i \
, # (A \
\ o= I

\)): \\ '/I

Beginning
MATLAB and

Simulink

From Beginner to Pro

Second Edition

aJlaymon Eshkabilov

APIESS®

Beginning MATLAB and
Simulink

From Beginner to Pro

Second Edition

Sulaymon Eshkabilov

Apress®

Beginning MATLAB and Simulink: From Beginner to Pro

Sulaymon Eshkabilov
Agricultural and Biosystems Engineering Department, North Dakota State University,
Fargo, ND, USA

ISBN-13 (pbk): 978-1-4842-8747-7 ISBN-13 (electronic): 978-1-4842-8748-4
https://doi.org/10.1007/978-1-4842-8748-4

Copyright © 2022 by Sulaymon Eshkabilov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: James Markham

Coordinating Editor: Mark Powers

Copy Editor: Kim Wimpsett

Cover designed by eStudioCalamar
Cover image by Bradley Jasper Ybanez on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit www.apress.
com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8748-4

To the memory of my father.
To my mother.

To my wife, Nigora, after 29 wonderful years together.

Table of Contents

About the AUROFccccceimisnsmissnmsssss s n s n s nn s nnnnnnns Xix
About the Technical REVIEWErSucsssessssessssnsssassssanssssssssssssassssnssssssssassssasssansssans XXi
AcknowledgmeEnts.......ccurermsssssnnnsnnnsmsssssssssssssnsssssssssssssssnnnssssssssssssnnnnnnssssssssssnnnnnns XXiii
INtroductionccciiismmmnsmsmnses s ———— XXV
Chapter 1: Introduction to MATLABcccummmmmmsmsmmmmmmmmmmmsssssssssssssssssssssssssssssnsnns 1
T e LU oV e I T o I o 1o 2
The MATLAB ENVIFONMENT ..o se s e s seens 8
Working in the Command WINAOWc.cecorenmrnnrnsesenesessse s sesesessssessssesessesessssessnns 9
Command Window and Variables........c.cccvverereneresesssesssesesssessssssesesessssssessssssssssssssssssssssssenens 11
USING VAKIADIES ...cveveirreerisesisesers s ss s 11
When to Use the Command WiNAOWcccovrimnnnnsssssssssss s ssssssssssens 19
Different Variables and Data Sets in MATLAB ... sesssseenes 24
NUMEFICAl DALA/AITAYS ..evevveererereereeserersessesessessersessssessessessesessessesssssssessesaesssssssessessessnsessenes 26

0 = B 11] N 34
Character Type 0f VariabIescccvvrrvererererrerereses s ssssessessessessssessessessssssessessessssessessens 40
FUNCEION HANAIE........c e 42
00 o LA 4 47

BE: 10 Lo | 50

0 A O 54
0T (=0 | 60
COMPIEX NUMDEEScvuereerieserere st sere e sese s e se s e s s s e e s e ssesaese s e saesaesae s snesaesaesasnensesaens 65
(=T 1] 0] N 65
M-file and MLX-filg EQITOISccoeereeeereereerrc e 66
1 11T = (0] S 67
T G 1T =01 (0] PR 69

TABLE OF CONTENTS

B3 01111 11T 1 71
Closing the MATLAB WINGOWccccveveererrerereesssseressessssessessesssssssessessesssssssessessesssssssessesssssssessees 79
SUIMIMANY....eeeeeeecee s e e s e s Re e e e s e s e e e Re e e e e e ne e e e e Re e e re e neenn e nnennas 79
3TC] (2] T[0T S 79
EXercises for Self-TESHNGcccccvvrrneincere e 80
(= (11 I OSSR 80
EXEICISE 2...ueireeersrenesresesrsess e e et a e e e R e p e e e e R e np s 80
EXEICISE 3...ueirieersreserreesrse e s e e bR e p e R p s 81
EXEICISE 4.....eoveeeerreisiese st e e e p e R p s 81
EXBICISE D..vueereeeriseessee st e e e p e e R e r s 81
EXEICISE B...cueeveeeerreerreesrssesssse e s e e bR p e ne R e np s 81
EXBICISE 7 ..vueereeeeesresesresess s e b d e R e p e ne e e R np s 81
EXEICISE ..ot e e p s 81
EXEICISE 9..vueireeersreserree st e e e p e e e r s 82
EXEICISE 10 . .ciiieetireirreerrsesi e e b e r e e e e R np s 82
(= (11 I OSSR SRS 83
EXEICISE 2.t e p e p e e e e ne e np s 83
EXEICISE 13ttt s e a e e R np s 83
EXEICISE 14 ...t R e a e e R r s 83
EXEICISE 15, .eiiieeieciriese st e R e e e R p s 84
EXEICISE 16...civiueerrreerreerrssessssese e s s e s s a e e p e e e e e ne e np s 84
EXEICISE 17 ..ottt s e a e e e e R np s 85
EXEICISE 18...ciieciieeiriee et e r e e e e n e e np s 85
EXEICISE 19 .t bR e p e e e p s 85
EXEICISE 20...ccuieeerreerreerrnsesessesessesesrse s e e s sr s s s e e e b e e a e p e ne e R np s 85
EXEICISE 27 ... s e e e e R e 85
EXEICISE 22.....ccueeeeeeerreesisessse et s s e e R e p e e R np s 86
EXEICISE 23....c.vieeeieeeriee s e e e e R e R np s 86
EXEICISE 24 ...ttt e p e e p s 87
EXEICISE 25 ...cvieeeieeerreesrssesssse s e R e p e e e R np s 87
EXEICISE 26uceeerreerrierrssessssesessesessssesss s e ss e se s s s s e s s s s e e ae e a e ne s e ne e nr s 87

TABLE OF CONTENTS

(=T (011 N 87
EXEICISE 28......ceeiierice it e e 88
EXEICISE 29.....o et e e e 88
o= (o< N 88
(=T (1< T N 88
EXBICISE 32.....eiiececerrce st 89
EXEICISE 33 ...t e e 90
EXEICISE 4 ...t e 90
(=T (1T 1T N Cl
o= (1T N Cl
(=T (11T N 92
EXEICISE 38.....eiiecierice s e 92
EXEICISE 39 ...t 92
(=T (<3 N 93
EXEICISE 41 ...t e e 93
EXBICISE 42......ceieeiiice st e e 95
EXBICISE 43 ..ot e e 96
EXEICISE 44 ...t e e 97
EXBICISE 45.....ocerecerice e e e 97
Chapter 2: Programming ESSentialScccrrrsssmnnsmssssnnnssssssnsssssssssnsssssssnsnssssssnsnssss 99
WIItING M/IMLX-FIIESveeeeeeriecerire st ettt st e e san s 99
How t0 Create an M/MLX-File.........c.cooueiererererneneseseresesse s sesss e e sessssssssseens 102
Warnings in SCHPLScovvciiecrc e e ne e 102
(T3 ST+] 0 OO 108
L0 TSP 122
Debugging MOTEcoceeiiiirrere e e e 126
M-Lint COUE CRECKceerererrreeeereresissee e se s se s sesssnsssssens 127
010 o () 1 3o OO 128
Dependency REPOM ... e e 130
e 0T [PPSR 131
Some Remarks on SCrptS/M/MLX-Fil€S........ccceverrmrerrreneresernessse s sesessesesesessesesessesenns 132

vii

TABLE OF CONTENTS

Display and Print Operators: display, sprintf, and fprintf...........ccccerivininininnnnnnr e 133
6 111 1< ST 133
6 111][ST 134
TPEINHI() —————————— 135

Control Statements: [if, else, elseif, end], [switch, case, end]ccocrverrrenrrrrnrenerresernsenenne 142
EXAMPIE T e e e e e e e nn 144
EXAMPIE 2.t e e e e e e e e 145
EXAMPIE 3. e e e e e 147
EXAMPIE 4. e e e e 152

Loop Control Statements: while, for, continue, break, end...........cccceveeerervrrenescrverreerererenns 153
EXAMPIE Tt e e e e e 154
EXAMPIE 2.ttt e e e e e e e e e 155
EXAMPIE 3.t e e e e 159
EXAMPIE 4. e e e e 161
EXAMPIE 5.t e e e e e 162
EXAMPIE Bttt e e e bR p e 164
EXAMPIE 7 ...ttt e e e e e e e e e e 168
EXAMPIE 8.ttt e e e e e 171
EXAMPIE 9. e e e e e 172
o211 110 20 SRS 173
EXAMPIE 11 .t e e e e 174
MEMOrY AIOCALION.......cceeeceercerere e re e 175
EXAMPIE 12t e e e e e e e 176
EXAMPIE 13t e e e e e e s 178
EXAMPIE T4t e e e e e e e e s 179
EXAMPIE 15, e e e e e 182
EXAMPIE T16...c.eeeecieieirer ettt e e bbb e s p e e 183
EXAMPIE 17 ..ttt e e e e e e e e s 188
EXAMPIE 8. e e e e e e e 191
EXAMPIE 19 e e e e e e 192

viii

TABLE OF CONTENTS

Symbol References in Programmingc.cccccvvvrverierinnennensesesssessesesssssssessesesssssssessesssssssessesses 194
ASTEIISK ...t e 195
Y [O 195
0] 0] O 196
(0011111 - O 196
T2 =T (=] O 196
D] T o 197
) OSSP 197
DOt-DO ... ——————————————— 197
DOt-Dot-DOt (EHIPSIS) ..ervereererierierseriirsessse s ssessee s sesssssse s e sessssssessessessssssessessesssssaesaessenns 197
ParenthESsES.......coviircirc 198
PEICENT ... 198
B3 T=] 11T][0 3 199
SiNGIE QUOLES ..o e e e s 199
Slash and BacksIash ... s 200
SQUANE BraCKeLSccuvverrerrrrirererresessese e sss e s s ssesessessesaessssessesaesasssssesassaesssssssesaesssnsssesneses 200
LU T (0] T 201
EXAMPIE Tt e e e e e 203
EXAMPIE 2.ttt e e e e e e e 205
EXAMPIE 3. e e e e e 206
EXAMPIE 4. e e e e 207
Most Common Errors with the FUNCEiON Filescocoveeiennnnciecscrsess e 210
Varying Number of Inputs and QUEPULScccoevrcrininnnnsne e 212
Nested and Subfunctions of FUNCLION FileS..........cccovrreieicrnnncecscse e 228
Function Files Within M-Filescoorrorirrerrersrerese e 231
Summary of Scripts and FUNCLION Files..........ccovvrrinnesrcccrscerr e 233
INJINE FUNCHIONS.......ceceieeereecrer e 234
EXAMPIE T e e e e a e 235
EXAMPIE 2.ttt e e e e e e e e e 235
EXAMPIE 3. e e e e e e nn 235

ix

TABLE OF CONTENTS

Anonymous Functions with Handles.........cccorivninniininsrn s 236
6 111 1< ST 236
6 111][ST 237
6 111][ST 237

SUMIMANY ..ttt e e R e e e R e b e e e e e Re e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 238
Exercises for Self-TESHiNG.......ccccuivrrrrnirr e 239
(=T (1< T TS 239
(=T (1 P 239
o (C (< S 240
(=T (I T 240
(=T (1< T TS 241
(=T (1< 2T 242
(=T (1 S 242
(= (I S 243
(=T (1< 2K P 244
o= (1< T T 245
(=T (1< T R TS 246
(= (1< T 247
(= (1< T T 249
o= (1< T 250
(=T (11 I T 250
o= (1< T T 250
(= (1< T T 251
o= (1< T TS 251
o= (< T T 252
(= (<3 252
(=T (1< 3 253
EXBICISE 22......eeeeeeeeeertecr e se e e e e R e 253
EXBICISE 23 ... e e e e e R e 254
EXBICISE 24 ...t n e 255
EXBICISE 25 ... e se e e e e e R e 255

TABLE OF CONTENTS

(=T (13 N 256
(=T (1 N 256
Chapter 3: Graphical User Interface Model Development...........ccccerrvssnnnnnsssssnnnnns 257
GUIDE ...ttt et se e e bbb g e e R bR R e e e 257
Example 1: Building @ 2D PIOL.........coociircrcr st 264
Example 2: Adding FUNCtionalityc.ccocevivnrninninsn s 271
Example 3: Solving a Quadratic EqUation............ccoecvrrevriecrnscrnre e 275
Editing the Callback FUNCLIONS.........cc.cocrreerrerereeres s 279
GUI Dialogs and MeSSage BOXES........ccuvererrermrensmsrsesmssssesessssssssssssssssesssssssssssssssssssssssssssssssssenns 283
o (0] g 0] o o T 284
Warning MESSAGE.......ccovererrererreseressesessesessssesessesessesessssssessssssssssssssesssssssssssssssnsssesssssssssnsenens 284

F1 Help/MESSAQE BOX.......cccvrererinerrenerrssessssesessssessssssessesssssssssssessssssssssssssssssssssssnssssssnsssnnes 285
LCTeT 0T 13 1 =V G 286

T 0T T 0o T 287
QUESTHION DIAI0OY ..v.vceeerererreseereresss e e s e sr s srsr s se e e s e e an s nes 288
11T 111 T o SRS 295
EXercises for SEIf-TESHNGcucvvrirerrrirere s s s sa e nne s 295
EXBICISE 1.ttt 295
EXBICISE 2.t 296
EXBICISE 3.t 297
Chapter 4: MEX Files, C/C++, and Stand-Alone Applicationscccuussssssnssnnnnnnas 299
VErifying COMPIIEIS...cieii vt r e e e s ae e e e sa e e e e e e e aesae e e e naennens 300
GENEIALING € COUE ...ttt et se e et e e 300
Creating MEX Files from Other LANQUAGEScccorererrerermrererenessesesesesessese s sessesessesesesseenns 312
Building Stand-Alone AppliCALIONS.........cccvriririnine s 313
11T 111 1T o OSSOSO 318
EXercises for SEIf-TESHNGcucvvrirerrrirer e s sae e eae s 319
EXBICISE 1.ttt 319
EXBICISE 2.t e 319
EXBICISE 3.t 319

xi

TABLE OF CONTENTS

o) (=T (N 320
(=T (1 TR N 320
Chapter 5: Simulink Modeling Essentials........ccccsrmmssmmnnmsssssnsssssssssnssssssssssssssssnnnss 321
SIMUIINK MOUEIING ...t et 321
Example: Arithmetic Calculations...........ccrniinnnnn e 323
Example: Modeling Simple Arithmetic Operations...........ccccvivnininnnnnine s 328
Performing MatriXx Operations..........cocuecvvverrnenesrinesnsessssesese s se e e sens 332
Computing Values of FUNCHIONS........ccovirieriernrenere s sese e ses s sse e sse e s e ssessssessesaessssessesnesnes 337
Input/Output Signals from/to the MATLAB WOrKSPACEccccvveruerrrrerserseresessessessessssessessenes 345
Simulating a Mechanical SYSTEMc..ccvcrvrinnnnrr e enens 349
Working with a Second-Order Differential Equation............ccccvvevvrnrniennnnseniense s sessensenens 357
Subsystem in SIMUlINK MOGEIINGc.ccoevrrrierierererserere e sse s saessssessessens 362
Simulink Model Analysis and DiagnoStiCSc.ccvvvrrrieriernnnseriene s seses s s s e sessessessens 368
LT 4= RS 376
EXercises for SEIf-TESHNG........ccvverierrrriererrrirre s s se e 376
Chapter 6: Plots and Data Visualizationccusssemmssmmnmmmmmmsssssssssssmssssssssssssssnnns 379
Basics Of POt BUIIHINGccooeririirinie s s sae s 379
PLOT() vtverrerererererereseseseesssssssssssssssssssssssssssssssssnsssssssnsssnssesssssssssssssssssssssssssssssssssnsssnsssnsnsssnsnsnsnsnes 380
Example 1: Plotting Two ROWS 0f Data..........cccoerrenrrerrererese e 380
Example 2: Plotting FUNCLION VAIUES.........cccoeeoereereeeereeree s 381
Example 3: Building @ HiStogram..........ccovornrrernrcsererese e 383
Example 4: Building @ Bar Chart..........coooreeeeeeeeeree e 383
Example 5: Building @ 3D Pie Chart ..o 384
TITLE, XLABEL, YLABEL, AXIS, GRID, and LEGEND.............ccccerenmrmmmsmnnssnsssssnsseseseseseseseseeesens 385
TITLE() ctueueueseseussessssssssssssssssssssssssesesesesessssssssssssssssssssssssssssssssssssssnssssesesenssssassssssssssssssssssnsnsns 385
Example 6: Plotting a Unit Circle With PIOt TOOISccccovenmrnnernscsesesesese e 386
LINE and MARKER SPECITIEIScccvueeerrererinsesensenesresessssesssessssssessssessssessssssesssssssssssssssssssssssssssssnns 387
Example 7: Plotting Sine Function Values with Plot TOOIS..........ccoueevrennesennscsneseneserenne 390
Example 8: Plotting Sine Function Values with Plot TOOIS..........ccouvevvennnsennsesncseneserenne 392

xii

TABLE OF CONTENTS

Plot Two Data Sets in TWO Y=Y AXES.......ccccurrmmnmnmsensrmssnssssessssssssssssessssssssssssessssssssssssesssssnsaes 393
Example 9: Plotting Two Function Values 0n Y-Y AXES........ccccuvrrrnerensennensensessessesssesensenns 393
SUDPIOLS .. e e e e e e 396
Example 10: Building Subplots of FUNCLIONSccccvrevrierrccc st 396
LEGENDcooteteeeeseseeeeee e s ss st bbb et 397
HOLD ...ttt bbb e e e e 398
Example 11: Plotting a Few Function Values in One Plot...........ccocuevvrenerenernsenensesenssnenennes 398
Example 12: Plotting Function Values with Different Line Markers and Colors................... 399
Example 13: Bar Chart of Data with Standard Deviationccccoevvvvninininsnininnnsenennn, 402
Example 14: Bar Chart of Data with Values Shown ..., 403
Example 15: Bar Chart of Data with NaN Values Shown and Axis Tick Labels Off............... 404
EZPLOT, FPLOT, and FIMPLICIT with Function HandIes (@)cccoeunenrnrnninnnsnsssnsssnsssnevenees 406
Example 16: Plotting a Mathematical Expression with €zplot()cccceverernsernreneseserennes 407
GTEXT, TEXT, @Nd GINPUTooveeieccesssessss s se s ssssssssssssssasees 408
Example 17: Locate and Display Minimum Values of a Function Plot in a Plot Figure 409
Axis Ticks and Tick LADEIScccviiiirc e 410
Example 18: Display X-AXiS TiCK LADEISccvverierininnnnniersinsesessesses e sessessesssessessenns 410
Figure HanIES ..o s e 412
Example 19: Working with Figure Handles...........cccccvvrinennsnininscnc s 412
3D SUITACE PIOS ...t e ne e 414
Example 20: Creating a 3D Pie Plot With Pig()......ccoeerrrermrrenerererrrcrereserese e 414
Example 21: Creating a 3D Surface Plot with €zSUrf()cccveerrecrerrererererrrererese e 415
Example 22: Creating a 3D Mesh Plot with ezmesh()c.ccovverrenrrerrerrecrreereeee 416
Example 23: Creating a 3D Surface-Contour Plot with ezsurfc(), fsurf(), and surfc()......... 417
Example 24: Creating a 3D Plot of an Electric Potential Fieldc.cocoveennenncenneeneee 419
Example 25: Creating 3D Plots with waterfall(), ribbon(), meshc(), contour().......c.cervrererseren. 421
Save Plot Figure With SAVEAS()cvvererrererinerinesrnesess s sess s sssse s srs e ssssesens 424
3D Line Plots and ANIMALIONS ... s ssssas 426
Example 26: Building 3D Line Plots and Animated 3D Line Plots with plot3(),
comet3(), aNd €ZPIOT3()..ercrererirrirrrre s 426

xiii

TABLE OF CONTENTS

ANIMALEd PIOTS......ceiiircre s 428
Example 27: Building an Animated Plot with getframe().......ccccocvvrrinininnnininsnneneniens 428
Example 28: Building an Animated Plot with drawnowccccvverirvninnnincnsnneneniens 428
Example 29: Building an Animated Plot with drawnowcccceverinvninnnincnsnnenenens 429
Example 30: Building an Animated Plot of a Projectile with getframe().........cccecvvvririninnns 429

SUMIMANY ..ttt e e R e e e R e b e e e e e Re e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 430

EXercises for Self-TESHNGccovermrerrrrer e 432
(= (1< T 432
(S (1 3T 432
(S (1T TS 432
(S (1 T 433
oS (11 T T 434
(= (113 434
(S (1 TS 435
EXBICISE 8.t s ne e 435
(= (112K TS 436
(= (1< T 436
(= (1< I N 436
(S (11 I T 436
(S (11T 437
(S (1 T T 437
oS (11 I 437
oS (11 I T 438
(S (11 T T 438
(= (11 T 438
o= (1< T T 439
EXEICISE 20cceeeeereeereeereecse e e se s se s e e se e e s e e e e e e e e nne e e s 439
(= (11 3 440
EXEICISE 22.......eeeeceeeeereec e se e e ne e e e re e 440
oS (o1 3 441
EXEICISE 24 ... e ne s 441
EXEICISE 25 ... e s se e e e e e R e 441

Xiv

TABLE OF CONTENTS

Chapter 7: Linear AlgeDbra.......cccccussennnmsssssnnsmsssssnnsssssssssnsssssssnnsssssssnssssssnnnssssssnnnnss 443
Introduction to Linear AlIgebra..........cccooicririnninine s snens 443
Matrix Properties and OpPerators........cocvrnnnnnn s snens 444

Simulink Blocks for Matrix Determinant, Diagonal Extraction, and Transpose...........c..c..... 446
Matrix Inverse or INVErse MatriX..........couorrrermrenernrcrrese s 450
Simulink Blocks for INVErse MatriX...........ccoveeeerenrnsennenereserssesese s 451
MatriX OPErAtiONS.......ccecrieiirie e p e e s nae 482
Example: Performing Matrix Operations.........ccccocvvvninininnnsnn s sessesnes 485
Standard MatriX GENEIatOrS........cccvveererieserisernse s sr s 493
L1 0] T 0 [+ S 499
Polynomials Represented By VECIOIS......c.ccvvvvvererniensene s sese e ssessesessessesnes 501
Simulink Model-Based Solution of Polynomials..........ccccvevvvvnienennsnsenienssessessesesessessensens 503
Eigen-Values and Eigen-VeCTorsccccvvrvininniinsin s sss e sse s sse s ssessssssessenaenns 504
Matrix DECOMPOSILIONcccceerricirierere e s e e nne 507
QR DECOMPOSILIONcovivreeeeccririsee et re e se et se s e e e e s e ee e s s nes 508
LU DECOMPOSITION.....ccceitierciriereriesis s s s s s s s p e e s 511
Cholesky DECOMPOSITIONccceceririerrerereserirse e s e se s b e e se e e sae s 515
Schur DECOMPOSITIONc.cccvirerirecire st e s e se e 519
Singular Value DeCOMPOSILION.........ccocccrrierererere s se s 521
Logic Operators, Indexes, and CONVEISIONScccereererierserseerersersesssessersessesssessessessssssessessenns 524
[T To L 10 L T S 525
Example: Logical Indexing to Locate and Substitute Elements of [A] MatriX...........c.ccccvvne. 528
0] 1] 65T T 530
Example: Creating Character Strings with Char()c.ccocvrerrivnnnnsnnesne e 532
11T 111 1T o OSSR 535
RETBIBINCESeccciriricerce e 536
EXErcises for SEIf-TESHNGcvvvirirerrrrere s s e e sr s s s sae e s saesae s s e saesaens 536
o)< (1 N 536
(=T (1 N 537
o) (CT (o N 538
o= (N 538

TABLE OF CONTENTS

EXBICISE 5.ttt s 539
(=T (2N 539
(=T (1 N 540
EXBICISE ...ttt s 540
EXBICISE 9.ttt e s 540
(=T (T N 541
o)< (1< T N N 541
(=T (1 T N 542
(=T (T N 542
EXEICISE T4 542
(=T (11 T N 543
(=T (T N 543
(=T (1 N 544
EXEICISE 18...eiieriireirc e 544
EXEICISE 19 .t s 545
(=T (13 N 545
EXBICISE 27 ...t e e 545
EXBICISE 22......ceerierieerice s e e 545
EXBICISE 23 ..ot e 546
EXBICISE 24 ...t e 546
EXBICISE 25....c.e e e 546
EXBICISE 26......ccieruierreeriei s e e s 546
(=T (1 N 547
EXBICISE 28......ceieccirciriec e 547
EXEICISE 29.....ocieriirei s 547
(=T (1T N 548
Chapter 8: Ordinary Differential Equations.........cccccusemmnrnssssnnnmssssssnsssssssssssssssnnns 549
[R TST T J0] =OOR 550
Example 1: Unconstrained Growth of Biological Organisms...........ccceeeerencrnsereniesesesenennes 551
Example 2: Radioactive DECay..........cccvrerieniininicninsinsene s sss s snes 551
Example 3: Newton’s SECONU LAW..........cccovevererirnicninc s sesse e sss e sessesessesesennes 552

TABLE OF CONTENTS

Analytical Methods.........ccvviiiirir e e s 553
DSOLVEvovtitiesesisesesesesesessssssssssss s s st sa s sasasssnsnsnsssnsnenenes 553
Example 1: USING DSOLVE........ccccvivrrveriererensenessessssessessessessssessessesssssssessesssssssessesassssssnsesaes 554
Example 2: Plotting the Found Solution With dSOIVEcccvvvrerevenrnienenesensere e sessessenees 554
Example 3: Adding an Unspecified Parameter..........c.cccvvvririnnnnnninsnsennesessesssssesenenns 555

Second-Order ODEs and a System 0f ODEScccccoeeeernienerenennsc s sese e sesssesens 556
Example 1: dsolve with a Second-0rder ODE.............cccooevrerrnrcrnienene e seseeas 557
Example 2: SYStem ODES.........ccccceeerecerncrtre et ses e s e sas e st sesas e sennis 557
Example 3: Unsolvable Solutions USing dSOIVEccccrevnvrinennsnsc e sessennes 558
Example 4: Computing an Analytical SOIUtioN ..o 559
Example 5: An Interesting ODE ... 560

Laplace TranSfOrMS........ccuciviinnini s r s s p e e s p e nne 560
Example 1: First Laplace Transform ... ssssessessesnes 562

LAPLACE/ILAPLAGEcceiteeerssssssssss s ssssss st se s e e e s ssssssssnsnsnenenen 563
Example 2: USING LAPLAGE..........ccocuunrnerrsesesese s sessesesssss s sesssssssssssssssssssssssssnssssssssnnes 564
Example 3: A Final LAPLAGEcoooirninene et se s s sas s nnes 564
Example 4: Comparing LAPLACE/ILAPLACE with DSOLVE...........cccoovvninmnnnnsnenenessensennns 564
Example 5: CONVErgeNt ANSWETScccvvrererseresseserssssssssssssssssssssesssssssssssssssssssssssssssssssssssnses 567
Example 6: No Analytical SOIULIONcccvviererenernserssesesese s sennes 569
Example 7: Demonstrating Efficiency and EffortleSSnesscovevrenresesnsesnsesessssenennes 570
Example 8: Demonstrating MATLAB Built-in ODEX SOIVEFScccueererenmrrnnmrensesessesessssesennes 575
Example 9: MATLAB Built-in ODEx Solvers for Second-Order ODES..........ccccoevverreererierienns 578
Example 10: Simulink MOUEliNGccovveererrererenernsesessesessse s sessssessssessnses 580

11T 111 17 o SO S SO S 587

RETEIBINCES ... e 587

SEIf-STUAY EXBITISES ..veurruerrersrrersersersessssersersessssssessessessssessessesssssssessessesssssssessessesessessesssssssessesses 588
(=T (1 N 588
(=T (1 N 589
oy (CT (T N 589
EXBICISE 4 ...ttt 589
(=T (1 TR N 590

Xvii

TABLE OF CONTENTS

o= (12N 590
(=T (1 N 591
EXBICISE ...ttt s 592
EXBICISE 9.ttt e s 592
(=T (T N 593
INA@X . eeeiiienssinnsnsnn s s s —————————— 595

Xviii

About the Author

Dr. Sulaymon Eshkabilov is an assistant professor in the
Department of Agricultural and Biosystems Engineering

at North Dakota State University. He obtained a Master

of Engineering degree from Tashkent Automobile Road
Institute; a Master of Sciences from Rochester Institute of
Technology, NY; and a PhD from the Cybernetics Institute
of Academy Sciences of Uzbekistan in 1994, 2001, and 2005,
respectively. He was an associate professor at Tashkent

Automobile Road Institute from December 2006 through
January 2017. He held visiting professor and researcher positions at Ohio universities,
from 2010 to 2011, and at Johannes Kepler University, from January through September
2017. He teaches a number of courses, including “Instrumentation and Measurement,’
“System Modelling with MATLAB,” “Machine Design Analysis,” “Agricultural Power,’
“Numerical Methods,” “Introduction to Finite Element Modelling,” and “Advanced
MATLAB/Simulink Modelling” for undergraduate and graduate students.

His research interests are image processing, machine learning applications,
mechanical vibrations, micro-electromechanical systems, mechatronic system design,
and simulation and model development of dynamic systems. He has developed
simulation and data analysis models for various image data, additive manufacturing
process optimization, vibrating systems, autonomous vehicle control, and studies of
mechanical properties of bones. He is the author of five books devoted to MATLAB/
Simulink applications for mechanical engineering students and numerical analysis.
From 2009 through 2022 he worked as an external academic expert for the European
Commission to assess academic projects.

About the Technical Reviewers

Dr. Sanjarbek Ruzimov specializes in vehicle dynamics and
energy management. He works as an associate professor in
the Department of Mechanical and Aerospace Engineering
at Turin Polytechnic University in Tashkent. He obtained his
doctoral degree in Mechatronics from Politecnico di Torino,
Italy. His active research interests include automotive
mechatronic systems optimization, energy optimization of
hybrid electric vehicles, and implementation of intelligent
transportation systems to improve the vehicle performance

and efficiency. He teaches courses about machine design,
motor vehicle design, vehicle component design, HEV and EV design and modeling, and
scientific computing with MATLAB and Microsoft Excel, where MATLAB and Simulink
are the main tools used during the teaching process.

Dr. Joseph Mueller specializes in control systems and
trajectory optimization. For his doctoral thesis, he developed
optimal ascent trajectories for stratospheric airships. His
active research interests include robust optimal control,
adaptive control, applied optimization and planning for
decision support systems, and intelligent systems to enable
autonomous operations of robotic vehicles. Prior to joining
SIFT in early 2014, Dr. Mueller worked at Princeton Satellite
Systems for 13 years. In that time, he served as the principal

investigator for eight Small Business Innovative Research contracts for NASA, Air Force,
Navy, and MDA. He has developed algorithms for optimal guidance and control of both
formation flying spacecraft and high altitude airships, and he developed a course of
action planning tool for DoD communication satellites. In support of a research study for
NASA Goddard Space Flight Center in 2005, Dr. Mueller developed the Formation Flying
Toolbox for MATLAB, which is now used at NASA, ESA, and several universities and
aerospace companies around the world. In 2006, Dr. Mueller developed the safe orbit

ABOUT THE TECHNICAL REVIEWERS

guidance mode algorithms and software for the Swedish Prisma mission, which has
successfully flown a two-spacecraft formation flying mission since its launch in 2010. Dr.
Mueller also serves as an adjunct professor in the Aerospace Engineering & Mechanics
Department at the University of Minnesota, Twin Cities, campus.

xxii

Acknowledgments

I would like to express my special gratitude to the two technical reviewers of this book.
First, thank you to Dr. Sanjarbek Ruzimov for his very thorough work while reviewing the
context and MATLAB code and Simulink models demonstrated in this the book. Without
his critical insights, remarkable suggestions, and corrections of many points along the
way, the book would not be as good as it is now. Second, thank you to Dr. Joseph Mueller
for his incredible suggestions and comments while reviewing this book. Because of his
critical remarks and advice, the book became richer and more educationally appealing.
I'would also like to express my special gratitude to Dr.Mark Powers for his timely and
well-planned correspondence throughout this book project.

My cordial gratitude goes to my mother for her limitless support and love. She kept
checking on my progress throughout the entire book progress.

I'would like to thank my wife, Nigora. Without her support, I would not have been
able to take up the challenging task of writing a second edition of this book. I have spent
so much time over the weekends in my office writing and editing the book. In addition,
I'would like to thank our children—Anbara, Durdona, and Dovud—for being such
delightful people and for being the inspiration for writing this book.

xxiii

Introduction

This book is aimed at beginner-level learners of MATLAB/Simulink packages. It covers
the essential, hands-on tools and functions of the MATLAB and Simulink packages and
explains them via interactive examples and case studies. The main principle of the book
is “learning by doing,” and it progresses from simple to complex. It contains dozens of
solutions and simulation models via M/MLX files/scripts and Simulink models, which
help you learn the programming and modeling essentials. Moreover, there are many
recommendations for avoiding pitfalls related to programming and modeling aspects of
the MATLAB/Simulink packages. This second edition of the book has been updated with
many interesting examples using the MATLAB 2022b version. Moreover, any errors that
slipped into the first edition have been corrected.

Beginning MATLAB and Simulink explains various practical issues of programming
and modeling in parallel by comparing the programming tools of MATLAB and blocks
of Simulink. After studying this book, you’ll be proficient at using the MATLAB/Simulink
packages. You can apply the source code and models from the book’s examples as
templates to your own projects in data science, numerical analysis, modeling and
simulation, or engineering.

Essential learning outcomes of the book include the following:

o Getting started using MATLAB and Simulink
e Performing data analysis and visualization with MATLAB

e Programming essentials of MATLAB and core modeling aspects of
Simulink and how to associate scripts and models of the MATLAB
and Simulink packages

e Developing GUI models and stand-alone applications in MATLAB

o Working with integration and numerical root-finding methods in
MATLAB and Simulink

e Solving differential equations in MATLAB and Simulink

o Applying MATLAB for data analysis and data science projects

INTRODUCTION

The book contains eight logically interlinked chapters.

XxVi

Chapter 1 is dedicated to introducing the MATLAB environment and
creating MATLAB recognized data types, including numeric, cell,
structure, character, logical, and table arrays and function handles.

Chapter 2 covers most of the essential programming tools and
functions, such as for ... endandwhile ... endloop operators,
if...elseif...else...endcondition operators, symbol referencing,
and most common errors and warnings. It also covers M-file
debugging tools and options in MATLAB. Moreover, this chapter
addresses MATLAB-specific programming tools, including function
files, function handles, symbol references, and display operators.

Chapter 3 covers GUI development and how to write and edit GUI
model callback functions via several simple but appealing examples,
such as solving and plotting quadratic equations, computing, and
plotting the sine cardinal function. This chapter also shows how to
use and adjust various GUI dialog boxes.

Chapter 4 addresses the issues of how to develop MEX files, C/C++
code, and stand-alone applications from the existing M-files and

code written in C.

Chapter 5 is dedicated to Simulink modeling essentials. The
examples in this chapter cover matrix operations, computing
function values, modeling mechanical engineering examples, and
solving ordinary differential equations. Moreover, it covers issues
around how to associate Simulink models with MATLAB scripts.

Chapter 6 is devoted to data visualization issues, such as building 2D
and 3D plots and animated plots in MATLAB. The chapter examples
and code show how to build various appealing 2D and 3D plots using
symbolic expressions and numerical values using plot, bar, errorbar,
pie, pie3, mesh, contour, fplot, fsurf, etc. Moreover, there are several
examples showing how to create animated 2D and 3D graphs.

Chapter 7 is dedicated to matrix algebra and array operations.
It addresses solving systems of linear equations, eigen-value
problems, matrix decompositions, matrix and vector operations,

INTRODUCTION

and conversions of arrays and strings via examples in MATLAB and
Simulink in parallel. Moreover, it addresses a dozen different ways

to solve system linear equations and polynomials symbolically and
numerically with MATLAB and Simulink. It also shows a few different
interesting examples of how to use the least squares method.

o Chapter 8 covers some essential aspects of solving ordinary
differential equations analytically and numerically and using
MATLAB'’s built-in functions and commands, as well as Simulink
modeling essentials in association with MATLAB. This chapter covers
MATLAB functions such as dsolve, laplace, ilaplace, ode23, ode45,
and ode113. And it demonstrates how to use the Simulink functions
simset, sim, etc.

All of the source code (scripts, M/MLX/MAT files, Simulink models, SLX/MDL files,
C code, MEX-files, and installation *.exe files) discussed in the book are available to
readers via GitHub (github.com/apress/beginning-matlab-simulink-2e).

Note The scripts in the book may not always be the best solutions to the given
problems, but this is done intentionally to emphasize methods used to improve
them. In some other cases, it is found to be the most appropriate solution. Should
| spot better alternative solutions to exercises, | will publish them via MathWorks’
MATLAB Central User Community’s file exchange, via my file exchange link there
(under my name).

No matter how hard we worked to proofread this book, it is inevitable that there will
be some typographical errors that might slip through and appear in print. My apologies.

Sulaymon Eshkabilov

October 2022

xXxvii

CHAPTER 1

Introduction to MATLAB

The MATLAB package is employed in a wide range of engineering and scientific
computing applications and is associated with the dynamic system simulation package
Simulink. MATLAB has remarkable strengths, such as user-friendly and intuitive
programming syntaxes, high-quality numerical algorithms for various numerical
analyses, powerful and easy-to-use graphics, simple command syntax to perform
computations, and many add-ons such as toolboxes and real and complex vectors and
matrices, including sparse matrices as fundamental data types.

MATLAB is used in many diverse areas, including simulation of various systems
such as vehicle performance, mapping of the human genome, financial analysis in
emerging economies, and image analysis and processing applications. In addition, it is
used in microbiology applications for the diagnosis and treatment of small organisms,
in dynamic simulations of large ships in down-scaled laboratory models, in simulations
of next-generation network audio products, in teaching computer programming for
undergraduates with real-time laboratory tests and measurements, and in image
processing for underwater archaeology and geology.

In this chapter, we discuss some essential features of the graphical user interface
(GUI) of MATLAB, including how to use the help tools and library sources, how to adjust
the format options and accuracy settings, how to create various variables and variable
structures, and how to employ M/MLX-editors to write and edit scripts and programs.

© Sulaymon Eshkabilov 2022
S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_1

https://doi.org/10.1007/978-1-4842-8748-4_1

CHAPTER 1 INTRODUCTION TO MATLAB

Menu Panel and Help

You can launch the MATLAB application in the Windows operating system by clicking
the icon/shortcut on the desktop or via Start .-4\ All Programs 4\ MATLAB. As MATLAB
loads, the user’s last preserved files, entries, and commands appear, along with the menu
bar and tools with the latest preferences. MATLAB’s GUI tools and windows are
customizable. Users can easily change the preferences of the package according to their
needs. Figure 1-1 shows the default main window of MATLAB 2022a. Note that the
package’s GUI menu and tools have been changed over the years to make the package
more user friendly and the tools more intuitive. The default window shown in Figure 1-1
contains the main menu tools (1), the current directory indicator (2), the Command
window (3), the Workspace window (4), the Current Folder window (5), and the
Command History window (not shown here). These windows can be docked/undocked,
opened in a separate window, closed, or removed from the main window, and they can
be dragged from one pane to another and maximized or minimized.

* 4
HOME R G < < Documentation Pd

& :!_P CYy () Finc Fles LY LR Variable » '”‘ﬁ L&" Analyre Code LY i__-l @) Preferences |
i 23 B> Ry 3 B : =
New New New Open | compare ey WoareWonspace S pl i, G Runiand ke Sumuink Layout 2 SAPIR g o0 pesources
-

Script Live Script ¥ ata 5 Clear Workspace > L¢5# Clear Commands el lill Parallel * bt

FILE VARIABLE CODE SIMULINK ENVIRONMENT -
e el b C b Users » sul hkabilov ¥ Dx » MATLAB - 0
Current Folder ® Command Window

MName New to MATLAB? See resources for Getting Started.
@ i
Detalls -
Workspace ®
Name Value

Figure 1-1. Default MATLAB desktop window, MATLAB (R2022a)

= Ready

The main components of the package’s GUI tools are as follows:

e The menus and toolbars are grouped into three tabs: HOME, PLOTS,
and APPS (Figure 1-2). The HOME tab (1) shown in Figure 1-1
contains all the main tools, for creating new files and variables,

importing data, analyzing code, and more.

CHAPTER 1 INTRODUCTION TO MATLAB

e The Current Directory window (5) shown in Figure 1-1 is in the left
pane by default. This window displays all the files in the current
directory and folder directory.

e The Command window (3) shown in Figure 1-1 is in the central pane
by default. All commands and (small) scripts/code can be entered
directly after % **. By clicking % *> (see Figure 1-4) in the Command

window, you can view all the built-in functions of the package and
the installed MATLAB toolboxes. This option is available starting
from the MATLAB R2008a version. All installed toolboxes of the
package can be also viewed or accessed by clicking the APPS tab (see
Figure 1-2), which is available only in later versions of MATLAB
starting from the R2010a version.

o Inthe Workspace pane (4) in Figure 1-1 of the default desktop
window, MATLAB shows all the current entries and saved variables
during the session. These entries will be saved temporarily until the
MATLAB application is closed. All essential attributes and properties
of entries/variables (variable names, values, types) are displayed in
the workspace.

HOME

li u 4, Variable = C* LsP Anabyze Code ’i D &) Preferences ‘\% @ % Community

iy E1 ol |
(5 BT+ [Find Files =
5 = 9 =
Mew New Ntw Opm (L] compare Impon Clean i Save Workspace Favortes & R and Time Simulink Layout CFsetPath oy oms Hep — Faet s pex
Scrpt LiveScipt v Data Dats P Clear Workspace = - [Clear Commands = - Parallel » - » Bl Leam MATLAB

FILE VARIAELE CODE SINULINK ENVIRONMENT RESOURCES a

SELECTION AOTRA

@ﬁQEQQEﬁBﬁ@I&&v

Design Get More bnstall Package Curve Fitter Optimization FID Tuner System Wireless Signal MATLAE Coder Application

App Apps App App Identification Waveform G Analyzer Control Model Builder Model Analy... Compiler
FRE oL

1]

Figure 1-2. MATLAB main menu: HOME, PLOTS, APPS (MATLAB R2022a)

It should be noted that the GUI and tools of MATLAB are updated with new releases

of the package. For example, a new GUI tool called Clean Data, Dm , which is used for to
import timetable data, was introduced in MATLAB R2022a (Figure 1-2).

CHAPTER 1 INTRODUCTION TO MATLAB

The help documentation, help libraries, and help tools are one of the strengths of
the program. They can be accessed by using GUI tools and entries from the Command
window. It is always useful to start using the package by exploring the options of
the Getting Started documentation by clicking Getting Started above the Command
window. This will lead you to the help library documentation of the package, as shown
in Figure 1-3, that contains the most essential documentation of the package and its help
tools, such as examples and syntaxes of the functions.

=) B ; — ——
| o & vi- @ | [Get Statedwith MATLAB ¢ | sEmeg ~

Documentation Examples Functions Apps

| o0 Hore :

Get Started with MATLAB R2022b
| amamias The Language of Technical Computing
| Category Millions of engineers and scientists workiwide wse MATLAB® to analyze and design the systems and products transforming our world, The matrix-based MATLAB
1 et Started with MATLAR language is the world's most natural way o express computational mathematics. Built-in graphics make it easy to visualize and gain insights from data. The

deskiop invites experi L , and di ¥. These MATLAB tocls and capabilities are all rigorously tested and designed to waork
{ Language Fundameantais Iiwhﬂ

MATLAB helps you taka your ideas beyond the deskiop, You ¢an run your analyses on farger data sats, and scale up to clusters and clouds. MATLAE code canbe
integrated with other languages, enabling you 1o deploy algosithms and applications within web, enterprise, and production systems.

Installation and Configuration

Install Products Update an Exigting Installatisn
Tutorials Interactive Learning
Deskiop Basics —

Enter statements at the command line and view results.

Matrices and Arrays
MATLAR operates primarily on amays and matrices, both in whole and in part A matrix is & two-gimensional array often
used for lineas algsbea

Array Indexing

Variables in MATLAB are typically arrays that can hold many numbers. When you want 10 sccess selected dlements of an MATLAB Onramg

Stay, use indexing Free two-hour onling MATLAB
course

Workspace Variables

The workspace containg vanables that you create within or import into MATLAE from data files or other programs d
Videos

Text and Characters
Create string amays for text. or create character arrays for data
Calling Functions .

Figure 1-3. Getting started with MATLAB and the help library documentation of
MATLAB2022b

Note Before discussing the help options, it is worth highlighting one important
point concerning comments. In MATLAB, users can write all necessary hints and
help remarks as comments within the M/MLX files and in the Command window as
well. Comments need to start with a % sign. There are some other options to add
comments that we will discuss later while writing M/MLX files.

CHAPTER 1 INTRODUCTION TO MATLAB

There are a few other hands-on ways to obtain help. For example, to get quick help
on how to use MATLAB’s built-in function tools and commands including the user-
generated functions, in the Command window a user should type the following:

IS

>> doc size;
>> helpwin size;

% extended help on the command SIZE

help shown in a separate window on the command SIZE
quick help on how to use the command CLEAR

quick help how to use the command ISMATRIX

quick help on "+"

quick help on SIZE

extensive search for a list of functions and files

containing the command SIZE.

%
>> help clear %
>> help matrix; %
>> help + %
>> help size; %
>> lookfor size %

Figure 1-4 and Figure 1-5 show some of the results of the quick and extensive help.
In addition, the application offers broad library resources, product descriptions, video
tutorials, and open public forums on the MATHWORKS website.

>> Beip Lematrin >> LoONTOE siie
lsmatrin True 3 LIAput Ls & matris.
ISmALFIN(M) returms logical I (true) If M 13 AR meDy-n BMATEIN, and
legical O (Ealse) SLh

a tall array Ras Besn
¥: Dressrving size informazicn

See HATLAD Creratocs and Scecisd

»> Belp size
size Size of array.

ding file name and file sid
B the LAPUT
(M.B] = simeiX) for matrix X, returns the number of rovs and columas in astomijgedtring - Abstract Interface for computing Ronstandsrd sives

X as separate cuiput variables, pAks - Returns the size of the Triasgulation mateix

Figure 1-4. Getting help

CHAPTER 1 INTRODUCTION TO MATLAB

b Help 1
@ o b vy @ | [GetStrtedwith MATLAE | size 3| + BEoma0 -

Help Center

@ Other uses of size

Documentation Examples Functions Apps
« Documentation Home

size 2
« MATLAB R2022b
Array size collapse all m page
ge Fundarmentals
« Matrioes and Arrays
stre Syntax
sz = si

Syntax s2dim = dim

Description szdim = diml,dind, ., dimN)
[sz2 zef__)

Examples

Input Arguments

Dutput Arguments Description

Tips sz = size(A) retumns a row vector whose elements are the lengths of the commesponding dimensions of A. For example, ifAisa s

Extended Capabillties 3uby-4 matrix, then size(A) retums the vector [3 4]

Version Histary If A b5 a table or timetable, then size(A) returns a two-element row vector consisting of the number of rows and the number of
table variables.

See Also -
s:dim = size(d,dim) returns the length of dimension dim when din is a positive integer scalar. You can also specify dinasa —
wector of positive integers to guery multiple dimension lengths at a time. For example, size(a,[2 3]) retumns the lengths of the
second and third dimensions of 4 in the 1-by-2 row vector szdim
szdin = size(a,diml,ding,.., diml) retums the lengths of dimensions dinl, dis2,.., disl in the row vector szdia o
[571,...,52N] = size(__) retums the lengths of the queried dimensions of A separately. Lo
Examples collapse ol

~ Size of 4-D Array

Create a random 4-D array and return its size.
Dpen Live Script

Figure 1-5. Extensive help obtained from the >> doc size command

You can search for help in MATLAB using the Command window and using the help,
lookfor, doc, docsearch, and helpwin commands, for example.

e Quick help can be obtained from the Command window with the
help command. Note that in this case, help hints not only from
MATLAB's built-in commands/functions but also within a user’s
created/developed function files are displayed. This is a quick step to

obtain help. Here’s an example to get help with a clock:
>> help clock

o Extensive help with examples will open in the help library window
with the next commands only if such a function (e.g., clock)

file exists:

CHAPTER 1 INTRODUCTION TO MATLAB

>> doc clock
>> docsearch clock

¢ An extended list of M-files containing a searched keyword can be
seen in the Command window with the next help command. Note
that this option is much slower than the other two search options due
to an exhaustive search for a keyword.

>> lookfor clock

o A function file explanation can be visualized in the help library
by using the following command only if such a function file (e.g.,
clock) exists:

>> helpwin clock

o All extended help tips, examples, and command syntaxes can
be viewed from the Help Library (the help browser displayed in
Figure 1-3) that can be accessed by clicking Help menu options.

e The F1 functional key on the keyboard can be used to open the help
browser and help documentation.

o By clicking the Help menu in the Main Menu panel, a user can get
access to various help resources from MathWorks, such as Help
Library resources, web resources, demo examples, updates, trials,
and so forth.

There are numerous hands-on help resources available online, such as the
MathWorks website, academia and the user community’s published scripts and file
exchanges [1], and the MATLAB answers forum [2], where users and developers post
their questions and seek answers or conversely post their answers to posted questions.
Moreover, there are function files, Simulink models, online forums, tutorials of
numerous universities [3], and personal web pages of professors and researchers [4], just
to name a few.

CHAPTER 1 INTRODUCTION TO MATLAB

The MATLAB Environment

Let’s start working in the MATLAB environment by making some changes to its layout
and preferences. We'll use the Layout, Preferences, and Set Path tools located on the
HOME tab. To make changes in the layout (Figure 1-6) from the HOME tab’s main menu,
a user has to click the Layout drop-down option (1), and a whole range of options of
using different windows will be available to choose from. The Desktop window consists
of Command, Command History, Current Directory, and Workspace windows if there
are check marks before those window names. You can separate or drag any of these
windows by clicking the title bar and dragging the window to the new location.

@ Preferences % 4\ Preferences - o x
@ Set Path 4 MATLAB| ~ MATLAB Preferences
Layout A s :::'[?t:sgnu Sel ! th el
o ect an element in the tree to set s pi erences.
e ml Parallel « v Code Analyzer
Colors
ENVIRONMENT o @
Command Window
' Comparison
SELECT LATOUT Current Folder
Editor/Debugger
E Default @ Figure Copy Template
— Fonts
1 Two Column Oenard
1 anbutc Window Minimized b
Help
] command Window Onty Keyboard
Toolbars
Save Layout... Variables

Web

Workspace

SHOW Simulink

Computer Vision System Toolbox
Database Toclbox

Qrganize Layouts...

+" Current Folder

v Workspace Image Acquisition Teolbex

Image Processing Toolbex
v Panel Titles Instrument Contrel Toolbex
MATLAB Compiler
v Tool
il MATLAE Repornt Generator
Command History > Parallel Computing Toolbox
Simicape o,
Quick Access Toolbar >
Current Folder Toolbar > (0 PRY nee

Figure 1-6. Changes in Layout (1) and Preferences (2)
To make changes to Preferences, you either click @) Preferences ;) the main menu or
type the following command in the Command window and press Enter:

>> preferences

Subsequently, the Preferences window (2) shown in Figure 1-6 will pop up. The
directories/paths to the current directory can be altered, and new paths (3) can be added

using the (¥ SetPath G button in the HOME pane, as shown in Figure 1-7.

CHAPTER 1 INTRODUCTION TO MATLAB

You can modify many options and tools including the GUI quick access tools and
Editor/Command window displays from the Preferences window. For instance, you
can adjust the fonts (size, type, color) of the Editor, Command, Workspace, Figure, and
Command History windows and set up keyboard shortcuts, programming tools, and
many more. To display the data tips and highlight the current line in the Editor window,
you choose Preferences » Editor/Debugger » Display and then select Enable Data-Tips
in Edit mode. In addition, many tools can be added to the main menu as shortcuts. Some
of these key customizations in Preferences can also be attained by issuing commands
from the Command window.

4\ SetPath - o b

All changes take effect immediately. @
MATLAB search path:

l Add Folder... i

l C\Users\sulaymon.eshkabilov\OneDrive - North Dakota University System\Doculigd
C:A\Program Files\MATLAB\R2022a\toolbox\matlab\addon_enable_disable_mana
C:\Program Files\MATLAB\R2022a\toclbox\matlab\addon_updates\matlab
C:\Program Files\MATLAB\R20223\toclbox\matlab\addens
C:\Program Files\MATLAB\R2022a\toclbox\matlab\addons\cef
C:\Program Files\MATLAB\R20223\toclbox\matlab\addonsifileexchange
C:\Program Files\MATLAB\R2022a\toclbox\matlab\addons\supportpackages

| Add with Subfolders...

Move to Top C:\Program Files\MATLAB\R2022a\toolbox\matlab\addons_commonimatlab
C:A\Program Files\MATLAB\R2022a\toclbox\matlab\addons_product
Move Up C:\Program Files\MATLAB\R2022a\toolbox\matlab\addons_registry\matlab
C:A\Program Files\MATLAB\R2022a\toclbox\matlab\addressbar_plugins\browse_{
Move Down C:\Program Files\MATLAB\R20222\toclbox\matlab\addressbar_plugins\cd_up_o

CAProgram Files\MATLAB\R2022a\toclbox\matlab\appcontainerappcontainer
C:\Program Files\MATLAB\R2022a\toclbox\matlab\appdesigner\appdesigner
C:\Program Files\MATLAB\R2022a\toclbox\matlab\appdesigner\appdesig
CAProgram Files\MATLAB\R2022a\toclbox\matlab\appdesigner\appdesigneriru
C:\Program Files\MATLAB\R20223\toclbox\matlab\appdesigner\comparisons\mr

C:A\Program Files\MATLAB\R2022a\toclbox\matlab\appdesigner\matiab_integrat ,,

Remove < >

Move to Bottom

=
iy

Save Close . Revet | Default . Help

Figure 1-7. Setting a path (3), adding a folder, and removing a path

Working in the Command Window

Your work in MATLAB generally starts in the Command window, but before you type any
command, it is worth noting the current directory. The current directory address can be
viewed directly from the main window (see Figure 1-8) or by typing this command in the
Command window:

>> pwd

CHAPTER 1 INTRODUCTION TO MATLAB

If required, you can change the current directory using the >> cd command. Here’s
an example:

>> cd C:\Users\David

Or you can click the path’s directory (Figure 1-8) (C: » Users » David).

L Rt | ;l'(:'Use:s'Dmd'Documeats'MMmB' J
Current Folder v
Name
“File -
. ans =

diary =
* File Folder C:\Users\David\Documents\MATLAB
"4AD File fx >[> cd C:\Users\David\]
I rdis Assh .

Figure 1-8. Viewing and changing the current working directory

In addition, you can add a few new paths to work within the working directory;
you do this by using the next command, for instance, to add a path to an already
existing folder:

>> addpath('C:\Users\David\Documents\MATLAB");

The command addpath() might be also helpful within scripts to read or load data
from a specific folder or directory. For short commands and calculations or to view
attributes of the available variables in the workspace and files in the current directory,
you usually use the Command window. However, for a series of commands and longer
scripts, it is much better and more efficient to use script editors, such as M-file and MLX-
file editors.

The MATLAB application has a few files that can be recognized with their extensions.
They are the M, MLX, MAT, BI, and FIG formats. M-files are used to write programs/
scripts/function files, and files (Live M-files) are used to write programs/scripts/function
files and see the computation results within the MLX file Editor window. MAT files are
used to save all types of variables available in the workspace and can be accessed easily
from M/MLX-files and the Command window. Among these files, BI files are used for the
built-in files of MATLAB, and FIG files are used to save figure windows in MATLAB. In
addition, the Simulink application has three types of files: MDL, SLX, and SLXC.

10

CHAPTER 1 INTRODUCTION TO MATLAB

They are used to build and simulate Simulink models and can also be recalled/simulated
from MATLAB without opening them. I will discuss all the essential features of these files
and how to use them in later chapters.

While using the Command window for simple calculations and data generation
or processing, you can press the up-arrow key to avoid retyping the previously
entered commands and entries. For example, if you entered the following in the

Command window:
>> A1 = [1, 2, 4, -5, 6]; B = A+2

and then needed to make changes to these entries, you can use the up-arrow (1) key
after typing >>A and MATLAB will automatically recall the previous entry.

Command Window and Variables

MATLARB is case-sensitive, and all its built-in commands are lowercase. When you
perform computations or evaluations, you call, assign, or declare a name to the result of
computation. The assigned name is the variable name. The result of your computations
are saved in the MATLAB workspace under your given variable names. For example, >>
A =13; B = A*2 means that the variable called A is equal to 13 and the variable called B
is equal to 2 multiplied by A.

Using Variables

Variable names must start with a letter and can be combined with any integer numbers,
such as0, 1, 2, ... 9, and the underscore (_) sign. No other symbols can be used for
variable names. The maximum length of the variable name can be 63 characters in
total. For example, if there are two variables with the same variable names in the

first 63 characters, MATLAB cannot differentiate them any variable. MATLAB treats

the variables a and A as two different variables because of their ANSI/ASCII symbol
conversions. Now let’s get started working in the Command window by entering and
assigning variable names, performing simple some basic arithmetic operations, and
making changes in the output data formats.

>> A=3; B=-2; C=1/2; D = -1.5; ABCD=A"2+B/C+D;
>> ABCD % ";" is missed and the content of the variable ABCD
is displayed
11

CHAPTER 1 INTRODUCTION TO MATLAB

ABCD =

3.5000
>> sqrt(ABCD) % if a variable name is not assigned, "ans" is a default
name by MATLAB
ans =

1.8708

>> ans+1 % if a variable name is not assigned, "ans" will substitute the
previous "ans".
ans =

2.8708

As mentioned, the variable names cannot contain any symbols except for the
underscore and cannot start with numbers or symbols. Here are a few examples of
incorrect variable names starting with a number or a symbol and containing forbidden
symbols:

>> % Wrong variable names
Did you mean:
>> 3A=2.8708
3A=2.8708
T
Invalid expression. Check for missing multiplication operator, missing or
unbalanced delimiters, or other syntax error. To construct matrices, use
brackets instead of parentheses.
Did you mean:
>> @A=2.8708

@A=2.8708
T
Incorrect use of '=' operator. Assign a value to a variable using '=' and
compare values for equality using '==".
>> A$=2.8708
A$=2.8708
T

Error: Invalid text character. Check for unsupported symbol, invisible
character, or pasting of non-ASCII characters.
>> A#B=2.8708

12

CHAPTER 1 INTRODUCTION TO MATLAB

A#B=2.8708

T
Error: Invalid text character. Check for unsupported symbol, invisible
character, or pasting of non-ASCII characters.

The results of the user entries are displayed in the Command window and can be
altered using these display format options: format long, format short, format long g,
format bank, format hexadecimal, format rational, etc. Here are some examples for
format options. When you change the display format types, the actual variable values do
not change.

>> A=3; B=-2; (C=1/2; D = -1.5;
>> ABCD=A"2+B/C+D;
>> format bank

>> ABCD
ABCD =
3.50
>> format long eng
>> ABCD
ABCD =

3.50000000000000e+000
>> sqrt(ABCD)
ans =
1.87082869338697€+000
>> format short
>> sqrt(ABCD)
ans =
1.8708
>> format bank
>> sqrt(ABCD)
ans =
1.87
>> format long eng
>> sqrt(ABCD)
ans =
1.87082869338697€+000

13

CHAPTER 1 INTRODUCTION TO MATLAB

>> format compact
>> sqrt(ABCD)
ans =
1.87082869338697e+000
>> format rat
>> sqrt(ABCD)
ans =
1738/929
>> format hex
>> sqrt(ABCD)
ans =
3ffdeeeal1168349

Note MATLAB is case sensitive, and thus, it recognizes the variables called a and
A as two different variables.

After entering one or two or more starting letters in the variable names or built-in
commands/function names in the Command window, you can use the Tab key from the
keyboard and then all available commands/functions including your developed function
files. For example, if you typed >> AB and then pressed the Tab key, the rest of the ABCD
variable calculation expression would appear as an option.

Another useful feature of the Command window is using the keyboard’s up-arrow
(1) key to recall previously typed variables or commands. You simply type a few starting
letters of any previously typed commands or function names and then press the up-
arrow, asin (1) >> f1, thatrecalls the previously typed command: >> format long.
Moreover, the up-arrow (1) key can be associated with the Tab key to recall previously
entered commands in the Command window.

The values and attributes of all entered variables in the Command window will be
saved in the workspace until a user cleans up the workspace by deleting the variables
with the command clear or clearvars or clear all or by using the right and left
mouse button options by selecting the variables and deleting them. In addition, all of
the variables and their attributes are saved in the workspace until the MATLAB package
is closed.

There are three common commands for housekeeping in MATLAB.

14

CHAPTER 1 INTRODUCTION TO MATLAB

e clc: For cleaning up the Command window and starting a blank
Command window

e clear and clearvars: For removing all variables saved in the
workspace

e clear all: For removing all variables and temporarily compiled and
saved machine codes of M-files, breakpoints, and debug settings

All of these commands can be also used with M-files and MLX-files. It must be noted
that the command clear all is not recommended to use within M-files and MLX-
files unless it is necessary, because it will decrease the efficiency of code/scripts and
unwanted behaviors of our created M-files when you declare to the command clear
global. Let’s look at some ways to employ these commands efficiently.

>> A=3; B=-2; C=1/2; D = -1.5; ABCD=A"2+B/C+D;

>> clear % Removes all of the entries in the workspace and
workspace becomes all blank
>> clearvars % The same as "clear"

>> clear variables % The same as "clearvars"

>> clear all % The same as "clear" and also removes already
compiled codes as well

>> clear AB CD % Removes variables: A B C D and leaves ABCD untouched

>> A=3; B=-2; C=1/2; D = -1.5; ABCD=A"2+B/C+D;

>> clearvars -except A B C % Removes all variables except for: A B C

MATLAB can use a wildcard asterisk (*) for variables and filenames. For example,
to remove all variables whose names start with the letter A, then you would use the
following command:

>> A=3; B=-2; C=1/2; D = -1.5; ABC=A"2+B/C; ABC=A"2+B*C+D;

>> clear A* % Removes all variables starting with A, i.e. A, ABC,
ABCD are removed

>> clearvars A* 7% The same as: clear A*

All entered and saved variable names can be viewed from the Workspace window by
typing the who or whos command. Here’s an example:

>> A=3; B=-2; C=1/2; D = -1.5; ABCD=A"2+B/C+D; ABC=A"2+B*(;
>> who % Variable names

15

CHAPTER 1 INTRODUCTION TO MATLAB

A B C D ABCD ABC

>> whos % Variable names including their attributes
Name Size Bytes Class Attributes

A 1x1 8 double

ABC 1x1 8 double

ABCD 1x1 8 double

B 1x1 8 double

C 1x1 8 double

D 1x1 8 double

From these examples, it is clear that MATLAB reads every entry as an array/matrix.
For example, a scalar is read by MATLAB as an array of size 1-by-1. This attribute
of MATLARB is logically linked with its name MATrix LABoratory. MATLAB's default
storage (memory allocation) is double precision, which is the maximum available space
allocated. However, for memory efficiency and faster calculation purposes, other storage
formats can be also used. MATLAB supports single precision or integer type int8...64 or
uint8...64 formats. Table 1-1 shows how much data can be saved in every storage class
type and what conversion function is used in MATLAB for each type.

Note MATLAB’s default storage type is a double. However, that can be changed
into single precision or integer types such as int8...64 or uint8...uint64 by
specifying or converting the values of variables/data.

Table 1-1. Data Storage Format Types in MATLAB

Class Range of Values Conversion Function
Signed 8-bit integer =277 to 2°7-1 int8

Signed 16-bit integer -2715 to 2715-1 int16

Signed 32-bit integer -2731to02731-1 int32

Signed 64-bit integer -27631t02263-1 int64

Unsigned 8-bit integer 0to 278-1 uint8

Unsigned 16-bit integer 0to2716-1 uintl6

Unsigned 32-bit integer 0to2732-1 uint32

Unsigned 64-bit integer 0to 2464-1 uint64

16

CHAPTER 1 INTRODUCTION TO MATLAB

When you have numerical data in a floating-point format, the double precision
storage gives you the largest storage space for higher accuracy. Double precision
can save up to 16 decimal digits. The double precision is the default storage format
in MATLAB.

The single precision storage for floating-point data is more memory efficient and less
accurate than the double precision. If only integers are used in your calculations or data
processing, then it is more appropriate to use int8...int64 or uint8...uint64 depending on
the largest value of your data. Here are some examples of how to specify the storage type
while saving the values of the declared variables:

>> F01=127;Fint_08=int8(F01), Fnewl = Fint 08+1
Fint 08 =

int8

127

Fnew =

int8

127

>> F16=65535; Fint 16=uint16(F16), Fnew2 = Fint_16+1
Fint 16 =

uinti16

65535

Fnew2 =

uinti16

65535

In calculations of the variables Fnewl and Fnew2 from the int8- and uint16-formatted
variable values, the allocated storage space (i.e., for the int8 maximum allocated storage
space is 127 = 27 — 1 and for uint16 it is 65535 = 2!° — 1) cannot accommodate any more
values. Therefore, these errors in calculations have taken place. Note that in such cases
MATLAB does not show an error. Figure 1-9 shows all data storage types and data
formats supported in MATLAB.

17

CHAPTER 1 INTRODUCTION TO MATLAB

N-dimensional

Heterogeneous

array
Container

I |
1 1
Boolean N . TEXT Function
(Logical) umeric (Char) Handle
: —
1

Index
. . l Name Based \
Floating Point STRUCTURE bgsed

Single Signed Unsigned

Double PRECISION
PRECISION
(by default)

int8 uint8

intl6 uintl6

int32 uint32

int64 uint64

halielk]
lalahkl

Figure 1-9. Data storage options in MATLAB

The Command History window is a good way to review all of the entries that will be
kept unless you delete them. You can also change settings in the Preferences window to
clear the history of entries after ending the session.

Finally, you can exit from MATLAB or quit the work session via one of these
commands in the Command window:

>> exit
>> quit

Or press Ctrl+Q to quit.

18

CHAPTER 1 INTRODUCTION TO MATLAB

An alternative is to click the X in the upper-right corner of the main window. This will

close the whole package.

When to Use the Command Window

Use the Command window in these instances:

To perform short calculations

To view error and warning messages from the typed-in commands or
after executing M-file and MLX-file and SLX/MDL Simulink models

To view attributes of variables saved in the workspace and files in the
current directory

To view contents of the MATLAB-compatible files

To execute MATLAB files, such as M-files, MLX-files, SLX/MDL-files,
and MAT-files

To get hands-on and quick help on the syntaxes of MATLAB com-
mands/functions and user-created function files

To adjust display formats of numerical data
To add/remove a path/directory

To create/delete or save variables and files

Let’s look at several examples to show other operations you can perform in the

Command window.

To view and analyze some common errors and interpret the error
messages, use this:

>> F16=65535; Fint 16=uint16(F16); Fnew2 = Fint 16+1;
>> Fnew+2 % The variable Fnew does not exist in the workspace
Undefined function or variable 'Fnew'.

>> clar F16 % Typo error: "clar" instead of "clear"

Undefined function or variable 'clar’.
>> CLear % Typo error: "CLear" instead of "clear". Note: MATLAB case-
sensitive

19

CHAPTER 1 INTRODUCTION TO MATLAB

Undefined function or variable 'Clear'.
Did you mean:

>> clear % MATLAB automatically suggests closest command's correct syntax
>> B=-2; C=1/2; BC=B/.C; % Illegal operation: B/.C instead of B/C;

B=-2; C=1/2; BC=B/.C;

T

Error: Unexpected MATLAB operator.

>> B=-2; C=1/2; BC=B /*C; % Illegal operation: B/*C instead of B/C;
B=-2; C=1/2; BC=B /*C;

T

Error: Invalid use of operator.

>> % Let's create a two-row matrix containing two elements, viz. B, C in
the >> % first row and F16 in the second row.

>> BCF = [B, C; F16] % Number of elements in row 1 does not match with the
ones in row 2

Error using vertcat

Dimensions of arrays being concatenated are not consistent.

>> % Let's try to create a row matrix with elements separated with ","
and >> % space and "."

>> BCF = [B, C. F16] % Error is a misused "." instead of "," but not dot
indexing as shown

Dot indexing is not supported for variables of this type.

>> BCF = [B, C, F16] % This is the anticipated correct command.

o To save the variables saved in the Workspace window in a *.mat file,
use this:

>> save MYdata.mat % Saves all variables residing in the workspace in
MYdata.mat file

>> save('MYdata.mat') % The same as above

>> save MYdata.mat F16 Fnew2 % Saves the variables F16, Fnew2 in MYdata.
mat file

>> save('MYdata.mat', 'F16 ', 'Fnew2 ') % The same as above

>> save MYdata.mat F* % Saves all variables whose name starts with F (in
the workspace)

20

CHAPTER 1 INTRODUCTION TO MATLAB
e To obtain quick help, use this:

>> help format

format Set output format.

format with no inputs sets the output format to the default appropriate
for the class of the variable. For float variables, the default is
format SHORT. ...
>> help dir

dir List directory.

dir directory name lists the files in a directory. Pathnames and
asterisk wildcards may be used. A single asterisk in the path touching
>> help what

what List MATLAB-specific files in directory.

The command what, by itself, lists the MATLAB specific files found ...
>> help which

--- help for which ---

which Locate functions and files.

which ITEM displays the full path for ITEM. ITEM can include a partial
path, complete path, relative path, or no path. If ITEM includes a
partial path or no path, ...

e Toview MATLAB-compatible files, use this:

>> type 000.txt % Note: the file Q0Q.txt was available in the current
directory

CY bBb 88
AH AAAA+ 98
CWW AAAA+ 98

>> type MYfile.mlx % Note: the file MYfile.mlx was available in the current
directory

N=13;
M=randi(N,9);
stairs(M, 'bd-')

21

CHAPTER 1 INTRODUCTION TO MATLAB

>> type myfun.m % Note: the file myfun.m was available in the current
directory

function f=myfun(x)
f=[2*x(1)-x(2)-exp(-x(1));

-x(1)+2*x(2)-exp(-x(2))];
end

o To create, open, and execute the MATLAB files, such as M-files, MLX-
files, MDL/MLX-files, and MAT-files, use this:

>> edit TRY1.m % To create a new M-file called TRY1.mlx

>> edit MYfile.mlx % To create a new MLX-file called MYfile.mlx

>> open('TRY1.m") % To open the file if it is residing in the current
directory

>> run('\...\TRY1.m") % Directory and a file name is needed, if it is
outside of the current dir.

>> TRY1 % To execute the file if it is residing in the current directory
>> open('MYfile.mlx') % To open the file if it is residing in the current
directory

>> Myfile % To execute the file if it is residing in the current directory
>> load MYdata.mat % Load contents of MYdata.mat (existing in the current
directory)

>> load('MYdata.mat') % The same as above

o To delete any files in the current directory or variables residing in the
workspace, use the following:

Warning Be careful when using the delete command because it deletes files
that cannot be recovered.

>> delete TRY1.m % Deletes the file TRY1.m residing in the current
directory

>> delete MYfile.mlx % Deletes the file MYfile.mlx residing in the current
directory

22

CHAPTER 1 INTRODUCTION TO MATLAB

>> delete 000.txt % Deletes the file Q0Q.txt residing in the current
directory

>> delete *.txt % Deletes all *.txt files in the current directory

>> delete *.mlx % Deletes all *.mlx files in the current directory

>> delete DA*.txt % Deletes all *.txt files whose name starts with DA...
>> delete *.asv % Deletes all *.asv files (autosave) of MATLAB in the

current directory

o To view the current directory, change a directory, create a new
directory, and remove a directory from the MATLAB path, use this:

>> MD = pwd % Shows the current directory and assigns to a character type
of variable: MD

>> cd C:\Users\sulaymon.eshkabilov\Documents\MATLAB % Change to this
directory

>> cd('C:\Users\sulaymon.eshkabilov\Documents\MATLAB') % The same as above
>> mkdir MYBook % Creates a new folder (directory) inside the current
directory

>> mkdir('MYBook') % The same as above

>> mkdir c:\Users\sulaymon.eshkabilov\BOOK % The same as above with a
full path

>> addpath C:\Documents % Adds this path (C:\Documents) to the

MATLAB's search

>> addpath('C:\Documents') % The same as above

>> rmdir('MYtask') % Removes the directory (folder: MYtask) including its
contents from the hard disk

>> rmdir c:\Users\sulaymon.eshkabilov\TASK % Removes the directory: TASK

Note MATLAB supports wildcards (via the asterisk, *) when deleting and saving
files and variables in the current directory and workspace. For example, >>
delete M*.mat deletes all *.mat files whose name starts with M. >> save
MYdata.mat B* saves all variables whose name starts with B. >> clearvars
A* clears all variables whose name starts with A.

23

CHAPTER 1 INTRODUCTION TO MATLAB

Many of the operations performed in the Command window, such as performing
calculations and analyses and viewing variables or file contents, can be also done by
other ways. For example, most of the previously listed operations carried out in the
Command window can be also done via GUI tools, such as creating new variables
g New Versble o1 deleting them) Clear Workspace v . opening them 2 e Vanasie =

a’ 53}

tew New
Similarly, creating any MATLAB files with "= or M-files with % or opening existing

-

MATLARB files with = GUI tools can be attained; and deleting the files can be done via
right and left mouse button options, which is standard for Windows file manipulation
operations. Viewing the current directory or changing it can be done also
with. @® @38 » C: » Users »

One of the most essential functions of the Command window that cannot be done
easily with GUI tools or other options is to view error and warning messages obtained
while and after executing M-files, MLX-files, and MDL/SLX-files. This is essential for
good programming. Another good use of the Command window is to obtain quick help
on the syntax of MATLAB commands/functions.

Different Variables and Data Sets in MATLAB

MATLAB supports a few different data types, which can be numeric, character, logical,
table, cell, structure, and function handle. The flowchart in Figure 1-10 shows the
hierarchy of all data types that are supported in MATLAB and can be used for data
storage. In the flow, there is one point worth mentioning, which is that function handles
can also take vectors (row or column vectors) as well as scalar numbers.

As stated, MATLAB reads every entry (numerical and character types) as an array,
and in the case of a storage type that is not specified, the default storage type is always
double. Let’s look at several examples of how to generate various data types supported
and recognized in MATLAB. We'll work in the following order:

e Numerical data
o Logical arrays
o Character arrays/variables

o Table arrays

24

CHAPTER 1 INTRODUCTION TO MATLAB
e Cellarrays
o Structure arrays
o Function handles
e C(lasses and graphic handles

Matrix or Array Scalar
(full or sparse)

function
logical char numeric table cell struct handle (@)

\/ abc '{ } _E @

int8, uint8, single double
intl6, uintls,
int32, uint32,
int64, uint64

Figure 1-10. Types of data (array) sets supported in MATLAB

While demonstrating how to generate these arrays, all of the created variable/arrays
types will be preserved up until the end of this section. Therefore, all variables/arrays
are created once and preserved from all examples. Note that in some of the examples to
generate random matrices, we employ random number generators of MATLAB, which
will create different random numbers every time they are called. However, to have
consistent random values for reproducibility purposes for variables and arrays, we set
up the seed value of the random number generator: rng(). With the fixed seed value,
the random number generators (rand(), randi(), randn(), and so forth) will generate
permanent/fixed random values every time they are called.

25

CHAPTER 1 INTRODUCTION TO MATLAB

Numerical Data/Arrays

There are many different ways to create and generate numerical arrays. For example,
you can use direct entries from the Command window by typing all numerical values
of an array and generating numerical entries using built-in functions and commands.
Also, data can be imported from another file (.mat, . txt, .dat, .x1s, .x1sx, .csv,
.jpeg, .tiff, .png, .pdf, .au, etc.) or generated using existing data or imported data
in MATLAB. Data can also be computed using specific mathematical expressions and
arithmetic/matrix operations.

>> format short % To display numerical elements of arrays in a
short format

>> A = 2; B = -3.25; C=(A+B)"2; % Entries and arithmetic operations.
>> ABC=[A, B, C] % Use of Existing Data: 1-by-3 array
ABC =

2.0000 -3.2500 1.5625
>> Drow=[1, 2, 3, -4] % Just entry: row array. Comma "," element
separator in it.
Drow =

1 2 3 -4
>> Erow=[-2 -1 0 Drow] % Entry and Use of existing data: Row Array. Space
is a separator.

Erow =
-2 -1 0 1 2 3 -4
>> Fcol=[1; 2; 3; -4] % Entry: Column Array. Elements are separated
with ";".
Fcol =
1
2
3
-4

>> DE = [2*Drow; (3/4)*Drow] % Use of Existing Data and arithmetic
operations: 2-by-4 array
DE =

2.0000 4.0000 6.0000 -8.0000

0.7500 1.5000 2.2500 -3.0000

26

An alternative way of generating numerical arrays/data is to employ the built-in
array generator functions of MATLAB.

>> Aone=ones(2, 6) % 2-by-6 array generated with elements of 1

Aone =
1 1
1 1

>> Bzero=zeros(5, 6) % 5-by-6 array generated with elements of 0

Bzero =
0000O00O
000O0O0O
0000O00O
0000O00O
000O0O0O

1
1

1
1

1
1

CHAPTER 1

>> Ceye=eye(6) % 6-by-6 eye matrix array generated

Ceye =
1.0000000
1.000000
01.00000
001.0000
0001.00 0
0000 1.00

O O O ©o o

>> Seed = 1; rng(Seed);

% Seed value of the random number generator

rng() is set up in order to

>> Dr1 =rand(9,
generated
Dr1 =
.4170
.7203
.0001
.3023
.1468
.0923
.1863
-3456
3968

O O O O ©O O o o o
O O O O ©O o o o o

5)

.5388
.4192
.6852
.2045
.8781
.0274
.6705
4173
.5587

% generate fixed random numbers

INTRODUCTION TO MATLAB

% 9-by-5 array of uniform distributed random numbers

O O O O O O o o o

.1404
.1981
. 8007
.9683
.3134
.6923
.8764
.8946
.0850

O O O O O O o o o

.0391
.1698
.8781
.0983
4211
.9579
.5332
.6919
3155

O O O O ©O O O o o

.6865
.8346
.0183
. 7501
.9889
.7482
.2804
.7893
.1032

27

CHAPTER 1 INTRODUCTION TO MATLAB

>> Dr2 =randn(4, 6) % 4-by-6 array of normally distributed random numbers
generated
Dr2 =

-0.1551 -1.1714 -0.5581 -2.0187 -0.4852 0.0407

0.6121 -0.6856 -0.0285 0.1997 0.5943 0.2830

-1.0443 0.9262 -1.4763 0.4259 -0.2765 0.0636

-0.3456 -1.4817 0.2589 -1.2700 -1.8576 0.4334
>> Dr3 =randi([-5, 5], 5,5) % 5-by-5 array of integer numbers ranging
between -5 ... 5
>> Dr3 =randi([-5, 5], 5,5)

D13 =
-1 2 -3 1
4 -4 4 4 -4
-4 5 1 -1 5
-4 -2 3 5 -1
3 3 -2 2 1

Note that I have set up the seed value of the random number generator to generate
the consistent values from the random number generators, such as rand(), randn(), and
randi().

Moreover, there are many other standard matrix/array generators built into
MATLAB, e.g., pascal(), krylov(), leslie(), cauchy(), clement(), lesp(), poisson(),
neumann(), etc. To get some help on syntaxes of these array generators, type in the
Command window:

>> help gallery
>> doc gallery

It must be noted that all these generated numerical entries/arrays are saved
in double precision format. Changing the storage format type of any these created
variables’ data is quite simple and straightforward.

>> Dr3new=int8(Dr3) % Dr3new is Saved in int8
Dr3new =
5x5 int8 matrix
1 -1 2 -3 1
4 -4 4 4 -4

28

CHAPTER 1 INTRODUCTION TO MATLAB

-4 5 1 -1 5
-4 -2 3 5 -1
3 3 -2 2 1
>> Dr2new=single(Dr3) % Dr2new is Saved in a single precision
Dr2new =
5x5 single matrix
1 -1 2 -3 1
4 -4 4 4 -4
-4 5 1 -1 5
-4 -2 3 5 -1
3 3 -2 2 1
>> AlNew=uint8(Aone) % Alnew is Saved in uint8
AlNew =
2x6 uint8 matrix
1 1 1 1 1 1
1 1 1 1 1 1

Now it is time to check the attributes/properties of the numerical entries created in
the Command window and saved in the workspace. You can view them by typing the

command whos command or viewing directly from the Workspace window, as shown in

Figure 1-11.
>> whos
Name Size Bytes Class Attributes
 —

A 1x1 8 double Bl a Value
AlNew 2x6 12 wint8 A 2
ABC 1x3 24 double L AlNew 2x6 uint8
Aone 2x6 96 double HHABC [2,-3.2500,1.5625]
B 1x1 8 double H Aone 2x6 double
C 1x1 8 double B -3.2500
DE 2x4 64 double 5 C 1.5625
Drl 95 360 ‘double - DE [2,4,6,-8;0.7500,1.5000,2.2500,-3]
D2 4s6 192 double Dl x5 double
Dr2new 5x5 100 single D 4x6 d_oub!e
D3 555 200 double P o S5 aingie

_ i =8 -5 D13 5x5 double
Dri3new 5x5 25 1nt8 H De3new 5x5 int8
Drow 1x4 32 double H Drow 1,2,3,-4]
Erow 1x7 56 double [Erow [-2,-1,0,1,2,3,-4]
Fcol 4x1 32 double - Fcol [1;2;3;-4]

Figure 1-11. Created numerical data types and variables residing in the
workspace

29

CHAPTER 1 INTRODUCTION TO MATLAB

The most used data type in MATLAB is the numerical array. Therefore, it is essential
to learn how to work with arrays of different sizes (many rows and many columns).
To work with arrays, you should understand how to properly locate addresses of array
elements, rows, and columns. Arrays are read as rows by columns. For example, >>
DE(2, 1) means we are taking the element of DE residing on a second row and first
column, i.e., 0.7500. As another example, >> DE(1, 4) means we have selected the
element of DE residing on a first row and fourth columns, i.e., -8.

>> DE
DE =
2.0000 4.0000 6.0000 -8.0000
0.7500 1.5000 2.2500 -3.0000
>> DE(2,1)
ans =
0.7500
>> DE(1,4)
ans =
-8

Thus, an element in any array can be located with respect to the row and column.
The colon operator (:) is very helpful to select all elements along rows or columns or
both. For example, >> DE(1, :) selects all elements residing on the first row of DE, i.e.,
[2,4,6-8],and DE(:, 3) selects all elements residing on the third column of D, i.e.,
[6; 2.25].

>> DE(1, :)
ans =
2 4 6 -8
>> DE(:, 3)
ans =
6.0000
2.2500

You can use the colon (:) operator to select all elements of matrices or arrays. For
example, >> E(:,:) is equivalent to DE. The end keyword enables you to select elements
up to the last one. For example, >> DE(1, 1:end) is equivalentto >> DE(1, :).

30

CHAPTER 1 INTRODUCTION TO MATLAB

>> DE(1, 1:end)

ans =
2 4 6 -8

>> DE(1, :)

ans =

2 4 6 -8

Another example of how to select elements of matrices is Dr3new; the element
residing in a second row and first column is 0. An alternative way of locating any element
in any given array is the order count. Elements in arrays are counted on a column
basis. For example, the order of the element number 2 in Dr3new will be 0, or element
number 6 in Dr3new is 2. Note that I have used the random number generator to create
Dr3new, and thus, your created Dr3new will differ. Again, let’s look at several examples to
manipulate arrays based on the previously created arrays, namely, Dr3new and Dr1.

>> Dr3new
Dr3new =
5x5 int8 matrix
3 -5 0 1 -3
3 -5 1 5 3
5 -5 4 1 -1
2 -3 -4 -5 4
-4 4 -2 3 3
>> Dr3new(2,1)
ans =
int8
3
>>Dr3new(2)
int8
3
>> Dr3new(6)
int8
-5
>>Dr3new(2, :) = 0 % This makes a second row of elements equal to 0
5x5 int8 matrix
3 -5 0 1 -3
0 0 0 0 0
31

CHAPTER 1 INTRODUCTION TO MATLAB

-4 4 -2 3 3

>> Dr3new(:,5)=1 % This makes fifth column of elements equal to 1
Dr3new =
5x5 int8 matrix
3 -5 0 1
0 0] 0 0

(9]
1
(9]
S
=
L = N = N N

>> Dr3new(end,:)=-5 % This makes the last row of elements equal to -5
Dr3new =
5x5 int8 matrix

o
o
o
o
L N N =

>> Dr2new(1:5, 4:5)=2+2 % This makes the last two columns of elements
equal to 4
Dr2new =

5x5 single matrix

3 -5 0 4 4
3 -5 1 4 4
5 -5 4 4 4
2 -3 -4 4 4
-4 4 -2 4 4

>> Dr1(9, :)=[] % The last row elements are removed
>> Dr1(9,:) =[]
Dr1 =
0.4479 0.4916 0.4142 0.1393 0.6237
0.9086 0.0534 0.0500 0.8074 0.7509

32

CHAPTER 1 INTRODUCTION TO MATLAB

0.2936 0.5741 0.5359 0.3977 0.3489
0.2878 0.1467 0.6638 0.1654 0.2699
0.1300 0.5893 0.5149 0.9275 0.8959
0.0194 0.6998 0.9446 0.3478 0.4281
0.6788 0.1023 0.5866 0.7508 0.9648
0.2116 0.4141 0.9034 0.7260 0.6634

>> Dra(:, 4)=[] % The fourth column elements are removed
Dr1 =

0.4479 0.4916 0.4142 0.6237
0.9086 0.0534 0.0500 0.7509
0.2936 0.5741 0.5359 0.3489
0.2878 0.1467 0.6638 0.2699
0.1300 0.5893 0.5149 0.8959
0.0194 0.6998 0.9446 0.4281
0.6788 0.1023 0.5866 0.9648
0.2116 0.4141 0.9034 0.6634

In addition, you can create a new array from the elements of the existing arrays.
Here’s an example:

>> NewDr = [Dr1(1:3), Dr2new(1:3, 2:4)] % Some elements of Dri and Dr2new
are taken
NewDr =
3x7 single matrix
Columns 1 through 6
0.4170 0.5388 0.1404 0.6865 -1.0000 2.0000
0.7203 0.4192 0.1981 0.8346 -4.0000 4.0000
0.0001 0.6852 0.8007 0.0183 5.0000 1.0000
Column 7
4.0000
4.0000
4.0000

>> NewDr2 = [Dr3new(:,:); Dr2new(2:end, :)] % All elements of Dr3new and
some from Dr2new

33

CHAPTER 1 INTRODUCTION TO MATLAB

NewDr2 =
9x5 int8 matrix

1 -1 2 -3 1
o 0o o 0 1
-4 5 1 -1 1
4 -2 3 5 1
-5 -5 -5 -5 -5
4 -4 4 4 4
4 5 1 4 4
-4 -2 3 4 4
33 -2 4 4

Note in these examples, the colon (:) is one of the essential operators in managing
and manipulating matrix and array elements. For example, NewDr (2, :) is equivalent
to NewDr (2, 1:end).Both select all the elements along row 2. Likewise, NewDr (:, :)is
equal to NewDr(1:end, 1:end). They both select all elements starting from the first one
up to the last one.

These are a few examples of how to create arrays in the Command window. As
stated, numerical arrays can be imported from other formatted data files, such as *.dat,
*.txt, *.x1s, *.x1sx, and *.csv, as well as image, audio and video files, such as *. jpg,
*.tif, *.eps, *.png, *.bmp, *.wav, *.au, *.aif, *.mp3, *.mp4, *.o0gg, etc.

Not a Number

While working and processing different data sets and analyzing experimental data, it is
quite common to work with the not-a-number (NaN) values. NaN is the result of 0/0.
There are also many other cases when NaN can be generated by MATLAB. The NaN is
also present when some data is missing in the imported data set. So, how do you handle
and work with NaN values in numerical arrays? There are a few ready-to-use functions/
tools of MATLAB to handle the NaN. Let’s take the following examples:

% Given:
A var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10 -1 NaN]
A var =

34

CHAPTER 1 INTRODUCTION TO MATLAB

-8 10 NaN 9 4 -4 -7
9 NaN 9 4 -10 9 O
-8 10 NaN 5 -10 -1 NaN

How do you compute the summation of the given numerical array, A_var? Note that
sum() computes the sum of columns of a matrix if the matrix has more than one row and
column. If the matrix is the row matrix, then it computes the sum of all row elements.

>> sum(A_var)
ans =
-7 NaN NaN 18 -16 4 NaN

Sometimes, you may need to remove NaN from our data. For instance, let’s say
you are analyzing measured data with some missing points (NalN). You would need to
remove the NaN from our data. How do you address this problem?

One solution is to remove all NaN components of the array A_var and substitute
them with 0. Otherwise, the summation will not give numerical results. You can
substitute all NaN components using element-wise substitution, one by one. Or you can
do it with a single command by recalling the indexes of all NaN components.

>> A var(5)=0 % Element by element change
A var =

-8 10 NaN 9 4 -4 -7

9094-1090

-8 10 NaN 5 -10 -1 NaN

>> A var([7 9 21])=[0, 0, 0] % All at once or % A var([7 9 21])=0
A_var =

-81009 4 -4 -7

9094 -1090

-81005 -10 -1 0

Now the summation can be performed:

>> sum(A_var)
ans =
-7 20 9 18 -16 4 -7

35

CHAPTER 1 INTRODUCTION TO MATLAB

This answer is correct. This approach is quite straightforward, but for very large data
sets it will become very tedious and too time-consuming or might be impossible.

Note You can assign new values to some selected elements/components of
arrays element by element or all at once by specifying the indexes (e.g., A_var
([7 9 21])=[0 0 0]) of the elements/components or using MATLAB’s built-in
function isnan() (e.g., A var(isnan(A var))=0).

Here is a second solution. nansum() is the MATLAB built-in function that handles the
summation of numerical arrays with NaN components (elements).

>> A var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10 -1 NaN]
A var =
-8 10 NaN 9 4 -4 -7
9NaN 94 -109 0
-8 10 NaN 5 -10 -1 NaN
>> nansum(A var)
ans =
-7 20 9 18 -16 4 -7

An alternative solution to nansum() is using sum()) with an option of omitnan.

>> A var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10
-1 NaN];

>> sum(A _var, 'omitnan')

-7 20 9 18 -16 4 -7

Note that here using the omitnan option in sum() and nansum(), all NaN values are
substituted with 0.

Moreover, there are several other MATLAB functions to compute mean values,
standard deviations, covariance values, etc., of numerical data arrays with NaN elements.

36

CHAPTER 1 INTRODUCTION TO MATLAB

Note You can use the following MATLAB functions to compute maximum, mean,
median, minimum, standard deviations, and variance values of a numerical array
containing NaN elements: nanmax (), nanmean(), nanmedian(), nanmin(),
nanstd(), and nanvar(). They work by ignoring all of the NaN elements in the
given array.

There is also a third way, by using logical indexing with MATLAB's built-in function
isnan(). It is widely employed when working with large data sets to sum the data,
compute mean or average values, plot the values, and perform some other arithmetical
matrix/array operations.

>> Indexl=isnan(A var) % Finds which elements of A var are NaN and sets
them equal to 1
Index1 =

3x7 logical array

0010000

0100000

0010001
>> A var(Index1)=0 % Assigning all NaN elements to "0"
A_var =

-81009 4 -4 -7

9094-1090

-81005 -10 -1 0

>> sum(A_var)
ans =

-7 20 9 18 -16 4 -7

Here is another shorter way of using isnan() to find all NaN components of arrays
and assign them equal to 0.

>> A var = [-8 10 NaN 9 4 -4 -7; 9 NaN 9 4 -10 9 0; -8 10 NaN 5 -10
-1 NaNJ;
>> A var(isnan(A var)) = 0

37

CHAPTER 1 INTRODUCTION TO MATLAB

A var =
-81009 4 -4 -7
9094-1090
-810 05 -10 -1 0

Here the function isnan() identifies which elements of A_var are NaN and which
ones are not. The new logical array called Index contains 1s and 0s. The 1s represent
NaN elements, and the 0s represent all other numerical elements.

There is an alternative logical indexing function introduced in recent versions
of MATLAB: ismissing(). It is used to identify any missing data elements in

numerical arrays.

Index2=ismissing(A var) %Identifies all missing elements hidden behind NaN
Index2 =

3x7 logical array

0010000

0100000

0010001
>> A var(Index2) % Viewing the missing element values
ans =

NaN

NaN

NaN

NaN

>> A var(Index2)=0 % Assigning the missing elements equal to O
A var =

-81009 4 -4 -7

9094-1090

-81005 -10 -1 0

Note There are some differences in detecting NaN values using isnan() and
ismissing(). If the variable containing NaN (some missing data) is a timetable-
type array, ismissing() cannot detect NaN (also NaT) or ignores missing time
data in the row vector of times.

38

CHAPTER 1 INTRODUCTION TO MATLAB

The logical indexing approach is very efficient and flexible and can be applied for
many other cases as well. For instance, you can easily identify all negative elements
of a given data set or all elements within certain value ranges. Let’s take the following
numerical array (of size 7 - by -7) generated by randi() to separate out all elements that
are greater than 3 but smaller than 9 and equate all them to 5.

>> B var = randi([0, 25], 7) % Create uniform distributed integers within
[0, 25] of 7-by-7 size
B var =

251 17 21 1 11 12

18 13 13 2 10 0 8

13 2 25 3 13 25 24

12 21 16 4 10 4 23
121 20 10 17 2 1

17 18 11 21 16 9 19
131120756

>> IndexB = find(B var>3 & B var<9)
IndexB =

25

35

39

42

44

49

>> B_var(IndexB)=5

B var =

25 1 17 21 1 11 12

18 13 13 2 10 0 5

13 2 25 3 13 25 24

12 21 16 5 10 5 23
121 20 10 17 2 1

17 18 11 21 16 9 19
131120555

39

CHAPTER 1 INTRODUCTION TO MATLAB

Note Logical indexing is a very powerful and efficient tool in identifying the
certain elements of numerical data sets/arrays/matrices according to their values
and then assigning them new values.

Character Type of Variables

MATLAB can recognize characters based on ASCII/ANSI character symbols in the form
of numerical arrays. Here’s an example:

>> Achl = 'matlab’ % Character type of variable
Ach1l =
" matlab '
>> Bch2 = ' mathworks ' % Character type of variable
Bch2 =

mathworks
>> Cch3= " matlab belongs to mathworks ' % Character type of variable
Cch3 =

‘matlab belongs to mathworks'
>> Dch4 = "www.mathworks.com' % Character type of variable
Dch4 =

" www.mathworks.com '

These are character types of variables, but when the arithmetical operations are
performed on these variables, they will become numerical arrays.

>> format short
>> Aal =Ach1+0
Aa1l =
109 97 116 108 97 98
>>Ba2 = Bch2+0
Ba2 =

109 97 116 104 119 111 114 107 115 32
>> Ca3=Cch3+0
Ca3 =

40

CHAPTER 1 INTRODUCTION TO MATLAB

Columns 1 through 12
109 97 116 108 97 98 32 98 101 108 111 110
Columns 13 through 24
103 115 32 116 111 32 109 97 116 104 119 111
Columns 25 through 28
114 107 115 32
Da4 = Dch4+0
Columns 1 through 12
119 119 119 46 109 97 116 104 119 111 114 107
Columns 13 through 17
115 46 99 111 109

So, these numbers represent the characters according to ASCII/ANSI standards. It
is possible to get the character representation of the new variables with the MATLAB
function of char ().

>> char(Aa1)
ans =
'matlab’
>> char(Ba2)
ans =
"mathworks’
>> char(Ca3)
ans =
'matlab belongs to mathworks'
>> char(Da4)
ans =
"www .mathworks.com’

The following variables reside in the workspace:

>> whos

A 1x1 8 double
A1lNew 2x6 12 uint8
ABC 1x3 24 double
Aa1l 1x6 48 double
Achl 1x6 12 char

41

CHAPTER 1 INTRODUCTION TO MATLAB

Aone 2x6 96 double

B 1x1 8 double

Ba2 1x9 72 double
Bch2 1x9 18 char
Bzero 5x6 240 double
Ca3 1x27 216 double
Cch3 1x27 54 char
Ceye 6x6 288 double
DE 2x4 64 double

Dag 1x17 136 double
Dch4 1x17 34 char
Dr1 8x4 256 double
Dr2 4x6 192 double
Dr2new 5x5 100 single
Dr3 5x5 200 double
Dr3new 5x5 25 int8
Drow 1x4 32 double
Erow 1x7 56 double
Fcol 4x1 32 double
NewDr 3x7 84 single
NewDr1 3x7 84 single
NewDr2 9x5 45 int8
ans 1x17 34 char

Note that these variables are kept and used in the coming sections to generate
logical, table, cell, structure type of array variables.

Function Handle

The function handle is a special MATLAB data type and used to store a link to an
expression or a function. By calling a function handle, we invoke the expression or
function stored under that specific function handle. The function handle is one of

the most useful features of MATLAB for various computations and programming
aspects. For instance, they are used in various simulations for calculating functions and

42

CHAPTER 1 INTRODUCTION TO MATLAB

mathematical expressions, solving various equations and problems, and developing user
interfaces. They are also widely employed in solving differential equations. Its syntax is
rather intuitive and can be in two different forms.

(1) Function_handle_name =@MYfunction;

(2) Function_handle name=@(variablel, variable2, ...)
([expressioni, expression2, ...]).

Let’s look at several examples of generating function handles.
F1 = @MY_function;

where MY_function is a function file or function expression or another function
handle. Note that how to create function files and characteristics of function files is
explained in detail in Chapter 2.

Here is an example:

function x = MY_function(a, b, c)
% MY _function.m is a function file that solves the quadratic equation
w.r.t. % a user entries for a, b, c and outputs the found solutions.

D= b"2-4*a*c;

x1 = (-b+sqrt(D))/(2*a);
x2 = (-b-sqrt(D))/(2*a);
x = [x1; x2];

end

We can test the function handle F1 with the following command:

>> x = F1(1, 2, 3)
X =
-1.0000 + 1.4142i
-1.0000 - 1.4142i

Here the function handle F1 calls the function file called MY_function.mand
executes it with the user-specified input data for the a, b, and c variables.

Note that more detailed explanations on features of the function files (e.g., MY _
function.m) and how to create them are given in Chapter 2.

Let’s create a function handle for the following quadratic polynomial with for input
arguments:

43

CHAPTER 1 INTRODUCTION TO MATLAB
- f(xl a,, Ay, ds) = 6llJC2 + X + ds;

>> f =@(x,a1,a2,a3) (a1*x"2+a2*x+a3)
f -

function_handle with value:
@(x,a1,a2,a3) (a1*x"2+a2*x+a3)

Moreover, the function handles can be used to define a function of functions. For
example, H = 2¢" ™ can be expressed in three different ways with the following function
of functions:

>> ff1 = @(x) sin(x); ff2 = @(ff1)exp(ff1); ff3 = @(ff2)2*ff2; % 1 - Way
>> ggl = @(x)sin(x); gg2 = @(x)exp(ggl(x)); ff3 = @(x) 2*gg2(x); % 2 - Way
>> hh3=@(x)2*exp(sin(x)); % 3 -Way

It is quite straightforward to perform computations from the function handles.

>> FF3(ff2(ff1(pi)))
ans =
2.0000
>> gg3(pi)
ans =
2.0000e+00
>> hh3(pi)
ans =
2.0000e+00
>> x=1.3; al=2; a2=-3; a3=13; f (x, al, a2, a3)
ans =
12.48
>> x=1.3; ai=[2, 3]; a2=[-3, 4]; a3=[11,13]; f2(x, a1, a2, a3)
ans =
10.4800 23.2700
>> x=1:3; al=2; a2=-3; a3=11; f2(x, al, a2, a3)
Error using ~ (line 51)
Incorrect dimensions for raising a matrix to a power.
Check that the matrix is square and the power is a

44

CHAPTER 1 INTRODUCTION TO MATLAB

scalar. To perform elementwise matrix powers, use

1 A 1
Error in @(x,a1,a2,a3)(a1*x"2+a2*x+a3)

In the last part, for the vector or row array of entries for x, the expression of
[fx, a,, a,, as) needs to be fixed for elementwise matrix operations.

>> f =@(x,a1,a2,a3)(a1*x."2+a2*x+a3)
f -
function_handle with value:
@(x,a1,a2,a3)(al*x. 2+a2*x+a3)>> x=1:3; al=2; a2=-3; a3=11; f(x,
al, a2, a3)
ans =
10 13 20

An alternative version of the function handle is the inline function that is similar
to the function handle. Note that the inline function will be removed in future releases
of MATLAB, and it is recommended to use the anonymous function (function handle)
instead.

>> Fi=inline('a1l*x"2+a2*x+a3’,
F =

Inline function:

F (a1,a2,a3,x) = al*x"2+a2*x+a3

all, Iazl) |a3l, IXI)

Now, the previously created inline function can be evaluated with specific values of
variables, x, a1, a2, and a3.

>> x=1.3; al=2; a2=-3; a3=13; F(a1, a2, a3, x)
ans =
12.4800

Itis important while employing the function handles to follow the order of the
variables. In other words, while calling them, you need to follow the sequence of the
input variable values. Here’s an example:

>> x=1.3; al=2; a2=-3; a3=13;
>> f =@(x,a1,a2,a3)(a1*x."2+a2*x+a3);
>> f(x, a1, a2, a3)

45

CHAPTER 1 INTRODUCTION TO MATLAB

ans =

12.4800
>> f(a1, a2, a3, x)
ans =

15.3000

The function handles can also take different predefined input variables.

>> f =@(x,a1,a2,a3) (a1*x."2+a2*x+a3);
>> y=1.3; b1=2; c2=-3; d3=13;
>> f(y,b1,c2,d3)
ans =
12.4800

Note that in this example, the function handle f is taking the predefined variables y,
b1, c2, and d3 instead of x, a1, a2, and a3.

Figure 1-12 shows the list of variables and function handles created in this section
residing in the Workspace window.

12.4800

2

-3

13
@(x,a1,a2,a3)(al*x."2+a2*%x+a3)
1x1 inline

@MY _function
@()sin(x)
@(E)expl(f1)
@(x)2*gg2(x)
@()sin(x)
@(x)exp(ggl(x))
@(x)2*exp(sin(x))
1.3000

1.3000

Figure 1-12. Created variables residing in the workspace

46

CHAPTER 1 INTRODUCTION TO MATLAB

Broader applications and essential uses of the function handles will be discussed in
Chapter 2 and Chapter 8.

Logical Arrays

Logic and logical arrays are important for programming and Boolean operations. The
local answers are 0s and 1s. 0 means that a statement or condition is not true, and 1
means that a statement is true. There are a few ways logic arrays can be generated in
MATLAB. For example, you can apply the comparative analysis within numerical arrays
or verify them or define their types. The following Boolean logical arrays are based on
the existing variables created in the previous sections:

>>A = 2; B = -3.25; C=(A+B)*2; ABC=[A, B, C];
>> isnumeric(A)
ans =
logical
1
>> Ach1l = 'matlab’;
>> isstr(Ach1)
ans =
logical
1
>> ABC_logic=AB(C>=2
ABC_logic =
1x3 logical array
100
>> Seed = 1; rng(Seed); % Setting up the random number generator to
generate permanent numbers.
>> Dr1 = rand(4, 5)
>> Dr1 = rand(4, 5)

Dr1 =
0.0500 0.9446 0.1393 0.9275 0.8833
0.5359 0.5866 0.8074 0.3478 0.6237
0.6638 0.9034 0.3977 0.7508 0.7509

0.5149 0.1375 0.1654 0.7260 0.3489
>> Drilogic=Dr1>0.5 & Dri1<=0.71

47

CHAPTER 1 INTRODUCTION TO MATLAB

>> Drilogic=Dr1>0.5 & Dr1<=0.71

Drilogic =
4x5 logical array
0o o0 O o0 o0
1 1 0 0 1
1 0 0 0 O
1 0 0 0 O

Note that we have set the seed value of the random number generator rng()
in order to generate permanent element values with the uniform random number
generator rand().

You can use the evaluated logical arrays indexing of the arrays and find out which
values meet the set conditions and which ones do not. For example, in the previous
examples, ABC_logic represents that the first element of ABC meets the set condition and
is greater or equal to 2. Similarly, the array Dri1logic means three elements in row 2, one
element in row 5 are greater than 0.5 and at the same time, they are less than or equal to
0.71. Now we can find out which elements with their specific element order meet the set
conditions by using indexing operations. Note that a more detailed explanation of logical
operators is given in Chapter 2.

>> Index=find(Dr1>0.5 & Dr1<=0.71)

>> Index=find(Dr1>0.5 & Dr1<=0.71) % Index numbers indicate which element
has met the condition.

Index =

2

3

4

6

18>> Dr1(Index) % The element meeting the set conditions

ans =
.5359
.6638
.5149

.5866
.6237

o O O O o

An alternative way of finding the true values is as follows:

48

CHAPTER 1 INTRODUCTION TO MATLAB

>> Drilogic.*Dr1

ans =
0 0 0 0 0
0.5359 0.5866 0 0 0.6237
0.6638 0 0 0 0
0.5149 0 0 0 0

As another example, let’s find out where 0 elements in an array generated by the
random integer number generator that is used to generate integer numbers within
[-2 2] tofill out the five-by-five square matrix:

>> Seed = 1; rng(Seed); % Setting up the random number generator to
generate permanent numbers.
>> Hr=randi([-2, 2], 5)

Hr =
0 -2 0 1 2
1 -2 1 0 2
-2 -1 -1 0 -1
-1 -1 2 -2 1
-2 0 -2 -2 2>> Ind=(~Hr) % Locates which elements of
Hr are equal to "0"
Ind =

5x5 logical array
1 0 1 oO

o O O o
» O O O
O O O O
o O O O ©o

1
1
0
0

In this section, we have generated the variables, namely, numerical and logic
matrices and character strings, as shown in Figure 1-13.

49

CHAPTER 1 INTRODUCTION TO MATLAB

Name ~ Value
HA 2
i ABC [2,-3.2500,1.5625]
4 ABC_logic 1x3 logical
1] Achl 'matlab’
- ans 4x5 double
H B -3.2500
HC 1.5625
H Drl 4x5 double
¥ Dr1Logic 4x5 logical
-5 Hr 5x5 double
v Ind 5x5 logical
HH Index [2;3;4;6;18]
H Seed 1

Figure 1-13. Created variables residing in the workspace

Other essential uses of logical arrays and indexing in examples are discussed in other
sections of the book.

Table Arrays

The table arrays are a newly introduced tool of MATLAB, and thus, in older versions of
MATLAB, table arrays cannot be generated. The table arrays are particularly useful for
preparing reports and displaying/presenting the simulation/analysis results obtained in
arrays of several columns and rows, each of which represents certain variables. They are
used to collect heterogeneous data and metadata into a single container in a tabular data
format. The table arrays can accommodate variables of different types, sizes, units, etc.
They are used most frequently in machine learning and deep learning.

The table arrays are often used to store experimental data, with rows representing
different observations and columns representing different measured variables. It
displays the arrays in a more informative and tabulated format by indicating names of
the columns and rows by respective assigned names. Let’s look at several examples of
how to create table arrays with the command table() by creating a new numerical array
Alnew and from the existing variables created in the previous sections.

50

>> Alnew = [1 2 3; 34 5; 7 8 9];

>> AlTab=table(Alnew)
A1Tab =

3x1 table
Alnew
1 2 3
3 4 5
7 8 9

>> Blnew = Alnew/5;
>> BiTab=table(B1new)
BiTab =
3x1 table
Binew

0.2 0.4 0.6
0.6 0.8 1
1.4 1.6 1.8

CHAPTER 1

INTRODUCTION TO MATLAB

In the previous cases, the table arrays A1Tab and B1tab have been created as column
tables from A1New and B1New, respectively. It is also possible to obtain/create tables
from the existing arrays (arrays, cells, and structures) by using the array2table(),

cell2table(), and struct2table() commands.

>> A1Tab2=array2table(AiNew) % Column names are not specified

>> AlTab2=array2table(Alnew)

A1Tab2 =
3x3 table
Alnewl Alnew2

51

CHAPTER 1

INTRODUCTION TO MATLAB

>> Achi1Tab=array2table(Ainew, 'variablenames',{'a','b','c'})

AchiTab =
3x3 table
a b C
1 2 3
3 4 5
7 8 9
>> Clnew = [Alnew, Binew]
Clnew =
1.0000 2.0000 3.0000 0.2000 0.4000 0.6000
3.0000 4.0000 5.0000 0.6000 0.8000 1.0000
7.0000 8.0000 9.0000 1.4000 1.6000 1.8000
>> DriTab=array2table(Cinew, 'variablenames', {'v1', 'v2', 'v3', 'v4',
'v5', 'v6'})
DriTab =
3x6 table
vl V2 v4 V5 V6
1 2 3 0.2 0.4 0.6
3 4 5 0.6 0.8
7 8 9 1.4 1.6 1.8

It is also possible to rename variables saved in the table arrays using renamevars ()

following a pattern of TableArrayName
‘0ldvarName', 'NewVarName').

>> Al1Tab=array2table(Alnew)

A1Tab =

3x3 table

Alnewl

Alnew2

Alnew3

1

3
7

= renamevars(TableArrayName,

>> AlTab = renamevars(AiTab, 'Ailnewl', 'a")

52

CHAPTER 1 INTRODUCTION TO MATLAB

A1Tab =
3x3 table
a Alnew?2 Alnew3

1 2 3

3 4 5

7 8 9
>> A1Tab = renamevars(AiTab, 'Alnew2', 'b');
>> A1Tab = renamevars(Ai1Tab, 'Alnew3', 'c')
A1Tab =

3x3 table

a b C

1 2 3

3 4 5

7 8 9

You can also remove any column or row of a created table array in a few
different ways.

RiTab

R1Tab
3x3 table

Alnewl Alnew2 Alnew3

array2table(Alnew)

1 2 3
3 4 5
7 8 9
>> RiTab.A1new3 = [] % Removes the variable Ainew3
RiTab =
3x2 table

Alnewl Alnew?2

53

CHAPTER 1 INTRODUCTION TO MATLAB

>> >> RiTab(2,:)=[] % Removes row 2
RiTab =
2x2 table
Alnewl Alnew2

1 2
7 8
>> Ri1Tab=removevars(R1Tab, 'Alnewl') % Removes the variable Alnewl
RiTab =
2x1 table
Alnew2

2
8
>> RiTab=removevars(R1Tab, {'Alnew2'}) % Removes the variable Alnew2
RiTab =
2x0 empty table
>> clearvars RiTab % Deletes the table array RiTab

Note that the command syntax removevars () is available starting from the
MATLAB2018a version.

Itis also possible to convert table arrays into arrays and cell arrays by using the
tabel2array() and table2cell() commands, respectively. Understanding and working

with table arrays will be of great help not only when you are preparing reports but also
¢

when you are importing with the data import wizard % or recommended data import
function readtable() and manipulating various data sets from the external files (e.g.,
.ixt, .x1s, .x1sx, .csv, .dat, etc.) into the MATLAB workspace.

Cell Arrays

Cell arrays are useful to accommodate various types (numerical, character, logical, table,
and function handle) of arrays in different cells of one cell type variable by preserving

all attributes of each variable unchanged. They might be handy to carry or pass various
data sets inside one variable. Cell arrays contain indexed data containers such as cells
accommodating lists of text, character strings, combinations of text and numerical

54

CHAPTER 1 INTRODUCTION TO MATLAB

data, and numerical arrays, function handles, structure arrays, and tables. One of the
most essential features of the cell arrays is that they require curly brackets to be used
in specifying cell addresses. Another important feature of the cell-type arrays is that in
many cases imported/read data by MATLAB will be in cell array mode.

Let’s look at several examples of creating cell arrays with different types of arrays
discussed earlier and generate the new ones.

>> Acell = cell(5,5) % Creates an empty cell of size 5-by-5
>> Acell = cell(3,4) % Each cell of Acell will be filled with Arrays
Acell =

3x4 cell array
{0x0 double} {0x0 double} {0x0 double} {0x0 double}
{0x0 double} {ox0 double} {0x0 double} {0x0 double}
{0x0 double} {ox0 double} {0x0 double} {0x0 double}
>> A0 = 13; Alnew = [1 2 3; 34 5; 7 8 9];
>> Acell{1,1}=A0 % Cell (1, 1) is filled with Ao

Acell =
3x4 cell array
{[13]} {0x0 double} {0x0 double} {0x0 double}

{0x0 double} {ox0 double} {0x0 double} {0x0 double}
{0x0 double} {0x0 double} {0x0 double} {0x0 double}
>> Acell{1,2}=A1new % Cell (1, 2) is filled with Alnew

Acell =
3x4 cell array
{[13]} {3x3 double} {0x0 double} {0x0 double}

{0x0 double} {ox0 double} {0x0 double} {0x0 double}
{0x0 double} {0x0 double} {0x0 double} {0x0 double}
>> Achi1Tab=array2table(Ainew, 'variablenames',{'a','b','c'});
>> Acell{1,3}=AchiTab % Cell (1, 3) is filled with AchiTab
Acell =
3x4 cell array
{I 13]} {3x3 double} {3x3 table } {0x0 double}
{0x0 double} {0x0 double} {0x0 double} {0x0 double}
{0x0 double} {ox0 double} {0x0 double} {0x0 double}

55

CHAPTER 1 INTRODUCTION TO MATLAB

>> C1 = 'matlab’;
>> Acell{1,4}=C1 % Cell (1, 4) is filled with C1

Acell =
3x4 cell array
{I 13]} {3x3 double} {3x3 table } {'matlab" }

{0x0 double} {ox0 double} {0x0 double} {0x0 double}
{0x0 double} {0ox0 double} {0x0 double} {0x0 double}
>> D1 = Alnew>3 & Alnew<9

D1 =
3x3 logical array
0O 0 ©O
0o 1 1
1 1 0

>> Acell{2,2}=D1 % Cell (2, 2) is filled with logical array D1
Acell =
3x4 cell array
{I 13]} {3x3 double } {3x3 table } {'matlab" }
{ox0 double} {3x3 logical} {0x0 double} {0x0 double}
{0x0 double} {0ox0 double } {0x0 double} {0x0 double}
>> f=0(x, a1, a2, a3)(al*x"2+a2*x+a3);
>> Acell{2,3}=f % Cell (2, 3) is filled with function handle f
Acell =
3x4 cell array
{I 13]} {3x3 double } {3x3 table } {'matlab" }
{0x0 double} {3x3 logical} {function_handle} {0x0 double}
{0x0 double} {ox0 double } {0x0 double } {0x0 double}
>> Acell{3,1}= 'This is a cell array' % Cell (3, 1) is filled with
characters

Acell =
3x4 cell array
{[13]} {3x3 double } {3x3 table } {'matlab’ }
{0x0 double } {3x3 logical} {function_handle} {0x0 double}

{'This is a cell ..."} {ox0 double } {0x0 double } {0x0 double}

56

CHAPTER 1 INTRODUCTION TO MATLAB

>> Acell{3,2}=rand(5,6) % Cell(3,2) is filled with a numerical array

Acell =
3x4 cell array
{[13]} {3x3 double } {3x3 table } {'matlab' }
{0x0 double } {3x3 logical} {function_handle} {0x0 double}
{'This is a cell ...'} {5x6 double } {0xO double } {0x0 double}

To access and view the contents of the created cell arrays, use the following
commands:

>> Acell{1,1}

ans =
13

>> Acell{1,4}

ans =
'matlab’

>> Acell{2,3}

ans =

function_handle with value:

@(x,a1,a2,a3)(a1*x"2+a2*x+a3)>> Acell{7}

ans =
3x3 table
a b C
1 2 3
3 4 5
7 8 9
>> Acell{8}
ans =

function_handle with value:
@(x,a1,a2,a3)(a1l*x"2+a2*x+a3)

By double-clicking the cell variable name in the workspace, the contents of the cell
can be viewed, as shown in Figure 1-14.

57

CHAPTER 1 INTRODUCTION TO MATLAB

E | Acell x|
3x4 cell
1 2 3 4
113 [1,2,3;3,4,57,8,9] 3x3 table 'matlab’
20 [0,0,0;0,1,1,1,1,0] @(x,al1,a2,a3)(al"x*2+a2"x+2a3) []
3 'This is a cell array’ 5x6 double (] [

Workspace

Mame = Value

HAO 13

H Alnew [1,2,3;3,4,5;7,8,9]

#H A1Tab 3x1 table

£ é}_’;‘ﬁibz 3x3 table

jAcell | 3x4 cell

#H Ach1Tab 3x3 table

€ ans @(x,al,a2,a3)(al*x"2+a2*x+a3)
- Blnew [0.2000,0.4000,0.6000;0.6000,0.8000,1;1.4000,1.6(
@ B1Tab 3x1 table

HC1 'matlab’

HClnew 3x6 double

/D1 3x3 logical

& Dr1Tab 3x6 table

@ f @(x,al,a2,a3)(al*x2+a2%x+a3)

Figure 1-14. Variables in the workspace and contents of the Acell cell array

You can change the contents of the cell array via double-clicking in each cell and
entering the new values or contents. You can also change the contents (elements) of
the cell array by recalling the cell address and assigning new values. You can also empty
some cells of the cell array by assigning an empty matrix to them.

>> BCell{1}=[1, 2, 3; 56 7]; % Cell 1 of BCell
>> BCell{2}=randi(5, 5, 3); % Cell 2 of BCell
>> BCell{1} % View the content of BCell's cell 1
ans =

1 2

5 6
58

CHAPTER 1 INTRODUCTION TO MATLAB

>> BCell{2} % View the content of BCell's cell 2
ans =
5 1 1
5 2 5
1 3 5
5 5 3
4 5 5
>> BCell{1}(2,3)=13; % Change the element residing in row 2 and column 3
of cell 1 in BCell
>> BCell{1} % View cell 1 of BCell
ans =
1 2 3
5 6 13
>> BCell{2}(4:5,:)=0; % Change the elements of row 4 and 5 of cell

2 in BCell
>> BCell{2} % View cell 2 of BCell

ans =
5 1 1
5 2 5
1 3 5
0 0 0
0 0 0
>> BCell{1}(1,:)=[]; % Remove row 1 in cell 1 of BCell
>> BCell{1} % View cell 1 of BCell
ans =
5 6 13
>> BCell{2} = []; % Empty cell 2
>> BCell{2} % View cell 2 of BCell
ans =
[]

>> clearvars BCell % Delete BCell variable

59

CHAPTER 1 INTRODUCTION TO MATLAB

Structure Arrays

Structure arrays can accommodate all of the previously created arrays and entry
(variable) types, namely, all types of numeric, logical, character, table, cell, and function
handles. They can store data not only of different types but also of different sizes. One of
the important aspects of the structure arrays is that they are suitable for code generation.
Moreover, they are useful in programming, data processing, data acquisition, and
reading the outputs of Simulink models. In addition, many MATLAB toolboxes and
their functions produce a various structure array type of outputs after their simulations.
Therefore, it is necessary to understand how to handle the structure arrays efficiently.

Note the cell array can also accommodate structure arrays.

Structure arrays store data in different fields or field names that we can access by
their names. Here’s an example:

% Person 1: Name - SE; DOB - June 6, 1982; Profession - professor
WHO(1) .Name = 'SE';

WHO(1).DOB = '06.06.1982";

WHO(1).Profession = 'professor';

% Person 2: Name - NE; DOB - Dec 12, 1992; Profession - designer
WHO(2).Name = 'NE';

WHO(2).DOB = '12.12.1982"';

WHO(2).Profession = 'designer’;

The structure variable WHO contains information about two people. The data contains
their names, dates of birth, and professions.

>>WHO =
1x2 struct array with fields:
Name
DOB
Profession
>> WHO(1)
ans =
struct with fields:
Name: 'SE'

DOB: '06.06.1982"
Profession: 'professor’

60

CHAPTER 1 INTRODUCTION TO MATLAB

>> WHO(2)
ans =
struct with fields:
Name: 'NE'
DOB: '12.12.1982'
Profession: 'designer’

Note that we have saved in the workspace only one variable that is in a structure
array form. If you want to have access to a specific field of the created structure, then you
call that field name along with the structure name.

>> WHO(1).Name % To access to the name field of a person 1
ans =
YS!
>> WHO(1).Profession % To access to the profession field of a person 1
ans =
'professor’
>> WHO(2).DOB % To access to the DOB field of a person 2
ans =
'12.12.1982"

Besides this approach of creating structure arrays, there are several other ways to
set up or create them. Let’s look at some examples. Another way is to create an empty
structure with the command struct (). The empty structure will be filled with variables
and their values with the command syntax of struct('FieldName', VALUE). Note that
the field names (variable names) must not contain empty spaces or symbols except for
the underscore sign (_).

>> Astri = struct()
Astril =
struct with no fields.
>> % Now we can assign/set up values and data fields inside the created
empty structure: Astri.
>>a=2.1; A=1[1, 2; 3, 4]; B = Aca; f = @(x)(a*x"2+x-a); C{1} =rand(3);

C{2} = 'matlab’;
>> D = "mathworks.com';
>> F = table(magic(3));

61

CHAPTER 1 INTRODUCTION TO MATLAB

>> Astrl = struct('Number', a, 'Matrix', A, 'Logic', B, 'F _Handle', f,
'Cell’, C, 'Char', D, 'Table', F)
Astr1 =
1x2 struct array with fields:
Number
Matrix
Logic
F Handle
Cell
Char
Table

Another way to create structure arrays is to assign their fields individually, as shown
in the beginning with the example of creating the structure variable WHO.

>> Bstr.Number = a; Bstr.Matrix = A; Bstr.lLogic = B; Bstr.F Handle=f; Bstr.
Cell=C; Bstr.Char = D;
>> Bstr.Table = F;
>> Bstr
Bstr =
struct with fields:
Number: 2.1000e+00
Matrix: [2x2 double]
Logic: [2x2 logical]
F Handle: @(x)(a*x"2+x-a)
Cell: {[3x3 double] ‘'matlab'}
Char: 'mathworks.com'
Table: [3x1 table]

Now we can compare the two different ways we created the structure variables
Astr and Bstr. Another way to create structure arrays is conversions, in other words, to
convert existing cell-type variables or table-type variables into structure-type variables
with the cell2struct() and table2struct() commands.

>> % Cell variable C contains: Matrix C and String character 'matlab’
>> ({1} =rand(3); C{2} = 'matlab’;
>> F_Names = {'Matrix', 'Char'}; % Field names/Headers

62

CHAPTER 1 INTRODUCTION TO MATLAB

>> Cstr = cell2struct(C, Headers, 2) % 2 means two cells embedded
Cstr =
struct with fields:
Matrix: [3x3 double]
Char: 'matlab’

Now let’s see how to convert a table array into a structure array with the
table2struct() command.

>> F = table(magic(3));
>> Dstr = table2struct(F)
Dstr =
3x1 struct array with fields:
Var1

Figure 1-15 shows the list of variables created and saved in the workspace and the
contents of the created structure arrays, namely, Astr and Bstr.

63

CHAPTER 1 INTRODUCTION TO MATLAB

Workspace
Name ~ Value
HS a 2.1000
A (1,2:3,4] ®% Variables - Bstr
| ans '12.12.1982" _J Bstr X 1
€] Ascx 1x2 struct
v|B 2x2 {ogfcg{ 1x1 MWlth 7 fields
Bstx Ix1 struct)
Cs 2 2ol Field - Value
[€] cscx 1x1 struct Number 2.1000
</ D 'mathworks.com’ Matrix [1,2:34]
Dstr 3x1 struct Logic 22 logical
@ £ @ (%) (a*x"2+x-a) @| F_Handle @(x)(a*x"2+x-3a)
HE F 3x1 table Cell 1x2 cell
(] F_Names 1x2 cell <[] Char ‘mathworks.com'’
EJiWHO | 1x2 struct =+ Table 3x1 table

P% Variables - Astr

HEEEI
1x2 struct with 7 fields

Fields EBNumber lﬁ Matrix M Logic @F_Handle lﬁ‘ Cell EE] Char @ Table

1 2.1000(1,2:34] [1,1;0,0) @()(a"x*2... [[0.8147,091... 'mathworks... 3x1 table
2 2.1000(1,2:3,4] [1,1:0,0) @x)(@*x*2.. 'matlab’ 'mathworks...[3x table]

Figure 1-15. Created variables and Astr and Bstr structure arrays

This section has demonstrated via examples how to create seven different types of
variables (arrays): numerical arrays (scalar and array type variables), character strings,
logical arrays, table arrays, cell and structure arrays, and function handles. You can
remove from the workspace any of the created variables by using the clear or clearvars
command or using the right-mouse button options to delete. From the Command
window, we clear the variables from the workspace with the following commands:

>> clearvars a A B 7% Removes variables a, A, B
>> clear ans C D % Removes variables ans, C, D

64

CHAPTER 1 INTRODUCTION TO MATLAB

Note When you delete the variables from the workspace using the clearvars
or clear command, the comma is not used between the variable names.

From the attributes of the created and saved variables in the workspace
(Figures 1-12, 1-13, 1-14, 1-15), you can read the variable type (scalar, array, logical,
table, cell, structure, character, function handle), its storage type (double, single, uint8,
int8), and its size (how many rows and columns or cells, etc.). Moreover, the symbols
representing each variable type shown in Figures 1-12, 1-13, 1-14, and 1-15 demonstrate
the MATLAB supported data (array) types shown in Figure 1-9 and 1-10.

It must be noted that many of these arrays can be converted from one type into
another as you have seen in some of the examples. For example, a cell array can be
transferred into table array via a cel12table() function, or similarly, a structure array
can be converted into a table array via struct2table(); vice versa, a table array can be
converted into a cell and table array via table2cell() and table2struct(), respectively.

Complex Numbers

Two letters, i and j or 1i and 1j, are reserved for notating imaginary numbers. Therefore,
itis advised not to use these letters for assigning variable names. An alternative safe
approach to assigning a complex number is to multiply it by sqrt(-1). For example, to
obtain 3.76+2.35i, use one of the following commands:

>> A
>> A

3.76+2.351; % Way 1
3.76+2.35*sqrt(-1); % Way 2

Precision

MATLAB's precision is not absolute.
For instance:

>> sin(pi)
ans =
1.2246e-016

65

CHAPTER 1 INTRODUCTION TO MATLAB

In MATLAB, sinsin () is not equal to 0. That is because the number 7 is represented
by the double precision number in MATLAB. We can demonstrate the precision issue by
performing the calculations of the Pythagorean theorem: 1 = (¢) + (¢).

t=0:pi/50:2%pi; F=1-(sin(t).”2+cos(t).”2); plot(t, F)

In the previous expressions, ¢ is a time vector containing a row of elements, such
as [0, /50, ... 2z]. Some values of F are zero, and others are nonzero even though they
are very small numbers. The reason for this is that all of the trigonometric functions
including exponential and logarithmic functions are approximated by a polynomial
of degree 13 with only odd powers of the argument variable (in this example). For
instance, sin(t) ~ t — ¢, + ¢,1° + ... + ¢st'* = p(). The computation algorithm for all of
these functions is implemented based on fdlibm, a “Freely Distributable Math Library”
developed at Sun Microsystems by K. C. Ng and others (see for more information www.
netlib.org/fdlibm).

It must be noted that MATLAB's accuracy (precision) level depends on which data
storage type is chosen to save data. For instance:

>> int8(128)*-5
ans =
-128

The allocated data storage int8 can hold up to 28 — 1 integer numbers. All MATLAB
supported data storage types are shown in Figure 1-15.

M-file and MLX-file Editors

In the context of the book, the terms code, script, and program are used interchangeably
to refer to the M-files with the extension of *.m and the MLX-files with the extension of
*.mlx, including function and executable files. Because of their extensions, these files are
called M-files and MLX-files. In the previous examples, all of the operations are done in
the Command window. However, for programming and writing, editing, and debugging,
M-file and MLX-file editors will be of great help due to their many helpful tools and hints
in writing fast and more efficient code, scripts, and programs.

The overall functionality of M-files and MLX-files is similar except for one important
feature. The MLX file editor window can display the outputs of calculations/simulations
within the MLX editor window and indicate most common command syntax-related

66

http://www.netlib.org/fdlibm
http://www.netlib.org/fdlibm

CHAPTER 1 INTRODUCTION TO MATLAB

errors in its left output window. The M-file editor shows all errors in the Command
window after the M-file’s execution. Moreover, the MLX-file editor can show interactively
all inserted equations via the equation editor, inserted images and hyperlinked texts
right in the same window, and others. The outputs from both files will be shown in the
workspace. Both files can be used interchangeably. Let’s start reviewing M-file and MLX-
file editor windows and tools.

M-file Editor

M-file editor window menu and GUI tools are grouped into three tabs: Editor, Publish,
and View (as shown in Figure 1-16, 1-17, 1-18, respectively). Note that there are three
main menu subgroupings, HOME, PLOTS, and APPS, which belong to the main
MATLAB window that has been shown in the initial sections.

In the M-file editor’s main tools menu (see Figure 1-16), there are five subsections:
File, Navigate, Edit, Breakpoints, and Run. All of the tools in each subsection are quite
intuitive. For example, the FILE subsection has GUI tools used to open a new file
or existing files, save the current file, find M-files, compare different versions of the
M-files with the same names, and print out the current M-file. Similarly, the NAVIGATE
subsection tools help a user to move the cursor within the current file and find keywords
and if necessary to substitute them with other words. The EDIT subsection tools insert a
new section into the current file, add or remove comment lines, or wrap comments and
put indents to make the file more readable. The BREAKPOINTS subsection has tools
to choose from the drop-down options for debugging/editing the current M-file code
contents, not comments. Finally, the RUN subsection has GUI tools to run different cell
sections of the current M-file step by step and run the current M-file and measure the
evaluation time in different sections of the file. It should be noted that in writing M-files,
the EDITOR window tools are mainly used.

[Editor - Untitled

EDITOR PUBLISH VEW
T —J| L Find Fiies = nset L fx el ~ [o= r =l R
q.llj i H [campani= il Gotorsilica % 54 43 ‘_—-‘:] I) Ij @ Run Section _L>
New Open Save . e i Breakpoints Run Run and B'; Advance Run and
v v v (=Pt v (4 Find ~ indent 5] off [ra - > Advance Time

FILE NAVIGATE EDIT EREAKFOINTS RUN

Figure 1-16. M-file editor’s main tools menu

67

CHAPTER 1 INTRODUCTION TO MATLAB

The PUBLISH tools, shown in Figure 1-17, are used to generate report files in
different file formats such as HTML, DOC, PPT, PDE, etc. The PUBLISH window’s GUI
tools are very intuitive and similar to many document-editing software applications.
FILE contains the Save (Save, Save As, Save All, Save Copy As...) drop-down options; the
INESRT section contains Section and Section with Title; the INSERT INLINE MARKUP
section contains B (bold), I (Ttalic), M (Monospaced), Hyperlinked, and Inline LaTeX;
Insert Block Markup contains Bullet List, Numbered List, Image, Preformatted Text,
Code, Display LaTeX; and PUBLISH contains Publish (options).

[Editor - Untitled

PUBLISH

& = = Bold ‘= Bulleted List [=|Preformatted Text =
lic;JL ‘Eﬁ B = éﬂyperink - ¢ = l_‘ S [&‘

J taic = Numbered List [=-| Code

Save Section Section D, iniine LaTeX Publish
- with Tle [V Monospaced =) Image 2, Display LaTeX v
FILE INSERT SECTION INSERT INLINE MARKUP INSERT BLOCK MARKUP PUBLISH

Figure 1-17. M-file editor’s Publish tools menu

The VIEW tools, as shown in Figure 1-18, are used to display several windows of
M-files and MLX-files (documents) within one window area. You can split the view
window side by side or top to bottom by using the Tiles, Document Tabs, and Split
Document tools. The check marks in the Display subsection are handy to display data
tips, show line numbers, and highlight the current line while editing M-files.

[Z] Editor - Untitled

VEW

E [T] LefRight = [=] Tabs Position v 3] IEJ 5] [@ Highiight current ine
None

= Top/Bottom [Shrink Tabs to Fit Show line numbers
Lefty Top/ Expand Collapse Expand Collapse

£ custom v [Alphabetize Right Bottom Al All Enable datatips while editing
TILES DOCUMENT TASS SPLIT DOCUMENT CODE FOLDING DISPLAY

Figure 1-18. M-file editor’s View tools menu

68

CHAPTER 1 INTRODUCTION TO MATLAB

MLX-file Editor

The MLX-file (live editor) editor tab, shown in Figures 1-19, 1-20, and 1-21, contains
many of the M-file editor tools along with several other different GUI tools. The LIVE
EDITOR (see Figure 1-19) has one main different subsection from the M-file editor (see
Figure 1-16), which is called TEXT. This contains most of the functions of the PUBLISH

tools of the M-file editor (see Figure 1-17).

5] Live Editor - Untitled3.mlx

LIVE EDITOR MNSERT VEW
E::\ 13 H [JFindFies . - = |Jtas) Homal BN I;i E:‘_" Run Section [) L)H 3
New Open Save [Comvars, | SpJ SoTo = e B L UM Code |5] e 13 Eﬁmnmmmw Run Step Stop
il R O LRLR E_ i_ et g Break E}mnbﬁnd
b FILE NAVIGATE SR S CooE | secmoN i RN
Untitled3.mix 2| —= : = il il

Figure 1-19. MLX-file editor’s main tools menu

Moreover, the MLX-editor’s INSERT subwindow (see Figure 1-20) has a few handy
tools to write/edit equations directly in the MLX-file contexts and to insert subsections
with comments. You can insert control GUI tools, such as slider and drop-down boxes
within the current MLX-file content.

[Z] Live Editor - Untitled3.mlx

BEr=NE T ETETT e =T 2y

Code Control Section Text Table of Code Image Hyperlink Equation
v Break Contents Example ¥ -
CODE SECTION TEXT IMAGE LINK EQUATION |
| Untitled3.mix = | + |

Figure 1-20. MLX-file editor’s Publish tools menu

The VIEW window (Figure 1-21) of the MLX-editor has some similar tools of M-file
editor’s VIEW (Figure 1-21) and some other tools, such as Document Tabs, Display,
Output, and Layout, by which a user can display script (code) line numbers (excluding
the comment lines), Datatips, Full Screen View, Clear all Outputs, show or hide outputs,

or show outputs inline or on the right, respectively.

69

CHAPTER 1 INTRODUCTION TO MATLAB

|&] Live Editor - Untitled3.mix
LIVE EDITOR INSERT

E E LefURight [z| Tabs Position v = ENNEN &
{= Top/Bottom | [T Shrink Tabs to Fit ;

Datatips Full Clear all Output | Output
E;i Custom ¥ [/ Alphabetize Screen Output inine |on Right
TILES DOCUMENT TABS | DISPLAY | OUTPUT LAYOUT
| Untitled3.mlx [+ |

Single

Figure 1-21. MLX-file editor’s view tools menu

The M-file or MLX-file can be created in several different ways, by using the GUI

New New
buttons St o tveSemet| respectively, or by typing >> edit in the Command window and

pressing Enter.

To demonstrate some of the previously mentioned tools and options of the M-file
and MLX-file editors, let’s look at the following example to demonstrate that MATLAB's
precision is not absolute via the Pythagorean theorem:

First, we write the solution script of this simple example in the M-file editor and then
publish the results. Subsequently, we perform the same simulations in the MLX-editor
again to demonstrate similar and different features of both editors.

The algorithm of solving this exercise is composed of the following six steps:

1. Insert some comments describing the given problem statement.

2. Define the input variable: a = L .E,Aa = L; .
2 2 100
3. Perform the computation: F(a) = 1 — (sin*(a) + cos?(a)).

4. Define for which values of the input variable « the function values
of Fla) = 0.

5. Plot the simulation results: « versus F(a).

6. Publish all the obtained results including the whole script.

70

CHAPTER 1 INTRODUCTION TO MATLAB

This is the script written in the M-file editor (Figure 1-16.a) directly:

3R

Step 1. Problem statement

MATLAB's precision is not absolute.

Pythagorean Theorem: F = 1 - (sin”2 (alpha) + cos”2(alpha));
Input variable: alpha = -0.5*pi ... 0.5%pi

3R 3R X

3R

h Step 2. Define the input variable
alpha = -pi/2:pi/100:pi/2;

% Step 3. Perform the computation
F = 1-(sin(alpha).”2+cos(alpha).”2);

% Step 4. Define for which values of alpha, F(alpha) = 0.
Findex=find(F==0);
FO=F(Findex);

% Step 5. Plot the simulation results: alpha vs. F(alpha)

plot(alpha, F, 'b-', alpha(Findex), Fo, 'ro'),

legend('\alpha vs F(\alpha)', 'F(\alpha) = 0")

title('Simulation of MATLAB"s precision via the Pythagorean Theorem

'), grid on

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin(\alpha)”*2+cos(\alpha)”*2)")

% Step 6. Publish all of the obtained results including the whole script

Note that in this script, we have used % to insert comments (nonexecutable
information) and \ to insert and display the Greek letters.

% Comments

Comments are not executable and contain additional information for the users. The
sign % is used to place comments and remarks or any additional information within
M-files and MLX files or callback functions or in the Command window. The comments
can be added on a separate line or behind command syntaxes and have to start with

%. If the sign % is placed double (%%) followed with a space, that automatically makes

the following comments bold. Moreover, inserting %% at the beginning of a line leaves

a blank space and creates a cell mode in the script. That also creates an option of the

71

CHAPTER 1 INTRODUCTION TO MATLAB

subsection feature in the M-file editor. We discuss in detail the cell mode options and
their advantages in Chapter 2. Note that there are several other functionalities of the
% sign. It is used for format specifications for write, display, and read purposes that we
discuss in Chapter 2.

This is slightly edited with the PUBLISH tools (Figure 1-17), such as Bold 1 oo for
steps 1, 2, and 6 under Insert Inline Markup and Publish (PUBLISH); see Figure 1-17.
Note that to make any selected lines of comments bold, you first select the line and then

hit the B sos button. Note that in this script, we used the LaTeX commands to insert the
Greek letters (@, 7) and the equation F=1 — (a+cos® a).

Note that M/MLX editors are compatible with most common LaTeX mathematical
mode commands. The LaTeX-compatible mathematical commands and symbols can
be inserted for plot titles, axis labels, graphic notes, and so forth that we discuss in
examples in the following chapters (programming, plots, ODEs). For example, to insert
the expression x* + y* = R%, we enter the expression xA2+y"2=RA2. To insert a, 5, 22, ¥,
we type \alpha, \beta, \Omega, and \Psi. Moreover, to insert the equations with Greek
letters, the notations need to start with $$ signs and end with $ (see steps 1 and 5). For
more information and help on various mathematical expressions and symbols to write in
LaTeX math, type >> doc latex in the Command window.

See [6] also for more information on how to handle the LaTeX. Note that %% at the
beginning initializes automatic recognition of the LaTeX-compatible mathematical
commands within step 1.

%%

%% *% Step 1. Problem statement*

% MATLAB's precision is not absolute.

% Pythagorean Theorem: F = 1 - (sin”2 $$\alpha$ + cos"2 $$\alpha$);
% Input variable: $$\alpha$ = -0.5* $$\pi$...0.5% $$\pi$

%% *% Step 2. Define the input variable*

alpha = -pi/2:pi/100:pi/2;

%% *% Step 3. Perform the computation*

F = 1-(sin(alpha).”2+cos(alpha).”2);

%% *% Step 4. Define for which values of $$\alpha$ $$F(\alpha) =0%$*
Findex=find(F==0); FO=F(Findex);

%% *% Step 5. Plot the simulation results: $$\alpha$ vs. $$F(\alpha)$*
plot(alpha, F, 'b-', alpha(Findex), Fo, 'ro'),

legend('\alpha vs F(\alpha)', 'F(\alpha) = 0")

72

CHAPTER 1 INTRODUCTION TO MATLAB

title('The Pythagorean Theorem '), grid on

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin”2(\alpha)+cos”*2(\alpha))")
%% *%Step 6. Publish all of the obtained results including the

whole script*

After completing the script writing in the editor, save the M-file with the valid file
Fublsh
name (e.g., P1.m). Now, to publish it in an HTML format, click the Publish "=
button on the PUBLISH tab (see Figure 1-7). After clicking the button, the script is

executed automatically, and its HTML formatted report will be generated, as shown in
Figures 1-22 and 1-23.

@ Web Browser - P1

| [

@ O | © 8 | Location: ;fiIe:///C;/Users/suIayrnon.e-shkabiIow’DcwnIoads.’html/P'l.html

Contents

= % Step 1. Problem statement
» % Step 2. Define the input variable
= % Step 3. Perform the computation

» % Step 4. Define for which values of a F(a)=0

= % Step 5. Plot the simulation results: o vs. (a)
= %Step 6. Publish all of the obtained resuits including the whole script

% Step 1. Problem statement

MATLAB's precision is not absolute. Pythagorean Theorem: F= 1 - (sin*2 a + cos*2 a), Input variable: a =-0.5" 7 ..0.5"' &
% Step 2. Define the input variable
alpha = -pi/2:pi/100:pi/2;

% Step 3. Perform the computation

F = 1-(sin(alpha).~2+cos(alpha).~2);

Figure 1-22. MATLAB generated an HTML-formatted report of the M-file
called P1.m

73

CHAPTER 1 INTRODUCTION TO MATLAB

% Step 4. Define for which values of a F(a) =0

Findex=£find(F==0); FO0=F(Findex):;

% Step 5. Plot the simulation results: a vs. F(a)

plot(alpha, F, 'b-', alpha(Findex), F0, 'ro'),
legend('\alpha vs F(\alpha)', 'F(\alpha) = 0')
title('The Pythagorean Theorem '), grid con

Xlabel('\alpha'), wylacel('F(\alpha) = 1-(sin~2(\alpha)+ccs~2(\alpha))"')
i < 10°16 The Pythagorean Theorem
a vs Fla)
1t O F(a)=0
= 05} 1
o5
o
4
8 Of i
o 8
“jg 057 1
n
" e
R 1
E
L 157}
2t]
25 4 : g * } - -
-2 -1.5 -1 -0.5 0 0.5 1 15 2

% Step 6. Publish all of the obtained results including the whole script

Figure 1-23. MATLAB generated an HTML-formatted report of the M-file
called P1.m

74

CHAPTER 1 INTRODUCTION TO MATLAB

Note that the formatted bold lines (Figure 1-18 a, b), which are starting lines of cell
modes preceded with %%, have been recognized by the M-file editor automatically and
put in contents and hyperlinked, such as% Step 1 ... Step 2 ... Step 6.

Now let’s try the same procedures with the MLX-file editor. Note that the comments
are edited using the Text tab tools of the MLX-editor, as shown in Figure 1-19. The parts

=l
of the script are entered as text (comments) by using ety Step1...Step2... Step 3...

Step 6 lines are bolded with B

Step 1. Problem statement.

MATLAB's precision is not absolute.

Pythagorean theorem: F = 1 - (sinA2 (alpha) + cos*2(alpha));

Input variable: alpha = -0.5*pi ... 0.5*pi

Step 2. Define the input variable.

Step 3. Perform the computation.

Step 4. Define for which values of alpha, F(alpha) = 0.

Step 5. Plot the simulation results: alpha versus F(alpha).

Step 6. Publish all of the obtained results including the whole script.

Note that there is an alternative way to make the chosen lines bold, which is to
use %% followed with a blank space, as in the M-file editor. In this case, such editing is
automatically detected as a header of the following section of the script. If you enter the
following in the Code section of the MLX-editor:

%% Step 2. Define the input variable.

and press Enter, MATLAB automatically creates this bolded text header:
Step 2. Define the input variable.
Now, in between step 2 and step 3, and step 5 and step 6, the following executable

B

commands are inserted by putting the cursor on the desired line and clicking the Gade

button on the Code subtab (see Figure 1-19). Finally, the complete code is obtained.
Step 1. Problem statement.
MATLAB's precision is not absolute.
Pythagorean theorem: F = 1 - (sinA2 (alpha) + cosA2(alpha));
Input variable: alpha = -0.5*pi ... 0.5*pi

75

CHAPTER 1 INTRODUCTION TO MATLAB
Step 2. Define the input variable.
alpha = -pi/2:pi/100:pi/2;
Step 3. Perform the computation.
F = 1-(sin(alpha).”2+cos(alpha).”2);
Step 4. Define for which values of alpha, F(alpha) = 0.
Findex=find(F==0);F0=F(Findex);
Step 5. Plot the simulation results: alpha versus F(alpha).

plot(alpha, F, 'b-', alpha(Findex), Fo, 'ro'),

legend('\alpha vs F(\alpha)', 'F(\alpha) = 0")

title('The Pythagorean Theorem'), grid on

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin(alpha)”2+cos(alpha)”2)")

Step 6. Publish all of the obtained results including the whole script.
Save the file as an *.mlx file (e.g., call P2.mlx). Insert the mathematical expressions

2

with the Equation Tools on the Insert subtab (shown in Figure 1-20) and by using e

2

Ei . .
When you press the button S , the menu of symbols, structures, and matrices will be

opened, as shown in the following image:

R B e [+ .
a o A AoV %5 > 8 E By B e L]

B L e 8 «+ £k p v E 0o x WP Q@ C T VG P ™ Y z = _‘w
1y BrTEZH®eI KMNEONDPEIT Power Fracton sant Wdex Sbsuper.. DefSum -

Now you put the cursor where you want to insert the mathematical expressions and
insert the symbols by selecting the necessary symbols or by using LaTeX expressions. For
example, \alpha gives a. Enter the expressions of the Pythagorean formulation, input the
variable range, and finalize the script.

Step 1. Problem statement.

MATLAB's precision is not absolute.

The Pythagorean theorem: F=1 - (sin’a + cos’a)

Input variable: a=-0.5a... 0.5a

76

CHAPTER 1
Step 2. Define the input variable.
alpha = -pi/2:pi/100:pi/2;
Step 3. Perform the computation.
F = 1-(sin(alpha).”2+cos(alpha).”2);
Step 4. Define for which values of a, F(a) = 0.

Findex=find(F==0);
Fo=F(Findex);

Step 5. Plot the simulation results: « vs. F(a).

plot(alpha, F, 'b-', alpha(Findex), Fo, 'ro'),
legend('\alpha vs F(\alpha)', 'F(\alpha) = 0")
title('The Pythagorean Theorem '), grid on

INTRODUCTION TO MATLAB

xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin*2(alpha) +cos”*2(alpha))")

Step 6. Publish all of the obtained results including the whole script.

After executing (by pressing the Run button shown in Figure 1-19), you will get the

script outputs via Output Inline in LAYOUT. See Figure 1-24 and Figure 1-25.

Pamix | +

Step 1. Problem statement
MATLAB's precision is not absolute.
Pythagorean Theorem: F = | — (sin’ (a) + cos’(a)
Input variable: a=—-0.5x...0.5x
Step 2. Define the input variable
1 alpha = -pi/2:pi/i1@@:pi/2;
Step 3. Perform the computation
2 F = 1-(sin(alpha).*2+cos(alpha).”2);

Step 4. Define for which values of a . Fla) =0

3 Findex=find(F==0);F@=F(Findex);

(i3

Figure 1-24. ML X-editor output of P2.mlx

7

CHAPTER 1 INTRODUCTION TO MATLAB

[Pami | + |
= FIndeX=TInd{F==0); FO=F({Findex);

Step 5. Plot the simulation results: avs. ['(a)

4 plot(alpha, F, 'b-', alpha(Findex), F®, 'ro'),
5 legend('\alpha vs F(\alpha)', 'F(\alpha) = 8')
6 title('The Pythagorean Theorem'), grid on
7 xlabel('\alpha'), ylabel('F(\alpha) = 1-(sin~2(\alpha)+cos*2(\alpha))")
10718 The Pythagorean Theorem
15 - : . - - . v
u\l’SF(u]
1+ O Flan)=0
= 05 4
g
%
8 oy \ d
X
s
=]
@,
WoAr 1
z
®1.6t 1
2} 4
25 i i i i H i i
-2 -1.5 -1 0.5 0 0.5 1 1.5 2

Step 6. Publish all of the obtained results including the whole script
Figure 1-25. MLX-editor output of P2.mix

Note that in the MLX- editor all of the executable and nonexecutable lines of the
script are identified automatically and put in separate sections. There are some other
salient issues on hints, warnings, and error messages of the M/MLX editors that we
discuss in Chapter 2.

78

EE

CHAPTER 1 INTRODUCTION TO MATLAB

Closing the MATLAB Window

Quitting MATLAB is simple. There are several commands that can be used to complete
your work in MATLAB and close all the windows. You can type >> quit, type >> exit,
or press Ctrl+Q. You can also click the X in the upper-left corner of the main MATLAB
window or call the >> finishdlg function from the Command window and click the yes
button in the opened GUI window.

Note that all variables residing in the workspace will be cleared upon exiting/quitting
MATLAB. They will be lost and not be recovered by default the next time MATLAB is
started. However, they can be saved to a *.mat file and loaded back into the workspace
later. The command history of entered commands is saved automatically, and all of the
entered commands in the Command window can be accessed the next time you launch
MATLARB. If you are interested in saving the number of commands that can be adjusted
via MATLAB preferences, choose Preferences » Command History.

Summary

This chapter introduced the MATLAB environment, including settings, variables, several
most used commands, and M-file/MLX-file GUI tools. You also learned about assigning
variables and values from the Command window and working in the M/MLX-file editor
windows. In addition, the chapter explored data types, formats, and structures as well

as ways to use built-in MATLAB commands and functions. In particular, it covered help
search options and commonly used commands, including help, helpwin, helpbrowser,
doc, lookfor, clear, clear all, dir, pwd, cd, 1s, save, load, clearvars, edit, format,
char, size, who, whos, input, what, and exit/quit.

References

[1] http://www.mathworks.com/matlabcentral/
fileexchange/authors

[2] https://www.mathworks.com/matlabcentral/answers/
[3] http://ctms.engin.umich.edu/CTMS/index.php
[4] http://www.mit.edu/people/abbe/matlab/

79

http://www.mathworks.com/matlabcentral/fileexchange/authors
http://www.mathworks.com/matlabcentral/fileexchange/authors
https://www.mathworks.com/matlabcentral/answers/
http://ctms.engin.umich.edu/CTMS/index.php
http://www.mit.edu/people/abbe/matlab/

CHAPTER 1

INTRODUCTION TO MATLAB

(5] https://www.mathworks.com/company/newsletters/
articles/the-tetragamma-function-and-numerical-
craftsmanship.html

[6] https://www.mathworks.com/help/matlab/creating plots/
greek-letters-and-special-characters-in-graph-text.html

Exercises for Self-Testing
Exercise 1

Perform the following steps:

1. Find the Vibrating Logo demo from the preinstalled MATLAB
demos and run the demo. Hint: membrane.

2. Locate Product Overview from the help library of the package.

3. Change the font type and size of the Command window.

4. Change the font size and color of comments in the M-file editor.

5. Make the numerical data display format in long eng in the
Command window using Preferences and commands in the
Command window.

Exercise 2
Do the following steps:

1. Use the help library to find out how to add a new path for search.
Add a new path for search: C: \Users\Public. Hint: addpath.

2. Use the MATLAB help browser to find how to create a new
directory. Create a new directory called my new_dir inside
directory C:\Users\Public. Hint: mkdir

3. Change the current directory to the newly created directory C: \

80

Users\Public using the Command window. Hint cd.

https://www.mathworks.com/company/newsletters/articles/the-tetragamma-function-and-numerical-craftsmanship.html
https://www.mathworks.com/company/newsletters/articles/the-tetragamma-function-and-numerical-craftsmanship.html
https://www.mathworks.com/company/newsletters/articles/the-tetragamma-function-and-numerical-craftsmanship.html
https://www.mathworks.com/help/matlab/creating_plots/greek-letters-and-special-characters-in-graph-text.html
https://www.mathworks.com/help/matlab/creating_plots/greek-letters-and-special-characters-in-graph-text.html

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 3

Get help on the exp (exponential) function using the Command window. Use the help,
lookfor, doc, and help browser commands, and then compare the results of the four
help options.

Exercise 4

Create and open an *.m file called learn.min the M-file editor window using the
Command window. (Hint: >> edit...). Insert two commands in it that display the
current date and time. Hint: date, clock.

Exercise 5

Create a shortcut (a set of favorites commands) that opens a new M-file named
My_Shortcut and simultaneously closes all figure windows and clears the Command
window and Workspace window from all previously entered data and commands.

Exercise 6

Change how the data formats display in the Command window from the Preferences.
Make it a hexadecimal format. Hint: format.

Exercise 7

What are the commands used to clean up the Workspace, Command, and History

windows?

Exercise 8

Given x=2.25, y = 3.1, and z = 13.20, use MATLAB to evaluate the following expressions:

35
A= y[xyz—i +x’y?z4;B=¢""In (gj
xy z

81

CHAPTER 1 INTRODUCTION TO MATLAB

Use the array editor to change the assigned values for x, y, and z and reexecute the
expressions to compute A and B.

Exercise 9

Create a script and save itasmy_first program.m.

1. Your program should contain an input variable that is the length
of a square side as a variable parameter in meters.

2. Your program should calculate the area of a square and the
volume of a cube.

3. Your program should output the calculated results (area and
volume) in metric (m? m?®) and British (in?, in®) systems by using
conversion, e.g., 1 inch = 25.4 mm.

4. Execute your created script (my_first program.m) from the
Command window.

5. Execute your created script (my_first_program.m) from the M-file
Editor window.

Exercise 10

Do/answer the following:

— Which command displays what is stored in your MATLAB
workspace?

T e
— Create P= Z and save it in uint64 format.

— Explain why the value of P in uint64 is equal to 1. How do you fix
this issue?

— Ifthe memory space is your concern, what is the best format to use to
save integer values ranging between -2/16 to 2/16?

82

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 11

Save all computation results from Exercises 8, 9, and 10 in a MAT file called my _
FIRSTwork.mat and clean up your MATLAB workspace from all the variables except for A

and B from Exercise 8.

Exercise 12

Given:
C1 = Hello. I'm from NYC. What is your name?
D1=T'm Dan.

C2 = Nice to meet you

D2= Nice to meet u 2

create a conversation displayed in the Command window in the form of a dialogue:
‘Hello! T'm from NYC/

‘What is your name?’ ‘I'm Dan!

‘Nice to meet you. ‘Nice to meet u 2!

Exercise 13

Do the following steps:

1. Change the display data formats for the Command window and
make it longe.

2. Where are the Preferences settings of MATLAB saved?

3. Whatis the main function of the M-file finishdlg.m, and what
commands does it contain?

Exercise 14

Perform the following steps:

1. Write a command in the Command window that creates and
opens an M-file called Ex14.m.

2. Edit your M-file Ex14.m so that it contains a command that
changes the display format type.

83

CHAPTER 1

3.

INTRODUCTION TO MATLAB

Edit your M-file Ex14.m so that it contains a command that
changes the current directory.

Edit your M-file Ex14.m so that it contains a command that
displays the current date and time.

Edit your M-file Ex14 .m so that it contains a command that saves
the current date and time data under two variable names, Day and
T, respectively.

Edit your M-file Ex14.m so that it contains a command that stores
the variables Day and T in the file called Ex14.mat.

Edit your M-file Ex14.m so that it contains commands that clean
up the Command and Workspace windows and quits the MATLAB

session.

Exercise 15

Given:

>> day_ONE='MatlabDAY'; day DUE=day ONE+1.0

day DUE

78 98 117 109 98 99 69 66 90

Why is the answer day DUE numeric data and equal to a
10-element row matrix?

What do these numbers represent?

How can you obtain the original characters given in day_ONE and
display them in the Command window? Hint: char().

Exercise 16

Given:

>> A=

[1,2; -12.0, 3]; mat2str(A); SNA=ans+0; char(SNA)

What is hidden behind the variable SNA?

84

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 17

Create a structure type variable called E17 composed of cell and numeric array elements,
such as MATLIB and classes.

1. Create a cell called Matlab that is composed of two subcells
{'Day#1', 'Start'}.

2. Create a numeric array called classes containing the elements
[75;275;\/; + 2i] . Note that i represents an imaginary number.

Exercise 18

Create a function handle and inline function of the following mathematical expressions:
1. h(6,t) =1.3 x e Note that i - represents an imaginary number.
2. Z(x,y,a,b) = ax* + by.

3. U(t,w,A, B)=Asin(wt)+ Bcos(wt).

Exercise 19

It is analytically proven that cos2a = 2a — 1. Use MATLAB to compute the equality for
the different values [0, .. .%,n .. .%,Zn .. .%,371 ...57] of @ and define the values of « in

which the accuracy of MATLAB calculations does not represent equality.

Exercise 20

Use MATLAB to compute the expression ¥/1.5%10%* —10**; in the most accurate way.
Note that it is in the fifth root.

Exercise 21

Why do the following outputs look “strange”?

>> A=[4/5, 'matlab'+0, Sin(Pi)]
A =
Columns 1 through 3

85

CHAPTER 1 INTRODUCTION TO MATLAB

3te999999999999a 405b400000000000 4058400000000000
Columns 4 through 6

405d000000000000 405b000000000000 4058400000000000
Columns 7 through 8

4058800000000000 3cala62633145c07

How do you fix this problem and make the results look readable?

Exercise 22

Create a five-by-five matrix called [A] by using randi() within [1, 20] and divide it by 3.
Display [A] as rational numbers as shown below. Note that your answer array numbers
(in the numerator) of [A] will differ from the ones shown here. Why does your answer
differ from the one shown here?

A=
10/3 6 13/3 25/3 20/3
2/3 16/3 17/3 13/3 11/3
5 0 10/3 8/3 2/3
4 1/3 7 2/3 2
6 8/3 é 5]

Exercise 23

Create the next array in the most efficient way (at least in two different ways). Note
the display format of A2 elements.

A2 =
1 2 3 4 5 6 7 8 2 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 92 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 2 10 11 12 13
1 2 3 4 5 6 7 8 92 10 11 12 13
1 2 3 4 5 6 7 8 2 10 11 12 13
1 2 3 4 5 6 7 8 92 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 2 10 11 12 13
1 2 3 4 5 6 7 8 92 10 11 12 13
1 2 3 4 5 6 7 8 2 10 11 12 13

86

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 24

By using randi(), create a 15-by15 array (called A3) with elements ranging from -125
to 127 and save it in the most memory-efficient way with the name A3.

Exercise 25

Create the following HTML report using M-file editor tools:

Contents
= % Step 1. Problem statement

= % Step 2. Perform the computation

% Step 1. Problem statement
a a

(1) Compute: G € = ¢™%): 2) Compute: a® = +c* (2) Compute: sin 5 — c:cos B = b:
% Step 2. Perform the computation

3: ¢ = 4; a = sqrev({b*2+c~2);
1-(sin(alpha).~2+cos(alpha).~2);
inB=a/c; co3B = a/b;

[}

n

b
ai

Exercise 26

Given:
A5=[123;456;7,8,9]

1. Obtain B5 from A5 by two arithmetic operations: B5=[16,94;10
1;4916).

2. Obtain C5 from A5 and B5 by using relational logic (<, >) and
arithmetic operations (+ 13): C5=[13 13 13; 14 14 14; 14 13 13].

Exercise 27

Create three numerical (row matrix) arrays (variables called AJ, IS, LJ) so that when
you subtract 3 from each of them and one conversion operation, you should obtain Al-

Khwarizmi, Ibn Sina, and Lennart Johansson.

87

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 28

Save all of your created variables (A, A2, A3, A4, A5, A6) from Exercises 22 to 27 in a
*.mat file named with your last name, e.g., Jones_HW2.mat.

Exercise 29
Create the matrix A in the most efficient way:
A =
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
Obtain a new A matrix in a most efficient way:

1 2 3 @ 5 6 7
1 2 3) 5 6 7
1 2 3 @ 5 6 7
@ @ e @ @ 2] e
1 2 3 2 5 6 7
1 2 3 @ 3 6 7
1 2 3 @ 5 6 7

Exercise 30

Create a cell array (called A) containing three variables: a=4/5, b="matlab’+0, c=sin(z).
Create a structure (called B) containing four variables: a, b, ¢, and A. Show how to get
access to the variables a, b, and c residing inside A and B.

Exercise 31

Create the following variables and entries in the MLX-file editor:
Function handle F: F(w,, ®,, 0) = cos (0,0) — sin (w,0)
Identity matrix: I=[100010001]

Magic numbers: M=[816357492]

88

CHAPTER 1 INTRODUCTION TO MATLAB

Multiply I matrix by 2 and subtract from the M matrix and call the new matrix by MI:
MI=[616337490]

Logic array L by locating/comparing the elements of MI that are greater than 1 and
lessthan6: L=[000110100]

1. Create a table array TM from M.
2. Create a cell array CA containing F, I, M, MI, L, TM.

3. Create structure SA containing F, I, M, MI, L, TM, CA.

Exercise 32

Write down how to get to Layout (1), Preferences (2), and Quick Access (3), as shown in
the screenshots. Note what the Fonts and Colors are used in (2).

b MMATLAB RXI1Es - seaderme: une - o x

Comret Folcer

e il Workspace @
>> 1=0:.01:2"pi; Name ~ Value |
>> help ok @ % ;xggg g;

X |

ok not found.

Use the Help browser search field to search the documentation, or

type "help helb" for help command options, such as help for methods

>> T=sin(13*t);
>> plot(t, T, 'kd:'), grid on, axis tight

» | Analyze Code
@ ';‘é {ip Run and Time

Favorites
AN 2

b
o M

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 33

Create these shown files (MLX/M-files) and write down the steps for how to display the
results, as shown in the figure in the Live Editor window here in this exercise.

Note that there are four windows displaying MLX and M-files, equations, Greek
letters, plot figures, hyperlinks, data-tips, and how to insert an image.

Mfile2mibe + TRYDLm 5 |+
3 o - - [1 % Prepared: Your Favorite Image
w= 13| = = e
. 1 % <htop://www.ndsu.e
Hit) = sin{ 2miw); H=540; T=0:30:M;

G=sind(t):
ploct:,b, 'bd-'), grid on -
G: lx%4l double =

te@:1:540; omega=13;
G=sind(t*omega);

AR S R S R

plot(t,6)
H=sum(G H 8.77688735686955
Eunta) 2 - Columns 1 through §
0 0.0175 0.034% 0.0523 0.0698
Mifilembe 3 | + Columns & through 10
IS 0.0872 0.1085 0.121% 0.13%2 0.1564
Ne13; &l : W .1218 .138 a
Merandi(N,9);

umns 11 chrough 15
stairs(M, ‘bd-") Columns L1 through 13

0.1736 0.1908 0.2079 0.2250 0.2419
Columns 16 chrough 20

0.2588 0.275€ 0.2924 0.30%0 2.3256

Exercise 34

Answer the following true/false questions:

e MATLAB'’s default numerical format (int8, uint8, int16, uintl6, ...
single, double) depends on the operating system of the computer in
which MATLARB is installed. (True/False)

o Stored variables and their associated attributes change with
the change of a display format type in the Command window.
(True/False)

e The MATLAB user interface is customizable. (True/False)

e« MATLAB supports cell arrays only if they are numerical data but not
strings. (True/False)

o Itis possible to put a table array variable into a cell array.
(True/False)

90

CHAPTER 1 INTRODUCTION TO MATLAB

We are changing the values of entries [C] by changing a display format. (True/False).
>>A=1.1; B=[23;12]; C=B/A; format hex; C)

We have changed the values of entries D, E by changing a display format. (True/False).
>>D=uint8(255); D=255; D+1 =255; E = [12/14, 3/5; 1/3, 4/9]; format rat; E)

¢ The commands clearvars and clear all are the same and don't
have any difference. (True/False)

e The command clear A* deletesall .m, .mlx, and .mat files starting
with a file name of A. (True/False)

Exercise 35

Answer the following array size and representation-related questions:

— Given a cell array ABBA containing 10 cells, which command will
recall the elements residing in cell 3 of ABBA? (Give a command.)

- Given a 5-by-5 array (matrix) called A, A(4:end, 3:4) will produce a

matrix of what size?

— How do you create a linearly spaced data array: a=(-13, -12, -11, ... 11,
12, 13) and b=(0, 1/13, 2/13, 3/13, ... 24/13, 25/13, 2) without typing
all the elements? Note how to obtain the rational format type of the
array b.

Exercise 36

1. Obtain the logical arrayC=[111110000 0 0] from the array A =
[-5, -4, -3 ... 3, 4, 5] whose elements are linear (equally spaced).

2. Obtain the numerical arrayD =[35 0; 0 0 4] from the array E = [3 5
7;114].

91

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 37

Given in the Command window:
>> x=linspace(-13, 0), F(x)=2*x"2+2*x-1;

There are two potential errors. Find errors and fix them. What is the size of x
and F now?

Exercise 38

Write the answer commands to the following questions:

— How do you change a working directory to C: \Users\Public and add
this path for a search path?

— How do you create a new directory called MYdir inside the C: \Users\
Public directory?

— How do you find out what (variables) are stored in your MATLAB
workspace?

— How do you remove the created directory MYdir using the

Command window?

Exercise 39

Answer the following array-related questions on equally spaced data points:

1. Change the last two columns (column 8 and 9) of D2
(D2=zeros(9); D2(6,:)=1:9;) given previously to have the elements:
(% e, € ..., €8], [tan (€°), tan (€'), tan (€), ..., tan (€%)], respectively
in the most efficient way.

2. Generate these vector spaces in two different ways: [-100, -90,
-80, ... 100], [-100, -99, -98, ... 100].

3. Generate an equally spaced 500 data points within [—z. . 7 |.

92

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 40

Answer the following logical indexing and logical array-related questions:

1.

Given >> A=magic(3); C1=1le(A,7), C2=A<=7,whatdo0
and 1 mean in all logical arrays shown previously for each
individual case?

Given >> A1=12.12; C="nan'; B=[1 2; 0, 3i]; D=B/0;
AA1=isfinite(A1), CCi=isnan(C), DD1=isinf(D),
DD2=isnan(D), what do 0 and 1 mean in all logical arrays shown
previously for each individual case?

Given >> AG=randi([-13, 25], 3, 2); BAG=(AG>0 & AG<13),
why do your answers differ when you run the previous commands
to define AG and BAG?

Given >> GAB=find(AG>0 & AG<13), AG(GAB), what numbers are
behind GAB, and how are they related to AG?

Given >> 13>10; -1.2¢=7.8; -11+13>=3, why are we getting
0s and 1s?

Given >> AA=randi([-13, 13], 10, 2); AA(AA<=0); % OR >>
IN=(AA<=0); AA(find(IN)), what does IN represent with regard
to [AA]?

Given »>>B = randi([0, 13], 5); k=find(B>=3 & B<=5), what

numbers are in k with reference to B?

Exercise 41

Create an * .mfile called ARRAY_1.m and write the following:

1.

Write the command to clean up the Workspace and Command
windows of MATLAB, and then display the current date and time
in the Command window.

Create array A. Write in it the commands to generate the following
arrays: Al (1-by-10) with the operator :, A2 (10-by-1) with
linspace(), A3 (2-by-10) with eye().

93

CHAPTER 1

94

3.

INTRODUCTION TO MATLAB

Create array B. Write in it the commands to create the following
arrays: B1 (5-by-6) with randi() elements ranging between
[-1....1], B2 (5-by-6) with rand (), and B3 (5-by-10) with randn().

Create array C. Write in it the commands to generate the following
arrays: C1 (5-by-10) with magic() and repmat(), C2 (6-by-10) with
eye(), and C3 (10-by-10) with ones ().

Write in it the commands performing all possible (arithmetic
array) operations (+, -, *, /, .%, ./, A, ./A) with A1, A2, and A3 (at least
three operations) and call these new matrices: Alnewl1, Alnew2,
Alnew3, A2newl, A2new2, A2new3, A3newl, A3new2, A3new3. Hints:
use transpose() and rot90() while performing arithmetic array

operations.

Write in it the commands performing all possible (arithmetic
array) operations (+, -, *, /, .%, ./, A, .A, sum, mean) with B1, B2
and B3 (at least three operations) and call new matrices: B1new1,
Binew2, Binew3, B2new1, B2new2, B2new3, B3new1, B3new2, B3news3.
Hint: use fliplr() and transpose() while performing arithmetic
array operations.

Create AB1, AB2, and AB3 matrices from A1, A2, A3, and B1, B2, and
B3. Also, use part of any A1, A2, A3 and B1, B2, B3 arrays. Note that
every AB1, AB2, AB3, ABC4, ABC5 should contain some elements
from arrays A and B. Hint: use flipud() and repmat () while
creating the arrays AB1, AB2, and AB3.

Create ABC1, ABC2, and ABC3 matrices by combining/concatenating
the previously created arrays: A1, A2, A3 and B1, B2, B3 and (1, C2,
(3. You should also use part of any A1, A2, A3 and B1, B2, B3 and

(1, C2, C3 arrays. Note that every ABC1, ABC2, ABC3 should contain
some elements from the A, B and C matrices from Parts 1, 2, and 3.

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 42

Create an *.mlx file called Ex42.mlx and write in it:

1. The command that creates a cell array called Q1 with six empty
column cells.

2. The command gives binary representations of 12321 and
987654321, and a command writing these numbers including
their binary representations in cell 1, 2, 3, 4 of Q1, respectively.

3. The command converts the binary representations of 12321 and
987654321 into a numerical type of array by using MATLAB’s
conversion commands, namely, str2num() or str2double(),
and the command writing the two converted numerical arrays in
cell 5 and 6 of Q1, respectively.

4. The command generating the following array by using pascal()
(MATLAB built-in matrix function):

H=
1.00 0 0 0 0
1.00 -1.00 0 0 0
1.00 2.00 1.00 0 0
1.00 -3.00 3.00 -1.00 0
1.00 -4.00 .00 -4.00 1.00

And by applying logical indexing (logical array) and elementwise matrix
multiplication operations, the following array:

HLG =
1.00 0 0 0 0
1.00 0 0 0 0]
1.00 0 1.00 0 0
1.00 0 3.00 0 0
1.00 0 6.00) 1.00

5. The command that creates a structure array called S5 and
commands writing it: Q1, H, HLG.

6. Explain: why do the converted numbers (in step 3) from the
binary representations (of 12321 and 987654321) differ from the
original decimal numbers, i.e., 12321 and 9876543217

95

CHAPTER 1 INTRODUCTION TO MATLAB

Exercise 43

Create an *.mlx file (called Ex43.mlx) and add all the necessary comments, such as
questions, equations, explanations, and other relevant remarks, and also, write in it the
following commands:

1. Generate two COLUMN arrays with 202 equally spaced data points in
two different ways: = — 2z...27; f = — 360°...360°.

2. Compute these three equations (take the values of «, § from step
1): Fla) = e9; H(p) = e«¥); S =1 — (sin’a + cos?). Note: f is given
in degrees not in radians, and thus, do not forget to convert it into
radians. Also, insert the equations by using the equation editor
of *.mlx.

3. Create an array (called Solution) of five columns containing «,
F(a), p, H(p), S.

4. Create a table of arrays. The table of variables should be called
TVall and has to be in the following format:

alpha F beta H)

-6.2832] -360 2.7183 0
-6.1563 1.135 -352.73 2.46965 -2.2204e-16
-6.0293 1.2855 -345.45 2.6325 0

-5.9024 1.4501 -338.18 2.5304 -4.440%e-16
-5.7755 1.6261 -330.91 2.3961 -4.440%9e-16
-5.6485 1.8092 -323.64 2.2373 -2.2204e-16
-5.5216 1.9939 -316.36 2.0621 -2.2204e-16
-5.3947 2.1731 -309.09 1.8786 -8.8818e-16
-5.2677 2339 -301.82 1.6742 0
-5.1408 2.4834 -294.55 1.515 -4.440%9e-16
-5.0139 2.5984 -287.27 1.3457 2.2204e-16
-4.8869 2.6773 -280 1.18%96 -2.2204e-16

A TL D 71EN 07N 72 1 MN4AQ7 N

5. Find all of the positive values of E, S, and H, and corresponding
a, p values and save all of them in a cell array variable called
FSH_pos.

96

CHAPTER 1 INTRODUCTION TO MATLAB

6. Find all absolute zero values of S and corresponding a, f values.
Save them in an array called ABS_0 with three COLUMNS of the
found S, q, § values.

7. Create a structure of arrays called ABFSH_struct containing
SOLUTION, TVall, FSH_pos, and ABS_0 from steps 3, 4, 5, 6.

8. Clear all variables in the workspace except for @, 5, FE HS,
SOLUTION, TVall, FSH_pos, and ABFSH_struct from the previous
steps. Save these variables in an *.mat called Ex43.mat.

Exercise 44

Create the *.mfile (called Ex44.m) that should perform the following operations:
1. Clear up the workspace and Command window from all entries.
2. Close all open figure windows.
3. Create a new directory: C: \Documents\Ex44.

4. Change the current directory of MATLAB to a newly created
directory: C: \Documents\Ex44.

5. Compute t = [0, 37] withAt = /200,
L (3¢ 2t
(1) 3sm(?) ()= (?j

6. Save the computation results (¢, fi(¢), fz(#)) in a .mat file called
Ex44 .mat.

Exercise 45

Create an *.m file (called Ex45.m) that performs the following operations:

1. Changes the current directory of MATLAB to the MATLAB's root
directory (Hint: matlabroot)

2. Removes the directory created in Exercise 44: C: \Documents\Ex44

3. Displays MATLAB's root directory in the Command window

97

CHAPTER 1 INTRODUCTION TO MATLAB

. |
4. Creates two function handles: r =—at* +v t+r,

nt
and 4= P(l + Kj
n

5. Saves the current path and the previous created function handles
in a structure array called EX45

98

CHAPTER 2

Programming Essentials

This chapter covers the most essential and widely used programming tools, operators,
and control statements in MATLAB. In addition, the chapter covers modeling essentials
in Simulink, the development of a graphical user interface (GUI), and the development
of MATLAB executable files and stand-alone applications. Also, the chapter shows

a number of simple examples demonstrating efficient ways to program and model

in MATLAB/Simulink to save computation time as well as how to create short and
compact code/scripts. In the process, I will give a few essential hints and show different
approaches for writing robust programs and scripts. Throughout the book, key terms
such as script, code, program, M-file, MLX-file, and function file are used frequently to
refer to the programs written for MATLAB. The script and M/MLX-files, including the
function files, are meant to be source code readable by users, not the machine code
understood by a computer.

Writing M/MLX-Files

The previous chapter discussed various entries, such as arrays, characters, cells,
structures, tables, and logic arrays, via examples in the Command window. Also, I gave a
general overview of M/MLX-file editors by writing several short pieces of code (scripts)
that performed computations. Scripts (M/MLX-files) can also be written in Notepad or
WordPad. They become M-files as soon as they are named with a file extension of *.m

or *.mlx.

As discussed in the previous chapter, the M/MLX-file editors have many easy-to-use
tools and some easy-to-understand options that can be employed while writing and
debugging scripts. The M/MLX-file editors’ most used tools are the ability to use cell
modes, set up breakpoints, evaluate selected lines of cells or scripts, use automatic error
detection options for misspelled command names and missing brackets in algebraic

99
© Sulaymon Eshkabilov 2022

S. Eshkabilov, Beginning MATLAB and Simulink, https://doi.org/10.1007/978-1-4842-8748-4_2

https://doi.org/10.1007/978-1-4842-8748-4_2

CHAPTER2 PROGRAMMING ESSENTIALS

operations, detect all used and unused/unreferred to but introduced variables, and
get useful hints to improve the script performance and display of warning hints on
unnecessarily assigned variables, see the overloaded display of results, use variable
values within loops, use a profile viewer, and so forth.

All of these tools of the M/MLX-file editors help you avoid syntax errors while writing
scripts. In addition, there are many other tools that help you save time and effort on
the mechanical parts such as writing reports and publishing reports in HTML or PDF
formats, for example.

Before starting to write some code, let’s consider the most essential steps in any
programming language. The process of writing code starts with a pen and paper and is
composed of the steps shown in Figure 2-1.

— Create Input Variables

Read Input Variables

l

Define output variables and
perform computation and analysis

Check the computed
Outputs

Is the Quality Vag

OK?

Figure 2-1. General process of code/program writing

100

CHAPTER2 PROGRAMMING ESSENTIALS

This flowchart shows the following steps:
1) Clarify the problem statement.
2) Clarify/create/declare input variables: vari, var2, var3 ... varN.
3) Read the values of vari, var2, vars, ..., varN.

4) Define the output variables: out1, out2, out3, ... outN. Perform
computation, evaluation, and analysis operations.

5) Check the quality/correctness of the obtained results/output
variables.

6) If the quality/correctness of the achieved results is not adequate,
then go back to step 3. Repeat steps 3 through 5 until the expected
quality/correctness is attained.

7) End and report on the results.

This algorithm is a generalized process and might also include considering
objectives, specifics, and nuances, such as input/output data types, sources, evaluation
/computation operations, etc. Once the (general) algorithm is well-defined, you can
begin coding in the given programming language. When writing code, the most time-
and effort-consuming part is to carry out the verification operations in steps 3 to 5. This
is called debugging, and it helps you locate errors or flaws in the calculation/evaluation
and analysis operations from step 4.

Specifically, debugging is the process of correcting the syntax of the code, script,
or program with respect to the programming language, correcting the calculation/
computation operations with respect to the given problem statement, and, if required,
adjusting the precision of the output. Debugging is not so straightforward in many
instances, but MATLAB’s M/MLX file editors have a few helpful tools that detect general
errors made in your scripts. At the same time, many errors cannot be detected without
executing and analyzing the obtained outputs. There is no single solution approach to
finding all possible bugs (flaws and mistakes) made when writing code. One of the most
common ways to see if the code is performing as anticipated is to use test examples and
then verify the output.

Throughout the book, considerable attention is given to debugging. It must be noted
that it is impossible to write code without any flaws. Therefore, debugging is a “must-
have” step. Moreover, you will hone your programming skills when you write code that
solves different problems and make errors that you can then find and fix.

101

CHAPTER2 PROGRAMMING ESSENTIALS

Note Always start writing your scripts with simple operations/commands to
perform the most essential parts of the exercise. Once the essential parts of the
exercise are complete, you can add more details. It’s good programming practice
to move from the simple to the complex.

How to Create an M/MLX-File

There are a few ways to create a new script (in this case, an M/MLX-file).

1) Bytyping >> edit in the Command window and pressing the
Enter key on the keyboard.

2) By hitting Ctrl+N on the keyboard.

Lip
3) By clicking sam for the M-file.

for the MLX-file.

§i b

4) By clicking

f &

5) By clicking and selecting from the drop-down options

L) St CuleN g0 the M-file or L) WWESEIBt £ (h e MLX-file or
JE| Teneen for a function file with an *.m file extension or

e
fa| HweFundion £, 5 function file with an *.mlx file extension

6) By collecting the commands typed in the Command window via
these commands: diary on,diary NewFileName, diary off

Warnings in Scripts

While writing M/MLX-files, including the function files, the M-file and MLX (Live)-file,
editors automatically generate some warning signs that are in many instances very
helpful hints to improve the efficiency of scripts and locate some missing or overlooked
arguments. They do not prevent the scripts from being executed, though. These
warnings are indicated by underlined wavy lines and hyphens [~ and rectangular boxes

102

CHAPTER2 PROGRAMMING ESSENTIALS

"on the right side of the M-file Editor window. They are by default orange. Similarly,
the MLX-editor (Live Editor) indicates warnings by underlined wavy lines, as well as

hyphens - and triangular warning signs on the right-side bar of the Editor window.
Note that their color type can be adjusted via the Preferences settings. There are a few
common warnings that are detected automatically by the M/MLX-file editors. They are

as follows:

o To suppress the display of outputs in the Command window detected
by the M-file editor only.

1 %% Warnings a
2 A=2 e
3 B = [A+l, 3] —
4 C=Aa+B =
s £\ Terminate statement with semicolon to suppress output (within a script). |
o To suggest memory allocation (e.g., the variables A and B are
underlined with an orange wave line) when a variable size changes/
increases in the loop iteration within [for ... end] and [while
. end].
1 *% Warnings with memory allocation —
2 for ii = 1:100
3 for 33 = 1:200
3 A(ii, 33) = 11°2+33; -
5 [4. The variable ‘A’ appears to change size on every loop iteration (within a script). Consider preallocating for speed. |_Details | I
L end
7 endl
b § %% Warnings with memory allocation -4
2 ii=1: 3i=1:
3 while ii ~= 100
4 for 33=1:2000
5 B(ii, 33) = 11°2+33;
€ I £ The variable ‘B’ appears to change size on every loop iteration (within a script). Consider preallocating for speed. | Details »]
T end
& iimisslg|
g end

e To cancel the premature ending of the command with comma. For
example, the comma after the grid on the command (on line 4) needs

to be replaced with a semicolon.

103

CHAPTER2 PROGRAMMING ESSENTIALS

%% Warnings with premature ending O
X = 1:3;
Yy = x.%2;

plot(x, y), grid on, hold -
turely ended by comma. Details 4 J [Fix)

W W

& Command ‘grid’ might be p
Explanation

The arguments to a MATLAB command (or a declaration such as global or
persistent) are typically a sequence of character vectors or names with
spaces separating them. Code Analyzer has found a comma in such a sequence.
Rather than separating the arguments, the comma ends the statement.

Suggested Action

If you intended to specify a sequence of command arguments, replace the
comma with white space.

If you intended to end the command, use a semicolon instead of a comma.

o Toremove unnecessary semicolons. For example, at the end of line 1,
the ; is unnecessary.

1 function [A, B) = MY fun(a, b); u
2 & Extra semicolon is unnecessary in FUNCTION statement before newline. (_Fixx) r
3 A=aa;
4 B = b*3;

o Toremove unnecessary semicolons in the [for ... end] loop’s
index declaration (on line 4).

%% Warnings with unnecessary ":" D
A=zeros (100,200); % Memory allocated
Ll_'fm: ii = 1:100
=) for jj = 1:200; -
I £ Extra semicolon is unnecessary in FOR statement before newline. |
Alii, JJ) = 1i72+3];

WO =) N e W

o To indicate unused but assigned variable names (G on line 5) within
M-files.

104

ﬁ--ld\t.l‘lnbh)l.\)l—']

W

CHAPTER2 PROGRAMMING ESSENTIALS

l 4 The value assigned to variable 'G' might be unused. I

1 %% Warning on unused variables O
2 N= 3B = 43

3 C=B"2; D= (A, B, C}:

4 F = struct('Ba', B, 'Ca', C, 'Dc', D);

5 G = [B, Cl; =
[

o To indicate missing arguments when formatting fprintf().

%% Warning on missing arguments
= A=3; B= 4;
= C=B"2; D= {aA, B, C}:
= E=:scyuct('Ba’; B, 'Ca'; C; 'De': D)
= G = [B, C]:

LA The format might not agree with the argument count. J

o Toindicate unnecessary brackets (a = [13] online 2).

®% Warning on unnecessary brackets
a = [13]); b = [a, 2): -—
I & Use of brackets [] is unnecessary. Use parentheses to group, if needed. I

o Toindicate an unrecommended function. For example, x1swrite()
on line 2 is not recommended; instead, it is recommended to use
writematrix() orwritecell(). Note that the unrecommended
function detecting warning option is available starting from the

MATLAB R2022a version.
1 $% Warnings with unrecommended function use A
2 X = transpose(1:13);
3 ¥ = x. "2
4 xlswrite ('MYDATA.x1lsx', [x, y], 'Sheet', 'DATA')

£ “xiswrite’ is not recommended. With appropriate code changes, use
‘wiritematrix” or ‘writecell’ instead.

105

CHAPTER2 PROGRAMMING ESSENTIALS

It must be noted that some of the warning signs detected by the M-file editor will not
be picked up by MLX-editor (Live Editor). For example, the missed ; used to suppress
the display of the output in the Command window is not applicable to the MLX-editor
(Live Editor).

On the other hand, other warnings such memory allocation warnings, unnecessary
semicolons, missing arguments when formatting fprintf()d, and unnecessary
brackets are detected and highlighted very explicitly with the MLX-editor with an [
icon on the right side of the Editor window.

e To advise the memory allocation.

_—
1 %% Warnings with memory allocation L%
2 for ii = 1:100
3 for jj = 1:200 &
4 A(ii, jj) = ii"2+33; =
S A

The variable ‘A’ appears to change size on every loop iteration (within a script). Consider preallocating

for speed. Details ¥

o Toindicate the prematurely ended command with a comma.

%% Warnings with unrecommended function use
X = transpose(1:13);

V= X452

plot(x,y), grid on, hold

) o] (G

B WM
e

=

LSS S S LS LSS AL o

£ Line 4;: Command might be prematurely ended by comma. Details ¥ | Fix > —
———

o Toindicate unnecessary semicolons in the function statement.

| &

function [A, B] = MY_fun(a, b);

Sl L R
end

(= LV o R =S TV S

o To indicate unnecessary semicolons in defining indexes for the [for

. end] loop.

106

CHAPTER2 PROGRAMMING ESSENTIALS

% Warnings with unnecessary “;" B!
A = zeros(100,200) % Memory allocated
for ii = 1:100 a
for jj = 1:200;
A

A SIS
2w e

Alii. d4Y = ii~2454:

Extra semicolon is unnecessary in FOR statement before newline. | Fix |

L

o end

W

To indicate a missing argument in fprintf().

%% Warning on missing argument in formatting B

A=3; B=4;

€ = B*2; D= {A; B; C}; o

F = struck('Ba’'; B, 'Ca’; C; '‘Dc'; B);

G = [B, CI;

fprintf(Generated variables are: %2d..)
/\

B WN e

The format might not agree with the argument count. = Details ¥

To indicate unnecessary bracket.

all]

1 % Warning on unnecessary brackets
2 a = [13]; b =[a, 2];

| &

Use of brackets [] is unnecessary. Use parentheses to group, if needed.

To indicate an unrecommended function use. For example,
x1lswrite() online 2 is not recommended. Instead, it is
recommended to use writematrix() orwritecell(). Note that the
unrecommended function detecting warning option is available
starting only from the MATLAB R2022a version.

1 %% Warnings with unrecommended function use &
2 X = transpose(1:13);

3 - X.A2; =
4

1swrite('MYDATA.x1sx", [x, y], 'Sheet', 'DATA’) A

£\ Line 4: xiswinite' is not recommendad. With appropriate code changes, use I =
‘writemalrix’ of ‘writecell instead. 1

107

CHAPTER2 PROGRAMMING ESSENTIALS

Errors in Scripts

In MATLAB, scripts can contain code to perform various computations and analyses
and to define functions. Let’s look at a few simple examples of how to write scripts in the
M-file and MLX-file editors and see how to locate/fix common errors occurring while
writing scripts.

Example 1

Let’s solve a quadratic equation represented in a general form: ax? + bx + ¢ = 0. First,
open an M-file editor and type in the following commands:

a=input('Enter, a = ');
b=input('Enter, b = ');
c=input('Enter, c = ");

D=b"2-4*a*c;
disp(['Discriminant of the equation is: ' num2str(D)])

Once the file is saved with a file extension of *.m, then it can be executed. When
it is executed, this code prompts the user for three input (input()) entries and then
computes the discriminant of the quadratic equation with the user entries for a, b,
and c and displays the result in the Command window. It should be noted that the
command disp() on line 5 is optional and is used to display the computation result in
the Command window with some comments. The command disp() does not make any
changes in the output. There are two more computing steps left in this code, namely,
computing the two roots of the quadratic equation. The remaining steps can be inserted
after line 5. If there are some illegal operations/errors while writing the script, the M/
MLX-file editor will automatically detect them and underline them with red waves.

a=input ('Enter, a = '); 4|
b=input ('Entexr, b *)2
c=input ('Entex, ¢ = '):
D=b*2-4*a‘c:
disp(['Discriminant of the equation is: ' num2sctr (D)}
x1=(-b+sqrt (D)) /2a:; —
x2=(-b-sqrt (D)) /(2*a) w—

wn b= W V-

D 3

108

CHAPTER2 PROGRAMMING ESSENTIALS

There is one error on line 6 (the red wavy line under a), where the multiplication

sign is missing, and one warning shown with an orange wavy line under the = sign on

line 7, where a semicolon (;) is recommended to suppress the display of the output from

this line.

Error and warning messages like the ones on lines 6 and 7 with red and orange

highlights are shown on the right edge of the editor’s scroll bar. If there is a red wavy line

showing errors, the script (M/MLX-file) cannot be executed. If there are any warning

signs with orange wavy underlines, that script can be executed without a problem. A few

different types of typos or illegal operations are detected automatically by the M/MLX

editors, but they cannot be fixed automatically. Thus, you have to understand and work

out such issues.

a=input ('Enter,
b=input ('Enter,
c=input ('Enter,
D=b"2-4*a*c;

disp(['Discriminant
x1l=(-b+sqgrt (D)) /2a:

!)'-
= Y
'):

of the eqguation is:

' num2str(D)])

W =] h N = W D =

@ Parse error at a: usage might be invalid MATLAB syntax.

The warning message on line 7 can be fixed either by putting a semicolon where the

cursor is or by clicking the Fix button.

a=input ('Enter,
b=input ('Enter,
c=input ('Enter,
D=b"2-4*a*c;

a

=

b =

c

disp(['Discriminant
x1=(-b+sqrt (D)) /2a:
x2-(—b—sqrt(D])/(2‘aﬂ

I}:
'):
'):

of the eguation is:

num2stx (D)])

W =] N e WO

| £, Terminate statement with semicolon to suppress output (within a script). |]

Finally, here is the fixed script. The green square in the right corner indicates that the

syntax of all the typed-in commands are correct, and the script is ready for execution.

a=input ('Enter,
b=input ('Enter,
c=input ('Enter,
D=b"2-4*a*c;

W =) & U & W D

a
b

L=

disp([’'Discriminant
x1l=(~-b+sqrc(D))/ (2*a);
*2=(=-b-sqrc(D))/ (2*a);

|}'.
'):
g

of the equation is:

' num2stx(D)])

L

109

CHAPTER2 PROGRAMMING ESSENTIALS

Now after saving this script with a file name of Eqn.m, it can be executed by clicking

>

the | = button on the Editor’s main menu, by pressing Ctrl+Enter on the keyboard, or
by calling the script by its name (>> run('Egn')) from the Command window directly.
Another way of executing the code is pressing the F5 functional key on the keyboard.
After executing it, it prompts for the input in the Command window. You would enter the
values 1, 2, and 3 for a, b, and c, respectively.

Enter, a = 1
Enter, b = 2
Enter, c = 3

Discriminant of the equation is: -8

Then the whole computation is completed, and this is what is obtained in the
Command window. There are also some other variables saved in the Workspace window
that are shown.

Workspace

(D -8
HH =1 -1.0000 + 1.4142i
H x2 -1.0000 - 1,4142i

All of the entries and processed/computed outputs from the scripts and M/MLX-
files are saved automatically in the workspace. Except for when the function files are
executed, not all results are saved in the workspace apart from the specified output
variables in the function file. This issue will be addressed in the Function Files section of
this chapter.

Example 2
2
: : . N |(ax—by)
Compute the following expression by writing an M-file (script): ab 3 d—f , where
C f—

12314 12 4 .
x=|—,———1|, y=|——=1—|,c=2,d=25,and f =2 and the values a, b with the user
5555 33 3
entries (scalars). According to the given values of the variables, x and y are row arrays
and the other variables (a, b, ¢, d, f) are scalars.

110

CHAPTER2 PROGRAMMING ESSENTIALS

Like with the quadratic equation, the input prompts are included in the script.

1 % Example: simple calculation l —Dl l
2 a=input ('Entexr, a = ');

3 b=input ('Entexr, b = ');

4 x = [1/5; 2/5, 3/S5, 4/5):

S y = [1/3, 2/3, 1, 4/3);

6 c=2;

7 d=2.5;

g £ =2;

9 OUT = a*b*(((a*x-b*y)"2)/(c*d-LL)" (1/3)L I J

| Q@ Invalid syntax at ";'. Possibly, a), }, or] is missing. |

This is the created short script to compute the given assignment. By taking a quick
look at this script, you can see that there is one error detected by the MATLAB editor. It is
invalid syntax related to a missing parenthesis at the end of line 9 that is true, and in fact,
the missing parenthesis is before the first power raise (*) sign. Here is the fixed code with
the green square in the upper-right corner:

1 $ Example: simple calculation _DH
2 a=input ('Enter, a = ');

3 b=input ('Enter, b = ');

4 % = fAfS: 2FE. BFS, 4/5);

S v 3L 23 1, 43Y;

& o =27

7 o = 2.5

8 B =X

9

OUT = a*b* (((a*x-b*y)"2)/ (c*d-££))~(1/3):

Now everything appears to be correct according to the editor syntax. However, there

are still several errors.

¢ Online 4 while defining the elements of x, a semicolon is used as an
element separator that must be a comma or just a space.

o Thevariable fis defined on line 8, but in the expression on line 9 ffis
used instead.

o The computation expression on line 9 is performed with the variables
a, b, ¢, d, and f, which are scalars, and the variables x and y, which
are row arrays. That is not correct. This line has to contain element-
wise operations over the row array variables x and y. After fixing these
errors, the script will be in the following form:

111

CHAPTER2 PROGRAMMING ESSENTIALS

1 % Example: simple calculation =)
2 a=input ('Enter, a = ');

3 b=input ('Entexr, b = ');

4 x = [1/5, 2/5, 3/5, 4/5]:

5 vy = [1/3, 2/3, 1, 4/3]:

€ c= 2

7 d =2.5;

8 L = 23

9 OUT = a*b* (((a*x-b*y)."*2)/ (c*d-£f))."~(1/3):

Now the script can be executed by pressing Ctrl+Enter or F5 on the keyboard without
>

saving it or by clicking | "' after saving it. Here are the results (input entries from the

Command window):

1
2R

Enter, a
Enter, b

Here are the variables in the workspace:

Workspace

]Name - Value

Ha 1

e 2

b e 2

Ha 2.5000

e 2

L—i;om' ({0.8343,1.3244,1.7354,2.1023]
HH x {0.2000,0.4000,0.8000,0.8000]
By {0.3333,0.6667,1,1.3333]

Example 3

Let’s compute the mathematical expression’s values and plot them by using the MLX-file

editor and creating the MLX-file. Given: H(t) = sinsin (ot); = 3; t = [0°, 450°] with At =1°.
Note that the given argument values of ¢ are in degrees, not in radians. In MATLAB

there are two functions, namely, sin() and sind(), to compute sine function values with

input arguments in radians and degrees, respectively. Therefore, in such cases, there

are two approaches: one should always use the right MATLAB function or one should

112

CHAPTER2 PROGRAMMING ESSENTIALS

employ the conversion function from degrees to radians (deg2rad()) or vice versa

(rad2deg()).

Now the MLX-file (script) is created in a live editor by considering the input

argument

t = 8:1:450@
omega = 3
H = sind(omega)

®[stnat0)

Angle in degrees
EH omega

%] OPENm1x

[fe orderfislds
[ones

(A ode113

[ode15i

|| odel5s

T = 9;1:450
omega = 3

= W e

H = sind(omega,*t])

Solve stiff differential equations anc

arse emor at ™" usage might be invalid MATLAB syntax.

Note that the error is shown by the wavy underline, and © and = inred on the

right side of the MLX-editor. After fixing the error (the comma before *), the corrected

code will be in the following form:

3 T =0:1:450

2 omega = 3

3 H = sind(omega*t)
(@] sina(x)

ﬁq\ngle in degrees

&

There are several essential differences between the M-file editor and MLX-file editor.

One of them is that the MLX-editor can detect automatically the previously defined

variables after typing the first letter of the variable name as an input argument with an

additional hint showing the argument type to be inserted (e.g., t is the angle in degrees).

113

CHAPTER2 PROGRAMMING ESSENTIALS

Another feature of the MLX-file editor is that it does not show a warning message if the
semicolon is not placed at the end of commands assigning variable values. For example,
t = 0:1:450, which we saw while working with the M-file editor. The MLX-file editor
displays the outputs not in the Command window but in the MLX-editor’s right-side
window. At the same time, all of the variable values and computed expression values are
saved in the workspace after executing the MLX-files just like with the M-files. The
execution of the MLX-files is similar to M-files that can be done by pressing Ctrl+Enter

P2

on the keyboard or by clicking the R button. Here is the final script with the plot()
command and its computed results:

t = 9:1:450 9

: i % @ 4 5 & 3 & § % n B
2 omega = 3
omega = 3
3 H = sind{omega®t) o
4 ploz(t, H) @ 0.0525 0.1635 0.1565 ©0.2079 ©0.2588 0.3030 0.358% ...
5 xlabel('t")
=

ylabel('H(t)")

o8t | 1'.|

|I |) \ |
o[| [I [
04 f

p2h | | \ |I| | I ll.

H(t)
o

02 \ '
| | -
Dar |I |

|
D6 | \ I

\ /

0 50 100 150 200 280 300 350 400 450
t

Example 4

Write an MLX-file that analyzes and computes the following acceleration equation a(v)
(acceleration as a function of velocity) of a skydiver:

114

CHAPTER2 PROGRAMMING ESSENTIALS

1. Plotaversus v. m
2. Compute the terminal speed of a skydiver when S

3. Take the vertical velocity v to be independent variable with the

m
step size of Av=0.1— within {0, 100ﬂ}.
s s

4. Display the terminal speed value on the plot.

Here is the initial code with one error on line 8 because of a mistyped variable name
(Tttinstead of Tt), indicated by the exclamation pointo icon. This type of error (a
mistyped variable name) can be detected in the live editor only after executing the script,

not while writing it.

Acceleration equation of a sky-diver
g = 9.5100

v as
alv)= ==
. x(-‘W’) 9.5100 9.3100 9.3099 9.3095 ...

e=981 2 av=012
5 5 10g

Compute and plot a(v) vs.v

v=0:.1:160;

g=9.81

a = g*(1-v.~2/3600)

plot(v,a, 'ro-"), grid on
xlabel('v, Velocity [m/s]')
ylabel('a(v), Acceleration [m/s"2]")

N bW
a(v), Acceleration [m/s?]
o

Compute the terminal speed of a sky-diver in 2 : 20
5 0 20 4] 80 100

v, Velocity [mis]

Tt=find(a<@); % Terminal acceleration
v_t = v(Tte(1)); % Terminal velocity Unrecognized function or variable 'Ttt'.
gtext(['Terminal speed: ' num2str(v_t) ‘m/s'])

xlim([B, v_t])

® W0 0~

Note that the error with the mistyped variable name (Tt instead of Tt) showed up
after executing the MLX-file editor. The results of calculations from the MLX-editor,
unlike the M-file editor, do not show up in the Command window. Therefore, it is a good
idea to execute the live script frequently to catch any overlooked rules and errors while
typing and editing the scripts in the MLX-editor.

Here are the corrected and final solution scripts for this exercise in the MLX-editor:

115

CHAPTER2 PROGRAMMING ESSENTIALS

Acceleration equation of a sky-diver:

2
alv) = g(l —_{;—m)'.
n m

g=981 =:Av=0.1 =
[5

Compute and plot a(v) vs.v

1 v=0:.1:100;
2 g=9.81 g = 9.8100
3 a = g*(1-v.*2/3600) as1
4 plot(v,a, 'ro-'), grid on 9.318¢ 9.818¢ 9.8899 9.8098 ...
5 xlabel('v, Velocity [m/s]')
5 ylabel('a(v), Acceleration [m/s"2]")
Compute the terminal speed of a sky-diver in '—:’ :
7 Tt=find(a<@); % Terminal acceleration £°
8 v_t = v(Tt(1)); % Terminal velocity 2
9 gtext(['Terminal speed: ' num2str(v_t) ‘m/s']) § ¢
10 xlim([e, v_t]) %ab

The outputs are displayed within the same window on the right side, including the

plot figures. In this exercise, there are a few lines of (nonexecutable) text; comments and
Normal +
1=

e BLUM

equations are added between executable commands by using the | |Insert text LAN*EM_HL_E

"+ [Insert an equation (Ctrl+ Shift=E) |
and zauamion | equation editor GUI tools of the MLX-editor, which are

not available in M-file editor.

Example 5

It is possible to call within an M-file another M/MLX file or files. Let’s look at an example
of writing M- and MLX files to compute the following expressions. You'll also obtain their
computation results by calling/executing another M/MLX-file. This will demonstrate
how you link/connect several scripts (M/MLX files) or, in other words, how you execute
several scripts, obtain their simulation results, and use them within a single script.

1) Compute F(a) = ¢9; H(B) = e«¥; S =1 — (sin’a + cos? p); for
a= —2n.2m = —360°..360° by writing an MLX-file.

116

CHAPTER2 PROGRAMMING ESSENTIALS

2) Compute (at) — sin sin (bt), fora=3,b=2,-13 <t < — 3 with
At = /50 by writing an M-file.

3) Compute f(f) = cos cos (20t) — sin (10t), for t € [-x, =] with
At =z/50, and plot the computation results ¢ versus f(t) by writing
an M-file.

13e™*
]1(8)= 2 5 2
4) Compute § +om,s+®, fors=[0, 0.5 1, 1.5,2];

rad -
@, = 3{&}55 =[0,25],As=5%10"" by writing MLX-file.

5) Write an M-file that executes all of the M and MLX-files from the
previous tasks and saves all the computation results in a single
array called A1 (for step 1), a table array called Btab2 (for step 2),
a cell array called Ccell3 (for step 3), and a structure array called
Dstruct4 (for step 4).

Here are the solution scripts in the M/MLX-files of these five tasks.
This MLX-file, called ET1.mlx, is the solution of task 1:

(1) Compute (ET1.mix):
Fla) =& H(f) = P 8§ = | - (sinfa+cos*fia=-2x...2x; f=-360°,..360°

1 alpha=linspace(-2*pi, 2*pi, 360); beta = linspace(-360, 360, 36@);
F=exp(sin(alpha)); H=exp(cosd(beta)); S = 1-(sin(alpha)~2+cosd(beta)"2);

(5]

At initial glance, this script (ET1.m1x) looks error-free, and the MLX editor does not
show any problematic issues. However, there are two errors (in array power operations)
on line 2 in computing S, which will be detected by the editor only after you execute

the script.
(1) Compute (ET1.mix):
Fla) =& H(f) = &8 8§ = | —(sinfa+cos?f)ia==2x...2x; ff ==360°...360°
1 alpha=linspace(-2*pi, 2*pi, 360); beta = linspace(-360, 360, 360);

2 F=exp(sin(alpha)); H=exp(cosd(beta)); S = 1-(sin(alpha)*2+cosd(beta)~2);

117

CHAPTER2 PROGRAMMING ESSENTIALS

Error using _*_
Incorrect cimensions for raising » matrix to » power. Check that the matrix i3 square and the power is & scalar. To perfors

poners, use ".%'.

Here is the corrected script:

(1) Compute (ET1.mix):
Fla) = ™%, H(B) = e¥; 8§ =1 - (sin’a + cos*f); @ = -2m...2m; B = -360°...360°

alpha=linspace(-2*pi, 2*pi, 360); beta = linspace(-360, 360, 360);
F=exp(sin{alpha)); H=exp(cosd(beta)); S = 1-(sin(alpha).”2+cosd(beta)."2);l|

Here is the initial version of the script that solves task 2:

1 3% ET2.m |
2 $ Task 2. Compute the values of gl(a, b, t)

3= ==3:pi/50:13;

4 — a = input (' Enter the value of a = ');

Bl b = input (' Enter the value of b = ');

fi= g=cos (a*t)-sin(b*t);

A quick glance at this code shows that it is correctly typed and ready to execute. That
can be verified with the green box “ on the right side of the editor’s window. Even with
the execution of the script, no error will show up in the Command window. However,
checking the obtained results of g shows that many anticipated data points are missing
in the results. The error is on line 3. The semicolon is typed in instead of the colon
operator to create an array of . This is an implicit error or bug in the code that cannot be
detected by the M-file editor. Here is the corrected code:

%% ET2.m

% Task 2. Compute the values of g(a, b, t)
t=-3:pi/50:13;

= a = input(' Enter the value of a LB
= b = input (' Enter the value of b = ');
= g=cos (a*t)-sin (b*t);

o W W
|

Here is the initial version of the answer script for task 3:

118

CHAPTER2 PROGRAMMING ESSENTIALS

1 %% ET3.m =h
2

% Task 3. Compute the values of f(t)
3 - t=-pi:pi/200:pi;
4 - f=cos (20*t)-sin (10*t);
5 plot(t; £, 'b-'), title('Results of Task (3)'), grid on| E:]
€ @ Parse error at ')": usage might be invalid MATLAB syntax.

In this script, the editor detects two errors and one warning sign on line 5. The script
contents can be executed up to line 5, and the following error message is displayed in the
Command window:

Error: File: ET3.m Line: 5 Column: 7
Invalid expression. When calling a function or indexing a variable, use
parentheses. Otherwise, check for mismatched delimiters.

Actually, there was one error: a misplaced semicolon instead of a comma within the
plot() command on line 5: plot(t; f, 'b-').There are two common functionalities
of the semicolon for MATLAB, one of which is the termination of display results in the
Command window and the end of row elements of an array. Therefore, in this example,
the semicolon inside plot() is misplaced. Here is the corrected script:

1 8% ET3.m

2 % Task 3. Compucte the values of f£(t)

3= t=-pi:pi/50:pi;

4 - f=cos (20*t)-sin(10*c);

8= plot(t,f, 'bo-'), title('Results of Task (3)'), grid on

Here is the initial solution script of task 4:

(4) Compute (ET4.mix):

—25 L i 3 . 2
T(s)=]3,._8— :6=1[0,0.5,1,1.5,2];», =3;5=[0,25]; As =5%10"2
S+dw,s + &’

delta = [0, 0.5, 1, 1.5; 2]; s=0:5e-2:25; omegaN=3;

T(:. 1) =13%exn(-2%5). /(5. +de1tal1) s*omesal+omegal”2) ;
i(All matrix rows must be the same length. = Details ¥ Egau:?_)f
(: ==y bgan2);
T(:, B =15"exp(-27s) /(s " Zvuelta(g) s onegaN+omegaN~2) ;
T(:,5)=13%exp(-2%s)./(s."*2+delta(5)*s*omegall+omegaN"2) H

[« LV, - S OV I N B

119

CHAPTER2 PROGRAMMING ESSENTIALS

It automatically detected an error (the mistyped semicolon instead of a comma) as

an element separator of the array. With this error, the script cannot be executed.

Here is the corrected version of the script:

(4) Compute (ET4.mix):

T(s) =13 —————;5=[0,0.5,1,1.5,2); w, = 3;5 = [0,25]; As = 5 x 10

ST+ 0w,s+ wy

delta = [0, 0.5, 1, 1.5, 2]; s=0:5e-2:25; omegaN=3;

T(:,1)=13%exp(-2*s)./(s."2+delta(l)*s*omegal+omegal™2);
T(:,2)=13%exp(-2*s)./(s."2+delta(2)*s*omegaN+omegalN"2);
T(:,3)=13%exp(-2*s)./(s."2+delta(3)*s*omegalN+omegaN"2) ;
T(:,4)=13%exp(-2*s)./(s."2+delta(4)*s*omegal+omegaN"2);
T(:,5)=13%exp(-2*s)./(s."2+delta(5)*s*omegaN+omegaN"2) ;|

Here is the script of task 5. It calls the scripts in tasks 1 to 4.

1 %% ET5.m

2 % Task 5. Execute all M/MLX files (ETl.mlx, ET2.m, ETI3.m, ET4.mlx)
3 % and save the results

4= clearvars; close all

5 % Step 1. Call and execute the MLX file called: ETl.mlx
0= run('ETl.mlx");

1 % Collect all computation results

8 - Al = [alpha'; F'; beta'; H'; 5'];

-]

10 % Step 2. Call and execute the M file called: ETI2.m

1= run('ET2.mlx"');

12 = Btab2 = table(t',g','variablenames', {'t', 'g'}):

13

14 % Step 3. Call and execute the M-file called: ET3.m

15 - run ('ET3.m') ;

16 - Cceill3¢1,1} = t; CceXl3{1, 2} = L;

17

18 % Step 4. Call and execute the MLX-file called: ET4.m

19 - run('ET4.mix");

20 = Dstruct4.In = s; Dstruct4.Fun = T; Dstruct4.delta = delta;
21 = Dstruct4.omega=omegal;

22~ whos % Show all of the computed outcomes in the command w1ndoﬂ

The script editor does not show any problems or issues. However, when it is
executed, the following error message pops up in the Command window:

Error using run (line 87)

E

RUN cannot execute the file 'ET2.mlx'. RUN requires a valid MATLAB script

Error in ET5 (line 11)
run('ET2.mlx");

120

CHAPTER2 PROGRAMMING ESSENTIALS

This error message indicates that there is a problem recognizing the file. That means

the file name ET2.mlx is not the correct file name (the file extension is wrong); it has to
be ET2.minstead.
Here is the corrected script of task 5:

(T - T T R S

N NN e e e e
N - O WA E W~ O
g i [[

%% ET5.m

% Task 5. Execute all M/MLX files (ETl.mlx, ET2.m, ET3.m, ET4.mlx)
$ and save the results

clearvars:; close all

% Step 1. Call and execute the MLX file called: ETl.mlx

run ("ET1.mlx"') ;

$ Collect all computation results

Al = [alpha'; F'; beta': H': S§']:

% Step 2. Call and execute the M file called: ET2.m
run('ET2.m') ;
Btab2 = table(t',g','variablenames', {'t', 'g'}):

% Step 3. Call and execute the M-file called: ET3.m
run ('ET3.m');
Ccell3{l,1} = t; Ccell3{l,2} = f;

% Step 4. Call and execute the MLX-file called: ET4.m

run ('ET4.mlx"');

Dstruct4.In = s; Dstruct4.Fun = T; Dstruct4.delta = delta;
Dstruct4d.onega=omegal;

whos % Show all of the computed outcomes in the command window

By executing the last file, ET5.m, all other four scripts are also called and

executed consecutively. Here are the computed outcomes from all scripts in the

Command window:

Enter the value of a = 2
Enter the value of b = 3
Name Size Bytes Class Attributes
A1 1800x1 14400 double
Btab2 255x2 5162 table
Ccell3 1x2 1840 cell
Dstruct4 1x1 24800 struct
F 1x360 2880 double
H 1x360 2880 double
S 1x360 2880 double
T 501x5 20040 double

121

CHAPTER2 PROGRAMMING ESSENTIALS

a 1x1 8 double
alpha 1x360 2880 double
b 1x1 8 double
beta 1x360 2880 double
delta 1X5 40 double
f 1x101 808 double
g 1x255 2040 double
omegaN 1x1 8 double
3 1x501 4008 double
t 1x101 808 double

Also, there is a plot figure (not shown here) from task 3 (ET3.m).

Note that there are many other common errors made while writing scripts that will
be highlighted throughout the book. Moreover, there are a few common mistakes made
while creating the function files that will be highlighted in the section dedicated to the
function files.

Via these simple examples, you have seen how scripts, such as M-files and MLX-
files, and the tools of M and MLX (Live) editors can be employed while writing scripts to
detect common errors automatically. There are some other errors that are not detected
by the M/MLX editors automatically that can be found only after executing the scripts.
These include various operations (arithmetic, matrix, and array) that are performed with
mismatched sizes of variables or improperly spelled MATLAB commands.

Note Finding and fixing the errors you make while writing code is a good
exercise for learning how to write great programs.

Cell Mode

In the M/MLX editors, the cell mode option is a handy tool to write well-structured
code/scripts. Working in cell mode is simple and can be accomplished by typing %%
and leaving one cursor space. This creates a new cell by default. Writing long scripts
separated in cells for every separate operation helps you execute your code cell by cell
and detect where the bugs/flaws are. It also helps you visually separate the code into
distinct blocks that can be highlighted one at a time. This helps with the readability of
the code while editing it. Let’s consider the following example.

122

CHAPTER2 PROGRAMMING ESSENTIALS

The equation for an ellipse centered at the origin of the Cartesian coordinates (X, y)
2 2

is x_z + z—z =1(A),where a and b are constants that determine the shape of the ellipse.
. , a (1 -u’) 2bu t
The variables x, y are defined by x(u)=—-——=,y(u)=———, and u=tg| — | where
u +1 u +1 2

0<t<L2x.

1) Compute the ellipse given in equation in (A) for a = 1.5, b=3.5 and
plotit.

2) Plot and display the points of intersection of the two ellipses

2 2

+d=1

—+y*=1
described by 4 and 25 .

3) Compute three ellipses defined in (A) as a three-column array for
these cases:a=[1, 2, 3], b=[3.5, 1, 2].

Here is the solution script of this exercise created in three cell modes representing
answers for each subsection of the exercise. Each cell contains an answer script for each
part of the given exercise. Cell 1 (part 1), composed of lines 2-9, computes the ellipse
in (A) with respect to the values of @ and b. Cell 2 (part 2), composed of lines 10-27,
computes two ellipses and plots their values and, subsequently, displays intersecting
points of the two ellipses. Cell 3 (part 3) computes three ellipses with respect to the
values of a and b and plots the computed ellipses.

123

CHAPTER 2 PROGRAMMING ESSENTIALS
il % Cell Mode based code writing
2 %% Part 1. Compute the Ellipse with a = 1.5 and b =3.5, and plot it
Fi= clearvars, close all
q4 - t = 0:pifl00:2*pi;
5= a=1.5; b=3.5;
6 - u = tan(c/2);
7= x =a*(l - u."2)./(u."2+1);
g€ - y = 2%pbxyu,./ (u.*2+1) ;
5= plot(x, v, 'bo-'), grid on
10 %% Part 2. Compute the Ellipses with a = [1, 5], b =[2, 1], and plot them
1) = clearvars, close all
12— a=1[1, 5]: b = [2, 1]:
13— t = 0:pi/l00:2*pi;
14 - u = tan(t/2);
15 % Ellipse 1
16 = X1 = a(l)*(1 - u.”2)./(u.”2+1);
ET= yl = 2*b(1)*u./(u.”2+1);
18 % Ellipse 2
19:= x2 = a(2)*(1 - u.”2)./ (u.”2+1);
20 = y2 = 2*b(2)*u./ (u."2+1);
2Y= plot(xl,yl, 'b-', 'linewidch', 2), hold on
22— plot(x2, y2, 'r--', 'linewidth', 2.5), grid on
23 — legend('Ellipse 1', 'Ellipse 2')
24 - [px, pyY] = ginput(4); % Picking the intersection points
25 — gtext (['Point of intersection: (' num2str(px(l)) ',' num2scz(py(l)) ')}'])
26 — gtext (['Point of intersection: (' num2str(px(2)) ',' num2scr(py(2}) ')'])
27 = gtext (['Point of intersection: (' num2sctr(px(3)) ',' num2sctr(py(3)) ')'l)
28 — gtext (['Point of intersection: (' num2str(px(4)) ',' num2stxipy(4)) ')'l)
29 %% Part 3. Compute the Ellipses with a = [1, 2, 3], b =[3.5, 1, 2], and plot them
30 - clearvars, close all
3L = a=1[1 2, 3); b= [3.5 1, 2);
32 - t = 0:pi/100:2*pi;
33~ u = tan(t/2):
34 % Ellipse 1, 2, 3
35 - x= [a{1)* (1 - u."2)./(u."2+41); a(2)*(1l - uw.”2)./(w."2+1);
36 a(3)*(1 - u.”2)./(u."2+41)]"';
37 = y = [2*b (1) *u./ (0."2+1); 2*b(2)*u./(u.”2+1); 2*b(3)*u./(u.”2+1)]"';
38 - plot(x(:,1),¥v(:,1), 'x=', x(:,2),¥(:,2), "G——",%(:,3),¥(:,3),
39 = 'b~.', 'linewidcth', 2}, grid on
40 - legend('Ellipse 1', 'Ellipse 2', 'Ellipse 3'})

After writing the code in cell mode, you can execute each cell separately by using the

Ctrl+Enter keys on the keyboard when the cursor is within the cell that is meant to be

"

Run and

executed or using the (2] Run Secton and L& Advence and | AYEREE (05 of the M-file

editor. Note that an alternative way of executing the selected part of a code is to hit the F9

key on the keyboard. The advantages of using cell mode is that you can execute and test each

cell separately. If there are any errors, you can fix them without any interference with other

cells. You can save considerable time and effort when you debug and correct long scripts.

124

CHAPTER2 PROGRAMMING ESSENTIALS

Note When you are writing long, extended scripts and debugging them, it is more
efficient to use cell mode.

As noted, the M/MLX-file editors have many useful tools. For instance, they

automatically detect common typographical errors. They detect and warn a user about

the following:

Mistyped MATLAB built-in function/command names
Unclosed mathematical expressions with brackets, namely, (), {}, []

Misused/improperly used or missed mathematical operators,
nameer +_*/\I) ()I {}r []

Invalid syntaxes
Unused variable names
Suppress display of (lengthy) outputs

Which entries are numeric data, which entries are characters or text
messages, and which entries are comments

Warning messages that let you know how to improve computation
efficiency of a script

In addition, the M/MLX-file editors have the following tools:

Debugging modes, such as set/clear breakpoints, set/modify
conditional breakpoints, enable/disable breakpoints, stop if errors/
warnings

Working in a cell mode
Text editing options under text

Report writing by save and publish options

125

CHAPTER2 PROGRAMMING ESSENTIALS

Debugging Mode

The dbstop function temporarily halts the execution of a script and provides the user
with an opportunity to examine the local workspace. While debugging a script, you can
set the breakpoints at specific lines in the Editor window by clicking that line in the left
gutter. There are more than a dozen forms of dbstop function uses, as shown here:

(1) dbstop in FILE at LINENO

(2) dbstop in FILE at LINENO@

(3) dbstop in FILE at LINENO@N

(4) dbstop in FILE at SUBFUN

(5) dbstop in FILE

(6) dbstop in FILE at LINENO if EXPRESSION
(7) dbstop in FILE at LINENO@ if EXPRESSION
(8) dbstop in FILE at LINENO@N if EXPRESSION
(9) dbstop in FILE at SUBFUN if EXPRESSION
(10) dbstop in FILE if EXPRESSION

(11) dbstop if error

(12) dbstop if caught error

(13) dbstop if warning

(14) dbstop if naninf or dbstop if infnan
(15) dbstop if error IDENTIFIER

(16) dbstop if caught error IDENTIFIER

(17) dbstop if warning IDENTIFIER

The name FILE is the file name in which you want to perform the debugging
operations. It has to be specified as a character vector of the string scalar. FILE can also
include a full or partial path to the file directory. LINENO is a line number within FILE
(the script in which the debugging operation is being performed), and N is an integer
specifying the Nth anonymous function on the line. SUBFUN is the name of a subfunction
within FILE. EXPRESSION is an executable conditional expression, specified as a character
vector or string scalar. IDENTIFIER is a MATLAB message identifier (see the help for
ERROR for a description of message identifiers). The AT and IN keywords are optional.

126

CHAPTER2 PROGRAMMING ESSENTIALS

M-Lint Code Check

The command mlin() is used to check MATLAB code files for possible problems. When
you run an M-Lint code check from the M-file Editor window, by choosing Tools »
M-Lint » Show M-Lint Report, it will prompt you with a full report (on your M-file) of
warning messages. For instance, it will check which variable is unused, which variable’s
size changes on every loop iteration, what the opportunities are for improvement,
which one of the employed built-in functions of MATLAB is deprecated, and so forth.
The general command syntax of mlint () is as follows: >>mlint (' filename"). Starting
from MATLAB 2019a, mlint () is not recommended, and the checkcode () command is
recommended instead.

Let’s consider the following example to demonstrate how to use the M-Lint code
check tool:

Given {2x; — 3x, + X3 = 5 4x; + 2X, — 2X3 = 3 6x; + 3X, + 2x;3 = 11, write the code to solve
the given system of linear equations, and import the computed solutions along with the
given data into an external Microsoft Excel file.

Here is the solution script:

1 = % '_‘:'_-‘le_'_"‘:_-':-' n. Code :"-:-:‘-'i": ith "'-L‘“ZIJ and checkcode (

2 % Given: [A x} = [b] svstem

3 - % Solve for {x}

4 A=[2=3 1; ¢ 2-=2; 6 3 2);

5 b= [5; 3; 11);

& x = inv(a)*b;

7 xlswrite('Scluticn Data.xlsx', [A, x, b]) i

The code (Code_Check.m) contains two warnings automatically detected by the
M-file editor. They are related to the inv() and x1swrite() functions.

When you call this created code (Code_Check.m) usingmlint() and checkcode(),
you will get the following analysis report:

>> mlint('Code Check.m")

L 6 (C5-7): INV(A)*b can be slower and less accurate than A\b. Consider
using A\b for INV(A)*b or b/A for b*INV(A).

L 7 (C 1-8): 'xlswrite' is not recommended. With appropriate code changes,
use 'writematrix' or 'writecell' instead.

>> checkcode('Code_Check.m")

127

CHAPTER2 PROGRAMMING ESSENTIALS

L 6 (C 5-7): INV(A)*b can be slower and less accurate than A\b. Consider
using A\b for INV(A)*b or b/A for b*INV(A).

L 7 (C 1-8): 'xlswrite' is not recommended. With appropriate code changes,
use 'writematrix' or 'writecell' instead.

The analysis report also has recommendations. If you follow the recommendations
and make the respective changes in the code (Code_Check.m), it looks like this:

1 $ Code_Check.m. Code checking with mlint() and checkcode() |@
2 T $ Given: [A]*{x} = [b] system

3 S $ Solve for {x}

4 &= [2 =3 1% 2 =263 2}

5 b= (5 3; LI1l:

6 x = A\b;

7 writecell ('Solution_Data.xlsx', [A, x, b])

Now, the M-file editor shows no more warnings. Let’s run code checking again with
the updated code (Code_Check.m).

>> mlint('Code_Check.m")
>> checkcode('Code_Check.m")

The code checking produces no recommendations, which means the updated code
is perfected.

Code Profiling

Code profiling measures where a program spends time and where the problems/errors
are. By identifying the performance of your program, you can improve it. Code profiling
can be started from the M-file Editor window by clicking the icon. The Code Profiling
(Profiler) window pops up. The profile report contains the whole benchmarking report
of your script (M-file) including extensive information on each command and operation,
including how much the CPU spends obtaining the results. By studying a profile report of
your script, you can learn how to improve simulation time efficiency. The profile mode

is off by default and can be also switched on by using the >> profile on command. The
profile summary report of any M-file or Simulink model can be generated and viewed
with general syntaxes, for example:

128

CHAPTER2 PROGRAMMING ESSENTIALS

1 $ Test.m. Code Profile testing @
2 profile on

3 $ Script - M-file starts here:
4 clc; close all; clearvars

5 M = magic(25);

€ Msg = zeros(size(M)):;

1 for ii = l:size(M, 1)

SE for jj = l:size(M,2)

9 Msg(ii,jj)=M(ii,jj)"2;
10 end

11 end

12 % Script - M-file ends here:
13 profile viewer

Here’s another example:
>> profile on; Test; profile viewer
Here’s an example for Simulink models:

>> profile on; sim('My Model'); profile viewer

Note You can insert any M-file or MLX-file name (e.g., My _function.m, My
Code.mlx) or function file name (e.g., My _function.m) or Simulink model name
(e.9.,My Model.mdl, Model Sim.slx)between the two commands profile
on; and profile viewer. Here’s an example: >> profile on; My Code;
profile viewer.

After running the code (Test.m), the comprehensive profile report of the code
(Test.m) will pop up, as shown in Figure 2-2.

129

CHAPTER2 PROGRAMMING ESSENTIALS

= &

Print 3 = | Enter code to run and time [=] bl
Profiling

FILE NAVIGATE SEARCH VIEW PROFILE

Profile Summary (Total time: 0.015 s)

+Flame Graph

alichil... jallehil... |uiteals...
allchild
clearv... Jcl... [doses .., [el. |close>safegatchildran

clearvars[close 0 [magic]
LiveEditorEvaluationHelperES03533828

evaluateCode
Profile Summa

Generated 28-Jun-2022 12:23:55 using performance fime

Function Name jCals Total Time (s) ¥ |Self Time" () | Total Tima Plot

| {dark band = seif time)
avaluateCode 1 0.015 0.000

1 0.015 0.006
close 1 0.008 0002 i |
loseosategetchildien B 0.008 0.000 1
allchild 1 0.008 0004 T—
b 1 0.001 0.000 I
magic>oddOrderMagicSquare 1 0.001 0001 m
clearvars 1 0.001 0.000 ;

Figure 2-2. Profiler view results

The total processing time is 0.015 seconds. From the report, you can see for each
function that the evaluation function took a significant amount of processing time. You

can also view how much processing time is spent in each subfunction by clicking the
function name in the profile report.

Dependency Report

The dependency report is used to identify all functions, scripts, and external programs
(applications) that are called/used within our program. This report finds information
about dependent files and tools of the current file that we have employed within our
script built-in functions from MATLAB toolboxes and other M-files and function files
from our current folder. This will be helpful before sharing our work with other users
who may not have all the M-files, function files, and toolboxes that we have in our
computer. The dependency report shows dependencies among MATLAB files in a
directory and can be called with the following steps:

130

3.

CHAPTER2 PROGRAMMING ESSENTIALS

Select Desktop » Current Directory and navigate to the
directory containing MATLARB files for which we want to see the
dependency report.

Click the Current Folder tab, and from the right-mouse button
options, select Reports, and then select Dependency Report.

The dependency report of all MATLAB files will be shown
automatically.

P-Codes

In MATLAB and Simulink, except for M-files (function files), with a file extension of

*.om, *.mlx, *.mat, *.md1, and *. s1x files, there is also another important file type that is

called P-code with a file extension of *. p that is very handy and recommended to create

in some specific instances. The main reasons for creating a P-code file from an M-file

are to prevent valuable files from being edited, to keep them secure, and to speed up the

simulation time of scripts.

Specifically, here are some good reasons to create P-code:

To speed up the process of simulation in the MATLAB platform.

To keep valuable M-files secure to a certain extent; however, P-code
should not be considered as a substitute for secure encryption.

P-code/files provide a simple means of hiding proprietary
algorithms.

When you call an M-file function, MATLAB parses the M-code and
stores the instructions as P-code in cache memory. P-code remains
in memory until it is cleared using the clear command or until
MATLAB quits.

P-code is platform-independent pseudocode for a virtual MATLAB

machine.

Since P-files are in a binary format, their source code is hidden.

131

CHAPTER2 PROGRAMMING ESSENTIALS

Here is how to create P-code:

— To create P-code from a given M-file residing in the current folder,
e.g., My fileM.m, type the following in the Command window:

>> pcode My fileM.m

After running the previously shown command, a P-code of the M-file
My fileM.mwill be created under the same file name but with the
extension of *.p instead of *.m.

— To execute the created P-code called My fileM.p, type in the

Command window:
>> My fileM.p

— Or type in the Command window:
>> run My fileM

This executes the created P-code even if we have in our current directory our primary
M-file called My _fileM.m.

Some Remarks on Scripts/M/MLX-Files

Note the followings:

o Ingeneral, any MATLAB commands can be executed from scripts or
from the Command window. Which method is best depends on what
tasks/computations or evaluations need to be performed. If there
are simple computations composed in a one-step process and no
repetitions are required, then there is no need to create M/MLX-files
or scripts. On the other hand, when large computations with different
operations including loop iterations and conditional statements are
required, then writing M/MLX-files is the best option.

e The error and warning messages will not only help you locate errors
in your scripts or models but also provide some hints on what the
causes of errors are and how to eliminate them. In fact, warning
messages will help you make your programs more robust and also
inform a user about the ignored data in computed/plotted outputs.

132

CHAPTER2 PROGRAMMING ESSENTIALS

o To write scripts and M-files, the M/MLX-file editors must be
employed since they include a number of helpful tools. For instance,
they automatically detect unused variables, the display of data sets,
and the unclosed loops. They also enable you to work in cell and
debug modes and help you detect errors and warnings about costly
computations within loops, suggest memory allocation options, and

do much more.

Display and Print Operators: display, sprintf,
and fprintf

There are several commands and operators (built-in functions) to display computation
results in the Command window or export them into external files compatible with
MATLAB. They are disp(), display(), sprint(), and fprintf(). Out of these
commands, disp() and display() are straightforward ways to display any comments,
strings, or numerical values in the Command window without any additional formatting
tools or characters. They are not robust enough to display any comments/strings and
numerical values in various formats. They cannot write data into external files. On

the other hand, sprint() and fprintf() can substitute all functions of disp() and
display(). They can be used to print various data types in the Command window

by using formatting operators and characters. Moreover, they can print textual and
numerical data into external files. Let’s look at several examples to demonstrate how to
employ these display and print commands.

Example 1

. . T 3w
Given f(t)=sin(t),t= [O,Z,E,T,n} . Displaying computation results of the function
f(#) and its argument ¢ with short explanatory comments in the Command window is
straightforward with disp() and display().

t=[0, pi/4, pi/2, 3*pi/4, pi];

disp(['Sine @', num2str(t(1)),' is equal to: ', num2str(sin(t(1))) 1)
disp(['Sine @', num2str(t(2)),' is equal to: ', num2str(sin(t(2))) 1)
disp(['Sine @', num2str(t(3)),"' is equal to: ', num2str(sin(t(3))) 1)

133

CHAPTER2 PROGRAMMING ESSENTIALS

disp(['Sine @', num2str(t(4)),' is equal to: ', num2str(sin(t(4))) 1)
disp(['Sine @', num2str(t(5)),"' is equal to: ', num2str(sin(t(s))) 1)

These commands display the following in the Command window:

Sine @ 0 is equal to: 0

Sine @ 0.7854 is equal to: 0.70711
Sine @ 1.5708 is equal to: 1

Sine @ 2.3562 is equal to: 0.70711
Sine @ 3.1416 is equal to: 1.2246e-016

The displayed results are all correct and readable, but the demonstrated procedure
is tedious. Note that there is a difference in the output from disp() and display(). The
command disp() displays output without a variable name. By contrast, display()
displays the variable name and its value like a simple calculation ending without a
semicolon. Here’s an example:

>> D1=sind(90);
>> display(D1)
D1 =

1
>> disp(D1)

1
>> D1
D1 =

1
>> D1=sind(90)
D1 =

Example 2

The command clock is a built-in command to show the current year/date/time
according to a user’s computer clock in a row matrix format. Let’s display the current
time in a more explicit way with some explanations. How do you do it with the disp()
and display() commands?

134

CHAPTER2 PROGRAMMING ESSENTIALS

>> format short G
>> TT=clock

1T =
Columns 1 through 5
2022 8 9 4 5
Column 6

37.261
>> display('This year is: '); disp(TT(1))
This year is:

2022

>> display('This month is: "); disp(TT(2));
This month is:

8
>> display('Day of this month: "); disp(TT(3));
Day of this month:

9
>> disp('Current time is '); display(['hour: ', num2str(TT(4))]);
display(['minutes: ', num2str(TT(5))])
Current time is
hour: 4
minutes: 5

The output is legible and explicit, but the commands are too long and inefficient
from a programming point of view.

fprintf()

For the previous two examples, the fprintf() command can be employed much more
simply. The general syntax of this command is as follows:

fprintf(format, A, ...)

For example 1, to display the sine function values, fprintf() gives a much simpler

solution, as shown here:

fprintf('Sine @ %1.5f is equal to: %2.5f\n', t, sin(t));
135

CHAPTER2 PROGRAMMING ESSENTIALS
Here are the output results from the command fprintf():

Sine @ 0.00000 is equal to: 0.78540
Sine @ 1.57080 is equal to: 2.35619
Sine @ 3.14159 is equal to: 0.00000
Sine @ 0.70711 is equal to: 1.00000
Sine @ 0.70711 is equal to: 0.00000

The formatting specifiers, namely, %1.5f, %2.5f, and \n, used in this example define
the field width and precision with the floating-point number format (%1.5f, %2.5f) and
new line (\n). More details of formatting specifiers are given later in this section.

This is a much simpler and effortless method; it contains only one line of code.

For example 2, to display the time and date, fprintf() can be employed again as
follows:

>> TT=clock;
fprintf('Year:%g; Month: %g; Day: %g; Hour: %g; Min passed: %g\n',TT(1),
T1(2), T1(3), TT(4), T1(5))

Year: 2022; Month: 8; Day: 13; Hour: 9; Min passed: 28

For such cases, sprintf() could be also an option. The general syntax of the
command sprintf() is as follows:

str = sprintf(format, A, ...)
[str, errmsg] = sprintf(format, A, ...)

Note that to display outputs (st string messages) from sprintf(), you need to
use either the disp() or display() command again. So, sprintf() is less flexible than
fprintf(). Note that sprintf() always returns a string. To demonstrate how to employ
sprintf() more explicitly and improve the script created to solve a quadratic equation,
let’s use the sprintf() command to display the computation results in the Command
window with some additional information. Let’s compute the roots of a quadratic
equation and display some information in the Command window. Here is the solution
script (QuadEq1.m):

% QuadEq1l.m
% Solve quadratic equations based on coefficients of: a, b, & c
disp('Solve: ax"2+bx+c=0")

136

CHAPTER2 PROGRAMMING ESSENTIALS

a=input('Enter value of a: ');

b=input('Enter value of b: ');

c=input('Enter value of c: ');

D=b"2-4*a*c;

[S, Errm]=sprintf('Discriminant of the equation is: %g', D); disp(S)
% Roots

x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);

% Display roots in the Command window

[xr1, Errmi]=sprintf('Root1l of the equation is x1= %g', x1);
disp(xr1); display(x1)

[xr2, Errm2]=sprintf('Root2 of the equation is x2= %g', x2);
disp(xr2); display(x2)

Let’s test the created M-file (QuadEq1.m) by executing it and providing the following
entries (a=11, b=11, c=13) in the Command window:

Solve: ax"2+bx+c=0

Enter value of a: 11

Enter value of b: 12

Enter value of c: 13

Discriminant of the equation is: -428
Root1 of the equation is x1= -0.545455

X1 =

-0.5455 + 0.94041
Root2 of the equation is x2= -0.545455
X2 =

-0.5455 - 0.94041

Note that within sprintf() the numerical data is defined by the % sign followed by a
formatting sign/letter g that is called a conversion specifier. Here is a command syntax of
declaring data formats with sprint() and fprintf():

[S, Errm]=sprintf('Discriminant of the equation is: %g', D);

137

CHAPTER2 PROGRAMMING ESSENTIALS

Conversion specifications begin with the % character and contain these optional and
required elements:

o Flags (optional)

e Width and precision fields (optional)
e A subtype specifier (optional)

e Conversion character (required)

These elements are used in the following order:

~
Start of conversion
[specification — % +12.13d _*[Conversion character]

S

Field Width

Flags are to control the alignment of the output, for instance, the - sign for the left
justification of the output, the + sign for the right justification of the output, the space
character for space before the value, and 0 to put a zero before the output. The field
width is defined with a non-negative integer that specifies the number of digits or
characters in the output, and the number (in precision) specifies the number of digits
after the decimal point of the output; for example, %12.0 produces no decimal digits
after the decimal digit number, and %12.13 produces 13 decimal digits after a decimal
sign. Table 2-1 lists conversion characters, and Table 2-2 lists escape characters to specify
nonprinting characters.!

! ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430 Broadway, New York,
NY 10018.

138

CHAPTER2 PROGRAMMING ESSENTIALS

Table 2-1. Conversion Characters

Specifier Description

%C Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in 3.1415e+00) for floating point

%E Exponential notation (using an uppercase E as in 3.1415E+00) for floating point

%t Fixed-point notation for floating point

%g The more compact of %e or %f, as defined in [*]. Insignificant zeros do not print
for floating point

%G Same as %g, but using an uppercase G for floating point

%1 Base 10 values for integer signed

%0 Base 8 octal notation (unsigned)

%s String of characters

%u Base 10 integer (unsigned)

%X Base 16 hexadecimal notation (using lowercase letters a—f)

%X Base 16 hexadecimal notation (using uppercase letters A—F)

Table 2-2. Characters for Escape Formatting

Symbol Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

"or ' (quote) Single quotation mark
% Percent character

139

CHAPTER2 PROGRAMMING ESSENTIALS

One of the most used escape formatting commands (Table 2-2) is \n. This is the
escape character used to write the following data in a new line. Note that in the previous
examples (examples 1 and 2), we have used \n within the fprintf() command.

Let’s consider the previously discussed quadratic equation example to display and
write its real and complex roots. Note that this exercise will demonstrate how to employ
sprintf() and fprintf().

There are several ways to display complex numbers (e.g., complex roots of the
quadratic equation) in the form of R + I * i explicitly with additional comments and then
write/export them into an external file. They are to employ numerical conversions along
with comments and to employ the string conversion character s.

Let’s start with the first way, which requires adding several formatting items from
Tables 2-1 and 2-2 to display complex numbers correctly. Now the existing M-file
(QuadEq1.m) will be updated with the following by employing a conversion function
num2str () to obtain the complex roots converted into strings. Now there is no need to
separate out real and imaginary components of the complex roots of the equation.

[xr1, Errmi]=sprintf('Root1l of the equation is x1= %10s', num2str(x1));
disp(xr1); display(x1)

[xr2, Errm2]=sprintf('Root2 of the equation is x2= %10s', num2str(x2));
disp(xr2); display(x2)
% Or an alternative way:
disp(sprintf('Root2 of the equation is x1= %10s', num2str(x1)))
disp(sprintf('Root2 of the equation is x2= %10s', num2str(x2)))

After executing the updated script (QuadEq1.m), three input prompts to enter values
for a, b, and c in a consecutive order are displayed; and after entering the following
entries (a=11, b=12, c=13), the following display results of the given equation’s complex
roots are obtained:

Solve: ax"2+bx+c=0

Enter value of a: 11

Enter value of b: 12

Enter value of c: 13

Discriminant of the equation is: -428

Root1l of the equation is x1= -0.54545+0.940371
X1 =

-0.54545 + 0.940371
140

CHAPTER2 PROGRAMMING ESSENTIALS

Root2 of the equation is x2= -0.54545-0.940371
X2 =

-0.54545 - 0.940371

Note that in this script fprintf() can be used instead of sprintf() in a similar
manner that would make the code simpler. Thus, let’s employ fprintf() to display
the complex roots of the quadratic equation and write the computation results of the
quadratic equation into an external file.

A general syntax for writing data into an external file with fprintf() is as follows:

FileID=fopen('filename.extension', 'permission"’)
fprintf(FileID, 'format', data);

fclose(FilelD)

Note that permission can be w for writing, r for reading, r+ for reading and writing,
and a for appending permissions. MATLAB supports a few common data file types, such
as *.txt, *.dat, *.x1s, *.csv, *. jpeg, etc. Via format, a type of data is defined, and
format in fprintf() is defined like in sprint(). Using the general syntax of writing/
exporting data (existing data is discriminant and roots of the quadratic equation are
saved in the workspace) into an external file, the following short script (DataWrite.m)
writes the computed data (saved data in the workspace) into a file called DataWrite. txt:

% DataWrite.m - Write computed data into an external file
fidi=fopen('Results QE.txt', 'w');

fprintf(fid1, 'Discriminant of the equation is: %g\n', D)
fprintf(fidi, 'Root1 of the equation is x1= %10s\n', num2str(x1))
fprintf(fidi, 'Root2 of the equation is x2= %10s\n', num2str(x2))
fclose(fid1); open('Results QE.txt")

Note that this script first creates a new external file called Results QE.txt with the
permission to write in it. This external file (Results_QE.txt) has a file ID called fid1
(note that a file ID can be named freely) through which it can be called up to write in it
assigned data, D, and the roots x1 and x2. Within the fprintf() command, the \n escape
character is used to write the following data in a new line. Finally, the data-writing
procedure ends with a file close command: fclose(fid1). This is a standard procedure

141

CHAPTER2 PROGRAMMING ESSENTIALS

of exporting data of any size and of any format into an external file. This procedure of
data export is covered more extensively via different examples in other chapters of the
book. After executing the previously shown script, the following *. txt file content is
displayed in the M-file Editor window:

Discriminant of the equation is: -428
Root1l of the equation is x1= -0.54545+0.940371
Root2 of the equation is x2= -0.54545-0.940371

There are many different format tools for data display and writing to external files
that all can be employed more freely with respect to the given tasks. The demonstrated
script can be improved further with data entries and by displaying/writing the calculated
data. These will be discussed further with control statements in the following section.

Control Statements: [if, else, elseif, end], [switch,
case, end]

The control statements [if ... elseif... else ... end] are also called conditional
statements or Boolean operators and are employed to select logically which block of

the code is to be executed while running the whole script according to the given input
entries or computed results or defined outputs of the script. They are one of the few
most crucial programming operators in all programming languages. These operators
are employed in building and branching structures of programs (or codes). The general
structure of these control statements follows:

if <logical statement A is true>
DO X Operations

elseif <logical statement B is true>
DO Y operations

else
DO W operations
end

This indicates that if logical statement A is true, then X operations will be executed. If
logical statement B is true, Y operations will be executed. If none of the previous logical
statements is true, W operations will be executed.

142

CHAPTER2 PROGRAMMING ESSENTIALS

Note that if there is only one logical statement, then elseif is not needed, and else
is used directly instead of elseif.

Conditional operations can be expressed in two different ways: either on operational
forms or on M/MLX-file forms. The conditional and logic statements given in Table 2-3
are applicable to all logical operations and conditional statements used in M/MLX-files/

scripts.

Table 2-3. Control Logical Operators and Their Descriptions

Operation M/MLX-file Description

A<B LT(A,B) Less than

A>B GT(A,B) Greater than

A<=B LE(A,B) Less than or equal to
A>=B GE(A,B) Greater than or equal to
A~=B* NE(A,B) Not equal to

A==B EQ(A,B) Equality

A&B AND(A, B) Logical AND

A|B OR(A,B) Logical OR

*The ~ tilde sign followed with = means “Not equal to.”

Note The operations < versus 1t (), > versus gt (), <= versus le(), >= versus
ne(), ~=versus ne(), == versus eq(), & versus and(), | versus or() can be
used interchangeably and lead to no difference in code performance.

In various examples, we employ these operators and their syntaxes interchangeably.
Let’s consider several examples to demonstrate how to employ the control statements
given in Table 2-3.

143

CHAPTER2 PROGRAMMING ESSENTIALS

Example 1

The command clock displays the current year/date/time of a user computer in a row
matrix form. Let’s display the data in a readable format with some additional textual
information. Here is a possible solution script (TimeDisp.m) of the given problem with
the clock command:

% TimeDisp.m Time Display
display(clock);
NOW=fix(clock);% Round to nearest integers
fprintf('This year is: %g \n', NOW(1));
if NOW(2)==1

display(['Date is January ' num2str(NOW(2))]);
elseif NOW(2)==

display(['Date is February ' num2str(NOW(2))]);
elseif NOW(2)==3

display(['Date is March ' num2str(NOW(2))]);
elseif NOW(2)==4

display(['Date is April ' num2str(NOW(2))]);
elseif NOW(2)==5

display(['Date is May ' num2str(NOW(2))]);
elseif eq(NOW(2),6)

display(['Date is June ' num2str(NOW(2))]);
elseif eq(NOW(2),7) % No difference between eq() and ==

display(['Date is July ' num2str(NOW(2))]);
elseif eq(NOW(2),8)

display(['Date is August ' num2str(NOW(2))]);
elseif eq(NOW(2),9)

display(['Date is September ' num2str(NOW(2))]);
elseif eq(NOW(2),10)

display(['Date is October ' num2str(NOW(2))]);
elseif eq(NOW(2),11)

display(['Date is November ' num2str(NOW(2))]);
else

display(['Date is December ' num2str(NOW(2))]);
end

144

CHAPTER2 PROGRAMMING ESSENTIALS

if NOW(4)>=12

fprintf('Current time: %g PM - %g min - %g sec\n', ...
NOW(4), NOW(5), NOW(6))

else

fprintf('Current time: %g AM - %g min - %g sec\n', ...
NOW(4), NOW(5), NOW(6))

end

By running the script, the following outputs are displayed in the Command window:

ans =

Columns 1 through 5
2018 11 1 4 51
Column 6
34.932

This year is: 2018
Date is November 1
Current time: 4 AM - 51 min - 34 sec

Let’s consider the previous example with a quadratic equation and correct the
display of computed roots with disp, sprintf, fprintf, if, elseif, and else to
demonstrate how to employ these programming operators.

Example 2

Here is one of the possible solution scripts (Quad_Eq2.m) of computing roots and
displaying the roots of quadratic equations with additional comments:

% Quad_Eq2.m

% Solve quadratic equations based on coefficients of: a, b, & c
a=input('Enter value of a: ');

b=input('Enter value of b: ');

c=input('Enter value of c: ');

fprintf('Solve: (%3g)x"2+(%3g)x+(%3g)=0\n", a,b,c)

145

CHAPTER2 PROGRAMMING ESSENTIALS

D=b"2-4*a*c;
% Roots
x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);
if 1t(D,0)
disp('This equation does not have real value roots!');
Dm=sprintf('Because discriminant is negative. D = %g', D); disp(Dm)
fidi=fopen('Results QE.txt', 'w');
fprintf(fid1, 'This equation does not have real value \n');
fprintf(fidi, 'roots!\n');
fprintf(fidi, 'Because discriminant is negative. D = %g\n', D);
fprintf(fid1, 'Complex Rootl: x1= %10s\n', num2str(x1));
fprintf(fid1, 'Complex Root2; x2= %10s\n', num2str(x2));
fclose(fid1); open('Results QE.txt');
elseif eq(D,0)
disp('This equation has one unique root! ');
disp('Because discriminant is zero: D = 0 ');
fidi=fopen('Results QE.txt', 'w');
fprintf('This equation has one unique root! \n');
fprintf(fid1, 'Because discriminant is zero: D = 0 \n');
fprintf(fid1, 'Unique Root: x = %g \n', x1);
fclose(fid1l); open('Results QE.txt');
else
disp('This equation has two roots! ');
Dm =sprintf('Because discriminant is: D = %g ', D); disp(Dm);
fidi=fopen('Results QE.txt', 'w');
fprintf(fidi, 'This equation has two roots \n');
fprintf(fidi, 'Because discriminant is: D = %g \n', D);
fprintf(fidi, 'Real Rootl is: x1= %g \n', x1);
fprintf(fid1, 'Real Root2 is: x2= %g \n', x2);
fclose(fid1); open('Results QE.txt');
end

In this script, a few sets and combinations of [if, elseif, else, end] conditional
statements are employed that provide nice outputs. Also, verbal versions of gt, 1t, and
eqofthe <, >, <, >, =logical operators are employed. Yet, the robustness of the script is
still insufficient. For instance, the user may enter wrong entries by typing the value of ¢

146

CHAPTER2 PROGRAMMING ESSENTIALS

for b or a, or vice versa, or skip entering any of the coefficients. As a result, the previous
script produces the wrong output. To attain the full robustness of the script for different
case scenarios and user entries including mistakes while entering input values, a loop
control statement with [while ... end] will be employed. We discuss it in the following
section.

Example 3

This example warns drivers about their driving speed based on where they are driving
(school zone, residential/business district, unpaved town road, two and multilane
highways, interstate highways). The speed limits in North Dakota are used in this
example.

3R

Drive Safe.m gives a warning sign what is the speed limit and

3R

how to behave in specific roads, highways, expressways, etc.
E.g. CS is the only input variable

3R

% Speed Limit [1] School area: 20 [mph]

% Speed Limit [2] Residential and business area: 25 [mph]
% Speed Limit [3] Town gravel roads: 55 [mph]

% Speed Limit [4] Two-lane highways: 65 [mph]

% Speed Limit [5] Multi-lane highways: 70 [mph]

% Speed Limit [6] Divided Interstate: 75 [mph]

CS = input('Enter your car"s current speed in [mph]: ")

disp('Choose WHERE you are driving: ')
disp('[1] School area; [2] Residential and Business Area; ')
disp('[3] Town gravel roads; [4] Two-lane Highways; ')
disp('[5] Multi-lane Highways; [6] Divided Interstate Roads; ')
DZone = input('Enter your drive zone, e.g., 1, 2, 3, ... 6: ');
if isempty(DZone) || DZone >7 || DZone<o

warndlg('Not clear where you are driving!")
elseif CS ==0

warndlg('Your car is not moving')
elseif CS<0

warndlg('Your car is moving in a rear direction that is DANGEROUS! ")
else

147

CHAPTER2 PROGRAMMING ESSENTIALS

if DZone ==1 && CS > 0 && CS<10
fprintf('Your speed = %g [mph] is too slow \n ', CS)
fprintf('even if it is during the student arrival/departure time \n')
warndlg('Speed UP to make your car speed around 15 mph!")
elseif DZone ==1 && CS > 10 && (CS<20
fprintf('Your speed = %g [mph] is OK in a school area \n', CS)
fprintf('during the student arrival/departure time \n')
warndlg('Keep your car speed around 15...20 mph!")
elseif DZone ==1 && CS >20
fprintf('Your speed = %g [mph] is TOO fast for a school area \n', CS)
warndlg('DANGER! Slow DOWN up to 20 mph!")
elseif DZone ==2 && CS > 15 && CS <20
fprintf('Your speed = %g [mph] is too slow for a residential area!\n', CS)
warndlg('Speed up! Speed limit for residential/business areas is 25 mph')
elseif DZone == 2 && CS > 20 && CS < 28
fprintf('Your speed = %g [mph] is adequate for a residential
area!', CS)
warndlg(' Do not speed over 25 mph!')
elseif DZone == 2 && CS > 28
fprintf('Your speed = %g [mph] is higher for a residential
areal!\n', CS)
warndlg(' DANGER! Slow DOWN and do not speed over 25 mph!')
elseif DZone == 3 && CS < 48 && CS > 25
fprintf('Your speed = %g [mph] is slower for gravel town roads!\n', CS)
warndlg(' Speed up to 55 mph!")
elseif DZone == 3 && CS > 48 && CS < 58
fprintf('Your speed = %g[mph] is within limits for gravel town
roads!\n',CS)
warndlg(' Keep your speed around 55 mph!")
elseif DZone == 3 && CS > 58
fprintf('Your car speed = %g [mph] is beyond \n', CS)
fprintf('the limits for a gravel town roads! \n")
warndlg(' DANGER! Slow DOWN up to 55 mph!")
elseif DZone == 4 && CS > 55 && CS < 60
fprintf('Your speed = %g [mph] is slower for two-lane HW!\n', CS)

148

CHAPTER2 PROGRAMMING ESSENTIALS

warndlg(' Speed up to 65 mph!")
elseif DZone == 4 && CS > 60 && CS < 68
fprintf('Your speed = %g[mph] is within the limits for two-lane HW!
\n', CS)
warndlg(' Keep your speed around 65 mph!")
elseif DZone == 4 && CS > 68
fprintf('Your speed = %g [mph] is beyond \n', CS)
fprintf('the limits for two-lane HW! \n')
warndlg(' DANGER! Slow DOWN up to 65 mph!")
elseif DZone == 5 && CS > 55 && CS <65
fprintf('Your speed = %g [mph] is slower than \n' , CS)
frpintf('the speed limits for multi-lane lane HW! \n")
warndlg(' Speed up to 70 mph!")
elseif DZone == 5 && CS > 65 && CS <75
fprintf('Your speed = %g [mph] is within \n', CS)
fprintf('the speed limits for multi-lane lane HW! \n")
warndlg(' Keep your speed around 70 mph!")
elseif DZone == 5 && CS > 75
fprintf('Your speed = %g [mph] is beyond \n', CS)
frintf('the speed limits for multi-lane lane HW! \n')
warndlg(' DANGER! Slow DOWN up to 70 mph!")
elseif DZone == 6 && CS > 60 && CS <70
fprintf('Your speed = %g [mph] is slower than \n', CS)
fprintf('the speed limits for Divided Interstate in ND! \n')
warndlg(' Speed up to 70 mph!")
elseif DZone == 6 && CS > 70 && CS <78
fprintf('Your speed = %g [mph] is within \n', CS)
fprintf('the speed limits for Divided Interstate in ND! \n')
warndlg(' Keep your speed around 75 mph!")
else
fprintf('Your speed = %g [mph] is beyond \n', CS)
fprintf('the speed limits for Divided Interstate in ND! \n')
warndlg(' DANGER! Slow DOWN up to 75 mph!")
end
end

149

CHAPTER2 PROGRAMMING ESSENTIALS

In this answer script to the given exercise, the conditional statements or Boolean
operators [if ... elseif ... else ... end] are used twice. The first [if... elseif
...elseif... else ...]identifies according to the user entries whether the user
has specified or not where they are driving (DZone) and what their car speed (CS) is. The
second [if... elseif else ... end] starts only if the first [if...elseif
...] conditions are met or, in other words, the user has entered their driving speed and
driving zone.

If the user information is valid for the predefined six driving zones, then under
[elseif CS ==0], it verifies the given car is moving. If it is moving, [elseif CS<0]
indicates in which direction (backward for negative speed values). The last [else]
evaluates the positive values of car speed.

Beyond this first [else], all positive values (forward movement of a car) and a
second loop of [if ... elseif else ... end] are executed. They define the
speeding level and provide respective warning signals to the driver with respect to where
(zones and roads) they are driving and what their speed is.

Let’s test the script with different input speed values and the different driving zones.

Case 1

The given car is driving at 9 mph in a school zone.

Enter your car"s current speed in [mph]: 9
Choose WHERE you are driving:
[1] School area; [2] for Residential and Business Area;
[3] Town gravel roads; [4] Two-lane Highways;
[5] Multi-lane Highways; [6] Divided Interstate Roads;
Enter your drive zone, e.g. 1, 2, 3, ... 6: 1
Your car speed = 9 [mph] is too slow
even if it is during the student arrival/departure time

In addition, the following warning dialog box is displayed:

4| Warning Dialog = X

Speed UP to make your car speed around 15 mph!

150

CHAPTER2 PROGRAMMING ESSENTIALS

Case 2

The given car is driving at 72 mph on a two-lane highway.

Enter your car"s current speed in [mph]: 72

Choose WHERE you are driving:

[1] School area; [2] for Residential and Business Area;
[3] Town gravel roads; [4] Two-lane Highways;

[5] Multi-lane Highways; [6] Divided Interstate Roads;
Enter your drive zone, e.g., 1, 2, 3, ... 6: 4

Your car speed = 72 [mph] is beyond

the limits for two-lane HW!

The following warning dialog box is displayed:

‘4 Warning Dialog - X

DANGER! Slow DOWN up to 65 mph!

Case 3

The given car is driving at 77 mph on a divided interstate highway.

Enter your car"s current speed in [mph]: 77

Choose WHERE you are driving:

[1] School area; [2] for Residential and Business Area;
[3] Town gravel roads; [4] Two-lane Highways;

[5] Multi-lane Highways; [6] Divided Interstate Roads;
Enter your drive zone, e.g., 1, 2, 3, ... 6: 6

Your car speed = 77 [mph] is within

the speed limits for Divided Interstate in ND!

151

CHAPTER2 PROGRAMMING ESSENTIALS

The following warning dialog box is displayed:

4. Warning Dialog -— X

Keep your speed around 75 mph!

Another set of control statements is [switch, case, otherwise, end].These
statements have one big advantage over [if, else, elseif, end]: they can handle
many cases and simplify the code. They have the following general syntax structure:

switch expression of scalar or string (variable)
case variable valuel
A statements
case variable value2
B statement
case variable value3
C statement

otherwise
X, ... W statements
end

Let’s look at a simple example to understand how the conditional statements
[switch, case, otherwise, end] operate.

Example 4

Determine whether the user-entered integer from 1 to 50 is odd or even or a prime
number. The following script (Num50Type.m) defines the type of any integer from 1 to 50:

% Num50Type.m - Defines entered integer type
clear all; clearvars; clc

N=input('Enter ANY integer up to 50: ');

if N¢=50

152

CHAPTER2 PROGRAMMING ESSENTIALS

fprintf('Your entry is: %d \n', N)

switch N

case mod(N,2)==0

fprintf('you have entered %g which is EVEN number \n', N)

case {9,15,21,25,27,33,35,39,45,49}
fprintf('You have entered %g which is ODD number but not prime\n', N)
otherwise %N=[3,5,7,11,13,17,19,23,29,31,37,41,43,47]

fprintf('You have entered %g which is PRIME number \n ', N)

end

else

disp('This code works with integers up to 50 to identify if they are even,
odd or prime!")

end

Ifyou enter 23 as an input, you will get the following output in the
Command window:

Enter ANY integer up to 50: 23
You have entered 23 which is PRIME number

This script correctly defines all entered numbers up to 50 (including 50); however,
we may still improve its robustness by adding conditional statements and while loops to
verify whether a user entry is correct and within the range of 1 to 50.

The robustness of the scripts with the control branching statements [if, elseif,
else, end] can be improved by employing them within loop statements, namely,
[while ... end] and [for ... end], which will be discussed via examples in the

following section.

Loop Control Statements: while, for, continue,
break, end

There are two types of loop control statements, namely, [while...end] and [for...
end]. A first loop control statement is [while. ..end], and its general syntax is as follows:

while expression is NOT true
perform A, B, C,..., W operations
end

153

CHAPTER2 PROGRAMMING ESSENTIALS

Unlike [if .. elseif ... else... end] statements, the [while...end] loop
keeps executing the the following [A, B, C,..., W] operations until the expression
behind the [while] operator becomes valid. Once the expression becomes true/valid,
the execution process halts.

Example 1

To compute the sum of all odd numbers from 1 up to 100 using the [while ... end]
loop control (Sum100.m), use this:

% Sum100.m sums of all odd numbers with while

Sum=0; N=1;

while ne(N, 100)

if ne(mod(N,2),0) % Verifies all odd numbers are added.
Sum=Sum + N;

else % Verifies if the number is even, NO sum.

end
N=N+1;
end
disp(['Sum of all odd numbers 1...100 is: ', num2str(Sum)]);

This loop-based script (Sum100.m) will keep running until the iteration process
reaches the end value of 100. The [if ... else ... end] conditional statements
verify if the number is odd or even with the help of mod(). The iteration loop is used to
compute the remainder of N/2. If the number is odd, the sum will take place; otherwise,
it will be ignored.

Note In many summation types of exercises that use [while ... end] and
[for ... end] iteration loops, users have difficulty understanding the computation
algorithm and writing the code to perform the summation process. The summation
algorithm does not appear to be intuitive for many beginners in programming. Their
difficulty comes from the fact that they overlook the necessity of assigning 0 to the
sum variable in the initial step of the summation process. This means that adding any
number to 0 gives the same number back. Subsequently, withina [for ... end]
or [while ... end] loop, this summation variable will get a new value in each
iteration. For example, this is what it looks like for the previous example:

154

CHAPTER2 PROGRAMMING ESSENTIALS
Step 1. Sum(1) = 0;
Step 2. Sum(2) = Sum(1)+N(1) = 0+1=1; when N(1)= 1 and ne(mod(N(1),2), 0)
is valid;
Step 3. Sum(3)=Sum(2)=1; when N(2)= N(1)+1=2 and because N(2)/2 = 1 and
remaining “0” < ne(mod(N,2), 0) is not valid.

Step 4. Sum(4)=Sum(3)+N(3)=1+3 =4; when N(3)=N(2)+1=2+1=3 and
ne(mod(N(3),2), 0) is valid;

Step 5. Sum(5)=Sum(4)=4; when N(4)=N(3)+1=3+1=4; because N(4)/2 = 2 and
remaining “0” < ne(mod(N(4),2), 0) is not valid.

Step 6. Sum(6)= Sum(5)+N(5)=4+5=9; when N(5)=N(4)+1=4+1=5 and
ne(mod(N(5),2), 0) is valid;

And so on. The iteration process continues until N equals 100.

The final output of the script in the Command window is as follows:

Sum of all odd numbers 1...100 is: 2500

Example 2

To better understand how to employ the control loop statement [while ... end],let’s
look at the example of solving a quadratic equation: ax? + bx + ¢ = 0.

Let’s say the problem is that users can enter the values of @, b, ¢ in the wrong order or
mistype their values or enter wrong numbers.

To make a program more robust and resolve any wrong entries, the conditional
operators [if ... elseif ... else ... end] are employed along with the [while ...
end] loop iteration operators. The following is one of the possible solutions to the problem.
The script (Quad_Eqgn.m) is robust. It accepts different entries and computes all possible
roots, real and complex, and then displays them correctly in the Command window. It
resolves many possible wrong entries such as wrong values, wrong data sizes, or mixed-
up values of a, b, c. Note that a first while loop statement in the script verifies the size of
the entry row array containing the values of @, b, ¢, and a second one with the conditional
operator [if ... else ... end] verifies the order correctness of the a, b, c entries.

155

CHAPTER 2

PROGRAMMING ESSENTIALS

% Quad Egn.m solves quadratic equations based on the user entries for:

% a, b, c

clearvars; clc
SIZE chk = 0;
while SIZE chk ~=1

156

disp('Solution of: ax"2+bx+c=0")
abc=input('Enter values as [a, b, c]: ');
SIZE abc=numel(abc);
if SIZE abc ==

SIZE chk=1;

a=abc(1);

b=abc(2);

c=abc(3);

CorrectEntry=0;

while CorrectEntry~=1

if SIZE abc ==
CorrectEntry=1; CorrectABC=0;
% Check the order of a, b, c
while CorrectABC~=1
disp('Is this the equation you"d like to find roots?')
disp(* ")
Eqn=sprintf(" %g*x*2+(%g)*x + (%g)=0', a, b, c);
disp(* ")
disp(Eqn);
CorrectABC=input('If yes, enter 1, otherwise any integer! ');
disp(* ")
if CorrectABC~=1
abc=input('Enter values as [a, b, c]: ');
a=abc(1); b=abc(2); c=abc(3);
end
end
D=b"2-4*a*c;
% Roots
x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a);

CHAPTER2 PROGRAMMING ESSENTIALS

if 1t(D,0)
disp('The equation has no real roots!');
Dm=sprintf('Because discriminant <0. D = %g', D);
disp(Dm)
% Display the results
fprintf(" %g*x"2+(%g)*x + (%g)=0\n', a, b, c);
fprintf('It does not have real roots!\n');
fprintf('Because its discriminant <0. D=%g\n',D);
fprintf('Complex Roots are: x1=%10s; x2=%10s\n', num2str(x1),num2str(x2));
elseif eq(D,0)
disp('This equation has one unique root! ');
disp('Because discriminant is zero. D=0 ');
fprintf('%g*x*2+(%g)*x + (%g)=0\n', a, b, c);
fprintf('It has a unique root! \n');
fprintf('Because discriminant is "0". D=0 \n');
fprintf('Unique Root: x = %g \n', x1);
else
disp('This equation has two real roots! ');
[Dm, Errm2]=sprintf('Because discriminant >0. D = %g ', D); disp(Dm);
fprintf(" %g*x"2+(%g)*x + (%g)=0\n', a, b, c);
fprintf('It has two real roots \n');
fprintf('Because discriminant >0. D = %g\n', D);
fprintf('Roots of the equation are xi= %g; x2= %g \n', x1, x2);
end
else
CorrectEntry=0;
disp(' a, b, c cannot have more than 1 element (value)');
disp('Re-enter values of a, b, c');
disp(" ')
abc=input('Enter values as [a, b, c]: ');
a=abc(a); b=abc(2); c=abc(3);
sa=numel(1); sb=numel(b); sc=numel(c);
end
end
else

157

CHAPTER2 PROGRAMMING ESSENTIALS

fprintf('Your entry is wrong \n')

fprintf('Enter the correct entries for [a, b, c] as a row vector in []: ')
end

end

The created script is tested for robustness with intentionally wrong entries for a, b
and c as stated in cases 1 and 2.

Solution of: ax”2+bx+c=0

Enter values as [a, b, c]: [12 111]

Your entry is wrong

Enter the correct entries for [a, b, c] as a row vector in []: Solution
of: ax"2+bx+c=0

Enter values as [a, b, c]: [12 111]

Your entry is wrong

Enter the correct entries for [a, b, c] as a row vector in []: Solution
of: ax"2+bx+c=0

Enter values as [a, b, c]: [1211]

Your entry is wrong

Enter the correct entries for [a, b, c] as a row vector in []: Solution
of: ax"2+bx+c=0

Enter values as [a, b, c]: [121]

Is this the equation you"d like to find roots?

1*x"2+(2)*x + (1)=0
If yes, enter 1, otherwise any integer! o0

Enter values as [a, b, c]: [11 2]
Is this the equation you"d like to find roots?

1*x"2+(1)*x + (2)=0
If yes, enter 1, otherwise any integer! 1

The equation has no real roots!
Because discriminant <0. D = -7
1*x"2+(1)*x + (2)=0
It does not have real roots!
Because its discriminant <0. D=-7
Complex Roots are: x1=-0.5+1.3229i; x2=-0.5-1.3229i

158

CHAPTER2 PROGRAMMING ESSENTIALS

From the previous simple example, it is clear that the [while ... end] loop
operations have more power than the [if ... elseif ... else ... end] operators to
enhance the robustness of scripts.

A second loop control statement is [for ... end] that has the following general syntax:

for i=startloop:stepsize:endloop
Iteration 1
Iteration 2

Iteration N
end

The [for ... end] loop control statement works in the following fashion. It starts
executing every statementof [1, 2, ..., N] starting from startloop for every step,
with a step equal to stepsize until the loop iteration reaches the value of endloop, which
corresponds to N number of iterations.

Note If the step size is not specified when you’re assigning vector spaces or
index ranges in [for ... end] loops, the default step size is 1.

Example 3

Compute the sum of all odd numbers within [1, 20] with the [for ... end] loop
(Sum20odd .m).

% Sum20odd.m sums odd numbers within 0...20 with for loop
clearvars;

S=0;

for N=1:20;

if rem(N,2)==0 %Verifies if the number is even, then no sum.
S=S;

else %A1l odd numbers are added:
S=S+N;

end

end

fprintf('Sum of all odd numbers 1 to %g is equal to %g \n', N, S)
159

CHAPTER2 PROGRAMMING ESSENTIALS

The [if ... else ... end] conditional statements determine whether the number
is odd. If the number is odd, it is added to the summation variable (S). Otherwise,
nothing will be added to the summation variable (S). The algorithm behind this script is
the same one in Example 1, and this short script is an alternative solution to Example 1.
The only difference here is that the number of odd numbers is 20.

Two alternative, simpler solutions of this example using [for ... end] and [while

. end] are as follows:

% Sum20odd_alt.m sums odd numbers within 0...20 with [for ... end] loop
clearvars;
S=0;
for N=1:2:20
S=S+N;
end
fprintf('Sum of all odd numbers 1 to 20 is equal to %g \n', S)
% Sum of odd numbers within 0...20 with [while ... end] loop
clearvars;
$=0; jj=1;
while le(jj,20)
5=5+j3; 33=33+2;
end
fprintf('Sum of all odd numbers 1 to 20 is equal to %g \n', S)

The computation algorithm of this script [for ... end] is as follows:
1. S(1)=0
2. $(2)=S(1)+N(1)=0+1=1 when N(1)=1

3. S(3)=S(2)+N(2)=1+3=4 when N(2)=3 because the step size is equal
2 (i.e., N(2)=N(1)+2=1+2=3)

4. S(4)=S(3)+N(3)=4+5=9 when N(3)=5 because ...
N(3)=N(2)+2=3+2=5

5. And so on. The iteration loop runs until N = 20. In fact, in this case,

N cannot be 20 because the step size is 2 and the maximum value
of Nwill be 19.

160

CHAPTER2 PROGRAMMING ESSENTIALS
Finally, the outputs of the scripts are identical:
Sum of all odd numbers 1 to 20 is equal to 100

As demonstrated, the [for ... end] loop can be easily substituted by the [while
. end] loop or vice versa; their efficiencies are similar. However, in some specific
examples (e.g., Example 2), the robustness gained by using [while ... end] cannot
be attained using [for ... end]. Theoretically, in some problems (e.g., Example 2),
[while ... end] can be substituted by [for ... end] when the number of iterations is
unknown.

Note In many loop iteration-based computation problems, [for ... end]
can be easily substituted by the [while ... end] loop and vice versa. Their
computation efficiencies are similar. However, there are many specific cases,
where [while ... end] operations are employed to attain the high robustness
of the script, where [for ... end] cannot provide as much robustness and
flexibility as [while ... end].This is illustrated in Example 2.

It is recommended to use i1 or jj for loop iterations for indices so as not to get
confused with imaginary numbers, which use i and j as reserved in MATLAB by
default. If these letters (i and j) are employed for indices, then sqrt(-1) can be
used for imaginary numbers alternatively, or you can clear these variables from the
workspace.

Example 4

Evaluate the square and cubic powers of even numbers (1 to 10) with the loop control
statements for and end.

Here is one of the possible solution scripts (SqCube10.m) of the exercise. Note in this
example startloop=2, stepsize=2, and endloop=10.

% SqCube10.m computes square and cube of 2...10
%% [for ... end]
for k=2:2:10

Square = k*2;

161

CHAPTER2 PROGRAMMING ESSENTIALS

Cube = k"3;
fprintf('Square of %g is %g \n', k, Square);
fprintf('Cube of %g is %g \n' , k, Cube);

end
%% Alternative way: [while ... end]
i3 =2;

while le(jj, 10)
Square = jj"2;

Cube = jj”3;

fprintf('Square of %g is %g \n', jj, Square);

fprintf('Cube of %g is %g \n' , jj, Cube);

33 =33+2;
end

When the script is executed, the following will be displayed in the
Command window:

Square of 2 is 4
Cube of 2 is 8
Square of 4 is 16
Cube of 4 is 64
Square of 6 is 36
Cube of 6 is 216
Square of 8 is 64
Cube of 8 is 512
Square of 10 is 100
Cube of 10 is 1000

Example 5

Evaluate the square and cubic powers of odd numbers (1 to N) with the loop control
statements for and end.

Note that this exercise is similar to Example 4 with two major differences. It uses only
odd numbers to compute squares and cubes and performs calculations until it reaches
the user-defined N value.

162

CHAPTER2 PROGRAMMING ESSENTIALS

Here is one of the possible solution scripts (SqCubeN.m) of the exercise. Note in this
example startloop=1, stepsize=2, and endloop=N for the [for end] loop. For the
[while end] loop, the starting value of the loopis 1 (jj=1).

% SqCube _N.m computes square and cube of all odd numbers up to N
%% [for ... end]

N = input('Enter N = ');
for ii=1:2:N
Square = 1i"2;
Cube = ii”3;
fprintf('Square of %d is %d; Cube is %d \n', [ii, Square Cube])
end
%% Alternative way: [while ... end]
N = input('Enter N = ');
ii =15

while le(jj, N)

Square = jj"2;

Cube = jj"3;

fprintf('Square of %d is %d; Cube is %d \n', [jj, Square Cube])

33 =33+2;
end

When you run the script and enter 13 for N, the following will be displayed in the
Command window:

Enter N = 13
Square of
Square of

1 is 1; Cube is 1

3 is 9; Cube is 27
Square of 5 is 25; Cube is 125
Square of 7 is 49; Cube is 343
Square of 9 is 81; Cube is 729
Square of 11 is 121; Cube is 1331
Square of 13 is 169; Cube is 2197
Enter N = 13
Square of 1 is 1; Cube is 1
Square of 3 is 9; Cube is 27
Square of 5 is 25; Cube is 125

163

CHAPTER2 PROGRAMMING ESSENTIALS

Square of 7 is 49; Cube is 343
Square of 9 is 81; Cube is 729
Square of 11 is 121; Cube is 1331
Square of 13 is 169; Cube is 2197

Example 6
. 1 1 1 1 11 . ;
Compute the series 1-=+—=——+———+—... byusing [for ... end] and [while
2 3 45 6 7
. end].

Here are five possible solution scripts of the given exercise gathered within one script
called SumSeries.m

% SumSeries.m computes a sum of Series:
%% Version A. [for ... end]
clearvars
sign=1;
S=0;
N=input('Enter number of series to compute: ');
for n=1:N
S=S+sign/n;
sign=-sign;

end

fprintf('Sum of %g series is equal to %2.5f \n', n, S)
%% Version B. [for ... end]

clearvars S N sign

S=0; sign=1;

N = input('Enter number of series to compute: ');

for k=1./(1:N)
S=S+sign*k;
sign=-sign;
end
fprintf('Sum of %g series is equal to %2.5f \n', N, S)
%% Version C. [for ... end]
clearvars S N
S=1;

164

CHAPTER2 PROGRAMMING ESSENTIALS

N = input('Enter number of series to compute: ');
for k=2:N

if eq(mod(k,2), 0)

S=S-1/k;
else
S=S+1/k;

end
end
fprintf('Sum of %g series is equal to %2.5f \n', k, S)
%% Version D. [while ... end]
clearvars
sign=1;
S=0;
N = input('Enter number of series to compute: ');
n=1;
while n<N+1

S=S+sign/n;

n=n+1;

sign=-sign;
end
fprintf('Sum of %g series is equal to %2.5f \n', n, S)
%% Version E. [while ... end]
clearvars S N
S=0;
N=input('Enter number if series to compute: ');
ii=1;
while ii~=N+1
if mod(ii,2)==0

S=5-1/ii;
else
S=S+1/ii;
end
ii=ii+1;
end

fprintf('Sum of %g series is equal to %2.5f \n', ii, S)

165

CHAPTER2 PROGRAMMING ESSENTIALS

All of these solution methods with [for ... end] and [while ... end] result
in identical solutions. It must be noted that the MATLAB function mod(N, 2) defines
whether the number is even or odd, which works in this script to separate the even and
odd components of ii and k.

In all of the previous examples, the last final values from the iteration processes are
saved. What about saving the values from all iteration steps?

%% Version A. [for ... end]
clearvars
sign=1;
S=0;
N=input('Enter number of series to compute: ');
for n=1:N
S=S+sign/n;
SS(n)=S;
sign=-sign;
fprintf('Sum of %g series is equal to %2.5f \n', n, SS(n))
end
%% Version B. [for ... end]
clearvars S N sign
S=0;
sign=1;
ii=1;
N = input('Enter number of series to compute: ');
for k=1./(1:N)
S=S+sign*k;
SS(ii)=S;
sign=-sign;
fprintf('Sum of %g series is equal to %2.5f \n', ii, SS(ii))
ii=ii+1;
end
%% Version C. [while ... end]
clearvars S N ii SS
S=0;
N=input('Enter number if series to compute: ');
ii=1;

166

CHAPTER2 PROGRAMMING ESSENTIALS

while ii~=N+1
if mod(ii,2)==0
S=S-1/ii;
else
S=S+1/ii;
end
SS(ii)=S;
fprintf('Sum of %g series is equal to %2.5f \n', ii, SS(ii))
ii=ii+1;
end
%% Version D. [while ... end]
clearvars n N S SS
sign=1;
S=0;
N = input('Enter number of series to compute: ');
n=1;
while n<N+1
S=S+sign/n;
SS(n)=S;
fprintf('Sum of %g series is equal to %2.5f \n', n, SS(n))
n=n+1;
sign=-sign;
end

%% Version E. [while ... end]
clearvars SS ii S N
S=0;
N=input('Enter number if series to compute: ');
ii=1;
while ii~=N+1
if mod(ii,2)==0
$=5-1/1i1;
SS(ii)=S;
else
S=S+1/ii;
SS(ii)=S;

167

CHAPTER2 PROGRAMMING ESSENTIALS

end
fprintf('Sum of %g series is equal to %2.5f \n', ii, SS(ii))
ii=ii+1;

end

One of the easiest and straightforward approaches to preserving all values from all
iterations is to initiate a new series of variables, e.g., SS(ii) and SS(n)s. When you are
saving all values of calculated outputs within loops, it is salient to interpret SS(ii) and
SS(n) correctly. For example, SS(1) first takes the value of S=1, and S = S-1/2 leads to
SS(2) = 1-1/2 = %. In the next step (step 2), S=S +1/3 leads to SS(3) =1/2+1/3 =5/6, and
so forth.

Example 7

Compute the expression f(t) = e t = 0: 0.001 : 6.28; by employing [for ... end]
and [while ...end] loop iteration operators and preserving all of the values from
all iterations. From every iteration, one value of f(¢) is saved, corresponding to each
value of ¢.

%% Ex7_FOR_WHILE.m

clearvars

% Ver 1

ii =1;

for t=0:.001:6.28
f(ii)=exp(sin(t));
ii=ii+1;

end

% Ver 2

t=0:.001:6.28;

for k=1:numel(t)
f(k)=exp(sin(t(k)));

end

%% Ver 3

33=0;

168

CHAPTER2 PROGRAMMING ESSENTIALS

while jj~=numel(t)
f(3j+1)=exp(sin(t(jj+1)));
33=33+15

end

% Ver 4

m=1;

while m~=numel(t)+1
f(m)=exp(sin(t(m)));
m=m+1;

end

Note It is salient to use f(ii) or f(k) or f(jj+1) or f(k) while computing A# within
the [for ... end] and [while ... end] loops. This preserves all the values
of f{f) from the iteration process with respect to the values of ¢ If only f is used
instead of f(ii) or f(k) or f(jj+1) or f(k), then only one very last value of f{f) is saved.

One of the most common mistakes that users make is that while working with loop
operators ([for ... end], [while ... end]), they overlook index (ii) or (k)

or (j) or (m) after the main variable. For example, f(ii), f(k), f(jj+1), and f(k) in the
previous example collect all values from the whole iteration process.

Another most common mistake that users make is that while working with loop
operators ([for ... end], [while ... end]),they assign wrong index
values for (ii), (jj). For example, they use negative values or values starting with 0
or noninteger values or use mismatched sizes. In the previous example (version
3), we overlook assigning the value 0 to jj before the [while end] loop or assign
ji=0 and at the same time assign f(jj). This is not acceptable. f(0) is meaningless
for one important reason: a variable cannot have an index of 0. Indexes can be
1,2,3,..10"2,..10% + 1, ...butnot ..., -3,-2,-1,0 or0.12,2.1,3.35, 5.5, 7/8,
100/899, etc.

169

CHAPTER2 PROGRAMMING ESSENTIALS

There is a good alternative option or approach in collecting every value from every
computation within a loop, which is to assign a new variable with an index. For example,
this can be attained via the following:

%% Ex7_FOR_WHILE.m

clearvars

% Ver 1

ii =1;

for t=0:.001:6.28
f=exp(sin(t));
F1(ii)=f;
ii=ii+1;

end

% Ver 2

t=0:.001:6.28;

for ii=1:numel(t)
f=exp(sin(t(ii)));
F2(ii)=f;

end

%% Ver 3

jj=0;

while jj~=numel(t)
f=exp(sin(t(jj+1)));
F3(jj+1)=f;
J3=33+15

end

% Ver 4

j3=1

while jj~=numel(t)+1
f=exp(sin(t(33)));
Fa(33)=f;
33=33+1;

end

170

CHAPTER2 PROGRAMMING ESSENTIALS

It must be noted that in this example the best and most efficient computation
approach is vectorization, as shown here:

t=0:.001:6.28
f=exp(sin(t));

Note For the efficiency of computation processes or to improve your code
performance, it is recommended you avoid using the [for ... end] and
[while ...end] loop control statements whenever feasible. Instead of the loop
iteration, it is recommended to employ the vectorization approach, as shown in
Example 7: t=0:.001:6.28; f=exp(sin(t)).

Example 8

Let’s look at the famous “wheat and chessboard problem” story in this example. The
problem is defined by the following: pieces of grain are placed in each chessboard
square in the order of one grain in the first square, two pieces of grain in the second, four
pieces of grain in the third, eight pieces of grain in the fourth, 16 pieces of grain in the
fifth, 32 pieces of grain in the sixth, and so on, by doubling the pieces of grain on each
subsequent square of the chessboard.

The sum of all grains to be placed on the chessboard is 1+2+4+8+16+32 ... and so
forth. This can be also expressed as the sum of powers of 2: 2° + 2! + 22 + 23 + 24 4 25 + 2%
and is equal to 2% — 1 = 18,446,744,073,709,551,615. This is indeed a huge number of
grains requested by the chess inventor for his ingenious invention of the chess game as
areward from a king. In simple calculations, if one grain weighs 0.025 grams, then the
whole amount would weigh over 461 billion tons of grains. That would be a mountain of
wheat grains bigger than Mount Everest. Let’s compute the number of grains using [for

. end] and [while ... end] loops.

% ChessInventorReward.m

% Example: Grains of Wheat on the Chess Board
%% Version A. [while ... end] loop

clearvars

S=1; Ncell=64; jj=1;

171

CHAPTER2 PROGRAMMING ESSENTIALS

while jj~=Ncell

5=5+2"3]; j3=33+1;
end
display(['Number of cells: ', num2str(Ncell)])
display('& total sum of grains is: '), disp(uint64(S))
% Now test our results with a simple solution: 2764-1;
Error=S-2"64 %#ok
%% Version B. [for ... end] loop
clearvars
S=0; Ncell=64;
for ii=0:Ncell-1

S=S+271i;
end
display(['Number of cells: ', num2str(Ncell)])
display('& total sum of grains is: '), disp(uint64(S))
% Now test our results with a simple solution: 2764-1;
Error=S-2"64 %ok

Both of the solution scripts output the same number of grains:
18,446,744,073,709,551,615 with 0 error. Note that 18,446,744,073,709,551,615 = 2% — 1 is
the maximum length of any integer to be displayed correctly in MATLAB's 64-bit version
installed on a 64-bit processor computer.

Note In this example, the most efficient way of computing the number of grains
on the chessboard is the vectorization approach:

n=0:63; N = 2./An; S = sum(N); disp(uint64(S))

Example 9

© 2
Prove that ZLZ = % . Compute this summation by using the [for ... end] and
k=1

[while ... end]loops.

172

CHAPTER2 PROGRAMMING ESSENTIALS

% SumPi6.m
%% Example: sum(1/k"2)=pi”2/6
% Version A. [while...end] loop
clearvars
S=0; jj=1; k=input('Enter number of iterations to compute: ');
while le(jj, k)
S=S+1/33%2; jj=jj+1;
end
display(['Number of cells: ', num2str(Ncell)])
display('& total sum of grains is: '), disp(uint64(S))
Error = (pi*2/6)-S; display(Error)
% Example: sum(1/k"2)=pi”2/6
% Version B. [for ... end] loop
clearvars -except k

S=0;

for jj=1:k
S=S+1/jj"2;

end

display(['Number of cells: ', num2str(Ncell)])
display('& total sum of grains is: '), disp(uint64(S))
Error = (pi*2/6)-S; display(Error)

Example 10

2 (-1)" 4
Prove that Z% = 7. Compute this summation by using the [for ... end] and
n—0 &N —

[while ... end]loops.

%% Series PI.m

% [for .. end]

clearvars

N = input('Enter the number series to compute: ');

S = 0;

for n
S

1:N
S+(4*(-1)"(n+1))/(2*n-1);

end

173

CHAPTER2 PROGRAMMING ESSENTIALS

fprintf('Sum of n = %d is series: %1.5f \n', n, S)
%%

% [while .. end]

clearvars

N = input('Enter the number series to compute: ');
S = 0;

n=1;

while n~=N+1
S = S+(4*(-1)"(n+1))/(2*n-1);
n=n+1;
end
fprintf('Sum of n = %d is series: %1.5f \n', n, S)

Example 11

> 1
Prove that Z—' =e. In this exercise, the sum of rational factorial series is equal to the
—=n!
1

natural logarithm base e. Compute the sum of the series 1 + 1 +—+.. i ..=e by
P21 n!

using the [for ... end] and [while ... end] loops.

%% Series e.m

% [for .. end]

clearvars

N = input('Enter the number series to compute: ');

S = 0;

for n
S

1:N
S+1/factorial(n);

end

fprintf('Sum of n = %d is series: %1.5f \n', n, S)
%%

% [while .. end]

clearvars

N = input('Enter the number series to compute: ');
S = 0;

n=1;

174

CHAPTER2 PROGRAMMING ESSENTIALS

while n~=N+1
S = S+1/factorial(n);
n=n+1;
end
fprintf('Sum of n = %d is series: %1.5f \n', n, S)

Note that in this exercise the function factorial() is employed. The most efficient
way of computing the sum of these series is the vectorization approach: S = sum(1./
factorial(1:N)).

Memory Allocation

When all values from all iterations are saved, it is recommended to employ memory
allocation methods to improve the computation efficiency. Let’s analyze how the
computation efficiency is enhanced by the memory allocation approaches. With the
memory allocation technique, a user-specified memory is allocated to the computed
variable with a user-specified size, and during the computation with a loop, all of the
variable’s values are recorded in the prespecified memory. This speeds up the whole
computation process considerably. With the memory allocation technique, the exact
size of the variable being computed is created before the loop iteration, via the standard
matrix/array generators (e.g., ones () or zeros()).

The general syntax/pseudocode of the memory allocation is as follows:

% [FOR ... END]

M = zeros(1, n);

for ii = 1:n

M(ii) = [computation];
end

% [WHILE ... END]

MM = zeros(1, k); jj=1;

while §j ~=k

MM(jj) = [computation];
33=33+1;

end

This syntax can be applied to loops within loops. Let’s consider the memory
allocation technique in the foll