
M A N N I N G

JEFF IANNUCCIJEFF IANNUCCI

LEARN

SQL
IN A MONTH OF LUNCHES

• Manipulating data

• Using functions

• Creating constrains

• Making decisions

• Using cursors

• Controlling transactions

• Storing data in tables

• Reusing queries

• Logical operators

• Grouping data

• Using variables

• Converting data

• Wildcards and null values

• Querying multiple tables

• Filtering and sorting

• Set operators

Review of WHERE clause comparison operators

Operator Description

= Equality

<> Inequality

!= Inequality*

< Less than

> Greater than

!< Not less than*

!> Not greater than*

<= Less than or equal to

>= Greater than or equal to

BETWEEN Between two values, including those values

IN Equality to a list of multiple values

NOT IN Inequality to a list of multiple values

NOT Inequality to stated condition

*May not be supported by every RDBMS

MANN I NG
Shelter ISland

Learn SQL in
a Month of Lunches

Jeff Iannucci

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633438576
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

 Development editor: Becky Whitney
 Technical editor: Mike Shepard
 Review editor: Kishor Rit
 Production editor: Deirdre Blanchfield-Hiam
 Copy editor: Keir Simpson
 Proofreader: Melody Dolab
 Technical proofreader: Trevoir Williams
 Typesetter: Tamara ŠveliÊ SabljiÊ
 Cover designer: Monica Kamswaag

For you, dear reader.
May this book help you on your

journey through our data-driven world.

iv

brief contents
 1 ■ Before you begin 1
 2 ■ Your first SQL query 6
 3 ■ Querying data 18
 4 ■ Sorting, skipping, and commenting data 28
 5 ■ Filtering on specific values 39
 6 ■ Filtering with multiple values, ranges, and exclusions 50
 7 ■ Filtering with wildcards and null values 60
 8 ■ Querying multiple tables 71
 9 ■ Using different kinds of joins 85
 10 ■ Combining queries with set operators 96
 11 ■ Using subqueries and logical operators 108
 12 ■ Grouping data 119
 13 ■ Using variables 131
 14 ■ Querying with functions 143
 15 ■ Combining or calculating values with functions 153
 16 ■ Inserting data 164
 17 ■ Updating and deleting data 176
 18 ■ Storing data in tables 188
 19 ■ Creating constraints and indexes 204
 20 ■ Reusing queries with views and stored procedures 217
 21 ■ Making decisions in queries 230

 vbrief contents v

 22 ■ Using cursors 244
 23 ■ Using someone else’s script 259
 24 ■ Never the end 271

vi

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxii

 1 Before you begin 1
 1.1 Why SQL matters 1

 1.2 Is this book for you? 2
The many uses for SQL 2 ■ The many flavors of SQL 3
A word about AI and SQL 3

 1.3 How to use this book 3
The main chapters 4 ■ Hands-on labs 4 ■ Further
exploration 4

 1.4 Setting up your lab environment 4
Installing MySQL and MySQL Workbench 4 ■ Executing the
lab scripts 5

 1.5 Online resources 5

 1.6 Being immediately effective with SQL 5

 viicontents vii

 2 Your first SQL query 6
 2.1 You know tables if you already know spreadsheets 6

 2.2 Learning SQL is like taking an English class 9

 2.3 Writing your first SQL query 10

 2.4 Key terms and keywords 15

 2.5 Lab 16

 2.6 Lab answers 17

 3 Querying data 18
 3.1 Rules for the SELECT statement 18

SELECT requirements 19 ■ Keywords and reserved words 19
Case insensitivity 20 ■ Formatting and whitespace 20

 3.2 Retrieving data from a table 21
Retrieving an individual column 22 ■ Retrieving multiple
columns 23 ■ Renaming output columns using aliases 24
Retrieving all columns 25

 3.3 Lab 26

 3.4 Lab answers 27

 4 Sorting, skipping, and commenting data 28
 4.1 Sorting data 28

Sorting by one column 29 ■ Sorting by multiple columns 30
Specifying sort direction 31 ■ Sorting by hidden columns 31
Sorting by position 32

 4.2 Skipping data 33
Using LIMIT to reduce results 33 ■ Using OFFSET to select a
different limited set 34 ■ Limiting data in another RDBMS 35

 4.3 Commenting data 35

 4.4 Lab 37

 4.5 Lab answers 37

 5 Filtering on specific values 39
 5.1 Filtering on a single condition 39

Filtering on numeric values 40 ■ Filtering on string values 41
Filtering on date values 42

viii contentsviii

 5.2 Filtering on multiple conditions 43
Filtering that requires all conditions 43 ■ Filtering that requires
any one of many conditions 44 ■ Controlling the order of multiple
filters 46 ■ Filtering and using ORDER BY 47

 5.3 Lab 48

 5.4 Lab answers 49

 6 Filtering with multiple values, ranges, and exclusions 50
 6.1 Filtering on specific values 50

 6.2 Filtering on a range of values 52
Filtering on an open-ended range 52 ■ Filtering a
defined range 53

 6.3 Negating filter conditions 55
Negating a specific value 55 ■ Negating any filter condition 56

 6.4 Combining types of filter conditions 57

 6.5 Reviewing comparison operators 58

 6.6 Lab 59

 6.7 Lab answers 59

 7 Filtering with wildcards and null values 60
 7.1 Filtering with wildcards 60

Filtering with the percent sign 61 ■ Filtering with
an underscore 63

 7.2 Filtering with null values 64
How not to search for null values 65 ■ How to search for
null values correctly 66 ■ How to search for values that
are not null 67

 7.3 Lab 68

 7.4 Lab answers 68

 8 Querying multiple tables 71
 8.1 The rules of data relationships 71

Data without relationships 72 ■ Data with relationships 73

 8.2 The way to join data 76
Joining two tables 76 ■ Joining more tables 78

 ixcontents ix

 8.3 Table aliases 80

 8.4 The other way to join data 81

 8.5 Lab 82

 8.6 Lab answers 83

 9 Using different kinds of joins 85
 9.1 Inner joins 85

 9.2 Outer joins 87
Left outer joins 87 ■ Right outer joins 89 ■ Using outer joins to
find rows without matching values 90 ■ Interchanging left and
right joins 91 ■ The USING keyword 92 ■ Natural joins 92

 9.3 Cross joins 93

 9.4 Lab 94

 9.5 Lab answers 94

 10 Combining queries with set operators 96
 10.1 Using set operators 96

 10.2 UNION 97

 10.3 UNION ALL 100

 10.4 Emulating FULL OUTER JOIN in MySQL 101

 10.5 INTERSECT 103

 10.6 EXCEPT 104

 10.7 Lab 105

 10.8 Lab answers 106

 11 Using subqueries and logical operators 108
 11.1 A simple subquery 108

 11.2 Logical operators and subqueries 110
The ANY and IN operators 111 ■ The ALL and NOT IN
operators 112 ■ The EXISTS and NOT EXISTS operators 114

 11.3 Subqueries in other parts of a query 115
Subqueries in the FROM clause 115 ■ Subqueries in the
SELECT clause 116

 11.4 Lab 117

 11.5 Lab answers 117

x contentsx

 12 Grouping data 119
 12.1 Aggregate functions 119

The SUM function 120 ■ The COUNT function 120
The MIN function 121 ■ The MAX function 122
The AVG function 122 ■ Filtering and aggregating
combined values 122

 12.2 Aggregating data with GROUP BY 123
GROUP BY requirements 123 ■ GROUP BY
and null values 124

 12.3 Filtering with HAVING 125

 12.4 Logical query processing 126

 12.5 The DISTINCT keyword 127

 12.6 Lab 128

 12.7 Lab answers 129

 13 Using variables 131
 13.1 User-defined variables 131

Declaring your first user-defined variable 132 ■ Understanding
rules for user-defined variables 133 ■ Using your first
user-defined variable 133

 13.2 Filtering with variables in FROM and HAVING clauses 134

 13.3 Assigning an unknown value to a variable 136
Reviewing how a query works 136 ■ Assigning an unknown
variable with SELECT 137 ■ Considering performance
with variables 138 ■ Troubleshooting considerations
with variables 139

 13.4 Other notes about variables 140
Assigning a literal value using SELECT 140 ■ Assigning a
value of NULL to a variable 140 ■ Changing the type of data
used by a variable 141

 13.5 Lab 141

 13.6 Lab answers 142

 14 Querying with functions 143
 14.1 The problems with functions 143

Function commands vary for each RDBMS 143 ■ Function
commands can be inefficient 144

 xicontents xi

 14.2 String functions 144
Case functions 144 ■ Trim functions 145 ■ Other string
functions 147

 14.3 Date and time functions 147
Date functions that return numeric values 147 ■ Date functions
that return string values 148 ■ Other date and
time functions 149

 14.4 Informational functions 149
Date and time information 150 ■ Connection information 151

 14.5 Lab 151

 14.6 Lab answers 152

 15 Combining or calculating values with functions 153
 15.1 Combining string values 153

CONCAT 154 ■ CONCAT_WS 156 ■ COALESCE 157

 15.2 Converting values 158
REPLACE 158 ■ CONVERT and CAST 159

 15.3 Numeric calculations with functions 160

 15.4 Lab 162

 15.5 Lab answers 162

 16 Inserting data 164
 16.1 Inserting specific values 164

Inserting a new row 165 ■ Inserting multiple new rows 167
Inserting a partial row 168 ■ A word of caution about
omitting columns 170

 16.2 Inserting a row with a query 171

 16.3 Inserting a row with variables 173

 16.4 Lab 174

 16.5 Lab answers 175

 17 Updating and deleting data 176
 17.1 Updating values 176

Working with data manipulation in real time 176
Requirements for updates 177 ■ Updating values in one or more
columns 179 ■ Updating values with a multitable query 180

xii contentsxii

 17.2 Deleting rows 183
Deleting one or more rows 183 ■ Deleting a row with a multitable
query 184 ■ Deleting all rows in a table 184

 17.3 One big tip for data manipulation 185

 17.4 Lab 186

 17.5 Lab answers 186

 18 Storing data in tables 188
 18.1 Creating a table 188

Considerations before creating a table 188 ■ Creating a
table 190 ■ Adding values to an empty table 190

 18.2 Altering a table 191
Adding a column to a table 191 ■ Considerations before
adding a column 194

 18.3 Primary keys 194
Considerations for primary keys 195 ■ Adding a
primary key 195

 18.4 Foreign keys and constraints 197
Data diagrams 197 ■ Adding a foreign-key constraint 197

 18.5 Deleting a table, column, or constraint 199
Deleting a constraint 199 ■ Deleting a column 200
Deleting a table 200

 18.6 Lab 200

 18.7 Lab answers 201

 19 Creating constraints and indexes 203
 19.1 Constraints 203

NOT NULL constraints 204 ■ DEFAULT constraints 206
UNIQUE constraints 207 ■ CHECK constraints 208

 19.2 Automatically incrementing values for a column 209

 19.3 Indexes 210
Clustered indexes 210 ■ Nonclustered indexes 212

 19.4 Lab 214

 19.5 Lab answers 215

 xiiicontents xiii

 20 Reusing queries with views and stored procedures 217
 20.1 Views 217

Creating views 218 ■ Filtering with views 219 ■ Joining
views 219 ■ Considerations for views 221

 20.2 Stored procedures 221
Creating stored procedures 222 ■ Using variables with stored
procedures 223 ■ Considerations for stored procedures 226

 20.3 Differences between views and stored procedures 227

 20.4 Lab 227

 20.5 Lab answers 228

 21 Making decisions in queries 230
 21.1 Conditional functions and expressions 230

COALESCE function 230 ■ IFNULL function 231
CASE expression 233

 21.2 Decision structures 235
IF and THEN 236 ■ ELSE 239 ■ Multiple conditions 240

 21.3 Lab 242

 21.4 Lab answers 242

 22 Using cursors 244
 22.1 Reviewing variables and parameters 244

Variables inside stored procedures 245 ■ Output parameters 245

 22.2 Cursors 246
Anatomy of a cursor 246 ■ Creating a cursor 247

 22.3 Alternatives to cursors 251
Using WHILE 251 ■ Temporary tables 253

 22.4 Considerations for using cursors 255
Thinking in sets 255 ■ Thinking about cursor use 256

 22.5 Lab 256

 22.6 Lab answers 256

xiv contentsxiv

 23 Using someone else’s script 259
 23.1 Someone else’s script: Creating a table 260

The CREATE TABLE script 260 ■ Reviewing the CREATE
TABLE script 260 ■ Improving the CREATE TABLE script 261

 23.2 Someone else’s script: Inserting data 262
The INSERT stored procedure 262 ■ Reviewing the INSERT
stored procedure 263 ■ Improving the INSERT stored
procedure 267 ■ Improving the INSERT stored procedure
even more 269

 24 Never the end 271
 24.1 More SQL 271

 24.2 Other SQL resources 272

 24.3 Farewell 273

 index 274

xv

preface
My experience with the SQL language started in the late 20th century when I first
worked with relational databases. I wasn’t a software developer, and my programming
skills were limited mostly to typing a few DOS commands on a home computer. Yet even
though I was thrust into learning how to use SQL to perform my job, I quickly found
how easy it was to write and execute scripts in this intuitive programming language.

In the years since, I’ve shared my knowledge of SQL with hundreds of colleagues.
What I’ve found interesting is that most of these colleagues weren’t software developers
either; they were folks in other departments, such as finance, marketing, or sales, who
needed to use SQL to directly access data that was vital to the organization. They didn’t
have time to learn concepts like third normal form and tuples. They just needed to
learn a few basic commands to get started.

If you think about it, we learn a lot of things in life this way. Most of us didn’t learn
how to build a car before we learned how to drive. We didn’t go to culinary school
before we started cooking meals. We didn’t learn how hard drives stored data and
how processors managed CPU threads before we started using computers. Rather, we
learned a few necessary concepts and methods to get going and continued learning
more as we progressed.

This is the main reason why I was excited to write this book. As someone who has
read several books in the Month of Lunches series, I appreciate the fact that one of the
main goals is to help the reader become “immediately effective” with the subject. Like
others in the series, this book was designed and written to help you start using SQL as
quickly as possible. I hope that before you reach the end of chapter 2, you’ll already be
excited about writing queries in SQL, learning more about the language, and using it
with almost any brand of relational database.

xvi prefacexvi

Although no single book can cover every concept in the SQL language, I believe that
by the end of this book, you’ll be able to query and manipulate data successfully for
nearly any task required of you. That said, finishing this book should by no means be
the end of your journey. I encourage you not only to seek out other books, blog posts,
and videos to expand your knowledge of SQL, but also to attend regional events and
local user groups to learn from others who use this popular language.

For now, though, enjoy the book. Take heart in the fact that a world full of data will
soon be available to you!

xvii

acknowledgments
The process of creating this book was the most unexpected adventure of my life. I’d
never considered writing a tech book, yet from the moment I was contacted by the
folks at Manning Publications about this opportunity, I was excited to be encouraged
by so many people. This book has my name on the front, but many others helped get
it ready for you.

First, I’m eternally grateful to my development editors, Karen Miller and Becky Whit-
ney, who patiently helped me create this book, as well as Mike Shepard for his outstand-
ing technical reviews and recommendations. Mike is a solutions architect at Jack Henry
and Associates who studied math and computer science at Missouri State University. In
his 27-year IT career, he has been a developer, a DBA, a sysadmin, and a solutions archi-
tect. He specializes in process improvement with PowerShell and SQL Server. Many oth-
ers behind the scenes helped immensely with organization and promotion, including
Mike Stephens, Eleonor Gardner, Malena Selic, Aria Ducic, Paul Spratley, Matko Hrva-
tin, Adriano Sabo, Ana Romac, Susan Honeywell, and Stjepan Jurekovic. Thank you
also to my project editor, Deirdre Blanchfield-Hiam; my copyeditor, Keir Simpson; and
my proofer, Melody Dolab. I’m blessed to have worked with such an awesome group of
folks!

Many thanks also to my friend Mike Walsh and all my colleagues at Straight Path
Solutions for their support and encouragement while I was working on this book, as
well as the wisdom of those who have mentored me over the years, including Martin
Grant, Curt Johnson, Chris Rose, Chris Hinson, Andy Yun, Ginger Grant, Buck Woody,
Grant Fritchey, and Kevin Kline.

Thanks to all the reviewers: Ali Shakiba, Andres Sacco, Cristian Antonioli, Dave
Corun, Eder Andres Avila Niño, Foster Haines, Giampiero Granatella, Grant Colley,
Greg Grimes, Harlan Brewer, Helen Mary Barrameda, Iyabo Sindiku, Jane Noesgaard

xviii acknowledgmentsxviii

Larsen, José Alberto Reyes Quevedo, Malisa Middlebrooks, Mary Anne Thygesen, Mat-
thias Lein, Mike Baran, Oliver Korten, Paolo Brunasti, Paul Love, Peter Schott, Rajesh-
kumar Muthaiah, Ravichandran Raja, Rohini Uppuluri, Simon Tschoeke, Sleiman
Salameh, Steven Joseph Herrera Corrales, and Sveta Natu. Your suggestions helped
make this book better.

Finally, I can’t possibly thank my beautiful wife, Amy, enough. She not only helped
with most of the formatting but also served as my “pre-editor,” checking each chapter
before I submitted it. She never complained as I locked myself in my office to write
chapters, and she devoted countless hours to reviewing my messy drafts. There’s no way
that this book would have been finished without her. Thank you, Amy. I love you always.

xix

about this book
Although the SQL programming language was created in the 1970s, our ever-increasing
use of relational databases has grown exponentially since then. Now, organizations
continually look for folks who can use this data in meaningful ways, and I’m not just
talking about software developers.

It’s amazing how knowing this one language can offer career opportunities to pro-
grammers and nonprogrammers alike. Because, if there’s any prerequisite for learning
SQL, it’s proficiency in the English language. SQL was designed to be as close to English
as possible, and for this reason, you should feel confident that nearly anyone can learn it.

This book contains examples that use the MySQL version of the SQL language, but
don’t think the content won’t be relevant if you use SQL Server, PostgreSQL, or some
other relational database. Most of the SQL shown in this book works with other rela-
tional database products, and I’ve done my best to note any exceptions for the most
popular ones.

Who should read this book
Unlike most books about programming languages, Learn SQL in a Month of Lunches
was written to make learning easy and accessible to all SQL beginners, regardless of
their experience with programming languages. It emphasizes practical ways to use the
language, helping you quickly learn the necessary skills to work with data in relational
databases.

If you’re a non-IT professional who needs to collect data for clients, supervisors, or
anyone else who needs to make data-driven decisions, this book is for you. I’ve had the
opportunity to work with colleagues in all sorts of professions who needed to use data,
and I haven’t met anyone who couldn’t learn how to write functional SQL queries. I

xx about this bookxx

often say that if you’ve worked with spreadsheet products like Microsoft Excel and Goo-
gle Sheets, you should have little difficulty working with relational databases and the
SQL language.

That said, if you’re a software developer or another type of IT professional who
needs to learn the SQL language, this book still offers value to help you get up to speed
quickly. Although the book is designed to help even absolute beginners, you shouldn’t
find it patronizing. I’m confident that the exceptions and warnings in each chapter will
help make your SQL more effective and efficient than that of most others who use SQL.

How this book is organized: A road map
Learn SQL in a Month of Lunches is organized into 24 chapters, each of which builds
on the keywords and concepts from previous chapters. You’ll start with the most basic
ways to retrieve data and move on to search for specific data, join multiple sets of data
in different ways, change data, and even create database objects to store data and your
SQL scripts.

Chapter 1 introduces the SQL language and shows why it’s so vital for accessing data
in relational databases. This chapter also helps you set up your first database using
MySQL.

Chapter 2 jumps right into using SQL, guiding you through your first query and
showing you how the language emulates spoken English.

Chapter 3 gets you started querying data in the most basic (and common) ways.
Chapter 4 shows you how to sort or limit the results of your queries and gets you

started adding valuable comments to your SQL.
Chapters 5 to 7 delve into some of the most common elements of filtering the data

you choose to see, providing helpful keywords and addressing the common misconcep-
tions about null values.

Chapters 8 to 11 describe how to join sets of data, connecting them in different ways
via the relationships designed in the database.

Chapter 12 walks you through grouping data to find basic arithmetic values such as
the maximum, average, and count of values in a set of data.

Chapter 13 introduces variables—staples of nearly all programming languages that
allow you to store values for later use in a script.

Chapters 14 and 15 cover functions, which are special keywords that perform repeti-
tive tasks such as returning date and time values and changing the way data is displayed.

Chapters 16 and 17 help you manipulate data when you need to add, change, or
remove values in a database.

Chapters 18 and 19 reveal how to store data in tables you create, as well as how to use
constraints and indexes to improve data integrity.

Chapter 20 shows you how to reuse your SQL by saving it in database objects like
stored procedures and views.

Chapter 21 provides ways to make decisions inside queries based on different
conditions.

 xxiabout this book xxi

Chapter 22 describes how cursors evaluate data one value at a time and discusses
alternatives to their use.

Chapter 23 gives you the chance to use everything you’ve learned by not only reading
SQL scripts written by someone else but also considering ways to improve the scripts.

Chapter 24 wraps up the book by giving you encouragement and guidance on your
next steps in growing your SQL knowledge.

About the code
This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the source code has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the available page space in the book. In rare
cases, even this was not enough, and listings include line-continuation markers (➥).
Additionally, comments in the source code have often been removed from the listings
when the code is described in the text.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/learn-sql-in-a-month-of-lunches. The
complete code for the examples in the book is available for download from the Man-
ning website at https://www.manning.com/books/learn-sql-in-a-month-of-lunches and
from GitHub at https://mng.bz/PNl8.

liveBook discussion forum
Purchase of Learn SQL in a Month of Lunches includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s
a snap to make notes for yourself, ask and answer technical questions, and receive
help from the author and other users. To access the forum, go to https://livebook
.manning.com/book/learn-sql-in-a-month-of-lunches/discussion. You can learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
discussion.

Manning’s commitment to our readers is to provide a venue where meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest that you
try asking the author some challenging questions lest their interest stray! The forum
and the archives of previous discussions will be accessible on the publisher’s website as
long as the book is in print.

https://livebook.manning.com/book/learn-sql-in-a-month-of-lunches
https://www.manning.com/books/learn-sql-in-a-month-of-lunches
https://mng.bz/PNl8
https://livebook.manning.com/book/learn-sql-in-a-month-of-lunches/discussion
https://livebook.manning.com/book/learn-sql-in-a-month-of-lunches/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion

xxii

about the author
Jeff IannuccI is a senior consultant with Straight Path
Solutions, specializing in relational database administra-
tion and SQL programming. He has used SQL to solve
database puzzles for more than 20 years. He has shared
his knowledge as a speaker at technology conferences
and user-group meetings, as a writer for various techni-
cal sites, and as a Pluralsight content author.

1

1Before you begin

Nearly every act of our lives generates data. Every purchase we make, every mile we
travel, and every internet link we click adds to a colossal amount of ever-growing
data, which for many organizations has become their most valued asset. This data
is often stored in a relational database, which keeps the data secure, scalable, and
available to be constantly read and modified by innumerable users.

But how exactly can these users work with the data in a relational database? More
important, how can you read and write data that is critical to your organization? The
answer, and the subject of this book, is Structured Query Language, more commonly
known as SQL.

1.1 Why SQL matters
Now, you may be wondering whether SQL is important enough for you to invest an
entire month of lunches in it. Be assured that learning this language is undoubtedly
one of the best skills anyone who uses data can acquire. Even though much of the
data of our modern lives is stored in relational databases from different brands,
such as Oracle, Microsoft, and IBM, nearly all use SQL to work with data and have
been using it for quite some time.

Although many application languages have a lifespan of only a few years, SQL
has been the standard language for querying relational databases for decades and
should continue to be so for the foreseeable future. This means the skills you’ll learn
and develop by reading this book and practicing the recommended exercises can
potentially benefit you for your entire career.

2 chapter 1 Before you begin

Perhaps most important, SQL is very easy to learn because it was designed to be writ-
ten like the English language. If you are familiar with English, the commands and syn-
tax used in SQL will seem intuitive. If you need to work with your data to find the first
and last names of customers in Canada, for example, you might use a SQL statement
like this:

SELECT FirstName, LastName FROM Customers WHERE Country = 'Canada';

See how easy that is? Although you may not understand every bit of that statement, I
assure you that within the first few chapters of this book, you will be able to write que-
ries like this one.

1.2 Is this book for you?
There is no shortage of books, videos, courses, or websites that offer to teach you SQL,
many of which are designed for an audience with software development experience.
They frequently start with the history of a language, move on to a discussion of its
many technical concepts, and follow with chapters grouped by showing what various
commands do. Though nothing is inherently wrong with that approach, it ignores the
many nontechnical folks who need to learn SQL—folks like me.

Despite using SQL for more than two decades now, I didn’t begin my career in soft-
ware development. My first experience with databases was in a position called data
administrator, where I was responsible for importing data from various sources into a
relational database. I needed to read that data to validate the success of the import pro-
cess, and the only way to do that was by learning and using SQL.

Even though I had limited programming experience, I quickly grasped how to use
SQL. If you understand how to write in English, I’m confident that you can do the same.
As you will see throughout this book, most SQL commands and keywords are exactly
what you would expect them to be in English.

1.2.1 The many uses for SQL

Data isn’t just for the IT department, of course. If you are a business analyst, for exam-
ple, you can use SQL to quickly retrieve and analyze data about operational trends to
make smarter business decisions. If you are a marketing professional, you can use SQL
to uncover actionable insights about recent ad campaigns that can help you grow your
business. If you work in finance, you can use SQL to retrieve vital data that can help
your company meet compliance requirements.

All this data is the lifeblood of any modern organization, and success depends on
having members of nearly every department possess the skills to use relational data to
make critical business decisions. This book is designed to help people like you learn
SQL to build those skills. If your technical experience is limited to working with spread-
sheets, you’re at a great starting point.

Then again, if you are a software developer, database administrator, or data scientist,
this book doesn’t exclude you; it just takes a different approach to learning. Whereas

 3How to use this book

most other SQL books begin with terminology and concepts, this book gets you using
SQL quickly to solve practical problems while briefly sharing concepts and defining
terminology along the way.

Conversely, this book isn’t designed simply to teach you a bunch of SQL commands.
Instead, it’s designed to progressively show you how to apply components of the SQL
language to do your job, regardless of your level of computer programming experience.

1.2.2 The many flavors of SQL

Although we will be using a MySQL database to learn about SQL, nearly all the SQL
concepts and techniques will work with any relational database. This means that what
you learn will apply to any of the following database management systems:

¡	IBM DB2

¡	MariaDB

¡	Microsoft SQL Server

¡	MySQL

¡	Oracle

¡	PostgreSQL

When you’ve developed a solid foundation for using SQL, you can easily work with
data in any of these systems. Be aware, however, that there will be occasional excep-
tions for individual systems. These exceptions will be noted throughout this book so
you can be proficient in whatever system you use to work with data.

1.2.3 A word about AI and SQL

With the advent of generative artificial intelligence (AI), you may be wondering why
you should learn to use SQL instead of using a tool like ChatGPT to write any SQL you
might need. Though AI seems like a handy way to avoid investing in learning SQL, you
still need to have a good grasp of SQL to understand whether the code that any such
tool provides will give you correct results. Moreover, to get a SQL statement from a
generative AI source, you have to provide details about your database, which your orga-
nization may expressly prohibit.

That said, generative AI tools can be useful when you have a good understanding of
a language such as SQL. As you become proficient and understand how to write SQL
that does exactly what you intend, you can use these tools to quickly review your code
for performance problems or explain what a query appears to be doing. You still need
to possess SQL knowledge to interpret the recommendations or explanations, and this
book can help you attain that knowledge.

1.3 How to use this book
The idea of this book is that you will read one chapter each day. You don’t have to read
during lunch, but most chapters should take about 40 minutes to read, leaving you
about 20 minutes to practice what you’ve learned while you finish eating.

4 chapter 1 Before you begin

1.3.1 The main chapters

Chapters 1 and 2 help you get up to speed quickly, making you familiar not only with
the idea of a table and how to think about querying it but also with the tools we will be
using throughout this book. In some ways, they’re the most important chapters of the
book.

Chapters 3 through 22 represent the primary content, so you can expect to com-
plete them in about a month—even a short month like February. Not every chapter
will require a full hour, but it’s important to follow the order because each chapter
builds on the skills and commands demonstrated in previous chapters. Also, though
you are certainly free to read multiple chapters per day, I recommend focusing on a
single chapter daily and spending ample time practicing what you learned. Doing this
will give your brain time to focus on a handful of concepts and examples, which should
prove to be optimal in solidifying your knowledge quickly. As the great basketball coach
John Wooden said, “Be quick, but don’t hurry.”

1.3.2 Hands-on labs

Nearly all chapters include a short lab exercise that helps you apply the concepts and
commands you’ve learned. Don’t think of these exercises as quizzes but as opportu-
nities to apply and reinforce your new SQL skills. Though the answers to these labs
appear at the end of each chapter, I can’t stress enough how vital working through
these labs will be in retaining your new knowledge.

1.3.3 Further exploration

Because this book is designed for those who are just starting to use SQL, it only
scratches the surface of the ways you can use and manipulate relational data. For this
reason, some chapters end with suggestions for further exploration of ways to use the
concepts and commands. If you have the time and inclination, take a look at these
resources to expand your ever-growing SQL skill set.

1.4 Setting up your lab environment
Your time is valuable, so let’s get started with setting up your lab environment. This task
won’t be resource-intensive, and you can likely set it up on your own computer in a few
minutes. We’ll install only two pieces of free software and then execute some ready-
made SQL scripts to give us some data to use.

1.4.1 Installing MySQL and MySQL Workbench

The first step is downloading MySQL and installing it on the computer of your choice.
MySQL is not only freely available but also one of the most popular relational database
applications in the world.

We’ll also install MySQL Workbench, which is the tool we’ll use to execute all the
queries contained in this book. It also uses very few resources, so you shouldn’t worry
about installing it on a laptop.

 5Being immediately effective with SQL

The steps for downloading and installing both of these applications are available at
my GitHub repository, located at https://mng.bz/PNl8. Because the MySQL software is
frequently updated, the version numbers you see may be later than the ones shown in
the documentation. Don’t worry about that; nothing we do should be affected by newer
versions.

1.4.2 Executing the lab scripts

Throughout this book, we’ll rely on a single set of data for our queries. The data is
based on a set of orders from a hypothetical publisher of SQL-based novels, using a
database named sqlnovel for all our queries. We’ll discuss this data more throughout
the book, but for now, let’s create the database and populate the sample data by exe-
cuting a prepared SQL script.

The steps for setting up our sqlnovel database are also located at https://mng.bz/
PNl8, and they’re even simpler than the process for installing MySQL and MySQL
Workbench. Although you are likely to simply execute the script, near the end of the
book, we will review parts of the script to examine what it does. By that point, you should
be able to create your own sets of data!

1.5 Online resources
Throughout the book, I’ll give you examples and exercises to try. I encourage you to
type all scripts on your own and even to write SQL in a different style from the one I
present in this book if you prefer. When you type the SQL, you may encounter an error
that you don’t understand. For this reason, the online resources also contain every
SQL script presented in this book. Please try to use them only for troubleshooting
because typing the SQL yourself will help you learn faster than simply copying scripts.

1.6 Being immediately effective with SQL
As with every other book in the Month of Lunches series, the primary goal of this
book is to make you immediately effective. Nearly every chapter that follows presents a
particular part of the SQL language and discusses it briefly, though most of any given
chapter focuses on how to apply what you’ve learned using real-world scenarios. Fur-
thermore, at the end of every chapter, you get hands-on practice by completing exer-
cises in a lab environment.

As stated earlier, if you are looking for a deep dive into relational database theory
and history, many other books can guide you down that path. Although many parts of
this book discuss details and nuances, every chapter is driven by the goal of making you
immediately effective at accomplishing real tasks.

OK, that’s enough about this book. Let’s start using SQL!

https://mng.bz/PNl8
https://mng.bz/PNl8
https://mng.bz/PNl8

6

2Your first SQL query

Chapter 1 ended with a word about being immediately effective, and so now we’re
going to do just that. We’re going to start looking at some data as it might be stored
in a relational database, and we’re going to examine the way that data is structured.
Doing this will help you better understand some terms to describe the data, which
we will use throughout the book. Don’t worry, though: you’ll see just a handful of
terms, and they are all words you have seen and used in conversation. I’m just defin-
ing them in the context of data stored in relational databases.

Also, you’ll get started with your first query. In case you didn’t know, a query refers
to executing some SQL to retrieve data. As you progress through this book, you’ll
execute quite a few queries to level up your SQL skills. If you haven’t already com-
pleted the installations of MySQL and the MySQL Workbench (see chapter 1) and
executed the Create_SQLNovel_database.sql script to create our sample database,
please do those things now so that you’ll be ready to query data. Before you begin
querying, though, let’s look at some data.

2.1 You know tables if you already know spreadsheets
Although it’s not a prerequisite for learning SQL in this book, it will be helpful if
you have experience working with Microsoft Excel or some other spreadsheet pro-
gram. You may not realize it, but spreadsheets are structured similarly to the most
fundamental objects in any database. We’ll also introduce a few terms in this section
to help make sense of the way data is stored in a relational database—more accu-
rately known as a relational database management system (RDBMS).

 7You know tables if you already know spreadsheets

Now, we don’t just gather data and dump it into an RDBMS; rather, we organize and
store it in objects based on the nature of the data. These objects are known as tables. We
typically organize data in tables relating to elements, such as orders, customers, or pay-
ments. Tables are the building blocks of any RDBMS and are structured quite a bit like
spreadsheets, so looking at a spreadsheet will help you understand the associated terms
in this chapter and throughout the book.

If you don’t know the basic terms used to describe a spreadsheet, take a look at the
typical spreadsheet in figure 2.1, which contains information about some extraordinary
fictional books. Consider this information a set of data, commonly known as a data set.
Seems easy enough, right? The data set is stored in a spreadsheet, but had this data
been stored in a table, it would have essentially the same structure.

Figure 2.1 A spreadsheet with five columns (A through E) of values for several
fictional books. The spreadsheet is organized similarly to a table in a database.

I’ve said that I don’t want to overload you with jargon, but you need to understand
three simple but critical terms related to tables before you start using SQL to read and
manipulate any data contained in tables. As I noted at the beginning of the chapter,
you’ve likely heard these words before:

¡	Column

¡	Row

¡	Value

A table, at its most basic level, is a construct of one or more columns of data. Columns
run vertically, like columns in architecture. In figure 2.2, we see columns for Title,
Price, Advance, Royalty, and Publication Date, with Title highlighted. You may see or
hear the term field used to refer to a column, but field isn’t a term in the SQL language.

Another term we need to consider is row, which refers to a horizontal collection of
data in the table. Each row represents a single item of whatever the element of the table
is, which in this case is the title of a book. In figure 2.3, we can see that each row has the

8 chapter 2 Your first SQL query

same structure and follows the same order of columns—a requirement because each
row must include a representation of all columns in the table.

Figure 2.2 The spreadsheet of book titles, with the Title column highlighted
to show the vertical nature of columns

These rows are also enumerated in the left sidebar, but in any given table, the designer
may not include explicit identifiers for each row. It’s worth noting that the terms row
and record are often used interchangeably because certain applications refer to rows as
records, but for tables in most RDBMSes, the correct term is row.

Figure 2.3 The spreadsheet of books, with the first horizontal collection of data
highlighted to show the horizontal nature of rows

The last term, at least for now, is value, which represents the distinct pieces of informa-
tion described by the columns of the data set. Every row contains one value for each
column. In figure 2.4, the value of Title in the last row of our data set is The Sum Also
Rises, and the value of Price in that row is $7.95. It’s worth noting that even though all
columns are required for all rows, the values for the columns can be empty, such as the
Advance value for the row with the Title value The Great GroupBy.

 9Learning SQL is like taking an English class

Figure 2.4 The value of Price in the row with the title The Sum Also Rises
highlighted to indicate a value. This value is just one of many.

OK, that’s enough terminology about tables for now. Let’s start talking about how to
use this information to query a table.

2.2 Learning SQL is like taking an English class
A common question many people have is how to pronounce SQL; some folks say “ess-
cue-ell,” whereas others say “sequel.” Considering that the earliest version of SQL was
called Structured English Query Language and was abbreviated as SEQUEL, you can
see how the latter pronunciation became commonplace. For what it’s worth, there was
already a trademark on SEQUEL, so the creators dropped the word English from the
name and shortened the abbreviation to SQL.

This brings us to another reason for the popularity of SQL: unlike many other pro-
gramming languages, it’s designed to resemble the English language. You see, SQL is a
declarative language, meaning that you specify what data you want and not how you want
to get it, which is something that the RDBMS you are using will figure out.

We can take this concept of SQL being a declarative language a step further, using
simple verbal declarations to say what we want to do with the data. This may seem
unusual, but you’ll soon see that many basic SQL statements
are similar to a verbal declaration for a simple request. Let’s
walk through an example. Suppose that you have a table of
vegetables named vegetables, like the one shown in figure
2.5, and you want to know the names of all the vegetables. If
you want to declare this request verbally, you might say some-
thing like this: “I would like all the names of the vegetables.”
SQL isn’t intuitive enough for that to work, but it isn’t too
far off. To accomplish this hypothetical query, you need to
include in your declaration the two most basic keywords
used in SQL. A keyword is any word in the SQL language that
helps you do . . . well, anything. The first keyword to learn is
SELECT, which, when it comes to databases, will be your new

Figure 2.5 A vegetables
table with two columns
and five rows. We’re
going to learn how to
create a query that shows
the names of all the
vegetables.

10 chapter 2 Your first SQL query

best friend. Believe me—you and SELECT will work together a lot. Why? Simply put,
SELECT is the keyword used to define what you want to see and how you want to see it: “I
would like to SELECT all the names of the vegetables.”

All right, we’re on our way to forming an actual SQL query, but we need to add
something else: the FROM keyword. The FROM keyword specifies which data set we want to
look at, which in this case is the vegetables table: “I would like to SELECT all the names
FROM the vegetables table.”

That’s better, but when we specify a data set using FROM, we don’t explicitly say that
it’s a table. Even though tables are one of several kinds of data sets you can query, your
RDBMS can determine the kind of data set based on the name of the data set: “I would
like to SELECT all the names FROM vegetables.”

We’re getting closer. Now let’s consider “SELECT all the names” for a moment. If we
want to select all the names, we’re in good shape because that is the default for this type
of query. Nothing here specifies that we want any particular names, so we don’t need to
state that we want them all: “I would like to SELECT names FROM vegetables.”

This part is tricky because we’ll need to look at the table in figure 2.5. We can see that
the name of the column with the data we want is called Name, not Names. As you query
more data, you’ll probably find that a column name is hardly ever plural because the
value in each column rarely has more than one value for each row. Let’s adjust our ver-
bal declaration a bit: “I would like to SELECT Name FROM vegetables.”

We’re almost there. The last modification is to remove the “I would like to . . .” text
because we start queries with a keyword, which in this case is SELECT. Also, that part is
kind of wordy, don’t you think?

One more thing: we need to add a semicolon to the end of the declaration. The semi-
colon tells the RDBMS that this is the end of what we’re declaring and that anything else
after it is another query:

SELECT Name FROM vegetables;

There you go! This is the correct way to query the names of all the vegetables. Next,
let’s go from designing a query for hypothetical data to writing and executing a query
on actual data.

2.3 Writing your first SQL query
For the first bit of actual SQL you’re going to write and execute, simply seek the out-
come of your first query. As noted previously, we can start by declaring a sentence in
English that defines what we want: “I would like the outcome of my first query.”

Fortunately for us, the data to be queried already exists in a table named
MyFirstQuery, and the values are in a column named Outcome. Convenient, right?
Using what we learned about SQL syntax in section 2.2, we can easily craft a simple
query to accomplish our goal:

SELECT Outcome from MyFirstQuery;

 11Writing your first SQL query

As you can see, the query ends with a semicolon. To add a little more to what I said
earlier, in SQL, a semicolon is used as a statement terminator. We don’t need to go deep
into this subject; just know that a semicolon effectively means we’re done with this state-
ment and anything that comes after it is another SQL statement. Doing this prevents
confusion for the database engine (especially when we get into more complicated state-
ments later), so we’ll use semicolons as statement terminators in all our SQL queries.

You may wonder what the difference is between a statement and a query and whether
these terms are interchangeable. Well, statements and queries aren’t the same things,
but they’re related. Think of a query as a special kind of statement for retrieving data.
As you advance your SQL skills, you’ll find yourself using statements beyond queries.
For now, though, queries are the only SQL statements you’ll use.

NOTE Depending on which RDBMS you’re using, a semicolon may not be
required as a statement terminator. Although the RDBMS you use may not
require it, it’s good to develop the habit of ending all SQL statements with a
semicolon—even statements as simple as your first SQL statement.

Before we go any further into the weeds on statements, let’s get back to our query. Now
that we have our query, the next thing we need to do is open MySQL Workbench so
that we can execute the query. Executing is like clicking Send in your instructions to the
RDBMS, which will figure out the best way to complete your query and then return the
results to you. Those results are displayed in a different window in MySQL Workbench.

Try it now
Open MySQL Workbench, and click to open the Month of Lunches connection we created
in chapter 1. Alternatively, right-click Month of Lunches, and choose Open Connection
from the pop-up menu. You should see something like figure 2.6, with Query 1 high-
lighted. That represents the top of the Query panel, including the number 1 in the panel.
That number indicates the first line of any query we enter here.

I’d like to point out a few things in MySQL Workbench. The first item is the tab at the
top that says Month of Lunches. This tab tells us the context of our connection, which
we set up in chapter 1 for the lunch user. We’re not going to change that context for
any exercise right now, but if you find yourself working with MySQL beyond the scope
of this book, you’ll always want to pay attention to the connection you’re using when
querying data.

The second item I want to focus on is the left side. You can see the Administration
panel, but the tab next to that one, named Schemas, is more important to us. Click the
word Schemas, and notice the sqlnovel database here. This database was created in the
scripts we executed in chapter 1, and we want to set it as the default database for all
our queries. To do this, right-click sqlnovel and choose Set as Default Schema from the
pop-up menu. Your MySQL Workbench screen should look like the one in figure 2.7.

12 chapter 2 Your first SQL query

Figure 2.6 The MySQL Workbench open with our Month of Lunches connection, with administration
information shown in the Navigator panel. We enter queries like the one we just wrote in the Query panel.

Figure 2.7 The Month of Lunches connection again, now with the Schemas information in the Navigator
panel and the sqlnovel database shown in bold text, indicating that it’s the default database

 13Writing your first SQL query

As we progress through the book, I’ll take time to point out more information that is
contained in MySQL Workbench. For now, though, verifying the connection and the
database we’ll be using is enough. Let’s get back to the query:

SELECT Outcome FROM MyFirstQuery;

Try it now
Move the cursor to the Query panel, and click to the right of the 1 and the blue dot. Enter
your first SQL query here by typing the query that precedes this sidebar. It should look like
figure 2.8.

Figure 2.8 The query entered in the Query panel, ready to execute

I know your anticipation is building, so let me assure you we’re almost done. We can
execute the query in one of several ways. First, we can select Execute All or Execute
Current Statement from the Query menu at the top. For this single query, both com-
mands do the same thing because we have only one statement in the Query panel.

As you may have noticed, the Query menu has a few hotkeys we could use to execute
the query. Pressing Ctrl+Enter on your keyboard will execute the part we selected, and
pressing Ctrl+Shift+Enter will execute the contents of the entire panel. Again, because we
have only one line, these shortcuts effectively do the same thing for this particular query.

14 chapter 2 Your first SQL query

Finally, you may notice some buttons directly above the first line of the Query panel.
Several of them look like lightning bolts, but let’s focus on the first one on the left.
That plain lightning bolt, highlighted in figure 2.9, does the same thing as pressing
Ctrl+Enter: it executes the selected part of the Query panel.

Figure 2.9 The highlighted plain lightning bolt in the Query panel. Clicking the plain lightning bolt
executes the selected part of the Query panel, which does the same thing as pressing Ctrl+Enter on your
keyboard.

Try it now
Make sure that you place the cursor at the end of the SQL statement before you choose
your method of execution. Go ahead—do it!

After executing the query, you should see information in two new panels below the
query. Your Workbench screen should look like figure 2.10.

Below the Query panel is the Result panel, and as you see, the result of the first query
is “Hello, World!” If you aren’t a computer programmer, you may not know that one
tradition in learning a computing language is to first learn how to get “Hello, world!” as
output in that language. SQL may not be like most programming languages, but we’re
still going to be respectful of traditions.

 15Key terms and keywords

Result panel

Output panel

Figure 2.10 The result of query execution. In the Result panel, we see the result is “Hello, World!” In the Output
panel, a circle with a check mark (which appears green onscreen) indicates the query executed successfully, and
other information shows the time it was executed, what the query was, how many rows it returned, and the duration
of query execution.

Look at what’s immediately above “Hello, World!,” though. It’s the word Outcome,
which indicates the column that we selected to query. This result, as small as it is, is still
considered a data set. It’s one column and one row, but it’s not a table. We queried a
table named MyFirstQuery, but the result of the query is a separate data set all by itself.

One final thing to notice about our execution is the Output panel below the Result
panel. This panel provides several bits of information, such as the time when our query
was executed, what the query was, how many rows were returned, and how long it took
to execute the query. Most important is the circle with a check mark (green onscreen),
which indicates that the query executed successfully. If our query hadn’t executed suc-
cessfully, we would have seen a circle with an X (red onscreen) to indicate an error.
Ideally, we won’t see many circles with an X as we work through this book.

2.4 Key terms and keywords
In this chapter, we’ve covered a handful of simple terms and a few keywords to get you
on your way to querying data. Because these concepts and commands are the building
blocks of SQL, let’s take a moment to review them:

16 chapter 2 Your first SQL query

¡	Data set—A data set is a logical grouping of data that can be contained in a data-
base, a spreadsheet, or any number of other places. As far as we’re concerned,
we’re going to use SQL to query data in an RDBMS.

¡	Table—A table is a logical construct of columns that contains a data set. It’s the
most fundamental way to store data sets in an RDBMS.

¡	Column—A column is the vertical grouping of attributes for every row in a table.

¡	Row—A row is the representation of related data in a table.

¡	Value—A value represents the actual data for a column in a row.

¡	Statement—A statement is a way to declare to the RDBMS that we want to do
something.

¡	Query—A query is a special kind of statement used to retrieve data.

¡	SELECT—The SELECT keyword starts queries. The next few chapters of this book
delve deeper into ways to use the SELECT keyword.

¡	FROM—The FROM keyword identifies the data set that we want to query.

¡	Semicolon—Don’t forget to end your queries with a semicolon!

2.5 Lab
Throughout the rest of the book, I will end each chapter with one or more lab exer-
cises to put into practice what we have learned. These exercises are intended to emu-
late the practical use of SQL, simulating scenarios you would encounter using other
people’s data. Because this lab is the first, though, we’ll start off easy with a few simple
mental exercises to get a little more familiar with tables and their structure.

Considering what we’ve learned about using the second SELECT statement, or even
considering the example in figure 2.1 to be a table, take a moment to ponder the follow-
ing conceptual questions:

1 Imagine that spreadsheet in figure 2.1 is a table with several columns. Also, note
that the table used in our second SELECT statement has at least one column. Is it
possible for a table to have no columns?

2 Now imagine that either of these data sets has no rows that contain data. Is it pos-
sible for a table to have zero rows?

3 In figure 2.1, one cell in the Advance column does not have a value. If this figure
were a table, do you think it would be required to have a value?

4 Assuming that we have a vegetable table in our sqlnovel database with a column
named Name, what do you think would happen if we combined the two queries
we discussed in this chapter and executed them at the same time? Think about
the result of a query such as the following:

SELECT Name FROM vegetable;
SELECT Outcome FROM MyFirstQuery;

Do you think that this SQL would execute successfully?

 17Lab answers

2.6 Lab answers

1 No, it isn’t possible to have a table with no columns. This is why I mentioned ear-
lier that you can think of a table as a collection of columns. There must always be
at least one column; otherwise, there’s nowhere to put the values of data.

2 Yes, you can have tables without rows. Every time a table is created, it starts with
no rows.

3 This question is a bit tricky because the answer depends on the way the table was
set up. We can have rows of valid data that don’t have values for particular col-
umns. Think of a column for Middle Name in a table of people. Not everyone has
a middle name, so we have to be able to accommodate that lack of data for rows
with people who have no middle name. That said, designers can put restrictions
on tables to require all rows to have a value for particular columns, such as a col-
umn that captures a last name for all rows in that same table of people.

4 These queries will execute, resulting in two separate data sets being returned.
This is the very reason why we put those semicolons at the end of our queries: to
tell the RDBMS that we have to separate the queries we’re executing.

All right, let’s move on to chapter 3 and learn more fun ways to query using the SELECT
keyword!

18

3Querying data

In chapter 2, we looked at a spreadsheet of fictional books to better understand
some core concepts about tables in a relational database management system
(RDBMS). With that spreadsheet in mind, we’re going to work with a table that
looks a lot like that spreadsheet and see some of the ways we can retrieve data using
the SELECT command.

First, though, let’s take a deeper look at your first query. Although it was simple,
it had all the minimum components for a query. Let’s briefly examine those compo-
nents as well as some potential problems regarding formatting and the use of certain
words.

3.1 Rules for the SELECT statement
Chapters 1 and 2 discussed the conversational way to think about writing a query,
so let’s take a moment to consider the technical aspects and requirements as well.
Recall your first query, which looked like this:

SELECT Outcome FROM MyFirstQuery;

This statement has four components, each represented by a single word. Techni-
cally, the semicolon is a component as well, serving as the statement terminator, but
we’ve already discussed the fact that it may not be required, so we won’t count it.

 19Rules for the SELECT statement

3.1.1 SELECT requirements

The words “Outcome” and “MyFirstQuery” reflect the data we want to select. These
words are crucial because they provide the minimum information the database needs
to retrieve data from a table. These requirements are

¡	What data is to be selected

¡	Where the data is to be selected

In this case, the data to be selected is the Outcome column, and the location where
the data is to be selected is the MyFirstQuery table. Both of those words follow specific
keywords that are included in the SQL catalog of commands: SELECT and FROM, each
of which represents a clause in your SQL statement. All SQL statements are made up
of various clauses, but to retrieve data from a table, we’re required to use at least these
two. We commonly refer to clauses by the keywords used in them, so these two would
be called the SELECT clause and the FROM clause.

NOTE We always identify the data we want to select immediately after the
SELECT keyword, and we always indicate the location where we want to select
data after the FROM keyword.

It’s important to note the order in which these clauses are used in SQL. Throughout
the book, you’ll learn several more clauses, and they must always be used in a particular
order for a query to execute. As an example, we couldn’t successfully switch the order
of clauses in your first query:

FROM MyFirstQuery SELECT Outcome;

Attempting to execute this query would result in a syntax error because the SELECT
clause must always come before the FROM clause.

3.1.2 Keywords and reserved words

Keywords such as SELECT and FROM are a subset of reserved words in the SQL language
used by each RDBMS. When the RDBMS you’re using finds those reserved words in
a query, it presumes that you want it to complete a specific action associated with the
reserved word. Numerous reserved words are universal, but some reserved words are
specific to the RDBMS you’re using.

As you progress in your SQL knowledge, take note of reserved words you use as com-
mands so that you’ll know not to use them as table names or column names.

TIP If you want to know all the reserved words, you can find them in the
documentation on the site where you downloaded MySQL and MySQL Work-
bench. Every major RDBMS has online documentation that catalogs its specific
reserved words. As a general rule, if you’re working in a development interface
like MySQL Workbench, you’ll see reserved words in a different color from the
rest of your SQL.

20 chapter 3 Querying data

Using reserved words for object names results in avoidable headaches caused by syntax
errors because the RDBMS will be confused about what you want to do. Suppose that
the MyFirstQuery table had a column named Select, and you wanted to execute the
following query:

SELECT Select FROM MyFirstQuery;

Try it now
Type this SQL in your Month of Lunches connection in MySQL Workbench. You’ll see
the word Select in a different color from MyFirstQuery, which is your first clue that
Select is a reserved word. As noted earlier, each RDBMS has dozens or even hundreds
of reserved words, so when you see the color indicated for a reserved word, take caution
before executing your query.

If you execute the preceding query, you’ll get the error message that says, “You have an
error in your SQL syntax.” The MySQL database engine saw the reserved word Select
consecutively, which won’t work because you never said what you wanted to select after
the first time you said SELECT.

3.1.3 Case insensitivity

While we’re looking at this query that won’t execute, notice that both SELECT and
Select are identified as reserved words, even though they’re in a different case. Key-
words aren’t case-sensitive, so each of the following queries will successfully execute
and return the same result:

SELECT Outcome FROM MyFirstQuery;
Select Outcome From MyFirstQuery;
select Outcome from MyFirstQuery;
SeLeCt Outcome fRoM MyFirstQuery;

Just because you can use any kind of case with your keywords, however, doesn’t mean you
should. To write reusable SQL, many developers prefer typing keywords in uppercase to
make code more readable and therefore make it easier to debug errors. For this reason,
the examples throughout this book will continue to show keywords in uppercase.

WARNING Although SQL keywords can be used without regard to case sensi-
tivity, the information relating to data may be case-sensitive, depending on the
settings of your RDBMS. Be careful when specifying table, column, or value
names in your queries because they may be case-sensitive.

3.1.4 Formatting and whitespace

One other thing to note about queries is the flexibility you have when using whitespace.
Your RDBMS doesn’t care much about it, so you can format your query in a nearly

 21Retrieving data from a table

infinite number of ways with spaces, tabs, and carriage returns. Your first query was writ-
ten on a single line, but it would work the same way if it were separated into several lines.
All three of the following queries, for example, will execute and return the same result.

Query 1

SELECT Outcome
FROM MyFirstQuery;

Query 2

SELECT
Outcome
FROM
MyFirstQuery;

Query 3

SELECT
 Outcome
FROM
 MyFirstQuery;

Although there are no universal best practices in formatting, the best advice I can give
you is to be consistent. The goal of adjusting the format is to make the query more
readable, so if you find a particular way of formatting that’s easy for you to work with,
use it and stick with it.

I think we’ve gotten all we can out of your first query. It’s time to move on to querying
data that may be a bit more comparable to the kind you’ll need to work with.

3.2 Retrieving data from a table
For the rest of this chapter, we’re going to examine the title table in our sqlnovel data-
base. Unlike the MyFirstQuery table, the title table has several columns and multiple
rows of data.

Unless you examined the scripts used
to create this database, you probably don’t
know the names of the columns in the title
table. Fortunately, we can find this infor-
mation easily by using MySQL Workbench.
Look at the top-left corner of the Navigator
panel, and notice the triangles next to sql-
novel and Tables. The triangle next to sql-
novel points down, which indicates that it
has been expanded. This expansion allows
us to see Tables, Views, Stored Procedures,
and Functions, as shown in figure 3.1.

Figure 3.1 The database name has been
expanded to show Tables, View, Stored
Procedures, and Functions.

22 chapter 3 Querying data

The triangle next to Tables points right, which
means that the view of the contents below Tables has
been collapsed. To see the columns in the title table or
any other table, we need to click that triangle to expand
the list of Tables. Then we’ll need to find the title table,
click the triangle next to it to expand further, and click
the triangle next to Columns to expand it as well. When
we complete all those clicks, we see the names of all col-
umns in the title table, as shown in figure 3.2.

3.2.1 Retrieving an individual column

Now that we know the column names, we can start que-
rying the table. Let’s begin with a simple query of the
TitleName column from the title table. Because we’re
going to be increasing the length and complexity of
our queries, we’ll start formatting our queries with the
FROM clause on a separate line to make it a little more
readable:

SELECT TitleName
FROM title;

Try it now
Write and execute the preceding query. Consider this query your second one (not that
anyone is counting).

Executing the query results in the eight rows shown in figure 3.3. If you happen to see
the same eight rows in a different order, don’t be alarmed. There is no implicit guaran-
tee of ordering the results of a query.

WARNING I’m going to say it again because many SQL
users have a misconception: there is no implicit guaran-
tee of the order of results of a SQL query. You shouldn’t
be surprised when you execute the same query at differ-
ent times and get the same results in a different order.
This can occur due to any number of factors, from mod-
ifications in the values of the tables being queried to
changes in the settings of the server with regard to your
database. Remember that SQL is a declarative language: if
your RDBMS isn’t explicitly told how to order the results,
the rows can appear in random order. That said, if you’ve
peeked ahead in this book, you already know that we’re
going to discuss how to order results in chapter 4.

Figure 3.3 The values of
the TitleName column in
the title table are returned
in no particular order.

Figure 3.2 The Navigator panel,
where Tables has been expanded
to show individual table names
and the title table has been
expanded to show all columns in
that table

 23Retrieving data from a table

Something else to note is that the name of the column in the query is TitleName. You
may wonder why it isn’t just Name. The main reason is that lots of columns in databases
contain data with values for names of things or people, and TitleName is specific to
this table. Another reason relates to what I said earlier about reserved words: the word
Name is one of those reserved words.

Try it now
If you executed the previous query, take a moment now to click near TitleName and
delete the letters in the Title prefix, leaving only Name. Did you notice that Name now
appears in the same color as SELECT and FROM? That’s because in MySQL, the word
Name is a reserved word.

Name isn’t a keyword command like SELECT or FROM, but it’s a reserved word relating
to a specific action that is done in this RDBMS. For this reason, avoid using the word
Name for a column name.

TIP Here’s a neat trick that can save you some typing in the future: delete
“Name” from your query as well, leaving a couple of spaces between SELECT
and FROM. Now move the cursor to the Navigator panel. Click and hold Title-
Name in the Columns list; then move the cursor to the space between SELECT
and FROM. When you release the click, you should see TitleName appear as
before without doing any typing. This shortcut is great to use, especially when
you’re dealing with long column names, and it works for objects such as table
names too.

3.2.2 Retrieving multiple columns

Until now, we’ve selected only one column of data, but you’ll want to write SQL queries
that select multiple columns. Let’s think about declaring a statement as we did in chap-
ter 2: “I would like all the TitleNames and Prices of the titles.”

We already know how to convert most of this statement into a query, so all we need
to do now is consider replacing the word and with a comma. Because we have multiple
column names, let’s change the formatting a bit to make multiple column names more
readable. Our query will look like this:

SELECT
 TitleName,
 Price
FROM title;

The comma tells the RDBMS that our query will request another column, just as the
word and does in the English language. When speaking, we wouldn’t end a set of words
with and. We wouldn’t say, “I would like all the TitleNames and Prices and of the titles”
because the listener would think, “And what?” They’d know that something else should

24 chapter 3 Querying data

be included, but it’s not clear what that something would be. For the same reason,
don’t put a comma after the last column in your SELECT statement. Doing so will result
in a syntax error.

Also note that column order output is completely up to you, the SQL query writer.
Just because the columns are in a certain order in the table doesn’t mean that they can’t
be rearranged like this:

SELECT
 Price,
 TitleName
FROM title;

We can even include the same column multiple times if we want, like this:

SELECT
 TitleName,
 TitleName,
 Price
FROM title;

Having two columns with the same name does introduce a bit of confusion, though. Is
there a better way to manage multiple columns with the same name? Why, yes, there is!

3.2.3 Renaming output columns using aliases

Although your SELECT query can’t change the names of the columns in the tables you
are querying, you can easily change the name of the output column to whatever you
want. Let’s declare a statement again: “I would like all the TitleNames as BookNames
of the titles.”

Just as you’d use the word as in your declarative statement, you use the word AS in
your SQL statement to declare the new column name:

SELECT
 TitleName AS BookName
FROM title;

Now your output should show show BookName as the col-
umn name instead of TitleName, as in figure 3.4.

What we’ve done here is use an alias, which is a simple
method of renaming the output column from its original
column name. We can use column aliases to prevent con-
fusion from similarly titled columns by giving the output
columns unique names:

SELECT
 TitleName AS BookName,
 TitleName AS AlsoBookName,
 Price
FROM title;

Figure 3.4 The values of
TitleName are now returned
with the column header of
BookName.

 25Retrieving data from a table

You don’t need to use the word AS to use an alias, however. You can put the alias name
after the query, although this format makes your column aliases a little less obvious:

SELECT
 TitleName BookName,
 TitleName AlsoBookName,
 Price
FROM title;

Column aliases can be wonderful tools for making column names more effective. Just
remember to avoid using reserved words as your aliases.

3.2.4 Retrieving all columns

We’ve seen how to select a single column and multiple columns of data from a
table. Often, you’ll find that you need all the columns of data in a table to be mean-
ingful, and you want to retrieve them all. Perhaps
you need to write a detailed report that includes
the maximum amount of sales data, or maybe
auditors have asked you to supply every bit of cus-
tomer data. Whatever the case, you have three
ways to do this.

The first way is to type out all the column names,
separating them with commas. Unless the column
names are short and you’re very proficient at typing,
this approach is the hardest one.

The second way involves much less typing. Select
the first column in a table in the Navigator panel,
click it, hold down the Shift key, and click the last
column. You should see all those columns high-
lighted, as they are in figure 3.5.

Now click and hold any of the highlighted col-
umns, drag the cursor between SELECT and FROM in
the Query panel, and release. You should see all the
column names listed in your query, as they are in fig-
ure 3.6.

Figure 3.6 The columns of the title table after they’ve been pasted into the Query panel

Figure 3.5 The column names in
the title table, highlighted after
selecting the first column name,
holding down the Shift key, and
clicking the last column name

26 chapter 3 Querying data

Try it now
Execute this query, and you’ll see the values of all the columns in the table. If the right
side of the query is blocked by another panel, you should be able to remove it by choos-
ing View > Panel > Hide Secondary Sidebar.

The third method is probably the most common, as it involves less typing and click-
ing. You can see all columns in a table by using an asterisk in place of column names,
commonly referred to verbally as “select star.” This method is also called “select all,”
although less commonly:

SELECT
 *
FROM title;

This method gives you the same results as the preceding query, and I’m sure you can
see why it’s so popular. You can easily see the values for all columns with less effort than
it takes to type a single column name!

Aside from minimal effort, the other benefit of this method is it allows us to see all
the column names in a table quickly without using the Navigator panel. There are two
significant reasons to be careful with SELECT *, however:

¡	You’re selecting all the data, which means that the RDBMS has to read more data
and send it across some network to you as output. It may seem that resources
are infinite, but in my experience, the use of SELECT * on very large tables uses
so much of the system resources that it causes performance problems for other
queries. Be very careful when using this method.

¡	The second hazard of using SELECT * is that because it doesn’t specify any col-
umn order, it should never be used in reusable queries. Suppose that you write
a SQL query for a report that expects five output columns from a table. If one or
more columns are added to or removed from the table later, your report may no
longer work because the number of columns will be different.

WARNING For the reasons noted earlier, you should use the SELECT * method
only in ad hoc queries and sparingly even then. As shown in the second
method, it’s not difficult to click and drag the column names you want to use
in a query.

3.3 Lab

1 Another table in the sqlnovel database is named author. What two methods could
you use to find the names of columns in this table?

2 You need to write a query that returns all the first and last names from the author
table. How would you write that query?

 27Lab answers

3 What do you think would happen if you forgot to put a comma between column
names? Do you think this query will work, and if so, what would the output be?

SELECT
 TitleName
 Price
FROM title;

4 What would happen if you try to use the SELECT * method with an alias, as in the
following query?

SELECT
 * AS Everything
FROM title;

3.4 Lab answers

1 The best method would be to expand the columns folder under the author table
in the Navigator panel. If you’re using an interface that doesn’t allow you to do
that, you can use the SELECT * method in the following query:

SELECT
 *
FROM author;

2 The answer is

SELECT
 FirstName,
 LastName
FROM author;

3 This query will execute, but the results won’t be what you expect. Because the
comma is no longer between TitleName and Price, the word “Price” is now con-
sidered to be a column alias for TitleName. Only one column with an aliased
name of Price will be returned, but the values will be from the TitleName
column.

4 This query won’t execute because you can’t alias column names with SELECT *. If
you try this query, your first indication of a problem will be the red square with a
white X on the line with the alias. This red square means the Workbench applica-
tion found that your query has incorrect syntax.

28

4Sorting, skipping, and
commenting data

In chapter 3, I noted that your relational database management system (RDBMS)
won’t return results in a predictable order. This is by design, as any given request
may or may not need the data to be ordered, and the RDBMS is simply taking the
most efficient way of returning the data requested. The results may appear in some
sort of order, such as the order in which the rows were added to a table, but there are
no implicit guarantees about how the data in the results of a query will be ordered.
If we want to be certain of the order of results, we need to say so explicitly in our
SQL query.

Some fun features associated with ordering data allow us to manipulate the num-
ber of rows returned in our result set. These features can be useful if we have millions
or billions of rows and need to see only the most recent entries or the entries with the
smallest or largest values.

Because you’re just starting to write SQL, this chapter also discusses how to use
comments in SQL. Comments are indispensable tools for you and anyone else who
may read your SQL, and if you’re going to write queries properly, you should start
building the habit of using comments today.

4.1 Sorting data
Everywhere we go, we find things sorted in some order. Books in a library are sorted
by author name, floors in a building are sorted by number, and events in a daily
planner are sorted by date and time. All kinds of things in our lives are organized for
ease of use and readability, and the data we use should be no different.

 29Sorting data

4.1.1 Sorting by one column

To see how we do this in SQL, let’s go back to a declara-
tive sentence from chapter 3: “I would like all the Title-
Names and Prices of the titles.” The SQL for this request
is as follows:

SELECT
 TitleName,
 Price
FROM title;

As we can see in figure 4.1, this query won’t return the
data in a particular way.

Let’s declare that we want the same results, this time
ordered by the title name: “I would like all the TitleNames
and Prices of the titles, and I would like the results ordered
by TitleName.” As before, the SQL we will use is very sim-
ilar to what we just said. To fulfill the new request, we will
add a new clause using the ORDER BY keyword:

SELECT
 TitleName,
 Price
FROM title
ORDER BY
 TitleName;

When we execute this command, we see that the rows
returned are the same as before, but now they are ordered
as requested, as shown in figure 4.2.

When it’s used, the ORDER BY clause should almost always be the last clause in a SQL
statement. With only one exception (which we’ll get to later in this chapter), specifying
any other clause after the ORDER BY clause in a query will result in a syntax error.

This should be easy to remember if you consider that data ordering will be the last
operation the RDBMS will perform on your data. This point is often misunderstood;
too many people use SQL thinking that ORDER BY indicates how the data will be read. In
reality, the RDBMS has to complete the operations for the rest of your SQL statement
first; then, after getting your result set, it organizes the data the way your query requests
in the ORDER BY clause.

WARNING The additional work that ORDER BY requires of the RDBMS is min-
imal for the queries in this book because the result sets are only a handful
of rows. When you start querying data sets with millions or even billions of
rows, however, adding an ORDER BY can be catastrophic for query performance.
Even more problematic is the fact that ordering data for very large data sets
can require large amounts of resources from the computer’s processor and

Figure 4.1 The results of
the query of TitleName and
Price from the title table. The
results are not ordered by
either TitleName or Price.

Figure 4.2 The results of
the preceding query, with
the results now sorted
alphabetically by TitleName

30 chapter 4 Sorting, skipping, and commenting data

memory, resulting in degraded performance for que-
ries that other users are running. Always be careful
with your use of ORDER BY.

When you consider that your RDBMS has to gather the
entire result set before sorting the results, it should make
sense that you can even use a column alias in the ORDER BY
clause. The column aliases are applied when your result
set has been created and before it has been ordered, so
SQL logic like the following also works for sorting data, as
shown in figure 4.3:

SELECT
 TitleName AS NameOfTheBook,
 Price
FROM title
ORDER BY
 NameOfTheBook;

4.1.2 Sorting by multiple columns

ORDER BY isn’t limited to a single column, of course. We can use commas in the ORDER
BY clause similarly to the way we use them in the SELECT clause to specify ordering by
multiple columns. Consider the following query:

SELECT
 TitleName,
 Advance,
 Royalty
FROM title
ORDER BY
 Advance,
 Royalty;

As figure 4.4 shows, the results of our query
are ordered primarily by the Advance column,
from lowest to highest. But when the values
in Advance are the same—as they are for the
third, fourth, and fifth rows, all with a value of
5000.00—the Royalty column is used to order
those three rows.

Try it now
Now that you’ve seen a few ways to sort data in the title table, try using ORDER BY as
shown in the examples, or try sorting on other columns, such as Price or PublicationDate.

Figure 4.3 After you use
an ORDER BY, the results
of the preceding query
are ordered by TitleName,
which has been aliased as
NameOfTheBook.

Figure 4.4 The results of a query
ordered by the Advance column and then
by the Royalty column, both from highest
value to lowest

 31Sorting data

4.1.3 Specifying sort direction

When we sort data with ORDER BY, there is an implicit direction of sorting, either alpha-
betically from A to Z or numerically from lowest to highest value. This direction is known
as ascending data order. We can also sort results in the other direction, from Z to A or
from highest to lowest values. This direction is known as descending order, and we must
state it explicitly by adding DESC after the column name in the ORDER BY clause. Here’s an
example of the previous query data sorted by Advance values in descending order:

SELECT
 TitleName,
 Advance,
 Royalty
FROM title
ORDER BY
 Advance DESC,
Royalty;

The results in figure 4.5 show that the results
are now ordered by Advance values from largest
to smallest. But take a closer look at the fourth,
fifth, and sixth rows: they are still sorted in value
from smallest to largest Royalty. Royalty is still
sorted in ascending order because no order was
specified for this column.

For clarity, we can explicitly state the sort
order for the Royalty column as well by adding
ASC for ascending sort order to the ORDER BY
clause, like this:

SELECT
 TitleName,
 Advance,
Royalty
FROM title
ORDER BY
 Advance DESC,
 Royalty ASC;

TIP The implicit nature of ascending order in an ORDER BY column can be
confusing, so when you’re writing SQL that other people will read, get into
the habit of explicitly stating the direction of ordering, even though you don’t
need to for ascending order. As noted earlier, you should always try to make
your SQL as clear and easy to understand as possible.

4.1.4 Sorting by hidden columns

You may encounter a certain scenario in which you want to order the results by a col-
umn that you don’t want returned in the result set. This scenario is possible because

Figure 4.5 The results are now sorted
by Advance descending and Royalty
ascending.

32 chapter 4 Sorting, skipping, and commenting data

you can order your results by one or more columns that aren’t
seen. Suppose that you revise the preceding query to return
only the TitleName but still order the results by the Advance
(descending) and Royalty (ascending) columns:

SELECT
 TitleName
FROM title
ORDER BY
 Advance DESC,
 Royalty ASC;

The results in figure 4.6 are the same as for the preceding
query except that the Advance and Royalty columns aren’t
returned.

How can we sort by data that isn’t included in our SELECT?
The RDBMS accomplishes this little bit of magic by adding
Advance and Royalty to the result set before it’s returned to you, then organizing the
data as requested, and finally returning only the columns requested in the SELECT
clause. As you can imagine, this process is an extra bit of work, so be careful when you
use this technique with very large data sets.

4.1.5 Sorting by position

If column names seem too long to type, you have a quicker way to specify sort order: list
the numerical column position in the SELECT clause instead of the column name. Think
of the numerical order of the columns in the SELECT clause, TitleName (1), Advance
(2), and Royalty (3):

SELECT
 TitleName,
 Advance,
 Royalty
FROM title
ORDER BY
 2 DESC,
 3 ASC;

Now the sort order is listed as Advance descending and Royalty ascending. We know
this because we can determine that Advance is the second column, represented by
the 2 value in the ORDER BY, and Royalty is the third column, represented by the 3
value.

WARNING This kind of shorthand notation in the ORDER BY may be useful
when you’re writing SQL quickly for ad hoc queries, but because the readabil-
ity is inferior to explicitly naming columns to be sorted, you should avoid this
technique in any reusable SQL you write. As you can imagine, if the columns in
the SELECT change, ordering by position would use different columns.

Figure 4.6 Only the
TitleName values are
in the results, but the
rows are still sorted by
Advance descending
and Royalty ascending.

 33Skipping data

4.2 Skipping data
The result set of every query we’ve run includes all the data in the table. What if you
don’t want all the data returned? On some occasions, you want only a handful of rows
to survey or maybe just one, skipping most of the result set. You may need to look at a
table of data you’re unfamiliar with to see how the data is formatted, for example. You
can certainly do this in SQL.

4.2.1 Using LIMIT to reduce results

Let’s use our declarative English language first to state our intentions of finding just
three published books: “I would like all the TitleNames and PublicationDates, but limit
the results to the first three rows.” The new keyword here is LIMIT, which will be used
to reduce the result set to a specified number of rows. We can accomplish this by using
LIMIT like this:

SELECT
 TitleName,
 PublicationDate
FROM title
LIMIT 3;

The RDBMS grabs the first three rows it can find, so your results should look some-
thing like figure 4.7.

Using LIMIT with a result set returns only
three rows instead of all eight in the table.
Although this command may not seem use-
ful, it can be incredibly helpful if you want to
quickly sample the column names and types of
values they contain.

Try it now
Using SELECT * and LIMIT, write a query that allows you to quickly sample some rows in
the title table. You may or may not get rows with the three titles shown in figure 4.7, but
that’s because you didn’t specify any sort order.

Because the preceding query would be used to sample data, the results can be impre-
cise. Let’s use our declarative English language first to state our intentions of finding
something more precise, namely the three most recently published books: “I would
like all the TitleNames and PublicationDates, but limit the results to the three most
recent PublicationDates.”

To execute this query, we’ll bring back ORDER BY, sorting by PublicationDate descend-
ing to give us rows with the most recent (latest) date values:

Figure 4.7 The results of using LIMIT to
return only three rows

34 chapter 4 Sorting, skipping, and commenting data

SELECT
 TitleName,
 PublicationDate
FROM title
ORDER BY PublicationDate DESC
LIMIT 3;

Note the order of the clauses here: the LIMIT
clause is after the ORDER BY. The LIMIT clause
is the only clause that should ever follow
the ORDER BY clause, and if it’s included, it’s
always the last clause in a SQL query. Placing
the LIMIT clause anywhere else will result in
a syntax error. Figure 4.8 shows the results
of this query, which returns the three most
recent TitleName values and their Publica-
tionDate values.

TIP Although you’re not required to do so, you’ll almost always want to use
ORDER BY whenever you use the LIMIT clause. Why? You’ll likely intend to read
a limited sample of rows based on their being the oldest, newest, largest, small-
est, or some other order. As noted, using LIMIT without specifying the order
can return random and unpredictable results.

4.2.2 Using OFFSET to select a different limited set

The scenario of writing a SQL statement to find the most recent data is not uncommon,
but at times, you may want to skip certain rows other than the most or least. In those
cases, you can use another feature of the LIMIT clause. The way to do this is to use an
additional option in the clause: OFFSET. OFFSET can’t be executed without LIMIT, but it
can direct the RDBMS to ignore a specified number of rows before it starts returning
the rows indicated by the LIMIT clause. Let’s rerun the preceding query but use OFFSET
to skip the first row that would be returned:

SELECT
 TitleName,
 PublicationDate
FROM title
ORDER BY PublicationDate DESC
LIMIT 3 OFFSET 1;

Figure 4.9 shows that the row with TitleName
“The Sum Also Rises” has been skipped, and
the results include a different row with Title-
Name “The DateTime Machine,” which has
an older PublicationDate.

Figure 4.8 The three most recently
published TitleNames and their
PublicationDates when you use ORDER BY
on PublicationDate and LIMIT the results
to three rows

Figure 4.9 The most recent three
TitleName and PublicationDate values after
you use OFFSET to skip the first row

 35Commenting data

4.2.3 Limiting data in another RDBMS

Chapter 1 discussed the fact that each RDBMS has its own variation for certain com-
mands. Unfortunately, the LIMIT clause is one of those commands.

WARNING The LIMIT clause works with many popular RDBMSs, including
MySQL, MariaDB, PostgreSQL, and SQL Lite, but it doesn’t work with DB2,
Oracle, or SQL Server. Those RDBMSes use other proprietary commands
instead of LIMIT.

4.3 Commenting data
Throughout this chapter, we’ve been discussing ways to sort and skip rows in your que-
ries. I’ve provided some explanation of each query in terms of its purpose and consid-
erations for executions, but if someone else read only the SQL we’ve used, would they
understand why the queries were written the way they were? Probably not, which is
why now is a good time to talk about comments. Comments allow you to include text in
your query that isn’t considered for execution. Typically, this text includes some kind
of note to indicate the query author’s intentions, as well as their identity and the date
when the query was written or modified. Essentially, a comment can be any kind of
information you want to include above and beyond the SQL you wrote.

Why would you want to use comments? RDBMSes aren’t the only entities that are
going to read your query; people will read it as well. These people could be colleagues
who use the script, or the person who replaces you after you use your ever-expanding
knowledge of SQL to secure a better job. Your comments can be as simple as your name
and the date when you made your SQL script or as detailed as line-by-line descriptions
of what each bit of SQL is meant to accomplish.

The downside of not using comments is ambiguity. Other people may look at your
SQL and need to spend hours trying to figure out your intentions. Worse, you may look
at some SQL you wrote weeks, months, or even years ago and be confused by what your
former self wrote.

Writing descriptive, helpful comments is the mark of any well-respected SQL devel-
oper. Other people will have greater appreciation for your work because the extra sec-
onds or minutes you spend writing clear comments will save them (and your future self)
hours of confusion.

You have a few ways to write comments. First, you can comment out a particular line by
using two consecutive hyphens:

-- This query returns three random rows
SELECT
 TitleName,
 PublicationDate
FROM title
LIMIT 3;

36 chapter 4 Sorting, skipping, and commenting data

The use of two hyphens allows you to comment a single line of code up to the next car-
riage return. This type of comment is called an inline comment. In MySQL, you can also
achieve an inline comment with the number sign (#):

This query returns the three rows with the most recent PublicationDate
SELECT
 TitleName,
 PublicationDate
FROM title
ORDER BY PublicationDate DESC
LIMIT 3;

This type of comment isn’t as common, so be aware that another RDBMS may not rec-
ognize it as a comment.

A third way to use comments is to surround your comment with /* and */, encom-
passing your comment between those symbols, which allows for a multiline comment.
You can comment out more than one line, as in the following example:

/* This query returns 3 TitleNames
...with the most recent PublicationDate
...excluding the single most recent TitleName */
SELECT
 TitleName,
 PublicationDate
FROM title
ORDER BY PublicationDate DESC
LIMIT 3 OFFSET 1;

TIP Because they have greater functionality, multiline comments (using /* and
*/) are the preferred method for use in reusable code. They can be especially
useful when you want to comment out entire sections of SQL. You may want to
do this to indicate a section of your SQL that doesn’t execute as intended or to
indicate a previous version of a query that you may want to reference later.

You can put multiple-line comments around single-line comments as well. You might
have made a one-line comment about a particular SQL statement but later decided to
comment out the entire statement with multiple-line comments, replacing it with dif-
ferent SQL. You could indicate this in the following way:

/*
This query returns 3 random titles, but it wasn't what we needed
SELECT
 TitleName,
 PublicationDate
FROM title
LIMIT 3;
*/

-- This is the updated query, now ordered by most recent PublicationDate

 37Lab answers

SELECT
 TitleName,
 PublicationDate
FROM title
ORDER BY PublicationDate DESC
LIMIT 3;

Comments can be invaluable when you write a query, save it, and then come back to it
weeks, months, or even years later to review it. I’ve been writing SQL for a few decades,
and there have been innumerable times when I had to review the comments of an old
query to determine the goal of that query. There have also been plenty of times when I
looked at a query someone else wrote that had no comments, which led to many hours
of trying to figure out what the writer intended the query to do.

Do yourself a favor: start developing the habit of carefully commenting any SQL you
write, no matter how simple. Commenting takes only a few seconds, but as I mentioned,
it could save you or someone else who reviews your code much more time. For this rea-
son, all the SQL in this book’s supplemental scripts has been commented to help you
understand the purpose of each query.

4.4 Lab

1 You need a list of all authors, but you need that list to be in alphabetical order.
Write a query to return the FirstName and LastName of all authors, sorted by
LastName and then FirstName.

2 You need to write a query that returns all columns in the title table for only the
highest-priced title. What does that query look like?

3 Suppose that you have the following SQL statement, which gets all the carriage
returns stripped out by the application executing it, and that this query ends up
on a single line. What will the result of this query be?

-- Retrieve the book titles
SELECT TitleName
FROM title;

4.5 Lab answers

1 The answer is

SELECT
 FirstName,
 LastName
FROM author
ORDER BY
 LastName,
 FirstName;

38 chapter 4 Sorting, skipping, and commenting data

2 The answer is

SELECT
 TitleID,
 TitleName,
 Price,
 Advance,
 Royalty,
 PublicationDate
FROM title
ORDER By
 Price DESC
LIMIT 1;

Alternatively, you could use SELECT * instead of listing all the column names.

3 Because the entire query is now on a single line preceded by two hyphens, the
entire query executes as a comment. Although it won’t result in an error, it also
won’t return the results that the query intended. This situation is one of several
reasons why I advise you to use /* and */ for comments in reusable code; both
the beginning and end of the commented line or lines are clearly marked.

39

5Filtering on specific values

So far, you’ve been writing mostly queries that return an entire set of data, but as you
write more purposeful SQL using larger sets of data, you’ll find that you need only
a subset of the data instead of all the rows. You did work a bit in chapter 4 to reduce
the number of rows returned using LIMIT and OFFSET, but those commands aren’t
helpful for finding specific rows.

You may want only a report of sales for the past month, a list of orders with pend-
ing status, or a list of customers in New Hampshire, for example. All these scenarios
have conditions for specific data being returned, and we apply those conditions using
filtering. Filtering means taking the broader results of your data set and applying one
or more conditions to restrict the data being returned. To do this, you primarily use
a different clause: the WHERE clause.

It’s highly likely that most of the SQL you’ll write in your career will include
a WHERE clause because there’s a nearly infinite number of ways you may need to
find data that meets specific criteria. The WHERE clause is incredibly powerful, with
so many ways to filter data that it will take a few chapters to review them. Let’s get
started!

5.1 Filtering on a single condition
The most basic methods for filtering data are relatively intuitive and easy to learn.
The main variations involve the type of data you’re querying. As you may have
noticed, there are different types of data—such as names, numbers, and dates—and

40 chapter 5 Filtering on specific values

each type has slightly different rules for filtering. We’ll look at them all in this section,
starting with filtering by using a condition with a numeric value.

5.1.1 Filtering on numeric values

Suppose that we want to know the TitleName of any Titles for which the Advance for
the author was $10,000. Let’s start by declaring a sentence: “I would like the title name
of the title where the advance is 10,000 dollars.”

Notice that grammatically, we not only use the word where for our filtering but also
place our filtering condition toward the end of the sentence. In SQL, we’re going to do
the same thing, and we could write a query for this request like this:

SELECT TitleName
FROM title
WHERE Advance = 10000.00;

Let’s take a closer look at that WHERE clause and examine the rules that govern it:

¡	As in the preceding SQL query, the WHERE clause comes after the FROM clause, as it
naturally would in English.

¡	Notice that we use an equal sign (=) instead of the word is. The use of the equal
sign indicates equality, which means that our filtering condition is looking for
values equal to a specific value. In this case, the use of the equal sign makes a lot
of sense.

¡	Note that we have no dollar sign or comma in 10000.00. Although we use com-
mas to make numeric values more readable and use dollar signs to indicate cur-
rency, this data is typically stored as a number, and the computer that runs your
relational database management system (RDBMS) doesn’t care about a specific
currency type or the readability of the numbers. Using dollar signs and commas
in this case would be problematic.

WARNING When you start filtering for large numeric values, such as orders
above $1 million, it can be tempting to put commas in the numeric values
to make the data more readable. After all, it can be easy to mistakenly type
1000000 as 100000 or 10000000. Unfortunately, including commas in numeric
values will cause syntax errors for your query.

Although currency types and commas can’t be used with numeric values, decimals can
often be added or removed without changing the results of the data. This is possi-
ble because numeric values can be equal, even if they don’t have the same precision.
Precision refers to the mathematical specificity of a value, and how precise the data is
depends on how that data is stored and how you’re querying it.

As an example, 1.00 is more precise than 1. We can increment 1.00 up to 1.01, but
the next incremental value after 1 is 2. For this reason, the latter is less precise. For que-
rying, though, even though 1.00 is more precise, it’s mathematically the same as 1.

 41Filtering on a single condition

In the case of the Advance value we just used to filter, let’s take a quick look at the
value of the data shown with the following query (results shown in figure 5.1):

SELECT
 TitleName,
 Advance
FROM title
WHERE Advance = 10000.00;

Figure 5.1 Only one row meets the filter criteria
for an Advance value of 10000.00.

In terms of precision, $10,000.00 is more precise than $10,000, but numerically, the
numbers are the same value. For this reason, we can write a query without the decimal
values used to represent cents and still get the results shown in figure 5.1:

SELECT TitleName, Advance
FROM title
WHERE Advance = 10000;

Try it now
Use the previous two queries to test the WHERE clause; see how the results are the same.
Also try using an even more precise value in your filter condition, such as 10000.0000.
All the results should be the same.

5.1.2 Filtering on string values

So far, our queries have filtered on numeric conditions, but filtering on non-numeric
conditions is a bit different. Instead of looking for a TitleName for a specific Advance,
let’s reverse that approach and query for the Advance of a specific TitleName (results
shown in figure 5.2):

SELECT Advance
FROM title
WHERE TitleName = 'Anne of Fact Tables';

Figure 5.2 The result of a query for the Advance from the
title table where the TitleName is Anne of Fact Tables

Now the filter condition isn’t a numeric value but a group of words. To the RDBMS,
this group of words is a set of characters known as a string value, and any time we filter

42 chapter 5 Filtering on specific values

on a string, we need to place single quotes around the value. If we don’t, our query
will result in a syntax error.

WARNING Not all single quotes work. You must use the single quote on the
same keyboard key as the double quotes for this query to work. If you use the
tick mark next to the 1/! key on most keyboards, you’ll get a syntax error. Also,
if you copy and paste code from a document other than a SQL script, you may
get incorrectly formatted single quotes like the ones in figure 5.3.

Figure 5.3 Incorrect
single quotes, copied from a
Microsoft Word document.
Workbench is letting you
know this with the square
(red onscreen) with an X to
the left of the line.

The value of the string used in our WHERE clause must be an exact match, as the slight-
est variation will prevent us from getting the intended results. If we forgot the letter s in
Tables as in the following query, we won’t get any results:

SELECT Advance
FROM title
WHERE TitleName = 'Anne of Fact Table';

NOTE Forgetting a character such as that last s may seem like a clear mistake,
but subtle mistakes involving characters that don’t seem like characters—
such as extra spaces, tabs, and carriage returns—can lead to incorrect results.
Although the RDBMS ignores the use of those characters in the format of SQL
queries, it treats them as extra characters in your string values.

5.1.3 Filtering on date values

Date values have their own considerations in filtering because they’re used as a kind of
hybrid of numeric and string values. Like string values, date and time values must also
be enclosed in single quotes. If you want to find the TitleName with a PublicationDate
of March 14, 2020, for example, use the following SQL:

SELECT
 TitleName,
 PublicationDate
FROM title
WHERE PublicationDate = '2020-03-14 00:00:00';

 43Filtering on multiple conditions

The default format is year-month-day and then hours:minutes:seconds. The use of sin-
gle quotes here may seem obvious because this value contains non-numeric characters,
such as dashes and colons. But what if I told you that the RDBMS you’re using is storing
date and time values as numeric values? It’s true. Storing those values this way is more
efficient than storing them as a string of characters.

What this means for us and our use of SQL is that the rules of precision that apply
to numeric values also apply to date and time values. Consider that the 00:00:00 in the
filtering value represents hours:minutes:seconds—specifically, the exact second of mid-
night at the start of a day. If no time is provided, these zeroes are included in the default
value for a date, as they are in the results of the most recent query (figure 5.4).

Now, given that we know 10,000.00 is numerically the same as 10,000, we can con-
clude that 2020-03-14 00:00:00 is also the
same as 2020-03-14. Because the value of the
data in the table has all zeroes for hours, min-
utes, and seconds, we can be confident that
we’ll get the results shown in figure 5.4 by
writing the query without consideration of
time, like this:

SELECT
 TitleName,
 PublicationDate
FROM title
WHERE PublicationDate = '2020-03-14';

TIP As your SQL skills progress, it will be helpful to be aware of the kind of
data included in the tables you’re going to query. It’s easy to see that all the val-
ues for publication date in the title table have no precision for hours, minutes,
or seconds and that we can safely query that data without including that level
of time precision. But if a single value has so much as a second of precision, it
would be better to write queries that account for the time as well.

5.2 Filtering on multiple conditions
So far, you’ve filtered on only a single condition, but in real-world queries, you often
need to filter on multiple conditions. Imagine that you have to find a customer whose
first name is Jeff and whose last name is Iannucci, or an Order that’s number 1001 and
an Item that’s Product X. For queries like these, the WHERE clause allows filtering on
multiple conditions using an intuitive method.

5.2.1 Filtering that requires all conditions

Suppose that we want to query the title table for Title Names for which the Advance is
$5,000 and the Royalty is 15%. We would verbally declare our request like this: “I would
like the TitleNames from title where the Advance is 5,000 dollars and the Royalty is 15
percent.”

Figure 5.4 The TitleName and
PublicationDate for a title published March
14, 2020. The time values are the equivalent
of midnight at the start of the day.

44 chapter 5 Filtering on specific values

The use of the word AND to add to our filtering
criteria is intuitively included in our SQL (results
shown in figure 5.5):

SELECT
 TitleName,
 Advance,
 Royalty
FROM title
WHERE Advance = 5000
 AND Royalty = 15;

In this context, the keyword AND is considered an operator, which means that it’s a key-
word that performs a specific operation in SQL. In the case of AND, the operation is to
join multiple filter conditions within the WHERE clause. AND is the first of several opera-
tors we’ll discuss.

The use of AND allows us to add as many filter conditions as we need for a given query,
even beyond the example in the preceding query. Even though the result of the previ-
ous query is only one row, theoretically, we could refine the filter with additional criteria
by putting another AND filter condition in the WHERE clause:

SELECT
 TitleName,
 Advance,
 Royalty,
 PublicationDate
FROM title
WHERE Advance = 5000
 AND Royalty = 15
 AND PublicationDate = '2015-04-30';

Try it now
Use the preceding two queries to test the WHERE clause; see how the results change with
each filter. Try filtering first with a condition where the Royalty is 12; then add another
filter condition where Advance is 6000. The rows in the result set should reduce from two
rows in your first query to one row in the second.

Although there’s no specific limit to how many filter conditions you can include in
your WHERE clause, understand that for rows to be included in your result set, they
must meet every one of the filter conditions. Failure to meet any single condition will
exclude the rows from the results.

5.2.2 Filtering that requires any one of many conditions

Although the AND operator allows us to filter on multiple conditions that all rows must
meet, sometimes we want to apply multiple filter conditions and get results that simply
meet one or more of the conditions.

Figure 5.5 Although multiple rows
in the title table have a Price value
of 5000.00, adding a second filter
condition for a Royalty of 15.00 (%)
reduces the result set to one row.

 45Filtering on multiple conditions

What if we want to find any book that has either an Advance of $5,000 or a Royalty of
15%? We could verbally declare the request like this: “I would like the TitleNames from
title where the Advance is 5000 dollars or the Royalty is 15 percent.” The word or has
replaced and in our sentence, and it will do the same in our SQL:

SELECT
 TitleName,
 Advance,
 Royalty
FROM title
WHERE Advance = 5000
 OR Royalty = 15;

If this query is executed, we’ll get very different
results from the previous query, which used
the AND operator instead of the OR operator.
Now we have six rows returned instead of one
(figure 5.6) because rows in the results need
to meet either condition to be included—not
both.

We can use the OR operator the same way as
the AND operator, in that we can add as many fil-
ter conditions as our query requires. Note that
for each AND operator we add, a result set could get smaller as the conditions become
more restrictive, whereas each OR operator could result in larger result sets as the condi-
tions become more inclusive.

We can increase the result set from six rows to seven by adding an OR operator for
Price and the Price column to the result set like this because any given row included
in the results in figure 5.7 needs to meet only one of three filter conditions to be
included:

SELECT
 TitleName,
 Advance,
 Royalty,
 Price
FROM title
WHERE Advance = 5000
 OR Royalty = 15
 OR Price = 9.95;

We can go on and on adding filter condi-
tions with multiple OR statements. Each
time, we’ll get as many rows as the time
before—or more rows as the filter condi-
tions become more inclusive.

Figure 5.6 The results for any rows in the
title table that have either an Advance of
5000.00 or a Royalty of 15.00 (%)

Figure 5.7 The seven rows that can match any
of the three conditions of an Advance of 5000.00,
a Royalty of 15.00 (%), or a Price of 9.95

46 chapter 5 Filtering on specific values

5.2.3 Controlling the order of multiple filters

In some situations, we need to filter in a way that requires using both AND and OR in
the WHERE clause. But we need to be very careful about how we do this.

Suppose that we need to find a list of TitleNames with a Price of $9.95 and either
a PublicationDate of February 6, 2016 or an Advance of $5,000. To find this data, we
might try writing a query like this:

SELECT
 TitleName,
 Price,
 PublicationDate,
 Advance
FROM title
WHERE Price = 9.95
 AND PublicationDate = '2016-02-06'
 OR Advance = 5000;

This query looks correct, but if we execute it, we’ll find that the results don’t match
our intended logic. The RDBMS reads this query differently from what we intended, as
shown in figure 5.8. This happens because the RDBMS prioritizes AND conditions over
OR conditions, regardless of our intentions.

Figure 5.8 The rows returned by the
query don’t match our intended filter
conditions for TitleNames with a Price
of 9.95 and a PublicationDate of 2016-
02-06 or an Advance of 5000.00.

Let’s list the logic of our intended filtering conditions, either of which needed to be met:

¡	A Price of 9.95 and a PublicationDate of 2016-02-06

¡	A Price of 9.95 and an Advance of 5000.00

Because the RDBMS places a higher priority on AND conditions than on OR conditions,
it determines the written filtering conditions differently from what we intended. To the
RDBMS, our SQL is requesting rows that meet either of these conditions:

¡	A Price of 9.95 and a PublicationDate of 2016-02-06

¡	An Advance of 5000.00

The results in figure 5.8 show the only title that met the first condition (The Join Luck
Club) and three others that met the second condition.

Getting this logic correct can be one of the most confusing problems for SQL begin-
ners, but ironically, the solution is simple: all you need to do is use parentheses to explic-
itly prioritize your logic over the default SQL logic. Anything inside the parentheses is

 47Filtering on multiple conditions

evaluated before anything outside the parentheses. To get the results we intended, we’d
use parentheses in the preceding query like this:

SELECT
 TitleName,
 Price,
 PublicationDate,
 Advance
FROM title
WHERE Price = 9.95
 AND (PublicationDate = '2016-02-06'
 OR Advance = 5000);

Now this query will evaluate the values as intended, evaluating the OR condition before the
AND condition. Executing this query returns a result set like the one shown in figure 5.9.

Figure 5.9 With the parenthetical notation, the query returns
data that has a Price of 9.95 and either a PublicationDate of
2016-02-06 or an Advance of 5000.00.

TIP Whenever you write any SQL that uses both AND and OR operators in
your WHERE clause, always use parentheses to explicitly control the evaluation.
This approach not only helps the RDBMS figure out your intentions but also
reduces guesswork for anyone else who will be evaluating your code.

5.2.4 Filtering and using ORDER BY

As you’ve gone through this chapter, you may have wondered what happened to the
ORDER BY clause from chapter 4 and how it fits in with the WHERE clause in this chapter.
When you use both WHERE and ORDER BY clauses in your SQL, you need to write the
ORDER BY clause after the WHERE clause.

We can use a query from earlier in the chapter that returned four rows. Figure 5.7
shows the rows returned in no particular order, but if we wanted the results to be sorted
by TitleName, we could easily add an ORDER BY clause like this (results shown in figure
5.10):

SELECT
 TitleName,
 Price,
 PublicationDate,
 Advance
FROM title
WHERE Price = 9.95

48 chapter 5 Filtering on specific values

 AND PublicationDate = '2016-02-06'
 OR Advance = 5000
ORDER BY TitleName;

Figure 5.10 The four rows that match
any of three conditions—a Price of 9.95,
a PublicationDate of 2016-02-06, or an
Advance of 5000.00—with the results
sorted alphabetically by TitleName

We’ve covered a lot of examples of basic filtering today. It’s time to use our new skills!

5.3 Lab

1 If we don’t place single quotes around a non-numeric string value in our filter
condition, we know that we’ll get a syntax error. Try placing single quotes around
a numeric value like Price in a filter condition and executing a query. What
happens?

2 Why does the following query return no results?

SELECT
 TitleName,
 Price
FROM Title
WHERE TitleName = 'Anne of Fact Tables ';

3 What will the result of the following query be?

SELECT TitleName
FROM Title
ORDER BY TitleName ASC
WHERE Price = 9.95;

4 Write a query using the author table that returns rows with either a Payment-
Method of Check and a FirstName of Jorge or a PaymentMethod of Check and a
LastName of Miller. Include the columns FirstName, LastName, and Payment-
Method in your result set.

5.4 Lab answers

1 The query executes as expected, although behind the scenes, the RDBMS has
made the data match. It had to convert either the value in quotes to a number
or all the values in the Price column to a string, which could negatively affect the
duration of the query if we were using a larger set of data. For this reason, avoid
putting single quotes around numeric values.

 49Lab answers

2 The query returns no values because there is an extra space after the word Tables
in the WHERE clause. For a string used in a filter to be correct, it needs to be exactly
like the values in the table, including unseen characters such as spaces, tabs, and
carriage returns.

3 The query will result in a syntax error because the ORDER BY can’t come before the
WHERE clause.

4 This query is similar to the one in section 5.2.3. Because it uses AND and OR and
parentheses, the query should return two rows and should look something like
this:

SELECT
 FirstName,
 LastName,
 PaymentMethod
FROM author
WHERE PaymentMethod = 'Check'
AND (FirstName = 'Jorge'
 OR LastName = 'Miller');

50

6Filtering with
multiple values,

ranges, and exclusions

As we saw in chapter 5, the WHERE clause offers many useful options for filtering
results based on specific conditions. We looked at several examples of filtering on
a single value using the AND and OR operators. Now we’ll expand that concept to fil-
ter on even more values, including a list of specific values or ranges of unspecified
values.

These are examples of positive searches, in which we try to match values that we want
to see in the results of our queries. Because often, we’ll want to do the opposite and
see all the values except some specific filter conditions, we’ll also see how to negate
any of the conditions we’ve covered. Let’s start by looking at a new operator for the
WHERE clause.

6.1 Filtering on specific values
Previously, we looked at a basic search, finding the TitleNames for titles that had a
certain Price. If we want to query titles that had a Price of $10.95, for example, we’d
write our SQL like this:

SELECT
 TitleName,
 Price
FROM title
WHERE Price = 10.95;

 51Filtering on specific values

But what if we want to find the titles with a Price of either
$10.95 or $12.95? Now we know that we can write SQL
to do this using the OR operator, so we could write a SQL
query like this (output shown in figure 6.1):

SELECT
 TitleName,
 Price
FROM title
WHERE Price = 10.95
 OR Price = 12.95;

This query will give us the results we want for our two filter condition values, but it
could lead to some wordy SQL if we have a list of conditions that grows much longer.
We don’t want to use an OR operator if we have 3, 10, or even more filter condition val-
ues for a single column.

To resolve this problem, SQL has the IN operator, which allows us to consolidate our
filter conditions into a single operator. The IN operator has three requirements:

¡	The list of values must be comma-delimited.

¡	The list of values must be enclosed in parentheses.

¡	The requirement of single quotes is the same as in any other filter condition.

As an example, we can rewrite the preceding query with an IN operator, like this:

SELECT
 TitleName,
 Price
FROM title
WHERE Price IN (10.95, 12.95);

Executing this query yields the results shown in figure 6.1 but in a more compact form
of SQL. As I mentioned earlier, the use of single quotes is the same as what we used in
queries that filtered for filter conditions with string or date values.

Try it now
Using the IN operator, execute a query looking for TitleName and Price from titles where
Price is $7.95, $8.95, or $9.95.

If we want to search for titles with a specific PublicationDate, we need to use single
quotes with our filter conditions because we’re using data values instead of numeric
values. We’d write our SQL like this (results shown in figure 6.2):

SELECT
 TitleName,
 PublicationDate

Figure 6.1 The results of a
query with filter conditions
for a Price of 10.95 or 12.95

52 chapter 6 Filtering with multiple values, ranges, and exclusions

FROM title
WHERE PublicationDate IN ('2015-04-30', '2016-02-06');

NOTE As far as the relational database
management system (RDBMS) is con-
cerned, the order of values used with the
IN operator is irrelevant. As with any query
that doesn’t involve an ORDER BY clause, the
rows in the result set aren’t guaranteed to
be returned in any particular order. That
said, as I’ve noted several times in this book, you should follow best practices
to make your SQL more human-readable whenever possible. For this reason,
it’s best to list values in the filter conditions of the IN operator in numerical,
alphabetical, or chronological order.

6.2 Filtering on a range of values
Filtering on a list of specific values with the IN operator is useful if you know all the
specific values you want to match, but not when you don’t know all the specific values.
Often, you need to find values with a range, such as any values higher than a certain
amount or older than a certain date. You can use comparison operators in SQL, which
compare two values to see whether they meet specific criteria, to find the desired
results.

6.2.1 Filtering on an open-ended range

Assuming that you’ve worked with basic math, you’re familiar with the less-than (<) and
greater-than (>) signs. (On a typical keyboard, they share the same keys as the comma
and the period, respectively.) Like the equal sign (=), these signs are commonly used
comparison operators. Unlike the equal sign, the less-than and greater-than signs can
be used to find an open-ended range of values.

In a query earlier in this chapter, we looked for any title that had a Price of $10.95 or
$12.95. In our title table, these titles are the ones with the highest prices. We can find
these same two titles by writing a query using the > sign. Let’s also include an ORDER BY
clause to see the Price values in order, recalling that the default is to order the results by
ascending values. Figure 6.3 shows the output of this query:

SELECT
 TitleName,
 Price
FROM title
WHERE Price > 9.95
ORDER BY Price ASC;

We can use the < sign to do the opposite: find any titles
that have a Price of less than $9.95. For this query, we’ll

Figure 6.2 The results for titles with a
PublicationDate of 2015-04-30 or 2016-
02-06

Figure 6.3 The titles that
have a Price greater than
9.95, ordered by Price
ascending

 53Filtering on a range of values

sort by descending Price values to show the prices closest
to $9.95 at the top of the results (shown in figure 6.4):

SELECT
 TitleName,
 Price
FROM title
WHERE Price < 9.95
ORDER BY Price DESC;

You’ve probably noticed that neither of these result sets
includes any titles that match the Price of $9.95. Cer-
tainly, you’ll sometimes want to query a range of values
including those that match the filter conditions, so SQL
also includes the comparison operators less-than or equal-to
(<=) and greater-than or equal-to (>=). Using one of these
operators, we can query any title with a Price greater than
or equal to a filter condition of 9.95 and get the results
shown in figure 6.5:

SELECT
 TitleName,
 Price
FROM title
WHERE Price >= 9.95
ORDER BY Price ASC;

NOTE You can see how we can search for values greater than or less than a par-
ticular numeric or date value. Although the use cases are less common, you can
also use these operators with string values. The values are typically returned
with respect to precedence in the alphabet. Be careful when using these oper-
ators with string values, however: the way that the numeric, symbol, and case
values are filtered is based on the collation settings in your RDBMS. Collation
determines sorting rules based on character qualities such as the character set,
letter case, and accent use; therefore, different collations return characters in
a different order.

6.2.2 Filtering a defined range

The operators in section 6.2.1 are open-ended—that is, they could include an infinite
number of values greater than or less than a value. If we want to find values greater
than some value but lesser than another value, we have a couple of options.

You may have already thought of the first option, which is to use both > and < in the
WHERE clause. If you’re trying to find titles with a price between $8.95 and $10.95, you
can write a SQL query like the following. Again, you’ll use an ORDER BY in the query

Figure 6.4 The titles that
have a Price less than 9.95,
ordered by Price descending

Figure 6.5 The titles that
have a Price greater than
or equal to 9.95, ordered by
Price ascending

54 chapter 6 Filtering with multiple values, ranges, and exclusions

to organize the results so that you can see the maximum
and minimum values returned by your filter conditions in
figure 6.6:

SELECT
 TitleName,
 Price
FROM title
WHERE Price > 8.95
 AND Price < 10.95
ORDER BY Price ASC;

We can see that the only Price value that matches the range of our filter conditions is
9.95. If we want to change the filter conditions to include the values we’ve specified, we
need to use >= and <= in the WHERE clause like this:

SELECT
 TitleName,
 Price
FROM title
WHERE Price >= 8.95
 AND Price <= 10.95
ORDER BY Price ASC;

As figure 6.7 shows, now the result set includes titles that
match the Price values used in the filter conditions.

We also have another way to search a range of values:
instead of using >= and <=, we can use the BETWEEN oper-
ator to perform the same function. The rules for using
BETWEEN are

¡	The column being searched is mentioned only
once.

¡	Only two filter conditions can be supplied.

¡	The first value represents the low end of the range,
and the second value represents the high end of the
range.

¡	The filter conditions must be separated by the word AND.

¡	Any values matching either condition are included in the results.

We can write the previous query using the BETWEEN operator like this:

SELECT
 TitleName,
 Price
FROM title
WHERE Price BETWEEN 8.95 AND 10.95
ORDER BY Price ASC;

Figure 6.6 The titles with
Price values between the
search conditions of 8.95
and 10.95

Figure 6.7 The titles with
Price values between the
filter conditions of 8.95 and
10.95 when the values used
in the filter condition are
included

 55Negating filter conditions

Even though we used one less line of SQL, the results of this query should be identical
to the results shown in figure 6.7.

WARNING I should mention again that when you’re using BETWEEN, the first
value represents the low end of the range, and the second represents the high
end of the range. If you use BETWEEN, and the first value of the filter condi-
tions of the range is higher than the second value, your query will return no
results. The SQL query WHERE Price BETWEEN 10.95 and 8.95, for example,
won’t return any rows, regardless of other filter conditions. Logically, no values
are both higher than 10.95 and lower than 8.95.

6.3 Negating filter conditions
So far, we’ve used the WHERE clause to specify filter conditions that match specific values
or ranges of data. These conditions are known as inclusive because the results include
rows with values that match the values we used in our filter conditions. The opposite
conditions are known as exclusive ; we want all values except the ones specified in the
filter conditions. In a way, this is a bit like the way we used OFFSET in chapter 4 to
exclude a specific number of rows, but we’re being much more specific about what
we’re excluding.

6.3.1 Negating a specific value

In chapter 5, we learned to filter on specific values using
the equal sign (=). Mathematically, we can represent the
opposite using the not-equal sign (<>), which combines the
< and > signs.

If we want to list all titles that don’t have a Price of
$7.95, we could use <> like this, with the ordered results
shown in figure 6.8:

SELECT
 TitleName,
 Price
FROM title
WHERE Price <> 7.95
ORDER BY Price ASC;

Even though we’ve used <> for mathemati-
cal comparisons, we can use it with date and
string values as well. If we want all titles except
those published on February 6, 2016, we can
use single quotes with <> to get the results
shown in figure 6.9:

SELECT
 TitleName,
 PublicationDate

Figure 6.8 All titles,
excluding the two that have
a Price of 7.95

Figure 6.9 All titles, excluding the one
(“The Join Luck Club”) that has a
PublicationDate of 2016-02-06

56 chapter 6 Filtering with multiple values, ranges, and exclusions

FROM title
WHERE PublicationDate <> '2016-02-06'
ORDER BY PublicationDate ASC;

NOTE The RDBMS you use may offer the option to use != instead of <>. Both
options perform the same function of negating a single condition. But I advise
you to develop the habit of using <> in your SQL because not every RDBMS sup-
ports the != option.

6.3.2 Negating any filter condition

Although <> enables us to exclude a single value in a filter condition, one operator
excludes an entire filter condition. This operator, NOT, turns any inclusive filter condi-
tion into an exclusive condition.

In the preceding query, for example, we used <> to exclude any title that has a Publi-
cationDate of February 6, 2016. We can use the opposite of <>, which is =, with the NOT
operator to achieve the same results. The following query produces the results shown in
figure 6.9, with the results ordered by PublicationDate:

SELECT
 TitleName,
 PublicationDate
FROM title
WHERE NOT PublicationDate = '2016-02-06'
ORDER BY PublicationDate ASC;

In this case, the NOT operator immediately follows the word WHERE. You can use the NOT
operator after the start of any filter condition to negate it, which means you could also
use it immediately after conditions that begin with the AND or OR operator.

Try it now
Execute the two preceding queries to see how to use <> and NOT to exclude specific
values.

You shouldn’t use the negative NOT operator with > or < because you can logically use
their positive opposites (<= and >=, respectively) to get the same results with simpler
syntax. it’s not uncommon, however, to use NOT with the IN operator mentioned in
section 6.1.

Recall that we used a single condition with the IN operator to query all titles with a
Price of $10.95 or $12.95 to replace two conditions using the OR operator. We can use
NOT to negate this filter condition with the IN operator, returning all titles except those
that match the conditions of a Price of $10.95 or $12.95, with the results sorted by Price
(figure 6.10):

 57Combining types of filter conditions

SELECT
 TitleName,
 Price
FROM title
WHERE NOT Price IN (10.95, 12.95)
ORDER BY Price ASC;

You may have noticed the condition WHERE NOT Price
IN in the preceding query, which sounds a bit clumsy to
English-speaking people. There’s a better and more com-
mon way to get the same results in SQL. There is a separate
NOT IN operator, so we can also place NOT before the IN in our filter condition to make it
more readable, like this:

SELECT TitleName, Price
FROM title
WHERE Price NOT IN (10.95, 12.95)
ORDER BY Price ASC;

This query also returns the results shown in figure 6.10. When we want to use an exclu-
sionary list of values, as in the preceding example, NOT IN is more commonly used.

6.4 Combining types of filter conditions
This chapter has shown you several new ways
to filter your data with inclusive and exclusive
filter conditions. One last point to make is that
you can (and will) combine both kinds of fil-
ter conditions in your queries. You could write
a query, for example, to find any title that has
an Advance value > 5000 but a Royalty <> 12%,
with the results shown in figure 6.11:

SELECT
 TitleName,
 Advance,
 Royalty
FROM title
WHERE Advance > 5000
 AND Royalty <> 12;

With all the operators discussed in this chapter and chapter 5, you can begin to write
some relatively complex filter conditions. If you want to include the preceding results
(any title that has an Advance > 5000 but a Royalty <> 12 [%]) and also any titles pub-
lished after January 1, 2020, you can easily do that by using the SQL for inclusive and
exclusive queries and controlling the logic with parentheses. If you tried this approach,
your SQL query might look something like the following, with the results shown in
figure 6.12:

Figure 6.10 All titles,
excluding those with a
Price of 10.95 or 12.95

Figure 6.11 The titles that have an
Advance greater than 5000 with a
Royalty that is not 12 (%)

58 chapter 6 Filtering with multiple values, ranges, and exclusions

SELECT
 TitleName,
 Advance,
 Royalty,
 PublicationDate
FROM title
WHERE (Advance > 5000
 AND Royalty <> 12)
 OR (PublicationDate > '2020-01-01');

TIP Although you can use exclusive filter conditions to achieve the same
results as inclusive filter conditions, it’s preferable to use inclusive filter con-
ditions whenever possible. Generally, inclusive conditions are easier for oth-
ers who read your SQL to comprehend and are processed more efficiently by
the RDBMS. An exception would occur if you had only one exclusion or a few
exclusions to filter, in which case it would likely be better to use exclusive filters
instead of an inclusive filter with a vast number of inclusive conditions or values.

You’re only a few chapters into this book, but already, you can search data in meaning-
ful, accurate ways. You’ve used mostly filter conditions with numeric and date values so
far. But chapter 7 discusses another series of tools you can use in the WHERE clause to
perform advanced searches for data in string values.

6.5 Reviewing comparison operators
This chapter covered more than a dozen comparison operators that you can use for
filtering in the WHERE clause. You may have been taking lots of notes, but in case you
didn’t, table 6.1 presents a list of what you used.

Table 6.1 Review of WHERE clause comparison operators

Operator Description

= Equality

<> Inequality

!= Inequality*

< Less than

> Greater than

!< Not less than*

!> Not greater than*

Figure 6.12 The titles with an
Advance of 5000 that don’t
have a Royalty of 12 (%) or any title
published after 2020-01-01

 59Lab answers

Operator Description

<= Less than or equal to

>= Greater than or equal to

BETWEEN Between two values, including those values

IN Equality to a list of multiple values

NOT IN Inequality to a list of multiple values

NOT Inequality to stated condition

*May not be supported by every RDBMS

6.6 Lab
You have only one lab assignment today, but it is a chal-
lenge that uses your creativity. This chapter and chapter
5 covered quite a few ways to include and exclude data,
so consider all that you’ve learned about using the WHERE
clause for filtering.

For this exercise, think of as many ways as possible to
use the WHERE clause to return the TitleName and Price
for all rows in the title table that don’t have a price of 9.95.
The results of each query should include only the rows
shown in figure 6.13, ordered by Price.

6.7 Lab answers
These are some of the many ways you can write the WHERE clause to exclude titles with
a Price of $9.95:

¡	WHERE Price <> 9.95

¡	WHERE NOT Price = 9.95

¡	WHERE Price < 9.95 OR Price > 9.95

¡	WHERE PRICE NOT IN (9.95)

¡	WHERE Price IN (7.95, 8.95, 10.95, 12.95)

¡	WHERE Price BETWEEN 7.95 AND 8.95 OR Price BETWEEN 10.95 and 12.95

¡	WHERE NOT Price BETWEEN 9.95 and 9.95

That last answer may be a bit unexpected because it effectively negates a range of val-
ues that include only a single value. I show it here only to demonstrate that a range
with the same high and low end can be executed.

Figure 6.13 The titles with
a Price that is not 9.95,
ordered by Price ascending

Table 6.1 Review of WHERE clause comparison operators (continued)

60

7Filtering with wildcards
and null values

The preceding chapters are filled with different ways to filter the data returned
by your queries using numerous comparison operators. We’ve worked with many
methods for filtering on one or more values of equality or inequality using known
values or ranges of values. Let’s take one more chapter to examine some interesting
ways to search for less specific data.

We’ll look at how to filter data when we don’t know the exact values to be
searched. Instead of searching for specific values, we’ll search for patterns of values.
This approach can be incredibly useful when we want to look for a list of products
that have specific text like tomato or cable in the name, or when we want a list of all
customers whose last name starts with the letter A.

We’ll also look at the trickiest value to search on: null. Null values are commonly
misunderstood, and as such, they often lead to incorrect query results. We’ll exam-
ine what a null value is (and isn’t) and how to query for null values.

7.1 Filtering with wildcards
In chapter 6, you learned how to search ranges of numeric or date values. Even
though you may not know all the specific values you want from a range, you know
how to query the correct results using operators such as >, <, and BETWEEN.

Interestingly, we can use those same operators to search for string values. If we
want to find all the first and last names of authors with a last name that starts with S,
for example, we could write SQL using >= and < to get the result shown in figure 7.1:

 61Filtering with wildcards

SELECT
 FirstName,
 LastName
FROM author
WHERE LastName >= 'S'
 AND LastName < 'T';

NOTE From here on out, we won’t sort results unless sorting is
necessary. As I stated in chapter 4, sorting data with ORDER BY
increases the work required to process any query, so avoid doing that if possi-
ble. Just remember that without ORDER BY, it’s always possible to get the same
results in a different order for any given query.

This method of searching for string values in a range works most of the time, but not
always. As briefly noted in chapter 6, depending on the collation settings, the character
case (upper or lower), and characters used (such as letters with tildes or umlauts), you
may not get consistent results using this method to filter on string values.

Also, it just looks weird to write a query this way, and we certainly wouldn’t verbally
declare how we want to filter results this way. We want a list of last names that start with S,
not a list of names between S and T. In this case, a wildcard makes more sense.

A wildcard is a special character that can be substituted for any number of characters
in a string. Using a wildcard allows us to search for specific patterns of values instead of
being restricted to a range, as in the preceding query.

7.1.1 Filtering with the percent sign

The first wildcard we’ll use is %, the percent sign. When used as a wildcard, % matches
any string, including an empty string with no characters. Here’s how we’d use it to find
the names of authors with a last name that starts with S:

SELECT
 FirstName,
 LastName
FROM author
WHERE LastName LIKE 'S%';

Notice that we’re using a new operator, LIKE. LIKE is the operator we’ll always use
when searching with a wildcard because in the SQL language, it indicates that we’re
searching for a pattern, not for precise conditional values. If we tried to use some
other conditional operator (such as = or >) in this query instead of LIKE, we’d get no
results.

Try it now
Execute the preceding query; then try using the = operator instead of LIKE.

Figure 7.1 The
results of searching
the author table for a
range of last names
that start with S

62 chapter 7 Filtering with wildcards and null values

Even though we know how the query ends, let’s take a moment to compare it with how
we might verbally declare this query: “I would like the first name and last name from
the author table where the last names start with S.”

I can assure you that SQL has no STARTS WITH operator, and although it might be
useful for our query, it wouldn’t be very flexible. We’d also need hypothetical operators
for other queries, such as ENDS WITH and maybe even HAS IN THE MIDDLE. These
operators would be excessively wordy, if not a bit ridiculous.

In SQL, the % operator is not only shorter but also has the same functionality as all
those other hypothetical operators. The easiest way to remember how to use it is to
think of the % wildcard as the word something. The something pattern we’re looking for
could be 0 characters or 100. Here’s a verbal way to say what we’re doing with the query:
“I would like the first name and last name from the author table where the last names
are like S and then something.”

This statement is fairly close to what our new query looks like, and the results will be
the same as those shown in figure 7.1. As I just mentioned, the % wildcard can be used
anywhere in a string of characters, which means that if we want to search for all last
names that end in N, we could verbally declare a query like this: “I would like the first
name and last name from the author table where the last names are like something and
then N.”

As you can imagine, our query would be very similar to the
verbal declaration. Here it is, with the results shown in figure 7.2:

SELECT
 FirstName,
 LastName
FROM author
WHERE LastName LIKE '%N';

If we wanted to refine this search to include only the last names
that not only end with N but also start with M, like the results
shown in figure 7.3, we can certainly do that as well:

SELECT
 FirstName,
 LastName
FROM author
WHERE LastName LIKE 'M%N';

We can also use the % operator both before and after a char-
acter or string of characters to find a pattern in the middle of
our data. Here’s an example of searching for authors with the
string “de” anywhere in their last name, with the results shown
in figure 7.4:

SELECT
 FirstName,

Figure 7.2 Authors
who have a last name
that ends with N

Figure 7.3 Authors
who have a last name
that starts with M and
ends with N

Figure 7.4 Authors
who have a last name
that contains “DE”

 63Filtering with wildcards

 LastName
FROM author
WHERE LastName LIKE '%DE%';

This technique can be useful for searching a column of comments or other freely
entered text. If you want to find any comments that include the word good, for exam-
ple, you’d search for column values LIKE '%good%'. As I noted in chapter 3, most rela-
tional database management systems (RDBMSes) aren’t case-sensitive, so you should
be able to return values including “Good” and “GOOD.” Then again, you might also
get string values like “not very good” and “goodbye” in your results because they also
match the pattern.

WARNING Although the LIKE operator isn’t case-sensitive in the default col-
lations of MySQL, Microsoft SQL Server, and SQLite databases, it can be
case-sensitive in the default collations of PostgreSQL and Oracle databases.

As helpful as the % wildcard can be for finding patterns of characters, it lacks precision.
If we want to search values at a particular position, we can use a different wildcard.

7.1.2 Filtering with an underscore

Whereas the % wildcard matches any string of characters (including zero characters),
the _ wildcard, an underscore, looks only for any single character. What’s more, we can
combine _ with % in our search patterns if necessary.

WARNING The _ wildcard is not supported in DB2.

If we want to find the first and last names of any author with
a first name that starts with R and has b as the third letter, as
shown in figure 7.5, we can use _ and % to find them:

SELECT
 FirstName,
 LastName
FROM author
WHERE FirstName LIKE 'R_b%';

Although the _ wildcard is generally used less often than the % wildcard, you can still
face scenarios of searching for patterns at one specific position, such as if you need
to find items with a color value of gray, which could be spelled gray or grey. To find all
matching values, you could search WHERE color LIKE 'gr_y'.

You can also search for values or locations that have a differ-
ence in the first few characters by using the _ wildcard. Here’s
an example of finding any author with a first name that has u as
the third character, with the results shown in figure 7.6:

SELECT
 FirstName,

Figure 7.5 Authors
who have a first name
that starts with R
and has b as the third
letter

Figure 7.6 The
results of authors
who have a first name
that has u as the
third letter

64 chapter 7 Filtering with wildcards and null values

 LastName
FROM author
WHERE FirstName LIKE '__u%'
ORDER BY FirstName ASC;

Wildcards other than % and _ are supported by each RDBMS, but because they vary,
I won’t discuss them in this book. That said, if you’re using a particular RDBMS, I
encourage you to look into what other wildcards it may support to further enhance
your ability to search for patterns of values.

Now let’s move on to . . . well, nothing.

7.2 Filtering with null values
Sometimes, database designers create columns that require values for every column,
but at other times, a column may allow for the absence of data. If a row does not have
any data for such a column, the value shows NULL for that column.

As I noted at the beginning of this chapter, null values are some of the most misun-
derstood concepts in databases. Put simply, null values are literally nothing: they rep-
resent the absence of data. This concept seems simple, but because null values aren’t
values like 30 or Arizona or 2012-05-12, we need to consider them differently from other
values when querying data.

Let’s look at an example by reviewing all the columns in the author table. Execut-
ing the following query returns all the columns for all 11 rows in the table. One of the
first things you may notice is the MiddleName column, which has quite a few values
that say NULL. Not everyone has a middle name, so the absence of a middle name for
any author is represented by NULL. MySQL Workbench tries to bring this fact to your
attention by making NULL look different from other values we’ve seen so far, in that it
is shown with white text in a smaller font and a dark background (figure 7.7).

SELECT *
FROM author;

Figure 7.7 The results of all columns in the author table, including
null values in the MiddleName column

 65Filtering with null values

7.2.1 How not to search for null values

As I stated in the preceding section, a null value represents the absence of a value,
which makes any column containing a null value tricky to query. To avoid some com-
mon pitfalls, let’s first talk about how not to query for null values. If we want to find the
rows in the author table that contain null values for MiddleName, none of the next
three examples will work:

/* This doesn't work because null values are not blank strings. */
SELECT *
FROM author
WHERE MiddleName = '';

This query won’t return null values because the query is searching for a character string
with a length of 0, also known as an empty string. I know that’s confusing: when I men-
tion “absence of a value” and “empty string,” it seems that I’m saying the same thing
in different ways. But an empty string is different from a null value because an empty
string is still a string. By that, I mean that underneath the covers, your RDBMS is still
using bytes to indicate a value for the empty string, so it can be considered for queries
that are filtering with many comparison operators, including a wildcard search. Null
values use no bytes and are not considered for filtering with comparison operators or
wildcards. Here’s another common but incorrect way to search for null values:

/* This doesn't work because null values are not the word null. */
SELECT *
FROM author
WHERE MiddleName = 'NULL';

This query doesn’t work because the search condition is for the word “NULL,” not a
null value. Also, it won’t return any rows unless your data is populated with a string of
the four characters that make the word “NULL.” That may seem unlikely, but some-
times database developers don’t understand how to work with null values, so they use
the word “NULL” to represent null values. Because the word “NULL” is a string of char-
acters, this can create all sorts of headaches for your queries. Please don’t ever do this.

Here’s one last incorrect way to search for null values:

/* This doesn't work because no value ever equals null. */
SELECT *
FROM author
WHERE MiddleName = NULL;

It seems like this query should work, but = is looking for equality, and you can’t have
equality matches of nothing. At the most basic level, all the comparison operators,
including =, are evaluating for search conditions that are either true or not true.
Because a null value is nothing, it never equals anything in a search condition, so it
never evaluates as being true.

66 chapter 7 Filtering with wildcards and null values

Try it now
Execute any or all of the three preceding queries, and see that they don’t return any
matching rows.

7.2.2 How to search for null values correctly

To search for null values correctly, let’s state
another verbal example for what we’re trying to
do. If we want the full name of any author who has
a null value for a middle name, we could say the
following: “I would like the first, middle, and last
name of authors where the middle name is null.”

To turn previous verbal declarations like this one
into SQL queries, we replaced is with the = opera-
tor. But because we’re dealing with a filter condi-
tion involving null values, which don’t work with
comparison operators, we can instead use a new
operator that is literally the last two words of the verbal declaration: IS NULL. Here’s
what our query will look like, with the results shown in figure 7.8:

SELECT
 FirstName,
 MiddleName,
 LastName
FROM author
WHERE MiddleName IS NULL;

Pay close attention to null values and the IS NULL
operator because null values can be even more
problematic. Notice that in figure 7.7, the first of
the 11 rows in the author table has a MiddleName
value of K. Suppose that you want to query all rows
except that one, with an exclusion query (chapter
6). You could do this with the following query, with
the results shown in figure 7.9:

SELECT
 FirstName,
 MiddleName,
 LastName
FROM author
WHERE MiddleName <> 'K';

You may think this query would return the 10 rows that don’t have K as a middle name,
but you’d be incorrect. Because the filter is looking for any value that does not equal

Figure 7.8 The results of first,
middle, and last names in the author
table for authors with no middle name

Figure 7.9 The rows returned for
any author that does not have a
middle name of K, which excludes
any author without a middle name

 67Filtering with null values

K, it discards any results that have null values. Noth-
ing cannot equal (or even not equal) something, so
the filter considers only rows that have a non-null
value for MiddleName.

It’s possible, of course, that you intend this query
to return only rows with a value for MiddleName,
but if you want all 10 rows to be returned, you need
to include the IS NULL operator in your filtering.
You’d use an additional OR operator, with the results
shown in figure 7.10:

SELECT
 FirstName,
 MiddleName,
 LastName
FROM author
WHERE MiddleName <> 'K'
 OR MiddleName IS NULL;

7.2.3 How to search for values that are not null

Now that we’ve learned how to include rows with
null values, let’s look at how to return all rows that
do not have a null value. We can start once again by
declaring verbally what we want: “I would like the
first, middle, and last names of authors where the
middle name isn’t null.”

The word isn’t is a contraction for is not, of
course, which is exactly how our next operator will
work, shown in the following query and figure 7.11:

SELECT
 FirstName,
 MiddleName,
 LastName
FROM author
WHERE MiddleName IS NOT NULL;

The IS NOT NULL operator allows us to return all rows with some value other than NULL
for a given column. Interestingly enough, we can get the same results using a wildcard
we learned about earlier in this chapter:

SELECT
FirstName,
 MiddleName,
 LastName
FROM author
WHERE MiddleName LIKE '%';

Figure 7.10 All rows that don’t have
a middle name of K are returned,
including those with null values

Figure 7.11 The results for all
rows from the author table with
no middle name

68 chapter 7 Filtering with wildcards and null values

Why does this query work the same way as when we use the IS NOT NULL operator? The
% wildcard matches any string of data so long as there is data in the column. Because
null values have no data, wildcards never match them or return them in a result set,
which is essentially what the IS NOT NULL operator also does.

Try it now
Execute the preceding two queries using IS NOT NULL and the % wildcard, and see that
the results are the same as in figure 7.11.

All right—we’ve spent three chapters examining a multitude of ways to filter results
when querying a table. In chapter 8, we’ll level up your SQL knowledge even more by
learning how to query multiple tables at the same time.

7.3 Lab
Let’s take a moment to review the ways you’ve learned to filter rows. Write some SQL
queries to find the following:

1 The full names of all authors who have a middle name of Anne or no middle
name at all

2 The full names of all authors who have no middle name and have a first name
that starts with D

3 The title name and price of all titles that start with the word The and have a price
less than $10.00

4 The title name and publication date of any title that ends with S and was pub-
lished after January 1, 2020

5 The title name of any title containing the word of or the word in

7.4 Lab answers
1 The answer is

SELECT
 FirstName,
 MiddleName,
 LastName
FROM author
WHERE MiddleName = 'Anne'
 OR MiddleName IS NULL;

2 The answer is

SELECT
 FirstName,
 MiddleName,

 69Lab answers

 LastName
FROM author
WHERE FirstName LIKE 'D%'
 AND MiddleName IS NULL;

3 The answer is

SELECT
 TitleName,
 Price
FROM title
WHERE TitleName LIKE 'The%'
 AND Price < 10;

4 The answer is

SELECT
 TitleName,
 PublicationDate
FROM title
WHERE TitleName LIKE '%s'
 AND PublicationDate > '2020-01-01';

5 This question is a bit of a trick question designed to challenge you. You have to
consider that depending on how you write the query, you might get more or less
data than you want. You might write something as simple as this:

SELECT
 TitleName
FROM title
WHERE TitleName LIKE '%of%'
 OR TitleName LIKE '%in%';

If you execute that query, you get not only The Call of the While, Anne of Fact
Tables, and Catcher in the Try—all of which meet the requirement—but also
The Join Luck Club and The DateTime Machine, which don’t. The latter two are
included in the results because they have a string value matching the value of the
letters in within their title names.

So how can we exclude those undesired results? One way is to add leading and
trailing spaces to the strings we’re searching for, like this:

SELECT
 TitleName
FROM title
WHERE TitleName LIKE '% of %'
 OR TitleName LIKE '% in %';

70 chapter 7 Filtering with wildcards and null values

This query returns the desired results but may not work in a different scenario.
Because now we’re looking at strings involving leading or trailing spaces, we won’t
have any results if the title names start or end with the word in or of. To include any
hypothetical results that started or ended with the words we were searching for, we
need to include additional conditions:

SELECT
 TitleName
FROM title
WHERE TitleName LIKE '% of %'
 OR TitleName LIKE '% in %'
 OR TitleName LIKE 'of %'
 OR TitleName LIKE 'in %'
 OR TitleName LIKE '% of'
 OR TitleName LIKE '% in';

Again, this question is admittedly difficult, but it’s designed to get you thinking
about the possible values of data and how to use what you’ve learned so far cre-
atively to write an accurate query.

71

8Querying multiple tables

Back in chapter 2, we discussed how relational database management systems
(RDBMSes) store data in objects known as tables, and since then, we’ve been exam-
ining ways to query these tables. I don’t know whether you’ve been wondering what
makes an RDBMS “relational,” but I’m going to answer that very question.

One of the primary features of an RDBMS is that it allows a set of data to be stored
so that it can relate to other sets of data—hence, the use of the word relational. This
way of storing data is incredibly powerful because we can not only put the data we
have in logical groupings of tables but can also easily retrieve related data from mul-
tiple tables with a single query.

Retrieving data this way is done by joining tables, which means combining the data
in two tables using the values that form the relationship between the tables. Although
joining tables is common and relatively easy, you must follow some specific rules to
get the desired results. You’ll soon learn those rules and see how to write join tables
in SQL correctly. First, though, you need to consider a few vital concepts of relational
databases and the way they are designed.

8.1 The rules of data relationships
We haven’t focused on the words relational or relationship, but we looked at one aspect
of relationships in an RDBMS when we started looking at rows in tables in chapter
2. Think about a single row from any table: it’s a collection of values that all relate
to one another. The first row in the title table, for example, contains values such as

72 chapter 8 Querying multiple tables

TitleID, TitleName, and others that relate
to the title “Pride and Predicates,” so
those values all relate to one another. It’s
the same for every row in the table, except
that each row represents related values for
a different title.

Although we haven’t looked at any
examples, values can also relate to other
rows in other tables. We’ve taken all the
information specifically related to a single
title into the title table, but in the sqlnovel
database, we have information that relates
to titles elsewhere. One of the tables used
to track information about orders of different titles is orderitem. Try the following
query, and take a look at the results in figure 8.1:

SELECT *
FROM orderitem;

The third column is named TitleID, which is the same as the first column in the title
table. This name indicates that values in the orderitem table relate to the values in the
title table, which makes sense because the titles are what customers are ordering.

But why would we store these values in different tables instead of putting the title-
related values we need in the orderitem table? Well, there are several good reasons for
storing the data in separate tables. But rather than simply describe these reasons, it
might be more helpful to give you an example that shows the reasons using some of the
data you’ve already worked with.

8.1.1 Data without relationships

Suppose that we design a version of the sqlnovel database to track orders, and all the
necessary data is stored in this single hypothetical orders table. This table will have col-
umns for order date, title name, price, and customer’s first and last names. The table
might look something like figure 8.2.

Figure 8.2 Our
hypothetical table, used to
track orders, that contains
order date, title name,
price, and customer name

On the surface, this table appears to be a logical way to track orders, and perhaps
you’ve used a spreadsheet similarly. The table may be fine for tracking a small number

Figure 8.1 The first 10 rows in the orderitem
table, including the column TitleID

 73The rules of data relationships

of orders, but a closer look at the data reveals quite a few redundant values. In this
table, we see what appear to be orders for the same two titles placed by two different
customers on different dates. The main problem isn’t so much that we’re using five
rows of data to represent these orders, but that we have to repeat the data values so
often.

Imagine that this table has millions of rows. You can see that over time, it could
become a problematic waste of query time and storage. This is especially true for the
string values of TitleName and customer FirstName and LastName because string val-
ues generally take much more storage space than numeric values do.

That problem isn’t the only one, though. What would happen if any values of data
changed, such as a customer’s last name? If a customer changed their last name and
placed a new order under their new name, how would we connect the orders placed
under the previous name to those placed under the new name? We couldn’t do that
with this table; with different last names, the orders would appear to be placed by differ-
ent customers.

The same problem could exist if the data was entered incorrectly. How could we
track sales if the last TitleName was inadvertently entered as “The Join Luck Clubs”
(with an extra s added to Club)? We couldn’t; that value would be a different one. Even
though you and I can see that this title is a data-entry mistake, in the data, that entry
would be a different title, and it wouldn’t show up in results if we wrote a SQL query that
used WHERE TitleName = 'The Join Luck Club' as a filter.

As you can see, storing all this data in a single table can lead to lots of problems. Let’s
look at ways to use some basic relational database concepts to organize this data better.

8.1.2 Data with relationships

In a relational database, we want to eliminate as many redundant occurrences of the
same values as possible. We can accomplish this by doing a few things:

¡	Organize the data in logical groups of values. We put these values in separate tables,
and we want each row in each table to relate to something unique, such as the
title of a book. Think again about how any given row in the title table contains
data this way.

¡	Determine what column or columns will contain a unique value in each of our new tables.
This column or set of columns will be known as the primary key, which allows us
to relate data in other tables to this table. In the title table, the primary key is the
TitleID column.

¡	Replace the data in other tables with these primary-key values to represent the values we
want to reference. Because these key values in our orders table relate to values in
other tables, they will be known as foreign keys. In the table in figure 8.2, we’ll start
by replacing the TitleName column with the corresponding TitleID values from
the title table because TitleID is the key value.

Let’s do this with our orders table. Start by looking again at figure 8.2 to see how to
organize the data this way.

74 chapter 8 Querying multiple tables

First, we have repeating values for TitleName, so it
makes sense to create a separate table that stores these
title values. The good news, as you’ve no doubt noticed, is
that we already have a title table in our sqlnovel database
that stores the data this way. Let’s look at the title-table
values for TitleID and TitleName for the two titles in our
orders table, shown in figure 8.3:

SELECT
 TitleID,
 TitleName
FROM title
WHERE TitleName IN ('Pride and Predicates', 'The Join Luck Club')
ORDER BY TitleID;

NOTE The values for TitleID in the title table must be unique so that we know
exactly which row in the title table to reference. If the TitleID values are dupli-
cated, the data becomes inconsistent and confusing; we don’t know which val-
ues are being referenced.

The TitleID column serves as the primary key, so we can replace the TitleName col-
umn in our orders table with TitleID, which corresponds to values in the title table.
Figure 8.4 shows what our hypothetical table looks like now.

Figure 8.4 What it
would look like if we
replaced TitleName
with TitleID in our
hypothetical orders table

Now we have a relationship between these tables, which allows us to avoid the problems
we discussed earlier—at least as they relate to titles and their names. We’re saving space
by storing a smaller numeric value instead of a string each time we want to refer to the
title. We also have less of a problem with data inconsistency because a single source
stores the title name. If any other tables want to reference a particular title name, they
too can use the TitleID values.

NOTE This is what makes RDBMSes popular for storing many kinds of data.
Storing values in a relational way allows us to store data efficiently, change values
easily, and (most important) keep the data consistent throughout the database.

If we look at our orders table, we can consider other ways to store data more efficiently.
Customers are unique individuals, so any customer data should be in a separate table,
with the data in our orders table being replaced by a key value. Again, we already have a

Figure 8.3 The results for
TitleID and TitleName for the
titles Pride and Predicates
and The Join Luck Club

 75The rules of data relationships

customer table structured with these values and a pri-
mary key of CustomerID. Figure 8.5 shows the results
of our query of the customer table for the FirstName
and LastName values in the orders table:

SELECT
 CustomerID,
 FirstName,
 LastName
FROM customer
WHERE (FirstName = 'Chris' AND LastName = 'Dixon')
 OR (FirstName = 'David' AND LastName = 'Power')
ORDER BY CustomerID;

Now we have three related tables, so let’s
replace the two customer-name columns
in our orders table with a single column
referencing the corresponding CustomerID
values from the customer table. Figure 8.6
shows the updated orders table.

We have a one-to-many relationship
between the customer table and our orders
table. That means that for each order, we
have one customer, but any given customer can have more than one order. This type of
relationship is common in relational databases.

Our data is organized even more efficiently, but we can make one last change. Con-
sider the third and fourth rows in figure 8.6. It looks like Customer 1 purchased two
different items on the same day, which for the purposes of our exercise are considered
the same order. This makes sense, and we should expect that many times, customers will
order more than one item in a given order.

This poses a problem for creating a unique primary key for our orders table, how-
ever, because we can’t place a unique key for orders on the rows if there are duplicate
rows for any given order. One common way to resolve this problem is to place the items
ordered in a separate table, thus dividing the data related to an order into two tables.
Because any order can include one or more items, this relationship is also considered a
one-to-many relationship.

NOTE Relational databases also have one-to-one and many-to-many relationships
between tables. Generally, these relationships are less common, so we won’t
look at any examples now. Just know that other kinds of relationships can exist
between tables in any database.

If we’re going to divide the data in our orders table, we need to consider the following
question for all the columns: Do the values relate to a specific item in the order or gen-
erally to the order itself? Let’s examine the columns:

Figure 8.5 The results from
the CustomerID, FirstName, and
LastName columns for customers
with the name Chris Dixon or
David Power

Figure 8.6 Our hypothetical orders table with
a CustomerID column to reference names in the
customer table

76 chapter 8 Querying multiple tables

¡	OrderDate—These values are the same for the entire order because all items are
ordered at the same time in a given order.

¡	TitleID—The values are specific to an item because an order can contain more
than one title.

¡	Price—This value relates to individual titles, so it is also an item-level value.

¡	CustomerID—This value relates to the entire order because the customer is the
same for all items in an order.

Now that we’ve identified what values go into which tables, we can divide the values in
our orders table into two separate tables:

¡	orderheader—Contains the values unique to the entire order. We’ll create a
primary-key column called OrderID in the orderheader table. This table will also
include columns for OrderDate and CustomerID.

¡	orderitem—Contains the values unique to the items in a given order. We’ll create
a primary-key column called OrderItemID in the orderitem table and a foreign-
key column called OrderID to create a relationship between orderitem and
orderheader. This table will also include columns for TitleID and Price.

We have organized the data in our hypothetical orders table into the actual tables in
the sqlnovel database, and we understand how these tables relate to one another. Let’s
start writing SQL statements that join the data in these tables using their relationships.

8.2 The way to join data
Now that you have a basic understanding of how tables and keys are used, let’s see how
they’re used in queries. To do this, we’ll focus on the FROM clause in queries, which is
where we identify the data set to be used.

8.2.1 Joining two tables

If we want to find out which customer placed the first order, which is OrderID 1001, we
might start with a query like this:

SELECT CustomerID
FROM orderheader
WHERE OrderID = 1001;

Try it now
You’ve waited long enough to write some SQL in this chapter, so execute that query.

There’s probably not a lot of value in showing a picture of a single column with a single
value in the result set, so if you want to keep reading instead of executing the query,
know that the value returned for CustomerID is 1.

Knowing that the CustomerID for the first order is 1 may be useful for a lot of que-
ries, but suppose that we want to know that customer’s name. For this task, we need

 77The way to join data

to use the relationship between the orderheader and
customer tables by joining them in our query. We do
this by explicitly stating the second table name (cus-
tomer) and the column names common to both
tables (CustomerID), which we’ll use to join the data.
We state all this in the FROM clause, using the keywords
JOIN and ON.

The following query uses JOIN and ON to join the
orderheader and customer tables to return not only the CustomerID but also the cus-
tomer’s first and last names, as shown in figure 8.7:

SELECT
 orderheader.CustomerID,
 customer.FirstName,
 customer.LastName
FROM orderheader
JOIN customer
 ON orderheader.CustomerID = customer.CustomerID
WHERE orderheader.OrderID = 1001;

Let’s take a closer look at this query. The first thing you may notice is that the JOIN
comes after FROM, and ON comes after that. The JOIN keyword is considered part of the
FROM clause; it tells our RDBMS that we want to use more data in another table.

Think of using FROM and JOIN a bit like using WHERE and AND for filtering. If we have
multiple filtering conditions for the WHERE clause, we start with the keyword WHERE to
state the first condition, but every subsequent condition starts with AND. Similarly, in
the FROM clause, we start with FROM and then declare the first table from which we want
data, which in this query is orderheader. Then, because we also want data from a second
table, we connect the data between the two tables by using the JOIN keyword followed
by the name of the second table, which in this query is customer. Any subsequent filter-
ing conditions in the WHERE clause will use the AND keyword, and any subsequent table
joins in the FROM clause will use the JOIN keyword.

Merely stating that we want to JOIN the tables isn’t enough, though, so we also need
to say how we’re relating these tables by explicitly stating the columns we’re using to
establish the relationship. We do this by using the ON keyword in a predicate. A predicate
is any part of our SQL statement that evaluates whether something is true, false, or
unknown, which is what the ON section of the join does: finds all rows that match Custo-
merID in each table. If the match is true, the rows are considered for inclusion in our
result set.

Although I haven’t mentioned it yet, the filtering condition in the WHERE clause of
our query is also considered a predicate because we’re also asking the RDBMS to evalu-
ate WHERE orderheader.OrderID = 1001. Like that condition, our JOIN is considered an
exclusive condition, so after evaluating the predicates in our join and our filtering condi-
tions, only those that are considered true matches are returned. We have only one row
in our results because only that row’s values meet all our conditions.

Figure 8.7 The results of
joining the orderheader and
customer tables to show
CustomerID and customer-name
values for the first order

78 chapter 8 Querying multiple tables

Also notice that in the ON part of our query, we’re using two-part names for our columns.
This name refers to the syntax of [table name].[column name], and it’s crucial because
the CustomerID column is included in both tables. We can’t simply say ON CustomerID
= CustomerID because the RDBMS won’t know which CustomerID column we mean.
If you think this fact is obvious in the example, rest assured that many databases have
tables with columns that relate to one another but that have different column names.
For this reason, we need to use two-part names including both the table and column.

TIP Although it doesn’t matter which table and column is mentioned first in
the ON portion of this JOIN, it’s a good idea to start with the table mentioned
first. This approach helps with readability and data organization, of course, but
as you’ll see in chapter 9, it’s also crucial for working with other kinds of joins.

These two-part names for columns end up being used throughout the query, mostly for
readability. I say mostly because we could change almost all the two-part names to use
only the column name and not the table name except for any time we use CustomerID.
This is because the CustomerID column exists in both tables, so if our query said
CustomerID anywhere without a reference to the table, we’d get an error saying that
the CustomerID reference is ambiguous.

Try it now
Execute the query used to get the result in figure 8.7. Also change orderheader
.CustomerID in the SELECT clause to just CustomerID, and see the error that results in
the Output panel.

8.2.2 Joining more tables

The great thing about joining tables is we aren’t limited to two tables. We can continue
to use JOIN to connect more data provided that we know the correct columns used for
the relationships between tables.

Recall that we organized our order-specific data into two tables: orderheader and
orderitem. If we want to find even more information about the first order, such as the
price of the item purchased, we could easily add another join to our query. Because
we established previously that the orderheader and orderitem tables will be joined on
OrderID, which is the primary key for the orderheader table, we can modify our query
with a few more lines of SQL related to the orderitem table. Figure 8.8 shows the results
of this query:

SELECT
 orderheader.CustomerID,
 customer.FirstName,
 customer.LastName,
 orderitem.ItemPrice
FROM orderheader
JOIN customer

 79The way to join data

 ON orderheader.CustomerID = customer.CustomerID
JOIN orderitem
 ON orderheader.OrderID = orderitem.OrderID
WHERE orderheader.OrderID = 1001;

In this query, the JOIN for the orderitem
table comes after the JOIN for customer, but
in this particular query, the order of these
joined tables doesn’t matter. We could just as
easily have written the query with the JOIN
for orderitem occurring before the JOIN for
customer. The arrangement of the order of
tables joined comes down to personal preference and readability, so long as both tables
used in any JOIN have been declared in the FROM clause by the time we get to the ON
portion of the join.

We can add one more table to get the name of the item that was ordered because
we have the value for TitleName in a fourth table: title. If you recall, the TitleName is
referenced in the orderitem table by the TitleID foreign key, which means that we must
include our JOIN to the title table after orderitem. Here’s the query we’ll use to get the
results shown in figure 8.9:

SELECT
 orderheader.CustomerID,
 customer.FirstName,
 customer.LastName,
 orderitem.ItemPrice,
 title.TitleName
FROM orderheader
JOIN customer
 ON orderheader.CustomerID = customer.CustomerID
JOIN orderitem
 ON orderheader.OrderID = orderitem.OrderID
JOIN title
 ON orderitem.TitleID = title.TitleID
WHERE orderheader.OrderID = 1001;

Figure 8.9 Customer information from the customer table, the price
of the item ordered in the first order from the orderitem table, and the
TitleName from the title table

We can keep joining more tables to get related data, and in later chapters, as we dis-
cuss more of the tables in our database, we’ll do just that. But as you can see, our que-
ries with all these two-part names make for a lot of words in our SQL query. Even for

Figure 8.8 Customer information from
the customer table and the price of the
item ordered in the first order from the
orderitem table

80 chapter 8 Querying multiple tables

seasoned query writers, this approach is a wordy way to write a query with a few joins.
A much more readable way to write these two-part names involves a familiar concept.

8.3 Table aliases
Recall that in chapter 3, we talked about renaming columns in our result set by using
aliases. We effectively declared that a column would be referenced, at least in the out-
put, but with a different name. Fortunately, the SQL language allows us to use aliases
for table names as well.

Our goal in using table aliases is different from our usual goal with column aliases.
With columns, we often want to change the column name in the results to be more
descriptive, but with table aliases, we want to be less descriptive. Generally, we use an
alias of one or two characters to reduce the overall number of characters in our query—
which, if done correctly, makes our query easier to read.

One common way to alias the table names is to use one- or two-letter abbreviations
for the tables being aliased. We can use an alias of c for the customer table or t for the
title table, for example. We could use o as an alias for the orderheader table, but because
another table in our query starts with o (orderitem), we can use two-letter aliases for
those tables instead. One logical way to use an alias for these tables is to use the first
letter of each word in the table names, such as oh for orderheader and oi for orderitem.
Here’s an example of these types of aliases using the preceding query:

SELECT
 oh.CustomerID,
 c.FirstName,
 c.LastName,
 oi.ItemPrice,
 t.TitleName
FROM orderheader oh
JOIN customer c
 ON oh.CustomerID = c.CustomerID
JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
JOIN title t
 ON oi.TitleID = t.TitleID
WHERE oh.OrderID = 1001;

Fewer characters fill the screen in that query, which means that we have less informa-
tion to review if we want to understand this query. We could alias these table names the
same way we aliased columns if we wanted to, of course. We could alias orderheader,
for example, by saying FROM orderheader AS oh. But this type of aliasing isn’t done
often because our goal in aliasing table names is to reduce the overall number of char-
acters in a query. For this reason, I highly encourage you to use table aliases as shown
here when you join tables in any query because aliases make your queries much easier
to read. We have to follow a couple of rules for table names, however:

¡	Aliases must start with an alphabetical character, not a number or a special
character.

 81The other way to join data

¡	Except for the first character, an alias can contain numbers but not special
characters.

The only other consideration for aliases is making them sensible. Don’t alias the first
table as a, the second table as b, and so on. If your aliases at least remotely represent
the actual table names, your SQL queries will be much easier to read and understand.

Try it now
Rewrite any of the queries in section 8.2 to use your own aliases.

8.4 The other way to join data
Earlier in the chapter, I discussed predicates and showed how they evaluate conditions
in the joins we use in our FROM clause and the conditions we state in the WHERE clause.
Although this method is rarely used, there’s a way to combine all the predicates in the
WHERE clause.

I mention this technique only because at some point, you’ll likely encounter a SQL
query written by someone else who uses it for joins. As you’ll soon see, this technique is
generally discouraged for several reasons. Here’s what the preceding query would look
like if we used this other way of joining:

SELECT
 oh.CustomerID,
 c.FirstName,
 c.LastName,
 oi.ItemPrice,
 t.TitleName
FROM
 orderheader oh,
 customer c,
 orderitem oi,
 title t
WHERE oh.OrderID = 1001
 AND oh.CustomerID = c.CustomerID
 AND oh.OrderID = oi.OrderID
 AND oi.TitleID = t.TitleID;

The first thing you might notice is that with this method of joining data, we have an eas-
ily readable, comma-separated list of tables in the FROM clause. This format is a bit closer
to the verbal English we’ve been considering throughout the book because we might
verbally declare the intentions for this query something like this: “I would like the cus-
tomer ID, first name, last name, item price, and title name from the orderheader table,
customer table, orderitem table, and title table where the order ID is 1001.”

But even this method is difficult to convert from a verbal declaration to SQL because
we have to tell the RDBMS exactly how all those tables need to be joined. Although this
method is a perfectly valid way to join data in SQL, it has some disadvantages:

82 chapter 8 Querying multiple tables

¡	When it comes to finding how all these tables are joined, we have to read every
row in the WHERE clause to determine how any single join is evaluated. This query
may use fewer characters because it doesn’t say JOIN for each join, but for this
query and more complex queries, we have to scan the entire WHERE clause to find
out how any two tables are joined. Combining all these evaluations in the WHERE
clause makes troubleshooting much more difficult—like trying to find a particu-
lar noodle in a bowl of spaghetti.

¡	This method allows only a particular type of join. In chapter 9, we’ll discuss
more-inclusive ways to use JOIN to connect data. We won’t be able to connect
data in these inclusive ways using this method. For these reasons, you should
avoid writing SQL that contains joins in the WHERE clause.

Joins will be critical components of nearly every query you’ll write from now on, so if
you’re unsure how they work, please take time to review this chapter and practice the
query examples starting in section 8.2, as well as the following lab exercises. When
you’re feeling confident about joining tables, I’ll see you in chapter 9!

8.5 Lab
1 What is the difference in the output of the following two queries, which use dif-

ferent tables for filtering in the WHERE clause?

SELECT
 t.TitleName
FROM orderheader oh
JOIN customer c
 ON oh.CustomerID = c.CustomerID
JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
JOIN title t
 ON oi.TitleID = t.TitleID
WHERE oh.OrderID = 1001;

SELECT
 t.TitleName
FROM orderheader oh
JOIN customer c
 ON oh.CustomerID = c.CustomerID
JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
JOIN title t
 ON oi.TitleID = t.TitleID
WHERE oi.OrderID = 1001;

2 How many orders did the customer named Chris Dixon place? Write a query to
determine the answer.

3 What are the names of the customers who ordered a title in 2015? Write a query
to determine the answer.

 83Lab answers

4 How could you rewrite the following query, which finds the names of all custom-
ers who ordered “The Sum Also Rises,” using JOINs and aliases?

SELECT
 customer.FirstName,
 customer.LastName
FROM title, orderheader, customer, orderitem
WHERE title.TitleName = 'The Sum Also Rises'
 AND orderheader.OrderID = orderitem.OrderID
 AND orderitem.TitleID = title.TitleID
 AND orderheader.CustomerID = customer.CustomerID;

5 We saw in section 8.4 that we can move all the predicates to the WHERE clause.
What happens if we move all the predicates to the FROM clause, as in the following
query?

SELECT
 t.TitleName
FROM orderheader oh
JOIN customer c
 ON oh.CustomerID = c.CustomerID
JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
 AND oh.OrderID = 1001
JOIN title t
 ON oi.TitleID = t.TitleID;

8.6 Lab answers
1 The results are the same. Because our query is matching all OrderID values from

the orderheader to the orderitem table, the OrderID column from either table
can be used in the filtering condition to return the same results.

2 Chris Dixon placed three orders. You could use a query like this one to get the
results:

SELECT
 oh.OrderID
FROM orderheader oh
JOIN customer c ON oh.CustomerID = c.CustomerID
WHERE c.FirstName = 'Chris'
 AND c.LastName = 'Dixon';

3 Eight customers placed an order in 2015:

¡	Chris Dixon

¡	David Power

¡	Arnold Hinchcliffe

¡	Keanu O’Ward

84 chapter 8 Querying multiple tables

¡	Lisa Rosenqvist

¡	Maggie Ilott

¡	Cora Daly

¡	Dan Wilson

You could find them with a query like this:

SELECT
 c.FirstName,
 c.LastName,
 oh.OrderDate
FROM orderheader oh
JOIN customer c ON oh.CustomerID = c.CustomerID
WHERE oh.OrderDate >= '2015-01-01 00:00:00'
AND oh.OrderDate < '2016-01-01 00:00:00';

4 You could write a query like this using JOINs and aliases:

SELECT
 c.FirstName,
 c.LastName
FROM orderheader oh
JOIN customer c
 ON oh.CustomerID = c.CustomerID
JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
JOIN title t
 ON oi.TitleID = t.TitleID
WHERE t.TitleName = 'The Sum Also Rises';

5 The query executes successfully with the same result set, but as noted in this chap-
ter, we generally try to avoid combining filtering predicates with join predicates
for the sake of readability.

85

9Using different
kinds of joins

Joining tables is an essential skill for writing SQL queries, but so far, we’ve tried only
one kind of join. To be fair, that type of join is the most common, but as you’ll see
in this chapter, in plenty of scenarios, that kind of join won’t help you produce the
results you need.

You might be asked to produce a list of all orders for a given year, for example,
and show whether they used a particular discount code. Or you might be asked to
find the names of all customers who didn’t place an order in a year. Or you might be
asked to find a list of all customers in a particular city or state and show which ones
placed orders and which did not. You can’t accomplish these queries using the join
type from chapter 8, so you’re going to learn how to use different joins in SQL to
fulfill all the preceding requests.

9.1 Inner joins
First, let’s talk a little bit more about the JOIN keyword we used in chapter 8. This
join is a shorthand version of the keyword INNER JOIN, which is a particular type of
join. Because it joins only values in both tables that meet the conditions of the join,
the results set excludes any rows that don’t meet the conditions.

For much of this chapter, we’ll use two tables: the orderheader table and a new
table named promotion. This new table contains promotion codes that can be used
for discounted prices on titles that are ordered. The primary key for the promotion
table is PromotionID, and it’s referenced by a similarly named PromotionID column
in the orderheader table.

86 chapter 9 Using different kinds of joins

The reason we’ll use these tables is that there are rows in each table that don’t relate
to the other table. That is, some rows in the promotion table represent promotions that
were never used in any order, and some rows in the orderheader table represent orders
that were placed without a promotion code. Also, the relationship between these tables
is one-to-many: any promotion code can be used for more than one order, but every
order can use only one promotion code.

Also, I should note that there are 12 rows in the promotion table and 50 rows in
the orderheader table. I’ll refer to the number of rows in these tables throughout the
chapter.

Try it now
Use SELECT * FROM promotion and SELECT * FROM orderheader to see how many rows
are returned. Check the message in the Output panel to confirm the number of rows in
each table. If you prefer, you could count the rows returned yourself, but that’s more
time-consuming, as well as open to the possibility of human error.

Let’s start with the following query, which finds the order
ID and promotion code of any order that used a promotion
code. Figure 9.1 shows a portion of the results of this query:

SELECT
 oh.OrderID,
 p.PromotionCode
FROM orderheader oh
JOIN promotion p
 ON oh.PromotionID = p.PromotionID;

Looking at the Output window, we see the message 20 row(s)
returned. You might notice that the values for Promotion-
Code are not 20 unique promotion codes, but the values for
OrderID are 20 unique values. Again, this is because of the
one-to-many relationship between the tables; each promo-
tion code may be used for multiple orders.

If we want to be more verbose, we could write the same query by describing our join
explicitly as an INNER JOIN, returning the same 20 rows:

SELECT
 oh.OrderID,
 p.PromotionCode
FROM orderheader oh
INNER JOIN promotion p
 ON oh.PromotionID = p.PromotionID;

TIP If you’re using only inner joins in a particular query, it’s acceptable to
write JOIN instead of INNER JOIN. But if a query will include other joins, such

Figure 9.1 A portion
(8 of the 20 rows) of
the results showing
the OrderID and
PromotionCode of all
orders that used a
promotion code

 87Outer joins

as those you’re about to learn, you should specify INNER JOIN for clarity and
readability.

A common way to show how the values in these tables relate to one another logically is
a Venn diagram. Consider two intersecting circles, with each circle including the data
of a single table. The intersecting parts of the circles represent the common values
between the two tables, and the nonintersecting parts represent the values that are
unique to each table.

Figure 9.2 is a Venn diagram of the inner join
between the promotion and orderheader tables.
We’ll look at several Venn diagrams throughout
this chapter to help visualize the data included
in the different types of joins. The colored part
of figure 9.2 represents the data that is returned
in our result set, and the noncolored parts rep-
resent the data that is omitted from our results.

The data returned by our inner join includes
only the common values that meet the condi-
tion of our join, where the PromotionID values
in each table match. As I mentioned, this option
isn’t our only one for joining tables. We can also join the tables to include all the values
of one table, even if the rows have no related values in the other table. We do this by
using OUTER JOIN keywords.

9.2 Outer joins
The syntax used for outer joins is similar to that used for inner joins, in that you use
the JOIN keyword to specify the tables you’re joining and the ON keyword to identify
the condition of the columns used in the relationship between the tables. If additional
conditions for the join are necessary, they use the AND keyword.

One big difference between inner and outer joins is that there are different types of
outer joins, so you need to state in your SQL which type of outer join you’re using. Let’s
start with the LEFT OUTER JOIN.

9.2.1 Left outer joins

The use of the word left in LEFT OUTER JOIN indicates that we want all rows returned
from the left table in our join, regardless of whether the rows match. If this keyword
seems confusing, think of it as also meaning that we want all the rows from the first
table noted in our join.

Suppose that we want to see a list of all order IDs, and if they used a promotion code,
we want to see which promotion code was used. We’d use the same query as before but
change our INNER JOIN to a LEFT OUTER JOIN:

SELECT
 oh.OrderID,

orderheader promotion

Figure 9.2 A Venn diagram of the inner
join used in the preceding query

88 chapter 9 Using different kinds of joins

 p.PromotionCode
FROM orderheader oh
LEFT OUTER JOIN promotion p
 ON oh.PromotionID = p.PromotionID;

In this query, the left table is orderheader
because it’s the first table mentioned. In our
formatted query, orderheader appears above
promotion, not to the left. But if this query was
contained on one unformatted line with no car-
riage returns, orderheader would be to the left of
promotion in the query. We represent this kind
of left outer join with a diagram like the one in
figure 9.3.

The message in the Output panel lets us know
that this query returns 50 rows, which is to be
expected because we learned earlier that the orderheader table contains 50 rows. These
50 rows are a lot to take in, so let’s add a filter to limit the results to the first 8 orders
placed, as shown in figure 9.4:

SELECT
 oh.OrderID,
 p.PromotionCode
FROM orderheader oh
LEFT OUTER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
WHERE oh.OrderID <= 1008;

The result set includes a row for every row in the order-
header table that meets our condition of being less than
or equal to OrderID 1008, regardless of whether we have
a PromotionID value to join to the promotions table.
For those orders that don’t have a promotion code, the
results show a null value in the PromotionCode column.

Although we’ve done a lot of work with filtering so far,
we need to be careful when adding filtering conditions to
outer joins. If we add a filtering condition for a specific
value in the right table in the WHERE clause of our query with a LEFT OUTER JOIN, we
effectively turn our LEFT OUTER JOIN into an INNER JOIN. Filtering on specific values in
the right table would eliminate any rows from our result set that might have null values
in the right table. We can demonstrate this situation with a similar query that filters on a
particular value for the PromotionCode, with the results shown in figure 9.5:

SELECT
 oh.OrderID,
 p.PromotionCode

orderheader promotion

Figure 9.3 A Venn diagram of the left
outer join

Figure 9.4 The results
show the OrderID and any
PromotionCode used for
the first eight orders. A
PromotionCode was used
only for OrderIDs 1006,
1007, and 1008.

 89Outer joins

FROM orderheader oh
LEFT OUTER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
WHERE p.PromotionCode = '2OFF2015';

Now the results include only three rows for orders that used
PromotionCode 2OFF2015, not a row for every OrderID in
orderheader, as we’d expect from a left outer join. Because
the condition in the WHERE clause was required of the values
in the right table, which in this query is promotion, that con-
dition is applied to the results from both tables. Because of
this filtering condition on the right table in the WHERE clause,
we could change the LEFT OUTER JOIN in our query to INNER
JOIN and get the same results.

Try it now
Execute the preceding query for a different PromotionCode, such as 2OFF2016. Execute
it once with a LEFT OUTER JOIN and again with an INNER JOIN to see that the results are
the same.

If we truly wanted to view a list of all orders and see whether they used a specific
Promotion Code (such as 2OFF2015) instead of any PromotionCode, we could still do
this. We just need to move the filtering from the WHERE clause to the join condition, like
this:

SELECT
 oh.OrderID,
 p.PromotionCode
FROM orderheader oh
LEFT OUTER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
 AND p.PromotionCode = '2OFF2015';

This query returns 50 rows—one for each OrderID—because we’re not filtering on the
left table. The value of the PromotionCode column in the result set is either 2OFF2015
or NULL.

Please make a note of how this filtering in the join condition works. On many occa-
sions, you’ll need to use an outer join while filtering on specific values in two or more
tables. If you filter in the WHERE clause for a table joined with an outer join, you may
inadvertently create an inner join.

9.2.2 Right outer joins

Just as the LEFT OUTER JOIN returns all rows in the left/first table regardless of whether they
match the right/second table, the RIGHT OUTER JOIN does the opposite. It returns all rows
in the right table whether or not they match rows in the left table with the join condition.

Figure 9.5 The results
of the left outer join
with a filter on the right
table (promotion), which
reduces our result set
to one that would be the
same if the join were an
inner join

90 chapter 9 Using different kinds of joins

Let’s use a right join to show all promotional codes regard-
less of their use, with a portion of the results shown in figure
9.6:

SELECT
 p.PromotionCode,
 oh.OrderID
FROM orderheader oh
RIGHT OUTER JOIN promotion p
 ON oh.PromotionID = p.PromotionID;

We can visually depict the results of our right join with the
diagram shown in figure 9.7.

The preceding query returns 23 rows, which is more than
the 12 rows in the promotion table. Look closely, and you’ll
see that many of the rows include duplicate values for PromotionCode because a code
can be used for more than one order. Because of the duplicate use of certain Promo-
tionCodes, we’ve matched many orders to some
of the PromotionCodes.

Scroll through the results, and you’ll also see
that a few of the PromotionCode values have
NULL for OrderID. Those PromotionCodes
weren’t used in a corresponding order, so they
didn’t match any order. We have them in our
result set anyway because all rows in the promo-
tion table, which is the right table in our query,
will have at least one row in our result set from the
right outer join.

9.2.3 Using outer joins to find rows without matching values

Just as we can use a left or right join to return all rows in a table regardless of whether
they match, we can use either kind of outer join to find all the rows that don’t match.
We do this by saying explicitly that we want to find rows in the matching table with the
filter condition IS NULL.

As an example, we can write a query to show only the PromotionCodes that were not
used for any order, as shown in figure 9.8, by adding the
filter WHERE oh.PromotionID IS NULL to the preceding
query:

SELECT
 p.PromotionCode,
 oh.OrderID
FROM orderheader oh
RIGHT OUTER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
WHERE oh.PromotionID IS NULL;

Figure 9.6 A portion
(8 of the 23 rows) of
the results showing all
PromotionCodes and
OrderIDs if they were
used in a promotion

orderheader promotion

Figure 9.7 A Venn diagram of the right
outer join

Figure 9.8 The results for
all PromotionCodes that
don’t have a corresponding
OrderID, meaning that the
PromotionCode was never used

 91Outer joins

Although previously, I noted that placing a filter-
ing condition on the joined query will effectively
turn an outer join into an inner join, check-
ing for null values is the exception. Remember
that checking for a null value isn’t checking for
equality between two values, but querying for
the presence of null values. This kind of query
is common; you’ll often have to find some value
that exists in one table but not in another one.
We can represent this concept with a diagram
like the one in figure 9.9.

9.2.4 Interchanging left and right joins

If you try to execute the preceding query in SQLite, it won’t work because that rela-
tional database management system (RDBMS) doesn’t support the RIGHT OUTER JOIN
command. This won’t be a problem for most queries, however. You could simply
rewrite the join as a LEFT OUTER JOIN:

SELECT
 p.PromotionCode,
 oh.OrderID
FROM promotion p
LEFT OUTER JOIN orderheader oh
 ON p.PromotionID = oh.PromotionID
WHERE oh.PromotionID IS NULL;

This query produces the same results as those
shown in figure 9.8 because all we’ve done is
swap the order of two tables in the FROM clause
and change the join from RIGHT OUTER JOIN to
LEFT OUTER JOIN. The diagram in figure 9.10
shows what we did.

TIP As much as possible, try to use only left
or only right outer joins in any query, not
both. You’ll need to include both types of
outer joins in very few cases, and using only
one type of outer join makes your query eas-
ier for other people to understand. Also, some
RDBMSes don’t support right outer joins. For this reason, we’ll prefer left
outer joins throughout the remainder of this book.

One last note about left and right joins: they don’t need to be quite so verbose. Just as
INNER JOIN can be shortened to JOIN, LEFT OUTER JOIN and RIGHT OUTER JOIN can be
shortened to LEFT JOIN and RIGHT JOIN, respectively. The preceding query can be writ-
ten without the OUTER keyword, which may improve readability:

orderheader promotion

Figure 9.9 A Venn diagram of the
right outer join that excludes rows
from the left table

promotion orderheader

Figure 9.10 A Venn diagram of the left
outer join that excludes rows from the
right table

92 chapter 9 Using different kinds of joins

SELECT
 p.PromotionCode,
 oh.OrderID
FROM promotion p
LEFT JOIN orderheader oh
 ON p.PromotionID = oh.PromotionID
WHERE oh.PromotionID IS NULL;

NOTE Depending on your RDBMS, you may be able to use a FULL OUTER JOIN
or FULL JOIN. This rarely used type of join returns the combined results of a
LEFT JOIN and RIGHT JOIN of two tables. We won’t be writing any queries with
FULL OUTER JOIN because MySQL, Maria DB, and SQLite don’t support this
type of join, but we’ll learn another way to produce this kind of result set in
chapter 10.

9.2.5 The USING keyword

There are two other ways to write inner, left, right, and outer joins, but they’re less
common. The first way is to use the USING keyword, which replaces the ON keyword in
the join and doesn’t require us to specify the table names or aliases. We can’t specify the
table names or aliases because the USING keyword requires the names of the columns
used in the relationship to be the same in both tables. We could rewrite the preceding
query with USING to get the results shown in figure 9.8 like this:

SELECT
 p.PromotionCode,
 oh.OrderID
FROM promotion p
LEFT JOIN orderheader oh
 USING (PromotionID)
WHERE oh.PromotionID IS NULL;

The requirement that the column names be identical for a join is usually the biggest
deterrent to using . . . well, USING because you’ll encounter many databases with related
tables that don’t share column names. The USING command isn’t used frequently, and
many other SQL programmers aren’t aware of it or its correct use. We’re looking at it
here only in case you notice it in someone else’s SQL queries.

9.2.6 Natural joins

The second rare way to write inner, left, right, and outer joins is to use a natural join.
With a natural join, you don’t mention the column names involved in the relationship;
seemingly by magic, they join columns of the same name from two tables. We do this
by adding the NATURAL keyword while omitting ON or USING. Let’s rewrite the preceding
query one more time, this time with a natural join:

SELECT
 p.PromotionCode,
 oh.OrderID

 93Cross joins

FROM promotion p
NATURAL LEFT JOIN orderheader oh
WHERE oh.PromotionID IS NULL;

Although they further reduce the amount of SQL you have to write, I highly recom-
mend that you avoid using natural joins. For starters, they don’t identify the columns
used in the relationship between the tables, so whoever reads your SQL will have no
idea how the promotion and orderheader tables are related.

A bigger problem involves similarly named columns. Although our promotion and
orderheader tables share only a single easily identifiable column with the same name,
in real-world scenarios, many tables contain columns like CreateDate or ModifiedDate
to track changes in the values of any rows. Although these columns are often similarly
named in a given database, they aren’t created to relate data. Using a natural join with
tables that contain these commonly named columns would automatically join the data
in those columns, which wouldn’t produce the expected results.

WARNING Natural joins are not supported in SQL Server.

9.3 Cross joins
The last kind of join we’ll look at is another unusual one: the cross join. What makes
this type of join unusual is that unlike all the other joins we’ve discussed, it isn’t used to
find rows with specific values. Rather, a cross join finds all possible combinations of rows
by matching every row from one table to every row in another.

The cross join is also known as a Cartesian join because the results of the cross join
reflect the mathematical operation known as a Cartesian product, which describes this
result set of all possible paired values from two sets of data. If we want to use a cross join
to show all possible combinations of PromotionCodes from the promotion table and
OrderIDs from the orderheader table, we could write a query like this:

SELECT
 p.PromotionCode,
 oh.OrderID
FROM promotion p
CROSS JOIN orderheader oh;

The results of this query reflect all possible combinations of matching values from the
two tables, so it should be no surprise that the result set for this query is 600 rows. We
have 12 rows in the promotion table and 50 rows in the orderheader table, so a little
multiplication (12 × 50) confirms that 600 rows are to be expected in the results.

Although a cross join isn’t helpful for finding particular rows, it’s useful when you
need to generate a full list of all possible outcomes. You might need to produce a grid
for all sizes and colors of a particular product, for example. It can also be beneficial for
quickly generating a lot of test data, such as a list of customers or orders that are much
larger than what your current data contains.

94 chapter 9 Using different kinds of joins

WARNING Although I previously noted that you don’t need to specify an inner
join with the word INNER in MySQL, if you join tables using only the word JOIN
and omit a join condition, the results will reflect a cross join, not an inner join
as you intended. Other RDBMSes may require ON when using INNER joins.

The cross join is the last of many types of joins we’ve examined in this chapter. It may
seem discouraging that several of the shorter ways to write SQL joins are not recom-
mended, but in chapter 10, we’ll look at other ways to join data—more efficient meth-
ods that are highly accepted and sometimes more efficient for the RDBMS. For now,
let’s practice what you’ve learned.

9.4 Lab
At the beginning of this chapter, I discussed some scenarios that you might encounter.
Let’s start by using what you’ve learned to write queries to produce those results. Try to
use a left join in each of the first three exercises:

1 Write a query that shows the OrderID and OrderDate of all orders from 2019, as
well as the PromotionCode, if one was used.

2 Write a query to show the first and last names of all customers who didn’t place
an order in 2020.

3 Write a query to show the first and last names of customers as well as the OrderID
and OrderDate for any orders placed in 2021 by customers in California (where
the value for State in the customer table is CA).

4 This exercise wasn’t mentioned at the beginning of the chapter, but write a query
using a cross join to generate a list of all possible customer first names from the
customer table and last names from the author table.

9.5 Lab answers
1 The answer is

SELECT
 oh.OrderID,
 p.PromotionCode
FROM orderheader oh
LEFT JOIN promotion p
 ON oh.PromotionID = p.PromotionID
WHERE oh.OrderDate >= '2019-01-01'
 AND oh.OrderDate < '2020-01-01';

2 The answer is

SELECT
 c.FirstName,
 c.LastName
FROM customer c
LEFT JOIN orderheader oh

 95Lab answers

 ON c.CustomerID = oh.CustomerID
 AND oh.OrderDate >= '2021-01-01'
 AND oh.OrderDate < '2022-01-01'
WHERE oh.CustomerID IS NULL;

3 The answer is

SELECT
 c.FirstName,
 c.LastName,
 oh.OrderID,
 oh.OrderDate
FROM customer c
LEFT JOIN orderheader oh
 ON c.CustomerID = oh.CustomerID
 AND oh.OrderDate >= '2021-01-01'
 AND oh.OrderDate < '2022-01-01'
WHERE c.State = 'CA';

4 The answer is

SELECT
 c.FirstName,
 a.LastName
FROM customer c
CROSS JOIN author a;

96

10Combining queries
with set operators

In the past few chapters, we examined ways to join tables based on the way they
relate to one another. Every query we’ve written has had a single SELECT statement.
But this chapter will show how to write a query with multiple SELECT statements and
combine the results into a single set of data.

This technique can be useful when we need to evaluate results that require differ-
ent conditions, such as querying values in different tables with no key to join them.
Although we’ve seen that null values are excluded from results when we use joins,
we’ll see how to use SQL to include null values if those values exist in two data sets
and we want to include them in our results.

10.1 Using set operators
We’ve written a lot of queries that start with SELECT, and each resulted in a single
result set. That’s what SELECT queries do: produce a set of results. More specifically,
they produce a set of rows that meet the various conditions of our queries.

At times, though, we want to combine or evaluate two or more result sets, and to
do this, we need to use special keywords known as set operators. Though SQL doesn’t
have many set operators, all of them use the same syntax to evaluate two result sets:

SELECT <some column>, <another column>
FROM <some table>
WHERE <some condition>
<set operator>
SELECT <some column>, <another column>

 97UNION

FROM <some table>
WHERE <another condition>;

Even though we’re using two different SELECT statements in our query, the set operator
allows us to evaluate the results into a single result set. The most common evaluation is
to combine them, but as we’ll see later in this chapter, we can do more. First, though,
we must adhere to a few rules for using set operators:

¡	The number of columns needs to match. This rule is the most obvious one because we
know from our introduction to tables that every row in a table must have the same
number of columns. Our result set using a set operator is no different. Attempt-
ing to evaluate queries with a different number of columns will result in an error.

¡	The data type of each column needs to match. We haven’t talked much about data
types yet, but we’ve seen that there are different data types for numbers, charac-
ters, and dates. If we attempt to combine different data types in a result set, we’ll
receive an error message.

¡	The names of columns in the first query are used in the result set. This rule means that we
can evaluate columns with different names, but their ordinal positions must be
the same in each SELECT statement. If we’re using column aliases, only those used
in the first SELECT statement apply to the results. We can add column aliases to
any SELECT statement other than the first one in our queries without causing an
error, but remember that the relational database management system (RDBMS)
will ignore those aliases, which won’t affect the result set. Understanding this
rule is also important because of the last rule.

¡	An ORDER BY clause can appear only in the final SELECT statement. An ORDER BY is the
last evaluation in any query, and as such, it’s allowed only after the last SELECT
statement. If we try to sort the results in any other SELECT statement, we’ll receive
an error message.

10.2 UNION
The most common set operator is UNION, which allows us to combine the results of two
or more SELECT statements into a single result set, removing any duplicates.

TIP One of the most important things to remember about UNION is that it
removes duplicate rows from your result set. Don’t forget!

As an example, we can combine the names of all the people in our sqlnovel database
into a single set of names. That is, we can select the first and last names from the cus-
tomer and author tables into a single result set. Let’s select the names from tables and
order by last name and first name (results shown in figure 10.1):

SELECT FirstName, LastName
FROM customer
UNION
SELECT FirstName, LastName

98 chapter 10 Combining queries with set operators

FROM author
ORDER BY LastName, FirstName;

The results of our two SELECT statements have been combined
into a single result set and ordered as we directed in figure
10.1. But why do we use the word UNION? Well, if we wanted to
verbally declare what we’re requesting with our SQL, we’d say
something like this: “I would like the first and last names from
the customer table, and I would like to combine the results
with the first and last names from the author table.”

Although the word combine accurately describes what we’re
doing, as we’ll see throughout this book, there are all sorts of
ways to combine things in SQL. We can combine rows, columns,
values, and entire result sets in different ways, so the word com-
bine isn’t specific enough to describe what we’re requesting. Instead, we use the word
union to describe combining two or more data sets into a single result.

In English, the noun union often describes the uniting in marriage of people from
two different families into one new family, so it may be helpful to think of the UNION
operator as marrying two different data sets into a single result set. Our verbal declara-
tion becomes a bit more descriptive with the word
union: “I would like the first and last names from the
customer table, and I would like to union the results
with the first and last names from the author table.”

Although we don’t inherently know whether any
given row was selected from the customer table or
the author table, we can verify the table of origin by
adding a third column with literal values to indicate
the table from which the row came. We’ll add these
literal values to both SELECT statements, but we need
to add the column name only to the first SELECT
statement, as shown in figure 10.2. As I noted earlier,
the column names in the result set are chosen from
the first SELECT statement:

SELECT FirstName, LastName, 'customer'
TableName

FROM customer
UNION
SELECT FirstName, LastName, 'author'
FROM author
ORDER BY LastName, FirstName;

The most common way to use a union is to combine various filtering conditions, espe-
cially ones that might be contradictory, in a single SELECT statement, such as values

Figure 10.1 A portion
(8 of the 31 rows) of
the results of first and
last names from the
customer and author
tables

Figure 10.2 A portion (8 of the
31 rows) of the results of first and
last names from the customer and
author tables, as well as a third
column indicating the table that
the rows came from

 99UNION

from different tables. Let’s add some filtering conditions for LastName from the cus-
tomer table and FirstName from the author table (results shown in figure 10.3):

SELECT FirstName, LastName, 'customer' TableName
FROM customer
WHERE LastName LIKE 'D%'
UNION
SELECT FirstName, LastName, 'author'
FROM author
WHERE FirstName LIKE 'C%'
ORDER BY LastName, FirstName;

In figure 10.3, only five rows meet the filtering criteria,
and we have at least one row from each table. Notice
that there are duplicate values for first name (Chris)
and last name (Daly). Recall from earlier in this chap-
ter that duplicate rows in which all values match are
removed from our results when we use UNION.

We can verify this fact by making a few changes in
our query. Two rows in figure 10.3 have the first name
Chris, which appears once in each table we’re que-
rying. Let’s omit the LastName and TableName col-
umns from our results because those extra columns
create unique rows for the rows that have Chris as a
value for FirstName. With these columns omitted, we should expect Chris to appear in
only one row because duplicates will be removed when we use UNION.

In addition to omitting those columns, we’ll change the ORDER BY from LastName to
FirstName. When we’re using a set operator like UNION, we can sort the results only by
columns included in the SELECT statement. We’ve removed LastName from the SELECT
statement, so if we left the SQL for ordering by LastName in our next query, we’d get an
error on execution, indicating that LastName is an “unknown column.” Here’s our new
query (results shown in figure 10.4):

SELECT FirstName
FROM customer
WHERE LastName LIKE 'D%'
UNION
SELECT FirstName
FROM author
WHERE FirstName LIKE 'C%'
ORDER BY FirstName;

Figure 10.4 The results of first names from the customer table whose last names
start with D, combined with a UNION with the results of first names from the author
table whose first names start with C. The two rows for Chris are represented by a
single row because UNION removed the duplicate row from the result set.

Figure 10.3 The results for the
full names of customers whose
last name starts with D and
authors whose first name starts
with C, ordered by last name and
first name

100 chapter 10 Combining queries with set operators

But what if we don’t want the duplicate rows to be removed? What if instead, we want
any duplicate rows to be included in a result set? For that scenario, let’s look at the next
set operator: UNION ALL.

10.3 UNION ALL
The UNION ALL set operator is very much like the UNION operator, with the main dif-
ference being that it doesn’t remove duplicate rows. Instead, UNION ALL instructs the
RDBMS to read all the data as requested by each SELECT statement and return the
results as they were read. We can modify the set operator from the preceding query
from UNION to UNION ALL to see this difference (results shown in figure 10.5):

SELECT FirstName
FROM customer
WHERE LastName LIKE 'D%'
UNION ALL
SELECT FirstName
FROM author
WHERE FirstName LIKE 'C%'
ORDER BY FirstName;

Both rows for Chris are included in
the results in figure 10.5 because
UNION ALL doesn’t remove duplicate
rows from the result set. Because
UNION ALL doesn’t remove duplicates,
the filtering conditions it uses can
function similarly to the filtering in a WHERE clause. There are no differences between
the results of these two queries, for example:

SELECT LastName
FROM customer
WHERE LastName = 'Daly'
UNION ALL
SELECT LastName
FROM customer
WHERE LastName = 'Dixon'
ORDER BY LastName;

SELECT LastName
FROM customer
WHERE LastName = 'Daly'
 OR LastName = 'Dixon'
ORDER BY LastName;

Try it now
Execute the two preceding queries to verify that both return the same results.

Figure 10.5 The results of first
names from the customer table whose
last names start with D, combined
with a UNION ALL with the results
of first names from the author table
whose first names start with C

 101Emulating FULL OUTER JOIN in MySQL

Both queries return a result set with three rows—two for Daly and one for Dixon—
although they do so in different ways. The first query executes two SELECT statements
against the customer table and then combines the results, with each query searching
for rows that meet a single condition. The second query instead executes a single
SELECT, which searches for rows that meet multiple conditions.

TIP As you progress in your knowledge of SQL, it’s always good to know differ-
ent ways to produce the same results because you may encounter situations in
which one technique performs better than others. Depending on factors that
are covered in later chapters, a query with a UNION ALL may produce results
much faster than a similar one with an OR, even though the UNION ALL is exe-
cuting two SQL statements to find the same results. For now, remember to
always consider different ways to find results if your query performs worse than
expected.

One other difference between UNION and UNION ALL is that queries with UNION are gen-
erally slower than those with UNION ALL because the RDBMS has to do more work to
remove the duplicate rows. If the result set from a UNION ALL is very large and full of
duplicates, however, UNION queries could be faster because there would be less data in
the result set to send over the network. Keep these facts in mind when you write SQL
statements that query hundreds of gigabytes of data or more when using either UNION
or UNION ALL.

Last, we can use UNION ALL to achieve the same results as a FULL OUTER JOIN, which
(as noted in chapter 9) is not a supported type of join in MySQL, MariaDB, and
SQLite.

10.4 Emulating FULL OUTER JOIN in MySQL
As noted at the end of chapter 9, a FULL OUTER JOIN returns not only the rows that
match between two tables but also the unmatched rows from both tables. Figure 10.6
shows how we would represent these results in a Venn diagram if we could write such
a query by searching for promotion codes shared by the promotion and orderheader
tables.

Here’s what the SQL would look like. This
type of query won’t execute in MySQL, but it
will execute in another RDBMS that allows FULL
OUTER JOIN:

SELECT
 p.PromotionCode,
 oh.OrderID
FROM orderheader oh
FULL OUTER JOIN promotion p
 ON oh.PromotionID = p.PromotionID

The results of a FULL OUTER JOIN are very simi-
lar to the results of executing a LEFT JOIN and

orderheader promotion

Figure 10.6 A Venn diagram of the
values included in a query of the
orderheader table with a FULL OUTER
JOIN of the promotion table

102 chapter 10 Combining queries with set operators

RIGHT JOIN at the same time, but because we can’t do this in MySQL, we can emulate it
with the left and right joins combined with a UNION ALL. UNION ALL is preferred in this
case because it doesn’t remove duplicate rows, which may exist between the tables and
would be returned with a FULL OUTER JOIN.

The one tricky thing to remember is that when we’re emulating a FULL OUTER JOIN in
this way, we need to modify one of the joins to exclude common values. If we don’t, we
will end up with duplicate rows because both left and right joins include the common
values that an INNER JOIN would return.

The following query demonstrates how to emulate a FULL OUTER JOIN in MySQL using
UNION ALL. We’ll prevent the duplicate representation of matching rows by excluding
them from our second SELECT by filtering on WHERE oh.PromotionID IS NULL, which we
learned about in chapter 9:

SELECT
 p.PromotionCode,
 oh.OrderID
FROM orderheader oh
LEFT JOIN promotion p
 ON oh.PromotionID = p.PromotionID
UNION ALL
SELECT
 p.PromotionCode,
 oh.OrderID
FROM orderheader oh
RIGHT JOIN promotion p
 ON oh.PromotionID = p.PromotionID
WHERE oh.PromotionID IS NULL;

This query returns 53 rows, which include

¡	Rows that match PromotionID values in both tables

¡	Rows in orderheader that don’t contain PromotionID values

¡	Rows in promotion that contain PromotionID values that weren’t used in the
orderheader table

It may be helpful to use Venn diagrams to show specifically what each of the two SELECT
statements in our query is doing. The first query finds the first two of our three sets of
rows noted earlier, which are rows that match PromotionID values in both tables and
rows in orderheader that don’t contain PromotionID values. The diagram in figure 10.7
represents these values.

The second query finds the last item, which are rows in promotion that contain Pro-
motionID values that weren’t used in the orderheader table. The diagram in figure 10.8
represents these values.

By using a UNION ALL, we effectively combined all these results into a single result, as
shown in figure 10.6 earlier in this section.

UNION and UNION ALL are useful set operators. But nearly every RDBMS has two other
set operators that you should know about: INTERSECT and EXCEPT.

 103INTERSECT

orderheader promotion

Figure 10.7 A Venn diagram of the values
included in a query of the orderheader table
with a left outer join of the promotion table

WARNING MySQL didn’t support INTERSECT and EXCEPT until version 8.0.31.
If you’re using an earlier version, you’ll encounter errors when attempting to
use these operators.

10.5 INTERSECT
Another set operator that may prove useful is INTERSECT, which can return results
similar to those of a query with an INNER JOIN. There are two important differences
between their results, however:

¡	Where INNER JOIN will return duplicate values, INTERSECT will not. This fact is
similar to the differences in the results of UNION ALL and UNION.

¡	An INNER JOIN will never return null values because nothing can’t equal nothing.
Because INTERSECT is looking for common values between two data sets and not
evaluating equality, the results of INTERSECT will also include any null values that
match in the results of the two queries.

Let’s review an inner join to demonstrate the differences. Here’s how we can use an
INNER JOIN to find PromotionID values in both the orderheader and promotion tables:

SELECT
 oh.PromotionID
FROM orderheader oh
INNER JOIN promotion p
 ON oh.PromotionID = p.PromotionID;

If we wrote this query for an RDBMS that supports INTERSECT, our query would look
like this:

SELECT
 PromotionID
FROM orderheader

orderheader promotion

Figure 10.8 A Venn diagram of the values
included only in a query of the promotion table,
with a right outer join of the orderheader table

104 chapter 10 Combining queries with set operators

INTERSECT
SELECT
 PromotionID
FROM promotion;

Although we used only one column in this example, INTERSECT supports the use of
multiple columns in your SELECT statements. Although the column names don’t need
to be the same, all queries must have the same number of columns, and the columns
must be selected in the same order for INTERSECT to evaluate them.

10.6 EXCEPT
Another set operator frequently supported by other RDBMSes can return data in one
set that is not included in a second set. That set operator is EXCEPT, which excludes
results similar to a method we learned about in discussing left joins in chapter 9.

NOTE Oracle doesn’t support the EXCEPT operator, but it has a MINUS operator
that is identical in function and use.

Suppose that we want to find all the PromotionID values in the promotion table that
weren’t used in any orders in the orderheader table, as represented by the diagram in
figure 10.9. We already know that we can find them with a statement like this:

SELECT
 p.PromotionID
FROM promotion p
LEFT JOIN orderheader oh
 ON p.PromotionID = oh.PromotionID
WHERE oh.PromotionID IS NULL;

We can achieve a result set very similar to this use of a LEFT JOIN that filters on null
matches in the joined table by using EXCEPT:

SELECT
 PromotionID
FROM promotion
EXCEPT
SELECT
 PromotionID
FROM orderheader;

As with INTERSECT, the results of EXCEPT have
two significant differences from those of LEFT
JOIN:

¡	A LEFT JOIN will return duplicate values,
but EXCEPT won’t.

¡	A LEFT JOIN will never return null values
because nothing can’t equal nothing.

promotion orderheader

Figure 10.9 A Venn diagram of the
values included only in a query of the
promotion table, with a left outer join of
the orderheader table

 105Lab

Because EXCEPT is looking for common values between two data sets, not evaluat-
ing equality, the results of EXCEPT will also include any null values that exist in the
results of the first query and not the second.

Although INTERSECT and EXCEPT are used far less frequently than INNER JOIN and LEFT
JOIN, keep them in mind if you’re using an RDBMS that supports these keywords and
you need to have null values returned in your result set.

That’s plenty of information on how to use set operators. In chapter 11, we’ll exam-
ine other ways to join tables and other data sets by using logical operators.

10.7 Lab
1 In this chapter, we learned that the column names in queries with UNION and

UNION ALL come from the first SELECT statement. What do you think will happen
with a query like this one that has no column name for the last column in the first
query? Try it to find out:

SELECT FirstName, LastName, 'customer'
FROM customer
UNION
SELECT FirstName, LastName, 'author' TableName
FROM author
ORDER BY LastName, FirstName;

2 Considering that there are rows in the customer table for customers Cora Daly
and Kevin Daly, will the results of these two queries be the same? If not, what will
the differences be?

SELECT LastName
FROM customer
WHERE FirstName = 'Cora'
OR FirstName = 'Kevin';

SELECT LastName
FROM customer
WHERE FirstName = 'Cora'
UNION
SELECT LastName
FROM customer
WHERE FirstName = 'Kevin';

3 We’ve looked at the different behaviors of UNION and UNION ALL, but we haven’t
used them in the same query. It’s inadvisable to use them in the same query,
though, and depending on the RDBMS you’re using, you may get an error mes-
sage if you attempt to do so. Even if you don’t, the results can be unpredictable.
To demonstrate this situation, try executing the following two queries. Notice
that they have different results. Why do you think the results are different?

106 chapter 10 Combining queries with set operators

SELECT LastName
FROM customer
WHERE FirstName = 'Cora'
UNION
SELECT LastName
FROM customer
WHERE FirstName = 'Kevin'
UNION ALL
SELECT LastName
FROM customer
WHERE LastName = 'Daly';

SELECT LastName
FROM customer
WHERE LastName = 'Daly'
UNION ALL
SELECT LastName
FROM customer
WHERE FirstName = 'Kevin'
UNION
SELECT LastName
FROM customer
WHERE FirstName = 'Cora';

10.8 Lab answers
1 Because no column name is supplied for the last column in the first SELECT state-

ment, the literal value 'customer' is used for the final column name in the result
set.

2 The results won’t be the same. The first query, which uses OR for filtering, returns
two rows—one for each match. The second query, which uses UNION, returns only
one row because UNION removes duplicates from the results.

3 The first query returns three rows, and the second query returns one. At first
glance, these results may be confusing because the second query simply reverses
the order of the SELECT statements.
The answer lies in precedence, which indicates the order in which the SELECT
statements are presented. The first UNION or UNION ALL is applied first, and the sec-
ond one is applied next. Remember that UNION eliminates duplicates, and UNION
ALL doesn’t.

In the first query, each of the first two SELECT statements returns one row with
the value 'Daly', and because the UNION eliminates duplicates, the result is one
row—so far. But the third SELECT statement returns two rows, which, when evalu-
ated with a UNION ALL, create a result set of three rows—one row from the first two
SELECT statements and two rows from the last SELECT statement.

In the second query, we combine the first SELECT statement, which returns two
rows, with the second SELECT statement, which returns one row, and we do this
with a UNION ALL. If we executed only this part of the query, we’d get three rows

 107Lab answers

returned. But then we combine another SELECT statement that returns one row
with a UNION, which removes all the duplicates from our result set. That’s why the
second query returns only one row.

If this explanation is more than a little confusing, don’t worry. As long as you avoid
combining UNION and UNION ALL in the same query, you’ll never have to worry
about this headache.

108

11Using subqueries
and logical operators

In chapter 10, we expanded the scope of our thinking a bit. We saw how to use
SQL not only to query tables but also, with the help of set operators such as UNION
or INTERSECT, to combine the results of two or more SELECT statements to form
a single result set. In this chapter, we’ll build on that knowledge by examining an
important method of evaluating the results of multiple SELECT statements in the
same query: the subquery.

Subqueries are simply queries nested into another query. We use subqueries when
we can’t achieve the desired results from a single SELECT statement, so instead of
writing two or more queries, we combine them into a single query. Don’t worry—this
process isn’t as complicated as it sounds.

By the end of this chapter, you’ll see how subqueries allow you to evaluate the
results of SELECT statements in ways beyond the capabilities of the set operators you
learned about in preceding chapters. We have a lot of ways to use subqueries to dis-
cover, so let’s get started.

11.1 A simple subquery
As I’ve noted throughout the book, a SELECT statement is a type of SQL query that
returns a set of data known as a result set. So far, you’ve executed dozens of queries
that produce result sets. You’ve queried one or more tables, producing result sets
that look a lot like tables. By that, I mean the results have rows and columns, and the
columns have names.

 109A simple subquery

Let’s take that scenario a step further. Because query results produce a result set
similar to a table, we can evaluate the results of SELECT statements in many of the same
ways that we evaluate the data in a table. This means we can join and filter these results
as though they were tables, and the way to do this is to use subqueries. Rather than con-
tinue to speak theoretically, I’ll give you an example.

Suppose that we want to find the order ID and order date for any orders placed after
a particular order by a customer named Margaret Montoya. We’re using this customer
because they placed only one order. If we want to verbally declare this request, we might
say the following: “I would like the order ID, customer ID, and order date from the
customer table, but I want only the orders placed after the one order placed by the cus-
tomer named Margaret Montoya.”

This statement is the first time we’ve declared something in a compound sentence,
with two separate clauses. With what we’ve learned so far, we could write two separate
queries to get the desired results. The first query, to find the order placed by Margaret
Montoya, might look like this:

SELECT
 oh.OrderID,
 oh.OrderDate
FROM orderheader oh
INNER JOIN customer c
 ON oh.CustomerID = c.CustomerID
WHERE c.FirstName = 'Margaret'
 AND c.LastName = 'Montoya';

The result of this query shows that Margaret Montoya placed only one order, on April
23, 2021. Now that we have that date, we could include it in a second query to find the
results shown in figure 11.1. The query might look something like this:

SELECT
 OrderID,
 CustomerID,
 OrderDate
FROM orderheader
WHERE OrderDate > '2021-04-23';

Writing two queries to find this result is cum-
bersome, which is why we’d replace the hard-
coded date with a subquery. All we need to do
is replace the hardcoded order date of '2021
-04-23' with the first query, which is now a
subquery, and surround the subquery with
parentheses.

WARNING When filtering with a subquery,
we can have only one column returned

Figure 11.1 The OrderID, CustomerID,
and OrderDate of all orders placed after
Margaret Montoya placed her only order
on April 23, 2021

110 chapter 11 Using subqueries and logical operators

because SQL allows us to evaluate only one value or set of values at a time in
the WHERE clause. If we select more than one column in the subquery used
next, our query will result in an error.

Here’s what a SELECT statement with a subquery that produces the same results as the
two preceding queries might look like:

SELECT
 OrderID,
 CustomerID,
 OrderDate
FROM orderheader
WHERE OrderDate > (
 SELECT
 oh.OrderDate
 FROM orderheader oh
 INNER JOIN customer c
 ON oh.CustomerID = c.CustomerID
 WHERE c.FirstName = 'Margaret'
 AND c.LastName = 'Montoya'
);

The results of this query are the same as the results shown in figure 11.1 because we’ve
combined the logic of two queries into one.

The subquery has the containing parentheses on different lines above and below the
subquery. Although you don’t need to format your subqueries this way, this method of
formatting has benefits. For one thing, the code is a bit easier to read than it would be
if you placed the parentheses at the beginning and end of the subquery. Perhaps more
important, it’s easier to drag the cursor over the subquery, highlight only the subquery,
and execute it alone. When you’re writing your own SQL, this technique is helpful for
verifying that the subquery produces the desired results.

Try it now
Execute the preceding subquery. Then highlight and execute only the lines of the sub-
query inside the parentheses to validate that the value returned is 2021-04-23.

In this query, we used a comparative operator, >, with our subquery, but other compar-
ison operators such as = and <> have the limitation of being able to compare only one
value. To unlock the full potential of subqueries, we need to use an entirely different
set of keywords, known as logical operators.

11.2 Logical operators and subqueries
Logical operators are a bit like comparison operators in that they test whether some
condition is true, false, or unknown. You’ve already used a few of these operators: IN,
NOT IN, BETWEEN, and LIKE. Some comparison operators are unable to evaluate a result

 111Logical operators and subqueries

set with more than one row, so let’s look at an example of a sub-
query that returns more than one row.

OrderID 1034 includes more than one title, as we see in fig-
ure 11.2. If we need to write SQL to find what titles are included,
we can write something like this:

SELECT
 t.TitleName
FROM title t
INNER JOIN orderitem oi
 ON oi.TitleID = t.TitleID
WHERE OrderID = 1034;

Let’s rewrite this query using a subquery by moving the part of the query that filters on
OrderID into its own query, place that part in the WHERE clause as a subquery, and filter
on where the TitleID from the title table is equal, using = to match the value of the
results of our subquery:

SELECT
 t.TitleName
FROM title t
WHERE TitleID = (
 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034
);

This query doesn’t work, though. If you try executing it, the Output panel displays the
error message “Subquery returns more than 1 row.” This is true. We know from the
preceding query that this order includes four titles, which means that the subquery
returns four rows. Our subquery can’t be evaluated by = because that comparison oper-
ator is trying to determine whether every TitleID in the title table equals a single value.
This query would work if there were only one title in the order, but there are four, and
unfortunately, the = operator can’t evaluate more than one value. For this scenario,
our first logical operator, ANY, can help.

Try it now
Execute the preceding query, and notice the error in the Output panel.

11.2.1 The ANY and IN operators

The ANY logical operator evaluates a set of values to see whether any of them have
equality to the values you’re attempting to match—hence, the name ANY. You can think
of ANY as being a helper for = (or any other comparison operator), allowing any value
to be included in the subquery. To get the preceding query to work, simply add the ANY
operator after = in the WHERE clause:

Figure 11.2 The four
titles included in order
1034

112 chapter 11 Using subqueries and logical operators

SELECT
 t.TitleName
FROM title t
WHERE TitleID = ANY (
 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034
);

The results of this query are the same as the results shown in figure 11.2. We can ver-
bally declare what we’re doing like this: “I would like the title name from the title table,
and I would like the titles to match any of the titles from order 1034.”

NOTE Most relational database management systems (RDBMS), including
MySQL, also support the SOME logical operator, which is identical to ANY in use
and function. It’s used much less frequently than ANY, however.

We can also get the same results by replacing ANY with a different logical operator: the
IN keyword. We can make a similar verbal declaration of our intention: “I would like
the title name from the title table, and I would like the titles to be in titles from order
1034.” Our query would look like this:

SELECT
 t.TitleName
FROM title t
WHERE TitleID IN (
 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034
);

So now that you can use either of two logical operators with a subquery to get the same
results, which should you choose? Well, the answer depends on whether you need to
use a comparison operator too. If you have to use >, >=, <, or <=, you have to use ANY
because IN doesn’t allow those kinds of comparisons. If you don’t need to use one of
those comparison operators, however, you can use IN, which is used for these kinds
of subqueries far more often than = ANY. Next, let’s look at the opposite way to filter:
excluding the results of our subquery.

11.2.2 The ALL and NOT IN operators

Suppose what we need is to find the names of titles that are not in order 1034, as shown
in figure 11.3. We might say, “I would like the title name from the title table, and I
would like the titles to not be in titles from order 1034.” Just as we added the word not
to our verbal declaration, we can do the same thing with our SQL:

SELECT
 t.TitleName
FROM title t
WHERE TitleID NOT IN (

 113Logical operators and subqueries

 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034);

Our sqlnovel database contains eight titles, and order 1034
includes four of them, as shown in figure 11.2. Now we know the
other four titles that were not in that order. Our SQL statement
is evaluating all the titles in order 1034 and then finding the titles
in the title table that aren’t any of those included in the order.

This brings us to another way we may be tempted to verbally declare the desired
results of this query: “I would like the title name from the title table, and I would like the
titles to not match any of the titles from order 1034.” At first glance, we might think we
can use the ANY operator to get these results by using it with the not-equal operator, <>:

SELECT
 t.TitleName
FROM title t
WHERE TitleID <> ANY (
 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034
);

Although this query will execute without error, it won’t provide the desired results. This
query is evaluating all the titles in the title table to see which ones don’t match any of
the titles in our subquery. Because our subquery contains more than one title, every title
in the title table will be a match because at least one title in the subquery isn’t the same.

Try it now
Execute this query, and notice that it returns every title in the title table.

To get the results we want, we need to use the ALL operator instead of ANY because we
want titles that don’t match all the titles in the subquery:

SELECT
 t.TitleName
FROM title t
WHERE TitleID <> ALL (
 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034
);

Executing this query produces the results shown in figure 11.3, which is what we
intended. As with IN and ANY, the decision to use NOT IN or ALL comes down to whether
a comparative operator is required.

Figure 11.3 The four
titles not included in
order 1034

114 chapter 11 Using subqueries and logical operators

NOTE I haven’t mentioned this topic yet, but be aware that by using subque-
ries, you’re asking the RDBMS to execute two queries at the same time and
evaluate the results of one against the other. Generally speaking, using subque-
ries requires more processing and memory, so when writing SQL, you should
consider carefully whether using a subquery is necessary.

11.2.3 The EXISTS and NOT EXISTS operators

Two other operators can make subqueries more efficient than the ones we’ve seen so
far: EXISTS and NOT EXISTS. These operators are appealing because they don’t evaluate
the values of every row in the subquery; rather, they check only for any matching rows.
When a match for a value is found, other matches are not evaluated for equality or
inequality.

First, we’ll look at EXISTS, which is used similarly to the way we used = ANY and IN ear-
lier to find the titles included in order 1034. The difference is that when we use EXISTS,
we must include a kind of join in the WHERE clause of the subquery. Here’s what this
query would look like:

SELECT
 t.TitleName
FROM title t
WHERE EXISTS (
 SELECT TitleID
 FROM orderitem oi
 WHERE OrderID = 1034
 AND t.TitleID = oi.TitleID
);

Executing this query provides the results shown in figure 11.2, returning the names of
all the titles in order 1034. Notice that we used EXISTS in the WHERE clause, and now
we have an additional line in the WHERE clause of the subquery: AND t.TitleID = oi
.TitleID. This is where the evaluation for matching values in the subquery takes place.
Because the evaluation occurs there, what we put in the SELECT clause of our subquery
doesn’t matter.

For this reason, you’ll often see subqueries used with EXISTS in other people’s SQL
that has something that seems nonsensical in the SELECT clause, like this subquery,
which has SELECT 1 in the SELECT clause:

SELECT
 t.TitleName
FROM title t
WHERE EXISTS (
 SELECT 1
 FROM orderitem oi
 WHERE OrderID = 1034
 AND t.TitleID = oi.TitleID
);

 115Subqueries in other parts of a query

Try it now
Execute the preceding query to see for yourself that it returns the results shown in figure
11.2. Try replacing the 1 in the SELECT clause of the subquery with any other value to
see that the value there becomes irrelevant.

Also, we can use NOT EXISTS to find the titles that are not included in order 1034. Exe-
cuting the following query returns the results shown in figure 11.3:

SELECT
 t.TitleName
FROM title t
WHERE NOT EXISTS (
 SELECT 1
 FROM orderitem oi
 WHERE OrderID = 1034
 AND t.TitleID = oi.TitleID
);

Again, the main reason to use EXISTS or NOT EXISTS with subqueries is to query larger
data sets because these operators provide better performance than IN/NOT IN, ANY,
and ALL.

11.3 Subqueries in other parts of a query
So far in this chapter, we’ve looked only at subqueries used for filtering in the WHERE
clause. But we can use subqueries in other clauses as well.

11.3.1 Subqueries in the FROM clause

We can write a query to return the results shown in figure 11.2 with a join in the FROM
clause, for example. To do this, we move our subquery into a join in the FROM clause—
in this case, using an inner join. We don’t need any operators because we aren’t evalu-
ating the subquery for filtering. We’re simply joining the results of the subquery, and
any evaluation occurs with the ON part of the join.

Also, because our subquery doesn’t have a name for the resulting data set, we’ll need
to use an alias so that we can join it to another table:

SELECT
 t.TitleName
FROM title t
INNER JOIN (
 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034
) oisq
 ON t.TitleID = oisq.TitleID;

116 chapter 11 Using subqueries and logical operators

By moving the subquery to the FROM clause, we’re treating our subquery results as
though they were a table, with those results being joined to the title table by TitleID.
The results of the subquery aren’t a table, but they have to be computed by the RDBMS
before we can determine if any rows from the results of our subquery can be joined to
the title table.

What’s interesting is that because the subquery is in the FROM clause, it can be used
in our query like a table. As a result, we’re no longer limited to having one column in
our subquery, so we can add more columns to the subquery if necessary for joining or
filtering purposes.

Try it now
Execute the preceding query, change SELECT TitleID to SELECT TitleId, OrderID,
and execute that query as well.

We can also use a join in the FROM clause to find values that aren’t in the subquery by
using the LEFT OUTER JOIN method from chapter 9. We can use this kind of join with a
filter on the null values in the second data set, which in this case is the subquery, to find
values existing in the first table but not in the joined table:

SELECT
 t.TitleName
FROM title t
LEFT JOIN (
 SELECT TitleID
 FROM orderitem
 WHERE OrderID = 1034
) oisq
 ON t.TitleID = oisq.TitleID
WHERE oisq.TitleID IS NULL;

The results of this query are the same as those shown in figure 11.3.

11.3.2 Subqueries in the SELECT clause

A final way to use subqueries is the SELECT clause. We can get the same TitleNames
shown in figure 11.2 by using a subquery in the SELECT clause, although we have to
rearrange the query by switching the subquery from the filtering query on orderitem
to the selection of the TitleName from the title table:

SELECT
 (
 SELECT TitleName
 FROM title t
 WHERE t.TitleID = oi.TitleID
) AS TitleName
FROM orderitem oi
WHERE oi.OrderID = 1034;

 117Lab answers

WARNING This approach is a highly unusual way to find this result set. I’m
presenting this example only to show you what a subquery in the SELECT clause
looks like. Writing subqueries in the SELECT clause is rarely the best way to
write SQL.

We’ve seen several ways to use subqueries and the options they afford us in writing
SQL. Note, however, that subqueries should be used thoughtfully because they often
have a negative effect on query performance. The fact that each subquery executes an
additional SELECT statement means our SQL statements with subqueries typically cre-
ate more work for the RDBMS.

Chapter 12 looks at ways to group data sets to find calculations like the minimum
and maximum values of those sets. First, though, you get to put your new subquery skills
to use.

11.4 Lab
1 Write a query using a subquery with IN to get the names of the title(s) in the only

order placed by Joe Pagenaud.

2 Look again at the queries in section 11.1, where we tried to find the orders placed
after Margaret Montoya’s order. Write a similar query to find the order ID, cus-
tomer ID, and order date for any orders placed after all of Cora Daly’s orders.

3 Selecting 1 divided by 0 returns a null value. Could you use SELECT 1/0 instead of
SELECT TitleID in the SELECT clause of the subquery of the first query in section
11.2.3 and still get the correct results?

11.5 Lab answers
1 You have many ways to do this, depending on which queries you join in the sub-

query. Here’s one way:

SELECT
 t.TitleName
FROM title t
INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
WHERE oi.OrderID IN (
 SELECT
 oh.OrderID
 FROM orderheader oh
 INNER JOIN customer c
 ON oh.CustomerID = c.CustomerID
 WHERE c.FirstName = 'Joe'
 AND c.LastName = 'Pagenaud'
);

2 Your query may vary, but here’s a way to find the intended order information:

SELECT
 OrderID,

118 chapter 11 Using subqueries and logical operators

 CustomerID,
 OrderDate
FROM orderheader
WHERE OrderDate > ALL (
 SELECT
 oh.OrderDate
 FROM orderheader oh
 INNER JOIN customer c
 ON oh.CustomerID = c.CustomerID
WHERE c.FirstName = 'Cora'
 AND c.LastName = 'Daly'
);

3 Yes, because the value or column used in the SELECT clause of a subquery is not
evaluated by EXISTS or NOT EXISTS.

119

12Grouping data

If you’re accustomed to working with spreadsheets, rather than relational data in a
database, the past three chapters may have been a bit challenging for you. After all,
in spreadsheets you often work with a single set of data instead of multiple sets. If
the concepts in those chapters are new to you, take heart; this chapter covers con-
cepts that should be very familiar to most spreadsheet users.

One useful aspect of spreadsheets is that they allow us to do mathematical cal-
culations on a range of data quickly. If we want to find the total of all values in a
column, for example, we can click the AutoSum button, which places the desired
sum amount in a particular cell. If we highlight that cell, we see that the spreadsheet
used the word SUM with the defined range of cells. SUM represents a function, which is
a command that performs a predefined calculation.

Although we have no button in the SQL language to calculate totals automatically,
we do have functions like SUM to help us perform mathematical calculations. More-
over, in a relational database, we have much more flexibility in the way we perform
these calculations than we have in spreadsheets.

12.1 Aggregate functions
Throughout the rest of this book, we’ll be discussing different kinds of functions
in SQL. A function is a keyword that makes it easy to perform calculations or other
actions. SQL has many functions for calculating all sorts of values for converting
dates, formatting data, and doing much more.

120 chapter 12 Grouping data

This chapter focuses on the main aggregate functions, which are functions that per-
form a calculation over a range of data in a column. When you need to perform basic
calculations, these aggregate functions are indispensable.

12.1.1 The SUM function

The most basic function we can use is SUM, which returns the sum total of all values in
a column of data. If we want to know the total number of titles ordered, for example,
we could sum the Quantity column in the orderitem table. We could declare this inten-
tion verbally by using the word sum to describe what we want: “I would like the sum
of the quantity of titles in the orderitem table.” This declaration isn’t far off from our
SQL, which looks like this (results shown in figure 12.1):

SELECT SUM(Quantity)
FROM orderitem;

Note a few things before we go any further. First, we need to use
parentheses to identify what column we’re choosing for the SUM. If
we don’t use the parentheses, the query will result in a syntax error.

Also, if you execute this query, you’ll notice that the column
uses your calculation as the name of the column, which may not
be helpful. When you use aggregate functions, you usually want
to specify a name for the column by using an alias, which helps
you identify the meaning of the returned values. If you want to
execute this query again, you should modify it to use an alias that
reflects the aggregate calculation:

SELECT SUM(Quantity) AS TotalQuantity
FROM orderitem;

WARNING Keep in mind that the SUM function is intended to be used only with
numeric data values. If you try to use this function with date or character val-
ues, the result may not be meaningful.

TIP When you use an alias for an output column, avoid using the name of the
table column as the alias. In addition to possibly confusing anyone who might
read your output, some relational database management systems (RDBMSes)
don’t allow this action.

12.1.2 The COUNT function

Although SUM calculates the sum total of all values, if we want to know the quantity of
values that exist in a column, we need to use a different function. The COUNT function
counts the number of rows in a column. This statement seems relatively obvious, but
note one important feature of aggregate functions: by default, they exclude null values.

Figure 12.1
The quantity of all
orders is shown in
a column with no
alias. The default
column name is the
calculation.

 121Aggregate functions

Let’s look at the orderheader table to see how many rows it con-
tains. We can do this easily by selecting the COUNT of all the OrderIDs,
for which every row has a value. Figure 12.2 shows the result of this
query:

SELECT COUNT(OrderID) AS TotalOrders
FROM orderheader;

The results indicate that we have 50 rows in the orderheader table,
which is correct. But if we try to count the number of Promotion-
Codes used by selecting the COUNT of the PromotionID column, we’ll
get a different result (shown in figure 12.3):

SELECT COUNT(PromotionID) AS TotalOrdersWithPromotionCode
FROM orderheader;

The results now show only 20 rows, which means
that only 20 of the 50 rows in the orderheader
table have a value for PromotionID. The other
30 rows have a null value for PromotionID.

The COUNT function also has a unique, widely
used feature: you can use it to return the number
of rows in a table without specifying a column. If you don’t know the names of any col-
umns in the orderheader table, you could easily find them by using the asterisk (*), as
you learned when selecting all columns in chapter 3:

SELECT COUNT(*) AS TotalOrders
FROM orderheader;

The results of this query will be the same as those shown in figure 12.2, which is note-
worthy because even if there are null values in any of the columns, selecting COUNT(*)
always returns the total number of rows in a table.

WARNING SELECT COUNT(*) is a useful method for quickly determining the
number of rows in most tables, but be careful when using it with tables that
have millions or billions (or more) rows. This kind of query can use excessive
computer resources and create delays for other queries.

12.1.3 The MIN function

The MIN function returns the minimum, or lowest, non-null value
for a column. If we want to find the least expensive item from all
orders, as shown in figure 12.4, we can use a query like this:

SELECT MIN(ItemPrice) AS MinimumItemPrice
FROM orderitem;

Figure 12.2
A total of 50
rows in the
orderheader
table have
a value for
OrderID, which
is all the rows
in the table.

Figure 12.3 Only 20 rows in the
orderheader table have a value for
PromotionID.

Figure 12.4
The minimum price of
any item in the orderitem
table is $4.95.

122 chapter 12 Grouping data

12.1.4 The MAX function

MIN has a commonly used partner function: the MAX function.
Whereas the MIN function returns the lowest value for a row,
the MAX function returns the maximum, or highest, value.
Let’s change the function used in the preceding query to
find the highest price for any item, as shown in figure 12.5:

SELECT MAX(ItemPrice) AS MaximumItemPrice
FROM orderitem;

Although the SUM function can be used only with numeric data, in MySQL and many
other RDBMSes, you can use the MIN and MAX functions with non-numeric data. When
these functions are used with non-numeric data, they return the first or last value, respec-
tively, as though the data were sorted on that column in ascending order. Although
using MIN and MAX with date values is rarely problematic, the warnings for string values
about collation in earlier chapters apply here as well: sometimes lower- and uppercase
letters, as well as nonalphabetic characters, are ranked differently by different collations.

Try it now
Write a short query to select the MIN value for the FirstName column of the author table.

12.1.5 The AVG function

The last aggregate function we’ll use in this chapter is AVG, will computes the average
of all non-null values in a column. If we want to find the average price of the titles in
the title table, as shown in figure 12.6, we could use the AVG function like this:

SELECT AVG(Price) AS AveragePrice
FROM title;

It looks as though the average price of the titles in our database is
about $9.70. You surely noticed a lot of extra zeros in the result;
those zeros appear because the AVG function is attempting to calcu-
late the average value to a higher level of precision. This situation
isn’t a problem because the value is accurate; chapter 14 discusses
how to modify the precision of the result if necessary.

WARNING Like the SUM function, the AVG function should be
used only with numeric values.

12.1.6 Filtering and aggregating combined values

We can also use a filter with our aggregate functions. Suppose that we want to deter-
mine the average price of all titles published after January 1, 2019. Let’s try our verbal

Figure 12.5
The maximum price of
any item in the orderitem
table is $12.95.

Figure 12.6
The average
price of all titles
in the title table

 123Aggregating data with GROUP BY

declaration: “I would like the average price of all titles with a publication date greater
than January 1, 2019.” This declaration converts easily to the following SQL query:

SELECT AVG(Price) AS AveragePrice
FROM title
WHERE PublicationDate > '2019-01-01';

We can even combine our functions in the same query. If we want to know the dates of
the first and last orders in the orderheader table, for example, we can use the MIN and
MAX values because they work with date values:

SELECT
 MIN(OrderDate) AS FirstOrder,
 MAX(OrderDate) AS LastOrder
FROM orderheader;

Something else we can do with aggregate queries is use a math-
ematical calculation inside the parentheses. We need to do this
in queries that require the values from more than one column,
such as determining the total dollar value of all items sold. If we
conclude that we can determine the total dollar value for any
row of items by multiplying Quantity by ItemPrice, we can use
that calculation with a SUM function to determine the total sales
value for all the rows in our orderitem table, with the result
shown in figure 12.7:

SELECT SUM(Quantity * ItemPrice) AS TotalOrderValue
FROM orderitem;

As easy as it is to determine total overall sales, until now we’ve been limited to evalu-
ating values at table level or basing evaluations on filtered data from a table. What if
we want to know the SUM of each order, the quantity of items sold for each Promotion-
Code, or the number of titles sold by each author?

12.2 Aggregating data with GROUP BY
If we want to analyze data at a deeper level, we need a new set of keywords: GROUP BY.
GROUP BY isn’t just a couple of keywords but also a new clause that allows us to divide
one set of data into groups on which we can perform our aggregations. That explana-
tion may seem theoretical, so the following section provides a practical example.

12.2.1 GROUP BY requirements

In the preceding query, we selected the total dollar value for all orders. If we want to
find the total dollar value for each individual order, we would divide our data into
groups of values for each order and then perform the same calculation as previously.
We divide our values by grouping them, in this case by OrderID. Given the formula

Figure 12.7
The total value of
all orders in the
orderitem table is
$573.50.

124 chapter 12 Grouping data

we used before, a verbal declaration might look something like this: “I would like the
sum of the quantity multiplied by the item price of all the ordered items, and I want to
group the sum by order ID.”

Here is how this declaration looks as a query. We’ll add an ORDER BY to sort the data by
OrderID for readability (result shown in figure 12.8):

SELECT OrderID, SUM(Quantity * ItemPrice) AS OrderTotal
FROM orderitem
GROUP BY OrderID
ORDER BY OrderID;

This query is similar to the last one except that now we’re grouping
our data into logical sets of values for each OrderID and then calcu-
lating SUM(Quantity * ItempPrice) for each set. We do this by add-
ing first GROUP BY OrderID and then ORDERID to our SELECT clause.

NOTE When you use GROUP BY, every column in SELECT must
be included in the GROUP BY clause or must have an aggre-
gate calculation. If a column in SELECT doesn’t meet either
requirement, you’ll get a syntax error.

You may have noticed that the GROUP BY clause is used after the
FROM clause and before the ORDER BY clause. GROUP BY needs to be
after the WHERE clause as well, if we have one. Knowing this, if we
want to limit our orders to those placed after January 1, 2019, we
must join to our orderheader table to add this filter, and we prob-
ably should alias the column names as well:

SELECT
 oi.OrderID,
 SUM(oi.Quantity * oi.ItemPrice) AS OrderTotal
FROM orderitem oi
INNER JOIN orderheader oh
 ON oi.OrderID = oh.OrderID
WHERE oh.OrderDate > '2019-01-01'
GROUP BY oi.OrderID
ORDER BY oi.OrderID;

Adding this filter on OrderDate reduces the result set from 50 rows to 21, but keep in
mind that we are still performing the calculation on each data set based on OrderID
for those 21 rows.

12.2.2 GROUP BY and null values

The GROUP BY clause has another useful feature: it allows us to perform aggregations
on columns with null values. You may remember from section 12.1.2 that we used the
COUNT function to find promotions used in orders, and the null values were excluded.
When we use the GROUP BY clause, we can account for null values too.

Figure 12.8
Eight of the 50
rows returned show
the calculated
OrderTotal for all
orders.

 125Filtering with HAVING

Suppose that we want to account for those 30 orders
that were placed without a promotion code, as shown in
figure 12.9. Without a promotion code, these orders are
represented by a null value in the PromotionID column
of the orderheader table. Because these PromotionID
values are null, they were excluded from our query with
COUNT in section 12.1.2. But we can use GROUP BY to group
the orders logically by PromotionID because GROUP BY
includes null values:

SELECT PromotionID, COUNT(*) AS RowCount
FROM orderheader
GROUP BY PromotionID
ORDER BY PromotionID;

In this query, we’re not filtering the results. Filtering can
be a bit tricky when we use GROUP BY because the aggrega-
tions can’t be filtered in the WHERE clause. If we want to filter the results of our aggrega-
tions, we have to introduce another clause.

12.3 Filtering with HAVING
The HAVING clause is the partner clause to GROUP BY, in that it’s where we filter on the
aggregations we’re calculating. It’s used similarly to the WHERE clause. The main dif-
ference is that the WHERE clause filters rows, whereas the HAVING clause filters groups
of aggregated values. The good news is that we can apply any of the filtering methods
we’ve learned in the HAVING clause if necessary.

Let’s work through an example. Suppose that we want to find the PromotionCodes
used in orders and to see which ones were used at least three times. We could start by
writing a query to find all PromotionCodes used, joining the orderheader table to pro-
motion on PromotionID, grouping the values by PromotionCode, and then counting
the times a PromotionID was used in the orderheader table. We’ll alias the tables and
order the results for readability:

SELECT
 p.PromotionCode,
 COUNT(oh.PromotionID) AS OrdersWithPromotionCode
FROM orderheader oh
INNER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
GROUP BY p.PromotionCode
ORDER BY p.PromotionCode;

NOTE If you’ve executed all the queries in this chapter so far, you may wonder
what happened to the null values in the results of the preceding query. Well,
those null values for PromotionID exist in the orderheader table, but they

Figure 12.9 The PromotionID
values in the orderheader
table. This result includes null
values because GROUP BY
doesn’t exclude nulls.

126 chapter 12 Grouping data

don’t exist in the promotion table, And even if they did, an INNER JOIN would
exclude them, so the results include only matching values from both tables.

Now that we have our basic query to view
which PromotionCodes were used and how
often they were included in an order, we can
add the HAVING clause to filter on codes used
three or more times, with the results shown in
figure 12.10:

SELECT
 p.PromotionCode,
 COUNT(oh.PromotionID) AS OrdersWithPromotionCode
FROM orderheader oh
INNER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
GROUP BY p.PromotionCode
HAVING COUNT(oh.PromotionID) >= 3
ORDER BY p.PromotionCode;

Now that we’ve added our HAVING clause, we’ve filtered our results down to three rows.
If we want to, we can use the alias of our aggregation (OrdersWithPromotionCode) in
the HAVING clause like this:

SELECT
 p.PromotionCode AS PromoCode,
 COUNT(oh.PromotionID) AS OrdersWithPromotionCode
FROM orderheader oh
INNER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
GROUP BY p.PromotionCode
HAVING OrdersWithPromotionCode >= 3
ORDER BY p.PromotionCode;

The query should return the results shown in figure 12.10. This outcome may seem
contradictory because in earlier chapters, I noted that you can’t use a column alias
in the WHERE clause. The next section is probably a good time to talk about some-
thing that’s important in SQL and the queries we write: the logical order in which the
RDBMS reads our queries.

12.4 Logical query processing
Up to this point, you’ve learned about several clauses in SQL statements and the order
in which you must write them. At a simplified level, SQL clauses are ordered like this:

1 SELECT

2 FROM (including JOINs)

3 WHERE (including ANDs and ORs)

4 GROUP BY

Figure 12.10 The only PromotionCodes
that were used at least three times

 127The DISTINCT keyword

5 HAVING

6 ORDER BY

This order, however, isn’t the one in which the MySQL RDBMS reads your queries. It
reads them in this order:

1 FROM (including JOINs)

2 WHERE (including ANDs and ORs)

3 SELECT

4 GROUP BY

5 HAVING

6 ORDER BY

This order in which the RDBMS reads your queries is known as logical query processing,
which defines the logical order in which the RDBMS processes your query. This con-
cept is important to understand because it will not only help you troubleshoot your
queries when they return unexpected or incorrect results but also help you determine
when you can use table and column aliases.

The order of logical query processing may seem strange, but it’s optimal for the
RDBMS to follow in processing your query:

1 Evaluate the data in the tables your query will use in the FROM clause.

2 Filter the data to reduce the result set in the WHERE clause.

3 Gather the columns to be returned in the SELECT clause.

4 Group those columns in the GROUP BY clause for aggregation.

5 Filter the aggregations in the HAVING clause.

6 Sort the results in the ORDER BY clause.

Now you see why table aliases can be used throughout the query: they’re logically
established in the earliest processing of our query in the FROM clause. You also see why
you can use column aliases established in the SELECT clause in the HAVING and ORDER BY
clauses but not in the WHERE clause.

WARNING Although MySQL performs logical query processing as described in
this section, other RDBMSes may follow a different order by logically process-
ing the SELECT clause after GROUP BY and HAVING. For this reason, you shouldn’t
get into the habit of using column aliases in your HAVING clause.

12.5 The DISTINCT keyword
We have one more keyword to cover in this chapter: DISTINCT. This helpful keyword is
used frequently, but it’s a bit misunderstood.

We can use the DISTINCT keyword in a SELECT clause to avoid having repeating val-
ues. If we want to see the names of all titles ever ordered, as shown in figure 12.11, we
could write a query like this using DISTINCT:

128 chapter 12 Grouping data

SELECT DISTINCT t.TitleName
FROM title t
INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
ORDER BY t.TitleName;

Although the table contains 50 orders, some of which were
placed for more than one title, the query returns only one row
for each title. DISTINCT can be very useful for determining the
range of values in any table quickly, and I’m sure you’ll see it
used often in other people’s queries. So why is it covered in a
chapter about aggregation? When you use SELECT DISTINCT,
your RDBMS is doing an aggregation to return your distinct
values, and that aggregation is extra work. By using DISTINCT in the preceding query,
we’re essentially asking the RDBMS to process this query:

SELECT t.TitleName
FROM title t
INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
GROUP BY t.TitleName
ORDER BY t.TitleName;

Try it now
Run the two preceding queries with DISTINCT and GROUP BY, respectively, and notice
that they both produce the results shown in figure 12.11.

Now that you’re aware of what DISTINCT does, try to limit its use in your SQL, especially
with large data sets. Aggregating data isn’t problematic when you’re querying the small
tables in this book’s example database, but it can be difficult when you’re querying
larger tables elsewhere.

TIP One of the most common misuses of DISTINCT is to eliminate duplicates
from query results when multiple data sets are joined. If you’re tempted to
use DISTINCT to remove duplicates from the results of a query with multiple
joins, take a second look at the join conditions to make sure you’re joining on
the correct columns. Incorrect joins often cause unwanted duplicate rows in a
result set.

12.6 Lab
1 In this chapter, I noted that you can’t use certain functions with certain data

types. To better understand this limitation, select the SUM of the OrderDate in the
orderheader, and see what the result is.

2 Why won’t this query work?

Figure 12.11 The
distinct title names
included in orders in
the orderitem table

 129Lab answers

SELECT
 p.PromotionCode AS PromoCode,
 COUNT(oh.PromotionID) AS OrdersWithPromotionCode
FROM orderheader oh
INNER JOIN promotion p
 ON oh.PromotionID = p.PromotionID
WHERE PromoCode = '2OFF2015'
GROUP BY p.PromotionCode
HAVING OrdersWithPromotionCode >= 3
ORDER BY p.PromotionCode;

3 Write a query to count the number of rows in the author table.

4 Write a query to select the minimum and maximum values of the publication
dates from the titles table.

5 In this chapter, you determined the total dollar value of all orders by using the
equation Quantity * ItemPrice on the orderitem table. Write a query using
GROUP BY to determine the average total dollar value for each individual order.
(Hint: you may need to use a subquery.)

12.7 Lab answers
1 You may have missed it, but in chapter 5, I noted that date and time values are

stored as numeric values that your RDBMS can interpret as dates and times.
Although it’s practically useless, the value you see here is the RDBMS trying to
make sense of using a SUM of date values.

2 The query fails because a column alias is used in the WHERE clause, and the logical
query processing order is to evaluate the WHERE clause before the SELECT clause.
For this reason, the RDBMS doesn’t know what PromoCode is when it evaluates
the WHERE clause because the alias is determined in the SELECT clause that is pro-
cessed later in the query.

3 To count the number of rows in a table, you can use COUNT(*):

SELECT COUNT(*)
FROM author;

4 To select the minimum and maximum publication dates, you can use the MIN and
MAX functions:

SELECT
 MIN(PublicationDate) AS FirstPublication,
 MAX(PublicationDate) AS LastPublication
FROM title;

5 You have a few ways to do this. The first way is to group the total value of all orders
as we did in section 12.2.1 and then select an average value of those order totals,
like this:

130 chapter 12 Grouping data

SELECT AVG(OrderTotals.OrderTotal)
FROM (
 SELECT OrderID, SUM(Quantity * ItemPrice) AS OrderTotal
 FROM orderitem
 GROUP BY OrderID
) OrderTotals;

131

13Using variables

We’ve written and executed a lot of SQL queries so far, and a good number of those
queries involved filtering the results on specific values. Through many examples,
we’ve seen how to filter on a particular order or title ID, customer name, or date
range, and every time, we’ve specified the literal value for filtering in our SQL. A
literal value is specific, such as the number 4 or the date 2020-10-06. Using literal
values is helpful for learning and practice, but when you use SQL outside this book,
you’ll need to write more flexible queries.

If you want to look at the total sales of a title for a given month, such as March
2021, you can write a query to do that now. But what if you want to run a similar query
for April or need total sales for a different title or a different range of dates? Do you
have to write a different query for each title and date range?

I assure you that you don’t. All you have to do is learn how to use variables. A
variable is a memory-based object that stores a value that, once defined, can be used
repeatedly throughout a query or in subsequent queries. More important, the
stored value can vary from one execution to another, which means that the value is
variable—hence, the name.

Considering the flexibility that variables provide, you’ll use them with great fre-
quency throughout your SQL. Let’s get started!

13.1 User-defined variables
Although there are different kinds of variables, the ones we’ll use in this chapter are
known as user-defined variables. The name is self-explanatory because the user (you or

132 chapter 13 Using variables

I) will define these variables, which means assigning them a name and a value. All these
variables start with the at sign (@), so when you see @ in SQL, you’re likely to be looking
at a variable.

Before we use any variable, we must declare it. Since chapter 2, we’ve verbally
declared our intentions in English to help us understand the syntax of queries, but
sometimes, we also need to declare things in our SQL. Let’s look at how to do that in
MySQL.

13.1.1 Declaring your first user-defined variable

Declaring a variable typically requires two pieces of information to start: the name of
the variable and the value of the variable. Suppose that we want to write a query to
filter on title name. We could start with a sensible variable name like @TitleName and
the value 'The Sum Also Rises'. We could make a straightforward verbal declaration:
“I would like to declare a variable named @TitleName, and I would like to assign it
the value of The Sum Also Rises.” The SQL used for this declaration is similar in logic,
using the new keyword SET:

SET @TitleName = 'The Sum Also Rises';

As with many things in SQL, the syntax is similar to the order of our verbal declaration.
We declare a variable by setting its name with SET and then assign a value using = and
a literal value.

NOTE When you use SET, you can use either = or := as the assignment opera-
tor. Which one you use is a matter of personal preference, although as you’ll
see later in the chapter, in at least one instance, you must use := for your vari-
able declaration.

You may have noticed that we didn’t specify what data type to use. That’s because
MySQL determines the data type based on the value we used. In our example, we used
a character string ('The Sum Also Rises') as the value of the variable, so our variable is
a string data type.

Other permissible data types for variables include integer, decimal, and float, which
are numeric data types. If the data for the variable doesn’t fit one of the permissible
types, the relational database management system (RDBMS) will convert the values to
a permissible data type. Date and time values, which we’ve used throughout this book,
are treated as strings.

WARNING This method of declaring variables in MySQL isn’t universal. When
you use a different RDBMS, such as SQL Server or PostgreSQL, you have to
declare a user-defined variable using the DECLARE keyword and also assign it a
specified data type.

If necessary, we can confirm the value of our variable at any time with a simple SELECT
statement, as shown in figure 13.1:

 133User-defined variables

SELECT @TitleName;

Although selecting a variable to confirm its value may seem
trivial, you’ll use this method quite a bit when you use vari-
ables. When you write a SQL query, this method is useful
for checking the values of a variable periodically; it’s also
helpful for troubleshooting complex SQL scripts that
aren’t returning the desired values.

13.1.2 Understanding rules for user-defined variables

I should note a few rules about using variables before we go any further. There aren’t
many rules, and they aren’t difficult to remember, but they’re crucial to using variables
correctly:

¡	The first character of a variable name must be @. Using @ in the variable name tells the
RDBMS you’re working with a variable.

¡	The remaining characters in a variable name must be alphabetic or numeric. As you can
see with the use of @, nonalphanumeric characters can have special meanings in
SQL. Use only letters and numbers in your variable names.

¡	Variable names can be no more than 64 characters. You want to use descriptive variable
names so that others who read your SQL can easily understand their purposes.
But if the name of any of your variables is anywhere near 64 characters, you’re
probably being a bit too descriptive.

¡	Variable names are not case-sensitive. If you declare a variable named @Variable, any
use of @VARIABLE, @variable, or @VaRiAbLe will refer to the same one.

¡	A user-defined variable can hold only a single value. You can’t include multiple values,
although you can change the value of a variable throughout your SQL if you so
desire.

¡	A user-defined variable exists only for the duration of the connection. Databases and
tables persist, which means that they exist until they’re explicitly removed. Unlike
those objects, variables don’t persist, so when you close MySQL Workbench or
any other application you use to connect to a database, any variables you’ve
declared no longer exist.

13.1.3 Using your first user-defined variable

With all those rules out of the way, we’re ready to put variables to use. Let’s write some
SQL to use a variable that helps us select the TitleID, TitleName, and PublicationDate
from the title table, with the results shown in figure 13.2:

SET @TitleName = 'The Sum Also Rises';
SELECT
 TitleID,
 TitleName,

Figure 13.1
The results of selecting
@TitleName, which shows
the value of the variable.
It also shows the variable
name in the header.

134 chapter 13 Using variables

 PublicationDate
FROM title
WHERE TitleName = @TitleName;

Now we have this bit of SQL, which
admittedly is rather short. Suppose that
we had much more SQL to execute for
a given title—perhaps to find the num-
ber of titles sold or the states of resi-
dence of customers who purchased the
title. Whatever the case, if we set and
filtered on a variable throughout the query as we did earlier, to query a different title,
we’d have to make the change in only one part of our SQL.

Here’s how that task looks in practice. Let’s change the variable to 'Pride and
Predicates' and execute our query again. The following query produces the results
shown in figure 13.3:

SET @TitleName = 'Pride and Predicates';
SELECT
 TitleID,
 TitleName,
 PublicationDate
FROM title
WHERE TitleName = @TitleName;

Again, this bit of SQL is simple, but
I hope it helps you see the power of
using variables to make your script
more flexible and reusable. Variables
are used in nearly every programming
language, and plenty of examples in
this chapter and subsequent chapters
show how to use them effectively.

Try it now
Declare a variable with a name of your choosing, and use it to select the TitleID, Title-
Name, and PublicationDate from the title table for any particular title.

13.2 Filtering with variables in FROM and HAVING clauses
Let’s look at some practical ways to use variables in SQL. Suppose that we want the date
of every order of any particular title. We can use a variable for this task, and in this case,
we’ll start with 'The Sum Also Rises'. With the table-joining logic we’ve used before,
we could write something like this (results shown in figure 13.4):

Figure 13.2 The TitleID, TitleName, and
PublicationDate from the title table for 'The Sum
Also Rises', as filtered using a user-defined
variable

Figure 13.3 The TitleID, TitleName, and
PublicationDate from the title table for 'Pride
and Predicates', as filtered using a user-defined
variable

 135Filtering with variables in FROM and HAVING clauses

SET @TitleName = 'The Sum Also Rises';

SELECT
 oh.OrderDate
FROM orderheader oh
INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
INNER JOIN title t
 ON oi.TitleID = t.TitleID
WHERE t.TitleName = @TitleName;

You can change that title name to any other valid title and
return the corresponding set of order dates. As you might
imagine, if your variable is set to a value that’s not included in
the title table, your result set would be zero rows.

Another common way to use variables is to find information
about orders on a particular day, week, month, or year. Let’s
find the names of all customers who placed orders for any titles
in November 2021, as shown in figure 13.5. In this case, we’ll use
two variables to represent the start and end dates of our range:

SET @DateStart = '2021-11-01',
 @DateEnd = '2021-11.30';

SELECT
 c.FirstName,
 c.LastName,
 oh.OrderDate
FROM customer c
INNER JOIN orderheader oh
 ON c.CustomerID = oh.CustomerID
WHERE oh.OrderDate BETWEEN @DateStart and @DateEnd;

Interestingly, we can put this filter in a differ-
ent part of the predicate. Instead of putting
the filter in the WHERE clause, we can make it
a condition in the JOIN. (This isn’t typically
how filtering is done in SQL, although you
may notice it in other people’s code.) Here’s
what the preceding query would look like
if we filtered on our variables in the FROM
clause as part of a JOIN condition:

SET
 @DateStart = '2021-11-01',
 @DateEnd = '2021-11-30';

SELECT
 c.FirstName,
 c.LastName,

Figure 13.4
The OrderDate for any
order that included the
title 'The Sum Also
Rises'

Figure 13.5 The FirstName and LastName
of any customer who placed an order in
November 2021, along with the OrderDate

136 chapter 13 Using variables

 oh.OrderDate
FROM customer c
INNER JOIN orderheader oh
 ON c.CustomerID = oh.CustomerID
 AND oh.OrderDate BETWEEN @DateStart and @DateEnd;

We can also use a variable to see how many titles
sold above a specific quantity. We can apply the
aggregation techniques we learned in chapter
12 here, with a HAVING clause as a filter that uses
a variable. Let’s get a list of all the TitleNames
that sold 10 or more copies, as shown in figure
13.6:

SET @MinimumQuantitySold = 10;

SELECT
 t.TitleName,
 SUM(oi.Quantity) AS TotalQuantitySold
FROM orderitem oi
INNER JOIN title t
 ON oi.TitleID = t.TitleID
GROUP BY t.TitleName
HAVING SUM(oi.Quantity) >= @MinimumQuantitySold;

The results show four titles that meet the threshold of at least 10 copies (Quantity)
sold. If we want to change the threshold of our filter to another value, all we need to do
is change the value of the @MinimumQuantitySold variable.

13.3 Assigning an unknown value to a variable
One useful aspect of variables allows us to create and use a variable even when we don’t
know the explicit value on which we want to filter. If I asked you the value of TitleID for
TitleName The Sum Also Rises, would you know it? Honestly, I wrote everything in this
database, and even I can’t recall that value.

Although we may not have memorized the TitleID values, we’ve used them countless
times in our queries because these values constitute the relationship between the order-
header and title tables.

13.3.1 Reviewing how a query works

Let’s take a moment to consider how TitleID is used in the first query in section 13.2
and how we can use one variable to collect the value for another variable. Here’s that
query, which looks for the order dates of the title The Sum Also Rises:

SET @TitleName = 'The Sum Also Rises';

SELECT
 oh.OrderDate

Figure 13.6 The TitleName and
TotalQuantitySold of all titles that sold
at least 10 copies

 137Assigning an unknown value to a variable

FROM orderheader oh
INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
INNER JOIN title t
 ON oi.TitleID = t.TitleID
WHERE t.TitleName = @TitleName;

Let’s walk through the joins in this table, starting at the bottom and working our way
up. Why do it this way? Your RDBMS will probably start finding your results by filtering
rows in the title table. Filtering typically means fewer rows to read, and fewer rows to
read means fewer rows to join with other tables, which is more efficient than reading
all the rows in all the tables, joining them, and then applying filtering.

In this query, we used the variable @TitleName to find any rows in the title table that
matched our query, which happens to be one row. Then we join that row to any related
rows to orderitem via the matching TitleID values, and we join to any related rows in
orderheader using the matching OrderID values in both tables. When we have related
values through all tables, we can select the values for OrderDate to determine when the
titles were ordered.

13.3.2 Assigning an unknown variable with SELECT

This query is a relatively simple one with a couple of joins. It’s important to note,
though, that joins require the RDBMS to do extra work because it has to read and relate
the data in different tables. Fortunately, we can reduce the number of joins in our query
in section 13.3.1 by creating a variable for the TitleID values because we know that only
one value in the title table matches the TitleName value for The Sum Also Rises.

We can find the value for TitleID, which is unknown, by declaring our variable a bit
differently. We’re going to use a SELECT statement instead of SET because we’re select-
ing a value from an existing table to use in our variable.

First, though, let’s take a step back. Suppose that we want to return the value of
TitleID instead of using it to assign a value to our @TitleID variable. We might write our
SQL this way, using a @TitleName variable for the name of the title:

SET @TitleName = 'The Sum Also Rises';

SELECT TitleID
FROM title
WHERE TitleName = @TitleName;

Try it now
I keep talking about this value, so execute this query to find the TitleID value for The Sum
Also Rises.

138 chapter 13 Using variables

We can use the logic from this query to assign the value of this
TitleID to a new @TitleID variable. Figure 13.7 shows the output
for the assigned value:

SET @TitleName = 'The Sum Also Rises';

SELECT @TitleID := TitleID
FROM title
WHERE TitleName = @TitleName;

The FROM and WHERE clauses are identical to those in the preceding
query, but the SELECT clause looks unlike anything we’ve done so
far. With the logic of SELECT @TitleId := TitleID, we can do two
things at the same time with our SELECT clause: select the TitleID
value and assign that value to our @TitleID variable.

Also notice that we used the := operator instead of = in our SQL. Earlier in this chap-
ter, I mentioned that you can use = or := when you assign a value to a variable using SET.
When you assign a value to a variable using SELECT in MySQL, however, you can use only
the := operator.

WARNING As I noted earlier for the SET keyword, this method of assigning an
unknown value to a variable is different in nearly every RDBMS. Although the
process is fundamentally similar, it’s important to know the correct syntax for
your RDBMS.

One other interesting side effect of assigning a value to a variable with SELECT is the
fact that the results are output to the Results panel. SELECT statements result in output
in MySQL, and in this case, the result shows the value that was assigned to the variable,
with the SQL used in the SELECT statement as the column header.

13.3.3 Considering performance with variables

Now that we’ve learned how to assign a value to a variable using SELECT, let’s see how
this looks with the overall query that was intended to find the order dates for The Sum
Also Rises (results shown in figure 13.8):

SET @TitleName = 'The Sum Also Rises';

SELECT @TitleID := TitleID
FROM title
WHERE TitleName = @TitleName;

SELECT
 oh.OrderDate
FROM orderheader oh
INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
WHERE oi.TitleID = @TitleID;

Figure 13.7
Selecting an
unknown value
for TitleID in @
TitleID will
result in output
that shows the
value that was
selected—in this
case, 108.

 139Assigning an unknown value to a variable

This latest query uses two variables but requires only one join
in the final statement instead of two. Although this query is still
relatively trivial in terms of work required of the RDBMS, in
queries against larger sets of data, reducing joins as we’ve done
here can offer significant improvements in performance.

NOTE If you look closely at the Results panel, you’ll see two
sets of results, with two separate tabs at the bottom of the
panel. Those shown in figure 13.8 are the results you wrote
your SQL to determine, but as you may have guessed, the
results in the “hidden” tab are the output from the first
SELECT where the variable value was assigned.

13.3.4 Troubleshooting considerations with variables

Consider a request to find the title, quantity, and price of the
first order in a particular year, such as 2021. To do this, first
we need to find the date of the first order in 2021; then, using
that value, we find the information about the order placed on
that date. Our database contains so few orders that there are no
more than one per day, which makes the task simpler. Let’s start
by determining the date of the first order in 2021, as shown in
figure 13.9.

I haven’t covered this topic yet, but we could use the SET
method to assign an unknown value to our variables instead of
SELECT. To do this, however, we’d have to use a kind of subquery,
like this:

SET @FirstOrderDate = (
 SELECT MIN(OrderDate)
 FROM orderheader
 WHERE OrderDate BETWEEN '2021-01-01' AND '2021-12-31');

SELECT @FirstOrderDate AS FirstOrderDate;

This query produces the correct result, but we can see the
value assigned to the variable only if we explicitly use a separate
SELECT statement. As we saw earlier, using SELECT instead of
SET to assign this value also shows us the value assigned to the
variable (figure 13.10):

SELECT @FirstOrderDate := MIN(OrderDate)
FROM orderheader
WHERE OrderDate BETWEEN '2021-01-01' AND '2021-12-31';

Whichever method you use is a matter of preference. This is
largely determined by whether you want the output to show

Figure 13.8
The OrderDate for any
order that includes
the title The Sum
Also Rises. This time,
we used the SELECT
keyword instead of
SET keyword to get
the results shown in
figure 13.4.

Figure 13.9
The OrderDate of the
first order placed in
2021, which is shown
only because of the
SELECT statement.
We’ll use this value
later to determine
more information
about the order
placed on that day.

Figure 13.10
The OrderDate of the
first order placed
in 2021, shown
without a second
SELECT statement.
The SQL used in the
SELECT statement
is the column
header.

140 chapter 13 Using variables

whether the correct value is being used because SET doesn’t show the value of a vari-
able by default, as SELECT does. As you write a query, it may be helpful to use the SELECT
method to verify that the values assigned to your variables are correct to prevent incor-
rect results. Seeing the values in the Results panel may give you more confidence in the
effectiveness of your SQL.

For now, let’s use the method with SELECT to
determine the first order of 2021 and to select
the title, quantity, and price of that order. The
following query returns the results shown in
figure 13.11:

SELECT @FirstOrderDate := MIN(OrderDate)
FROM orderheader
WHERE OrderDate BETWEEN '2021-01-01' AND '2021-12-31';

SELECT
 t.TitleName,
 oi.Quantity,
 oi.ItemPrice
FROM orderheader oh
INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
INNER JOIN title t
 ON oi.TitleID = t.TitleID
WHERE oh.OrderDate = @FirstOrderDate;

It’s good to have options for using variables in your SQL. Now you should have a bet-
ter understanding of the pros and cons of using SET or SELECT to assign value to your
user-defined variables.

13.4 Other notes about variables
Before we get to the lab exercises, we have a few more points about variables to
consider.

13.4.1 Assigning a literal value using SELECT

Although I didn’t cover this topic, we can use SELECT to assign a literal value instead of
SET. The choice is mostly a matter of preference, but we’ve seen throughout the chap-
ter that SELECT offers more options for working with FROM, WHERE, and other clauses.
We’d use this syntax to assign a date value, for example:

SELECT @SomeDate := '2021-11-30';

13.4.2 Assigning a value of NULL to a variable

Often, we want to start with a variable with a null value assigned to it and see later in
our SQL whether it gets another value assigned. The variable type doesn’t matter until

Figure 13.11 The TitleName, Quantity,
and ItemPrice of the items in the first
order placed in 2021

 141Lab

a value gets assigned, in which case the variable type will change to the data type of the
value. We can assign a null value to a variable with SET or SELECT, using either of the
following lines of SQL:

SET @NullVariableWithSET = NULL;

SELECT @NullVariableWithSELECT;

13.4.3 Changing the type of data used by a variable

In MySQL, variables can have different values assigned to them throughout your SQL.
As I just noted, the variable data type can change if you start with NULL but later assign
a string, integer, or other kind of value. There aren’t many use cases for changing the
data type of a variable, but if you want to, you can even assign different data types to a
variable throughout your SQL. In the following example, the first assigned value is a
number, and a string data type is assigned later:

SET @SomeVariable = 1;

SELECT @SomeVariable AS FirstValue;

SET @SomeVariable = 'The Sum Also Rises';

SELECT @SomeVariable AS SecondValue;

Although it’s possible to change a variable type throughout your SQL, doing so falls in
the category “Things You Can Do but Shouldn’t.” I note this option only in case you
make a mistake and accidentally reuse a variable more than once; you won’t get an
error message or warning that you’ve done so.

13.5 Lab

1 In this chapter, I noted that in MySQL you must use := when assigning a value
using SELECT. What happens if you use = instead?

2 I also noted that you can assign only a single value to a variable. What happens
if you execute the following query? Is a value assigned to the variable, and if so,
what is the value?

SELECT @TitleID := TitleID
FROM title;

3 Review the final query in section 13.3.4, and update it, using variables for the
start date and end date.

4 Write a query to find total sales dollars (in terms of Quantity times Price) for any
customer, with the customer’s FirstName and LastName as variables.

142 chapter 13 Using variables

13.6 Lab answers

1 If you use = instead of := to assign values to a variable in a SELECT statement, the
value of the variable will be null. The MySQL RDBMS uses = to test for equality, as
we’ve seen numerous times when using filters and joins. In the SELECT statement,
it determines that the two values are not equal because the variable has no value.
Remember: null is the absence of data.

2 The value is 108, although if you execute the query, you see all the values for
TitleID in the results. Because only one value can be assigned to the variable,
the final value is assigned. For this reason, be careful to select only a single value
when using this method to assign values to a variable.

3 You could use SQL this way to add more flexibility to this query, allowing for easy
changes at the top to examine different ranges of data:

SET
 @DateStart = '2021-01-01',
 @DateEnd = '2021-12-31';

SELECT @FirstOrderDate := MIN(OrderDate)
FROM orderheader
WHERE OrderDate BETWEEN @DateStart and @DateEnd;

SELECT
 t.TitleName,
 oi.Quantity,
 oi.ItemPrice
FROM orderheader oh
INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
INNER JOIN title t
 ON oi.TitleID = t.TitleID
WHERE oh.OrderDate = @FirstOrderDate;

4 You have a few ways to do this. Here’s one way:

SET @FirstName = 'Chris';
SET @LastName = 'Dixon';

SELECT @CustomerID := CustomerID
FROM Customer
WHERE FirstName = @FirstName
 AND LastName = @LastName;

SELECT
 @FirstName AS FirstName,
 @LastName AS LastName,
 SUM(oi.Quantity * oi.ItemPrice) AS TotalSalesDollars
FROM orderheader oh
INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
WHERE oh.CustomerID = @CustomerID;

143

14Querying with functions

Chapter 12 looked at a handful of functions—commands that perform some sort
of predefined calculation. We looked specifically at basic aggregate functions that
allow us to quickly calculate things like the sum of a range of values, as well as the
minimum, maximum, and average values for a given range.

This chapter examines even more functions that open more possibilities in SQL,
including those that allow us to select and filter specific string, date and time, and
other informational values. First, though, we’ll take a broader look at when we
should and shouldn’t use functions.

14.1 The problems with functions
Functions are incredibly useful for selecting specific parts of values, calculating val-
ues, and manipulating values in SQL. They’re like magic spells we can perform by
adding an extra word in our SQL. Functions, however, have two big problems that
we need to discuss before we use them throughout our queries.

14.1.1 Function commands vary for each RDBMS

The core keywords and clauses we’ve used up to now are universal for the most part.
When we write SQL using SELECT, FROM, WHERE, and GROUP BY, we know that the code
will work not only in MySQL but also in any relational database management system
(RDBMS) we use. Functions, however, are not universal, and many of the functions
we examine in this chapter have some variation for one or more RDBMSes.

144 chapter 14 Querying with functions

Now, that doesn’t mean the functions you’ll learn and practice are only for MySQL;
many of them work in another RDBMS. But it does mean that if you try to use them in
another RDBMS and encounter a syntax error, you’ll likely need to do a little research
to find out the correct keyword for that particular RDBMS. That said, I’ll do my best to
note these variations throughout this chapter because they can be obstacles to taking
your new SQL skills to another RDBMS.

14.1.2 Function commands can be inefficient

I noted at the end of chapter 12 that the DISTINCT keyword has to do extra work by
reading all the values in a range and returning the requested values without duplicates.
I noted that it should be used very carefully with large sets of data because you don’t
want to use server resources unnecessarily.

Depending on their use, nearly all the functions discussed in this chapter also need
to read all the values in a range. Although functions are incredibly useful and appear
to be shortcuts to achieving a desired output, we need to be mindful of their use with
large sets of data. Although using functions with a large data set can get us the correct
answers, functions may use more resources and therefore may not be the most efficient
way to use SQL.

Again, these warnings aren’t meant to discourage you from using functions. You just
need to be aware of their limitations and effects.

14.2 String functions
String functions allow us to select parts of string data, which we often have to do when
we need to present data in a way that differs from how it’s stored in the database. Exam-
ples of these situations are returning customer names in uppercase for a mailing list
and eliminating unnecessary leading or trailing spaces from a value.

14.2.1 Case functions

The first string function we’ll try is the UPPER function, which converts a string of char-
acters to uppercase characters. We’ll use it here to view only the customers in Califor-
nia, which are identified by the State value of CA and shown in figure 14.1. We’ll also
include the actual values stored for FirstName and LastName for comparison:

SELECT
 FirstName,
 LastName,
 UPPER(FirstName),
 UPPER(LastName)
FROM customer
WHERE State = 'CA';

The syntax for UPPER, as for most functions, is to call the function and then contain the
column name, variable, or other value where the function is applied inside parenthe-
ses. For this reason, you’ll often see functions with parentheses in their names, such as
UPPER().

 145String functions

Although you may have observed
that the third and fourth columns
in figure 14.1 are uppercase char-
acters, as expected, also notice the
names of the columns returned.
Those names are the columns as
they appear in our SELECT clause,
which will be the default name if
one is not assigned. Let’s run the query again, this time using column aliases of the
prefix Upper with assigned column names (results shown in figure 14.2):

SELECT
 FirstName,
 LastName,
 UPPER(FirstName) AS UpperFirstName,
 UPPER(LastName) AS UpperLastName
FROM customer
WHERE State = 'CA';

That result is more readable, and we could use similar logic with another function to
make all the characters in the columns lowercase. There are few reasons to present
values in lowercase, but if lowercase is required, this function is available. For this task,
we can use LOWER instead of UPPER (results shown in figure 14.3) with corresponding
column aliases:

SELECT
 FirstName,
 LastName,
 LOWER(FirstName) AS LowerFirstName,
 LOWER(LastName) AS LowerLastName
FROM customer
WHERE State = 'CA';

Figure 14.2 The first and last names of all customers
in California, first as they exist in the customer table
and then as all uppercase when we use the UPPER
function with defined column names

14.2.2 Trim functions

The other thing we want to try is removing leading or trailing spaces. We have a few
options for this task, with three separate functions: RTRIM, LTRIM, and TRIM. The RTRIM

Figure 14.1 The first and last names of all customers
in California, first as they exist in the customer table and
then in uppercase when we use the UPPER function

Figure 14.3 The first and last names of all customers
in California, first as they exist in the customer table
and then as all lowercase when we use the LOWER
function with defined column names.

146 chapter 14 Querying with functions

function removes all trailing spaces from a value—all spaces to the right of the last non-
space character. LTRIM removes all leading spaces from a value—all spaces to the left of
the first nonspace character. TRIM is the same as applying both LTRIM and RTRIM to a
value; it removes all leading and trailing spaces.

NOTE You could use two functions on the same value, such as SELECT
(RTRIM(LTRIM(SomeValue)). Make sure that your logical order is correct
because the innermost function will be executed first. You may encounter SQL
like this written by folks who lacked either the knowledge or ability to use the
TRIM function to remove both leading and trailing spaces.

Let’s try these functions using a variable with leading and trailing spaces. This example
may seem nonsensical, but I assure you that if you ever need to program an interface
for manual data entry, you’ll have to deal with leading and trailing spaces in the data.

Our variable will have three leading spaces and two trailing spaces. We’ll also assign
column names in our query (trimmed results shown in figure 14.4):

SET @Word = ' word ';
SELECT
 @Word AS WordAsEntered,
 LTRIM(@Word) AS WordLTRIM,
 RTRIM(@Word) AS WordRTRIM,
 TRIM(@Word) AS WordTRIM;

Admittedly, we can’t see the spaces in
the results too well just by looking at
them. But we can use another func-
tion to verify that leading and trailing
spaces have been removed: LENGTH.
This function returns the length in
terms of the number of characters,
including spaces, for each value.

We’ll have to do a little math for the next example, but only basic addition and sub-
traction. The word word has four characters, and if we add three leading spaces and two
trailing spaces, the length of our word as entered should be nine characters.

If we trim the three left (leading) spaces, our LTRIM value should be 6 (9 minus 3). If
we trim the two right (trailing) spaces, our RTRIM value should be 7 (9 minus 2). Finally,
if we trim all leading and trailing spaces, we should have a length of four characters for
the word word.

Test this with SQL and the LENGTH function by wrapping it around the functions
you used for trimming spaces. That’s right—you can execute a function from inside
another function. When you do this, though, remember that the innermost function
always gets executed first. Figure 14.5 shows the results of this code:

SET @Word = ' word ';
SELECT

Figure 14.4 The results of selecting the character
string ' word ', which has three leading spaces
and two trailing spaces, with the three trim-related
functions. LTRIM removes the left leading spaces,
RTRIM removes the right trailing spaces, and TRIM
removes both leading and trailing spaces.

 147Date and time functions

 LENGTH(@Word) AS WordAsEnteredLength,
 LENGTH(LTRIM(@Word)) AS WordLTRIMLength,
 LENGTH(RTRIM(@Word)) AS WordRTRIMLength,
 LENGTH(TRIM(@Word)) AS WordTRIMLength;

Figure 14.5 The results of selecting the length of the strings with the LENGTH function
after applying different trim functions to the string 'word'. Because the removal of leading
and trailing spaces can be difficult to see, we can use LENGTH to validate the results.

Again, trimming data this way is important because you generally don’t want to store or
display data with leading spaces. Those spaces not only take up unnecessary space in your
database but also can cause problems with common tasks such as filtering and sorting.

NOTE SQL Server has no LENGTH function. Instead, use LEN to find the length
of a string.

14.2.3 Other string functions

Although each RDBMS has its own set of string functions, some functions are so com-
monly used that they’re available in nearly every RDBMS. Table 14.1 lists a few of those
functions.

Table 14.1 Common string functions and definitions available in most RDBMSes

Function name Description

LEFT Gets a specified number of leftmost characters from a string

REPLACE Searches and replaces a substring of values in a string

RIGHT Gets a specified number of rightmost characters from a string

SUBSTRING Gets a substring starting from a specified position with a specific length

14.3 Date and time functions
We can not only parse string values with functions but also do the same with date and
time values. Most RDBMSes have appropriately named functions for determining the
YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND, which can be useful when we want to find
information based on one or more parts of the date.

14.3.1 Date functions that return numeric values

Suppose that we want to find a list of all order IDs from 2015 like the one shown in
figure 14.6. We could use the YEAR function in a query that checks the year of all orders

148 chapter 14 Querying with functions

in the orderheader table and returns the requested data. Let’s include OrderID and
OrderDate in our query:

SELECT
 OrderID,
 OrderDate
FROM orderheader
WHERE YEAR(OrderDate) = 2015;

You could do the same thing with one of the other six
functions related to date and time. I’m sure you’re
already thinking about how to use variables in this kind
of search to add even more flexibility for filtering. Or
maybe you’re starting to consider that you could also use
the functions to select parts of a date and time value.

Let’s use all these functions on the OrderDate of the
first order. That order has an OrderID of 1001 (results
shown in figure 14.7):

SELECT
 OrderDate,
 YEAR(OrderDate),
 MONTH(OrderDate),
 DAY(OrderDate),
 HOUR(OrderDate),
 MINUTE(OrderDate),
 SECOND(OrderDate)
FROM orderheader
WHERE OrderID = 1001;

Figure 14.7 The results of all the date and time parts of the OrderDate of the first order in the orderheader table

These functions may not seem helpful now, but chapter 15 suggests some practical
ways to use date and time parts to determine the results of various calculations. Also,
these functions aren’t the only date and time functions. Section 14.3.2 discusses two
others that may interest you.

14.3.2 Date functions that return string values

The DAYNAME and MONTHNAME functions give you a little more information about date
values by returning string values for the names of the month and day of a given date.
Although the month may seem obvious if you know the numeric value, it’s highly
unlikely that you’ll remember the name of the day of the week on which the order was
placed. Modify the preceding query to use these functions so you can find out (results
shown in figure 14.8):

Figure 14.6 The results of all
OrderIDs and OrderDates from
orders placed in 2015. We
got these results by using the
YEAR function.

 149Informational functions

SELECT
 OrderDate,
 YEAR(OrderDate),
 MONTHNAME(OrderDate),
 DAY(OrderDate),
 DAYNAME(OrderDate)
FROM orderheader
WHERE OrderID = 1001;

Figure 14.8 The results of using the MONTHNAME and DAYNAME to determine the names of the month
and day of the first order in the orderheader table

TIP Remember these functions when you have to compile reports that need a
date time value formatted a certain way or the name of the month or day specified.

14.3.3 Other date and time functions

Table 14.2 lists some common date and time functions that are available in nearly every
RDBMS.

Table 14.2 Common date and time functions available in most RDBMSes

Function name What It Gets

DATE Only the date from a date and time value

DAYOFWEEK The numeric day of the week for a date value

DAYOFYEAR The numeric day of the year for a date value

LAST_DAY The last date of the month for a date value

QUARTER The quarter of the year for a date value

TIME Only the time from a date and time value

WEEKOFYEAR The numeric week of the year for a date value

As you can imagine, these functions have many potential uses for finding information
about date and time values stored in a database. But what if you need to find informa-
tion about right now, such as the who, where, and when of a query? Fortunately, func-
tions are available to answer these questions.

14.4 Informational functions
Each RDBMS has its own set of ways to answer the who, where, and when of a query,
although some common functions are typically used. Let’s start with the when, as in
“When does a query occur?”

150 chapter 14 Querying with functions

14.4.1 Date and time information

To determine when “right now” is, you commonly use the function CURRENT_
TIMESTAMP. This function grabs the current time on the server where your database
is located, which in this case is most likely the computer you’re using for your local
installation of the sqlnovel database. The format of the date and time will be similar to
what you’ve seen for the date and time values so far, in the format [year-month-day
hour:minute:second].

Note that when you use CURRENT_TIMESTAMP, you still need to use parentheses as you
would with any function, even though you don’t pass a value:

SELECT CURRENT_TIMESTAMP() AS RightNow;

I’m not going to show you the results because my results will be different from yours,
and your results will be different every time you execute this function.

Try it now
Determine the current time on your database server, using the CURRENT_TIMESTAMP
function.

This function isn’t the only one related to the current time. If you need only the day or
the time, most RDBMSes have the CURRENT_DATE and CURRENT_TIME functions as well.
You can try these functions with a query like this one:

SELECT
 CURRENT_DATE() AS CurrentDate,
 CURRENT_TIME() AS CurrentTime;

Because CURRENT_TIMESTAMP is a bit longer than most function names, many RDBMSes
have another function that does the same thing with fewer letters. In MySQL, this
function is NOW. You can use the following SQL to confirm this fact and see that both
functions return the same value:

SELECT
 CURRENT_TIMESTAMP() AS RightNow,
 NOW() AS AlsoRightNow;

One last thing to note about these functions is that you can use them with other func-
tions covered in this book. If you need to return the name of today’s day of the week,
for example, you could determine it with a query like this:

SELECT DAYNAME(NOW()) AS CurrentDayOfWeek;

 151Lab

14.4.2 Connection information

Now let’s move on to a final set of functions that tell you who and
where you are. Although you’re working with only one database
throughout this book, in professional experience, you’re likely to
connect to multiple databases at various times to query different
data. If you’re ever uncertain about which database you’re con-
nected to, you can identify it with the DATABASE function (result
shown in figure 14.9):

SELECT DATABASE();

Also, you may use more than one login to connect to a database. This can happen
when you change between your personal login to another used by a specific applica-
tion or report system, often for testing. You can determine the username being used by
your connection with the CURRENT_USER function:

SELECT CURRENT_USER();

NOTE MySQL has both the USER and CURRENT_USER functions, both of which
return information about the username. Most RDBMSes include CURRENT_
USER but not USER.

Finally, as I noted in the installation directions in chapter 1, the MySQL database
engine gets periodic updates that are represented in the version number. When you’re
connecting to a database, the version number is rarely obvious. If you want to see the
current version number, use the VERSION function:

SELECT VERSION();

The version is returned as a string of three numbers separated by periods; the first
number is the main version. For the exercises in this book, you should be using version
8 or later.

That should be enough new functions for now. In chapter 15, you’ll discover even
more functions that allow you to manipulate values and perform calculations in many
practical ways.

14.5 Lab
1 I noted that most functions take a parameter of some kind, but I didn’t use

any parameters with CURRENT_TIMESTAMP. What happens if you pass a value to
CURRENT_TIMESTAMP, such as the number 2?

2 Using the date functions discussed in this chapter, how can you determine a
count of orders that were placed on a Monday?

Figure 14.9
The results of
selecting the
current database
used by the
connection,
which is the
sqlnovel
database

152 chapter 14 Querying with functions

3 What two variables can you use to determine the longest title name in the title
table? How can you write a query to determine this name?

14.6 Lab answers
1 The CURRENT_TIMESTAMP function accepts integers as parameters; they determine

the precision used in the date and time value returned. Adding 2 also return mil-
liseconds of the date and time:

SELECT CURRENT_TIMESTAMP(2);

2 You can use the DAYNAME function, which allows you to filter rows in the order-
header table with an order date on a Monday:

SELECT COUNT(OrderID) AS MondayOrders
FROM orderheader
WHERE DAYNAME(OrderDate) = 'Monday';

3 You can use the MAX and LENGTH functions to determine the longest title name in
the title table:

SELECT MAX(LENGTH(titlename))
FROM title;

The next part may be a bit more challenging because it involves a subquery. You
can filter on titles with the length determined by the preceding query by using a
subquery in the predicate to determine the name of the longest title with a length
matching the MAX length:

SELECT TitleName
FROM title
WHERE LENGTH(TitleName) =
 (SELECT MAX(LENGTH(TitleName))
 FROM title);

153

15Combining or calculating
values with functions

Chapter 14 looked at several functions that allow us to return parts of data. This
chapter looks at a few more functions that let you combine values in different ways
and even perform calculations. Depending on the nature of the data you’re working
with, I’m sure you’ll find some functions in this chapter that you’ll use frequently.
If you work with address data, for example, how can you combine all the columns
for street, city, and more into a single column? Or if you work with financial reports,
how can you make all your calculations show the desired precision of currency?

This chapter looks at these scenarios and more. We’ll start with using functions to
combine values.

15.1 Combining string values
I haven’t discussed this topic yet, but you can use SQL to perform
basic calculations, such as addition. Here’s an example of basic
addition (result shown in figure 15.1):

SELECT 1 + 1;

Being able to perform addition is useful if you’re working exclu-
sively with numeric data, but what if you need to combine string
values? Unfortunately, as you can see in figure 15.2, using the plus sign (+) doesn’t
allow you to combine string values to get a desired result:

Figure 15.1
The results of
calculating
1+1 using SQL

154 chapter 15 Combining or calculating values with functions

SELECT 'I' + ' ' + 'love' + ' ' + 'books!';

Instead of getting the result “I love books!,” we get a result of
0. This result indicates that the calculation couldn’t be com-
pleted because MySQL doesn’t know how to “add” words
together mathematically.

NOTE You can use the plus sign to combine strings in SQL
Server, but this approach won’t work in most relational data-
base management systems (RDBMSes).

A specific verb describes what we’re trying to do here by combining two or more
string values to form a single value. That verb is concatenate, and it’s important to know
because the function we’ll use to concatenate our string values is CONCAT.

15.1.1 CONCAT

If we want to concatenate string values, we can use the
CONCAT function to combine multiple values by specifying
the list of values separated with commas. For the preced-
ing query, we’d use this function as follows and get the
result shown in figure 15.3:

SELECT CONCAT('I', ' ', 'love', ' ', 'books!');

This example may seem a bit silly, but as you’ll soon see,
this function is powerful. String values don’t exist only in
literal values like the ones we used in that query, of course. They also exist in the col-
umns of tables or in variables. We can combine any of these string values with CONCAT
just as easily. Let’s create a variable for a title review and concatenate it with all the title
names in the title table (results shown in figure 15.4):

SET @Review = ' is a great book!';
SELECT CONCAT(TitleName, @Review) AS TitleReview
FROM title;

We can even use CONCAT with numeric or date
data types. When we do so, however, we need
to be aware that all values will be converted
to string data types to concatenate values with
different data types. This operation sometimes
causes unexpected results in the sorting of
concatenations that involve numeric or date
values.

To demonstrate, let’s combine the Price and
TitleName values in the title table as shown in

Figure 15.2 The
results of combining
string values with the
plus operator, which
doesn’t combine all
the values into a string

Figure 15.3 The results of
using the CONCAT function
to create a single string
value from multiple string
values to form the “I love
books!” output

Figure 15.4 The results of concatenating
the values of the TitleName column in the
title table with a string variable to form a
single column of output

 155Combining string values

figure 15.5. We’ll separate the values with spaces for readabil-
ity. We want to sort the output from lowest values to highest,
so we’ll specify ascending order with ASC for emphasis:

SELECT CONCAT(Price, ' ', TitleName) AS PriceAndTitle
FROM title
ORDER BY PriceAndTitle ASC;

What happened here? Numerically, the values 10.95 and
12.95 should be at the end of ascending order, but here,
they appear at the beginning. This occurs because these
numeric values had to be converted to string values for
the concatenation, and they’re sorted by the order of the
characters. In this case, the first character in these concat-
enated values is 1, which ordinally comes before the first
characters of the other values, which are 7, 8, and 9.

We can get the desired sorting in our output by using
ORDER BY with the specific column we want to sort on, which
in this case is Price. Even though the Price column by itself
isn’t in the result set, we can use it when sorting data, as the
resulting rows show (figure 15.6):

SELECT CONCAT(Price, ' ', TitleName) AS
PriceAndTitle

FROM title
ORDER BY Price;

In case you’ve forgotten, I talked about this concept in
chapter 4. To reiterate, just because a column isn’t in the
output doesn’t mean you can’t sort by that column in the
ORDER BY clause. You can sort by any value or combination of values in the table that’s
in the FROM clause, provided that you aren’t aggregating with a GROUP BY clause. This
means your concatenated values can be ordered not only by price or title but also by
title ID or publication date.

Try it now
Use the preceding query to select Price and TitleName as a concatenated value, but add
'$' before the Price value to indicate the type of currency. If you’re still sorting by Price
rather than by the concatenated value, the order should still be in the expected ascend-
ing value. You can try sorting by TitleName or another column in the title table to change
the order of the results.

You may not need to concatenate values of different data types often, as you just did,
but if you work with customer data, you may need to produce output that concatenates

Figure 15.6 The results of
the concatenated values of
Price and TitleName with
a space to separate them,
sorted in ascending order
of Price

Figure 15.5 The results of
the concatenated values of
Price and TitleName with
a space to separate them,
sorted in ascending order of
the concatenated value

156 chapter 15 Combining or calculating values with functions

first and last names in a single column. This output could be used
in mailing lists, form emails, name badges, and so on.

As you might guess, concatenating first and last names is easy
to do with CONCAT. Let’s concatenate the values for FirstName and
LastName in the author table, separated with a space and aliased
as AuthorName (results shown in figure 15.7):

SELECT CONCAT(FirstName, ' ', LastName) AS AuthorName
FROM author;

15.1.2 CONCAT_WS

As useful as the CONCAT function is, if we need to concatenate
several values using the same separator, there may be an even
better function. Although not every RDMBS supports it, most
of them include a CONCAT_WS function to make concatenation
with a separator a bit easier. The CONCAT_WS function is similar
to CONCAT, with the exception that the first value provided is the
separator used between all other values. We could produce the
results shown in figure 15.7 with the following query, which uses
the CONCAT_WS function with a space as the first value like this:

SELECT CONCAT_WS(' ', FirstName, LastName) AS AuthorName
FROM author;

Using CONCAT_WS doesn’t make this particular SQL query any shorter. But if we had to
separate more than two columns with a space or some other separator, the CONCAT_WS
function is preferable to CONCAT because we need to specify the separator only once.

Because there happens to be a MiddleName column in the author table, let’s try
using CONCAT_WS to add it as well and concatenate each author’s full name (results
shown in figure 15.8):

SELECT CONCAT_WS(' ', FirstName, MiddleName, LastName) AS AuthorName
FROM author;

The CONCAT_WS function provides easy con-
catenation of all author names, which is
remarkable if you consider that some of the
middle names have null values. CONCAT_WS
automatically accounts for those nulls and
replaces them with empty strings when con-
catenating values, which CONCAT typically
doesn’t do.

With CONCAT, the nulls are not converted
to empty strings, which can be problematic.

Figure 15.7
The results of the
FirstName and
LastName columns
of the author table
concatenated into
a single value and
separated with a
space

Figure 15.8
The results of
using CONCAT_WS
to concatenate
the FirstName,
MiddleName, and
LastName of all
rows in the author
table

 157Combining string values

As discussed in chapter 7, null values represent the absence of data, so any time we con-
catenate another value that isn’t null to a null value, the result is always null.

Let’s look at this concept in practice. If we attempt to produce the same results as
those shown in figure 15.8 by using CONCAT, we’ll be disappointed by the results. As
figure 15.9 shows, any row with a null value for MiddleName will return a result of
NULL:

SELECT CONCAT(FirstName, ' ', MiddleName, ' ', LastName) AS AuthorName
FROM author;

15.1.3 COALESCE

If we must account for possible null values when concate-
nating with the CONCAT function or any other function that
doesn’t change null values, the SQL language offers an addi-
tional function we can use. The COALESCE function is sup-
ported by every RDBMS and can be used to handle null values
in concatenation functions. COALESCE takes a list of values
that are provided to the function (similarly to how we pro-
vided a list of values to CONCAT) and returns the first non-null
value from the list.

For the example shown in figure 15.10, we’ll use COALESCE
with the value for MiddleName as the first value in the list and
then an empty string for the second value. Because we know
that the empty string isn’t null, we can trust that COALESCE will
return non-null values for MiddleName or an empty string for
null values.

We’ll replace the MiddleName selection in the preceding query with the COALESCE
function as described to ensure that there are no null values in the results (figure 15.10):

SELECT CONCAT(
 FirstName, ' ', COALESCE(MiddleName, ''), ' ', LastName
) AS AuthorName
FROM author;

Although COALESCE solved the prob-
lems created by the null values for Mid-
dleName, if you look closely, you may
see that in those rows, we now have two
spaces between first and last names.
Nothing is inherently wrong with that
result, but in this case, using CONCAT_WS
returned better-formatted results.

Figure 15.9 The
results of using CONCAT
to concatenate the
FirstName, MiddleName,
and LastName of all rows
in the author table. The
rows with NULL results
are caused by null values
in MiddleName.

Figure 15.10
The results of using
CONCAT to concatenate
the FirstName,
MiddleName, and
LastName of all rows in
the author table. The
COALESCE function
replaced the null values
for MiddleName with
empty strings.

158 chapter 15 Combining or calculating values with functions

If you work with an RDBMS that doesn’t offer CONCAT_WS, and you need to concat-
enate values like these and change the double spaces to single spaces, you can. You
just need to use another common function that can convert a string of some values to
another value.

15.2 Converting values
Now that we’ve combined multiple values to create a new value, let’s look at a few more
functions we can use to change values.

15.2.1 REPLACE

We can use the REPLACE function to change the occurrence of any combination of one
or more characters within a string to some other combination. This combination is
known as a substring because it is part of the overall string being evaluated.

The REPLACE function takes three values as input, in this order: the string you’re
going to search, the substring you want to replace,
and the substring that will be the replacement.

Here’s a simple example. If we wanted to change
the way that the American word check is displayed to
the British version, cheque, we could replace the let-
ters ck in the word check with que, as shown in figure
15.11. We could write the following query using the
REPLACE function:

SELECT REPLACE('check', 'ck', 'que');

Returning to our problem of changing two spaces to one with our concatenated names
in section 15.1.3, we can add a REPLACE function to our query to replace any occur-
rence of a double space with a single space (results shown in figure 15.12):

SELECT REPLACE(
 CONCAT(
 FirstName, ' ', COALESCE(MiddleName, ''), ' ', LastName
)
 , ' ', ' ') AS AuthorName
FROM author;

To solve this particular problem, you
used three functions. As you grow in
your experience using SQL, this strategy
won’t be uncommon; every function per-
forms a specific task, and you may have
to think of ways like this to use more
than one function in a query creatively.

Figure 15.11 The results of
replacing ck in the string 'check'
with que to convert the word from
the American English to British
English

Figure 15.12
The results of the
concatenated author
names, replacing the
null values with an
empty string using
COALESCE and the
resulting double
spaces with a single
space using REPLACE

 159Converting values

15.2.2 CONVERT and CAST

Two functions are commonly used to convert values from one data type to another:
CAST and CONVERT. Both functions convert a value from one data type to a different
specified data type. We saw in chapter 13 that MySQL has some built-in functionality to
convert values to different data types automatically, but not every RDBMS has this func-
tionality. For many RDBMSes, you need to use one of these two functions to handle any
type of data conversion. Also, although many RDBMSes offer both of these functions,
some offer only one or the other. Fortunately, MySQL supports both, so you can prac-
tice some queries for each function.

Here’s a simple example. The current date values are stored with both date and time.
The time portion of this data isn’t helpful in our sqlnovel database because we hav-
en’t captured any data for hours, minutes, or seconds. All we have are zeros for all the
time values of PublicationDate. If we want to
display only the date part of PublicationDate
in the title table, we need to use one of these
functions.

Let’s look first at CONVERT, which requires
two values: the value we’re changing and
then the desired data type to which we want
to convert the data. In this example, we want
to convert the data type from DATETIME, as it
is stored in the title table, to DATE. Let’s select
both the original PublicationDate and our
converted value to see the difference (results
shown in figure 15.13):

SELECT
 PublicationDate,
 CONVERT(PublicationDate, DATE) AS PublicationDateNoTime
FROM title;

The data types to which we can change our values vary by RDBMS. But be aware that
converting string values such as names to a numeric or date value usually won’t give
you a useful result and may even return an error.

Try it now
Use the SQL in this section to convert the PublicationDate of the title table to DATE value;
then try converting the TitleName to a DATE value as well. In MySQL, you should get a null
value for the converted TitleName values because a string can’t be converted to a valid date.

The CAST function is similar to CONVERT but has slightly different syntax. Instead of
passing two separate values to the function, we pass a kind of phrase that uses the word
AS instead of a comma. Here’s how we’d use CAST for the preceding example:

Figure 15.13 The results of selecting
PublicationDate from the title table and
converting it to remove the time portion of
the value

160 chapter 15 Combining or calculating values with functions

SELECT
 PublicationDate,
 CAST(PublicationDate AS DATE) AS PublicationDateNoTime
FROM title;

Executing this query returns the same results as those shown in figure 15.13.
Why would you use one function instead of the other? Aside from personal prefer-

ences, you’re likely to prefer CAST because it’s considered to be a standard function of
SQL; CONVERT is not. For this reason, you’re much more likely to see CAST included in
the list of functions for a given RDBMS, which means that SQL written for one RDBMS
that includes CAST is more likely to be usable in another RDBMS.

NOTE Although these two functions effectively do the same thing, the CON-
VERT function often has additional functionality that allows you to pass a third
value for formatting the output. Check the documentation of your RDBMS to
see whether CONVERT is supported and has additional options.

15.3 Numeric calculations with functions
In chapter 12, we discovered aggregate functions such as MIN, MAX, AVG, and SUM. These
aggregate functions are types of numeric functions, which can be applied to numeric
values for various calculations.

Many other numeric functions are available, but most of them perform specific
mathematical calculations, such as the square root of a value, the logarithm, or the tan-
gent. For now, let’s focus on one mathematical function that most users can employ in
some practical cases.

The ROUND function provides an easy way to solve common problems in which a value
needs to be rounded with fewer decimal places—to convert decimal values of currency
to integer values for simplicity, for example. Most businesses wouldn’t publicly pro-
claim, for example, that they sold $1,000,000.32 in merchandise. Instead, they’d round
the number to $1,000,000.

Although the sqlnovel database doesn’t contain $1 million in sales, we can still use
ROUND to produce the total sales in whole dollars for a given year without cents (frac-
tions of a dollar). Let’s see how we’d use the ROUND function to calculate the integer
value for total sales value for all orders. Chapter 12 made a calculation on this very
value by using the SUM function. Here, we’ll
add a second column that wraps around
that calculation, using the ROUND function.
Let’s select both the sum and the rounded
sum to show the difference (results shown
in figure 15.14):

SELECT
 SUM(Quantity * ItemPrice) AS TotalOrderValue,
 ROUND(SUM(Quantity * ItemPrice)) AS TotalOrderValueRounded
FROM orderitem;

Figure 15.14 The results of the total value
of all sales in dollars and cents, along with the
same value rounded to an integer

 161Numeric calculations with functions

Note that the rounding in this case made the value increase because anything equal to or
greater than .50 is rounded to a higher value, whereas any value less than .50 is rounded
to a lower value. We can easily prove this with a simple SELECT statement that rounds the
value 573.49 to a lower value.

Try it now
Execute SELECT ROUND(573.49); to verify that this value will be rounded down to 573.

One other thing to note about the ROUND function: it has two parameters. The first
parameter is for the number value, which we’ve used in this chapter. The second
parameter, however, is optional; it specifies the number of places beyond the decimal
point to which the number should be rounded. If a value for the second parameter
isn’t passed, it converts to an integer value (0 spaces beyond the decimal).

If you work with calculations involving currency, you’ll likely need to use ROUND
with both parameters. Suppose that you need to calculate the added sales tax for a
purchase of a title that costs $9.95. If the tax is 5%, you could calculate that amount
by multiplying $9.95 by .05. If you do, however, the resulting value for the tax value
will be more than two decimal places. Because customers can’t be charged fractions
of cents, you can pass a value of 2 to the
second parameter of ROUND to make the
tax value match the currency. Use the
following query to validate these results,
showing both the calculated tax and the
rounded tax (figure 15.15):

SELECT
 9.95 * .05 AS CalculatedTax,
 ROUND(9.95 * .05, 2) AS CalculatedTaxRounded

If you’re required to work with more complicated calculations, your RDBMS likely has
dozens of additional functions for mathematical equations. Table 15.1 lists some com-
mon mathematical functions that are available in nearly every RDBMS.

Table 15.1 Common mathematical functions available in most RDBMSes

Function name What it produces

ABS The absolute value of a number

CEIL The smallest integer not less than a number (rounding up)

FLOOR The largest integer not more than a number (rounding down)

MOD The remainder (modulo) of a number divided by another

SQRT The square root of a number

Figure 15.15 The results of using ROUND to
round 573.49 from two decimal places to one,
which rounds the value slightly higher

162 chapter 15 Combining or calculating values with functions

NOTE In SQL Server, the CEIL function is replaced by CEILING.

So far, we’ve spent every chapter looking at ways to use SQL to select data from tables
in a database and present the resulting output in different ways. In chapter 16, we’ll
start to look at ways to change data in tables through data manipulation.

15.4 Lab
1 In the author table, select a single column aliased as AuthorName for all author

first and last names, but in the format LastName, FirstName (such as Iannucci,
Jeff).

2 Write a query for which the output is a sentence that declares the Publication-
Date of the first title. The output can be something like “The first title was pub-
lished on 2001-01-30” except that you use the PublicationDate formatted with the
date, not the time.

3 It’s common practice to ignore articles like the word The when sorting titles
alphabetically. Write a query that returns the TitleName of all titles in the title
table sorted alphabetically in this manner.

15.5 Lab answers
1 You can use the CONCAT_WS function to format the names with a query like this:

SELECT CONCAT_WS(', ', LastName, FirstName) AS AuthorName
FROM author;

2 Depending on which function you prefer to use, you can achieve this output in
one of several ways. If you use CAST, your query might look like this:

SELECT CONCAT(
 'The first title was published on ', CAST(PublicationDate AS DATE),

'.'
) AS FirstPublicationDate
FROM title
WHERE TitleID = 101;

You could get the same output with CONVERT:

SELECT CONCAT(
 'The first title was published on ', CONVERT(PublicationDate, DATE),

'.'
) AS FirstPublicationDate
FROM title
WHERE TitleID = 101;

You could also use the DATE function, discussed in chapter 14:

SELECT CONCAT(
 'The first title was published on ', DATE(PublicationDate), '.'

 163Lab answers

) AS FirstPublicationDate
FROM title
WHERE TitleID = 101;

3 This one may be a bit tricky because it requires using the REPLACE function in the
ORDER BY clause, which you haven’t done yet. By doing this, you can replace the
word The in the TitleName with an empty string for sorting. Be sure to include
the space after the word The to achieve the correct sort order:

SELECT TitleName
FROM title
ORDER BY REPLACE(TitleName, 'The ', '');

164

16Inserting data

For 15 chapters, we’ve examined ways to read data using the SELECT statement. But
all that data we read using the SELECT statement had to get into the tables somehow,
so in this chapter, we’ll learn how to insert data.

Throughout this book, we’ve seen that the syntax of SQL is often like the English
language. When it comes to inserting rows of data, this similarity holds true because
the new keyword we’ll be using is INSERT. Let’s look at some ways to use INSERT to
add data to the tables in our database.

16.1 Inserting specific values
The first way to insert data is to use specific values. The main idea to keep in mind is
that when we insert data, we’re inserting a new row into an existing table.

Chapter 2 talked about rows, columns, and values. All tables in our relational data-
base management system (RDBMS) have rows of data, and each row has a specific set
of properties defined by the columns of the table. Each property in the columns is
represented by some value of a particular data type, sometimes using NULL to repre-
sent the absence of a value for a particular column.

I hope that by now, the preceding paragraph makes total sense to you, espe-
cially given all the SQL queries you’ve written so far. If anything about it is unclear, I
encourage you to review chapter 2 to solidify your understanding of rows, columns,
and values. If everything makes sense, you can proceed to inserting some data.

 165Inserting specific values

16.1.1 Inserting a new row

As noted, we’ll use INSERT as the keyword to insert data, and if we want to insert some
specific values, we’ll also use the keyword VALUES. For our first query, we’ll insert a new
row into the title table, but first, let’s look at the data in that table.

In chapter 3, I warned you about using SELECT *, but because this table is small, you
can use it to save yourself from typing all the column names in this ad hoc query. You’ll
use this logic a few times in this chapter to glance at the rows of data in tables (figure
16.1):

SELECT *
FROM title;

Figure 16.1 The results of all rows and columns in the title table

If we’re going to insert a new row into the table shown in figure 16.1, we need to have
values for all columns of data, and we need to use the correct data types. For readabil-
ity, our query will specify the columns in the order in which they appear in the table:
TitleID first, TitleName second, and so on.

Here’s the query we’ll use to insert a new row for the David Emptyfield title. We’ll
refer to this kind of query as an INSERT statement:

INSERT INTO title (
 TitleID,
 TitleName,
 Price,
 Advance,
 Royalty,
 PublicationDate
)
VALUES (
 109,
 'David Emptyfield',
 9.95,
 0.00,
 10.00,
 '2022-01-16'
);

166 chapter 16 Inserting data

In the preceding query, we’re adding the next sequential TitleID (109), the TitleName,
and the values for Price (9.95), Advance (0.00), Royalty (10.00), and PublicationDate
(2022-01-16). If we execute this query, we should see a success message in the Output
panel: 1 row(s) affected.

Try it now
Write and execute the preceding query. Typing all the column names of the title table may
seem like a pain, but remember that you can use the Shift key to select all the column
names in the Navigator panel and then drag them to your Query panel. If you don’t recall
how, see chapter 3 to refresh your memory.

Something else to notice about our query is that both the column names and the value
names are surrounded by parentheses. When we use parentheses, we define the order
of both the columns and values used by our INSERT statement.

Interestingly, we could just as easily have written the preceding query with a
different column order. The only consideration would be that we’d need to rear-
range the values in the same order in which the columns are specified in the INSERT
statement.

Here’s an example with the order of the columns reversed. If you executed the pre-
ceding INSERT statement, don’t execute this:

INSERT INTO title (
 PublicationDate,
 Royalty,
 Advance,
 Price,
 TitleName,
 TitleID
)
VALUES (
 '2022-01-16',
 10.00,
 0.00,
 9.95,
 'David Emptyfield',
 109
);

Why would you change the column order for an INSERT statement? Well, normally, you
wouldn’t; that could confuse anyone who might read your SQL statement. If you find
yourself inserting data into a table that has dozens or hundreds of columns, however,
your SQL might be more readable if you organize column names alphabetically in
your INSERT statement instead of in the order of the columns in the table. Apart from
that example, you’re probably better off ordering the column names in your INSERT
statement in the same order as the columns of the table.

 167Inserting specific values

16.1.2 Inserting multiple new rows

Another interesting thing about enclosing values in parentheses is that the parenthe-
ses indicate all the values used for inserting a single row, which means we can also
insert multiple rows if necessary. Just as we use a comma to indicate separate columns
and values in our INSERT statement, we can use a comma to indicate separate sets of
values to be inserted as rows. Here’s an example of inserting two more rows into the
title table using multiple values in the VALUES portion of our INSERT statement:

INSERT INTO title (
 TitleID,
 TitleName,
 Price,
 Advance,
 Royalty,
 PublicationDate
)
VALUES (
 110,
 'Red Badge of Cursors',
 7.95,
 0.00,
 15.00,
 '2022-03-29'
),
 (
 111,
 'Of Mice and Metadata',
 8.95,
 0.00,
 12.00,
 '2022-05-17'
);

This example notes only two additional rows, but there’s no defined limit to how many
rows you could insert into a table. Realistically, the only limitation is the amount of
storage space in your database, which is difficult to determine with any kind of general
SQL statement and thus is beyond the scope of this book. That said, unless you’re
inserting thousands or millions of rows, you probably don’t have to worry about stor-
age space.

NOTE Speaking of general SQL statements, as you review SQL in another
RDBMS, you may notice that someone else’s SQL omits the word INTO from
INSERT statements. That is, the SQL reads something like INSERT [table name]
VALUES (…). Omitting INTO is not optional in all RDBMSes, so I recommended
that you get into the habit of including it in your code so you don’t have to
worry about syntax errors if you work with multiple RDBMSes.

So far, all the INSERT statements in this chapter involve inserting an entire row or rows
of data. As you work with SQL, sometimes you’ll need to insert values for every column

168 chapter 16 Inserting data

but may be programmatically prevented from doing so. Let’s look at how we can han-
dle inserting a partial row.

16.1.3 Inserting a partial row

The term partial row may be confusing because I noted in chapter 2 that all rows in a
given table must include values for all columns. This statement is still true, but two con-
siderations allow us to insert a partial row of data.

The first consideration is when a table includes columns that allow null values. Let’s
look at the author table for an example (figure 16.2):

SELECT *
FROM author;

Figure 16.2 The results of all rows and columns in the author table

As we can see in figure 16.2, the MiddleName column allows null values because not
all authors have a middle name. Although this nullable column presented challenges
when we worked with functions and concatenation in chapter 15, it affords us the
option to ignore it when inserting rows.

If we want to insert a row with a value of NULL for MiddleName, we can ignore the
column in our INSERT statement. Doing this will result in a value of NULL by default.
Here’s an example:

INSERT INTO author (
 AuthorID,
 FirstName,
 LastName,
 PaymentMethod
)
VALUES (
 12,
 'Whitney',

 169Inserting specific values

 'Miller',
 'Cash'
);

We can execute this query without any error because the MiddleName column allows
a value of NULL and enters it as a default for our new row. If we execute the preceding
query and then select all the rows in the author table, we can verify this result (figure
16.3).

Figure 16.3 The results of all rows and columns in the author table, including
the new row in which AuthorID is 12, which has a value of NULL for MiddleName

Not entering a value in this query may seem lazy, but you’ll encounter tables in which
you want to insert rows that have null values for certain columns. One common exam-
ple is a table with columns for modification date and modification user to track when
data was changed and who changed it. As we insert new data, we want those columns
to be null to show that the data hasn’t been modified since it was initially added to the
table. Chapter 17 discusses modifying data in greater detail.

Getting back to entering partial rows, the second reason we may need to enter a par-
tial row of data is that there are default constraints on one or more columns on a table.
The architect of a table creates a default constraint to set a defined value for a column
when data is inserted, which means that data for one or more columns is automatically
populated instead of entered by our INSERT statement.

Let’s look at the author table again. Notice that the first column is AuthorID and that
it features an incremental sequence of numbers from 1 to 12. We need these numbers
to be unique for each row because they represent the key values used to relate to data in
other tables. (Chapter 8 talks about key values.)

Because these values need to be unique, database architects often put a default con-
straint on the first column. This constraint automatically populates that column with an

170 chapter 16 Inserting data

identity value that uniquely identifies each row. This ensures that you and I don’t acci-
dentally enter the same identity value for different rows in the author table. If we did
that, the relationships with data in any table using AuthorID would become ambiguous
because they’d have relationships with one or more author rows.

Our author table currently has no default constraint for automatically populating
the AuthorID column with a default value. We know this because we manually entered
a value of 12 for the row we inserted. If a default constraint for an identity value were in
place, we wouldn’t be allowed to enter a value for AuthorID. In that case, which often
occurs in database tables with ID values, we’d write our INSERT statement to omit the
AuthorID column, like this:

INSERT INTO author (
 FirstName,
 MiddleName,
 LastName,
 PaymentMethod
)
VALUES (
 'Whitney',
 NULL,
 'Miller',
 'Cash'
);

Again, the database isn’t set up with a default constraint on the author table, so don’t
execute this query. Just know that you’ll need to account for these kinds of columns
with partial inserts in many real-world databases.

16.1.4 A word of caution about omitting columns

You may see another kind of omission in the INSERT statement when you work with
someone else’s real-world SQL: the omission of the table columns in the INSERT INTO
portion of the statement. You could write an INSERT statement like this one, for exam-
ple, and execute it successfully:

INSERT INTO author
VALUES (
 12,
 'Whitney',
 NULL,
 'Miller',
 'Cash'
);

This approach may be tempting, but if you consider what I’ve discussed in this chapter,
you can already see why this option is dangerous:

¡	This technique works only if you have values for all the columns in the table and have all
the values in the correct order. If you have one value too many or one value too few,

 171Inserting a row with a query

the query will fail with an error. If you have the values in the wrong order, at best
you’ll have created a row with inaccurate data and at worst will encounter an
error. (An execution error may be preferable to inaccurate data because you’d
still have data integrity.)

¡	This kind of query starts failing if you change the underlying table. It’s not uncommon
to add columns to a table, and if you add a new column to the author table, this
query will no longer execute successfully because you have more columns than
values.

¡	The table could have default constraints that prevent you from entering values for certain
columns. If the table had any default constraints, an INSERT statement without
columns specified would fail to execute.

For all these reasons, you should always write INSERT statements that specify column
names. If you see any SQL that doesn’t, see whether you can rewrite it to include col-
umn names.

With that topic out of the way, let’s move on to more options for inserting data. So far,
we’ve used the VALUES keyword to insert rows of data, but we have other options. The
good news is that you already know them.

16.2 Inserting a row with a query
When we use VALUES as we've used it in our INSERT statements thus far, we’re telling the
RDBMS, “Hey, RDBMS, I have these values, and I want to insert them into this table.”
In both SQL and English, our statement has two parts: the location of the insertion
and the declaration of the values to be inserted.

To use a method instead of VALUES for our INSERT statement, we simply replace the
latter part with a SQL query that has columns selected in an order and data type that
match the columns of the table into which we’re inserting, as defined in the first part of
our query.

Because we’ve already inserted a new title (David Emptyfield) and a new author
(Whitney Miller), we can relate this title to this author
by using the titleauthor table. I haven’t talked about this
table yet, so let’s look at it with an ad hoc SELECT * query
(results shown in figure 16.4):

SELECT *
FROM titleauthor;

This table has three columns: TitleID, AuthorID, and
AuthorOrder. As you may guess, TitleID relates to the
TitleID column in the title table, and AuthorID relates
to the AuthorID column in the author table. Notice that
we don’t necessarily have unique values for either col-
umn in this table. This table represents a many-to-many

Figure 16.4 The results of
all rows and columns in the
titleauthor table

172 chapter 16 Inserting data

relationship because any title could have more than one author and any author could
have contributed to more than one title.

The third column is AuthorOrder, which refers to the order of the authors as dis-
played on the cover of a title. The value in this column is always 1 for one author, which
is what matters for the new row of data we’re going to enter.

Let’s start with a SELECT statement that allows us to query the required tables. Because
this data isn’t related yet, we can use subqueries as discussed in chapter 11:

SELECT
 (
 SELECT TitleID
 FROM title
 WHERE TitleName = 'David Emptyfield'
) AS TitleID,
 (
 SELECT AuthorID
 FROM author
 WHERE FirstName = 'Whitney'
 AND LastName = 'Miller'
) AS AuthorID;

NOTE In chapter 11, I noted that using subqueries in SELECT statements is
rarely the best idea, but in this INSERT statement, using a subquery makes sense
because it’s an easy way to add these values to the titleauthor table.

This query serves as the starting point for our insert. Note that although column aliases
are not required, they’ve been added for readability and to help us match the resulting
values to the columns in the titleauthor table.

Let’s add the necessary parts to make this query an INSERT statement, including add-
ing a value of 1 for the AuthorOrder column. Here’s what our final query will look like:

INSERT INTO titleauthor (
 TitleID,
 AuthorID,
 AuthorOrder
)
SELECT
 (
 SELECT TitleID
 FROM title
 WHERE TitleName = 'David Emptyfield'
) AS TitleID,
 (
 SELECT AuthorID
 FROM author
 WHERE FirstName = 'Whitney'
 AND LastName = 'Miller'
) AS AuthorID,
 1 AS AuthorOrder;

 173Inserting a row with variables

Again, the columns in the SELECT clause are aliased for readability. But the important
part is that we have the columns in both the INSERT and SELECT parts of the query in
matching order.

Try it now
If you haven’t already done so, execute the SQL that inserts David Emptyfield into the title
table (section 16.1.1) and Whitney Miller into the author table (section 16.1.3), followed
by the INSERT statement that relates them in the titleauthor table. You’ll use this data in
chapter 17.

16.3 Inserting a row with variables
Now let’s look at another way to insert data: using variables. In chapter 13, we worked
with many SELECT queries that used variables, which are highly desirable for any kind of
repeatable SQL we need to use. We can declare and use variables in an INSERT statement
that uses SELECT to make easily repeatable SQL that needs only the variables changed.
Here’s an example that we can use to add A Table of Two Cities to the title table:

SET
 @TitleID = 112,
 @TitleName = 'A Table of Two Cities',
 @Price = 9.95,
 @Advance = 0.00,
 @Royalty = 15.00,
 @PublicationDate = '2022-08-07';

INSERT INTO title (
 TitleID,
 TitleName,
 Price,
 Advance,
 Royalty,
 PublicationDate
)
VALUES (
 @TitleID,
 @TitleName,
 @Price,
 @Advance,
 @Royalty,
 @PublicationDate
);

This example is only one way to use variables to insert data. If you’ve read chapter 13,
I’m sure that you’re already thinking of other ways to use variables to add data to tables
in a database.

By learning how to add data with INSERT statements, you’ve started executing SQL
statements that are categorized as data manipulation. Data manipulation refers to the

174 chapter 16 Inserting data

process of changing data, and it applies not only to adding data but also to modifying
or even removing data. In chapter 17, you’ll expand your data-manipulation skills by
learning how to modify and remove data.

16.4 Lab

1 Will this SQL, which has different alias column names from the table column
names, execute successfully?

INSERT INTO titleauthor (
 TitleID,
 AuthorID,
 AuthorOrder
)
SELECT
 (
 SELECT TitleID
 FROM title
 WHERE TitleName = 'David Emptyfield'
) AS TID,
 (
 SELECT AuthorID
 FROM author
 WHERE FirstName = 'Whitney'
 AND LastName = 'Miller'
) AS AID,
 1 AS AO;

2 Will this SQL, with no table column names specified, execute successfully?

INSERT INTO author
VALUES (
 13,
 'Jeff',
 'Iannucci'
);

3 Insert a new row into the promotions table, using the following values:

¡	PromotionID—13

¡	PromotionCode—2OFF2022

¡	PromotionStartDate—May 1, 2022

¡	PromotionEndDate—May 15, 2022

4 Insert a new row into the customer table for Gianluca Rossi. The CustomerID
should be 21, but all other information will be the same as that of Mia Rossi,
whose CustomerID is 20. For this exercise, you should use SELECT instead of
VALUES for the insert.

 175Lab answers

16.5 Lab answers
1 Yes. The column names, whether or not they’re noted in the aliases in the SELECT

clause, don’t need to match the column names in the table where the data is
being inserted. What matters is that you have the same number of columns with
matching data types.

2 No. Execution of this query will result in an error message indicating that the
column count doesn’t match because the author table has four columns, and
this query is attempting to insert values for only three values. This result is one
reason why you should always specify the columns in the table into which the data
is being inserted.

3 Your code should look something like this:

INSERT INTO promotion (
 PromotionID,
 PromotionCode,
 PromotionStartDate,
 PromotionEndDate
)
VALUES (
 13,
 '2OFF2022',
 '2022-05-01 00:00:00',
 '2022-05-15 00:00:00'
);

4 Although you could specify all the values being inserted for the new row with lit-
eral values, you could also copy the existing values where CustomerID=20 except
CustomerID and FirstName, like this:

INSERT INTO customer (
 CustomerID,
 FirstName,
 LastName,
 Address,
 City,
 State,
 Zip,
 Country
)
SELECT
 21,
 'Gianluca',
 LastName,
 Address,
 City,
 State,
 Zip,
 Country
FROM customer
WHERE CustomerID = 20;

176

17Updating and
deleting data

Chapter 16 discussed inserting new rows of data into tables and contained our
first exercises for doing something with SQL other than reading data. The chap-
ter also briefly mentioned that the INSERT keyword is one of several used for data
manipulation.

This chapter examines two other ways of manipulating data: updating and delet-
ing. Because SQL is designed to be intuitive for English speakers, we’ll work with the
keywords UPDATE and DELETE, respectively.

17.1 Updating values
Updating data is a bit different from inserting data, in that we’re manipulating data
at the column level instead of the row level. Recall that tables have rows, and rows
have properties represented by columns. When we update data in SQL, we’re updat-
ing the values of those properties, so we’re making changes at the column level.

These changes may or may not include all columns in a given row, and they may
or may not involve updating the values of one or more columns of every row in the
table. The point is that we have many options for updating data in SQL. If this discus-
sion is confusing, some examples may help you understand the options.

17.1.1 Working with data manipulation in real time

Before we begin, I want to draw your attention to a feature of SQL and relational
databases that often catches people off guard. You may be accustomed to working

 177Updating values

with a word processor, a spreadsheet, or another application that contains some kind
of data and saves your changes only when you click a particular button or press a cer-
tain series of keys. In these applications, if you make a mistake, you can always go back
and undo the changes before you save them.

Unlike in those applications, any data manipulation you make in a relational data-
base happens in real time and is permanent. If you have an “oops” moment, you have
no way to undo the changes; they are committed instantly. This fact may seem alarming,
but it’s necessary to enable a relational database management system (RDBMS) to pro-
vide up-to-date data quickly and accurately to hundreds or thousands of users who are
connected to and continually querying a database.

WARNING It’s important to understand that every data change we’ll make
in this chapter will happen in real time. The RDBMS has no Save button or
keystroke.

Because these changes happen instantly and humans have a knack for making mis-
takes, the MySQL Workbench has a built-in safety feature called Safe Updates. Safe
Updates is enabled by default, and it reduces the chance of an accidental data change
that can affect every row in a table.

With Safe Updates enabled, for example, we can’t make any updates that don’t spec-
ify the key value of a table. Because our tables currently don’t have key values, we need
to disable this feature to make updates. If we don’t, our SQL statements in this chapter
will result in errors.

You have a few ways to disable this feature, but the most complete way is to choose Edit
> Preferences in the top-left corner of the MySQL Workbench. This command opens
the Workbench Preferences dialog box, shown in figure 17.1. Select SQL Editor in the
pane on the left side; then clear the Safe Updates check box in the main pane. After
clearing the check box, click OK to close the window, and then close and restart Work-
bench. Now that Safe Updates is disabled, we can begin (carefully) to update our data.

17.1.2 Requirements for updates

For our first example, we want to update the price of a single title, Pride and Predi-
cates, from $9.95 to $8.95. As in so many statements in SQL, let’s start with an English
verbal declaration: “I would like to update the price of Pride and Predicates to $8.95.”

This statement is a good starting point, and it’s close to what the SQL will be, but we
have to make a few changes to account for table and column names: “I would like to
update the price to $8.95 where the title name is Pride and Predicates.”

Our verbal statement is closer to the SQL. We have our filter (“where the title name is
Pride and Predicates”), but we need to mention the table that contains the data. We do
this by saying we want to update the table and then setting one or more column values
to some other value: “I would like to update the title table. I would like to set the price to
$8.95 where the title name is Pride and Predicates.”

This verbal statement is perfect. Let’s convert it to a SQL statement:

178 chapter 17 Updating and deleting data

UPDATE title
SET Price = 8.95
WHERE TitleName = 'Pride and Predicates';

We have one new keyword, UPDATE, and one we’ve used with variables, SET. We use
UPDATE to indicate the table in which data is to be updated, and we use SET to assign
new values much the same way that we did when assigning values to variables. This
UPDATE statement highlights the three requirements for any update and the order they
must be in to create a valid SQL statement:

1 The table to be updated, using UPDATE

2 The column name(s) and new values to be assigned, using SET

3 The filter condition to determine which rows are to be updated, using WHERE in
this case

Figure 17.1 Safe Updates disabled in the Workbench Preferences dialog box

 179Updating values

WARNING Although it’s technically not required, the WHERE clause is perhaps
the most critical. If you don’t write and execute the filtering condition, you’ll
update every row in the table. Because these changes are made in real time,
always take the utmost care to write and execute the filter to change only the
values in the intended rows.

17.1.3 Updating values in one or more columns

As you may have noticed in the second requirement for update statements, you can
update values in one or more columns. Much as you use commas to indicate multiple
columns in a SELECT statement, you can use commas to indicate two or more desired
updates in an UPDATE statement.

NOTE All values to be changed in an UPDATE statement must be intended for
the same table and meet the requirements of the filtering condition.

This example updates the Advance and Royalty values to 0 and 10, respectively, for the
title Pride and Predicates:

UPDATE title
SET Advance = 0.00,
 Royalty = 10.00
WHERE TitleName = 'Pride and Predicates';

Although we’re using the TitleName in our filtering condition, it’s more common to
use key values or some other unique identifier for UPDATE statements to ensure that
we’re updating the precise row or rows intended. Let’s change our UPDATE statement to
use the identifier TitleID, which for Pride and Predicates is 101:

UPDATE title
SET Advance = 0.00,
 Royalty = 10.00
WHERE TitleID = 101;

NOTE If you executed the preceding two statements, you noticed that both
of them succeeded but displayed different messages in the Output panel.
Whereas the former statement displays “1 row(s) affected” and “Changed: 1,”
the latter statement displays “0 row(s) affected” and “Changed: 0.” There was
nothing to change with the second UPDATE statement because the Advance and
Royalty values were already set to the intended values with the execution of the
first UPDATE statement.

We can also use variables to create repeatable code as we did in chapter 16 with INSERT
statements. In this example, we set all the values back to what they originally were for
Pride and Predicates, using TitleID as the filter condition:

180 chapter 17 Updating and deleting data

SET
 @TitleID = 101,
 @Price = 9.95,
 @Advance = 5000.00,
 @Royalty = 15.00;

UPDATE title
SET Price = @Price,
 Advance = @Advance,
 Royalty = @Royalty
WHERE TitleID = @TitleID;

Try it now
If you haven’t already done so, execute the UPDATE statements you’ve seen so far in this
chapter. Use a query such as SELECT * from title WHERE TitleID = 101; between the
statements to verify that the changes occurred.

We can make one other change with an update: remove a value. Recall that every col-
umn for every row of a table in an RDBMS must have some representation of a value,
so the only option we have to remove a value is to set it to NULL, which indicates the
absence of a value.

Not every column allows null values, but we know at least one column in our database
that does: the MiddleName column in the author table. If we want to set the Middle-
Name for the first author to NULL, we’d write an UPDATE statement like this:

UPDATE author
SET MiddleName = NULL
WHERE AuthorID = 1;

These are our options for updating values with a basic UPDATE statement. Next, let’s
look at how to use an UPDATE statement to query multiple tables as part of our filtering
condition.

17.1.4 Updating values with a multitable query

In chapter 8, I noted that a predicate is any part of a SQL statement that evaluates whether
something is true, false, or unknown. Since that chapter, we’ve used predicates for
filtering conditions, which included conditions in the FROM, WHERE, and HAVING clauses.

As you work with SQL, you’ll likely need to write an UPDATE statement that requires
filtering with a predicate that uses more than one table. This kind of SQL statement can
be tricky because we can update values in only one table in an UPDATE statement, and we
want to make sure that we do it correctly. We need a FROM clause to identify the filtering
conditions, and we need to put it in the correct place in our SQL statement.

Unfortunately, we can put this predicate in multiple places in an UPDATE state-
ment, depending on which RDBMS we’re using. Although many uses of keywords are

 181Updating values

standardized for all RDBMSes, no standard exists for updating values in a query with
multiple tables.

WARNING Although this section contains examples of updating values in some
popular RDBMSes other than MySQL, these examples are not comprehensive.
Be sure to check the documentation of the RDBMS you use to confirm the cor-
rect syntax for these kinds of UPDATE statements.

Suppose that we want to update the price of any titles by a particular author in our sql-
novel database in MySQL. We know the AuthorID, which is 12, but we don’t have the
TitleName or TitleID of any particular title. We also want to update the price to $8.95.
To complete this update, we need to join at least two tables.

As a refresher, the relationship between the title and author tables is established
through the titleauthor table. Rows are uniquely identified in the title table by TitleID
and in the author table by AuthorID. The titleauthor table contains both TitleID and
AuthorID columns in a many-to-many relationship because any author could write
more than one title and any title could have more than one author.

Before we dive into the UPDATE statement, let’s start with a SELECT query to see the
value we intend to update. If we want to write a query that shows the Price for any titles
by the author with the AuthorID of 12, we might write a query using joins in the FROM
clause like this:

SELECT title.Price
FROM title
INNER JOIN titleauthor
 ON title.TitleID = titleauthor.TitleID
INNER JOIN author
 ON titleauthor.AuthorID = author.AuthorID
WHERE author.AuthorID = 12;

This query returns the value we intend to change, but we can make it a bit more read-
able by using table aliases, as discussed in chapter 8. Let’s use some table aliases to
reduce the wordiness of our query:

SELECT t.Price
FROM title t
INNER JOIN titleauthor ta
 ON t.TitleID = ta.TitleID
INNER JOIN author a
 ON ta.AuthorID = a.AuthorID
WHERE a.AuthorID = 12;

There—that’s a bit easier to read. Savvy readers may also note that we don’t need the
author table in this query because the AuthorID value is also included in the title-
author table. We can make our query simpler by removing any reference to the author
table and filtering on AuthorID in the titleauthor table:

182 chapter 17 Updating and deleting data

SELECT t.Price
FROM title t
INNER JOIN titleauthor ta
 ON t.TitleID = ta.TitleID
WHERE ta.AuthorID = 12;

Now that we have the foundation of a SELECT statement, we can easily change it to our
desired UPDATE statement by removing the SELECT clause and replacing the FROM key-
word with UPDATE. Then, after the UPDATE, we can use SET to set the values before the
WHERE clause. Because we established table aliases in the preceding FROM clause, we can
use the same table aliases in our query to indicate which table in our query is having
data updated. Here’s what our UPDATE statement will look like:

UPDATE title t
INNER JOIN titleauthor ta
 ON t.TitleID = ta.TitleID
SET t.Price = 8.95
WHERE ta.AuthorID = 12;

This example may be a bit confusing because we split the predicate into two separate
parts of our query, with the joining of tables in the update before the SET and the rest
of the filtering after the SET in the WHERE clause. Again, this method of updating is spe-
cific to MySQL.

NOTE The following examples are for common RDBMSes other than MySQL.
These examples are provided to show differences and are not intended to be
executed in MySQL. If you attempt to execute them, they’ll result in failed
queries and error messages.

If our database used PostgreSQL, we’d still indicate the table to be updated and any
alias in the UPDATE portion of our query, but we’d use the FROM clause to join any addi-
tional tables. The following query works in PostgreSQL but not MySQL:

UPDATE title t
SET t.Price = 8.95
FROM titleauthor ta
WHERE t.TitleID = ta.TitleID
 AND ta.AuthorID = 12;

If our database was in a SQL Server instance, the logic might make a bit more sense
compared with the SELECT query. In SQL Server, we’d simply replace the SELECT with
the UPDATE and SET parts and leave the FROM and WHERE clauses unchanged. The follow-
ing query works in SQL Server but not in MySQL:

UPDATE title t
SET t.Price = 8.95
FROM title t
INNER JOIN titleauthor ta

 183Deleting rows

 ON t.TitleID = ta.TitleID
WHERE ta.AuthorID = 12;

The point is that although you can use joins for filtering in an UPDATE statement, each
RDBMS has its own syntax for these kinds of queries. Unfortunately, this example is
one of those rare parts of learning SQL that require you to venture beyond this book to
learn the syntax of the RDBMS you’re using.

17.2 Deleting rows
When we delete data using SQL, we’re effectively doing the opposite of what an INSERT
statement does. Whereas INSERT adds one or more rows to a table, DELETE removes
one or more rows. Also, as with INSERT and UPDATE statements, we can change data in
only one table per DELETE statement.

17.2.1 Deleting one or more rows

As we’ve done so many times, let’s start with a verbal declaration. Suppose that we want
to delete the row from the title table in which TitleID = 110. We might start with a verbal
declaration like this: “I would like to delete any rows from the title table where the TitleID
is 110.” Our SQL statement is very close to this statement, using a new keyword, DELETE:

DELETE
FROM title
WHERE TitleID = 110;

As with INSERT and UPDATE statements, we’re starting our statement with a data-
manipulation keyword, which in this case is DELETE. Next, we identify the table from
which we intend to delete data. Finally, we indicate the filtering to be used so that we
delete only the intended rows.

WARNING As with UPDATE statements, the WHERE clause isn’t required but is
perhaps the most critical part of our query. If you don’t write and execute this
filtering condition, you’ll delete every row in the table. As you can imagine, this
result can be catastrophic. Because these changes occur in real time, always take
the utmost care to write and execute the filter to delete only the intended rows.

We can also use variables, of course, to make repeatable SQL statements for a query
like this example. Here’s how we’d do this for the preceding query:

SET @TitleID = 110;

DELETE
FROM title
WHERE TitleID = @TitleID;

TIP Some RDBMSes allow the omission of the FROM keyword in DELETE state-
ments like these, but you should use it anyway. Although it’s best to reduce

184 chapter 17 Updating and deleting data

the wordiness of queries whenever possible, omitting one word doesn’t reduce
wordiness significantly. Moreover, if you migrate your query from one RDBMS
to another later, omitting the word FROM could result in a query that doesn’t
work.

17.2.2 Deleting a row with a multitable query

As discussed in section 17.1.4, the syntax for an UPDATE statement that joins multiple
tables in the predicate varies depending on the RDBMS you’re using. Unfortunately,
the syntax for a DELETE statement can also vary from one RDBMS to another. The good
news is that the syntax doesn’t vary quite as much because MySQL, SQL Server, and
MariaDB have the same syntax.

Even better news: this syntax is remarkably similar to a SELECT statement. In section
17.1.4, we created this SELECT statement before writing SQL for an UPDATE statement
for a title that related to AuthorID 12:

SELECT t.Price
FROM title t
INNER JOIN titleauthor ta
 ON t.TitleID = ta.TitleID
WHERE ta.AuthorID = 12;

If we want to delete the row in the title table instead of updating the value for Price,
we’d simply replace the SELECT clause with a DELETE that noted the table with rows to
be deleted, like this:

DELETE t
FROM title t
INNER JOIN titleauthor ta
 ON t.TitleID = ta.TitleID
WHERE ta.AuthorID = 12;

Again, this syntax works in MySQL and a few other RDBMSes, but not all. Please refer
to the documentation of the particular RDBMS you’re using for the correct syntax to
delete rows using a predicate that joins multiple tables.

17.2.3 Deleting all rows in a table

As noted in the warning in section 17.2.1, if a DELETE statement is executed without a
WHERE clause, it can remove all the rows from a table. I say “can” because as mentioned
in chapter 16, databases are often designed with certain constraints, including those
that allow or prevent the insertion of certain values into a table. Those constraints can
allow or prevent the deletion of rows as well.

If we don’t have these constraints, and the tables in our database currently don’t, we
can remove all the rows in a table by executing a DELETE statement that has no filtering
condition. We don’t want to delete all the rows from the tables in our database, but for
the sake of practice, we can execute this query on the myfirstquery table we used in

 185One big tip for data manipulation

chapter 2 with minimal effect on any future exercises. Here’s what that query would
look like:

DELETE
FROM myfirstquery;

As expected, executing this query results in the deletion of all rows in the myfirstquery
table. We also have a more efficient way to remove all rows from a table, a way that’s
available in nearly every RDBMS: TRUNCATE TABLE.

Unlike removing all rows with a DELETE statement, which scans every row in a table
and deletes them one at a time, TRUNCATE TABLE deletes rows without scanning them
individually. This statement is designed for speed.

The syntax for TRUNCATE TABLE is simple. If we want to truncate the myfirstquery
table, our SQL statement would look like this:

TRUNCATE TABLE myfirstquery;

The TRUNCATE TABLE statement has a lot less flexibility than a DELETE statement because
it’s designed for the single purpose of removing all rows from a table quickly. It can’t
be used to remove one row or some rows. Also, the same problems with constraints that
can prevent a DELETE statement from deleting rows can prevent TRUNCATE TABLE from
executing successfully.

Try it now
Use the preceding DELETE and TRUNCATE TABLE statements to remove all the rows from
the myfirstquery table. If you want to test deleting multiple rows, try executing one or
more INSERT statements to add rows to the myfirstquery table.

17.3 One big tip for data manipulation
In section 17.1.4, we wrote a SELECT statement to find the data to update. Although we
did this to compare the basic structure of the SELECT statement with our UPDATE state-
ment, we could just as easily have used this SELECT statement to validate which rows
were going to be updated.

Two warnings in this chapter caution against accidentally updating or deleting all
data in a table. I could have included even more warnings about updating the wrong
data through incorrect logic for filtering contained in the predicates of UPDATE and
DELETE statements. Remember that all changes occur in real time, so use caution when
updating and deleting data.

One significant and common way to exercise caution is to write and execute a SELECT
statement that uses the same logic contained in an UPDATE or DELETE statement. Doing
this allows you to see what data will be affected before you execute your data-manipulation

186 chapter 17 Updating and deleting data

statement. I can tell you from experience that this approach—selecting data through a
query first—has saved me and countless others from catastrophic results.

Although there’s no way to undo an executed query, you can always proactively
review the affected rows using a SELECT. I highly recommend selecting data with your
filtering conditions, no matter how experienced you become in writing SQL.

17.4 Lab
1 Using what you learned in chapter 16, write and execute a query to add your

name and address to the customer table. Use the value 22 for CustomerID. (Hint:
You can drag and drop column names from the Navigator panel in MySQL
Workbench.)

2 Write and execute a query to update the address of the row you just added to an
address at which you previously resided (or any other address).

3 Write and execute a query to delete the row you inserted and updated in the
customer table, but use a SELECT first to confirm that your SQL statement will
produce the correct results.

17.5 Lab answers
1 Your query to insert a row into the customer table might look something like this:

INSERT customer (
 CustomerID,
 FirstName,
 LastName,
 Address,
 City,
 State,
 Zip,
 Country
)
VALUES (
 22,
 'Jeff',
 'Iannucci',
 '1600 Pennsylvania Ave NW',
 'Washington',
 'DC',
 '20500',
 'USA'
);

2 Your query to update your address in the customer table might look something
like this:

UPDATE customer
SET Address = '1700 W Washington St',
 City = 'Phoenix',

 187Lab answers

 State = 'AZ',
 Zip = '85007'
WHERE CustomerID = 22;

3 Your query to delete your row from the customer table might look something like
this:

DELETE
FROM customer
WHERE CustomerID = 22;

188

18Storing data in tables

In chapters 16 and 17, we started creating and manipulating data, and in this chap-
ter, we’ll examine ways to create and manipulate the tables themselves. In many
ways, we’ll be getting to the core of SQL language and its use because how the data
is stored in tables is at the very heart of any relational database management system
(RDBMS). Choosing how data is stored is one of the most important—perhaps the
most important decision—that is made in any database.

Don’t worry; this chapter won’t be overly technical. It will still be easy enough for
anyone to understand, and because you’ve been querying data with SQL statements
that often mirror the English language for a while now, I’m confident that you’ll find
the concepts and commands easy to comprehend. This chapter should also rein-
force your understanding of things like primary keys and data types.

18.1 Creating a table
As you’ll soon see, creating a table in SQL can be very simple. First, though, you
must consider a few things about the table before you write the SQL that creates the
table.

18.1.1 Considerations before creating a table

The first step in creating a table is answering three basic questions about the table:

¡	What is the name of the table?

 189Creating a table

¡	What are the names of the columns that will be included in the table?

¡	What are the data types of those columns?

We’ll have to put some thought into these names and data types, especially as they
relate to existing tables in the database. We want the names to be explanatory, but we
can’t use a table name if there’s already a table with that name.

We can reuse column names from other tables, however, as we’ve seen with the sql-
novel database: OrderID, TitleID, and other column names appear in more than one
table. But we usually want to do that only if some relationship exists between similarly
named columns.

TIP The idea of having similar names is one reason why I’ve used names such
as OrderID and TitleID in the sqlnovel database. One day, you may work with a
database containing many tables that have columns named ID or Name, which
can be a bit confusing due to ambiguity. As you create tables, try to make col-
umn names meaningful, clear, obvious, and easy to understand for anyone else
who may have to query the data.

As an exercise, we want to create a table for categories of the titles. Although we could
avoid creating a new table by adding a Category column in the title table for a string of
characters such as “Mystery” or “Romance,” we know from the discussion of table rela-
tionships in chapter 8 that this approach isn’t the best one to take in an RDBMS. (Later
in this chapter, we’ll add a column to the title table, but that column will relate to the
primary key of a new table.)

For our new table of categories, we need to have only two columns: an ID column
to serve as the primary key and a column to define the name of each category. We can
keep the table name and columns consistent with the rest of our database by naming
the table category and the columns CategoryID and CategoryName.

The ID column of a table is often defined as an integer data type, which is known
as int. The int data type allows us to use a unique number for each row—usually up
to numbers in the billions. I don’t think this table will have billions of categories, so
an integer data type should accommodate CategoryID. We could use some other inte-
ger data types—such as tinyint, smallint, mediumint, and bigint—but because they
aren’t included in every RDBMS, we’ll use the universal int data type.

Columns with name values of varying length, such as CategoryName, are typically
defined as a variable character type, known as varchar. This data type accounts for the
fact that not every value will be the same length (number of characters). When we use
this data type, our data is stored more efficiently than it would be if we’d used a char
(character) data type because that data type stores the data using the entire defined
length.

Although defining the maximum length isn’t required for varchar data types,
we typically want to do this to avoid using an inefficient default value, which will vary
depending on our RDBMS. The values in our CategoryName column won’t be more
than 20 characters, so we’ll define the data type as varchar(20).

190 chapter 18 Storing data in tables

NOTE As you converse with other people about SQL, you’ll discover that
there’s no common way to pronounce varchar. Pronunciations vary from “var-
char” to “var-kar” to “vair-kair.” The last option is most likely to be correct
because the vowels match the pronunciation of the first syllables in variable
character, but I’ve found that it’s also the least likely to be used. Try not to get
too confused by this situation. As the French say, vive la différence.

18.1.2 Creating a table

Now that we’ve defined our table name, column names, and column data types, let’s
say in English what we intend to do: “I would like to create a table named category.
I would like the table to have a column named CategoryID that is an int data type. I
would like the table to also have a column named CategoryName that is a varchar(20)
data type.” After all that, here’s what the SQL to create our category table will look like:

CREATE TABLE category (
 CategoryID int,
 CategoryName varchar(20)
);

Notice that after we define the table name with CREATE TABLE, we include all columns
with a comma separating the names and data types of each column. This format should
be a bit intuitive now that we’ve used commas to separate columns in SELECT and
ORDER BY clauses. Also notice that the columns are enclosed in parentheses. Omitting
the parentheses when using CREATE TABLE can be a common mistake for beginners, so
remember to include them when creating a table.

Executing the preceding SQL won’t return any results in the Results panel, but in
the Output panel, you should see a green circle with a white check mark and the mes-
sage “0 rows(s) affected.” Although the panel doesn’t show a lot of detail, it tells you that
the table was created successfully.

Creating a table in this way is just a basic starting point. As we’ll see later in this chap-
ter and in subsequent chapters, the CREATE TABLE statement gives us quite a few options
for adding more properties to a table. For now, we’ll move to the next step, using what
we learned about the INSERT keyword in chapter 16.

18.1.3 Adding values to an empty table

Our customer table is empty, so next, we want to insert the CategoryID and
CategoryName values for the following categories:

1 Romance

2 Humor

3 Mystery

4 Fantasy

5 Science Fiction

 191Altering a table

Chapter 16 discussed adding multiple values to a table by using the INSERT and VALUES
keywords. Let’s use similar logic to insert these listed values into our new category table:

INSERT INTO category (CategoryID, CategoryName)
VALUES
 (1, 'Romance'),
 (2, 'Humor'),
 (3, 'Mystery'),
 (4, 'Fantasy'),
 (5, 'Science Fiction');

Executing the preceding SQL won’t return anything in the Results panel, but if the
execution is successful, we should see “5 row(s) affected” in the Message column of the
Output panel. This message indicates that we added five rows to our category table,
which was our intention.

Try it now
If you haven’t created and populated the category table yet, execute the SQL in sections
18.1.2 and 18.1.3 to do so. You’ll be using this table in this chapter and in subsequent
chapters.

We can verify that we added the desired values to the cat-
egory table by running a simple SELECT query to see the
values in the table (results shown in figure 18.1):

SELECT
 CategoryID,
 CategoryName
FROM category;

18.2 Altering a table
The next step in adding a category for each title is adding a new column to the title
table that relates to the values in our new category table. Specifically, we want to relate
the CategoryID values from the title table to those in the category table. We’ll do this
by adding a CategoryID column to our title table.

18.2.1 Adding a column to a table

Just as we had to consider three questions before creating a table, we need to consider
three questions before adding a column:

¡	What is the name of the table we are adding the new column to?

¡	What are the names of the columns that will be added to the table?

¡	What are the data types of those columns?

Figure 18.1 All rows in the
new category table

192 chapter 18 Storing data in tables

We know that the answer to the first question is the title table. Because we want consis-
tency in names and data types, the answers to the second and third questions are related
to the CategoryID column in the category table: CategoryID and int, respectively.

To make these and other changes in a table in SQL, we’ll use a new command: ALTER
TABLE. Although the syntax of this command is similar to that of CREATE TABLE, it doesn’t
require us to use parentheses. Here’s the SQL to add the column to the title table:

ALTER TABLE title
ADD CategoryID int;

As with our CREATE TABLE statement in section 18.1.2, we won’t have any results from
this query. The success of this query is noted in the Output panel only by a white check
mark in a green circle and the message “0 row(s) affected.”

Let’s run a quick query to validate that the column was created, noting the results in
figure 18.2 that show the column was created after all the other columns:

SELECT *
FROM title;

Figure 18.2 The title table with the new CategoryID column at far right

Our new column doesn’t contain any values yet, so the results of our query show NULL
for every row. To add the values, we’ll use UPDATE statements. Although we used INSERT
to add values to our category table, INSERT adds a new row to a table. We don’t want
to do that here; we want to add a value for a single column to the existing rows, which
UPDATE allows.

Let’s add these values for all rows based on the category of each title. In case you
didn’t memorize all the CategoryID and CategoryName values or don’t feel like flip-
ping back a few pages, the following SQL has comments to remind you:

 193Altering a table

/* 1 – Romance */
UPDATE title
SET CategoryID = 1
WHERE TitleID IN (101, 104);

/* 2 – Humor */
UPDATE title
SET CategoryID = 2
WHERE TitleID IN (106, 109);

/* 3 – Mystery */
UPDATE title
SET CategoryID = 3
WHERE TitleID IN (102, 103, 110);

/* 4 – Fantasy */
UPDATE title
SET CategoryID = 4
WHERE TitleID IN (107, 112);

/* 5 – Science Fiction */
UPDATE title
SET CategoryID = 5
WHERE TitleID IN (105, 108, 111);

After we execute all the preceding UPDATE statements, we should see values for the Cat-
egoryID column in all rows. Let’s execute our query to return all rows of the title table,
verifying in figure 18.3 that all values for CategoryID are now populated:

SELECT *
FROM title;

Figure 18.3 The title table with the CategoryID populated with values for all rows

We’ve confirmed that we added the values for CategoryID, but those values don’t tell
us directly what the category names for each title are. Let’s show the CategoryName

194 chapter 18 Storing data in tables

for each TitleName by writing a query
that relates the title and category tables
by CategoryID. This relationship is estab-
lished with an INNER JOIN (discussed in
chapter 8). The results in figure 18.4 con-
firm the category for each title, ordered
by TitleID:

SELECT
 t.TitleID,
 t.TitleName,
 c.CategoryName
FROM title t
INNER JOIN category c
 ON t.CategoryID = c.CategoryID
ORDER BY t.TitleID;

18.2.2 Considerations before adding a column

Adding a category for each title can be relatively simple, but as with creating a table, we
have a few things to consider before adding new columns to tables.

When a column is added to a table, a SQL novice may be bothered by the fact that
the new column is added at the end of all the other columns. A new column is always
added at the end, although some RDBMSes (such as MySQL) allow us to change the
order of the columns. This change, however, is generally discouraged for tables that
already contain data.

There are two main reasons for adding columns only at the end of all other columns:

¡	Adding a new column before any other columns requires a lot of extra activity
to rearrange the data, using more resources than adding the column at the end.
When we add the column at the end, we minimize the amount of activity and
resources that will be required.

¡	Generally, it’s unnecessary to position columns in a certain order for a table. As
we’ve already seen, we can order columns for display however we like in our SQL
queries.

The one exception to adding a column at the end occurs when we create a new column
to be used in the primary key of a table. We generally want that column to come first
because the primary key often defines the way that data is ordered in a table. Although
I’ve referred to primary keys since chapter 8, section 18.3 takes a deeper look at how to
create and use them.

18.3 Primary keys
This book is designed to get you up to speed gradually with writing SQL queries, so I
haven’t discussed primary keys much. But because now I’m talking about designing
tables and relating data, it’s time to revisit that topic.

Figure 18.4 The CategoryName for every
TitleName in the title table, related by CategoryID

 195Primary keys

18.3.1 Considerations for primary keys

The primary key is the backbone of any RDBMS because it ensures that the data in
tables is relatable. With primary keys, we have to adhere to a few rules:

¡	A primary key must be unique. This rule is the most important one. If the primary
key isn’t unique, we’ll never know which row in a relationship is the correct one.
Suppose that we assigned a value of 1 to the CategoryID column for each of the
five rows in our new category table. If all five rows had the same value, we couldn’t
possibly determine the correct CategoryName for any relationship in which the
CategoryID is 1.

¡	Every row must have a value for the primary key. As we’ve seen, we can’t join a value of
NULL to any value, including other values of NULL. For this reason, if any row
in a table has NULL as a primary-key value, that row can never be related to any
other data.

¡	The primary key’s values can never change. We use primary key values to relate to
other tables, much as we used CategoryID values to relate to the title table. If we
changed the CategoryID values in the category table in any way, such as by adding
10 to the existing value, the values in the two tables wouldn’t match, and the rela-
tionship between the two tables would no longer exist.

Adhering to these three rules allows relationships that use primary keys to maintain
referential integrity, which means that any value from one table that refers to the primary
key value in another table will always refer to the same value in the table that contains
the primary key. Although the values for other columns in our table can change (we
could change a CategoryName from Mystery to Mystery Thriller, for example), the val-
ues for the primary key can never change.

18.3.2 Adding a primary key

Now that we know the rules for any primary key, we can create one for our category
table. To do this, we can use the same ALTER TABLE statement that we used to add a col-
umn, with some slight differences:

ALTER TABLE category
ADD CONSTRAINT PRIMARY KEY (CategoryID);

There are two notable differences between adding a column and adding a primary
key with ALTER TABLE. First, we used the word CONSTRAINT when noting that we were
adding a primary key. I haven’t explicitly said it before, but a primary key is a kind of
constraint—an object designed to enforce a rule of some sort. Therefore, we can’t break
the rules of the constraint after it’s created. With this new PRIMARY KEY constraint, we
must adhere to the rules concerning the category table outlined in section 18.3.1.

Although doing so isn’t required, it’s common to give a primary key a logical name.
The reason is that you may create other objects in your table that have different con-
straints, and you’ll want the names of these objects to indicate their purpose. Just as we

196 chapter 18 Storing data in tables

give tables obvious names for their data, such as customer and author, we want to give
our primary keys obvious names. Moreover, as you’ll see later in this chapter, assigning a
name to a primary key (or any other kind of constraint) makes it much easier to manip-
ulate if you have to change or delete it later.

A common way to name primary keys is to use the naming convention PK_, which is
the PK prefix followed by an underscore and the table name. Even if you know nothing
about a particular database, if you saw any reference to an object named PK_category,
you’d understand it to be the PRIMARY KEY constraint of a table named category. For this
reason, it’s desirable to create our primary key with a name:

ALTER TABLE category
ADD CONSTRAINT PK_category PRIMARY KEY (CategoryID);

Try it now
Create the PRIMARY KEY constraint for the category table with the preceding SQL statement.

Although here, you’re adding the primary key to an existing table, most of the time,
you’ll add the primary key when you create the table. You can accomplish this task
easily by defining the primary key in the CREATE TABLE statement after defining the col-
umns, almost as though you were adding another column. You could have created the
category table with the primary key defined by using the following SQL:

CREATE TABLE category (
 CategoryID int,
 CategoryName varchar(20),
 CONSTRAINT PK_category PRIMARY KEY (CategoryID)
);

TIP Although it isn’t necessary to create a primary key for every table in
every database, a primary key belongs in any table that has (for lack of a bet-
ter phrase) a group of unique entities. Tables with rows that represent unique
entities such as products, orders, and customers should always have a primary
key to ensure that those rows are unique.

One final note about primary keys: they can consist of more than one column. Our
orderitem table, for example, should have a primary key that includes both OrderID
and ItemID because together, these columns form a unique key. Multiple rows may
have the same OrderID, but each of those rows should also have a unique ItemID for
every row that includes the same OrderID.

To create a primary key with multiple columns in a table such as orderitem, we’d use
a comma separator when specifying the columns, like this:

ALTER TABLE orderitem
ADD CONSTRAINT PK_orderitem PRIMARY KEY (OrderID, OrderItem);

 197Foreign keys and constraints

Using primary keys allows us to ensure that we can identify each row in a table as unique.
Because these rows are often referred to by other tables in relationships, we can explic-
itly define these relationships with another kind of constraint: the foreign key.

18.4 Foreign keys and constraints
Foreign keys are established to enforce the rules of any relationship between two tables
with respect to a common column. Any foreign-key relationship involves a parent table,
where the key values originate, and child tables, which contain values that refer to the
parent table. Put simply, we create a foreign key on a child table to enforce the rule
that the values in the child table must exist in the parent table.

18.4.1 Data diagrams

Data diagrams can help us understand the relationships between tables in our database
by depicting these relationships visually. Figure 18.5 is a data diagram of all the tables
in the sqlnovel database, including our new category table.

Figure 18.5 A data
diagram that shows
all tables in the
sqlnovel database and
their relationships to
other tables

198 chapter 18 Storing data in tables

Each box in this diagram represents a table, and each box contains a list of all columns
and data types for that table. We want to focus on the lines between the boxes, which
represent the relationships. If a line between two tables exists, a foreign key from one
table to another exists.

Although the data diagram in figure 18.5 doesn’t show the specific columns involved
in the relationships, you can find out what they are by examining the tables closely. If
you follow through and execute the prescribed exercises throughout this chapter and
in the lab section, you’ll see how to create your own data diagram.

One other thing to note: the myfirstquery table has no lines connecting it to other
tables. That table has no relationship to any other tables in the database because it was
used only to get you started with your first query in chapter 2. You’ve come a long way
since then!

18.4.2 Adding a foreign-key constraint

Because a functional foreign key requires another type of constraint, we’ll use an ALTER
TABLE statement similar to the one we used to create the PRIMARY KEY constraint. As
with the primary key, we want to give our FOREIGN KEY constraint a logical name. A
common approach is to use a name in the format FK_, which is the FK prefix followed
by an underscore, the name of the child table, another underscore, and the name of
the parent table. This format ensures that the name of our FOREIGN KEY constraint will
be unique in the database. Using this naming convention, we can create our FOREIGN
KEY constraint with the following statement:

ALTER TABLE title
ADD CONSTRAINT FK_title_category
FOREIGN KEY (CategoryID) REFERENCES category(CategoryID);

Try it now
Create the FOREIGN KEY constraint on the title table with the preceding SQL
statement.

This statement is a bit different from the one we used to create the PRIMARY KEY con-
straint because we’re creating a key relationship between two columns in different
tables. The first column, after the keywords FOREIGN KEY, indicates the column on the
child table that will reference another column in the parent table, which is why we use
the REFERENCES keyword.

We want to be careful when we create constraints—PRIMARY KEY, FOREIGN KEY, or
otherwise—on tables that already contain data because if the current values don’t
meet the rules of our constraint, we’ll get an error. For this reason, it’s best to create
constraints on tables when we create the table and before we insert any rows of data.

 199Deleting a table, column, or constraint

TIP Although this chapter uses common conventions to name constraints,
these aren’t the only ways to name constraints. When you work outside the
sqlnovel database, consider whether the database you’re working with already
uses defined naming conventions. If so, create your objects using the existing
naming conventions so that your object names are consistent with the names
of other objects in the database.

18.5 Deleting a table, column, or constraint
Although we want to keep the objects we’ve created in this chapter, if we want to undo
our work, we can do so with statements that use the DROP keyword.

WARNING The SQL in this section is provided for informational purposes
only. You don’t want to drop the category table or any of its related columns
and constraints because you’ll be using this data throughout the remainder
of the book. If you decide that you want to practice dropping these objects
despite this warning, you’ll have to go back through this chapter to re-create
them.

With that warning out of the way, here's how we could remove the objects we have cre-
ated in this chapter.

18.5.1 Deleting a constraint

As with adding a constraint, deleting any constraint involves the ALTER TABLE state-
ment. Because we’re dropping our constraint, not defining anything, we need only the
names of the table and the constraint that we’re dropping. In this case, we’d use the
following SQL:

ALTER TABLE title
DROP FOREIGN KEY FK_title_category;

If we want to delete the PK_category primary key of our category table, we could do
that in either of two ways. The first way is to remove it as a constraint, like this:

ALTER TABLE category
DROP CONSTRAINT PK_category;

Because the primary key is a special kind of constraint, however, we could use ALTER
TABLE to say that we want to remove the primary key without supplying the name of the
constraint:

ALTER TABLE category
DROP PRIMARY KEY;

NOTE We don’t need to specify the name of the primary key in the statement
because the table can have only one primary key.

200 chapter 18 Storing data in tables

18.5.2 Deleting a column

In this chapter, we created a column in the title table. To remove that column, we’d use
ALTER TABLE and DROP:

ALTER TABLE title
DROP COLUMN CategoryID;

As with dropping constraints, we typically don’t need more than the names of the table
and column to remove a column.

18.5.3 Deleting a table

Deleting a table involves the least SQL of any of our object-removal scripts. We use
DROP TABLE with the table name:

DROP TABLE category;

NOTE If we want to remove all these objects, we’d need to do it in the order in
section 18.5, removing the constraints first. If we want to drop the table or col-
umn first, most RDBMSes (including MySQL) would return an error message
saying that the object can’t be dropped because of these constraints.

That’s enough discussion of removing objects. Let’s start the lab, where we can prac-
tice creating constraints such as primary keys and foreign keys.

18.6 Lab
1 The sqlnovel database is missing a few primary keys. Using the data diagram in

section 18.4.1 and the naming conventions in section 18.3.2, write and execute
SQL statements to add PRIMARY KEY constraints for the following tables:

¡	author

¡	customer

¡	orderheader

¡	promotion

¡	title

¡	titleauthor

2 The orderitem table isn’t included in the preceding list. What happen if you try
to create a PRIMARY KEY constraint on the OrderID and OrderItem columns?
How can you resolve this problem?

3 The sqlnovel database is also missing a few FOREIGN KEY constraints. Using the
data diagram in section 18.4.1 and the naming conventions in section 18.4.2,
write and execute SQL statements to add FOREIGN KEY constraints for the follow-
ing tables and columns:

 201Lab answers

¡	The CustomerID column of the orderheader table

¡	The PromotionID column of the orderheader table

¡	The OrderID column of the orderitem table

¡	The TitleID column of the orderitem table

¡	The TitleID column of the titleauthor table

¡	The AuthorID column of the titleauthor table

4 If you’ve successfully completed all the preceding tasks, now is your chance to
enjoy your work. Create a data diagram. In MySQL Workbench, choose Database
> Reverse Engineer. Click Next in all the following screens, and be sure to select
the sqlnovel check box in the Select Schemas screen. When you’re done, you
should have a data diagram of the sqlnovel database.

18.7 Lab answers
1 You can create PRIMARY KEY constraints for these tables with the following SQL

statements:

ALTER TABLE author
 ADD CONSTRAINT PK_author PRIMARY KEY (AuthorID);
ALTER TABLE customer
 ADD CONSTRAINT PK_customer PRIMARY KEY (CustomerID);
ALTER TABLE orderheader
 ADD CONSTRAINT PK_orderheader PRIMARY KEY (OrderID);
ALTER TABLE promotion
 ADD CONSTRAINT PK_promotion PRIMARY KEY (PromotionID);
ALTER TABLE title
 ADD CONSTRAINT PK_title PRIMARY KEY (TitleID);
ALTER TABLE titleauthor
 ADD CONSTRAINT PK_titleauthor PRIMARY KEY (TitleID, AuthorID);

2 The statement that creates the PRIMARY KEY constraint on orderitem looks like
this:

ALTER TABLE orderitem
 ADD CONSTRAINT PK_orderitem PRIMARY KEY (OrderID, ItemID);

If you execute this statement, however, the Output window displays the error mes-
sage “Error Code: 1062. Duplicate entry '1022-1' for key 'orderitem.PRIMARY'.”
This error message indicates a data inconsistency in what would be your primary
key, and it tells you where that error
is. The error is for OrderID 1022
and OrderItem 1. You can see the
problem by executing the following
query, which should return one row
but instead returns two rows (figure
18.6):

Figure 18.6 The two rows that prevent
the primary key from being created for the
orderitem table

202 chapter 18 Storing data in tables

SELECT *
FROM orderitem
WHERE OrderID = 1022
 AND OrderItem = 1;

There are two rows that would result in duplicate values for our primary key,
which isn’t allowed. All key values must be unique. Fortunately, these rows don’t
appear to be actual duplicates because they have different TitleID values. You can
safely correct this data error with an UPDATE statement, changing the OrderItem
value from 1 to 2 for one of the rows:

UPDATE orderitem
SET OrderItem = 2
WHERE OrderID = 1022
 AND OrderItem = 1
 AND TitleID = 103;

After executing the preceding UPDATE statement, you should be able to create the
primary key for the orderitem table. Create that PRIMARY KEY constraint.

3 You can create the FOREIGN KEY constraints for these tables and columns with the
following SQL statements:

ALTER TABLE orderheader
 ADD CONSTRAINT FK_orderheader_customer FOREIGN KEY (CustomerID)
 REFERENCES customer(CustomerID);
ALTER TABLE orderheader
 ADD CONSTRAINT FK_orderheader_promotion FOREIGN KEY (PromotionID)
 REFERENCES promotion(PromotionID);
ALTER TABLE orderitem
 ADD CONSTRAINT FK_orderitem_orderheader FOREIGN KEY (OrderID)
 REFERENCES orderheader(OrderID);
ALTER TABLE orderitem
 ADD CONSTRAINT FK_orderitem_title FOREIGN KEY (TitleID)
 REFERENCES title(TitleID);
ALTER TABLE titleauthor
 ADD CONSTRAINT FK_titleauthor_title FOREIGN KEY (TitleID)
 REFERENCES title(TitleID);
ALTER TABLE titleauthor
 ADD CONSTRAINT FK_titleauthor_author FOREIGN KEY (AuthorID)
 REFERENCES author(AuthorID);

4 There’s no correct answer if you created the data diagram successfully. Have
fun moving around the tables to make the lines representing the relationships
clearer, and be sure to hover over the lines to see how they highlight the columns
represented in the relationships.

203

19Creating constraints
and indexes

We talked about two important constraints in chapter 18: PRIMARY KEY and FOREIGN
KEY constraints. This chapter looks at a few more constraints that help us ensure the
integrity of the data in our tables.

We’ll also discuss indexes, which are table-related objects that help with the per-
formance of our queries. Just as indexes in books like this one can help you quickly
find the subject you’re looking for, indexes in a database can reduce the time it takes
queries to find specific data.

I hope that you’ve enjoyed creating tables and associated constraints because
you’re about to create more.

19.1 Constraints
By completing the examples in chapter 18, you learned that you can create con-
straints in two ways: by creating them for an existing table using ALTER TABLE or by
creating a new table using CREATE TABLE.

You have two ways to create a constraint using CREATE TABLE. First, you can create
the constraint after all columns are declared, as you did in chapter 18. Here’s an
example of the PRIMARY KEY constraint you created for the category table:

CREATE TABLE category (
 CategoryID int,
 CategoryName varchar(20),
 CONSTRAINT PK_category PRIMARY KEY (CategoryID)
);

204 chapter 19 Creating constraints and indexes

You can also create a constraint as part of the declaration of the column after the data
type has been declared. Here’s an example of how you could have done that for the
primary key of the category table:

CREATE TABLE category (
 CategoryID int PRIMARY KEY,
 CategoryName varchar(20)
);

Although this approach is simpler, creating a constraint this way doesn’t allow us to
name the constraint. If we create the constraint this way, the name of the constraint
is generated automatically by our relational database management system (RDBMS).
This name will likely be some series of letters and numbers that doesn’t indicate our
intentions for the constraint.

That said, you don’t necessarily need a name for every constraint. Although I highly
recommend using the first method to create PRIMARY KEY and FOREIGN KEY constraints,
other constraints in this chapter are typically created with the second method.

19.1.1 NOT NULL constraints

The NOT NULL constraint enforces a requirement that there cannot be null values in
a column—which, if we think about it, is probably the case for most columns in any
table. Tables are made to contain data, and we’ll require many, if not all, columns in a
table to have values.

Suppose that we want a table in our sqlnovel database that tracks shipments of novels
to customers. We’ll name the table shipment and add the following six columns:

¡	ShipmentID—Identifies each unique row in the table

¡	OrderID—Identifies the order to which the shipment is related

¡	ShipmentCost—Identifies the cost of the shipment in U.S. dollars

¡	ShipmentMethod—Identifies whether the order was sent via parcel post (P) or
express (E)

¡	TrackingNumber—Identifies the tracking number provided by the shipment
carrier

¡	ShipmentDate—Identifies the date when the shipment was sent

The data types for our columns will be

¡	ShipmentID—int, a unique integer value

¡	OrderID—int, the same as in the orderheader table

¡	ShipmentCost—decimal(5,2) to accommodate numbers from 0.00 to 999.99

¡	ShipmentMethod—char(1) because the value will be either P or E

¡	TrackingNumber—varchar(20) for whatever value the shipment carrier provides

¡	ShipmentDate—datetime, a data value

 205Constraints

We also want to create a PRIMARY KEY constraint named PK_shipment on the Ship-
mentID column, and a FOREIGN KEY constraint named FK_shipment_orderheader on
the OrderID column that references the OrderID values in orderheader. With all this
information, we can create the shipment table using the following SQL statement:

CREATE TABLE shipment (
 ShipmentID int,
 OrderID int,
 ShipmentCost decimal(5,2),
 ShipmentMethod char(1),
 TrackingNumber varchar(20),
 ShipmentDate datetime,
 CONSTRAINT PK_shipment PRIMARY KEY (ShipmentID),
 CONSTRAINT FK_shipment_orderheader FOREIGN KEY (OrderID)
 REFERENCES orderheader(OrderID)
);

NOTE Don’t execute this SQL yet. You’ll modify it quite a bit in this chapter.

The next thing we want to determine is which of these columns will be nullable, which
means that these columns can contain null values. For every column we determine to
be not nullable, we want to add a NOT NULL constraint to ensure that all rows contain
values for those columns. An example of a nullable column is the MiddleName col-
umn in the author table; some authors have a middle name and others don’t. Consider
each column in the shipment table:

¡	ShipmentID is not nullable because we can’t have null values in a primary key.

¡	OrderID is not nullable because every shipment must relate to an order.

¡	ShipmentCost is not nullable because every shipment has a cost of $0.00 or more.

¡	ShipmentMethod is not nullable because we need to know how every shipment
was sent.

¡	TrackingNumber is not nullable because each shipment has a tracking number.

¡	ShipmentDate is not nullable because we need to know when a shipment was
sent.

After careful review, it looks as though none of these columns is nullable, so we should
add a NOT NULL constraint to each column. We can do that by modifying our SQL to
indicate which columns are NOT NULL after their data types are declared:

CREATE TABLE shipment (
 ShipmentID int NOT NULL,
 OrderID int NOT NULL,
 ShipmentCost decimal(5,2) NOT NULL,
 ShipmentMethod char(1) NOT NULL,
 TrackingNumber varchar(20) NOT NULL,
 ShipmentDate datetime NOT NULL,
 CONSTRAINT PK_shipment PRIMARY KEY (ShipmentID),
 CONSTRAINT FK_shipment_orderheader FOREIGN KEY (OrderID)

206 chapter 19 Creating constraints and indexes

 REFERENCES orderheader(OrderID)
);

By doing this, we ensure that every row will have a value for every column, which is
what we want. If someone tries to enter a row that doesn’t have a value for every col-
umn, they’ll get an error message. This message will vary from one RDBMS to another,
but in MySQL, it says that one of the columns doesn’t have a default value.

What does this mean? Well, default values involve another kind of constraint.

19.1.2 DEFAULT constraints

DEFAULT constraints allow us to use a set default value for a column if no value is spec-
ified. Default values established by these constraints will be used whenever an INSERT
statement doesn’t indicate a value for columns with a DEFAULT constraint.

The DEFAULT constraint must be a literal constant, meaning that it will be the same
expression for each row that’s inserted. An expression is some combination of values,
operators, or functions that are evaluated to another value. This expression could be a
number, a date, or a string of characters, although in MySQL and most other RDBMSes,
we can also use some date and time functions as the default.

Our shipment table can benefit from this kind of constraint with one of these func-
tions. In chapter 14, we learned about the CURRENT_DATE() function, which returns the
date and time for the immediate moment. We can use this function to make sure that
whenever a row is inserted into our shipment table, it records the value for CURRENT_
DATE() in the ShipmentDate column at the time the row is created.

WARNING Although it’s fairly common, the CURRENT_DATE() function isn’t
available in every RDBMS. For SQL Server, use GETDATE(); for Oracle, use
SYSDATE; and for SQLite, use date('now').

For a DEFAULT constraint, we’ll declare the keyword DEFAULT; then we’ll declare the
default value after declaring the data types for our column. Here’s what our CREATE
TABLE statement with this new default for ShipmentDate looks like:

CREATE TABLE shipment (
 ShipmentID int NOT NULL,
 OrderID int NOT NULL,
 ShipmentCost decimal(5,2) NOT NULL,
 ShipmentMethod char(1) NOT NULL,
 TrackingNumber varchar(20) NOT NULL,
 ShipmentDate datetime NOT NULL DEFAULT (CURRENT_DATE()),
 CONSTRAINT PK_shipment PRIMARY KEY (ShipmentID),
 CONSTRAINT FK_shipment_orderheader FOREIGN KEY (OrderID)
 REFERENCES orderheader(OrderID)
);

Notice two points about this new constraint:

¡	 You need to put parentheses around the default value of CURRENT_DATE() in your CREATE
TABLE statement. The use of parentheses isn’t required for most RDBMSes, but it

 207Constraints

is in MySQL. Consult the documentation for any RDBMS you’re using to make
sure that the syntax of your SQL statement is correct.

¡	You can create more than one constraint on a column, as you’re doing with the Shipment-
Date column. You don’t even need to use a comma separator between columns,
and you don’t want to because the comma separator would indicate a new col-
umn, not a second constraint on the ShipmentDate column. Now this column
has both a NOT NULL and a DEFAULT constraint, which is not uncommon for col-
umns that automatically indicate the time when a row was added.

NOTE Having a DEFAULT constraint on a column doesn’t mean that we don’t
also need the NOT NULL constraint. The DEFAULT constraint guarantees that a
value will be inserted if one is not specified, but we also need the NOT NULL con-
straint to ensure that we don’t have NULL specified as a value at the time when
the row is inserted.

19.1.3 UNIQUE constraints

Now let’s look at another kind of constraint for a different column: the UNIQUE con-
straint. UNIQUE constraints enforce the requirement that any value in a column be
unique in that column. If we insert or update a value for a column with a UNIQUE con-
straint and that value already exists in another row, an error will occur.

UNIQUE constraints are a bit like the PRIMARY KEY constraints we’ve already used, but
there are a few exceptions. The main difference is that a table can contain only one
PRIMARY KEY constraint, but it can contain multiple UNIQUE constraints on columns if
necessary.

Unlike PRIMARY KEY constraints, UNIQUE constraints can include null values. The
maximum number of null values in a column with a UNIQUE constraint depends on the
RDBMS you’re using; MySQL allows multiple null values, for example, whereas SQL
Server and Oracle allow only one null value. If this restriction is a concern for you,
consult the documentation for your RDBMS, although it’s rare to have a column that
requires a UNIQUE constraint and is still nullable.

Because tracking numbers are UNIQUE for the shipment carrier, we want to create
a UNIQUE constraint on the TrackingNumber column to ensure that a duplicate value
is never used for this column. Adding this constraint is as simple as adding the word
UNIQUE to the column declaration, similar to what we did with other constraints in this
chapter:

CREATE TABLE shipment (
 ShipmentID int NOT NULL,
 OrderID int NOT NULL,
 ShipmentCost decimal(5,2) NOT NULL,
 ShipmentMethod char(1) NOT NULL,
 TrackingNumber varchar(20) NOT NULL UNIQUE,
 ShipmentDate datetime NOT NULL DEFAULT (CURRENT_DATE()),

208 chapter 19 Creating constraints and indexes

 CONSTRAINT PK_shipment PRIMARY KEY (ShipmentID),
 CONSTRAINT FK_shipment_orderheader FOREIGN KEY (OrderID)
 REFERENCES orderheader(OrderID)
);

19.1.4 CHECK constraints

We want to use one final constraint in our table: the CHECK constraint. A CHECK con-
straint allows us to limit the values used in a column by comparing them to some kind
of expression. Being able to use an expression in the CHECK constraint gives us quite a
bit of flexibility in evaluating the validity of values for any given column.

For the shipment table, we want to add CHECK constraints to the ShipmentCost and
ShipmentMethod columns. The ShipmentMethod column requires a value that’s
either E or P, so we’ll write the expression to be used in our constraint as Shipment-
Method IN ('P', 'E').

WARNING The expressions we use in CHECK constraints can include multiple
columns, so we must state the column (or columns) used in our expressions.

For the CHECK constraint on ShipmentCost, we want the value to be between 0.00
and 999.99, so we’ll write our expression as ShipmentCost BETWEEN 0.00 AND
999.99. Remember that BETWEEN includes the beginning and end values, so values
of 0.00 and 999.99 are valid. We’ll add our CHECK constraints much the same way
that we added the DEFAULT constraint, with our constraint expression included in
parentheses:

CREATE TABLE shipment (
 ShipmentID int NOT NULL,
 OrderID int NOT NULL,
 ShipmentCost decimal(5,2) NOT NULL
 CHECK (ShipmentCost BETWEEN 0.00 AND 999.99),
 ShipmentMethod char(1) NOT NULL CHECK (ShipmentMethod IN ('P', 'E')),
 TrackingNumber varchar(20) NOT NULL UNIQUE,
 ShipmentDate datetime NOT NULL DEFAULT (CURRENT_DATE()),
 CONSTRAINT PK_shipment PRIMARY KEY (ShipmentID),
 CONSTRAINT FK_shipment_orderheader FOREIGN KEY (OrderID)
 REFERENCES orderheader(OrderID)
);

Although the CHECK constraints we’re creating for the shipment table are fairly simple,
as noted earlier, these kinds of constraints can involve multiple columns. We could
have written a single constraint with a larger expression to validate that the Shipment-
Cost was in the stated range of numeric values and that the ShipmentMethod was one
of the two acceptable values. When we use multiple columns in the expression of our
constraint, we typically want to create the constraint after all the columns, as we did
with the PRIMARY KEY and FOREIGN KEY constraints.

 209Automatically incrementing values for a column

19.2 Automatically incrementing values for a column

We want to make one final change in our table—a very common change that’s a bit like
a DEFAULT constraint. We’ve established that we want the ShipmentID column to be the
primary key of our new shipment table. The primary key values need to be unique so
that we can identify individual rows in this table.

In chapter 18, we inserted explicit values for the primary key (CategoryID) of the
category table. For many tables, we won’t want to use explicit values for the column
determined to be the primary key. Instead, we’ll want to take advantage of a feature that
every RDBMS has—a feature that automatically increments values.

In MySQL, this feature uses the AUTO_INCREMENT keyword. Although it’s techni-
cally not a constraint, it behaves a bit like a DEFAULT constraint in that it allows us to
insert rows into the table without specifying a value for a column with AUTO_INCREMENT
enabled.

When we INSERT rows into the shipment table with AUTO_INCREMENT enabled, we will
omit specifying values for the ShipmentID column. The first row inserted this way auto-
matically has a value of 1 for ShipmentID, the second row inserted has a value of 2, and
so on. Setting this value to populate the column with incremental values automatically
ensures that the primary key will be unique and not NULL.

Also, we’ll declare AUTO_INCREMENT in our SQL the same way that we’ve been declar-
ing our constraints. Here’s our CREATE TABLE statement, now with the ShipmentID col-
umn set to AUTO_INCREMENT:

CREATE TABLE shipment (
 ShipmentID int NOT NULL AUTO_INCREMENT,
 OrderID int NOT NULL,
 ShipmentCost decimal(5,2) NOT NULL
 CHECK (ShipmentCost BETWEEN 0.00 AND 999.99),
 ShipmentMethod char(1) NOT NULL CHECK (ShipmentMethod IN ('P', 'E')),
 TrackingNumber varchar(20) NOT NULL UNIQUE,
 ShipmentDate datetime NOT NULL DEFAULT (CURRENT_DATE()),
 CONSTRAINT PK_shipment PRIMARY KEY (ShipmentID),
 CONSTRAINT FK_shipment_orderheader FOREIGN KEY (OrderID)
 REFERENCES orderheader(OrderID)
);

Our shipment table, with all the desired constraints, is ready to be created.

Try it now
Create the shipment table with the preceding SQL script. You’ll practice using this table
in the lab exercises at the end of this chapter.

210 chapter 19 Creating constraints and indexes

19.3 Indexes
Every constraint we’ve created is intended to ensure the integrity of our data, but in
MySQL, some of those constraints also created objects that we haven’t looked at yet:
indexes. Indexes exist in every RDBMS, so let’s take a closer look at them.

An index is an object that logically sorts data to make it more readable in commonly
used queries, allowing those queries to return data faster. Indexes come in two forms:
clustered and nonclustered. We’ll look at clustered indexes first.

19.3.1 Clustered indexes

Clustered indexes are data structures that control the physical order of the rows in a
table, which means that their order is how the data will be stored on disks or other
storage media. When a table is created without any defined indexes or constraints,
the rows of data are stored in no particular order, so any query that uses that table has
to read every row to determine whether the values contained should be retrieved, fil-
tered, joined, and so on.

To better understand clustered indexes, think of a telephone book containing the
names and telephone numbers of folks who live in your hometown. This telephone
book is typically sorted by surname and then the first name of each person, with related
telephone numbers and perhaps address information included in each row on any
given page. If this telephone book were a table, the clustered index would be on sur-
name and then first name because that order is how the rows are organized.

We want to sort rows based on the most commonly used columns in our table, so we
should be thoughtful about the way we create our clustered index. Because the rows in
our table can be sorted in only one way, it’s important to note that any table can include
only one clustered index. After it’s created, the clustered index effectively is the table,
not a separate object.

If you executed the SQL script in section 19.2, you’ve already created a clustered
index for the shipment table because MySQL created one automatically when you cre-
ated your PRIMARY KEY constraint. This situation usually isn’t a problem because the
clustered index is most often created on the column (or columns) that make up the
primary key.

As you may have noticed, when you joined tables in queries, you joined them with
related primary and foreign keys. Because the RDBMS needs to read those key values to
join rows in different tables, it makes sense to create clustered indexes on the primary-
key columns in your tables.

NOTE Even if you don’t define a primary key on a table, the RDBMS creates
a hidden column, often called a row identifier, that contains a unique value for
every row. If you had two or more rows with identical values, the row identifier
would allow the RDBMS to know that these rows were different. Because the
column is hidden, though, users typically wouldn’t see it, so we generally want

 211Indexes

to create PRIMARY KEY constraints and clustered indexes for tables that require
unique values for each row.

As I said earlier, we already have a clustered index in our table. In MySQL, we can see
the indexes in a table in MySQL Workbench. In the Navigator panel, we can expand
our sqlnovel database, expand Tables, expand our shipment table, and finally expand
Indexes. As shown in figure 19.1, we have three indexes in our shipment table.

We can see even more information about each index by highlighting it and viewing
the Information panel, which should be below the Navigator panel. If we highlight the
index named PRIMARY, we see the information about this index (figure 19.2).

Figure 19.1 The three indexes of
the shipment table in the sqlnovel
database, viewed in MySQL Workbench

Although it doesn’t explicitly say “clustered index,” in MySQL, the index labeled
PRIMARY is the clustered index. Admittedly, there isn’t much information in the
Information panel, but the main consideration for us is the Columns value. This value
tells us that ShipmentID is the column used for the clustered index of our table, which
is the column we used to define the PRIMARY KEY constraint.

WARNING Because clustered indexes aren’t separate objects and are more like
properties of a table that are often related to the primary key, every RDBMS has
a different way of handling the way they’re created. In some RDBMSes, such as
SQL Server and DB2, you can create them explicitly using an ALTER TABLE or
CREATE INDEX statement, but in others, such as MySQL and PostgreSQL, you

Figure 19.2 Information about the
PRIMARY index of the shipment table,
viewed in MySQL Workbench

212 chapter 19 Creating constraints and indexes

can’t. Refer to the documentation for your specific RDBMS to see what options
you have for creating clustered indexes.

19.3.2 Nonclustered indexes

Although clustered indexes are common and highly beneficial to performance, non-
clustered indexes are also helpful in speeding our queries. A nonclustered index is dif-
ferent from a clustered index in two main ways:

¡	Unlike clustered indexes, nonclustered indexes are separate objects from the
tables they relate to.

¡	Because nonclustered indexes are separate objects, a table can contain more
than one of them.

A good analogy for a nonclustered index is a catalog system for books in a library. Non-
fiction books in a library are stored under a numeric catalog system, such as the Dewey
Decimal System. Most of us don’t look for a book by its numeric value in this system,
however; rather, we use the title. We use the catalog to look up the title of our desired
book, which gives us the numeric value of the book we want. Then we go through the
shelves of the library that are ordered by the numeric system and find our book.

Nonclustered indexes work like the catalog system in a library. They’re a separate
ordering of the books, in this case by title, which allows us to quickly find the title and
numeric value and then use that value to go to the place in the library where the book
exists. In this analogy, the numeric value would be the primary key and clustered index
of the nonfiction books in the library.

As you can see from this analogy, the catalog system (the nonclustered index) greatly
speeds the search for the book we’re looking for. If we didn’t have the catalog, we’d
have to scan the entire library until we found the book. We create nonclustered indexes
for the same reason: to improve performance in finding rows of data in a table without
reading the entire table.

Although we can put all the columns we want in a nonclustered index, we generally
have only a few columns or even a single column. Typically, we’re searching only on one
or two columns, so we don’t want to make our nonclustered indexes larger than neces-
sary. The more columns the indexes have, the more storage space they take up and the
more resources they require for any INSERT, UPDATE, and DELETE statements involving
the table they relate to.

We saw in figure 19.1 that we have two nonclustered indexes in our shipment table,
so let’s examine them. To look at them, we can click them in the Navigator panel and
review their information in the Information panel. Let’s look at the TrackingNumber
index information, shown in figure 19.3.

Because we created a UNIQUE constraint on the TrackingNumber column, MySQL
automatically created a nonclustered index on this column. As figure 19.3 indicates,
this index has a value of Yes for the Unique property.

 213Indexes

MySQL is unusual in that it created the index
for this column automatically; many other
RDBMSes wouldn’t do that. Because this column
is required to contain unique values, we likely
would want to create a nonclustered index for
the column anyway.

If we think about the nature of this column,
which contains tracking numbers for shipments,
we expect queries to look for shipment informa-
tion related to one specific TrackingNumber.
Rather than scan the entire shipment table every
time we want to find data related to a specific TrackingNumber, our queries can use this
nonclustered index. This is exactly the kind of column we would want a nonclustered
index on.

The analogy earlier in this chapter discusses a library catalog that works as a sort
of nonclustered index for all nonfiction books, and here, the TrackingNumber would
serve the same purpose for the tracking numbers of our shipments. If this index on
TrackingNumber hadn’t been created automatically (and it won’t be in many other
RDBMSes), we could create it with the following SQL statement:

CREATE INDEX IX_shipment_TrackingNumber ON shipment (TrackingNumber);

This syntax is common to just about every RDBMS, so I don’t have to add any qualifiers
about its use.

TIP The preceding SQL statement that creates the nonclustered index on the
shipment table uses a common but specific naming convention: IX to indi-
cate an index, an underscore, the table name, another underscore, and the
name of the column of the index. As always, be intentional about the names of
objects in your database, and follow a consistent naming convention to make
objects that other people can easily understand.

Figure 19.1 indicates we have a third index in our table: FK_shipment_orderheader.
This index was created automatically by our FOREIGN KEY constraint, which is a behav-
ior of MySQL but not necessarily a behavior of other RDBMSes. It’s common to create
nonclustered indexes on the columns contained in FOREIGN KEY constraints, however,
because these columns are used to link tables via the relationships in the keys. Having
the nonclustered indexes on the foreign key columns can reduce the need to read all
the data in a table to join with other tables. We can see the properties of this index by
clicking FK_shipment_orderheader in the Navigator panel and then viewing the Infor-
mation panel (figure 19.4).

One thing to note about this index: the value of the Unique property is No, which
is different from the other two indexes of our shipment table. Although the UNIQUE
constraint we made also created an index that requires unique values, it’s important

Figure 19.3 Information about the
TrackingNumber index of the shipment
table, viewed in MySQL Workbench

214 chapter 19 Creating constraints and indexes

to note that nonclustered indexes aren’t
required to have unique values. In the case of
the FK_shipment_orderheader index, unique
values aren’t required because we might
have a one-to-many relationship between the
orderheader and shipment tables as far as
OrderID values are concerned.

This chapter covered a lot of database
design concepts. Let’s briefly summarize the
main points about constraints and indexes:

¡	Constraints are properties on one or
more columns that enforce data integrity.

¡	NOT NULL constraints ensure that no NULL values are contained in a column.

¡	DEFAULT constraints enter a default value if no value is specified for a column on
INSERT.

¡	UNIQUE constraints enforce that all values in a column are different.

¡	CHECK constraints are used to limit the range of values that can be contained in a
column.

¡	A clustered index defines the physical sort order of a table, typically on the pri-
mary key.

¡	A table can have only one clustered index.

¡	A nonclustered index is a separate object from the table.

¡	A table can have many nonclustered indexes, although every additional nonclus-
tered index negatively affects the performance of INSERT, UPDATE, and DELETE
statements.

¡	In MySQL (but not every RDBMS), a clustered index is created automatically
when we define a PRIMARY KEY constraint.

¡	In MySQL (but not every RDBMS), a nonclustered index is created for every
UNIQUE or FOREIGN KEY constraint we create.

If you’re feeling up to it, try to flex your new skills with constraints and indexes in the
lab exercises.

19.4 Lab
1 Using the following values, write a SQL statement to insert rows into the new

shipment table:

¡	OrderID = 1001

¡	ShipmentCost = 0.00

¡	ShipmentMethod = 'P'

¡	TrackingNumber = '1A2C3M4E'

Figure 19.4 Information about the
FK_shipment_orderheader index of
the shipment table, viewed in MySQL
Workbench

 215Lab answers

2 Because the shipment table currently doesn’t have a row for every order, how
would you write a query to see the OrderID, OrderDate, and ShipmentDate for
every order?

3 Could you have written the expression in section 19.1.4 differently? If so, how?

4 You want to create a report that shows the count of all orders shipped on a partic-
ular date. What constraint or index could you create to improve the performance
of this report?

19.5 Lab answers
1 You don’t have to specify a value for ShipmentID because it’s an AUTO_INCREMENT

column, and you don’t have to specify a value for ShipmentDate because it has a
default constraint. Therefore, your SQL should look something like this:

INSERT shipment (
 OrderId,
 ShipmentCost,
 ShipmentMethod,
 TrackingNumber
)
VALUES (
 1001,
 0.00,
 'P',
 '1A2C3M4E'
);

2 Because you have values for every OrderID in orderheader but don’t have values
for every OrderID in shipment, you need to use a LEFT OUTER JOIN, like this:

SELECT
 oh.OrderID,
 oh.OrderDate,
 s.ShipmentDate
FROM orderheader oh
LEFT OUTER JOIN shipment s
 ON oh.OrderID = s.OrderID;

If you used an INNER JOIN instead, your result set would include only orders that
have a value in the OrderID column of both tables.

3 You could write this expression in a few ways, including this way:

 ShipmentCost >= 0.00 AND ShipmentCost <= 999.99.

4 The SQL used in your report would look something like this:

SELECT
 ShipmentDate,

216 chapter 19 Creating constraints and indexes

 COUNT(ShipmentDate)
FROM shipment
WHERE ShipmentDate = @ShipmentDate
GROUP BY ShipmentDate;

To support this query, you’d create a nonclustered index on the ShipmentDate
column:

CREATE INDEX IX_shipment_ShipmentDate ON shipment (ShipmentDate);

This nonclustered index would help keep you from having to read the entire table
to determine the total of what would be a fraction of the orders shipped on any
given day.

217

20Reusing queries with
views and stored procedures

Through 19 chapters, we’ve written a lot of SQL queries. We’ve used filters, func-
tions, aggregations, and more to find specific data. We’ve even added, updated, and
removed data, and we’ve used variables to enable our scripts to do the same things
over and over with different values.

In this chapter, we’ll bring a lot of that work together by moving from executing
SQL scripts to saving scripts as objects in the database—scripts that anyone who has
the necessary permissions can execute. Depending on the relational database man-
agement system (RDBMS) we’re using, we can use a few objects to store these scripts.
For now, we’ll focus on two nearly universal objects: views and stored procedures.

A view stores a SELECT statement and provides a single result set that can be used
like a table. A stored procedure stores one or more queries that can be executed at the
same time to perform nearly any required task in a database.

20.1 Views
Views are database objects we create based on a SELECT statement. Views provide
a single result set that resembles a table, which is why they’re often referred to as
virtual tables. The term virtual tables indicates that we can use views like tables in our
queries.

Referring to views as virtual tables is a bit misleading, though, because views aren’t
tables and don’t contain data. It may be more helpful to think of them as SELECT state-
ments with a name, although that description doesn’t fully describe their usefulness.

218 chapter 20 Reusing queries with views and stored procedures

Views allow us to reuse a query easily; they also enable us to reduce a complex query
to a simple, accessible object. We can take that object and assign users permissions to
enable them to use the view (or not).

20.1.1 Creating views

Any view starts with a SELECT statement. If we want
to create a view that shows the names of titles and
their category names, we could write a query like
this (results shown in figure 20.1):

SELECT
 t.TitleName,
 c.CategoryName
 FROM title t
INNER JOIN category c
 ON t.CategoryID = c.CategoryID;

To create a view with this query, we need to create
a SQL statement in the following order:

1 CREATE VIEW

2 View name

3 AS

4 SELECT statement

Using this easy syntax, we can create a view named vw_TitleCategory like this:

CREATE VIEW vw_TitleCategory
AS
SELECT
 t.TitleName,
 c.CategoryName
FROM title t
INNER JOIN category c
 ON t.CategoryID = c.CategoryID;

When we create the view, it saves our SELECT statement to be executed whenever we
want. To see the results of our view, we select it from the view as though it were a table:

SELECT *
FROM vw_TitleCategory;

The results of executing the preceding query, shown in figure 20.1, are the same as
those of executing our original SQL statement.

For queries that you have to write over and over, views can save you coding time
because the desired result set is ready to execute. Again, this view doesn’t contain data;
it simply calls the data via the underlying SQL statement when it’s executed. But execut-
ing isn’t all we can do with views.

Figure 20.1 All TitleName values
from the title table and the related
CategoryName values in the category
table

 219Views

20.1.2 Filtering with views

Just as we can filter the results of a table, we can
filter the results in a WHERE clause, as we’ve done
many times in other queries. If we want to see only
the titles in our view that are in the Mystery cate-
gory, as shown in figure 20.2, we modify our SELECT
from the view to have the appropriate filtering in a
WHERE clause, like this:

SELECT *
FROM vw_TitleCategory
WHERE CategoryName = 'Mystery';

With views, we can do nearly everything we’ve done with tables. We can filter results,
order results, and aggregate data. We can even join views to other tables and views, but
to do that with our view, we have to make some changes.

20.1.3 Joining views

As you may recall from the many times you’ve joined tables, you must define relation-
ships to make joins successful. The vw_TitleCategory view contains two columns, but
neither is related to any key values that form relationships with other tables. No tables
in the database have any relationship that uses the TitleName or CategoryName col-
umn as a key value.

To use our view with other tables, we need to add the key values from the underlying
tables. For our view, that means adding the TitleID from the title table and the
CategoryID from the category table. Now, we could add the CategoryID from the title
table instead of from the category table, but it’s good practice to use primary keys
instead of foreign keys in views whenever possible.

WARNING Just as column names in tables must be unique, column names
in views must be unique as well. If you attempt to create a view with column
names that aren’t unique, most RDBMSes, including MySQL, return an error
message telling you that duplicate column names exist.

We’ll modify our view using syntax similar to what we used to create our view. But we’ll
use the ALTER keyword instead of CREATE, as we did when we modified a table in chap-
ter 18:

¡	ALTER VIEW

¡	View name

¡	AS

¡	Modified SQL query

Using this syntax, we can modify our vw_TitleCategory view to include the two addi-
tional columns:

Figure 20.2 The results of
selecting all rows from vw_
TitleCategory with a CategoryName
value of Mystery

220 chapter 20 Reusing queries with views and stored procedures

ALTER VIEW vw_TitleCategory
AS
SELECT
 t.TitleID,
 t.TitleName,
 c.CategoryID,
 c.CategoryName
 FROM title t
INNER JOIN category c
 ON t.CategoryID = c.CategoryID;

Try it now
If you haven’t created and altered the vw_TitleCategory yet, modify the preceding query
from ALTER VIEW to CREATE VIEW to create it. You’ll use it again later in this chapter.

After executing our ALTER VIEW
statement, we can examine the
results of our view with the follow-
ing query (results shown in figure
20.3):

SELECT *
FROM vw_TitleCategory;

Notice that the results aren’t in
any particular order. This is fine
because we don’t want to order the
values in our view unless we have
to. As with a SELECT statement, add-
ing an ORDER BY clause to a view can
make query performance much worse when we’re dealing with millions of rows of data.

Now we can not only join this view to other tables and view, but also create calculated
columns. If we want to see how many titles were sold in each category, for example,
we can join our view in a query to the orderitem table by using the relationship of the
TitleID columns. Here’s what that query looks like (results
shown in figure 20.4):

SELECT
 tc.CategoryName,
 SUM(oi.Quantity) AS TitlesOrdered
FROM vw_TitleCategory tc
LEFT OUTER JOIN orderitem oi
 ON tc.TitleID = oi.TitleID
GROUP BY tc.CategoryName;

Figure 20.3 The results of selecting all rows and
columns from vw_TtileCategoryID, which now includes
the TitleID and CategoryID columns

Figure 20.4 The results of
the number of titles ordered
in each category

 221Stored procedures

20.1.4 Considerations for views

Views are incredibly useful, but some rules and caveats apply. Here are some of the
main factors you should consider when you create and use views:

¡	A view can’t have the same name as any other view or table. Keep this rule in
mind when naming your views.

¡	When you name views, try to use a naming convention that identifies them as
views, not tables. Our example uses the prefix vw_ in the view name. A consistent
naming convention becomes important when other users use views you created
to look at queries; you want them to be able to distinguish tables from views easily.

¡	It’s a good idea to add columns for the primary key and foreign key values to the
SELECT clause of the SQL statement used by the view. This approach allows you to
relate the results of your view to other tables and views.

¡	Chapter 11 examined using subqueries—queries contained in other queries—to
find the data you want with SQL. Similarly, views can call other views via sub-
queries or joins. These views used within other views are referred to as nested
views. Avoid using them, though, because they dramatically degrade query
performance.

¡	If your view contains a calculated column, as the preceding query does, always
create an alias for the column name. Most RDBMSes require every column in a
view to have a defined name.

¡	Although it may seem improbable, many RDBMSes allow data to be updated or
even inserted into views. Doing so can be problematic because these changes can
affect data in multiple tables, so in general, you should avoid this practice.

NOTE In light of that last point, views aren't the right tool for modifying
data in SQL, but stored procedures can be wonderful tools for that purpose.
They’re also a better tool for selecting data.

20.2 Stored procedures
Like views, stored procedures allow us to store a SQL statement in our database so
we can easily reuse it. We can also assign users permissions to determine whether
they can use the stored procedures. Unlike views, stored procedures allow for even
more complexity, such as executing multiple queries and passing values through
variables.

20.2.1 Creating stored procedures

Let’s start by turning our SQL statement from section 20.1.1 into a stored procedure.
Nearly every RDBMS has a basic syntax for creating stored procedures, which looks
like this:

1 CREATE PROCEDURE

222 chapter 20 Reusing queries with views and stored procedures

2 Name of the stored procedure

3 SQL for the stored procedure to execute

NOTE Unfortunately, each RDBMS has its own subtle syntax differences for
handling the creation of a stored procedure. But don’t let that fact keep you
from learning about them, because despite these differences, the use of stored
procedures is similar across RDBMSes except SQLite, which doesn’t support
stored procedures.

To create our stored procedure in MySQL, first we must change the delimiter. When
we wrote our first query in chapter 2, we learned to add a semicolon (a statement ter-
minator) to the end of a query to tell the RDBMS where the SQL in our query stops.
MySQL is rigid about the statement terminator, which can be a concern when writing
stored procedures. Because these procedures can contain multiple statements, the first
semicolon our code encounters would look like the end of the stored procedure to the
RDBMS.

To work around this situation, we’ll briefly change the statement terminator to a
value other than a semicolon. In our SQL, we’ll change the statement terminator to
double slashes (//) by using the MySQL-specific keyword DELIMITER, create our stored
procedure with the standard semicolon delimiter, and then use DELIMITER to change
the statement terminator back to a semicolon. We’ll name the procedure GetTitle-
Category. Here’s the SQL to create our stored procedure that gets all TitleName values
and the associated CategoryName values, followed by notes that explain what the code
does:

DELIMITER //

CREATE PROCEDURE GetTitleCategory()
BEGIN
SELECT
 t.TitleName,
 c.CategoryName
 FROM title t
INNER JOIN category c
 ON t.CategoryID = c.CategoryID;
END //

DELIMITER ;

Changes the statement terminator to // using
DELIMITER //. This change allows us to
include as many SQL queries that end with
semicolons as statement terminators as we
need, although our new stored procedure is
simple enough that it has only one query.

Creates the
procedure with
CREATE PROCEDURE
and the name of the
stored procedure.
We also include
parentheses after
the name.

Indicates the start of our stored procedure
with BEGIN. BEGIN explicitly indicates the
start of the stored procedure, which isn’t
necessary in every RDBMS but is in MySQL.

Writes the heart of our stored
procedure, which is the query to
return the desired result set

Indicates the end of our stored
procedure with END and then the
new statement terminator, //

Changes the statement terminator back
to the semicolon with DELIMITER;

 223Stored procedures

Now that we have created our stored procedure,
we can put it to use. To execute our stored proce-
dure, we’ll use the CALL keyword (results shown in
figure 20.5):

CALL GetTitleCategory;

This stored procedure is a basic one. We can do
much more with stored procedures, so in section
20.2.2, we’ll add functionality to pass a variable
and filter our results.

NOTE The writing of a stored procedure is
specific to an RDBMS, and so is the execution.
Although MySQL, PostgreSQL, and MariaDB
use the CALL keyword, SQL Server and Oracle
use EXEC.

20.2.2 Using variables with stored procedures

One of the biggest advantages of stored procedures over views is the fact that stored
procedures have parameters. A parameter is a variable that can be passed into or out of a
stored procedure. Any stored procedure can have multiple parameters that we can use
for anything from filtering data to changing values in tables to determining the output
results of a stored procedure. When we use parameters with a stored procedure, each
parameter must have three properties defined:

¡	The name

¡	The data type

¡	Whether the parameter is used for input or output

The final property gives us choices on how to use a parameter. If a parameter is defined
for input, a value is passed into the stored procedure for use. If a parameter is defined
for output, the value of the parameter is determined during the execution of the stored
procedure and returned.

NOTE MySQL offers a third option for parameters: INOUT. This option allows
a parameter to be passed in, modified if necessary, and then passed back out.
This option isn’t available in every RDBMS.

We can modify our GetTitleCategory stored procedure to have an input parameter
that filters on TitleName. To modify a stored procedure in MySQL, however, first we
have to drop it, similar to the way we dropped tables in chapter 18:

DROP PROCEDURE GetTitleCategory;

Figure 20.5 The results of all
TitleName values from the title table
and their related CategoryName
values in the category table, as
returned by the stored procedure
GetTitleCategory

224 chapter 20 Reusing queries with views and stored procedures

Now we can re-create our stored procedure with an input parameter. We’ll name our
parameter _TitleName so it won’t be confused with the column named TitleName,
and we’ll define the data type as the one defined for the TitleName column in the
title table. We can see the data type of columns for any table in MySQL by using SHOW
COLUMNS. This statement is how we’d use SHOW COLUMNS to find the data types of the col-
umns in the title table (results shown in figure 20.6):

SHOW COLUMNS FROM title;

Figure 20.6 The data types
of all columns in the title table,
returned by SHOW COLUMNS

We can see that the data type for the TitleName column is varchar(50), so we’ll define
that data type for our input parameter. The last thing we have to do is use the param-
eter for filtering within the stored procedure. To accomplish this task, we’ll add WHERE
t.TitleName = _TitleName. The following SQL creates our new stored procedure:

DROP PROCEDURE GetTitleCategory;

DELIMITER //

CREATE PROCEDURE GetTitleCategory(
 IN _TitleName varchar(50)
)
BEGIN
SELECT
 t.TitleName,
 c.CategoryName
 FROM title t
INNER JOIN category c
 ON t.CategoryID = c.CategoryID
WHERE t.TitleName = _TitleName;
END //

DELIMITER ;

Now we can declare a variable and pass it to the stored procedure to return only the
results for the desired TitleName value. Using the value The Sum Also Rises, we can
execute the stored procedure with the following SQL (results shown in figure 20.7):

 225Stored procedures

SET @TitleName = 'The Sum Also Rises';
CALL GetTitleCategory (@TitleName);

Now that we’ve added the input parameter
_TitleName to GetTitleCategory, every exe-
cution of the stored procedure will require
a value for that parameter. If we try to exe-
cute GetTitleCategory without a value for
_TitleName, we’ll get the error message
“Incorrect number of arguments.” In the
context of a stored procedure, an argument is the value being passed to the parameter.
Now GetTitleCategory expects a value for every execution, and if we don’t pass one,
we’re passing zero arguments. As the error correctly calculates, zero is the incorrect
number when one argument is expected.

When writing a stored procedure, we may want to account for the fact that we may
not have a value for an argument, so instead of not passing an argument, we can pass
one that has NULL as the value. This approach isn’t uncommon. As we’ve seen through-
out this book, NULL can be a value that has to be accounted for.

One way to handle passing a value of NULL to the _TitleName parameter is to return
all rows in a result set, which we can do by using the COALESCE function (see chapter
15). We can change the filtering in our stored procedure to WHERE t.TitleName =
COALESCE(_TitleName, t.TitleName) to account for a value of NULL used as an argu-
ment for the _TitleName parameter.

With this logic, we can execute our stored procedure with an argument of NULL. If a
specific value is passed, our result set is still filtered on that value, but if NULL is passed,
we return every row in which TitleName equals itself, which is every row.

Let’s drop our stored procedure and re-create it with the new filtering logic that uses
COALESCE. We can do all of this at the same time with the following SQL:

DROP PROCEDURE GetTitleCategory;

DELIMITER //

CREATE PROCEDURE GetTitleCategory(
IN _TitleName varchar(50)
)
BEGIN
SELECT
 t.TitleName,
 c.CategoryName
FROM title t
INNER JOIN category c
 ON t.CategoryID = c.CategoryID
WHERE t.TitleName = COALESCE(_TitleName, t.TitleName);
END //

DELIMITER ;

Figure 20.7 The results of executing
GetTitleCategory using the value The Sum Also
Rises with the input parameter _TitleName

226 chapter 20 Reusing queries with views and stored procedures

With this new change, we can execute our stored
procedure with or without a NULL value as an
argument. Using a value of NULL returns values
for all TitleNames, as shown in figure 20.8:

SET @TitleName = NULL;
CALL GetTitleCategory (@TitleName);

If we execute GetTitleName with an argument
that isn’t NULL, like The Sum Also Rises, we get
the filtered results for only that TitleName, as
shown in figure 20.9:

SET @TitleName = 'The Sum Also Rises';
CALL GetTitleCategory (@TitleName);

Figure 20.9 The results of TitleName values from the title table and the related CategoryName values
in the category table, returned by the stored procedure GetTitleCategory with an argument of The Sum
Also Rises for the _TitleName parameter

Try it now
Create the final version of the GetTitleCategory stored procedure, and try executing it
with different values as arguments for _TitleName, including NULL.

20.2.3 Considerations for stored procedures

I hope you see why stored procedures are popular ways to store our SQL statements
in an RDBMS. Before you run out and change all your queries to stored procedures,
however, you have a few significant factors to consider:

¡	Stored procedures can call other stored procedures and even pass variable values
back and forth. Be careful about nesting stored procedures, which can become a
headache to troubleshoot.

¡	As you do for views and other objects, use a consistent naming convention for
your stored procedures so they’re clearly identified as stored procedures and so
other people will understand their purposes.

¡	If you’re writing a stored procedure with parameters, always verify that the data
types of the parameters match the data types of any columns they’ll be evaluated
against.

Figure 20.8 The results of all
TitleName values from the title table
and the related CategoryName values
in the category table, returned by the
stored procedure GetTitleCategory
with an argument of NULL for the
_TitleName parameter

 227Lab

¡	If you’re using variables to pass values to the parameters of a stored proce-
dure, make sure that the data type of your variables matches that of the stored
procedure.

¡	Because stored procedures can contain multiple queries, use lots of clear,
descriptive comments in complex stored procedures to indicate what each part
of your stored procedure is meant to do.

20.3 Differences between views and stored procedures
In this chapter, we’ve looked at two of the most popular ways to store SQL for reuse.
As we’ve seen, views and stored procedures have different attributes. Let's review the
main differences to help you better decide when to use either of them, as shown in
table 20.1.

Table 20.1 Some main differences between views and stored procedures

Attributes View Stored procedure

Input Doesn’t use parameters Can use parameters

Output Can return only a single result set Can return zero, one, or multiple result
sets or output parameters

Multiple queries Can contain only a single query Can contain multiple queries

Relationships Can be joined to other views or tables
via relationships

Can’t be joined to other objects

Dependencies Can contain a query using tables or
views but not stored procedures

Can contain queries using tables, views,
or other stored procedures

Although this chapter covers most of what you need to know about views, it only
scratches the surface of the capabilities of stored procedures. As you’ll see in chapter
21, you can create stored procedures to read data and write data, with logic deter-
mined by various conditions.

20.4 Lab
1 Create a view named vw_Order that contains all the columns from the order-

header and orderitem tables except the OrderID column from the orderitem
table. Recall that these tables are related by their OrderID columns.

2 Why do you think you should exclude the OrderID column from the orderitem
table?

3 Create a stored procedure named GetOrder with the following specifications:

¡	Uses the vw_Order view you just created

¡	Has a parameter named _OrderID and filters the results based on matching
the value of that parameter to the OrderID column of vw_Order

¡	Joins the title table using the relationship of the TitleID columns

228 chapter 20 Reusing queries with views and stored procedures

¡	Returns the following columns: OrderID, OrderDate, TitleName, Quantity,
and ItemPrice

4 What kind of data type did you define for the _OrderID parameter in GetOrder,
and why?

5 After you create GetOrder, what happens if you execute the following code?

CALL GetOrder(1049)

20.5 Lab answers
1 The SQL for your view should look something like this:

CREATE VIEW vw_Order
AS
SELECT
 oh.OrderID,
 oh.CustomerID,
 oh.PromotionID,
 oh.OrderDate,
 oi.OrderItem,
 oi.TitleID,
 oi.Quantity,
 oi.ItemPrice
 FROM orderheader oh
INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID;

2 If you hadn’t excluded the OrderID column from the orderitem table in your
view, there’d be two columns named OrderID. If you tried to create this view with
two OrderID columns, the RDBMS would return an error because it wouldn’t
know which column to use.

3 The SQL to create the GetOrder stored procedure should look something like
this:

DELIMITER //

CREATE PROCEDURE GetOrder(
 IN _OrderID int
)
BEGIN
SELECT
 o.OrderID,
 o.OrderDate,
 t.TitleName,
 o.Quantity,
 o.ItemPrice
FROM vw_Order o
INNER JOIN title t
 ON o.TitleID = t.TitleID

 229Lab answers

WHERE o.OrderID = _OrderID;
END //

DELIMITER ;

4 You should have used an integer(int) data type for the _OrderID parameter
because that’s the data type of the OrderID column you’ll be evaluating with the
parameter. If you didn’t know the data type, you could have discovered it using
the following query in MySQL:

SHOW COLUMNS FROM orderheader;

5 The command should execute, returning the results shown in figure 20.10. Exe-
cuting the stored procedure this way shows that you can use either variables or
literal values, such as 1049, when passing arguments to a parameter.

Figure 20.10 The results of executing your new GetOrder stored procedure
with an argument of the literal value 1049 passed to the _OrderID parameter

230

21Making decisions
in queries

Now that you know how to add, update, or remove data from a table, let’s look at
some of the tools SQL provides for making decisions in queries and stored proce-
dures. What if you want to group data and return a value of 0 if a value of the SUM is
NULL, for example? What if you want to make the output of a query dependent on
some condition or to evaluate parameters in a stored procedure and provide con-
ditional feedback in the output? This chapter looks at all these scenarios and more.

21.1 Conditional functions and expressions
Do you recall that you’ve already used one function in a conditional expression a
few times? That function is COALESCE. You used it in chapter 15 to concatenate the
full names of authors and in chapter 20 to handle NULL values for TitleName. In
the first example, COALESCE allowed you to avoid a result of NULL for concatenated
full names in cases when there were null values for the MiddleName of any authors.

21.1.1 COALESCE function

In chapter 15, we used the following query, which provided two values to COALESCE
to evaluate:

SELECT CONCAT(FirstName, ' ', COALESCE(MiddleName, ''), ' ', LastName)
 AS AuthorName
FROM author;

 231Conditional functions and expressions

The COALESCE function evaluates any number of expressions from left to right, return-
ing the first non-null values it finds. Because the MiddleName column of the author
table was the first value provided, the COALESCE function evaluated the MiddleName
value for each author and then determined whether the MiddleName value was NULL.
For each row in which the value was not NULL, the MiddleName value was used in the
context of the query. For each row in which the value was NULL, the second value—an
empty string represented by two single quotes ('')—was used for concatenation.

The COALESCE function has more functionality than we used in the preceding query
because we can give it more than two expressions to evaluate for NULL values. Here’s a
simple example that uses three expressions, of which the first two are NULL:

SELECT COALESCE(NULL, NULL, 'I am not null!') AS CoalesceTest;

The COALESCE function evaluated the first two expressions, determined them to be
NULL values, and returned the third expression—the string 'I am not null!'—as the
first non-NULL expression. We could have had the COALESCE function evaluate more
than three expressions, but as soon as one expression is determined to be not NULL,
all subsequent expressions are ignored.

Try it now
Execute the following query using the COALESCE function:

SELECT COALESCE(NULL, NULL, 'I am not null!', 'I am ignored!')
 AS CoalesceTest;

21.1.2 IFNULL function

Another common function is used for evaluating nulls: IFNULL. The IFNULL function
is nearly identical in use to the COALESCE function, the main exception being that it’s
limited to evaluating only two expressions. The first expression is evaluated for null
values, and if the value is determined to be NULL, the second expression is returned.
Here’s an example:

SELECT IFNULL(NULL, 'I am not null!') AS IfNullTest;

NOTE The IFNULL function doesn’t exist in all relational database manage-
ment systems (RDBMSes). In Microsoft Access and SQL Server, you’ll use the
ISNULL function instead, and in Oracle, you’ll use the NVL function. Although
these functions have different names, you use them the same way as IFNULL.

Although we’ve used literal values in these examples, COALESCE and IFNULL are often
used with calculations that might include null values. Let’s consider a common

232 chapter 21 Making decisions in queries

scenario in which we want to see a list of all
title names and determine whether they’re
included in any orders.

First, we’ll consider the tables we need
to use in this query. We need the title table
because it has TitleNames. We also need the
orderitem table, which contains the Quantity
column, representing the quantity of each
item ordered in each row. Finally, we need
the orderheader table because it relates to
both the title and orderitem tables with the
TitleID and OrderID columns, respectively.

The way we join these tables is crucial to
our output. We want to start with the title
table because we want the total quantity sold
for each title, but we need to use LEFT JOINs
to join the other tables because some titles
may not have been included in any orders. If
we used INNER JOINs to join all the tables, we’d get a result set that included only titles
that were included in orders—not what we wanted from this query.

We also want to group by TitleName from the title table and use a SUM function to
get the sum of the Quantity column from orderitem for each TitleName. Our query will
look something like the following code snippet (results shown in figure 21.1):

SELECT
 t.TitleName,
 SUM(oi.Quantity) AS TotalQuantity
FROM title t
LEFT JOIN orderitem oi
 ON t.TitleID = oi.TitleID
LEFT JOIN orderheader oh
 ON oh.OrderID = oi.OrderID
GROUP BY t.TitleName
ORDER BY t.TitleName;

If you executed the queries in chapter 16 that added the extra titles, some rows in your
results should have NULL for TotalQuantity. In a sales report, NULL typically isn’t what
readers expect, so make a minor adjustment to your query to add IFNULL, which returns
a value of 0 for any title that isn’t included in an order (results shown in figure 21.2):

SELECT
 t.TitleName,
 IFNULL(SUM(oi.Quantity),0) AS TotalQuantity
FROM title t
LEFT JOIN orderitem oi
 ON t.TitleID = oi.TitleID
LEFT JOIN orderheader oh

Figure 21.1 The TitleName and the total
quantity of TitleName included in orders.
TitleName values that weren’t included in
orders are represented by NULL.

 233Conditional functions and expressions

 ON oh.OrderID = oi.OrderID
GROUP BY t.TitleName
ORDER BY t.TitleName;

Now our results have a value of 0 instead of
NULL for any title that wasn’t included in any
order, which is a more useful indicator of titles
included in orders.

TIP Because COALESCE has more functional-
ity and is supported by every RDBMS, use this
function instead of IFNULL or ISNULL to evalu-
ate nulls. We’ll be using COALESCE throughout
this book instead of IFNULL.

21.1.3 CASE expression

COALESCE and IFNULL help us evaluate expres-
sions for null values. But what if we need to eval-
uate for something other than null values or
evaluate for different conditions? In these situa-
tions, we can use the CASE expression.

The CASE expression, often referred to in queries as a CASE statement, is a more pow-
erful tool than COALESCE and IFNULL because it allows us to evaluate conditions and
return different values based on those conditions. CASE lets us make choices on the
values that are returned, using logic that emulates the English language. If we want to
find titles with prices that are $7.95 and return a value that confirms whether they are
$7.95, for example, we might say something like this: “I would like title name and price
from the title table. When the price is $7.95, I want to say, ‘This title is $7.95.’ Otherwise,
I want to say, ‘This title is not $7.95.’ ”

We can use a CASE expression to accomplish the intention of the last two sentences.
The structure of our CASE expression has a few rules:

¡	It must start with the keyword CASE.

¡	It must contain one or more conditions for equality that say WHEN (some value
or expression) THEN (the desired value). Because this test is for equality, it won’t
evaluate NULL values.

¡	We can use ELSE to account for any value that doesn’t meet the WHEN condi-
tions, but ELSE can be used only after all WHEN conditions. Most CASE expressions
include ELSE to account for unknown or NULL values.

¡	The CASE expression must conclude with the keyword END. If the CASE expression
is used in the SELECT part of our query, we typically want to use an alias for the
column name for readability.

This expression may sound a little complicated, but its use is intuitive. Here’s what our SQL
from the preceding example looks like when we use CASE (results shown in figure 21.3):

Figure 21.2 The TitleName and the
total quantity of TitleName included in
orders. TitleName values that weren’t
included in orders are represented by a
value of 0 instead of NULL, due to the
use of the IFNULL function.

234 chapter 21 Making decisions in queries

SELECT
 TitleName,
 Price,
 CASE Price
 WHEN 7.95 THEN 'This title is $7.95.'
 ELSE 'This title is not $7.95.'
 END AS IsPrice795
FROM title;

As I mentioned, the evaluation in a
CASE expression can be for another
expression, which may not necessarily
be a value like values in a column. An
expression could be the result of any-
thing from concatenating two or more
columns to performing a mathematical
calculation. We can evaluate either of
those examples or any other expression
with a CASE expression.

Let’s look at an example using the
ROUND function (first discussed in chap-
ter 15). If we want an expression to rep-
resent the integer values of a number
such as the price of a title, we use the
expression ROUND(Price, 0) to find the
nearest integer value.

We can modify the preceding query
to look for books with a price of about
$8 by using the expression ROUND

(Price, 0) and then use a CASE expres-
sion to return a factual statement about
the price (results shown in figure 21.4):

SELECT
 TitleName,
 Price,
 CASE ROUND(Price, 0)
 WHEN 8 THEN 'This title is around $8.'
 ELSE 'This title is not around $8.'
 END AS IsPriceAround8Dollars
FROM title;

The preceding two queries are examples of using sim-
ple CASE expressions, which means that we’re evalu-
ating possible values to match a single expression.
We can also use a searched CASE expression for more

Figure 21.3 The TitleName and Price for all titles,
as well as a column aliased as IsPrice795. The
values in column IsPrice795 are the results of
an evaluation of the price by a CASE expression.

Figure 21.4 The TitleName
and Price for all titles, as
well as a column aliased as
IsPrice Around8Dollars.
The values in column
IsPriceAround8Dollars are
the result of an evaluation of the
expression ROUND(Price, 0)
using a CASE expression.

 235Decision structures

comprehensive evaluations, such as ranges of data values. With a searched CASE expres-
sion, we’ll evaluate one or more other expressions to see whether they’re true or false.

We can modify the preceding query to search for ranges of price values and see
whether a price is less than, equal to, or more than $8 by using a searched CASE state-
ment with the following query (results shown in figure 21.5):

SELECT
 TitleName,
 Price,
 CASE
 WHEN Price < 8.00 THEN 'This title is less than $8.00.'
 WHEN Price = 8.00 THEN 'This title is $8.00.'
 WHEN Price > 8.00 THEN 'This title is more than $8.00.'
 END AS IsPriceAround8Dollars
FROM title;

The searched CASE expressions evalu-
ated for being true or false are known
as Boolean expressions. I realize that this
chapter has talked about several kinds
of expressions, complicated by CASE
expressions evaluating other expres-
sions. Please remember that those
expressions evaluated in the WHEN parts
of the preceding query are Boolean;
we’ll use them again later in this chapter.

NOTE Although we’ve used CASE
expressions only in the SELECT
clause, if you need this kind of
decision-making logic elsewhere
in your queries, you can use CASE
expressions in other clauses, in clu d-
ing WHERE, HAVING, and ORDER BY.

21.2 Decision structures
Functions and expressions aren’t the only tools we have in SQL for evaluation and
decision-making. We can also use several keywords to decide whether we’ll even exe-
cute SQL statements.

Nearly every RDBMS has keywords you can use to control decision-making. If you’ve
ever used a programming language, the good news is that those keywords should be
familiar. If you’re new to programming, don’t worry; the keywords are very intuitive.

21.2.1 IF and THEN

First, we’ll look at the one keyword necessary to start any decision-making: IF . This
keyword is the starting point for any decision structure, which is how we refer to any SQL

Figure 21.5 The TitleName and Price for
all titles, as well as a column aliased as
IsPriceAround8Dollars. The values in column
IsPriceAround8Dollars are the result of a
searched CASE expression evaluating whether
the Price value is less than, equal to, or more than
$8.00.

236 chapter 21 Making decisions in queries

we write that involves deciding whether we want to execute a statement. We’ll base our
decisions on the same Boolean conditions we used in section 21.1.3. This means that if
a condition is true, we want the included SQL to execute, and if that condition is false,
we don’t want it to execute.

Decision structures are commonly used within stored procedures, so let’s look at a
simple example of using the IF keyword to make a decision inside a stored procedure
that adds a row to the promotion table. We can write a stored procedure to add a row for
a new PromotionCode, but we can create a decision structure to avoid writing the row if
a value for PromotionCode isn’t provided.

Before we look at the entire stored procedure, let’s look at the individual parts of
the SQL we’ll use inside the stored procedure to determine whether a PromotionCode
value exists. Here’s the first part of the stored procedure:

CREATE PROCEDURE AddPromotion (
 IN _PromotionID int,
 IN _PromotionCode varchar(10),
 IN _PromotionStartDate datetime,
 IN _PromotionEndDate datetime
)
BEGIN

Looking at this part of the stored procedure, we see a name (AddPromotion) and
four input parameters: _PromotionID, _PromotionCode, _PromotionStartDate, and
_Promotion EndDate. The data types used for these parameters are the same as the cor-
responding columns in the promotion table. We also have the BEGIN keyword after we
declare the parameters to indicate where the stored procedure begins doing what we
want it to do.

TIP Always create parameters with the same data types as any columns they’ll
read or write values to. Using a different data type will cause the RDBMS to
do more work and negatively affect query performance. If you don’t know the
data types of the columns, you can always use SHOW COLUMNS (discussed in chap-
ter 20) to determine column data types. Although SHOW COLUMNS exists only in
MySQL, every RDBMS has similar keywords to help you view the data types of
the columns of any table.

Next, let’s look at the SQL for the rest of the stored procedure:

IF _PromotionCode IS NOT NULL THEN
 INSERT INTO promotion (
 PromotionID,
 PromotionCode,
 PromotionStartDate,
 PromotionEndDate
)
 SELECT
 _PromotionID,
 _PromotionCode,

 237Decision structures

 _PromotionStartDate,
 _PromotionEndDate
 ;
END IF;
END

Here, we have the IF keyword, which says we want to determine whether the condition
of _PromotionCode IS NOT NULL is true. If a value other than NULL was provided for
_PromotionCode, the INSERT statement executes. If the value for _PromotionCode is
NULL, the subsequent INSERT statement doesn’t execute.

We end our conditional statement with END IF, and we end the stored procedure
with END. Let’s put everything together as a single statement that we can use to create
our stored procedure and create it so we can test the conditional logic of our decision
structure. We’ll use the same DELIMITER commands in MySQL to change the delimiter
from a semicolon so we can execute the entire stored procedure:

DELIMITER //

CREATE PROCEDURE AddPromotion (
 IN _PromotionID int,
 IN _PromotionCode varchar(10),
 IN _PromotionStartDate datetime,
 IN _PromotionEndDate datetime
)
 BEGIN

IF _PromotionCode IS NOT NULL THEN
 INSERT INTO promotion (
 PromotionID,
 PromotionCode,
 PromotionStartDate,
 PromotionEndDate
)
 SELECT
 _PromotionID,
 _PromotionCode,
 _PromotionStartDate,
 _PromotionEndDate
 ;
END IF;
END //

DELIMITER ;

If we execute this SQL, we should have our stored procedure AddPromotion ready to exe-
cute. First, let’s try executing the code with the following arguments for the parameters:

CALL AddPromotion (14, '2OFF2023', '2023-01-04', '2023-02-11');

238 chapter 21 Making decisions in queries

Executing this command should result in the message “1 row(s) affected” in the Out-
put panel. We can verify that the row was inserted with the following query (results
shown in figure 21.6):

SELECT *
FROM promotion
WHERE PromotionID = 14;

Figure 21.6 The results of selecting any rows from the promotion table in which the
PromotionID is 14. We inserted that row with the AddPromotion stored procedure.

Now that we’ve verified that our stored procedure works correctly when the result of
our IF condition is true, let’s try it when the result is false. We’ll execute the following
SQL, which uses an argument of NULL for the _PromotionCode parameter:

CALL AddPromotion (15, NULL, '2023-07-04', '2023-07-11');

Executing this command should result in the error message “0 row(s) affected” in the
Output panel. We can use a similar query to the one we used to confirm that no row
was inserted. Executing the following query returns no results:

SELECT *
FROM promotion
WHERE PromotionID = 15;

You’ve written the stored procedure AddPromotion, and you’ve examined the deci-
sion structure it uses to determine whether a row should be inserted into the pro-
motion table. But what if you aren’t familiar with the internal workings of this stored
procedure? Suppose that you executed the CALL of the stored procedure that returned
no results. Wouldn’t you want to know why executing the stored procedure didn’t work
as expected?

When you’re writing stored procedures, especially when you’re using any kind of
decision structure, you usually want the procedure to provide some sort of feedback on
the results of the decisions made. To add functionality to your stored procedure that
provides feedback or takes some other action if the condition of the evaluation is false,
or even if you want to add more conditions, we can use some other keywords.

21.2.2 ELSE

Just as IF evaluates whether a condition is true, ELSE provides an alternative action to
take if an evaluated condition is determined to be false or NULL. We can use ELSE the
same way that we used IF, except that it comes after the IF statement.

 239Decision structures

WARNING Although the use of ELSE is optional, any statement with ELSE can
follow only an IF statement. If you write an ELSE statement without a preced-
ing IF statement, you’ll get a syntax error.

Let’s review the decision structure we want to have in AddPromotion:

1 If _PromotionCode is not NULL, we insert the values provided in the promotion
table.

2 Otherwise, we don’t want to insert the values; we want to return a message
explaining why the insert was skipped.

Think of ELSE as a shorter version of the word otherwise, meaning that after the IF con-
dition isn’t met, this is the last thing we do. To accomplish the goal stated in point 2, we
need to add this bit of SQL before the END IF:

ELSE
 SELECT 'No PromotionCode, INSERT skipped.' AS Message;

This code says that if a condition of false or NULL exists for the IF condition, we’ll
select a literal value of No PromotionCode, INSERT skipped. that will be returned as
Message. It’s about as straightforward as can be. Let’s execute the following SQL to
DROP AddPromotion and then re-create the AddPromotion stored procedure with our
new logic:

DROP PROCEDURE AddPromotion;

DELIMITER //

CREATE PROCEDURE AddPromotion (
 IN _PromotionID int,
 IN _PromotionCode varchar(10),
 IN _PromotionStartDate datetime,
 IN _PromotionEndDate datetime
)
BEGIN

IF _PromotionCode IS NOT NULL THEN
 INSERT INTO promotion (
 PromotionID,
 PromotionCode,
 PromotionStartDate,
 PromotionEndDate
)
 SELECT
 _PromotionID,
 _PromotionCode,
 _PromotionStartDate,
 _PromotionEndDate
 ;
ELSE
 SELECT 'No PromotionCode, INSERT skipped.' AS Message;
END IF;

240 chapter 21 Making decisions in queries

END //

DELIMITER ;

After executing the preceding SQL, we
can try executing the previous call of Add-
Promotion with an argument of NULL for
_Promotion Code. The results in figure 21.7
show that we received the message included
in the ELSE statement:

CALL AddPromotion (15, NULL, '2023-07-04', '2023-07-11');

So far, we’ve used a simple decision structure that evaluates one particular condition,
but we can also evaluate multiple conditions using IF and ELSE.

21.2.3 Multiple conditions

Our previous decision structure evaluated the value for _PromotionCode for being
NOT NULL, but if we want AddPromotion to be a useful stored procedure, we probably
should account for possible null values in the other parameters as well. To do so, we
have to change our decision structure to reflect several options for evaluation. Let’s
consider the new decision structure we want to have in AddPromotion:

1 If _PromotionID is null, we want to return a message explaining why the insert
was skipped.

2 If _PromotionCode is null, we want to return a message explaining why the insert
was skipped.

3 If _PromotionStartDate is null, we want to return a message explaining why the
insert was skipped.

4 If _PromotionEndDate is null, we want to return a message explaining why the
insert was skipped.

5 Otherwise, we want to insert the values provided in the promotion table.

The SQL inside AddPromotion that handles this decision structure needs a new key-
word. This keyword is ELSEIF, which is an additional IF - to handle all these additional
evaluations. We use it like this:

IF _PromotionID IS NULL THEN
 SELECT 'No PromotionID, INSERT skipped.' AS Message;
ELSEIF _PromotionCode IS NULL THEN
 SELECT 'No PromotionCode, INSERT skipped.' AS Message;
ELSEIF _PromotionStartDate IS NULL THEN
 SELECT 'No PromotionStartDate, INSERT skipped.' AS Message;
ELSEIF _PromotionEndDate IS NULL THEN
 SELECT 'No PromotionEndDate, INSERT skipped.' AS Message;
ELSE
 INSERT INTO promotion (

Figure 21.7 The output from the ELSE
statement we added to AddPromotion, which
provides a helpful message about why an
insert was skipped

 241Decision structures

 PromotionID,
 PromotionCode,
 PromotionStartDate,
 PromotionEndDate
)
 SELECT
 _PromotionID,
 _PromotionCode,
 _PromotionStartDate,
 _PromotionEndDate
 ;
END IF;

If we modify AddPromotion to include this logic using ELSEIF, we have a message for
every possible reason for failure to insert the values.

NOTE In SQL Server, the keyword ELSEIF is represented by two words: ELSE IF.

Unfortunately, we don’t get any message if the query inserts the values successfully.
To add that functionality, we need to add another statement to our ELSE statement.
Because we now have multiple statements to execute after ELSE, we need to group
those statements in a single block with the BEGIN and END keywords. Let’s look at the
ELSE statement to add the message INSERT successful.:

ELSE BEGIN
 INSERT INTO promotion (
 PromotionID,
 PromotionCode,
 PromotionStartDate,
 PromotionEndDate
)
 SELECT
 _PromotionID,
 _PromotionCode,
 _PromotionStartDate,
 _PromotionEndDate
 ;

 SELECT 'INSERT successful.' AS Message;
 END;

The BEGIN and END keywords allow you to group multiple statements in a single block,
much as your entire stored procedure has a BEGIN and END. As your SQL becomes
more complex, you’ll use these keywords frequently, especially in stored procedures.

Try it now
DROP and CREATE the AddPromotion stored procedure, using the decision structure
changes discussed in section 21.2.3. Then try executing it with arguments of NULL for
the various parameters and verifying that the correct message is returned.

242 chapter 21 Making decisions in queries

You’ve made a lot of decisions today, so you have a wealth of options for making deci-
sions in your queries. In chapter 22, you’ll learn to use these decision-making options
to evaluate individual rows of data.

21.3 Lab
1 Using CASE, write a query that returns the following three columns from the pro-

motion table:

¡	The PromotionCode column

¡	The first character of the PromotionCode column with the alias
Promotion CodeLeft1

¡	The sentence This promotion is $X off. with the alias PromotionDiscount
and the literal value of X replaced by the value of the second column

2 This query uses a CASE statement to attempt to replace NULL values for Middle-
Name with an empty string. Why doesn’t it work as expected?

SELECT
 FirstName,
 CASE MiddleName
 WHEN NULL THEN ''
 ELSE MiddleName
 END AS MiddleName,
 LastName
FROM author;

3 If you want to add logic to AddPromotion to skip an insert if the argument for
_PromotionCode exists in the promotion table, what might that code look like?
(This question is a bit tricky, but try to use what you’ve learned to answer it.)

21.4 Lab answers
1 You can use the LEFT function (mentioned in chapter 14) to help with the query,

which might look something like this:

SELECT
 PromotionCode,
 LEFT(PromotionCode, 1) AS PromotionCodeLeft1,
 CASE LEFT(PromotionCode, 1)
 WHEN 1 THEN 'This promotion is for $1 off.'
 WHEN 2 THEN 'This promotion is for $2 off.'
 WHEN 3 THEN 'This promotion is for $3 off.'
 END AS PromotionDiscount
FROM promotion;

2 You cannot evaluate for equality with NULL because NULL can never equal
NULL. To work as intended, the CASE statement has to evaluate an expression
like this:

 243Lab answers

SELECT
 FirstName,
 CASE WHEN MiddleName IS NULL THEN ''
 ELSE MiddleName
 END AS MiddleName,
 LastName
FROM author;

3 You might add this logic by using an additional ELSEIF statement like this:

ELSEIF NOT EXISTS (SELECT PromotionCode FROM promotion WHERE
PromotionCode = _PromotionEndDate) THEN
 SELECT 'Duplicate PromotionCode, INSERT skipped.' AS Message;

This example is a little more advanced than the ones covered in this chapter, but
it shows that you can do more than check for a NULL value in a Boolean expres-
sion. You can even use EXISTS and NOT EXISTS to evaluate entire queries.

244

22Using cursors

In chapter 21, we explored making decisions in queries and learned how to make
conditional evaluations. Using IF and THEN keywords allowed us to evaluate one or
more values and then decide whether to do something else, such as insert a row of
values into a table.

In this chapter, we’ll look at other ways to evaluate data and make decisions in
SQL, focusing primarily on cursors. Cursors enable us to evaluate a set of data one
row or value at a time. Also, as we’ll see, they have a bit of complexity, and there are
important considerations regarding their use.

The use of cursors in MySQL is restricted to database objects containing prepared
SQL, such as stored procedures. Because of this restriction, we’ll look at some previ-
ously undiscussed features of variables and parameters before we dive into creating
and using cursors.

22.1 Reviewing variables and parameters
We’ve used variables since chapter 13 and parameters since chapter 20. Although
variables and parameters are similar in that they’re placeholders for values, they
have different properties relative to their use. The following sections show how we
can use some of these properties.

 245Reviewing variables and parameters

22.1.1 Variables inside stored procedures

Chapter 13 briefly mentioned the way variables are declared in MySQL and how they
differ in other relational database management systems (RDBMSes). In case you don’t
remember, here’s the warning from that chapter:

WARNING This method of declaring variables in MySQL isn’t universal. When
you use a different RDBMS, such as SQL Server or PostgreSQL, first you have
to declare a user-defined variable using the DECLARE keyword; then you assign
it a specified data type.

Interestingly, in MySQL we have to use the more common method (with the DECLARE
keyword noted in the warning) of operating inside a stored procedure. Let’s look at an
example. If we want to declare a variable to hold a value for TitleID from the title table
outside a stored procedure, we’d do so like this:

SET @TitleID = 101;

Inside a stored procedure, however, we’d have to declare the variable and its data type
using the DECLARE keyword, like this:

DECLARE _TitleID int;

Now we have a few options for assigning a value (such as 101) to our variable inside the
stored procedure. The first option is using the SET keyword like this:

SET _TitleID = 101;

The SET keyword gives us some options for setting this value dynamically via a sub-
query. Here’s an example:

SET _TitleID =
 (SELECT TitleID
 FROM title
 WHERE TitleName = 'Pride and Predicates');

We have another option for assigning a specific value to our variable. We can use a
default value using the DEFAULT keyword:

DECLARE _TitleID int DEFAULT 101;

This final option is what we’ll use in cursor examples for the rest of this chapter.

22.1.2 Output parameters

Chapter 20 noted that parameters in stored procedures can be used for either input or
output. So far, we’ve used only input parameters, which allow us to pass a value into a
stored procedure, by declaring them with the IN keyword:

246 chapter 22 Using cursors

CREATE PROCEDURE GetSomeData(
 IN _TitleName varchar(50)
)

Declaring a parameter for output lets us take a value determined inside the stored pro-
cedure and its SQL and pass it to a script or even another stored procedure. We do this
fairly intuitively with the OUT keyword, as in this example:

CREATE PROCEDURE GetSomeData(
 OUT _TitleName varchar(50)
)

The cursor examples in this chapter use output parameters, so you’ll have several
chances to get comfortable with them and their use.

22.2 Cursors
At its most basic level, a cursor is a database object that steps through the results of a
SELECT query, allowing you to retrieve and, if you desire, manipulate data one row at
a time. Much as a cursor in an electronic document tells you where you’re working, a
cursor is a row pointer that enables you to loop through the result set of a query, pro-
cessing individual rows for whatever intended reason.

Although cursors are simple to explain, they can be intimidating to use due to the
complexity of their parts relative to other objects we’ve used, such as views and stored
procedures. By that, I mean we can create simple views and stored procedures but not
simple cursors. Even the most basic cursors may look a bit intimidating at first. To make
cursors more understandable, let’s examine their four core components.

22.2.1 Anatomy of a cursor

No matter how simple or complex they are, every cursor has four parts that include
these descriptive keywords:

¡	DECLARE—Just as we used DECLARE earlier in this chapter to create a variable
inside a stored procedure, we’ll use it to create our cursor. The DECLARE part will
contain the SELECT query that defines the set of data our cursor will use.

¡	OPEN—After we create the cursor, we must open it. Although the DECLARE part
defined the data set for the cursor to use, that SELECT query won’t execute until
we open the query in this part. Here, the cursor gets the results of our SELECT
query and holds them in server memory while we use the cursor.

¡	FETCH—The FETCH keyword retrieves rows from the data set one row at a time.
This part is the main part of the cursor, where we populate variables, modify data,
and do whatever else we intend to do with it. We work with that single row until
the next time we FETCH another row as we loop through the result set, and we
stop fetching rows when we reach the end of the data set.

 247Cursors

¡	CLOSE—When we determine that we’re done fetching and evaluating rows in
our data set, we CLOSE the cursor, which releases the contents of the cursor from
server memory.

NOTE These four parts must exist for a cursor to work, and they must be in
this order.

WARNING Although MySQL doesn’t, other RDBMSes may require you to deal-
locate a cursor when you finish using it. Please refer to the documentation of
your specific RDBMS to see whether this step is required for any cursors you
write outside MySQL.

22.2.2 Creating a cursor

Suppose that we want to determine the quantity of titles sold at the price listed in the
title table, with no promotional discounts applied. We could write a stored procedure
that uses a cursor to step through each order, checking it for any titles sold at the price
listed in the title table. As our cursor goes through each order, it can keep a running
total of the quantity of titles sold at the list price in an output parameter, which is
returned to us with the final quantity of titles sold at the list price.

I’ll go through the parts of this cursor later in this section. For now, when you take
your first look at this stored procedure, try to see whether you can identify the four
main parts of the cursor:

DELIMITER //

CREATE PROCEDURE GetTitleTotalQuantitySoldListPrice(
 OUT _TotalQuantitySold int
)
BEGIN

DECLARE _Done boolean DEFAULT FALSE;

DECLARE _OrderID int;

DECLARE AllOrders CURSOR FOR

SELECT OrderID
FROM orderheader;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET _Done = TRUE;

SET _TotalQuantitySold = 0;

OPEN AllOrders;

GetOrders: LOOP

 FETCH AllOrders INTO _OrderID;

248 chapter 22 Using cursors

 SET _TotalQuantitySold = _TotalQuantitySold +

 (SELECT COALESCE(SUM(Quantity),0)
 FROM title t
 INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
 AND t.Price = oi.ItemPrice
 WHERE oi.OrderID = _OrderID
);

 IF _Done = TRUE THEN

 LEAVE GetOrders;
 END IF;

 END LOOP GetOrders;

 CLOSE AllOrders;

END //

DELIMITER ;

That’s a lot of SQL to evaluate, so we’ll examine it one bit at a time. We start by chang-
ing the delimiter to two forward slashes so we can use semicolons inside our stored
procedure:

DELIMITER //

Next, we will use CREATE PROCEDURE to say we want to make a procedure named
GetTitleTotalQuantitySoldListPrice. Note that our procedure has a parameter
called _TotalQuantitySold, which not only has a data type of int but also is used as
an output parameter. We know this because the word OUT precedes the parameter
name:

CREATE PROCEDURE GetTitleTotalQuantitySoldListPrice(
 OUT _TotalQuantitySold int
)
BEGIN

Then we declare two variables: one for _Done and one for _OrderID. The _OrderID
variable will be used for the OrderIDs that we’ll evaluate one by one in the cursor. The
_Done variable will determine whether we’ve finished evaluating all rows. This variable
uses a new data type called boolean, which means that its value is either TRUE or FALSE.
We assign a default value of FALSE at the start of the stored procedure because we hav-
en’t finished (or even started) evaluating a data set in our cursor:

DECLARE _Done boolean DEFAULT FALSE;
DECLARE _OrderID int;

 249Cursors

Now we have the first part of our cursor: the DECLARE part. We declared our cursor with
the name AllOrders, and our data set will include every OrderID in the orderheader
table:

DECLARE AllOrders CURSOR FOR

SELECT OrderID
FROM orderheader;

Then we use another DECLARE statement to tell the RDBMS that it should handle the
condition of no more rows to evaluate (NOT FOUND SET) by setting our _Done variable,
which indicates that we’re done using the cursor, to TRUE. This allows us to break out of
the loop and stop fetching rows:

DECLARE CONTINUE HANDLER FOR NOT FOUND SET _Done = TRUE;

Because MySQL doesn’t allow us to set a default value for parameters, we’re setting the
value of _TotalQuantitySold to 0 as a starting value. Later, we’ll increase this value
incrementally as we find titles that were sold at the list price:

SET _TotalQuantitySold = 0;

Now we get to the second part of the cursor, where we OPEN the cursor. The query used
in the DECLARE part executes, and the resulting data set is stored in memory for use by
the cursor:

OPEN AllOrders;

Next, we use a LOOP statement named GetOrders to loop through the data set. This
LOOP statement is a requirement for cursors in MySQL:

GetOrders: LOOP

NOTE Not all RDBMSes require you to use LOOP with a cursor, so this part may
be unnecessary in another RDBMS. Consult the documentation of the RDBMS
you’re using to understand the various requirements for any cursor.

With the cursor open, we retrieve the first row of values with the FETCH part of our
query. In the case of our cursor, we’re selecting only the OrderID column of values,
so we’re fetching the first value for OrderID and assigning it to the _OrderID variable:

 FETCH AllOrders INTO _OrderID;

Now that we have a value for _OrderID, we can evaluate the order to see whether it
includes any titles that were sold for the price listed in the title table. If it does, we’ll
increase the value of _TotalQuantitySold by the quantity of titles that were sold for

250 chapter 22 Using cursors

the list price in the order. If it doesn’t, using COALESCE will allow us to increment the
value for _TotalQuantitySold by zero. Remember that the query used by the cursor
is evaluated in a loop, so we’ll repeat it for every OrderID in the set from the DECLARE
part of our cursor:

 SET _TotalQuantitySold = _TotalQuantitySold +

 (SELECT COALESCE(SUM(Quantity),0)
 FROM title t
 INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
 AND t.Price = oi.ItemPrice
 WHERE oi.OrderID = _OrderID
);

Remember when we declared our handler to set the value of _Done to TRUE if it reached
the end of the results in the cursor? Well, if that’s the case here, we’ll use an IF state-
ment to exit the loop with the LEAVE keyword:

 IF _Done = TRUE THEN

 LEAVE GetOrders;
 END IF;

NOTE LEAVE is another keyword used in MySQL, but it’s not used to exit cursor
loops in other RDBMSes. Again, consult the documentation for any RDBMS
you’re using to determine how to exit a cursor loop.

Our loop process can’t go on forever, so here, we define the end of the loop. If we hav-
en’t exited the loop via the preceding statement, we fetch another value for OrderID at
the beginning of the loop:

 END LOOP GetOrders;

If we’ve reached this point, we’ve exited the loop, so we’re done using our cursor. If
we’re done using our cursor, we need to close it and release the contents from memory.
To do this, we use the CLOSE keyword, which is the fourth and final part of our cursor:

 CLOSE AllOrders;

All the work with the cursor is done now, so we need to note the end of the stored pro-
cedure with the END keyword and the nonstandard statement delimiter noted at the
beginning of our script:

END //

Finally, we change the statement delimiter back to the standard semicolon:

 251Alternatives to cursors

DELIMITER ;

If we execute all that SQL, we can call the stored procedure with the output parameter,
which we can capture in a variable named @TotalQuantitySold. Then we can select
the value of the variable to see the total quantity of titles sold at list price, with the value
shown in figure 22.1:

CALL GetTitleTotalQuantitySoldListPrice(@TotalQuantitySold);
SELECT @TotalQuantitySold AS TotalQuantitySold;

Figure 22.1 The TotalQuantity of titles sold at list price, determined by the
stored procedure we wrote, which uses a cursor to determine this value

Try it now
Create the stored procedure GetTitleTotalQuantitySoldListPrice and execute the preced-
ing query to verify the total quantity of titles sold at list price.

Even the most basic cursors can appear to be complicated, but I hope that this walk-
through of a cursor used inside a stored procedure cleared up any confusion. If you’re
still a bit confused, you may be encouraged to know that less-complicated alternatives
can give you much of the same functionality you’d get from a cursor.

22.3 Alternatives to cursors
A common replacement for a cursor in SQL is a WHILE loop, which requires a lot less
language to do the same row-by-row evaluation while looping through a set of data.

22.3.1 Using WHILE

What makes the WHILE loop simpler is the fact that we don’t have to open or close
our data set. We don’t even need a data set for a WHILE loop—only a condition for the
WHILE statement that must be met to determine whether to continue the loop. Here’s
how we’d rewrite our GetTitleTotalQuantitySoldListPrice stored procedure to use a
WHILE loop instead of a cursor:

DROP PROCEDURE GetTitleTotalQuantitySoldListPrice;

DELIMITER //

CREATE PROCEDURE GetTitleTotalQuantitySoldListPrice(
 OUT _TotalQuantitySold int
)
BEGIN

252 chapter 22 Using cursors

DECLARE _OrderID int;

SET _TotalQuantitySold = 0;
SET _OrderID = (SELECT MIN(OrderID) FROM orderheader);

WHILE _OrderID IS NOT NULL DO
 SET _TotalQuantitySold = _TotalQuantitySold +

 (SELECT COALESCE(SUM(Quantity),0)
 FROM title t
 INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
 AND t.Price = oi.ItemPrice
 WHERE oi.OrderID = _OrderID
);

 SET _OrderID =
 (SELECT MIN(OrderID)
 FROM orderheader
 WHERE OrderID > _OrderID);

 END WHILE;

END //

DELIMITER ;

Let’s examine the new parts so that we understand what we’re doing. First, instead of
fetching the first value into our _OrderID, variable, we used a SET statement, which
uses the MIN function to select the minimum value from the orderheader table. That
value is effectively the same as the first value chosen by the preceding cursor:

SET _OrderID = (SELECT MIN(OrderID) FROM orderheader);

Then we declare our WHILE statement, which says to keep looping through the SQL
contained in the loop until _OrderID is NULL. We start the loop with a new keyword, DO:

WHILE _OrderID IS NOT NULL DO

NOTE Although the DO keyword is used in MySQL, other RDBMSes often start
with BEGIN. I know it may be frustrating to keep being warned about the differ-
ences in SQL use among RDBMSes, but consult the appropriate documenta-
tion to avoid syntax errors.

This next part should look familiar. It’s the same logic we used in our cursor to incre-
mentally add to the _TotalQuantitySold parameter that we used in our cursor:

 SET _TotalQuantitySold = _TotalQuantitySold +

 (SELECT COALESCE(SUM(Quantity),0)

 253Alternatives to cursors

 FROM title t
 INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
 AND t.Price = oi.ItemPrice
 WHERE oi.OrderID = _OrderID
);

Next, we’ll increment the value of _OrderID to the next-highest value, using logic sim-
ilar to what we used to grab the first minimum value. The difference is that now we’re
grabbing the minimum value that’s higher than the current value, which is the next
value for OrderID in the orderheader table:

 SET _OrderID =
 (SELECT MIN(OrderID)
 FROM orderheader
 WHERE OrderID > _OrderID);

Finally, we end the SQL included in the WHILE loop with END WHILE:

 END WHILE;

This code is less SQL than we used for our cursor, but it effectively does the same thing.
Because the cursor and the WHILE loop do the same thing, however, they could create
the same problem: blocking. Blocking happens when a query locks resources such as
rows in a table, causing other queries that require the same resources to wait until the
first query completes its execution.

Although all the SQL we’ve written and executed so far has been for our MySQL
database, of which we’re the only users, the SQL you write outside this book will be for
a database with tens, hundreds, or even thousands of users. Depending on database
settings that you may not control, your cursor or WHILE loop in a database with more
connections could cause blocking for other users, making their queries take longer or
even fail if the connection has to wait too long. One way to work around this problem is
to use temporary tables.

TIP Many RDBMSes have options for cursors beyond what we’ve used to
reduce the chance of blocking. But the default options for cursors often result
in blocking.

22.3.2 Temporary tables

Temporary tables are useful because they allow us to copy a data set that might be heavily
used to a separate table that exists only as long as our connection to the database exists.
When the connection is closed, the temporary tables are dropped from the database.
More pertinent to cursors and WHILE loops, we can use them with no chance of block-
ing because they can be used only by the queries in our connection.

254 chapter 22 Using cursors

The syntax for creating a temporary table in MySQL is almost identical to the syntax
we used to create tables in chapter 18. The only difference is that we add the word
TEMPORARY between CREATE and TABLE.

NOTE Although temporary tables exist for nearly every RDBMS, the syntax for
creating them isn’t universal. I hope you aren’t tired of seeing this message,
but consult the relevant documentation.

To prevent blocking, we could create a temporary table inside our stored procedure,
populate the table with the range of values we plan to use, and then direct our WHILE
loop (or cursor) to loop through the temporary table.

For the preceding version of GetTitleTotalQuantitySoldListPrice, here’s how we
could drop the existing stored procedure and then re-create it using a temporary table
named orderheadertemp that replaces our use of the orderheader table:

DROP PROCEDURE GetTitleTotalQuantitySoldListPrice;

DELIMITER //

CREATE PROCEDURE GetTitleTotalQuantitySoldListPrice(
 OUT _TotalQuantitySold int
)
BEGIN
DECLARE _OrderID int;

SET _TotalQuantitySold = 0;

CREATE TEMPORARY TABLE orderheadertemp (OrderID int);

INSERT orderheadertemp (OrderID)
SELECT OrderID
FROM orderheader;

SET _OrderID = (SELECT MIN(OrderID) FROM orderheadertemp);

WHILE _OrderID IS NOT NULL DO
 SET _TotalQuantitySold = _TotalQuantitySold +

 (SELECT COALESCE(SUM(Quantity),0)
 FROM title t
 INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
 AND t.Price = oi.ItemPrice
 WHERE oi.OrderID = _OrderID
);

 SET _OrderID =
 (SELECT MIN(OrderID)
 FROM orderheadertemp
 WHERE OrderID > _OrderID);

 255Considerations for using cursors

 END WHILE;

END //

DELIMITER ;

Temporary tables are wonderful tools to use for more than preventing blocking. We
can use them to hold data sets that are used repeatedly in a SQL script, and we can use
them to simplify complex queries by separating them into smaller, more efficient que-
ries. But after all this talk of cursors, WHILE loops, and temporary tables, we should take
a moment to ask a question: Is all this even necessary?

22.4 Considerations for using cursors
If you’ve read all the preceding chapters and completed the exercises, there’s a good
chance that you’ve thought of a better way to find the total quantity of titles sold at list
price. In that case, you’re correct. You could have handled this request much more
simply without using a cursor or a WHILE loop:

SELECT COALESCE(SUM(Quantity),0) AS TotalQuantitySold
FROM title t
INNER JOIN orderitem oi
 ON t.TitleID = oi.TitleID
 AND t.Price = oi.ItemPrice;

Unfortunately, cursors and WHILE loops have a common problem: they are usually infe-
rior to other options in SQL. Cursors and WHILE loops are inferior solutions for most
query requests because the nature of evaluating data sets row by row is the opposite of
the way that an RDBMS is designed to evaluate data, which is to use data sets.

22.4.1 Thinking in sets

Starting with our first query, everything we’ve seen in this book up to the last part
of chapter 21 involves set-based programming. Set-based programming tells the RDBMS
what data set or data sets we want to evaluate; from there, we let the RDBMS figure out
the best way to complete the query.

We used set-based programming with our SQL queries over and over until we started
working with the IF, THEN, and ELSE keywords, along with cursors and WHILE loops. That
type of programming is called procedural programming, which gives the RDBMS specific
instructions about what to do and how to do it. Procedural programming is quite com-
mon for programming languages other than SQL.

One reason why cursors are so long and wordy is that we need to tell the RDBMS
every step to take to get a cursor to evaluate data. Unfortunately, because we’re telling
the RDBMS what to do, taking a procedural approach in SQL often results in slow per-
formance, extensive blocking, and the consumption of more server resources than a
query with a set-based approach would use.

256 chapter 22 Using cursors

22.4.2 Thinking about cursor use

I don’t mean to say that you should never use cursors, although it’s possible to solve
nearly every query request without using them. But as you near the final chapters of
this book, I want to encourage you to use your total knowledge of SQL and look at cur-
sors with a bit of skepticism.

Knowing how to construct a cursor can be useful when you have a request with no
other solution than to evaluate each row in a set individually. But those cases are rare, so
even when you think you need to use a cursor, take a moment to ask whether a set-based
solution exists.

In terms of evaluating existing code, look at any cursor you encounter as a potential
opportunity to improve performance by replacing it with set-based programming. You’ll
likely encounter cursors frequently in existing stored procedures, as many folks with
experience doing procedural programming in other languages often lean on cursors in
SQL instead of the set-based methods you’ve learned throughout this book. Use your
knowledge not only to reduce the complexity involved in cursors but also to improve the
performance of stored procedures and reduce the resources they require from the server.

I hope you’re excited about the prospect of reviewing someone else’s SQL, because
that’s exactly what you’ll do in chapter 23.

22.5 Lab
This lab is a bit different from earlier labs. Here, you’ll consider a few scenarios and try
to determine whether you need to use a cursor to retrieve the data:

1 Evaluate every TitleName in the title table to determine the quantity of each title
ordered by customers in California. This query should include customers with a
value of CA for the State column in the customer table.

2 Evaluate every CustomerID in the customer table to determine whether the cus-
tomer purchased the title Pride and Predicates. Return Yes if they did and No if
they didn’t in a column named OrderedPrideAndPredicates.

3 Evaluate each order to determine whether it was the first that a customer placed.
Return the OrderID, CustomerID, and OrderDate of all orders that were the first
by any customer.

4 Evaluate every CustomerID in the customer table to see whether the customer
placed an order in the past year. If a customer placed such an order, execute
a stored procedure named CreateThankYouMessage. This stored procedure,
which contains a single CustomerID parameter, creates a message to be sent to
the customer.

22.6 Lab answers
1 You don’t need a cursor to determine this information. You can find the

requested data set with a query like this one, which uses a subquery to collect the
quantity of titles ordered by customers in California:

 257Lab answers

SELECT
 t.TitleName,
 COALESCE(SUM(x.Quantity),0) AS QuantityFromCA
FROM title t
LEFT JOIN (
 SELECT
 oi.TitleID,
 oi.Quantity
 FROM orderitem oi
 INNER JOIN orderheader oh
 ON oi.OrderID = oh.OrderID
 INNER JOIN customer c
 ON oh.CustomerID = c.CustomerID
 WHERE c.State = 'CA'
) x
 ON t.TitleID = x.TitleID
GROUP BY t.TitleName;

2 You don’t need a cursor for this task either. You can use a subquery and a CASE
statement to determine the presence of data in the subquery. Be careful to use
COALESCE or some other way to evaluate something other than NULL, because
NULL can’t be evaluated in a CASE statement. The following example defaults
NULL values to 0 because no CustomerID of 0 exists:

SELECT
 c.CustomerID,
 CASE COALESCE(x.CustomerID,0)
 WHEN 0 THEN 'No'
 ELSE 'Yes'
 END AS OrderedPrideAndPredicates
FROM customer c
LEFT JOIN (
 SELECT oh.CustomerID
 FROM orderheader oh
 INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
 INNER JOIN title t
 ON oi.TitleID = t.TitleID
 WHERE t.TitleName = 'Pride and Predicates'
 GROUP BY oh.CustomerID
)x
 ON c.CustomerID = x.CustomerID
ORDER BY c.CustomerID;

3 Again, you don’t need a cursor. You can use another subquery to determine the
first OrderID for each CustomerID and then select the desired rows from the
subquery with an INNER JOIN:

SELECT
 oh.OrderID,
 oh.CustomerID,
 oh.OrderDate

258 chapter 22 Using cursors

FROM orderheader oh
INNER JOIN (
 SELECT
 ohf.CustomerID,
 MIN(ohf.OrderID) AS FirstOrderID
 FROM orderheader ohf
 GROUP BY ohf.CustomerID
) x
 ON oh.OrderID = x.FirstOrderID;

Also, in each of these three exercises, you could use the SQL in the subqueries to
populate a temporary table and then join that temporary table instead of joining
the subquery. The point is that you have choices beyond using a cursor to achieve
the desired results.

4 This case is one of the few times you’d need to use a cursor. You have a data set
of CustomerID values, but you can’t use set-based programming to complete the
request because you can provide only one value at a time to the CreateThank-
YouMessage stored procedure.

259

23Using someone
else’s script

I hope you’re feeling confident about all the SQL you’ve learned in this book. I’ve
covered the most basic and frequently used keywords and statements, so you should
be well prepared to fulfill requests to retrieve and even manipulate data in a rela-
tional database.

As with a foreign language, though, you need to be able to listen and read as well
as speak or write. You need to be able to read existing SQL in stored procedures
and elsewhere in whatever databases your organization has. Because this book is an
introduction to the SQL language, you’ll likely even find yourself looking on the
internet for examples of SQL scripts that use keywords and concepts you haven’t
been exposed to yet.

To practice these vital skills and apply what you’ve learned, in this chapter, you’ll
review SQL examples written by someone else. Know that the examples will work,
but you have to look at them closely to determine what the author intended. Also,
these scripts go against the best practices you’ve learned, so you’ll also be consider-
ing how to improve the SQL in the scripts.

There’s no lab section at the end of the chapter because this chapter is like one
large review. There aren’t even any “Try it now” sidebars, but you’re welcome to try
these scripts if you want. Your main task here is to walk through the scripts, under-
stand what they’re meant to do, and improve them based on everything you’ve
learned in this book.

260 chapter 23 Using someone else’s script

23.1 Someone else’s script: Creating a table
All these examples involve a new table named authorpayment that tracks royalty pay-
ments to authors. The rows in the table reflect the amount paid to each author by title
and year. The presumption is that authors will be paid annually based on the sales of
the titles.

23.1.1 The CREATE TABLE script

Let’s start with the first script, which creates the table:

CREATE TABLE authorpayment (
 ID int,
 Author int,
 Title int,
 PaymentYear char(4),
 PaymentAmount decimal(7,2)
);

Although this script isn’t particularly verbose, I’m sure that if you recall the concepts
and examples discussed in chapters 18 and 19, you’ll immediately spot a few things that
could be corrected. Take a moment to consider the script and make some notes about
what you’d change. When you’re ready, continue reading, and I’ll share my thoughts.

23.1.2 Reviewing the CREATE TABLE script

The first thing you may notice is the column named ID, which is ambiguous. Unfortu-
nately, naming the first column in a table ID is common when people design database
tables in a hurry and without clear intentions. You always want to be clear about a col-
umn’s purpose in case the column is used in other queries, so you should rename this
column AuthorPaymentID.

Also, if this AuthorPaymentID column is intended to contain unique values that
form the primary key of the table, you should add a PRIMARY KEY constraint to the col-
umn and even consider adding an AUTO_INCREMENT property to populate the column
with values that increment automatically.

Next, the Author column appears not to have been fully thought out. It has the same
data type as the AuthorID column used in several tables in the sqlnovel database, so
for consistency, you should change the name to AuthorID. For the sake of data integ-
rity, the column should also contain a foreign key reference to the author table so that
AuthorID in the authorpayment table is populated only with values from the author
table. Further, because every payment has to go to an author, you want to put a NOT NULL
constraint on this column.

All these same points apply to the Title column. You should rename it TitleID for
consistency, create a FOREIGN KEY constraint that references the TitleID values in the
title table, and add a NOT NULL constraint to force a TitleID to be included in every row.

The PaymentYear column is a little odd because it has a data type of char(4). This
data type means that the values will be stored as a string of characters, even though years

 261Someone else’s script: Creating a table

are numeric values. You don’t need to worry about any non-numeric characters occur-
ring in years when the authors will be paid, so you should use an integer (int) data type
instead.

NOTE You may want to use a character data type to store numeric values in one
case: when you have leading zeros. U.S. zip codes used for mailing addresses
are good examples because many zip codes start with at least one zero. If you
entered the zip code 03872 into a column with an integer data type, it would be
stored as 3872. For this reason, U.S. zip codes are typically stored as character
(char) data types.

You should also place a NOT NULL constraint on the PaymentYear column because every
row needs to reflect a particular year. Also, although it’s not necessary to do so, you
might want to put a CHECK constraint on the PaymentYear column to allow only values
that fall within a certain range of years. This constraint would limit the data that could
be entered, preventing many potential typos that could affect the integrity of the data.
A good range for this constraint would be 2000 to 2100 because frankly, if this database
is still being used in 2100, it will be well past time to upgrade.

Finally, the PaymentAmount column looks good because the data type,
decimal(7,2), means that you can accommodate payment values up to 99,999.99.
You want to place a NOT NULL constraint on this column as well because every payment
requires an amount. The only other addition you might consider is a CHECK constraint
on the values to ensure that you have only positive values in this column; presumably,
authors won’t be paid negative amounts.

23.1.3 Improving the CREATE TABLE script

If you put everything together, the SQL to create the authorpayment table looks some-
thing like this:

CREATE TABLE authorpayment (
 AuthorPaymentID int NOT NULL AUTO_INCREMENT,
 AuthorID int NOT NULL,
 TitleID int NOT NULL,
 PaymentYear int NOT NULL CHECK (PaymentYear BETWEEN 2000 AND 2100),
 PaymentAmount decimal(7,2) NOT NULL CHECK (PaymentAmount BETWEEN 0.00 AND

99999.99),
 CONSTRAINT PK_AuthorPayment PRIMARY KEY (AuthorPaymentID),
 CONSTRAINT FK_authorpayment_author FOREIGN KEY (AuthorID) REFERENCES

author(AuthorID),
 CONSTRAINT FK_authorpayment_title FOREIGN KEY (TitleID) REFERENCES

title(TitleID)
);

I hope that you see and understand how these changes will help enforce data integrity
and make the table understandable and consistent with the other tables in the data-
base. In the future, you might even consider adding a unique index to cover AuthorID,
TitleID, and PaymentYear because it appears that these values should be unique for

262 chapter 23 Using someone else’s script

each row. In addition, you might consider changing the primary key to use that combi-
nation of columns instead of the AuthorPaymentID, which would mean you wouldn’t
need to create the unique index.

23.2 Someone else’s script: Inserting data
Next, let’s look at a script that inserts rows into this new table. This stored procedure
should run for each year, collecting sales information and then determining the roy-
alty payment to the author.

23.2.1 The INSERT stored procedure

Here’s a stored procedure for you to review:

DELIMITER //

CREATE PROCEDURE InsertAnnualPayment(
 IN _PaymentYear int
)
BEGIN

DECLARE _Done boolean DEFAULT FALSE;
DECLARE _TitleID int;
DECLARE _AuthorID int;
DECLARE _Royalty decimal(5,2);
DECLARE _AuthorCount int;
DECLARE _TotalSales decimal(7,2);
DECLARE _PaymentAmount decimal(7,2);

DECLARE AllTitles CURSOR FOR

SELECT TitleID, AuthorID
FROM titleauthor
ORDER BY
 TitleID,
 AuthorOrder;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET _Done = TRUE;

OPEN AllTitles;

GetTitles: LOOP

 FETCH AllTitles INTO _TitleID, _AuthorID;

 SET _Royalty = (
 SELECT Royalty
 FROM title
 WHERE TitleID = _TitleID
);

 SET _AuthorCount = (
 SELECT COUNT(AuthorID)
 FROM titleauthor

 263Someone else’s script: Inserting data

 WHERE TitleID = _TitleID
);

 SET _TotalSales = (
 SELECT SUM(orderitem.Quantity * orderitem.ItemPrice)
 FROM orderheader
 INNER JOIN orderitem
 ON orderheader.OrderID = orderitem.OrderID
 WHERE orderitem.TitleID = _TitleID
 AND YEAR(orderheader.OrderDate) = _PaymentYear
);

 SET _PaymentAmount =
 COALESCE(CONVERT(
 ((_TotalSales * (_Royalty/100))/_AuthorCount), decimal(7,2))
 , 0.00);

 IF _PaymentAmount > 0.00 THEN
 INSERT authorpayment (
 AuthorID,
 TitleID,
 PaymentYear,
 PaymentAmount
)
 SELECT
 _AuthorID,
 _TitleID,
 _PaymentYear,
 _PaymentAmount;
 END IF;

 IF _Done = TRUE THEN

 LEAVE GetTitles;
 END IF;

 END LOOP GetTitles;

 CLOSE AllTitles;

END //

DELIMITER ;

Take a moment to review the stored procedure and maybe even take some notes before
proceeding.

23.2.2 Reviewing the INSERT stored procedure

If you read chapter 22, the first thing to notice about this stored procedure is that it
uses a cursor to determine the annual royalty payments. I hope that when you see this
cursor, you start wondering whether you can turn this row-by-row evaluation into a set-
based evaluation instead.

264 chapter 23 Using someone else’s script

To determine whether you can replace the cursor, first look at what the stored pro-
cedure is doing with the cursor. Let’s go through each section of the stored procedure.

The start of the stored procedure is fairly standard. It looks as though an int value is
required for the input parameter _PaymentYear, which is the only parameter:

DELIMITER //

CREATE PROCEDURE InsertAnnualPayment(
 IN _PaymentYear int
)
BEGIN

After that section, several variables are declared. Although all the variables seem to
have sensible data types, on closer inspection, you see that the _Royalty value doesn’t
match the decimal(5,2) data type used for the Royalty column in the title table. Mis-
matched data types can lead to data errors or inconsistencies. Also, as you go through
the cursor, you’ll see that many, if not all, of these variables may be unnecessary:

DECLARE _Done boolean DEFAULT FALSE;
DECLARE _TitleID int;
DECLARE _AuthorID int;
DECLARE _Royalty int;
DECLARE _AuthorCount int;
DECLARE _TotalSales decimal(7,2);
DECLARE _PaymentAmount decimal(7,2);

The cursor with the name AllTitles is declared. Notice that unlike the cursors you
used in chapter 22, this cursor uses two columns instead of one:

DECLARE AllTitles CURSOR FOR

SELECT TitleID, AuthorID
FROM titleauthor
ORDER BY
 TitleID,
 AuthorOrder;

The handler variable _Done is declared to determine when to exit the cursor loop:

DECLARE CONTINUE HANDLER FOR NOT FOUND SET _Done = TRUE;

Then comes the OPEN the cursor, where the results of the query used by the cursor are
retrieved:

OPEN AllTitles;

Next is the LOOP used by the cursor, named GetTitles:

GetTitles: LOOP

 265Someone else’s script: Inserting data

The first results of the cursor are fetched, and the values are assigned to the variables
_TitleID and _AuthorID:

 FETCH AllTitles INTO _TitleID, _AuthorID;

After that, values are assigned to other variables. The first assignment is the value for
_Royalty, which is assigned for the particular _TitleID value. You probably don’t need
the _Royalty variable. You could just as easily use the value in the title table instead of
populating and using this variable:

 SET _Royalty = (
 SELECT Royalty
 FROM title
 WHERE TitleID = _TitleID
);

The value for _AuthorCount is determined for the particular _TitleID. Having a sepa-
rate query determine this value may not be a bad idea, although if you use a GROUP BY
on the titleauthor table and group by TitleID, you might be able to use an INNER JOIN
to include the Royalty amount noted earlier as well. Because Royalty is a column in the
title table, you know that a one-to-one relationship exists with the results grouped by
TitleID in the titleauthor table:

 SET _AuthorCount = (
 SELECT COUNT(AuthorID)
 FROM titleauthor
 WHERE TitleID = _TitleID
);

The value for _TotalSales, which represents sales in terms of dollars, is determined by
taking the SUM of the Quantity multiplied by the Price for the title for all orders placed
in the _PaymentYear. The rows that match the _PaymentYear are calculated by using
the YEAR function to determine the year of every value of the OrderDate column in the
orderheader table. It makes sense to have this calculation as a separate query, but you
probably should avoid using the YEAR function this way. Although they appear to be
convenient, as noted in chapter 14, functions can be inefficient if you have millions of
rows to evaluate in tables:

 SET _TotalSales = (
 SELECT SUM(orderitem.Quantity * orderitem.ItemPrice)
 FROM orderheader
 INNER JOIN orderitem
 ON orderheader.OrderID = orderitem.OrderID
 WHERE orderitem.TitleID = _TitleID
 AND YEAR(orderheader.OrderDate) = _PaymentYear
);

266 chapter 23 Using someone else’s script

In the last variable assignment, the calculation to determine the value for
_PaymentAmount, which is the amount to be paid to the author based on their royalty, is
calculated using the _TotalSales, _Royalty, and _AuthorCount values. You’re getting
to the heart of the cursor used by the stored procedure, and it seems that apart from
the values for _TotalSales and AuthorCount, a lot of unnecessary queries are being
used to determine values because the author wasn’t thinking about a set-based solution:

 SET _PaymentAmount =
 COALESCE(CONVERT(
 ((_TotalSales * (_Royalty/100))/_AuthorCount), decimal(7,2))
 , 0.00);

If the value for _PaymentAmount is greater than 0, a row representing the payment is
inserted into the authorpayment table. Although this approach is necessary with a cur-
sor, if you used a set-based approach, you wouldn’t need this IF…THEN statement. The
results from properly used INNER JOINs would exclude any titles and authors that did
not have any titles sold, and therefore would result in no payment:

 IF _PaymentAmount > 0.00 THEN
 INSERT authorpayment (
 AuthorID,
 TitleID,
 PaymentYear,
 PaymentAmount
)
 SELECT
 _AuthorID,
 _TitleID,
 _PaymentYear,
 _PaymentAmount;
 END IF;

If you’ve fetched all the values for the rows in your cursor, here is where you exit the loop:

 IF _Done = TRUE THEN

 LEAVE GetTitles;
 END IF;

At the end of the stored procedure, you end the LOOP, close the cursor, use END to rep-
resent the end of all actions in the stored procedure, and then change the delimiter
back to the standard semicolon:

 END LOOP GetTitles;

 CLOSE AllTitles;

END //

DELIMITER ;

 267Someone else’s script: Inserting data

After reviewing the entire stored procedure, you should be able to make improvements
that eliminate the use of a cursor, which makes the relational database management
system (RDBMS) do less work and also eliminates the need for any variables.

23.2.3 Improving the INSERT stored procedure

The first thing you want to do is rewrite the sections containing queries you want to
keep. Your review noted that you could use a query to determine the count of authors
for each title (used to calculate the royalty payment) and include the Royalty values
from the title table as well. The query, which will be used in a subquery, might look like
this:

 SELECT
 t.TitleID,
 t.Royalty,
 COUNT(ta.AuthorID) AS AuthorCount
 FROM title t
 INNER JOIN titleauthor ta
 ON t.TitleID = ta.TitleID
 GROUP BY
 t.TitleID,
 t.Royalty

The review also revealed that you could use the logic to determine the sales of a title
per year in dollars in a subquery. You want to avoid using a function on the OrderDate
column of the orderheader table, which would cause extra work for the RDBMS. You
can use some different date functions to take the value for year and then calculate
starting and ending dates for the value of the _PaymentYear parameter.

The first date function is MAKEDATE, which allows you to make a date of the first day of
the year using only a value for the year. You’ll set the date for the first day of the chosen
year like this:

MAKEDATE(_PaymentYear, 1)

You could use MAKEDATE to select the last day of the year by replacing the value 1 with
365, but that doesn’t work for every year. Leap years have 366 days, and because you
don’t know if the value passed for _PaymentYear is a leap year, it would be better to
calculate the end of your date range as anything less than the start of the next year. To
calculate that, use the DATE_ADD function like this:

DATE_ADD(MAKEDATE(@Year, 1), INTERVAL 1 YEAR)

NOTE Although not all RDBMSs have these specific functions, they all have
similar functions with different names that can help you determine a date
from parts such as the year, as well as functions that help you make calculations
with dates.

268 chapter 23 Using someone else’s script

With the range of dates that will replace the YEAR function sorted, here’s the query to
determine total sales per title, which will also be used in a subquery:

 SELECT
 oi.TitleID,
 SUM(oi.Quantity * oi.ItemPrice) AS TotalSales
 FROM orderheader oh
 INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID
 WHERE oh.OrderDate >= MAKEDATE(@Year, 1)
 AND oh.OrderDate < DATE_ADD(MAKEDATE(@Year, 1), INTERVAL 1 YEAR)
 GROUP BY
 oi.TitleID

You need one more query that calculates the payment amount. Having the payment
amount value for each AuthorID and TitleID in the chosen year allows you to populate
the authorpayment table. Because both of the two preceding queries to be used for
subqueries include TitleID, they should be easy to join.

Using the logic to calculate the payment amount from the original stored proce-
dure, you can put all the logic together in a stored procedure with one query. Because
a bit of complexity is involved, add a few comments to your stored procedure to explain
your intentions:

DELIMITER //

CREATE PROCEDURE InsertAnnualPayment(
 IN _PaymentYear int
)
BEGIN

INSERT authorpayment (
 AuthorID,
 TitleID,
 PaymentYear,
 PaymentAmount
)
/* Calculate the total royalty per author */
SELECT
 ta.AuthorID,
 ta.TitleID,
 _PaymentYear,
 CONVERT((
 (sales.TotalSales * (royalty.Royalty/100))/royalty.AuthorCount),
 decimal(7,2)) AS RoyaltyPerAuthor
FROM titleauthor ta
INNER JOIN (
 /* Determine annual sales by title */
 SELECT
 oi.TitleID,
 SUM(oi.Quantity * oi.ItemPrice) AS TotalSales
 FROM orderheader oh
 INNER JOIN orderitem oi
 ON oh.OrderID = oi.OrderID

 269Someone else’s script: Inserting data

 WHERE oh.OrderDate >= MAKEDATE(@Year, 1)
 AND oh.OrderDate < DATE_ADD(MAKEDATE(@Year, 1), INTERVAL 1 YEAR)
 GROUP BY
 oi.TitleID
) sales
 ON ta.TitleID = sales.TitleID
INNER JOIN (
 /* Determine the royalty and count of authors */
 SELECT
 t.TitleID,
 t.Royalty,
 COUNT(ta2.AuthorID) AS AuthorCount
 FROM title t
 INNER JOIN titleauthor ta2
 ON t.TitleID = ta2.TitleID
 GROUP BY
 t.TitleID,
 t.Royalty
) royalty
 ON ta.TitleID = royalty.TitleID;

END //

DELIMITER ;

Now you have a stored procedure with no cursor, no variables, and no queries beyond
what you need. You can populate the authorpayment table using set-based programming,
which should be your goal whenever you write SQL. You don’t have to worry about mis-
matched data types, and you aren’t using functions in ways that could affect performance.

The stored procedure is greatly improved. But could you improve it even more?

23.2.4 Improving the INSERT stored procedure even more

You’ve learned a lot in 23 chapters, so don’t be afraid to consider other keywords and
techniques when you make further improvements in someone else’s script. You may be
able to improve a few more parts of this stored procedure, starting with the subqueries.

Although the two subqueries in this new version of the stored procedure perform
better than the cursor, this solution might not be the best one if your orderheader and
orderitem tables contain millions of records. It may be a good idea to replace the sub-
query that calculates the TotalSales for each title in a given year with a temporary
table. Although this approach means writing more data to a temporary table, the sub-
sequent INNER JOIN may read less data than all the data read in the subquery. Although
using temporary tables isn’t required for the current data set, which has only a few rows
in each table, in many situations, a bit of testing will reveal that using temporary tables
can help performance.

Another possible improvement is related to the _PaymentYear parameter. The single
_PaymentYear parameter used by the stored procedure doesn’t offer much flexibility,
so you might consider replacing it with parameters for the start and end dates of a range
of dates. This approach allows for annual, quarterly, monthly, and even custom ranges

270 chapter 23 Using someone else’s script

of values. Consider making any script more flexible if you can, anticipating that there’ll
be more diverse query requests in the future.

Finally, depending on the use of this data, it may be worthwhile to replace the Insert-
AnnualPayment stored procedure and the authorpayment table with a view that calcu-
lates the author and title royalty for every sale. Remember that a view is simply a stored
query to be called on whenever you want. If you remove the consideration for a specific
date range, you could build a query to calculate the royalty of every orderitem with a
query like this:

SELECT
 ta.AuthorID,
 ta.TitleID,
 oh.OrderID,
 oh.OrderDate,
 CONVERT((
 (SUM(oi.Quantity * oi.ItemPrice) * (t.Royalty/100))/ac.AuthorCount),
 decimal(7,2)) AS RoyaltyPerAuthor
FROM title t
INNER JOIN titleauthor ta
 ON t.TitleID = ta.TitleID
INNER JOIN orderitem oi
 ON ta.TitleID = oi.TitleID
INNER JOIN orderheader oh
 ON oi.OrderID = oh.OrderID
INNER JOIN (
 /* Determine the royalty and count of authors */
 SELECT
 TitleID,
 COUNT(AuthorID) AS AuthorCount
 FROM titleauthor
 GROUP BY
 TitleID
) ac
 ON ta.TitleID = ac.TitleID
 GROUP BY
 ta.AuthorID,
 ta.TitleID,
 oh.OrderID
 oh.OrderDate;

This view would eliminate the redundancy of all the data in the authorpayment table.
It would also allow you to query the view for whatever values of AuthorID, TitleID, and
OrderID you want, as well as query any range of OrderDate values. A view doesn’t allow
you to persist the data the way the authorpayment table does, but if you don’t need the
data to be persisted, a view is a great option.

The key idea that you should take away from this chapter is this: you have options.
Throughout this month of lunches, you’ve learned dozens of keywords and concepts,
and you’ve seen how to use them effectively. I hope that reviewing these scripts was
helpful and that it gave you a higher level of confidence in your ability to use the SQL
language.

271

24Never the end

We’ve arrived at the final chapter of Learn SQL in a Month of Lunches. I hope that this
book has been useful to you and convinced you that even with little or no program-
ming experience, anyone can learn to write useful SQL queries.

Starting with chapter 1, the goal was for you to be immediately effective in writing
SQL queries. With all the concepts and keywords discussed and used, you should
feel confident enough to write queries that satisfy a wide range of requests. Now you
know different ways to filter, join, and group data, as well as how to modify data and
even create objects such as tables and stored procedures. I’m confident that you’ve
learned enough to understand most examples of SQL that someone else wrote.

Still, the end of this book is hardly the end of your exploration of the SQL lan-
guage. This is truly the beginning because the more you work with SQL, the more
new, exciting keywords and objects you’ll discover. Where do you go next? Well, here
are a few ideas.

24.1 More SQL
As you must have noticed, the MySQL Workbench Navigator has a section named
Functions that I never addressed. Although you worked with dozens of functions
throughout this book, such as CONCAT and COALESCE, those functions aren’t
included because they’re system functions, and the Functions section is for user-
defined functions. That’s right—you can create your own functions! As you progress

272 chapter 24 Never the end

in your experience with SQL, you’ll encounter requests that require evaluating values
or expressions with a function that you need to create.

Another consideration for future learning is window functions. Although these func-
tions aren’t available in every relational database management system (RDBMS), when
you’re working with an RDBMS that includes them, you can perform powerful calcula-
tions such as running totals, rankings, and percentiles for each row. In some ways, these
functions operate like a cursor but without the drawbacks of locking, blocking, and
excessive resource use.

When you need to construct SQL based on unknown conditions, many RDBMSs
offer you the option to use dynamic SQL. As strange as it sounds, dynamic SQL allows
you to create a string of SQL to be executed later. Although it’s somewhat unusual, this
technique gives you another level of flexibility in your SQL, which can be useful when
a query needs to dynamically change filtering clauses or even the names of tables being
queried.

These are a few of the many tools and techniques yet to be discovered on your SQL
journey. Where should you go next?

24.2 Other SQL resources
The best way to increase your skill level in any language, whether it’s spoken to a com-
puter or to another person, is to practice. I added labs in nearly every chapter to get
you to practice thinking about SQL and using it to solve problems. You can continue to
practice by using the sqlnovel database to write SQL to do things like insert new rows
into the orderheader and orderitem tables and retrieve data for sales by category. The
practice possibilities are limited only by your imagination.

Then again, your immediate need may be to work with an RDBMS other than
MySQL, in which case you can install a tool that allows you to work with that RDBMS
and find a sample database to use for practicing SQL queries. Free sample databases
are available for every RDBMS, so use your favorite search engine to find them, and use
these databases to write your own practice queries. The more you practice writing SQL,
the easier it will be to respond to any request effectively.

If you found this book helpful, take a look at other RDBMS-specific books from
Manning that can help you improve your SQL skills, such as 100 SQL Server Mistakes and
How to Avoid Them, by Peter Carter (https://www.manning.com/books/100-sql-server
-mistakes-and-how-to-avoid-them), and PostgreSQL Mistakes and How to Avoid Them, by
Jimmy Angelakos (https://www.manning.com/books/postgresql-mistakes-and-how-to
-avoid-them). As I’ve noted throughout this book, every RDBMS is slightly different in
terms of SQL syntax, and an RDBMS-specific book can increase your depth of knowl-
edge in ways that can benefit your career. Although it’s good to have broad knowledge
of the SQL language in the ways I’ve discussed throughout this book, obtaining most
of your experience in a particular RDBMS could allow you to showcase yourself as an
expert in that particular flavor of SQL.

Perhaps you’ll discover that you want to move beyond writing queries that retrieve
data and learn about creating databases. If so, consider books such as Understanding

https://www.manning.com/books/100-sql-server-mistakes-and-how-to-avoid-them
https://www.manning.com/books/100-sql-server-mistakes-and-how-to-avoid-them
https://www.manning.com/books/postgresql-mistakes-and-how-to-avoid-them
https://www.manning.com/books/postgresql-mistakes-and-how-to-avoid-them

 273Farewell

Databases, by David Clinton (https://www.manning.com/books/understanding
-databases) and Grokking Relational Database Design, by Qiang Hao and Michail
Tsikerdekis (https://www.manning.com/books/grokking-relational-database-design),
that cover ways to design databases that perform well and scale with the massive
amounts of data that modern databases contain. This book didn’t discuss database
design in depth, but understanding the capabilities and limitations of a database is also
an important skill.

Above all, no matter what you choose to do next, be curious, and don’t stop learning.

24.3 Farewell
It’s been my pleasure to help you begin what I hope is a long-lasting journey using the
SQL language. Whatever the future holds for you, I congratulate you on all the work
you’ve done so far, and I wish you the best in whatever comes next!

https://www.manning.com/books/understanding-databases
https://www.manning.com/books/understanding-databases
https://www.manning.com/books/grokking-relational-database-design

274

index
A
aggregate functions 119–123

AVG function 122
COUNT function 120
filtering and aggregating combined values 123
MAX function 122
MIN function 121
numeric calculations with functions 160–162
SUM function 120

AI (artificial intelligence), SQL and 3
aliases

renaming output columns using 24
tables 80

alias name 25
ALL operator 112, 113
AllTitles cursor 264
altering tables 191–194
ALTER keyword 219
ALTER TABLE statement 192, 195, 197, 199, 212
ALTER VIEW statement 220
AND keyword 77, 87
AND operator 44, 45
ANY operator 111
arguments 225
assigning unknown values to variables 136–140

assigning unknown variable with SELECT 137
considering performance with variables 138
reviewing how query works 136
troubleshooting considerations with variables 139

AuthorCount variable 266

AUTO_INCREMENT property 210, 260
AVG function 122

B
BEGIN keyword 236, 241
BETWEEN operator 54
bigint data type 189
blocking 253
boolean data type 248
Boolean expressions 235

C
calculatons, numeric, with functions 160–162
CALL keyword 223
Cartesian join 93
CASE expression 233–235
case functions 144
case insensitivity 20
CASE statement 257
CAST function 159
char data type 189, 261
CHECK constraint 209, 261
child tables 197
CLOSE keyword 247, 250
clustered indexes 211–212
COALESCE function 157, 225, 230, 250, 272
columns 8, 16

adding to tables 191
considerations before 194

automatically incrementing values for 210
deleting 199

 275index

commands
function commands, inefficient 144
function commands, variations for each RDBMS 143

comparison operators 52, 58
filtering on ranges 52–55

defined ranges 53
open-ended ranges 52

concatenate verb 154
CONCAT function 154–156, 272
CONCAT_WS function 156, 162
conditional functions and expressions 230–235

CASE expression 233–235
COALESCE function 230
IFNULL function 231

conditions, multiple 240
connection information 151
constraints 197, 204

adding foreign-key constraints 197
automatically incrementing values for columns 210
CHECK constraints 209
creating 204–209, 215
data diagrams 197
DEFAULT constraints 207
deleting 199
NOT NULL constraints 205–207
UNIQUE constraints 208

CONVERT function 159
COUNT function 120, 124
CREATE INDEX statement 212
CREATE PROCEDURE statement 248
CREATE TABLE statement 190, 192, 196, 260–262
cross joins 93
CURRENT_DATE() function 150, 207
CURRENT_TIME function 150
CURRENT_TIMESTAMP function 150, 152
CURRENT_USER function 151
cursors 244, 246–251

alternatives to 251–255
temporary tables 253
WHILE loops 251–253

anatomy of 246
considerations for using 255

thinking about cursor use 256
thinking in sets 255

creating 247–251

D
data

aggregating with GROUP BY 123–125
null values and 124
requirements for 124

changing type of data used by variables 141
commenting 35–37
deleting 186
deleting rows 183–185

all in table 184
one or more 183
with multitable query 184

inserting rows 164–170
omitting columns 170
rows with queries 171–173
rows with variables 173

INSERT stored procedure 262–270
querying 18

finding column names 26
retrieving from tables 21–26

renaming output columns using aliases 24
retrieving all columns 25
retrieving individual columns 22
retrieving multiple columns 23

sorting 28
storing in tables

deleting columns 199
deleting constraints 199
deleting tables 199

updating 176–183
data manipulation in real time 177
in one or more columns 179
requirements for 177
with multitable query 180–183

DATABASE function 151
databases, overview of 6–9
data diagrams 197
data grouping 119

aggregate functions 119–123
AVG function 122
COUNT function 120
filtering and aggregating combined values 123
MAX function 122
MIN function 121
SUM function 120

DISTINCT keyword 127
filtering with HAVING clause 125
logical query processing 126

data set 7, 16
date, information 150
DATE_ADD function 267
DATE function 163
date functions 147–149

other 149
returning numeric values 148
returning string values 148

276 index

date values, filtering on 42
DAYNAME function 148, 152
decimal(5,2) data type 264
decision structures 235–242

ELSE keyword 239
IF and THEN keywords 236–238
multiple conditions 240

declarative language 9
DECLARE keyword 132, 245, 246
default constraint 169
DEFAULT constraints 207
DEFAULT keyword 245
default values 207
DELETE statement 185, 186
deleting

columns 199
constraints 199
data 186
rows 183–185

all in table 184
one or more 183
with multitable query 184

tables 199
DELIMITER command 237
DELIMITER keyword 222
DISTINCT keyword 127, 144
DO keyword 252
DROP keyword 199
dynamic SQL 272

E
ELSEIF statement 240, 241
ELSE statement 241
empty string 65
END statement 241, 250, 266
EXCEPT operator 103–104
exclusions

filtering on ranges 52–55
defined ranges 53
open-ended ranges 52

exclusive conditions 55, 77
EXISTS operator 114
expression 209

F
FETCH statement 246, 249
filtering

combining types of filter conditions 57
multiple conditions 43–48

controlling order of multiple filters 46

filtering that requires all conditions 43
filtering that requires any one of many

conditions 44
multiple values, ranges, and exclusions

filtering on ranges 52–55
filtering on ranges of values 52–55
ORDER BY clause 47

negating filter conditions 55–57
any filter condition 56
specific values 55

on single condition 40–43
filtering on date values 42
filtering on numeric values 40
filtering on string values 41

on specific values 50
values 39
WHERE clause 50
wildcards 60–64, 68

percent sign 61–63
underscore 63

with HAVING clause 125
FOREIGN KEY constraint 197, 199, 201, 202, 214, 260
foreign keys 73, 197

adding foreign-key constraints 197
data diagrams 197

formatting 21
FROM clause 10, 16, 19, 22, 40, 76, 77, 79, 115, 134, 138,

155, 184
FULL OUTER JOIN

emulating in MySQL 101–103
functions

combining values with 153, 162
COALESCE function 157
combining string values 153–158
CONCAT function 154–156
CONCAT_WS function 156

converting values 158–160
CAST function 159
CONVERT function 159
REPLACE function 158

date functions 147–149
informational functions 149–151

connection information 151
date and time information 150

numeric calculations with 160–162
problems with 143

function commands, inefficient 144
function commands, variations for each

RDBMS 143
querying with 143, 151
string functions 144–147

case functions 144

 277index

other 147
trim functions 146–147

time functions 147–149

G
GROUP BY clause 123–125, 155

null values and 124
requirements for 124

H
HAVING clause 125

filtering with variables in 134

I
IFNULL function 231
IF statement 236–239, 250
IF…THEN statement 266
inclusive conditions 55
indexes 204, 210–215

automatically incrementing values for columns 210
clustered 211–212
creating 204–209, 215
nonclustered 212–215

individual columns, retrieving 22
informational functions 149–151

connection information 151
date and time information 150

inline comments 36
INNER JOIN 85–87, 194, 265, 266
IN operator 51, 52, 56, 111, 245
input parameter 223
InsertAnnualPayment stored procedure 270
INSERT statement 166, 167, 170, 172, 173, 191, 237,

262–270
int data type 189, 229, 261
INTERSECT operator 103, 108
IS NOT NULL operator 67, 68
ISNULL function 231, 232
IS NULL operator 66, 90

J
joining

data 81
tables 76–80

JOIN keyword 77, 87
joins 85

cross joins 93
inner joins 85–87
left and right, interchanging 91
left outer joins 87–89
natural joins 92

outer joins 87–93
interchanging left and right joins 91
USING keyword 92
using to find rows without matching values 90

right outer joins 89
USING keyword 92

K
key terms 15
keywords 10, 15, 19

L
LEAVE keyword 250
LEFT OUTER JOIN 87–89, 91, 116
LENGTH function 146, 147, 152
LIKE operator 61, 63
LIMIT clause 33–34
limiting data, in another RDBMS 35
literal constant 207
literal values 131
logical operators 110

subqueries and 111–115
ALL and NOT IN operators 112
ANY and IN operators 111
EXISTS and NOT EXISTS operators 114

logical query processing 126
LOOP statement 249, 266
LOWER function 145
LTRIM function 146

M
MAKEDATE function 267
many-to-many relationship 75
MAX function 122, 129, 152
mediumint data type 189
MIN function 121, 129, 252
MINUS operator 104
MONTHNAME function 148
multiple columns, retrieving 23
multiple tables, joining 76–80

more tables 78
two tables 76–78

multiple tables, querying 71
relationships 72–76

with 73–76
without 72

multitable queries
deleting rows with 184
updating values with 180–183

MySQL
emulating FULL OUTER JOIN in 101–103

278 index

installing 4
MySQL Workbench, installing 4

N
names, renaming output columns using aliases 24
natural joins 92
NATURAL keyword 92
negating filter conditions 55–57

any filter condition 56
specific values 55

nested views 221
nonclustered indexes 212–215
not-equal sign (<>) 55
NOT EXISTS operator 114
NOT IN operator 57, 112
NOT NULL constraint 205–207, 260, 261
NOT operator 56
NOW function 150
NULL values 168

assigning value of to variables 141
null values 60, 124

filtering with 64–68
searching for 65–67
searching for values that are not null 67

numeric calculations 160–162
numeric values

date functions that return 148
filtering on 40

NVL function 231

O
OFFSET command, using to select different limited

set 34
one-to-many relationship 75
one-to-one relationship 75
ON keyword 77, 79, 87, 92
OPEN keyword 246, 249
ORDER BY clause 29, 30, 31, 32, 34, 47, 52, 155, 163, 220
OR operator 45, 51, 56, 67
OUTER JOIN keyword 87
outer joins

interchanging left and right joins 91
left outer joins 87–89
natural joins 92
right outer joins 89
USING keyword 92
using to find rows without matching values 90

OUT keyword 246
output columns, renaming using aliases 24
output parameters 223, 245

P
parameters 223, 244

output parameters 245
variables inside stored procedures 245

parent table 197
patterns of values 60
percent sign 61–63
positive searches 50
precision 40
predicates 77, 180
PRIMARY KEY constraint 195, 196, 197, 199, 201, 202,

260
primary keys 73, 194–197

adding 195–197
considerations for 195

procedural programming 255

Q
queries 6, 11, 16

combining with set operators 96, 105
conditional functions and expressions 230–235
joining tables 76–80

more tables 78
two tables 76–78

making decisions in 230
multiple tables, aliases 80
overview of 6–9
reusing with views and stored procedures

considerations for 226
creating 222
stored procedures 221–227
using variables with 223–226

querying
data 18
finding column names 26
multiple tables 71, 82

joining data 81
with functions 143, 151

R
ranges, filtering on 52–55

defined ranges 53
open-ended ranges 52

RDBMS (relational database management system) 6, 91,
97, 177, 205, 217, 272

collation settings 53
function commands and variations for each 143
inserting specific values 164
limiting data in 35
rules of data relationships 71

 279index

WHERE clause and 40
REFERENCES keyword 199
referential integrity 195
REPLACE function 158, 163
reserved words 19
resources, online 5
result set 108
retrieving data from tables 21–26

renaming output columns using aliases 24
retrieving all columns 25
retrieving individual columns 22
retrieving multiple columns 23

RIGHT OUTER JOIN 89, 91
ROUND function 161
row identifier 211
rows 8, 16

deleting 183–185
all in table 184
one or more 183
with multitable query 184

inserting 165–170
with queries 171–173
with variables 173

RTRIM function 146

S
SELECT clause 10, 16, 18–21, 30, 32, 96, 101, 129, 138,

139, 142, 145, 161, 172, 173, 175, 185, 186, 217,
235

assigning literal values using 140
assigning unknown variable with 137
case insensitivity 20
formatting and whitespace 21
keywords and reserved words 19
requirements for 19
subqueries in 116

SELECT method 140
SEQUEL (Structured English Query Language) 9
set-based programming 255
SET keyword 132, 138, 139, 140, 245
set operators 96

combining queries with 105
emulating FULL OUTER JOIN in MySQL 101–103
EXCEPT 104
INTERSECT 103
UNION ALL set operator 100
UNION operator 97–100

SET statement 252
SHOW COLUMNS statement 224
skipping data 33–35

limiting data in another RDBMS 35

using LIMIT to reduce results 33
using OFFSET to select different limited set 34

smallint data type 189
sorting data 28–32, 37

by hidden columns 32
by multiple columns 30
by one column 29
by position 32
specifying sort direction 31

statements 11, 16
statement terminator 11, 222
stored procedures 217, 221–227

considerations for 226
creating 222
differences between views and 227
using variables with 223–226
variables inside 245

string functions 144–147
case functions 144
other 147
trim functions 146–147

string values 42, 153–158
combining with COALESCE function 154–157
combining with CONCAT_WS function 156
date functions that return 148
filtering on 41

subqueries 108–110, 115–117
in FROM clause 115
in SELECT clause 116
logical operators and 111–115

ALL and NOT IN operators 112
ANY and IN operators 111
EXISTS and NOT EXISTS operators 114

substring 158
SUM function 119, 120, 161, 232

T
tables 16

adding columns to 191
considerations before 194

adding values to empty 190
aliases 80
altering 191–194
creating 188–191, 260–262

considerations before 188
CREATE TABLE script 260–262
overview of 190

deleting 199
foreign keys and constraints 197

adding foreign-key constraints 197
data diagrams 197

280 index

joining 76–80
more tables 78
two tables 76–78

overview of 6–9
primary keys 194–197

adding 195–197
considerations for 195

querying multiple 71, 82
joining data 81

retrieving data from 21–26
renaming output columns using aliases 24
retrieving all columns 25
retrieving individual columns 22
retrieving multiple columns 23

storing data in 188
temporary tables 253
THEN keyword 236–238
time, information 150
time functions 147–149

date functions that return numeric values 148
date functions that return string values 148
other 149

tinyint data type 189
TRIM function 146

U
UNION ALL set operator 100, 101, 102
UNION operator 97–101, 108
UNIQUE constraints 208, 214
Unique property 213, 214
UPDATE statements 185, 186, 193, 202
UPPER function 144, 145
user-defined variables 132–134

declaring 132
rules for 133
using 133

USER function 151
USING keyword 92

V
values 8, 16

adding to empty tables 190
combining with functions 153, 162
converting 158–160

CAST function 159
CONVERT function 159
REPLACE function 158

filtering on ranges of 52–55
defined ranges 53
open-ended ranges 52

updating 176–183

data manipulation in real time 177
in one or more columns 179
requirements for 177
with multitable query 180–183

VALUES keyword 191
varchar data type 189
variables 244

assigning literal values using SELECT 140
assigning unknown values to 136–140

assigning unknown variable with SELECT 137
considering performance with variables 138
reviewing how query works 136
troubleshooting considerations with variables 139

assigning value of NULL to 141
changing type of data used by 141
filtering with in FROM and HAVING clauses 134
inserting rows with 173
inside stored procedures 245
user-defined variables 132–134

declaring 132
rules for 133
using 133

using with stored procedures 223–226
VERSION function 151
views 217–221

considerations for 221
creating 218
differences between stored procedures and 227
filtering with 219
joining 219

virtual tables 217

W
WHERE clause 42, 77, 88, 100, 110, 114, 129, 138, 183,

219
comparison operators 58
filtering on multiple conditions 43–48

controlling order of multiple filters 46
filtering that requires all conditions 43
filtering that requires any one of many

conditions 44
filtering on numeric values 40

WHILE loops 251–253
whitespace 21
wildcards, filtering with 60–64, 68

percent sign 61–63
underscore 63

Y
YEAR function 148, 265, 268

Result panel

Output panel

The result of query execution. In the Result panel, we see the result is “Hello, World!” In
the Output panel, a circle with a check mark (which appears green onscreen) indicates the
query executed successfully, and other information shows the time it was executed, what

the query was, how many rows it returned, and the duration of query execution.

Jeff Iannucci

ISBN-13: 978-1-63343-857-6

S
QL, Structured Query Language, is the standard way to
query, create, and manage relational databases like SQL
Server, PostgreSQL, and Oracle. It’s also a superpower

for data analysts who need to go beyond spreadsheets and
BI dashboarding tools. SQL is easy to read and understand,
and with this book (and a little practice) you’ll be pulling data,
tweaking tables, and cranking out amazing reports and pre-
sentations in no time at all!

Learn SQL in a Month of Lunches introduces SQL to data
analysts and other aspiring data pros with no prior experience
using relational databases. In it, you’ll complete 24 short less-
ons, each of which teaches an essential SQL skill for retriev-
ing, fi ltering, and analyzing data. You’ll practice each new
technique with a friendly hands-on lab designed to take about
15 minutes, as you learn to write queries that deliver the exact
data you need. Along the way, you’ll build a valuable intuition
for how databases operate in real business scenarios.

What’s Inside
● Get the data you need from any relational database
● Filter, sort, and group data
● Combine data from multiple tables
● Create, update, and delete data

For students, aspiring data analysts, software developers, and
anyone else who wants to work with relational databases.

Jeff Iannucci is a Senior Consultant with Straight Path
Solutions. For over 20 years, he has worked extensively with
SQL in sectors such as healthcare, fi nance, retail sales, and
government.

Th e technical editor on this book was Mike Shepard.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

LEARN
SQL

IN A MONTH OF LUNCHES

MICROSOFT & .NET

M A N N I N G

“An essential guide. Jeff has
carefully developed each

chapter to ensure clarity and
comprehensiveness, making
complex concepts accessible

and practical.”—Buck Woody, Microsoft

“Th e fastest and the most
effective way to learn SQL,

regardless of your background
 or technical knowledge level.”—Kevin Kline

author of SQL in a Nutshell

“Explains concepts
straightforwardly to help the
reader grow their skills over

 a month of sessions.”—Steve Jones, SQL Server Central

“Great selection of bite-sized,
digestible courses to

complement your lunch
arrangement. It leaves you

smarter every day.”—Simon Tschöke, Databricks

See first page

	Learn SQL in a Month of Lunches
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	1 Before you begin
	1.1	Why SQL matters
	1.2	Is this book for you?
	1.2.1	The many uses for SQL
	1.2.2	The many flavors of SQL
	1.2.3	A word about AI and SQL

	1.3	How to use this book
	1.3.1	The main chapters
	1.3.2	Hands-on labs
	1.3.3	Further exploration

	1.4	Setting up your lab environment
	1.4.1	Installing MySQL and MySQL Workbench
	1.4.2	Executing the lab scripts

	1.5	Online resources
	1.6	Being immediately effective with SQL

	2 Your first SQL query
	2.1	You know tables if you already know spreadsheets
	2.2	Learning SQL is like taking an English class
	2.3	Writing your first SQL query
	2.4	Key terms and keywords
	2.5	Lab
	2.6	Lab answers

	3 Querying data
	3.1	Rules for the SELECT statement
	3.1.1	SELECT requirements
	3.1.2	Keywords and reserved words
	3.1.3	Case insensitivity
	3.1.4	Formatting and whitespace

	3.2	Retrieving data from a table
	3.2.1	Retrieving an individual column
	3.2.2	Retrieving multiple columns
	3.2.3	Renaming output columns using aliases
	3.2.4	Retrieving all columns

	3.3	Lab
	3.4	Lab answers

	4 Sorting, skipping, and commenting data
	4.1	Sorting data
	4.1.1	Sorting by one column
	4.1.2	Sorting by multiple columns
	4.1.3	Specifying sort direction
	4.1.4	Sorting by hidden columns
	4.1.5	Sorting by position

	4.2	Skipping data
	4.2.1	Using LIMIT to reduce results
	4.2.2	Using OFFSET to select a different limited set
	4.2.3	Limiting data in another RDBMS

	4.3	Commenting data
	4.4	Lab
	4.5	Lab answers

	5 Filtering on specific values
	5.1	Filtering on a single condition
	5.1.1	Filtering on numeric values
	5.1.2	Filtering on string values
	5.1.3	Filtering on date values

	5.2	Filtering on multiple conditions
	5.2.1	Filtering that requires all conditions
	5.2.2	Filtering that requires any one of many conditions
	5.2.3	Controlling the order of multiple filters
	5.2.4	Filtering and using ORDER BY

	5.3	Lab
	5.4	Lab answers

	6 Filtering with multiple values, ranges, and exclusions
	6.1	Filtering on specific values
	6.2	Filtering on a range of values
	6.2.1	Filtering on an open-ended range
	6.2.2	Filtering a defined range

	6.3	Negating filter conditions
	6.3.1	Negating a specific value
	6.3.2	Negating any filter condition

	6.4	Combining types of filter conditions
	6.5	Reviewing comparison operators
	6.6	Lab
	6.7	Lab answers

	7 Filtering with wildcards and null values
	7.1	Filtering with wildcards
	7.1.1	Filtering with the percent sign
	7.1.2	Filtering with an underscore

	7.2	Filtering with null values
	7.2.1	How not to search for null values
	7.2.2	How to search for null values correctly
	7.2.3	How to search for values that are not null

	7.3	Lab
	7.4	Lab answers

	8 Querying multiple tables
	8.1	The rules of data relationships
	8.1.1	Data without relationships
	8.1.2	Data with relationships

	8.2	The way to join data
	8.2.1	Joining two tables
	8.2.2	Joining more tables

	8.3	Table aliases
	8.4	The other way to join data
	8.5	Lab
	8.6	Lab answers

	9 Using different kinds of joins
	9.1	Inner joins
	9.2	Outer joins
	9.2.1	Left outer joins
	9.2.2	Right outer joins
	9.2.3	Using outer joins to find rows without matching values
	9.2.4	Interchanging left and right joins
	9.2.5	The USING keyword
	9.2.6	Natural joins

	9.3	Cross joins
	9.4	Lab
	9.5	Lab answers

	10 Combining queries with set operators
	10.1	Using set operators
	10.2	UNION
	10.3	UNION ALL
	10.4	Emulating FULL OUTER JOIN in MySQL
	10.5	INTERSECT
	10.6	EXCEPT
	10.7	Lab
	10.8	Lab answers

	11 Using subqueries and logical operators
	11.1	A simple subquery
	11.2	Logical operators and subqueries
	11.2.1	The ANY and IN operators
	11.2.2	The ALL and NOT IN operators
	11.2.3	The EXISTS and NOT EXISTS operators

	11.3	Subqueries in other parts of a query
	11.3.1	Subqueries in the FROM clause
	11.3.2	Subqueries in the SELECT clause

	11.4	Lab
	11.5	Lab answers

	12 Grouping data
	12.1	Aggregate functions
	12.1.1	The SUM function
	12.1.2	The COUNT function
	12.1.3	The MIN function
	12.1.4	The MAX function
	12.1.5	The AVG function
	12.1.6	Filtering and aggregating combined values

	12.2	Aggregating data with GROUP BY
	12.2.1	GROUP BY requirements
	12.2.2	GROUP BY and null values

	12.3	Filtering with HAVING
	12.4	Logical query processing
	12.5	The DISTINCT keyword
	12.6	Lab
	12.7	Lab answers

	13 Using variables
	13.1	User-defined variables
	13.1.1	Declaring your first user-defined variable
	13.1.2	Understanding rules for user-defined variables
	13.1.3	Using your first user-defined variable

	13.2	Filtering with variables in FROM and HAVING clauses
	13.3	Assigning an unknown value to a variable
	13.3.1	Reviewing how a query works
	13.3.2	Assigning an unknown variable with SELECT
	13.3.3	Considering performance with variables
	13.3.4	Troubleshooting considerations with variables

	13.4	Other notes about variables
	13.4.1	Assigning a literal value using SELECT
	13.4.2	Assigning a value of NULL to a variable
	13.4.3	Changing the type of data used by a variable

	13.5	Lab
	13.6	Lab answers

	14 Querying with functions
	14.1	The problems with functions
	14.1.1	Function commands vary for each RDBMS
	14.1.2	Function commands can be inefficient

	14.2	String functions
	14.2.1	Case functions
	14.2.2	Trim functions
	14.2.3	Other string functions

	14.3	Date and time functions
	14.3.1	Date functions that return numeric values
	14.3.2	Date functions that return string values
	14.3.3	Other date and time functions

	14.4	Informational functions
	14.4.1	Date and time information
	14.4.2	Connection information

	14.5	Lab
	14.6	Lab answers

	15 Combining or calculating values with functions
	15.1	Combining string values
	15.1.1	CONCAT
	15.1.2	CONCAT_WS
	15.1.3	COALESCE

	15.2	Converting values
	15.2.1	REPLACE
	15.2.2	CONVERT and CAST

	15.3	Numeric calculations with functions
	15.4	Lab
	15.5	Lab answers

	16 Inserting data
	16.1	Inserting specific values
	16.1.1	Inserting a new row
	16.1.2	Inserting multiple new rows
	16.1.3	Inserting a partial row
	16.1.4	A word of caution about omitting columns

	16.2	Inserting a row with a query
	16.3	Inserting a row with variables
	16.4	Lab
	16.5	Lab answers

	17 Updating and deleting data
	17.1	Updating values
	17.1.1	Working with data manipulation in real time
	17.1.2	Requirements for updates
	17.1.3	Updating values in one or more columns
	17.1.4	Updating values with a multitable query

	17.2	Deleting rows
	17.2.1	Deleting one or more rows
	17.2.2	Deleting a row with a multitable query
	17.2.3	Deleting all rows in a table

	17.3	One big tip for data manipulation
	17.4	Lab
	17.5	Lab answers

	18 Storing data in tables
	18.1	Creating a table
	18.1.1	Considerations before creating a table
	18.1.2	Creating a table
	18.1.3	Adding values to an empty table

	18.2	Altering a table
	18.2.1	Adding a column to a table
	18.2.2	Considerations before adding a column

	18.3	Primary keys
	18.3.1	Considerations for primary keys
	18.3.2	Adding a primary key

	18.4	Foreign keys and constraints
	18.4.1	Data diagrams
	18.4.2	Adding a foreign-key constraint

	18.5	Deleting a table, column, or constraint
	18.5.1	Deleting a constraint
	18.5.2	Deleting a column
	18.5.3	Deleting a table

	18.6	Lab
	18.7	Lab answers

	19 Creating constraints and indexes
	19.1	Constraints
	19.1.1	NOT NULL constraints
	19.1.2	DEFAULT constraints
	19.1.3	UNIQUE constraints
	19.1.4	CHECK constraints

	19.2	Automatically incrementing values for a column
	19.3	Indexes
	19.3.1	Clustered indexes
	19.3.2	Nonclustered indexes

	19.4	Lab
	19.5	Lab answers

	20 Reusing queries with views and stored procedures
	20.1	Views
	20.1.1	Creating views
	20.1.2	Filtering with views
	20.1.3	Joining views
	20.1.4	Considerations for views

	20.2	Stored procedures
	20.2.1	Creating stored procedures
	20.2.2	Using variables with stored procedures
	20.2.3	Considerations for stored procedures

	20.3	Differences between views and stored procedures
	20.4	Lab
	20.5	Lab answers

	21 Making decisions in queries
	21.1	Conditional functions and expressions
	21.1.1	COALESCE function
	21.1.2	IFNULL function
	21.1.3	CASE expression

	21.2	Decision structures
	21.2.1	IF and THEN
	21.2.2	ELSE
	21.2.3	Multiple conditions

	21.3	Lab
	21.4	Lab answers

	22 Using cursors
	22.1	Reviewing variables and parameters
	22.1.1	Variables inside stored procedures
	22.1.2	Output parameters

	22.2	Cursors
	22.2.1	Anatomy of a cursor
	22.2.2	Creating a cursor

	22.3	Alternatives to cursors
	22.3.1	Using WHILE
	22.3.2	Temporary tables

	22.4	Considerations for using cursors
	22.4.1	Thinking in sets
	22.4.2	Thinking about cursor use

	22.5	Lab
	22.6	Lab answers

	23 Using someone else’s script
	23.1	Someone else’s script: Creating a table
	23.1.1	The CREATE TABLE script
	23.1.2	Reviewing the CREATE TABLE script
	23.1.3	Improving the CREATE TABLE script

	23.2	Someone else’s script: Inserting data
	23.2.1	The INSERT stored procedure
	23.2.2	Reviewing the INSERT stored procedure
	23.2.3	Improving the INSERT stored procedure
	23.2.4	Improving the INSERT stored procedure even more

	24 Never the end
	24.1	More SQL
	24.2	Other SQL resources
	24.3	Farewell

	index

