewDr2 9x5 45 int8

 ans 1x17 34 char

Note that these variables are kept and used in the coming sections to generate 

logical, table, cell, structure type of array variables.

 Function Handle
The function handle is a special MATLAB data type and used to store a link to an 

expression or a function. By calling a function handle, we invoke the expression or 

function stored under that specific function handle. The function handle is one of 

the most useful features of MATLAB for various computations and programming 

aspects. For instance, they are used in various simulations for calculating functions and 
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mathematical expressions, solving various equations and problems, and developing user 

interfaces. They are also widely employed in solving differential equations. Its syntax is 

rather intuitive and can be in two different forms.

(1) Function_handle_name =@MYfunction;

(2) Function_handle_name=@(variable1, variable2, ...)

([expression1, expression2, ...]).

Let’s look at several examples of generating function handles.

F1 = @MY_function;

where MY_function is a function file or function expression or another function 

handle. Note that how to create function files and characteristics of function files is 

explained in detail in Chapter 2.

Here is an example:

function x = MY_function(a, b, c)

% MY_function.m is a function file that solves the quadratic equation 

w.r.t. % a  user entries for a, b, c and outputs the found solutions.

D= b^2-4*a*c;

x1 = (-b+sqrt(D))/(2*a);

x2 = (-b-sqrt(D))/(2*a);

x = [x1; x2];

end

We can test the function handle F1 with the following command:

>> x = F1( 1, 2, 3)

x =

  -1.0000 + 1.4142i

  -1.0000 - 1.4142i

Here the function handle F1 calls the function file called MY_function.m and 

executes it with the user-specified input data for the a, b, and c variables.

Note that more detailed explanations on features of the function files (e.g., MY_

function.m) and how to create them are given in Chapter 2.

Let’s create a function handle for the following quadratic polynomial with for input 

arguments:
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 – f(x, a1, a2, a3 ) = a1x2 + a2x + a3;

>> f =@(x,a1,a2,a3)(a1*x^2+a2*x+a3)

f =

 function_handle with value:

 @(x,a1,a2,a3)(a1*x^2+a2*x+a3)

Moreover, the function handles can be used to define a function of functions. For 

example, H = 2esin (x) can be expressed in three different ways with the following function 

of functions:

>> ff1 = @(x) sin(x); ff2 = @(ff1)exp(ff1); ff3 = @(ff2)2*ff2;    % 1 - Way

>> gg1 = @(x)sin(x); gg2 = @(x)exp(gg1(x)); ff3 = @(x) 2*gg2(x);  % 2 – Way

>> hh3=@(x)2*exp(sin(x));                                          % 3 -Way

It is quite straightforward to perform computations from the function handles.

>> ff3(ff2(ff1(pi)))

ans =

    2.0000

>> gg3(pi)

ans =

   2.0000e+00

>> hh3(pi)

ans =

   2.0000e+00

>> x=1.3; a1=2; a2=-3; a3=13; f (x, a1, a2, a3)

ans =

 12.48

>> x=1.3; a1=[2, 3]; a2=[-3, 4]; a3=[11,13]; f2(x, a1, a2, a3)

ans =

   10.4800   23.2700

>> x=1:3; a1=2; a2=-3; a3=11; f2(x, a1, a2, a3)

Error using  ^  (line 51)

Incorrect dimensions for raising a matrix to a power.

Check that the matrix is square and the power is a
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scalar. To perform elementwise matrix powers, use

'.^'.

Error in @(x,a1,a2,a3)(a1*x^2+a2*x+a3)

In the last part, for the vector or row array of entries for x, the expression of 

f(x, a1, a2, a3) needs to be fixed for elementwise matrix operations.

>> f =@(x,a1,a2,a3)(a1*x.^2+a2*x+a3)

f =

  function_handle with value:

    @(x,a1,a2,a3)(a1*x.^2+a2*x+a3)>> x=1:3; a1=2; a2=-3; a3=11; f(x, 

a1, a2, a3)

ans =

    10    13    20

An alternative version of the function handle is the inline function that is similar 

to the function handle. Note that the inline function will be removed in future releases 

of MATLAB, and it is recommended to use the anonymous function (function handle) 

instead.

>> F1=inline('a1*x^2+a2*x+a3', 'a1', 'a2', 'a3', 'x')

F =

 Inline function:

 F (a1,a2,a3,x) = a1*x^2+a2*x+a3

Now, the previously created inline function can be evaluated with specific values of 

variables, x, a1, a2, and a3.

>> x=1.3; a1=2; a2=-3; a3=13; F(a1, a2, a3, x)

ans =

   12.4800

It is important while employing the function handles to follow the order of the 

variables. In other words, while calling them, you need to follow the sequence of the 

input variable values. Here’s an example:

>> x=1.3; a1=2; a2=-3; a3=13;

>> f =@(x,a1,a2,a3)(a1*x.^2+a2*x+a3);

>> f(x, a1, a2, a3)
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ans =

   12.4800

>> f(a1, a2, a3, x)

ans =

   15.3000

The function handles can also take different predefined input variables.

>> f =@(x,a1,a2,a3)(a1*x.^2+a2*x+a3);

>> y=1.3; b1=2; c2=-3; d3=13;

>> f(y,b1,c2,d3)

ans =

   12.4800

Note that in this example, the function handle f is taking the predefined variables y, 

b1, c2, and d3 instead of x, a1, a2, and a3.

Figure 1-12 shows the list of variables and function handles created in this section 

residing in the Workspace window.

Figure 1-12. Created variables residing in the workspace
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Broader applications and essential uses of the function handles will be discussed in 

Chapter 2 and Chapter 8.

 Logical Arrays
Logic and logical arrays are important for programming and Boolean operations. The 

local answers are 0s and 1s. 0 means that a statement or condition is not true, and 1 

means that a statement is true. There are a few ways logic arrays can be generated in 

MATLAB. For example, you can apply the comparative analysis within numerical arrays 

or verify them or define their types. The following Boolean logical arrays are based on 

the existing variables created in the previous sections:

>>A = 2; B = -3.25; C=(A+B)^2; ABC=[A, B, C];

>> isnumeric(A)

ans =

 logical

 1

>> Ach1 = 'matlab';

>> isstr(Ach1)

ans =

 logical

 1

>> ABC_logic=ABC>=2

ABC_logic =

 1×3 logical array

 1 0 0

>> Seed = 1; rng(Seed);   % Setting up the random number generator to 

generate permanent numbers.

>> Dr1 = rand(4, 5)

>> Dr1 = rand(4, 5)

Dr1 =

    0.0500    0.9446    0.1393    0.9275    0.8833

    0.5359    0.5866    0.8074    0.3478    0.6237

    0.6638    0.9034    0.3977    0.7508    0.7509

    0.5149    0.1375    0.1654    0.7260    0.3489

>> Dr1Logic=Dr1>0.5 & Dr1<=0.71
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>> Dr1Logic=Dr1>0.5 & Dr1<=0.71

Dr1Logic =

  4×5 logical array

   0   0   0   0   0

   1   1   0   0   1

   1   0   0   0   0

   1   0   0   0   0

Note that we have set the seed value of the random number generator rng() 

in order to generate permanent element values with the uniform random number 

generator rand().

You can use the evaluated logical arrays indexing of the arrays and find out which 

values meet the set conditions and which ones do not. For example, in the previous 

examples, ABC_logic represents that the first element of ABC meets the set condition and 

is greater or equal to 2. Similarly, the array Dr1Logic means three elements in row 2, one 

element in row 5 are greater than 0.5 and at the same time, they are less than or equal to 

0.71. Now we can find out which elements with their specific element order meet the set 

conditions by using indexing operations. Note that a more detailed explanation of logical 

operators is given in Chapter 2.

>> Index=find(Dr1>0.5 & Dr1<=0.71)

>> Index=find(Dr1>0.5 & Dr1<=0.71)    % Index numbers indicate which element 

has met the condition.

Index =

     2

     3

     4

     6

    18>> Dr1(Index)                % The element meeting the set conditions

ans =

    0.5359

    0.6638

    0.5149

    0.5866

    0.6237

An alternative way of finding the true values is as follows:
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>> Dr1Logic.*Dr1

ans =

         0         0         0         0         0

    0.5359    0.5866         0         0    0.6237

    0.6638         0         0         0         0

    0.5149         0         0         0         0

As another example, let’s find out where 0 elements in an array generated by the 

random integer number generator that is used to generate integer numbers within  

[-2 2] to fill out the five-by-five square matrix:

>> Seed = 1; rng(Seed);   % Setting up the random number generator to 

generate permanent numbers.

>> Hr=randi([-2, 2], 5)

Hr =

     0    -2     0     1     2

     1    -2     1     0     2

    -2    -1    -1     0    -1

    -1    -1     2    -2     1

    -2     0    -2    -2     2>> Ind=(~Hr)     % Locates which elements of 

Hr are equal to "0"

Ind =

  5×5 logical array

   1   0   1   0   0

   0   0   0   1   0

   0   0   0   1   0

   0   0   0   0   0

   0   1   0   0   0

In this section, we have generated the variables, namely, numerical and logic 

matrices and character strings, as shown in Figure 1-13.
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Figure 1-13. Created variables residing in the workspace

Other essential uses of logical arrays and indexing in examples are discussed in other 

sections of the book.

 Table Arrays
The table arrays are a newly introduced tool of MATLAB, and thus, in older versions of 

MATLAB, table arrays cannot be generated. The table arrays are particularly useful for 

preparing reports and displaying/presenting the simulation/analysis results obtained in 

arrays of several columns and rows, each of which represents certain variables. They are 

used to collect heterogeneous data and metadata into a single container in a tabular data 

format. The table arrays can accommodate variables of different types, sizes, units, etc. 

They are used most frequently in machine learning and deep learning.

The table arrays are often used to store experimental data, with rows representing 

different observations and columns representing different measured variables. It 

displays the arrays in a more informative and tabulated format by indicating names of 

the columns and rows by respective assigned names. Let’s look at several examples of 

how to create table arrays with the command table() by creating a new numerical array 

A1new and from the existing variables created in the previous sections.
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>> A1new = [1 2 3; 3 4 5; 7 8 9];

>> A1Tab=table(A1new)

A1Tab =

  3×1 table

       A1new

    ___________

    1    2    3

    3    4    5

    7    8    9

>> B1new = A1new/5;

>> B1Tab=table(B1new)

B1Tab =

  3×1 table

          B1new

    _________________

    0.2    0.4    0.6

    0.6    0.8      1

    1.4    1.6    1.8

In the previous cases, the table arrays A1Tab and B1tab have been created as column 

tables from A1New and B1New, respectively. It is also possible to obtain/create tables 

from the existing arrays (arrays, cells, and structures) by using the array2table(), 

cell2table(), and struct2table() commands.

>> A1Tab2=array2table(A1New) % Column names are not specified

>> A1Tab2=array2table(A1new)

A1Tab2 =

  3×3 table

    A1new1    A1new2    A1new3

    ______    ______    ______

      1         2         3

      3         4         5

      7         8         9

Chapter 1  IntroduCtIon to MatLaB



52

>> Ach1Tab=array2table(A1new, 'variablenames',{'a','b','c'})

Ach1Tab =

  3×3 table

    a    b    c

    _    _    _

    1    2    3

    3    4    5

    7    8    9

>> C1new = [A1new, B1new]

C1new =

    1.0000    2.0000    3.0000    0.2000    0.4000    0.6000

    3.0000    4.0000    5.0000    0.6000    0.8000    1.0000

    7.0000    8.0000    9.0000    1.4000    1.6000    1.8000

>> Dr1Tab=array2table(C1new, 'variablenames', {'v1', 'v2', 'v3', 'v4', 

'v5', 'v6'})

Dr1Tab =

  3×6 table

    v1    v2    v3    v4     v5     v6

    __    __    __    ___    ___    ___

    1     2     3     0.2    0.4    0.6

    3     4     5     0.6    0.8      1

    7     8     9     1.4    1.6    1.8

It is also possible to rename variables saved in the table arrays using renamevars() 

following a pattern of TableArrayName = renamevars(TableArrayName, 

'OldVarName', 'NewVarName').

>> A1Tab=array2table(A1new)

A1Tab =

  3×3 table

    A1new1    A1new2    A1new3

    ______    ______    ______

      1         2         3

      3         4         5

      7         8         9

>> A1Tab = renamevars(A1Tab, 'A1new1', 'a')
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A1Tab =

  3×3 table

    a    A1new2    A1new3

    _    ______    ______

    1      2         3

    3      4         5

    7      8         9

>> A1Tab = renamevars(A1Tab, 'A1new2', 'b');

>> A1Tab = renamevars(A1Tab, 'A1new3', 'c')

A1Tab =

  3×3 table

    a    b    c

    _    _    _

    1    2    3

    3    4    5

    7    8    9

You can also remove any column or row of a created table array in a few 

different ways.

R1Tab = array2table(A1new)

R1Tab =

  3×3 table

    A1new1    A1new2    A1new3

    ______    ______    ______

      1         2         3

      3         4         5

      7         8         9

>> R1Tab.A1new3 = [ ]   % Removes the variable A1new3

R1Tab =

  3×2 table

    A1new1    A1new2

    ______    ______

      1         2

      3         4

      7         8
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>> >> R1Tab(2,:)=[ ]   % Removes row 2

R1Tab =

  2×2 table

    A1new1    A1new2

    ______    ______

      1         2

      7         8

>> R1Tab=removevars(R1Tab, 'A1new1')   % Removes the variable A1new1

R1Tab =

  2×1 table

    A1new2

    ______

      2

      8

>> R1Tab=removevars(R1Tab, {'A1new2'})   % Removes the variable A1new2

R1Tab =

  2×0 empty table

>> clearvars R1Tab    % Deletes the table array R1Tab

Note that the command syntax removevars() is available starting from the 

MATLAB2018a version.

It is also possible to convert table arrays into arrays and cell arrays by using the 

tabel2array() and table2cell() commands, respectively. Understanding and working 

with table arrays will be of great help not only when you are preparing reports but also 

when you are importing with the data import wizard  or recommended data import 

function readtable() and manipulating various data sets from the external files (e.g., 

.txt, .xls, .xlsx, .csv, .dat, etc.) into the MATLAB workspace.

 Cell Arrays
Cell arrays are useful to accommodate various types (numerical, character, logical, table, 

and function handle) of arrays in different cells of one cell type variable by preserving 

all attributes of each variable unchanged. They might be handy to carry or pass various 

data sets inside one variable. Cell arrays contain indexed data containers such as cells 

accommodating lists of text, character strings, combinations of text and numerical 
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data, and numerical arrays, function handles, structure arrays, and tables. One of the 

most essential features of the cell arrays is that they require curly brackets to be used 

in specifying cell addresses. Another important feature of the cell-type arrays is that in 

many cases imported/read data by MATLAB will be in cell array mode.

Let’s look at several examples of creating cell arrays with different types of arrays 

discussed earlier and generate the new ones.

>> Acell = cell(5,5) % Creates an empty cell of size 5-by-5

>> Acell = cell(3,4) % Each cell of Acell will be filled with Arrays

Acell =

  3×4 cell array

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

>> A0 = 13; A1new = [1 2 3; 3 4 5; 7 8 9];

>> Acell{1,1}=A0  % Cell (1, 1) is filled with A0

Acell =

  3×4 cell array

    {[      13]}    {0×0 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

>> Acell{1,2}=A1new  % Cell (1, 2) is filled with A1new

Acell =

  3×4 cell array

    {[      13]}    {3×3 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

>> Ach1Tab=array2table(A1new, 'variablenames',{'a','b','c'});

>> Acell{1,3}=Ach1Tab  % Cell (1, 3) is filled with Ach1Tab

Acell =

  3×4 cell array

    {[      13]}    {3×3 double}    {3×3 table }    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}
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>> C1 = 'matlab';

>> Acell{1,4}=C1  % Cell (1, 4) is filled with C1

Acell =

  3×4 cell array

    {[      13]}    {3×3 double}    {3×3 table }    {'matlab'  }

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double}    {0×0 double}    {0×0 double}

>> D1 = A1new>3 & A1new<9

D1 =

  3×3 logical array

   0   0   0

   0   1   1

   1   1   0

>> Acell{2,2}=D1  % Cell (2, 2) is filled with logical array D1

Acell =

  3×4 cell array

    {[      13]}    {3×3 double }    {3×3 table }    {'matlab'  }

    {0×0 double}    {3×3 logical}    {0×0 double}    {0×0 double}

    {0×0 double}    {0×0 double }    {0×0 double}    {0×0 double}

>> f=@(x, a1, a2, a3)(a1*x^2+a2*x+a3);

>> Acell{2,3}=f  % Cell (2, 3) is filled with function handle f

Acell =

  3×4 cell array

    {[      13]}    {3×3 double }    {3×3 table      }    {'matlab'  }

    {0×0 double}    {3×3 logical}    {function_handle}    {0×0 double}

    {0×0 double}    {0×0 double }    {0×0 double     }    {0×0 double}

>> Acell{3,1}= 'This is a cell array' % Cell (3, 1) is filled with 

characters

Acell =

 3×4 cell array

 {[                13]}  {3×3 double }    {3×3 table      }    {'matlab'  }

 {0×0 double          }  {3×3 logical}    {function_handle}    {0×0 double}

 {'This is a cell ...'}  {0×0 double }    {0×0 double     }    {0×0 double}
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>> Acell{3,2}=rand(5,6) % Cell(3,2) is filled with a numerical array

Acell =

  3×4 cell array

 {[                13]}   {3×3 double }   {3×3 table      }   {'matlab'  }

 {0×0 double          }   {3×3 logical}   {function_handle}   {0×0 double}

 {'This is a cell ...'}   {5×6 double }   {0×0 double   }     {0×0 double}

To access and view the contents of the created cell arrays, use the following 

commands:

>> Acell{1,1}

ans =

    13

>> Acell{1,4}

ans =

    'matlab'

>> Acell{2,3}

ans =

  function_handle with value:

    @(x,a1,a2,a3)(a1*x^2+a2*x+a3)>> Acell{7}

ans =

  3×3 table

    a    b    c

    _    _    _

    1    2    3

    3    4    5

    7    8    9

>> Acell{8}

ans =

  function_handle with value:

    @(x,a1,a2,a3)(a1*x^2+a2*x+a3)

By double-clicking the cell variable name in the workspace, the contents of the cell 

can be viewed, as shown in Figure 1-14.

Chapter 1  IntroduCtIon to MatLaB



58

Figure 1-14. Variables in the workspace and contents of the Acell cell array

You can change the contents of the cell array via double-clicking in each cell and 

entering the new values or contents. You can also change the contents (elements) of 

the cell array by recalling the cell address and assigning new values. You can also empty 

some cells of the cell array by assigning an empty matrix to them.

>> BCell{1}=[1, 2, 3; 5 6 7];   % Cell 1 of BCell

>> BCell{2}=randi(5, 5, 3);   % Cell 2 of BCell

>> BCell{1}   % View the content of BCell's cell 1

ans =

     1     2     3

     5     6     7
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>> BCell{2}   % View the content of BCell's cell 2

ans =

     5     1     1

     5     2     5

     1     3     5

     5     5     3

     4     5     5

>> BCell{1}(2,3)=13;   % Change the element residing in row 2 and column 3 

of cell 1 in BCell

>> BCell{1}   % View cell 1 of BCell

ans =

     1     2     3

     5     6    13

>> BCell{2}(4:5,:)=0;     % Change the elements of row 4 and 5 of cell 

2 in BCell

>> BCell{2}   % View cell 2 of BCell

 ans =

     5     1     1

     5     2     5

     1     3     5

     0     0     0

     0     0     0

>> BCell{1}(1,:)=[ ];   % Remove row 1 in cell 1 of BCell

>> BCell{1}         % View cell 1 of BCell

ans =

     5     6    13

>> BCell{2} = [ ];  % Empty cell 2

>> BCell{2}          % View cell 2 of BCell

ans =

     []

>> clearvars BCell  % Delete BCell variable
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 Structure Arrays
Structure arrays can accommodate all of the previously created arrays and entry 

(variable) types, namely, all types of numeric, logical, character, table, cell, and function 

handles. They can store data not only of different types but also of different sizes. One of 

the important aspects of the structure arrays is that they are suitable for code generation. 

Moreover, they are useful in programming, data processing, data acquisition, and 

reading the outputs of Simulink models. In addition, many MATLAB toolboxes and 

their functions produce a various structure array type of outputs after their simulations. 

Therefore, it is necessary to understand how to handle the structure arrays efficiently.

Note the cell array can also accommodate structure arrays.

Structure arrays store data in different fields or field names that we can access by 

their names. Here’s an example:

% Person 1: Name - SE; DOB - June 6, 1982; Profession - professor

WHO(1).Name = 'SE';

WHO(1).DOB = '06.06.1982';

WHO(1).Profession = 'professor';

% Person 2: Name - NE; DOB - Dec 12, 1992; Profession - designer

WHO(2).Name = 'NE';

WHO(2).DOB = '12.12.1982';

WHO(2).Profession = 'designer';

The structure variable WHO contains information about two people. The data contains 

their names, dates of birth, and professions.

>>WHO =

  1×2 struct array with fields:

    Name

    DOB

    Profession

>> WHO(1)

ans =

  struct with fields:

          Name: 'SE'

           DOB: '06.06.1982'

    Profession: 'professor'
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>> WHO(2)

ans =

  struct with fields:

          Name: 'NE'

           DOB: '12.12.1982'

    Profession: 'designer'

Note that we have saved in the workspace only one variable that is in a structure 

array form. If you want to have access to a specific field of the created structure, then you 

call that field name along with the structure name.

>> WHO(1).Name   % To access to the name field of a person 1

ans =

    'SE'

>> WHO(1).Profession   % To access to the profession field of a person 1

ans =

    'professor'

>> WHO(2).DOB    % To access to the DOB field of a person 2

ans =

    '12.12.1982'

Besides this approach of creating structure arrays, there are several other ways to 

set up or create them. Let’s look at some examples. Another way is to create an empty 

structure with the command struct(). The empty structure will be filled with variables 

and their values with the command syntax of struct('FieldName', VALUE). Note that 

the field names (variable names) must not contain empty spaces or symbols except for 

the underscore sign (_).

>>  Astr1 = struct()

Astr1 =

  struct with no fields.

>> % Now we can assign/set up values and data fields inside the created 

empty structure: Astr1.

>> a = 2.1; A = [1, 2; 3, 4]; B = A<a; f = @(x)(a*x^2+x-a); C{1} =rand(3); 

C{2} = 'matlab';

>> D = 'mathworks.com';

>> F = table(magic(3));
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>>  Astr1 = struct('Number', a, 'Matrix', A, 'Logic', B, 'F_Handle', f, 

'Cell', C, 'Char', D, 'Table', F)

Astr1 =

  1×2 struct array with fields:

    Number

    Matrix

    Logic

    F_Handle

    Cell

    Char

    Table

Another way to create structure arrays is to assign their fields individually, as shown 

in the beginning with the example of creating the structure variable WHO.

>> Bstr.Number = a; Bstr.Matrix = A; Bstr.Logic = B; Bstr.F_Handle=f; Bstr.

Cell=C; Bstr.Char = D;

>> Bstr.Table = F;

>> Bstr

Bstr =

  struct with fields:

      Number: 2.1000e+00

      Matrix: [2×2 double]

       Logic: [2×2 logical]

    F_Handle: @(x)(a*x^2+x-a)

        Cell: {[3×3 double]  'matlab'}

        Char: 'mathworks.com'

       Table: [3×1 table]

Now we can compare the two different ways we created the structure variables 

Astr and Bstr. Another way to create structure arrays is conversions, in other words, to 

convert existing cell-type variables or table-type variables into structure-type variables 

with the cell2struct() and table2struct() commands.

>> % Cell variable C contains: Matrix C and String character 'matlab'

>> C{1} =rand(3); C{2} = 'matlab';

>> F_Names = {'Matrix', 'Char'};    % Field names/Headers
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>> Cstr = cell2struct(C, Headers, 2) % 2 means two cells embedded

Cstr =

  struct with fields:

    Matrix: [3×3 double]

      Char: 'matlab'

Now let’s see how to convert a table array into a structure array with the 

table2struct() command.

>> F = table(magic(3));

>> Dstr = table2struct(F)

Dstr =

  3×1 struct array with fields:

    Var1

Figure 1-15 shows the list of variables created and saved in the workspace and the 

contents of the created structure arrays, namely, Astr and Bstr.
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Figure 1-15. Created variables and Astr and Bstr structure arrays

This section has demonstrated via examples how to create seven different types of 

variables (arrays): numerical arrays (scalar and array type variables), character strings, 

logical arrays, table arrays, cell and structure arrays, and function handles. You can 

remove from the workspace any of the created variables by using the clear or clearvars 

command or using the right-mouse button options to delete. From the Command 

window, we clear the variables from the workspace with the following commands:

>> clearvars a A  B  % Removes variables a, A, B

>> clear ans C D      % Removes variables ans, C, D
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Note When you delete the variables from the workspace using the clearvars 
or clear command, the comma is not used between the variable names.

From the attributes of the created and saved variables in the workspace 

(Figures 1-12, 1-13, 1-14, 1-15), you can read the variable type (scalar, array, logical, 

table, cell, structure, character, function handle), its storage type (double, single, uint8, 

int8), and its size (how many rows and columns or cells, etc.). Moreover, the symbols 

representing each variable type shown in Figures 1-12, 1-13, 1-14, and 1-15 demonstrate 

the MATLAB supported data (array) types shown in Figure 1-9 and 1-10.

It must be noted that many of these arrays can be converted from one type into 

another as you have seen in some of the examples. For example, a cell array can be 

transferred into table array via a cell2table() function, or similarly, a structure array 

can be converted into a table array via struct2table(); vice versa, a table array can be 

converted into a cell and table array via table2cell() and table2struct(), respectively.

 Complex Numbers
Two letters, i and j or 1i and 1j, are reserved for notating imaginary numbers. Therefore, 

it is advised not to use these letters for assigning variable names. An alternative safe 

approach to assigning a complex number is to multiply it by sqrt(-1). For example, to 

obtain 3.76+2.35i, use one of the following commands:

>> A = 3.76+2.35i;                     % Way 1

>> A = 3.76+2.35*sqrt(-1);             % Way 2

 Precision
MATLAB’s precision is not absolute.

For instance:

>> sin(pi)

ans =

 1.2246e-016
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In MATLAB, sinsin (π) is not equal to 0. That is because the number π is represented 

by the double precision number in MATLAB. We can demonstrate the precision issue by 

performing the calculations of the Pythagorean theorem: 1 = (t) + (t).

t=0:pi/50:2*pi; F=1-(sin(t).^2+cos(t).^2); plot(t, F)

In the previous expressions, t is a time vector containing a row of elements, such 

as [0, π/50, … 2π]. Some values of F are zero, and others are nonzero even though they 

are very small numbers. The reason for this is that all of the trigonometric functions 

including exponential and logarithmic functions are approximated by a polynomial 

of degree 13 with only odd powers of the argument variable (in this example t). For 

instance, sin(t) ≈ t − c1t3 + c2t5 + … + c6t13 = p(t). The computation algorithm for all of 

these functions is implemented based on fdlibm, a “Freely Distributable Math Library” 

developed at Sun Microsystems by K. C. Ng and others (see for more information www.

netlib.org/fdlibm).

It must be noted that MATLAB’s accuracy (precision) level depends on which data 

storage type is chosen to save data. For instance:

>> int8(128)*-5

ans =

 -128

The allocated data storage int8 can hold up to 28 − 1 integer numbers. All MATLAB 

supported data storage types are shown in Figure 1-15.

 M-file and MLX-file Editors
In the context of the book, the terms code, script, and program are used interchangeably 

to refer to the M-files with the extension of *.m and the MLX-files with the extension of 

*.mlx, including function and executable files. Because of their extensions, these files are 

called M-files and MLX-files. In the previous examples, all of the operations are done in 

the Command window. However, for programming and writing, editing, and debugging, 

M-file and MLX-file editors will be of great help due to their many helpful tools and hints 

in writing fast and more efficient code, scripts, and programs.

The overall functionality of M-files and MLX-files is similar except for one important 

feature. The MLX file editor window can display the outputs of calculations/simulations 

within the MLX editor window and indicate most common command syntax-related 
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errors in its left output window. The M-file editor shows all errors in the Command 

window after the M-file’s execution. Moreover, the MLX-file editor can show interactively 

all inserted equations via the equation editor, inserted images and hyperlinked texts 

right in the same window, and others. The outputs from both files will be shown in the 

workspace. Both files can be used interchangeably. Let’s start reviewing M-file and MLX-

file editor windows and tools.

 M-file Editor
M-file editor window menu and GUI tools are grouped into three tabs: Editor, Publish, 

and View (as shown in Figure 1-16, 1-17, 1-18, respectively). Note that there are three 

main menu subgroupings, HOME, PLOTS, and APPS, which belong to the main 

MATLAB window that has been shown in the initial sections.

In the M-file editor’s main tools menu (see Figure 1-16), there are five subsections: 

File, Navigate, Edit, Breakpoints, and Run. All of the tools in each subsection are quite 

intuitive. For example, the FILE subsection has GUI tools used to open a new file 

or existing files, save the current file, find M-files, compare different versions of the 

M-files with the same names, and print out the current M-file. Similarly, the NAVIGATE 

subsection tools help a user to move the cursor within the current file and find keywords 

and if necessary to substitute them with other words. The EDIT subsection tools insert a 

new section into the current file, add or remove comment lines, or wrap comments and 

put indents to make the file more readable. The BREAKPOINTS subsection has tools 

to choose from the drop-down options for debugging/editing the current M-file code 

contents, not comments. Finally, the RUN subsection has GUI tools to run different cell 

sections of the current M-file step by step and run the current M-file and measure the 

evaluation time in different sections of the file. It should be noted that in writing M-files, 

the EDITOR window tools are mainly used.

Figure 1-16. M-file editor’s main tools menu
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The PUBLISH tools, shown in Figure 1-17, are used to generate report files in 

different file formats such as HTML, DOC, PPT, PDF, etc. The PUBLISH window’s GUI 

tools are very intuitive and similar to many document-editing software applications. 

FILE contains the Save (Save, Save As, Save All, Save Copy As…) drop-down options; the 

INESRT section contains Section and Section with Title; the INSERT INLINE MARKUP 

section contains B (bold), I (Italic), M (Monospaced), Hyperlinked, and Inline LaTeX; 

Insert Block Markup contains Bullet List, Numbered List, Image, Preformatted Text, 

Code, Display LaTeX; and PUBLISH contains Publish (options).

The VIEW tools, as shown in Figure 1-18, are used to display several windows of 

M-files and MLX-files (documents) within one window area. You can split the view 

window side by side or top to bottom by using the Tiles, Document Tabs, and Split 

Document tools. The check marks in the Display subsection are handy to display data 

tips, show line numbers, and highlight the current line while editing M-files.

Figure 1-18. M-file editor’s View tools menu

Figure 1-17. M-file editor’s Publish tools menu
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 MLX-file Editor
The MLX-file (live editor) editor tab, shown in Figures 1-19, 1-20, and 1-21, contains 

many of the M-file editor tools along with several other different GUI tools. The LIVE 

EDITOR (see Figure 1-19) has one main different subsection from the M-file editor (see 

Figure 1-16), which is called TEXT. This contains most of the functions of the PUBLISH 

tools of the M-file editor (see Figure 1-17).

Figure 1-19. MLX-file editor’s main tools menu

Moreover, the MLX-editor’s INSERT subwindow (see Figure 1-20) has a few handy 

tools to write/edit equations directly in the MLX-file contexts and to insert subsections 

with comments. You can insert control GUI tools, such as slider and drop-down boxes 

within the current MLX-file content.

The VIEW window (Figure 1-21) of the MLX-editor has some similar tools of M-file 

editor’s VIEW (Figure 1-21) and some other tools, such as Document Tabs, Display, 

Output, and Layout, by which a user can display script (code) line numbers (excluding 

the comment lines), Datatips, Full Screen View, Clear all Outputs, show or hide outputs, 

or show outputs inline or on the right, respectively.

Figure 1-20. MLX-file editor’s Publish tools menu
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Figure 1-21. MLX-file editor’s view tools menu

The M-file or MLX-file can be created in several different ways, by using the GUI 

buttons  or , respectively, or by typing >> edit in the Command window and 

pressing Enter.

To demonstrate some of the previously mentioned tools and options of the M-file 

and MLX-file editors, let’s look at the following example to demonstrate that MATLAB’s 

precision is not absolute via the Pythagorean theorem:

 
� � � � � � � �� � � � � � � � � �� �

2 2 100
1, ; ;F  

First, we write the solution script of this simple example in the M-file editor and then 

publish the results. Subsequently, we perform the same simulations in the MLX-editor 

again to demonstrate similar and different features of both editors.

The algorithm of solving this exercise is composed of the following six steps:

 1. Insert some comments describing the given problem statement.

 2. Define the input variable: �
� � � �

� � � � �
2 2 100

, ; .

 3. Perform the computation: F(α) = 1 − (sin2(α) +  cos2 (α) ).

 4. Define for which values of the input variable α the function values 

of F(α) = 0.

 5. Plot the simulation results: α versus F(α).

 6. Publish all the obtained results including the whole script.
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This is the script written in the M-file editor (Figure 1-16.a) directly:

% Step 1. Problem statement

% MATLAB's precision is not absolute.

% Pythagorean Theorem: F = 1 - (sin^2 (alpha) + cos^2(alpha));

% Input variable: alpha = -0.5*pi ... 0.5*pi

% Step 2. Define the input variable

alpha = -pi/2:pi/100:pi/2;

% Step 3. Perform the computation

F = 1-(sin(alpha).^2+cos(alpha).^2);

% Step 4. Define for which values of alpha, F(alpha) = 0.

Findex=find(F==0);

F0=F(Findex);

% Step 5. Plot the simulation results: alpha vs. F(alpha)

plot(alpha, F, 'b-', alpha(Findex), F0, 'ro'),

legend('\alpha vs F(\alpha)', 'F(\alpha) = 0')

title('Simulation of MATLAB"s precision via the Pythagorean Theorem 

'), grid on

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin(\alpha)^2+cos(\alpha)^2)')

% Step 6. Publish all of the obtained results including the whole script

Note that in this script, we have used % to insert comments (nonexecutable 

information) and \ to insert and display the Greek letters.

 % Comments
Comments are not executable and contain additional information for the users. The 

sign % is used to place comments and remarks or any additional information within 

M-files and MLX files or callback functions or in the Command window. The comments 

can be added on a separate line or behind command syntaxes and have to start with 

%. If the sign % is placed double (%%) followed with a space, that automatically makes 

the following comments bold. Moreover, inserting %% at the beginning of a line leaves 

a blank space and creates a cell mode in the script. That also creates an option of the 

Chapter 1  IntroduCtIon to MatLaB



72

subsection feature in the M-file editor. We discuss in detail the cell mode options and 

their advantages in Chapter 2. Note that there are several other functionalities of the 

% sign. It is used for format specifications for write, display, and read purposes that we 

discuss in Chapter 2.

This is slightly edited with the PUBLISH tools (Figure 1-17), such as Bold  for 

steps 1, 2, and 6 under Insert Inline Markup and Publish (PUBLISH); see Figure 1-17. 

Note that to make any selected lines of comments bold, you first select the line and then 

hit the  button. Note that in this script, we used the LaTeX commands to insert the 

Greek letters (α, π) and the equation F = 1 − (α+cos2 α ).

Note that M/MLX editors are compatible with most common LaTeX mathematical 

mode commands. The LaTeX-compatible mathematical commands and symbols can 

be inserted for plot titles, axis labels, graphic notes, and so forth that we discuss in 

examples in the following chapters (programming, plots, ODEs). For example, to insert 

the expression x2 + y2 = R2, we enter the expression x^2+y^2=R^2. To insert α, β, Ω, Ψ, 

we type \alpha, \beta, \Omega, and \Psi. Moreover, to insert the equations with Greek 

letters, the notations need to start with $$ signs and end with $ (see steps 1 and 5). For 

more information and help on various mathematical expressions and symbols to write in 

LaTeX math, type >> doc latex in the Command window.

See [6] also for more information on how to handle the LaTeX. Note that %% at the 

beginning initializes automatic recognition of the LaTeX-compatible mathematical 

commands within step 1.

%%

%% *% Step 1. Problem statement*

% MATLAB's precision is not absolute.

% Pythagorean Theorem: F = 1 - (sin^2 $$\alpha$ + cos^2 $$\alpha$ );

% Input variable: $$\alpha$ = -0.5* $$\pi$ ...0.5* $$\pi$

%% *% Step 2. Define the input variable*

alpha = -pi/2:pi/100:pi/2;

%% *% Step 3. Perform the computation*

F = 1-(sin(alpha).^2+cos(alpha).^2);

%% *% Step 4. Define for which values of $$\alpha$ $$F(\alpha) =0$*

Findex=find(F==0); F0=F(Findex);

%% *% Step 5. Plot the simulation results: $$\alpha$ vs. $$F(\alpha)$*

plot(alpha, F, 'b-', alpha(Findex), F0, 'ro'),

legend('\alpha vs F(\alpha)', 'F(\alpha) = 0')
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title('The Pythagorean Theorem '), grid on

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin^2(\alpha)+cos^2(\alpha))')

%% *%Step 6. Publish all of the obtained results including the 

whole script*

After completing the script writing in the editor, save the M-file with the valid file 

name (e.g., P1.m). Now, to publish it in an HTML format, click the Publish 

 button on the PUBLISH tab (see Figure 1-7). After clicking the button, the script is 

executed automatically, and its HTML formatted report will be generated, as shown in 

Figures 1-22 and 1-23.

Figure 1-22. MATLAB generated an HTML-formatted report of the M-file 
called P1.m
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Figure 1-23. MATLAB generated an HTML-formatted report of the M-file 
called P1.m
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Note that the formatted bold lines (Figure 1-18 a, b), which are starting lines of cell 

modes preceded with %%, have been recognized by the M-file editor automatically and 

put in contents and hyperlinked, such as % Step 1 ... Step 2 ... Step 6.

Now let’s try the same procedures with the MLX-file editor. Note that the comments 

are edited using the Text tab tools of the MLX-editor, as shown in Figure 1-19. The parts 

of the script are entered as text (comments) by using  . Step 1 … Step 2 … Step 3… 

Step 6 lines are bolded with . 

Step 1. Problem statement.
MATLAB’s precision is not absolute.

Pythagorean theorem: F = 1 - (sin^2 (alpha) + cos^2(alpha));

Input variable: alpha = -0.5*pi ... 0.5*pi

Step 2. Define the input variable.
Step 3. Perform the computation.
Step 4. Define for which values of alpha, F(alpha) = 0.
Step 5. Plot the simulation results: alpha versus F(alpha).
Step 6. Publish all of the obtained results including the whole script.
Note that there is an alternative way to make the chosen lines bold, which is to 

use %% followed with a blank space, as in the M-file editor. In this case, such editing is 

automatically detected as a header of the following section of the script. If you enter the 

following in the Code section of the MLX-editor:

%% Step 2. Define the input variable.

and press Enter, MATLAB automatically creates this bolded text header:

Step 2. Define the input variable.
Now, in between step 2 and step 3, and step 5 and step 6, the following executable 

commands are inserted by putting the cursor on the desired line and clicking the   

button on the Code subtab (see Figure 1-19). Finally, the complete code is obtained.

Step 1. Problem statement.
MATLAB’s precision is not absolute.

Pythagorean theorem: F = 1 - (sin^2 (alpha) + cos^2(alpha));

Input variable: alpha = -0.5*pi ... 0.5*pi
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Step 2. Define the input variable.

alpha = -pi/2:pi/100:pi/2;

Step 3. Perform the computation.

F = 1-(sin(alpha).^2+cos(alpha).^2);

Step 4. Define for which values of alpha, F(alpha) = 0.

Findex=find(F==0);F0=F(Findex);

Step 5. Plot the simulation results: alpha versus F(alpha).

plot(alpha, F, 'b-', alpha(Findex), F0, 'ro'),

legend('\alpha vs F(\alpha)', 'F(\alpha) = 0')

title('The Pythagorean Theorem'), grid on

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin(alpha)^2+cos(alpha)^2)')

Step 6. Publish all of the obtained results including the whole script.
Save the file as an *.mlx file (e.g., call P2.mlx). Insert the mathematical expressions 

with the Equation Tools on the Insert subtab (shown in Figure 1-20) and by using . 

When you press the button , the menu of symbols, structures, and matrices will be 

opened, as shown in the following image:

 

Now you put the cursor where you want to insert the mathematical expressions and 

insert the symbols by selecting the necessary symbols or by using LaTeX expressions. For 

example, \alpha gives α. Enter the expressions of the Pythagorean formulation, input the 

variable range, and finalize the script.

Step 1. Problem statement.
MATLAB's precision is not absolute.

The Pythagorean theorem: F = 1 – (sin2α + cos2α)

Input variable: α = –0.5α … 0.5α
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Step 2. Define the input variable.

alpha = -pi/2:pi/100:pi/2;

Step 3. Perform the computation.

F = 1-(sin(alpha).^2+cos(alpha).^2);

Step 4. Define for which values of α, F(α) = 0.

Findex=find(F==0);

F0=F(Findex);

Step 5. Plot the simulation results: α vs. F(α).

plot(alpha, F, 'b-', alpha(Findex), F0, 'ro'),

legend('\alpha vs F(\alpha)', 'F(\alpha) = 0')

title('The Pythagorean Theorem '), grid on

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin^2(alpha) +cos^2(alpha))')

Step 6. Publish all of the obtained results including the whole script.
After executing (by pressing the Run button shown in Figure 1-19), you will get the 

script outputs via Output Inline in LAYOUT. See Figure 1-24 and Figure 1-25.

Figure 1-24. MLX-editor output of P2.mlx
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Figure 1-25. MLX-editor output of P2.mlx

Note that in the MLX- editor all of the executable and nonexecutable lines of the 

script are identified automatically and put in separate sections. There are some other 

salient issues on hints, warnings, and error messages of the M/MLX editors that we 

discuss in Chapter 2.
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 Closing the MATLAB Window
Quitting MATLAB is simple. There are several commands that can be used to complete 

your work in MATLAB and close all the windows. You can type >> quit, type >> exit, 

or press Ctrl+Q. You can also click the X in the upper-left corner of the main MATLAB 

window or call the >> finishdlg function from the Command window and click the yes 

button in the opened GUI window.

Note that all variables residing in the workspace will be cleared upon exiting/quitting 

MATLAB. They will be lost and not be recovered by default the next time MATLAB is 

started. However, they can be saved to a *.mat file and loaded back into the workspace 

later. The command history of entered commands is saved automatically, and all of the 

entered commands in the Command window can be accessed the next time you launch 

MATLAB. If you are interested in saving the number of commands that can be adjusted 

via MATLAB preferences, choose Preferences ➤ Command History.

 Summary
This chapter introduced the MATLAB environment, including settings, variables, several 

most used commands, and M-file/MLX-file GUI tools. You also learned about assigning 

variables and values from the Command window and working in the M/MLX-file editor 

windows. In addition, the chapter explored data types, formats, and structures as well 

as ways to use built-in MATLAB commands and functions. In particular, it covered help 

search options and commonly used commands, including help, helpwin, helpbrowser, 

doc, lookfor, clear, clear all, dir, pwd, cd, ls, save, load, clearvars, edit, format, 

char, size , who, whos, input, what, and exit/quit.

 References
[1] http://www.mathworks.com/matlabcentral/

fileexchange/authors

[2] https://www.mathworks.com/matlabcentral/answers/

[3] http://ctms.engin.umich.edu/CTMS/index.php

[4] http://www.mit.edu/people/abbe/matlab/
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 Exercises for Self-Testing
 Exercise 1
Perform the following steps:

 1. Find the Vibrating Logo demo from the preinstalled MATLAB 

demos and run the demo. Hint: membrane.

 2. Locate Product Overview from the help library of the package.

 3. Change the font type and size of the Command window.

 4. Change the font size and color of comments in the M-file editor.

 5. Make the numerical data display format in long eng in the 

Command window using Preferences and commands in the 

Command window.

 Exercise 2
Do the following steps:

 1. Use the help library to find out how to add a new path for search. 

Add a new path for search: C:\Users\Public. Hint: addpath.

 2. Use the MATLAB help browser to find how to create a new 

directory. Create a new directory called my_new_dir inside 

directory C:\Users\Public. Hint: mkdir.

 3. Change the current directory to the newly created directory C:\

Users\Public using the Command window. Hint cd.
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 Exercise 3
Get help on the exp (exponential) function using the Command window. Use the help, 

lookfor, doc, and help browser commands, and then compare the results of the four 

help options.

 Exercise 4
Create and open an *.m file called learn.m in the M-file editor window using the 

Command window. (Hint: >> edit …). Insert two commands in it that display the 

current date and time. Hint: date, clock.

 Exercise 5
Create a shortcut (a set of favorites commands) that opens a new M-file named 

My_Shortcut and simultaneously closes all figure windows and clears the Command 

window and Workspace window from all previously entered data and commands.

 Exercise 6
Change how the data formats display in the Command window from the Preferences. 

Make it a hexadecimal format. Hint: format.

 Exercise 7
What are the commands used to clean up the Workspace, Command, and History 

windows?

 Exercise 8
Given x = 2.25, y = 3.1, and z = 13.20, use MATLAB to evaluate the following expressions:

 
A xyz z

xy
x y z B e ln xy

z
y xyz� � � � �

�
�

�
�
�

�2

3

2

5

4 ; .
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Use the array editor to change the assigned values for x, y, and z and reexecute the 

expressions to compute A and B.

 Exercise 9
Create a script and save it as my_first_program.m.

 1. Your program should contain an input variable that is the length 

of a square side as a variable parameter in meters.

 2. Your program should calculate the area of a square and the 

volume of a cube.

 3. Your program should output the calculated results (area and 

volume) in metric (m2, m3) and British (in2, in3) systems by using 

conversion, e.g., 1 inch = 25.4 mm.

 4. Execute your created script (my_first_program.m) from the 

Command window.

 5. Execute your created script (my_first_program.m) from the M-file 

Editor window.

 Exercise 10
Do/answer the following:

 – Which command displays what is stored in your MATLAB 

workspace?

 – Create P � �
4

 and save it in uint64 format.

 – Explain why the value of P in uint64 is equal to 1. How do you fix 

this issue?

 – If the memory space is your concern, what is the best format to use to 

save integer values ranging between -2^16 to 2^16?
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 Exercise 11
Save all computation results from Exercises 8, 9, and 10 in a MAT file called my_

FIRSTwork.mat and clean up your MATLAB workspace from all the variables except for A 

and B from Exercise 8.

 Exercise 12
Given:

C1 = Hello. I’m from NYC. What is your name?

D1= I’m Dan.

C2 = Nice to meet you

D2= Nice to meet u 2

create a conversation displayed in the Command window in the form of a dialogue:

‘Hello.’ ‘I’m from NYC.’

‘What is your name?’ ‘I’m Dan.’

‘Nice to meet you.’ ‘Nice to meet u 2.’

 Exercise 13
Do the following steps:

 1. Change the display data formats for the Command window and 

make it long e.

 2. Where are the Preferences settings of MATLAB saved?

 3. What is the main function of the M-file finishdlg.m, and what 

commands does it contain?

 Exercise 14
Perform the following steps:

 1. Write a command in the Command window that creates and 

opens an M-file called Ex14.m.

 2. Edit your M-file Ex14.m so that it contains a command that 

changes the display format type.

Chapter 1  IntroduCtIon to MatLaB



84

 3. Edit your M-file Ex14.m so that it contains a command that 

changes the current directory.

 4. Edit your M-file Ex14.m so that it contains a command that 

displays the current date and time.

 5. Edit your M-file Ex14.m so that it contains a command that saves 

the current date and time data under two variable names, Day and 

T, respectively.

 6. Edit your M-file Ex14.m so that it contains a command that stores 

the variables Day and T in the file called Ex14.mat.

 7. Edit your M-file Ex14.m so that it contains commands that clean 

up the Command and Workspace windows and quits the MATLAB 

session.

 Exercise 15
Given:

>> day_ONE='MatlabDAY'; day_DUE=day_ONE+1.0

day_DUE =

 78 98 117 109 98 99 69 66 90

 1. Why is the answer day_DUE numeric data and equal to a 

10-element row matrix?

 2. What do these numbers represent?

 3. How can you obtain the original characters given in day_ONE and 

display them in the Command window? Hint: char().

 Exercise 16
Given:

>> A=[1,2; -12.0, 3]; mat2str(A); SNA=ans+0; char(SNA)

What is hidden behind the variable SNA?
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 Exercise 17
Create a structure type variable called E17 composed of cell and numeric array elements, 

such as MATLIB and classes.

 1. Create a cell called Matlab that is composed of two subcells 

{'Day#1', 'Start'}.

 2. Create a numeric array called classes containing the elements 

� � �; ;2 2��
�

�
�i . Note that i represents an imaginary number.

 Exercise 18
Create a function handle and inline function of the following mathematical expressions:

 1. h(θ, t) = 1.3 ∗ e−tiθ. Note that i - represents an imaginary number.

 2. Z(x, y, a, b) = ax2 + by2.

 3. U(t, ω, A,  B ) = Asin(ωt) + Bcos(ωt).

 Exercise 19
It is analytically proven that cos2α = 2α − 1. Use MATLAB to compute the equality for 

the different values [ 0
2

3

2
2

5

2
3 5, , , ,� � � �

�
�

�
�

�
� � ] of α and define the values of α in 

which the accuracy of MATLAB calculations does not represent equality.

 Exercise 20
Use MATLAB to compute the expression 1 5 10 10

24 245
. � � i  in the most accurate way. 

Note that it is in the fifth root.

 Exercise 21
Why do the following outputs look “strange”?

>> A=[4/5, 'matlab'+0, sin(pi)]

A =

 Columns 1 through 3
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 3fe999999999999a 405b400000000000 4058400000000000

 Columns 4 through 6

 405d000000000000 405b000000000000 4058400000000000

 Columns 7 through 8

 4058800000000000 3ca1a62633145c07

How do you fix this problem and make the results look readable?

 Exercise 22
Create a five-by-five matrix called [A] by using randi() within [1, 20] and divide it by 3. 

Display [A] as rational numbers as shown below. Note that your answer array numbers 

(in the numerator) of [A] will differ from the ones shown here. Why does your answer 

differ from the one shown here?

 Exercise 23
Create the next array in the most efficient way (at least in two different ways). Note 

the display format of A2 elements.
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 Exercise 24
By using randi(), create a 15-by15 array (called A3) with elements ranging from -125 

to 127 and save it in the most memory-efficient way with the name A3.

 Exercise 25
Create the following HTML report using M-file editor tools:

 

 Exercise 26
Given:

A5 = [1 2 3; 4 5 6; 7, 8, 9]

 1. Obtain B5 from A5 by two arithmetic operations: B5 = [16, 9 4; 1 0 

1; 4 9 16].

 2. Obtain C5 from A5 and B5 by using relational logic (<, >) and 

arithmetic operations (+ 13): C5 = [13 13 13; 14 14 14; 14 13 13].

 Exercise 27
Create three numerical (row matrix) arrays (variables called AJ, IS, LJ) so that when 

you subtract 3 from each of them and one conversion operation, you should obtain Al-

Khwarizmi, Ibn Sina, and Lennart Johansson.
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 Exercise 28
Save all of your created variables (A, A2, A3, A4, A5, A6) from Exercises 22 to 27 in a 

*.mat file named with your last name, e.g., Jones_HW2.mat.

 Exercise 29
Create the matrix A in the most efficient way:

 

Obtain a new A matrix in a most efficient way:

 

 Exercise 30
Create a cell array (called A) containing three variables: a=4/5, b=’matlab’+0, c=sin(π). 

Create a structure (called B) containing four variables: a, b, c, and A. Show how to get 

access to the variables a, b, and c residing inside A and B.

 Exercise 31
Create the following variables and entries in the MLX-file editor:

Function handle F: F(ω1, ω2, θ) = cos (ω1θ) −  sin (ω2θ)

Identity matrix: I = [1 0 0 0 1 0 0 0 1 ]

Magic numbers: M = [8 1 6 3 5 7 4 9 2 ]
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Multiply I matrix by 2 and subtract from the M matrix and call the new matrix by MI: 

MI = [6 1 6 3 3 7 4 9 0 ]

Logic array L by locating/comparing the elements of MI that are greater than 1 and 

less than 6: L = [0 0 0 1 1 0 1 0 0 ]

 1. Create a table array TM from M.

 2. Create a cell array CA containing F, I, M, MI, L, TM.

 3. Create structure SA containing F, I, M, MI, L, TM, CA.

 Exercise 32
Write down how to get to Layout (1), Preferences (2), and Quick Access (3), as shown in 

the screenshots. Note what the Fonts and Colors are used in (2).
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 Exercise 33
Create these shown files (MLX/M-files) and write down the steps for how to display the 

results, as shown in the figure in the Live Editor window here in this exercise.

Note that there are four windows displaying MLX and M-files, equations, Greek 

letters, plot figures, hyperlinks, data-tips, and how to insert an image.

 

 Exercise 34
Answer the following true/false questions:

• MATLAB’s default numerical format (int8, uint8, int16, uint16, … 

single, double) depends on the operating system of the computer in 

which MATLAB is installed. (True/False)

• Stored variables and their associated attributes change with 

the change of a display format type in the Command window. 

(True/False)

• The MATLAB user interface is customizable. (True/False)

• MATLAB supports cell arrays only if they are numerical data but not 

strings. (True/False)

• It is possible to put a table array variable into a cell array. 

(True/False)
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We are changing the values of entries [C] by changing a display format. (True/False).  

>>A = 1.1; B = [2 3; 1 2]; C = B/A; format hex; C)

We have changed the values of entries D, E by changing a display format. (True/False).  

>>D=uint8(255); D=255; D+1 =255; E = [12/14, 3/5; 1/3, 4/9]; format rat; E)

• The commands clearvars and clear all are the same and don’t 

have any difference. (True/False)

• The command clear A* deletes all .m, .mlx, and .mat files starting 

with a file name of A. (True/False)

 Exercise 35
Answer the following array size and representation-related questions:

 – Given a cell array ABBA containing 10 cells, which command will 

recall the elements residing in cell 3 of ABBA? (Give a command.)

 – Given a 5-by-5 array (matrix) called A, A(4:end, 3:4) will produce a 

matrix of what size?

 – How do you create a linearly spaced data array: a=(-13, -12, -11, … 11, 

12, 13) and b=(0, 1/13, 2/13, 3/13, … 24/13, 25/13, 2) without typing 

all the elements? Note how to obtain the rational format type of the 

array b.

 Exercise 36

 1. Obtain the logical array C = [1 1 1 1 1 0 0 0 0 0 0] from the array A = 

[-5, -4, -3 … 3, 4, 5] whose elements are linear (equally spaced).

 2. Obtain the numerical array D = [ 3 5 0; 0 0 4] from the array E = [3 5 

7; 1 1 4].
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 Exercise 37
Given in the Command window:

>> x=linspace(-13, 0), F(x)=2*x^2+2*x-1;

There are two potential errors. Find errors and fix them. What is the size of x 

and F now?

 Exercise 38
Write the answer commands to the following questions:

 – How do you change a working directory to C:\Users\Public and add 

this path for a search path?

 – How do you create a new directory called MYdir inside the C:\Users\

Public directory?

 – How do you find out what (variables) are stored in your MATLAB 

workspace?

 – How do you remove the created directory MYdir using the 

Command window?

 Exercise 39
Answer the following array-related questions on equally spaced data points:

 1. Change the last two columns (column 8 and 9) of D2 

(D2=zeros(9); D2(6,:)=1:9;) given previously to have the elements: 

[e0, e1, e2, …, e8], [tan (e0), tan (e1), tan (e2), …, tan (e8)], respectively 

in the most efficient way.

 2. Generate these vector spaces in two different ways: [-100, -90, 

-80, … 100], [-100, -99, -98, … 100].

 3. Generate an equally spaced 500 data points within [−π. . π ].
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 Exercise 40
Answer the following logical indexing and logical array-related questions:

 1. Given >> A=magic(3); C1=le(A,7), C2=A<=7, what do 0 

and 1 mean in all logical arrays shown previously for each 

individual case?

 2. Given >> A1=12.12; C='nan'; B=[1 2; 0, 3i]; D=B/0; 

AA1=isfinite(A1), CC1=isnan(C), DD1=isinf(D), 

DD2=isnan(D), what do 0 and 1 mean in all logical arrays shown 

previously for each individual case?

 3. Given >> AG=randi([-13, 25], 3, 2); BAG=(AG>0 & AG<13), 

why do your answers differ when you run the previous commands 

to define AG and BAG?

 4. Given >> GAB=find(AG>0 & AG<13), AG(GAB), what numbers are 

behind GAB, and how are they related to AG?

 5. Given >> 13>10; -1.2<=7.8; -11+13>=3, why are we getting 

0s and 1s?

 6. Given >> AA=randi([-13, 13], 10, 2); AA(AA<=0); % OR >> 

IN=(AA<=0); AA(find(IN)), what does IN represent with regard 

to [AA]?

 7. Given >>B = randi([0, 13], 5); k=find(B>=3 & B<=5), what 

numbers are in k with reference to B?

 Exercise 41
Create an * .m file called ARRAY_1.m and write the following:

 1. Write the command to clean up the Workspace and Command 

windows of MATLAB, and then display the current date and time 

in the Command window.

 2. Create array A. Write in it the commands to generate the following 

arrays: A1 (1-by-10) with the operator :, A2 (10-by-1) with 

linspace(), A3 (2-by-10) with eye().
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 3. Create array B. Write in it the commands to create the following 

arrays: B1 (5-by-6) with randi() elements ranging between 

[-1….1], B2 (5-by-6) with rand(), and B3 (5-by-10) with randn().

 4. Create array C. Write in it the commands to generate the following 

arrays: C1 (5-by-10) with magic() and repmat(), C2 (6-by-10) with 

eye(), and C3 (10-by-10) with ones().

 5. Write in it the commands performing all possible (arithmetic 

array) operations (+, -, *, /, .*, ./, ^, .^) with A1, A2, and A3 (at least 

three operations) and call these new matrices: A1new1, A1new2, 

A1new3, A2new1, A2new2, A2new3, A3new1, A3new2, A3new3. Hints: 

use transpose() and rot90() while performing arithmetic array 

operations.

 6. Write in it the commands performing all possible (arithmetic 

array) operations (+, -, *, /, .*, ./, ^, .^, sum, mean) with B1, B2 

and B3 (at least three operations) and call new matrices: B1new1, 

B1new2, B1new3, B2new1, B2new2, B2new3, B3new1, B3new2, B3new3. 

Hint: use fliplr() and transpose() while performing arithmetic 

array operations.

 7. Create AB1, AB2, and AB3 matrices from A1, A2, A3, and B1, B2, and 

B3. Also, use part of any A1, A2, A3 and B1, B2, B3 arrays. Note that 

every AB1, AB2, AB3, ABC4, ABC5 should contain some elements 

from arrays A and B. Hint: use flipud() and repmat() while 

creating the arrays AB1, AB2, and AB3.

 8. Create ABC1, ABC2, and ABC3 matrices by combining/concatenating 

the previously created arrays: A1, A2, A3 and B1, B2, B3 and C1, C2, 

C3. You should also use part of any A1, A2, A3 and B1, B2, B3 and 

C1, C2, C3 arrays. Note that every ABC1, ABC2, ABC3 should contain 

some elements from the A, B and C matrices from Parts 1, 2, and 3.
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 Exercise 42
Create an *.mlx file called Ex42.mlx and write in it:

 1. The command that creates a cell array called Q1 with six empty 

column cells.

 2. The command gives binary representations of 12321 and 

987654321, and a command writing these numbers including 

their binary representations in cell 1, 2, 3, 4 of Q1, respectively.

 3. The command converts the binary representations of 12321 and 

987654321 into a numerical type of array by using MATLAB’s 

conversion commands, namely, str2num( ) or str2double( ), 

and the command writing the two converted numerical arrays in 

cell 5 and 6 of Q1, respectively.

 4. The command generating the following array by using pascal() 

(MATLAB built-in matrix function):

 

And by applying logical indexing (logical array) and elementwise matrix 

multiplication operations, the following array:

 5. The command that creates a structure array called S5 and 

commands writing it: Q1, H, HLG.

 6. Explain: why do the converted numbers (in step 3) from the 

binary representations (of 12321 and 987654321) differ from the 

original decimal numbers, i.e., 12321 and 987654321?
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 Exercise 43
Create an *.mlx file (called Ex43.mlx) and add all the necessary comments, such as 

questions, equations, explanations, and other relevant remarks, and also, write in it the 

following commands:

 1. Generate two COLUMN arrays with 202 equally spaced data points in 

two different ways: = − 2π…2π; β =  − 3600…3600.

 2. Compute these three equations (take the values of α, β from step 

1): F(α) = esin(α); H(β) = ecos(β); S = 1 − (sin2α + cos2 β). Note: β is given 

in degrees not in radians, and thus, do not forget to convert it into 

radians. Also, insert the equations by using the equation editor 

of *.mlx.

 3. Create an array (called Solution) of five columns containing α, 

F(α), β, H(β), S.

 4. Create a table of arrays. The table of variables should be called 

TVall and has to be in the following format:

 

 5. Find all of the positive values of F, S, and H, and corresponding 

α, β values and save all of them in a cell array variable called 

FSH_pos.
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 6. Find all absolute zero values of S and corresponding α, β values. 

Save them in an array called ABS_0 with three COLUMNS of the 

found S, α, β values.

 7. Create a structure of arrays called ABFSH_struct containing 

SOLUTION, TVall, FSH_pos, and ABS_0 from steps 3, 4, 5, 6.

 8. Clear all variables in the workspace except for α, β, F, H S, 

SOLUTION, TVall, FSH_pos, and ABFSH_struct from the previous 

steps. Save these variables in an *.mat called Ex43.mat.

 Exercise 44
Create the *.m file (called Ex44.m) that should perform the following operations:

 1. Clear up the workspace and Command window from all entries.

 2. Close all open figure windows.

 3. Create a new directory: C:\Documents\Ex44.

 4. Change the current directory of MATLAB to a newly created 

directory: C:\Documents\Ex44.

 5. Compute t = [0, 3π] with∆t = π/200,  

f t sin t
1

3
3

2
� � � �

�
�

�
�
�

, 
f t t
2

2

5
� � � �

�
�

�
�
�.

 6. Save the computation results (t, f1(t), f2(t)) in a .mat file called 

Ex44.mat.

 Exercise 45
Create an *.m file (called Ex45.m) that performs the following operations:

 1. Changes the current directory of MATLAB to the MATLAB’s root 

directory (Hint: matlabroot)

 2. Removes the directory created in Exercise 44: C:\Documents\Ex44

 3. Displays MATLAB’s root directory in the Command window
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 4. Creates two function handles: r at v t ro� � �
1

2

2

0
  

and A P r
n

nt

� ��
�
�

�
�
�1

 5. Saves the current path and the previous created function handles 

in a structure array called EX45
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CHAPTER 2

Programming Essentials
This chapter covers the most essential and widely used programming tools, operators, 

and control statements in MATLAB. In addition, the chapter covers modeling essentials 

in Simulink, the development of a graphical user interface (GUI), and the development 

of MATLAB executable files and stand-alone applications. Also, the chapter shows 

a number of simple examples demonstrating efficient ways to program and model 

in MATLAB/Simulink to save computation time as well as how to create short and 

compact code/scripts. In the process, I will give a few essential hints and show different 

approaches for writing robust programs and scripts. Throughout the book, key terms 

such as script, code, program, M-file, MLX-file, and function file are used frequently to 

refer to the programs written for MATLAB. The script and M/MLX-files, including the 

function files, are meant to be source code readable by users, not the machine code 

understood by a computer. 

 Writing M/MLX-Files
The previous chapter discussed various entries, such as arrays, characters, cells, 

structures, tables, and logic arrays, via examples in the Command window. Also, I gave a 

general overview of M/MLX-file editors by writing several short pieces of code (scripts) 

that performed computations. Scripts (M/MLX-files) can also be written in Notepad or 

WordPad. They become M-files as soon as they are named with a file extension of *.m 

or *.mlx.

As discussed in the previous chapter, the M/MLX-file editors have many easy-to-use 

tools and some easy-to-understand options that can be employed while writing and 

debugging scripts. The M/MLX-file editors’ most used tools are the ability to use cell 

modes, set up breakpoints, evaluate selected lines of cells or scripts, use automatic error 

detection options for misspelled command names and missing brackets in algebraic 
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operations, detect all used and unused/unreferred to but introduced variables, and 

get useful hints to improve the script performance and display of warning hints on 

unnecessarily assigned variables, see the overloaded display of results, use variable 

values within loops, use a profile viewer, and so forth. 

All of these tools of the M/MLX-file editors help you avoid syntax errors while writing 

scripts. In addition, there are many other tools that help you save time and effort on 

the mechanical parts such as writing reports and publishing reports in HTML or PDF 

formats, for example.

Before starting to write some code, let’s consider the most essential steps in any 

programming language. The process of writing code starts with a pen and paper and is 

composed of the steps shown in Figure 2-1.

Figure 2-1. General process of code/program writing
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This flowchart shows the following steps:

 1) Clarify the problem statement.

 2) Clarify/create/declare input variables: var1, var2, var3 ... varN.

 3) Read the values of var1, var2, var3, ... , varN.

 4) Define the output variables: out1, out2, out3, ... outN. Perform 

computation, evaluation, and analysis operations.

 5) Check the quality/correctness of the obtained results/output 

variables.

 6) If the quality/correctness of the achieved results is not adequate, 

then go back to step 3. Repeat steps 3 through 5 until the expected 

quality/correctness is attained.

 7) End and report on the results.

This algorithm is a generalized process and might also include considering 

objectives, specifics, and nuances, such as input/output data types, sources, evaluation 

/computation operations, etc. Once the (general) algorithm is well-defined, you can 

begin coding in the given programming language. When writing code, the most time- 

and effort-consuming part is to carry out the verification operations in steps 3 to 5. This 

is called debugging, and it helps you locate errors or flaws in the calculation/evaluation 

and analysis operations from step 4.

Specifically, debugging is the process of correcting the syntax of the code, script, 

or program with respect to the programming language, correcting the calculation/

computation operations with respect to the given problem statement, and, if required, 

adjusting the precision of the output. Debugging is not so straightforward in many 

instances, but MATLAB’s M/MLX file editors have a few helpful tools that detect general 

errors made in your scripts. At the same time, many errors cannot be detected without 

executing and analyzing the obtained outputs. There is no single solution approach to 

finding all possible bugs (flaws and mistakes) made when writing code. One of the most 

common ways to see if the code is performing as anticipated is to use test examples and 

then verify the output.

Throughout the book, considerable attention is given to debugging. It must be noted 

that it is impossible to write code without any flaws. Therefore, debugging is a “must-

have” step. Moreover, you will hone your programming skills when you write code that 

solves different problems and make errors that you can then find and fix.

Chapter 2  programming essentials



102

Note always start writing your scripts with simple operations/commands to 
perform the most essential parts of the exercise. once the essential parts of the 
exercise are complete, you can add more details. it’s good programming practice 
to move from the simple to the complex.

 How to Create an M/MLX-File
There are a few ways to create a new script (in this case, an M/MLX-file).

 1) By typing >> edit in the Command window and pressing the 

Enter key on the keyboard.

 2) By hitting Ctrl+N on the keyboard.

 3) By clicking  for the M-file.

 4) By clicking  for the MLX-file.

 5) By clicking  and selecting from the drop-down options 

 for the M-file or  for the MLX-file or 

 for a function file with an *.m file extension or 

 for a function file with an *.mlx file extension

 6) By collecting the commands typed in the Command window via 

these commands: diary on, diary NewFileName, diary off

 Warnings in Scripts
While writing M/MLX-files, including the function files, the M-file and MLX (Live)-file, 

editors automatically generate some warning signs that are in many instances very 

helpful hints to improve the efficiency of scripts and locate some missing or overlooked 

arguments. They do not prevent the scripts from being executed, though. These 

warnings are indicated by underlined wavy lines and hyphens  and rectangular boxes 
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 on the right side of the M-file Editor window. They are by default orange. Similarly, 

the MLX-editor (Live Editor) indicates warnings by underlined wavy lines, as well as 

hyphens  and triangular warning signs  on the right-side bar of the Editor window. 

Note that their color type can be adjusted via the Preferences settings. There are a few 

common warnings that are detected automatically by the M/MLX-file editors. They are 

as follows:

• To suppress the display of outputs in the Command window detected 

by the M-file editor only.

• To suggest memory allocation (e.g., the variables A and B are 

underlined with an orange wave line) when a variable size changes/

increases in the loop iteration within [for ... end] and [while 

... end].

 

 

• To cancel the premature ending of the command with comma. For 

example, the comma after the grid on the command (on line 4) needs 

to be replaced with a semicolon.
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• To remove unnecessary semicolons. For example, at the end of line 1, 

the ; is unnecessary.

 

• To remove unnecessary semicolons in the [for ... end] loop’s 

index declaration (on line 4).

 

• To indicate unused but assigned variable names (G on line 5) within 

M-files.

Chapter 2  programming essentials



105

 

• To indicate missing arguments when formatting fprintf().

• To indicate unnecessary brackets (a = [13] on line 2).

• To indicate an unrecommended function. For example, xlswrite() 

on line 2 is not recommended; instead, it is recommended to use 

writematrix() or writecell(). Note that the unrecommended 

function detecting warning option is available starting from the 

MATLAB R2022a version.
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It must be noted that some of the warning signs detected by the M-file editor will not 

be picked up by MLX-editor (Live Editor). For example, the missed ; used to suppress 

the display of the output in the Command window is not applicable to the MLX-editor 

(Live Editor).

On the other hand, other warnings such memory allocation warnings, unnecessary 

semicolons, missing arguments when formatting fprintf( )d, and unnecessary 

brackets are detected and highlighted very explicitly with the MLX-editor with an  

icon on the right side of the Editor window.

• To advise the memory allocation.

 

• To indicate the prematurely ended command with a comma.

 

• To indicate unnecessary semicolons in the function statement.

• To indicate unnecessary semicolons in defining indexes for the [for 

... end] loop.
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• To indicate a missing argument in fprintf().

 

• To indicate unnecessary bracket.

 

• To indicate an unrecommended function use. For example, 

xlswrite() on line 2 is not recommended. Instead, it is 

recommended to use writematrix() or writecell(). Note that the 

unrecommended function detecting warning option is available 

starting only from the MATLAB R2022a version.
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 Errors in Scripts
In MATLAB, scripts can contain code to perform various computations and analyses 

and to define functions. Let’s look at a few simple examples of how to write scripts in the 

M-file and MLX-file editors and see how to locate/fix common errors occurring while 

writing scripts.

 Example 1

Let’s solve a quadratic equation represented in a general form: ax2 + bx + c = 0. First, 

open an M-file editor and type in the following commands:

a=input('Enter, a = ');

b=input('Enter, b = ');

c=input('Enter, c = ');

D=b^2-4*a*c;

disp(['Discriminant of the equation is: ' num2str(D)])

Once the file is saved with a file extension of *.m, then it can be executed. When 

it is executed, this code prompts the user for three input (input()) entries and then 

computes the discriminant of the quadratic equation with the user entries for a, b, 

and c and displays the result in the Command window. It should be noted that the 

command disp() on line 5 is optional and is used to display the computation result in 

the Command window with some comments. The command disp() does not make any 

changes in the output. There are two more computing steps left in this code, namely, 

computing the two roots of the quadratic equation. The remaining steps can be inserted 

after line 5. If there are some illegal operations/errors while writing the script, the M/

MLX-file editor will automatically detect them and underline them with red waves.
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There is one error on line 6 (the red wavy line under a), where the multiplication 

sign is missing, and one warning shown with an orange wavy line under the = sign on 

line 7, where a semicolon (;) is recommended to suppress the display of the output from 

this line.

Error and warning messages like the ones on lines 6 and 7 with red and orange 

highlights are shown on the right edge of the editor’s scroll bar. If there is a red wavy line 

showing errors, the script (M/MLX-file) cannot be executed. If there are any warning 

signs with orange wavy underlines, that script can be executed without a problem. A few 

different types of typos or illegal operations are detected automatically by the M/MLX 

editors, but they cannot be fixed automatically. Thus, you have to understand and work 

out such issues.

The warning message on line 7 can be fixed either by putting a semicolon where the 

cursor is or by clicking the Fix button.

 

Finally, here is the fixed script. The green square in the right corner indicates that the 

syntax of all the typed-in commands are correct, and the script is ready for execution.

C
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Now after saving this script with a file name of Eqn.m, it can be executed by clicking 

the  button on the Editor’s main menu, by pressing Ctrl+Enter on the keyboard, or 

by calling the script by its name (>> run('Eqn')) from the Command window directly. 

Another way of executing the code is pressing the F5 functional key on the keyboard. 

After executing it, it prompts for the input in the Command window. You would enter the 

values 1, 2, and 3 for a, b, and c, respectively.

Enter, a = 1

Enter, b = 2

Enter, c = 3

Discriminant of the equation is: -8

Then the whole computation is completed, and this is what is obtained in the 

Command window. There are also some other variables saved in the Workspace window 

that are shown.

 

All of the entries and processed/computed outputs from the scripts and M/MLX-

files are saved automatically in the workspace. Except for when the function files are 

executed, not all results are saved in the workspace apart from the specified output 

variables in the function file. This issue will be addressed in the Function Files section of 

this chapter.

 Example 2

Compute the following expression by writing an M-file (script): ab
ax by

cd f
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3
2 2 5 2, , , , , , and, , , . ,  and the values a, b with the user 

entries (scalars). According to the given values of the variables, x and y are row arrays 

and the other variables (a, b, c, d, f) are scalars.
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Like with the quadratic equation, the input prompts are included in the script.

 

This is the created short script to compute the given assignment. By taking a quick 

look at this script, you can see that there is one error detected by the MATLAB editor. It is 

invalid syntax related to a missing parenthesis at the end of line 9 that is true, and in fact, 

the missing parenthesis is before the first power raise (^) sign. Here is the fixed code with 

the green square in the upper-right corner:

 

Now everything appears to be correct according to the editor syntax. However, there 

are still several errors.

• On line 4 while defining the elements of x, a semicolon is used as an 

element separator that must be a comma or just a space.

• The variable f is defined on line 8, but in the expression on line 9 ff is 

used instead.

• The computation expression on line 9 is performed with the variables 

a, b, c, d, and f, which are scalars, and the variables x and y, which 

are row arrays. That is not correct. This line has to contain element-

wise operations over the row array variables x and y. After fixing these 

errors, the script will be in the following form:

Chapter 2  programming essentials



112

 

Now the script can be executed by pressing Ctrl+Enter or F5 on the keyboard without 

saving it or by clicking  after saving it. Here are the results (input entries from the 

Command window):

Enter, a = 1

Enter, b = 2R

Here are the variables in the workspace:

 

 Example 3

Let’s compute the mathematical expression’s values and plot them by using the MLX-file 

editor and creating the MLX-file. Given: H(t) = sinsin (ωt); ω = 3; t = [00, 4500] with ∆t = 10. 

Note that the given argument values of t are in degrees, not in radians. In MATLAB 

there are two functions, namely, sin() and sind(), to compute sine function values with 

input arguments in radians and degrees, respectively. Therefore, in such cases, there 

are two approaches: one should always use the right MATLAB function or one should 
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employ the conversion function from degrees to radians (deg2rad()) or vice versa 

(rad2deg()).

Now the MLX-file (script) is created in a live editor by considering the input 

argument t:

 

 

Note that the error is shown by the wavy underline, and  and  in red on the 

right side of the MLX-editor. After fixing the error (the comma before *), the corrected 

code will be in the following form:

There are several essential differences between the M-file editor and MLX-file editor. 

One of them is that the MLX-editor can detect automatically the previously defined 

variables after typing the first letter of the variable name as an input argument with an 

additional hint showing the argument type to be inserted (e.g., t is the angle in degrees). 
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Another feature of the MLX-file editor is that it does not show a warning message if the 

semicolon is not placed at the end of commands assigning variable values. For example, 

t = 0:1:450, which we saw while working with the M-file editor. The MLX-file editor 

displays the outputs not in the Command window but in the MLX-editor’s right-side 

window. At the same time, all of the variable values and computed expression values are 

saved in the workspace after executing the MLX-files just like with the M-files. The 

execution of the MLX-files is similar to M-files that can be done by pressing Ctrl+Enter 

on the keyboard or by clicking the  button. Here is the final script with the plot() 

command and its computed results:

 Example 4

Write an MLX-file that analyzes and computes the following acceleration equation a(v) 

(acceleration as a function of velocity) of a skydiver:

 
a v g

v� � � �
�

�
�

�

�
�1

3600

2

 

 
g

m

s
= 9 81

2
.  
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 1. Plot a versus v.

 2. Compute the terminal speed of a skydiver when 
a v

m

s
� � � 0

2
.

 3. Take the vertical velocity v to be independent variable with the 

step size of � �v
m

s
0 1.  within 0 100,

m

s
�
��

�
��
.

 4. Display the terminal speed value on the plot.

Here is the initial code with one error on line 8 because of a mistyped variable name 

(Ttt instead of Tt), indicated by the exclamation point  icon. This type of error (a 

mistyped variable name) can be detected in the live editor only after executing the script, 

not while writing it.

 

Note that the error with the mistyped variable name (Ttt instead of Tt) showed up 

after executing the MLX-file editor. The results of calculations from the MLX-editor, 

unlike the M-file editor, do not show up in the Command window. Therefore, it is a good 

idea to execute the live script frequently to catch any overlooked rules and errors while 

typing and editing the scripts in the MLX-editor.

Here are the corrected and final solution scripts for this exercise in the MLX-editor:
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The outputs are displayed within the same window on the right side, including the 

plot figures. In this exercise, there are a few lines of (nonexecutable) text; comments and 

equations are added between executable commands by using the  

and  equation editor GUI tools of the MLX-editor, which are 

not available in M-file editor.

 Example 5

It is possible to call within an M-file another M/MLX file or files. Let’s look at an example 

of writing M- and MLX files to compute the following expressions. You’ll also obtain their 

computation results by calling/executing another M/MLX-file. This will demonstrate 

how you link/connect several scripts (M/MLX files) or, in other words, how you execute 

several scripts, obtain their simulation results, and use them within a single script.

 1) Compute F(α) = esin(α); H(β) = ecos(β); S = 1 − (sin2α + cos2 β); for 

α =  − 2π...2π; β =  − 3600...3600 by writing an MLX-file.
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 2) Compute (at) − sin sin (bt), for a = 3, b = 2, −13 ≤ t ≤  − 3 with 

∆t = π/50 by writing an M-file.

 3) Compute f (t) = cos cos (20t) −  sin (10t), for t ∈ [−π,  π] with 

∆t = π/50 , and plot the computation results t versus f (t) by writing 

an M-file.

 4) Compute 
T s

e

s s

s

n n

� � �
� �

�13 2

2 2�� �  for δ = [0,  0.5,  1,  1.5, 2]; 

�n

rad
s s� �

��
�
��

�� � � � � �3 0 25 5 10 2

sec
; ,,  by writing MLX-file.

 5) Write an M-file that executes all of the M and MLX-files from the 

previous tasks and saves all the computation results in a single 

array called A1 (for step 1), a table array called Btab2 (for step 2), 

a cell array called Ccell3 (for step 3), and a structure array called 

Dstruct4 (for step 4).

Here are the solution scripts in the M/MLX-files of these five tasks.

This MLX-file, called ET1.mlx, is the solution of task 1:

 

At initial glance, this script (ET1.mlx) looks error-free, and the MLX editor does not 

show any problematic issues. However, there are two errors (in array power operations) 

on line 2 in computing S, which will be detected by the editor only after you execute 

the script.
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Here is the corrected script:

 

Here is the initial version of the script that solves task 2:

 

A quick glance at this code shows that it is correctly typed and ready to execute. That 

can be verified with the green box  on the right side of the editor’s window. Even with 

the execution of the script, no error will show up in the Command window. However, 

checking the obtained results of g shows that many anticipated data points are missing 

in the results. The error is on line 3. The semicolon is typed in instead of the colon 

operator to create an array of t. This is an implicit error or bug in the code that cannot be 

detected by the M-file editor. Here is the corrected code:

 

Here is the initial version of the answer script for task 3:
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In this script, the editor detects two errors and one warning sign on line 5. The script 

contents can be executed up to line 5, and the following error message is displayed in the 

Command window:

Error: File: ET3.m Line: 5 Column: 7

Invalid expression. When calling a function or indexing a variable, use 

parentheses. Otherwise, check for mismatched delimiters.

Actually, there was one error: a misplaced semicolon instead of a comma within the 

plot() command on line 5: plot( t; f, 'b-'). There are two common functionalities 

of the semicolon for MATLAB, one of which is the termination of display results in the 

Command window and the end of row elements of an array. Therefore, in this example, 

the semicolon inside plot() is misplaced. Here is the corrected script:

 

Here is the initial solution script of task 4:
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It automatically detected an error (the mistyped semicolon instead of a comma) as 

an element separator of the array. With this error, the script cannot be executed.

Here is the corrected version of the script:

 

Here is the script of task 5. It calls the scripts in tasks 1 to 4.

 

The script editor does not show any problems or issues. However, when it is 

executed, the following error message pops up in the Command window:

Error using run (line 87)

RUN cannot execute the file 'ET2.mlx'. RUN requires a valid MATLAB script

Error in ET5 (line 11)

run('ET2.mlx');
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This error message indicates that there is a problem recognizing the file. That means 

the file name ET2.mlx is not the correct file name (the file extension is wrong); it has to 

be ET2.m instead.

Here is the corrected script of task 5:

 

By executing the last file, ET5.m, all other four scripts are also called and 

executed consecutively. Here are the computed outcomes from all scripts in the 

Command window:

Enter the value of a  =  2

 Enter the value of b  =  3

  Name             Size             Bytes  Class     Attributes

  A1            1800x1              14400  double

  Btab2          255x2               5162  table

  Ccell3           1x2               1840  cell

  Dstruct4         1x1              24800  struct

  F              1x360               2880  double

  H              1x360               2880  double

  S              1x360               2880  double

  T              501x5              20040  double

Chapter 2  programming essentials



122

  a                1x1                  8  double

  alpha            1x360             2880  double

  b                1x1                  8  double

  beta             1x360             2880  double

  delta            1x5                 40  double

  f                1x101              808  double

  g                1x255             2040  double

  omegaN           1x1                  8  double

  s                1x501             4008  double

  t                1x101              808  double

Also, there is a plot figure (not shown here) from task 3 (ET3.m).

Note that there are many other common errors made while writing scripts that will 

be highlighted throughout the book. Moreover, there are a few common mistakes made 

while creating the function files that will be highlighted in the section dedicated to the 

function files.

Via these simple examples, you have seen how scripts, such as M-files and MLX-

files, and the tools of M and MLX (Live) editors can be employed while writing scripts to 

detect common errors automatically. There are some other errors that are not detected 

by the M/MLX editors automatically that can be found only after executing the scripts. 

These include various operations (arithmetic, matrix, and array) that are performed with 

mismatched sizes of variables or improperly spelled MATLAB commands.

Note Finding and fixing the errors you make while writing code is a good 
exercise for learning how to write great programs.

 Cell Mode
In the M/MLX editors, the cell mode option is a handy tool to write well-structured 

code/scripts. Working in cell mode is simple and can be accomplished by typing %% 

and leaving one cursor space. This creates a new cell by default. Writing long scripts 

separated in cells for every separate operation helps you execute your code cell by cell 

and detect where the bugs/flaws are. It also helps you visually separate the code into 

distinct blocks that can be highlighted one at a time. This helps with the readability of 

the code while editing it. Let’s consider the following example.
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The equation for an ellipse centered at the origin of the Cartesian coordinates (x, y) 

is 
x

a

y

b
A

2

2

2

2
1� � � �,where a and b are constants that determine the shape of the ellipse. 

The variables x, y are defined by x u
a u

u
y u

bu

u
� � �

�� �
�

� � �
�

1

1

2

1

2

2 2
, , and u tg

t
� �

�
�

�
�
�2

 where 

0 ≤ t ≤ 2π.

 1) Compute the ellipse given in equation in (A) for a = 1.5, b=3.5 and 

plot it.

 2) Plot and display the points of intersection of the two ellipses 

described by 
x

y2
2

4
1� �

 and 

x
y

2
2

25
1� �

.

 3) Compute three ellipses defined in (A) as a three-column array for 

these cases: a = [1, 2, 3], b=[3.5, 1, 2].

Here is the solution script of this exercise created in three cell modes representing 

answers for each subsection of the exercise. Each cell contains an answer script for each 

part of the given exercise. Cell 1 (part 1), composed of lines 2–9, computes the ellipse 

in (A) with respect to the values of a and b. Cell 2 (part 2), composed of lines 10–27, 

computes two ellipses and plots their values and, subsequently, displays intersecting 

points of the two ellipses. Cell 3 (part 3) computes three ellipses with respect to the 

values of a and b and plots the computed ellipses.
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After writing the code in cell mode, you can execute each cell separately by using the 

Ctrl+Enter keys on the keyboard when the cursor is within the cell that is meant to be 

executed or using the  and  and  tools of the M-file 

editor. Note that an alternative way of executing the selected part of a code is to hit the F9 

key on the keyboard. The advantages of using cell mode is that you can execute and test each 

cell separately. If there are any errors, you can fix them without any interference with other 

cells. You can save considerable time and effort when you debug and correct long scripts.
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Note When you are writing long, extended scripts and debugging them, it is more 
efficient to use cell mode.

As noted, the M/MLX-file editors have many useful tools. For instance, they 

automatically detect common typographical errors. They detect and warn a user about 

the following:

• Mistyped MATLAB built-in function/command names

• Unclosed mathematical expressions with brackets, namely, (), {}, []

• Misused/improperly used or missed mathematical operators, 

namely, +-*/\, ..., ( ), {}, []

• Invalid syntaxes

• Unused variable names

• Suppress display of (lengthy) outputs

• Which entries are numeric data, which entries are characters or text 

messages, and which entries are comments

• Warning messages that let you know how to improve computation 

efficiency of a script

In addition, the M/MLX-file editors have the following tools:

• Debugging modes, such as set/clear breakpoints, set/modify 

conditional breakpoints, enable/disable breakpoints, stop if errors/

warnings

• Working in a cell mode

• Text editing options under text

• Report writing by save and publish options
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 Debugging Mode
The dbstop function temporarily halts the execution of a script and provides the user 

with an opportunity to examine the local workspace. While debugging a script, you can 

set the breakpoints at specific lines in the Editor window by clicking that line in the left 

gutter. There are more than a dozen forms of dbstop function uses, as shown here:

    (1)  dbstop in FILE at LINENO

    (2)  dbstop in FILE at LINENO@

    (3)  dbstop in FILE at LINENO@N

    (4)  dbstop in FILE at SUBFUN

    (5)  dbstop in FILE

    (6)  dbstop in FILE at LINENO if EXPRESSION

    (7)  dbstop in FILE at LINENO@ if EXPRESSION

    (8)  dbstop in FILE at LINENO@N if EXPRESSION

    (9)  dbstop in FILE at SUBFUN if EXPRESSION

    (10) dbstop in FILE if EXPRESSION

    (11) dbstop if error

    (12) dbstop if caught error

    (13) dbstop if warning

    (14) dbstop if naninf  or  dbstop if infnan

    (15) dbstop if error IDENTIFIER

    (16) dbstop if caught error IDENTIFIER

    (17) dbstop if warning IDENTIFIER

The name FILE is the file name in which you want to perform the debugging 

operations. It has to be specified as a character vector of the string scalar. FILE can also 

include a full or partial path to the file directory. LINENO is a line number within FILE 

(the script in which the debugging operation is being performed), and N is an integer 

specifying the Nth anonymous function on the line. SUBFUN is the name of a subfunction 

within FILE. EXPRESSION is an executable conditional expression, specified as a character 

vector or string scalar. IDENTIFIER is a MATLAB message identifier (see the help for 

ERROR for a description of message identifiers). The AT and IN keywords are optional.
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 M-Lint Code Check
The command mlin() is used to check MATLAB code files for possible problems. When 

you run an M-Lint code check from the M-file Editor window, by choosing Tools ➤ 

M-Lint ➤ Show M-Lint Report, it will prompt you with a full report (on your M-file) of 

warning messages. For instance, it will check which variable is unused, which variable’s 

size changes on every loop iteration, what the opportunities are for improvement, 

which one of the employed built-in functions of MATLAB is deprecated, and so forth. 

The general command syntax of mlint() is as follows: >>mlint('filename'). Starting 

from MATLAB 2019a, mlint() is not recommended, and the checkcode() command is 

recommended instead.

Let’s consider the following example to demonstrate how to use the M-Lint code 

check tool:

Given {2x1 − 3x2 + x3 = 5 4x1 + 2x2 − 2x3 = 3 6x1 + 3x2 + 2x3 = 11, write the code to solve 

the given system of linear equations, and import the computed solutions along with the 

given data into an external Microsoft Excel file.

Here is the solution script:

 

The code (Code_Check.m) contains two warnings automatically detected by the 

M-file editor. They are related to the inv() and xlswrite() functions.

When you call this created code (Code_Check.m) using mlint() and checkcode(), 

you will get the following analysis report:

>> mlint('Code_Check.m')

L 6 (C 5-7): INV(A)*b can be slower and less accurate than A\b. Consider 

using A\b for INV(A)*b or b/A for b*INV(A).

L 7 (C 1-8): 'xlswrite' is not recommended. With appropriate code changes, 

use 'writematrix' or 'writecell' instead.

>> checkcode('Code_Check.m')
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L 6 (C 5-7): INV(A)*b can be slower and less accurate than A\b. Consider 

using A\b for INV(A)*b or b/A for b*INV(A).

L 7 (C 1-8): 'xlswrite' is not recommended. With appropriate code changes, 

use 'writematrix' or 'writecell' instead.

The analysis report also has recommendations. If you follow the recommendations 

and make the respective changes in the code (Code_Check.m), it looks like this:

Now, the M-file editor shows no more warnings. Let’s run code checking again with 

the updated code (Code_Check.m).

>> mlint('Code_Check.m')

>> checkcode('Code_Check.m')

The code checking produces no recommendations, which means the updated code 

is perfected.

 Code Profiling
Code profiling measures where a program spends time and where the problems/errors 

are. By identifying the performance of your program, you can improve it. Code profiling 

can be started from the M-file Editor window by clicking the icon. The Code Profiling 

(Profiler) window pops up. The profile report contains the whole benchmarking report 

of your script (M-file) including extensive information on each command and operation, 

including how much the CPU spends obtaining the results. By studying a profile report of 

your script, you can learn how to improve simulation time efficiency. The profile mode 

is off by default and can be also switched on by using the >> profile on command. The 

profile summary report of any M-file or Simulink model can be generated and viewed 

with general syntaxes, for example:

Chapter 2  programming essentials



129

 

Here’s another example:

>> profile on; Test; profile viewer

Here’s an example for Simulink models:

>> profile on; sim('My_Model'); profile viewer

Note You can insert any m-file or mlX-file name (e.g., My_function.m, My_
Code.mlx) or function file name (e.g., My_function.m) or simulink model name 
(e.g., My_Model.mdl, Model_Sim.slx) between the two commands profile 
on; and profile viewer. here’s an example: >> profile on; My_Code; 
profile viewer.

After running the code (Test.m), the comprehensive profile report of the code 

(Test.m) will pop up, as shown in Figure 2-2.
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Figure 2-2. Profiler view results

The total processing time is 0.015 seconds. From the report, you can see for each 

function that the evaluation function took a significant amount of processing time. You 

can also view how much processing time is spent in each subfunction by clicking the 

function name in the profile report.

 Dependency Report
The dependency report is used to identify all functions, scripts, and external programs 

(applications) that are called/used within our program. This report finds information 

about dependent files and tools of the current file that we have employed within our 

script built-in functions from MATLAB toolboxes and other M-files and function files 

from our current folder. This will be helpful before sharing our work with other users 

who may not have all the M-files, function files, and toolboxes that we have in our 

computer. The dependency report shows dependencies among MATLAB files in a 

directory and can be called with the following steps:
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 1. Select Desktop ➤ Current Directory and navigate to the 

directory containing MATLAB files for which we want to see the 

dependency report.

 2. Click the Current Folder tab, and from the right-mouse button 

options, select Reports, and then select Dependency Report.

 3. The dependency report of all MATLAB files will be shown 

automatically.

 P-Codes
In MATLAB and Simulink, except for M-files (function files), with a file extension of 

*.m, *.mlx, *.mat, *.mdl, and *.slx files, there is also another important file type that is 

called P-code with a file extension of *.p that is very handy and recommended to create 

in some specific instances. The main reasons for creating a P-code file from an M-file 

are to prevent valuable files from being edited, to keep them secure, and to speed up the 

simulation time of scripts.

Specifically, here are some good reasons to create P-code:

• To speed up the process of simulation in the MATLAB platform.

• To keep valuable M-files secure to a certain extent; however, P-code 

should not be considered as a substitute for secure encryption.

• P-code/files provide a simple means of hiding proprietary 

algorithms.

• When you call an M-file function, MATLAB parses the M-code and 

stores the instructions as P-code in cache memory. P-code remains 

in memory until it is cleared using the clear command or until 

MATLAB quits.

• P-code is platform-independent pseudocode for a virtual MATLAB 

machine.

• Since P-files are in a binary format, their source code is hidden.
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Here is how to create P-code:

 – To create P-code from a given M-file residing in the current folder, 

e.g., My_fileM.m, type the following in the Command window:

>> pcode My_fileM.m

After running the previously shown command, a P-code of the M-file 

My_fileM.m will be created under the same file name but with the 

extension of *.p instead of *.m.

 – To execute the created P-code called My_fileM.p, type in the  

Command window:

>> My_fileM.p

 – Or type in the Command window:

>> run My_fileM

This executes the created P-code even if we have in our current directory our primary 

M-file called My_fileM.m.

 Some Remarks on Scripts/M/MLX-Files
Note the followings:

• In general, any MATLAB commands can be executed from scripts or 

from the Command window. Which method is best depends on what 

tasks/computations or evaluations need to be performed. If there 

are simple computations composed in a one-step process and no 

repetitions are required, then there is no need to create M/MLX-files 

or scripts. On the other hand, when large computations with different 

operations including loop iterations and conditional statements are 

required, then writing M/MLX-files is the best option.

• The error and warning messages will not only help you locate errors 

in your scripts or models but also provide some hints on what the 

causes of errors are and how to eliminate them. In fact, warning 

messages will help you make your programs more robust and also 

inform a user about the ignored data in computed/plotted outputs.
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• To write scripts and M-files, the M/MLX-file editors must be 

employed since they include a number of helpful tools. For instance, 

they automatically detect unused variables, the display of data sets, 

and the unclosed loops. They also enable you to work in cell and 

debug modes and help you detect errors and warnings about costly 

computations within loops, suggest memory allocation options, and 

do much more.

 Display and Print Operators: display, sprintf, 
and fprintf
There are several commands and operators (built-in functions) to display computation 

results in the Command window or export them into external files compatible with 

MATLAB. They are disp(), display(), sprint(), and fprintf(). Out of these 

commands, disp() and display() are straightforward ways to display any comments, 

strings, or numerical values in the Command window without any additional formatting 

tools or characters. They are not robust enough to display any comments/strings and 

numerical values in various formats. They cannot write data into external files. On 

the other hand, sprint() and fprintf() can substitute all functions of disp() and 

display(). They can be used to print various data types in the Command window 

by using formatting operators and characters. Moreover, they can print textual and 

numerical data into external files. Let’s look at several examples to demonstrate how to 

employ these display and print commands.

 Example 1
Given f t t t� � � � � � �

��
�
��

sin , 0
4 2

3

4
, , , ,
� � �

� . Displaying computation results of the function 

f (t) and its argument t with short explanatory comments in the Command window is 

straightforward with disp() and display().

t=[0, pi/4, pi/2, 3*pi/4, pi];

disp(['Sine @', num2str(t(1)),' is equal to: ', num2str(sin(t(1))) ])

disp(['Sine @', num2str(t(2)),' is equal to: ', num2str(sin(t(2))) ])

disp(['Sine @', num2str(t(3)),' is equal to: ', num2str(sin(t(3))) ])

Chapter 2  programming essentials



134

disp(['Sine @', num2str(t(4)),' is equal to: ', num2str(sin(t(4))) ])

disp(['Sine @', num2str(t(5)),' is equal to: ', num2str(sin(t(5))) ])

These commands display the following in the Command window:

Sine @ 0 is equal to: 0

Sine @ 0.7854 is equal to: 0.70711

Sine @ 1.5708 is equal to: 1

Sine @ 2.3562 is equal to: 0.70711

Sine @ 3.1416 is equal to: 1.2246e-016

The displayed results are all correct and readable, but the demonstrated procedure 

is tedious. Note that there is a difference in the output from disp() and display(). The 

command disp() displays output without a variable name. By contrast, display() 

displays the variable name and its value like a simple calculation ending without a 

semicolon. Here’s an example:

>> D1=sind(90);

>> display(D1)

D1 =

     1

>> disp(D1)

     1

>> D1

D1 =

     1

>> D1=sind(90)

D1 =

     1

 Example 2
The command clock is a built-in command to show the current year/date/time 

according to a user’s computer clock in a row matrix format. Let’s display the current 

time in a more explicit way with some explanations. How do you do it with the disp() 

and display() commands?
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>> format short G

>> TT=clock

TT =

  Columns 1 through 5

         2022           8            9            4            5

  Column 6

       37.261

>> display('This year is: '); disp(TT(1))

This year is:

        2022

>> display('This month is: '); disp(TT(2));

This month is:

    8

>> display('Day of this month: '); disp(TT(3));

Day of this month:

     9

>> disp('Current time is '); display(['hour: ', num2str(TT(4))]); 

display(['minutes: ', num2str(TT(5))])

Current time is

hour: 4

minutes: 5

The output is legible and explicit, but the commands are too long and inefficient 

from a programming point of view.

 fprintf( )
For the previous two examples, the fprintf() command can be employed much more 

simply. The general syntax of this command is as follows:

fprintf(format, A, ...)

For example 1, to display the sine function values, fprintf() gives a much simpler 

solution, as shown here:

fprintf('Sine @ %1.5f is equal to: %2.5f\n', t, sin(t));
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Here are the output results from the command fprintf():

Sine @ 0.00000 is equal to: 0.78540

Sine @ 1.57080 is equal to: 2.35619

Sine @ 3.14159 is equal to: 0.00000

Sine @ 0.70711 is equal to: 1.00000

Sine @ 0.70711 is equal to: 0.00000

The formatting specifiers, namely, %1.5f, %2.5f, and \n, used in this example define 

the field width and precision with the floating-point number format (%1.5f, %2.5f) and 

new line (\n). More details of formatting specifiers are given later in this section.

This is a much simpler and effortless method; it contains only one line of code.

For example 2, to display the time and date, fprintf() can be employed again as 

follows:

>> TT=clock;

fprintf('Year:%g; Month: %g; Day: %g; Hour: %g; Min passed: %g\n',TT(1), 

TT(2), TT(3), TT(4), TT(5))

Year: 2022; Month: 8; Day: 13; Hour: 9; Min passed: 28

For such cases, sprintf() could be also an option. The general syntax of the 

command sprintf() is as follows:

str = sprintf(format, A, ...)

[str, errmsg] = sprintf(format, A, ...)

Note that to display outputs (str string messages) from sprintf(), you need to 

use either the disp() or display() command again. So, sprintf() is less flexible than 

fprintf(). Note that sprintf() always returns a string. To demonstrate how to employ 

sprintf() more explicitly and improve the script created to solve a quadratic equation, 

let’s use the sprintf() command to display the computation results in the Command 

window with some additional information. Let’s compute the roots of a quadratic 

equation and display some information in the Command window. Here is the solution 

script (QuadEq1.m):

% QuadEq1.m

% Solve quadratic equations based on coefficients of: a, b, & c

disp('Solve: ax^2+bx+c=0')

Chapter 2  programming essentials



137

a=input('Enter value of a: ');

b=input('Enter value of b: ');

c=input('Enter value of c: ');

D=b^2-4*a*c;

[S, Errm]=sprintf('Discriminant of the equation is: %g', D); disp(S)

% Roots

x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);

% Display roots in the Command window

[xr1, Errm1]=sprintf('Root1 of the equation is x1= %g', x1);

disp(xr1); display(x1)

[xr2, Errm2]=sprintf('Root2 of the equation is x2= %g', x2);

disp(xr2); display(x2)

Let’s test the created M-file (QuadEq1.m) by executing it and providing the following 

entries (a=11, b=11, c=13) in the Command window:

Solve: ax^2+bx+c=0

Enter value of a: 11

Enter value of b: 12

Enter value of c: 13

Discriminant of the equation is: -428

Root1 of the equation is x1= -0.545455

x1 =

  -0.5455 + 0.9404i

Root2 of the equation is x2= -0.545455

x2 =

  -0.5455 - 0.9404i

Note that within sprintf() the numerical data is defined by the % sign followed by a 

formatting sign/letter g that is called a conversion specifier. Here is a command syntax of 

declaring data formats with sprint() and fprintf():

[S, Errm]=sprintf('Discriminant of the equation is: %g', D);
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Conversion specifications begin with the % character and contain these optional and 

required elements:

• Flags (optional)

• Width and precision fields (optional)

• A subtype specifier (optional)

• Conversion character (required)

These elements are used in the following order:

 

Flags are to control the alignment of the output, for instance, the - sign for the left 

justification of the output, the + sign for the right justification of the output, the space 

character for space before the value, and 0 to put a zero before the output. The field 

width is defined with a non-negative integer that specifies the number of digits or 

characters in the output, and the number (in precision) specifies the number of digits 

after the decimal point of the output; for example, %12.0 produces no decimal digits 

after the decimal digit number, and %12.13 produces 13 decimal digits after a decimal 

sign. Table 2-1 lists conversion characters, and Table 2-2 lists escape characters to specify 

nonprinting characters.1

1 ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430 Broadway, New York, 
NY 10018.

Chapter 2  programming essentials



139

Table 2-1. Conversion Characters

Specifier Description

%c single character

%d Decimal notation (signed)

%e exponential notation (using a lowercase e as in 3.1415e+00) for floating point

%E exponential notation (using an uppercase E as in 3.1415e+00) for floating point

%f Fixed-point notation for floating point

%g the more compact of %e or %f, as defined in [*]. insignificant zeros do not print 

for floating point

%G same as %g, but using an uppercase G for floating point

%i Base 10 values for integer signed

%o Base 8 octal notation (unsigned)

%s string of characters

%u Base 10 integer (unsigned)

%x Base 16 hexadecimal notation (using lowercase letters a–f)

%X Base 16 hexadecimal notation (using uppercase letters a–F)

Table 2-2. Characters for Escape Formatting

Symbol Description

\b Backspace

\f Form feed

\n new line

\r Carriage return

\t horizontal tab

\\ Backslash

' or ' (quote) single quotation mark

% percent character
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One of the most used escape formatting commands (Table 2-2) is \n. This is the 

escape character used to write the following data in a new line. Note that in the previous 

examples (examples 1 and 2), we have used \n within the fprintf() command.

Let’s consider the previously discussed quadratic equation example to display and 

write its real and complex roots. Note that this exercise will demonstrate how to employ 

sprintf() and fprintf().

There are several ways to display complex numbers (e.g., complex roots of the 

quadratic equation) in the form of R + I ∗ i explicitly with additional comments and then 

write/export them into an external file. They are to employ numerical conversions along 

with comments and to employ the string conversion character s.

Let’s start with the first way, which requires adding several formatting items from 

Tables 2-1 and 2-2 to display complex numbers correctly. Now the existing M-file 

(QuadEq1.m) will be updated with the following by employing a conversion function 

num2str() to obtain the complex roots converted into strings. Now there is no need to 

separate out real and imaginary components of the complex roots of the equation.

 [xr1, Errm1]=sprintf('Root1 of the equation is x1= %10s', num2str(x1));

disp(xr1); display(x1)

[xr2, Errm2]=sprintf('Root2 of the equation is x2= %10s', num2str(x2));

disp(xr2); display(x2)

% Or an alternative way:

disp(sprintf('Root2 of the equation is x1= %10s', num2str(x1)))

disp(sprintf('Root2 of the equation is x2= %10s', num2str(x2)))

After executing the updated script (QuadEq1.m), three input prompts to enter values 

for a, b, and c in a consecutive order are displayed; and after entering the following 

entries (a=11, b=12, c=13), the following display results of the given equation’s complex 

roots are obtained:

Solve: ax^2+bx+c=0

Enter value of a: 11

Enter value of b: 12

Enter value of c: 13

Discriminant of the equation is: -428

Root1 of the equation is x1= -0.54545+0.94037i

x1 =

     -0.54545 +    0.94037i
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Root2 of the equation is x2= -0.54545-0.94037i

x2 =

     -0.54545 -    0.94037i

Note that in this script fprintf() can be used instead of sprintf() in a similar 

manner that would make the code simpler. Thus, let’s employ fprintf() to display 

the complex roots of the quadratic equation and write the computation results of the 

quadratic equation into an external file.

A general syntax for writing data into an external file with fprintf() is as follows:

FileID=fopen('filename.extension', 'permission')

fprintf(FileID, 'format', data);

...

fclose(FileID)

Note that permission can be w for writing, r for reading, r+ for reading and writing, 

and a for appending permissions. MATLAB supports a few common data file types, such 

as *.txt, *.dat, *.xls, *.csv, *.jpeg, etc. Via format, a type of data is defined, and 

format in fprintf() is defined like in sprint(). Using the general syntax of writing/

exporting data (existing data is discriminant and roots of the quadratic equation are 

saved in the workspace) into an external file, the following short script (DataWrite.m) 

writes the computed data (saved data in the workspace) into a file called DataWrite.txt:

% DataWrite.m - Write computed data into an external file

fid1=fopen('Results_QE.txt', 'w');

fprintf(fid1,'Discriminant of the equation is: %g\n', D)

fprintf(fid1,'Root1 of the equation is x1= %10s\n', num2str(x1))

fprintf(fid1,'Root2 of the equation is x2= %10s\n', num2str(x2))

fclose(fid1); open('Results_QE.txt')

Note that this script first creates a new external file called Results_QE.txt with the 

permission to write in it. This external file (Results_QE.txt) has a file ID called fid1 

(note that a file ID can be named freely) through which it can be called up to write in it 

assigned data, D, and the roots x1 and x2. Within the fprintf() command, the \n escape 

character is used to write the following data in a new line. Finally, the data-writing 

procedure ends with a file close command: fclose(fid1). This is a standard procedure 
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of exporting data of any size and of any format into an external file. This procedure of 

data export is covered more extensively via different examples in other chapters of the 

book. After executing the previously shown script, the following *.txt file content is 

displayed in the M-file Editor window:

Discriminant of the equation is: -428

Root1 of the equation is x1= -0.54545+0.94037i

Root2 of the equation is x2= -0.54545-0.94037i

There are many different format tools for data display and writing to external files 

that all can be employed more freely with respect to the given tasks. The demonstrated 

script can be improved further with data entries and by displaying/writing the calculated 

data. These will be discussed further with control statements in the following section.

 Control Statements: [if, else, elseif, end], [switch, 
case, end]
The control statements [if ... elseif... else ... end] are also called conditional 

statements or Boolean operators and are employed to select logically which block of 

the code is to be executed while running the whole script according to the given input 

entries or computed results or defined outputs of the script. They are one of the few 

most crucial programming operators in all programming languages. These operators 

are employed in building and branching structures of programs (or codes). The general 

structure of these control statements follows:

if <logical statement A is true>

           DO X Operations

elseif <logical statement B is true>

           DO Y operations

...

else

          DO W operations

end

This indicates that if logical statement A is true, then X operations will be executed. If 

logical statement B is true, Y operations will be executed. If none of the previous logical 

statements is true, W operations will be executed.
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Note that if there is only one logical statement, then elseif is not needed, and else 

is used directly instead of elseif.

Conditional operations can be expressed in two different ways: either on operational 

forms or on M/MLX-file forms. The conditional and logic statements given in Table 2-3 

are applicable to all logical operations and conditional statements used in M/MLX-files/

scripts.

Table 2-3. Control Logical Operators and Their Descriptions

Operation M/MLX-file Description

A<B LT(A,B) less than

A>B GT(A,B) greater than

A<=B LE(A,B) less than or equal to

A>=B GE(A,B) greater than or equal to

A~=B* NE(A,B) not equal to

A==B EQ(A,B) equality

A&B AND(A,B) logical anD

A|B OR(A,B) logical or

*The  ~ tilde sign followed with = means “Not equal to.”

Note the operations < versus lt(), > versus gt(), <= versus le(), >= versus 
ne(), ~= versus ne(), == versus eq(), & versus and(), | versus or() can be 
used interchangeably and lead to no difference in code performance.

In various examples, we employ these operators and their syntaxes interchangeably. 

Let’s consider several examples to demonstrate how to employ the control statements 

given in Table 2-3.
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 Example 1
The command clock displays the current year/date/time of a user computer in a row 

matrix form. Let’s display the data in a readable format with some additional textual 

information. Here is a possible solution script (TimeDisp.m) of the given problem with 

the clock command:

% TimeDisp.m  Time Display

display(clock);

NOW=fix(clock);% Round to nearest integers

fprintf('This year is: %g \n', NOW(1));

if NOW(2)==1

    display(['Date is January ' num2str(NOW(2))]);

elseif NOW(2)==2

    display(['Date is February ' num2str(NOW(2))]);

elseif NOW(2)==3

    display(['Date is March ' num2str(NOW(2))]);

elseif NOW(2)==4

    display(['Date is April ' num2str(NOW(2))]);

elseif NOW(2)==5

    display(['Date is May ' num2str(NOW(2))]);

elseif eq(NOW(2),6)

    display(['Date is June ' num2str(NOW(2))]);

elseif eq(NOW(2),7)            % No difference between eq() and ==

    display(['Date is July ' num2str(NOW(2))]);

elseif eq(NOW(2),8)

    display(['Date is August ' num2str(NOW(2))]);

elseif eq(NOW(2),9)

    display(['Date is September ' num2str(NOW(2))]);

elseif eq(NOW(2),10)

    display(['Date is October ' num2str(NOW(2))]);

elseif eq(NOW(2),11)

    display(['Date is November ' num2str(NOW(2))]);

else

    display(['Date is December ' num2str(NOW(2))]);

end
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if NOW(4)>=12

fprintf('Current time:  %g PM - %g min - %g sec\n', ...

        NOW(4), NOW(5), NOW(6))

else

fprintf('Current time:  %g AM - %g min - %g sec\n', ...

        NOW(4), NOW(5), NOW(6))

end

By running the script, the following outputs are displayed in the Command window:

ans =

  Columns 1 through 5

         2018           11            1            4           51

  Column 6

       34.932

This year is: 2018

Date is November 1

Current time:  4 AM - 51 min - 34 sec

Let’s consider the previous example with a quadratic equation and correct the 

display of computed roots with disp, sprintf, fprintf, if, elseif, and else to 

demonstrate how to employ these programming operators.

 Example 2
Here is one of the possible solution scripts (Quad_Eq2.m) of computing roots and 

displaying the roots of quadratic equations with additional comments:

% Quad_Eq2.m

% Solve quadratic equations based on coefficients of: a, b, & c

a=input('Enter value of a: ');

b=input('Enter value of b: ');

c=input('Enter value of c: ');

fprintf('Solve: (%3g)x^2+(%3g)x+(%3g)=0\n', a,b,c)
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D=b^2-4*a*c;

% Roots

x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);

if lt(D,0)

disp('This equation does not have real value roots!');

Dm=sprintf('Because discriminant is negative. D = %g', D); disp(Dm)

fid1=fopen('Results_QE.txt', 'w');

fprintf(fid1, 'This equation does not have real value \n');

fprintf(fid1, 'roots!\n');

fprintf(fid1,'Because discriminant is negative. D = %g\n', D);

fprintf(fid1,'Complex Root1: x1= %10s\n', num2str(x1));

fprintf(fid1,'Complex Root2; x2= %10s\n', num2str(x2));

fclose(fid1); open('Results_QE.txt');

elseif eq(D,0)

disp('This equation has one unique root! ');

disp('Because discriminant is zero: D = 0 ');

fid1=fopen('Results_QE.txt', 'w');

fprintf('This equation has one unique root! \n');

fprintf(fid1,'Because discriminant is zero: D = 0 \n');

fprintf(fid1,'Unique Root: x = %g \n', x1);

fclose(fid1); open('Results_QE.txt');

else

    disp('This equation has two roots! ');

    Dm =sprintf('Because discriminant is: D = %g ', D); disp(Dm);

    fid1=fopen('Results_QE.txt', 'w');

    fprintf(fid1,'This equation has two roots \n');

    fprintf(fid1,'Because discriminant is: D = %g \n', D);

    fprintf(fid1,'Real Root1 is: x1= %g \n', x1);

    fprintf(fid1,'Real Root2 is: x2= %g \n', x2);

    fclose(fid1); open('Results_QE.txt');

end

In this script, a few sets and combinations of [if, elseif, else, end] conditional 

statements are employed that provide nice outputs. Also, verbal versions of gt, lt, and 

eq of the ≤, ≥ , < , > , = logical operators are employed. Yet, the robustness of the script is 

still insufficient. For instance, the user may enter wrong entries by typing the value of c 
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for b or a, or vice versa, or skip entering any of the coefficients. As a result, the previous 

script produces the wrong output. To attain the full robustness of the script for different 

case scenarios and user entries including mistakes while entering input values, a loop 

control statement with [while ... end] will be employed. We discuss it in the following 

section.

 Example 3
This example warns drivers about their driving speed based on where they are driving 

(school zone, residential/business district, unpaved town road, two and multilane 

highways, interstate highways). The speed limits in North Dakota are used in this 

example.

% Drive_Safe.m gives a warning sign what is the speed limit and

% how to behave in specific roads, highways, expressways, etc.

% E.g. CS is the only input variable

% Speed Limit [1] School area: 20 [mph]

% Speed Limit [2] Residential and business area: 25 [mph]

% Speed Limit [3] Town gravel roads: 55 [mph]

% Speed Limit [4] Two-lane highways: 65 [mph]

% Speed Limit [5] Multi-lane highways: 70 [mph]

% Speed Limit [6] Divided Interstate: 75 [mph]

CS = input('Enter your car"s current speed in [mph]:    ');

disp('Choose WHERE you are driving:  ')

disp('[1] School area;  [2] Residential and Business Area; ')

disp('[3] Town gravel roads; [4] Two-lane Highways; ')

disp('[5] Multi-lane Highways; [6] Divided Interstate Roads; ')

DZone = input('Enter your drive zone, e.g., 1, 2, 3, ... 6:  ');

if isempty(DZone) || DZone >7 || DZone<0

    warndlg('Not clear where you are driving!')

elseif CS ==0

    warndlg('Your car is not moving')

elseif CS<0

    warndlg('Your car is moving in a rear direction that is DANGEROUS! ')

else
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    if DZone ==1 && CS > 0 && CS<10

       fprintf('Your speed = %g [mph] is too slow \n ', CS)

      fprintf('even if it is during the student arrival/departure time \n')

       warndlg('Speed UP to make your car speed around 15 mph!')

    elseif  DZone ==1 && CS > 10 && CS<20

        fprintf('Your speed = %g [mph] is OK in a school area \n', CS)

        fprintf('during the student arrival/departure time \n')

        warndlg('Keep your car speed around 15...20 mph!')

    elseif DZone ==1 && CS >20

    fprintf('Your speed = %g [mph] is TOO fast for a school area \n', CS)

    warndlg('DANGER! Slow DOWN up to 20 mph!')

    elseif DZone ==2 && CS > 15 && CS <20

fprintf('Your speed = %g [mph] is too slow for a residential area!\n', CS)

warndlg('Speed up! Speed limit for residential/business areas is 25 mph')

    elseif DZone == 2 && CS > 20 && CS < 28

     fprintf('Your speed = %g [mph] is adequate for a residential 

area!', CS)

    warndlg(' Do not speed over 25 mph!')

    elseif DZone == 2 && CS > 28

     fprintf('Your speed = %g [mph] is higher for a residential 

area!\n', CS)

    warndlg(' DANGER!  Slow DOWN and do not speed over 25 mph!')

    elseif DZone == 3 && CS < 48  && CS > 25

    fprintf('Your speed = %g [mph] is slower for gravel town roads!\n', CS)

    warndlg(' Speed up to 55 mph!')

    elseif DZone == 3 && CS > 48  && CS < 58

fprintf('Your speed = %g[mph] is within limits for gravel town 

roads!\n',CS)

        warndlg(' Keep your speed around 55 mph!')

    elseif DZone == 3 && CS > 58

        fprintf('Your car speed = %g [mph] is beyond \n', CS)

        fprintf('the limits for a gravel town roads! \n')

        warndlg(' DANGER!  Slow DOWN up to 55 mph!')

    elseif DZone == 4 && CS > 55  && CS < 60

        fprintf('Your speed = %g [mph] is slower for two-lane HW!\n', CS)
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        warndlg(' Speed up to 65 mph!')

    elseif DZone == 4 && CS > 60  && CS < 68

fprintf('Your speed = %g[mph] is within the limits for two-lane HW! 

\n', CS)

        warndlg(' Keep your speed around 65 mph!')

    elseif DZone == 4 && CS > 68

        fprintf('Your speed = %g [mph] is beyond  \n', CS)

        fprintf('the limits for two-lane HW! \n')

        warndlg(' DANGER!  Slow DOWN up to 65 mph!')

    elseif DZone == 5 && CS > 55  && CS <65

        fprintf('Your speed = %g [mph] is slower than \n' , CS)

        frpintf('the speed limits for multi-lane lane HW! \n')

        warndlg(' Speed up to 70 mph!')

    elseif DZone == 5 && CS > 65  && CS <75

        fprintf('Your speed = %g [mph] is within \n', CS)

        fprintf('the speed limits for multi-lane lane HW! \n')

        warndlg(' Keep your speed around 70 mph!')

    elseif DZone == 5 && CS > 75

        fprintf('Your speed = %g [mph] is beyond \n', CS)

        frintf('the speed limits for multi-lane lane HW! \n')

        warndlg(' DANGER! Slow DOWN up to 70 mph!')

    elseif DZone == 6 && CS > 60  && CS <70

        fprintf('Your speed = %g [mph] is slower than \n', CS)

        fprintf('the speed limits for Divided Interstate in ND! \n')

        warndlg(' Speed up to 70 mph!')

    elseif DZone == 6 && CS > 70  && CS <78

        fprintf('Your speed = %g [mph] is within \n', CS)

        fprintf('the speed limits for Divided Interstate in ND! \n')

        warndlg(' Keep your speed around 75 mph!')

    else

        fprintf('Your speed = %g [mph] is beyond  \n', CS)

        fprintf('the speed limits for Divided Interstate in ND! \n')

        warndlg(' DANGER!  Slow DOWN up to 75 mph!')

    end

end
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In this answer script to the given exercise, the conditional statements or Boolean 

operators [if ... elseif ... else ... end] are used twice. The first [if... elseif 

...elseif... else ... ] identifies according to the user entries whether the user 

has specified or not where they are driving (DZone) and what their car speed (CS) is. The 

second [if... elseif ... ... else ... end] starts only if the first [if...elseif 

...] conditions are met or, in other words, the user has entered their driving speed and 

driving zone.

If the user information is valid for the predefined six driving zones, then under 

[elseif CS ==0], it verifies the given car is moving. If it is moving, [elseif CS<0] 

indicates in which direction (backward for negative speed values). The last [else] 

evaluates the positive values of car speed.

Beyond this first [else], all positive values (forward movement of a car) and a 

second loop of [if ... elseif ... ... else ... end] are executed. They define the 

speeding level and provide respective warning signals to the driver with respect to where 

(zones and roads) they are driving and what their speed is.

Let’s test the script with different input speed values and the different driving zones.

 Case 1

The given car is driving at 9 mph in a school zone.

Enter your car"s current speed in [mph]:    9

Choose WHERE you are driving:

[1] School area;  [2] for Residential and Business Area;

[3] Town gravel roads; [4] Two-lane Highways;

[5] Multi-lane Highways; [6] Divided Interstate Roads;

Enter your drive zone, e.g. 1, 2, 3, ... 6:  1

Your car speed = 9 [mph] is too slow

 even if it is during the student arrival/departure time

In addition, the following warning dialog box is displayed:
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 Case 2

The given car is driving at 72 mph on a two-lane highway.

Enter your car"s current speed in [mph]:    72

Choose WHERE you are driving:

[1] School area;  [2] for Residential and Business Area;

[3] Town gravel roads; [4] Two-lane Highways;

[5] Multi-lane Highways; [6] Divided Interstate Roads;

Enter your drive zone, e.g., 1, 2, 3, ... 6:  4

Your car speed = 72 [mph] is beyond

the limits for two-lane HW!

The following warning dialog box is displayed:

  

 Case 3

The given car is driving at 77 mph on a divided interstate highway.

Enter your car"s current speed in [mph]:    77

Choose WHERE you are driving:

[1] School area;  [2] for Residential and Business Area;

[3] Town gravel roads; [4] Two-lane Highways;

[5] Multi-lane Highways; [6] Divided Interstate Roads;

Enter your drive zone, e.g., 1, 2, 3, ... 6:  6

Your car speed = 77 [mph] is within

the speed limits for Divided Interstate in ND!
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The following warning dialog box is displayed:

 

Another set of control statements is [switch, case, otherwise, end]. These 

statements have one big advantage over [if, else, elseif, end]: they can handle 

many cases and simplify the code. They have the following general syntax structure:

switch expression of scalar or string (variable)

     case variable value1

    A statements

     case variable value2

     B statement

     case variable value3

     C statement

...

     otherwise

     X, ... W statements

end

Let’s look at a simple example to understand how the conditional statements 

[switch, case, otherwise, end] operate.

 Example 4
Determine whether the user-entered integer from 1 to 50 is odd or even or a prime 

number. The following script (Num50Type.m) defines the type of any integer from 1 to 50:

% Num50Type.m - Defines entered integer type

clear all; clearvars; clc

N=input('Enter ANY integer up to 50:  ');

if N<=50

Chapter 2  programming essentials



153

fprintf('Your entry is: %d \n', N)

switch N

case mod(N,2)==0

 fprintf('you have entered %g which is EVEN number \n', N)

case {9,15,21,25,27,33,35,39,45,49}

fprintf('You have entered %g which is ODD number but not prime\n', N)

otherwise %N=[3,5,7,11,13,17,19,23,29,31,37,41,43,47]

 fprintf('You have entered %g which is PRIME number \n ', N)

end

else

disp('This code works with integers up to 50 to identify if they are even, 

odd or prime!')

end

If you enter 23 as an input, you will get the following output in the 

Command window:

Enter ANY integer up to 50:  23

You have entered 23 which is PRIME number

This script correctly defines all entered numbers up to 50 (including 50); however, 

we may still improve its robustness by adding conditional statements and while loops to 

verify whether a user entry is correct and within the range of 1 to 50.

The robustness of the scripts with the control branching statements [if, elseif, 

else, end] can be improved by employing them within loop statements, namely, 

[while ... end] and [for ... end], which will be discussed via examples in the 

following section.

 Loop Control Statements: while, for, continue, 
break, end
There are two types of loop control statements, namely, [while...end] and [for...

end]. A first loop control statement is [while...end], and its general syntax is as follows:

while expression is NOT true

perform A, B, C,..., W operations

end
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Unlike [if .. elseif ... else... end] statements, the [while...end] loop 

keeps executing the the following [A, B, C,..., W] operations until the expression 

behind the [while] operator becomes valid. Once the expression becomes true/valid, 

the execution process halts.

 Example 1
To compute the sum of all odd numbers from 1 up to 100 using the [while ... end] 

loop control (Sum100.m), use this:

% Sum100.m sums of all odd numbers with while

Sum=0; N=1;

while ne(N, 100)

if ne(mod(N,2),0) % Verifies all odd numbers are added.

    Sum=Sum + N;

else              % Verifies if the number is even, NO sum.

end

    N=N+1;

end

disp(['Sum of all odd numbers 1...100 is:  ', num2str(Sum)]);

This loop-based script (Sum100.m) will keep running until the iteration process 

reaches the end value of 100. The [if ... else ... end] conditional statements 

verify if the number is odd or even with the help of mod(). The iteration loop is used to 

compute the remainder of N/2. If the number is odd, the sum will take place; otherwise, 

it will be ignored.

Note in many summation types of exercises that use [while ... end] and 
[for ... end] iteration loops, users have difficulty understanding the computation 
algorithm and writing the code to perform the summation process. the summation 
algorithm does not appear to be intuitive for many beginners in programming. their 
difficulty comes from the fact that they overlook the necessity of assigning 0 to the 
sum variable in the initial step of the summation process. this means that adding any 
number to 0 gives the same number back. subsequently, within a [for ... end] 
or [while ... end] loop, this summation variable will get a new value in each 
iteration. For example, this is what it looks like for the previous example:
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step 1. sum(1) = 0;

step 2. sum(2) = sum(1)+n(1) = 0+1=1; when n(1)= 1 and ne(mod(n(1),2), 0) 
is valid;

step 3. sum(3)=sum(2)=1; when n(2)= n(1)+1=2 and because n(2)/2 = 1 and 
remaining “0” ← ne(mod(n,2), 0) is not valid.

step 4. sum(4)=sum(3)+n(3)=1+3 =4; when n(3)=n(2)+1=2+1=3 and 
ne(mod(n(3),2), 0) is valid;

step 5. sum(5)=sum(4)=4; when n(4)=n(3)+1=3+1=4; because n(4)/2 = 2 and 
remaining “0” ← ne(mod(n(4),2), 0) is not valid.

step 6. sum(6)= sum(5)+n(5)=4+5=9; when n(5)=n(4)+1=4+1=5 and 
ne(mod(n(5),2), 0) is valid;

and so on. the iteration process continues until n equals 100.

The final output of the script in the Command window is as follows:

Sum of all odd numbers 1...100 is:  2500

 Example 2
To better understand how to employ the control loop statement [while ... end], let’s 

look at the example of solving a quadratic equation: ax2 + bx + c = 0.

Let’s say the problem is that users can enter the values of a, b, c in the wrong order or 

mistype their values or enter wrong numbers.

To make a program more robust and resolve any wrong entries, the conditional 

operators [if ... elseif ... else ... end] are employed along with the [while ... 

end] loop iteration operators. The following is one of the possible solutions to the problem. 

The script (Quad_Eqn.m) is robust. It accepts different entries and computes all possible 

roots, real and complex, and then displays them correctly in the Command window. It 

resolves many possible wrong entries such as wrong values, wrong data sizes, or mixed-

up values of a, b, c. Note that a first while loop statement in the script verifies the size of 

the entry row array containing the values of a, b, c, and a second one with the conditional 

operator [if ... else ... end] verifies the order correctness of the a, b, c entries.
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% Quad_Eqn.m solves quadratic equations based on the user entries for:

% a, b, c

clearvars; clc

SIZE_chk = 0;

while SIZE_chk ~=1

    disp('Solution of: ax^2+bx+c=0')

    abc=input('Enter values as [a, b, c]:   ');

    SIZE_abc=numel(abc);

    if SIZE_abc ==3

        SIZE_chk=1;

        a=abc(1);

        b=abc(2);

        c=abc(3);

        CorrectEntry=0;

        while CorrectEntry~=1

            if SIZE_abc == 3

                CorrectEntry=1; CorrectABC=0;

                % Check the order of a, b, c

                while CorrectABC~=1

                    disp('Is this the equation you"d like to find roots?')

                    disp('   ')

                    Eqn=sprintf(' %g*x^2+(%g)*x + (%g)=0', a, b, c);

                    disp('   ')

                    disp(Eqn);

            CorrectABC=input('If yes, enter 1, otherwise any integer!  ');

                    disp('   ')

                    if CorrectABC~=1

                        abc=input('Enter values as [a, b, c]:   ');

                        a=abc(1); b=abc(2); c=abc(3);

                    end

                end

                D=b^2-4*a*c;

                % Roots

                x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);
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                if lt(D,0)

                    disp('The equation has no real roots!');

                    Dm=sprintf('Because discriminant <0. D = %g', D);

                    disp(Dm)

                    % Display the results

                    fprintf(' %g*x^2+(%g)*x + (%g)=0\n', a, b, c);

                    fprintf('It does not have real roots!\n');

                     fprintf('Because its discriminant <0. D=%g\n',D);

fprintf('Complex Roots are: x1=%10s; x2=%10s\n', num2str(x1),num2str(x2));

                elseif eq(D,0)

                    disp('This equation has one unique root! ');

                    disp('Because discriminant is zero. D=0 ');

                    fprintf('%g*x^2+(%g)*x + (%g)=0\n', a, b, c);

                    fprintf('It has a unique root! \n');

                    fprintf('Because discriminant is "0". D=0 \n');

                    fprintf('Unique Root: x = %g \n', x1);

                else

                    disp('This equation has two real roots! ');

     [Dm, Errm2]=sprintf('Because discriminant >0. D = %g ', D); disp(Dm);

                    fprintf(' %g*x^2+(%g)*x + (%g)=0\n', a, b, c);

                    fprintf('It has two real roots \n');

                    fprintf('Because discriminant >0. D = %g\n', D);

     fprintf('Roots of the equation are x1= %g; x2= %g \n', x1, x2);

                end

            else

                CorrectEntry=0;

                disp(' a, b, c cannot have more than 1 element (value)');

                disp('Re-enter values of a, b, c');

                disp('    ')

                abc=input('Enter values as [a, b, c]:   ');

                a=abc(a); b=abc(2); c=abc(3);

                sa=numel(1); sb=numel(b); sc=numel(c);

            end

        end

    else
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fprintf('Your entry is wrong \n')

fprintf('Enter the correct entries for [a, b, c] as a row vector in [ ]: ')

    end

end

The created script is tested for robustness with intentionally wrong entries for a, b 

and c as stated in cases 1 and 2.

Solution of: ax^2+bx+c=0

Enter values as [a, b, c]:   [12 1 1 1 ]

Your entry is wrong

Enter the correct entries for [a, b, c] as a row vector in [ ]:  Solution 

of: ax^2+bx+c=0

Enter values as [a, b, c]:   [12 1 1 1 ]

Your entry is wrong

Enter the correct entries for [a, b, c] as a row vector in [ ]:  Solution 

of: ax^2+bx+c=0

Enter values as [a, b, c]:   [1 2 1 1 ]

Your entry is wrong

Enter the correct entries for [a, b, c] as a row vector in [ ]:  Solution 

of: ax^2+bx+c=0

Enter values as [a, b, c]:   [1 2 1  ]

Is this the equation you"d like to find roots?

 1*x^2+(2)*x + (1)=0

If yes, enter 1, otherwise any integer!  0

Enter values as [a, b, c]:   [1 1 2]

Is this the equation you"d like to find roots?

 1*x^2+(1)*x + (2)=0

If yes, enter 1, otherwise any integer!  1

The equation has no real roots!

Because discriminant <0. D = -7

 1*x^2+(1)*x + (2)=0

It does not have real roots!

Because its discriminant <0. D=-7

Complex Roots are: x1=-0.5+1.3229i;   x2=-0.5-1.3229i
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From the previous simple example, it is clear that the [while ... end] loop 

operations have more power than the [if ... elseif ... else ... end] operators to 

enhance the robustness of scripts.

A second loop control statement is [for ... end] that has the following general syntax:

for i=startloop:stepsize:endloop

     Iteration 1

     Iteration 2

...

     Iteration N

end

The [for ... end] loop control statement works in the following fashion. It starts 

executing every statement of [1, 2, ..., N] starting from startloop for every step, 

with a step equal to stepsize until the loop iteration reaches the value of endloop, which 

corresponds to N number of iterations.

Note if the step size is not specified when you’re assigning vector spaces or 
index ranges in [for ... end] loops, the default step size is 1.

 Example 3
Compute the sum of all odd numbers within [1, 20] with the [for ... end] loop 

(Sum20odd.m).

% Sum20odd.m sums odd numbers within 0...20 with for loop

clearvars;

S=0;

for N=1:20;

if rem(N,2)==0 %Verifies if the number is even, then no sum.

        S=S;

else           %All odd numbers are added:

        S=S+N;

end

end

fprintf('Sum of all odd numbers 1 to %g is equal to %g \n', N, S)
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The [if ... else ... end] conditional statements determine whether the number 

is odd. If the number is odd, it is added to the summation variable (S). Otherwise, 

nothing will be added to the summation variable (S). The algorithm behind this script is 

the same one in Example 1, and this short script is an alternative solution to Example 1. 

The only difference here is that the number of odd numbers is 20.

Two alternative, simpler solutions of this example using [for ... end] and [while 

... end] are as follows:

% Sum20odd_alt.m sums odd numbers within 0...20 with [for ... end] loop

clearvars;

S=0;

for N=1:2:20

    S=S+N;

end

fprintf('Sum of all odd numbers 1 to 20 is equal to %g \n', S)

% Sum of odd numbers within 0...20 with [while ... end] loop

clearvars;

S=0; jj=1;

while le(jj,20)

    S=S+jj; jj=jj+2;

end

fprintf('Sum of all odd numbers 1 to 20 is equal to %g \n', S)

The computation algorithm of this script [for ... end] is as follows:

 1. S(1) = 0

 2. S(2)=S(1)+N(1)=0+1=1 when N(1)=1

 3. S(3)=S(2)+N(2)=1+3=4 when N(2)=3 because the step size is equal 

2 (i.e., N(2)=N(1)+2=1+2=3)

 4. S(4)=S(3)+N(3)=4+5=9 when N(3)=5 because ... 

N(3)=N(2)+2=3+2=5

 5. And so on. The iteration loop runs until N = 20. In fact, in this case, 

N cannot be 20 because the step size is 2 and the maximum value 

of N will be 19.
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Finally, the outputs of the scripts are identical:

Sum of all odd numbers 1 to 20 is equal to 100

As demonstrated, the [for ... end] loop can be easily substituted by the [while 

... end] loop or vice versa; their efficiencies are similar. However, in some specific 

examples (e.g., Example 2), the robustness gained by using [while ... end] cannot 

be attained using [for ... end]. Theoretically, in some problems (e.g., Example 2), 

[while ... end] can be substituted by [for ... end] when the number of iterations is 

unknown.

Note in many loop iteration-based computation problems, [for ... end] 
can be easily substituted by the [while ... end] loop and vice versa. their 
computation efficiencies are similar. however, there are many specific cases, 
where [while ... end] operations are employed to attain the high robustness 
of the script, where [for ... end] cannot provide as much robustness and 
flexibility as [while ... end]. this is illustrated in example 2.

it is recommended to use ii or jj for loop iterations for indices so as not to get 
confused with imaginary numbers, which use i and j as reserved in matlaB by 
default. if these letters (i and j) are employed for indices, then sqrt(-1) can be 
used for imaginary numbers alternatively, or you can clear these variables from the 
workspace.

 Example 4
Evaluate the square and cubic powers of even numbers (1 to 10) with the loop control 

statements for and end.

Here is one of the possible solution scripts (SqCube10.m) of the exercise. Note in this 

example startloop=2, stepsize=2, and endloop=10.

% SqCube10.m computes square and cube of 2...10

%%  [for  ... end]

for k=2:2:10

    Square = k^2;
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    Cube   = k^3;

    fprintf('Square of %g is %g \n', k, Square);

    fprintf('Cube of %g is %g \n'  , k, Cube);

end

%% Alternative way: [while ... end]

jj =2;

while le(jj, 10)

     Square = jj^2;

    Cube   = jj^3;

    fprintf('Square of %g is %g \n', jj, Square);

    fprintf('Cube of %g is %g \n'  , jj, Cube);

    jj =jj+2;

end

When the script is executed, the following will be displayed in the 

Command window:

Square of 2 is 4

Cube of 2 is 8

Square of 4 is 16

Cube of 4 is 64

Square of 6 is 36

Cube of 6 is 216

Square of 8 is 64

Cube of 8 is 512

Square of 10 is 100

Cube of 10 is 1000

 Example 5
Evaluate the square and cubic powers of odd numbers (1 to N) with the loop control 

statements for and end.

Note that this exercise is similar to Example 4 with two major differences. It uses only 

odd numbers to compute squares and cubes and performs calculations until it reaches 

the user-defined N value.
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Here is one of the possible solution scripts (SqCubeN.m) of the exercise. Note in this 

example startloop=1, stepsize=2, and endloop=N for the [for end] loop. For the 

[while end] loop, the starting value of the loop is 1 (jj = 1).

% SqCube_N.m computes square and cube of all odd numbers up to N

%%  [for  ... end]

N = input('Enter N =   ');

for ii=1:2:N

    Square = ii^2;

    Cube   = ii^3;

    fprintf('Square of %d is %d; Cube is %d \n', [ii, Square Cube])

end

%% Alternative way: [while ... end]

N = input('Enter N =   ');

jj =1;

while le(jj, N)

    Square = jj^2;

    Cube   = jj^3;

    fprintf('Square of %d is %d; Cube is %d \n', [jj, Square Cube])

    jj =jj+2;

end

When you run the script and enter 13 for N, the following will be displayed in the 

Command window:

Enter N =   13

Square of 1 is 1; Cube is 1

Square of 3 is 9; Cube is 27

Square of 5 is 25; Cube is 125

Square of 7 is 49; Cube is 343

Square of 9 is 81; Cube is 729

Square of 11 is 121; Cube is 1331

Square of 13 is 169; Cube is 2197

Enter N =   13

Square of 1 is 1; Cube is 1

Square of 3 is 9; Cube is 27

Square of 5 is 25; Cube is 125
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Square of 7 is 49; Cube is 343

Square of 9 is 81; Cube is 729

Square of 11 is 121; Cube is 1331

Square of 13 is 169; Cube is 2197

 Example 6
Compute the series 1

1

2

1

3

1

4

1

5

1

6

1

7
� � � � � � �  by using [for ... end] and [while 

... end].

Here are five possible solution scripts of the given exercise gathered within one script 

called SumSeries.m:

% SumSeries.m computes a sum of Series:

%% Version A. [for ... end]

clearvars

sign=1;

S=0;

N=input('Enter number of series to compute:  ');

for n=1:N

    S=S+sign/n;

    sign=-sign;

end

fprintf('Sum of %g series is equal to %2.5f \n', n, S)

%% Version B. [for ... end]

clearvars S N sign

S=0; sign=1;

N = input('Enter number of series to compute:  ');

for k=1./(1:N)

    S=S+sign*k;

    sign=-sign;

end

fprintf('Sum of %g series is equal to %2.5f  \n', N, S)

%% Version C. [for ... end]

clearvars S N

S=1;
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N = input('Enter number of series to compute:  ');

for k=2:N

    if eq(mod(k,2), 0)

        S=S-1/k;

    else

        S=S+1/k;

    end

end

fprintf('Sum of %g series is equal to %2.5f  \n', k, S)

%% Version D. [while ... end]

clearvars

sign=1;

S=0;

N = input('Enter number of series to compute:  ');

n = 1;

while n<N+1

    S=S+sign/n;

    n=n+1;

    sign=-sign;

end

fprintf('Sum of %g series is equal to %2.5f \n', n, S)

%% Version E. [while ... end]

clearvars S N

S=0;

N=input('Enter number if series to compute:  ');

ii=1;

while ii~=N+1

if mod(ii,2)==0

        S=S-1/ii;

else

        S=S+1/ii;

end

    ii=ii+1;

end

fprintf('Sum of %g series is equal to %2.5f \n', ii, S)
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All of these solution methods with [for ... end] and [while ... end] result 

in identical solutions. It must be noted that the MATLAB function mod(N, 2) defines 

whether the number is even or odd, which works in this script to separate the even and 

odd components of ii and k.

In all of the previous examples, the last final values from the iteration processes are 

saved. What about saving the values from all iteration steps?

%% Version A. [for ... end]

clearvars

sign=1;

S=0;

N=input('Enter number of series to compute:  ');

for n=1:N

    S=S+sign/n;

    SS(n)=S;

    sign=-sign;

    fprintf('Sum of %g series is equal to %2.5f \n', n, SS(n))

end

%% Version B. [for ... end]

clearvars S N sign

S=0;

sign=1;

ii=1;

N = input('Enter number of series to compute:  ');

for k=1./(1:N)

    S=S+sign*k;

    SS(ii)=S;

    sign=-sign;

    fprintf('Sum of %g series is equal to %2.5f  \n', ii, SS(ii))

    ii=ii+1;

end

%% Version C. [while ... end]

clearvars S N ii SS

S=0;

N=input('Enter number if series to compute:  ');

ii=1;
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while ii~=N+1

    if mod(ii,2)==0

        S=S-1/ii;

    else

        S=S+1/ii;

    end

    SS(ii)=S;

    fprintf('Sum of %g series is equal to %2.5f \n', ii, SS(ii))

    ii=ii+1;

end

%% Version D. [while ... end]

clearvars n N S SS

sign=1;

S=0;

N = input('Enter number of series to compute:  ');

n = 1;

while n<N+1

    S=S+sign/n;

    SS(n)=S;

    fprintf('Sum of %g series is equal to %2.5f \n', n, SS(n))

    n=n+1;

    sign=-sign;

end

%% Version E. [while ... end]

clearvars SS ii S N

S=0;

N=input('Enter number if series to compute:  ');

ii=1;

while ii~=N+1

if mod(ii,2)==0

        S=S-1/ii;

        SS(ii)=S;

else

        S=S+1/ii;

        SS(ii)=S;
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end

    fprintf('Sum of %g series is equal to %2.5f \n', ii, SS(ii))

    ii=ii+1;

end

One of the easiest and straightforward approaches to preserving all values from all 

iterations is to initiate a new series of variables, e.g., SS(ii) and SS(n)s. When you are 

saving all values of calculated outputs within loops, it is salient to interpret SS(ii) and 

SS(n) correctly. For example, SS(1) first takes the value of S=1, and S = S-1/2 leads to 

SS(2) = 1-1/2 = ½. In the next step (step 2), S=S +1/3 leads to SS(3) =1/2+1/3 =5/6, and 

so forth.

 Example 7
Compute the expression f (t) = esin(3t) t = 0 : 0.001 : 6.28; by employing [for ... end] 

and [while ...end] loop iteration operators and preserving all of the values from 

all iterations. From every iteration, one value of f (t) is saved, corresponding to each 

value of t.

%% Ex7_FOR_WHILE.m

clearvars

% Ver 1

ii =1;

for t=0:.001:6.28

    f(ii)=exp(sin(t));

    ii=ii+1;

end

% Ver 2

t=0:.001:6.28;

for k=1:numel(t)

    f(k)=exp(sin(t(k)));

end

%% Ver 3

jj=0;
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while jj~=numel(t)

    f(jj+1)=exp(sin(t(jj+1)));

    jj=jj+1;

end

% Ver 4

m=1;

while m~=numel(t)+1

    f(m)=exp(sin(t(m)));

    m=m+1;

end

Note it is salient to use f(ii) or f(k) or f(jj+1) or f(k) while computing f(t) within 
the [for ... end] and [while ... end] loops. this preserves all the values 
of f(t) from the iteration process with respect to the values of t. if only f is used 
instead of f(ii) or f(k) or f(jj+1) or f(k), then only one very last value of f(t) is saved.

one of the most common mistakes that users make is that while working with loop 
operators ([for ... end], [while ... end]), they overlook index (ii) or (k) 
or (jj) or (m) after the main variable. For example, f(ii), f(k), f(jj+1), and f(k) in the 
previous example collect all values from the whole iteration process.

another most common mistake that users make is that while working with loop 
operators ([for ... end], [while ... end]), they assign wrong index 
values for (ii), (jj). For example, they use negative values or values starting with 0 
or noninteger values or use mismatched sizes. in the previous example (version 
3), we overlook assigning the value 0 to jj before the [while end] loop or assign 
jj=0 and at the same time assign f(jj). this is not acceptable. f(0) is meaningless 
for one important reason: a variable cannot have an index of 0. indexes can be 
1, 2,3, ... 1012, ...1025 + 1, ... but not ..., -3,-2, -1, 0   or 0.12, 2.1, 3.35, 5.5, 7/8, 
100/899, etc.
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There is a good alternative option or approach in collecting every value from every 

computation within a loop, which is to assign a new variable with an index. For example, 

this can be attained via the following:

%% Ex7_FOR_WHILE.m

clearvars

% Ver 1

ii =1;

for t=0:.001:6.28

    f=exp(sin(t));

    F1(ii)=f;

    ii=ii+1;

end

% Ver 2

t=0:.001:6.28;

for ii=1:numel(t)

    f=exp(sin(t(ii)));

    F2(ii)=f;

end

%% Ver 3

jj=0;

while jj~=numel(t)

    f=exp(sin(t(jj+1)));

    F3(jj+1)=f;

    jj=jj+1;

end

% Ver 4

jj=1;

while jj~=numel(t)+1

    f=exp(sin(t(jj)));

    F4(jj)=f;

    jj=jj+1;

end
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It must be noted that in this example the best and most efficient computation 

approach is vectorization, as shown here:

t=0:.001:6.28

f=exp(sin(t));

Note For the efficiency of computation processes or to improve your code 
performance, it is recommended you avoid using the [for ... end] and 
[while ...end] loop control statements whenever feasible. instead of the loop 
iteration, it is recommended to employ the vectorization approach, as shown in 
example 7: t=0:.001:6.28; f=exp(sin(t)).

 Example 8
Let’s look at the famous “wheat and chessboard problem” story in this example. The 

problem is defined by the following: pieces of grain are placed in each chessboard 

square in the order of one grain in the first square, two pieces of grain in the second, four 

pieces of grain in the third, eight pieces of grain in the fourth, 16 pieces of grain in the 

fifth, 32 pieces of grain in the sixth, and so on, by doubling the pieces of grain on each 

subsequent square of the chessboard.

The sum of all grains to be placed on the chessboard is 1+2+4+8+16+32 ... and so 

forth. This can be also expressed as the sum of powers of 2: 20 + 21 + 22 + 23 + 24 + 25 + ...263 

and is equal to 264 − 1 = 18,446,744,073,709,551,615. This is indeed a huge number of 

grains requested by the chess inventor for his ingenious invention of the chess game as 

a reward from a king. In simple calculations, if one grain weighs 0.025 grams, then the 

whole amount would weigh over 461 billion tons of grains. That would be a mountain of 

wheat grains bigger than Mount Everest. Let’s compute the number of grains using [for 

... end] and [while ... end] loops.

% ChessInventorReward.m

% Example: Grains of Wheat on the Chess Board

%% Version A. [while ... end] loop

clearvars

S=1; Ncell=64; jj=1;
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while jj~=Ncell

        S=S+2^jj; jj=jj+1;

end

display(['Number of cells: ', num2str(Ncell)])

display('& total sum of grains is: '), disp(uint64(S))

% Now test our results with a simple solution: 2^64-1;

Error=S-2^64 %#ok

%% Version B. [for ... end] loop

clearvars

S=0; Ncell=64;

for ii=0:Ncell-1

        S=S+2^ii;

end

display(['Number of cells: ', num2str(Ncell)])

display('& total sum of grains is: '), disp(uint64(S))

% Now test our results with a simple solution: 2^64-1;

Error=S-2^64 %#ok

Both of the solution scripts output the same number of grains: 

18,446,744,073,709,551,615 with 0 error. Note that 18,446,744,073,709,551,615 = 264 − 1 is 

the maximum length of any integer to be displayed correctly in MATLAB’s 64-bit version 

installed on a 64-bit processor computer.

Note in this example, the most efficient way of computing the number of grains 
on the chessboard is the vectorization approach:

n=0:63; n = 2.^n; s = sum(n); disp(uint64(s))

 Example 9
Prove that 

k k�

�

� �
1

2

21

6

�
. Compute this summation by using the [for ... end] and 

[while ... end] loops.
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% SumPi6.m

%% Example: sum(1/k^2)=pi^2/6

% Version A. [while...end] loop

clearvars

S=0; jj=1; k=input('Enter number of iterations to compute:  ');

while le(jj, k)

    S=S+1/jj^2; jj=jj+1;

end

display(['Number of cells: ', num2str(Ncell)])

display('& total sum of grains is: '), disp(uint64(S))

Error = (pi^2/6)-S; display(Error)

% Example: sum(1/k^2)=pi^2/6

% Version B. [for ... end] loop

clearvars –except k

S=0;

for jj=1:k

    S=S+1/jj^2;

end

display(['Number of cells: ', num2str(Ncell)])

display('& total sum of grains is: '), disp(uint64(S))

Error = (pi^2/6)-S; display(Error)

 Example 10
Prove that 

n

n

n�

�

�
�� �
�

�
0

1 4

2 1
�. Compute this summation by using the [for ... end] and 

[while ... end] loops.

%% Series_PI.m

% [for .. end]

clearvars

N = input('Enter the number series to compute:   ');

S = 0;

for n = 1:N

    S = S+(4*(-1)^(n+1))/(2*n-1);

end
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fprintf('Sum of n = %d is series:  %1.5f \n', n, S)

%%

% [while .. end]

clearvars

N = input('Enter the number series to compute:   ');

S = 0;

n = 1;

while n~=N+1

  S = S+(4*(-1)^(n+1))/(2*n-1);

  n=n+1;

end

fprintf('Sum of n = %d is series:  %1.5f \n', n, S)

 Example 11

Prove that 
n n

e
�

�

� �
0

1

!
. In this exercise, the sum of rational factorial series is equal to the 

natural logarithm base e. Compute the sum of the series 
1

0

1

1

1

2

1

! ! ! !
� � �� ��

n
e  by 

using the [for ... end] and [while ... end] loops.

%% Series_e.m

% [for .. end]

clearvars

N = input('Enter the number series to compute:   ');

S = 0;

for n = 1:N

    S = S+1/factorial(n);

end

fprintf('Sum of n = %d is series:  %1.5f \n', n, S)

%%

% [while .. end]

clearvars

N = input('Enter the number series to compute:   ');

S = 0;

n = 1;

Chapter 2  programming essentials



175

while n~=N+1

  S = S+1/factorial(n);

  n=n+1;

end

fprintf('Sum of n = %d is series:  %1.5f \n', n, S)

Note that in this exercise the function factorial() is employed. The most efficient 

way of computing the sum of these series is the vectorization approach: S = sum(1./

factorial(1:N)).

 Memory Allocation
When all values from all iterations are saved, it is recommended to employ memory 

allocation methods to improve the computation efficiency. Let’s analyze how the 

computation efficiency is enhanced by the memory allocation approaches. With the 

memory allocation technique, a user-specified memory is allocated to the computed 

variable with a user-specified size, and during the computation with a loop, all of the 

variable’s values are recorded in the prespecified memory. This speeds up the whole 

computation process considerably. With the memory allocation technique, the exact 

size of the variable being computed is created before the loop iteration, via the standard 

matrix/array generators (e.g., ones() or zeros()).

The general syntax/pseudocode of the memory allocation is as follows:

% [FOR ... END]

M = zeros(1, n);

for ii = 1:n

M(ii) = [computation];

end

% [WHILE ... END]

MM = zeros(1, k); jj=1;

while jj ~=k

 MM(jj) = [computation];

 jj=jj+1;

end

This syntax can be applied to loops within loops. Let’s consider the memory 

allocation technique in the following examples.
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Note it is important to employ memory allocation techniques while using the 
[for ... end] and [while ... end] loops with considerable computations. 
this will decrease computation time and save computing resources.

 Example 12
In the 17th century, Leibnitz used the series expansion of arctan(x) to find an 

approximation of π. By using the Maclaurin series formula, we can write it as follows:

 
arctan x x x x x x x

x x x x� � � �� � � � � � �� � � � �0 1
0

2

2

3

0

4

0

5 3 5 7 9
2 3 4 5

3 5 7 9

! ! !
��  

Considering that 1
4

� � � �  , we can substitute x = 1 into the previous expression and 

will get the following expression:

 

�
4

1
1

3

1

5

1

7

1

9
� � � � � ��  

That can be also written for N terms in this form:

 

�
4

1

2 10

�
�� �
�

�
�
�
k

N k

Nk
S

 

The task is to write a script that computes the sum (SN) of N terms, approximates 

the value of 
π
4

, and then plots the iteration process by computing the difference (error) 

Error SN� �
�
4

 using the [for ... end] and [while ... end] loops.

Here are possible solution scripts collected under one script called 

LeibnitzSeries.m to compute the Leibnitz series for an approximation of 
π
4

:

%% LeibnitzSeries.m

% Version A.

clearvars

N=input('Enter number of terms to approximate pi/4:  ');
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S=0;               % Initial value of summation

Err=zeros(1, N);   % Memory allocation

for k=0:N-1

    p=(-1)^k;

    S=S+p/(2*k+1);

    Err(k)=pi/4-S;  % Accumulates all of Errors from all iterations

end

plot(1:N, Err), grid on

title(['\pi/4 Approximation of ', num2str(N), ' terms'])

ylabel('Error'), xlabel('Number of terms')

%% Leibnitz series

% Version B

clearvars

n=input('Enter number of terms to approximate pi/4:  ');

S=0;  % Initial value of summation

Error=zeros(1, n);  % Memory allocation

k=0;

while k<=n-1

    p=(-1)^k;

    S=S+p/(2*k+1);

    Error(k+1)=pi/4-S; % Accumulates all of Errors from all iterations

    k=k+1;

end

plot(1:n, Error), grid on

title(['\pi/4 Approximation of ', num2str(n), ' terms'])

ylabel('Error'), xlabel('Number of terms')

If you execute the script with N=200 terms, you get the plot shown in Figure 2-3, 

which displays the results of series approximation.

Chapter 2  programming essentials



178

Figure 2-3. π
4

 approximation by 200 terms of the Leibnitz series

It is also possible to have one loop within another. Let’s look at several examples to 

generate loops within loops with [for ... end] and [while ... end].

Note it is also possible to make multiple nested [for ... end] loops.

 Example 13
Create elements of a 5-by-7 matrix with pseudorandom integer numbers of 1 to 10. Here 

is the solution script Pseudo_Randi.m:

% Pseudo_Randi.m

for k=1:5

    for n=1:7

        AB(k,n)=randi(10,1);

    end

end

display(AB)
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By executing the script, the following results are obtained:

AB =

     3     5     3     6     4     8     6

     2     1     5     6     7     2     9

     9     6     8     1     9     4     9

     4     9     9     4     7     3     3

     3     7     2     8     8    10     8

Note that every time when the script is executed, different pseudorandom integers 

ranging within [1, 10] are generated. As demonstrated in the previous examples, 

the [for, end] and [while, end] loop control statements can be employed 

interchangeably.

For this exercise, the following is the [while .. end] loop-based solution script:

% [while .. end]

k=1;

while k~=5

    n=1;

    while n~=7

        AB(k, n)=randi(10,1);

        n=n+1;

    end

    k=k+1;

end

display(AB)

Note where the second loop’s iteration value n is assigned in the two nested [while 

.. end] loops.

 Example 14
Compute the sum of the following series by using the [for ... end] and [while 

... end] loop iterations: f b x
b n x

Ln
n

n,� � �
�� �� �

�

�

�
1

2 1

2

sin �
. Take n = 1 : 11, bn = [−5...5], 

x = [0...L], and L = 10. For x take a step size of � �x
L

2000
.  Plot all computation results.
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Here is the solution script with the [for ... end] loop (Sine_Series.m):

% Sine_Series.m

%% Ver A. [FOR ... END]

clearvars, close all

n=11; b = -5:5;x=0:.01:10; f=0; L=10;

f = zeros(n, numel(x)); % Memory allocation

for k=1:n

    f=f+(b(k)*sin((2*k-1)*pi*x(:))/(2*L));

    Fun(k,:)=f;

    plot(x(:), Fun(k,:)), label{k}=(['Iteration: ' num2str(k)]);

    legend(label{:}), hold all,

end

grid on, title('sum of series'), xlabel('x'), ylabel('f(b_n, x)')

%% Ver B.

clearvars

n=11; b = -5:5;x=0:.01:10; L=10;

f = zeros(n, numel(x)); % Memory allocation

for k=1:n

    f(k, :)=(b(k)*sin((2*k-1)*pi*x(:))/(2*L));

end

Fun = sum(f(:,:));  % Obtain the final values (total sum of all).

An alternative solution script with the [while ... end] loop (see Figure 2-4). Using 

f(k,:) saves all values of the vector f(bn, x) in the order of calculation inside the loop.

%% Ver C. [WHILE...END]

clearvars, close all

n=11; b = -5:5;x=0:.01:10; f=0; L=10; k=1;

Fun = zeros(n, numel(x)); % Memory allocation

while k<n+1

    f=f+(b(k)*sin((2*k-1)*pi*x(:))/(2*L));

    Fun(k,:)=f;

    plot(x(:), Fun(k,:)), label{k}=(['Iteration: ' num2str(k)]);

    legend(label{:}), hold all
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    k=k+1;

end

grid on, title('sum of series'), xlabel('x'), ylabel('f(b_n, x)')

Figure 2-4. Sum of series: f(bn, x)= 
n

nb n x

L�

�

�
�� �� �

1

2 1

2

sin �

An alternative and best solution in terms of computational efficiency using 

vectorization approach with meshgrid() is as follows:

%% Ver D. Vectorization and No loop

clearvars, close all

n=11; b = -5:5;x=0:.01:10; L=10; k=1;

[bS, xS] = meshgrid(b,x);

[~, nS] = meshgrid(x, 1:n);

f = (bS.*sin(pi*(transpose(2*nS-1)).*xS)/(2*L));

plot(x, cumsum(f.'))

L = cell(n,1);

for ii=1:n

    L{ii}=strcat('n = ', num2str(ii));

end

legend(L)

grid on, title('sum of series'), xlabel('x'), ylabel('f(b_n, x)')
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Note that the commands related to plot building, such as plot(), label{}, 

and legend(), do not have an effect on the accuracy of the calculations. But they 

considerably slow down the computation process. Therefore, it is advisable to avoid 

plotting the computed data within loops if possible.

 Example 15
Compute the values of the function F t t t t t t� �,� � � � �� � �� �sin sin2 2 3  for t = 0...π 

(∆t = π/1000) and μ = 1...7 by using the [for ... end] and [while ... end] loop 

operators.

Here is the plain script (F_Series.m) with two loop operators:

% F_Series.m

%% [FOR ... END]

mu=1:7; t=0:pi/1e3:pi;

F=zeros(numel(mu), numel(t)); % Memory allocation

for mu=1:7

    for ii=1:numel(t)

    F(mu, ii)=sin(2*t(ii))*sqrt(sin(mu*t(ii)*sqrt(t(ii)+t(ii)^2+t(ii)^3)));

    end

    plot(t, F(mu,:)), hold all

end

xlabel('t'), ylabel('F'), title('Sine waves'), grid on

%% [WHILE ... END]

mu=1:7; t=0:pi/1e3:pi;

F=zeros(numel(mu), numel(t)); % Memory allocation

MU = 1;

while ne(MU, 8)

    ii=1;

    while ii~=numel(t)+1

    F(MU, ii)=sin(2*t(ii))*sqrt(sin(MU*t(ii)*sqrt(t(ii)+t(ii)^2+t(ii)^3)));

    ii=ii+1;

    end

    plot(t, F(MU,:)), hold all
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    MU=MU+1;

end

xlabel('t'), ylabel('F'), title('Sine waves'), grid on

Both iteration loops produce identical solutions and an identical plot figure, as 

shown in Figure 2-5. While simulating this script, there will be complex outputs from 

the square root of negative values as well. Therefore, some warning messages will be 

displayed in the Command window indicating omitted/ignored imaginary components 

in the plot shown in Figure 2-5.

Figure 2-5. Plot of F t t t t t t� �,� � � � � � � �� �sin sin2 2 3  for t = 0...π (∆t = π/1000), 

μ = 1...7

 Example 16
Compute f t e

t

� � �
�3

7  function values for t = 0...5 with a time step of ∆t = 10−6 and 

∆t = 10−3, and plot computed function values against time values. The very small time 

step ∆t = 10−6 is taken to demonstrate the importance of memory allocation and loop 

iteration versus vectorized calculations, and ∆t = 10−3 is taken to show the importance 

of where to put the plot() command while using loop iterations [for ... end] and 

[while ... end].
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There are four different ways (combined into one script EXP_Calcs.m) of solving 

the given exercise with [for, end] and [while, end] loop control statements. All of 

the four ways produce identical results, but their computation (elapsed) time differs 

substantially. Note that in this exercise, [for, end] and [while, end] loop control 

statements are used for demonstration purposes only to explain how to employ loop 

statements and to improve their efficiency. By default, for this type of exercise or any 

other vector computations, the direct computation of vector values of f(t) is much more 

efficient than using loop statements.

% EXP_Calcs.m computes Exp(-3t/7) Math function

% Solution method 1

clc; clear all; close all

tic

t=0:1e-6:5;

m_num=length(t);

for m=1:m_num

    f(m)=exp(-3*t(m)/7);

end

Tfor=toc; fprintf('[1] FOR loop computation TIME: %g \n', Tfor)

plot(t, f, 'ro'), xlabel('t'), ylabel('f(t)'), title('t vs. f(t)')

% % Solution method 2

clearvars, close all

tic

t=0:1e-3:5;

m_num=length(t);

for m=1:m_num

    f(m)=exp(-3*t(m)/7); plot(t(m), f(m), 'ro'), hold

end

TforP=toc;

xlabel('t'), ylabel('f(t)'), title('t vs. f(t)')

fprintf('[2] FOR loop computation TIME with plot() in it: %g \n', TforP)

% Solution method 3

clearvars, close all

tic

t=0:1e-3:5;
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m_num=length(t); m=1;

while m<=m_num

    f(m)=exp(-3*t(m)/7); plot(t(m), f(m), 'ro'), on

    m=m+1;

end

Twhile=toc;

xlabel('t'), ylabel('f(t)'), title('t vs. f(t)')

fprintf('[3] WHILE loop computation TIME with plot() in it: %g \n', Twhile)

% Solution method 4. Improved by memory allocation.

clearvars, close all

tic

t=0:1e-6:5;

m_num=length(t); f=zeros(1,m_num-1);

for m=1:m_num

    f(m)=exp(-3*t(m)/7);

end

plot(t,f, 'bo'); TforIm=toc;

xlabel('t'), ylabel('f(t)'), title('t vs. f(t)')

fprintf('[4] Improved FOR loop TIME with memory allocation: %g\n', TforIm)

% Solution method 5. Vectorized method

clearvars, close all

t=0:1e-6:5;

tic

f=exp(-3*t/7);

Tvec=toc; plot(t, f, 'bo')

xlabel('t'), ylabel('f(t)'), title('t vs. f(t)')

fprintf('[5] Recommended VECTORIZED method time: %g\n', Tvec)

By executing the previous script (EXP_Calcs.m) in a personal computer (processor: 

Intel COREi7, RAM: 16GB, OS: Windows 10, in MATLAB R2022a), the following 

computation time results are obtained in the Command window. Note that the plot 

figure is not shown here.

[1] FOR loop computation TIME: 0.533504

[2] FOR loop computation TIME with plot() in it: 13.4151

[3] WHILE loop computation TIME with plot() in it: 13.1509
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[4] Improved FOR loop TIME with memory allocation: 0.244569

[5] Recommended VECTORIZED method time: 0.0175538

From the simulation results, the influence of the plot() command on the 

computation time within [for, end] and [while, end] control loops is demonstrates 

once more. In this plain example, it is clear how much CPU time (~17.5 times more 

time) is spent on plotting the computed data in solutions 2 and 3 than in solutions 1 and 

4 even though the step size ∆t = 10−3 is chosen to be 103 larger than the one (∆t = 10−6) 

used with the three other ways. The simulation speed difference between the [for .. 

end] loop (way 1) and vectorization (method 5) is more than 30 times. In other words, 

the speed of the calculation with the [for ... end] loop is slower than the vectorization 

approach for more than 3000 percent.

Note if it is possible, avoid using the plot() command within the [for...
end] and [while ... end] loops to enhance the computation/simulation time 
efficiency.

The memory allocation is necessary whenever the use of [for, end] and [while, 

end] loop control statements is unavoidable. By using memory allocation techniques, 

you can improve the time efficiency of loop control statements substantially. In the 

previous simple example, the computation time has been improved more than 2.18 

times by using a memory allocation technique (method 1 versus method 4). It must be 

noted that the time efficiency with a memory allocation technique can be observed if 

the number of iterations is considerably large, for instance, several thousand iterations 

or beyond. The vectorization approach is indeed superior. If method 4 with memory 

allocation is compared with the vectorized approach (method 5), the vectorization is 

more than 13 times faster than memory allocation method for computations of this 

example.

Note if the computation/simulation problem requires using the [for...end] 
and [while ... end] loops, use the memory allocation technique to enhance 
the computation/simulation time efficiency.
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To calculate elapsed (computation) time, stopwatch timer [tic ... toc] operators 

are recommended to track the computation time of a script. In fact, there are several 

other alternative operators as well in MATLAB that count elapsed (computation) of a 

script (code) or function file. They are [cputime] and [clock, etime]. These operators 

can be used as follows within M-files. This is the comparative analysis script (EXP_CT.m) 

of these operators with the previous studied example to compute f t e
t

� � �
�3

7  function 

values for t = 0...5 with a time step of ∆t = 0.0001.

% EXP_CT.m

%% [tic ... toc]

clc; clear all, close all

T1=tic;

t=0:1e-4:5; m_num=length(t);

for m=1:m_num

    f(m)=exp(-3*t(m)/7);

end

Tfor1=toc(T1);

fprintf('FOR loop time [tic...toc]: %g \n', Tfor1)

%% [cputime ... cputime-Time]

clear all, close all

TT=cputime;

t=0:1e-4:5; m_num=length(t);

for m=1:m_num

    f(m)=exp(-3*t(m)/7);

end

Tfor2=cputime-TT;

fprintf('FOR loop time with [cputime]: %g \n', Tfor2)

%% [clock ... etime()]

clear all, close all

TT=clock; t=0:1e-4:5; m_num=length(t);

for m=1:m_num

    f(m)=exp(-3*t(m)/7);

end

Tfor3=etime(clock, TT);

fprintf('FOR loop time with [clock...etime]: %g \n', Tfor3)
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By executing the previous script, the following results are obtained in the 

Command window:

FOR loop time [tic...toc]: 2.49076

FOR loop time with [cputime]: 2.46482

FOR loop time with [clock...etime]: 2.494

The simulation results show that these operators work similarly and produce 

very close numerical results. In addition to these operators, there is another operator 

called [timeit] that can be also employed to compute the overall computation time 

spent for all simulation processes of function files. This operator was introduced with 

MATLAB R2014b.

The [break] command is a powerful and handy operator that is used mainly within 

[while, end] and [for, end] loop control statements to halt the evaluation process 

when certain conditions are met. This is another technique to improve iteration time 

efficiency. Let’s look at the [break] command’s implementation in the following 

example.

 Example 17
Let’s compute the Fibonacci numbers. The Fibonacci sequence is defined by the 

following expressions: f1 = 1, f2 = 1, f3 = f1 + f2, ..., fn = fn − 2 + fn − 1.

Thus, if f1 = 1, f2 = 1, f3 = 3, f4 = 3 + 1, f5 = 4 + 3, ..., then do the following:

 1) Show the first 13 elements of the Fibonacci sequence.

 2) Compute the first 111 elements of the Fibonacci sequence or 

stop the iteration when the sequence has reached the value of 

123456789.

Here is the solution script (Fibonacci.m). It computes the first 13 elements (series) 

with [for ... end] and [while ... end], and 111 elements (series) of the sequence 

or halts the computation if the sequence reaches to 12345789 by employing the [break] 

operator.

% Ver 1. Computation of 13 elements of the Fibonacci Numbers: [for ... end]

clearvars

f(1) = 1; f(2)=1;

f = [f(1), f(2), zeros(1, 11)]; % Memory allocation
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fprintf('Element: %.0f  FN: %.0f \n', 1, f(1));

fprintf('Element: %.0f  FN: %.0f \n', 2, f(2));

for jj=3:13

    f(jj)=f(jj-2)+f(jj-1);

    fprintf('Element: %.0f  FN: %.0f \n', jj, f(jj));

end

%% Ver 2. Computation of 13 elements of the Fibonacci Numbers: 

[while...end]

clearvars

f(1) = 1; f(2)=1; jj=3;

f = [f(1), f(2), zeros(1, 11)]; % Memory allocation

fprintf('Element: %.0f  FN: %.0f \n', 1, f(1));

fprintf('Element: %.0f  FN: %.0f \n', 2, f(2));

while jj<=13

    f(jj)=f(jj-2)+f(jj-1);

    fprintf('Element: %.0f  FN: %.0f \n', jj, f(jj));

    jj=jj+1;

end

%% [BREAK]. Iteration of the Fibonacci Numbers is controlled by [BREAK]

clearvars

F(1) = 1; F(2) = 1;

F = [F(1), F(2), zeros(1, 40)]; % Memory allocation

fprintf('Element: %.0f  FN: %.0f \n', 1, F(1));

fprintf('Element: %.0f  FN: %.0f \n', 2, F(2));

for ii=3:111

    F(ii)=F(ii-2)+F(ii-1);

    fprintf('Element: %.0f  FN: %.0f \n', ii, F(ii));

    if F(ii)>=123456789

    fprintf('Iteration is halted because \n ')

    fprintf('the last computed value is greater than 123456789 \n')

    break

    else

        continue

    end

end
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This script produces the following output in the Command window:

Element: 1  FN: 1

Element: 2  FN: 1

Element: 3  FN: 2

Element: 4  FN: 3

Element: 5  FN: 5

Element: 6  FN: 8

Element: 7  FN: 13

Element: 8  FN: 21

Element: 9  FN: 34

Element: 10  FN: 55

Element: 11  FN: 89

Element: 12  FN: 144

Element: 13  FN: 233

The results from version 2 are identical to the results from version 1, and thus, they 

are not shown here. Here are the results from the previous section of the code with the 

[break] operator:

Element: 1  FN: 1

Element: 2  FN: 1

Element: 3  FN: 2

Element: 4  FN: 3

Element: 5  FN: 5

Element: 6  FN: 8

Element: 7  FN: 13

Element: 8  FN: 21

Element: 9  FN: 34

Element: 10  FN: 55

Element: 11  FN: 89

Element: 12  FN: 144

Element: 13  FN: 233

...

Element: 25  FN: 75025

Element: 26  FN: 121393

Element: 27  FN: 196418

...
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Element: 39  FN: 63245986

Element: 40  FN: 102334155

Element: 41  FN: 165580141

Iteration is halted because

 the last computed value is greater than 123456789

Note that in the previous section with the [break] operator, the memory allocation 

operation F = [F(1), F(2), zeros(1, 40)] creates [1, 1, 40 elements of 0]. 

Therefore, after 41 iterations, the last element (42nd element) of F remains 0.

 Example 18
Let’s compute the values of the sine function h(θ) =  sin (θ) for θ = 0...2π with 1,000 

incremental steps and stop computation when the value of the function h(θ) ≈ 0.9999.

The sine function fluctuates between 0 ... 1; 1...0; 0...-1; -1...0 for θ = 0...2π; therefore, 

you should stop the computation loop when the function value reaches 0.9999. Here 

is the solution script (SINE.m) that computes and halts the computation process with a 

[break] statement when the preset condition is met:

% SINE.m computes sin(theta)

clearvars

theta=linspace(0, 2*pi, 1000); k=length(theta); h=ones(1,k-1);

for ii=1:k

    h(ii)=sin(theta(ii));

    data(ii,:)=[theta(ii);h(ii)];

if abs(h(ii))>=0.9999

    fprintf('Computation is halted after %g iterations\n', ii);

    fprintf('The function value is: %1.5f \n', h(ii))

fprintf('When theta is equal to % 1.5f degrees\n', theta(ii)*180/pi)

break

else

continue

end

end

plot(data(:,1), data(:,2), 'bd'), hold on

plot(data(ii,1),data(ii,2), 'p', 'markerfacecolor','c',  'markersize', 18)

grid on
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When the script (SINE.m) is executed, the following output is displayed in the 

Command window:

Computation is halted after 249 iterations

The function value is: 0.99994

When theta is equal to  89.36937 degrees

Figure 2-6 shows the plot.

Figure 2-6. Plot of h(θ) =  sin (θ) for � �
� �0

2
 and computation halted at 

h(θ)=0.9999

This solution script can be also edited or rewritten with [while, end] in a similar 

way. That is left as an exercise for you to try for self-testing purposes.

 Example 19
Write a script file with the [for ... end] loop and conditional statements 

[if, elseif, else, end] to compute the values of the function. Then plot the 

computed values.
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For the values of t ∈ [−4π, 3π], take ∆t = 0.0001. 

Here is the solution script (Fun_Sets.m):

%% Fun_Sets.m

clc, clearvars

t=-4*pi:.0001:3*pi;  % Whole t series

F=ones(size(t));     % Memory allocation

tic;

for ii = 1:numel(t)

    if t(ii)<=-2*pi

        F(ii)=exp(sin(2*t(ii)))+exp(cos(100*t(ii)));

    elseif t(ii)>-2*pi && t(ii)<=pi

        F(ii) = sin(2*t(ii))+cos(100*t(ii));

    elseif t(ii)>pi && t(ii)<=2*pi

        F(ii)=exp(sin(100*t(ii)))+exp(cos(2*t(ii)));

    else

        F(ii)=1;

    end

end

   Tma=toc;

   plot(t, F), grid on;

   plot(t, F), grid on, xlabel('\it t'), ylabel('\it F(t)'),

   title('Plot of function values w.r.t value ranges of t'), shg

   fprintf('Computation Time with memory allocation:  %2.6g \n', Tma)

Here are the outputs in the Command window and plot figure of the script (Fun_

Sets.m). Figure 2-7 shows the plot figure of the script.

Computation Time with memory allocation:  0.0286769
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Figure 2-7. Plot of the function f t
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One of the tricky points in the previous example is separating out the four value 

ranges of t according to the problem statement and then computing four separate 

function values. The loop operation [for ... end] before the conditional statements 

[if... elseif... elseif... elseif ... else ... end] perform the whole 

computation with respect to the indexes of t, whereas [if... elseif... elseif... 

elseif ... else ... end] will separate out the values of t by comparing every value of 

t(ii) according to the given conditions. In this case, the index (ii) is mandatory.

 Symbol References in Programming
In MATLAB, there are dozens of important symbols used for various purposes in 

different contexts of code. The symbol references are discussed in the following sections.
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 Asterisk
In general, the symbol * is used for the multiplication operator, but in other instances, it 

can be used as a wildcard for file name identification. For instance, if you need to delete 

all files (MATLAB’s autosave files of M/MLX-files) with a file extension of *.asv, the 

following command performs the task:

>> delete *.asv

In this way, you can delete all the files with the file extension of *.asv located in the 

current directory of MATLAB. Another example is if you need to locate an M-file called 

midpoint_rule.m, then you can type part of the file name as so:

>>  dir('midp*.m')

midpoint_rule.m

Also, you can use * to get information on variables residing in the workspace by 

typing part of their names or delete them by typing part of their names, for instance:

>> whos

>> who

Your variables are:

H   N    NaH  NbN  NN  Nn  NCN  NkN

>> clear N*    % All variables whose names start with N will be deleted 

from the Workspace

>> whos         % Check which variables left in the Workspace

  Name      Size            Bytes  Class     Attributes

  H         5x1              3525  struct

 At Sign
The @ sign/operator is mostly used to construct a function handle. Here’s an example:

F=@(argument lists)expression

Moreover, the @ operator is used to assign a new MATLAB class directory designator 

used to override MATLAB files. Here’s an example:

\@myclass\myfun.m
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Note that MATLAB classes can be used to define object-oriented designs, which are 

not discussed in this book.

 Colon
The colon (:) operator is used to generate a sequence of numbers or elements of arrays 

or assign indices. Here’s an example:

>>M=1:3:300;

>>N=1:200;

>>K=[N(1:10); M(1:10)];

>>Knew=K(1,:)

Knew =

     1     2     3     4     5     6     7     8     9    10

Note that when you use the colon to generate a sequence of numbers by specifying 

the step size, the last element of the being generated sequence may not match with the 

specified last element. For example, A = 1:3:20 generates A = [1 4 7 10 13 16 19], and B = 

1:3:21 generates B = [1 4 7 10 13 16 19].

 Comma
The comma (,) operator is used to separate variables or elements of arrays and indices, 

function input and output arguments, commands, or statements. Here’s an example:

>> M, N,K

>> K(1,2)

>> G=@(t, x) sin(x*t)

>> for ii=1:2:20, Knewm(:)=K(1, ii)*2, end

 Curly Brackets
The { } are used to assign or construct cell arrays and write fractions, superscripts, 

and subscripts via the LaTeX interpreter in plot figure titles and axis labels. Here’s an 

example:

>> KnM=[{Knew}, {K}, {N},{M}];
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>> title('$sin(\frac{2\phi}{5})$','interpreter', 'latex');

>> xlabel('t_{at}');

>> ylabel('F^{dot}')

 Dollar Sign
The $ is used mostly in expressing fractions via the LaTeX interpreter in plot figure titles 

and axis labels. Here’s an example:

>> ylabel('$\Omega(\frac{2\beta}{\alpha})$', 'interpreter', 'latex')

 Dot
The . operator is used to add fields to an existing structure field, table variable name 

specifier, and object method specifier. It is used for decimal digits and element-wise 

matrix operations. Here’s an example:

>> MH=H(1,1).bytes

>> P = [-3.1416, -1.5708, 0, 1.5708, 3.1416];

>> A = P.^2;

 Dot-Dot
The two dots (..) operator is used to refer in sequence to the current directory. For 

instance, the following commands jump up one and two directories (if they already 

exist) from the current one:

>>cd ..\Fax

>>cd ..\..\Desktop

 Dot-Dot-Dot (Ellipsis)
The three dots operator (...) is a line continuation operator. Here’s an example:

>>  KmN=[1,2; ...

3,2; ]

KmN =
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     1     2

     3     2

>> fprintf('This is what you have entered: %f\n', ...

KmN)

This is what you have entered: 1.000000

This is what you have entered: 3.000000

This is what you have entered: 2.000000

This is what you have entered: 2.000000

 Parentheses
The () are mostly used for indexing of array elements or specifying arguments passed to 

a called function. Here’s an example:

>> K(3, 4)

>> F=@(x, y)sqrt(x.^2+y.^2)

>> [m, n]=myFUN(x, y, k)

 Percent
The % operator is one of the most commonly used reference symbols in MATLAB 

programming. It is used for five main purposes, of which four are for commenting 

purposes:

• To assign comments within M-files (%)

• To create cell modes with double percent signs (%%) and then 

leave a space

• To assign conversion specifiers when used within fprintf() and 

sprintf()

• To assign a block of comments when used with curly braces, %{, 

opened in one line and, %}, closed in another

• To remove (%#ok) a warning sign to display computation results in the 

Command window
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Let’s look at several examples for the % sign:

% This script is used for ...

% Created by ...

%% New cell mode starts from here ...

fprintf('you have entered %g which is EVEN number \n', N)

sprintf('you have entered %g which is EVEN number \n', N)

X1=sprintf('Root2 of the equation is x1= %g*i', x1);

%{

 Start comments and remarks...

 This script is used for....

 Created by ...

 Define entered integer type

 End comments and remarks...

%}

K=randi(100,3);

M=K*2.2        %#ok

Note When using % with { } to insert comments in your script, the %{ open 
bracket must be on a separate line before the starting comments, and the %} 
closing must be at the end of the comments block on a separate line.

 Semicolon
The ; is mainly used to construct arrays, suppress output display in the Command 

window, and separate commands entered on one line. Here’s an example:

>>K=[1 2; 3,4];

>> clear all; close all; clc

 Single Quotes
Single quotes (' ') are one of the most commonly used reference symbols of 

MATLAB. They are used as character and string constructors and with the inline 

function. Here’s an example:
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>> a=input('Enter value of a: ');

>> Hurray = 'Today is a great DAY ! '

>> F_1 =inline('2*x^2-3*x+13')

Note the single quote (') is also used for a matrix transpose operation:

>> A = [1, 2; 3, 4]

A =

     1     2

     3     4

>> A'

ans =

     1     3

     2     4

 Slash and Backslash
The / \ characters are used to separate elements of a path or directory string. Note that 

these characters are also used for division (\ for left matrix division) operations, and \ is 

used to write Greek letters in the LaTeX format. Here’s an example:

>> dir(['..\Circle13.m']) % Path or directory

>> title(' \alpha(\theta) vs. \Omega(\theta)')  % LaTeX interpretation

>> C = [2, 3, 4]; D=A/2;        % Division

>> A = [2 3; 3 4]; b = [1;2]; x = A\b;  % Backslash or left matrix divide

 Square Brackets
The square brackets ([ ]) are used to construct, declare, and concatenate arrays, and to 

declare and capture values returned by functions. They are also used to indicate text and 

labels in plot figures. Here’s an example:

>> K=[1 2; 3,4];

>> B=[K, K*2; rand(2,2), eye(2)];

>> [xout yout] = myfunction(z, t);

>> gtext(['End point: ' num2str(yout(end)) ' [m]'], 'background', 'y');

For more information on MATLAB symbol references, see the appendix.
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 Function Files
Function files are a remarkable strength of the MATLAB package for efficient code 

generation and computations. Once the function files are saved, they will have the 

symbol ; M-files will have the symbol , and MLX-files will have symbol . The way 

the function files are executed and the way their simulation results are obtained are 

substantially different from M- and MLX-files.

First, let’s address why function files are necessary. The main reasons for using 

function files is that they are faster, are computationally more efficient, and consume 

less space in the workspace. Moreover, they can be called and executed within any M 

or MLX-files and the Command window. Function files are powerful and flexible and 

can be used for various purposes. They can be used not only to evaluate mathematical 

functions or perform calculations, but also to evaluate, compare and assess already 

evaluated data inputs as arguments. The general syntax and structure of the function file 

can be expressed in the following way:

function [A, B, ..., W] = FCN_name(a, b, ..., w)

% Help. ....

....

end

where [A, B, ..., W] are output variables and (a, b, ..., w) are input variables, also 

called input arguments. Note that function files have to start with the word function and 

the file name of the function file has to match with the word FCN_name in the previously 

shown example. In other words, the previous function file has to be named FCN_name.m. 

Otherwise, you cannot execute it. MATLAB automatically recognizes the function file as 

soon as you type in the word function and prompts you for the function file name when 

you save it the first time. Moreover, it is advised and required to end the function file 

with the keyword end. Naming the function files is like naming any M- or MLX-files. They 

have to start with a letter and must not contain any empty spaces or symbols except for 

an underscore, _.

In addition, some additional comments (help comments explaining how to use the 

function file) can be added to the existing function files by opening and editing them.
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Note one of the most common mistakes while recalling the function files is 
misspelling the name of the file.

in recent versions of matlaB, function files can have different file names and 
function names. For example, a function file can be called MY_fun, but its script 
may be written as: function [Out1, Out2, ...] = fun(In1, In2, 
...). this will not cause any error. however, it is recommended to have the same 
file name and function name.

in more recent versions of matlaB, the function file syntax (called 
subfunctions/member functions) can be implemented/embedded within m-files 
and called/executed as part of m-files.

The function files can be created for various purposes, for instance, to perform 

computations or display simulation results. The function files can be created/written in 

several ways.

• By using M-file or MLX-file editors or also using the Notepad 

text editor.

• By using the main menu  and selecting  or  

from the drop-down option. The latter option of Live Function is 

available only starting from MATLAB 2018b.

• By using the Symbolic Math2 toolbox’s symbolic object 

identifier, syms.

When using the first way, you type in the function file and save a precisely matched 

function name with a file extension of *.m or *.mlx. It will be recognized by MATLAB 

automatically as a function file. When using the second and third ways, the editors will 

automatically generate the standard syntax components of the function file. The file can 

be edited without having to type in standard parts.

Let’s look at several examples to demonstrate how to create function files and work 

with them.

2 Symbolic Math is a registered trademark of MathWorks Inc.
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 Example 1
Write a function file to compute f t

e et t� � � �� � � �
3 5

sin cos
 and plot the computed values. This 

can be implemented as shown in the following script called myfunction.m. It uses the 

first way of creating the function file.

function f=myfunction(t)

% HELP: this function file (myfunction.m) computes values of the 

expression:

%{

f(t)=3./exp(sind(t))+5./exp(cosd(t)) for given values of t, saves the 

computed values of f(t) in the workspace, and plots computed resultsthem. 

Note that [t] is input argument that has to be in degrees not in radians, 

e.g., numerical array, e.g., >> t = -360:720360;

To execute this file: >> t = -720:10:720;  f=myfunction(t); that assigns 

output values to a variable f and shows the plot.

To execute this file: >> t = 0:1:180;  myfunction(t);  that assigns output 

values to a variable ans shows the plot.

To execute this file: >> FF=myfunction(-180:2:360);  that assigns output 

values to a variable FF shows the plot.

%}

f=3./exp(sind(t))+5./exp(cosd(t));

plot(t, f, 'ro-', 'linewidth', 1.5), grid on

title('Plot of myfunction.m file')

end

It is good practice to have some comments in the function files specifying the 

functionality of the function file, specifics about input arguments, help hints how to use 

it with example input data, and so forth. When there are help comments in function files, 

users can search for help about function files from the Command window. They do so by 

recalling a function file name with the help command, as shown here:

>> help myfunction

  HELP: this function file (myfunction.m) computes values of the expression 

f(t) = 3./exp(sind(t))+5./exp(cosd(t)) for given values of t, saves the 

computed values of f(t) in the workspace, and plots computed results them.
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   Note that [t] is input argument that has to be in degrees not in radians, 

e.g.numerical array, e.g. >> t = -360:720360;

   To execute this file: >> t = -720:10:720;  f=myfunction(t);  % that 

assigns output values to a variable f     % and shows the plot.

   To execute this file: >> t = 0:1:180;     myfunction(t);  % that assigns 

output values to a variable ans % shows the plot.

   To execute this file: >> FF=myfunction(-180:2:360);  % that assigns 

output values to a variable FF           % shows the plot.

Note that to call and use the created function files, the function files must reside in 

the current (active) MATLAB path directory. Or, you must add the path (directory) where 

the function file is residing to the search directory of MATLAB. You can do that using the 

addpath(' ') command and specifying the directory inside (' '). If the function file’s 

directory (path) is not in the current directory or is not added to the list of the MATLAB 

paths, it cannot be recalled and executed. Subsequently, you’ll get error messages 

indicating an undefined function or variable.

Simulation of the previous function file (called myfunction.m) can be done from the 

Command window or within another M-file with an input variable of t:

>> % If the output variable is not specified, "ans" will be the default 

variable name.

>> % That has all values of "f" of the function file.

>> myfunction(0:2:720);  % The input argument "t" values are defined directly.

>> t=0:2:720; f=myfunction(t); % Input and output variables are defined 

and given.

A second way of creating a function file is by clicking the main menu  and 

selecting  or . The following function file will be opened with a 

default name of untitled.

This file is opened with the  button in the M-file editor.

function [outputArg1,outputArg2] = untitled(inputArg1,inputArg2)

%UNTITLED6 Summary of this function goes here

%   Detailed explanation goes here

outputArg1 = inputArg1;

outputArg2 = inputArg2;

end
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This one is opened with the  button in the MLX-file editor.

Brief summary of this function.

Detailed explanation of this function.

function z = Untitled(x, y)

z = x + y;

end

The following example explains how to employ the third way of creating the 

function files.

 Example 2
Given: f u u

u e

u e

u

u1 2
2

2

1
3

1

21 25
,� � � �

�

�
�
� .

A third way of creating a function file is to employ Symbolic Math3 toolbox’s symbolic 

object identifier syms. The MATLAB tool matlabFunction creates an anonymous 

function file to compute f(u1, u2) with input arguments of u1, u2.

syms u1 u2         % Define variables (input data names)

% Formulate the given function equations

f=[u2-exp(2*u1), 1.25*u1-exp(3*u2)];

% Define a function file name, e.g. myFUN

matlabFunction(f, 'file', 'myFUN');

When you execute these commands, a function file called myFUN.m is created in the 

current MATLAB directory.

function f = myFUN(u1, u2)

%MYFUN

% F = MYFUN(U1,U2)

% This function was generated by the Symbolic Math Toolbox version 5.9

%    15-Apr-2022 14:20:01

f = [u2-exp(u1.*2.0),u1.*(5.0./4.0)-exp(u2.*3.0)];

3 Symbolic Math is a registered trademark of MathWorks Inc.
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Note that once a function is created with matlabFunction, you should not reuse 

this function tool to re-create the already created function file. If you try to do so, error 

messages will pop up. Another salient point in employing the matlabFunction tool is 

that this tool cannot generate function files containing variables with indexes, and if 

there are variables with indexes, the matlabFunction tool prompts you with errors.

Certain operations, commands, computations, or execution of several function files 

can be performed within the function file without any input arguments or outputs. A 

general syntax of such function files without any input arguments and output variables is 

very simple.

function functionNAME

% ...

Let’s now look at the following example.

 Example 3
Create a function file that clears all previously typed in commands from the Command 

window and displays benchmarking results of your computer. This getREADY.m function 

file performs the assigned tasks without any input arguments and any output data:

function getREADY

% HELP. getREADY.m

% This function file cleans up command history of MATLAB  and

% performs benchmarking calculations of several MATLAB functions (LU, FFT,

% ODE, etc.) installed computer against some of the computer configurations 

of the date.

clc; close all; bench

end

Note there are two cases when the function files can be executed with the run 

 button from the m/mlX-file editor. (1) if the function file has no input 
arguments, (2) if the function file has a varying number of input arguments.
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 Example 4
Create a function file that computes the roots (x1, x2) and discriminant (D) of the 

quadratic equation ax2 + bx + c = 0 with respect to the input arguments of a, b, c, which 

are scalars. This function file (called QUAD.m) will produce three output variables 

according to the three input arguments.

function [x1, x2, D]=QUAD(a, b, c)

% QUAD.m

% Solves quadratic equations based on coefficients of: a, b, c

% Note that a, b, c need to be scalars.

fprintf('Solve: (%g)x^2+(%g)x+(%g)=0\n', a,b,c)

D=b^2-4*a*c;

% Roots

x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);

if lt(D,0)

    fprintf('This equation does not have real value roots!\n');

    fprintf('Because discriminant is negative. D = %g\n', D);

    fprintf('Complex Root1: x1= %10s\n', num2str(x1));

    fprintf('Complex Root2: x2= %10s\n', num2str(x2));

elseif eq(D,0)

    disp('This equation has one unique root! ');

    disp('Because discriminant is zero. D=0 ');

    fprintf('This equation has one unique root! \n');

    fprintf('Because discriminant is zero. D=0 \n');

    fprintf('Unique Root: x = %g \n', x1);

else

    fprintf('This equation has two roots \n');

    fprintf('Because discriminant is: D = %g \n', D);

    fprintf('Root1 of the equation is: x1= %g \n', x1);

    fprintf('Root2 of the equation is: x2= %g \n', x2);

end

Let’s test this function file with different input arguments and obtain the output 

variables from the Command window.
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>> a=1; b=2; c=3;

>> [x1, x2, D]=QUAD_01(a, b, c)     % Case 1. The values of a, b, c are 

predefined

Solve: (1)x^2+(2)x+(3)=0

This equation does not have real value roots!

Because discriminant is negative. D = -8

Complex Root1: x1= -1+1.4142i

Complex Root2: x2= -1-1.4142i

x1 =

  -1.0000 + 1.4142i

x2 =

  -1.0000 - 1.4142i

D =

    -8

>> [x1, x2, D]=QUAD_01(1, 2, 3)   % Case 2. The values of a, b, c are 

entered directly

Solve: (1)x^2+(2)x+(3)=0

This equation does not have real value roots!

Because discriminant is negative. D = -8

Complex Root1: x1= -1+1.4142i

Complex Root2: x2= -1-1.4142i

x1 =

  -1.0000 + 1.4142i

x2 =

  -1.0000 - 1.4142i

D =

    -8

>> [x1, x2, D]=QUAD_01(b, c, a)  % Case 3. The values of a, b, c are 

mixed up

Solve: (2)x^2+(3)x+(1)=0

This equation has two roots

Because discriminant is: D = 1

Root1 of the equation is: x1= -0.5

Root2 of the equation is: x2= -1
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x1 =

   -0.5000

x2 =

    -1

D =

     1

>> QUAD_01(b, c, a);   % Case 4. The values of a, b, c are mixed up and 

outputs are not specified

Solve: (2)x^2+(3)x+(1)=0

This equation has two roots

Because discriminant is: D = 1

Root1 of the equation is: x1= -0.5

Root2 of the equation is: x2= -1

>> a1=1; a2=5; a3=8;

>> [X, Y, Dis]=QUAD_01(a1, a2, a3) % Case 5. The output variable names 

are changed

Solve: (1)x^2+(5)x+(8)=0

This equation does not have real value roots!

Because discriminant is negative. D = -7

Complex Root1: x1= -2.5+1.3229i

Complex Root2: x2= -2.5-1.3229i

X =

  -2.5000 + 1.3229i

Y =

  -2.5000 - 1.3229i

Dis =

    -7

From the five simulations, it is clear that while calling and executing the function 

files, the names of the input arguments and output variables are not essential. That 

means users can change the output variables (instead of x1, x2, D) and use different 

input arguments (other than a, b, c). Furthermore, the function files take the input 

arguments according to their order (case 2 versus case 3 and case 4). The output 

variables can be omitted, and the function file will still run, but there will be only one 

output corresponding to the first output variable specified in the function file’s context.
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 Most Common Errors with the Function Files
There are a few common mistakes made while working with the function files. They are 

as follows:

• Misspelling function names while calling them.

• Providing the wrong number of input arguments than actually 

defined in the function file.

• Calling the wrong number of output variables than actually defined 

in the function file.

• Incorrectly using input arguments, such as mismatched size, variable 

type, etc.

• Defining the input arguments in the function file and providing 

their values within the function file context. In other words, defining 

the input arguments twice without any preconditions of missing 

arguments and use of alternative (default) values.

Let’s test some of the most common errors that occur when working with the 

function files in the case of Example 1.

>> t=0:2:720;

>> % Error:  Misspelled function name with "M" instead of "m"

>> f=Myfunction(t);

Cannot find an exact (case-sensitive) match for 'Myfunction'

The closest match is: myfunction in

C:\ ...\Documents\MATLAB\myfunction.m

Did you mean:

>> f=myfunction(t);   % MATLAB's automatically detected 

similar  function name

>>  t1 = [0:2:720]; t2= -720:2:0;

>> % Error: Two input arguments are inserted instead of one as defined in 

the function file

>> f=myfunction(t1, t2);

Error using myfunction

Too many input arguments.
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>>  t2= -720:2:0;   % Input argument name can be altered that is not 

an ERROR!

>> % Error: Two output variables are requested instead of one as defined in 

the function file

>> [f1, f2]=myfunction(t2);

Error using myfunction

Too many output arguments.

>> % Error: Wrong type of input arguments

>> t3 =['a', 'b', 'c', 'd', 'f', '-a'  '-b' '-c' '-d' '-f'];  % t3 is a 

character array and not numerical array

>> f=myfunction(t3);

Undefined function 'sind' for input arguments of type 'char'.

Error in myfunction (line 4)

f=3./exp(sind(t))+5./exp(cosd(t));

Let’s analyze the case whereby the input argument is defined within the function file 

contexts and is called as the input argument while executing the function file. Let’s make 

some changes to the function file (myfunction.m).

function f=myfunction(t)

% HELP: this function file (myfunction.m) computes values of the expression 

% f(t) = 3./exp(sind(t))+5./exp(cosd(t)) for

% given values of t, saves the computed values of f(t) in the workspace,

% and plots computed results.

% Note that [t] is input argument that has to be in degrees not in radians, 

% e.g.numerical array, e.g. >> t = -360:720360;

% To execute this file: >> t = -720:10:720;  f=myfunction(t); that

% assigns output values to a variable f     % and shows the plot.

% To execute this file: >> t = 0:1:180;     myfunction(t); that assigns

% output values to a variable ans % shows the plot.

% To execute this file: >> FF=myfunction(-180:2:360);  that assigns output 

% values to a variable FF

t = 0:720;  % Input variable t is assigned internally

f=3./exp(sind(t))+5./exp(cosd(t));

plot(t,f, 'ro-', 'linewidth', 1.5), grid on

title('Plot of myfunction.m file')
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In this case, the function file takes the input argument values and ignores the 

input arguments for t when it is called/executed. Here’s an example: >> t =0:1:180; 

f=myfunction(t);.

The example outputs the computed values of f(t) for t = 0:720 by ignoring our 

specified input variable t =0:1:180.

 Varying Number of Inputs and Outputs
One of the remarkable advantages of the function files over M or MLX-files is that they 

may have a varying number of input arguments and output variables. This flexibility of 

the function files can be attained via several MATLAB’s built-in tools, commands, and 

functions. To vary the number of input arguments, you use varargin, and to vary the 

output variables, you use varargout. To make these functions more useful with respect 

to the given problem, there are two other MATLAB built-in tools, commands, and 

functions, namely, nargin and nargout, which determine how many input arguments 

and output variables are called while executing the function file. The varying inputs and 

outputs of the function files can be used in a few different combinations while declaring 

function input arguments and output variables. Here’s an example:

 1. function [Out1, Out2] = function_name(varargin)

 2. function varargout = function_name(Input1, 

Input2, Input3)

 3. function varargout = function_name(varargin)

To find out more detailed information on these tools, type the following into the 

Command window:

>> help varargin

>> help varargout

>> help narargin

>> help narargout

>> doc varargin

>> doc varargout
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Let’s look at two different examples dealing with varying input arguments and output 

variables.

 1) Varying number of inputs and three output variables

 2) Varying inputs and varying number of output variables

 Example 5

Create a function file (Quad_Var.m) to solve the quadratic equation (ax2 + bx + c = 0) with 

a varying number of input variables (a, b, c) and with three outputs (x1, x2, D).

function [x1, x2, D]=Quad_Var(varargin)

% Quad_Var.m computes roots of the quadratic equation with varying number

% of input arguments for a, b, c. Gives three output variables: x1, x2, D.

% There are four cases considered:

% Case 1. No Input arguments: a =1; b=2; c=3; values are taken as inputs.

% Case 2. One Input argument given: a, and b=2, c=3 are taken as inputs.

% Case 3. Two Input arguments given: a and b, c=3 is taken as a 3rd input

% Case 4. Three Input arguments given: a, b and c.

% E.g.

% Run: [x1, x2, D] = Quad_Var();        % No Input

% Run: [x1, x2, D] = Quad_Var(1);       % One Input: a=1;

% Run: [x1, x2, D] = Quad_Var(1, 2);    % Two Inputs: a=1; b=2;

% Run: [x1, x2, D] = Quad_Var(1, 2, 3); % Three Inputs: a=1; b=2; c=3;

if nargin==0         % Case 1. No input arguments

    a=1; b=2; c=3;

elseif nargin==1     % Case 2. One input argument only

    a=varargin{1}; b=2; c=3;

elseif nargin==2     % Case 3. Two input arguments

    a=varargin{1}; b=varargin{2}; c=3;

else                 % Case 4. Three input arguments

    a=varargin{1}; b=varargin{2}; c=varargin{3};

end

D=b^2-4*a*c;x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);

end
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In the function file Quad_Var.m the MATLAB’s built-in command/tool nargin 

automatically counts how many inputs are given while calling the function file. The 

varargin{1} represents the first input argument, varargin{2} represents the second 

input argument, and likewise varargin{3} represents the third variable. In this order, n 

varying number of a function file can be created and called.

Let’s test the function file (Quad_Var.m) in four different scenarios:

• No inputs: The values of a, b, c are taken from the function file context 

a=1, b=2, c=3.

• One input: a is given (e.g., a = 1 or any scalar to be assigned to a), and 

the two values (b, c) are taken from the context of the function file: b 

=2, c=3.

• Two input arguments: a, b are given (e.g., a = 1, b = 2 or any scalars to 

be assigned to a, b), and one input (c) is taken from the context of the 

function file: c = 3.

• Three input arguments: a, b, c are given (e.g., a = 1, b = 2, c=3 or any 

scalars to be assigned to a, b, c).

>> [x1, x2, D]=Quad_Var         % Case 1. No Input

x1 =

  -1.0000 + 1.4142i

x2 =

  -1.0000 - 1.4142i

D =

    -8

>> [x1, x2, D]=Quad_Var(1)     % Case 2. One Input

x1 =

  -1.0000 + 1.4142i

x2 =

  -1.0000 - 1.4142i

D =

    -8

>> [x1, x2, D]=Quad_Var(1,2)   % Case 3. Two Inputs

x1 =

  -1.0000 + 1.4142i
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x2 =

  -1.0000 - 1.4142i

D =

    -8

>> [x1, x2, D]=Quad_Var(1,2, 3) % Case 4. Three Inputs

x1 =

  -1.0000 + 1.4142i

x2 =

  -1.0000 - 1.4142i

D =

    -8

Let’s look at the following example to analyze the varying number of outputs and 

specific (nonvarying) input arguments (two input arguments).

 Example 6

Write a function file to compute the Leibnitz series expansion of arctan(x) to find an 

approximation of π by using the sum of the Maclaurin series formula for N terms in the 

following form:

 

�
4
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2 10

�
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�
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�
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N k

Nk
S

 

Write a script that computes the sum (SN) of N terms, which is the approximation of 
π
4

. The difference (error) is Error SN� �
�
4

 and Nhalt is the number when the iteration 

is halted due to the user-specified error tolerance (E_tol) is attained. Use the [for ... 

end] and [while ... end] loops.

function [varargout] = Leibnitz_VarOut(varargin)

% Leibnitz_VarOut.m computes and plot the Leibnitz series expansion of

%         arctan(1) to find an approximation of PI.

%         Input arguments:

%         N (number of terms, e.g. 10000)

%         E_tol (Error tolerances, e.g. 0.0001)

%         OUTPUT variables are:

%         Out1 = Error;
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%         Out2 = SN (Sum of series);

%         Out3 = Nhalt (terms when simulation is halted).

if nargin==0

    N =1000; E_tol = 0.001;

elseif nargin<2

    E_tol = 0.001;

    N = varargin{1};

else

    N = varargin{1}; E_tol=varargin{2};

end

SN=0;

for ii=0:N

    SN = SN+((-1)^ii)/(2*ii+1);

    Error=abs(pi/4-SN);

    if abs(Error)<=E_tol

        Nhalt=ii;

        break

    else

        Nhalt=ii;

        continue

    end

end

if nargout == 0        % No Output specified: NO outputs

    disp('NO Outputs!')

elseif    nargout ==1  % One Output: Error

    varargout{1}=Error;

elseif nargout ==2     % Two Outputs: Error and Sum of series

    varargout{1}=Error; varargout{2}=SN;

else      % Three Outputs: Error, Sum of Series, Number of Iterations,

    varargout{1}=Error; varargout{2}=SN;varargout{3}= Nhalt;

end

If no input arguments are given, then the output will be an error and two input 

arguments. For example, the number of iterations and error tolerance will be 1000 and 

0.001, respectively. If there is one input, then that will be the number of iterations, and 

the error tolerance will take the value of 0.001.

Chapter 2  programming essentials



217

While executing this function file, if the output variable is not specified, then no 

outputs will be obtained but only a short note (no outputs!) displayed in the Command 

window. If one output variable is called (with any variable name), then the achieved last 

error (Error) value will be the output variable’s value. If two output variables (names) 

are specified while calling/executing the function file, then the error (Error) and sum 

of the series (SN) will be output. If three output variables are called, then the Nhalt, SN, 

and Error values will be obtained. It must be noted that from the specified conditions if 

the given (N input) number of iterations cannot produce the specified input (E_tol) error 

tolerance, then Nhalt (the output variable) will be equal to N (the input argument).

[EE, SM]=Leibnitz_VarOut()

EE =

   1.0000e-03

SM =

    0.7844

>> [EE, SM]=Leibnitz_VarOut(10000)

EE =

   1.0000e-03

SM =

    0.7844

>> Leibnitz_VarOut(1e5, 1e-4)    % No output variable specified and thus, 

No output

NO Outputs!

>> E = Leibnitz_VarOut(1e5, 1e-4) % One output specified and thus, Error 

displayed

E =

   1.0000e-04

>> [ Ee Ss]  = Leibnitz_VarOut(1e5, 1e-4) % Two outputs: Error and Sum 

of series

Ee =

   1.0000e-04

Ss =

    0.7853

>> [ Ee Ss Nn ]  = Leibnitz_VarOut(1e5, 1e-4) % Three outputs: Error, Sum 

of series, N Iterations

Ee =
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   1.0000e-04

Ss =

    0.7853

Nn =

        2499

Let’s look at another example with some computations to demonstrate and analyze 

the function files with a varying number of input arguments and output variables.

 Example 7

Compute the values of this function:

 

ff t e t t coscos t t t

c

t� � � � � � � �� � �� � � ��{ ,2
1 1 2 2 2

1 100 13 100 10 3 13sin

ooscos t e t tt100 3 01 03 3 4
3� � � � � � �, ,  

The function f(t) will have four input arguments (t1, t2, t3, t4), whose default set 

values are t = [t1, t2, t3, t4] ∈ [−20, 6], t1 =  − 20 : 0.001 :  − 13; t2 =  − 12.999 : 0.001 :  − 3; 

t3 =  − 2.999 : 0.001 : 3; and t4 = 3.001 : 0.001 : 6.

Task 1

Simulate a system within the values of t = [t1, t2, t3, t4], t ∈ [−20, 6] with ∆t = 0.001. Note 

that this function file may have the following:

 1) No input argument and as default values of the function 

file: t1 =  − 20 : 0.001 :  − 13; t2 =  − 12.999 : 0.001 :  − 3; 

t3 =  − 2.999 : 0.001 : 3; t4 = 3.001 : 0.001 : 6 will be taken.

 2) One input argument that has to represent t as a vector space of 

data points within [-20, 6].

 3) Two or three input arguments, which will be ignored, 

and the default set values of t1 =  − 20 : 0.001 :  − 13; 

t2 =  − 12.999 : 0.001 :  − 3; t3 =  − 2.999 : 0.001 : 3; 

and t4 = 3.001 : 0.001 : 6 will be taken instead.

 4) Four input arguments that have to represent t1, t2, t3, t4 in 

consecutive order.
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 5) More than four input arguments; then all entries need to be 

ignored, and some warning messages need to be displayed. 

Instead of the entries, the default set values of the function 

file, t1 =  − 20 : 0.001 :  − 13; t2 =  − 12.999 : 0.001 :  − 3; 

t3 =  − 2.999 : 0.001 : 3; t4 = 3.001 : 0.001 : 6, will be taken.

Task 2

The function file (Ex7Var.m) has to produce any of the following underlined outputs with 

respect to the call commands of the function file:

 1) No outputs and plot of the computed values of f (t)

 2) One output: f t e tt
1

2
1

1 100� � � ��

 3) Two outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� ,

 4) Three outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� , , 

f t t et
3 3100 3� � � �

 5) Four outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� , , 

f t t e f tt
3 3 4100 13� � � � � � �,

 6) Five outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� , , 

f t t e f t t tt
3 3 4100 13� � � � � � � �, , ,

 7) Six outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� , , 

f t t e f t t t tt
3 3 4 1100 13� � � � � � � �, , ,

 8) Seven outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� , , 

f t t e f t t t t tt
3 3 4 1 2100 13� � � � � � � �, , , ,
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 9) Eight outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� , , 

f t t e f t t t t t tt
3 3 4 1 2 3100 13� � � � � � � �, , , , ,

 10) Nine outputs:  

f t e t f t cos t sin tt
1

2
1 2 2 2

1 100 100 10� � � � � � � � � � � �� , , 

f t t e f t t t t t tt
3 3 4 1 2 3 4100 13� � � � � � �, , , , , ,

If more than nine outputs are requested, then the function file will prompt you with 

a warning message and will note that this function file can produce a maximum of nine 

output variables.

The final solution script is called Ex7Var.m and has incorporated all the points in 

tasks 1 and 2 concerning the varying number of input arguments and output variables.

function [f1, f2, f3, f4, t, t1, t2, t3, t4, varargout

] = Ex7Var(varargin)

% HELP: Ex7Var.m is a function file to compute a complex function whose

% computation function components differ w.r.t the values of t

% It may have no, one, two, three, or four input arguments for t

% [f1, f2, f3, f4, t] = Ex7Var(t1, t2, t3, t4)

% [f1, f2, f3, f4, TT, t1, t2, t3, t4]=Ex7Var(linspace(-20, 6, 10000));

if eq(nargin,0)  % No input argument

t1 = -20:.001:-13; t2=-12.999:.001:-3; t3=-2.999:.001:3; t4 = 3.001:1e-3:6;

t = [t1,t2, t3, t4];

f1=exp(sin(2*t1))+exp(cos(100*t1)); f2=cos(2*t2)+sin(100*t2);

f3=exp(sin(100*t3))+exp(cos(2*t3))+sin(100*t3)+cos(2*t3);      

f4=ones(size(t4));

elseif eq(nargin,1)&&min(varargin{1})<=-13&&max(varargin{1})>=6 % One Input

    t = varargin{1};

    for ii=1:numel(t)

        if le(t(ii),-13)

            t1(ii)=t(ii);

        elseif gt(t(ii),-13) && le(t(ii),-3)

            t2(ii)=t(ii);

        elseif gt(t(ii),-3) && le(t(ii),3)
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            t3(ii)=t(ii);

        else

            t4(ii)=t(ii);

        end

    end

                      f1=exp(sin(2*t1))+exp(cos(100*t1));

  t2=t2(find(t2~=0)); f2=cos(2*t2)+sin(100*t2);

   t3=t3(find(t3~=0));f3=exp(sin(100*t3))+exp(cos(t3))+sin(100*t3)+

cos(2*t3);

  t4=t4(find(t4~=0)); f4=ones(size(t4));

elseif gt(nargin,1) && lt(nargin,4) % Two or Three Inputs

     warndlg('t series need to be in four separate ranges or one 

united !!!')

    warndlg('Your entries are ignored and example data taken instead!!!')

    t1=-20:.001:-13; t2=-13.001:.001:-3; t3=-3.001:.001:3; t4=3.001:1e-3:6;

    t = [t1,t2, t3, t4];

    f1=exp(sin(2*t1))+exp(cos(100*t1)); f2=cos(2*t2)+sin(100*t2);

     f3=exp(sin(100*t3))+exp(cos(2*t3))+sin(100*t3)+cos(2*t3);    

f4=ones(size(t4));

elseif eq(nargin, 4)               % Four Inputs

    t1 = varargin{1}; t2=varargin{2}; t3=varargin{3}; t4 = varargin{4};

    t = [t1,t2, t3, t4];

    f1=exp(sin(2*t1))+exp(cos(100*t1)); f2=cos(2*t2)+sin(100*t2);

     f3=exp(sin(100*t3))+exp(cos(2*t3))+sin(100*t3)+cos(2*t3); 

f4=ones(size(t4));

else                               % More than Four Inputs

warndlg('Check your entries: input arguments for [t] or [t1, t2, t3, t4]')

    warndlg('Your entries are ignored and default data taken instead!!!')

     t1=-20:.001:-13;t2=-12.999:.001:-3; t3=-2.999:.001:3;  

t4 = 3.001:1e-3:6;

    t = [t1,t2, t3, t4];

    f1=exp(sin(2*t1))+exp(cos(100*t1)); f2=cos(2*t2)+sin(100*t2);

     f3=exp(sin(100*t3))+exp(cos(2*t3))+sin(100*t3)+cos(2*t3);     

f4=ones(size(t4));

end
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plot(t1, f1, 'r', t2, f2, 'b', t3, f3, 'm',t4, f4, 'go--'), grid on; shg; 

legend('toggle')

% Set number of output variables is verified

MIN_outs = 0; MAX_outs=9;

if nargout>MAX_outs

fprintf('Asked %3g outputs that are more than set outputs!!! \n', nargout);

warndlg('This fucntion file is assigned to have max. of 9 outputs!!!')

fprintf('Asked %3g outputs are beyond the set outputs !!! \n', nargout);

end

% NARGOUTCHK; Checks and prompts error if the number of outputs requested

% by the user is beyond 9!

% nargoutchk(MIN_outs, MAX_outs) % Can be also employed

end

It should be noted that in the Ex7Var.m function file, the nargin function will check 

how many input arguments are specified while calling this function file for task 1. The 

function’s input arguments are taken for simulations depending on the number of the 

input arguments verified within the [if... elseif... elsefif ... elseif ... else 

... end] conditional operators, addressing all points in task 1 for input arguments.

Moreover, the [for ... end] loop operator with another internal [if ...elseif 

... elseif...else...end] conditional operator set after a first ([elseif ...]) splits 

up the given one input argument (t) values for four separate sets of values for t1, t2, t3, t4 

according to the given exercise statements.

The logical indexing operations of find( ) with ~= 0 define which elements (taken 

from t within [for ... end] loop and [if ...elseif ... elseif...else...end] 

operations) of t2, t3, t4 are to be taken for simulations to skip overlapping points. When 

the user enters two or three input arguments, nargin and [elseif ...] verify the entry. 

Two warning message dialogs will pop up informing the user that all entries are ignored 

and the default values are taken instead.

In the case of four input arguments, all input arguments are considered in the order 

of t1, t2, t3, t4, and simulations are performed. If the number of input arguments exceeds 

four, then again two warning message dialogs will pop up informing the user that all 

entries are ignored and the default values are taken instead. The plot( ) command 

plots all of the simulation results. This completes all verifications.
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The specified MIN_outs = 0; MAX_outs=9; along with nargout verify the number 

of requested outputs. At this area of the script, the nargoutchk function can be also 

employed to detect the wrong number of requested output variables. If the requested 

number of outputs is more than nine, the warning message is displayed in the Command 

window. A plot figure is displayed, a warning dialog is displayed, and no output variables 

are obtained. The conditional statements [if ... elseif... ... end] with nargout 

determines which output corresponds to which simulation output.

Let’s test the script (Ex8Var.m) for a different number of input arguments and output 

variables.

 1) No input and no output

>> Ex7Var();

No outputs!

There will be no computation results except for the plot figure shown in Figure 2-8.

Figure 2-8. Plot of the simulation results  
f t e t t cos t t t
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 2) One input t is given, and four outputs are requested:

>> t=linspace(-20, 6, 1000);

>> [f1, f2, f3, f4]=Ex7Var(t);

>> whos
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Name      Size              Bytes  Class     Attributes

 f1        1x269              2152  double

 f2        1x385              3080  double

 f3        1x230              1840  double

 f4        1x116               928  double

 t         1x1000             8000  double

 Four outputs (f1, f2, f3, f4) are saved in the workspace and the 

plot figure (shown in Figure 2-8).

 3) No input and nine output variables are requested:

>> clearvars;

>> clearvars; [f1, f2, f3, f4, t_all, t1, t2, t3, t4]=Ex7Var();

>> whos

  Name       Size                Bytes  Class     Attributes

  f1         1x7001              56008  double

  f2         1x10000             80000  double

  f3         1x6000              48000  double

  f4         1x3000              24000  double

  t1         1x7001              56008  double

  t2         1x10000             80000  double

  t3         1x6000              48000  double

  t4         1x3000              24000  double

  t_all      1x26001            208008  double

Nine outputs (f1, f2, f3, f4, t1, t2, t3, t4, t_all) are obtained in 

the workspace.

 4) Three input arguments and no output variables are requested:

>> clearvars; t=-20:.005:6; t3=-2.999:.002:3; t4 = 3.001:1e-2:6;

>> Ex7Var(t, t3, t4);

No outputs!

>> whos
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  Name      Size              Bytes  Class     Attributes

  t         1x5201            41608  double

  t3        1x3000            24000  double

  t4        1x300              2400  double

There are no outputs in the workspace from the simulations 

except for entries (input arguments, t, t3, t4), and there is a plot 

figure in Figure 2-8. In addition, the following two warning dialog 

boxes are displayed, stating the mismatch of the entries with the 

necessary t series, and the input entries are ignored:

 

 

 5) Three input arguments and three output variables are requested:

>>clearvars; t_all=-20:.001:6; In2=-2.999:.001:3; In3 = 3.001:1e-3:6;

>> [Out1, Out2, Out3]=Ex7Var(t_all, In2, In3);

>> whos

  Name      Size                Bytes  Class     Attributes

  Out1      1x7001              56008  double

  Out2      1x10000             80000  double

  Out3      1x6000              48000  double

  t_all         1x26001            208008  double

  In2        1x6000              48000  double

  In3        1x3000              24000  double
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Three outputs (Out1, Out2, and Out3 representing f1, f2, and f3, 

respectively) from the simulations and entries (input arguments: 

t_all, In2, In3) are obtained in the workspace. There is a plot 

figure as well (Figure 2-8). In addition, there are two warning 

dialog boxes displayed as shown in the previous case.

Note While calling/executing the function files, output variable names and input 
argument names can be altered. that would not cause any errors. this is one of 
the useful attributes of the function files over m/mlX-files.

 6) Four input arguments representing t1, t2, t3, t4 and nine output 

variables representing f1, f2, f3, f4, t_all, t1, t2, t3, t4 are 

requested:

>> clearvars

t1 = -20:.0025:-13; t2=-12.999:.005:-3; t3=-2.999:.002:3; t4 = 

3.001:5e-3:6;

>> [f1, f2, f3, f4, T_all, time1, time2, time3, time4]=Ex8Var(t1, t2, 

t3, t4);

>> whos

  Name       Size              Bytes  Class     Attributes

  T_all      1x8401            67208  double

  f1         1x2801            22408  double

  f2         1x2000            16000  double

  f3         1x3000            24000  double

  f4         1x600              4800  double

  t1         1x2801            22408  double

  t2         1x2000            16000  double

  t3         1x3000            24000  double

  t4         1x600              4800  double

  time1      1x2801            22408  double

  time2      1x2000            16000  double

  time3      1x3000            24000  double

  time4      1x600              4800  double
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All requested output variables are obtained in the workspace 

along with the plot figure (Figure 2-8). Moreover, it should be 

noted that the input entries (arguments) t1, t2, t3, and t4 

match with the output variables time1, time2, time3, and time4, 

respectively.

 7) Nine output variables representing f1, f2, f3, f4, t_all, t1, t2, t3, 

t4 are requested without any input arguments:

>> clearvars

>> [f1, f2, f3, f4, T_all, time1, time2, time3, time4]=Ex7Var();

>> whos

  Name       Size                Bytes  Class     Attributes

  T_all      1x26001            208008  double

  f1         1x7001              56008  double

  f2         1x10000             80000  double

  f3         1x6000              48000  double

  f4         1x3000              24000  double

  time1      1x7001              56008  double

  time2      1x10000             80000  double

  time3      1x6000              48000  double

  time4      1x3000              24000  double

With no input arguments and requesting only nine output 

variables, the function file produces nine output variables with 

the assigned output variable names in the workspace by using the 

default set values for t1, t2, t3, t4 and the plot figure (Figure 2-8).

 8) With one input for t and 10 outputs:

>> clearvars

>> tall=-20:.001:6;

>> [f1, f2, f3, f4, T_all, time1, time2, time3, time4, T_all]=Ex7Var(tall);

Asked  10 outputs are beyond the set outputs !!!

One or more output arguments not assigned during call to 

"varargout". >> whos

  Name      Size                Bytes  Class     Attributes

  tall      1x26001            208008  double
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The 10th output variable is beyond the number of assigned output variables. 

Therefore, the function file does not produce any output variables in the workspace 

except for two warning messages, warning dialogs, and the plot figure (Figure 2-8).

There are many other possible scenarios to test this function file for robustness. By 

default the robustness of this function file is considerably high within the predefined 

conditions of the exercise for input arguments in particular. But there are a few other cases 

in which the outputs of this function file may not be accurate due to inaccurately chosen 

entries for t, or t1, t2, t3, t4 . For example, one input for t might contain just two elements 

([-20, 6]) of a row or column vector. Or similarly, the entries for t1, t2, t3, t4 might also be [-20, 

-13], [-12.999, -3], [-2.999, 3], [3.001, 6]. To improve the robustness of this function file, you 

can use MATLAB’s built-in tool/operator nargchk to verify the allowable number of input 

arguments along with nargin. Likewise, another built-in tool/operator nargoutchk can be 

used to verify the number of defined output variables along with nargout.

 Nested and Subfunctions of Function Files
The function files may contain more one, two, three, or more nested (subfunctions) 

functions to perform specific computations and analyses. The general syntax of such 

function files is as follows:

function [Output1, Output2, Output3, ...] = MAIN(In1, In2, In3, ...)

% MAIN.m contains several nested sub-functions

Output1 = Nest1;

Output2 = Nest2;

Output3 = Nest3;

...

function Out1Nest1()

Out1 = [do sth]

end
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function Out2=Nest2(In2)

Out2 = [do sth]

end

function Out3=Nest3(In3)

Out3 = [do sth]

end Code

Let’s look at several examples how to employ nested (subfunctions) functions in a 

function file.

 Example 8

This example generates three different square matrices (of Pascal, Cauchy, Krylov) 

within three nested functions with respect to the main function’s input arguments 

(only integers). Note that input arguments (integers) define the size of the output magic 

matrices.

Here is the solution script; it is a function file called Ex8_MAIN:

function [Output1,Output2, Output3] = Ex8_MAIN(In1,In2, In3)

% Ex8_MAIN.m generates three square matrices within three nested functions

%   Input arguments: In1, In2, In3 are integers defining the size of the

%   output matrices.

%   Nest1 generates the square matrix of Pascal

%   Nest2 generates the square matrix of Cauchy

%   Nest3 generates the square matrix of Krylov

disp(['This is ' num2str(In1)  '-by-' num2str(In1) ' Pascal matrix'])

Output1 = Nest1; disp(Output1)

disp(['This is ' num2str(In2)  '-by-' num2str(In2) ' Cauchy matrix'])

Output2 = Nest2; disp(Output2)

disp(['This is ' num2str(In3)  '-by-' num2str(In3) ' Krylov matrix'])

Output3 = Nest3; disp(Output3)

    function Out1=Nest1()

%   Nest1 generates the square matrix of Pascal

        Out1 = pascal(In1);

    end
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    function Out2=Nest2()

%   Nest2 generates the square matrix of Cauchy

        Out2 = gallery('cauchy',In2);

    end

    function Out3=Nest3()

%   Nest3 generates the square matrix of Krylov

        Out3 = gallery('krylov',In3);

    end

end

Now, let’s test the function file with three nested functions:

>> Input1 = 2; Input2=3; Input3=4;

>> [Output1,Output2, Output3] = Ex8_MAIN(Input1,Input2, Input3);

This is 2-by-2 Pascal matrix

     1     1

     1     2

This is 3-by-3 Cauchy matrix

    0.5000    0.3333    0.2500

    0.3333    0.2500    0.2000

    0.2500    0.2000    0.1667

This is 4-by-4 Krylov matrix

    1.0000    0.6731    3.8494   -2.7613

    1.0000    1.7986    2.3591    4.8361

    1.0000   -0.8049    1.0833   -0.5926

    1.0000    1.7760   -1.1635    1.2842

>> whos

  Name         Size            Bytes  Class     Attributes

  Input1       1x1                 8  double

  Input2       1x1                 8  double

  Input3       1x1                 8  double

  Output1      2x2                32  double

  Output2      3x3                72  double

  Output3      4x4               128  double
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 Function Files Within M-Files
In recent versions of MATLAB, the function files (including nested and subfunctions) 

can be employed within M-files. This makes the computation process more efficient and 

saves memory space in the workspace. Let’s take a look at the following example.

 Example 9

Given: y(x, t) = y0 sin (kx − ωt) that is the solution of the wave equation. Here, k �
2�
�

 is 

the wave number, ω = 2πf is the angular frequency, and λ is the wavelength.

Write an M-file with two nested functions to compute the values of y(x, t) with four 

input arguments of k, ω,x, t.

Given y k f f x t0
91

2
495 10

2
5000 2 0 1 0 5� � � � � � �� � � � ��; ; ; ; ; , ;�

�
�

� � , ,  N = 106 

(number of data points for x and t). 

The solution script is called Ex9_wFUN.m that has two embedded functions follows:

y0=1/2;                   % Magnitude of the wave

lambda=495e-9;            % Visible light wave length

k=2*pi/lambda;            % Wave number

f=5000;                   % Frequency

omega=2*pi*f;             % Angular frequency

x=[0, 1e-5];              % Length

t=[0, 1e-3];              % Time length

N=1e5;                    % Number of data points to be computed & simulated

xs=linspace(x(1), x(2), N);    % Wave Length series

time=linspace(t(1), t(2), N);  % Time series

y1 = F1(y0, k, xs, omega, time);

y2 = F2(y0, k, time, omega, xs); % NB: it is vital the order of the 

varaibales: xs vs. time && V5 vs. V3

plot(xs, y1, 'bo', xs, y2, 'rx-'), grid on, hold on

title('Nested Function files within an M-file')

ORG0 = y0*sin(k*xs-omega*time);

plot(xs, ORG0, 'k', 'linewidth', 2)

legend('Fun1','Fun2','Original'), shg

Chapter 2  programming essentials



232

function out1 = F1(var1, var2, var3, var4, var5)

% M-file nested function 1 called: F1

out1=var1*sin(var2*var3-var4*var5);

end

function out2 = F2(V1, V2, V3, V4, V5)

% M-file nested function 2 called: F2

% NB: it is vital the order of the variables: xs vs. time && V5 vs. V3

out2=V1*sin(V2*V5-V4*V3);

end

This is an M-file that can be executed by clicking the Run  button in the menu 

panel or can be called from another M-file or from the Command window. After 

executing the file, you would get the following output:

>> clearvars

>> Ex9_wFUN

>> whos

  Name        Size                 Bytes  Class     Attributes

  N           1x1                      8  double

  ORG0        1x100000            800000  double

  f           1x1                      8  double

  k           1x1                      8  double

  lambda      1x1                      8  double

  omega       1x1                      8  double

  t           1x2                     16  double

  time        1x100000            800000  double

  x           1x2                     16  double

  xs          1x100000            800000  double

  y0          1x1                      8  double

  y1          1x100000            800000  double

  y2          1x100000            800000  double

In addition, the plot in Figure 2-9 is created.
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Figure 2-9. Comparing the simulations obtained from the nested functions within 
the M-file

The simulation results show that the M-file with embedded functions works like any 

other M-file. Like with the function files, the order of the input arguments is vital for the 

embedded functions within M-files. If the order is mixed up, then the outputs will be 

incorrect because one variable’s values will be used for another.

 Summary of Scripts and Function Files
Warning and error messages included in M-files and function files are of great help not 

only to users but also to developers. Thus, when you are writing scripts (programs), 

it is important to add as warning and error messages along with additional hints (as 

comments).

Consider these essential hints on how to write robust and efficient M-files and 

function files:

 – Do as much checking (of input and output arguments, e.g., size, data 

type) as possible before executing a whole script to avoid the heavy 

burden of time-consuming calculations that may result in incorrect 

outputs.
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 – Always start with most general checks (obvious ones) and then move 

to more complicated and complex ones. Add warning and error 

messages wherever necessary or appropriate. For example, add a 

unique text for display (e.g., disp('This is ...')) during the 

debugging process when you have varying numbers of input argu-

ments and output variables. These messages not only help develop-

ers to spot errors but also go through all the anticipated scenarios in 

the code/script.

 – Explain how to correct errors when they occur using a warning 

message, e.g., warning('Do something about this and that ...', 

A, B, C) and an error message, e.g., error('There is an error on 

this and that ...', Num(1), Den(3), u(1)).

 – Add warning message identifiers so users can turn warnings on 

and off.

 – Add numerical examples to test your script with known correct 

solutions.

 – Use the M-file profiler to check the efficiency of your created M-files. 

To use the profiler, type >> profile on; My_function; profile 

viewer in the Command window.

 Inline Functions
The MATLAB command inline lets users develop one or more analytical expressions 

with one or more input variables and assign that expression to a variable. A general 

syntax of creating an inline function expression is: f=inline('[expression1; expression2, 

...]','arg1','arg2','arg3', ...);

In this command syntax, expression1, expression2, and so on, are inline functions 

and arg1, arg2, arg3, and so on, are input variables.

Note an inline function is not recommended; instead, a function file is 
recommended.
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 Example 1
f t

t

e t� � � � �sin 2
2

 can be expressed via a straightforward inline function without any 

argument definition, since there is one variable that is identified automatically.

>> f = inline('sin(2*t)/exp(2*t)');

 Example 2
The inline function of f(t, θ) = [e−2tθ; sin(2t)] should contain two input arguments, namely, 

t, θ. Therefore, the given function expressions can be expressed via the following inline 

function:

>> F = inline('[exp(2*t.*theta); sin(2*t)]', 't', 'theta');

That can be tested with predefined arguments, t and theta.

>> t=0:pi/20:pi; theta=linspace(0,1,length(t));

You can get the calculation results from the inline function F simply by recalling it 

with predefined input arguments.

>> fcalc=F(t, theta);

In addition, it is possible to perform computations and plot computed data from the 

inline function F simultaneously.

>> plot(t, log(F(t, theta)), 'linewidth', 1.5);

 Example 3
Given: a second-order differential equation y y y t

¨

� � � 3 2 that can be expressed by two 

first-order differential equations.

 {  y y y t y y1 2 2
2

2 13� � � �� �  

These two first-order differential equations can be defined by the following inline 

function:

f =inline('[y(2); t^2-(y(2)+3*y(1))]', 't', 'y');
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Based on the previously shown examples, you can see that it is easy and 

straightforward to use the inline function tool not only in the Command window but also 

within scripts to solve various computation problems.

Note the inline command will be removed in future releases of matlaB, and 
therefore, it is recommended that you use anonymous functions instead.

 Anonymous Functions with Handles
An anonymous function is a function that is not stored in a program file. It is associated 

with a variable and is called with a function handle (@). In general, the function 

handles accept input variables and return output variables similar to function files 

(as demonstrated previously). One major difference between a function file and an 

anonymous function expression is that an anonymous function with a handle (@) 

contains a single executable statement. The general syntax of expression anonymous 

functions with handles is as follows:

Fun_handle=@(arg1, arg2, arg3, ...)([expression1; expression2;...])

 Example 1

 
f t

t

e t� � � � �sin 2
2  

The given function f(t) can be expressed via a function handle with the following 

command:

>> f_handle = @(t)(sin(2*t)./exp(2*t));

>> t=linspace(0,2*pi, 100);

>> f=f_handle(t); plot(t, f, 'o-')

It is also feasible to use function handles within loop iterations of scripts, for 

instance, Fun_handle.m.

% Fun_handle.m

f_handle = @(t)(sin(2*t)./exp(2*t));
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t=linspace(0,2*pi, 100);

for ii=1:length(t)

    f(ii)=f_handle(t(ii));

end

plot(t, f, 'o-')

title('plot: f(t)=(sin(2*t)./exp(2*t)')

 Example 2
Given f(t, θ) = [e−2tθ; sin (2t) ].

The given function f(t, θ) can be expressed via one function handle.

>> F_handle = @(t, theta)([exp(2*t.*theta); sin(2*t)]);

Let’s specify data values for input arguments of t and theta.

>> t=0:pi/20:pi; theta=linspace(0,1,length(t));

To obtain computation results from the function handle F_handle, the function 

handle has to be recalled with input arguments of t and theta. 

>> Fvalues=F_handle(t, theta);

 Example 3
Given: y y y t

¨

� � � 3 2

It can be expressed by two first-order differential equations in a state-space form.

 {  y y y t y y1 2 2
2

2 13� � � �� �  

The previously derived system of two first-order differential equations can be 

defined via the following function handle (@):

f =@(t, y)([y(2); t^2-(y(2)+3*y(1))]);

The function handle (@) tool of an anonymous function can be also implemented 

like an inline function within scripts to solve many different kinds of problems including 

differential equations.
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Up to this point, in a few examples, we have demonstrated how to employ function 

files, inline functions, and anonymous function tools. There are some advantages and 

disadvantages of employing anonymous functions defined with handles (@) and inline 

functions in comparison to function files. Anonymous functions are easy to implement 

and design, and there is a very small chance of getting confused with the function name 

and input arguments. On the other hand, one of the main advantages of function files 

over function handles and inline functions is that they are more efficient and flexible in 

terms of computation time. This is important when numerical simulation space is large. 

Moreover, function files can be employed within Simulink models.

 Summary
In this chapter, we covered all the basic programming essentials, including different 

operators and symbols used in programming and how to employ them efficiently. 

Moreover, we highlighted the most frequently occurring potential programming errors 

and pitfalls and how to avoid them.

In summary, to speed up simulation/computation processes, there are a few 

procedures to follow while coding. When you are dealing with large data sets, you may 

face memory problems. To prevent memory problems or errors in MATLAB, or to just 

improve computation efficiency, the following tips are recommended:

 – Avoid large temporary variables, break variables into smaller compo-

nents, and clear variables (using clearvars) when they are no 

longer needed.

 – Use lower-precision data types, if possible, and whenever there is no 

need for higher precision.

 – Pre-allocate memory for arrays of fixed size to reduce defragmenta-

tion by using standard matrices such as zeros() or ones().

 – Use the function pack() to defragment memory.

 – Consider writing data to a disk periodically.

 – Increase the size of a swap file. This can be done via My Computer ➤ 

properties ➤ Advanced - Performance Settings.. Note that it is 

recommended to set the swap file size to twice the size of your 

computer’s RAM.
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Here are some other techniques to speed up the simulation processes:

 – Functions (function files) are faster than scripts.

 – Load and save are faster than file I/O functions when you need to 

import or export data sets.

 – Avoid large background processes.

 – Replace argument checking with try-catch.

 – Use switch-case over if-elseif-else.

 – Use sparse arrays for sparse data.

 Exercises for Self-Testing

 Exercise 1
Write an M-file using the [while, end] loop control statement to compute the values of 

the cosine function g(θ) =  cos (θ) for θ = 0...π with 2,000 incremental steps in this range 

and stop computation when the value of the function g(θ) ≈ 0.99999. Also, display how 

many steps it takes to get through the computation process and plot your simulation 

results. Also, display the end value of 0.99999 in the same plot.

 Exercise 2
Compute the area of a circle, square, and rectangle with regard to these user entries:

W = input('Width of a rectangle:        ');

L = input('Length of a rectangle:       ');

R = input('Radius of a circle:          ');

S = input('Side length of a square:     ');

There are several scenarios to consider in your script: (1) if a user enters two 

dimensions for the width (W) and length (L) of a rectangle, your code has to compute the 

area of a rectangle and display it with comments; (2) if a user enters two dimensions, 

such as radius (R) and side (S) of a square, it has to compute the area of a circle and 

square, respectively, and display it with comments; (3) if a user enters all the required 

entries, it has to compute three areas and display with adequate comments; (4) if a user 
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enters not all entries or misses any of the required entries (W, L, R, S), your code has to 

display "You need to ENTER all dimensions!". The input(), isempty(), exist(), 

length(), numel(), size(), and fprintf() commands can be employed.

 Exercise 3
Write a script to display student grades based on their earned points. Student grades 

have to be defined according to the following scales:

            F =  0...65;

            D =  66 ... 70;

            C =  71 ... 81;

            B =  82 ... 87;

            A  =  88 ... 100;

Use input(), disp(), fprintf(), [if, elseif, else ... end].

Test your script with these example points: [70, 82, 35, 90, 99, 56, 81, 89, 66, 87, 88, 83, 

71, 69, 55].

 Exercise 4
These exercises cover the [while, end] and [for, end] loop control operators:

 1. Compute the series 
� 2

2 2 2
0

28
1

1

3

1

5

1

7

1

2 1
� � � � ���

�� ��

�

�
n n

 using 

the [while, end] and [for, end] loop control statements. Take 

n = 101 and plot error values over iterations.

 2. Compute the sum of these series: 12, 22, 32, ...n2. Take n = 500 and 

compute the total sum 
n

n
�
�

1

500
2

 using the [while, end] and [for, 

end] loop control statements. Plot the sum as a function of n.
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 3. Compute the sum of these series: 1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + 4 ∗ 5 + .... 

This can be rewritten as a sum 
k

N

k k
�
� �� �

1

1 .  To compute the total 

sum, use the [while, end] and [for, end] loop control 

statements. Plot the sum as a function of k.

 4. Compute these series (discovered by Euler in 1735): 
� 2

2 2 2
1

26
1

1

2

1

3

1

4

1
� � � � ���

�

�

�
n n

 using the [while, end] and 

[for, end] loop control statements. Take n = 1...99 and plot error 

values over iterations. Run the exhaustive computation and halt 

the computation process when the error is smaller than 10−13.

 5. Compute the total sum of this series of odd numbers, namely, 1, 3, 

5, 7, ..., that can be written in the form of this sequence 2n + 1. 

Take N = 111111 and compute the total sum 
n

N

n
�
� �� �

0

2 1 using the 

[while, end] and [for, end] loop control statements. Halt the 

iteration process when the sum is larger than 30869136. Display 

the final number as an integer. Plot the summing iteration process.

 Exercise 5
Write a script file with the conditional statements [if, elseif, elseif, else, end] 

and the function handle (@) to compute the values of the function:

 

g a b t e bt t at si bt t

at e

at

bt

, ,� � � � � � � �� � � � � � �

� �

�{ , ,

,

13 3 13

3

cos

cos �� � �t t01 0,  

 a b= =3 2, .  
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 Exercise 6
Here are some exercises for the [while, end] and [for, end] loop control operators:

 1. Compute this series: f (x)= 
n

nb n x

L�

�

�
�� �� �

1

2 1

2

sin �
 using the  

[while ... end] and [for ... end] loop control statements. 

Take n = 11, bn = [−5...5], x = [0...L], and L = 10. For x take a step 

size of � �x
L

100
.  Plot all computation results.

 2. Compute f (t) = cos cos (20t) −  sin (10t) for t ∈ [−π,  π] with 

∆t = π/50 using the [while ... end] and [for ... end] loops.

 Exercise 7
These exercises cover the [while ... end] and [for ... end] loop operators:

 1. Compute the total sum of these series: 
3

4

4

5

5

6

6

7 13

55

� � � ��
��

�
m

m

m .  

Compute the total sum using the [while, end] and [for, end] 

loop control statements. Plot the sum as a function of m.

 2. Compute the total sum of these series: 

10 30 90 270 810 2430 10 3
0

65

� � � � � ��� �� �
�
�
m

k . Compute the 

total sum using the [while, end] and [for, end] loop control 

statements, and halt the computation process when the sum is 

larger than 18446744073709551615. Display the final sum number 

as an integer. Plot the sum as a function of k.

 3. Compute the sequence 4, 1, 0.5, 0.25, ... until it is smaller than 

0.000005 by using the [while, end] and [for, end] loop 

control statements. Note that the sequence can be formulated 

as 4 ∗ (0.5)n − 1. Find n that makes the sequence smaller than 

0.000005.

Chapter 2  programming essentials



243

 4. Compute the total sum of the series 
1

2

1

4

1

8

1

16
� � � ��  until it is 

equal to or larger than 0.999 999 999. Note that the sum of this 

series can be expressed with 
k

n k

�
� �

�
�

�
�
�

0

1

2

1

2
.

 5. Compute the following total sum of 
n

m n nx

n�

�

�
�� �

�� �0

2 11

2 1 !  for m = 202 

and x = 2.5 by using the [while, end] and [for, end] loop 

control statements.

 6. Compute the following total sum of 
n

m n n
x

n�

�

�
�� � �� �

1

1
1 1

 for m = 1001 

and x = 2 by using the [while, end] and [for, end] loop control 

statements.

 Exercise 8
Fix two errors in the following given script:

%% Find out if the entry is a Scalar or NOT.

% Prepare your entry data that MUST be in array

% or matrix format of any size: 1-by-1, 2-by-2, 2-by-3, etc, etc!

% Your entry can be also any standard array generating functions!

ABC=input('Enter ANY numerical entry of any size surrounded with square 

brackets [  ]:   ');

if isnumeric(ABC) && isscalar(ABC)

    fprintf('This is a scalar: %20g \n', ABC);

else

    format short

    fprintf('Your entry is not scalar, but an array \n', ABC);

    fprintf(ABC);

end

 1. After fixing the errors, the code has to produce the following 

outputs in the Command window with the user entry of [1, 2; 3,-1]:

Enter ANY numerical entry of any size within [  ]:   [1, 2; 3,-1]
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Your entry is not scalar, but an array

     1     2

     3    -1

 2. The code has to produce the following outputs in the Command 

window with the user entry of ['ab' 'bc'; 'cd' 'ef']:

Enter ANY numerical entry of any size within [  ]:   ['ab' 'bc'; 

'cd'  'ef']

Your entry is not scalar, but an array

abbc

cdef

 3. The code has to produce the following outputs in the Command 

window with the user entry of 13.12:

Enter ANY numerical entry of any size within [  ]:   13.12

This is a scalar:                13.12

 Exercise 9
Fix the three errors in the following script:

%% Find out whether the array is square and if it is, show its size.

% Prepare your entry data that MUST be in array

% or matrix format of any size: 1-by-1, 2-by-2, 2-by-3, etc, etc!

% Your entry can be also any standard array generating functions!!!

ABC=input('Enter ANY numerical entry of any size within [  ]:   ');

[Rows, Cols]=size(ABC);

if isnumeric(ABC) && Rows==Rows

    fprintf('This is a square ARRAY! ');

    fprintf('Your entry is of %5g -by- %5g  square ARRAY \n', Cols, Rows);

else

    format short

    fprintf('Your entry is NOT a square array \n')

    fprintf('BUT an ARRAY of size %5g - by - %5g \n', Cols, Cols);

end
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After fixing the errors, the code has to produce the following outputs in the 

Command window, given these entries:

 1. Entry: [magic(5)]

Enter ANY numerical entry of any size within [  ]:   [magic(5)]

This is a square ARRAY!

Your entry is of     5 -by-     5  square ARRAY

 2. Entry: [rand(3,5)]

Enter ANY numerical entry of any size within [  ]:   [rand(3,5)]

Your entry is NOT a square array

BUT an ARRAY of size     3 - by -     5

 Exercise 10
Fix the two errors in the following script:

%% Find out: the user entry is scalar or not. If it is, display it.

% otherwise, show the variable type.

ABC=input('Enter ANY numerical entry of any size within [  ]:   ');

if isnumeric(ABC)

    fprintf('This is a Scalar! \n');

    fprintf('Your entry is a scalar:  %5g  \n', ABC);

else

    class(ABC, 1)

end

After fixing the two errors, the following outputs are obtained with respective inputs.

For entry 1:

Enter ANY numerical entry of any size within [  ]:   123

This is a Scalar!

Your entry is a scalar:    123
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For entry 2:

Enter ANY numerical entry of any size within [  ]:   '1001011'

ans =

    'char'

For entry 3:

Enter ANY numerical entry of any size within [  ]:   [1 3 -2]

ans =

    'double'

 Exercise 11
Fix two errors in the following script:

%% Find out: the array is real and square. If it is, display it;

% otherwise, show its size and type.

% NB: size(), display(), class() can be used.

% Prepare your entry data that MUST be in array

% or matrix format of any size: 1-by-1, 2-by-2, 2-by-3, etc.

% Your entry can be also any standard array generating functions!

ABC=input('Enter ANY numerical entry of any size within [  ]:   ');

[Rs, Cs]=size(ABC);

if ischar(ABC) && Rs==Cs

    fprintf('This is a square array! \n');

    disp(ABC);

elseif

format short

fprintf('This is not a square array & its size: %5g-by-%5g \n', Rs, Cs);

disp(num2str(ABC));

end
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After fixing the two errors, the following outputs should be obtained with 

respective inputs.

Entry 1:

Enter ANY numerical entry of any size within [  ]:   magic(3)

This is a square array!

     8     1     6

     3     5     7

     4     9     2

Entry 2:

Prepare your entry data that MUST be in array or matrix format of any size

1-by-1, 2-by-2, 2-by-3, etc., etc.! with real value elements

Your entry can be also any standard array generating functions!!!

Enter ANY numerical entry of any size within [  ]:   [1, 2/0; 0/0, 1]

This is a square array!

      1   Inf

   NaN     1

Entry 3:

Your entry can be also any standard array generating functions!!!

Enter ANY numerical entry of any size within [  ]:   [1, 2/0; 0/0, 1; 1, 0]

This is not a square array and its size:     3 - by -     2

  1  Inf

NaN    1

1   0

 Exercise 12
Fix the five errors in the following script:

%% Q7. Computing area of a circle, square and rectangle w.r.t the user 

entries:
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W = input('Width of a rectangle:          ', 's');

L = input('Length of a rectangle:         ', 's');

R = input('Radius of a circle:            ', 's');

S = input('Side length of a square:       ', 's');

if isempty(R) && isempty(S)

    A1=W*L;

    fprintf('Area of a rectangle:  A1 =  %5g \n', A1);

elseif isempty(W) && isempty(L) && exist('R','var') && exist('S', 'var')

    A2 = pi*R^2; A3 = S^2;

    fprintf('Area of a circle:  A2 =  %5g \n', A2);

    fprintf('Area of a square:  A3 =  %5g \n', A3);

elseif isempty(W) && isempty(L) && isempty(R)

    A3 = S^2;

    fprintf('Area of a square:  A3 =  %5g \n', A3);

elseif isempty(S) && isempty(W) && isempty(L)

    A2 = pi*R^2;

    fprintf('Area of a circle:  A2 =  %5g \n', A2);

else exist('W','var') && exist('L','var') && exist('R','var') && 

exist('S','var')

    A1=W*L; A2 = pi*R^2; A3 = S^2;

    fprintf('Area of a rectangle:  A1 =  %5g \n', A1);

    fprintf('Area of a circle:  A2 =  %5g \n', A2);

    fprintf('Area of a square:  A3 =  %5g \n', A3);

else

    fprintf('You need to ENTER some dimensions! \n')

end

After fixing the errors, with the following entries, these outputs are displayed in the 

Command window:

Width of a rectangle:          1

Length of a rectangle:         1

Radius of a circle:            1

Side length of a square:       1
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Area of a rectangle:  A1 =     1

Area of a circle:  A2 =  3.14159

Area of a square:  A3 =      1

 Exercise 13
Fix the five errors in the following script:

%% Assessing the student performances

clc; clearvars

SP =input('Enter the student grade:  ');

if SP <65

    disp('Student Grade is  F ')

elseif SP>=66 && SP<=71

disp('Student Grade is  D ')

elseif SP>71 && SP<=81

    disp('Student Grade is  C ')

elseif SP>82 && SP<87

    disp('Student Grade is  B ')

else

    disp('Student Grade is  A ')

end

After fixing the errors and running the script with inputs [65, 71, 81, 82, 

87 87.5] in sequential order, the following outputs should be shown in the 

Command window:

Enter the student grade:  65

Student Grade is  F

Enter the student grade:  71

Student Grade is  C

Enter the student grade:  81

Student Grade is  C

Enter the student grade:  82

Student Grade is  B

Enter the student grade:  87

Student Grade is  B
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Enter the student grade:  87.5

Student Grade is  A

 Exercise 14
Write a script (program) that computes all solutions:

(1)  But displays only real solutions of these third-order polynomial 

equations for any values of a, b, c, and f: i) x3 + bx2 + cx = 0;  

ii) ax3 + f = 0; iii) ax3 + cx = 0; iv) x2 + bx + c = 0.

(2)  But displays only complex solutions of these equations for any 

values of a, b, c, and f: i) ax2 + c = 0; ii) ax3 + f = 0;  

iii) ax2 + bx + c = 0

 Exercise 15
Write a script (program) that computes the volume and weight of the model that may 

have a form of cube, cylinder, and rectangular prism. Users need to enter (via input 

prompt) the necessary geometric dimensions of the model and enter or select material 

properties (density) from the given data (aluminum, copper, and steel) in your script. 

Your script has to write all computed and user input data sets into an external file called 

RESULTS.txt with explanatory comments in it along with numerical data.

 Exercise 16
Edit and correct the following given script to display the current date and time correctly 

in the Command window:

Format short e

T=clock;

fprintf('This year is: %n4 \n', T(1))

if T(2)==1

 sprintf('It is: %f4 -st month of the year:  %n4 \n', T(2),T(1))

elseif T(2)==2

 sprintf('It is: %f4 -nd month of the year:  %n4 \n', T(2),T(1))

Chapter 2  programming essentials



251

elseif T(3)==3

 sprintf('It is: %f4 -rd month of the year:  %n4 \n', T(2),T(1))

else

 sprintf('It is: %f4 -th month of the year:  %n4 \n', T(2),T(1))

end

sprintf('current time is: %lo o"clock %l0 min \n', T(4), T(5))

sprintf('and %s secs \n', (T(6)))

Your corrected script should display the current date and time in the 

following format:

It is: 11 - day of the 6-th month of the year:  2014

current time is: 15 o"clock 3 min  and 17.136 secs

 Exercise 17
Given: y(x, t) = y0 sin (kx − ωt) is the solution of the wave equation where k �

2�
�

 is the 

wave number, ω = 2πf is the angular frequency, and λ is the wave length.

 – Write an anonymous function with a function handle to compute the 

values of y(x, t) with input arguments of k, ω,x, t.

 – Write an inline function to compute the values of y(x, t) with input 

arguments of k, ω,x, t.

 – Write a function file to compute the values of y(x, t) with input argu-

ments of k, ω,x, t.

 Exercise 18
The equation for a power factor of a series resistor-capacitor (RC) circuit with no 

inductance is cos � �

�
�

�� �
RC

RC1
2

.

 – Write an anonymous function with the function handle to compute 

the values of δ with the input arguments of R, C, and ω.

 – Write an inline function to compute the values of δ with the input 

arguments of R, C, and ω.
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 – Write a function file to compute the values of δ with the input argu-

ments of R, C, and ω, and plot δ versus ω.

 Exercise 19
The equation for charge in a resistor-inductance-capacitor (RLC) circuit in a series is 

determined by Kirchhoff’s law: L Rq
q

C
E coscos tq � � � max � .

 

 1. Write an anonymous function with a function handle for solving 

the given second-order differential equation for q(t) with the input 

arguments of R, L, C, ω, and t.

 2. Write an inline function necessary for solving the given second-

order differential equation for q(t) with the input arguments of R, 

L, C, ω, and t.

 3. Write a function file necessary for solving the given second-order 

differential equation for q(t) with the input arguments of R, L, 

C, ω, and t.

 4. Create a Simulink model to simulate the given RLC system.

 Exercise 20
The acceleration of a skydiver is determined by the following:

 
a g

v
� �

�

�
�

�

�
�1

3600

2
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where g = 9.81 m/s2.

 1. Write an anonymous function to compute a as a function of 

speed v.

 2. Write a function file to compute a as a function of speed v and plot 

a versus v.

 3. Create a Simulink model to simulate an acceleration of a skydiver.

 4. Compute the terminal speed for a skydiver.

 Exercise 21
A truck of mass m is accelerated from rest at t = 0 with constant power P along a level 

road. The speed of the truck as a function of time is given by v t
P

m
t� � � �

�
�

�
�
�

2
1

2
.

If x = 0 at time t = 0, the position function x(t) is given by x t
P

m
t� � � �

�
�

�
�
�

8

9

1

2 3 ,

where P = 550 kW and m = 15000 kg.

 1. Write a function handle to compute the speed of the truck v(t) as a 

function of time t.

 2. Write an inline function to compute the position of the truck from 

the function x(t) as a function of time t.

 3. Build plots of x(t)versust, v(t) versus t in two separate plot figures.

 Exercise 22
In a crash test, a car traveling 100 km/h (28 m/sec) hits an immovable concrete wall. We 

can treat this problem in general with the approximation that the car body is one piece, 

despite that different parts of the car when it hits the wall will accelerate differently. 

In fact, upon impact, the center of the car moves forward less than half of its length. 

Let’s assume that the stopping distance of the car upon hitting the wall until full stop is 

0.72 m. Time to full stop will be equal to �
�

t
x

� �
�

� � �
v v v vave

0 72

0 5 0 5

0 72

0 5

0 72

14
0 051

0

.

. .

.

.

.
. sec.
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The average acceleration of the car until full rest is 

equal to a
v

t

v v

t

v

t
m sec� �

�
� � � �

�
� � �

0 2544 44. /

Note that this is about 55g, which means very high acceleration (deceleration) that 

takes over very large amount of energy from inertia forces and converts it into heat. 

Write a function file to compute a as a function of Δx (for different front bumper types) 

and v (for all cases, take v0 = 0) for a crash test of any type of cars with different traveling 

speeds of v.

 Exercise 23
Create a function file (called Ex23.m) taking one input argument (the planted year of 

the maple tree that is four-digit integer: 0 ... 2018) and the two output variables AGE 

(calculated age of the maple tree) and NOTE (with regard to the age of the maple tree), as 

well as a warning/message box with notes.

 1. If the planted year of the tree is before 1000, the outputs are NOTE 

= "CANNOT be TRUE", AGE = [ ] (empty) and also an error box 

with the note "Check Your Entry.”

 2. If the planted year of a tree is in between [1000...1918], the outputs 

are NOTE = "NEED to be PROTECTED", AGE = [ ∀ ] (computed 

age with respect to the current year) and a warning dialog box 

with the note "Maple Tree is to be Under Protection.”

 3. If the planted year of a tree is in between [1919 ...2000], the 

outputs are NOTE = "WELL fit", AGE = [ ∀ ] (computed age 

with respect to the current year) and a message box with the note 

“GOOD one for a timber”;.

 4. If the planted year of a tree is in-between [2001 ...2018], the 

outputs are NOTE = "TOO young", AGE = [ ∀ ] (computed age 

with respect to the current year) and a message box with the note 

“TOO young for a timber.”
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 Exercise 24
The spiral of Archimedes (also called the Archimedean spiral) is a spiral curve (named 

after the 3rd-century BC Greek mathematician Archimedes). The equation of the spiral 

is written in the polar coordinate system by the following equation: r = a + bθ, where r is 

the distance from the origin and θ is the angle of that point in radians with respect to the 

origin. The parameters a, b in the equation are real numbers that control the spiral and 

the distance between successive spiral turnings, respectively.

 1. Compute the spiral of Archimedes for 

�
�

�� � � � �0
10000

13 1 25 2 25: : , . , .a b with a vectorization method.

 2. Compute the spiral of Archimedes for 

�
�

�� � � � �0
10000

13 1 25 2 25: : , . , .a b with the [for ... end] and 

[while ... end] loops without memory allocation.

 3. Compute the spiral of Archimedes for 

� � �� � � � �0
10000

13 1 25 2 25: : , . , .a b  with the [for ... end] and 

[while ... end] loops with memory allocation.

 4. Compare the computation efficiencies in (2) and (3) against (1) 

using [tic ... toc].

 Exercise 25
Create a function file (called Ex25.m) taking four input variables (n, bn, ∆x, L) and three 

output variables: f(x), ALL _ cell, ALL _ struct.

Compute this series: f x
b n x

Ln

n� � �
�� �� �

�

�

�
1

2 1

2

sin �
 using [for, end] loop control 

statements. Take n = 1 : 11, bn = [−5...5], x = [0...L], L = 10. � �x
L

2000
.

ALL _ cell is a cell array composed of f(x), x, bn.

ALL _ struct is a structure array composed of f(x), x, bn, ALL _ cell.
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 Exercise 26
Create a function file (called Ex26.m) taking one input variable (k) and one output 

variable (S).

Compute a total sum of these series: 10 35 65 110 10 2 5
0

55

� � � ��� �� �
�
�
m

k. . Compute 

the total sum using the [while, end] and [for, end] loop control statements.

 1. Halt the computation process when the sum is larger than 

2.5 ∗ 1018 and display in the Command window at what iteration 

step the computation is halted and the computed sum of 

the series.

 2. Display the difference between the computed sum of series and 

2.5 ∗ 1018.

 3. Display the final sum and the iteration number as integers, but 

collect all of the sums (S) from every step.

 Exercise 27
Write a script file to compute the solutions of the third-order polynomial 

a3x3 + a2x2 + a1x = 0 for any given values of its coefficients a1, a2, a3 with a user prompt 

input and by using the conditional statements [if, elseif, else, end]. Include 

in your script to print out solutions of the polynomial in the external *.dat file in the 

correct data formats including complex values.
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CHAPTER 3

Graphical User Interface 
Model Development
MATLAB has a number of graphical user interface (GUI) tools and functions that can 

be employed while building GUI models, either by using the GUI tools or by writing 

scripts. In this chapter, we cover how to build GUI models with the GUI development 

environment (GUIDE) and how to write scripts to generate pop-up and dialog boxes.

 GUIDE
There are three principal groups of elements necessary to build a MATLAB GUI model. 

They are components, figures, and callbacks.

• MATLAB GUI components are graphical controls (push buttons, edit 

boxes, lists, sliders, and pop-up menus), static elements (frames, 

text strings), menus, and axes. Graphical control elements and static 

elements can be created by using the uicontrol function. Menus can 

be generated by using the uimenu and uicontextmenu functions. The 

axes function is used to display graphical data.

• The figure function is used to create figures that accommodate 

various combinations of components.

• Callbacks or callback functions are used to perform actions 

(simulations and displays) with respect to user entries, such as clicks 

with a cursor (mouse or touch screen) or entries from the keyboard.

© Sulaymon Eshkabilov 2022 
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All of these components and figures and their properties and behaviors can be 

created by writing scripts, functions, and callback functions using MATLAB’s built- 

in functionality tools. However, this approach is rather cumbersome and long, and it 

requires a considerable amount of code and programming. An alternative and rather 

straightforward approach to designing a GUI model is MATLAB’s user-friendly GUI 

development environment tool.

GUIDE contains templates, including GUI with UI controls, GUI with axes and 

menus, and the modal question dialog. By using this tool, you can rather easily create 

a GUI model layout with all the necessary components, such as push buttons, menus, 

static elements, text, and so forth, and adjust their properties (size, color, type, etc.) and 

location with respect to the GUI model design. This can be done by using the mouse and 

keyboard, without any programming.

Note that MATLAB (starting from MATLAB R2016a) introduced a user-friendly 

drag-and-drop application development environment called App Designer. It’s similar to 

GUIDE. In the future releases of MATLAB, App Designer and GUIDE will be integrated, 

and only App Designer will be supported. Many tools of App Designer and GUIDE are 

the same or similar. Here we demonstrate how to use GUIDE tools to create GUIs.

Many GUI controls in GUIDE are quite straightforward, and building a GUI model by 

employing GUI control tools is not difficult. We first launch the GUIDE tool and become 

familiar with its components and tools. Then we move on to working with GUI’s Property 

Inspector tools and modifying the operational behavior of the GUI blocks used in our 

model. Using this approach, after completing GUI modeling with GUI blocks, we save 

the model. MATLAB will automatically generate a script function file (M-file) that we 

modify according to our given GUI model requirements.

You can launch the GUIDE application by typing guide in the Command window.

Subsequently, the GUIDE Quick Start window appears, as shown in Figure 3-1. It 

is straightforward to migrate the developed models and apps from GUIDE into App 

Designer, as shown in Figure 3-2, by downloading the Migration App from MathWorks 

and installing it. The apps developed in GUIDE can be exported into App Designer using 

the Export options, as shown in Figure 3-3.
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Figure 3-1. GUIDE Quick Start window

Figure 3-2. GUIDE’s Explore Options showing how to migrate from GUIDE to App 
Designer
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Figure 3-3. How to export a GUIDE app to App Designer

A blank GUI (the default) has UI controls, axes, and a menu bar, as shown in 

Figure 3-4. By default, the initial GUI figure is named untitled.fig (Figure 3-4).

Figure 3-4. GUI figure window components without names
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Figure 3-5. Blank App Designer window

Note in the future releases of MatlaB, app designer and GUide will be 
integrated, and only app designer will be supported.

You can see from the tools in a blank GUIDE window (Figure 3-2) and in App 

Designer (Figure 3-3) that they have many common tools. In addition, App Designer 

has many other tools in its library such as Instrumentation, Aerospace, and Simulink 

Real-Time.

In the GUI layout window you can start working and add the name tags of the GUI 

components and tools by selecting Show Names on the Component palette from the 

MATLAB GUIDE Preferences. With this adjustment, the components will appear with 

their name tags, as shown in Figure 3-6.
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Figure 3-6. GUI components with name tags displayed

The GUI window shown in Figure 3-7 is composed of the GUI components, the 

design area, and the menu tools called Align Objects, Menu Editor, Tab Order Editor, 

etc. Once the GUI window is open, we can start building our GUI model by dragging the 

desired GUI components and dropping them into the design area (see Figure 3-7). You 

can resize and align the GUI components in our design area by clicking and dragging 

with a mouse or by using the right mouse button options or the Property Inspector, 

Align Objects, and other menu bar tools. Moreover, you can edit properties of the GUI 

components by clicking the Editor and adding menu tools to the GUI by clicking the 

Toolbar Editor.
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Figure 3-7. The GUI GUIDE tool window and its menu bar

There are several basic steps required to build a GUI model:

 1. Clearly define the specific functions that the anticipated GUI 

model should have and which tools and components you need. As 

always, it is best to start with a draft sketch of the GUI model on a 

piece of paper.

 2. Drag and drop all the necessary GUI components into the design 

area and then modify and align them according to your needs 

and project requirements. Once every component is in place 

and adjusted with respect to each other, you can pull them into a 

button group (there is a component called Button Group), which 

gives you good flexibility for moving and aligning objects in the 

design area. Note that grouping components into a button group 

is optional.
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 3. Rename or provide recognizable name “tags” to all components 

used in the model so you can easily identify them in later stages 

while editing scripts and M-files. Moreover, you may need to 

adjust and modify the color, font, and size of the components. 

Note that changing the color, font size, text type, size, and position 

of components in the model will not affect the execution/

simulation results of the GUI model.

 4. Save the created work. It will be saved in two different file formats, 

one of which is *.fig (the Figure file) and the other is .m (the 

function file), containing a complete script of the model, including 

all nested callback functions for each GUI component.

 5. Write/edit a script that implements the performance of each 

GUI component in association with the other components. This 

step requires some additional programming work, which will be 

discussed in the following examples.

 Example 1: Building a 2D Plot
Let’s look at a simple example of building a 2D plot of a cardinal sine function for a user’s 

input value ranges: sinc x
sinsin x

x
π

π
π

( ) = ( )
.

By dragging and dropping the Push Button, Static Text, Edit Text, and Axes blocks, we 

start building the interface of the GUI model, as shown in Figure 3-8. After adjusting all 

the blocks in the GUI model with respect to each other, we can edit their properties by 

double-clicking each block or using the Property Inspector option via the right mouse. 

Note that Static Text serves as information to show the input entry names: Xmin and 

Xmax. The values of Xmin and Xmax represent boundary values of the variable and can 

be defined in the Edit Text blocks.

Note there is one major difference between static text and edit text. the user 
can edit an entry in an edit text block but cannot do so in a static text block.

In addition, you add an Axes block that displays a plot of computed values of the 

function sinc(x) according to our entries for xmin and xmax
 in the Edit Text blocks. You add 
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a Push Button block that makes the built model (see Figure 3-8) compute the values of 

the function and display the results in the plot area.

To make your GUI model more informative, legible, and user friendly, you can edit 

each block by altering the font size, color, background color, and so forth.

There are many properties for each individual block that can be altered. For instance, 

you can change the front color, background color, font type, size and color, position, size, 

string, name, and a few other properties (see Figure 3-9). Among these properties, there 

are two main ones (see Figure 3-9) that you have to pay close attention to.

The first one is tag, and it’s the name of a block and has to be a distinctive name. 

The second property is string, and it’s used to display fixed text or an empty space. The 

string is displayed in the GUI model.

Figure 3-8. Necessary blocks selected and placed onto the GUI model area
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Figure 3-9. Property Inspector window to edit properties of blocks

Let’s make some changes to our GUI model blocks by altering their background 

color, size, font size, color, and type, and by adjusting the positions of the blocks. Note 

that in the Static Text blocks, we edit the strings to be “Xmin” and “Xmax” in bold, 12.0 

font size, and red and blue. In the Edit Text blocks, we remove their strings and make 

them empty. Moreover, we change their font size to 12.0, make them bold, and have a 

yellow background color.
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Note for the edit text blocks to have predefined values (e.g., -6, 0, 3.14, and 100), 
you need to insert these values into the "string" value of each edit text block.

The Push Button’s background color, font size, type, string, and tag names are 

modified. Its string is altered to "PLOT", and its tag is renamed to PLOTsinc. Figure 3-10 

shows the completed GUI model.

Figure 3-10. The completed GUI model with all the modified buttons and 
components

Save the model and click the Run button or press Ctrl+T on the keyboard. The new 

model, as shown in Figure 3-11, does not reflect any results yet. There is one important 

step that is still missing in the model’s coding part.
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Note While building a GUi model and editing the properties of blocks, it is 
important to rename each block distinctively. the blocks’ tags are required when 
modifying the callback functions of the GUi model.

to change the properties of several blocks simultaneously, select them all and then 
go to the property inspector to make changes.

MATLAB saves the model in two file formats—SINC_fun.m (the function file) 

and SINC_fun.fig (the GUI figure). All the callback functions of the buttons used in 

SINCfun.m are shown here:

function varargout = SINCfun(varargin)

% SINCFUN MATLAB code for SINCfun.fig

% SINCFUN, by itself, creates a new SINCFUN or raises the existing

% singleton*.

...

% Begin initialization code - DO NOT EDIT gui_Singleton = 1;

Figure 3-11. The created SINC function plot GUI
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gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_

Singleton, ... 'gui_OpeningFcn', @SINCfun_OpeningFcn, ... 'gui_OutputFcn', 

@SINCfun_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []);

   if nargin && ischar(varargin{1})  

  gui_State.gui_Callback = str2func(varargin{1});

  end

  if nargout

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

  else

    gui_mainfcn(gui_State, varargin{:});

  end

  % End initialization code - DO NOT EDIT

  % --- Executes just before SINCfun is made visible.

  function SINCfun_OpeningFcn(hObject, eventdata, handles, varargin)

  % This function has no output args, see OutputFcn.

  ...

  function Xmax_Callback(hObject, eventdata, handles)

  % hObject handle to Xmax (see GCBO)

  ...

  % --- Executes on button press in PLOTsinc.

  function PLOTsinc_Callback(hObject, eventdata, handles)

  % hObject handle to PLOTsinc (see GCBO)

  ...

Note that most of this script (SINC_fun.m is automatically generated by the GUI 

model when it is saved) won’t be changed, and only one callback function will be edited. 

The callback functions have to be edited to make the GUI model perform the anticipated 

computations and display a plot figure. Note that every callback function has three 

parameter handles—hObject, evendata, and handles.

While editing/writing callback functions, you can look up the properties of handles 

using the get() function and assign or change any property of the handles by using the 

set() function. Note that in the SINCfun.m model, there is only one callback function 

that has to be edited—PLOTsinc_Callback(hObject, eventdata, handles). The 

PLOTsinc_Callback callback function invokes the PLOT button, which is named with 
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a tag name of PLOTsinc. The PLOTsinc tag name is given to the PLOT button via the 

Property Inspector while building the GUI model. This callback function computes 

sinc(πx) by taking user entries for xmin and xmax and plotting the computed results.

To edit the PLOTsinc_Callback(hObject, eventdata, handles) callback function, 

you first convert the entries for Xmin and Xmax from the string format into the double 

format in the following way:

Xmin=str2double(get(handles.Xmin, 'string')); Xmax=str2double(get(handles.

Xmax, 'string'));

The get() command collects data from handles.Xmin and handles.Xmax as a string, 

and then str2double() converts them into a numerical format. Double-formatted values of 

Xmin and Xmax are taken to generate equally spaced values of the variable x, which are 

then taken to compute f(x) = sinc(πx) and plot the results using the following commands:

x=linspace(Xmin, Xmax, 200); f=sinc(x*pi); plot(x, f, 'b'); grid on

title('sinc(\pi*x) = sin(\pi*x)/(\pi*x) ')  

xlabel('x'),ylabel('f(x)=sinc(\pi*x)'),

axis([Xmin, Xmax, -.25, 1.1])

Finally, the edited callback function PLOTsinc_Callback(hObject, eventdata, 

handles) contains the following:

function PLOTsinc_Callback(hObject, eventdata, handles); 

Xmin=str2double(get(handles.Xmin, 'string')); Xmax=str2double(get 

(handles.Xmax, 'string'));

x=linspace(Xmin, Xmax, 200);

f=sinc(x*pi);

plot(x, f, 'b'); grid on title('sinc(\pi*x) = sin(\pi*x)/(\pi*x) ')

xlabel('x'),ylabel('f(x)=sinc(\pi*x)'),

axis([Xmin, Xmax, -.25, 1.1])

As noted, this is the only part of the M-file SINCfun.m that we have edited in order to 

make the model compute and plot the sinc(πx) function with a single click in the GUI 

model. We save the SINCfun.m file and execute it by using  in the M-file editor or by 

pressing F5 from the keyboard. When we run SINCfun.m, the SINCfun.fig GUI model 

pops up. We enter two entries—Xmin = − 5 and Xmax = 6—and click the PLOT button.
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The results of the function are computed and plotted, as shown in Figure 3-9. Note 

that the value of Xmax must be larger than the value of Xmin; otherwise, there will be 

an error.

This simple example shows how easy it is to use GUIDE tools to build GUI models. 

Once the GUI model interface layout is complete and the components’ properties have 

been edited and saved, the M-file’s (function file’s) callback functions are generated.

Subsequently, by editing only the required callback function or functions, we obtain 

the GUI model.

 Example 2: Adding Functionality
Let’s look at four more options for our GUI model (Figure 3-12):

• Creating an Exit/Quit button to close a GUI model window

• Playing a sound by recalling and executing another M-file (called 

SOUND_hear.m)

Figure 3-12. The GUI model to plot the sinc(πx) function

Chapter 3  GraphiCal User interfaCe Model developMent



272

• Displaying an image (called GC2011.jpg) in *.jpg/*.jpeg format

• Displaying a message box with a message of "All Done Well 

Done!!!"

There are several ways to accomplish these tasks, one of which is to add a Push 

Button block and edit its callback function. You first go back to our GUI model editor 

and add one Push Button block. Change the Push Button’s properties (background 

color, font size and type, and string and tag) as you did previously. Now you rename the 

Push Button block to QUIT by changing its string; its name tag is renamed QUIT_button. 

Before saving the updated GUI model SINCfun.fig, you need to alter the name of the 

window. To do that, you need to double-click the design area (the area outside of any 

blocks that opens the Property Inspector window) and then change the name tag from 

figure1 (the default) to GUI_window.

 

You can save the GUI model and execute it. After that, edit the last automatically 

added callback function called QUIT_button_Callback(hObject, eventdata, 

handles) by adding the following to it. The built-in MATLAB function called delete() 

halts the whole process and shuts the window.

function QUIT_button_Callback(hObject, eventdata,  

handles) delete(handles.GUI_window)

run('SOUND_hear.m'); A=imread('GC2011.jpg');  

image(A); msgbox('All Done Well Done!!!')

Figure 3-13 shows the updated GUI model. Test it with two numerical entries for 

Xmin and Xmax and then click the QUIT button. After pressing QUIT, the GUI window 

SINCfun.fig is closed.
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Figure 3-13. The GUI model to display the sinc(πx) and quit options

Subsequently, the built-in function run() executes the SOUND_hear.m file, which 

plays a sound wave. Another built-in function called image() displays the GC2011.jpg 

image, as shown in Figure 3-14. Finally, the msgbox() function displays the message: All 

Done Well Done!!!.
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Figure 3-14. The image file GC2011.jpg is displayed

The separate M-file called SOUND_hear.m contains the following scripts:

% SOUND_hear.m

% Three CHIRP signals to make a sound t=0:1/1e4:10;

D0=chirp(t, 0, 10, 3000, 'quadratic');

D1=chirp(t, 0, 10, 4000, 'q',[],'convex');

D2=chirp(t, .001, 10, 5000, 'logarithmic'); y=[D0, D1, D2]; sound(y);

In this simple exercise, we have demonstrated how to associate GUI model buttons 

with other GUI blocks and M-files. Similarly, Simulink’s files, as well as any compatible 

applications with a MATLAB package, can be linked to GUI models.
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 Exporting the GUIDE GUI into App Designer

Let’s export the created GUIDE’s GUI model called SINCfun.fig into App Designer by 

following the options shown in Figure 3-3. To do that, you should select the file SINCfun.

fig, and then click Open and Export. This creates a new M-file that is called SINCfun_

export.m by default. Subsequently, the exported M-file called SINCfun_export.m opens 

automatically and can be executed by clicking the  button in the M-file editor. After 

executing SINCfun_export.m, the exported GUI model shown in Figure 3-15 pops up.

Figure 3-15. The exported GUIDE App into App Designer to simulate and display 
the sinc(πx) plot

After entering the values of -3 and 3 for Xmin and Xmax, respectively, and clicking 

the PLOT button, you will obtain the same simulation results as shown in Figure 3-13. 

When you click the QUIT button, the chirp signal sound will be played, and the image 

shown in Figure 3-14 will pop up. Where the exported App Designer M-file  

(SINCfun_export.m) is stored, SINCfun_export.mat file will also be stored.

 Example 3: Solving a Quadratic Equation
Let’s take another example of creating a GUI model that solves a quadratic equation 

for any given coefficients for a, b, and c and displays a plot for the user’s specified 

value ranges of the variable x. The quadratic equation is formulated by ax2 + bx + c = 0, 
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and if the numerical values of a, b, and c are given, you can compute the roots of the 

given equation numerically. This exercise is completed in two stages, building the GUI 

interface and editing the callback functions.

 Building the GUI

You start again with a blank GUI window and choose a Panel block, onto which you drag 

and drop several blocks, such as Static Text, Edit Text, Push Button, and Axes. There is 

a good reason for employing the Panel block when building a GUI model. It helps you 

manipulate all the GUI blocks within it and around the Design Area with respect to 

each other.

We place the blocks in a, b, c order and then compute the results for D 

(discriminant), the root for x1 and x2, and the Push Button block to make the GUI 

model compute the discriminant, root x1, and root x2 values. After that, we edit the 

block properties by changing the font size, type, string, tag, and background color of 

each block. Moreover, we edit the user’s entry blocks for xmin  and xmax  and use a Push 

Button block to plot the computation results in 2D. In addition, we change the name of 

the panel window to “Quadratic Equation Solver” by double-clicking the Design Area 

and changing the Title in the Property Inspector. Figure 3-16 shows the completed GUI 

model window.
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Figure 3-16. Complete design of the GUI model window

Note in this GUi model (shown in figure 3-16), the component names are not 
shown in order to save space in the palette window. You can turn them on/off by 
choosing file ➤ preferences ➤ GUide ➤ show names in the Component palette.

Note that in the GUI model shown in Figure 3-16, the following properties of the 

blocks are altered: in Static Text blocks, such as a, b, c, x1, x2, Xmin, and Xmax, the 

string, font size and type, and background color are changed. The properties of the three 

Static Text blocks used to display the computation results for Discriminant, x1, and x2 

are altered. For instance, for the Static Text block for the Discriminant value display, 

background color, font type, size, string, and tag are also changed. Its string is changed to 

be an empty space, and its tag is renamed to D.

Chapter 3  GraphiCal User interfaCe Model developMent



278

The background color, font type, size, string, and tag of the Static Text blocks used to 

display the values of x1 and x2 are altered. The strings are set to be empty and the tags 

are renamed to x1 and x2, for x1 and x2, respectively. There are two Push Button blocks 

used to solve the given equation (based on a, b, c) and to display the plot of the given 

quadratic equation with respect to the user entries for Xmin and Xmax.

The first Push Button block’s string is changed to SOLVE and its tag is SOLVE_eqn, 

and the second Push Button string is called PLOT and its tag is called PLOT_eqn. As stated 

earlier, tags are vital and require careful attention when editing or rewriting subfunctions 

in the M-file of the GUI model.

Up to this point, all we have worked with is within the GUI design window and the 

properties of our chosen blocks within the Property Inspector, which we did by double- 

clicking each block individually. Another change that we made in this example was 

altering the panel window; we altered its background color, title, font type, and size. 

Finally, after completing all the changes in our GUI model, we saved it with the file name 

QUAD_eqn_SIM.fig (see Figure 3-17), which saved QUAD_eqn_SIM.m automatically as well.

Figure 3-17. Completed GUI model to compute roots and display a 2D plot of the 
quadratic equation
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 Editing the Callback Functions
The model shown in Figure 3-17 does not reveal any results when you click the SOLVE 

or PLOT button. You can edit and rewrite two callback functions of the M-file— QUAD_

eqn_SIM.m. Note that all of the automatically generated comments are removed from 

the script.

function varargout = QUAD_eqn_SIM(varargin)

% QUAD_EQN_SIM MATLAB code for QUAD_eqn_SIM.fig

...

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @QUAD_eqn_SIM_OpeningFcn, ...

'gui_OutputFcn', @QUAD_eqn_SIM_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1}) gui_State.gui_Callback = 

str2func(varargin{1});  

end

...

handles.output = hObject;  

guidata(hObject, handles);

function varargout = QUAD_eqn_SIM_OutputFcn(hObject, eventdata, handles)

...

varargout{1} = handles.output;

function a_Callback(hObject, eventdata, handles)

...

function a_CreateFcn(hObject, eventdata, handles)

...

function b_Callback(hObject, eventdata, handles)

...

function b_CreateFcn(hObject, eventdata, handles)

...

function edit3_Callback(hObject, eventdata, handles)
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...

function edit3_CreateFcn(hObject, eventdata, handles)

...

if ispc && isequal(get(hObject,'BackgroundColor'),  

get(0,'defaultUicontrol BackgroundColor'))

set(hObject,'BackgroundColor','white');  

end

function Xmin_Callback(hObject, eventdata, handles)

...

function Xmin_CreateFcn(hObject, eventdata, handles)

...

function Xmax_Callback(hObject, eventdata, handles)

...

function Xmax_CreateFcn(hObject, eventdata, handles)

...

if ispc && isequal(get(hObject,'BackgroundColor'),  

get(0,'defaultUicontrol BackgroundColor'))

set(hObject,'BackgroundColor','white');  

end

function SOLVE_eqn_Callback(hObject, eventdata, handles)

...

function PLOT_eqn_Callback(hObject, eventdata, handles)

...

The callback functions that we will edit are PLOT_eqn_Callback(hObject, 

eventdata, handles) and SOLVE_eqn_Callback(hObject, eventdata, handles). 

These callback functions make the GUI model compute and display discriminant, two 

real-valued roots in pre-defined blocks and display a 2D plot according to our entries for 

Xmin and Xmax. Here are the edited callback functions for the two Push Buttons called 

SOLVE and PLOT:

...

function SOLVE_eqn_Callback(hObject, eventdata, handles) 

a=str2double(get(handles.a, 'string'));  

b=str2double(get(handles.b, 'string'));  

c=str2double(get(handles.c, 'string'));
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D=b^2-4*a*c;

if D>0 % There are two real valued roots;  

x1=(-b+sqrt(D))/(2*a);

x2=(-b-sqrt(D))/(2*a);

elseif D==0 % There is a unique root;  

x1=-b/(2*a);

 x2=x1;

else % No real valued roots exist; x1='No Root';

x2='No Root';  

end

D=num2str(D); set(handles.D, 'string', D); x1=num2str(x1); set(handles.x1, 

'string', x1); x2=num2str(x2); set(handles.x2, 'string', x2);

function PLOT_eqn_Callback(hObject, eventdata, handles) 

a=str2double(get(handles.a, 'string')); b=str2double(get(handles.b, 

'string')); c=str2double(get(handles.c, 'string')); 

D=str2double(get(handles.D, 'string')); x1=str2double(get(handles.x1, 

'string'));

x2=str2double(get(handles.x2, 'string'));Xmin=str2double(get(handles.Xmin, 

'string'));

Xmax=str2double(get(handles.Xmax, 'string'));

x=linspace(Xmin, Xmax, 200); y=a*x.^2+b*x+c;

plot(x, y, 'r-', 'linewidth', 1.5);

xlabel('x'), ylabel('y = ax^2+bx+c')

if D>=0 % Roots x1 and x2 will be plotted if the equation has real roots

hold on    % Plot is held if D>=0

plot(x1, 0, 'rs', x2, 0, 'gd', 'markersize', 7, 'markerfacecolor', 'y')

legend('plot of quad. eqn', 'root: x_1', 'root: x_2')

end

title(['Plot of: ' num2str(a) 'x^2 + ' num2str(b) 'x + ' num2str(c) ' = 

0']); grid on

Note that in the subfunction SOLVE_eqn_Callback, you use the get() command to 

obtain string values of a, b, c and convert them into numerical data with str2double(). 

Using the set() command, the computed values of D, x1, and x2 are assigned to D, x1, 

and x2 in order to display them in their respective Static Text blocks called D, x1, and x2. 
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In the latter subfunction, you obtain the numerical values of a, b, and c with the get() 

command. You run the whole M-file called QUAD_eqn_SIM.m by clicking the Run button 

or calling the file from the Command window (for example, 3x2 + 5x + 1 = 0) and then 

plot the given equation for x = −1…3.

Note that in the SOLVE_eqn_Callback callback function, if the discriminant is D ≥ 0, 

then the computed roots will be also plotted. Moreover, there are several plot tools used 

here (hold on, legend, markersize, and markerfacecolor) that are explained in detail in 

Chapter 6.

Figure 3-18 shows the final GUI model with its results for the given example

−3x2 + 5x + 1 = 0 and for x = −1…3.

Let’s review some of the most common errors made while editing and rewriting 

subfunctions. They are:

Figure 3-18. The GUI model to compute roots of a quadratic equation and plot its 
values with user entries for Xmin and Xmax
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• Misspelled tag names of blocks that are recalled within subfunctions 

or set values to display in a GUI model window.

• Necessary conversion operators (such the get() and set() 

operators) are not employed appropriately within subfunctions for 

numerical calculations.

• Editing the wrong subfunctions (callback functions) of buttons to 

make a GUI model perform its aimed operations.

To avoid these common mistakes, it is recommended to choose tag names carefully 

and double-check their names while writing and editing nested callback functions. 

Another recommendation is to write down all the tag names and type them in with  

care. When converting variable values from one type to another with the get() and 

set() operators, look at the task specifics. For instance, what type of data is needed  

for processing, and by which handle names (such as handles.WHAT) are values of 

variables or data obtained. There are several ways to avoid editing the wrong callback 

functions. One is to look up an assigned name tag for each button that makes the GUI 

model perform its anticipated operations. MATLAB automatically assigns a subfunction 

name to every operational button and entry block with its given name tag (a given 

name tag by a user) with an underscore sign and callback(). For instance, if an 

operational button’s name tag is PLOT_all, it will have an assigned subfunction called 

PLOT_all_Callback(hObject, eventdata, handles). Another approach, after saving 

the GUI model and the automatically generated M-file, is to click an operational button 

(e.g., a Push Button) in a GUI model design window. Then right-click and choose View 

Callbacks ➤ Callback to directly reach the right subfunction subject to edit.

 GUI Dialogs and Message Boxes
MATLAB has a few commands that create/call ready-to-use pop-up dialog boxes, 

including Error, Warning, Help, Information, User Entry Input dialog, and so forth. They 

can be created without writing scripts and callback functions or building GUIs. One of 

the most common purposes of these message boxes is to deliver messages to the users. 

In general, creating these pop-up message boxes is straightforward and requires only 

one command. The dialog and message boxes (except for the user input box) can all be 

called and generated with one general command: errordlg(), warndlg(), helpdlg(), 

and msgbox(). On the other hand, a user input dialog box requires several commands, 
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such as the name of the input dialog, the input dialog window title/message, and the 

input dialog window. Let’s look at a few examples to see how to create these message 

boxes, a user entry dialog window, and an entry status box.

 Error Dialog
General command syntax: errordlg('Add Notes')

Example:

errordlg(['Time is gone!' 'Today is ' date])

 

 Warning Message
General command syntax: warndlg('Add Notes')

Example:

warndlg(['Outside temperature is ' num2str(-20) ' C; thus, be dressed up 

accordingly!!!'])
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 F1 Help/Message Box
General command syntax:

helpdlg('Add Notes')

Example:

helpdlg('What is your problem?', 'This is a help line');

 

A second example:

CreateStruct.WindowStyle='replace'; CreateStruct.Interpreter='tex';

msgbox('f(\alpha) = e^{cos(\omega*\alpha)}','Function: ',CreateStruct);

Note that CreateStruct, used in this example, is a variable type of struct 

that creates a structure type of variable with two fields of a character type—called 

WindowStyle with the value of replace and Interpreter with the value of tex. They are 

recognized automatically by MATLAB. Without creating the CreateStruct variable with 

its two fields, WindowStyle and Interpreter, the equation would be displayed as shown 

in the message box: f (α) = e cos(ωα).
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Finally:

msgbox('\copyright by NDSU', 'Copyright',CreateStruct)

 

 General Syntax
There are alternative ways to create help/message/error/warning messages. The general 

command syntax is as follows:

HM = msgbox('Message', 'Box Title', 'Icon')

Here is just a message box:

msgbox('Hello World', 'My Message')

 

Here’s a warning message:

msgbox('Hello World', 'My Message', 'warn')
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Here’s a message box with an error sign:

msgbox('Hello Students', 'My Message', 'error')

 

Here’s a message box with an information sign:

msgbox('Hello Students', 'My Message', 'help')

 

 Input Dialog
General command syntax:

ANSWER = inputdlg(PROMPT,NAME)

Here is a short script:

Enter1={'Enter # of FS terms to evolve & Hit [ok] & Wait: '}; % Message 

Name1='Input for TERMS of Fourier Series'; % Dialog box name

Numlines = 1; % Number of lines for Input dialog

ANSWER=inputdlg(Enter1, Name1, Numlines); % Generate and Read Input Dialog 

[n status] = str2num(ANSWER{1}); % Picks up the user entry under variable 

name of n
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 Question Dialog
General command syntax:

ButtonName = questdlg('Your Question ...','Question?', 'Option1','Option2')

An example:

YA= questdlg('Select your answer to the question: "How do you feel?" 

','Question', 'Superb', 'I Can Work for a while', 'Tired a bit', ' ')

 

Let’s look at a more involved example that has several choices.

 Making a Choice

You are in a café and would like to make a purchase. You would like to choose from the 

menu coffee, tea, or some sweets. The café has some shortages that you are not aware 

of. The message and dialog boxes such as warning, help, input, or error messages need 

to be displayed according to your order and the café shortages. Here are the steps to be 

implemented in this script:

Step 0. You are in a café, and a waiter comes up to take your order.

Step 1. You decide between coffee, tea, and chocolate cake.
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Step 2. The waiter responds that they don’t actually carry tea and 

are out of chocolate cake.

Step 3. You then choose your coffee type: Normal, Strong, or 

Special (your taste).

Step 4. You taste and grade the coffee.

Step 5. You pay the bill and leave a tip.

Here is the answer script:

clearvars

% It is time for coffee, let's go to a cafe ...

% Step 0

H1 = msgbox('You are in a cafe and ordering coffee of your taste', 'Cafe');

pause(2), delete(H1)

% Step 1. Ordering your coffee

H2 = msgbox('What can I do for you today? Do you want coffee or sweets',... 

'Waiter has arrived');

pause(3), delete(H2)

% Answer what you like to have

YA= questdlg('Your answer: "Do you want coffee or sweets?" ','Question', 

... 'Coffee', 'Tea', 'Chocolate Cake', ' ');

  switch YA

  case 'Coffee'

   CA = questdlg('Your answer: "OK. What kind of coffee?" ','Question',  

... 'Normal', 'Strong', 'Special', ' ');

  case 'Tea'

   H3=warndlg(['Sorry! We do not serve' ' Tea. Maybe something else?']); 

pause(2) delete(H3)

  case 'Chocolate Cake'

   H4=errordlg(['Very Sorry!' 'No cakes Left ']); pause(2) delete(H4)

end

Response=exist('CA', 'var'); if Response ==1

  switch CA case 'Normal'

  HN=warndlg(['Normal coffee is', ...
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   '3 tea-spoons of coffee+3 Table-spoons of Milk+1 tea-spoon of sugar']); 

pause(3), delete(HN)

  case 'Strong'

  HS=warndlg(['Strong coffee is', ...

   '4 tea-spoons of coffee+2 Table-spoons of Milk+2 tea-spoon of sugar']); 

pause(3), delete(HS)

  case 'Special'

HS = msgbox('Select: how much coffee, milk and sugar to add?', 

'Selection'); pause(3), delete(HS)

Call = 'Order your coffee';

Selection = {'how many tea-spoons of coffee: ',...

   'how many tablespoons of milk: ', 'how many teaspoons of sugar: '};  

n_lines=[1, 13];

  ANS=inputdlg(Selection, Call, 1, {' ', ' ', ' '}); end

   OK = msgbox('You have had your coffee','You are about to leave '); 

pause(5), delete(OK)

   PB= questdlg('Waiter asks: "How was the coffee?" ','Question', ... 'Just 

Superb', 'Nice', 'Umm...but OK', ' ');

  switch PB

  case 'Just Superb'

   helpdlg('Thank you so much! 4$+1$ (tips)', 'Here is the payment'); 

case 'Nice'

   helpdlg('Thanks! 4$+0.50$ (tips)', 'Here is the payment'); case 

'Umm...but OK'

  helpdlg('Thank you! 4$ (No-tips)', 'Here is the payment'); end

else

   H5 = msgbox('Bye - Bye! See you next time!', 'Waiter leaves'); pause(4), 

delete(H5)

end

Note that in this script, we used MATLAB’s built-in function, which verifies whether 

a specific variable exists in the workspace. It uses the command syntax of exist('N', 

'var') to determine whether the variable N is available in the workspace. It can also be 

used to verify whether any specific file exists in the current directory.
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For example, exist('MY_fun.c', 'file') checks whether the file called MY_fun.c 

is present in the current directory of MATLAB. The output of the built-in function 

exist() can be 0, 1, or 2. The 0 means the variable or file does not exist, 1 means the 

variable exists, and 2 means the file exists in the current directory.

When the script is executed, two message boxes (H1 and H2) are displayed for two to 

three seconds, and then closed automatically. Then the next question dialog box pops 

up, and you need to choose Coffee, Tea, or Chocolate Cake.

 

Depending on your selection, other options and responses will appear. If you select 

Coffee, the question dialog (CA) will pop up and ask you to select your coffee type: 

Normal, Strong, or Special.

 

If you select Normal or Strong in the dialog box (CA), there will be a pop-up box 

displaying the contents of your selected coffee in terms of coffee, milk, and sugar. If you 

select the Special type of coffee, you need to input (input dialog ANS) the amount of 

coffee, milk, and sugar you want in your coffee.
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The message box (OK) pops up and closes down automatically after five seconds.

Finally, the waiter asks you how your coffee tasted.

 

Based on your answer, you get the help dialog box indicating how much to pay, 

including the tip.

 

If you select Tea, the warning dialog box (H3) will pop up and close down 

automatically after two seconds. If you choose Chocolate Cake, the error dialog (H4) will 

pop up and close down automatically in two seconds.
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The last message box (H5) is displayed if you select Tea or Chocolate Cake in the 

first step.

These message and dialog boxes can also be employed within function files in a very 

similar manner.

 Providing Input to an Equation

This simple numerical simulation exercise computes the values of a mathematical 

equation by writing a number to the function file: F = ecos(ωt). The default values of input 

arguments for simulation are ω
π

π= =13 0
100

; : :t .

The varying inputs are as follows:

• No input; use default values

• One input, ω or t, whereby the missing argument takes the 

default values

• Two inputs, ω and t, whereby an error dialog pops up.

Here is the complete answer script of this exercise:

function F = ERR(varargin)

% HELP. ERR.m simulates how to employ ERROR dialog box

warndlg('Note that this is a varargin function file ');

if nargin == 0

   omega = 13; t = 0:pi/100:pi;F = exp(cos(omega*t)); plot(t, F, 'bo--'), 

shg elseif nargin == 1 && numel(varargin{1})==1

omega=varargin{1}; t = 0:pi/100:pi;F = exp(cos(omega*t)); plot(t, F,  

'bo--') elseif nargin == 1 && numel(varargin{1})>1

  t = varargin{1}; omega=13;F = exp(cos(omega*t));

  plot(t, F, 'bo--')

  elseif nargin ==2 && numel(varargin{1})==1

omega=varargin{1}; t =varargin{2};

F = exp(cos(omega*t));

plot(t, F, 'bo--')

elseif nargin == 2 && numel(varargin{1})>1

omega=varargin{2}; t = varargin{1};

F = exp(cos(omega*t)); plot(t, F, 'bo--')
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else

   errordlg(['Wrong Number of Inputs!' num2str(nargin) ' are too many 

INPUTs'])

disp('No OUPUTS')

F=warndlg(['No OUTPUTS because ' num2str(nargin) ' are too many INPUTS']);

end

end

Let’s simulate the previous function file (ERR.m) from the Command window:

>> omega = 13; t = 0:pi/100:pi; OmegaN=13;

>> F = ERR(omega, OmegaN, t); No OUPUTS

These warning and error dialog boxes are displayed:

 

 

This concludes our brief discussion of GUI tools and functions. These tools are 

handy and can be associated with M/MLX-files and function files to make scripts more 

user-friendly with GUI tools.
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 Summary
In this chapter, we briefly covered how to employ GUI tools and functions via GUIDE 

and the App Designer to develop GUI models via a few examples. In addition, we 

demonstrated via a few examples how to design error, warning, and help message dialog 

boxes and user entry interfaces in association with M/MLX-files and function files.

 Exercises for Self-Testing
 Exercise 1
Design/model and rewrite an M-file for the next GUI model to compute a torus function 

and plot its 3D plot (shown in the next GUI model figure called PLOTall) by taking user- 

entered input. (See Chapter 6 for how to build 3D plots.)
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Use the umbilic torus function defined by the following:

 
x u u v u v= + −






 + +
















sin cos cos7
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y cos u u v u v= + −






 + +
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z u v u v= −






 + +






sin sin

3
2 2

3  

For −π ≤ u ≤ π, −π ≤ v ≤ π.

 – Create a stand-alone application of the created GUI model to plot an 

umbilic torus function.

 – Associate the created GUI with another M-file to display the existing 

(external) image in *.jpg format, for instance.

 – Create a function file called umbilic_torus.m to compute x, y, z for 

the inputs of u and v and create an .mex file from it. (See Chapter 4 for 

how to create an .mex file.)

 Exercise 2
Create a GUI model to compute the volume of a cylinder and rectangular prism with 

the necessary user entries. For example, for a cylinder, a user should add the radius and 

height, and for a rectangular prism, they should add the length, width, and height. All 

units should be in the SI Unit System only. Also, perform the following tasks:

 – Create a stand-alone application of the created GUI model.

 – Associate the created GUI model with another M-file that computes the values of f (t) 

= esin(250t) + 2.5 cos (750t) for t =  − π…π with ∆t = 1/10000 and plays a sound of f (t) with a 

sampling frequency of fs = 10000 Hz by using sound().
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 Exercise 3
Build a new GUI model. The new GUI model should have one drop-down option  

(a Pop-up Menu button) to select a function type ( sin cos2

3

5

3

θ ϕ













, , and quadratic 

polynomial x2 + 6x + 3) that is computed by separate M-files to plot it. Also, include 

an Edit Text block so a user can specify value ranges for arguments: θ, φ, x. Also, add a 

Push Button to close the GUI model with a message dialog box and the message ALL 

Completed! and a sound of rectangular pulses using MATLAB’s built-in rectpuls() 

function.
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CHAPTER 4

MEX Files, C/C++, 
and Stand-Alone 
Applications
MEX stands for MATLAB executable, and it’s a way to call custom C, C++, or FORTRAN 

routines/code directly from MATLAB, thereby treating them as if they were built-in 

MATLAB functions. Since MATLAB is compatible with several programming languages, 

including C/C++, FORTRAN, C#, and Java, the MEX files can be called exactly like M-files 

or M-functions within the MATLAB environment. It is also possible to create stand-alone 

applications in MATLAB as self-executable files.

MATLAB’s powerful Coder toolbox is capable of creating stand-alone and self- executable 

C code. It is beneficial to know how to create C code from MATLAB’s M-files since the C 

programming language is free and does not have any licensing requirements. It can be 

employed to create executable files, dynamic link libraries, and libraries of large applications. 

In fact, C can be used to solve a wide range of tasks with myriad types of applications.

There are several reasons that we would create or employ MEX files. One of them 

is that they are capable of calling large existing C, C++, or FORTRAN programs directly 

from MATLAB without rewriting them as M-files. The other reason is to speed up 

computation processes where M-files have bottlenecks. For instance, MEX files can be 

employed on large loop-based computations to avoid bottlenecks with time-consuming 

computation processes. The MEX files are better than M-files for several reasons. They 

are called and executed as executable files without having to be compiled, unlike M-files. 

They can call large existing C or FORTRAN routines directly from MATLAB without 

having to be rewritten as M-files. Moreover, the MEX files allow parallelism, so we can 

write multithreaded C code for various costly (in terms of machine time) computations 

and simulations that cannot be vectorized.

© Sulaymon Eshkabilov 2022 
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 Verifying Compilers
Before you start generating MEX files, it’s a good idea to verify which compilers are 

installed in the current MATLAB package. You can do this by typing the following 

command in the command window prompt:

>> mex –setup

Then you follow the instructions to select the appropriate compiler from the list 

of installed compilers. If there is no compiler installed, you need to install the one 

that is compatible with MATLAB to generate MEX files (a list of compatible compilers 

can be found on the MathWorks website: https://www.mathworks.com/support/

requirements/previous- releases.html). Figure 4-1 shows a general flowchart of C/

C++ code generation in MATLAB.

Figure 4-1. Flowchart of code generation in C/C++

Hereafter, we demonstrate several examples of converting M-files into C/C++, 

MEX, and executable stand-alone applications, compiling C code, and testing it in the 

MATLAB environment.

 Generating C Code
This simple example will generate C code in MATLAB to compute the sum of odd 

numbers based on the user’s specified integer number. We first write an M-file and then  

convert it into an MEX file in MATLAB using a code generator application tool called 
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MATLAB Coder.1 This tool is used to generate C and C++ code from MATLAB code 

for a variety of hardware platforms, embedded systems, and desktop platforms. The 

generated code can be integrated in existing programs and projects as source code, 

libraries, and/or dynamic libraries.

Note MatlaB Coder is a separate application that does not come with the base 
MatlaB package and has to be installed separately.

Let’s take this SUModd.m M-file function, which computes the sum of odd integers up 

to the user-specified integer, N.

function SUModd(N)

%#codegen Sum=0; ii=1; while ne(ii,N)

    if ne(mod(ii,2),0) Sum=Sum+ii;

else

    Sum=Sum;

end

ii=ii+1;

end

Sum

Note that the second line of the SUModd.m function is a command (comment), 

%#codegen. It’s recommended that you include this comment in M-files that are subject 

to conversion into MEX files. The conversion of the M-file can be achieved in three ways. 

First, you can use this command:

>> mex SUModd.m

Second, you can type >> coder in the Command window. Finally, you can use the 

MATLAB Coder2 option , which is on the APPS tab in the main menu. When you 

click the MATLAB Coder icon, the GUI window of the MATLAB Coder pops up, as shown 

in Figure 4-2. After this step, the input variable type is defined by clicking the hypertext 

“Let me enter input or global types directly,” as shown in Figure 4-3.

1 MATLAB Coder is a registered trademark of The MathWorks Inc.
2 MATLAB Coder is a registered trademark of The MathWorks Inc.
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In the Define Input Types box, as shown in Figure 4-4, you can input the variable 

type N (single, double, int8, uint8, int16, uint16, … structure, complex number, etc.). 

For this exercise, select a double data format from all values. Note that the selected data 

format should be followed while using the generated *.mex file. Then you select the size 

(1x1, … mxn) for N and click Next.

You then specify the name of the M-file to be converted into C/C++ and MEX in the 

Generate Code for Function box.

Figure 4-3. Click the hypertext “Let me enter input or global types directly”

Figure 4-2. Select None and click Next in the bottom-right corner
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Figure 4-4. Define Input Types box

Note that the selected data format for the input variable should be respected 
while executing the created *.mex file. otherwise, there will be data format errors.

After you press Enter, the MATLAB Coder will automatically generate the MEX file 

with all the source code in *.c and *.h files if there are no issues converting the MATLAB 

functions. You start the code generation process by selecting from the drop-down 

options which source code type you want to generate. In this case, you can choose from 

C/C++, MEX, Static Library (.lib), Dynamic Library (.dll), and Executable (.exe), as 

shown in Figure 4-5. Next, you need to choose in which language—C or C++—you want 

to create the MEX file (see Figure 4-5).
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Figure 4-5. Source code type selection generated in C/C++

Note that these options are operating system and platform dependent. In our case, 

we are working in the Windows OS environment, so these libraries are applicable to the 

Windows OS. Then you select the hardware board type and device vendor—MATLAB 

Host Computer and Production Hardware (see Figure 4-6).
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Figure 4-6. Hardware board type selection options

You can make a few more adjustments in the More Settings area, as shown in 

Figure 4-7.
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Figure 4-7. More Settings option of the Coder’s GUI window tools

If there are no errors or warnings, the C-generated code with the target source code 

will appear (see Figure 4-8). The MEX file can be opened in the MATLAB workspace or 

within any M-file, like any MATLAB function file or M-file would be.
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Figure 4-8. Generated MEX file contents and libraries from the source code called 
SUModd.m

Figure 4-8 shows the successfully generated MEX file called SUModd_mex.c. It is saved 

in the current (working) directory of MATLAB. The successfully generated MEX file, as 

shown in Figure 4-9, is obtained after clicking Next button in the bottom-right corner.
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Figure 4-9. Successfully generated MEX file from the source code called 
SUModd.m

There might be issues linked to the conversion and encoding processes of M-files to 

MEX files, as a number of MATLAB’s functions are incompatible with C. As an example, 

let’s modify the M-file (in our initial M-file called SUModd.m) by including the tic and 

toc MATLAB commands, which compute elapsed time, and then try to re-create the 

MEX file. With these modifications in the M-file, the Coder prompts you with the two 

compatibility issues illustrated in Figure 4-10. After removing the two commands—tic 

and toc—from our M-file and saving the updated version, we re-encode and then obtain 

no warnings, as shown in Figure 4-8.
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Figure 4-10. Two errors/issues occurred with the tic and toc commands while 
converting the M-file to the MEX file

The process of recalling and using MEX files is similar to any M-file. For this example, 

the created MEX file can be recalled as follows:

>> SUModd_mex(N)

In addition, while executing this MEX file, you can also use tic and toc commands 

to compute the elapsed time, e.g.:

  >> tic; SUModd_mex(N), Tcalc = toc;

It also can be recalled within any M-file in a similar way. Note that N is predefined 

in the MATLAB workspace according to the variable type and size used in the MEX file 

during the initial step. One of the most important advantages of MEX files over M-files 

when dealing with for and while loops is their speed, in other words, computation 

efficiency. For instance, from the previous example, we can demonstrate the efficiency of 

the MEX file over its parent M-file.
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% Compare computation efficiency of MATLAB and MEX files clearvars; N=1e+8;

Tmatlab=cputime; SUModd(N), TM=cputime-Tmatlab; fprintf('M-file Comp. Time 

is %5.5f sec \n', TM); clearvars; N=1e+8;

Tmex=cputime; SUModd_mex(N), TMEX=cputime-Tmex; fprintf('MEX-file Comp. 

Time is %5.5f sec \n', TMEX);

The computation (elapsed) time for each file is as follows:

M-file comp. time is 9.26115 sec

MEX file comp. time is 1.06168 sec

So, the computation time of the MEX file is about nine times shorter than the original 

M-file. Also, it must be noted that MEX files take precedence over M-files when the same 

file names exist in both M-files and MEX functions.

Note MeX files take precedence over M-files when the same file names exist in 
both M-files and MeX functions.

Let’s look at another example. Compute the Leibnitz series, an approximation of π/4 

using the sum of series with the following formulation:

 
Error

kk

N k

≅ −
−( )
+=

∑π
4

1

2 10  

The only user entry will be Error margin based on the entry. Write a function file to 

compute the N term value using the previous formulation and create its MEX file.

Here is the function file called Leibnitz.m with a single user entry and two outputs, 

such as the computed Error evolutions and the final N term.

function N = Leibnitz(E0)

S=0;         % Initial value of summation

Error=pi/4;  % Initial Error value

k=0;

while abs(Error)>E0

    p=(-1)^k;

    S=S+p/(2*k+1);
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     Error=pi/4-S; % Accumulates all of the values of the Error from all 

iterations

    k=k+1;

end

N=k;

We follow the previously explained steps that were shown in Figures 4-2 to 4-9. While 

defining input types (Figure 4-4), you can select double as a data format and 1x1 for 

the size of E0 (input argument). After successful implementation of the steps given in 

Figures 4-2 to 4-9, Leibnitz_mex.mex will be created, as shown in Figure 4-11. That can 

be verified by clicking VERIFY CODE in the upper-right corner of the created MATLAB 

Coder window (see Figure 4-11).

Figure 4-11. Successfully generated MEX file contents and libraries from the 
source code called Leibnitz.m

Chapter 4  MeX Files, C/C++, and stand-alone appliCations



312

Now, we test the created *.mex file from the MATLAB Coder window; see Figure 4-12 

using the input entry for an error variable of 0.001.

Figure 4-12. Verifying the successfully generated MEX file

This verification can be also done from the Command window using the same 

command as shown in Figure 4-12.

>> Leibnitz_mex(0.0001)

ans =

        2500

 Creating MEX Files from Other Languages
MEX files can be created from C/C++ or FORTRAN source code as well. That can be 

done with a single command, as shown here:

>> mex HELLO.c

An alternative command is as follows:

>> mex -v HELLO.c

In the latter case, the -v flag displays the compiling and linking process. Note that the 

source code HELLO.c in C (given here) is already created and put in the working directory 

of MATLAB.

#include "mex.h" /* Always include this */

void mexFunction(int nlhs, mxArray *plhs[], /* Output variables */ int 

nrhs, const mxArray *prhs[]) /* Input variables */
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{

    /* Do something interesting or fun */

mexPrintf("Hello WORLD:)...:), This is SALOMON ... world!\n"); return;

}

The created MEX file, called HELLO_mex.mexw64 from the source code HELLO.c, can 

be executed by recalling it in the Command window:

>> HELLO_mex

That command outputs the following:

>> Hello WORLD:)...:), This is SALOMON ... world!

Note that the file extension of the MEX files, either mexw32 or mexw64, indicates which 

processor type (OS system) is running on the user computer.

Here, we have covered the generic procedures for creating MEX files; however, 

the exact procedures are system dependent. In other words, they depend on which 

operating system is installed, which MATLAB version and compilers are installed and 

used, and so forth. Thus, it is necessary to recompile MEX files for every platform. One 

of the most essential challenges in developing MEX files is the problem statement that 

should be in vector form. If it’s not, then the created MEX application will be rather slow.

 Building Stand-Alone Applications
Stand-alone applications can be installed and run on machines/computers that 

don’t have the MATLAB package. To compile/create a stand-alone application from 

a MATLAB code/script, the MATLAB Application Compiler is required along with the 

MATLAB package. Generating stand-alone applications from existing MATLAB scripts 

is a straightforward process. It can be accomplished in several ways. You can run this 

command:

>> mcc

Or you can use the MATLAB Application Compiler with GUI tools, which can be 

accessed by choosing the APPS tab and selecting APPLICATION DEPLOYMENT ➤ 

MATLAB Application Compiler .
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When you click the   icon, the MATLAB Application Compiler’s GUI window will 

open, as shown in Figure 4-13. You can perform the following actions shown in 

Figure 4-13: (1) You can add a main filename (M-file) by clicking the add + button. (2) 

You may also need to add information, such as the application’s name, author’s name, 

email, company, summary, description, and so forth, to the application. (3) You can 

add/change the custom splash screen by clicking the placeholder and adding a photo/

screenshot.

Figure 4-13. MATLAB Compiler’s stand-alone application GUI developer

(4) You can also adjust settings, such as any additional parameters passed to the 

MATLAB Compiler, the location of the output folders for test and end user files, and 

the package installers via the Settings icon. (5) After you add a filename in step 1 to 

create the executable stand-alone application, the Package icon will become active (see 

Figure 4-14).

Note that in this example, you are using the function file called QUAD_eqn_SIM.m (the 

GUI model created in Chapter 3) to generate a stand-alone application. Moreover, you 

have added some information about the project and added a photo for the custom 

splash screen. After completing all of these steps, you click the   icon and indicate 

where to save the stand-alone application project.

The process of creating the stand-alone application then starts, as shown in 

Figure 4-14.
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This may take a few minutes depending on the complexity of the original M-file and 

whether it also calls/uses other M-files and data (.mat files), uses GUI tools, and so forth. 

If no problematic issues or errors are encountered during the packaging process of a 

stand-alone application, the new application will be created and packaged in three 

folders—for_redistribution, for_redistribution_files_only, and for_testing—

and in one log file called PackagingLog.txt. These are generated automatically by the 

compiler. To verify the generated stand-alone application, we open the folder called 

for_testing (or click the hyperlinked Open Output folder), and within this folder, we 

run QUAD_eqn_SIM.prj  by clicking it.

Note When the packaging/compiling process of the stand-alone application 
is completed, there will be three folders—for_redistribution, for_
redistribution_files_only, and for_testing—and one log file called 
PackagingLog.txt. these are generated automatically by the MatliB 
application compiler.

Figure 4-14. Note indicating successful completion of the compiled stand-alone 
application project QUAD_eqn_SIM.prj
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The created stand-alone application opens, as shown in Figure 4-15. Now it can be 

tested with some entries.

Figure 4-15. Complete stand-alone application

You can test your newly created application with the entries—a = 2, b = 7, and c = 3—

and plot for Xmin = -5 and Xmax = 5. Figure 4-16 shows the results. So now this stand- 

alone application can be installed on any computer, and it works without the MATLAB 

package. The installation package of the stand-alone application is one executable 

file, called MyAppinstaller_web.exe. This *.exe file resides inside the folder called 

for_redistribution. This application can be installed by double-clicking this *.exe 

file on any computer. It runs without the MATLAB packages seamlessly, as shown in 

Figure 4-17. You simply select the folder where you want to install the application and 

follow several other standard steps for installation of software packages. Note that this 

installation process may take a few minutes.
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Figure 4-16. Complete stand-alone application with simulation results
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Figure 4-17. QUAD_eqn_SIM stand-alone application installation process

Once the stand-alone application is installed, it appears in the program’s list of 

computers and can be launched like any other program, by clicking it or using its 

shortcut icon.

Note the only installation *.exe (called MyAppinstaller_web.exe) resides 
inside the folder called for_redistribution. it’s the only file required to install 
the developed application on any machine.

 Summary
Note that, like MEX files, stand-alone applications are also system dependent. In other 

words, if we create a stand-alone application on a 64-bit processor OS computer in 

MATLAB, it can be run only on 64-bit processor OS system computers. Thus, for each 

system type, we have to recompile the stand-alone application. In addition, it must be 

noted that in MATLAB, there are many functions and tools within various toolboxes, 
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and if we employ specific functions or tools from various toolboxes of MATLAB and/

or packages and intend to create a stand-alone application, the MATLAB compiler may 

fail to package these applications for obvious reasons. On the other hand, it is viable 

to create stand-alone applications from GUI models with some limitations based on 

MATLAB’s incompatibility with those stand-alone applications.

 Exercises for Self-Testing
 Exercise 1
Use the umbilic torus function defined here:
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for −π ≤ u ≤ π, −π ≤ v ≤ π.

Create a function file called umbilic_torus.m to compute x, y, z for inputs of u and v 

and create an .mex file from it.

 Exercise 2
Create a function file called My_fun.m to compute the values of f(t) = esin(250t) + 2.5 cos (750t) for 

the user-specified values of t = tmin : dt : tmax, and create an .mex file from it.

 Exercise 3
Write some C code called Say_HELLO.c to display the next words:

Hello World!

This is Great DAY!

Live and Learn…
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Create an .mex file from the C code called Say_HELLO.c and test it in the MATLAB 

workspace.

 Exercise 4
Create a stand-alone application from SINCfun.m created in Chapter 3 to compute and 

plot the values of f t
sin t

t
( ) = ( )π

π
 for the user-specified values of t = tmin : dt : tmax.

 Exercise 5
Create a stand-alone application to compute the Fibonacci sequence of numbers 

according to a user-entered number of elements up to 50 terms and display the found 

results.
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CHAPTER 5

Simulink Modeling 
Essentials
Simulink1 is the graphical programming package that works in association with 

MATLAB and interacts with it as one combined package. It is employed for modeling, 

simulating, and analyzing dynamic systems, control algorithm development, and so 

forth. It supports linear and nonlinear systems, continuous and discrete systems, and 

multirate systems. With Simulink, you can model myriad types of systems, processes, 

and problems, and you can use top-down and bottom-up approaches.

The Simulink package, like MATLAB, is expandable. By using its standard blocks, you 

can develop your own library of blocks and subsystems and add to and expand existing 

Simulink libraries. In your Simulink models, you can combine continuous systems with 

discrete ones. One of the main advantages of using the package from a user’s perspective 

is that it is much easier to model systems via block diagrams because it doesn’t require 

any preliminary programming skills or experience from users. In Simulink, you simply 

drag, drop, and connect blocks, and of course, adjust parameters, solvers, and other 

components in the model. Another advantage of the Simulink package is that its models 

can work interactively with MATLAB and can be manipulated and executed from the 

MATLAB Command window and the M/MLX-files and function files.

 Simulink Modeling
To launch the package from MATLAB, you just type >> simulink in the Command 

window, click the Simulink icon   in the menu panel, or click   and   Simulink Model 

icons. The window in Figure 5-1 will pop up. From the Simulink startup window, you can 

1 Simulink is a registered trademark of MathWorks Inc.

© Sulaymon Eshkabilov 2022 
S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_5
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open existing models (recently worked on ones) from the right-side pane (Open) or 

create a new model by clicking Blank Model or the other options there. Also, from the 

Examples tab, users can open, study, and change existing examples. There are dozens of 

examples from different areas of engineering, physics, computing, image processing, 

code generation, and so forth.

Figure 5-1. Simulink’s startup window

Figure 5-1 shows the default startup window of the Simulink package. Note that 

Simulink is a stand-alone package, and there are a few toolboxes and add-ons (see 

Figure 5-2) that can be installed. All of the blocks of the additional libraries and add-ons 

will be accessible once they’re installed from the Simulink Library browser.
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Figure 5-2. Simulink’s startup window and additional toolboxes installed in it

 Example: Arithmetic Calculations
Let’s look at a simple example to demonstrate how to build a Simulink model that 

computes the addition, multiplication, and subtraction of four different scalar numbers. 

The complete model is shown in Figure 5-3. It’s composed of Constant, Gain, Sum, and 

Display blocks. The scalars entered in constant blocks are 13, 22, 3i/2, and 5 . When 

this model is executed, it displays its computed results in the Display block. Note that all 

of the blocks employed in this model are available in the Simulink Library.
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Figure 5-3. Complete Simulink model example with arithmetic calculations

To open a blank model, click Blank Model, as shown in Figure 5-1. Note that a blank 

model can also be opened from the already opened Simulink window by clicking   

or by pressing Ctrl+N on the keyboard. After clicking the Blank Model icon (see 

Figure 5-1), the model shown in Figure 5-4 opens. This is called untitled.slx by default, 

just like MATLAB’s M/MLX-files.
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Figure 5-4. New Simulink model window (untitled by default)

From the opened blank model window, click  (the Simulink Library icon). That 

will open a Simulink Library window, as shown in Figure 5-5. It must be noted that the 

toolboxes that are available in the library are defined by which toolboxes are installed 

and which user developed/created custom libraries are installed. If necessary, you can 

also create a new blank model by clicking the New Model icon  in the Library 

Browser (see Figure 5-5). This also creates a blank model window.

The Simulink Library (see Figure 5-5) looks different in different versions, but most of 

its general blocks function using the same principles. In this regard, it is worth pointing 

out that the package has been developed and subject to constant improvement with novel 

add-ons/blocks, and therefore, the models created in recent versions of Simulink are not 

fully compatible with its older versions. All of models are forward compatible; in other 

words, models created in older versions of Simulink work in later versions of the package.
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Figure 5-5. Simulink Library browser

Let’s build a new model where you drag and drop all the necessary blocks from 

the library. Dragging and dropping a block into a new model area is the most common 

practice in Simulink-based modeling or programming; however, in recent versions 

of Simulink (starting from MATLAB/Simulink 2018a), there is an alternative way of 

obtaining blocks within a model area. It is also possible to obtain any block by double- 

clicking a desired spot of the model area. For example, if you want to use an Input block, 

you can double-click and type in the Create Annotation search box. The prompt drop- 

down options will appear, as shown in Figure 5-6. From the drop-down option, you can 

select the desired block name. There is another optional step to specify the port number 

in this case. For other blocks, this option differs.
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Figure 5-6. Creating/obtaining blocks within the model area by using the 
annotation option

Once all of the necessary blocks are placed in the model area, they need to be 

connected. There are two ways to connect blocks in the Simulink model window. You 

can connect a block in the blank model window by clicking the left mouse button and 

holding the Ctrl key on the keyboard. You then click another block to connect the two. 

An alternative way to link blocks or connect signals in between blocks is to drag a signal 

arrow (see Figure 5-7) to the block you want to connect.

Figure 5-7. Connecting blocks

Some blocks have input and output ports, some have only input ports, and others 

have only output ports. You can only connect signals from their output port to another 

block’s input port. In other words, it is not possible to connect signals from output port 

to output port or input to input.

Note Blocks can be resized easily. You click the block to be resized and drag it 
from one of the four corners of the rectangular boundary around the block.

Before you start working with Simulink modeling, you must adjust one tool to ease 

the process of working with the library of blocks. To keep the Simulink Library on top of 

all the model windows, the  icon must be clicked to a position of “on top,” which looks 

like this: . This is done with a single click.
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Note to keep the Simulink library on top of all the windows, including the model 
window, click the “stay on top”  icon.

Moreover, at the beginning you need to work within the Simulink Library. That 

can be accessed by clicking the + before Simulink. The Simulink Library contains a 

number of block sets grouped into Commonly Used Blocks, Continuous, Dashboard, 

Discontinuities, Discrete, Logic, and Bit Operations. Let’s look at several examples to 

explore the modeling tools and aspects in the Simulink environment.

 Example: Modeling Simple Arithmetic Operations
Let’s compute simple arithmetic operations using these +, -, /, *,  , etc., operators to 

compute this 13 + 22 * 5.3 -(3i / 2 + 5 ) and display the result.

To model these arithmetic computations of the exercise, you need the following 

Simulink/Commonly Used Blocks from the Library: four Constant blocks, three Sum 

blocks, one Gain block, and one Display block from Simulink/Sinks to output the 

computation results.

 1. Drag and drop all of these blocks in the model area.

 2. All of the Constant blocks’ constant values must be changed 

according to the given task (13, 22, 3i/2, 5 )—see Figure 5-8. 

Similarly, add one Gain block (for 5.3) by double-clicking each 

block, one after another (see Figure 5-9).

 3. Link a Constant block called Constant (13) to a Sum block with the 

+ sign. You do this by clicking the block and holding the Ctrl key 

on the keyboard. Then you click a Sum block.

 4. Link a Constant block called Constant1 (22) to a Gain block, which 

is linked to the Sum block with the + sign, as shown in Figure 5-6.
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 5. Link a Constant block called Constant2 (3i/2) to a second Sum 

block. This rectangular shape can be changed by double-clicking 

a Sum block with the + sign. Similarly, to this Sum block, the 

Constant block called Constant3 ( 5 ) is linked using a + sign.

 6. Connect two Sum blocks to a third Sum block with the + 

and –signs. Subsequently, link the third Sum block to the 

Display block.

Note any block can be copied numerous times by holding Ctrl and clicking the 
block and then dragging the block over any spot in a model space. this method is 
faster and more efficient than dragging the same block from the library.

Figure 5-8. Blocks
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Figure 5-9. Altering the Sum block’s signs and icon shape

That completes our simple computation Simulink model.

This model is saved with the filename of Ex1_Arithmetic_operations.mdl.

Note in the latest versions of Simulink, models can be saved either in *.mdl 
(backward-compatible file format) or in *.slx (supported in later versions). any 
Simulink model can be exported to previous versions via File ➤ export model to ➤ 
previous version. For the “Save as type” option, you select the appropriate version 
from the drop-down.

To see the computation results, click the Run button  or press the Ctrl+T keys on 

the keyboard. The results are displayed in the Display block. Figure 5-10 shows the 

complete model.
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Figure 5-10. Completed Simulink model called Ex1_Arithmetic_operations.mdl

Note to view a full-screen model, just press the spacebar on the keyboard. to 
zoom in and out, press the Ctrl++ and Ctrl+- keys (in later versions) on the 

keyboard, or click  to get a Fit view. You can also use  to zoom in.

Note that you type in 5  as a value of the Constant block called Constant3 by 

sqrt(5) and 3i/2 as 3i/2 since Simulink (like MATLAB) recognizes imaginary numbers 

via the letters i and j automatically. Any Simulink model can be simulated/executed 

from MATLAB via the workspace or within any M-file using the sim() command. The 

simulated model must reside in the current working directory. For instance, you can run 

the previous model with this command:

>> sim('Ex1_Arithmetic_operations.mdl')

Note You can alter the name of any block by clicking its name tag. You can alter 
the properties and parameters of any block by opening the property window (by 
double-clicking it) and inserting the necessary changes or selecting necessary 
options. For instance, in a display block, you can format the data as short, long, 
short_e, long_e, hex, etc.
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 Performing Matrix Operations
Let’s build a Simulink model that performs the following matrix operations:
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Figure 5-11 shows the complete model. The model performs matrix operations, such 

as inverse, square root, transpose, sum, and division by a scalar (real and imaginary 

numbers). The following matrix operations (transpose and inverse) are performed by 

employing the Interpreted MATLAB Function block:
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Math Function and Product of Elements blocks are compared with the computed 

results and shown via Display blocks.

Figure 5-11. The complete model: example 2, matrix operations
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To model this exercise, follow these steps:

 1. For this model, you need two Constant blocks, four Gain blocks, 

five Display blocks, an Add block from the Simulink/Commonly 

Used Blocks library, two Sqrt blocks, one Math Function 

block, one Product of Elements block from the Simulink/Math 

Operations library, and two MATLAB Interpreted Function from 

the Simulink/User- Defined Functions (see Figure 5-12).

 2. Enter the elements of two matrices into two Constant blocks as  

[3 2.5j; 2j 3.2] (see Figure 5-13) and [-3i 2.2; 2.5 5.4]. 

These will be connected with two separate Math Function blocks, 

one of which is Math Function (transpose of a matrix) and the 

other is Product of Elements (inverse of a matrix). These two 

blocks are edited accordingly; for instance, to obtain a transpose 

operator of the Math Function block, a Function type is chosen 

to be a transpose from drop-down options. In the Product of 

Elements block, the “number of inputs” option is changed to be 

a division (/), and the multiplication option is selected to be a 

matrix(*) multiplication.

 3. Link the Math Function (transpose) block to the Gain block (1/5), 

which is subsequently linked to the Sum block. The Product of 

Elements block is connected to the Sqrt block, which is linked to 

the Gain block ( 3 3. i ). Finally, signals from the Gain block (1/5) 

and the Gain block ( 3 3. i ) are connected with the Sum block (see 

Figure 5-13), which is linked to the Display block.
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Figure 5-12. All blocks necessary for this model

Figure 5-13. Inputting matrix elements into the Constant block’s constant value
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Note In Simulink modeling, you can attain the same results by altering the 

properties and parameters of blocks. For instance, matrix inverse can be obtained 

by inserting the MATLAB function called inv(u) in the interpreted MATLAB 

Function block.

Matrix transpose is obtained from the Math Function block’s options, as shown in 

Figure 5-14.

Figure 5-14. Selecting the Function type in the Math Function block

Chapter 5  Simulink modeling eSSentialS



336

Figure 5-15. All blocks with adjusted options and entered values/elements

Note that there are two ways to obtain the inverse of matrices demonstrated in the 

completed model, as shown in Figure 5-16. By running the completed model, you can 

see that the results in both matrix inverse operations are the same. Note that the Display 

block is resized to show all calculation results.
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Figure 5-16. Complete matrix operations and Simulink model called Ex2 
MATRIX_operations.slx

Note there are two file formats used to save Simulink models—*.mdl and 
*.slx. the latter model type is supported in later versions (starting with matlaB 
2010) of the Simulink package, and the former format can be opened and 
simulated by most versions, depending on the blocks used. Via a model export 
option, you can save models in the previous versions of Simulink.

There are a few new blocks with different properties included in later versions of 

the Simulink package. Therefore, the models developed by employing such new blocks 

cannot be simulated by earlier versions of the package.

 Computing Values of Functions
In this section, you learn how to compute values of the following math functions, save 

the computation results in a separate *.mat file and MATLAB workspace simultaneously, 

and display them in a plot figure. Given H(t) = esinc(t) + esin (250t), t =  − 3π…3π, ∆t = π/3000.
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There are several ways to build a computation model of the given example. Let’s 

start with a simple and straightforward way. You first take the necessary blocks from 

the Simulink Library, like the previous two examples. For that, you need the following 

blocks: Clock, Scope, Math Function, Gain, Trigonometric Function, To File, and Add 

To Workspace. These are from Simulink/Sources, Simulink/Math Operations, Simulink/

Sinks, and Simulink/User-Defined Functions, respectively. The modeling process starts 

with dragging all of the blocks from the Simulink Library and connecting them in the 

order of Clock+Interpreted MATLAB Function+Math Function1+Add+Scope2+To File 

and Clock+Trigonometric Function+Math Function+Scope1+Add+To Workspace. 

Figure 5-17 shows the completed model that is saved under the file name Ex3_Function_

Compute.slx.

Figure 5-17. The complete simulation model called Ex3_Function_Compute.slx

This completed model, as it is, cannot be executed because the properties and 

parameters of several blocks used in the model need to be fixed according to the given 

tasks of this exercise.

For instance, the simulation period should be in the range of t = − 3π…3π with the 

time interval of ∆t = π/300. The MATLAB function of the block Interpreted MATLAB 

Function must be altered to sinc(). Two optional editing points—the To File and To 

Workspace blocks—should be renamed as external *.mat files, and a variable should be 

saved in the workspace in structure format.

You can start adjusting the simulation time interval and the time step via the Model 

Configuration Parameters (see Figure 5-18). They can be accessed by clicking the  

icon or by pressing the Ctrl+E keys on the keyboard. Insert the start time of -3*pi and the 
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stop time of 3*pi, and change the solver type to a fixed-step from the variable step that is 

chosen by default. In addition, in the Solver options, you should set Type to Fixed-step 

and, in the Additional options, a fixed-step size (fundamental sample time) of pi/3000. 

See Chapter 8 for a more detailed explanation on solvers and how to choose their types 

and parameters, including solver algorithm, step size, relative error, and absolute error 

tolerances.

Figure 5-18. Adjusting the configuration parameters

Note For many models, the accuracy of the simulation results depends on the 
chosen solver type and step size.
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Also, before proceeding with the simulations, you need to make the following 

adjustments to the model:

 1. The MATLAB function of the Interpreted MATLAB Function block 

should be sinc(u). Note that the input variable name u is defined 

by default.

 2. In both MATH Function blocks, a Function type (from the drop-

down options) of exp function should be used (it’s the default).

 3. In the Gain block, the Gain value should be 250 to obtain 250*t.

 4. In the Trigonometric function, make it the sin function by default.

 5. Even though this step is optional, rename the output file Output_ 

Data.mat and the output variable by output saved in the MATLAB 

workspace.

Note When you’re saving the computation results via an output file in *.mat 
format and an output variable, there are several options (formats) to save  
data—time-Series, array, Structure, and Structure with time series.

After making all these adjustments, the model should look like Figure 5-19.

Figure 5-19. Finalized model with all necessary adjustments and tunings

Finally, you can simulate the Ex3_Function_Compute.slx model by pressing Ctrl+T 

on the keyboard or clicking the Run button. You can view the simulation results by 

double-clicking the Scope block. Figure 5-20 shows the simulation results, plotted in the 

Scope block.
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Figure 5-20. Simulation results

Note in the Scope display, the simulation results can be zoomed in or out 
proportionally, horizontally, and vertically. they can also be auto-zoomed in or out, 
all by using the , , ,  tools.

The simulation results, shown in Figure 5-20, are not coherent with the set 

simulation period that is set to be within -3*pi ... 3*pi. The problem is in the Scope 

block’s Time display offset, which is set to 0 by default. The time offset needs to be set to  

-3*pi, which can be fixed via the Configuration properties of Scope. The Configuration 

properties of Scope can be accessed by clicking the  icon from its drop-down options 

of  Configuration Properties. After opening the Configuration Properties, click the 

Time tab and enter -3*pi for “Time display offset.” Subsequently, click Apply and OK 
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(see Figure 5-21) and you’ll obtain a correct display of the results in Scope, as shown in 

Figure 5-22. In addition, the simulation results displayed in the scope can be saved as a 

variable in the format of structure with time series, array, or structure. You do this by 

selecting the Log Data to Workspace option on the Logging tab (see Figure 5-21).

Moreover, the Scope block has many graphical display options that can be accessed 

via the  drop-down options, by clicking Style . Via the Style  options, you can 

adjust the figure color, axes colors, lines, and markers. See Figure 5-22.

Figure 5-21. Setting up the Time display offset at -3*pi in Configuration 
Properties: Scope
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Figure 5-22. A complete view of the simulation results

To improve the readability and manageability of large and complex Simulink models, 

a whole model or part of a model can be associated in one Subsystem block.

It is easy and straightforward to create subsystems from existing models. The easiest 

way to create subsystems from existing models is to select the blocks (interlinked ones) 

by holding the left mouse button and dragging the cursor over the desired blocks and 

then pressing Ctrl+G on the keyboard. To create one subsystem out of a whole model, 

press Ctrl+A first and then Ctrl+G on the keyboard.

Let’s look at the complete model (see Figure 5-19) and create a subsystem out of the 

whole model, excluding the Input signal to Clock and the Output signal to blocks—To 

File, Scope, and To Workspace. You first select the model blocks except for the Input 

block and all the Output blocks, by using the left mouse button, and then press Ctrl+G 

on the keyboard. The subsystem is created from the selected blocks of the model, as 

shown in Figure 5-23. To have access to what is under the created subsystem, you need 

to double-click it. See Figure 5-24.
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Figure 5-23. Subsystem created out of the completed model (Figure 5-19), 
excluding Input and Output blocks

Figure 5-24. The created subsystem components

Note that this subsystem in Figure 5-24 has one input block called In1 and one 

output block called Out1. They are linked with the Input block, Clock, and Output 

blocks—To File, Scope, To Workspace—to receive and send signals, respectively.

Note that if you create a subsystem from the whole model (see Figure 5-19) excluding 

only the Input block, then the subsystem will contain only one input block, called In1. 

If you create a subsystem from the whole model (see Figure 5-19) excluding the output 
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blocks—To File, Scope, To Workspace—then it will contain one output block Out1. If you 

create a subsystem from the whole model including all blocks, as well as the Input and 

Output blocks, the created subsystem does not contain any input and output blocks.

The completed model can be simplified. In other words, the number of 

blocks used in this model can be reduced by employing the Interpreted MATLAB 

Function block with appropriately edited function formulation expressed by 

exp(sinc(u))+exp(sin(250*u)) and adjusting Scope parameters that save simulation 

results in the MATLAB workspace as a structure with time series. Figure 5-25, together 

with the subsystem created from the model in Figure 5-23, produces the same results as 

the subsystem in Figure 5-19.

Figure 5-25. Simplified model Ex3_Function_Compute_Simple.slx

 Input/Output Signals from/to the MATLAB Workspace
As stated, the Simulink model works interactively and flawlessly with the MATLAB 

workspace. For model development and simulation purposes, input signals can be 

generated in the MATLAB workspace or within an M-file and then transferred to the 

Simulink model environment. Similarly, all final simulation results of Simulink models 

can be sent to the MATLAB workspace. To have an input signal loaded from the MATLAB 
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workspace and an output signal (simulation results) sent back to the MATLAB workspace 

at the same time, you use input and output blocks and adjust the model configuration 

parameters , which can be accessed by clicking the  icon from the menu panel 

or pressing Ctrl+E on the keyboard. In the previous example shown in Figure 5-25 

(simplified part is considered), we substitute the input signal Clock block with In1 (the 

Input block) and the Scope block with Out1 (the Output block); see Figure 5-26.

Figure 5-26. Ex3_Function_Compute_In_Out.slx model with Input/Output from/
to MATLAB workspace

In addition, the Input and Output signal options in the model configuration 

parameters  are checked (see Figure 5-27) for input as t, u, and for output as tout 

and yout, respectively. Note that before starting the simulation, you must define the 

input signal in the form of t, u in the MATLAB workspace as two column vectors. That 

can be done for this example as follows:

>> t=[-3*pi:pi/3000:3*pi]'; u=t;

In this example, the input signal is defined by time only, and thus, t = u. Moreover, 

we make several adjustments (Start time: -3*pi; End time: 3*pi; Type: Fixed-step; Fixed- 

step size (fundamental sample time): pi/3000) in the Solver options of this model via the 

Configuration Parameters window, as shown in the example in Figure 5-18.
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Figure 5-27. Configuration parameters changed to load an input signal from the 
workspace and export an output signal back to the workspace

In addition, we can add the Scope block to the model by clicking the signal going to 

the Out1 block and using the right-click options (Create & Connect Viewer ➤ Simulink 

➤ Scope), as shown in Figure 5-28 (top). After selecting Scope, the scope sign shows up 

on top of the signal going to the Out1 block, as in Figure 5-28 (bottom).
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Figure 5-28. Adding a Scope block to a signal

In addition, make one important adjustment (Time display offset: -3*pi) in the 

Scope block to make it display the whole simulation results completely, as demonstrated 

in the example and shown in Figure 5-21. Now, you save the model (Ex3 Function_ 

compute_In_Out.slx) and simulate it after entering this in the MATLAB workspace:

>> t=[-3*pi:pi/3000:3*pi]̍; u=t;
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After simulating the three alternative models, Ex3 Function_compute.slx, 

Ex3_Function_Compute_Simple.slx, and Ex3_Function_Compute_In_Out.slx, the 

simulation results are identical. Via these examples, you have seen how easily one block 

can be substituted for another, how easily subsystems can be created from the existing 

models by associating parts of interconnected blocks, and how models can be simplified 

by reducing the number of blocks used in them.

 Simulating a Mechanical System
Let’s consider a mechanical spring-mass-damper system with Newtonian friction that is 

formulated by the following differential equation:

 mx t b sign x x t kx t f t
¨

� � � � � � � � � � � � � � 

2  

Let’s treat the given model of the system as continuous and discrete systems in 

order to demonstrate how to model and simulate such system in Simulink. Note that 

solving and simulating differential equations via Simulink modeling is explained more in 

Chapter 8. Here, we put more emphasis on model building, adjusting block parameters, 

and interacting Simulink with MATLAB. Moreover, we address the issues of modeling 

continuous and discrete systems and of creating subsystems.

Given m = 0.52; b = 0.00525; k = 165.5; f (t ) = Acos(ωt ); ω = 131;

A = 2.3 and all initial conditions are “zero.” The sampling time is ts = 0.01. The 

parameters of the system are m for mass, b for the damping coefficient, k for stiffness, 

f(t) for the input force, A for magnitude, and ω for frequency.

 1. Collect all the necessary blocks from the Simulink Library 

by dragging and dropping them in a Blank Model window. 

Figure 5-29 shows the required blocks, taken from Simulink/Math 

Operations, Continuous, Discrete, Sources, Signal Routing, and 

Sinks. Also, the Bus collector block is taken from Simulink/Signal 

Routing.
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Figure 5-29. Necessary the blocks for continuous and discrete systems

 2. Adjust the blocks in a more readable order by moving them 

around and rotating some of them by 180 degrees. The Product, 

Sign, and Gain blocks need to be rotated. You can do that by 

selecting a block and pressing the Ctrl+R keys on the keyboard 

or using the right mouse button’s Rotate & Flip options. See 

Figure 5-30.
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Figure 5-30. Adjusted blocks

 3. Adjust the parameters of the blocks. First adjust the amplitude, 

frequency, and sampling time for the Sine Wave and Sine Wave1 

blocks, which are input signals (see Figure 5-31). Note that for Sine 

Wave1, the sampling time is set to 0 because by default it is used 

for continuous system modeling.
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Figure 5-31. Adjusting Sine Wave block’s parameters

 4. Note how the sine wave sign in the Sine Wave block has changed 

from a smooth curve to a stairs curve when Sample time is set to 

be 0.01. Change the Gain values for Gain and Gain3 to 1/m, for 

Gain1 and Gain4 to b, and for Gain2 and Gain5 to k. Also, change 

the signs in the Add and Add1 blocks to -+-.

 5. All blocks are connected, and complete models are attained. Two 

signals coming from the Discrete Time Integrator1 and Integrator1 

are connected to the Bus Creator block that subsequently is 

connected to the Scope block. In addition, two notations are 

added: Discrete System and Continuous System; see Figure 5-32. 

The complete model is saved (Ex4_Discrete_Continuous_

Sys.slx).
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Figure 5-32. Complete models of discrete and continuous systems

 6. You can execute these models by pressing the Ctrl+T keys on the 

keyboard or pressing the Run button.

Now the completed models (Ex4_Discrete_Continuous_Sys.slx) seem to be ready 

for simulation. However, if we execute them, error message windows will be launched, 

and no results will be attained. The reason for that is the values of three parameters—m, 

k, b—are not defined yet. You can define them in several different ways, one of which is 

to specify the values of the parameters in each block or in the MATLAB workspace. You 

can also specify this information in the Model properties/Callback/InitFcn, which can 

be accessed via File ➤ Model Properties. Enter the following in the Command window: 

>> m=0.52; k=155; b=.00144.

Subsequently, click the  Run button in the Simulink model window. You can 

change the Scope block’s Style settings (via  drop-down options ➤ Style ) and 

obtain the results of the simulation displayed in the Scope block; see Figure 5-33.
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Figure 5-33. Simulation results

From the simulation results, you can see that one of the systems (the discrete one) is 

not stable and should be fixed. The problem with this discrete system modeling resides 

in the sampling time, which has to be adjusted. That can easily be fixed from the input 

signal block, i.e., the Sine Wave. In this block’s sample, the time value is changed from 

0.01 to 0.0001, which is 100 times smaller than initially set.

Note if the sample time is set to -1 in a discrete integrator block, that makes the 
sample time be inherited automatically from an input signal source.

In addition to making the plot in the Scope more readable with legends displayed for 

the discrete and continuous system models, let’s check the Legends option of the Scope 

block’s properties . Second, click the signal going from Discrete-Time Integrator1 to 

Bus Creator and use the right mouse button’s option to access Properties (Signal 

Properties). There, you specify the signal name to be Discrete Sys and then click 

OK. Similarly, change the signal name for the signal going from Integrator1 to Bus 

Creator and name the signal Continuous Sys. Then click OK, as shown in Figure 5-34.
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Figure 5-34. Signal name change

After these three changes, the whole model runs, and the next result is obtained, as 

shown in Figure 5-35. Note that it is a zoomed-in view along the horizontal axis.

Figure 5-35. Simulation results displayed in Scope with its adjusted properties

Chapter 5  Simulink modeling eSSentialS



356

You have completed and verified the system models that can be simplified by using 

a subsystem option, as shown in the previous example (see Figure 5-25; Ex3_Function_ 

Compute_Simple.slx). Any system containing more than two blocks can be simplified 

or rather substituted by employing a subsystem block. There are several ways to create 

subsystems from system models. The easiest way is to select model blocks meant to be 

under one subsystem and then use the right mouse button options of Create Subsystem 

from Selection or press Ctrl+G on the keyboard. You create the two subsystems 

(Subsystem and Subsystem1) from the discrete and continuous system models (see 

Figure 5-36).

Figure 5-36. The model containing two subsystem models

A model under any subsystem can be accessed by double-clicking it. The subsystem 

representing the discrete system contains the model shown in Figure 5-37.

Chapter 5  Simulink modeling eSSentialS



357

Figure 5-37. Subsystem composed of this model

Also, it is possible to reverse the process of subsystems by clicking a subsystem block 

and using the right mouse button option of Subsystem & Model Reference ➤ Expand 

Subsystem. You can also do this by pressing the Ctrl+Shift+G buttons after clicking a 

subsystem block.

In this exercise, you learned how to build discrete and continuous systems and how 

Simulink handles such composition of systems, but you have not made any adjustments 

to solver parameters. The accuracy and efficiency of simulation processes can be 

improved by adjusting solver type (variable step solver selected by default or fixed step 

solver) and parameter settings (solver, error tolerances, solver algorithm, step size if 

fixed step solver chosen, zero-crossings, and so forth).

 Working with a Second-Order Differential Equation
Now let’s build a Simulink model of the given system expressed by the second-order 

differential equation A t Bq t Cq t F tq � � � � � � � � � � � , where F(t) is applied force (input 

signal to the system) associated with the MATLAB’s function file. F(t) is a rectangular 

pulse approximated by the Fourier series F t Amp n n t
n

N

� � � �
�
�

�
�
� � � �� � � �

�
�
1

1
�

� �cos sin ,  which 

is implemented in MATLAB via the function_pulse.m function file:

function F=function_pulse(t, Amp, n)

% HELP. Two input arguments, viz. t, Amp, and n are needed for
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% simulation, where t is time vector, Amp is amplitude of a pulse and n % 

number of approximation terms in Fourier series.

F(1,:)=(Amp/pi)*(1-cos(pi))*sin(pi*t); for ii=2:n

     F=F+(Amp/(ii*pi))*(1-cos(ii*pi))*sin(ii*pi*t);

end

Let’s build a Simulink model associated with the function file function_pulse.m. 

Moreover, you’ll employ Simulink blocks—Repeating Sequence and Signal Generator— 

to generate a rectangular pulse signal. You’ll explore the options with MATLAB- 

associated function files and Simulink blocks for input signal generation. In addition, 

you’ll explore a few key Simulink modeling tools and aides, such as the model explorer, 

model advisor, code generation in C/C++, report generation, and so forth. For numerical 

simulations, the following values are used: A = 2; B = 4; C = 200; Amp = 10; n = 25.

Figure 5-38 shows the complete model of this exercise. It associates the given 

function file called function_pulse.m via the Interpreted MATLAB Fcn block. The input 

signal F(t) rectangular pulses are generated via two ways—one Interpreted MATLAB Fcn 

with three input variables (Amp, n, t) and a signal generator with two inputs (amp and 

frequency). You can compare the simulation results from the two input signal sources, 

i.e., the MATLAB associated input signal generation (pulse_function.m embedded 

via Interpreted MATLAB Fcn) versus Simulink Library block (the signal generator). 

Moreover, you’ll see how to use Simulink’s Model properties to enter the model 

parameters, such as Amp, n, A, B, C, and how to use Multiport Switch block.

Figure 5-38. Complete model of the second-order ODE: A t Bq t Cq t F tq � � � � � � � � � � �
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The necessary blocks to model the given exercise are Add, Gain, Integrator, Bus 

Creator, and Scope, which you can drag and drop to a Blank Model window. The blocks 

are connected, as shown in Figure 5-38. Note that the three signals connected with Bus 

Creator and Scope blocks are called Input, dq(t), and q(t), and they represent input 

signal, pulse, velocity, and displacement. This is displayed via legends in the Scope 

block plot.

The function file (called function_pulse.m) is associated via the Interpreted 

MATLAB Fcn block with the Simulink model (see Figure 5-38). Interpreted MATLAB Fcn 

is modified to call the MATLAB function: function_pulse(u(1), u(2), u(3)), where 

u(1) calls the time signal, u(2) calls the amplitude Amp, and u(3) calls n number of the 

Fourier series approximation. Thus, the Interpreted MATLAB Fcn block requires three 

input signals simultaneously. That can be done via the Bus Creator block, as shown in 

Figure 5-40. Note that you can change block names by clicking the name of each block 

and typing the new name. Note that block tags are not considered during the model 

simulation, and thus, they have only an informative character for the user/programmer.

Figure 5-39. Simulink model of the given second-order differential equation 
without Input force signal generators
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Figure 5-40. MATLAB Fcn block with three inputs

Subsequently, one Simulink block, called Signal Generator, is added to the model 

and its parameters to generate pulses (Amplitude = -Amp/2 and Frequency = 3.15 [rad/

sec]). It’s then adjusted according to the given pulse parameters, as shown in Figure 5-41.

Figure 5-41. Adjusted parameters of the Signal Generator block
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To connect two input signal sources (Signal Generator and MATLAB Interpreted 

Fcn), add the Multiport Switch block and connect it to another Constant block to specify 

a source signal block for selection. Finally, name the three signals going to the Scope 

block via the Bus selector block. Moreover, adjust the Scope block’s Style options to make 

the output signals readable. Figure 5-42 shows a completed model.

Figure 5-42. Complete Simulink model called Ex5_Function_PULSE.slx

Before you start the simulation, you have to specify the values for A, B, C, Amp, and 

n. You can do that via the Callbacks option, from File ➤ Model Properties ➤ Model 

Properties ➤ Callbacks (Model callbacks) ➤ InitFcn. In the Model initialization function 

window (or alternatively, in the Command window), type A=2; B=4; C=200; n=25; 

Amp=10 and click OK. When you execute the model, both input signals are taken in 

the order of first and second with respect to the Constant block (called Which_Signal) 

values 1, 2. They correspond to Input 1 – Signal Generator and MATLAB Interpreted Fcn. 

The simulation results in Figure 5-43 show that the two Input signals and two pairs of 

Output signals (dq(t), q(t), which represent velocity q ̇and displacement q, respectively, 

are well converged. Note that Input: 1 is Signal Generator and Input: 2 is MATLAB 

Interpreted Fcn.
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Figure 5-43. Simulation results: a) from Signal Generator, b) from Repeating 
Sequence, and c) from Interpreted MATLAB Fcn

It is clear from the simulation results displayed in Figure 5-43 that all three blocks 

generating pulse input signals have resulted in approximately the same excitation in the 

system. Simulink model blocks can be associated with MATLAB files if they are correctly 

modeled and adjusted. It should be noted that the second input signal generation 

approach via Interpreted MATLAB Fcn is less accurate. It approximates the Fourier 

Series from the M-file function_pulse.m. Moreover, it is slower since it calls an external 

M-file to generate the signal.

 Subsystem in Simulink Modeling
Simulink has a handy function to create a subsystem from the existing Simulink 

model components or create model components inside the Subsystem block. The 

Subsystem block helps you make your created model in a more well-structured way. The 

Subsystem-based model and a model without it do not have any differences in terms of 

simulation speed.

Let’s look at the following example to show how to employ the Subsystem block:

 
    u wt w uw u t sin t uw u t� �� � � � � � � � � � � � �1 2 2 6 2 3

2 3 cos  
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With the initial conditions of u w u w0 1 0 3 0 2 0 4� � � � � � � � � � � �; ; ;   and parameter 

values a = 2, b = 10. The u and w are the functions of time. To build a Simulink model of 

this exercise, we will follow the steps and procedures given in the previous two sections 

on solving second-order differential equations. Thus, all model building steps are 

skipped here.

To build a Simulink model of this given system of coupled differential equations, 

Sum, Integration, Gain, and Scope blocks are needed. Here again we follow the steps of 

building a Simulink model of a second-order ODE as explained previously.

In addition, the subsystem block will be used once the model is complete. The initial 

version of the complete Simulink model is Ex6_Coupled_ODE_ver1.slx, as shown in 

Figure 5-44.

Figure 5-44. Simulink model, Ex6_Coupled_ODE_ver1.slx

The initial model called Ex6_Coupled_ODE_ver1.slx shown in Figure 5-44 is a bit 

complicated and not easy to read. Therefore, to make it more readable, we use the 

Subsystem block to re-create a new and simplified model out of this model.

You can create a subsystem out of the existing model in two different ways. The first 

way is to select blocks using the left mouse button as highlighted in Figure 5-45 and 

then press Ctrl+G keys on the keyboard or right-click and select Create Subsystem from 
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Selection. Once this step is completed, the subsystem is created from the selection; see 

Figure 5-46.

Figure 5-45. Simulink model, Ex6_Coupled_ODE_ver1.slx, step 1: how to create a 
Subsystem

Figure 5-46. Simulink model, Ex6_Coupled_ODE_ver1.slx, step 2: 
Subsystem created
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Similarly, you can select the blocks Gain3, Constant2, Sum4, Sum1, Gain4, 

Integrator, Integrator2, and Gain1 for w signal using the left mouse button and press 

Ctrl+G (Create Subsystem from Selection) on the keyboard. Subsequently, you obtain 

the simplified model with two subsystems, as shown in Figure 5-47, that you can save 

with a new file name: Ex6_Coupled_ODE_ver2.slx.

Figure 5-47. Simplified Simulink model, Ex6_Coupled_ODE_ver2.slx with two 
subsystems

To see or edit the model block parameters or connections, you can double-click the 

Subsystem block or select the subsystem block with the left mouse button and then use 

the right-click option of Open.

Let’s simulate both models, Ex6_Coupled_ODE_ver1.slx and Ex6_Coupled_ODE_

ver2.slx, for t = [0, 5], from MATLAB using the sim() function and compare their 

simulation results. In addition, you should adjust the settings of the Scope block 

 and adjust the output data variable name ➤ OUT and format type ➤ 

dataset  in both models: Ex6_Coupled_ODE_

ver1.slx and Ex6_Coupled_ODE_ver2.slx. Now, from MATLAB, you can recall these 

models and simulate them for five seconds, for instance, using the following short script 

(Sim_Models.m) for ten times to find out if there is any difference between their 

simulation time:
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clc;

%%

clearvars

%%

for ii = 1:10

tic;

OUT2 = sim('Ex6_Coupled_ODE_ver2.slx', 5);

Sim_Time2(ii) = toc;

tic;

OUT1 = sim('Ex6_Coupled_ODE_ver1.slx', 5);

Sim_Time1(ii) = toc;

end

%% Compare simulation time

fprintf('Simulation time of Model 1: %f \n ', mean(Sim_Time1))

fprintf('Simulation time of Model 2: %f \n ', mean(Sim_Time2))

%% Compare simulation results

figure(1)

plot(OUT1.OUT{1}.Values.Time, OUT1.OUT{1}.Values.Data, 'r*')

hold on

plot(OUT2.OUT{1}.Values.Time, OUT2.OUT{1}.Values.Data, 'b-', 

'linewidth', 2)

xlabel('Time, [s]')

ylabel('u(t)')

legend('Model 1', 'Model 2', 'location', 'NE')

figure(2)

plot(OUT1.OUT{2}.Values.Time, OUT1.OUT{2}.Values.Data, 'r*')

hold on

plot(OUT2.OUT{2}.Values.Time, OUT2.OUT{2}.Values.Data, 'b-', 

'linewidth', 2)

xlabel('Time, [s]')

ylabel('w(t)')

legend('Model 1', 'Model 2', 'location', 'NE')
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Note that these models are stored in your current MATLAB directory or you should 

have added their location directory to the MATLAB’s path directory list using addpath().

Once the simulation is finished, the following output will be displayed in the 

Command window:

Simulation time of Model 1: 0.341179

Simulation time of Model 2: 0.384217

Also, these two plot figures shown in Figure 5-48 and Figure 5-49 will be displayed.

Figure 5-48. Comparison of simulation results of Ex6_Coupled_ODE_ver1.slx and 
Ex6_Coupled_ODE_ver2.slx for u(t)
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Figure 5-49. Comparison of simulation results of Ex6_Coupled_ODE_ver1.slx and 
Ex6_Coupled_ODE_ver2.slx for w(t)

The simulation results from the script Sim_Models.m for ten times show that there is 

not a significant difference in simulation time of these two models.

 Simulink Model Analysis and Diagnostics
Simulink Model Analysis and Diagnostics tools provide good assistance to programmers 

for improving their models in terms of simulation speed, efficiency, and elimination of 

inaccurate and inefficient simulations. Therefore, it is recommended to perform analysis 

and diagnostics for efficiency and adequacy of employed blocks and combinations, 

chosen solver type, and many other options. All of these options can be explored via the 

Model Explorer  and the Model Advisor  tools. Via the Model Explorer tools, you 

can generate C/C++code of a Simulink model, obtain a profile report of a model, start a 

model advisor, reset the configuration parameters of solver, view input/output, optimize 

the models, generate code, and much more. Let’s look at some of the tools within the 

Model Explorer, considering the previous example.
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 Code Generation

Code generation (see Figure 5-50) can be accessed via the Model Explorer  or Model 

Configuration Parameters  buttons.

Figure 5-50. Model Explorer tools

After clicking Generate Code Only and Package Code and Artifacts, click the Generate 

Code button. Subsequently, the C code (C is the chosen language) will be generated. Note 

that there are some constraints in code generation; for instance, a chosen solver has to 

be a fixed step, and not all blocks used are compatible with code generation in C/C++. If 

these or other such requirements are not satisfied, the C/C++ code cannot be generated. 

Also, the code generation process depends on the installed compiler type and version.

 Model Advisor

Model Advisor  tools (see Figure 5-51) can be helpful in identifying where problems 

have occurred within a model and where optimization is required. It identifies problems 

with code generation and model performance by product, by task types, or both.
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Figure 5-51. Model Advisor tools

You first choose which process to get help/advice from in the Model Advisor and 

then click the Run  button. In this example, we chose the Model Advisor with By 

Product and By Task. Once the Model Advisor is launched, all diagnostic checks of the 

model (Ex5_Function_PULSE.slx) are run, and the report of all passed, failed, warning, 

and not run points is prepared. You can view the report by clicking the Generate Report 

button in the Model Advisor window. The Generate Report button opens the Generate 

Model Advisor Report window, from which you can select the directory (where to save 

the generated report), file name, file format (HTML by default, PDF, or Word), and check 

mark option to view the report after it’s generated; see Figure 5-52. We chose HTML, 

which is the default report format of the Model Advisor.
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Figure 5-52. The Generate Model Advisor Report window

Moreover, there are warnings concerning double precision operations used by the 

blocks of the model. The blocks (Interpreted MATLAB Function) are not supported by 

code generation. In addition, the Clock, Integrator, Integrator1, Signal Generator, and 

Interpreted MATLAB Function blocks are not recommended for C/C++ production 

deployment.
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Figure 5-53. Model Advisor Report

Figure 5-53 shows part of the Model Advisor Report for Ex5_Function_PULSE.

slx. The report is created in HTML format and shows 59 Pass, 0 Fail, 10 Warning, and 

0 Not Run, for a total of 69 Run. By scrolling down the report, you can see where the 

model passed and where it had some warning issues, such as optimization settings. 

It’s recommended to set the parameter of “Remove Code from Floating-Point to 

Integer Conversions That Warms Out-Of-Range Values (EfficientFloat2IntCast)” 

to on. Another recommendation is to set the parameter “Inline invariant signals 

(InlineInvariantSignals)” to on. Furthermore, another warning is Check Data Store 

Memory blocks for multitasking, strong typing, and shadowing issues. Duplicate data 

store names checking is not set to error. Duplicate usage of data store names can lead to 

unintended shadowing of data stores of higher model scope. For this reason, consider 

changing the duplicate data store names setting to error.
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Another interesting warning is linked to bus signals. The warning says: “Check 

bus signals treated as vectors.” The Bus signal was treated as a vector by the Simulink 

software. Identify bus signals in the model that are treated as vectors by the Simulink 

software.

Bus signal feeding input port 1 of the block: Ex5_Function_PULSE/Interpreted 

MATLAB Function. Bus signal is feeding input port 1 of the block in Ex5_Function_

PULSE/ Scope.

Recommended Action: The model contains bus signals that the Simulink software 

implicitly converts to vectors. However, the model is not configured to explicitly convert 

these signals to vectors. To fix this issue, insert Bus To Vector blocks at the imports of the 

blocks listed earlier.

You can do this automatically, by either pressing the modify button below or running 

the Simulink.BlockDiagram.addBusToVector function. You can do this manually using 

the Simulink ➤ Signal Attributes library.

By studying the Model Advisor’s reports, you can improve your model by removing 

bugs, simulation bottlenecks, and unwanted warnings, and substituting some of the 

inefficient blocks in the model.

In addition to the Model Advisor, you can also employ the Optimization tools under 

Model Explorer or the Configuration parameters to optimize parameters and blocks in 

our model. In addition, to locate bugs or bottlenecks, you can use debugging tools. They 

can be accessed via the menu bar: Simulation ➤ Debug ➤ Debug Model. Another way 

to learn about the model’s performance is from the menu bar: Analysis ➤ Performance 

Tools ➤ Show Profile Report (select) and then ➤ Performance Tools ➤ Performance 

Advisor. The options are displayed in Figure 5-54.
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Figure 5-54. Performance Advisor options

After clicking Run Selected Checks (see Figure 5-55), the Simulink Profile Report is 

displayed. It’s composed of the Summary and Simulink Performance Advisor Report, 

and it displays a complete picture of the model and its simulation processes.
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Figure 5-55. Simulink Model Profile Report Summary

Thus, it is recommended that you run the Model Advisor and Performance Advisor 

options to obtain the many help hints to improve your model’s performance. Also, the 

profile report generator can be recalled and executed using commands in order to locate 

inefficient operations and blocks of the model.

>> profile on; sim('Ex5_Function PULSE.mdl'); profile viewer

The profile report generator works well with all M-files and Simulink models and 

provides comprehensive reports including bottlenecks within a code/script/model in 

terms of computation and execution time spent on each command and operation.
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 Summary
In this chapter, we covered most of the essential graphical programming tools and some 

common blocks in the Simulink package, including signal sources, matrix operations, 

integration, visualization, signal routing, and C code generation. Moreover, the chapter 

highlighted and demonstrated, via numerical simulation examples, a few salient points 

on how to adjust parameters, use solver tools, set error tolerances, and improve the 

performance of Simulink models. In addition, you learned how to select and adjust 

solvers in Simulink.

You learned how to create subsystems from existing models and how to associate 

Simulink models with MATLAB scripts and function files. Moreover, you learned how 

to execute Simulink models from MATLAB scripts and acquire the Simulink model 

simulation results into the MATLAB workspace. In addition, you worked with the 

Simulink Model Analysis and Diagnostics tools and learned how to obtain Model 

Advisor and Performance Reports.

 Exercises for Self-Testing
 Exercise 1

Build a Simulink model to compute values of the cosine function g(t) = cos (ωt) 

for t = 0…3 with 3,000 incremental steps and ω = [π, 2π, 3π, 5π, 7π] specified in 

MATLAB. Simulate your Simulink model using MATLAB with the sim() command using 

a [for ... end] or [while .. end] loop for all values of ω.

 Exercise 2

The equation for charge in a resistor-inductance-capacitor (RLC) circuit (shown in  

the below figure) in a series is determined by Kirchhoff’s law:  
L Rq q C cos tq � � � � �/

max
� � .
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Create a Simulink model to simulate the given RLC system expressed by the second- 

order differential equation for q(t) with the input arguments of R, L, C, ω, and t. Create a 

Simulink model to simulate the given RLC system.

Take R = 100 Ω, L = 200 H, C = 0.02 μF, ω = 60 rad/s.

 Exercise 3

The acceleration of a skydiver is determined by the following:

 
a g v
� �

�

�
�

�

�
�1

3600

2

 

where g = 9.81 m/sec2.

Create a Simulink model to simulate the acceleration of a skydiver.

 Exercise 4

A truck of mass m accelerates from rest at t = 0 with constant power P along a level road.

The speed of the truck as a function of time is given by v t P
m

t� � � �
�
�

�
�
�

2

1

2

 . If x = 0 at 

time t = 0, the position function x(t) is given by x t P
m

t� � � �
�
�

�
�
�

8

9

1

2
3 , where P = 550 kW and 

m = 15000 kg.

 1. Write an inline function to compute the position of the truck from 

the function x(t) as a function of time t.
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 2. Create a Simulink model to obtain numerical values of v(t), x(t) 

as a function of t in the MATLAB workspace and compare the 

results with the ones obtained from the function handle and inline 

function.

 3. Build plots of x(t) versus t and v(t) versus t in two separate plot 

figures.

 Exercise 5

Create a Simulink model with three subsystems to compute numerical solutions (xA(t), 

xB(t), xC(t)) of the following second-order coupled differential equations.

 kx kx t mx t F t kx tk A A D B� � � � � � � � � � � �  

 
2kx t m t k x t x txB B C B� � � � � � � � � � �� �  

 
mx t k x x t x tC k B C � � � � � � � � �� �  

 x x x x x xA B k C k k0 0 0 0 2 1 5� � � � � � � � � �, , , . ,  

 
  x x xA B C0 0 0 0� � � � � � � � �  

FD(t) = F0 cos (tω), F0 = 5.75, ω = 3.20;

 t m k� � � � �0 25 2 32, , ; .  

Hint: For more information about ordinary differential equations, see Chapter 8.
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CHAPTER 6

Plots and Data 
Visualization
The MATLAB package has numerous built-in functions for visualizing numerical 

data via plots, graphs, charts, and animations. There are two-dimensional (2D) and 

three-dimensional (3D) plots, charts, maps, etc. In addition, some of the MATLAB 

toolboxes have specific plot and visualization functions. Building plot figures is very 

straightforward and can be done in two different ways, one of which is using commands 

and writing scripts and the other is using GUI tools. In this chapter, we discuss and 

demonstrate some of the most essential tools and techniques used to build line, bar, pie, 

surface, mesh plots, graphs, and animated plots via examples.

 Basics of Plot Building
On the PLOTS tab of the main menu (see Figure 6-1), you will see all the available plots 

in the current MATLAB package, including its installed toolboxes.

Figure 6-1. PLOTS tab of the MATLAB Desktop menu

If any data (variable) residing in the workspace is chosen, the applicable plot 

commands will become active. For instance, if the selected variable size is 20 by 1, then 

the plots shown in Figure 6-2 will become active, indicating that these plots can be used.
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Figure 6-2. Possible plots in the PLOTS tab for the selected data

If the chosen data (variable) is 10 by 100, then the plots shown in Figure 6-3 will 

become active instead.

Figure 6-3. Possible plots in the PLOTS tab for the selected data

 PLOT( )
Let’s look at a few examples that create 2D line plots using the plot() command and 

GUI tools.

 Example 1: Plotting Two Rows of Data
Say we’re given these two sets of data: A=[1, 3 4.5 5 6.7 8.1 9.5 10.3] and B=[-2.32, 0.23, 

2.14, 2.22, 3.92, 6.67, 7.41, 6.43].

Let’s plot them using the plot() command.

>> A=[1, 3 4.5 5 6.7 8.1 9.5 10.3]; B=[-2.32, 0.23 , 2.14, 2.22, 3.92, 

6.67, 7.41, 6.43]; plot(A, B)

Figure 6-4 shows the plot figure.
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Figure 6-4. Possible plots on the PLOTS tab for the selected data

The same plot can be generated by using GUI tools and selecting the variables A and 

B in the workspace. Hold down Ctrl on the keyboard and use right mouse button (RMB) 

clicks to select multiple variables. Then with the left mouse button (LMB) options, you 

can choose plot(A, B) or click the PLOTS tab and click the Plot icon: .

Moreover, the A and B data can be plotted as a scatter, pie, or histogram plot.

Let’s look at another example that plots computed data points.

 Example 2: Plotting Function Values
Given: y(t) = 1.2 sin(2t + 10), t = [−2π, 2π].

By using the following commands in the command window, you get a plot of y(t) 

versus t, as shown here:

>> t=-2*pi:2*pi;  % value ranges for t are assigned

>> y=sin(2*t+10); % y values are computed

>> plot(t, y)     % t vs. y is plotted

These commands produce the plot shown in Figure 6-5.
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Figure 6-5. Plot of y(t) = 1.2 sin(2t + 10), t = [−2π, 2π]

The plot, shown in Figure 6-5, is not smooth even if it looks like a sine wave. So, 

where is the flaw?

The flaw is in the very first command: >> t=-2*pi:2*pi. It creates an array of t with a 

step size of Δt = 1, which is a default setting in the linear space definition. In this case, 

function values are computed at t = -6.28, -5.28, -4, 28 … 5.28, and 6.28. To fix this problem, 

the step size must be specified and taken smaller than 1.0; for instance, Δt = π/20.

>> t=-2*pi:pi/20:2*pi; y=sin(2*t+10); plot(t, y)

After taking Δt = π/20, the plot of y(t) becomes smooth and periodic, as shown in 

Figure 6-6.

Figure 6-6. Plot of y(t) = sin(2t+10) vs. t = [-2π, 2π], Δt = π/20
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 Example 3: Building a Histogram
Say you are given 1,000 data points generated by a normally distributed pseudorandom 

number generator function called randn(). Let’s build a histogram of the data points. 

See Figure 6-7.

>> F=randn(1,1000);

>> hist(F)

Figure 6-7. Histogram of 1,000 normally distributed random numbers with the 
hist() command

 Example 4: Building a Bar Chart
Say you are given 5-by-3 data points generated by a normally distributed pseudorandom 

integer number 0 to 125 generator function called randi(). Let’s build a bar chart of the 

data points. See Figure 6-8.

>> W= randi(125,5,3);

>> bar(W)
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Figure 6-8. Bar chart of 5-by-3 data points normally distributed integer 
pseudorandom numbers with the bar() command

 Example 5: Building a 3D Pie Chart
Say you are given A = [100, 121, 95 125 105, 111, 75, 55, 100]. Let’s build a 3D pie chart  

of A. See Figure 6-9.

>> A = [100, 121, 95 125 105, 111, 75, 55, 100];

>> pie3(A)

Figure 6-9. 3D pie chart of A
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 TITLE, XLABEL, YLABEL, AXIS, GRID, and LEGEND
Plot titles, axis labels and scales, grid settings, and legend options can be implemented 

in plot figures by employing the appropriate commands, such as title(), xlabel(), 

ylabel(), axis(), grid, and legend(). Let’s demonstrate how to use them via examples.

 TITLE( )
The title() command is used to set the plot title name tag. For example, title(̍Unit 
circle̍) gives the current plot figure a title of Unit circle.

The alternative syntax of this command is title ̍Unit circle̍. That is compatible 

with later versions of MATLAB.

 XLABEL, YLABEL, and ZLABEL

The xlabel, ylabel, and zlabel commands are used to assign the axis labels or titles 

for the x-, y-, or z-axis, respectively. The syntax is xlabel(̍t, [s] ̍), ylabel(̍f(t)̍). 

An alternative syntax for these commands is xlabel ̍t, [s] ̍, ylabel ̍ f(t)̍, which 

assigns the labels for the x- and y-axes to t, [s], and f(t), respectively.

 AXIS

By default, MATLAB scales the axes of a plot to fit the data. The axis command is used 

to set the scaling factor for the plot figure. The general syntax of the axis command is 

shown here.

For 2D plots:

xlim([xmin xmax])            % Min and Max limits set for x axis

ylim([ymin ymax])            % Min and Max limits set for y axis

axis([xmin xmax ymin ymax])  % Min and Max limits set for x & y

For 3D plots:

axis([xmin,xmax,ymin,ymax,zmin,zmax]) % Min and Max limits

In addition, axes can be set up in a few different ways with these commands:

axis equal  % Both or all 3 axes have equal tick marks
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axis square % Current axis box square in size

axis normal % Restores current axis box to full size

axis off    % Removes all axis labels, tick marks, background

axis on     % Restores all axis labels, tick marks, background

axis tight  % Sets axis limits to the range of data

axis ij     % Puts MATLAB into its "MATRIX" axis mode

 GRID

The grid on command is used to set grids on the plot figure to make it more legible, e.g., 

use grid on to set major grids and grid minor to set minor grids.

Let’s use these additional plot commands.

 Example 6: Plotting a Unit Circle with Plot Tools
Let’s create a unit circle defined by x = sin(t), y = cos(t), t = [0, 2π] (see Figure 6-10).

>>t=0:pi/100:2*pi; x=sin(t); y=cos(t); scatter(x, y);

>>title(̍Unit circle defined by x=sin(t) vs. y=cos(t)̍); axis tight;
>>grid on; axis tight; xlabel(̍sin(t)̍), ylabel(̍cos(t)̍)

Figure 6-10. Plot of a unit circle with plot tools
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There is an alternative solution in the polar coordinate system, using the polar() 

command, as shown in Figure 6-11.

>> t=0:pi/100:2*pi; x=sin(t);y=cos(t);r=sqrt(x.^2+y.^2);polar(t,r)

>> title(̍Unit circle defined by x=sin(t) vs. y=cos(t)̍)

Figure 6-11. Plot of a unit circle in the polar coordinate system

Note While plotting x versus y, the data size (i.e., the number of elements in x 
and y) has to be equal; otherwise, MatlaB will return an error. this is one of the 
most common mistakes.

 LINE and MARKER Specifiers
Line and marker specifiers are useful for distinguishing a few data sets plotted in a 

single plot area. The specifiers can be line colors, types, and markers. Line specification 

(line specifier), marker specification (marker specifier), and color specification (color 

specifier) are explained in Tables 6-1, 6-2, and 6-3, respectively.
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Table 6-1. Line Style Specifiers

Specifier Line Style

- solid line (by default)

-- dashed line

: dotted line (colon)

-. dash-dot line

Table 6-2. Marker Specifiers

Specifier Marker Type

+ plus sign

o Circle

∗ asterisk

. point

x Cross

'square' or s square

'diamond' or d diamond

^ upward-pointing triangle

v downward-pointing triangle

> right-pointing triangle

< left-pointing triangle

'pentagram' or p Five-pointed star (pentagram)

'hexagram' or h six-pointed star (hexagram)
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Table 6-3. Color Specifiers

Specifier Color

r red

G Green

B Blue

C Cyan

M Magenta

Y Yellow

K Black

W White

Note the color specifiers given in table 6-3 can be lowercase or uppercase. the 
common practice is to use lowercase letters.

All plot functions (except for the family of easy plots, i.e., ezplot, ezsurf, and 

ezmesh, and implicit function plots, fimplicit, fimplicit3, and fsurf) accept a line 

specification argument that defines three components to specify lines with the following:

• Color

• Marker symbol

• Line style

Here’s an example: >> plot(x, f, ̍:pb̍).

The command plots x versus f using a colon (:) place pentagram markers (p) at the 

data points, and it colors a line and a marker in blue (b). You can specify the components 

(in any order) as a quoted string after the data arguments. Note that line specifications 

are single strings, not property-value pairs.

This command: >> plot(x, h, ‘d’) plots x versus h with a marker diamond without any 

line. Note if the color of a plot line or marker is not specified, then the color by default 

is blue.
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Moreover, while using the plot and plot3 functions, you can specify other 

characteristics of lines using graphics properties.

LineWidth—Specifies the width (in points) of the line, e.g., 

̍LineWidth̍, 2

MarkerSize—Specifies the size of the marker in points, e.g., 

̍MarkerSize̍, 5

MarkerEdgeColor—Specifies the color of the marker or the 

edge color for filled markers (e.g., circle ̍o̍, square ̍s̍, diamond ̍d̍, 

pentagram ̍p̍, hexagram ̍h̍, and the four triangles ̍<̍, ̍>̍, ̍^̍, ̍v̍)

MarkerFaceColor—Specifies the color of the face of filled markers

In addition, you can specify the LineStyle, Color, and Marker properties instead of 

using the symbol string. This is useful when you want to specify a color that is not in the 

list. You can use the red-green-blue (RGB) values, e.g., to plot the line specifications.

plot(t,y, ̍LineWidth̍, 1/25, ̍LineStyle̍, ̍--̍,̍Color̍, ̍magenta̍, ̍Marker̍, ̍v̍)

This plots t versus y data with a line width of 1/25 inch, a line style of dashed lines, 

magenta dashed lines, and data points marked with triangle markers looking downward.

Let’s look at another example.

 Example 7: Plotting Sine Function Values with Plot Tools
Plot this function: y(α) = sin(2α + 10), α = [−2π, 2π]. The solution script (Plot_E7.m) 

contains the commands to compute y(α) with respect to a=−2π : π/20 : 2π. It has the plot 

commands specifying line color (̍b̍ is blue), line type (̍:̍ is colon), line width (2), marker 

type (̍d̍ for diamond), marker size (7), and marker face color (̍m̍ for magenta). Moreover, 

it displays the plot title text (Plot of function y = sin(2a+10)) with the font size of 13 

and similarly, x- and y-axis label text (̍a̍, ̍y(a)̍) with the font size of 13.

%% Plot_EX7.m

a=-2*pi:pi/20:2*pi;

y=sin(2*a+10); plot(a,y,̍bd:̍,̍LineWidth̍,2,̍MarkerSize̍,7,̍MarkerFaceColor̍,̍m̍);
grid on; axis([-2*pi 0.5*pi -1 1]);

title(̍Plot of function y = sin(2a+10)̍, ̍FontSize̍, 13) xlabel(̍a̍); 
ylabel(̍y(a)̍, FontSize̍, 13)
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After executing the code (Plot_EX7.m), the plot figure shown in Figure 6-12 is 

created.

Figure 6-12. Plot of y(α) = sin (2α + 10), α = [−2π, 2π]

 Special Characters

MATLAB can recognize various special characters by using TeX markup and LaTEX code 

syntax. It is handy to employ LaTEX in plots as well. The following examples display 

special characters and Greek letters in the plot figure in the title, axis label, plot text, or 

notation. You write special characters, such as the Greek letters, by using the backslash 

operator (\). Here are some examples:

 – Title(̍\alpha̍) displays α on the plot title.

 – xlabel(̍\beta̍) displays β on the x–axis label.

 – text(0, 1, ̍\rightarrow̍) displays ➤ in the plot area at the coordi-

nate points of (0, 1).

 – title(̍e^{at}̍) displays eat in the plot title.

 – ylabel(̍\fontsize{13} y(x)̍) displays y(x) on the y-axis with the 

font size of 13.

 – title(̍\it y(\alpha) vs. \alpha̍ displays y(α) vs. α in italic in 

the plot title.
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 – xlabel(̍\bf f, [s^{-1}]̍) displays f, [s−1] in bold font on the 

x-axis label.

 – title(̍\copyright by SE̍) displays © by SE in the plot title.

 – text(2,1,̍\Gamma \approx \pi/2̍) displays Γ ≈ π/2 in the plot 

area at the coordinate points of (2,1).

For more extensive information and help on TeX and LaTEX, type the following in 

the command window:

>> help tex; help latex

 Example 8: Plotting Sine Function Values with Plot Tools
Plot this function: y(α) = sin(2α + 10), α = [−2π, 2π].

The answer script (Plot_EX8.m) has plot commands with line and marker specifiers, 

such as line type ( ̍-̍ is a solid line), line width (2), line color ( ̍b̍ for blue), marker type (̍o̍), 

marker size (7), and marker face color ( ̍y̍ for yellow). Moreover, it includes commands for 

the title text, containing the Greek letter (α) in italic and a font size of 13.

Axis labels include the Greek letter (α) with a font size of 13. It includes the text note 

with a left arrow symbol ← α = 00 displayed on the plot area, as shown in Figure 6-13.

   %% Plot_EX8.m

a=-2*pi:pi/20:2*pi; y=sin(2*a+10);

plot(a,y,̍b-o̍,̍LineWidth̍,2,̍MarkerSize̍,7,̍MarkerFaceColor̍,̍y̍); grid on; 
axis([-2*pi 0.5*pi -1 1]);

title(̍\it \fontsize{13} Plot of function y = sin(2\alpha+10)̍)
ylabel(̍\fontsize{13} y(\alpha)̍);
xlabel(̍\fontsize{13} \alpha̍) text(0,0, ̍\leftarrow \fontsize{13} \alpha 
= 0^0̍);
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Figure 6-13. Plot of y(α) = sin(2α + 10), α = [−2π, 2π]

 Plot Two Data Sets in Two Y–Y Axes
Sometimes you may need to plot two separate data sets or function values in one plot 

figure in two vertical (y-y) axes. This type of plot is relatively easy to implement, and 

there are two approaches to it. One approach is applicable to older versions of MATLAB, 

and the other works with more recent versions.

Let’s look at the following example.

 Example 9: Plotting Two Function Values on Y-Y Axes
Given:

• y(γ) = 2.725e−0.1 γ cos(2.725 γ + 25); γ = 0…15 π;

• z(γ) = 0.725 sin(0.725γ + 25) ln (0.5γ); γ = 0…15 π;

The following code shows two solutions (Plot_EX9.m). Version 1 is for older versions 

of MATLAB, and version 2 is for recent versions. The main difference between the two 

versions are the commands plotyy and yyaxis (left and right). MATLAB is forward 

compatible in most cases, so the scripts and command syntax written for older versions 

are valid with newer versions.
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%% Plot_EX9.m

% Version 1. For older versions of MATLAB clf

% Clean up an open figure gamma=0:pi/40:15*pi;

y=2.725*cos(2.725*gamma+25).*exp(-.1*gamma);

 z=0.725*sin(0.725*gamma+25).*log(0.5*gamma);

% gamma vs. y and gamma vs. z plotted for each value of gamma. [AX,Y1,Y2] = 

plotyy(gamma, y, gamma, z, ̍plot̍);
% Title of the plot is in LaTEX

title([̍\fontsize{9} y=2.725*cos(2.725*\gamma+25)*e^{-0.1\gamma}̍,...
 ̍& z=0.725*sin(0.725*\gamma+25)*log(0.5*\gamma)̍]) xlabel(̍\fontsize{15} \
gamma̍);
set(get(AX(1),̍Ylabel̍),̍String̍,... ̍y=2.725*cos(2.725*\gamma+25).*e^{-^0.1\
gamma}̍)
set(get(AX(2),̍Ylabel̍),̍String̍,...
̍z=0.725*sin(0.725*\gamma+25)*log(0.5*\gamma)̍) grid on; axis tight
%% Version 2. For recent versions of MATLAB

clf % Clean up an open figure

gamma=0:pi/40:15*pi; y=2.725*cos(2.725*gamma+25).*exp(-.1*gamma);

 z=0.725*sin(0.725*gamma+25).*log(0.5*gamma);

yyaxis left % Select the left y-axis to plot the data plot(gamma, 

y, ̍r-o̍), ylabel(̍y=2.725*cos(2.725*\gamma+25).*e^{-^0.1\gamma}̍) yyaxis 
right % Select the right y-axis to plot the data plot(gamma, z, ̍b--x̍); 
ylabel(̍z=0.725*sin(0.725*\gamma+25)*log(0.5*\gamma)̍), grid minor;
title([̍\fontsize{9} y=2.725*cos(2.725*\gamma+25)*e^{-0.1\gamma}̍,...
 ̍& z=0.725*sin(0.725*\gamma+25)*log(0.5*\gamma)̍]); axis tight

The obtained plots are different as well. In version 1, there are some limitations, such 

as plot line, marker, and color specifications, that cannot be adjusted. Only the default 

colors are used (see Figure 6-14).

Chapter 6  plots and data Visualization



395

Figure 6-14. Plot of two function values on y-y axes (version 1)

The version 2 solution shown in Figure 6-15, for more recent versions of MATLAB, is 

more flexible. It includes adjustable plot specifiers, such as marker type, line type, color, 

size, etc.

Figure 6-15. Plot of two function values on y-y axes (Version 2)
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 Subplots
Several plots can be plotted in a plot figure as subplots by employing the subplot() 

command.

 Example 10: Building Subplots of Functions
Given these four functions:

 z � � �� � � �� � � �0 725 2 725 25 0 5. . .sin ln  

 y e� ��� � � �� ��
2 725 2 725 25

0 1
. .

. cos  

 x t e t� � � �� �2 725 2 725 25. .cos
 

 
w t ln t� � � � � �� �0 725 0 725 0 5 25. . .sin  

 � � � �� � � � �0 15 5 5; ;t  

Let’s plot them as subplots in a single plot figure. The solution script (Plot_EX10.m) 

computes and plots all four functions on one plot as four separate subplots (see 

Figure 6-16).

%% Plot_EX10.m

gamma=0:pi/40:15*pi; y=2.725*cos(2.725*gamma+25).*exp(-.1*gamma);

z=0.725*sin(0.725*gamma+25).*log(0.5*gamma); t=-5*pi:pi/40:5*pi;  

x=exp(2.725*cos(2.725*t+25)); w=0.725*sin(0.725*log(0.5*t)+25);

figure % Creates a blank figure

subplot(2,2,1); plot(gamma, y, ̍r-̍); grid on title(̍y=2.725*cos(2.725*\
gamma+25)*e^{-0.1\gamma}̍) subplot(2,2,2); plot(gamma, z, ̍b-̍); grid on 
title(̍z=0.725*sin(0.725*\gamma+25).*log(0.5*\gamma)̍) subplot (2,2,3)
semilogx(t, x,  ̍r-̍) % x axis in log. Scale for demo purposes grid on
axis([0.05 25 0 15.5]); % Assign min and max values for x & y axes

title(̍x=e^{2.725cos(2.725t+25)}̍) subplot(2,2,4)
semilogy(t, w, ̍b-̍); grid on; axis([-17 17 0.025 5.5]); title(̍w=0.725*sin 
(0.725*log(0.5*t)+25)̍)
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Figure 6-16. Plot of four function values as subplots in one plot figure

In addition, when all the plots are built, the following warning messages are 

displayed in the Command window:

Warning: Negative data ignored

Warning: Imaginary parts of complex X and/or Y arguments ignored Warning: 

Negative data ignored

Imaginary parts of computed values are omitted when plotting them as complex 

numbers.

 LEGEND
The legend command is used to specify legends of plotted data sets to recognize the 

data, e.g., legend(̍y(t)̍, ̍z(t)̍, ̍h(t)̍. Any special notations of TeX and LaTEX can be 

implemented with the legend command. For example, legend(̍x(\alpha)̍, ̍y(\xi)̍) 
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displays x(α) and y(ξ) in the plot area. It is also possible to add a title to the list of legends. 

For example, a title (“Variables”) for this list of legends x(α) and y(ξ) can be attained with 

the following commands:

L =legend(̍x(\alpha)̍, ̍y(\xi)̍);
title(L, 'Variables')

 HOLD
To hold and plot several plots in one plot figure, the hold on command is used. Once 

all the data sets are plotted, the held plot needs to be activated with the hold off 

command. Alternatively, when plotting sets of data in loops, you can use the hold all 

command to assign a unique color to each set of data.

 Example 11: Plotting a Few Function Values in One Plot

Given: y
x
x

y
x

x
y

x
x

y
x

x
y

x
1 2 3 4 5

10 10 10
�

� �
�

� �
�

� �
�

� �
�

�sec sin cos tan exp
, , , ,

��
x

. 

Let’s compute and plot numerical values of these five functions together in a single 

plot figure.

%% Plot_EX11.m

close all

x = linspace(-3*pi, 3*pi, 3333);

y=[sec(x)./x; 100*sin(x)./x;10*cos(x)./x;10*tan(x)./x; exp(x)./(x);];

plot( x, y(1,:), 'g:o'); hold on

plot(x, y(2,:),'k-', x, y(3,:), 'r:', x, y(4,:),'b-.', 'LineWidth',1.5)

plot(x, y(5,:),'m-','LineWidth',1.5)

title('[y_1, y_2, y_3, y_4, y_5] vs. x')

xlabel('\it x'); ylabel('\it y function values')

LEG =legend('sec(x)/x','100*sin(x)/x','10*cos(x)/x','10*tan(x)/x', 

'e^x/x');

title(LEG, 'Plotted Equations:')

axis([-3*pi, 3*pi, -100, 100]); hold off; grid on

shg % Show a plot figure
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After simulating the script, Figure 6-17 shows the result. Figure 6-17 shows how the 

title of a legend list is displayed.

Figure 6-17. Plotting several function values in one plot figure

If there are different sets of data to be plotted in a single plot figure, loop control 

operators can be employed to handle line color, type, marker specifications, and legends. 

A line type, color, and marker type can be prespecified as a string and used later. Let’s 

consider the following example.

 Example 12: Plotting Function Values with Different Line 
Markers and Colors
Given: F t t t t t t� �,� � � � �� � �� �sin sin2

2 3  for t = 0…π (∆t = π/1000), μ = 1…5.

If you take the stepwise approach that you used in the previous examples, your script 

becomes considerably long and untidy. Thus, you take a different approach to create a 

set of line and marker specifiers first and then use the loop control statements to choose 

from our predefined specifiers. You do this for every iteration while plotting the data sets 

with respect to every value of μ separately. The solution script (Plot_EX12.m) is rather 

compact.
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%% Plot_EX12.m

% Version 1

close all; clearvars

t=0:.001*pi:1*pi;

% Line color, type and marker specifiers are defined:

Labelit  = {};

Colorit  = 'krgbmk';

Lineit   = '--:-:--:-:-';

Markit  = '-+xdoshv<p>';

for ii=1:5

% Line and marker specifier are taken for each iteration:

    Stylo = [Colorit(ii) Lineit(ii) Markit(ii)];

    F     = sqrt(sin(ii*t.*sqrt(t+t.^2+t.^3))).*sin(2*t);

    subplot(211)

    plot(t, real(F), Stylo, 'markersize', 3)  % Real Part of F is plotted

    hold on; grid on

    Labelit{ii} = ['\mu = ' num2str(ii)];

    legend(Labelit{:})

    subplot(212)

     plot(t, imag(F), Stylo, 'markersize', 3) % Imaginary Part of F 

is plotted

    hold on

    Labelit{ii} = ['\mu = ' num2str(ii)];

    legend(Labelit{:})

end

axis tight; grid on

%% Version 2. No loop for calculations

close all; clearvars

t=0:.001*pi:1*pi;

[ts, mu]=meshgrid(t, 1:5);

F = sqrt(sin(mu.*ts.*sqrt(ts+ts.^2+t.^3))).*sin(2*ts);

%%

% Line color, type and marker specifiers are defined:

Labelit  = {};

Colorit  = 'krgbmk';
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Lineit   = '--:-:--:-:-';

Markit  = '-+xdoshv<p>';

for ii=1:5

% Line and marker specifier are taken for each iteration:

    Stylo = [Colorit(ii) Lineit(ii) Markit(ii)];

    subplot(211)

    plot(t, real(F(ii,:)), Stylo, 'markersize', 3)  % Real Part

    hold on; grid on

    Labelit{ii} = ['\mu = ' num2str(ii)];

    legend(Labelit{:})

    subplot(212)

    plot(t, imag(F(ii,:)), Stylo, 'MarkerSize',3) % Imaginary Part

    hold on

    Labelit{ii} = ['\mu = ' num2str(ii)];

    legend(Labelit{:})

end

axis tight;

grid on

shg          % Show the plotted graph

Versions 1 and 2 of the script (Plot_EX12.m) produce the same results and plot 

figure as shown in Figure 6-18. Note that similarly for a much larger number of μ values, 

a unified plot figure can be generated by specifying individual line type and color and 

marker type. Moreover, it is possible to add different marker size and line width values.
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Figure 6-18. Plotting function values with different line markers and colors

 Example 13: Bar Chart of Data with Standard Deviation
Given the data set (U = D±σ) with standard deviation values:

U= [22.3± 1.25; 25.7± 2.12; 21.2± 2.24 27.9± 1.21 25.5± 2.37 20.8± 2.31 19.3±1.13];

The given data set D can be plotted using the bar() chart and errorbar() plot 

functions including hold on. Here is the complete script (Bar_Plot_E13.m); see 

Figure 6-19:

%% Plot_EX13.m

D = [22.3  25.7   21.2  27.9  25.5  20.8  19.3];     % Data

S = [1.25   2.12  2.24  1.21  2.37   2.31  1.13];    % STD

n = 1:numel(D);

bar(n, D, 'y')             % Bar face color yellow

hold on

EB = errorbar(n,D,S,S, 'LineWidth', 2);

EB.Color = [1 0 0];        % STD line color
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EB.LineStyle = 'none';     % No connection line for STD

hold off

legend('Data', 'std')

shg                        % Show the plotted graph

Figure 6-19. Bar chart with standard deviations

 Example 14: Bar Chart of Data with Values Shown
Given the data (3-by- 5):

V = [12 13 16 17 15;

         25 21 23 26 24;

         31 33 30 35 37];

Let’s plot bar chart and add the values of the plotted data points.

Here is the complete code (Plot_EX14.m):

%% Plot_EX14.m

V = [12 13 16 17 15;

     25 21 23 26 24;

     31 33 30 35 37];

n = 1:length(V);

b = bar(n,V);

for ii=1:3

xtips1 = b(ii).XEndPoints;
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ytips1 = b(ii).YEndPoints;

labels1 = string(b(ii).YData);

text(xtips1,ytips1,labels1,'HorizontalAlignment','center',...

    'VerticalAlignment','bottom')

end

shg     % Sow the plotted graph

After executing the code (Plot_EX14.m), you will obtain the bar chart shown in 

Figure 6-20.

Figure 6-20. Bar chart with data values shown

 Example 15: Bar Chart of Data with NaN Values Shown 
and Axis Tick Labels Off
Given: v = [3.7  4.3 nan 3 2 nan 5.5 2.9 NaN 4];

Let’s plot [v], and display all NaN’s and remove axis tick marks and labels using the 

axis off command.

Here is the final code (Plot_EX15.m):

%% Plot_EX15.m

clc; close all

D = [3.7  4.3 nan 3 2 nan 5.5 2.9 NaN 4];

H = bar(v);
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H.FaceColor = "g";  % Bar Face Color

H.EdgeColor ='r';   % Bar Edge Color

H.BarWidth = 0.75;  % Bar Width

grid on;

xlim([0, length(v)+1]);

yl = ylim;

for k = 1 : length(v)

    if isnan(v(k))

        y = 0;

        str = 'NaN';

    else

        y = v(k);

        str = sprintf('%.1f', y);

    end

    text(k, y, str, 'Color', 'b', 'FontSize', 13, 'FontWeight', 'bold', ...

        'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'center');

end

axis off

title('Data with NaN')

% g = gcf;

% g.WindowState = 'maximized';  % To maximize Figure Window

After executing the script code (Plot_EX15.m), the plot in Figure 6-21 will be shown. 

Note that using the axis off command removes the tick mark labels of both axes.
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Data with NaN

3.7

4.3

NaN

3.0

2.0

NaN

5.5

2.9

NaN

4.0

Figure 6-21. Bar chart with data values shown including NaN

 EZPLOT, FPLOT, and FIMPLICIT with Function 
Handles (@)
EZPLOT and FPLOT are used to plot mathematical expressions with the function handle 

(@) and implicitly defined argument values. Here’s an example:

fplot(@(t)([sin(t), cos(t), exp(cos(t))])); ezplot(@(x)(sin(x)));

fimplicit(@(x,y) (25-(x.^2+y.^2)));

Or with a range of given argument values. Here’s an example:

fplot(@(t)([sin(t),cos(t),exp(cos(t))]),[-pi,pi]);

ezplot(@(x) (sin(x)),[0,2*pi]);

fimplicit(@(x,y)(25-(x.^2+y.^2)),[-5,5]);

The function handle (@) can be defined within fplot, ezplot, and fimplicit or 

outside of these plot functions:

G=@(t)([t.^2+2*t-13,sqrt(t.^3+3*t),(t.^5+t^(3/4))^(3/2)]); fplot(G, 

[-2.5, 2]);
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 Example 16: Plotting a Mathematical Expression 
with ezplot( )

Given f x cos N x sin N x N� � � �
�
�

�
�
� �

�
�
�

�
�
� �0 5

180
0 75

180
0 20 200. . ; : :

� �
, with an argument of x, the 

function f (x) is the summation of the cosine and sine functions within the frequency 

range of [0, 200] rad/sec with the increment of ∆N = 20 rad/sec. Here is the solution 

script (Plot_EX16.m) with a loop control statement (see Figure 6-22):

%% Plot_EX16.m to demonstrate EZPLOT and FPLOT

for N=0:20:200

    FH=@(x)(0.5*cos(N*pi*x/180)+0.75*sin(N*pi*x/180));

    ezplot(FH, [-6.25, 6.25]); hold all % or fplot(FH, [-6.25, 6.25])

end

hold off

fplot, fimplicit, and ezplot are easy to employ with mathematical expressions 

that have one or two arguments to plot, with or without specifying their ranges. An 

important feature of fplot is that it can compute the values of the expression without 

plotting it, as follows:

[X, Y] = fplot(@(x)(0.5*cos(N*pi*x/180)+0.75*sin(N*pi*x/180)));

Figure 6-22. Plotting a mathematical expression with ezplot()
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Note in future releases of atlaB, ezplot() will removed, and thus, it is 
recommended to use fplot() or fimplicit().

 GTEXT, TEXT, and GINPUT
The GTEXT and TEXT commands are used to add annotations and text strings to the plot 

figure. GTEXT is used to place text with a mouse. TEXT is used to add text descriptions to 

data points. The general syntax of the GTEXT command is as follows:

gtext('Text', 'PropertyName', PropertyValue,...)

gtext({'First line','Second line'},'FontName','Times','Fontsize',12)

The general syntax of the TEXT command is as follows:

text(x, y, 'Text Message')

Here are two examples of employing text and gtext to display text or notes on plot 

figures. The gtext and text graphical annotation commands are used:

>> text(0,0, ̍\alpha = \pi/2̍)
>> gtext([̍\alpha = ̍  num2str(13) ̍ \pi̍])

The text command displays α=π/2 in the current plot figure surface at [0, 0], and 

gtext displays α = 13 π where a user clicks with the cursor.

GINPUT is a graphical input from a mouse. It is a handy tool to locate the points of interest 

in a plot figure using a mouse pointer. The general syntax of this command is as follows:

[X,Y] = ginput(N); % N is number of points to select

This command returns N points of X and Y coordinates positioned/chosen using a 

mouse. The following command selects an unlimited number of points until the Enter 

key is pressed on the keyboard:

[X,Y] = ginput();

To locate points of interest on the plot or the local or global minima of the plotted 

data, the ginput is a good graphical tool.

>> [x, y] = ginput(3);
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This command brings the cursor automatically to the surface of the current figure.

It selects three points, of which the x and y coordinates will be measured and saved 

in the workspace under the variable names x and y. If there is no open figure, ginput 

opens a blank plot figure. Let’s look at an example of employing these commands in 

combination.

 Example 17: Locate and Display Minimum Values 
of a Function Plot in a Plot Figure
Given a function: f (x) = sin(1.313−1.7 * x) − cos(1.3131.7 * x).

Let’s compute and plot f (x) and then find its minimum values within a region of x = 

−6.5…6.5. In addition, you can display the found value on the plot figure by employing 

text and gtext. You’ll use two different ways to locate a minimum of a given function 

with ginput.

The solution script (Plot_EX17.m) uses a mouse cursor with ginput.

%% Plot_EX17.m

fun_fun=@(x)sin(1.313^(-1.7*x))-cos(1.313^(1.7*x));

fplot(fun_fun, [-6.5, 6.5]); grid on; hold on

[xm, ym]=ginput(3);    % Use mouse cursor carefully to locate minima

TXT1=['1st Local Min (square) @x= ', num2str(xm(1))];

gtext(TXT1, 'fontsize', 11)

text(-2,0,['2nd Local Min (circle) @x= ', num2str(xm(2))]);

text(-2, -0.5, ['3rd Local Min (star)   @x= ', num2str(xm(3))]);

plot(xm(1),ym(1),'rs', xm(2),ym(2), 'bo', xm(3),ym(3), 'kp', ...

'markersize',13,'markerfacecolor', 'm'); hold off

title('sin(1.313^{-1.7*x})-cos(1.313^{1.7x}')

xlabel('\it x'), ylabel('\it f(x)')

Within this script, the text and gtext commands are used to insert the three local 

minimum values of f(x) with the cursor clicks activated by ginput. After executing the 

script, you select the local minima of the plotted data from left to right and print the local 

minima on the plot figure. The plot figure shown in Figure 6-23 is the result.
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Figure 6-23. Plot figure with located minimum values displayed

Note that in Figure 6-23 the first local min (the square) @x = -6.1855 is displayed with 

the gtext command, and the other two local minima (the second and third minima) are 

displayed with the text command.

The GINPUT function is particularly useful when you need to locate several points in 

a plot with their corresponding coordinate points, but accuracy depends on how well or 

how precisely you can place a mouse cursor over the points of interest.

 Axis Ticks and Tick Labels
In some cases, it might be necessary to display specific values of tick marks on the 

plot axis. In those cases, the xticks, xticklabels, yticks, yticklabels, zticks, and 

zticklabels commands will be employed, respectively, for the x-, y-, and z-axes.

 Example 18: Display X-Axis Tick Labels
Given G = [sin(2t), cos(2t), esin(2t) +  cos (2t)], t = [0, 2π], put the tick marks on the 

x-axis at 0
2

3

2
2, , , ,

�
�

�
��

��
�
��

.
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Here is the solution script (Plot_EX18.m):

%% Plot_EX18.m to demonstrate Xticks and Xticklabels

H=@(t)([sin(2*t), cos(2*t), exp(sin(2*t)+cos(2*t))]); fplot(H, [0, 2*pi], ̍-*̍) 
xticks([0:pi/2:3*pi]);

xticklabels({̍0̍, ̍\pi/2 ̍,  ̍\pi ̍,  ̍3\pi/2 ̍,  ̍2\pi ̍});
xlabel( ̍\it t ̍), ylabel( ̍\it H ̍),
title( ̍\it \fontsize{9} Xticks & Xticklabels ̍), grid on

This solution script (Plot_EX18.m) results in a plot with the x-axis tick labels 

displayed, as shown in Figure 6-24.

Figure 6-24. Displaying x-axis tick labels

In this example, as shown in Figure 6-24, we have demonstrated how to add specific 

tick marks and labels along the x-axis like can be done for the y-axis. In contrast, all 

axis labels and tick marks can be removed with a single command: axis off. Here’s an 

example:

H=@(t)([sin(2*t), cos(2*t), exp(sin(2*t)+cos(2*t))]);

fplot(H, [0, 2*pi], '-*'); axis off

The previously shown commands produces the plot shown in Figure 6-24 with no 

axis labels (the resulted figure is not shown here).
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 Figure Handles
The plot figure properties and plot line and marker specifiers (such as line style, color, 

width, marker type, size, and face color) can be set and managed via a figure handle, e.g., 

FH = plot(x, y). The handle FH will contain all the figure properties of the plot. Let’s 

look at the following example to see how to manage plot figure properties.

 Example 19: Working with Figure Handles
Given: G = [sin(2t), cos(2t), exp(sin(2t) + cos(2t))], t = [0, 2π].

Here is the solution script (Plot_EX19.m):

%% Plot_EX19.m - Plot Handle.

% Part 1. Plot figure and get a handle: HG

clf                                 % Clear current figure

t = 0:pi/30:2*pi;

GH = [sin(2*t); cos(2*t); exp(sin(2*t)+cos(2*t));];

HG = plot(t, GH); shg

%% Part 2. Change plot properties

% Set Line Color

HG(1).Color='r';                    % HG(1).color = [1 0 0]; % Alternative

HG(2).Color='g';                    % HG(2).color = [0 1 0]  % Alternative

HG(3).Color='b';                    % HG(3).color = [0 0 1]  % Alternative

% Set Line Type

HG(1).LineStyle = '-';

HG(2).LineStyle = '--';

HG(3).LineStyle = '-.';

% Set Line Width

HG(1).LineWidth = HG(1).LineWidth+0.5;

HG(2).LineWidth = HG(2).LineWidth+0.5;

HG(3).LineWidth = HG(3).LineWidth+0.5;

% Set Marker type

set(HG(1), 'marker', 'p')           % Marker is a Pentagon

set(HG(2), 'marker', 'd')           % Marker is a Diamond

set(HG(3), 'marker', 'o')           % Marker is a Circle

% Set Marker size
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set(HG(1), 'MarkerSize', 5)

set(HG(2), 'MarkerSize', 7)

set(HG(3), 'MarkerSize', 9)

% Set Marker Face color

set(HG(1), 'markerfacecolor', [1 0 1])

set(HG(2), 'markerfacecolor', [0 1 1])

set(HG(3), 'markerfacecolor', [1 1 0])

title('\fontsize{11} G(\alpha) vs. \alpha. [\alpha = 0:\pi/30:2\pi]')

xlabel('\alpha'), ylabel 'F(\alpha)', grid on, axis tight

legend('sin(2\alpha)', 'cos(2\alpha)','e^{sin(2\alpha)+cos(2\alpha)}')

Part 1 of the script produces the plot figure shown in Figure 6-25, and Part 2 of the 

script changes the properties (the line and marker specifiers), as shown in Figure 6-24.

Figure 6-25. Plot of three function values with default parameters of the 
plot() command

The plot figure in Figure 6-26 shows all the changed properties (line and maker 

specifiers) and the added title, axis labels, and legends.
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Figure 6-26. Plot figure of three function values

All of the 2D plot properties can be also altered using GUI tools (via the Property 

Inspector), which are accessed by activating the Plot Edit option with a single click on  

and then double-clicking the plot area.

 3D Surface Plots
To create and edit 3D bars, charts, and plots, you use the bar3h, pie3, ezsurf, 

surf, surfc, mesh, contour3, ribbon, waterfall, and plot3 functions. Almost all of 

commands, tools, and functions that you use to build 2D plots are also applicable in 

building 3D plots. This includes title, axis label, axis scale, legend, and so forth.

 Example 20: Creating a 3D Pie Plot with pie( )
Given A =10; B = 15; C = 20; D = 17; E = 28; F = 10; H = [A, B, C, D, E, F], let’s build a pie 

chart of the data set (see Figure 6-27).

pie3(1:6, H, { ̍A ̍,  ̍B ̍,  ̍C ̍,  ̍D ̍,  ̍E ̍, ̍F ̍}); title( ̍Share Holders ̍)

Chapter 6  plots and data Visualization



415

Share Holders

F

A

C

D

E

Figure 6-27. 3D pie plot

 Example 21: Creating a 3D Surface Plot with ezsurf( )
Given: h(z, β) = ln(0.01 * z) * cot(2.5 * β).

For this example, we define a function handle using the ezsurf() command (see 

Figure 6-28):

ezsurf(@(z, beta)log(0.01*z)*(1./tan(2.5*beta)))

Figure 6-28. 3D surface plot
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An alternative and recommended solution here is to use the fsurf() plot function 

that is available in the recent versions of MATLAB.

Fsurf(@(z, beta)log(0.01*z)*(1./tan(2.5*beta)), [ 0 6, -2*pi, 2*pi])

zlim([-50, 50])

 Example 22: Creating a 3D Mesh Plot with ezmesh( )
Given: h(α, x) = cos(2.1α)e0.1x

In this exercise, we create a symbolic math function of h(α, x) by using the function 

handle with a surface plot command: ezsurf() (see Figure 6-29).

%% Plot_EX22.m

% Part 1

ezmesh(@(alpha,x)cos(2.1*alpha)*exp(0.1*x))

Figure 6-29. 3D mesh plot

An alternative and recommended solution of this example is to use the fmesh() 

function with a function handle @.

%% Part 2. Alternative solution. Recommended one.

fmesh(@(alpha, x)cos(2.1*alpha)*exp(0.1*x),[-5.75 5.75 -5.75 5.75])

title('cos(2.1*\alpha)*exp(0.1*x)')
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xlabel('\alpha')

ylabel('x')

The alternative and recommended solution of this example is to use the fmesh() 

function that produces the same plot as shown in Figure 6-29.

Note fmesh() is recommended to use instead of ezmesh(), which is going to 
be obsolete in the future releases of MatlaB.

 Example 23: Creating a 3D Surface-Contour Plot  
with ezsurfc( ), fsurf( ), and surfc( )

Given f x cos x sin y� � � �
�
�

�
�
� �

�
�
�

�
�
� �0 5

180
0 75

180
50 5 150. . ; : :

�� ��
� ; x = [−π, π], y = [−π, π], with 

two arguments x and y, let’s build a 3D plot f (x, y) for certain frequency ranges with an 

animated simulation.

%% Plot_EX23.m

% Part 1

close all

for omega=50:5:150 handle=@(x,y)(0.5*cos(omega*pi*x/180)+0.75*sin(omega*y*
pi/180));

    ezsurfc(handle, [-pi, pi], [-pi, pi]);

end

This script builds a 3D plot (see Figure 6-30) of the given function f (x, y) with an 

animated simulation with respect to the frequency ranges ω = 50 … 150.
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Figure 6-30. 3D surface-contour plot with ezsurfc()

An alternative solution is to use the fsurf() function, which is a recommended 

function to use instead of ezsurfc().

%%  Part 2. Alternative Solution

for omega=50:5:150

 handle=@(x,y)(0.5*cos(omega*pi*x/180)+0.75*sin(omega*y*pi/180));

    fsurf(handle, [-pi, pi]); shg

end

xlabel('x')

ylabel('y')

title('0.5*cos(\omega*\pi*x/180)+0.75*sin(\omega*\pi*y/180)')

Another alternative solution is to use the surfc() function:

%%  Part 3. Alternative Solution

[x, y]=meshgrid(linspace(-pi,pi, 50), linspace(-pi,pi, 50));

for omega=50:5:150

    F=(0.5*cos(omega*pi*x/180)+0.75*sin(omega*y*pi/180));

    surfc(x, y, F);

end
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xlabel('x')

ylabel('y')

title('0.5*cos(\omega*\pi*x/180)+0.75*sin(\omega*\pi*y/180)')

This solution results in the same output as with ezsurfc() and fsurf(). Note 

that with the surfc() function all numerical values of the given expression f(x,y) 

are computed with respect to the equally spaced (generated) data points from the 

meshgrid() function for x and y.

 Example 24: Creating a 3D Plot of an Electric 
Potential Field
The electric potential field V at a point, due to two charged particles, is given by
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where q1 and q2 are charges of the particles in Coulombs (C), r1 and r2 are the distances 

of the charges from the point (in meters), and ϵ0 is the permittivity of free space, whose 

value is 
0
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2
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.
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.

Suppose the charges are q1 = 2*10−10C and q2 = 4*10−10C. Their respective locations 

in the x-y plane are (0.3, 0) and (−0.3, 0). You will plot the electric potential field on a 3D 

surface plot, V plotted on the z-axis over the ranges of x and y, defined by −0.25≤ x ≤ 0.25 

and −0.25 ≤ y ≤ 0.25, which correspond to r1 and r2. You can create a 3D plot in two ways.

• By using the surf function

• By using the mesh function

Here is the script (Plot_EX24.m) that computes the given electric potential field 

problem and plots its results:

%% Plot_EX24.m

% q1, q2 are charges of the particles in coulombs (C)

% r1, r2 are distances of the charges from the point in meters

% epsilon is permittivity of free space

% r1,r2, V(r1,r2) are coordinate systems for plotting close all
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[r1, r2] = meshgrid(-0.25:0.01:0.25); epsilon = 8.854e-12;q1 = 2e-10; 

q2=4e-10; coeff = (1./(4*pi*epsilon));

V = coeff.*(q1./r1 + q2./r2);

figure(1) % Surface plot

surface(r1,r2,V); xlabel( ̍r_1 ̍); ylabel( ̍r_2 ̍);
zlabel( ̍V(r_1,r_2) ̍)
title([ ̍Fig. 1. Electric potential field ̍, ...
 ̍of two charged particles with surface plot ̍]) grid on, view(-15,15), axis 
tight, colormap Jet figure(2) % Meshed plot with contour

mesh(r1,r2,V); xlabel( ̍r_1 ̍); ylabel( ̍r_2 ̍);
zlabel( ̍V(r_1, r_2) ̍);
title([ ̍Fig. 2. Electric potential field ̍, ...
 ̍of two charged particles with mesh plot ̍]); axis vis3d; colormap hsv

After running this script, the 3D plots shown in Figure 6-31 and Figure 6-32 are 

obtained.

Figure 6-31. 3D plot surface plot of the potential field of the two charged particles
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Figure 6-32. Mesh plot of the electric potential field of two charged particles

 Example 25: Creating 3D Plots with waterfall( ), 
ribbon( ), meshc( ), contour( )
Given G(t, θ) = ln(| cos(0.5t + 5θ) + cosh(5t + 0.5θ)| ), t = −0.2π…0.2π; θ = −0.2π…0.2π.

We define function variables as linearly spaced vectors (vector space) or arrays and 

then compute their function values according to the defined arrays. After that, you can 

build plots of the computed data. Here is the complete solution script (Plot_EX25.m):

% Plot_EX25.m

[t, theta]=meshgrid(linspace(-0.2*pi, 0.2*pi, 50));

G=log(abs(cos(0.5*t+theta*5)+sinh(5*t+0.5*theta)));

figure(1), waterfall(t,theta,G);

xlabel('t-axis'); ylabel('\theta-axis');

zlabel('G(t,\theta) function values');

title('G(t,\theta)=ln(abs((cos(0.5*t+\theta*5)+sinh(5*t+0.5*\theta)))');

figure(2)

ribbon(G), title('3D ribbon plot of the function G(t, \theta)');

xlabel('t-axis'); ylabel('\theta-axis');

zlabel('G(t,\theta) function'); axis vis3d
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figure(3), meshc(t, theta, G)

title('3D meshed contour plot of the function G(t, \theta) ');

xlabel( 't-axis'); ylabel('\theta-axis');

zlabel('G(t,\theta) function'); axis vis3d

figure(4), contour(t, theta, G)

title('Contour plot of the function G(t, \theta)');

xlabel('t-axis'); ylabel('\theta-axis');

By executing the script (Plot_EX25.m), you get the plots of the G(t, θ) function shown 

in Figures 6-33, 6-34, 6-35, and 6-36.

Figure 6-33. 3D surface-waterfall plot of 
G(t, θ) =  ln 3(| cos(0.5t + 5θ) +  cosh (5t + 0.5θ)| )
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Figure 6-34. 3D ribbon plot of G(t, θ) =  ln 3(| cos (0.5t + 5θ) +  cosh (5t + 0.5θ)| )

Figure 6-35. 3D meshed contour plot of 
G(t, θ) =  ln 3(| cos (0.5t + 5θ) +  cosh (5t + 0.5θ)| )
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Contour plot of the function G(t, )

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
t-axis

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-a
xi

s

Figure 6-36. Contour plot of G(t, θ) =  ln 3(| cos (0.5t + 5θ) +  cosh (5t + 0.5θ)| )

With 3D plot tools of surfaces, we have demonstrated the mesh, surf (surface), 

waterfall, ezsurf, ribbon, meshc, and contour plot functions.

 Save Plot Figure with saveas( )
The created plot figures can be saved using the File ➤ Save As options and MATLAB’s 

built-in function saveas(). The plot figure can be saved in more than a dozen file 

formats, such as *.png, jpg/.jpeg, .tif/tiff, .bmp, .eps,.pdf, .ps, and so forth. The 

general syntax of the saveas() command is as follows:

saveas(gcf, 'File Name.Extension')

saveas(gcf, 'File Name', 'File format')

Let’s demonstrate a few examples of saving plot figures with saveas(). Here are the 

steps to write the complete code (SAVE_Plot.m) used in the examples:

 (1) Save the current plot figure in the MATLAB figure file format.

%% SAVE_Plot.m

% Part 1. Save in *.fig format

fplot(@(x)exp(sin(2*x)), [-pi, pi]), grid on;

 saveas(gcf, 'MY_fig.fig')  % Saves MY_fig.fig in current directory
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 (2) Save the current plot figure in the *.png format.

% Part 2. Save in *.png format

[x, y]=meshgrid(linspace(-pi, pi, 75), linspace(-5, 5, 50));

F = exp(sin(x)+cos(y)); contour(x, y, F, '--')

  saveas(gcf, 'MY_Plot', 'png') % Saves MY_Plot.png in current directory

 (3) Save the current plot figure in the *.pdf format.

% Part 3. Save in *.pdf format

Theta = 0:0.01*pi:5*pi;

c = 2; a = 0.2; b=.5;

R = a + b*Theta.^(1/c);

polarplot(Theta, R, 'LineWidth', 2);

saveas(gcf, 'Spiral', 'pdf')

Here we have demonstrated how to use the saveas() function to save/write the 

created plot figure in different file formats.

Note note that the results from the saveas() function are not identical to the 
saved figure files from the File ➤ save as options in the figure window.

Now you can recall already saved graphs in *.png and *.fig file formats and 

plot them as subplots using the imshow() command for the *.png and hgload(), 

copyobject(), allchild(), and get() commands for *.fig file formats. Here are the 

completed script (SAVE_Plot.m) commands:

% Part 4. Display saved graphs in subplots

H1=subplot(211); imshow('MY_Plot.png')

H2=subplot(212);

C=hgload('MY_Fig.fig'); copyobj(allchild(get(C, 'CurrentAxes')), H2);

title(H1, "MY plot.fig")

title(H2, "MY fig.fig")
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 3D Line Plots and Animations
There are several 3D space line plot tools (plot3, comet3, and scatter3), which are used 

to plot vector data points and space curves. The given vector data can be embedded 

in higher dimensions. 3D plotting methods are similar to plot tools employed in plot 

equations in 2D plots, which were described previously. The plot functions for 3D curves 

are plot3, comet3, ezplot3, and scatter3. They are implemented very much like the 2D 

plot functions, such as plot and comet. The comet and comet3 functions draw plots by 

evolving them in action/animation. Let’s consider the next example.

 Example 26: Building 3D Line Plots and Animated 3D Line 
Plots with plot3( ), comet3( ), and ezplot3( )
A popular amusement park ride known as the corkscrew has a helical shape. The 

parametric equations for a circular helix are defined by x = a cos t; y = a sin t; x = 

bt, where a is the radius of the helical path and b is a constant that determines the 

“tightness” of the path. In addition, if b > 0, the helix has the shape of a right-handed 

screw. If b < 0, then the helix is left-handed.

This example creates the three-dimensional plot of the helix in the following three 

cases and compares their appearance. Use 0 ≤ t ≤ 10π and a = 1.

a) b = 0.1; b) b = 0.2; c) b = − 0.1;

%% Plot_EX26.m - Amusement ride - corkscrew plot in 3D

t=0:pi/15:10*pi; a=1; x=a*cos(t); y=a*sin(t);

% case (a) b1=0.1; z1=b1*t;

% case (b)

b2=0.2; z2=b2*t;

% case (c)

b3=-0.1; z3=b3*t;

subplot(311); plot3(x, y, z1, 'r*-'); legend('b_1=0.1') title('Corkscrew: 

b_1=0.1; b_2=0.2, b_3= -0.1'); subplot(312); plot3(x, y, z2, 'bs-'); 

legend('b_2=0.2')

subplot(313); plot3(x, y, z3, 'ko--');legend('b_3=-0.1')

xlabel('X'); ylabel('Y'); zlabel('Z');

figure(2); X=[x,x,x]; Y=[y,y,y]; Z=[z1,z2,z3]; comet3(X,Y,Z); % 

Animated plot
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%% Alternative animated plot with ezplot figure(3);

ezplot3('cos(t)','sin(t)', '0.1*t', [0,10*pi], 'animate'); hold on

ezplot3('cos(t)', 'sin(t)', '0.2*t', [0, 10*pi], 'animate'),

ezplot3('cos(t)', 'sin(t)', '-0.1*t', [0, 10*pi], 'animate')

After executing the script called Plot_EX26.m, we obtain the plots displayed in 

Figure 6-37.

Figure 6-37. Simulation plot of corkscrew amusement park rides

With the 3D parametric curve plotter tools comet3 and ezplot3 shown in the 

previous script, we can obtain a simulation of the corkscrew amusement park ride in 

action. The comet3 and ezplot3 'animate' tools display simulated animation plots. 

There are also other 3D line and surface plot tools, including quiver, compass, feather, 

scatter3, stem3, and contour3.
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 Animated Plots
Plots can be animated with two functions, getframe and movie. There is also another 

tool called drawnow that can used to demonstrate this simulation process. It is a 

straightforward way to employ these tools and can be incorporated with other plot tools. 

Let’s look at several exercises to see how to use these functions.

 Example 27: Building an Animated Plot with getframe( )
Given a function: f (x, y) = (|x|)tan (0.5y/180), x =  − 13…13, y =  − 13…13.

We employ the getframe and movie tools to obtain an animated plot with the 

following script (Plot_EX27.m):

% Plot_EX27.m

     for m=1:20; [x, y]=meshgrid(linspace(-13, 13, 200)); z=log10(abs(x)).*t

an(m*y*pi/180);

     mesh(x, y, z)

    M(m)=getframe(gcf);

end

title({['3D surface-contour plot of the function' ],... ['f(x, 

y)=log10(abs(x))tan(0.5*y*\pi/180)']});

xlabel('X-axis'); ylabel('Y-axis');

zlabel('f(x, y) function values'); movie(M,2) % The plot movie is 

played twice

 Example 28: Building an Animated Plot with drawnow
Given a function: f t sin t cos t g t t t� � � � � � � � � � � � � �, cos sin , x = 0…3π.

For this example, we employ the drawnow function and write the following script 

(Plot_EX28.m) to obtain a 2D animated plot:

% Plot_EX28.m

for t=linspace(-2*pi, 2*pi, 200) f=sin(t)*sqrt(abs(cos(t))); 

g=cos(t)*sqrt(abs(sin(t))); drawnow plot(t,f, 'o-',t, g, 'mp--');

hold all % used for colorful markers

end
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title('Animated plot of the function')

xlabel('X-axis'); ylabel('Y-axis'); legend('f(t)', 'g(t)')

The drawnow command works very well with the plot (property) handle and the 

refreshdata commands.

 Example 29: Building an Animated Plot with drawnow
Given a function: y(t) = sinc (esin(kt)), t = 0…5π, k = [1, 2].

% Plot_EX29.m

t= 0:pi/100:5*pi; y = sinc(exp(sin(t))); for k = 1:.01:2

    y = sinc(exp(sin(t.*k))); H = plot(t,y);H.LineStyle = ':'; H.Color = 

[1 0 1];

    set(H, 'marker','o');

    set(H, 'markerfacecolor', [0 1 1]);

    set(H, 'markersize', 13); refreshdata(H,'caller') drawnow; 

pause(.005), shg

end

 Example 30: Building an Animated Plot of a Projectile 
with getframe( )
The height and speed of a projectile (such as a thrown ball) launched at a speed of v0 at 

an angle θ to the horizontal are given by

 h t v tsin gt� � � � � �0

2
0 5� .  

 
v t v v gt g t� � � � � � �0

2

0

2 2
2 sin �  

Here, g is the acceleration due to gravity. The projectile will strike the ground when 

h(t) = 0, which gives the time to hit t
v sin
ghit �
� �2

0
�
.  Suppose that � � �30 40

0

0
, ,v m

s
 and 

g = 9.81 m/s2. Let’s animate the ball’s trajectory with getframe (movie) and drawnow by 

choosing a sufficiently small step size for time.
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Here is the solution script (plot_ex25.m):

% Plot_EX30.m

% Study the projectile trajectory and velocity clearvars; clc; close all

% Given data:

g=9.8; % acceleration due to Earth gravity in m/s^2 theta=30;  % angle to 

the horizontal axis in degrees v0=40; % speed of the thrown ball in m/s

% t_hit is time needed for the thrown ball to hit the ground.

% h is height of the thrown ball relative to the ground in m.

% v is speed of the thrown ball over time.

% t is a time series for computation in [sec].

% dt is increment of total time. t_hit=2*v0*sin(theta*pi/180)/g; dt=t_

hit/80; t=(0:dt:t_hit); h=v0*t.*sin(theta*pi/180) - 0.5*g*t.^2;

v=sqrt(v0*v0-2*v0*g*t.*sin(theta*pi/180)+g*g*t.^2);

%% Animated plot of the projectile dt=t_hit/100; t=(0:dt:t_hit);

for ii=1:length(t)

    h(ii)=v0*t(ii).*sin(theta*pi/180) - 0.5*g*t(ii).^2; plot(t(ii), h(ii), 

'o:', 'markerfacecolor', 'y') hold all

    M(ii)=getframe(gcf); end

% movie(M, 1)

%% Animated plot of the projectile velocity for ii=1:length(t)

v(ii)=sqrt(v0^2-2*v0*g*t(ii).*sin(theta*pi/180)+g^2*t(ii).^2); drawnow

plot(t(ii), v(ii), 'o:', 'markerfacecolor', 'c'), hold all end

 Summary
This chapter discussed a few essential plot tools and functions. In particular, it 

demonstrated, with examples, how to employ the following plot commands and 

functions:

• 2D plot commands:

 – plot, plotyy, semilogx, semilogy, loglog, hist, bar,errorbar, 

title, axis, legend, grid, xlabel, ylabel, fplot, ezplot, xlim, 

and ylim
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• 3D plot commands:

 – ezsurf, surface, meshc, meshgrid, ribbon, pie3, waterfall, 

plot3, comet3, fsurf, surfc,contour, colormap, view, and zlabel

• Additional plot-related commands:

 – subplot, close all, axis, axis vis3d, set, gcf, grid, hold, 

axis, legend, clf, figure, title, text, gtext, leftarrow, 

ginput,fontsize, shg, and so forth.

• Animated plot commands:

 – getframe, movie, refreshdata, and drawnow

Here are a few of the most common errors that occur while plotting:

• One of the most common errors made while plotting measured or 

computed data is when you try to plot two data sets with different 

sizes (e.g., as input versus output). A plot cannot be obtained 

because of the mismatched data points. Therefore, you need to be 

careful about the size of your data sets when plotting them in an x 

versus y plot.

• You can sometimes confuse or do not assign legends correctly, and 

as a result, you will get incorrect information from your plotted 

data sets.

• When you are dealing with large data sets composed of many rows 

and columns of data, you can sometimes confuse rows with columns, 

and vice versa.

• Sometimes you will try to plot complex numbers; however, MATLAB 

plots only the real part of complex numbers unless you plot them 

separately.
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 Exercises for Self-Testing
 Exercise 1
Plot y versus f (y) of the following polynomial for y = −3 … 2:

f (y) = y5 + 5y4 + 3y3 − 10y2 − (100.5) for y =  − 3…2

 1. Create an empty plot figure.

 2. Plot y versus f (y) with a 1.0 width solid line (style) in blue and with 

diamond markers in yellow using plot() by taking ∆y = 0.25.

 3. Hold on to the plot figure from step 2.

 4. Plot y versus f (y) with a 2.0 width dashed line (style) in magenta 

using fplot().

 5. Add a plot title of “y5 + 5y4 + 3y3 − 10y2 − (100.5 )= f (y),” axis labels, 

and grids.

 Exercise 2
Plot the polynomial given in Exercise 1 using the fplot function.

 1. Find the minimum value (fmin) of the polynomial by using ginput.

 2. Plot the found values (minimums) with a diamond marker and 

circle in blue and red, respectively.

 Exercise 3
Given:

 f y y y y y
1

0 5
5 5 4 3 3 10 2 10� � � � � � � .  

 f y y e y e y e y e e
2

5 4 3 2 0 5
0 001 5 0 01 4 0 0125 3 0 0125 2 0 1� � � � � � �. . . . .

.  
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 1. Plot the two functions f1 (y) and f2 (y) in one plot area for −3 ≤y ≤ 2 

by using the fplot and plot functions. Compare the results of the 

two approaches. Insert all the necessary information (such as plot 

title, axis label, grid, line width, marker type, color, and so forth) to 

make the plot legible and informative for analysis.

 2. Plot these two functions: y versus f1 (y), and y versus f2 (y) in one 

plot area for −1 ≤ y ≤ 1 by using plotyy or yaxis right/left so that 

f1 (y) and f2 (y) are in two separate vertical axes.

 3. Locate the local minima of both plotted f1 (y) and f2 (y) functions 

in step 2 using ginput.

 4. Plot the local minimum values found in step 3 in the plot of step 2.

 Exercise 4
A cable of length Lc supports a beam of length Lb so that it is horizontal when the weight 

W is attached to the beam end. The tension force T in the cable is given by

T L L W D L Dc b b� �/
2 2 , where D is the distance of the cable attachment point to the 

beam pivot.

Lc

Lb

D

W

 

 1. Use the W = 777 N, Lb = 2.33 m, and Lc = 3.77 m element-wise 

operations and the function min() (hint: min(X, Y)) to compute 

the value of D that minimizes the tension value.
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 2. Check the sensitivity of the solution by plotting T versus D. How 

much can D vary from its optimal value before the tension T 

increases 13 percent above its minimum value?

 Exercise 5

 1. Use MATLAB to solve the following equations for x, y, and z as 

functions of the parameter c:

 x y z c� � �5 2 11  

 6 3 13x y z c� � �  

 7 3 5 10x y z c� � �  

 2. Plot the solutions for x, y, and z versus c on the same plot, for −10 

≤ c ≤ 10. Note that the incremental change of c is 1.

 Exercise 6
Plot the following two polynomials over the interval of −6 ≤ x ≤ 13.

 f x x x x x� � � � � � �0 003 1 5 13 0 08 13
4 3 2

. . . ;  

 h x x x x� � � � � � �0 03 1 5 0 04 9 0
3 2

. . . . ;  

 1. Plot f (x) versus x in a subplot 1 using fplot() and put a grid on 

the plot.

 2. Plot h(x) versus x in a subplot 2 using plot() with ∆x = 0.25 and 

put a grid on the plot.

 3. Using the ginput function, determine the coordinates of the peaks 

of f(x) and h(x) and add this information using text and gtext.
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 Exercise 7
Compute the following formulation: h(α) = sin sin (α)/α, where α = 0 : π/40 : π. Compute 

the values of π from the following formulations—(a) developed by Srinivasa Ramanujan 

in 1910 and (b) developed by Borwein-Plouffe in 1995:

 

1 2 2

9801

4 1103 26390

3960

4 4�
�

� � �

� �
� �

�
�
k

m

k

k k
k

a
!

!  

 
� �

�
�

�
�

�
�

�
�
��

�
��

� �
�
�
k

n

k k k k k
b

0

1

16

4

8 1

2

8 4

1

8 5

1

8 6  

 1. Compute π from (a) for m = 100; plot α versus h(α)

 2. Compute π from (b) for n = 10; plot α versus h(α)

 3. Build animated plots from steps 1 and 2 using drawnow and 

getframe + movie.

 Exercise 8
The volume V and paper surface area A of a conical paper cup are given by

V r h�
1

3

2�  and A r r h� �� 2 2

Here, r is the radius of the base of the cone, and h is the height of the cone.

 1. By eliminating h, obtain the expression for A as a function of 

r and V.

 2. Create a user-defined function that accepts r as the only argument 

and computes A for a given value of V. Declare V to be global 

within the function.
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 Exercise 9
A torus is shaped like a doughnut. If its inner radius is a and its outer radius is b, its 

volume and surface area are given as follows:

 
V a b b a� �� � �� �1

4

2 2 2�  

 
A b a� �� �� 2 2 2

 

 1. Create a user-defined function that computes V and A from the 

arguments a and b.

 2. Suppose that the outer radius is constrained to be 2 inches greater 

than the inner radius. Write a script file that uses your function to 

plot V and A versus a for 0.25 ≤ a ≤ 4 [in].

 Exercise 10
Create four anonymous functions to represent the function 6 3

2

e xcos , which is composed 

of the functions h(z) = 6ez, g(y) = 3 cos y, and f (x) = x2. Use fplot to plot e x3
2

cos  over the 

range of 0 ≤ x ≤ 4.

 Exercise 11
Create an anonymous function for 20 x2 − 200x + 3 and use it to plot the function in order 

to determine the approximate location of its minimum using ginput.

 Exercise 12
Find the approximate roots of the equation x3 − 3x2 + 5x with fplot and then use ginput.
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 Exercise 13
To compute the forces in structures, sometimes you must solve equations similar to the 

following. Use the fplot function to find all positive roots of this equation: x tan x = 7.

 Exercise 14
Cables are used to suspend bridge decks and other structures. If a heavy uniform cable 

hangs suspended from its two endpoints, it takes the shape of a catenary curve whose 

equation is y = (x/a), where a is the height of the lowest point on the chain above some 

horizontal reference line, x is the horizontal coordinate measured to the right from the 

lowest point, and y is the vertical coordinate measured up from the reference line.

 1. Let a = 10 m and plot the catenary curve for −20 ≤ x ≤ 30 [m]. How 

high is each endpoint?

 2. Let a = 10 m with an increment of 1m and plot the catenary 

curve for −20 ≤ x ≤ 30 [m] using the loop control statements and 

automatic labeling tools of plotted data points with strings.

 3. Build an animated plot of the computation results from step 2 

using drawnow.

 Exercise 15
When a belt is wrapped around a cylinder, the relation between the belt forces on each 

side of the cylinder is as follows: F1 = F2eμβ.

Here, β is the angle of the wrap of the belt and μ is the friction coefficient. Write a 

script file that first prompts a user to specify β, μ, and F2 and then computes the force, 

F1. Test your program with the values β =1300 , μ = 0.3, and F2 = 100 N. The output force 

(F1) has to be output in N in the Command window. (Hint: Be careful with β!)

 1. Plot F1 versus β for β = 300…3600 for 30 linearly spaced data points.

 2. Add the plot title, axis labels, marker type (pentagram in cyan), 

and marker size (8.0), and then set a line width at 1.50.
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 3. Add text to the plot area “F1 is dependent on wrap angle β!” with a 

font size of 13.

 4. Build an animated plot of the output force (F1) for β = 300…3600 

for 100 linearly spaced data points, μ = 0.1…0.3 and F2 = 100 N.

 Exercise 16
Using estimates of rainfall, evaporation, and water consumption, the town engineer 

developed the following model of the water volume in the reservoir as a function of time:

 
V t e t

t

� � � � �
�

�
�

�

�
� �

�
10 10 1 10

9 8 100 7

 

Here, V is the water volume in liters and t is time in days. Plot V(t) versus t. Use the 

plot to estimate how many days it will take before the water volume in the reservoir is 50 

percent of its initial volume, 109 liters.

 Exercise 17
Plot columns 2 and 3 of the following matrix A versus column 1. The data in column 1 is 

time (seconds). The data in columns 2 and 3 is force in N. Use the matrix axis mode to 

display the y-axis values in reverse order.

 

 Exercise 18
In certain kinds of structural vibrations, periodic force acting on the structure will cause 

the vibration amplitude to repeatedly increase or decrease with time. This phenomenon, 

called beating, also occurs in musical sounds. A particular structure’s displacement is 

described by y t
f f

cos f t f t� � �
�

� � � � �� �1

1

2

2

2 2 1
cos  .
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Here, y is the displacement in inches, and t is the time in seconds. Plot y versus t over 

the range 0 ≤ t ≤ 11π for f1 = 13 rad/sec and f2 = 1.5 rad/ sec . Make sure to select enough 

points to obtain an accurate plot of the process.

 Exercise 19
A robot rotates around its base at two revolutions per minute while lowering its arm and 

extending its hand. It lowers its arm at the rate of 1200 per minute and extends its hand at 

the rate of 5 m/min. The arm is 0.5 [m] long. The x-y-z coordinates of the hand are given 

as follows:

 
x t sin t cos t� �� � �

�
�

�
�
� � �0 5 5

2

3
4.

�
�

 

 
y t sin t sin t� �� � �

�
�

�
�
� � �0 5 5

2

3
4.

�
�

 

 
z t cos t
� �� � �

�
�

�
�
�0 5 5

2

3
.

�
 

Here, t is time in minutes.

 1. Obtain a 3D plot of the path of the hand for 0≤t ≤ 0.2 [min].

 2. Simulate the arm’s trajectory using comet3 and drawnow and 

analyze which tool results in better visualization.

 Exercise 20
Obtain surface and contour plots for the function z = 9x2 + 2 xy + 3y2. This surface has 

the shape of a saddle. At its saddle-point at x = y = 0, the surface has zero slope, but this 

point does not correspond to either a minimum or a maximum. What types of contour 

lines correspond to the saddle-point?
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 Exercise 21
The following function describes oscillations in some mechanical structures and electric 

circuits:

 z t e t
t

,� � ��� � � �� �
�
sin  

In this function, t is time, and ω is the oscillation frequency in radians per unit 

time. The oscillations have a period of 
2�
�

, and their amplitudes decay in time at a 

rate determined by τ, which is called the time constant. The smaller τ is, the faster the 

oscillations die out.

Suppose that φ = 0, ω = 2.5, and τ can have values in the range of 0.5 ≤ τ ≤ 10 sec. 

Then the proceeding equation becomes the following:

 z t e t
t

,� ��� � � � �
�
sin  

Obtain a surface plot with waterfall and a contour plot of this function with 

contour to help visualize the effect of τ for 0.5 ≤ t ≤ 10 sec. Label the axes by function 

name z(t, τ), with variable names of t and τ.

 Exercise 22
The following equation describes the temperature distribution in a flat rectangular metal 

plate. The temperature on three sides is held constant at T1 and T2 on the fourth side (see 

the following figure). The temperature T(x, y) as a function of the x-y coordinates shown 

is given as follows:

 T x y T T w x y T, ,� � � �� � � � �2 1 1  

Here, w x y n
n x
L

n y

n W
L

n

,� � �
�
�
�

�
�
� � �

�
�
�

�
�
��

�

�2
2

1�

� �

�

sin sinh

sinh
.

The given data for this problem is T1 = 220C, T2 = 750C, W = L = 3 [m].
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Using a spacing of 0.05 for x and y, generate a surface mesh plot and a contour plot of 

the temperature distribution.

 

 Exercise 23
Given a function f (x, y) = (| x| ) tan (0.5y/180), create a 3D plot of f (x, y) by using meshc 

and ribbon.

 Exercise 24
Given a function H(θ, φ) =  log 10(| θ| ) tan (0.5φ), θ = −π…π; φ = −π…π, do the following:

 1. Plot the given function H(θ, φ) by using the 3D surface and 

waterfall plot functions on two subplots.

 2. Build a 3D animated plot of H(θ, φ) = log10(|θ|) tan (a * φ), with  

θ = −π…π; φ = −π…π; and a = −1.5…1.5.

 Exercise 25
Given these functions:

h1 =  cos (2t ); h2 =  sin (3t ); h3 =  cosh (t/10) ; t = 0…8π, ∆t = π/10

Do the followings:

 – Plot the given functions with plot3 and comet3.

 – Build an animated plot of the given function by using getframe 

and movie.

 – Build an animated plot of the given function by using drawnow.
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CHAPTER 7

Linear Algebra
This chapter introduces linear algebra. It discusses some of the essential approaches 

to solving systems of linear equations, as well as various matrix operations (matrix 

inverse, determinant, sum, subtraction, division, multiplication, power, exponential, 

elementwise and array-wise operations, and so forth). It covers eigen-value problems 

and matrix factorizations/decompositions, such as Cholesky, Schur, LU, QR, and 

singular value decomposition. It also includes built-in functions and scripts in MATLAB 

and Simulink models. Moreover, the chapter explains the standard matrix generator 

functions of MATLAB, how to create vector spaces, how to solve polynomials, and the 

logical indexing of matrices, all via examples in MATLAB and Simulink.

 Introduction to Linear Algebra
Linear algebra is one of the more important branches of mathematics. It deals with 

vectors, vector spaces, linear spaces, matrices, and systems of linear equations. There 

is a wide range of linear algebra applications in engineering and scientific computing, 

including many fields of natural and social studies. Linear algebra starts with a system of 

linear equations for underdetermined, overdetermined, and well-defined systems.

If a given system is composed of m-linear equations with n-unknowns and m ≥ n, 

that is solvable for unknowns. Consider the following linear system, formulated by the 

system of equations (Equation 7-1):

 

a x a x a x b

a x a x a x b

n n

m m mn n m

11 1 12 2 1 1

1 1 2 2

� � � �
� � �

� � � �

�

�
�

��

..

: : : :

..  

(Equation 7-1)

The system of linear equations (Equation 7-1) is solvable directly for all cases when 

m ≥ n. If m < n, there are more unknowns than the number of linearly independent 

equations, and such a system is called underdetermined and not solvable directly.
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If m > n, there are more linearly independent equations, and such a system is called 

overdetermined and is solvable directly.

For the sake of simplicity, let’s take m = n and rewrite Equation 7-1.

 

a x a x a x b

a x a x a x b

n n

n n nn n n

11 1 12 2 1 1

1 1 2 2

� � � �
� � �
� � � �

�

�
�

��

..

: : : :

..  

(Equation 7-2)

The given system of linear equations in Equation 7-2 can also be written in matrix 

notation form.

 A X B� � � � � � �*  (Equation 7-3)

Here, A and B are matrices and X is a vector of unknowns.

Where A

a a

a a

n

n nn

� � �
�

�

�

�

�
�
�

�

�

�
�
�

11 1

1

: : : , X x x x B

b

b
n

n

� �� �� � � ��
�

�

�
�
�

�

�

�
�
�

1 2

1

, , , , :

Equation 7-3 can also be rewritten in the form of column matrices.
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:

 

(Equation 7-4)

The system in Equation 7-3 or 7-4 can be solved for X (unknowns) with the next 

formulation:

 X A B� ��� � � ��1
*  (Equation 7-5)

Here, [A]−1 is the inverse of the matrix [A].

 Matrix Properties and Operators
Matrices have several important properties and operators, such as determinant, 

diagonal, transpose, inverse, singularity, rank, and so forth.

The determinant of a matrix can be computed only if the given matrix is a square. 

Here’s an example:

 

M

a b c

d e f

g h i

�
�

�

�
�
�

�

�

�
�
�
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The determinant of M will be computed with the following expression:

det (M ) = aei + bfg + dhc - ceg - dbi - hfa

The MATLAB command for the determinant computation is det(). Here’s an 

example:

 >> A=[   8   1   6;   3   5   7;   4   9   2]

A =

     8     1     6

     3     5     7

     4     9     2

>> det(A)

ans =

-360

The diagonal of a matrix is composed of its element along its diagonals. For example, 

in the previous example, the diagonals are aei and ceg.

The MATLAB command for diagonal separation is diag(). Here’s an example:

>> A = [   8   1   6;   3   5   7;   4   9   2];

>> diag(A)

ans =

     8

     5

     2

The transpose of a matrix can be determined by the counterclockwise rotation of a 

matrix by 900 (degrees). The transpose properties are as follows:

 
M MT T� � �

 

 M B M B
T T T�� � � �  

 kM kM
T T� � �  

 MB B M
T T T� � �  

 
M M

T T� �� � � � �1 1
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Here, M and B are matrices of the same size, k is a scalar, and T and -1 are the 

transpose and inverse operators.

The MATLAB command for the transpose operation is transpose(), or ' .

Here’s an example:

>> A =[   8   1   6;   3   5   7;   4   9   2];

>> transpose(A)

ans =

     8     3     4

     1     5     9

     6     7     2

>> A'

ans =

     8     3     4

     1     5     9

     6     7     2

 Simulink Blocks for Matrix Determinant, Diagonal 
Extraction, and Transpose
Simulink has blocks that you can use to compute the matrix determinant, extract 

the matrix diagonal elements, and obtain the matrix transpose. The determinant 

block ([det(A) (3x3)]) is present in Simulink’s Aerospace Blockset/Utilities/Math 

Operations, and it has a constraint and can only compute the determinant of 3-by-3 

matrices.

Note the block [det(A) (3x3)] from the aerospace blockset is limited; it can 
only compute the determinant of 3-by-3 matrices.

The block to extract the diagonal elements of a matrix is available in the DSP System 

Toolbox/MATH Functions/Matrices and Linear Algebra/Matrix Operations. The block 

to compute the matrix transpose is present in Simulink/Math Operations, and the block 

name is Math Function. It has a few math functions embedded in it, including exp 

(by default), log, 10^u, magnitude^2, square, pow, and transpose. Any of these math 
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functions in the Math Function block can be chosen. You simply click the Apply and OK 

buttons of the block, and the chosen math function becomes available. Figure 7-1 shows 

these three blocks.

Figure 7-1. Simulink blocks used for determinant calculation, diagonal 
extraction, and transpose operation, from left

These blocks have one input and one output port. Therefore, you need to add two 

additional blocks, specifically, one Constant block for input entry and one Display 

block, to obtain/see the computation results. The Constant block can be taken from 

the Simulink Library Simulink/Sources or DSP System Toolbox/Sources. Similarly, 

the Display block can be taken from Simulink/Sinks or DSP System Toolbox/Sinks. 

Alternatively, with the latest versions of MATLAB starting from 2018a, you can obtain 

all the necessary blocks by double-clicking (with the left mouse button) and typing the 

block name in the search box. As discussed in the previous chapters, in any Simulink 

model one signal source can be used as many times as necessary. There is no need to 

generate that signal within one model to use it with other blocks as an input signal. 

Moreover, to optimize the Simulink model, it is strongly advised you build a Simulink 

model with fewer blocks to make your models more readable, comprehensive, and easy 

to edit. Therefore, this example uses one Constant block for input source [A]. Figure 7-2 

shows the primary version of the Simulink model.
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Figure 7-2. Simulink model to compute the determinant of a matrix, extract 
diagonal elements of a matrix, and perform a transpose on a matrix

Let’s use example matrix [A] to demonstrate these three Simulink blocks. The 

elements of the matrices [A] can be entered in two different ways:

• By typing all elements in the Constant block’s Constant Value box, as 

shown in Figure 7-3. Click the Apply and OK buttons.

Figure 7-3. Entering matrix elements in a Constant block
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• By defining [A] via MATLAB’s Command window and workspace:

>>  A =[   8   1   6;   3   5   7;   4   9   2];

Then provide the variable name A in the Constant block’s Constant Value box for [A], 

as shown in Figure 7-4.

Figure 7-4. Matrix [A], defined in the MATLAB workspace, called via the 
Constant block

Then click the Apply and OK buttons. Note that we are not going to use the second 

method (see Figure 7-4) of defining matrix [A] elements in this example; it’s just shown 

here for explanation purposes.

Finally, you’ll get the complete model in which the matrix [A] elements are entered 

in the Constant block directly, as shown in Figure 7-5. After you complete the model, by 

pressing Ctrl+T on the keyboard or clicking the Run   button in the Simulink model 

window, the complete model with its computed results will be created.
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Figure 7-5. Completed Simulink model that computes the determinant, extracts 
diagonal elements, and performs the transpose operation on the 3-by-3 matrix

Note to see the simulation results in the Display block, it has to be resized/
stretched. You left click it and then drag with the mouse while holding the button.

The simulation results of the Simulink models match the ones from the MATLAB 

commands, such as det(), diag(), and transpose(), or '.

 Matrix Inverse or Inverse Matrix
The inverse matrix has the following important property:

 A A I� ��� � � � ��1

 

Here, [I] is the identity matrix.

For example, A �
�

�
�

�

�
�

1 1

3 4
has its inverse A� �

�
�
�

�
�

�

�
�

1 4 1

3 1
 that is computed from the 

following:

 
A

A
adjugate A� �

� �
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�
�
�

�
�

�

�
�

1 1
1 4 3 1 3

4 1

3 1det
/(

 

The MATLAB command to compute the inverse of a matrix is inv(). Here’s an 

example:
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>> A =[   8   1   6;   3   5   7;   4   9   2];

>> inv(A)

ans =

    0.1472   -0.1444    0.0639

   -0.0611    0.0222    0.1056

   -0.0194    0.1889   -0.1028

A given matrix is singular if it is square, if it does not have an inverse, and if it has a 

determinant of 0.

 Simulink Blocks for Inverse Matrix
The matrix inverse can also be calculated via several Simulink blocks with respect to a 

given matrix size, i.e., square matrix or rectangular. The inverse matrix or matrix inverse 

computing blocks are present in the DSP System and Aerospace Blockset Toolboxes of 

Simulink and can be accessed via the Simulink Library: the DSP System Toolbox/Math 

Functions/Matrices and Linear Algebra/Matrix Inverses, and the Aerospace Blockset/ 

Utilities/Math Operations. Let’s test the available blocks of this toolbox to compute 

the inverse of the matrix [A] shown in the previous example. Open a blank Simulink 

model and drag and drop the block from the libraries of the DSP System and Aerospace 

Blockset Toolboxes shown in Figure 7-6.

Figure 7-6. Simulink blocks for computing the inverse matrix

They are as indicated on the top of each block—General Inverse (LU), Pseudoinverse 

(SVD), and inv(A)—used to compute the matrix inverses based on LU factorization for 

square matrices, and pseudoinverse for rectangular matrices (i.e., m>n, or the number of 

rows is larger than the number of columns or vice versa). Theoretical aspects of the LU, 

SVD, and other matrix decomposition and transformation operations are highlighted in 

the “Matrix Decomposition” section.
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The three blocks have one input port for the entry matrix and one output port for the 

computed inverse. Add two additional blocks—one Constant block and one Display—by 

following the procedures. Figure 7-7 shows the primary version of the Simulink model.

Figure 7-7. Simulink model to compute the inverse matrix via three 
different blocks

The elements of the matrices [A] can be entered in two ways: (1) by typing all the 

elements in the Constant block’s Constant Value box and then clicking the Apply and OK 

buttons; or (2) by defining [A] via the MATLAB’s Command window and workspace.

Finally, you’ll get the following complete model in which the matrix [A] elements are 

entered in the Constant block directly. After you complete the model, by pressing Ctrl+T 

on the keyboard or clicking the Run   button in the Simulink model window, the 

finalized model with its computed results is created, as shown in Figure 7-8.
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Figure 7-8. The inverse matrix computed via three different blocks

The computed inverse matrix (A−1) values match the ones computed using 

MATLAB’s inv() command, within four correct decimal places.

Another important operator of matrices is its rank. The rank of a matrix (e.g., [A]) is 

the maximum number of linearly independent row vectors of the matrix, which is the 

same as the maximum number of linearly independent column vectors. The [A] matrix is 

considered to have a full rank if its rank equals the largest possible for a matrix of the same 

dimensions. The [M] matrix is considered to be rank deficient if it does not have full rank. 

A matrix’s rank determines how many linearly independent rows the system contains. The 

MATLAB command to compute the rank of a matrix is rank(). Here’s an example:

>> A =[8,   1,   6;   3,   5,   7;   4,   9,   2];   % Full rank matrix

>> rank(A) 

ans = 3

>> M  =[8   0   6;   -3,   0,   7;   0   0   2]   % Rank deficient matrix

M =

     8     0     6

    -3     0     7

     0     0     2

>> rank(M)

ans =

     2
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Based on the rank, the systems (system matrices) can be full rank, overdetermined, 

and underdetermined.

 Example 1: Solving a System of Linear Equations

The following example shows you how to solve a linear equation by using these 

formulations:

 

2 3 5 1

3 2 5 2

4 7 6 3

x y z

x y z

x y z
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To solve this problem for unknowns, such as x, y, z, you apply Equations 7-3, 7-4, and 

7-5 directly and then use the following operations:

 

2 3 5

3 2 5

4 7 6

1

2

3

� �
�

�

�

�
�
�

�

�

�
�
�
�
�

�
�

�
�

�

�
�

�
�
�
�

�

�
�
�

�

�

�
�
�

x

y

z
 

That can be written as follows:
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Solution
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0 0262

0 1738

0 3148
 

Let’s solve this exercise using the reduced row echelon method in MATLAB.

% Step 1. Write an augmented matrix: AU = [A, b]

A = [2 3 5; -3 -2 5; 4 -7 6;]; b = [1;2;3];

AU=[A, b];

% Step 2. Row1 = Row1 - Row2
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AU(1,:)=AU(1,:)-AU(2,:);

% Step 3. Row3 = Row3-4*Row1/5

AU(3,:)= AU(3,:)-4*AU(1,:)/5;

% Step 4. Row2 = Row2+3*Row1/5

AU(2,:)= AU(2,:)+3*AU(1,:)/5;

% Step 5. Row3 = Row3+11*Row2

AU(3,:)= AU(3,:)+11*AU(2,:);

% Step 6. Row2 = Row2+5*Row3/61

AU(2,:)= AU(2,:)-5*AU(3,:)/61;

% Step 7. Row1 = Row1/5-Row2

AU(1,:)= AU(1,:)/5-AU(2,:);

% Step 8. Row3 = Row3/61

AU(3,:)= AU(3,:)/61;

% Step 9. Solution:

x= AU(:, end)

x =

       -0.0262295081967213

        -0.173770491803279

         0.314754098360656

Alternative ways of solving this example include Gauss elimination and graphical 

methods. There are a number of operators and built-in functions in MATLAB that can be 

used to solve a linear system of equations. They are as follows:

• inv(), which computes the inverse of a given matrix or the pseudo- 

inverse of the given system (used for overdetermined systems).

• \, the backslash operator, which solves the system of linear equations 

directly. It’s based on the Gaussian elimination method. This is one of 

the most powerful MATLAB operators (tools) for handling matrices.

• mldivide(), which is a built-in function similar to the \ backslash 

operator.

• linsolve(), which is a built-in function similar to the \ backslash 

operator.

• lsqr(), which is a built-in function based on the least 

squares method.
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• lu(), which is a built-in function based on the Gauss 

elimination method.

• rref(), which is a built-in function based on the reduced row 

echelon method.

• svd(), which is a built-in function based on the singular value 

decomposition.

• chol(), which is a built-in function based on the Cholesky 

decomposition.

• qr(), which is a built-in function based on the orthogonal triangular 

decomposition.

• decomposition(), which is a built-in function that automatically 

choses the decomposition method.

• bicg(), cgs(), gmres(), pcg(), symmlq(), and gmr(), which are built- 

in functions that are based on gradient methods.

• solve(), which is a built-in function from the Symbolic MATH toolbox.

Note among these listed functions/commands and operators, some of them use 
the same computing algorithm and are alternatives to each other. For example, the 
\ backslash operator is an alternative to mldivide().

First, denote the given system with the following notations:
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The entries of [A] matrix (coefficients of the unknowns x, y, z) are defined, and the 

elements of [B] matrix are defined in the Command window.

>> A = [2 3, 5; -3, -2, 5; 4, -7, 6]

A =

     2     3     5

    -3    -2     5

     4    -7     6
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>> B = [1;2;3]

B =

     1

     2

     3

Using inv() and (*), we can compute the solutions of the system.

>>Ai=inv(A)   %   [B] matrix is an  inverse  matrix  of  [A]  matrix.

Ai =0.0754   -0.1738   0.0820

0.1246   -0.0262  -0.0820

0.0951    0.0852   0.0164

>> XYZ1=Ai*B   %   Solutions of the problem

Ai =-0.0262

-0.1738

0.3148

The next example uses the backslash \ operator based on the Gaussian elimination 

method. This approach is quite simple and efficient in terms of computation time.

>> XYZ2=A\B

Ai=-0.0262

-0.1738

0.3148

Using mldivide():

>>XYZ3=mldivide(A,B)

-0.0262

-0.1738

0.3148

Using linsolve():

>>XYZ4=linsolve(A,B)

-0.0262

-0.1738

0.3148
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Using lsqr():

>>XYZ5=lsqr(A,B)

lsqr converged at iteration 3 to  a  solution  with  relative   

residual  6.6e-17.

-0.0262

-0.1738

0.3148

Using lu():

>>[L, U, P] = lu(A); %L-lower; U-upper triangular; P-Permutation matrix

>> y = L\(P*B);

>> XYZ6 =  U\y

XYZ6 =

-0.0262

-0.1738

0.3148

Using rref():

>>   MA   = [A,  B];   % Augmented matrix

>> xyz = rref(MA);

>> XYZ7= xyz(:,end)

-0.0262

-0.1738

0.3148

Using svd() and inv():

>> [U, S, V]= svd(A);

>> XYZ8 = V*inv(S)*U'*B

-0.0262

-0.1738

0.3148
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Using chol():

>>  [U,  L]  =  chol(A);   % A has to be Hermitian positive definite

>>   XYZ9 =  U\(U'\B)   % U'*U = A

-0.0262

-0.1738

0.3148

Using qr():

>> [Q, R] = qr(A);

>>  XYZ10   = R\Q.'*B

-0.0262

-0.1738

0.3148

Using decomposition():

>> XYZ11 = decomposition(A)\B

-0.0262

-0.1738

0.3148

Using bicg() gradient methods:

>> XYZ12 = bicg(A, B)

bicg converged at iteration 3 to a solution with relative  residual  3.1e-14.

-0.0262

-0.1738

0.3148

Using solve(), which is a Symbolic Math Toolbox function:

>> syms x y z

>> sol=solve(2*x+3*y+5*z-1, -3*x-2*y+5*z-2, 4*x-7*y+6*z-3);

>> XYZ13=[sol.x; sol.y; sol.z]

-8/305

-53/305 96/305
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>> XYZ13=double([sol.x; sol.y; sol.z])

-0.0262

-0.1738

0.3148

All of the computed solutions are accurate within four decimal places of the 

employed operators and functions. In fact, the accuracy of the solutions and the 

computation time of each operator or function will differ. For instance, the inverse 

matrix calculation is not only costly in terms of computation time but is also less 

accurate. Moreover, among the studied methods, the last function of the Symbolic Math 

Toolbox, solve(), is the slowest and least efficient method.

Note the decomposition() function is available in the recent versions of 
MatLab starting from MatLab 2018b.

Simulink Modeling

In addition to the MATLAB commands demonstrated, Simulink has several blocks by 

which the linear system of equations, such as [A]{x} = [B], can be solved. All of the solver 

blocks are present in the DSP System Toolbox and can be accessed via the Simulink 

Library: the DSP System Toolbox/Math Functions/Matrices and Linear Algebra/Linear 

System Solvers. Let’s test some of the blocks here to solve the previous example, called 

Example 1. Open a blank Simulink model and drag and drop the block from the DSP 

System Toolbox library, as shown in Figure 7-9.

Figure 7-9. Simulink blocks used to solve a system of linear equations

They are as indicated on the top of each block—LU, SVD, QR factorization and 

decomposition operation-based solvers. All of them have two input ports for [A] and 

[B] and one output port for a solution, {x}. Therefore, you need to add three additional 
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blocks—two Constant and one Display block—which you add as explained previously in 

building Simulink models to compute determinant, transpose, and inverse of matrices. 

Figure 7-10 shows the primary version of the Simulink model.

Figure 7-10. Simulink model to solve a system of linear equations

The elements of the matrices [A] and [B] can be inserted, as shown in Figure 7-3, 

directly in the Constant block’s Constant Value window. Or you can define the elements 

of [A] and [B] via MATLAB’s Command window and workspace.

>> A=[2, 3, 5; -3, -2, 5; 4, -7, 6]

>> B=[1; 2; 3];

The variable names A and B are then entered in the first and second Constant block’s 

Constant Value box for [A] and [B], respectively, as shown in Figure 7-11. Click Apply and 

OK to complete the model.
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Figure 7-11. The variable names defined in the Constant block

By pressing Ctrl+T on the keyboard or clicking the Run   button in the Simulink 

model window, you’ll obtain the complete model with its simulation results (see 

Figure 7-12). The computed results/solutions match the MATLAB solutions to four 

decimal places.

Figure 7-12. Complete model with computed results

Note that the variables (matrices) A and B are defined via MATLAB’s 

Command window.
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To obtain more decimal places of the computed results with the Display block, the 

block parameters (Format Type) need to be tuned by selecting long_e, as shown in 

Figure 7-13.

Figure 7-13. Adjusting the Display block’s Format parameter

 Example 2: Embedding a MATLAB Function Block to Compute 
the Determinant and Solve Linear Equations

All of the aforementioned MATLAB functions/commands used for computing matrix 

determinants, matrix inverses, or solutions of linear systems can be embedded in 

Simulink via the MATLAB Function block . Let’s take two MATLAB functions/

commands used for computing a determinant of a matrix of any size with det() and 

solving with linsolve() and embed them into a Simulink model. Here’s an example:
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Here are completed Simulink models. Figure 7-14 is built with three Constant, two 

MATLAB Function, and two Display blocks.
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Figure 7-14. Simulink models with MATLAB Function blocks to compute the 
determinant and solve a linear system of equations

The input variables/entries for A1 and B1 are defined via the Command window and 

MATLAB workspace in this model. To edit and type in the necessary script, you have to 

open the MATLAB Function block. It can be opened by double-clicking it, which opens 

the MATLAB editor window. The following function file scripts for the MATLAB Function 

blocks are typed in the MATLAB editor for the upper MATLAB Function block (with one 

input) and the lower one (with two inputs A1 and B1) models, respectively. After editing 

the codes of the blocks, save them. They will be saved under the created Simulink model 

and not as a separate MATLAB function file.

function y  =  fcn(u)

y = det(u);

end

function y =  fcn(A1,  B1)

y = linsolve(A1, B1);

The model is then completed, and the finalized model is executed. Figure 7-15 shows 

the completed model with its computed results in the Display blocks. The upper Display 

block shows the determinant, and the lower one shows the solution of the given system.
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Figure 7-15. Completed models with computed results

The computed results of the Simulink model can be compared with MATLAB.

>> A1=[16 2 -3 13 ; -5 11 10 -8; 9 7 -6 12; -4 14 15 1 ];

>> B1 = [3; 2; 4; 5];

>> det(A1)

ans =

-18812

>> linsolve(A1, B1)

-3.614714012332536e-03 2.740803742292154e-01

6.272591962577077e-02

2.075271103550925e-01

The computed results from the determinant calculation and linear MATLAB solver 

match the Simulink model’s results to 13 decimal places.

 Example 3: Accuracy of Solver Functions of Linear Equations

Let’s find out which one of the functions/tools (methods) highlighted in Example 1 is 

more accurate in computing the solutions. For this exercise, you’ll take the following 

13-by-13 [A] and 13-by-1 [B] matrices generated by the magic() and randi() (random 
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integer) matrix generator functions of MATLAB. Moreover, the norm() function is used 

to compute the norm of the given linear system with its computed solutions. LA_Ex3.m is 

the complete solution script.

%% Given 13-by-13 system of linear equations

A    =   magic(13);

B = randi([-169,169], 13,1); % Elements of B vary within [-169, 169]

%% 1-Way: inv()   or  pinv()   %% INVERSE matrix method

x1a = inv(A)*B; Err_INV  =  norm(A*x1a-B)/norm(B)     %#ok: ERROR checking

x1a = inv(A)*B; Err_PINV  =  norm(A*x1b-B)/norm(B)   %#ok: ERROR checking

%% 2-Way: \   %% backslash

x1a = inv(A)*B; Err_BACKSLASH = norm(A*x2-B)/norm(B)     %#ok: ERROR checking

%%  3-Way: mldivide()   %% Left divide function

x1a = inv(A)*B; Err_MLDIVIDE  =  norm(A*x3-B)/norm(B)   %#ok: ERROR checking

%% 4-Way: Using linsolve();

x1a = inv(A)*B; Err_LINSOLVE  =  norm(A*x4-B)/norm(B)      %#ok: ERROR 

checking

%% 5-Way: Using lsqr()

x1a = inv(A)*B; Err_LSQR  =  norm(A*x5-B)/norm(B)         %#ok: ERROR 

checking

%% 6-Way: Using lu()

x1a = inv(A)*B; y = L\(P*B); x6 = U\y;

Err_LU  =  norm(A*x6-B)/norm(B)   %#ok: ERROR checking

%% 7 - Way: Using rref()

x1a = inv(A)*B; xyz = rref(MA); x7= xyz(:,end);

Err_RREF  =  norm(A*x7-B)/norm(B)   %#ok: ERROR checking

%%   8 - Way: Using svd()

x1a = inv(A)*B; x8 = V*inv(S)*U'*B;

Err_SVD  =  norm(A*x8-B)/norm(B)   %#ok: ERROR checking

%% 9 - Way: Using chol()

x1a = inv(A)*B; x9 = U\(U'\B);

Err_CHOL  =  norm(A*x9-B)/norm(B)   %#ok: ERROR checking

%% 10 - Way: Using qr()

x1a = inv(A)*B; x10   =  R\Q.'*B;

Err_QR  =  norm(A*x10-B)/norm(B)   %#ok: ERROR checking

%% 11 - Way: Using decomposition()
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x1a = inv(A)*B; Err_DECOMPOSITION = norm(A*x11-B)/norm(B) %#ok: ERROR checking

%% 12 - Way: Using bicg()

x1a = inv(A)*B; Err_BICG  =  norm(A*x12-B)/norm(B)   %#ok: ERROR checking

%% 13-Way: solve()   %% SOLVE() symbolic math method

x = sym('x', [1, 13]); x=x.'; Eqn = A*(x); Eqn = Eqn - B;

Solution = solve(Eqn); SOLs = struct2array(Solution); SOLs = double(SOLs);

 x13 = SOLs';

Err_SOLVE  =  norm(A*x13-B)/norm(B)   %#ok: ERROR checking

Here are the errors that were made while computing the solutions of the system with 

the employed methods:

Err_INV =

5.8087e-16

Err_PINV =

3.7982e-15 Err_BACKSLASH = 3.0569e-16 Err_MLDIVIDE = 3.0569e-16 Err_

LINSOLVE = 3.0569e-16

lsqr converged at iteration 7 to a solution with relative residual 3.5e-07. Err_LSQR =

3.4959e-07

Err_LU =

3.0569e-16

Err_RREF =

1.1576e-05

Err_SVD =

3.7982e-15

Err_CHOL  =

2.2400

Err_QR =

7.0615e-16 

Err_DECOMPOSITION =

3.0569e-16

bicg stopped at iteration 13 without converging to the desired tolerance 1e-06 

because the maximum number of iterations was reached.

The iterate returned (number 13) has relative residual 9.6e-06.

Err_BICG = 9.5856e-06

Err_SOLVE = 1.5109e-16
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From the computed errors, it is clear that the RREF(), BICG(), and LSQR() functions 

make errors within the margin of 10−5…10−7 and all other methods make errors within 

the margin of 10−15…10−16 while computing the solutions of this given system.

 Example 4: Efficiency of Solver Functions of Linear Equations

This example demonstrates which one of the shown ways is more efficient in terms of 

computation time. For this demonstration, you’ll consider two large matrices of 1000- 

by- 1000 and 1000-by-1, generated by the random integer number generator function 

randi() to generate the elements of matrices [A] and [B]. In addition, to record the 

elapsed time of each computation method, the [tic, toc] functions are used. Here is 

the complete solution script, called LA_Ex4.m:

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

%% 1) inv() or pinv()

tic; Ai = inv(A); xyz1=Ai*B; T_inv=toc

%% 2) bacslash operator: \

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz2 = A\B; T_backslash = toc

%% 3) mldivide()

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz3= mldivide(A, B); T_mld = toc

%% 4) linsolve()

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz4 = linsolve(A, B); T_linsolve =   toc

%% 5) lsqr()

clearvars

A=randi([-100,100],1000); B=randi([-100,   100],   1000,   1);

tic; xyz5 = lsqr(A, B); T_lsqr = toc

%% 6) lu()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [L, U, P]=lu(A); y=L\(P*B); xys6=U\y; T_lu=toc
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%% 7) rref()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; MA = [A, B];xyz7 = rref(MA); XYZ7=xyz7(:, end); T_rref=toc

%% 8) svd()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [U S V] = svd(A); xyz8 = V*inv(S)*U'*B; T_svd=toc

%% 9) chol()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [U L]= chol(A); xyz9 = U\(U'\B); T_chol=toc

%% 10) qr()

clearvars

A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; [Q R] = qr(A); xyz10 = R\Q.'*B ; T_qr=toc

%% 11) decomposition()

clearvars; A=randi([-100,100],1000); B=randi([-100, 100], 1000, 1);

tic; xyz11 = decomposition(A)\B; T_decom = toc

%%  12)  bicg()   Gradient methods

clearvars; A=randi([-100,100], 1000); B=randi([-100, 100], 1000, 1);

tic; xyz12 = bicg(A, B); T_bicg=toc

%% 13) solve()

A=randi([-100,100],100); B=randi([-100, 100], 100, 1);

tic;

x = sym('x', [1, 100]); x=x.';

Eqn = A*(x); Eqn = Eqn - B;

Solution = solve(Eqn); SOLs = struct2array(Solution); SOLs = double(SOLs);

x13 = SOLs';

T_solve=toc

Here are the elapsed computation time values from the simulations:

T_inv =

0.0390

T_backslash = 0.0173

T_mld =

0.0171

T_linsolve =

0.0171
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lsqr stopped at iteration 20 without converging to the desired tolerance 1e-06 

because the maximum number of iterations was reached.

The iterate returned (number 20) has relative residual 0.24.

T_lsqr = 0.0236

T_lu =

0.0235

T_rref =

10.1406

T_svd =

0.4263

T_chol =

0.0330

T_qr =

0.1045

T_decom =

0.0459

bicg stopped at iteration 20 without converging to the desired tolerance 1e-06 

because the maximum number of iterations was reached.

The iterate returned (number 0) has a relative residual of 1.

T_bicg =

0.0195

T_solve =

14.6306

From these computations, it is clear that linsolve(), mldivide, and \ (the backslash 

operator) (Gaussian elimination method) are the fastest among all the tested methods. 

The slowest and computationally costliest one is the solve() operator of the Symbolic 

MATH even when the size of the system was 10 times smaller. It is worth noting that 

the reduced row echelon method called rref() is the next slowest, after the solve() 

operator.

Let’s consider another example to solve these four different methods, which are \, 

linsolve(), inv(), and solve(), discussed previously.

Chapter 7  Linear aLgebra



471

 Example 5: Solving Linear Equations ([A]{x} = [b]) by Changing 
Values of [b]

This exercise is composed of two parts:

 [1]. Solve the given linear system for unknowns a, b, and c.
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 [2]. Solve the given system for unknowns a, b, and c. The third 

equation’s value changes in the range of 50…250.
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The system is rewritten in a matrix form as [A]{x} = [B] and then solved directly for 

unknowns a, b, and c. Here is the solution script (LA_Ex4.m):

% PART 1.

% The given system is written from the Ax=B as [A]*[abc]=[B]

A=[.072, 0, -1; 0, .12, -1; 1 1 0];

B=[-12, -9, 50];

abc1=A\B'                  %#ok   % BACKSLASH \

abc2  =   linsolve(A,B')   %#ok   % LINSOLVE()

abc3  =  inv(A)*B'         %#ok   % INV

% SOLVE() in symbolic MATH

syms a b c; abc4=solve(0.072*a-c+12, 0.12*b-c+9, a+b-50);

abc4=double([abc4.a;   abc4.b;  abc4.c])  %#ok

% SOLVE()

%% Part II. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BACKSLASH \ ; LINSOLVE(); INV

tic; Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);

c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];
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for ii=1:numel(Bk)

B=[-12; -9; Bk(ii)];

abc=A\B;

a(ii)=abc(1,:);

b(ii)=abc(2,:);

c(ii)=abc(3,:);

end Time1=toc;

fprintf('Computation time with  BACKSLASH: %3.3f   \n', Time1); clearvars

tic; Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1);

c=zeros(numel(Bk),1); A=[.072, 0, -1; 0, .12, -1; 1 1 0];

for ii=1:numel(Bk)

B=[-12; -9; Bk(ii)];

abc=linsolve(A,B);

a(ii)=abc(1,:);

b(ii)=abc(2,:);

c(ii)=abc(3,:);

end

Time2=toc;

fprintf('Computation  time with LINSOLVE:   %3.3f   \n', Time2) clearvars

tic Bk=50:250;

a=zeros(numel(Bk),1); b=zeros(numel(Bk),1); c=zeros(numel(Bk),1); A=[.072, 

0, -1; 0, .12, -1; 1 1 0];

for ii=1:numel(Bk)

   B=[-12; -9; Bk(ii)];

   abc=inv(A)*B;

   a(ii)=abc(1,:); b(ii)=abc(2,:); c(ii)=abc(3,:);

end

Time3=toc;

fprintf('Computation  time with  INV:   %3.3f   \n', Time3)

%% SOLVE() from symbolic math

clearvars; tic;

Bk=50:250;

a1=zeros(numel(Bk),1);b1=zeros(numel(Bk),1); c1=zeros(numel(Bk),1);

syms a b c

for ii=1:numel(Bk)
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   abc=solve(0.072*a-c+12,0.12*b-c+9,a+b-Bk(ii));

   a1(ii)=double(abc.a);

   b1(ii)=double(abc.b);

   c1(ii)=double(abc.c);

end

Time4=toc;

fprintf('Computation  time with SOLVE:   %3.3f   \n', Time4)

Here are the results of the calculations from Part 1:

abc1 =

   15.6250

   34.3750

   13.1250

abc2 =

15.6250

34.3750

13.1250

abc3 =

15.6250

34.3750

13.1250

abc4 =

15.6250

34.3750

13.1250

Here are the results of the script from Part 2:

Computation time with BACKSLASH: 0.002

Computation time with LINSOLVE:  0.002

Computation time with INV:       0.002

Computation time  with  SOLVE:   22.066

From the computation time spent to compute solutions of the given linear system 

with three variables and 201 possible cases using four ways, it is clear that the least 

efficient way of solving linear equations is using the Symbolic Math toolbox’s solve() 
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function. The backslash operator (\) and linsolve() and inv() methods all performed 

similarly. The solver linsolve(), \, and inv() methods are more than 11,033 times 

more efficient and faster than the solve() function.

 Example 6: Linear Equations ([A]{x} = [b]) Applied for the Least 
Squares Method

This exercise demonstrates how to apply the principles of solving linear equations in the 

form of [A]{x} = [b] to solve the least squares problem to find best-fit model coefficients. 

In this exercise, we introduce the Vandermonde matrix expression to determine the 

polynomial fit models.

Here is the N-th order polynomial:

 f x a x a x a x a x ax an
n

n
n� � � � ��� � � ��
�

1
1

3
3

2
2

0  

To compute the fit model f(xi), we set it equal to the measured data yi: f(xi) = [yi].

 a x a x a x a x a x a yn
n

n
n

1 1 1
1

3 1
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These expressions can be written as follows:

 V a yi i� �� �� � �  

Here, [V] is the Vandermonde matrix, {ai} is the coefficients of the n-th order 

polynomial, and [yi] is the measured data points.
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Or

V
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Here, xi and yi are known, and ai polynomial fit coefficient values are needed to be 

computed. Therefore, we can compute ai from the next expression:

 a V yi i� �� � � �� ��1

 

Let’s consider the following example.

Given test data:

Test # Test1 Test2 Test3 Test4 Test5 Test6 Test7

applied Load, [n] 10 20 30 40 50 60 70

Deflection, δ[m] 0.145 0.435 0.505 0.765 1.025 1.199 1.430

The task is to compute the fit model using Hooke’s law formulation for linear elastic 

materials. The Hooke’s law formulation is F = kδ, where F is applied force in [N] and δ is a 

dependent variable, which is the deflection of an elastic material when F force is applied. 

And k is the stiffness coefficient of a material. Thus, the unknown variable here is k that 

will be computed using the least squares criterion.

First, we express the test data with respect to the system of linear equations [A]{x} = [b].  

Here the applied force is the dependent variable [b], and the independent variable 

{x} corresponds to the resulted deflection δ. Therefore, in this exercise, the unknown 

variable is k, which is stiffness of the material. In this exercise, a first tricky point is how 

to compute the values of [A]. To compute the elements of [A], we use the Vandermonde 

matrix approach. According to Hooke’s law, it is a first-order polynomial, i.e., F(δ) = kδ, 

that can be also written as k = F(δ)/δ. Using the given data in this exercise, we can define 

the Vandermonde matrix and load matrix.
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Here, V is the Vandermonde matrix. Note the size of the Vandermonde matrix is 

7-by-2 and the size of the applied load is 7-by-1. Therefore, the size of the stiffness matrix 

will be 1-by-2. The reason of having zeros in the second column of [V] is that according 

to Hooke’s law, the linear relationship between the applied load and deflection of 

a linear elastic material is in the form of f(x) = a1 ∗ x + a0 and a0 = 0. Therefore, the 

unknown stiffness is found from the following:

 k V F�� � �� ��1

 

Note that to compute the values of [k] in a more efficient and exactly, we employ 

the backslash (\) operator. An alternative solution function to the backslash operator is 

linsolve() or mldivide().

The final solution script (LA_Ex6.m) is shown here:

% LA_Ex6.m

% Part 1. Vandermonde matrix

clc; clear variables

F = (10:10:70).';                                    % Applied Load

d = [0.145  0.435 0.505 0.765 1.025 1.199 1.430].';  % Deflection

scatter(F, d, 'filled')

ylim([0, max(d)+.2]),shg

A = [F zeros(size(F))];

FM =A\d;

FM_values = FM(1)*F;

hold on

plot(F, FM_values, 'k-', 'linewidth', 2)

gtext(['Fit model: F = '  num2str(FM(1)) '*\delta'])

gtext(['Stifness is: '  num2str(FM(1))])

grid on

xlabel('Applied Load, F [N]')

ylabel('Deflection, \delta [m]')
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Figure 7-16 shows the resulted plot of the calculations from the script.

Figure 7-16. Fit model is computed using the least squares method

There are a few functions (polyfit, fitlm, fit) in Curve Fitting and Statistics and 

Machine Learning Toolboxes, which can be used easily to compute approximation 

polynomials. Let’s look at the previous example of how to employ these functions:

% Part 2. Polynomial Approximation Fcn: Curve Fitting Toolbox

FM2 = polyfit(F,d, 1);

fprintf('CFTOOL Fit Model: F(d) = %f*d \n', FM2(1));

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(F,d, 'linear');

fprintf('Stats and ML Fit Model: F(d) = %f*d \n', FM3.Coefficients.

Estimate(2));

Parts 2 and 3 of the code (LA_Ex6.m) produce close approximation coefficients of the 

first-order polynomial. The following results will be displayed in the Command window:

CFTOOL Fit Model: F(d) = 0.021082*d

Stats and ML Fit Model: F(d) = 0.021082*d

Note that there is a small difference between the Vandermonde approach and 

polyfit() and fitlm() functions. The reason for the difference is the intercept value 

is set equal to “0” with the Vandermonde matrix, and with the other two functions, the 

intercept is considered.
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 Example 7: Linear Equations ([A]{x} = [b]) Applied for the Least 
Squares Method

The following data table gives the stopping distance y as a function of initial speed v, for 

certain car model. Find the quadratic polynomial coefficients that fit the data.

v(km/h) 20 30 40 50 60 70

y(m) 45 80 130 185 250 330

The Vandermonde matrix of this exercise for the quadratic fit model is computed 

from the following:

 

V
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Note that v v vn1
0

2
0 0 1, ,� � corresponds to a0. Therefore, V can be also expressed as 

follows:

 

V

v v

v v

v vn n

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1

1

1

1 1
2

2 2
2

2

: : :

 

Note that V can be also expressed as follows:
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The Vandermonde matrix of the data from this exercise is equal to the following:

V �

�

�

�
�
�
�
�
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�
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�
�
�

1 20 20
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: : :
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2

2

2
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The measured data points in this exercise are as follows:

 

yi �

�

�

�
�
�
�

�

�

�
�
�
�

45

80

330

:

 

The unknown coefficient of the quadratic polynomial is found from the following, 

depending on which way [V] is defined:

a = [a0, a1, a2] or a = [a2, a1, a0]

 a V yi� �� ��1

 

Note that in this exercise, the size of the Vandermonde matrix is 6-by-3.

The complete code of this exercise is LA_Ex7.m.

% LA_Ex7.m

clc; clear variables; close

% Part 1. Vandermonde matrix

v = (20:10:70).';                        % Velocity, [km/h]

y = [45  80 130 185 250 330].';          % Braking distance, [m]

scatter(v, y, 'filled')

ylim([0, max(y)+.2])

A = [v.^2, v,  ones(size(v))];

FM =A\y;

FM_values = FM(1)*v.^2+FM(2)*v+FM(3);

hold on

plot(v, FM_values, 'k-', 'linewidth', 2)

gtext(['Fit model: s(v) = '  num2str(FM(1))  'v^2 +' num2str(FM(2)) '*v +', 

num2str(FM(3))])

grid on
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xlabel('\it Velocity, v [km/h]')

ylabel('\it Braking Distance, s [m]')

% Part 2. Polynomial Approximation Fcns: Curve Fitting Toolbox

FM2 = polyfit(v,s, 2);

fprintf('CFTOOL Fit Model: s(v) = %f*v.^2 + %f*v + %f \n', FM2);

% Part 3. Polynomial Approximation Fcn: Stats and ML Toolbox

FM3 = fitlm(v, s, 'poly2');

fprintf('Stats and ML Fit Model: s(v) = %f*v.^2 + %f*v + %f \n', flip(FM3.

Coefficients.Estimate));

Figure 7-17 shows the simulation results of LA_Ex7.m.
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Fit model: s(v) = 0.050893v2  +1.1054*v +2.3571

Figure 7-17. Quadratic fit model is computed using the least squares method

Also, in the Command window, the following outputs will be displayed after 

executing the script: LA_Ex7.m:

FMM =

    0.0509

    1.1054

    2.3571

CFTOOL Fit Model: s(v) = 0.050893*v.^2 + 1.105357*v + 2.357143

Stats and ML Fit Model: s(v) = 0.050893*v.^2 + 1.105357*v + 2.357143
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The results from the three approaches are identical, which proves that the 

Vandermonde approach is well correlated with the functions of the two toolboxes.

 Example 8: Linear Equations ([A]{x} = [b]) Applied for the Least 
Squares Method Using Simulink Modeling

The following data table gives the stopping distance y as a function of initial speed v, for 

a certain car model. Find the quadratic polynomial coefficients that fit the data.

v(km/h) 20 30 40 50 60 70

y(m) 45 80 130 185 250 330

Let’s build a Simulink model to solve this exercise and apply the least squares 

polynomial solver block. A Simulink model of this exercise is relatively simple and 

composed of three blocks: Constant, Least Squares Polynomial Fit, and Display blocks, 

as shown in Figure 7-18.

Figure 7-18. Simulink model, the least squares method

The Simulink model shown in Figure 7-18 is not complete yet. There are two more 

adjustments to be made in the Constant and Least Squares Polynomial Fit blocks. The 

Constant should be opened by double-clicking it, and the data for y, i.e., [45 80 130 

185 250 330].' should be entered. Note the data has to be a column vector. Then the 

next block parameters should be adjusted, as shown in Figure 7-19. Note that Control 

Parameter (X) values are v values in a column vector form, and Polynomial order (N) is 2 

because we are looking for a quadratic polynomial fit.
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Figure 7-19. Least squares Polynomial Fit block parameters adjustment

Once all adjustments are made and values are entered, the model is ready to 

simulate. The completed model (LA_Ex8.slx) with simulation results after resizing the 

Display block to see all results is shown in Figure 7-20.

Figure 7-20. Simulink model, LA_Ex8.slx

Note that the found results from the Simulink model LA_Ex8.slx match perfectly 

well with the ones found using the Vandermonde matrix, polyfit() and fitlm().

 Matrix Operations
This section covers general mathematical operations and computations of matrices, 

vectors, and eigen-vectors. Many numerical examples are used to explain the matrix 

operations. Table 7-1 lists the matrix operations their command syntax.
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Table 7-1. Matrix Operators in Two Equivalent Formulations

Operation Name MATLAB First Way MATLAB Second Way

Matrix multiplication A*B mtimes(A,B)

array-wise multiplication A.*B times(A,B)

Matrix right division A/B mrdivide(A,B)

array-wise right division A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

array-wise left division A.\B ldivide(A,B)

Matrix power A^B mpower(A,B)

array-wise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

binary addition A+B plus(A,B)

Unary plus +A uplus(A)

binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Determinant det(A) det(A)

rotate by 900 rot90(A) rot90(A)

replicate and tile an array n times repmat(A, n) repmat(A, n)

Flip matrix left/right fliplr(A) fliplr(A)

Flip matrix in up/down flipud(A) flipud(A)

Basic MATLAB unit data is in the array type format. Matrices and vectors can be 

employed in many cases to define input and output, local data, and function inputs and 

outputs. Moreover, they can be used to combine separate scalars into one signal and 

process multidimensional input and output signals. An array is defined by a single name 

and a collection of data arranged by rows and columns, as shown here.
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Row # 1
11 12 13

Row # 2
21 22 23

Row # 3

31 22 33

Row # 4

41 42 43

11 12

21 22

31 22

41 42

 

Let’s look at some numerical examples. They perform matrix operations with scalars, 

such as addition, subtraction, power, multiplication, and division, including array-wise 

(elementwise) operations in the Command window.

>>   A=[8,1,6;   3,5,7;   4,9,2]   % Matrix 3-by-3

A =

     8     1     6

     3     5     7

     4     9     2

>> a = 2; b = 2+3i; c = 5j;

>> B=A^a  % Note the difference between ^ and .^

B =

    91    67    67

    67    91    67

    67    67    91

>> C=A.^a  % Elementwise. Note the difference between ^ and .^

C =

    64     1    36

     9    25    49

    16    81     4
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>> D = A*a+B/b

D =

  30.0000 -21.0000i  12.3077 -15.4615i  22.3077 -15.4615i

  16.3077 -15.4615i  24.0000 -21.0000i  24.3077 -15.4615i

  18.3077 -15.4615i  28.3077 -15.4615i  18.0000 -21.0000i

>> E =  C./c

E =

   0.0000 -12.8000i   0.0000 - 0.2000i   0.0000 - 7.2000i

   0.0000 - 1.8000i   0.0000 - 5.0000i   0.0000 - 9.8000i

   0.0000 - 3.2000i   0.0000 -16.2000i   0.0000 - 0.8000i

>> F = C/c

F =

   0.0000 -12.8000i   0.0000 - 0.2000i   0.0000 - 7.2000i

   0.0000 - 1.8000i   0.0000 - 5.0000i   0.0000 - 9.8000i

   0.0000 - 3.2000i   0.0000 -16.2000i   0.0000 - 0.8000i

 Example: Performing Matrix Operations
Given six arrays: A (4 − by − 3), B(3 − by − 4), C(4 − by − 4), D(4 − by − 3), E(3 − by − 3), 

and F(3 − by − 3).

Let’s perform several matrix operations—such as summation, subtraction, 

multiplication, power, scalar multiplication, square root, mean, round, standard 

deviations, and replicate/rotate/flip matrix—from the Command window.

>> A=[2 -3 1; 3 2 5; 1 3 4; -3 -2 3] ;

>> B=[3,4,-2 1;2,5,4,-6;4,-3, 1,2] ;

>> C=[16,2,3,13;5,11,10,8;9 4 7 14;6 15 12 1] ;

>> D=[1 2 3; 2 3 4; 4 3 1; -2 -3 1] ;

>> E=[8, 1, 6; 3, 5, 7; 4, 9, 2];

>> F=[3 7 3; 3 2 8; 9 2 1];

>> M_AB = A*B

M_AB =

     4   -10   -15    22

    33     7     7     1

    25     7    14    -9

    -1   -31     1    15
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>> M_BA = B*A

M_BA =

    13    -9    18

    41    28    25

    -6   -19    -1

>> M_S = M_AB-C

M_S =

   -12   -12   -18     9

    28    -4    -3    -7

    16     3     7   -23

    -7   -46   -11    14

>> M_S= M_BA-C

Matrix dimensions must agree.

>> CM=C*M_S   % Not equivalent to M_S*C

CM =

  -179  -789  -416   243

   352  -442  -141  -150

    18  -747  -279    88

   533  -142   -80  -313

>> CM1=M_S*C   % Not equivalent to C*M_S

CM1 =

  -360   -93  -174  -495

   359  -105   -61   283

   196  -252  -149   307

  -357  -354  -390  -599

>> CM2=M_S.*C   % Elementwise  operation:  NOT  equivalent  to  M_S*C

CM2 =

  -192   -24   -54   117

   140   -44   -30   -56

   144    12    49  -322

   -42  -690  -132    14
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>> MDE=M_S./C   % Elementwise operation:  NOT  equivalent  to  M_S/C

MDE =

   -0.7500   -6.0000   -6.0000    0.6923

    5.6000   -0.3636   -0.3000   -0.8750

    1.7778    0.7500    1.0000   -1.6429

   -1.1667   -3.0667   -0.9167   14.0000

>> MD=M_S/C   % Not equivalent to M_S./C

MD =

    1.9275    8.5704   -5.6271   -5.8414

    1.4496   -6.4076    1.5420    3.8277

   -1.0389  -10.8246    5.0116    6.9401

   -4.9118  -12.9118   12.6765    3.6765

>> M_AD =A.*D % Elementwise operation: matrix multiplication

M_AD =

     2    -6     3

     6     6    20

     4     9     4

     6     6     3

>> MM_AD= A*D    % Error due to size mismatch of [A] and [D]

Error using * Incorrect dimensions for matrix multiplication. Check that the number 

of columns in the first matrix matches the number of rows in the second matrix. To 

perform elementwise multiplication, use '.*'. Related documentation

>> M_EF=E.*F   % Elementwise multiplication of square matrices

M_EF =

    24     7    18

     9    10    56

    36    18     2

>> MM_EF=E*F   % Square matrices can be multiplied matrix-wise

MM_EF =

    81    70    38

    87    45    56

    57    50    86
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>> Csqrt=sqrt(C) % Not equivalent to sqrtm(C)

Csqrt =

    4.0000    1.4142    1.7321    3.6056

    2.2361    3.3166    3.1623    2.8284

    3.0000    2.0000    2.6458    3.7417

    2.4495    3.8730    3.4641    1.0000

>> Csqrt=sqrtm(C) % Not equivalent to sqrt(C)

Csqrt =

   3.8335 - 0.0167i   0.0738 + 0.7839i   0.1262 + 0.3666i   1.7975 - 1.1337i

   0.3251 + 0.0011i   2.6850 - 0.0526i   1.6850 - 0.0246i   1.1359 + 0.0761i

   1.3123 - 0.0237i   0.7322 + 1.1107i   1.9687 + 0.5194i   1.8178 - 1.6064i

   0.5925 + 0.0373i   2.0922 - 1.7477i   1.7997 - 0.8172i   1.3466 + 2.5276i

>>  C_E1 = expm(C)   % Matrix exponential not equal to  exp(C)

C_E1 =

   1.0e+14 *

    1.5718    1.3711    1.3622    1.5295

    1.5718    1.3711    1.3622    1.5295

    1.5718    1.3711    1.3622    1.5295

    1.5718    1.3711    1.3622    1.5295

>> C_E2 = exp(C) %  Exponential  of  a  matrix:  not  equal  to  expm(C)

C_E2 =

   1.0e+06 *

    8.8861    0.0000    0.0000    0.4424

    0.0001    0.0599    0.0220    0.0030

    0.0081    0.0001    0.0011    1.2026

    0.0004    3.2690    0.1628    0.0000

>> S=[A(1,1:3); B(2,1:3);C(3,2:4)]; % Created from the existed

>> Y=[A(1), 1.3];                   % Created from the existed

>> Arot90=rot90(A)                  % Matrix rotate
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Arot90 =

     1     5     4     3

    -3     2     3    -2

     2     3     1    -3

>> Crep=repmat(C,  2,1)   % Matrix replication/copy

Crep =

    16     2     3    13

     5    11    10     8

     9     4     7    14

     6    15    12     1

    16     2     3    13

     5    11    10     8

     9     4     7    14

     6    15    12     1

>> Bflip=fliplr(B)   % Matrix flip

Bflip =

     1    -2     4     3

    -6     4     5     2

     2     1    -3     4

Cud=flipud(Crep)   % Matrix flip up or down

Cud =

     6    15    12     1

     9     4     7    14

     5    11    10     8

    16     2     3    13

     6    15    12     1

     9     4     7    14

     5    11    10     8

    16     2     3    13

Many of these matrix operations can also be performed in the Simulink 

environment. Let’s use the previous examples to demonstrate how and what Simulink 

uses for matrix operations and manipulations.

The Simulink Library contains the blocks for sum, multiplication/division, power, 

exponent, and concatenation, as shown in Figure 7-21.
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Figure 7-21. Matrix operation blocks in the Simulink Library

First define the [A] and [D] matrices in the Command window.

>> A=[2 -3 1; 3 2 5; 1 3 4; -3 -2 3] ;

>> D=[1 2 3; 2 3 4; 4 3 1; -2 -3 1] ;

Now compute the sum and subtraction of matrices [A] and [D], as shown in 

Figure 7-22.

Figure 7-22. Matrix sum and subtraction operations in Simulink

Note that matrices [A] and [D] are defined via the Command window and workspace. 

The computed sums match the ones calculated using MATLAB’s Command window.

Here are the results of multiplication (see Figure 7-23), exponent, and square (see 

Figure 7-24) of the matrices.
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Figure 7-23. Matrix multiplication in Simulink

Note that for the matrix multiplication operation shown in Figure 7-23, the Multiply 

block changes from element-wise (.*) multiplication to matrix (*) multiplication, as 

shown in Figure 7-24.

Otherwise, the multiplication operation will not be performed due to the 

mismatched sizes of [A] and [B]. Again, the computed results match the ones 

from MATLAB.

Figure 7-24. Setting up the Matrix Multiply block for matrix multiplication (*) or 
element-wise multiplication (.*)
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Figure 7-25. Matrix exponential and square operation blocks

Note that in the operations in Figure 7-25, the exponential and power operations 

are performed with one block (one Math Function block), by choosing its Function type 

[pow] in uv and [square] in u2 (see Figure 7-26).

Figure 7-26. How to set the Math Function block for matrix operations

Now by using the Matrix Concatenate block, we create a new matrix (4-by-10) from 

the computed the matrix sum (4-by-3), square (4-by-4), and matrix division (4-by-3). See 

Figure 7-27.
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Figure 7-27. The Matrix Concatenate block performs matrix concatenation.

As demonstrated, Simulink blocks perform various matrix operations, much like 

MATLAB functions. However, there are computationally costly simulations with matrix 

and array operations in which Simulink models might be slower than MATLAB scripts. 

For example, when computing discrete Fourier transforms, Simulink models are much 

slower than MATLAB. For some matrix and array operations, the MATLAB Fcn block or 

the Interpreted MATLAB Fcn block can be used in Simulink modeling.

In addition to these matrix operations, there are a few other operations by which you 

can create new matrices. For instance, you can take out diagonals of existing matrices 

with diag(A) or take out selected elements of matrices and create a new matrix.

>> E=[8, 1, 6; 3, 5, 7; 4, 9, 2];

>> F=[3 7 3; 3 2 8; 9 2 1];

>> EF = [diag(E),  diag(F)]

EF =

8   3

5   2

2   1

 Standard Matrix Generators
MATLAB has numerous standard array and matrix generators, which can be used to 

generate a wide range of matrices. For instance, eye(n), eye(k, m), ones(m), ones(m, 

k), zeros(l), zeros(l,k), magic(k), pascal(k), pascal(k, m), rand(m), rand(k, m), 

randi(n,m,k), repmat(A, r, c), blkdiag(A, B, C), sparse(m,n), and many more. 

Here’s an example:
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>> eye(3)

ans =

     1     0     0

     0     1     0

     0     0     1

>> magic(5)  %   Magic   matrix in a size of 5 by 5

ans =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

>>  A=pascal(4)   % Pascal  matrix  in  a  size  of  4  by  4

A =

     1     1     1     1

     1     2     3     4

     1     3     6    10

     1     4    10    20

>> A=pascal(4,2)   % Pascal matrix in a size of 4 by 4

A =

    -1    -1    -1    -1

     3     2     1     0

    -3    -1     0     0

     1     0     0     0

>> zeros(3)  % Zero matrix 3-by-3

ans =

     0     0     0

     0     0     0

     0     0     0

>> zeros(2,3)  % Zero matrix 2-by-3

ans =

     0     0     0

     0     0     0
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>> ones(3)  % Ones matrix 3-by-3

ans =

     1     1     1

     1     1     1

     1     1     1

>> ones(2,3)  % Ones matrix 2-by-3

ans =

     1     1     1

     1     1     1

>> eye(3,4)   % Unit diagonal matrix of size  3  - by - 4

ans =

     1     0     0     0

     0     1     0     0

     0     0     1     0

>> eye(4,5)   % Unit diagonal matrix of size 4 - by - 5

ans =

     1     0     0     0     0

     0     1     0     0     0

     0     0     1     0     0

     0     0     0     1     0

>> rand(2)    % Uniform random matrix 2-by-2

ans =

    0.8147    0.1270

    0.9058    0.9134

>> rand(2, 4)    % Uniform random matrix 2-by-4

ans =

    0.6324    0.2785    0.9575    0.1576

    0.0975    0.5469    0.9649    0.9706

>> randn(3)    % Normally distributed random matrix 3-by-3

ans =

    0.7254   -0.2050    1.4090

   -0.0631   -0.1241    1.4172

    0.7147    1.4897    0.6715
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>> A = round(randn(3))   % Round up to the nearest 0

A =

    -1     0     0

     1     1     0

     2     1    -1

>> A_rep=repmat(A, 2, 3) % replicating the matrix A by making its

% replication 2 times of rows and 3 times of columns

A_rep =

    -1     0     0    -1     0     0    -1     0     0

     1     1     0     1     1     0     1     1     0

     2     1    -1     2     1    -1     2     1    -1

    -1     0     0    -1     0     0    -1     0     0

     1     1     0     1     1     0     1     1     0

     2     1    -1     2     1    -1     2     1    -1

>> C=eye(2); B=magic(3); A=ones(4);

>> D=blkdiag(A,B,C)   % combine matrices in diagonal directions to

% create a block diagonal matrix.

D =

     1     1     1     1     0     0     0     0     0

     1     1     1     1     0     0     0     0     0

     1     1     1     1     0     0     0     0     0

     1     1     1     1     0     0     0     0     0

     0     0     0     0     8     1     6     0     0

     0     0     0     0     3     5     7     0     0

     0     0     0     0     4     9     2     0     0

     0     0     0     0     0     0     0     1     0

     0     0     0     0     0     0     0     0     1

>> randi([-13, 13], 5) % Random  integers within [-13, 13]

ans =

     0     7    12     9    -4

    12    -7     1    -7    -8

    -4     0   -10     8    -7

     2     5    -9    -7     3

    -7    11    -7    12    -1

Chapter 7  Linear aLgebra



497

>> K=reshape(randperm(9),  3,3)  %  Change  the  size  (reshape)   

of  array  %  to  make 3 by 3 matrix by random permutation

K =

     6     4     7

     1     3     2

     9     8     5

In addition, there are a few dozen matrix generation functions. They are the gallery 

of test matrices, such as binomial, cauchy, clement, invol, house, krylov, leslie, lesp, 

neumann, poisson, ris, rando, smoke, wilk, and many more. In general, the command 

syntax of these matrices is as follows:

[A, B, C,...] = gallery(matname,P1,P2,...);

[A, B, C,...] = gallery(matname,P1,P2,..., classname);

A=gallery(3);

B=gallery(5);

To get more information about the gallery of matrices, type this in the 

Command window:

>> help gallery

>> doc gallery

Here are several examples of how to employ gallery matrices:

>> S=[3 2 7]; X=[2 2];

% This is the 3-by-3 Leslie population matrix taken from the model with 

average birth numbers S(1:n) and survival rates X(1:n-1)

>> L=gallery('leslie',  S,  X)

L =

     3     2     7

     2     0     0

     0     2     0

% Chebyshev spectral differentiation matrix of order 3

>> C = gallery('chebspec', 3,1)

C =

   -0.3333   -1.0000    0.3333

    1.0000    0.3333   -1.0000

   -1.3333    4.0000   -3.1667
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% Cauchy matrix 3-by-3, C(I, j) = 1/(S(i)+Y(j)). The arguments S and Y are 

vectors of length 3.

% If you pass in scalars for S and Y, they are interpreted as vectors 1:S 

and 1:Y.

>> S = [3 2 6]; Y = [1 3 2];

>> C = gallery('cauchy', S, Y)

C =

    0.2500    0.1667    0.2000

    0.3333    0.2000    0.2500

    0.1429    0.1111    0.1250

>> % Krylov matrix of size 5-by-5.

>>  B  =  gallery('krylov',  randn(5))

B =

    1.0000    2.4392    3.9250   26.5823   24.9976

    1.0000    1.2031    7.8039    6.5275   61.9487

    1.0000   -1.3094   -7.4622   11.6113  -14.5418

    1.0000    0.3038   -3.8311  -16.0811  -10.1830

    1.0000   -3.7454    0.3824    5.7186  -65.2352

>> % House-holder matrix of size 3-by-1.

>> A = [3;2;5];    % Must be a column matrix

>> H =   gallery('house', A)

H =

    9.1644

    2.0000

    5.0000

>> % Hankel matrix of size 5-by-5 with elements H(I, j)=0.5/(n-i-j+1.5).

>> B  =  gallery('ris',5)

B =

    0.1111    0.1429    0.2000    0.3333    1.0000

    0.1429    0.2000    0.3333    1.0000   -1.0000

    0.2000    0.3333    1.0000   -1.0000   -0.3333

    0.3333    1.0000   -1.0000   -0.3333   -0.2000

    1.0000   -1.0000   -0.3333   -0.2000   -0.1429
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>> % Smoke matrix  of size 3-by-3 – complex, with “smoke ring” pseudo- 

spectrum.

>> SM=gallery('smoke', 3)

SM =

  -0.5000 + 0.8660i   1.0000 + 0.0000i   0.0000 + 0.0000i

   0.0000 + 0.0000i  -0.5000 - 0.8660i   1.0000 + 0.0000i

   1.0000 + 0.0000i   0.0000 + 0.0000i   1.0000 + 0.0000i

These standard and gallery matrices have special properties that can be of great 

use in various numerical simulations and analysis problems. For instance, these 

standard matrices—ones(), eye(), zeros(), rand(), randn()—are used often for signal 

processing, data analysis, and memory allocation in large computations.

 Vector Spaces
In signal processing, numerical analyses, and building computer simulation models, 

vector spaces are very important. For instance, the logarithmic space is used for 

digital signal processing when frequencies go over a unit circle. There are several 

straightforward ways by which vectors, vector spaces, and arrays with equal spaces 

between their elements can be created. Let’s suppose that we need to create a vector W 

that begins with a value w1 and ends with w2, as shown in Figure 7-28.

Figure 7-28. Vector space

If the size Δw is known, then the space can be expressed by W = w1: Δw: w2. For 

instance, the whole space can be defined in terms of w1 = 1, w2 = 13, Δw = 0.1 with the 

following:

>> w=1:0.1:13;
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Moreover, if N number of points between the start and end boundaries of a space are 

known, the linear space function linspace() can be used.

>> % This creates a linear space of w array with equally spaced k number of 

elements

>> w=linspace(1, 13, N);

Note if N is not specified in the linspace() command, its default value is 100.

This simplex example generates sound waves with a sine function.

fs=3e4;      % Sampling frequency

% Different signal frequencies:

f1=100; f2=200; f3=300; f4=400; f5=500; f6=600;

t=0:1/fs:5;  % Time

% Signal: sum of sine waves

x=sin(2*pi*t*f1)+sin(2*pi*t*f2)+sin(2*pi*t*f3)+ 

sin(2*pi*t*f4)+sin(2*pi*t*f5);

[m,  n]=size(x);            % Gets the size of the created vector space

sound(x,  fs)               % Plays a created sound & hear from sound cards

The linspace() command creates linearly spaced vector spaces/arrays. In MATLAB, 

there is another similar function, called logspace(), that creates logarithmic scaled 

vector spaces. For example, you use the following command to create a logarithmic 

space of the x array containing 130 logarithmically spaced elements (here, N = 130) 

between boundary points 0 and 13:

>> x=logspace(1,13,130);

Likewise, use this command to create 50 logarithmic spaced points between 0 and π:

>> s=logspace(0, pi);

Note if N is not specified in logspace(), then its default value is 50.
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 Polynomials Represented by Vectors
For numerical simulations in MATLAB, polynomials are represented via vectors using 

coefficients of polynomials in descending order. For instance, a fifth-order polynomial is 

given as follows:

 12 13 15 17 135 4 2x x x x� � � �  

That is defined as a vector space in the following manner:

>>  f = [12, 13, 0, -15, 17, -13];

Note, that MATLAB reads vector entries as a vector of length n+1 as an n-th order 

polynomial. Thus, if any of the given polynomial misses any coefficients, zero has to 

be entered for its coefficient. For instance, in the previous example, 0 is entered for the 

coefficient of x3.

There are several functions that can be used to compute the roots of polynomials.

They are as follows:

• Using the roots() MATLAB function

• Using the zero() Control System Toolbox function

• Using the solve() Symbolic MATH Toolbox function

You find roots of the given polynomial using the base MATLAB function, roots().

>> x_sols=roots(f)

x_sols =

  -1.2403 + 0.9412i

  -1.2403 - 0.9412i

   0.7941 + 0.0000i

   0.3015 + 0.6869i

   0.3015 - 0.6869i

Note that the given polynomial has only one real value root and four complex 

valued roots.

The roots are computed by using the solve() function of MATLAB to find symbolic 

solutions of the polynomial, and then solutions are converted (note that conversion may 

be not necessary) to obtain a shorter number of decimal point numeric data using the 

double() function with the following entries in the Command window:
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>> syms x

>> syms x

>> Sol=solve(12*x^5+13*x^4-15*x^2+17*x-13)

Sol =

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 1)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 2)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 3)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 4)

root(z^5 + (13*z^4)/12 - (5*z^2)/4 + (17*z)/12 - 13/12, z, 5)

>> double(Sol)

ans =

   0.3015 - 0.6869i

   0.3015 + 0.6869i

   0.7941 + 0.0000i

  -1.2403 - 0.9412i

  -1.2403 + 0.9412i

Roots can be computed by using zero(), which is a function of the Control Toolbox 

of MATLAB:

>> F_tf = tf(f, 1)

F_tf =

   12 s^5 + 13 s^4 - 15 s^2 + 17 s - 13

Continuous-time transfer function.

>> x_sols = zero(F_tf)

x_sols =

  -1.2403 + 0.9412i

  -1.2403 - 0.9412i

   0.7941 + 0.0000i

   0.3015 + 0.6869i

   0.3015 - 0.6869i

Note in this case, a transfer function (ratio of two polynomials) with a denominator 

of 1 in the “s” domain is created first. Then the roots of s are computed, which would 

make the polynomial equal to zero.
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The values of polynomials at specific input argument values can be computed using 

MATLAB’s built-in function polyval(). Here is an example how to use this function:

>> f = [12, 13, 0, -15, 17, -13];      % Given polynomial

>> x = linspace(-10, 10, 500);

>> f_val = polyval(f,x);               % Computed polynomial values

 Simulink Model-Based Solution of Polynomials
To solve polynomials via Simulink modeling, use the MATLAB Fcn block, the Constant 

block to input the polynomial coefficients, and the Display block to see the computed 

roots. Figure 7-29 shows the complete model saved as Polynomial_Solver.slx.

Figure 7-29. Simulink model to solve the polynomial 
12x5 + 13x4 − 15x2 + 17x − 13 = 0

The MATLAB Function block has the following command syntax embedded in it:

function y  =  fcn(u1,  u2,  u3,  u4,  u5,  u6)

y = roots([u1, u2, u3, u4, u5, u6]);

The MATLAB Fcn block calls the MATLAB function roots() and computes the roots 

of the polynomial with respect to its coefficients given by the input variables u1, u2, … 

u6 since we are solving a fifth-order polynomial. As it is, this model does not run, and 

there are two more issues related to the size of the variables and solver type. First, the 

solver type has to be a fixed-step size type. That can be adjusted via Simulation ➤ Model 
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Configuration Parameters ➤ Solver Selection ➤ Fixed Step Solver. By default, the solver 

is a variable type.

Second, you need to change the size of the output variable y. You can do that by 

clicking the   icon and selecting Model Explorer ➤ [Model Hierarchy] ➤ 

Polynomial_Solver.slx ➤ MATLAB Function ➤ y Output ➤ Size. Set the size to 5 and 

click Apply. (The fifth-order polynomial has five roots.) After clicking the Run button in 

the menu of the Simulink model window or pressing Ctrl+T on the keyboard, you’ll see 

the results displayed in Figure 7-30.

Figure 7-30. Complete model with computed roots of the polynomial 
12x5 + 13x4 − 15x2 + 17x − 13 = 0

The computed roots of the given polynomial match the ones computed by the 

MATLAB commands roots() and zero() to four decimal places.

 Eigen-Values and Eigen-Vectors
Eigen-values and eigen-vectors have broad applications, not only in linear algebra but 

also in many engineering problems. For instance, they are used with vibrations, modal 

analysis, control applications, robotics, and so forth.
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Definition 1. An eigen-value and eigen-vector of a square matrix A are, respectively, a 

scalar λ and a nonzero vector ν that satisfy the following:

 Av v� �  (Equation 7-6)

Definition 2. Given a linear transformation A (a square matrix), a nonzero vector ν is 

defined to be an eigen-vector of the transformation if it satisfies the following eigen-value 

equation for some scalar λ:

 A v v� �� � � � ��  (Equation 7-7)

In this case, the scalar λ is called an eigen-value of A corresponding to the eigen- 

vector {v}.
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 A I� ��� �� �� ��� ��X X� 0  (Equation 7-8)

Here, [I] is the identity matrix. Now by rearranging, the next formulation can be 

written as follows:

 
A X I X� ��� � � ��� �� ��� � �– � 0

 
(Equation 7-9)

Let’s assume that there is an inverse matrix of the coefficient of [X], i.e., ([A] – [λ] * [I]).

 
A I� � � ��� �� � �

�
– �

1
0

 
(Equation 7-10)

There can be other solutions apart from a trivial solution [X] = 0. So, this means  

([A] – [λ] * [I]) = 0 is obtained via determinant of this matrix equal to 0.

 
det A I� ��� ��� �� ��� 0

 
(Equation 7-11)

The left side of Equation 7-11 is called a characteristic polynomial. So, when this 

equation is expanded, it will lead to a polynomial equation of λ. Use the following 

example to compute eigen-values and eigen-vectors:

 

2 3 3 4 5 0

3 2 4 1 5 0

2 0 4 7 2 0

1 2 3

1 2 3

1 2 3

. .

. .

. .

x x x

x x x

x x x

� � �
� � �
� � �

�

�
�

�
�

 

Chapter 7  Linear aLgebra



506

Now, the given system’s equations are written in matrix form.
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Eigen-values of this transformation matrix are defined to be:
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 � � � � �7 884 49 12 2 5 02 3. . .� � �  

Solutions of this characteristic polynomial equation are as follows:

 � � �1 2 38 434 0 162 5 772� � � �. ; . ; .  

Further, three eigen-vectors are computed by plugging in each eigen-value one by 

one into the equation. Hand calculations of eigen-values and eigen-vectors for larger 

systems are tedious and time-consuming. For very large systems of linear equations, 

it is infeasible to compute eigen-values and eigen-vectors with hand calculations. All 

of these computations can be performed with a single built-in function of MATLAB, 

called eig(A):

>> A = [2.3 3.4, 5; 3, 2.4, -1.5; 2, -0.4, -7.2]

A =

    2.3000    3.4000    5.0000

    3.0000    2.4000   -1.5000

    2.0000   -0.4000   -7.2000

>> [v, lambda]=eig(A)

v =

   -0.7649   -0.6510   -0.4725

   -0.6366    0.7276    0.2479

   -0.0983   -0.2164    0.8458

lambda =

    5.7726         0         0

         0    0.1619         0

         0         0   -8.4345
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>> A*v - v*lambda   % Verify:  eigen-vectors and eigen-values;

ans =

   1.0e-14 *

   -0.0888   -0.0638   -0.1776

   -0.1776   -0.0763         0

    0.0555   -0.1783   -0.1776

Note that there are several different syntax forms of the eig() function to compute 

eigen-values and eigen-vectors of square arrays, and there is another command, called 

eigs(A), to compute eigen-values and eigen-vectors.

d = eig(A)

d = eig(A,B)

[V,D] = eig(A)

[V,D] = eig(A,'nobalance')

[V,D] = eig(A,B)

[V,D] = eig(A,B,flag)

To evaluate the largest eigen-values and eigen-vectors, use this:

d   = eigs(A)

[V,D]  = eigs(A)

[V,D,flag] = eigs(A); eigs(A,B)

eigs(A,k)

eigs(A,B,k)

eigs(A,k,sigma); eigs(A,B,k,sigma); eigs(A,K,sigma,opts); 

eigs(A,B,k,sigma,opts)

 Matrix Decomposition
The matrix decompositions have broad and valuable applications in many areas of 

linear algebra and engineering problem solving, for instance, solving linear equations, 

linear least squares, nonlinear optimization, Monte-Carlo simulation, experimental data 

analysis, modal analysis, circuit design, filter design, and many more. There are a few 

types of matrix transformations and decompositions, including QR, LU, LQ, Cholesky, 

Schur, singular value decomposition, and so forth. We very briefly already discussed 
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the command syntaxes of QR, LU, LQ, chol() Cholesky, and svd() singular value 

decompositions while solving the systems of linear equations. This section explains how 

to compute matrix decompostions by using MATLAB’s built-in functions.

 QR Decomposition
QR decomposition is also called orthogonal-triangular decomposition. It’s the process 

of factoring out a given matrix as a product of two matrices. They are traditionally called 

the Q and R matrices, and they are the orthogonal matrix Q and the upper triangular 

matrix R.

 A QR� �� �Equation 7 12

 Q Q IT � �� �Equation 7 13

Here, Q is an orthogonal matrix, QT is a transpose of Q, R is an upper triangular 

matrix, and I is an identity matrix. The QR decomposition is based on the Gram-Schmidt 

method. More details of the Gram-Schmidt method can be found on Wikipedia [1]. In 

MATLAB for the QR decomposition computation, there is a function called qr(). It has a 

few different syntax methods that evaluate Q, R, and other relevant matrices.

[Q,R] = qr(A)   %Produces  upper  triangular  matrix  R  &  unit  matrix  Q

[Q,R] = qr(A,0)     %Produces the economy-size decomposition

[Q,R,E] = qr(A)     %Produces Q, R and permutation matrix E =>A*E = Q*R 

[Q,R,E] =  qr(A,0)  %Produces  economy-size  decomposition:  A(:,E) =  Q*R

X  =  qr(A)         %Produces  matrix  X.  triu(X) is  upper  triangular   

factor  R

X = qr(A,0)         % The same as X = qr(A);

R = qr(A)           % Used when A is a sparse matrix and computes a Q-less

% QR decomposition and returns R.

 Example: Computing QR Decomposition of a 5-by-5 Matrix

Let’s take matrix [A] of size 5x5 generated from a normally distributed random number 

generator, called randn(). Compute the QR decompositions of the [A] matrix.
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>> format short

>> A = randn(5)

A =

    0.3335   -0.4762   -0.3349    0.6601    0.0230

    0.3914    0.8620    0.5528   -0.0679    0.0513

    0.4517   -1.3617    1.0391   -0.1952    0.8261

   -0.1303    0.4550   -1.1176   -0.2176    1.5270

    0.1837   -0.8487    1.2607   -0.3031    0.4669

>> [Q, R]=qr(A)

Q =

   -0.4629    0.0336    0.6635    0.4906    0.3219

   -0.5432   -0.7902   -0.2551   -0.1236    0.0155

   -0.6269    0.4640    0.0710   -0.4160   -0.4622

    0.1808   -0.1702    0.5228   -0.7440    0.3339

   -0.2549    0.3609   -0.4650   -0.1322    0.7557

R =

   -0.7205    0.9045   -1.3201   -0.1084   -0.3993

         0   -1.7127    0.6793   -0.0872    0.2522

         0         0   -1.4600    0.4687    0.6421

         0         0         0    0.6154   -1.5365

         0         0         0         0    0.4891

>> [Q,  R]=qr(A,  0)

Q =

   -0.4629    0.0336    0.6635    0.4906    0.3219

   -0.5432   -0.7902   -0.2551   -0.1236    0.0155

   -0.6269    0.4640    0.0710   -0.4160   -0.4622

    0.1808   -0.1702    0.5228   -0.7440    0.3339

   -0.2549    0.3609   -0.4650   -0.1322    0.7557

R =

   -0.7205    0.9045   -1.3201   -0.1084   -0.3993

         0   -1.7127    0.6793   -0.0872    0.2522

         0         0   -1.4600    0.4687    0.6421

         0         0         0    0.6154   -1.5365

         0         0         0         0    0.4891
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>> [Q,R,E]=qr(A)

Q =

   -0.1608   -0.0026   -0.4424    0.8652    0.1726

    0.2655   -0.0455    0.7987    0.4982   -0.2035

    0.4990   -0.4921   -0.3661    0.0262   -0.6116

   -0.5367   -0.8164    0.1799   -0.0321    0.1099

    0.6054   -0.2988   -0.0065   -0.0386    0.7366

R =

    2.0823   -0.1148   -1.1322   -0.2883    0.4568

         0   -1.7950    0.5142    0.3657   -0.1895

         0         0    1.4850   -0.3119   -0.0250

         0         0         0    0.5510    0.4924

         0         0         0         0   -0.1773

E =

     0     0     0     0     1

     0     0     1     0     0

     1     0     0     0     0

     0     0     0     1     0

     0     1     0     0     0

>> A*E

ans =

   -0.3349    0.0230   -0.4762    0.6601    0.3335

    0.5528    0.0513    0.8620   -0.0679    0.3914

    1.0391    0.8261   -1.3617   -0.1952    0.4517

   -1.1176    1.5270    0.4550   -0.2176   -0.1303

    1.2607    0.4669   -0.8487   -0.3031    0.1837

>> Q*R

ans =

   -0.3349    0.0230   -0.4762    0.6601    0.3335

    0.5528    0.0513    0.8620   -0.0679    0.3914

    1.0391    0.8261   -1.3617   -0.1952    0.4517

   -1.1176    1.5270    0.4550   -0.2176   -0.1303

    1.2607    0.4669   -0.8487   -0.3031    0.1837
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 LU Decomposition
The LU decomposition or factorization is also called a modified form of the Gauss 

elimination method and was introduced by Alan Turing [2]. It is defined as follows:

 A LU=  (Equation 7-14)

Here, A is a rectangular matrix, and L and U are the lower and upper triangular 

matrices, respectively.

For example, a 3-by-3 matrix can be LU factorized with the following expressions:
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In MATLAB, the LU decomposition is evaluated using the following syntax of the 

built-in function lu():

Y  =  lu(A)        %Produces matrix Y, for sparse  A.  Y  contains  only   

L  [L,U]  =  lu(A)   %Produces U and L

[L,U,P] = lu(A)    %Produces U & L with a unit diagonal & permutation 

matrix P

[L,U,P,Q]   =   lu(A)   % Produces U, L, and row permutation matrix P

                        %  and column reordering matrix Q, so that 

P*A*Q = L*U

[L,U,P,Q,R]  =  lu(A)   % Produces U,L, & permutation matrices P and Q,

                        % d iagonal scaling matrix R so that  P*(R\

A)*Q  =  L*U

                        % for sparse non-empty A.

[...] = lu(A,'vector')   %Produces the permutation information in two %row 

vectors p and q. A user can specify from 1 to 5 

outputs.

[...] = lu(A,thresh)

[...] = lu(A,thresh,'vector')
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 Example: Computing LU Composition of a 3-by-3 Pascal Matrix

Let’s compute L, U, and other (P, Q, R) matrices from any given rectangular matrix. For 

this task, you write a small script called LU_decomposition.m with MATLAB’s built-in 

function lu(). The script takes one user entry (input), which has to be a rectangular 

matrix. You’ll employ in this script another built-in function of MATLAB, called 

issparse(). It identifies whether the user-entered matrix is a sparse matrix or not.

% LU_decomposition.m

A=input('Enter rectangular matrix: ');

if   issparse(A)

     Y  =  lu(A)                      %#ok

     [L,U,P,Q]   =   lu(A)            %#ok

     disp('   oops more   ')

     [L,U,P,Q,R]  =  lu(A)            %#ok

     [L, U, P, Q, R] = lu(A,'vector') %#ok

else

     [L,U]  =  lu(A)   %#ok

     [L,U,P]   =   lu(A)   %#ok

     % Check evaluation results:

     ERROR=P*A-L*U   %#ok

     [L,U,P]  =  lu(A,  'vector')     %#ok

end

Run the script LU_decomposition.m and enter a standard matrix, called pascal(3), 

as an input matrix.

Enter rectangular matrix: pascal(3)

L =

    1.0000         0         0

    1.0000    0.5000    1.0000

    1.0000    1.0000         0

U =

    1.0000    1.0000    1.0000

         0    2.0000    5.0000

         0         0   -0.5000
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L =

    1.0000         0         0

    1.0000    1.0000         0

    1.0000    0.5000    1.0000

U =

    1.0000    1.0000    1.0000

         0    2.0000    5.0000

         0         0   -0.5000

P =

     1     0     0

     0     0     1

     0     1     0

ERROR =

     0     0     0

     0     0     0

     0     0     0

L =

    1.0000         0         0

    1.0000    1.0000         0

    1.0000    0.5000    1.0000

U =

    1.0000    1.0000    1.0000

         0    2.0000    5.0000

         0         0   -0.5000

P =

     1     3     2

Rerun the script and use a sparse matrix of size 3-by-3 as input.

Enter rectangular matrix: sparse(3)

Y =

   (1,1)        3

   oops more

L =

   (1,1)        1
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U =

   (1,1)        1

P =

   (1,1)        1

Q =

   (1,1)        1

R =

   (1,1)        3

L =

   (1,1)        1

U =

   (1,1)        1

P =

     1

Q =

     1

R =

   (1,1)        3

 Example: Solving [A]{x}=[b] Using LU Composition

LU composition can be employed to solve the [A]{x} = [b] system of linear equations 

using the MATLAB’s mldivide() or backslash (\) operator.

[A]{x} = [b] → [A] = [P]′ ∗ [L] ∗ [U]

[y] = [L]([P] ∗ [b]) → {x} = [U]\[y]

Let’s take the following example:

 

3
2

3
1

2
1

2
2

3

4
3

x y z

x y z

x y z

� � �

� � �

� � �

�

�

�
�
�

�

�
�
�

 

Chapter 7  Linear aLgebra



515

The solution of this example is as follows:

A = [3 -2/3 1; 2 1 -1/2; 3/4 -1 -1];

b = [1;2;3];

[L, U, P]=lu(A);

y=mldivide(L,(P*b));

x = U\y

x =

                      0.82

                    -0.555

                     -1.83

 Cholesky Decomposition
The Cholesky decomposition is particularly important for Monte Carlo simulations 

and Kalman filter designs. This type of matrix factorization is applicable only to 

square matrices and to Cholesky triangles, which are decompositions of positive and 

definite matrixes that is decomposed into a product of a lower triangular matrix and 

its transpose. The Cholesky decomposition [3, 4] can be expressed via the following 

formulation:

 A U UT=  (Equation 7-15)

Here, A is a square matrix, and U and UT are an upper triangular matrix and its 

transpose, respectively. This formulation can be written with lower triangular matrix (L) 

and its transpose (LT) as well.

 A LLT=  (Equation 7-16)

In MATLAB, the Cholesky decompositions are evaluated using the following syntax 

options of the MATLAB’s built-in function, chol():

R = chol(A) % Produces an upper triangular matrix R satisfying: R'*R=A

L = chol(A,'lower') % Produces a lower triangular matrix R satisfying:

                    % L*L'=A

[R,p] = chol(A) %Produces  an  upper  triangular  matrix  R  and  p  is  0 

[L,p] = chol(A,'lower') %Produces lower triangular matrix R&p  is  0 

[R,p,S] = chol(A) % When A is a sparse matrix, produces a permutation

                  % matrices S and R, and p that can be zero or non-zero
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[R,p,s] = chol(A,'vector') % Produces the permutation information %as a 

vector 's'

[L,p,s] = chol(A,'lower','vector') % Produces a lower triangular matrix

                                   % L and a permutation vector 's'

Note Using chol (the Cholesky decomposition operator) is preferable over the 
eig (eigen-value and eigen-vector) operator for determining positive definiteness.

To evaluate the Cholesky decompositions of any given matrix (a user-entered 

matrix), you write the next script, called Chol_decoposition.m, by considering 

the requirements and properties of the Cholesky decompositions to compute 

decompositions of any matrix with respect to the formulations in Equations 7-15 and 

7-16. It takes one input, which is a user entry matrix. Note that in this script, we used 

disp(), size(), det(), run(), and a pop-up dialog box command, warndlg().

% Chol_decomposition.m

clearvars; clc

disp('Note your matrix must be square & positive definite!!!')

disp('NB: Positive means all determinants must be positive.')

disp('You can enter as matrix elements ')

disp('or define your matrix 1st, ')

disp('and then just enter your matrix name')

disp('      ')

A=input('Enter a given Matrix: ');

[rows, cols]=size(A);

for k=1:rows

    % Determinants are computed

    Det_A(k)=det(A(1:k, 1:k));

end

if rows==cols

  if Det_A>0

     if issparse(A)

            [R,p,S] = chol(A) %#ok

            [R,p,s] = chol(A,'vector');

            [L,p,s] = chol(A,'lower','vector');
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else

            R = chol(A) %#ok % Upper triangular matrix R: R'*R=A

            L = chol(A,'lower') %#ok % Lower triangular matrix R.

            [R,p] = chol(A);

% Verify:

Error_up  = A-R'*R;

Error_low = A-L*L';

disp('Error is with upper triangular matrix: ')

disp(Error_up)

disp('Error is with lower triangular matrix:')

disp(Error_low)

       end

else

warndlg('Sorry your matrix is not positive and definite!')

warndlg('Try again!!!')

run('Chol_decomposition')

    end

end

You can test the script with different input entries (matrices). Let’s use a 4-by-4 

standard matrix generated with pascal().

Note your matrix must be square & positive definite!!!

NB: Positive means all determinants must be positive.

You can enter as matrix elements

or define your matrix 1st,

and then just enter your matrix name

Enter a given Matrix: pascal(4)

R =

     1     1     1     1

     0     1     2     3

     0     0     1     3

     0     0     0     1
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L =

     1     0     0     0

     1     1     0     0

     1     2     1     0

     1     3     3     1

Error is with upper triangular matrix:

     0     0     0     0

     0     0     0     0

     0     0     0     0

     0     0     0     0

Error is with lower triangular matrix:

     0     0     0     0

     0     0     0     0

     0     0     0     0

     0     0     0     0

Now, consider a magic matrix of size 3-by-3.

>> run('Chol_decomposition')

Note your matrix must be square & positive definite!!!

NB: Positive means all determinants must be positive.

You can enter as matrix elements

or define your matrix 1st,

and then just enter your matrix name

Enter a given Matrix: magic(3)

After running the script with an input entry of a magic square matrix of size 3-by-3, 

the warning dialog boxes shown in Figure 7-31 appear.

Figure 7-31. Warnings showing that the input matrix is not positive and definite 
and so cannot compute the Cholesky decompositions

Chapter 7  Linear aLgebra



519

Besides these two warning message boxes shown in Figure 7.31, the code keeps 

asking to enter a matrix. The Chol_decoposition.m script identifies the Cholesky 

decomposition properties and computes the Cholesky decomposition of a user-entered 

matrix. It detects a matrix type and works for given square and positive definite matrices 

with the MATLAB built-in function chol().

 Schur Decomposition
The Schur decomposition has many applications in numerical analyses, including 

image-processing areas in combination with other matrix decompositions or 

factorization tools. The Schur decomposition of a complex square matrix [A] is defined 

as a matrix decomposition [5]:

 QH  AQ = T = D + N (Equation 7-17)

Here, Q is a unitary matrix, QH is a conjugate transpose of Q, and T is an upper 

triangular matrix that’s equal to sum of a matrix D = diag (λ1, λ2, λ3,…, λn) a diagonal 

matrix consisting of eigen-values λi of A,and strictly upper triangular matrix N. The Schur 

decomposition can be computed via the MATLAB’s built-in function, schur().

T  =  schur(A)   % Produces the Schur matrix of A

T  =  schur(A, flag) % Produces the Schur matrix for two cases.

%{

for real matrix A, returns a Schur matrix T in one of two forms depending on the value 

of flag:

'complex'   T is triangular and is complex if A has complex eigenvalues.

'real'   T has the real eigen-values on the diagonal and the complex eigen-

values in 2-by-2 blocks on the diagonal. 'real' is the default.

%}

[U,T] = schur(A,...)

Let’s look at several examples of standard matrices and compute their Schur 

decompositions:
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>> A=magic(5); B=pascal(3); C=round(randn(5,5)*10);

>> SA=schur(A)

SA =

   65.0000    0.0000   -0.0000    0.0000   -0.0000

         0  -21.2768   -2.5888    2.1871   -3.4893

         0         0  -13.1263   -3.3845   -2.8239

         0         0         0   21.2768    2.6287

         0         0         0         0   13.1263

>> SB=schur(B)

SB =

    0.1270         0         0

         0    1.0000         0

         0         0    7.8730

>> SC=schur(C)

SC =

   20.7072    7.3851   -0.2741    9.7514    1.9523

         0   -6.1453   17.4134   -5.0801  -14.3751

         0  -10.3437   -6.1453   14.7269    9.9502

         0         0         0    4.8687    2.1653

         0         0         0         0   -9.2853

>> [T,  U]=schur(A,  'complex')

T =

   -0.4472    0.0976   -0.6331    0.6145   -0.1095

   -0.4472    0.3525    0.7305    0.3760    0.0273

   -0.4472    0.5501   -0.2361   -0.6085    0.2673

   -0.4472   -0.3223    0.0793   -0.3285   -0.7628

   -0.4472   -0.6780    0.0594   -0.0535    0.5778

U =

   65.0000    0.0000   -0.0000    0.0000   -0.0000

         0  -21.2768   -2.5888    2.1871   -3.4893

         0         0  -13.1263   -3.3845   -2.8239

         0         0         0   21.2768    2.6287

         0         0         0         0   13.1263
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>> [TA,  UA]=schur(B,  'real')

TA =

   -0.5438   -0.8165    0.1938

    0.7812   -0.4082    0.4722

   -0.3065    0.4082    0.8599

UA =

    0.1270         0         0

         0    1.0000         0

         0         0    7.8730

>> [T, U]=rsf2csf(U,T) %  Convert real Schur form to complex Schur form

T =

  -61.5539   20.8834   -0.0000   -0.0000    0.0000

    6.2354   18.3788    9.2270   -1.2464    3.6069

    2.0845    6.1442   -9.8039    6.8268    2.6290

    0.9854    2.9044   -4.6344  -20.6565   -1.4269

    0.0340    0.1003   -0.1601   -0.7135  -13.1055

U =

   -0.5636    0.1041    0.6400    0.4570   -0.0505

         0    0.8710   -0.2777    0.0336    0.2993

   -0.4472         0   -0.4787    0.7335   -0.3928

   -0.4472   -0.3223         0   -0.5309   -0.6067

   -0.4472   -0.6780    0.0594         0    0.6209

 Singular Value Decomposition
The singular value decomposition (SVD) has many applications in signal processing, 

statistics, and image processing areas. It is formulated as a product of three matrices, 

which are an orthogonal matrix (Uij), a diagonal matrix (Dij), and the transpose of an 

orthogonal matrix (Vjj), if a given matrix Aij is an i by j sized real matrix with i > j.

 
A U D Vii ij jj

T=
 (Equation 7-18)

Here, U U I V V Iii
T

ii jj
T

jj= =, . Diagonal entries of Dij are known as singular values of Aij.
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Moreover, there are a few other important properties of the SVD.

• Left-singular vectors of Aij are eigen-vectors of AijAij*.

• Right-singular vectors of Aij are eigen-vectors of Aij*Aij.

• Nonzero singular values (on the diagonal entries of Dij) of Aij are 

square roots of the nonzero eigen-values of both Aij*Aij and Aij*.

There are a few ways to evaluate the SVD, singular values, and vectors of any given 

matrix. You use svd() and svds(), which are MATLAB built-in functions.

s = svd(A)       %Produces a vector of singular values

[U,D,V] = svd(A) %Produces a diagonal matrix D of the same dimension

%as A, with nonnegative diagonal elements in decreasing order, and

% unitary matrices U and V so that X = U*D*V'.

[U,D,V] = svd(A,0) % Produces the "economy size" decomposition. If A

%  is   m-by-n with m > n, then SVD computes only the first n columns of

%U and  D  is n-by-n. s = svds(A)

s = svds(A,k)

s = svds(A,k,sigma) s = svds(A,k,'L')

s = svds(A,k,sigma,options) [U,D,V] = svds(A,...)

[U,D,V,flag] = svds(A,...)

Now, take two matrices (of size 2-by-3 and 3-by-3) and evaluate their SVDs.

>> A=ceil(randn(2,3)*10); B=pascal(3);

>> A=ceil(randn(2,3)*10); B=pascal(3);

>> A

A =

    -2    -4     3

   -15    -1    -2

>> B

B =

     1     1     1

     1     2     3

     1     3     6
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>> svd(A)

ans =

   15.2914

    5.0172

>> [U,V,D]=svd(A)

U =

   -0.1354   -0.9908

   -0.9908    0.1354

V =

   15.2914         0         0

         0    5.0172         0

D =

    0.9896   -0.0100   -0.1434

    0.1002    0.7629    0.6387

    0.1030   -0.6464    0.7560

>> [U,V,D]=svd(A, 0)

U =

   -0.1354   -0.9908

   -0.9908    0.1354

V =

   15.2914         0         0

         0    5.0172         0

D =

    0.9896   -0.0100   -0.1434

    0.1002    0.7629    0.6387

    0.1030   -0.6464    0.7560

>> SA = svds(A)

SA =

   15.2914

    5.0172

>> SB = svds(B)

SB =

    7.8730

    1.0000

    0.1270
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>> SA = svds(A, 2)

SA =

   15.2914

    5.0172

>> SB = svds(B, 2)

SB =

    7.8730

    1.0000

>> SB = svds(B, 3)

SB =

    7.8730

    1.0000

    0.1270

 Logic Operators, Indexes, and Conversions
MATLAB uses logic 1 and logic 0 for system variables to denote logic values for true and 

false, respectively. Variables of logical values are distinguished by a logical data type.

Table 7-2 is a list of logic operators and their operational functions used in MATLAB.

Table 7-2. Logical Expressions and Operators in MATLAB

Operator Operation

true,  false Setting logical value

&   (and), |  (or), ~   (not),  xor, any, all Logical operations

&&, || Short-circuits operations

bitand, bitcmp, bitor, bitmax, bitxor, bitset, bitget, 

bitshift

bitwise operations

==(eq),   ~=(ne),    <(lt),   >(gt),  <=(le),   >=(ge) relational operations

strcmp, strncmp,  strcmpi, strncmpi String comparisons
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Note to get a complete list of relational operators, their functions, and how to 
use them, type >> help relop in the Command window.

 Logical Indexing
Logic operators are one of the most central and essential keys to any programming 

language. Logic operators introduce another method for accessing data in MATLAB 

variables. For instance, given a magic matrix [A] of size 5-by-5, say you need to separate 

out the elements of [A] that are equal to or less than 13.

>> A=magic(5)

A =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

>> Index = A>15 | A<5   % Show which element is greater than 15 or 

less than 5

Index =

  5×5 logical array

   1   1   1   0   0

   1   0   0   0   1

   1   0   0   1   1

   0   0   1   1   1

   0   1   1   1   0

>> A(Index)

ans =

    17

    23

     4

    24

    18

     1
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    19

    25

    20

    21

     2

    16

    22

     3

>> A(A>15 | A<5);  % Or in a direct way

Let’s explore the logical indexing properties further via examples to select matrix 

elements.

>> E = eye(5)  % Identity matrix

E =

     1     0     0     0     0

     0     1     0     0     0

     0     0     1     0     0

     0     0     0     1     0

     0     0     0     0     1

Array indices must be positive integers or logical values.

>>EL=loogical(E)

EL =

  5×5 logical array

   1   0   0   0   0

   0   1   0   0   0

   0   0   1   0   0

   0   0   0   1   0

   0   0   0   0   1

>> A(EL)    % Compare Ih A(E)

ans =

    17

     5

    13
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    21

     9

A(EL) -  shows all diagonal elements of A matrix.

Note

Note the previous example demonstrates the identity matrix [e] (whose 
elements are 1s and 0s), which is not equivalent to the logic matrix [e_L] (whose 
elements are also 1s and 0s).

Moreover, there are a number of functions/commands (e.g., the is*() command) 

that can be used to find out whether the input is of a specified type of variable, contains 

any elements of a particular type, or whether such a variable or file exists, and so 

forth. All of these functions can be used for logical indexing. Let’s look at a few simple 

examples:

>>  x=13;  isnumeric(x)     % whether x is a numeric data or not?

ans = 1

>>  x=13; islogical(x)      % whether x is a logical data Or not?

ans = 0

>> x=13; islogical(x>110)   % whether the operation 

(x>110)  is  logic  or  not 

ans =1

>>  x  =  13;  isempty(x)   % whether x is an empty or not 

ans =1

>> x = [ ]; isempty(x)      % whether x is an empty or not

ans = logical 1

>>  x  =  [1  , 2;  3, 4]; iscell(x)   % whether x is a cell array or not

ans = logical 0

>> x = [1, 0; 0, 4];

>>   X_x   =  x/0;  isnan(X_x)   % whether any elements of X_x 

are  not-a- number

ans = 2×2 logical array

0   1

1   0
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>>'  e'ist''X_'',  'var')   % whether the variable called 

X_x  exists  or  not

ans =1

In the previous example, zero divided by zero (0/0) is defined to be NaN (i.e., not-a- 

number) in MATLAB.

Note the logical indexing operations have particular importance in matrix/array 
operations, programming, data analysis, and processing since they can be used to 
sort out, locate, or change particular elements of matrices/arrays/data sets.

 Example: Logical Indexing to Locate and Substitute 
Elements of [A] Matrix

Given: 3-by-3 matrix [A] with some elements equal to infinity A �
� �
�

� �

�

�

�
�
�

�

�

�
�
�

17 6

5 3 11

13

How do you substitute the elements equal to inf with 1000 and all negative-valued 

elements with 0? This task can be solved easily using logical indexing operations.

>> A = [17, Inf,   -6  ; 5 -3, 11; Inf, 13, Inf] % [A] is entered

A =

    17   Inf    -6

     5    -3    11

   Inf    13   Inf

>>   Index_inf  =  (A==1/0)   % Find out which elements of A 

are  equal  to  inf

Index_inf =

  3×3 logical array

   0   1   0

   0   0   0

   1   0   1
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>> A(Index_inf) =1000       % Set inf elements equal to 1000

A =

          17        1000          -6

           5          -3          11

        1000          13        1000

>> Index_neg = A<0          % Find out which elements  of  A  are  negative

Index_neg =

  3×3 logical array

   0   0   1

   0   1   0

   0   0   0

>> A(Index_neg)=0           % Set all negative elements equal to "0"

A =

          17        1000           0

           5           0          11

        1000          13        1000

Note the division of any value by 0 gives the value of Inf in MatLab.

Let’s look at another example. Given a matrix [A] of size 4-by-5 with NaN (not a 

number) and inf (infinity) elements, how do you substitute NaN elements with 0 and inf 

with 100? This task can be solved easily with logical indexing similar to the previously 

demonstrated example.

>> A  =  [2, -3, -2, -3, 1; Inf, -2,   3, -1, NaN; -3, 0, Inf, 3, 2; 3, 

NaN, 0, 2, Inf]

A =

     2    -3    -2    -3     1

   Inf    -2     3    -1   NaN

    -3     0   Inf     3     2

     3   NaN     0     2   Inf

>> Index_nan = isnan(A)   % Find out which elements are NaN
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Index_nan =

  4×5 logical array

   0   0   0   0   0

   0   0   0   0   1

   0   0   0   0   0

   0   1   0   0   0

>> A(Index_nan)=0  % Set all NaN elements equal to "0"

A =

     2    -3    -2    -3     1

   Inf    -2     3    -1     0

    -3     0   Inf     3     2

     3     0     0     2   Inf

Note that this section contains rather simple and small examples to demonstrate 

how easily you can substitute specific (valued) elements of a matrix using logical 

indexing operations. This technique (logical indexing or relational operators) can be 

applied to matrices, arrays, and data sets of any size. Therefore, the logical indexing is 

particularly useful in analysis and processing of large data sets. It is fast and efficient and 

does not require any additional effort to program with loop (for ... end, while ... 

end) and conditional (if ditio. endlyit) operators.

 Conversions
There are many examples in signal processing where you need to convert something. 

Analog to digital converters and vice versa, data processing and analysis, and 

programming when analog signal data format or type needs to be converted into digital 

or vice versa. For instance, to resolve memory issues in image processing, you might 

need to convert decimal (double) formatted data into binary numbers. That can be 

easily accomplished in MATLAB using DEC2BIN(). Conversely, BIN2DEC() is used to 

convert binary strings into decimal (double) type of data. DEC2BIN(D) returns the binary 

representation of D as a string. D must be a non-negative integer smaller than 252.

DEC2BIN(D,N) produces a binary representation with at least N bits.

Another conversion example is character conversion. You need to convert numbers 

into character strings and vice versa. MATLAB uses the CHAR() command to convert 

numbers into ASCII/ANSI formatted characters, DOUBLE() to convert characters and 

symbolic representations of numbers into double precision format, STR2NUM() to convert 
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strings into binary numbers, and NUM2STR() to convert any number into a string. Let’s 

consider several examples of employing these conversion commands:

>> dec2bin(11) % Converts  decimal  (integer) into  a  binary  string

ans =

    '1011'

>> dec2bin(23)

ans =

'10111'

>> dec2bin(22) ans =

'10110'

>> x=13.125/5.5;

>> dec2bin(x)

ans =

    '10'

>> dec2bin(11.11)

ans =

    '1011'

>> dec2bin(11)

ans =

    '1011'

>> bin2dec('1101')  %  Converts  a  binary  number  into  decimal  one

ans =

13

>> bin2dec('10110')

ans =

22

>> dec2bin(64)

ans =

10000000

>> char(bin2dec('10000000'))

ans =

@

>>   G='MatLab' G =

MatLab
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>> G0=G+0 G0 =

77   97   116   76   97   98

>> d2bG0=dec2bin(G0) d2bG0 =

1001101

1100001

1110100

1001100

1100001

1100010

>> b2dG0=bin2dec(d2bG0) b2dG0 =

77

97

116

76

97

98

>> char(b2dG0)' ans =

MatLab

>> num2str(123) ans =

'123'

>> num2str('matlab') ans =

'matlab'

>> ans+0

109   97   116   108   97   98

 Example: Creating Character Strings with char()
Create the following letters in a progressive format by writing a script that has one 

input argument that has to be an integer. All the other letters need to be generated 

programmatically.

a

b c

d e f

g h i j

k l m n o
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These characters can be generated in several ways. First, you need to determine the 

ASCII/ANSI numeric representation of a. Then you can generate all the other letters.

>> format short

>> double('a')

   97

>> char(97)

   'a'

>> double('b')

   98

The letter as numeric representation in ASCII/ANSI is 97, b is represented by 98, 

and so forth. Based on these, you can generate linear space of integers starting at 97 

and convert them to character strings one row at a time. In other words, you display one 

character on the first row, two characters on the second, three in the third row, etc. Here 

is the complete script (print_character.m), which prints the letters in progressive order:

% print_character.m

% Part 1.

Start = 97;

for ii = 1:5

    for jj = 1:ii

        fprintf(char(Start));

        Start = Start+1;

    end

    fprintf('\n')

end

Here is the result of the script:

a

bc

def

ghij

klmno

Let’s consider the following example, which prints a series of uppercase characters:

ABCDEF

GHIJK
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LMNO

PQR

ST

U

This example is similar to the previous example with a few small differences—it 

requires uppercase characters, starts with six letters, and reduces in the following rows.

Again, you can determine the numerical representation of A in ANSI/ASCII with the 

following commands:

>> double('A')

ans =

   65

>> 'A' + 0    % An alternative way:

ans =

   65

So now you know that the numerical representation of A is 65. You can then edit 

the script (print_characters.m) by introducing two small changes and then write 

this script:

%% Part 2. Upper cases

Start = 65;

for ii = 1:2:9

    for jj = 1:ii

        fprintf(char(Start));

        Start = Start+1;

    end

    fprintf('\n')

end

When you execute this script, you obtain the following output in the 

Command window:

ABCDEF

GHIJK
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LMNO

PQR

ST

U

Via a few examples, this section discussed logic operators, conversions, and indexing 

issues briefly. Applications of the issues of conversions are demonstrated via more 

extended examples in other chapters.

 Summary
This chapter introduced linear algebra, matrix operations, vector spaces, polynomials, 

methods of solving linear systems of equations, and matrix decompositions and 

conversions. Via examples, you learned how to use MATLAB’s built-in functions and 

commands, how to develop Simulink blocks in association with the MATLAB Command 

window, and how to use functions and the MATLAB Fcn block. The following MATLAB 

functions were discussed and explained in examples:

• Matrix operations +,-, *, and /

• Elementwise operations .*, .^, and ./

• Backslash operator (\) and mldivide()

• Solving linear equations with linsolve()

• Matrix inverse operators inv() and pinv()

• Eigen-values and eigen-vectors eig()

• Polynomial solvers roots(), solve(), and zero()

• Symbolic math equation solver solve()

• Standard matrices and gallery matrices, magic(), gallery(), and 

sparse()

• Vector spaces linspace() and logspace()

• Matrix operations and factorization methods, such as QR, LU, 

Cholesky, SVD, Schur: qr(), lu(), chol(), svd(), schur(), and 

decomposition()
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• Logical operators (<=, ~=, >=, |, &..., is*()) and 

indexing options

• Conversion tools and operators (bin2dec, dec2bin, double, and char)
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 Exercises for Self-Testing
 Exercise 1
Solve the following equations for variables x, y, and z:

 

3 5 4 2

2 3 2 2

6
2

0

x y z

x y z

x y
z

� � � �
� � � �

� ��
�
�

�
�
� �

�

�

�
��

�

�
�
�  
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 1. Use the backslash (\) operator or mldivide() to solve the given 

system of equations.

 2. Use the inverse matrix method inv() to solve the given system of 

equations.

 3. Use the linsolve() function to solve the given system of 

equations.

 4. Use the solve() function to solve the given system of equations.

 5. Use chol() to solve the given system of equations.

 6. Use Simulink blocks to solve the given system of equations.

 7. Compute errors by computing norms for each of the methods.

 Exercise 2
Solve the following equations, using the matrix inverse:

 

2 9 3 15

13 2 5 11

2 2 9

1 2 3

1 2 3

1 2 3

q q q

q q q

q q q

� � �
� � �
� � �

�

�
�

�
�

 

 1. Use the inverse matrix method inv().

 2. Use the least squares method lsqr().

 3. Use the Gauss Elimination method with the lu().

 4. Use rref().

 5. Use the solve().

 6. Use Simulink blocks.

 7. Compare the accuracy (to eight decimal places) of each solution.
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 Exercise 3
Solve the following equations:

 

2 5 3 3 5

2 2 2 5 2

2 2 5 3

1 2 3

1 2 3

1 2 3

. .

.

.

x x x

x x x

x x x

� � �
� � � � �

� � �

�

�
�

�
�

 

 1. Use the inverse matrix method qr() to solve the given system of 

equations.

 2. Use the reduced row echelon method step-by-step by multiplying 

rows by scalars and adding or subtracting from each other (don’t 

use rref()).

 3. Use the reduced row echelon method rref() to solve the given 

system of equations.

 4. Use the decomposition() function to solve the given system of 

equations.

 5. Use the solve() function to solve the given system of equations.

 6. Use Simulink blocks to solve the given system of equations.

 7. Compare the accuracy (to 10 decimal places) of these four 

methods.

 Exercise 4
Solve the following equations:

 

2 5 3 3 0 3 5

1 2 2 5 2 2 2 5 2 3

3

1 2 3 5

1 2 3 4 5

1

. . .

. . . .

x x x x

x x x x x

x x

� � � �
� � � � � � �

� 22 3 5

1 2 3 4 5

1 2 5

2 5 1

2 5 3 4 3 6

3 2 4 1 75 13

� � �
� � � � � �

� � �

�

�

�

.

.

. .

x x

x x x x x

x x x

��
�
�

�

�
�
�
�
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 1. Use the inverse matrix method inv() to solve the given system of 

equations.

 2. Use the singular decomposition svd() method to solve the given 

system of equations.

 3. Use the linsolve() function to solve the given system of 

equations.

 4. Use the solve() function to solve the given system of equations.

 5. Use Simulink blocks to solve the given system of equations.

 6. Compare the accuracy (to 13 decimal places) of these methods.

 Exercise 5
Given:

 3 6 0x y cz� � �  

 2 4 6 0x y z� � �  

 x y z� � �2 3 0  

• Find for which values of c the set of equations has a trivial solution.

• Find for which values of c the set of equations has an infinite number 

of solutions.

• Find relations between x, y, and z.

 Exercise 6
Find the inverse of the given matrix:

 

A �
�
�
�

�

�

�
�
�

�

�

�
�
�

3 6 12

2 4 6

1 2 3
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• Explain why the given matrix does not have an inverse.

• Compute the determinant of the matrix.

• Find eigen-values and eigen-vectors of the given system by 

using eig().

• Find eigen-values by using roots().

 Exercise 7
Find the inverse of the given matrix:

 

A �
�
�
�

�

�

�
�
�

�

�

�
�
�

3 6 2

1 2 4

0 1 3
 

• Compute determinant of the matrix.

• Find eigen-values and eigen-vectors of the given system using eig().

• Find eigen-values using roots().

 Exercise 8
Find a solution to the following set of equations representing an underdetermined 

system, using the left division (\ backslash) method and the pseudo-inverse method 

(pinv). Compare your obtained results and discuss the differences.

 2 5 3 3 1 3 0 3 111 2 3 4 5. . . .x x x x x� � � � �  

 � � � � � � �1 2 2 5 2 1 5 2 21 2 3 4 5. . .x x x x x  

 x x x1 2 32 2 5 3� � �.  

 Exercise 9
Solve the following set of equations using the backslash (\) operator, as well as the 

linsolve(), inv(), lsqr(), and solve() functions:
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 2 3 5x y� �  

 6 10 70x y� �  

 10 4 53x y� �  

 Exercise 10
Show why there is no solution to the following set of equations:

-2x - 3y = 2

-3x - 5y = 7

 5x - 2y = -4

 Exercise 11
Solve the following equations:

 

2 5 3 3 0 3 5

1 2 2 5 2 2 2 5 2 3

3

1 2 3 5

1 2 3 4 5

1

. . .

. . . .

x x x x

x x x x x

x x

� � � �
� � � � � � �

� 22 3 5

1 2 3 4 5

1 2 5

2 5 1

2 5 3 4 3 6

3 2 4 1 75

� � �
� � � � � �

� � �

�

�

�
�

.

.

. .

x x

x x x x x

x x x v

��
�

�

�
�
�
�

 

 v � � � � �� �10 9 8 9 10, , , ,  

 1. Use the inverse matrix method mldivide() to solve the given 

system of equations.

 2. Use the singular decomposition svd() method to solve the given 

system of equations.

 3. Use the linsolve() function to solve the given system of 

equations.

 4. Use the solve() function to solve the given system of equations.
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 Exercise 12
Compute the eigen-values and vectors of the following set of equations:

 

3 2 5 2 0

0

2 3 4 5 7 0

5
3

4

7

13
9 0

x y z u w

x y z w

x y z u w

y z u w

� � � � �
� � � �

� � � � � �

� � � � �

110 11 8 8 0x y u w� � � �

�

�

�
�
��

�

�
�
�
�

 

 Exercise 13
Create the matrix [C] from the given two [A] and [B] matrices by using logic operators. 

Explain why some of the elements of new array are zeros.

 

C A�

�

�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�
�

0 0 3

1 0 0

0 0 1

1 0 2

2 1 0

0 0 1

3 6 3

1 2 2

0 1 1

1 3
,

��
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�
�

� �
�
�

�

2

2 1 1

1 0 1

1 2 3

1 1 3

1 2 1

1 1 1

2 2 2

2 0 1

,B

��

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�  

Hints Use logic operators (<, =) and element-wise matrix multiplication.

 Exercise 14
The useful life of a machine bearing depends on its operating temperature, as the 

following data shows. Obtain a functional description (linear, square, and cubic 

polynomials) of this data. Plot the found fit functions and the data on the same plot. 

Estimate a bearing’s life if it operates at 52.50C.
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temperature (0C) 40 45 50 55 60 65 70

bearing life (hours x 103) 28 21 15 11 8 6 4

 Exercise 15
The following represents pressure samples, in MPa, taken in a fuel line once every 

second for 10 sec:

Time (Sec) Pressure (MPa) Time (Sec) Pressure (MPa)

1 2.61 6 3.06

2 2.70 7 3.11

3 2.82 8 3.13

4 2.90 9 3.10

5 2.98 10 3.05

a. Fit a first − degree polynomial, a second − degree polynomial, and a third − degree 

polynomial to this data. Plot the curve fits along with the data points.

b. Use the results from part a to predict the pressure at t = 11 sec.

 Exercise 16
The distance a spring stretches from its “free length” is a function of how much tension 

force is applied to it. The following table gives the spring length y that the given applied 

force F produced in a particular spring. The spring’s free length is 4.7 m. Find functional 

relation between F and x, the extension from the free length (x = y − 4.7).

Force 
F(kN)

Spring Length 
y (m)

0 4.7

0.47 7.2

1.15 10.6

1.64 12.9
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Also, plot experimental data (F versus x) and functional relation based fit 

(F _ linear vs. x) in the same plot. Use the appropriate plot maker type, color, size, etc., 

options.

 Exercise 17
Perform the following:

• Obtain an eye matrix of the size 5-by-5 from the magic matrix of the 

size of 5-by-5.

• Create a square eye matrix of the size 10-by-10 from the random 

square matrix of the size 10-by-10.

• Obtain a replicated square matrix of size 3-by-9 from the gallery 

matrix pascal() of size 3-by-3.

 Exercise 18
Solve the following equations and discuss the solutions for two cases: a = 13 and a = 29.

 

q q

q q a

q q

1 2

1 2

1 2

1

13 23

2 9

� �
� �
� �

�

�
�

�
�

 

Write a script with logic and loop operators (if, break, for, and end) to find such 

value of a that gives real solutions to these equations. Consider that a has an integer 

value that lies within 1 to 50.

Hints Use the rank() function and backslash (\) operators.
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 Exercise 19
Solve the following polynomials with roots(), solve(), zero(), and the Simulink model.

 2 3 5 13 131 09 8 4 2u u u u– – –� �  

 
y y

y
y y7 5

4
35

13

4
11 9 3 0� � � � � �

 

 
5

4

11

3

13
269 135

4 3
2x

x x
x x� � � � �

 

 Exercise 20
Create a logarithmic spaced array (a row vector) B of numbers starting with 10 and 

ending with 100, and create BB column vector from a row vector B.

 Exercise 21
Play a sound that is defined in the next expression:

 S t tf tf tf tf tf� � � � �� � �� � �� � �� �cos cos cot tan tan2 2 2 2 21 2 3 4 5� � � � � ��  

Here, fs = 10000 Hz (sampling frequency); t = 13 sec. (time length); f1 = 100 Hz (1st 

signal); f2 = 200 Hz (2nd signal); f3 = 300 Hz (3rd signal); f4 = 600 Hz (4th signal);  

f5 = 700 Hz (5th signal).

 Exercise 22
Answer the following questions using MATLAB:

• What are the binary representations of decimal numbers 123, 

123.123, 321, 321.123, 223, 322, 333, and 333.3?

• Why are the binary representations of 123 vs. 123.123, 321 vs. 321.123, 

and 333 vs. 333.3 the same?
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 Exercise 23
Answer the following questions using MATLAB:

• What are the decimal representations of the binary numbers 1001, 

01010, 111100, 0101011?

• What are character representations of the binary numbers 1001, 

01010, 111100, 0101011?

 Exercise 24
Write a script that takes one input number (an integer) and prints out the following 

characters in the order in the Command window:

A

BCD

EFGHI

JKLMNOP

QRSTUVWXY

 Exercise 25
Use numeric values of matrices [A] and [B] from Exercise 11 to evaluate the QR, LU, 

LQ, Cholesky, Schur, and singular value decompositions. Explain why some of the 

decompositions (matrix factorizations) of [A] and [B] cannot be computed.

 Exercise 26
Create the Hilbert matrix of size 5-by-5 using gallery matrix functions and compute 

Cholesky decomposition using the Chol_decoposition.m script. Edit the script 

(Chol_decoposition.m) in order to make it compute only the lower triangular matrix of 

Cholesky decomposition.
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 Exercise 27
Create the Riemann matrix of size 3-by-3 using gallery matrix functions and compute its 

QR, LU, LQ, Cholesky, Schur, and singular value decompositions.

 Exercise 28
Perform the following:

• Create the 4-by-4 random matrix with normalized columns and 

specified singular values using gallery matrix functions. Hint: Use 

randcolu.

• Compute the QR, LU, LQ, and decompositions of the matrix you just 

created.

 Exercise 29
Perform the following:

• Create one 5-by-5 random matrix with random integer elements 

varying in the range of 1 to 13 and name it A_mat.

• Create one 5-by-5 Krylov matrix using a matrix gallery of Krylov and 

name it K_mat.

• Create logic valued 5-by-5 matrix called Logic_A by using logic 

operation (A _ mat ≥ K _ mat) and elementwise matrix multiplication 

from A_mat and K_mat
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 Exercise 30
Create the following 10-by-10 matrix:

 

Hint Use magic() and repmat().
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CHAPTER 8

Ordinary Differential 
Equations
Many modeling problems with engineering applications can be formulated using 

ordinary differential equations (ODEs). There are a few different definitions of 

differential equations. One of the simplest is “A differential equation is any equation 

which contains derivatives, either ordinary derivatives or partial derivatives,” as given 

in source [1]. From this definition, we can derive two types of differential equations: 

ordinary differential equations (ODEs) and partial differential equations (PDEs). ODEs 

contain one type of derivative or one independent variable, and PDEs, on the contrary, 

contain two or more derivatives or independent variables. For example, first-order ODEs 

can be expressed as follows:

 

dy

dx
f x y� � �,

 
(Equation 8-1)

Here, y(x) is a dependent variable whose values depend on the values of the 

independent variable of x. Another good example of ODEs is Newton’s Second Law of 

Motion, formulated as follows:

 
ma

dp

dt

mdv

dt
f t v� � � � �,

 
(Equation 8-2)

Here, F(t, v) is force, which is a function of time (t) and velocity (v). 
dv

dt
 is a velocity 

change rate (acceleration) of a moving object; m is the mass of a moving object; a is 

an acceleration of a moving object; p is momentum; and dp/dt is its derivative. This 

formulation of Newton’s Second Law can be also rewritten the following way:

 

md

dt

dx

dt

md x

dt
F t x

dx

dt
�
�
�

�
�
� � � �

�
�

�
�
�

2

2
, ,

 
(Equation 8-3)
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Here, the derivative 
dx

dt
�
�
�

�
�
�  of the displacement (x) of a moving object is the 

velocity (v).

In other words, the velocity is the rate of change of the displacement x(t) of a moving 

object in time. This can be visualized with the flowchart displayed in Figure 8-1.

Figure 8-1. Flowchart expressing motion and exerted force of a moving object

 Classifying ODEs
There are two classifications of ODE-related problems.

• Initial value problems (IVPs):  x xt x� �3  with initial 

conditions x x0 3 0 1� � � � � �, 

• Boundary value problems (BVPs):  x xt x� �3  with boundary 

conditions x(0) = 3, x(2) = 1.50

IVPs are defined with ODEs together with a specified value, called the initial 

condition, of the unknown function at a given point in the solution domain. In the IVP of 

ODEs, there can be a unique solution, no solution, or many solutions. By definition, the 

IVP of ODEs can be explicitly or implicitly defined. Most of the IVP are explicitly defined. 

Let’s start with explicitly defined IVPs and then move to implicitly defined ones. In 

addition to solution type—how solution values change over the solution search  
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space—the IVPs are divided into stiff and nonstiff problems. Moreover, ODEs are 

grouped into two categories, linear and nonlinear, and divided into two groups, 

homogeneous and nonhomogeneous.

Here are some specific examples of different ODE types, categories, and groups:

• Stiff ODEs: y y� �3 108 ,  t ∈ [0, 40]

• Nonstiff: y y t� �2 2

• Linear ODEs: v v� �9 81 0 198. .

• Nonlinear ODEs: v v� �9 81 0 198 2. .

• Homogeneous ODEs: y y� �2 0

• Nonhomogeneous ODEs: y y t� � � �2 2sin

The following are several examples of ODEs and their application areas.

 Example 1: Unconstrained Growth 
of Biological Organisms
This is an exponential growth problem that describes the unconstrained growth of 

biological organisms (such as bacteria). This behavior can also describe real estate or 

investment values, membership increase of a popular networking site, growth in retail 

businesses, positive feedback of electrical systems, and generated chemical reactions. 

The problem is formulated by the following first-order ODE:

dy

dt
y� �  has a solution: y(t) = y0eμt

 Example 2: Radioactive Decay
This refers to exponential decay, which describes many phenomena in nature and in 

engineering, such as radioactive decay, washout of chemicals in a reactor, discharge 

of a capacitor, and decomposition of material in a river. It’s expressed using this first- 

order ODE:
dy

dt
y� �� has a solution: y(t) = y0e−μt

Examples 1 and 2 are two simple examples of first-order ODEs.
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 Example 3: Newton’s Second Law
The motion of a falling object is expressed in the following equation using Newton’s 

Second Law:

 

md y

dt
mg

dy

dt

2

2
� �

�

 

This is a second-order ODE that has a solution in the following form:

 
y t C e

m mg g t
C

t

m� � � �
�� �

�
��
�
�

�
�
�

1 2 2

� �
�  

Here, m is the mass of the falling object, g is gravitational acceleration, and γ is an 

air-drag coefficient of a falling object. Three parameters—m, g, and γ—are constant, 

the solution of a falling object, and C1 and C2 are arbitrary numbers that are dependent 

on the initial conditions. In other words, they can be computed considering the initial 

condition of a falling object.

There are a few methods that evaluate analytical solutions of ODEs, including 

separation of variables, introduction of new variables, and others. We look at specific 

examples of these types of ODEs to see how to evaluate their analytical solutions and 

compute numerical solutions. We do this by employing different techniques in the 

MATLAB/Simulink environment and writing scripts and building models. In computing 

analytical solutions of ODEs, we explain via specific examples how to use built-in 

functions of the Symbolic Math Toolbox.

For obvious reasons, considerable effort is placed on numerical solution methods 

rather than analytical solution search tools. It is not always possible or is too costly to 

evaluate analytical solutions of ODEs. Therefore, a numerical solution search is often 

best. There are a number of numerical methods. They are Euler (forward, backward, 

modified), Heun, the midpoint rule, Runge- Kutta, Runge-Kutta-Gill, Adams-Bashforth, 

Milne, Adams-Moulton, Taylor series, and trapezoidal rule methods.

Some of these methods are explicit, and others are implicit. To demonstrate how 

to employ these methods, we first describe their formulations and then work on their 

implementation algorithm for writing scripts (programs) explicitly. We do not attempt 

to derive any of the formulations used in these numerical methods. There are many 

literature sources [see 2, 3, 4, 5] that explain the theoretical aspects of these methods.
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In solving the IVP using numerical methods, we start at an initial point (initial 

conditions) and then take a step (equal step- size or varying step-size) forward in time 

to compute the following numerical solution. Some of the previously named numerical 

methods (e.g., Euler’s methods) are single-step methods, and others (Runge-Kutta, 

Adams-Bashforth, Milne, Adams-Moulton, and the Taylor series) are multistep methods. 

Single-step methods refer to only one previous point and its derivative to determine the 

current value. Other methods, such as Runge-Kutta methods, take some intermediate 

steps to obtain a higher-order step and then drop off values before taking the next step. 

Unlike single-step methods, multistep methods keep and use values from the previous 

steps instead of discarding them. This way, multistep methods link a few previously 

obtained values (solutions) and derivative values. All of these methods, i.e., the single-

step and multistep methods, are assessed based on their accuracy and efficiency in 

terms of the computation time and resources (e.g., machine time) spent to compute 

numerical solutions for specific types of IVPs of ODEs. Nevertheless, it remains true that 

most solutions of the first-, second-, or higher-order IVPs cannot be found by analytical 

means. Therefore, we need to employ various numerical methods.

 Analytical Methods
The Symbolic Math Toolbox has several functions that are capable of evaluating 

analytical solutions of many analytically solvable ODEs. There are two commands (built-

in functions) by which analytical solutions of some ODEs can be evaluated—dsolve and 

ilaplace/laplace.

Note that in this section we demonstrate—via a few examples of first- and second-

order ODEs and systems of coupled differential equations—how to compute analytical 

solutions of ODEs.

 DSOLVE
One ODE solver tool for computing an analytical (or general) solution of any given ODE 

in MATLAB is dsolve. It can be used with the following general syntax:
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Solution = dsolve(equation)

Solution = dsolve(equation, conditions)

Solution = dsolve(equation, conditions, Name, Value)

[y1,...,yN] = dsolve(equations)

[y1,...,yN] = dsolve(equations, conditions)

[y1,...,yN] = dsolve(equations, conditions, Name, Value)

 Example 1: Using DSOLVE
Given a first-order ODE: y + 2ty2 = 0 with no known initial or boundary conditions. 

Let’ solve it using dsolve().

>> y_solution=dsolve('Dy=-2*y^2*t')

Y_solution=

  -1/(C3-t^2)

Note that C3 is defined from the initial or boundary conditions of the given 

ODE. There is also an alternative command. In later versions of MATLAB (starting with 

MATLAB 2012), we can solve the given problem by using the following command syntax:

>>syms y(t); y_sol=dsolve(diff(y) == - 2*y^2*t)

 y_sol =

    0

    -1/(- t^2+C3)

 Example 2: Plotting the Found Solution with dsolve
Given a first-order ODE: y ty� �2 02  with the initial condition y(0) = 0.50. Let’s solve it 

using dsolve().

>> Solution=dsolve('Dy=-2*y^2*t', 'y(0)=0.5')

Solution =

1/(t^2 + 2)

The alternative command syntax with later versions of MATLAB is as follows:

>> syms y(t); Solution=dsolve(diff(y) == -2*y^2*t, y(0)==0.5) 
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Solution = 1/(t^2 + 2)

The evaluated analytical solution in a symbolic formulation can be plotted with 

fplot. (See Figure 8-2.)

>> fplot(Solution, [-5, 5], 'ro-'); grid on; xlabel('t'); ylabel 'y(t)'

Figure 8-2. Analytical solution of y ty� �2 02  with the initial condition y(0) = 0.50

Numerical values of the analytical solution (the equation) can be computed by 

vectorizing (parameterizing) the symbolic formulation (the solution), as shown here:

>> ysol=vectorize(solution)

ysol =

1./(t.^2 + 2)

>> t=(-5:.1:5); ysol_values=eval(ysol);

 Example 3: Adding an Unspecified Parameter
Given y kty� �2 0 , y (0) = 0.50. Let’s solve it using dsolve(). Note that this exercise has 

one unspecified parameter k.
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>> syms k

>> solution=dsolve('Dy=-k*y^2*t', 'y(0)=0.5')

solution =

1/((k*t^2)/2 + 2)

An alternative command syntax is as follows:

>> syms y(t) k;

solution=dsolve(diff(y) == -k*y^2*t, y(0)==0.5)

solution =

1/((k*t^2)/2 + 2)

Note Options in dsolve need to be set appropriately depending on the 
problem type. in MatlaB 2008–2010 or earlier versions, you should set 
IgnoreAnalyticConstraints to none to obtain all possible solutions.

Here’s an example:

solution=dsolve('Dy=-k*y^2*t','y(0)=0.5','IgnoreAnalyticConstraints','none')

Note for MatlaB 2012 or later versions, you should set 
IgnoreAnalyticConstraints to false to get all possible correct answers 
for all the argument values. Otherwise, dsolve may output an incorrect answer 
because of its pre- algebraic simplifications.

Here’s an example:

solution=dsolve(diff(y)==-k*y^2*t, y(0)==0.5,'IgnoreAnalyticConstraints',  

false)

 Second-Order ODEs and a System of ODEs
There are a myriad of processes and phenomena that are expressed via second-order 

differential equations. Examples include simple harmonic motions of a spring-mass 
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system, motions of objects with some acceleration (Newton’s Second Law), damped 

vibrations, current flows in resistor-capacitor-inductance circuits, and so forth. In 

general, second-order ODEs are expressed in two different forms—homogeneous 

(Equation 8-4) and nonhomogeneous (Equation 8-5).

 
 y p x y q x y� � � � � � � 0  (Equation 8-4)

 
 y p x y q x y p x� � � � � � � � �  (Equation 8-5)

Note that the homogeneous ODEs in Equation 8-4 always have one trivial solution, 

which is y(x) = 0. It satisfies the givens in Equation 8-4. With respect to the independent 

functions p(x), q(x), and g(x), the ODEs can be linear or nonlinear. In some cases, the 

independent functions p(x), q(x), and g(x) can be constant values or nonconstant values.

Let’s consider several examples of second-order ODEs to see how to compute 

general and particular solutions with MATLAB’s Symbolic Math Toolbox.

 Example 1: dsolve with a Second-Order ODE
Given a  second-order ODE:  u u t u u� � � � � � � � � �100 2 5 10 0 0 0 0. sin , ,  with no known 

initial or boundary conditions. Let's solve it using dsolve().

usol=dsolve('D2u+100*u=2.5*sin(10*t)', 'u(0)=0', 'Du(0)=0'); pretty(usol)

%% Alternative syntax

syms u(t)

Du = diff(u);

u(t) = dsolve(diff(u, 2)==2.5*sin(10*t)-100*u, u(0)==0, Du(0) == 0); 

pretty(u(t))

The following is the output from executing the two short scripts/commands:

sin(10 t) 3   sin(30 t)             / t   sin(20 t) \

----------- - --------- - cos(10 t) | - - --------- |

    320          320                \ 8      160    /

 Example 2: System ODEs
Given a system of ODEs: 

y y

y y y
1 2

2 1 20 125

�

�

�
� � �

�
�
� .

,  y1(0) = 1, y2(0) = 0. 

Let's solve it using dsolve().
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The given problem is a system of two first-order ODEs. This problem can be solved 

directly with dsolve, similar to the previous examples.

%% System of two 1st-order ODEs solved with dsolve

yt=dsolve('Dy1=y2', 'Dy2=-y1-0.125*y2','y1(0)=1', 'y2(0)=0');

pretty(yt.y1) pretty(yt.y2)

%% Alternative  syntax

syms y1(t) y2(t)

z=dsolve(diff(y1,1)==y2, diff(y2,1)==(-y1-0.125*y2), y1(0)==1, y2(0)==0); 

pretty(z.y1), pretty(z.y2)

The computed analytical solutions of the problem displayed in the command 

window are not shown here. These are the computed solutions:

 
y t

t

e

t
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t
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�
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 Example 3: Unsolvable Solutions Using dsolve
Given a second-order ODE: 2 3 100 2 y y y t� � � � �cos , y(0) = 1, y 0 2� � � . 

Let' solve it using dsolve().

>> syms y(t); Dy = diff(y,t); D2y = diff(y, t,2);

>> Solution=dsolve(2*D2y+3*(Dy^3)-cos(100*t)*abs(y)- 2==0, y(0)==1, 

Dy(0)==2)

Warning: Unable to find symbolic solution.

 Solution =

      [ empty sym ]

When the analytical solutions cannot be found with dsolve,the only option will be 

numerical solution.
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 Example 4: Computing an Analytical Solution
Say we have this: y y e yt� � � � �2 0 2, . Here are the commands used to compute an 

analytical solution of the given exercise:

syms y(t)

   Dy = diff(y,t);

   Solution = dsolve(Dy==2+abs(y)*exp(t), y(0)==2);

   fplot(Solution, [0, 5], 'r--o'), grid on

   xlabel 't'

   ylabel('y(t)')

Figure 8-3 shows the plot of the found analytical solution.

Figure 8-3. The found analytical solution y y e yt� � � � �2 0 2,
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 Example 5: An Interesting ODE
Let’s consider a second-order ODE, as follows:  u u t� � � �sin ,  u u0 1 0 2� � � � � �,  .

syms u(t)

Du = diff(u,t);

D2u = diff(u,t, 2);

Solution = dsolve(D2u==sin(t)-Du, u(0)==1, Du(0)==2);

fplot(Solution, [0, 4*pi], 'b-.s'), grid on

xlabel ('t'); ylabel('u(t)')

 Laplace Transforms
Solutions of linear ordinary differential equations with constant coefficients can be 

evaluated by using the Laplace transformation. One of the most important features of 

the Laplace transforms in solving a differential equation is that the transformed equation 

is an algebraic equation. It will be used to define a solution to the given differential 

equation. In general, the Laplace transform application to solving differential equations 

can be formulated in the following way.

Figure 8-4. Analytical solution plot of  u u t� � � �sin ,  u u0 1 0 2� � � � � �, 
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Let’s consider the nth order derivative of yn(x) = f (t). The Laplace transform of yn(x) is 

as follows:


d u

dt
f t s U s s u su su F s

n

n
n n n� � ��

�
�

�
�
�
��� � �� � � ��� � �� � � � �� �1 1 0 0 0 ��

 
(Equation 8-6)

Or

 
s U s s u F sn

i

n
n i� � � � � � � �

�

� ��
1

1 1 0
 

(Equation 8-7)

In Equation 8-6 or 8-7, if you substitute constant values of initial conditions at t = 0 

given as y(0) = a0; y′(0) = a1; y"(0) = a2; …; yn − 2(0) = an − 2; yn − 1(0) = an − 1, you can rewrite the  

expression (Equation 8-6 or 8-7) as follows:

 s U s s a sa sa F sn n
n n� � � ��� � � � ��

�
1

0 1  (Equation 8-8)

Subsequently, we first solve for Y(s), take the inverse Laplace transform from Y(s), 

and obtain the solution y(t) of the nth order differential equation.

The general procedure for applying the Laplace and the inverse Laplace transforms 

to determine the solution of differential equations with constant coefficients is as 

follows:

 [1]. Take the Laplace transforms from both sides of the given 

equation.

 [2]. Solve for Y(s) in terms of F(s) and other unknowns.

 [3]. Take the inverse Laplace transform of the found expression to 

obtain the final solution of the problem.

Note that in step 3, you should also break the expression from step 2 into partial 

fractions in order to use tables of the inverse Laplace transform correspondences.

A schematic view of the Laplace and inverse Laplace transforms is given in the 

flowchart shown in Figure 8-5.
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Differential Equation Solution

Solution

Figure 8-5. Flowchart of solving ODE with Laplace transform and its inverse

 Example 1: First Laplace Transform
Let’s consider a second-order nonhomogeneous differential equation.

 

d y

dt

Ady

dt
C e y k dy mnt

2

0 0� � � � � � � � �, ,
 

Now, by applying the steps depicted in the flowchart of the Laplace and inverse 

transforms from the flowchart, you write the Laplace transform of the given problem in 

explicit steps.
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� � �� eent� �  (Equation 8-9)
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(Equation 8-10)

Now, you can work on the left-hand side of Equation 8-9 starting from the 

highest order.
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(Equation 8-11)
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(Equation 8-12)

  C C� ��  (Equation 8-13)
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By plugging Equations 8-10, 8-11, 8-12, and 8-13 back into Equation 8-9, you obtain 

the assembled expression given in Equation 8-14.

 
s Y s k sm AsY s m C

s n
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�  
(Equation 8-14)

You solve Equation 8-15 for Y(s).

Y s
sm k m C s n

s n s As
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(Equation 8-15)

From the expression of Y(s) in Equation 8-15, you can split this into partial fractions 

and take the inverse Laplace transform of both sides. You obtain Equation 8-16, which is 

the y(t) of the given differential equation:

y t
e

An n

Cn kn mn

An

Cn kn mn A k mn C

Ae A n

nt
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�� �2

1 1

 
(Equation 8-16)

The built-in laplace() function of the Symbolic Math Toolbox is used to evaluate 

the Laplace transform of any algebraic expression or differential equation. Likewise, the 

ilaplace() function of the Symbolic Math Toolbox is used to compute the inverse of 

the evaluated Laplace transformed s domain expression. These two functions handle all 

transformations by breaking up the partial fraction procedures automatically and then 

compute an analytical solution of a given ODE exercise.

 LAPLACE/ILAPLACE
As mentioned, laplace/ilaplace are based on the Laplace and inverse Laplace 

transforms, which are built-in function tools of the Symbolic Math Toolbox. The general 

syntax of laplace/ilaplace is as follows:

F=laplace(f) 

F=laplace(f, t) 

F=laplace(f, var1, var2)

and as follows:

f=ilaplace(F)

f=ilaplace(F, s) f=ilaplace(F, var1, var2)
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 Example 2: Using LAPLACE
Given x(t) = sin (2t), the Laplace transform of x(t) is computed with the following 

command syntax:

>> syms t

>> xt=sin(2*t); Xs=laplace(xt)

2/(s^2 + 4)

Given y(t) = sin (Kt). Let's compute its Laplace transform with laplace().

>> syms t K

>> yt=sin(K*t); Ys=laplace(yt)

K/(K^2 + s^2)

 Example 3: A Final LAPLACE
Compute the Laplace transform of y(x) = ax3 + b.

>> syms x a b y(x)

>> y(x)=a*x^3+b; Ys=laplace(y(x))

Ys =

(6*a)/s^4 + b/s

You can also obtain the t variable domain instead of s.

>> syms x t a b

>> y=a*x^3+b; Yt=laplace(y, x, t)

Yt =

(6*a)/t^4 + b/t

The ilaplace() function syntax and implementation are exactly the same for 

laplace. Let’s look at several ODE exercises to see how to use laplace/ilaplace and 

compare their evaluated solutions to the ones obtained with dsolve.

 Example 4: Comparing LAPLACE/ILAPLACE with DSOLVE
Let’s solve y y� �2 0 , y (0) = 0.5 with laplace/ilaplace and dsolve. The following script 

(ODE_Laplace.m) shows the solution:
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% ODE_Laplace.m

clearvars; clc; close all

% Step #1. Define symbolic variables' names

syms t s y(t) Y

Dy = diff(y(t),t);

ODE1=Dy==-2*y(t);

% Step #2. Laplace Transforms

LT_A=laplace(ODE1, t, s);

% Step #3. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),y(0)},{Y,0.5});

% Step #4. Solve for Y (unknown)

Y=solve(LT_A, Y);

display('Laplace Transforms of the given ODE with ICs'); disp(Y)

% Step #5. Evaluate Inverse Laplace Transform

Solution_Laplace=ilaplace(Y);

display('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace)

% Step #6. Compute numerical values and plot them

t=0:.01:2.5; LTsol=eval(vectorize(Solution_Laplace));

figure, semilogx(t, LTsol, 'ko')

xlabel('t'), ylabel('solution values')

title('laplace/ilaplace vs dsolve ')

grid on; hold on

%% Compare with dsolve solution method

clearvars;

syms y(t)

Dy = diff(y, t);

Y_d=dsolve(Dy==-2*y, y(0)==0.5);

disp('Solution with dsolve')

t=0:.01:2.5;

pretty(Y_d); Y_sol=eval(vectorize(Y_d));

plot(t,Y_sol, 'b-', 'linewidth', 2), grid minor

legend('laplace+ilaplace', 'dsolve')

hold off; axis tight
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After executing the ODE_Laplace.m script, the following output is obtained:

Laplace Transforms of the given ODE with ICs

1/(2*s + 4)

Solution found using Laplace Transforms: exp(-2 t)

--------

2

Solution with dsolve exp(-2 t)

--------

2

The plot of solutions shown in Figure 8-6 clearly displays a perfect convergence of 

solutions found with laplace/ilaplace and dsolve.

Figure 8-6. The problem y y� �2 0 , y (0) = 0.5 solved with laplace/ilaplace 
and dsolve
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 Example 5: Convergent Answers
Given  y y t� � � �sin , y y0 1 0 2� � � � � �,  , here is the solution script (Laplace_vs_Dsolve.m) 

of this second-order nonhomogeneous ODE with laplace, ilaplace, and dsolve:

clearvars, clc, close all

syms t s y(t) Y(s)

Dy = diff(y(t), t);

D2Y = diff(y(t), t, 2);

ODE2nd=D2Y== sin(t)-Dy;

% Step 1. Laplace Transforms

LT_A=laplace(ODE2nd, t, s);

% Step 2. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),subs(diff(y(t),t),  t, 

0),y(0)},{Y(s),2,1});

% Step 3. Solve for Y unknown

Y=isolate(LT_A, Y);

%disp('Laplace Transforms of the given ODE with ICs');

disp(Y)

Solution_Laplace=ilaplace(rhs(Y));

disp('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace);

t=0:.01:13; LTsol=eval(vectorize(Solution_Laplace));

figure, plot(t, LTsol, 'ro-'); xlabel('t'), ylabel('solution values')

title('laplace/ilaplace vs. dsolve: ddy+dy=sin(t)'); hold on

% dsolve solution method

Y=dsolve('D2y+Dy=sin(t)', 'y(0)=1, Dy(0)=2', 't');

disp('Solution with dsolve:   ');

pretty(Y)

fplot(Y, [0, 13], 'b-', 'linewidth', 2); grid minor

legend('laplace+ilaplace', 'dsolve', 'location', 'SE'); hold off
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The computed analytical solutions are as follows:

Y(s) == (s + 1/(s^2 + 1) + 3)/(s^2 + s)

Solution found using Laplace Transforms:

    cos(t)   sin(t)   5 exp(-t)

4 - ------ - ------ - ---------

       2        2         2

Solution with dsolve:

               /     pi \

    sqrt(2) cos| t - -- |

               \      4 /   5 exp(-t)

4 - --------------------- - ---------

              2                 2

From the plot displayed in Figure 8-7, it is clear that the solutions found via the 

Laplace transforms (laplace/ilaplace) and the dsolve functions converge perfectly 

well. Both functions evaluate the same analytical solution of a given ODE.

Figure 8-7. Analytical solutions of  y y t� � � �sin , y y0 1 0 2� � � � � �, 
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 Example 6: No Analytical Solution
Given the following second-order nonhomogeneous and nonlinear ODE, let's try to 

solve it using syms, diff(), and laplace().

 2 3 100 2 0 1 0 2  y y y t y y� � � � � � � � � � �cos , , .  

Let's solve Here is the solution script (Lap_inv_Lap.m) with the Laplace and inverse 

Laplace transforms:

% Lap_inv_Lap.m

clearvars, clc, close all

syms t s y(t) Y(s)

Dy=diff(y(t),t);

D2y=diff(y(t),t,2);

ODE2nd=D2y==0.5*(-3*(Dy)^3+cos(100*t)*abs(y(t))+2);

% Step 1. Laplace Transforms

LT_A=laplace(ODE2nd, t, s);

% Step 2. Substitute ICs and initiate an unknown Y

LT_A=subs(LT_A,{laplace(y(t),t, s),subs(diff(y(t),t),  t, 

0),y(0)},{Y(s),0,0});

% Step 3. Solve for Y unknown

Y=isolate(LT_A, Y);

% Step 3.   Solve for Y unknown Y=solve(LT_A, Y);

disp('Laplace Transforms of the given ODE with ICs');

disp(Y)

Solution_Laplace=ilaplace(Y);

disp('Solution found using Laplace Transforms: ')

pretty(Solution_Laplace)
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The Lap_inv_Lap.m script produces the following output in the Command window:

Laplace Transforms of the given ODE with ICs
Y(s) == (4 + s*laplace(abs(y(t)), t, s - 100i) + s*laplace(abs(y(t)), t, s 
+ 100i) - 6*s*laplace(diff(y(t), t)^3, t, s))/(4*s^3)
Solution found using Laplace Transforms:
                                 t
                                 /
                                |            /   d         \3
                             3  |  (t - u23) | ---- y(u23) |  du23
                         2     /             \ du23        /
                        t        0
ilaplace(Y(s), s, t) == -- - -------------------------------------
                         2                     2
             / laplace(|y(t)|, t, s - 100i)       \
     ilaplace| ----------------------------, s, t |
             |               2                    |
             \              s                     /
   + ----------------------------------------------
                            4
             / laplace(|y(t)|, t, s + 100i)       \
     ilaplace| ----------------------------, s, t |
             |               2                    |
             \              s                     /
   + ----------------------------------------------
                            4

This output means that no analytical solution is computed explicitly with 

laplace/ilaplace, just like with the dsolve function tools.

 Example 7: Demonstrating Efficiency and Effortlessness
Given a second-order nonhomogeneous ODE where g(t) is a forcing function that is 

discontinuous and defined by the following expression, let's solve it by applying the 

Laplace transform.

 
g t u t u t

t

t t
� � � � �� � � �

� �
� � �

�
�
�

2 10

5 2 10

0 0 2 10

,

, and  

Chapter 8  Ordinary differential equatiOns



571

The Laplace transform of the given equation is as follows:

 
 2 3 2 2 10y y y u t u t� �� �� � �� � �� �  

 
2 2 0 2 0 3 0 2

5
2

2 10

s Y s sy y sY s y Y s
e e

s

s s

� � � � � � � � � � � � � � � � � � �
�� �� �



 

 

Y s
e e

s s s

s s

� � �
�� �
� �� �

� �5

2 3 2

2 10

2

 

Note that e−2s and e−10s are explained with time delays in the system output signals; in 

other words, -2 and -10 mean 2 and 10 seconds of time delays. 5 is the magnitude of the 

Heaviside (step) function.

The formulation Y(s) is the solution of the differential equation in the s domain, 

but we need it in the time domain. Thus, you need to compute its inverse Laplace 

transform:� � �� �� � �1 Y s y t .By employing ilaplace(), the next short script (Lap_4_

non_homog.m) is created. It solves the given problem and computes its analytical and 

numerical solutions.

% Lap_4_non_homog.m

syms t s

F=5*(exp(-2*s)-exp(-10*s))/s;

Y=2*s^2+s+2;

TF=F/Y; TFt=ilaplace(TF);

pretty(TFt);

Sol=vectorize(TFt);

t=linspace(0, 20, 400);

S=eval(Sol); plot(t, S, 'bo-'); grid minor

title('Differential Equation with Discontinuous Forcing Fcn')

grid on, xlabel('time'), ylabel('y(t) solution'), shg

After executing the script, the next solution plot is obtained along with the solution 

formulation, as shown in Figure 8-8.
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Figure 8-8. Simulation of the second-order nonhomogeneous ODE subject to the 
discontinuous forcing function

>> pretty(TFt)

                 /    / 5   t \ /      sqrt(15) sin(#1) \     \

                  | exp| - - - | | cos(#1) + ---------------- |     |

                  |    \ 2   4 / \                  15        /   1 |

heaviside(t - 10) | ------------------------------------------- - - |

             \                      2                        2 /

                       /    / 1   t \ /     sqrt(15) sin(#2) \     \

                       | exp| - - - | | cos(#2) + ---------------- |     |

                       |    \ 2   4 / \                  15        /   1 |

  5 - heaviside(t - 2) | ----------------------------------------- - - | 5

                \                      2                        2 /

where

         sqrt(15) (t - 10)

   #1 == -----------------

                 4

         sqrt(15) (t - 2)

   #2 == ----------------

                 4
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From the previous exercise, the following points can be drawn. Using the Laplace 

transforms (laplace/ilaplace) to compute analytical solutions of nonhomogeneous 

ODEs subject to external forcing functions, which are discontinuous, is relatively easy, 

fast, and effortless. Such exercises are found often within control engineering problems. 

Moreover, note that the Laplace and inverse Laplace transforms (laplace/ilaplace) are 

straightforward to implement in solving ODEs. The solutions of ODEs found with them 

match the ones found by dsolve() perfectly well. As mentioned, many ODEs cannot be 

solved analytically with the laplace/ilaplace and dsolve functions. Thus, numerical 

methods are often the only option.

 MATLAB Built-in ODEx Solvers

In MATLAB, there are a few built-in ODE solvers, namely, ode15s, ode15i, ode23, ode23s, 

ode23t, ode23tb, ode45, and ode113, which are efficient in finding numerical solutions of 

many different types of initial value problems. These solvers are based on explicit Runge-

Kutta and implicit Adams-Bashforth-Moulton methods with different implementation 

algorithms and ODE solver methods, namely, Dormand-Prince (ode45), Bogacki-

Shampine (ode23), Rosenbrock (ode23s), trapezoidal rule (ode23t), Adams- Bashforth- 

Moulton (ode113), Gear’s method (ode15s), and so forth. Using MATLAB’s built-in ODE 

solvers is relatively simple, and these are the following general syntaxes of the ODE 

solvers:

solver(odefun,tspan,y0)

[T,Y] = solver(odefun,tspan,y0)

[T,Y] = solver(odefun,tspan,y0,options)

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)

sol = solver(odefun,[t0 tf],y0...)

Any of ode15s, ode15i, ode23, ode23s, ode23t, ode23tb, ode45, and ode113 can be 

chosen depending on the given problem type, for instance, whether the given problem is 

stiff (how far stiff, e.g., very stiff or moderately stiff ) or nonstiff, explicit or implicit.

It is worth noting that an ODE solver type needs to be selected carefully. In selecting 

a solver type, the recommendations given in Table 8-1 should be considered. These are 

taken from the help library of the MATLAB package.
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Table 8-1. MATLAB’s Built-in ODEx Solvers

Solver Type Problem Type Accuracy When to Apply

ode15i fully implicit Medium for only fully implicit iVp

ode15s stiff low to Medium if ode45 is too slow in finding solutions of 

the problem due to its stiffness

ode23 nonstiff low for moderately stiff problems with crude 

error tolerances

ode23s stiff low for stiff problems with crude error tolerances

ode23t Moderately stiff low for moderately stiff problems

ode23tb stiff low for stiff problems with crude error tolerances

ode45 Nonstiff Medium Recommended for most problems; must 
be the first ODE solver to try

ode113 nonstiff low to high for problems with tight error tolerances

Moreover, the efficiency of these solvers depends on the chosen step type (fixed or 

variable), the size, and the relative and absolute error tolerances that directly affect the 

accuracy of simulation results and efficiency of computation processes. While using 

built-in ODE solvers, the step size can be chosen as variable (automatically chosen) or 

fixed/specified by a user. All built-in ODE solvers by default will take variable step sizes 

automatically depending on the type of a given IVP (e.g., a stiffness level) and a solution 

search space. Error tolerance can be controlled in ODE solvers via their setting options. 

Hereafter, we study in real exercises all these key aspects and settings of ODE built-in 

solvers.

ODEFUN for the ODE solvers can be defined by using the following:

 1. Anonymous function with function (@)

 2. Function file (*.m file)

 3. matlabFunction: function file (*.m file) by employing the 

Symbolic Math Toolbox

 4. Inline function (in the future MATLAB versions will be removed)
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Note you need to be careful while recalling the function (name) ODEFUN. if it 
is defined via anonymous function (@) or inline function, then you should use the 
following command syntax:

[T Y]=ODEx(my_Function, t, y0);

If you define a given problem (function/expression) via a function file, then you need 

to use one of the following command syntaxes:

[T Y]=ODEx(@Fun_File, t, y0);

[T Y]=ODEx('Fun_File', t, y0);

Time space can be predefined as a row or column vector of time values or with two 

elements, namely, starting and end values, e.g., t = linspace(0, 13, 1000); t = (0:0.001:13).’; 

t = [0, 13].

ODEx solvers will automatically take different number of steps or step size with 

respect to the nature of the given ODE (stiff or nonstiff, linear or nonlinear, etc.).

 Example 8: Demonstrating MATLAB Built-in ODEx Solvers
Here is the example problem: y ty� �2 02 , y0 = 0.5 . In this case, our function file called 

Fun_File.m is defined via the next function file:

function F=Fun_File(t, y)

F=(-2*y^2*t);

We will look at several different problems of how to implement these built-in tools 

and their options in defining ODEFUN. In the first example, we show how to use the 

anonymous function (@) to simulate a first-order ODE: y ty� �2 02 , y0 = 0.5.

The following script (Example_8.m) shows the implementation of ode45, ode23, and 

ode113 solvers with an anonymous function (@) with a fixed step size, h = 0.1:
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%%  Example_8.m

% Part 1

% dy/dt=-2*t*(y^2); with ICs: y(0)=0.5

clearvars

F=@(t,y)(-2*y^2*t); % Anonymous function (@)

% matlabFunction creates a function file called: Fun_F.m

syms tt u; % tt and u are used instead of t and y not to overlap.

F=-2*u^2*tt;

matlabFunction(f, 'file', 'Fun_F');

t0 = 0;            % Start of simulation

tend=10;           % End of simulation

h = 0.1;           % Time step

t=t0:h:tend;       % Time space

y0=0.5;            % Ics: y0 at t0

[t1, Yode45]=ode45(F, t, y0);  % F is anonymous function (@)

[t2, Yode23]=ode23(@Fun_File,t,y0); % Fun_File.m - function file

[t3, Yode113]=ode113('Fun_F',t,y0); % Fun_F.m - matlabFunction

plot(t1, Yode45, 'ks-', t2, Yode23, 'ro-.',t3, Yode113,'bx--'),

grid on;

title('\it Solutions of: $$\frac{dy}{dt}+2*t^2=0, y_0=0.5$$', 

'interpreter', 'latex')

legend ('ode45','ode23','ode113')

xlabel('Time, t'), ylabel('Solution, y(t)'), shg

Figure 8-9 shows the output plot of the script. You can conclude that for the given 

problem, ode23, ode45, and ode113 performs very well with the fixed step size of h = 0.1.
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Figure 8-9. Simulation results of ODE23, ODE45, and ODE113

Note if you do not specify the output variable names, e.g., ode45(F, t, y0),  
then the chosen solver displays computation results in a plot figure and no 
numerical outputs are saved in the workspace.

Let’s look at the issue of how MATLAB built-in solvers take variable steps in solving a 

given problem (Example 1. y ty� �2 02 , y0 = 0.5) and how the step size will influence the 

accuracy of simulations and computation (elapsed) time costs.

%%  Example_8.m

%% Part 2

t0 = 0;                % Start of simulation

tend=100;              % End of simulation

t=[t0, tend];          % Time space

y0=0.5;                % ICs: y0 at t0

F=@(t,y)(-2*y^2*t);

tic

[t1, Yode45]=ode45(F, t, y0);

Tode45=toc; fprintf('Tode45 = %2.6f  \n', Tode45)

clearvars -except t y0
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tic

[t2, Yode23]=ode23(@Fun_File, t, y0);

Tode23=toc; fprintf('Tode23 = %2.6f  \n', Tode23)

clearvars -except t y0

tic

[t3, Yode113]=ode113('Fun_F', t, y0);

Tode113=toc; fprintf('Tode113 = %2.6f \n', Tode113)

In Part 2 of the script, the time space ([t0, tend]) is defined by the initial and end 

time values. Thus, in this case, each solver has taken variable steps while performing 

simulations. The simulations are performed on a laptop computer with these specs: 

Windows 10, Intel Core i7 – 9750 CPU @ 2.60 GHz, 16 GB RAM. The script outputs the 

following data that are computational time of the solvers: ode45, ode23, and ode113.

Tode45 = 0.018722

Tode23 = 0.007884

Tode113 = 0.010358

Note that the computation time (Tode45) of ode45 (in seconds) is the shortest.

 Example 9: MATLAB Built-in ODEx Solvers 
for Second-Order ODEs
When solving second- or higher-order ODEs, you need to rewrite a given problem as a 

system of first-order ODEs.

Here’s the nonhomogenous and nonlinear second-order ODE problem: 

2 3 100 2 y y y t� � � � �cos , y(0) = 1, y 0 2� � � .

Note that this exercise can’t be solved analytically using dsolve or laplace/ilaplace 

(see Example 6 given earlier).

Before writing a script of commands for MATLAB built-in ODE solvers, you need to 

rewrite the given second-order ODE as a system of two first-order ODEs by introducing 

new variables.

 y y y t� � � � ��� �1

2
3 100 2cos  is re-written: 





y y

y y y t

1 2

2 2 1

1

2
3 100 2

�

� � � � ��� �
�
�
�

��
cos

Note that y1 = y and  y y2 = .
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The previously written system of first-order ODEs can be expressed by 

matlabFunction, anonymous function (@), function file, and inline function (be removed 

in the future MATLAB releases) in scripts.

Note ODE45 is a recommended solver to try when solving the iVps if the given 
problem is not stiff or implicitly defined.

The script (Example_9.m) embeds command syntaxes of the ODE solvers, namely, 

ode45, ode23, and ode113, to compute numerical solutions of the given problem.

% Example_9.m

clearvars; close all

t0=0;         % Start of simulations

tend=2;       % End of simulations

t=[t0, tend];

y(1,:)=[1; 2];      % Initial Conditions

% ode45 - RUNGGE-KUTTA 4/5 Order

Fun = @(t, y)([y(2); (1/2)*(-3*y(2)+abs(y(1))*cos(100*t)+2)]);

[T1, U1]=ode45(Fun, t, y, []);

plot(T1, U1(:,1), 'rp', 'markersize', 9); grid on; hold on

% ode23 - RUNGGE-KUTTA 2/3 Order

[T2, U2]=ode23(Fun, t, y);

plot(T2, U2(:,1), 'b:o', 'markersize', 9)

% ode113 - ADAMS Higher Order

[T3, U3]=ode113(Fun, t, y);

plot(T3, U3(:,1), 'k-', 'linewidth', 2)

legend('ode45', 'ode23', 'ode113', 'location', 'SE')

title('Simulation of: $$\frac{2d^2y}{dt^2}+\frac{3dy}{dt}-

|y|cos(100t)=2$$', 'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex'),

ylabel('Solution, $$y(t)$$', 'interpreter', 'latex')

axis tight
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Figure 8-10. Simulation results of ODE23, ODE45, and ODE113

This exercise shows that the employed ODE45, ODE23, and ODE113 built-in solvers 

have found well-converged numerical solutions of the given nonhomogeneous and 

nonlinear second-order ODE problem.

Note there are some exercises that have a nonzero starting time of iVps. in 
solving such problems, the simulation has to start at a given initial time (value). for 

example, for u
�
2

2

3
�
�
�

�
�
� � ,  the simulation has to start at t �

�
2

. this is applicable for 

all built-in Odex solvers, scripts, and simulink models.

 Example 10: Simulink Modeling
Solving second or higher-order ODEs with Simulink modeling should be started with 

the Integrator block to obtain a sought solution from second- or higher-order derivative 

variable. For example, if you are solving a first-order ODE, you need one integrator block, 

and similarly, if you are solving second- or third-order ODE, you need two or three 

Integrator cblocks.

Let’s consider the following second-order ODE example to demonstrate how to build 

a Simulink model.
1

2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �and  .
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You first rewrite the given second-order ODE before starting to model it.

  u t u u� � �2 0 8 2. .  

Note that to obtain u(t) from u  that must be integrated twice, as shown in 

Figure 8-11, you need two Integrator blocks to build a sought model.

Figure 8-11. Double Integration with Integrator blocks

The initial conditions of the given ODE exercise are set up in the Integrator1 

and Integrator block parameters by double-clicking each integrator block shown in 

Figure 8-11 in a sequential order. The Integrator1 block parameters, including the 

Initial condition entry window, are shown in Figure 8-11. Similarly, by double-clicking 

Integrator2, the block parameters are accessed and set up. Alternatively, the integrator 

block parameters can be accessed via one click and using the right mouse option of 

Block Parameters (Integrator). Note in this case that the initial condition source is 

chosen to be internal but can be also chosen to be external.
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Figure 8-12. Setting up the initial condition using Block Parameters: Integrator

The complete model of this exercise is Example_10.slx, which is shown in 

Figure 8-13.

Figure 8-13. Simulink model of the problem: 1

2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �, 
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In the Simulink model in Figure 8-12, the Integrator1 block has an internal initial 

condition value of 2.0, and the other one has an internal initial condition value of 1.0. By 

executing the model (Figure 8-13), the simulation results obtained via the Scope block 

shown in Figure 8-14 are obtained.

Figure 8-14. Simulation results shown in the Scope block of the Simulink model, 
Figure 8-13

The simulation results of 
1

2

2

5
 u u u t� � � , u u0 1 0 2� � � � � �,   are displayed in the 

Scope block, as shown in Figure 8-14. Note that in the Scope block shown earlier, we 

have made some adjustments, e.g.,, by adjusting/selecting its background color and 

plotting data points from parameters ( ) of the block, that are a marker and line type 

and the color of plotted data points, which are similar to plot tools of MATLAB. Note that 

the Out1 block is optional to include in the model. By including this model, you obtain 

two outputs (tout and yout) in the MATLAB workspace, which are plotted data points 

shown in Figure 8-13. This Simulink model, called Example_10.slx, can be executed 

without opening it from MATLAB using the sim() command, and the simulation data 

points (tout and yout) can be also plotted in MATLAB. Here’s an example:

[t, u]=sim('Example_10.slx');

plot(t, u(:,1), 'bo'), grid on

xlabel('time, [s]')

ylabel('Solution, u(t)')
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Note that in the simulation results, t represents the time taken from tout, and u 

represents the solution results taken from (yout) two integrator blocks, which are the 

displacement and velocity values.

Note the options in the scope block parameters to change the background color, 
the plotted data’s line type, and the marker type and axis color, as well as add 
legends, are only available starting from MatlaB 2012/simulink 8.0.

The accuracy of the found numerical solutions from Simulink models depends on 

the solver type (variable or fixed step solver) and solver (ode45, ode113, ode23, ode1, 

ode2, odeN, etc.), relative and absolute error tolerances, zero-crossings, step size (if a 

fixed step solver type), and other settings.

Note By default, the variable-step solver with ode45 is chosen that can be 
switched to a fixed step solver. Moreover, solver settings can be adjusted from the 
simulink model window’s Gui tools via the Modeling tab. Click Model settings or 
use the simset() function from MatlaB.

The solver settings can be adjusted using GUI tools from the Simulink model window 

via the Modeling tab. Clicking Model Settings   opens the Configuration 

Parameters: Solver, Data Import/Export, Math and Data Types, and so forth. By default, 

Solver is selected, and this shows all Solver details and setting options. All Solver settings 

can be also accessed and changed from MATLAB using the simset() function.

Let’s test the previous example by changing the solver settings, such as solver type 

and relative and absolute error tolerances, and switching off the zero-crossing option 

using a MATLAB script. Here is a complete script (SimSet_Simulate.m) to simulate the 

Simulink model (Example_10.slx):
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% SimSet_Simulate.m

% Part 1. Variable step solver

% Solver 1 (Variable-step solver): ode45;

Time = [0, 25];

OPTIONS = simset('solver', 'ode45', 'zerocross', 'on');

[t1, u1]=sim('Example_10.slx', Time, OPTIONS);

% Solver 2 (Variable-step solver): ode113;

OPTIONS = simset('solver', 'ode113', 'zerocross', 'on');

[t2, u2]=sim('Example_10.slx', Time, OPTIONS);

% Solver 3 (Variable-step solver): ode23s;

OPTIONS = simset('solver', 'ode23s', 'zerocross', 'on');

[t3, u3]=sim('Example_10.slx', Time, OPTIONS);

plot(t1, u1(:,1), 'bo', t2, u2(:,1), 'r*', t3, u3(:,1), 'kp'), grid on

L=legend('ode45', 'ode113', 'ode23s', 'location', 'SE');

title(L,'Solver type: Variable-step')

title('Solution: $$\frac{d^2u}{2dt^2}+\frac{2du}{5dt}+u=t$$', 

'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex')

ylabel('Solution, $$u(t)$$', 'interpreter', 'latex')

axis tight

%% Part 2. Fixed-step solver

% Solver 1: ode1 (Euler); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode1', 'reltol', '1e-3', 'abstol', '1e-5', 

'zerocross', 'off');

[t1, u1]=sim('Example_10.slx', Time, OPTIONS);

% Solver 2: ode3 (Bogacki-Shampine); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode3', 'reltol', '1e-3', 'abstol', '1e-5', 

'zerocross', 'off');

[t2, u2]=sim('Example_10.slx', Time, OPTIONS);

% Solver 3: ode14x (Extrapolation); reltol=1e-3; abstol=1e-5;

OPTIONS = simset('solver', 'ode14x', 'reltol', '1e-3', 'abstol', '1e-5', 

'zerocross', 'off');

[t3, u3]=sim('Example_10.slx', Time, OPTIONS);

plot(t1, u1(:,1), 'bo', t2, u2(:,1), 'r*', t3, u3(:,1), 'kp'), grid on
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L=legend('ode1', 'ode3', 'ode14x', 'location', 'SE');

title(L,'Solver type: Fixed-step')

title('Solution: $$\frac{d^2u}{2dt^2}+\frac{2du}{5dt}+u=t$$', 

'interpreter', 'latex')

xlabel('Time, $$t$$', 'interpreter', 'latex')

ylabel('Solution, $$u(t)$$', 'interpreter', 'latex')

After simulating the script (SimSet_Simulate.m), we get the following simulation 

results from the variable step solvers—ode45, ode113, ode23s, and fixed step 

solvers—ode1, ode3, ode14x. From the simulation of the variable step solvers shown in 

Figure 8-15, the found numerical solutions from the three solvers are well converged. On 

the other hand, the results from the fixed step-solvers shown in Figure 8-16 show that not 

all fixed step solvers can compute accurate numerical solutions despite the same error 

tolerances. The solver ode1 (Euler method) exhibits significantly inaccurate solutions 

of the problem. This is a good example that shows the importance of selecting a right 

solver type and solver with respect to a given ODE problem nature and its stiffness level. 

Another important observation in this example is that the variable-step solver takes a 

varying step size, and fixed step- solvers with the same error tolerance settings take the 

same number of steps to compute numerical solutions.

Figure 8-15. Simulation results from the variable-step type solvers of the Simulink 
model, Example_10.slx
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Figure 8-16. Simulation results from the fixed-step type solvers of the Simulink 
model, Example_10.slx

 Summary
This chapter covered briefly analytical solution functions (dsolve, laplace/ilaplace) of 

MATLAB to solve ODE exercises. Not all ODE problems can be solved analytically using 

dsolve and laplace/ilaplace functions. On the other hand, the Laplace transforms 

(laplace/ilaplace) can be employed to solve ODEs with discontinuous forcing 

functions, which have broad engineering applications.

The chapter introduced key steps of using MATLAB’s ODEx numerical solvers, such as 

ODE23, ODE45, and ODE113, for first and second-order ODEs. Moreover, you learned how to 

use Simulink modeling aspects to solve IVPs. The chapter demonstrated how to adjust the 

Simulink solver type and solver settings using the simset() function from MATLAB.
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 Self-Study Exercises
 Exercise 1
The following are IVPs of second-order nonhomogeneous ODEs:

• y y t� � � �9 22 sin , y(0) = 0 and y 0 6� � �  for t ϵ [0,  3π]

•  y y y t� � � � �4 104 2 10cos , y(0) = 0 and y 0 0� � �  for t ϵ [0,  5π]

• y y� � �ex 2,  y(0) = 0 and y 0 0� � �  for x ϵ [0,  13]

•  y y y� � �2 2x , y 0 0� � �  and y 0 6� � �  for x ϵ [0,  15]

•  y y y t� � � � �2 101 5 10sin , y(0) = 0 and y 0 20� � �  for t ϵ [0,  5π]

Solve each of the second-order ODEs with the following methods:

 a) Using MATLAB built-in ODE solvers ode23, ode45, and ode113 

and adjusting their settings, namely, relative and absolute error 

tolerances

 b) Building a Simulink model (see Chapters 5 and 8 for Simulink 

modeling) and using a solver ode3

Next compare the solutions found from (a) and (b) and figure out which approach is 

the most efficient and accurate (correct and has smallest error margins) one.

Finally, is it possible to compute an analytical solution of given problems by using 

dsolve and Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions 

against numerical solutions found from (a) and (b).
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 Exercise 2
First, solve the second-order nonhomogeneous ODE: x xy y ey x2 35 8 � � � , y(1) = 0 and 
y 1 24� � �  for x ϵ [1, 15]. Note that the initial point is at x = 1. Use the following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapter 5 for Simulink modeling) 

and employing a solver ode2

Next, is it possible to compute an analytical solution of the given problem by using 

dsolve and Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions 

against numerical solutions found from (a) and (b).

 Exercise 3
First, solve the following second-order nonhomogeneous and nonlinear ODE: 
 y y y y t t� � � � � �16 12 3 12 33 cos , y(0) =  − 1 and y 0 0� � �  for x ϵ [0,  13]. Use the 

following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapters 5 and 8 for Simulink 

modeling) and employing a solver ode4

Next, compare the solutions found from (a) and (b) by plotting t versus y(t) and 

t y tversus  � �,  and find out which approach is the most adequate (meaning it’s correct 

and has the smallest error margins) and efficient.

 Exercise 4
First, solve the given IVP of this second-order nonhomogeneous and nonlinear ODE: 
 y y y y e t tt� � � � � � �2 101 2 5 102 2 5 2 sin , y(0) = 0 and y 0 20� � � for t ϵ [0,  6π]. Use the 

following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapter 5 and 8 for Simulink 

modelling) and employing a solver ode14x

Chapter 8  Ordinary differential equatiOns



590

Next, compare the solutions found from (a) and (b) and find out which approach is 

the most efficient. Take smaller time steps if necessary.

Finally, is it possible to compute an analytical solution of the given problem by using 

dsolve and Laplace transforms (laplace and ilaplace)?

 Exercise 5
First, solve the following second-order nonhomogeneous and nonlinear ODE: 

 y y y e tt2 2 25 2� � �| | , y(0) = 1 and y 0 0� � �  for t ϵ [0,  13]. Use the following methods:

 a) Using MATLAB built-in ODE solvers: ode23, ode45, ode113

 b) Building a Simulink model (see Chapters 5 and 8 for Simulink 

modeling) and employing a solver ode1

Next, compare the solutions found from (a) and (b) and find out which approach is 

the most efficient.

 Exercise 6
Given an equation of charge in resistor-inductance-capacitor (RLC) circuit shown in the 

below given figure in a series by Kirchhoff’s law: L Rq
q

C
tq � � �max cos �  

 

with q q0 0 0� � � � � �  for t ϵ [0,  4π].

EMF: εmax = 110   [V]

Resistance: R = 7.17 [Ω]

Capacitor: C = 50 ∗ 10−3[F]
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Armature inductance:  � � � ��9 53 10 4. H

Frequency: ω = 60 [Hz].

First do the following:

 a) Find numerical solutions of q(t) using MATLAB built-in ODE 

solvers: ode23, ode45, ode113.

 b) Find numerical solutions of q(t) by building a Simulink model 

(see Chapters 5 and 8 for Simulink modeling) and employing a 

solver ode8.

 c) Compare the solutions found from (a) and (b) and find out 

which approach is the most efficient and correct/appropriate. 

If necessary, take reasonably smaller time steps and specify the 

(appropriate) initial step size, as well as relative and absolute 

tolerances.

Then, is it possible to compute analytical solution of the problem using dsolve and 

Laplace transforms (laplace and ilaplace)? If yes, plot analytical solutions against 

numerical solutions found from (a) and (b).

 Exercise 7
First, solve the given IVP of the fourth-order nonhomogeneous 

ODE: y t y y tyiv � � � � � � � � �3 100 8 10 1003 2
 cos sin t  with 

y y yy0 0 0 1 0 2 0 3� � � � � � � � � � � � �, , , .  and  For t ϵ [0,  3π]. Use the following methods:

 a) Solve the problem by using MATLAB built-in ODE solvers (ode23, 

ode45, ode113 ) and adequately setting up relative and absolute 

error tolerances.

 b) Solve the problem by using MATLAB built-in ODE solvers 

(ode23s, ode15s, ode23tb) and obtain the numerical solution of 

the problem in plot only (hints: set up OutputFcn for @odeplot 

with odeset).

 c) Solve the problem by building a Simulink model (see Chapters 5 

and 8 for Simulink modeling) with a solver ode2.
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Finally, compare all the solutions found from (a) to (c) and find out which approach 

is the most efficient and adequate.

 Exercise 8
Solve the given IVP of the fourth-order nonhomogeneous ODE: 

y y y y t eyiv t� � � � � � �� �2 8 12 12 25 5
   sin , y y yy0 3 0 0 0 1 0 2� � � � � � � � � � � � �, , ,  and  for 

t ϵ [0,  5π]. Use the following methods:

 a) Solve the problem by using MATLAB built-in ODE solvers 

(ode23s, ode15s, ode113) by setting up relative and absolute 

tolerances.

 b) Solve the problem by using MATLAB built-in ODE solvers (ode23, 

ode45, ode23tb) and obtain the numerical solutions of the 

problem in plot only (hints: set up 'OutputFcn' for @odeplot with 

odeset).

 c) Solve the problem by building a Simulink model (see Chapters 5 

and 8 for Simulink modeling) with the solver ode8.

Then, compare all the solutions found from (a) to (c) and find out which approach is 

the most efficient and appropriate.

 Exercise 9
Find numerical solutions of the following systems of coupled ODEs defined by the 

following:

 1. 

dx

dt
x t

dx

dt
x t

1
2

2
1

� � � � �

� � � �

�

�
��

�
�
�

cos

sin
 with ICs: x1(1) = 2.5, x2(1) = 3.5,   t ϵ [1, 13].

 2. 

dx

dt
x y

dy

dt
x

� � � �

� � � �

�

�
��

�
�
�

3 5 2

13 2 2

ye

x y

x

 with ICs: x(0.5) = 2, y(0.5) =  − 2,   t ≤ 5.55.
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 3. 

dx

dt
x y

dy

dt
x y

� �� � � �

� � � � �

�

�
��

�
�
�

1

1

sin

cos

 with ICs: x y t
� � � �
4

1 25
4

0 75
4

7

2
�
�
�

�
�
� �

�
�
�

�
�
� �

�
��

�
��

. , . , . ,

For each of the systems, perform the following tasks:

 – Write an anonymous function of the coupled system.

 – Create a Function file called, e.g., CoupleODE.m.

 – Solve the problem by building a Simulink model (see Chapters 5  

and 8 for Simulink modeling) called, e.g., CoupledODEsim.mdl, with a 

fixed step solver ode3.

 – Find the numerical solutions of the problem by employing ode23, 

ode45, and ode113. Compare the solutions from ODEx solvers and 

the Simulink model and check the efficiency of each approach. Take 

smaller time steps, adjust the relative and absolute tolerances, and 

simulate your created Simulink model (CoupledODEsim.mdl) from an 

M-file (hint: use sim() and simset()).

 Exercise 10
By using the Laplace transforms (laplace, ilaplace), solve the following second-order 

nonhomogeneous ODEs subject to discontinuous forcing function:

 1. 
 y y h t y y� � � � � � � � � �5 0 0 0 0, , , h t t

t

t

t

� � � �� �
� �
� �
�

�

�
�

�
�

0

3 3

13

0 3

3 11

11

,

/

 2. 
  y y y g t y y� � � � � � � � � � �5 5 0 0 0 2, , , g t

t

t t
� � �

� �
� � �

�
�
�

5

0

3

0 3

� �
� �and

 3. 
  x x x u t x x� � � � � � � � � � �5

5

6
0 0 0 0, , , u t

t t

t
� � � � � � �

�
�
�
�

sin

0

0 2

2

�
�

Plot numerical values of the analytical solutions for a sufficient time.
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Index

A
Acceleration equation, 114
Acell cell array, 58
Additional plot-related commands, 431
addpath(), 10, 367
Analytical methods, ODEs

dsolve, 553, 554
plotted with fplot, 554
unspecified parameter, 555

Animated plot commands, 431
Animated plots

with drawnow function, 428, 429
with getframe(), 428, 429

Anonymous function, 236, 237
App Designer, 258–261, 275
Archimedes, 255
ASCII/ANSI character symbols, 40
Astr and Bstr structure arrays, 64
axis command, 385
Axis labels, 72, 196–197, 385, 391, 392, 411

B
Blank Model, 322, 324
Blank Model window, 325, 327, 349, 359
Boolean logical arrays, 47
Boundary value problems (BVPs), 550

C
Callback functions, 257, 258, 

268–272, 279–283

C/C++
MATLAB, 300
MEX files, 312
M-file, 302
source code type selection 

generation, 304
Cell arrays, 54, 55, 57, 58, 60, 65, 88, 196
Characteristic polynomial, 505, 506
Cholesky decomposition, 456, 

515–519, 549
Code generation, 60, 201, 300, 303, 358, 

369, 371
colon (:) operator, 30, 34
Color specifiers, 389
Command History window, 18
Command window, 3, 4, 6, 7, 13, 14, 

19, 24, 321
% Comments, 71, 72, 75
Computing values of math functions

adjustments to the model, 340
blocks, 338
Configuration properties of Scope, 

341, 342
Ex3_Function_Compute_Simple.

slx, 345
Ex3_Function_Compute.slx, 338
fixed-step size, 339
input/output signals  

from/to the MATLAB 
workspace, 345–348

modeling process, 338
Scope block, 342
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second-order differential 
equation, 357–362

simulation of mechanical system, 
349, 353–357

simulation results, 340, 341, 343
simulation time interval, 338
Simulink Model Analysis and 

Diagnostics tools, 368–375
subsystem in simulink 

modeling, 362–368
subsystems, 343, 344

Conditional statements, 241
Constant block, 447–449, 462
Control statements

clock command, 144, 145
driving zones, 150

interstate highway, 151
school zone, 150
two-lane highway, 151

logical operations, 143
Num50Type.m, 152, 153
Quad_Eq2.m, 145, 146
speed limits, 147, 149
structure, 142, 152

corkscrew, 426, 427
Cosine function, 239, 376
Crash test, 253, 254
Current Directory window, 3

D
Debugging, 66, 69, 101, 126, 234, 373
Display and print operators

clock command, 134
complex numbers, 140
complex roots, 140

conversion characters, 138, 139
conversion specifications, 138
DataWrite.txt, 141
disp(), 133–135
display (), 133–135
escape formatting, 139, 140
fprintf(), 141
M-file Editor window, 142
permissions, 141
results, 140
Results_QE.txt, 141

Double precision, 16, 17, 28
Dr1, 31
Dr3new, 31
drawnow command, 429

E
Eigen-values, 504–507
Eigen-vectors, 504–507
Electric potential field, 419
Ex3_Function_Compute_In_Out.slx, 349
Ex3_Function_Compute_Simple.slx, 

345, 349
Ex3_Function_Compute.slx, 338–340
ezplot, 406, 407

F
Factorization, 511
Figure handles, 412, 413
fimplicit, 407
First laplace transform, 562, 563
First-order ODE, 551
fmesh() function, 416, 417
Fourth-order nonhomogeneous ODE, 

591, 592
fplot, 406, 407

Computing values of math 
functions (cont.)
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fprintf() command
formatting specifiers, 136
results, 136
sine function values, 135
syntax, 135
time and date, 136

Function files
advantages, 212
comments, 201
creation, 202
errors, 210, 212
Ex7Var.m

[for … end] loop, 222
indexing operations, 222
input arguments, 220–222
output variables, 221, 222
nargin function, 222
nargoutchk function, 223
outputs, 219, 220
output variables, 220

Ex8Var.m
four input and nine output, 226, 227
no input and nine output, 224, 227
no input and no output, 223
one input and four output, 223
one input and ten output, 227, 228
three input and no output, 224, 225
three input and three output, 

225, 226
Ex23.m, 254
Ex25.m, 255
Ex26.m, 256
getREADY.m function, 206
hints, 233, 234
MATLAB, 201, 202
matlabFunction, 205, 206
M-files, 231–233
mistakes, 202

myfunction.m, 203, 205
naming, 201
nested/subfunctions, 228–230
QUAD.m, 207–209
Symbolic Math Toolbox, 205
symbols, 201
syntax/structure, 201
uses, 201
varying inputs and outputs

combinations, 212
Command window, 212
[for … end] and [while … end] 

loops, 215, 216
execution, 217
iterations/error tolerance, 216
Leibnitz series, 215
Quad_Var.m, 213–215

warning and error messages, 233
Function handle, 42–47
function_pulse.m function file, 

357–359, 362
Fun_File.m, 575

G
Gaussian elimination method, 457, 511
getframe, 428
GINPUT function, 410
Gram-Schmidt method, 508
Graphical user interface (GUI), 1, 99, 

257, 276–278
Greek letters, 391
grid on command, 386
gtext commands, 409
GTEXT commands, 408
GUI development environment (GUIDE)

add functionality, 271–275
App Designer, 258–260
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basic steps, 263, 264
Blank App Designer window, 261
building a 2D plot, 264–271
callbacks/callback  

functions, 257
edit callback functions, 279–283
figure function, 257
GUI components with name tags 

display, 261, 262
GUI controls, 258
GUI figure window components 

without names, 260
GUI window, 262, 263
MATLAB GUI components, 257
modified buttons and 

components, 267
Quick Start window, 258, 259
SINC function plot GUI creation, 268
sinc(πx) and quit options, 273
sinc(πx) function, 271
solving quadratic  

equation, 275–278
templates, 258

GUI dialogs and message boxes
error dialog, 284
F1 help/message box, 285
general syntax, 286, 287
input dialog, 287
MATLAB, 283
question dialog

inputs, 293, 294
making choice, 288–293

warning message, 284
GUI quick access tools, 9
GUI tools, 414

H
HELLO_mex.mexw64, 313
Help library, 7
Homogeneous ODEs, 557

I, J, K
ilaplace() function, 563
In1, 344
Initial value problems (IVPs), 550, 551, 

553, 574, 580, 587–589, 591, 592
Inline functions, 234, 235
Interpreted MATLAB Fcn  

block, 358–362
Inverse matrix, 450, 451
Inverse matrix, Simulink blocks

DSP System, 451
efficiency of solver functions, linear 

equations, 468–470
General Inverse (LU), 451
inv(A), 451
linear equations ([A]{x} = [b])

least squares method, 474–481
simulink modeling, least squares 

method, 481, 482
value changes of [b], 471, 473

MATLAB functions
computing matrix 

determinants, 463–465
solve linear  

equations, 463–465
Pseudoinverse (SVD), 451
rank, 453
solver functions accuracy, linear 

equations, 465, 467, 468
solving system, linear 

equations, 454–463

GUI development environment 
(GUIDE) (cont.)
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L
LAPLACE/ILAPLACE

convergent answers, 567, 568
demonstrating efficiency and 

effortlessness, 571, 573
with dsolve, 564, 566
ilaplace() function, 564
Laplace and inverse Laplace 

transforms, 563
MATLAB built-in ODEx 

solvers, 573–578
no analytical solution, 569, 570
second-order ODEs, MATLAB built-in 

ODEx solvers, 578–580
Simulink modeling, 580, 582–584, 

586, 587
Laplace transforms, 593

first, 562, 563
linear ordinary differential equations 

with constant coefficients, 
560, 561

schematic view, 561, 562
Least squares method, 474–481
legend command, 397
Line and marker specifiers, 387
Linear algebra

mathematics, 443
m-linear equations, 443
overdetermined, 444
underdetermined, 443

Linear equations
efficiency of solver functions, 468–470
solver functions accuracy, 465, 

467, 468
Line Style Specifiers, 388
Logarithmic space, 499
Logical arrays, 47–49

Logical indexing
conversions, 530, 531
create character strings with  

char( ), 532–535
functions/commands, 527
locate and substitute elements, [A] 

matrix, 528–530
logic operators, 525

Loop control statements
algorithm, 154
[for … end]

approaches, 168, 170
[break] command, 188
computation algorithm, 160
EXP_Calcs.m, 184, 185
Fibonacci numbers, 188–190
F_Series.m, 182, 183
Fun_Sets.m, 193, 194
[if … else … end], 160
iteration processes, 166–168
Leibnitz series, 176–178
memory allocation, 186
mistakes, 169
outputs, 161
plot() command, 186
Pseudo_Randi.m, 178
results, 185, 188
Series_e.m, 174, 175
Series_PI.m, 173
sine function, 191, 192
Sine_Series.m, 180
solutions, 160
SqCube10.m, 161, 162
SqCubeN.m, 163, 164
Sum20odd.m, 159
SumPi6.m, 172, 174
SumSeries.m, 164, 165, 240, 241, 243
syntax, 159
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[tic … toc] operators, 187
[timeit] operator, 188
vectorization, 171
vs. [while … end], 161

Leibnitz series, 176
memory allocation, 175
types, 153
vectorization approach, 181
wheat and chessboard problem, 171
[while…end]

approaches, 168, 170
[break] command, 188
EXP_Calcs.m, 184, 185
Fibonacci numbers, 188–190
F_Series.m, 182, 183
[if … elseif … else …end], 155
iteration processes, 166–168
Leibnitz series, 176–178
memory allocation, 186
mistakes, 169
plot() command, 186
Pseudo_Randi.m, 179
Quad_Eqn.m, 155, 157
quadratic equation, 155
results, 185
robustness, 158
Series_e.m, 174, 175
Series_PI.m, 173, 174
Sine_Series.m, 180
Sum100.m, 154
summation variable, 154, 155
SumPi6.m, 172
SumSeries.m, 164, 240, 241, 243
syntax, 153
vectorization, 171

LU decomposition
3-by-3 pascal matrix, 512, 513

Gauss elimination method, 511
built-in function lu(), 511
solve [A]{x} = [b] system, LU 

composition, 514

M
MATHWORKS website, 5
MATLAB, 318, 321, 460, 493

wildcard asterisk (*), 15
built-in function tools and 

commands, 5
C/C++ code generation, 300
C code, 299
C code generation, 301–312
C-generated code, 306
in the Command window, 9, 10
command window and variables, 11
common commands for 

housekeeping, 14
components, package’s GUI tools, 2
data storage format types, 16
data storage types and  

formats, 17, 18
default main window, 2
define input type box, 302, 303
exiting/quitting MATLAB, 79
functions, 535
GUI tools, 2
hardware board type selection 

options, 305
Leibnitz.m, 310
Logical Expressions, 524
MEX files, 300, 309, 310, 312, 313
ODEx numerical solvers, 587
operators, 524
precision, 65, 66, 75
programming languages, 299

Loop control statements (cont.)
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source code type selection generation, 
C/C++, 304

stand-alone applications, 313, 
314, 316–318

strengths, 1
supported data storage types, 66
use the Command window, 19
variable names, 11, 12
variables and data sets (see Variables 

and data sets in MATLAB)
MATLAB application, 10

on Windows operating system, 2
MATLAB built-in ODE solvers, 591, 592
MATLAB built-in ODEx solvers, 573–576, 

578, 580, 588–590, 592
MATLAB Coder, 301
MATLAB-compatible files, 21
MATLAB environment, 8

changes in the layout, 8
Desktop window, 8

MATLAB files, 22
MATLAB main menu, 3
MATLAB supports wildcards, 23
Matrix Concatenate block, 492, 493
Matrix decompositions

Cholesky, 515–519
conversions, 524
engineering problem solving, 507
indexes, 524
linear algebra, 507
logic operators, 524
LU, 511–515
QR, 508
Schur, 519, 521
SVD, 521, 522
types, 507

Matrix generation functions, 497
Matrix inverse, 450–454, 537

Matrix operations, 332–337
array, 483
math function block, 492
Matrix Concatenate block, 492, 493
matrix exponential and square 

operation blocks, 492
matrix multiplication, Simulink, 491
matrix sum and subtraction 

operations, Simulink, 490
performing, 485–487, 489, 490
Simulink Library, 490
two equivalent formulations, 483

Matrix properties and operators
determinant, 444
diagonal, 445
inverse matrix, 450, 451
Simulink blocks (see Simulink blocks)
transpose, 445

Mechanical spring-mass-damper 
system, 349

MEX files, 299–301, 303, 306–313, 318
M-file editor, 67, 68
M-files, 66, 299–302, 306, 308–310, 314, 315
MLX-file editor, 69–71
MLX-file editor’s main tools menu, 69
MLX file editor window, 66
MLX-files, 66
M/MLX-files

algorithm, 101
cell mode, 122, 123, 125
code profiling, 128–130
code/program writing, 100
creation, 102
debugging, 101, 126
dependency report, 130, 131
differences, 113
execution, 114
extension, 99
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features, 114
hits, 233, 234
M-Lint code check, 127, 128
P-codes, 131, 132
remarks, 132, 133
scripts (see Scripts)
steps, 101
tools, 99, 100
warnings

display of outputs, 103, 106
and error messages, 233
memory allocation, 103, 106
missing arguments, 105, 107
premature ending, 103, 106
unnecessary brackets, 105, 107
unnecessary semicolons, 104, 106
unrecommended function, 105, 107
uses, 102
variable names, 104
wavy lines, 102, 103

Model Advisor tools, 369–375
Model Explorer tools, 369
movie, 428
MyAppinstaller_web.exe, 316
My_fun.m, 319

N
Newton’s Second Law, 552, 553
Not-a-number (NaN), 34–38

O
Ordinary differential equations (ODEs), 550

classifications
BVPs, 550
IVPs, 550
Newton’s Second Law, 552, 553

radioactive decay, 551
unconstrained growth, biological 

organism, 551
definitions, 549
Newton’s Second Law of Motion, 549

Orthogonal-triangular 
decomposition, 508

Out1, 344, 345

P
P2.mlx, 76–78
Partial differential equations (PDEs), 549
Plot building

building a bar chart, 383
building a histogram, 383
3D pie chart, 384
plot() command, 380
PLOTS tab of the main menu, 379
plotting function values, 381, 382
plotting two rows of data, 380, 381
unit circle with plot tools, 386, 387

Plot_EX26.m, 427
plot and plot3 functions, 390
Plot figure properties, 412
Plotting

common errors, 431
Plotting two function values

on Y-Y axes, 393–395
Polynomials

Simulink model-based solution, 503, 504
vectors, 501, 503

PUBLISH tools, 68, 72

Q
QR decomposition, 508
QUAD_eqn_SIM.m, 314
Quadratic equation, 108

M/MLX-files (cont.)
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R
Radioactive decay, 551
randi(), 383
randn(), 383
Random number generators, 28
Resistor-inductance-capacitor (RLC) 

circuit, 252, 590
Right mouse button (RMB), 381
Runge-Kutta methods, 553

S
saveas() function, 424, 425
Say_HELLO.c, 319
Schur decomposition, 519, 521
Scripts

date and time, 250
errors, 111, 243–249

approaches, 112
commands, 108
Command window, 120
computing steps, 108
execution, 109
expressions, 116, 117
functions, 112
input argument, 113
input entries, 108
input prompts, 111
issues, 109
missing parenthesis, 111
mistyped name, 115
orange wavy line, 109
outcomes, 121
plot() command, 114
quadratic equation, 108
red waves, 108, 113
results, 112
solution, 115

values, 110
warning message, 109
workspace, 110, 112

ET1.mlx, 117
solution, 119, 250
version, 118
volume/weight of the model, 250

Second-order nonhomogeneous 
differential equation, 562

Second-order nonhomogeneous ODEs, 
572, 589, 590, 593

Second-order ODEs, 578–580
analytical solution, 559, 560
dsolve, 557
homogeneous, 557
IVPs, 588
methods, 588
system ODEs, 557
unsolvable solutions, dsolve, 558

Series resistor-capacitor (RC) circuit, 251
Simple arithmetic operations, 328–331
Simulation processes, 238, 239
Simulink, 321
Simulink blocks, 448

diagonal extraction, 446–450
inverse matrix (see Inverse matrix, 

Simulink blocks)
matrix determinant, 446–450
matrix inverse, 451–454
transpose, 446–450

Simulink Library, 325, 326
block sets, 328
connecting blocks, 327
Create Annotation search box, 326
dragging and dropping a block, 326
versions, 325

Simulink Library browser, 322
Simulink Library window, 325
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Simulink Model Analysis and Diagnostics 
tools, 368

code generation, 369
Model Advisor tools, 369–375

Simulink modeling, 448, 450, 460–463, 
481, 482, 580, 582–584, 586, 587

arithmetic calculations, 323, 324
Command window, 321
computing values of functions  

(see Computing values of math 
functions)

essential graphical programming 
tools, 376

matrix operations, 332–337
simple arithmetic  

operations, 328–331
startup window, 321–323

Simulink model window, 327
Simulink startup window, 321–323
SINCfun_export.m, 275
SINCfun.fig, 275
SINCfun.m, 320
Sine function values

with plot tools, 390, 392
Single-step methods, 553
Singular value decomposition (SVD), 

521, 522
Skydiver, 252, 253
Special characters, 391
Specifiers, 387
sprintf () command

vs. fprintf(), 136
numerical data, 137
solution script, 136, 137
syntax, 136

Stand-alone applications, 313, 314, 
316–318, 320

Standard matrix generators, 493–499

Structure arrays, 60–65
Student grades, 240
Subplots

Command window, 397
functions, 396
hold on command, 398

bar chart of data with NaN values, 
404, 405

bar chart of data with standard 
deviation, 402, 403

bar chart of data with values shown, 
403, 404

function values in one  
plot, 398, 399

plotting function values with different 
line markers and colors, 399–401

legend command, 397
solution script, 396

subplot() command, 396
SUModd.m function, 301, 308
SUModd_mex.c, 307
SUModd.m M-file function, 301
Symbolic Math Toolbox  

function, 459, 553
Symbol references

at sign (@), 195
asterisk (*), 195
colon (:), 196
comma (,), 196
curly brackets { }, 196
dollar sign ($), 197
dot (.), 197
dot dot (..), 197
three dots (…), 197
single quotes (‘ ’), 199
square brackets ([ ]), 200
parentheses (), 198
percent (%), 198
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semicolon (;), 199
slash/backslash (/ ), 200

T
3D parametric curve plotter tools, 427
3D pie chart, 384
3D plot commands, 431
3D space line plot tools, 426
3D surface plots, 414

the ezsurf() command, 415
pie chart, 414
3D mesh plot with ezmesh(), 416
3D surface-contour plot with ezsurfc(), 

fsurf() and surfc(), 417–419
with waterfall(), ribbon(), meshc(), 

contour(), 421, 422, 424
Table arrays, 50–54
TEXT commands, 69, 408, 409
Third-order polynomial, 256
title() command, 385
Truck speed, 253
2D plot commands, 430
2D plot properties, 414

U
Umbilic torus function, 296
umbilic_torus.m, 319
untitled.slx, 324

V
Vandermonde matrix, 476, 478, 479
Variables and data sets in MATLAB

cell arrays, 54, 55, 57, 58
character type of variables, 40–42
complex numbers, 65
data types, 24, 25

function handle, 42–47
logical arrays, 47–49
NaN values, 34–38
numerical data/arrays, 26–30, 32, 33
precision, 65, 66
structure arrays, 60–65
table arrays, 50–54

Vector spaces, 499
eigen-values, 504
eigen-vectors, 504
linspace() command, 500
logarithmic space, 499
logspace(), 500
polynomials, 501, 503
Simulink model-based solution, 

polynomials, 503, 504
Vertical (y-y) axes, 393
Via the Model Explorer tools, 368
VIEW tools, 68

W
Wave equation, 251
Workspace pane, 3
Workspace window, 20

X
X-axis tick labels, 410, 411
xlabel, 385

Y
ylabel, 385

Z
zlabel, 385
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