

CONTENTS IN DETAIL

TITLE PAGE

COPYRIGHT

ABOUT THE AUTHOR

PREFACE TO THE SECOND EDITION

ACKNOWLEDGMENTS

INTRODUCTION
What Is SQL?
Why SQL?
Who Is This Book For?
What You’ll Learn

CHAPTER 1: SETTING UP YOUR CODING ENVIRONMENT
Installing a Text Editor
Downloading Code and Data from GitHub
Installing PostgreSQL and pgAdmin
Windows Installation
macOS Installation
Linux Installation
Working with pgAdmin
Launching pgAdmin and Setting a Master Password
Connecting to the Default postgres Database

Exploring the Query Tool
Customizing pgAdmin
Alternatives to pgAdmin
Wrapping Up

CHAPTER 2: CREATING YOUR FIRST DATABASE AND TABLE
Understanding Tables
Creating a Database
Executing SQL in pgAdmin
Connecting to the analysis Database
Creating a Table
Using the CREATE TABLE Statement
Making the teachers Table
Inserting Rows into a Table
Using the INSERT Statement
Viewing the Data
Getting Help When Code Goes Bad
Formatting SQL for Readability
Wrapping Up

CHAPTER 3: BEGINNING DATA EXPLORATION WITH SELECT
Basic SELECT Syntax
Querying a Subset of Columns
Sorting Data with ORDER BY
Using DISTINCT to Find Unique Values
Filtering Rows with WHERE
Using LIKE and ILIKE with WHERE
Combining Operators with AND and OR
Putting It All Together

Wrapping Up

CHAPTER 4: UNDERSTANDING DATA TYPES
Understanding Characters
Understanding Numbers
Using Integers
Auto-Incrementing Integers
Using Decimal Numbers
Choosing Your Number Data Type
Understanding Dates and Times
Using the interval Data Type in Calculations
Understanding JSON and JSONB
Using Miscellaneous Types
Transforming Values from One Type to Another with CAST
Using CAST Shortcut Notation
Wrapping Up

CHAPTER 5: IMPORTING AND EXPORTING DATA
Working with Delimited Text Files
Handling Header Rows
Quoting Columns That Contain Delimiters
Using COPY to Import Data
Importing Census Data Describing Counties
Creating the us_counties_pop_est_2019 Table
Understanding Census Columns and Data Types
Performing the Census Import with COPY
Inspecting the Import
Importing a Subset of Columns with COPY
Importing a Subset of Rows with COPY

Adding a Value to a Column During Import
Using COPY to Export Data
Exporting All Data
Exporting Particular Columns
Exporting Query Results
Importing and Exporting Through pgAdmin
Wrapping Up

CHAPTER 6: BASIC MATH AND STATS WITH SQL
Understanding Math Operators and Functions
Understanding Math and Data Types
Adding, Subtracting, and Multiplying
Performing Division and Modulo
Using Exponents, Roots, and Factorials
Minding the Order of Operations
Doing Math Across Census Table Columns
Adding and Subtracting Columns
Finding Percentages of the Whole
Tracking Percent Change
Using Aggregate Functions for Averages and Sums
Finding the Median
Finding the Median with Percentile Functions
Finding Median and Percentiles with Census Data
Finding Other Quantiles with Percentile Functions
Finding the Mode
Wrapping Up

CHAPTER 7: JOINING TABLES IN A RELATIONAL DATABASE
Linking Tables Using JOIN

Relating Tables with Key Columns
Querying Multiple Tables Using JOIN
Understanding JOIN Types
JOIN
LEFT JOIN and RIGHT JOIN
FULL OUTER JOIN
CROSS JOIN
Using NULL to Find Rows with Missing Values
Understanding the Three Types of Table Relationships
One-to-One Relationship
One-to-Many Relationship
Many-to-Many Relationship
Selecting Specific Columns in a Join
Simplifying JOIN Syntax with Table Aliases
Joining Multiple Tables
Combining Query Results with Set Operators
UNION and UNION ALL
INTERSECT and EXCEPT
Performing Math on Joined Table Columns
Wrapping Up

CHAPTER 8: TABLE DESIGN THAT WORKS FOR YOU
Following Naming Conventions
Quoting Identifiers Enables Mixed Case
Pitfalls with Quoting Identifiers
Guidelines for Naming Identifiers
Controlling Column Values with Constraints
Primary Keys: Natural vs. Surrogate

Foreign Keys
How to Automatically Delete Related Records with CASCADE
The CHECK Constraint
The UNIQUE Constraint
The NOT NULL Constraint
How to Remove Constraints or Add Them Later
Speeding Up Queries with Indexes
B-Tree: PostgreSQL’s Default Index
Considerations When Using Indexes
Wrapping Up

CHAPTER 9: EXTRACTING INFORMATION BY GROUPING AND
SUMMARIZING
Creating the Library Survey Tables
Creating the 2018 Library Data Table
Creating the 2017 and 2016 Library Data Tables
Exploring the Library Data Using Aggregate Functions
Counting Rows and Values Using count()
Finding Maximum and Minimum Values Using max() and min()
Aggregating Data Using GROUP BY
Wrapping Up

CHAPTER 10: INSPECTING AND MODIFYING DATA
Importing Data on Meat, Poultry, and Egg Producers
Interviewing the Dataset
Checking for Missing Values
Checking for Inconsistent Data Values
Checking for Malformed Values Using length()
Modifying Tables, Columns, and Data

Modifying Tables with ALTER TABLE
Modifying Values with UPDATE
Viewing Modified Data with RETURNING
Creating Backup Tables
Restoring Missing Column Values
Updating Values for Consistency
Repairing ZIP Codes Using Concatenation
Updating Values Across Tables
Deleting Unneeded Data
Deleting Rows from a Table
Deleting a Column from a Table
Deleting a Table from a Database
Using Transactions to Save or Revert Changes
Improving Performance When Updating Large Tables
Wrapping Up

CHAPTER 11: STATISTICAL FUNCTIONS IN SQL
Creating a Census Stats Table
Measuring Correlation with corr(Y, X)
Checking Additional Correlations
Predicting Values with Regression Analysis
Finding the Effect of an Independent Variable with r-Squared
Finding Variance and Standard Deviation
Creating Rankings with SQL
Ranking with rank() and dense_rank()
Ranking Within Subgroups with PARTITION BY
Calculating Rates for Meaningful Comparisons
Finding Rates of Tourism-Related Businesses

Smoothing Uneven Data
Wrapping Up

CHAPTER 12: WORKING WITH DATES AND TIMES
Understanding Data Types and Functions for Dates and Times
Manipulating Dates and Times
Extracting the Components of a timestamp Value
Creating Datetime Values from timestamp Components
Retrieving the Current Date and Time
Working with Time Zones
Finding Your Time Zone Setting
Setting the Time Zone
Performing Calculations with Dates and Times
Finding Patterns in New York City Taxi Data
Finding Patterns in Amtrak Data
Wrapping Up

CHAPTER 13: ADVANCED QUERY TECHNIQUES
Using Subqueries
Filtering with Subqueries in a WHERE Clause
Creating Derived Tables with Subqueries
Joining Derived Tables
Generating Columns with Subqueries
Understanding Subquery Expressions
Using Subqueries with LATERAL
Using Common Table Expressions
Performing Cross Tabulations
Installing the crosstab() Function
Tabulating Survey Results

Tabulating City Temperature Readings
Reclassifying Values with CASE
Using CASE in a Common Table Expression
Wrapping Up

CHAPTER 14: MINING TEXT TO FIND MEANINGFUL DATA
Formatting Text Using String Functions
Case Formatting
Character Information
Removing Characters
Extracting and Replacing Characters
Matching Text Patterns with Regular Expressions
Regular Expression Notation
Using Regular Expressions with WHERE
Regular Expression Functions to Replace or Split Text
Turning Text to Data with Regular Expression Functions
Full-Text Search in PostgreSQL
Text Search Data Types
Creating a Table for Full-Text Search
Searching Speech Text
Ranking Query Matches by Relevance
Wrapping Up

CHAPTER 15: ANALYZING SPATIAL DATA WITH POSTGIS
Enabling PostGIS and Creating a Spatial Database
Understanding the Building Blocks of Spatial Data
Understanding Two-Dimensional Geometries
Well-Known Text Formats
Projections and Coordinate Systems

Spatial Reference System Identifier
Understanding PostGIS Data Types
Creating Spatial Objects with PostGIS Functions
Creating a Geometry Type from Well-Known Text
Creating a Geography Type from Well-Known Text
Using Point Functions
Using LineString Functions
Using Polygon Functions
Analyzing Farmers’ Markets Data
Creating and Filling a Geography Column
Adding a Spatial Index
Finding Geographies Within a Given Distance
Finding the Distance Between Geographies
Finding the Nearest Geographies
Working with Census Shapefiles
Understanding the Contents of a Shapefile
Loading Shapefiles
Exploring the Census 2019 Counties Shapefile
Examining Demographics Within a Distance
Performing Spatial Joins
Exploring Roads and Waterways Data
Joining the Census Roads and Water Tables
Finding the Location Where Objects Intersect
Wrapping Up

CHAPTER 16: WORKING WITH JSON DATA
Understanding JSON Structure
Considering When to Use JSON with SQL

Using json and jsonb Data Types
Importing and Indexing JSON Data
Using json and jsonb Extraction Operators
Key Value Extraction
Array Element Extraction
Path Extraction
Containment and Existence
Analyzing Earthquake Data
Exploring and Loading the Earthquake Data
Working with Earthquake Times
Finding the Largest and Most-Reported Earthquakes
Converting Earthquake JSON to Spatial Data
Generating and Manipulating JSON
Turning Query Results into JSON
Adding, Updating, and Deleting Keys and Values
Using JSON Processing Functions
Finding the Length of an Array
Returning Array Elements as Rows
Wrapping Up

CHAPTER 17: SAVING TIME WITH VIEWS, FUNCTIONS, AND
TRIGGERS
Using Views to Simplify Queries
Creating and Querying Views
Creating and Refreshing a Materialized View
Inserting, Updating, and Deleting Data Using a View
Creating Your Own Functions and Procedures
Creating the percent_change() Function

Using the percent_change() Function
Updating Data with a Procedure
Using the Python Language in a Function
Automating Database Actions with Triggers
Logging Grade Updates to a Table
Automatically Classifying Temperatures
Wrapping Up

CHAPTER 18: USING POSTGRESQL FROM THE COMMAND
LINE
Setting Up the Command Line for psql
Windows psql Setup
macOS psql Setup
Linux psql Setup
Working with psql
Launching psql and Connecting to a Database
Running SQL Queries on psql
Navigating and Formatting Results
Meta-Commands for Database Information
Importing, Exporting, and Using Files
Additional Command Line Utilities to Expedite Tasks
Adding a Database with createdb
Loading Shapefiles with shp2pgsql
Wrapping Up

CHAPTER 19: MAINTAINING YOUR DATABASE
Recovering Unused Space with VACUUM
Tracking Table Size
Monitoring the Autovacuum Process

Running VACUUM Manually
Reducing Table Size with VACUUM FULL
Changing Server Settings
Locating and Editing postgresql.conf
Reloading Settings with pg_ctl
Backing Up and Restoring Your Database
Using pg_dump to Export a Database or Table
Restoring a Database Export with pg_restore
Exploring Additional Backup and Restore Options
Wrapping Up

CHAPTER 20: TELLING YOUR DATA’S STORY
Start with a Question
Document Your Process
Gather Your Data
No Data? Build Your Own Database
Assess the Data’s Origins
Interview the Data with Queries
Consult the Data’s Owner
Identify Key Indicators and Trends over Time
Ask Why
Communicate Your Findings
Wrapping Up

APPENDIX: ADDITIONAL POSTGRESQL RESOURCES
PostgreSQL Development Environments
PostgreSQL Utilities, Tools, and Extensions
PostgreSQL News and Community
Documentation

INDEX

PRACTICAL SQL
2nd Edition

A Beginner’s Guide to Storytelling with
Data

by Anthony DeBarros

PRACTICAL SQL, 2ND EDITION. Copyright © 2022 by Anthony DeBarros.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

Printed in the United States of America
First printing

25 24 23 22 21 1 2 3 4 5 6 7 8 9
ISBN-13: 978-1-7185-0106-5 (print)
ISBN-13: 978-1-7185-0107-2 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Production Editors: Jennifer Kepler and Paula Williamson
Developmental Editor: Liz Chadwick
Cover Illustrator: Josh Ellingson
Interior Design: Octopod Studios
Technical Reviewer: Stephen Frost
Copyeditor: Kim Wimpsett
Compositor: Maureen Forys, Happenstance Type-O-Rama
Proofreader: Liz Wheeler

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress has catalogued the first edition as follows:
Names: DeBarros, Anthony, author.
Title: Practical SQL : a beginner's guide to storytelling with data / Anthony
DeBarros.
Description: San Francisco : No Starch Press, 2018. | Includes index.
Identifiers: LCCN 2018000030 (print) | LCCN 2017043947 (ebook) | ISBN 9781593278458
(epub) | ISBN
 1593278454 (epub) | ISBN 9781593278274 (paperback) | ISBN 1593278276 (paperback)
| ISBN 9781593278458
 (ebook)
Subjects: LCSH: SQL (Computer program language) | Database design. | BISAC:
COMPUTERS / Programming
 Languages / SQL. | COMPUTERS / Database Management / General. | COMPUTERS /
Database Management
/ Data Mining.
Classification: LCC QA76.73.S67 (print) | LCC QA76.73.S67 D44 2018 (ebook) | DDC
005.75/6--dc23
LC record available at https://lccn.loc.gov/2018000030

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

About the Author
Anthony DeBarros is a longtime journalist and early adopter of “data
journalism,” the use of spreadsheets, databases, and code to find news in
data. He’s currently a data editor for the Wall Street Journal, where he
covers topics including the economy, trade, demographics, and the Covid-
19 pandemic. Previously, he worked for the Gannett company at USA Today
and the Poughkeepsie Journal and held product development and content
strategy roles for Questex and DocumentCloud.

About the Technical Reviewer
Stephen Frost is the chief technology officer at Crunchy Data. He has been
working with PostgreSQL since 2003 and general database technology
since before then. Stephen began contributing to PostgreSQL development
in 2004 and has been involved in the development of the role system,
column-level privileges, row-level security, GSSAPI encryption, and the
predefined roles system. He has also served on the board of the United
States PostgreSQL Association and Software in the Public Interest,
regularly speaks at PostgreSQL Community conferences and events, and
works as a member of various PostgreSQL community teams.

PREFACE TO THE SECOND EDITION

Since the publication of the first edition of Practical
SQL, I’ve received kind notes about the book from
readers around the world. One happy reader said it
helped him ace SQL questions on a job interview.
Another, a teacher, wrote to say that his students
remarked favorably about having the book assigned
for class. Others just wanted to say thanks because
they found the book helpful and a good read, two
pieces of feedback that will warm the heart of most
any author.

I also sometimes heard from readers who hit a roadblock while working
through an exercise or who had trouble with software or data files. I paid
close attention to those emails, especially when the same question seemed
to crop up more than once. Meanwhile, during my own journey of learning
SQL—I use it every day at work—I’d often discover a technique and wish
that I’d included it in the book.

With all that in mind, I approached the team at No Starch Press with the
idea of updating and expanding Practical SQL into a second edition. I’m
thankful they said yes. This new version of the book is more complete,
offers stronger guidance for readers related to software and code, and
clarifies information that wasn’t as clear or presented as accurately as it
could have been. The book has been thoroughly enjoyable to revisit, and
I’ve learned much along the way.

This second edition includes numerous updates, expansions, and
clarifications in every chapter. Throughout, I’ve been careful to note when
code syntax adheres to the SQL standard—meaning you can generally use it
across database systems—or when the syntax is specific to the database
used in the book, PostgreSQL.

The following are among the most substantial changes:
Two chapters are new. Chapter 1, “Setting Up Your Coding Environment,”
details how to install PostgreSQL, pgAdmin, and additional PostgreSQL
components on multiple operating systems. It also shows how to obtain the
code listings and data from GitHub. In the first edition, this information was
located in the introduction and occasionally missed by readers. Chapter 16,
“Working with JSON Data,” covers PostgreSQL’s support for the
JavaScript Object Notation data format, using datasets about movies and
earthquakes.
In Chapter 4 on data types, I’ve added a section on IDENTITY, the ANSI
SQL standard implementation for auto-incrementing integer columns.
Throughout the book, IDENTITY replaces the PostgreSQL-specific serial
auto-incrementing integer type so that code examples more closely reflect
the SQL standard.
Chapter 5 on importing and exporting data now includes a section about
using the WHERE keyword with the COPY command to filter which rows are
imported from a source file to a table.
I’ve removed the user-created median() function from Chapter 6 on basic
math in favor of focusing exclusively on the SQL standard
percentile_cont() function for calculating medians.
In Chapter 7 on table joins, I’ve added a section covering the set operators
UNION, UNION ALL, INTERSECT, and EXCEPT. Additionally, I’ve added a
section covering the USING clause in joins to reduce redundant output and
simplify query syntax.
Chapter 10 on inspecting and modifying data includes a new section on
using the RETURNING keyword in an UPDATE statement to display the data
that the statement modified. I’ve also added a section that describes how to
use the TRUNCATE command to remove all rows from a table and restart an
IDENTITY sequence.

In Chapter 11 on statistical functions, a new section demonstrates how to
create a rolling average to smooth uneven data to get a better sense of
trends over time. I’ve also added information on functions for calculating
standard deviation and variance.
Chapter 13 on advanced query techniques now shows how to use the
LATERAL keyword with subqueries. One benefit is that, by combining
LATERAL with JOIN, you get functionality similar to a for loop in a
programming language.
In Chapter 15 on analyzing spatial data, I demonstrate how to use the
Geometry Viewer in pgAdmin to see geographies placed on a map. This
feature was added to pgAdmin after publication of the first edition.
In Chapter 17 on views, functions, and triggers, I’ve added information
about materialized views and showed how their behavior differs from
standard views. I also cover procedures, which PostgreSQL now supports in
addition to functions.
Finally, where practical, datasets have been updated to the most recent
available at the time of writing. This primarily applies to US Census
population statistics but also includes the text of presidential speeches and
library usage statistics.

Thank you for reading Practical SQL! If you have any questions or
feedback, please get in touch by emailing practicalsqlbook@gmail.com.

mailto:practicalsqlbook@gmail.com

ACKNOWLEDGMENTS

This second edition of Practical SQL is the work of many hands. My
thanks, first, go to the team at No Starch Press. Thanks to Bill Pollock for
capturing the vision and sharpening the initial concept for the book—and
for agreeing to let me have another go at it. Special thanks and appreciation
to senior editor Liz Chadwick, who improved each chapter with her
insightful suggestions and deft editing, and to copyeditor Kim Wimpsett
and the production team of Paula Williamson and Jennifer Kepler.

Stephen Frost, chief technology officer at Crunchy Data and longtime
contributor to the PostgreSQL community, served as the technical reviewer
for this edition. I deeply appreciate the time Stephen took to explain the
inner workings of PostgreSQL and SQL concepts. This book is better, more
thorough, and more accurate thanks to his detailed eye. I’d also like to
acknowledge Josh Berkus, whose many contributions as technical reviewer
for the first edition persist in this new version.

Thank you to Investigative Reporters and Editors (IRE) and its members
and staff past and present for training journalists to find stories in data. IRE
is where I got my start with SQL and data journalism.

Many of my colleagues have not only imparted memorable lessons on
data analysis, they’ve also made my workdays brighter. Special thanks to
Paul Overberg for sharing his vast knowledge of demographics and the US
Census, to Lou Schilling for many technical lessons, to Christopher
Schnaars for his SQL expertise, to Peter Matseykanets for his
encouragement, and to Chad Day, John West, and Maureen Linke and the
WSJ DC visuals team for continual inspiration.

My deepest appreciation goes to my dear wife, Elizabeth, and our sons.
You are the brightest lights in my day. As we are fond of saying, “To the
journey . . .”

INTRODUCTION

Shortly after joining the staff of USA
Today, I received a dataset that I would
analyze almost every week for the next
decade. It was the weekly Best-Selling
Books list, which ranked the nation’s

top-selling titles based on confidential sales data. Not
only did the list produce an endless stream of story
ideas to pitch, it also captured the zeitgeist of
America in a singular way.

Did you know that cookbooks sell a bit more during the week of
Mother’s Day or that Oprah Winfrey turned many obscure writers into
number-one best-selling authors just by having them on her show? Every
week, the book list editor and I pored over the sales figures and book
genres, ranking the data in search of a new headline. Rarely did we come up
empty: we chronicled everything from the rocket-rise of the blockbuster
Harry Potter series to the fact that Oh, the Places You’ll Go! by Dr. Seuss
had become a perennial gift for new graduates.

My technical companion in that time was the database programming
language SQL (for Structured Query Language). Early on, I convinced USA
Today’s IT department to grant me access to the SQL-based database
system that powered our book list application. Using SQL, I was able to
discover the stories hidden in the database, which contained sales data
related to titles, authors, genres, and the codes that defined the publishing
world.

SQL has been useful to me ever since, whether my role was in product
development, in content strategy, or, lately, as a data editor for the Wall
Street Journal. In each case, SQL has helped me find interesting stories in
data—and that’s exactly what you’ll learn to do using this book.

What Is SQL?
SQL is a widely used programming language for managing data and
database systems. Whether you’re a marketing analyst, a journalist, or a
researcher mapping neurons in the brain of a fruit fly, you’ll benefit from
using SQL to collect, modify, explore, and summarize data.

Because SQL is a mature language that’s been around for decades, it’s
ingrained in many modern systems. A pair of IBM researchers first outlined
the syntax for SQL (then called SEQUEL) in a 1974 paper, building on the
theoretical work of the British computer scientist Edgar F. Codd. In 1979, a
precursor to the database company Oracle (then called Relational Software)
became the first to use the language in a commercial product. Today, SQL
still ranks as one of the most-used computer languages in the world, and
that’s unlikely to change soon.

Each database system, such as PostgreSQL, MySQL or Microsoft SQL
Server, implements its own variant of SQL, so you’ll notice subtle—or
sometimes significant—differences in syntax if you jump from one system
to another. There are several reasons behind this. The American National
Standards Institute (ANSI) adopted a standard for SQL in 1986, followed
by the International Organization for Standardization (ISO) in 1987. But the
standard doesn’t cover all aspects of SQL that are required for a database
implementation—for example, it has no entry for creating indexes. That
leaves each database system maker to choose how to implement features the
standard doesn’t cover—and no database maker currently claims to
conform to the entire standard.

Meanwhile, business considerations can lead commercial database
vendors to create nonstandard SQL features for both competitive advantage
and as a way to keep users in their ecosystem. For example, Microsoft’s
SQL Server uses the proprietary Transact-SQL (T-SQL) that includes a
number of features not in the SQL standard, such as its syntax for declaring

local variables. Migrating code written using T-SQL to another database
system may not be trivial, therefore.

In this book, the examples and code use the PostgreSQL database system.
PostgreSQL, or simply Postgres, is a robust application that can handle
large amounts of data. Here are some reasons PostgreSQL is a great choice
to use with this book:
It’s free.
It’s available for Windows, macOS, and Linux operating systems.
Its SQL implementation aims to closely follow the SQL standard.
It’s widely used, so finding help online is easy.
Its geospatial extension, PostGIS, lets you analyze geometric data and
perform mapping functions and is often used with mapping software such
as QGIS.
It’s available in cloud computing environments such as Amazon Web
Services and Google Cloud.
It’s a common choice as a data store for web applications, including those
powered by the popular web framework Django.

The good news is that the fundamental concepts and much of the core
SQL syntactical conventions of PostgreSQL will work across databases. So,
if you’re using MySQL at work, you can employ much of what you learn
here—or easily find parallel code concepts. When syntax is PostgreSQL-
specific, I make sure to point that out. If you need to learn the SQL syntax
of a system with features that deviate from the standard, such as Microsoft
SQL Server’s T-SQL, you may want to further explore a resource focusing
on that system.

Why SQL?
SQL certainly isn’t the only option for crunching data. Many people start
with Microsoft Excel spreadsheets and their assortment of analytic
functions. After working with Excel, they might graduate to Access, the
database system built into some versions of Microsoft Office, which has a

graphical query interface that makes it easy to get work done. So why learn
SQL?

One reason is that Excel and Access have their limits. Excel currently
allows 1,048,576 rows maximum per worksheet. Access limits database
size to two gigabytes and limits columns to 255 per table. It’s not
uncommon for datasets to surpass those limits. The last obstacle you want
to discover while facing a deadline is that your database system doesn’t
have the capacity to get the job done.

Using a robust SQL database system allows you to work with terabytes
of data, multiple related tables, and thousands of columns. It gives you fine-
grained control over the structure of your data, leading to efficiency, speed,
and—most important—accuracy.

SQL is also an excellent adjunct to programming languages used in the
data sciences, such as R and Python. If you use either language, you can
connect to SQL databases and, in some cases, even incorporate SQL syntax
directly into the language. For people with no background in programming
languages, SQL often serves as an easy-to-understand introduction into
concepts related to data structures and programming logic.

Finally, SQL is useful beyond data analysis. If you delve into building
online applications, you’ll find that databases provide the backend power
for many common web frameworks, interactive maps, and content
management systems. When you need to dig beneath the surface of these
applications, the ability to manage data and databases with SQL will come
in very handy.

Who Is This Book For?
Practical SQL is for people who encounter data in their everyday lives and
want to learn how to analyze, manage, and transform it. With that in mind,
we cover real-world data and scenarios, such as US Census demographics,
crime reports, and data about taxi rides in New York City. We aim to
understand not only how SQL works but how we can use it to find valuable
insights.

This book was written with people new to programming in mind, so the
early chapters cover key basics about databases, data, and SQL syntax.
Readers with some SQL experience should benefit from later chapters that
cover more advanced topics, such as Geographical Information Systems
(GIS). I assume that you know your way around your computer, including
how to install programs, navigate your hard drive, and download files from
the internet, but I don’t assume you have any experience with programming
or data analysis.

What You’ll Learn
Practical SQL starts with a chapter on setting up your system and getting
the code and data examples and then moves through the basics of databases,
queries, tables, and data that are common to SQL across many database
systems. Chapters 14 to 19 cover topics more specific to PostgreSQL, such
as full-text search, functions, and GIS. Although many chapters in this book
can stand alone, you should work through the book sequentially to build on
the fundamentals. Datasets presented in early chapters often reappear later,
so following the book in order will help you stay on track.

The following summary provides more detail about each chapter:
Chapter 1: Setting Up Your Coding Environment walks through

setting up PostgreSQL, the pgAdmin user interface, and a text editor, plus
how to download example code and data.

Chapter 2: Creating Your First Database and Table provides step-by-
step instructions for the process of loading a simple dataset about teachers

into a new database.
Chapter 3: Beginning Data Exploration with SELECT explores basic

SQL query syntax, including how to sort and filter data.
Chapter 4: Understanding Data Types explains the definitions for

setting columns in a table to hold specific types of data, from text to dates
to various forms of numbers.

Chapter 5: Importing and Exporting Data explains how to use SQL
commands to load data from external files and then export it. You’ll load a
table of US Census population data that you’ll use throughout the book.

Chapter 6: Basic Math and Stats with SQL covers arithmetic
operations and introduces aggregate functions for finding sums, averages,
and medians.

Chapter 7: Joining Tables in a Relational Database explains how to
query multiple, related tables by joining them on key columns. You’ll learn
how and when to use different types of joins.

Chapter 8: Table Design that Works for You covers how to set up
tables to improve the organization and integrity of your data as well as how
to speed up queries using indexes.

Chapter 9: Extracting Information by Grouping and Summarizing
explains how to use aggregate functions to find trends in US library usage
based on annual surveys.

Chapter 10: Inspecting and Modifying Data explores how to find and
fix incomplete or inaccurate data using a collection of records about meat,
egg, and poultry producers as an example.

Chapter 11: Statistical Functions in SQL introduces correlation,
regression, ranking, and other functions to help you derive more meaning
from datasets.

Chapter 12: Working with Dates and Times explains how to create,
manipulate, and query dates and times in your database, including working
with time zones and with data about New York City taxi trips and Amtrak
train schedules.

Chapter 13: Advanced Query Techniques explains how to use more
complex SQL operations such as subqueries and cross tabulations, plus the
CASE statement, to reclassify values in a dataset on temperature readings.

Chapter 14: Mining Text to Find Meaningful Data covers how to use
PostgreSQL’s full-text search engine and regular expressions to extract data
from unstructured text, using police reports and a collection of speeches by
US presidents as examples.

Chapter 15: Analyzing Spatial Data with PostGIS introduces data
types and queries related to spatial objects, which will let you analyze
geographical features such as counties, roads, and rivers.

Chapter 16: Working with JSON Data introduces the JavaScript
Object Notation (JSON) data format and uses data about movies and
earthquakes to explore PostgreSQL JSON support.

Chapter 17: Saving Time with Views, Functions, and Triggers
explains how to automate database tasks so you can avoid repeating routine
work.

Chapter 18: Using PostgreSQL from the Command Line covers how
to use text commands at your computer’s command prompt to connect to
your database and run queries.

Chapter 19: Maintaining Your Database provides tips and procedures
for tracking the size of your database, customizing settings, and backing up
data.

Chapter 20: Telling Your Data’s Story provides guidelines for
generating ideas for analysis, vetting data, drawing sound conclusions, and
presenting your findings clearly.

Appendix: Additional PostgreSQL Resources lists software and
documentation to help you grow your skills.

Each chapter ends with a “Try It Yourself” section that contains exercises
to help you reinforce the topics you learned.

Ready? Let’s begin with Chapter 1, “Setting Up Your Coding
Environment.”

1
SETTING UP YOUR CODING

ENVIRONMENT

Let’s begin by installing the resources
you’ll need to complete the exercises in
the book. In this chapter, you’ll install a
text editor, download the example code
and data, and then install the

PostgreSQL database system and its companion
graphical user interface, pgAdmin. I’ll also tell you
how to get help if you need it. When you’re finished,
your computer will have a robust environment for
you to learn how to analyze data with SQL.

Avoid the temptation to skip ahead to the next chapter. My high school
teacher (clearly a fan of alliteration) used to tell us that “proper planning
prevents poor performance.” If you follow all the steps in this chapter,
you’ll avoid headaches later.

Our first task is to set up a text editor suitable for working with data.

Installing a Text Editor

The source data you’ll add to a SQL database is typically stored in multiple
text files, often in a format called comma-separated values (CSV). You’ll
learn more about the CSV format in Chapter 5, in the section “Working
with Delimited Text Files,” but for now let’s make sure you have a text
editor that will let you open those files without inadvertently harming the
data.

Common business applications—word processors and spreadsheet
programs—tend to introduce styles or hidden characters into files without
asking, and that makes using them for data work problematic, as data
software expects data in precise formats. For example, if you open a CSV
file with Microsoft Excel, the program will automatically alter some data to
make it more human-readable; it will assume, for example, that an item
code of 3-09 is a date and format it as 9-Mar. Text editors deal exclusively
with plain text with no embellishments such as formatting, and for that
reason programmers use them to edit files that hold source code, data, and
software configurations—all cases where you want your text to be treated
as text, and nothing more.

Any text editor should work for the book’s purposes, so if you have a
favorite, feel free to use it. Here are some I have used and recommend.
Except where noted, they are free and available for macOS, Windows, and
Linux.
Visual Studio Code by Microsoft: https://code.visualstudio.com/
Atom by GitHub: https://atom.io/
Sublime Text by Sublime HQ (free to evaluate but requires purchase for
continued use): https://www.sublimetext.com/
Notepad++ by author Don Ho (Windows only): https://notepad-plus-
plus.org/ (note that this is a different application than Notepad.exe, which
comes with Windows)

More advanced users who prefer to work in the command line may want
to use one of these two text editors, which are installed by default in macOS
and Linux:
vim by author Bram Moolenaar and the open source community:
https://www.vim.org/

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://www.vim.org/

GNU nano by author Chris Allegretta and the open source community:
https://www.nano-editor.org/

If you don’t have a text editor, download and install one and get familiar
with the basics of opening folders and working with files.

Next, let’s get the book’s example code and data.

Downloading Code and Data from GitHub
All of the code and data you’ll need for working through the book’s
exercises are available for download. To get it, follow these steps:

. Visit the book’s page on the No Starch Press website at
https://nostarch.com/practical-sql-2nd-edition/.

. On the page, click Download the code from GitHub to visit the repository
on https://github.com/ that holds the material.

. On the Practical SQL 2nd Edition page at GitHub, you should see a Code
button. Click it, and then select Download ZIP to save the ZIP file to your
computer. Place it in a location where you can easily find it, such as your
desktop. (If you’re a GitHub user, you can also clone or fork the repository.)

. Unzip the file. You should then see a folder named practical-sql-2-master
that contains the various files and subfolders for the book. Again, place this
folder where you can easily find it.

NOTE

Windows users will need to provide permission for the PostgreSQL
database you will install to read and write to the contents of the
practical-sql-2-master folder. To do so, right-click the folder, click
Properties, and click the Security tab. Click Edit and then Add.
Type the name Everyone into the object names box and click OK.
Highlight Everyone in the user list, select all boxes under Allow,
and then click Apply and OK.

https://www.nano-editor.org/
https://nostarch.com/practical-sql-2nd-edition/
https://github.com/

Inside the practical-sql-2-master folder, for each chapter you’ll find a
subfolder named Chapter_XX (XX is the chapter number). Inside
subfolders, each chapter that includes code examples will also have a file
named Chapter_XX that ends with a .sql extension. This is a SQL code file
that you can open with your text editor or with the PostgreSQL
administrative tool you’ll install later in this chapter. Note that in the book
several code examples are truncated to save space, but you’ll need the full
listing from the .sql file to complete the exercise. You’ll know an example
is truncated when you see --snip-- in the listing.

The chapter folders also contain the public data you’ll use in the
exercises, stored in CSV and other text-based files. As noted, it’s fine to
view CSV files with a true text editor, but don’t open these files with Excel
or a word processor.

Now, with the prerequisites complete, let’s load the database software.

Installing PostgreSQL and pgAdmin
In this section, you’ll install both the PostgreSQL database system and a
companion graphical administrative tool, pgAdmin. Think of pgAdmin as a
helpful visual workspace for managing your PostgreSQL database. Its
interface lets you see your database objects, manage settings, import and
export data, and write queries, which is the code that retrieves data from
your database.

One benefit of using PostgreSQL is that the open source community has
provided excellent guidelines that make it easy to get PostgreSQL up and
running. The following sections outline installation for Windows, macOS,
and Linux as of this writing, but the steps might change as new versions of
the software or operating systems are released. Check the documentation
noted in each section as well as the GitHub repository with the book’s
resources; I’ll maintain files there with updates and answers to frequently
asked questions.

NOTE

I recommend you install the latest available version of PostgreSQL
for your operating system to ensure that it’s up-to-date on security
patches and new features. For this book, I’ll assume you’re using
version 11.0 or later.

Windows Installation
For Windows, I recommend using the installer provided by the company
EDB (formerly EnterpriseDB), which offers support and services for
PostgreSQL users. When you download the PostgreSQL package bundle
from EDB, you also get pgAdmin and Stack Builder, which includes a few
other tools you’ll use in this book and throughout your SQL career.

To get the software, visit https://www.postgresql.org/download/windows/
and click Download the installer in the EDB section. This should lead to a
downloads page on the EDB site. Select the latest available 64-bit Windows
version of PostgreSQL unless you’re using an older PC with 32-bit
Windows.

NOTE

The following section covers installation for Windows 10. If you’re
using Windows 11, please check the GitHub repository with the
book’s resources for notes about any adjustments to these
instructions.

After you download the installer, follow these steps to install
PostgreSQL, pgAdmin, and additional components:

. Right-click the installer and select Run as administrator. Answer Yes to
the question about allowing the program to make changes to your computer.
The program will perform a setup task and then present an initial welcome
screen. Click through it.

. Choose your installation directory, accepting the default.

https://www.postgresql.org/download/windows/

. On the Select Components screen, select the boxes to install PostgreSQL
Server, the pgAdmin tool, Stack Builder, and the command line tools.

. Choose the location to store data. You can choose the default, which is in a
data subdirectory in the PostgreSQL directory.

. Choose a password. PostgreSQL is robust with security and permissions.
This password is for the default initial database superuser account, which is
called postgres.

. Select the default port number where the server will listen. Unless you have
another database or application using it, use the default, which should be
5432. You can substitute 5433 or another number if you already have an
application using the default port.

. Select your locale. Using the default is fine. Then click through the
summary screen to begin the installation, which will take several minutes.

. When the installation is done, you’ll be asked whether you want to launch
EnterpriseDB’s Stack Builder to obtain additional packages. Make sure the
box is checked and click Finish.

. When Stack Builder launches, choose the PostgreSQL installation on the
drop-down menu and click Next. A list of additional applications should
download.

. Expand the Spatial Extensions menu and select the PostGIS Bundle for the
version of PostgreSQL you installed. You may see more than one listed; if
so, choose the newest version. Also, expand the Add-ons, tools and
utilities menu and select EDB Language Pack, which installs support for
programming languages including Python. Click through several times;
you’ll need to wait while the installer downloads the additional
components.

 When installation files have been downloaded, click Next to install the
language and PostGIS components. For PostGIS, you’ll need to agree to the
license terms; click through until you’re asked to Choose Components.
Make sure PostGIS and Create spatial database are selected. Click Next,
accept the default install location, and click Next again.

. Enter your database password when prompted and continue through the
prompts to install PostGIS.

. Answer Yes when asked to register the PROJ_LIB and GDAL_DATA
environment variables. Also, answer Yes to the questions about setting
POSTGIS_ENABLED_DRIVERS and enabling the
POSTGIS_ENABLE_OUTDB_RASTERS environment variable. Finally, click
through the final Finish steps to complete the installation and exit the
installers. Depending on the version, you may be prompted to restart your
computer.

When finished, you should have two new folders in your Windows Start
menu: one for PostgreSQL and another for PostGIS.

If you’d like to get started right away, you can skip ahead to the section
“Working with pgAdmin.” Otherwise, follow the steps in the next section to
set environment variables for optional Python language support. We cover
using Python with PostgreSQL in Chapter 17; you can wait until then to set
up Python if you’d like to move ahead now.

Configuring Python Language Support
In Chapter 17, you’ll learn how to use the Python programming language
with PostgreSQL. In the previous section, you installed the EDB Language
Pack, which provides Python support. Follow these steps to add the location
of the Language Pack files to your Windows system’s environment
variables:

. Open the Windows Control Panel by clicking the Search icon on the
Windows taskbar, entering Control Panel, and then clicking the Control
Panel icon.

. In the Control Panel app, enter Environment in the search box. In the list
of search results displayed, click Edit the System Environment Variables.
A System Properties dialog will appear.

. In the System Properties dialog, on the Advanced tab, click Environment
Variables. The dialog that opens has two sections: User variables and
System variables. In the System variables section, if you don’t see a PATH
variable, continue to step a to create a new one. If you do see an existing
PATH variable, continue to step b to modify it.

 If you don’t see PATH in the System variables section, click New to open a
New System Variable dialog, shown in Figure 1-1.

Figure 1-1: Creating a new PATH environment variable in Windows 10

In the Variable name box, enter PATH. In the Variable value box, enter
C:\edb\languagepack\v2\Python-3.9. (Instead of typing, you can click
Browse Directory and navigate to the directory in the Browse For Folder
dialog.) When you’ve either entered the path manually or browsed to it,
click OK on the dialog to close it.

. If you do see an existing PATH variable in the System variables section,
highlight it and click Edit. In the list of variables that displays, click New
and enter C:\edb\languagepack\v2\Python-3.9. (Instead of typing, you can
click Browse Directory and navigate to the directory in the Browse For
Folder dialog.)
Once you’ve added the Language Pack path, highlight it in the list of
variables and click Move Up until the path is at the top of the variables list.
That way, PostgreSQL will find the correct Python version if you have
additional Python installations.
The result should look like the highlighted line in Figure 1-2. Click OK to
close the dialog.

Figure 1-2: Editing existing PATH environment variables in Windows 10

. Finally, in the System variables section, click New. In the New System
Variable dialog, enter PYTHONHOME in the Variable name box. In the
Variable value box, enter C:\edb\languagepack\v2\Python-3.9. When
you’re finished, click OK in all dialogs to close them. Note that these
Python path settings will take effect the next time you restart your system.

If you experience any hiccups during the PostgreSQL install, check the
resources for the book, where I will note changes that occur as the software
is developed and can also answer questions. If you’re unable to install
PostGIS via Stack Builder, try downloading a separate installer from the
PostGIS site at https://postgis.net/windows_downloads/ and consult the
guides at https://postgis.net/documentation/.

Now, you can move ahead to the section “Working with pgAdmin.”

macOS Installation
For macOS users, I recommend obtaining Postgres.app, an open source
macOS application that includes PostgreSQL as well as the PostGIS
extension and a few other goodies. Separately, you’ll need to install the
pgAdmin GUI and the Python language for use in functions.

Installing Postgres.app and pgAdmin
Follow these steps:

. Visit https://postgresapp.com/ and download the latest release of the app.
This will be a Disk Image file that ends in .dmg.

. Double-click the .dmg file to open it, and then drag and drop the app icon
into your Applications folder.

. In your Applications folder, double-click the app icon to launch
Postgres.app. (If you see a dialog that says the app cannot be opened
because the developer cannot be verified, click Cancel. Then right-click the
app icon and choose Open.) When Postgres.app opens, click Initialize to
create and start a PostgreSQL database server.

A small elephant icon will appear in your menu bar to indicate that you
now have a database running. To set up the included PostgreSQL command
line tools so you’re able to use them in future, open your Terminal
application and run the following single line of code at the prompt (you can
copy the code as a single line from the Postgres.app site at
https://postgresapp.com/documentation/install.html):

https://postgis.net/windows_downloads/
https://postgis.net/documentation/
https://postgresapp.com/
https://postgresapp.com/documentation/install.html

sudo mkdir -p /etc/paths.d &&
echo /Applications/Postgres.app/Contents/Versions/latest/bin
| sudo tee /etc/paths.d/postgresapp

You may be prompted for the password you use to log in to your Mac.
Enter that. The commands should execute without providing any output.

Next, because Postgres.app doesn’t include pgAdmin, follow these steps
to install pgAdmin:

. Visit the pgAdmin site’s page for macOS downloads at
https://www.pgadmin.org/download/pgadmin-4-macos/.

. Select the latest version and download the installer (look for a Disk Image
file that ends in .dmg).

. Double-click the .dmg file, click through the prompt to accept the terms,
and then drag pgAdmin’s elephant app icon into your Applications folder.

Installation on macOS is relatively simple, but if you encounter any
issues, review the documentation for Postgres.app at
https://postgresapp.com/documentation/ and for pgAdmin at
https://www.pgadmin.org/docs/.

Installing Python
In Chapter 17, you’ll learn how to use the Python programming language
with PostgreSQL. To use Python with Postgres.app, you must install a
specific version of the language even though macOS comes with Python
pre-installed (and you might have set up an additional Python environment).
To enable Postgres.app’s optional Python language support, follow these
steps:

. Visit the official Python site at https://www.python.org/ and click the
Downloads menu.

. In the list of releases, find and download the latest version of Python 3.9.
Choose the appropriate installer for your Mac’s processor—an Intel chip on
older Macs or Apple Silicon for newer models. The download is an Apple
software package file that ends in .pkg.

https://www.pgadmin.org/download/pgadmin-4-macos/
https://postgresapp.com/documentation/
https://www.pgadmin.org/docs/
https://www.python.org/

. Double-click the package file to install Python, clicking through license
agreements. Close the installer when finished.

Python requirements for Postgres.app may change over time. Check its
Python documentation at
https://postgresapp.com/documentation/plpython.html as well as the
resources for this book for updates.

You’re now ready to move ahead to the section “Working with
pgAdmin.”

Linux Installation
If you’re a Linux user, installing PostgreSQL becomes simultaneously easy
and difficult, which in my experience is very much the way it is in the
Linux universe. Most times you can accomplish an installation with a few
commands, but finding those commands requires some Internet sleuth
work. Thankfully, most popular Linux distributions—including Ubuntu,
Debian, and CentOS—bundle PostgreSQL in their standard package.
However, some distributions stay on top of updates more than others, so
there’s a chance the PostgreSQL you have downloaded may not be the
latest. The best path is to consult your distribution’s documentation for the
best way to install PostgreSQL if it’s not already included or if you want to
upgrade to a more recent version.

Alternatively, the PostgreSQL project maintains complete up-to-date
package repositories for Red Hat variants, Debian, and Ubuntu. Visit
https://yum.postgresql.org/ and https://wiki.postgresql.org/wiki/Apt for
details. The packages you’ll want to install include the client and server for
PostgreSQL, pgAdmin (if available), PostGIS, and PL/Python. The exact
names of these packages will vary according to your Linux distribution.
You might also need to manually start the PostgreSQL database server.

The pgAdmin app is rarely part of Linux distributions. To install it, refer
to the pgAdmin site at https://www.pgadmin.org/download/ for the latest
instructions and to see whether your platform is supported. If you’re feeling
adventurous, you can find instructions on building the app from source code
at https://www.pgadmin.org/download/pgadmin-4-source-code/. Once
finished, you can move ahead to the section “Working with pgAdmin.”

https://postgresapp.com/documentation/plpython.html
https://yum.postgresql.org/
https://wiki.postgresql.org/wiki/Apt
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/pgadmin-4-source-code/

Ubuntu Installation Example
To give you a sense of what a PostgreSQL Linux install looks like, here are
the steps I took to load PostgreSQL, pgAdmin, PostGIS, and PL/Python on
Ubuntu 21.04, codenamed Hirsute Hippo. It’s a combination of the
directions found at https://wiki.postgresql.org/wiki/Apt plus the “Basic
Server Setup” section at https://help.ubuntu.com/community/PostgreSQL/.
You can follow along if you’re on Ubuntu.

Open your Terminal by pressing CTRL-ALT-T. Then, at the prompt,
enter the following lines to import a key for the PostgreSQL APT
repository:

sudo apt-get install curl ca-certificates gnupg
curl https://www.postgresql.org/media/keys/ACCC4CF8.asc |
sudo apt-key add -

Next, run this single line to create the file /etc/apt/sources.list.d/pgdg.list:

sudo sh -c 'echo "deb
https://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-
pgdg main" > /etc/apt/sources.list.d/pgdg.list'

Once that’s done, update the package lists and install PostgreSQL and
pgAdmin with the next two lines. Here, I installed PostgreSQL 13; you can
choose a newer version if available.

sudo apt-get update
sudo apt-get install postgresql-13

You should now have PostgreSQL running. At the Terminal, enter the
next line, which allows you to log in to the server and connect as the default
postgres user to the postgres database using the psql interactive terminal,
which we’ll cover in depth in Chapter 18:

sudo -u postgres psql postgres

When psql launches, it displays version information as well as a
postgres=# prompt. Enter the following at the prompt to set a password:

https://wiki.postgresql.org/wiki/Apt%20
https://help.ubuntu.com/community/PostgreSQL/

postgres=# \password postgres

I also like to create a user account with a name that matches my Ubuntu
username. To do this, at the postgres=# prompt, enter the following line,
substituting your Ubuntu username where you see anthony:

postgres=# CREATE USER anthony SUPERUSER;

Exit psql by entering \q at the prompt. You should be back at your
Terminal prompt once again.

To install pgAdmin, first import a key for the repository:

curl https://www.pgadmin.org/static/packages_pgadmin_org.pub
| sudo apt-key add

Next, run this single line to create the file
/etc/apt/sources.list.d/pgadmin4.list and update package lists:

sudo sh -c 'echo "deb
https://ftp.postgresql.org/pub/pgadmin/pgadmin4/apt/$(lsb_rel
ease -cs) pgadmin4 main" >
/etc/apt/sources.list.d/pgadmin4.list && apt update'

Then you can install pgAdmin 4:

sudo apt-get install pgadmin4-desktop

Finally, to install the PostGIS and PL/Python extensions, run the
following lines in your terminal (substituting the version numbers of your
PostgreSQL version):

sudo apt install postgresql-13-postgis-3
sudo apt install postgresql-plpython3-13

Check the official Ubuntu and PostgreSQL documentation for updates. If
you experience any errors, typically with Linux an online search will yield
helpful tips.

Working with pgAdmin
The final piece of your setup puzzle is to get familiar with pgAdmin, an
administration and management tool for PostgreSQL. The pgAdmin
software is free, but don’t underestimate its performance; it’s a full-featured
tool as powerful as paid tools such as Microsoft’s SQL Server Management
Studio. With pgAdmin, you get a graphical interface where you can
configure multiple aspects of your PostgreSQL server and databases, and—
most appropriately for this book—use a SQL query tool for writing,
running, and saving queries.

Launching pgAdmin and Setting a Master Password
Assuming you followed the installation steps for your operating system
earlier in the chapter, here’s how to launch pgAdmin:
Windows: Go to the Start menu, find the PostgreSQL folder for the version
you installed, click it, and then select pgAdmin4.
macOS: Click the pgAdmin icon in your Applications folder, making sure
you’ve also launched Postgres.app.
Linux: Startup may differ depending on your Linux distribution. Typically,
at your Terminal prompt, enter pgadmin4 and press ENTER. In Ubuntu,
pgAdmin appears as an app in the Activities Overview.

You should see the pgAdmin splash screen, followed by the application
opening, as in Figure 1-3. If it’s your first time launching pgAdmin, you’ll
also receive a prompt to set a master password. This password is not related
to the one you set up during the PostgreSQL install. Set a master password
and click OK.

NOTE

On macOS, when you launch pgAdmin the first time, a dialog might
appear that displays “pgAdmin4.app can’t be opened because it is
from an unidentified developer.” Right-click the icon and click
Open. The next dialog should give you the option to open the app;
going forward, your Mac will remember you’ve granted this
permission.

Figure 1-3: The pgAdmin app running on Windows 10

The pgAdmin layout includes a left vertical pane that displays an object
browser where you can view available servers, databases, users, and other
objects. Across the top of the screen is a collection of menu items, and
below those are tabs to display various aspects of database objects and
performance. Next, let’s connect to your database.

Connecting to the Default postgres Database
PostgreSQL is a database management system, which means it’s software
that allows you to define, manage, and query databases. When you installed
PostgreSQL, it created a database server—an instance of the application
running on your computer—that includes a default database called
postgres. A database is a collection of objects that includes tables,
functions, and much more, and this is where your actual data will lie. We
use the SQL language (as well as pgAdmin) to manage objects and data
stored in the database.

In the next chapter, you’ll create your own database on your PostgreSQL
server to organize your work. For now, let’s connect to the default postgres
database to explore pgAdmin. Use the following steps:

. In the object browser, click the downward-pointing arrow to the left of the
Servers node to show the default server. Depending on your operating
system, the default server name could be localhost or PostgreSQL x, where
x is the Postgres version number.

. Double-click the server name. If prompted, enter the database password you
chose during installation (you can choose to save the password so you don’t
need type it in the future). A brief message appears while pgAdmin is
establishing a connection. When you’re connected, several new object items
should display under the server name.

. Expand Databases and then expand the default database postgres.

. Under postgres, expand the Schemas object, and then expand public.

Your object browser pane should look similar to Figure 1-4.

Figure 1-4: The pgAdmin object browser

NOTE

If pgAdmin doesn’t show a default under Servers, you’ll need to add
it. Right-click Servers, and click Create▶Server. In the dialog, type
a name for your server in the General tab. On the Connection tab,
in the Host name/address box, enter localhost. Fill in your
username and the password you supplied when installing
PostgreSQL and then click Save. You should now see your server
listed.

This collection of objects defines every feature of your database server.
That includes tables, where we store data. To view a table’s structure or
perform actions on it with pgAdmin, you can access the table here. In
Chapter 2, you’ll use this browser to create a new database and leave the
default postgres as is.

Exploring the Query Tool
The pgAdmin app includes a Query Tool, which is where you write and
execute code. To open the Query Tool, in pgAdmin’s object browser, first
click once on any database to highlight it. For example, click the postgres
database and then select Tools▶Query Tool. You’ll see three panes: a
Query Editor, a Scratch Pad for holding code snippets while you work, and
a Data Output pane that displays query results. You can open multiple tabs
to connect to and write queries for different databases or just to organize
your code the way you would like. To open another tab, click a database in
the object browser and open the Query Tool again via the menu.

Let’s run a simple query and see its output, using the statement in Listing
1-1 that returns the version of PostgreSQL you’ve installed. This code,
along with all the examples in this book, is available for download via the
resources at https://nostarch.com/practical-sql-2nd-edition/ by clicking the
link Download the code from GitHub.

SELECT version();

Listing 1-1: Checking your PostgreSQL version

https://nostarch.com/practical-sql-2nd-edition/

Enter the code into the Query Editor or, if you downloaded the book’s
code from GitHub, click the Open File icon on the pgAdmin toolbar and
navigate to the folder where you saved the code to open the file
Chapter_01.sql in the Chapter_01 folder. To execute the statement,
highlight the line beginning with SELECT and click the Execute/Refresh
icon in the toolbar (it’s shaped like a play button). PostgreSQL should
return the server’s version as a result in the pgAdmin Data Output pane, as
in Figure 1-5 (you may need to expand the column in the Data Output pane
by clicking on the right edge and dragging to your right to see the full
results).

You’ll learn much more about queries later in the book, but for now all
you need to know is that this query uses a PostgreSQL-specific function
called version() to retrieve the version information for the server. In my
case, the output shows that I’m running PostgreSQL 13.3, and it provides
additional specifics on the build of the software.

NOTE

Most of the sample code files you can download from GitHub
contain more than one query. To run just one query at a time, first
highlight the code for that query and then click Execute/Refresh.

Figure 1-5: The pgAdmin Query Tool displaying query results

Customizing pgAdmin
Selecting File▶Preferences from the pgAdmin menu opens a dialog where
you can customize pgAdmin’s appearance and options. Here are three you
may want to visit now:
Miscellaneous▶Themes lets you choose between the standard light
pgAdmin theme and a dark theme.
Query Tool▶Results grid lets you set a maximum column width in query
results. In that dialog, choose Column data and enter a value of 300 in
Maximum column width.
The Browser section lets you configure the pgAdmin layout and set
keyboard shortcuts.

To get help on pgAdmin options, choose Help▶Online Help from the
menu. Feel free to explore the preferences further before moving on.

Alternatives to pgAdmin
Although pgAdmin is great for beginners, you’re not required to use it for
these exercises. If you prefer another administrative tool that works with
PostgreSQL, feel free to use it. If you want to use your system’s command
line for all the exercises in this book, Chapter 18 provides instructions on
using the PostgreSQL interactive terminal psql from the command line.
(The appendix lists PostgreSQL resources you can explore to find
additional administrative tools.)

Wrapping Up
Now that you’ve set up your environment with code, a text editor,
PostgreSQL, and pgAdmin, you’re ready to start learning SQL and use it to
discover valuable insights into your data!

In Chapter 2, you’ll learn how to create a database and a table, and then
you’ll load some data to explore its contents. Let’s get started!

2
CREATING YOUR FIRST DATABASE

AND TABLE

SQL is more than just a means for
extracting knowledge from data. It’s
also a language for defining the
structures that hold data so we can
organize relationships in the data. Chief

among those structures is the table.
A table is a grid of rows and columns that store data. Each row holds a

collection of columns, and each column contains data of a specified type:
most commonly, numbers, characters, and dates. We use SQL to define the
structure of a table and how each table might relate to other tables in the
database. We also use SQL to extract, or query, data from tables.

In this chapter, you’ll create your first database, add a table, and then
insert several rows of data into the table using SQL in the pgAdmin
interface. Then, you’ll use pgAdmin to view the results. Let’s start with a
look at tables.

Understanding Tables
Knowing your tables is fundamental to understanding the data in your
database. Whenever I start working with a fresh database, the first thing I

do is look at the tables within. I look for clues in the table names and their
column structure. Do the tables contain text, numbers, or both? How many
rows are in each table?

Next, I look at how many tables are in the database. The simplest
database might have a single table. A full-bore application that handles
customer data or tracks air travel might have dozens or hundreds. The
number of tables tells me not only how much data I’ll need to analyze, but
also hints that I should explore relationships among the data in each table.

Before you dig into SQL, let’s look at an example of what the contents of
tables might look like. We’ll use a hypothetical database for managing a
school’s class enrollment; within that database are several tables that track
students and their classes. The first table, called student_enrollment,
shows the students that are signed up for each class section:

student_id class_id class_section semester
---------- ---------- ------------- ---------
CHRISPA004 COMPSCI101 3 Fall 2023
DAVISHE010 COMPSCI101 3 Fall 2023
ABRILDA002 ENG101 40 Fall 2023
DAVISHE010 ENG101 40 Fall 2023
RILEYPH002 ENG101 40 Fall 2023

This table shows that two students have signed up for COMPSCI101, and
three have signed up for ENG101. But where are the details about each
student and class? In this example, these details are stored in separate tables
called students and classes, and those tables relate to this one. This is
where the power of a relational database begins to show itself.

The first several rows of the students table include the following:

student_id first_name last_name dob
---------- ---------- --------- ----------
ABRILDA002 Abril Davis 2005-01-10
CHRISPA004 Chris Park 1999-04-10
DAVISHE010 Davis Hernandez 2006-09-14
RILEYPH002 Riley Phelps 2005-06-15

The students table contains details on each student, using the value in
the student_id column to identify each one. That value acts as a unique
key that connects both tables, giving you the ability to create rows such as

the following with the class_id column from student_enrollment and the
first_name and last_name columns from students:

class_id first_name last_name
---------- ---------- ---------
COMPSCI101 Davis Hernandez
COMPSCI101 Chris Park
ENG101 Abril Davis
ENG101 Davis Hernandez
ENG101 Riley Phelps

The classes table would work the same way, with a class_id column
and several columns of detail about the class. Database builders prefer to
organize data using separate tables for each main entity the database
manages in order to reduce redundant data. In the example, we store each
student’s name and date of birth just once. Even if the student signs up for
multiple classes—as Davis Hernandez did—we don’t waste database space
entering his name next to each class in the student_enrollment table. We
just include his student ID.

Given that tables are a core building block of every database, in this
chapter you’ll start your SQL coding adventure by creating a table inside a
new database. Then you’ll load data into the table and view the completed
table.

Creating a Database
The PostgreSQL program you installed in Chapter 1 is a database
management system, a software package that allows you to define, manage,
and query data stored in databases. A database is a collection of objects that
includes tables, functions, and much more. When you installed PostgreSQL,
it created a database server—an instance of the application running on your
computer—that includes a default database called postgres.

According to the PostgreSQL documentation, the default postgres
database is “meant for use by users, utilities and third-party applications”
(see https://www.postgresql.org/docs/current/app-initdb.html). We’ll create
a new database to use for the examples in the book rather than use the
default, so we can keep objects related to a particular topic or application

https://www.postgresql.org/docs/current/app-initdb.html

organized together. This is good practice: it helps avoid a pileup of tables in
a single database that have no relation to each other, and it ensures that if
your data will be used to power an application, such as a mobile app, then
the app database will contain only relevant information.

To create a database, you need just one line of SQL, shown in Listing 2-
1, which we’ll run in a moment using pgAdmin. You can find this code,
along with all the examples in this book, in the files you downloaded from
GitHub via the link at https://www.nostarch.com/practical-sql-2nd-edition/.

CREATE DATABASE analysis;

Listing 2-1: Creating a database named analysis

This statement creates a database named analysis on your server using
default PostgreSQL settings. Note that the code consists of two keywords—
CREATE and DATABASE—followed by the name of the new database. You end
the statement with a semicolon, which signals the end of the command. You
must end all PostgreSQL statements with a semicolon, as part of the ANSI
SQL standard. In some circumstances your queries will work even if you
omit the semicolon, but not always, so using the semicolon is a good habit
to form.

Executing SQL in pgAdmin
In Chapter 1, you installed the graphical administrative tool pgAdmin (if
you didn’t, go ahead and do that now). For much of our work, you’ll use
pgAdmin to run the SQL statements you write, known as executing the
code. Later in the book in Chapter 18, I’ll show you how to run SQL
statements in a terminal window using the PostgreSQL command line
program psql, but getting started is a bit easier with a graphical interface.

We’ll use pgAdmin to run the SQL statement in Listing 2-1 that creates
the database. Then, we’ll connect to the new database and create a table.
Follow these steps:

. Run PostgreSQL. If you’re using Windows, the installer sets PostgreSQL to
launch every time you boot up. On macOS, you must double-click

https://www.nostarch.com/practical-sql-2nd-edition/

Postgres.app in your Applications folder (if you have an elephant icon in
your menu bar, it’s already running).

. Launch pgAdmin. You’ll be prompted to enter the master password for
pgAdmin you set the first time you launched the application.

. As you did in Chapter 1, in the left vertical pane (the object browser) click
the arrow to the left of the Servers node to show the default server.
Depending on how you installed PostgreSQL, the default server may be
named localhost or PostgreSQL x, where x is the version of the application.
You may receive another password prompt. This prompt is for PostgreSQL,
not pgAdmin, so enter the password you set for PostgreSQL during
installation. You should see a brief message that pgAdmin is establishing a
connection.

. In pgAdmin’s object browser, expand Databases and click postgres once
to highlight it, as shown in Figure 2-1.

Figure 2-1: The default postgres database

. Open the Query Tool by choosing Tools▶Query Tool.

. In the Query Editor pane (the top horizontal pane), enter the code from
Listing 2-1.

. Click the Execute/Refresh icon (shaped like a right arrow) to execute the
statement. PostgreSQL creates the database, and in the Output pane in the
Query Tool under Messages you’ll see a notice indicating the query
returned successfully, as shown in Figure 2-2.

Figure 2-2: Creating a database named analysis

. To see your new database, right-click Databases in the object browser.
From the pop-up menu, select Refresh, and the analysis database will
appear in the list, as shown in Figure 2-3.

Figure 2-3: The analysis database displayed in the object browser

Good work! You now have a database called analysis, which you can
use for the majority of the exercises in this book. In your own work, it’s
generally a best practice to create a new database for each project to keep
tables with related data together.

NOTE

Instead of entering the code from the listings, you can open the files
you downloaded from GitHub in pgAdmin and run listings
individually by highlighting a listing and clicking Execute/Refresh.
To open a file, in the Query Tool click the Open File icon and
navigate to the place where you saved the code.

Connecting to the analysis Database
Before you create a table, you must ensure that pgAdmin is connected to
the analysis database rather than to the default postgres database.

To do that, follow these steps:

. Close the Query Tool by clicking the X at the far right of the tool pane. You
don’t need to save the file when prompted.

. In the object browser, click analysis once.

. Open a new Query Tool window, this time connected to the analysis
database, by choosing Tools▶Query Tool.

. You should now see the label analysis/postgres@localhost at the top of
the Query Tool window. (Again, instead of localhost, your version may
show PostgreSQL.)

Now, any code you execute will apply to the analysis database.

Creating a Table
As I mentioned, tables are where data lives and its relationships are defined.
When you create a table, you assign a name to each column (sometimes
referred to as a field or attribute) and assign each column a data type. These
are the values the column will accept—such as text, integers, decimals, and
dates—and the definition of the data type is one way SQL enforces the
integrity of data. For example, a column defined as date will accept data in
only one of several standard formats, such as YYYY-MM-DD. If you try to

enter characters not in a date format, for instance, the word peach, you’ll
receive an error.

Data stored in a table can be accessed and analyzed, or queried, with
SQL statements. You can sort, edit, and view the data, as well as easily alter
the table later if your needs change.

Let’s make a table in the analysis database.

Using the CREATE TABLE Statement
For this exercise, we’ll use an often-discussed piece of data: teacher
salaries. Listing 2-2 shows the SQL statement to create a table called
teachers. Let’s review the code before you enter it into pgAdmin and
execute it.

1 CREATE TABLE teachers (
 2 id bigserial,
 3 first_name varchar(25),
 last_name varchar(50),
 school varchar(50),

 4 hire_date date,
 5 salary numeric

6);

Listing 2-2: Creating a table named teachers with six columns

This table definition is far from comprehensive. For example, it’s missing
several constraints that would ensure that columns that must be filled do
indeed have data or that we’re not inadvertently entering duplicate values. I
cover constraints in detail in Chapter 8, but in these early chapters I’m
omitting them to focus on getting you started on exploring data.

The code begins with the two SQL keywords CREATE and TABLE 1 that,
together with the name teachers, signal PostgreSQL that the next bit of
code describes a table to add to the database. Following an opening
parenthesis, the statement includes a comma-separated list of column names
along with their data types. For style purposes, each new line of code is on

its own line and indented four spaces, which isn’t required but makes the
code more readable.

Each column name represents one discrete data element defined by a data
type. The id column 2 is of data type bigserial, a special integer type that
auto-increments every time you add a row to the table. The first row
receives the value of 1 in the id column, the second row 2, and so on. The
bigserial data type and other serial types are PostgreSQL-specific
implementations, but most database systems have a similar feature.

Next, we create columns for the teacher’s first name and last name and
for the school where they teach 3. Each is of the data type varchar, a text
column with a maximum length specified by the number in parentheses.
We’re assuming that no one in the database will have a last name of more
than 50 characters. Although this is a safe assumption, you’ll discover over
time that exceptions will always surprise you.

The teacher’s hire_date 4 is set to the data type date, and the salary
column 5 is numeric. I’ll cover data types more thoroughly in Chapter 4,
but this table shows some common examples of data types. The code block
wraps up 6 with a closing parenthesis and a semicolon.

Now that you have a sense of how SQL looks, let’s run this code in
pgAdmin.

Making the teachers Table
You have your code and you’re connected to the database, so you can make
the table using the same steps we did when we created the database:

. Open the pgAdmin Query Tool (if it’s not open, click analysis once in
pgAdmin’s object browser, and then choose Tools▶Query Tool).

. Copy the CREATE TABLE script from Listing 2-2 into the SQL Editor (or
highlight the listing if you’ve elected to open the Chapter_02.sql file from
GitHub with the Query Tool).

. Execute the script by clicking the Execute/Refresh icon (shaped like a right
arrow).

If all goes well, you’ll see a message in the pgAdmin Query Tool’s
bottom output pane that reads Query returned successfully with no
result in 84 msec. Of course, the number of milliseconds will vary
depending on your system.

Now, find the table you created. Go back to the main pgAdmin window
and, in the object browser, right-click analysis and choose Refresh. Choose
Schemas▶public▶Tables to see your new table, as shown in Figure 2-4.

Figure 2-4: The teachers table in the object browser

Expand the teachers table node by clicking the arrow to the left of its
name. This reveals more details about the table, including the column

names, as shown in Figure 2-5. Other information appears as well, such as
indexes, triggers, and constraints, but I’ll cover those in later chapters.
Clicking the table name and then selecting the SQL menu in the pgAdmin
workspace will display SQL statements that would be used to re-create the
teachers table (note that this display includes additional default notations
that were implicitly added when you created the table).

Figure 2-5: Table details for teachers

Congratulations! So far, you’ve built a database and added a table to it.
The next step is to add data to the table so you can write your first query.

Inserting Rows into a Table
You can add data to a PostgreSQL table in several ways. Often, you’ll work
with a large number of rows, so the easiest method is to import data from a
text file or another database directly into a table. But to get started, we’ll
add a few rows using an INSERT INTO ... VALUES statement that specifies
the target columns and the data values. Then we’ll view the data in its new
home.

Using the INSERT Statement
To insert some data into the table, you first need to erase the CREATE TABLE
statement you just ran. Then, following the same steps you did to create the
database and table, copy the code in Listing 2-3 into your pgAdmin Query
Tool (or, if you opened the Chapter_02.sql file from GitHub in the Query
Tool, highlight this listing).

1 INSERT INTO teachers (first_name, last_name, school,
hire_date, salary)

2 VALUES ('Janet', 'Smith', 'F.D. Roosevelt HS', '2011-10-30',
36200),
 ('Lee', 'Reynolds', 'F.D. Roosevelt HS', '1993-05-22',
65000),
 ('Samuel', 'Cole', 'Myers Middle School', '2005-08-
01', 43500),
 ('Samantha', 'Bush', 'Myers Middle School', '2011-10-
30', 36200),
 ('Betty', 'Diaz', 'Myers Middle School', '2005-08-30',
43500),
 ('Kathleen', 'Roush', 'F.D. Roosevelt HS', '2010-10-

22', 38500);3

Listing 2-3: Inserting data into the teachers table

This code block inserts names and data for six teachers. Here, the
PostgreSQL syntax follows the ANSI SQL standard: after the INSERT INTO
keywords is the name of the table, and in parentheses are the columns to be
filled 1. In the next row are the VALUES keyword and the data to insert into
each column in each row 2. You need to enclose the data for each row in a
set of parentheses, and inside each set of parentheses, use a comma to
separate each column value. The order of the values must also match the
order of the columns specified after the table name. Each row of data ends
with a comma, except the last row, which ends the entire statement with a
semicolon 3.

Notice that certain values that we’re inserting are enclosed in single
quotes, but some are not. This is a standard SQL requirement. Text and
dates require quotes; numbers, including integers and decimals, don’t
require quotes. I’ll highlight this requirement as it comes up in examples.
Also, note the date format we’re using: a four-digit year is followed by the
month and date, and each part is joined by a hyphen. This is the
international standard for date formats; using it will help you avoid
confusion. (Why is it best to use the format YYYY-MM-DD? Check out
https://xkcd.com/1179/ to see a great comic about it.) PostgreSQL supports
many additional date formats, and I’ll use several in examples.

https://xkcd.com/1179/

You might be wondering about the id column, which is the first column
in the table. When you created the table, your script specified that column
to be the bigserial data type. So as PostgreSQL inserts each row, it
automatically fills the id column with an auto-incrementing integer. I’ll
cover that in detail in Chapter 4 when I discuss data types.

Now, run the code. This time, the message area of the Query Tool should
say this:

INSERT 0 6
Query returned successfully in 150 msec.

The last of the two numbers after the INSERT keyword reports the number
of rows inserted: 6. The first number is an unused legacy PostgreSQL value
that is returned only to maintain wire protocol; you can safely ignore it.

Viewing the Data
You can take a quick look at the data you just loaded into the teachers
table using pgAdmin. In the object browser, locate the table and right-click.
In the pop-up menu, choose View/Edit Data▶All Rows. As Figure 2-6
shows, you’ll see the six rows of data in the table with each column filled
by the values in the SQL statement.

Figure 2-6: Viewing table data directly in pgAdmin

Notice that even though you didn’t insert a value for the id column, each
teacher has an ID number assigned. Also, each column header displays the

data type you defined when creating the table. (Note that in this example,
varchar, fully expanded in PostgreSQL, is character varying.) Seeing
the data type in the results will help later when you decide how to write
queries that handle data differently depending on its type.

You can view data using the pgAdmin interface in a few ways, but we’ll
focus on writing SQL to handle those tasks.

Getting Help When Code Goes Bad
There may be a universe where code always works, but unfortunately, we
haven’t invented a machine capable of transporting us there. Errors happen.
Whether you make a typo or mix up the order of operations, computer
languages are unforgiving about syntax. For example, if you forget a
comma in the code in Listing 2-3, PostgreSQL squawks back an error:

ERROR: syntax error at or near "("
LINE 4: ('Samuel', 'Cole', 'Myers Middle School', '2005-
08-01', 43...
 ^

Fortunately, the error message hints at what’s wrong and where: we made
a syntax error near an open parenthesis on line 4. But sometimes error
messages can be more obscure. In that case, you do what the best coders do:
a quick internet search for the error message. Most likely, someone else has
experienced the same issue and might know the answer. I’ve found that I
get the best search results by entering the error message verbatim in the
search engine, specifying the name of my database manager, and limiting
results to more recent items to avoid using outdated information.

Formatting SQL for Readability
SQL requires no special formatting to run, so you’re free to use your own
psychedelic style of uppercase, lowercase, and random indentations. But
that won’t win you any friends when others need to work with your code
(and sooner or later someone will). For the sake of readability and being a
good coder, here are several generally accepted conventions:

Uppercase SQL keywords, such as SELECT. Some SQL coders also
uppercase the names of data types, such as TEXT and INTEGER. I use
lowercase characters for data types in this book to separate them in your
mind from keywords, but you can uppercase them if desired.
Avoid camel case and instead use lowercase_and_underscores for object
names, such as tables and column names (see more details about case in
Chapter 8).
Indent clauses and code blocks for readability using either two or four
spaces. Some coders prefer tabs to spaces; use whichever works best for
you or your organization.

We’ll explore other SQL coding conventions as we go through the book,
but these are the basics.

Wrapping Up
You accomplished quite a bit in this chapter: you created a database and a
table and then loaded data into it. You’re on your way to adding SQL to
your data analysis toolkit! In the next chapter, you’ll use this set of teacher
data to learn the basics of querying a table using SELECT.

TRY IT YOURSELF

Here are two exercises to help you explore concepts related to databases, tables, and
data relationships:

Imagine you’re building a database to catalog all the animals at your local zoo. You
want one table to track the kinds of animals in the collection and another table to track
the specifics on each animal. Write CREATE TABLE statements for each table that include

some of the columns you need. Why did you include the columns you chose?
Now create INSERT statements to load sample data into the tables. How can you view
the data via the pgAdmin tool? Create an additional INSERT statement for one of your

tables. Purposely omit one of the required commas separating the entries in the VALUES
clause of the query. What is the error message? Would it help you find the error in the

code?
Solutions to all exercises are available in the Try_It_Yourself.sql file included with the
book’s resources.

3
BEGINNING DATA EXPLORATION

WITH SELECT

For me, the best part of digging into
data isn’t the prerequisites of gathering,
loading, or cleaning the data, but when I
actually get to interview the data. Those
are the moments when I discover

whether the data is clean or dirty, whether it’s
complete, and, most of all, what story the data can
tell. Think of interviewing data as a process akin to
interviewing a person applying for a job. You want to
ask questions that reveal whether the reality of their
expertise matches their résumé.

Interviewing the data is exciting because you discover truths. For
example, you might find that half the respondents forgot to fill out the email
field in the questionnaire, or the mayor hasn’t paid property taxes for the
past five years. Or you might learn that your data is dirty: names are spelled
inconsistently, dates are incorrect, or numbers don’t jibe with your
expectations. Your findings become part of the data’s story.

In SQL, interviewing data starts with the SELECT keyword, which
retrieves rows and columns from one or more of the tables in a database. A

SELECT statement can be simple, retrieving everything in a single table, or it
can be complex enough to link dozens of tables while handling multiple
calculations and filtering by exact criteria.

We’ll start with simple SELECT statements and then look into the more
powerful things SELECT can do.

Basic SELECT Syntax
Here’s a SELECT statement that fetches every row and column in a table
called my_table:

SELECT * FROM my_table;

This single line of code shows the most basic form of a SQL query. The
asterisk following the SELECT keyword is a wildcard, which is like a stand-
in for a value: it doesn’t represent anything in particular and instead
represents everything that value could possibly be. Here, it’s shorthand for
“select all columns.” If you had given a column name instead of the
wildcard, this command would select the values in that column. The FROM
keyword indicates you want the query to return data from a particular table.
The semicolon after the table name tells PostgreSQL it’s the end of the
query statement.

Let’s use this SELECT statement with the asterisk wildcard on the
teachers table you created in Chapter 2. Once again, open pgAdmin, select
the analysis database, and open the Query Tool. Then execute the
statement shown in Listing 3-1. Remember, as an alternative to typing these
statements into the Query Tool, you can also run the code by clicking Open
File and navigating to the place where you saved the code you downloaded
from GitHub. Always do this if you see the code is truncated with --snip-
-. For this chapter, you should open Chapter_03.sql and highlight each
statement before clicking the Execute/Refresh icon.

SELECT * FROM teachers;

Listing 3-1: Querying all rows and columns from the teachers table

Once you execute the query, the result set in the Query Tool’s output
pane contains all the rows and columns you inserted into the teachers table
in Chapter 2. The rows may not always appear in this order, but that’s okay.

id first_name last_name school
hire_date salary
-- ---------- --------- ------------------- -----
----- ------
1 Janet Smith F.D. Roosevelt HS 2011-
10-30 36200
2 Lee Reynolds F.D. Roosevelt HS 1993-
05-22 65000
3 Samuel Cole Myers Middle School 2005-
08-01 43500
4 Samantha Bush Myers Middle School 2011-
10-30 36200
5 Betty Diaz Myers Middle School 2005-
08-30 43500
6 Kathleen Roush F.D. Roosevelt HS 2010-
10-22 38500

Note that the id column (of type bigserial) is automatically filled with
sequential integers, even though you didn’t explicitly insert them. Very
handy. This auto-incrementing integer acts as a unique identifier, or key,
that not only ensures each row in the table is unique, but also later gives us
a way to connect this table to other tables in the database.

Before we move on, note that you have two other ways to view all rows
in a table. Using pgAdmin, you can right-click the teachers table in the
object tree and choose View/Edit Data▶All Rows. Or you can use a little-
known bit of standard SQL:

TABLE teachers;

Both provide the same result as the code in Listing 3-1. Now, let’s refine
this query to make it more specific.

Querying a Subset of Columns
Often, it’s more practical to limit the columns the query retrieves, especially
with large databases, so you don’t have to wade through excess

information. You can do this by naming columns, separated by commas,
right after the SELECT keyword. Here’s an example:

SELECT some_column, another_column, amazing_column FROM
table_name;

With that syntax, the query will retrieve all rows from just those three
columns.

Let’s apply this to the teachers table. Perhaps in your analysis you want
to focus on teachers’ names and salaries. In that case, you would select just
the relevant columns, as shown in Listing 3-2. Notice that the order of the
columns in the query is different than the order in the table: you’re able to
retrieve columns in any order you’d like.

SELECT last_name, first_name, salary FROM teachers;

Listing 3-2: Querying a subset of columns

Now, in the result set, you’ve limited the columns to three:

last_name first_name salary
--------- ---------- ------
Smith Janet 36200
Reynolds Lee 65000
Cole Samuel 43500
Bush Samantha 36200
Diaz Betty 43500
Roush Kathleen 38500

Although these examples are basic, they illustrate a good strategy for
beginning your interview of a dataset. Generally, it’s wise to start your
analysis by checking whether your data is present and in the format you
expect, which is a task well suited to SELECT. Are dates in a proper format
complete with month, date, and year, or are they entered (as I once ruefully
observed) as text with the month and year only? Does every row have
values in all the columns? Are there mysteriously no last names starting
with letters beyond M? All these issues indicate potential hazards ranging
from missing data to shoddy record keeping somewhere in the workflow.

We’re only working with a table of six rows, but when you’re facing a
table of thousands or even millions of rows, it’s essential to get a quick read
on your data quality and the range of values it contains. To do this, let’s dig
deeper and add several SQL keywords.

NOTE

pgAdmin allows you to drag and drop column names, table names,
and other objects from the object browser into the Query Tool. This
can be helpful if you’re writing a new query and don’t want to keep
typing lengthy object names. Expand the object tree to find your
tables or columns, as you did in Chapter 1, and click and drag them
into the Query Tool.

Sorting Data with ORDER BY
Data can make more sense, and may reveal patterns more readily, when it’s
arranged in order rather than jumbled randomly.

In SQL, we order the results of a query using a clause containing the
keywords ORDER BY followed by the name of the column or columns to sort.
Applying this clause doesn’t change the original table, only the result of the
query. Listing 3-3 shows an example using the teachers table.

SELECT first_name, last_name, salary
FROM teachers
ORDER BY salary DESC;

Listing 3-3: Sorting a column with ORDER BY

By default, ORDER BY sorts values in ascending order, but here I sort in
descending order by adding the DESC keyword. (The optional ASC keyword
specifies sorting in ascending order.) Now, by ordering the salary column
from highest to lowest, I can determine which teachers earn the most:

first_name last_name salary
---------- --------- ------
Lee Reynolds 65000

Samuel Cole 43500
Betty Diaz 43500
Kathleen Roush 38500
Janet Smith 36200
Samantha Bush 36200

The ORDER BY clause also accepts numbers instead of column names,
with the number identifying the sort column according to its position in the
SELECT clause. Thus, you could rewrite Listing 3-3 this way, using 3 to refer
to the third column in the SELECT clause, salary:

SELECT first_name, last_name, salary
FROM teachers
ORDER BY 3 DESC;

The ability to sort in our queries gives us great flexibility in how we view
and present data. For example, we’re not limited to sorting on just one
column. Enter the statement in Listing 3-4.

SELECT last_name, school, hire_date
FROM teachers

1 ORDER BY school ASC, hire_date DESC;

Listing 3-4: Sorting multiple columns with ORDER BY

In this case, we’re retrieving the last names of teachers, their school, and
the date they were hired. By sorting the school column in ascending order
and hire_date in descending order 1, we create a listing of teachers
grouped by school with the most recently hired teachers listed first. This
shows us who the newest teachers are at each school. The result set should
look like this:

last_name school hire_date
--------- ------------------- ----------
Smith F.D. Roosevelt HS 2011-10-30
Roush F.D. Roosevelt HS 2010-10-22
Reynolds F.D. Roosevelt HS 1993-05-22
Bush Myers Middle School 2011-10-30
Diaz Myers Middle School 2005-08-30
Cole Myers Middle School 2005-08-01

You can use ORDER BY on more than two columns, but you’ll soon reach a
point of diminishing returns where the effect will be hardly noticeable.
Imagine if you added columns about teachers’ highest college degree
attained, the grade level taught, and birthdate to the ORDER BY clause. It
would be difficult to understand the various sort directions in the output all
at once, much less communicate that to others. Digesting data happens most
easily when the result focuses on answering a specific question; therefore, a
better strategy is to limit the number of columns in your query to only the
most important and then run several queries to answer each question you
have.

Using DISTINCT to Find Unique Values
In a table, it’s not unusual for a column to contain rows with duplicate
values. In the teachers table, for example, the school column lists the
same school names multiple times because each school employs many
teachers.

To understand the range of values in a column, we can use the DISTINCT
keyword as part of a query that eliminates duplicates and shows only
unique values. Use DISTINCT immediately after SELECT, as shown in Listing
3-5.

SELECT DISTINCT school
FROM teachers
ORDER BY school;

Listing 3-5: Querying distinct values in the school column

The result is as follows:

school

F.D. Roosevelt HS
Myers Middle School

Even though six rows are in the table, the output shows just the two
unique school names in the school column. This is a helpful first step
toward assessing data quality. For example, if a school name is spelled

more than one way, those spelling variations will be easy to spot and
correct, especially if you sort the output.

When you’re working with dates or numbers, DISTINCT will help
highlight inconsistent or broken formatting. For example, you might inherit
a dataset in which dates were entered in a column formatted with a text
data type. That practice (which you should avoid) allows malformed dates
to exist:

date

5/30/2023
6//2023
6/1/2023
6/2/2023

The DISTINCT keyword also works on more than one column at a time. If
we add a column, the query returns each unique pair of values. Run the
code in Listing 3-6.

SELECT DISTINCT school, salary
FROM teachers
ORDER BY school, salary;

Listing 3-6: Querying distinct pairs of values in the school and salary
columns

Now the query returns each unique (or distinct) salary earned at each
school. Because two teachers at Myers Middle School earn $43,500, that
pair is listed in just one row, and the query returns five rows rather than all
six in the table:

school salary
------------------- ------
F.D. Roosevelt HS 36200
F.D. Roosevelt HS 38500
F.D. Roosevelt HS 65000
Myers Middle School 36200
Myers Middle School 43500

This technique gives us the ability to ask, “For each x in the table, what
are all the y values?” For each factory, what are all the chemicals it
produces? For each election district, who are all the candidates running for
office? For each concert hall, who are the artists playing this month?

SQL offers more sophisticated techniques with aggregate functions that
let us count, sum, and find minimum and maximum values. I’ll cover those
in detail in Chapter 6 and Chapter 9.

Filtering Rows with WHERE
Sometimes, you’ll want to limit the rows a query returns to only those in
which one or more columns meet certain criteria. Using teachers as an
example, you might want to find all teachers hired before a particular year
or all teachers making more than $75,000 at elementary schools. For these
tasks, we use the WHERE clause.

The WHERE clause allows you to find rows that match a specific value, a
range of values, or multiple values based on criteria supplied via an
operator—a keyword that lets us perform math, comparison, and logical
operations. You also can use criteria to exclude rows.

Listing 3-7 shows a basic example. Note that in standard SQL syntax, the
WHERE clause follows the FROM keyword and the name of the table or tables
being queried.

SELECT last_name, school, hire_date
FROM teachers
WHERE school = 'Myers Middle School';

Listing 3-7: Filtering rows using WHERE

The result set shows just the teachers assigned to Myers Middle School:

last_name school hire_date
--------- ------------------- ----------
Cole Myers Middle School 2005-08-01
Bush Myers Middle School 2011-10-30
Diaz Myers Middle School 2005-08-30

Here, I’m using the equals comparison operator to find rows that exactly
match a value, but of course you can use other operators with WHERE to
customize your filter criteria. Table 3-1 summarizes the most commonly
used comparison operators. Depending on your database system, many
more might be available.

Table 3-1: Comparison and Matching Operators in PostgreSQL

Operator Function Example
= Equal to WHERE school = 'Baker Middle'

<> or != Not equal to* WHERE school <> 'Baker Middle'

> Greater than WHERE salary > 20000

< Less than WHERE salary < 60500

>= Greater than or equal to WHERE salary >= 20000

<= Less than or equal to WHERE salary <= 60500

BETWEEN Within a range WHERE salary BETWEEN 20000 AND 40000

IN Match one of a set of values WHERE last_name IN ('Bush', 'Roush')

LIKE Match a pattern (case sensitive) WHERE first_name LIKE 'Sam%'

ILIKE Match a pattern (case insensitive) WHERE first_name ILIKE 'sam%'

NOT Negates a condition WHERE first_name NOT ILIKE 'sam%'

The following examples show comparison operators in action. First, we
use the equal operator to find teachers whose first name is Janet:

SELECT first_name, last_name, school
FROM teachers
WHERE first_name = 'Janet';

Next, we list all school names in the table but exclude F.D. Roosevelt HS
using the not-equal operator:

SELECT school
FROM teachers
WHERE school <> 'F.D. Roosevelt HS';

Here we use the less-than operator to list teachers hired before January 1,
2000 (using the date format YYYY-MM-DD):

SELECT first_name, last_name, hire_date
FROM teachers
WHERE hire_date < '2000-01-01';

Then we find teachers who earn $43,500 or more using the >= operator:

SELECT first_name, last_name, salary
FROM teachers
WHERE salary >= 43500;

The next query uses the BETWEEN operator to find teachers who earn from
$40,000 to $65,000. Note that BETWEEN is inclusive, meaning the result will
include values matching the start and end ranges specified.

SELECT first_name, last_name, school, salary
FROM teachers
WHERE salary BETWEEN 40000 AND 65000;

Use caution with BETWEEN, because its inclusive nature can lead to
inadvertent double-counting of values. For example, if you filter for values
with BETWEEN 10 AND 20 and run a second query using BETWEEN 20 AND
30, a row with the value of 20 will appear in both query results. You can
avoid this by using the more explicit greater-than and less-than operators to
define ranges. For example, this query returns the same result as the
previous one but more obviously specifies the range:

SELECT first_name, last_name, school, salary
FROM teachers
WHERE salary >= 40000 AND salary <= 65000;

We’ll return to these operators throughout the book, because they’ll play
a key role in helping us ferret out the data and answers we want to find.

Using LIKE and ILIKE with WHERE
Comparison operators are fairly straightforward, but the matching operators
LIKE and ILIKE deserve additional explanation. Both let you find a variety
of values that include characters matching a specified pattern, which is
handy if you don’t know exactly what you’re searching for or if you’re

rooting out misspelled words. To use LIKE and ILIKE, you specify a pattern
to match using one or both of these symbols:
Percent sign (%) A wildcard matching one or more characters
Underscore (_) A wildcard matching just one character

For example, if you’re trying to find the word baker, the following LIKE
patterns will match it:

LIKE 'b%'
LIKE '%ak%'
LIKE '_aker'
LIKE 'ba_er'

The difference? The LIKE operator, which is part of the ANSI SQL
standard, is case sensitive. The ILIKE operator, which is a PostgreSQL-only
implementation, is case insensitive. Listing 3-8 shows how the two
keywords give you different results. The first WHERE clause uses LIKE 1 to
find names that start with the characters sam, and because it’s case sensitive,
it will return zero results. The second, using the case-insensitive ILIKE 2,
will return Samuel and Samantha from the table.

SELECT first_name
FROM teachers

1 WHERE first_name LIKE 'sam%';

SELECT first_name
FROM teachers

2 WHERE first_name ILIKE 'sam%';

Listing 3-8: Filtering with LIKE and ILIKE

Over the years, I’ve gravitated toward using ILIKE and wildcard
operators to make sure I’m not inadvertently excluding results from
searches, particularly when vetting data. I don’t assume that whoever typed
the names of people, places, products, or other proper nouns always
remembered to capitalize them. And if one of the goals of interviewing data
is to understand its quality, using a case-insensitive search will help you
find variations.

Because LIKE and ILIKE search for patterns, performance on large
databases can be slow. We can improve performance using indexes, which
I’ll cover in “Speeding Up Queries with Indexes” in Chapter 8.

Combining Operators with AND and OR
Comparison operators become even more useful when we combine them.
To do this, we connect them using the logical operators AND and OR along
with, if needed, parentheses.

The statements in Listing 3-9 show three examples that combine
operators this way.

SELECT *
FROM teachers

1 WHERE school = 'Myers Middle School'
 AND salary < 40000;

SELECT *
FROM teachers

2 WHERE last_name = 'Cole'
 OR last_name = 'Bush';

SELECT *
FROM teachers

3 WHERE school = 'F.D. Roosevelt HS'
 AND (salary < 38000 OR salary > 40000);

Listing 3-9: Combining operators using AND and OR

The first query uses AND in the WHERE clause 1 to find teachers who work
at Myers Middle School and have a salary less than $40,000. Because we
connect the two conditions using AND, both must be true for a row to meet
the criteria in the WHERE clause and be returned in the query results.

The second example uses OR 2 to search for any teacher whose last name
matches Cole or Bush. When we connect conditions using OR, only one of
the conditions must be true for a row to meet the criteria of the WHERE
clause.

The final example looks for teachers at Roosevelt whose salaries are
either less than $38,000 or greater than $40,000 3. When we place
statements inside parentheses, those are evaluated as a group before being
combined with other criteria. In this case, the school name must be exactly
F.D. Roosevelt HS, and the salary must be either less or higher than
specified for a row to meet the criteria of the WHERE clause.

If we use both AND with OR in a clause but don’t use any parentheses, the
database will evaluate the AND condition first and then the OR condition. In
the final example, that means we’d see a different result if we omitted
parentheses—the database would look for rows where the school name is
F.D. Roosevelt HS and the salary is less than $38,000 or rows for any
school where the salary is more than $40,000. Give it a try in the Query
Tool to see.

Putting It All Together
You can begin to see how even the previous simple queries allow us to
delve into our data with flexibility and precision to find what we’re looking
for. You can combine comparison operator statements using the AND and OR
keywords to provide multiple criteria for filtering, and you can include an
ORDER BY clause to rank the results.

With the preceding information in mind, let’s combine the concepts in
this chapter into one statement to show how they fit together. SQL is
particular about the order of keywords, so follow this convention.

SELECT column_names
FROM table_name
WHERE criteria
ORDER BY column_names;

Listing 3-10 shows a query against the teachers table that includes all
the aforementioned pieces.

SELECT first_name, last_name, school, hire_date, salary
FROM teachers
WHERE school LIKE '%Roos%'
ORDER BY hire_date DESC;

Listing 3-10: A SELECT statement including WHERE and ORDER BY

This listing returns teachers at Roosevelt High School, ordered from
newest hire to earliest. We can see some connection between a teacher’s
hire date at the school and their current salary level:

first_name last_name school hire_date
salary
---------- --------- ----------------- ----------

Janet Smith F.D. Roosevelt HS 2011-10-30
36200
Kathleen Roush F.D. Roosevelt HS 2010-10-22
38500
Lee Reynolds F.D. Roosevelt HS 1993-05-22
65000

Wrapping Up
Now that you’ve learned the basic structure of a few different SQL queries,
you’ve acquired the foundation for many of the additional skills I’ll cover
in later chapters. Sorting, filtering, and choosing only the most important
columns from a table can yield a surprising amount of information from
your data and help you find the story it tells.

In the next chapter, you’ll learn about another foundational aspect of
SQL: data types.

TRY IT YOURSELF

Explore basic queries with these exercises:
The school district superintendent asks for a list of teachers in each school. Write a
query that lists the schools in alphabetical order along with teachers ordered by last

name A–Z.
Write a query that finds the one teacher whose first name starts with the letter S and

who earns more than $40,000.
Rank teachers hired since January 1, 2010, ordered by highest paid to lowest.

4
UNDERSTANDING DATA TYPES

It’s important to understand data types
because storing data in the appropriate
format is fundamental to building
usable databases and performing
accurate analysis. Whenever I dig into a

new database, I check the data type specified for each
column in each table. If I’m lucky, I can get my
hands on a data dictionary: a document that lists each
column; specifies whether it’s a number, character, or
other type; and explains the column values.
Unfortunately, many organizations don’t create and
maintain good documentation, so it’s not unusual to
hear, “We don’t have a data dictionary.” In that case,
I inspect the table structures in pgAdmin to learn as
much as I can.

Data types are a programming concept applicable to more than just SQL.
The concepts you’ll explore in this chapter will transfer well to additional
languages you may want to learn.

In a SQL database, each column in a table can hold one and only one
data type, which you define in the CREATE TABLE statement by declaring the
data type after the column name. In the following simple example table—
which you can review but don’t need to create—you will find columns with
three different data types: a date, an integer, and text.

CREATE TABLE eagle_watch (
 observation_date date,
 eagles_seen integer,
 notes text
);

In this table named eagle_watch (for a hypothetical inventory of bald
eagles), we declare the observation_date column to hold date values by
adding the date type declaration after its name. Similarly, we set
eagles_seen to hold whole numbers with the integer type declaration and
declare notes to hold characters via the text type.

These data types fall into the three categories you’ll encounter most:
Characters Any character or symbol
Numbers Includes whole numbers and fractions
Dates and times Temporal information

Let’s look at each data type in depth; I’ll note whether they’re part of
standard ANSI SQL or specific to PostgreSQL. An overall, in-depth look at
where PostgreSQL deviates from the SQL standard is available at
https://wiki.postgresql.org/wiki/PostgreSQL_vs_SQL_Standard.

Understanding Characters
Character string types are general-purpose types suitable for any
combination of text, numbers, and symbols. Character types include the
following:

char(n)

https://wiki.postgresql.org/wiki/PostgreSQL_vs_SQL_Standard

A fixed-length column where the character length is specified by n. A
column set at char(20) stores 20 characters per row regardless of how
many characters you insert. If you insert fewer than 20 characters in any
row, PostgreSQL pads the rest of that column with spaces. This type,
which is part of standard SQL, also can be specified with the longer
name character(n). Nowadays, char(n) is used infrequently and is
mainly a remnant of legacy computer systems.

varchar(n)

A variable-length column where the maximum length is specified by n. If
you insert fewer characters than the maximum, PostgreSQL will not store
extra spaces. For example, the string blue will take four spaces, whereas
the string 123 will take three. In large databases, this practice saves
considerable space. This type, included in standard SQL, also can be
specified using the longer name character varying(n).

text

A variable-length column of unlimited length. (According to the
PostgreSQL documentation, the longest possible character string you can
store is about 1 gigabyte.) The text type is not part of the SQL standard,
but you’ll find similar implementations in other database systems,
including Microsoft SQL Server and MySQL.
According to PostgreSQL documentation at

https://www.postgresql.org/docs/current/datatype-character.html, there is
no substantial difference in performance among the three types. That may
differ if you’re using another database manager, so it’s wise to check the
docs. The flexibility and potential space savings of varchar and text seem
to give them an advantage. But if you search discussions online, some users
suggest that defining a column that will always have the same number of
characters with char is a good way to signal what data it should contain.
For instance, you might see char(2) used for US state postal abbreviations.

https://www.postgresql.org/docs/current/datatype-character.html

NOTE

You cannot perform math operations on numbers stored in a
character column. Store numbers as character types only when they
represent codes, such as a US postal ZIP code.

To see these three character types in action, run the script shown in
Listing 4-1. This script will build and load a simple table and then export
the data to a text file on your computer.

CREATE TABLE char_data_types (

 1 char_column char(10),
 varchar_column varchar(10),
 text_column text
);

2 INSERT INTO char_data_types
VALUES
 ('abc', 'abc', 'abc'),
 ('defghi', 'defghi', 'defghi');

3 COPY char_data_types TO 'C:\YourDirectory\typetest.txt'
4 WITH (FORMAT CSV, HEADER, DELIMITER '|');

Listing 4-1: Character data types in action

We define three character columns 1 of different types and insert two
rows of the same string into each 2. Unlike the INSERT INTO statement you
learned in Chapter 2, here we’re not specifying the names of the columns. If
the VALUES statements match the number of columns in the table, the
database will assume you’re inserting values in the order the column
definitions were specified in the table.

Next, we use the PostgreSQL COPY keyword 3 to export the data to a text
file named typetest.txt in a directory you specify. You’ll need to replace
C:\YourDirectory\ with the full path to the directory on your computer
where you want to save the file. The examples in this book use Windows
format—which use a backslash between folders and file names—and a path
to a directory called YourDirectory on the C: drive. Windows users must set

permissions for the destination folder according to the note in the section
“Downloading Code and Data from GitHub” in Chapter 1.

Linux and macOS file paths have a different format, with forward slashes
between folders and filenames. On my Mac, for example, the path to a file
on the desktop is /Users/anthony/Desktop/. The directory must exist
already; PostgreSQL won’t create it for you.

NOTE

On Linux, you may see a permission denied error when using
COPY. That’s because PostgreSQL runs as the postgres user, which
can’t read or write to another user’s directory. One solution is to
read or write from the system /tmp folder, accessible to all users. Be
cautious, because some configurations cause this directory to be
emptied upon reboot. For other options, see “Importing and
Exporting Through pgAdmin” in Chapter 5 and “Importing,
Exporting, and Using Files” with psql in Chapter 18.

In PostgreSQL, COPY table_name FROM is the import function, and COPY
table_name TO is the export function. I’ll cover them in depth in Chapter 5;
for now, all you need to know is that the WITH keyword options 4 will
format the data in the file with each column separated by a pipe (|)
character. That way, you can easily see where spaces fill out the unused
portions of the char column.

To see the output, open typetest.txt using the text editor you installed in
Chapter 1 (not Word or Excel, or another spreadsheet application). The
contents should look like this:

char_column|varchar_column|text_column
abc |abc|abc
defghi |defghi|defghi

Even though you specified 10 characters for both the char and varchar
columns, only the char column outputs 10 characters in both rows, padding
unused characters with spaces. The varchar and text columns store only
the characters you inserted.

Again, there’s no real performance difference among the three types,
although this example shows that char can potentially consume more
storage space than needed. A few unused spaces in each column might
seem negligible, but multiply that over millions of rows in dozens of tables
and you’ll soon wish you had been more economical.

I tend to use text on all my character columns. That saves me from
having to configure maximum lengths for multiple varchar columns and
means I won’t need to modify a table later if the requirements for a
character column change.

Understanding Numbers
Number columns hold various types of (you guessed it) numbers, but that’s
not all: they also allow you to perform calculations on those numbers.
That’s an important distinction from numbers you store as strings in a
character column, which can’t be added, multiplied, divided, or perform any
other math operation. Also, numbers stored as characters sort differently
than numbers stored as numbers, so if you’re doing math or the numeric
order is important, use number types.

The SQL number types include the following:
Integers Whole numbers, both positive and negative
Fixed-point and floating-point Two formats of fractions of whole numbers

We’ll look at each type separately.

Using Integers
The integer data types are the most common number types you’ll find when
exploring a SQL database. These are whole numbers, both positive and
negative, including zero. Think of all the places integers appear in life: your
street or apartment number, the serial number on your refrigerator, the
number on a raffle ticket.

The SQL standard provides three integer types: smallint, integer, and
bigint. The difference between the three types is the maximum size of the

numbers they can hold. Table 4-1 shows the upper and lower limits of each,
as well as how much storage each requires in bytes.

Table 4-1: Integer Data Types

Data type Storage size Range
smallint 2 bytes −32768 to +32767
integer 4 bytes −2147483648 to +2147483647
bigint 8 bytes −9223372036854775808 to +9223372036854775807

The bigint type will cover just about any requirement you’ll ever have
with a number column, though it eats up the most storage. Its use is a must
if you’re working with numbers larger than about 2.1 billion, but you also
can easily make it your go-to default and never worry about not being able
to fit a number in the column. On the other hand, if you’re confident
numbers will remain within the integer limit, that type is a good choice
because it doesn’t consume as much space as bigint (a concern when
dealing with millions of data rows).

When you know that values will remain constrained, smallint makes
sense: days of the month or years are good examples. The smallint type
will use half the storage as integer, so it’s a smart database design decision
if the column values will always fit within its range.

If you try to insert a number into any of these columns that is outside its
range, the database will stop the operation and return an out of range
error.

Auto-Incrementing Integers
Sometimes, it’s helpful to create a column that holds integers that auto-
increment each time you add a row to the table. For example, you might use
an auto-incrementing column to create a unique ID number, also known as a
primary key, for each row in the table. Each row then has its own ID that
other tables in the database can reference, a concept I’ll cover in Chapter 7.

With PostgreSQL, you have two ways to auto-increment an integer
column. One is the serial data type, a PostgreSQL-specific implementation
of the ANSI SQL standard for auto-numbered identity columns. The other is
the ANSI SQL standard IDENTITY keyword. Let’s start with serial.

Auto-Incrementing with serial
In Chapter 2, when you made the teachers table, you created an id column
with the declaration of bigserial: this and its siblings smallserial and
serial are not so much true data types as a special implementation of the
corresponding smallint, integer, and bigint types. When you add a
column with a serial type, PostgreSQL will auto-increment the value each
time you insert a row, starting with 1, up to the maximum of each integer
type.

Table 4-2 shows the serial types and the ranges they cover.

Table 4-2: Serial Data Types

Data type Storage size Range
smallserial 2 bytes 1 to 32767
serial 4 bytes 1 to 2147483647
bigserial 8 bytes 1 to 9223372036854775807

To use a serial type on a column, declare it in the CREATE TABLE
statement as you would an integer type. For example, you could create a
table called people that has an id column equivalent in size to the integer
data type:

CREATE TABLE people (
 id serial,
 person_name varchar(100)
);

Every time a new row with a person_name is added to the table, the id
column will increment by 1.

Auto-Incrementing with IDENTITY
As of version 10, PostgreSQL includes support for IDENTITY, the standard
SQL implementation for auto-incrementing integers. The IDENTITY syntax
is more verbose, but some database users prefer it for its cross-compatibility
with other database systems (such as Oracle) and also because it has an
option to prevent users from accidentally inserting values in the auto-
incrementing column (which serial types will permit).

You can specify IDENTITY in two ways:

. GENERATED ALWAYS AS IDENTITY tells the database to always fill the
column with an auto-incremented value. A user cannot insert a value into
the id column without manually overriding that setting. See the OVERRIDING
SYSTEM VALUE section of the PostgreSQL INSERT documentation at
https://www.postgresql.org/docs/current/sql-insert.html for details.

. GENERATED BY DEFAULT AS IDENTITY tells the database to fill the column
with an auto-incremented value by default if the user does not supply one.
This option allows for the possibility of duplicate values, which can make
use of it problematic for creating key columns. I’ll delve into that more in
Chapter 7.

For now, we’ll stick with the first option, using ALWAYS. To create a table
called people that has an id column populated via IDENTITY, you would
use this syntax:

CREATE TABLE people (
 id integer GENERATED ALWAYS AS IDENTITY,
 person_name varchar(100)
);

For the id data type, we use integer followed by the keywords
GENERATED ALWAYS AS IDENTITY. Now, every time we insert a
person_name value into the table, the database will fill the id column with
an auto-incremented value.

Given its compatibility with the ANSI SQL standard, I’ll use IDENTITY
for the remainder of the book.

NOTE

Even though the value in an auto-incrementing column increases
each time a row is added, some scenarios will create gaps in the
sequence of numbers in the column. If a row is deleted, for example,
the value in that row is never replaced. Or, if a row insert is aborted,
the sequence for the column will still be incremented.

https://www.postgresql.org/docs/current/sql-insert.html

Using Decimal Numbers
Decimals represent a whole number plus a fraction of a whole number; the
fraction is represented by digits following a decimal point. In a SQL
database, they’re handled by fixed-point and floating-point data types. For
example, the distance from my house to the nearest grocery store is 6.7
miles; I could insert 6.7 into either a fixed-point or floating-point column
with no complaint from PostgreSQL. The only difference is how the
computer stores the data. In a moment, you’ll see that has important
implications.

Understanding Fixed-Point Numbers
The fixed-point type, also called the arbitrary precision type, is
numeric(precision,scale). You give the argument precision as the
maximum number of digits to the left and right of the decimal point, and the
argument scale as the number of digits allowable on the right of the
decimal point. Alternately, you can specify this type using
decimal(precision,scale). Both are part of the ANSI SQL standard. If
you omit specifying a scale value, the scale will be set to zero; in effect, that
creates an integer. If you omit specifying the precision and the scale, the
database will store values of any precision and scale up to the maximum
allowed. (That’s up to 131,072 digits before the decimal point and 16,383
digits after the decimal point, according to the PostgreSQL documentation
at https://www.postgresql.org/docs/current/datatype-numeric.html.)

For example, let’s say you’re collecting rainfall totals from several local
airports—not an unlikely data analysis task. The US National Weather
Service provides this data with rainfall typically measured to two decimal
places. (And, if you’re like me, you have a distant memory of your primary
school math teacher explaining that two digits after a decimal is the
hundredths place.)

To record rainfall in the database using five digits total (the precision)
and two digits maximum to the right of the decimal (the scale), you’d
specify it as numeric(5,2). The database will always return two digits to
the right of the decimal point, even if you don’t enter a number that
contains two digits such as 1.47, 1.00, and 121.50.

https://www.postgresql.org/docs/current/datatype-numeric.html

Understanding Floating-Point Types
The two floating-point types are real and double precision, both part of
the SQL standard. The difference between the two is how much data they
store. The real type allows precision to six decimal digits, and double
precision to 15 decimal digits of precision, both of which include the
number of digits on both sides of the point. These floating-point types are
also called variable-precision types. The database stores the number in
parts representing the digits and an exponent—the location where the
decimal point belongs. So, unlike numeric, where we specify fixed
precision and scale, the decimal point in a given column can “float”
depending on the number.

Using Fixed- and Floating-Point Types
Each type has differing limits on the number of total digits, or precision, it
can hold, as shown in Table 4-3.

Table 4-3: Fixed-Point and Floating-Point Data Types

Data type Storage
size

Storage
type

Range

numeric,
decimal

Variable Fixed-
point

Up to 131,072 digits before the decimal point; up to 16,383
digits after the decimal point

real 4 bytes Floating-
point

6 decimal digits precision

double

precision

8 bytes Floating-
point

15 decimal digits precision

To see how each of the three data types handles the same numbers, create
a small table and insert a variety of test cases, as shown in Listing 4-2.

CREATE TABLE number_data_types (

 1 numeric_column numeric(20,5),
 real_column real,
 double_column double precision
);

2 INSERT INTO number_data_types
VALUES
 (.7, .7, .7),

 (2.13579, 2.13579, 2.13579),
 (2.1357987654, 2.1357987654, 2.1357987654);

SELECT * FROM number_data_types;

Listing 4-2: Number data types in action

We create a table with one column for each of the fractional data types 1
and load three rows into the table 2. Each row repeats the same number
across all three columns. When the last line of the script runs and we select
everything from the table, we get the following:

numeric_column real_column double_column
-------------- ----------- -------------
 0.70000 0.7 0.7
 2.13579 2.13579 2.13579
 2.13580 2.1357987 2.1357987654

Notice what happened. The numeric column, set with a scale of five,
stores five digits after the decimal point whether or not you inserted that
many. If fewer than five, it pads the rest with zeros. If more than five, it
rounds them—as with the third-row number with 10 digits after the
decimal.

The real and double precision columns add no padding. On the third
row, you see PostgreSQL’s default behavior in those two columns, which is
to output floating-point numbers using their shortest precise decimal
representation rather than show the entire value. Note that older versions of
PostgreSQL may display slightly different results.

Running into Trouble with Floating-Point Math
If you’re thinking, “Well, numbers stored as a floating-point look just like
numbers stored as fixed,” tread cautiously. The way computers store
floating-point numbers can lead to unintended mathematical errors. Look at
what happens when we do some calculations on these numbers. Run the
script in Listing 4-3.

SELECT

 1 numeric_column * 10000000 AS fixed,

 real_column * 10000000 AS floating
FROM number_data_types

2 WHERE numeric_column = .7;

Listing 4-3: Rounding issues with float columns

Here, we multiply the numeric_column and the real_column by 10
million 1 and use a WHERE clause to filter out just the first row 2. We should
get the same result for both calculations, right? Here’s what the query
returns:

fixed floating
------------- ----------------
7000000.00000 6999999.88079071

Hello! No wonder floating-point types are referred to as “inexact.” It’s a
good thing I’m not using this math to launch a mission to Mars or calculate
the federal budget deficit.

The reason floating-point math produces such errors is that the computer
attempts to squeeze lots of information into a finite number of bits. The
topic is the subject of a lot of writings and is beyond the scope of this book,
but if you’re interested, you’ll find the link to a good synopsis at
https://www.nostarch.com/practical-sql-2nd-edition/.

The storage required by the numeric data type is variable, and depending
on the precision and scale specified, numeric can consume considerably
more space than the floating-point types. If you’re working with millions of
rows, it’s worth considering whether you can live with relatively inexact
floating-point math.

Choosing Your Number Data Type
For now, here are three guidelines to consider when you’re dealing with
number data types:
Use integers when possible. Unless your data uses decimals, stick with
integer types.
If you’re working with decimal data and need calculations to be exact
(dealing with money, for example), choose numeric or its equivalent,

https://www.nostarch.com/practical-sql-2nd-edition/

decimal. Float types will save space, but the inexactness of floating-point
math won’t pass muster in many applications. Use them only when
exactness is not as important.
Choose a big enough number type. Unless you’re designing a database to
hold millions of rows, err on the side of bigger. When using numeric or
decimal, set the precision large enough to accommodate the number of
digits on both sides of the decimal point. With whole numbers, use bigint
unless you’re absolutely sure column values will be constrained to fit into
the smaller integer or smallint type.

Understanding Dates and Times
Whenever you enter a date into a search form, you’re reaping the benefit of
databases having an awareness of the current time (received from the
server) plus the ability to handle formats for dates, times, and the nuances
of the calendar, such as leap years and time zones. This is essential for
storytelling with data, because the issue of when something occurred is
usually as valuable a question as who, what, or how many were involved.

PostgreSQL’s date and time support includes the four major data types
shown in Table 4-4.

Table 4-4: Date and Time Data Types

Data type Storage size Description Range
timestamp 8 bytes Date and time 4713 BC to 294276 AD
date 4 bytes Date (no time) 4713 BC to 5874897 AD
time 8 bytes Time (no date) 00:00:00 to 24:00:00
interval 16 bytes Time interval +/− 178,000,000 years

Here’s a rundown of data types for times and dates in PostgreSQL:
timestamp Records date and time, which are useful for a range of situations
you might track: departures and arrivals of passenger flights, a schedule of
Major League Baseball games, or incidents along a timeline. You will
almost always want to add the keywords with time zone to ensure that the
time recorded for an event includes the time zone where it occurred.
Otherwise, times recorded in various places around the globe become

impossible to compare. The format timestamp with time zone is part of
the SQL standard; with PostgreSQL you can specify the same data type
using timestamptz.
date Records just the date. Part of the SQL standard.
time Records just the time and is part of the SQL standard. Although you
can add the with time zone keywords, without a date the time zone will be
meaningless.
interval Holds a value representing a unit of time expressed in the format
quantity unit. It doesn’t record the start or end of a time period, only its
length. Examples include 12 days or 8 hours. (The PostgreSQL
documentation at https://www.postgresql.org/docs/current/datatype-
datetime.html lists unit values ranging from microsecond to millennium.)
You’ll typically use this type for calculations or filtering on other date and
time columns. It’s also part of the SQL standard, although PostgreSQL-
specific syntax offers more options.

Let’s focus on the timestamp with time zone and interval types. To
see these in action, run the script in Listing 4-4.

1 CREATE TABLE date_time_types (
 timestamp_column timestamp with time zone,
 interval_column interval
);

2 INSERT INTO date_time_types
VALUES
 ('2022-12-31 01:00 EST','2 days'),
 ('2022-12-31 01:00 -8','1 month'),
 ('2022-12-31 01:00 Australia/Melbourne','1 century'),

 3 (now(),'1 week');

SELECT * FROM date_time_types;

Listing 4-4: The timestamp and interval types in action

Here, we create a table with a column for both types 1 and insert four
rows 2. For the first three rows, our insert for the timestamp_column uses
the same date and time (December 31, 2022 at 1 AM) using the

https://www.postgresql.org/docs/current/datatype-datetime.html

International Organization for Standardization (ISO) format for dates and
times: YYYY-MM-DD HH:MM:SS. SQL supports additional date formats (such
as MM/DD/YYYY), but ISO is recommended for portability worldwide.

Following the time, we specify a time zone but use a different format in
each of the first three rows: in the first row, we use the abbreviation EST,
which is Eastern standard time in the United States.

In the second row, we set the time zone with the value -8. That represents
the number of hours difference, or offset, from Coordinated Universal Time
(UTC), the time standard for the world. The value of UTC is +/− 00:00, so
-8 specifies a time zone eight hours behind UTC. In the United States,
when daylight saving time is in effect, -8 is the value for the Alaska time
zone. From November through early March, when the United States reverts
to standard time, it refers to the Pacific time zone. (For a map of UTC time
zones, see
https://en.wikipedia.org/wiki/Coordinated_Universal_Time#/media/File:Sta
ndard_World_Time_Zones.tif.)

For the third row, we specify the time zone using the name of an area and
location: Australia/Melbourne. That format uses values found in a
standard time zone database often employed in computer programming.
You can learn more about the time zone database at
https://en.wikipedia.org/wiki/Tz_database.

In the fourth row, instead of specifying dates, times, and time zones, the
script uses PostgreSQL’s now() function 3, which captures the current
transaction time from your hardware.

After the script runs, the output should look similar to (but not exactly
like) this:

timestamp_column interval_column
----------------------------- ---------------
2022-12-31 01:00:00-05 2 days
2022-12-31 04:00:00-05 1 mon
2022-12-30 09:00:00-05 100 years
2020-05-31 21:31:15.716063-05 7 days

Even though we supplied the same date and time in the first three rows
on the timestamp_column, each row’s output differs. The reason is that

https://en.wikipedia.org/wiki/Coordinated_Universal_Time#/media/File:Standard_World_Time_Zones.tif
https://en.wikipedia.org/wiki/Tz_database

pgAdmin reports the date and time relative to my time zone, which in the
results shown is indicated by the UTC offset of -05 at the end of each
timestamp. A UTC offset of -05 means five hours behind UTC, equivalent
to the US Eastern time zone during fall and winter months when standard
time is observed. If you live in a different time zone, you’ll likely see a
different offset; the times and dates also may differ from what’s shown here.
We can change how PostgreSQL reports these timestamp values, and I’ll
cover how to do that plus other tips for wrangling dates and times in
Chapter 12.

Finally, the interval_column shows the values you entered. PostgreSQL
changed 1 century to 100 years and 1 week to 7 days because of its
preferred default settings for interval display. Read the “Interval Input”
section of the PostgreSQL documentation at
https://www.postgresql.org/docs/current/datatype-datetime.html to learn
more about options related to intervals.

Using the interval Data Type in Calculations
The interval data type is useful for easy-to-understand calculations on
date and time data. For example, let’s say you have a column that holds the
date a client signed a contract. Using interval data, you can add 90 days to
each contract date to determine when to follow up with the client.

To see how the interval data type works, we’ll use the
date_time_types table we just created, as shown in Listing 4-5.

SELECT
 timestamp_column,
 interval_column,

 1 timestamp_column - interval_column AS new_date
FROM date_time_types;

Listing 4-5: Using the interval data type

This is a typical SELECT statement, except we’ll compute a column called
new_date 1 that contains the result of timestamp_column minus
interval_column. (Computed columns are called expressions; we’ll use

https://www.postgresql.org/docs/current/datatype-datetime.html

this technique often.) In each row, we subtract the unit of time indicated by
the interval data type from the date. This produces the following result:

timestamp_column interval_column new_date
----------------------------- --------------- ---------

2022-12-31 01:00:00-05 2 days 2022-12-
29 01:00:00-05
2022-12-31 04:00:00-05 1 mon 2022-11-
30 04:00:00-05
2022-12-30 09:00:00-05 100 years 1922-12-
30 09:00:00-05
2020-05-31 21:31:15.716063-05 7 days 2020-05-
24 21:31:15.716063-05

Note that the new_date column by default is formatted as type timestamp
with time zone, allowing for the display of time values as well as dates if
the interval value uses them. (You can see the data type listed in the
pgAdmin results grid, listed beneath the column names.) Again, your output
may be different based on your time zone.

Understanding JSON and JSONB
JSON, short for JavaScript Object Notation, is a structured data format used
for both storing data and exchanging data between computer systems. All
major programming languages support reading and writing data in JSON
format, which organizes information in a collection of key/value pairs as
well as lists of values. Here’s a simple example:

{
 "business_name": "Old Ebbitt Grill",
 "business_type": "Restaurant",
 "employees": 300,
 "address": {
 "street": "675 15th St NW",
 "city": "Washington",
 "state": "DC",
 "zip_code": "20005"
 }
}

This snippet of JSON shows the format’s basic structure. A key, for
example business_name, is associated with a value—in this case, Old
Ebbitt Grill. A key also can have as its value a collection of additional
key/value pairs, as shown with address. The JSON standard enforces rules
about formatting, such as separating keys and values with a colon and
enclosing key names in double quotes. You can use online tools such as
https://jsonlint.com/ to check whether a JSON object has valid formatting.

PostgreSQL currently offers two data types for JSON, which both
enforce valid JSON and support functions for working with data in that
format:
json Stores an exact copy of the JSON text
jsonb Stores the JSON text in a binary format

There are significant differences between the two. For example, jsonb
supports indexing, which can improve processing speed.

JSON entered the SQL standard in 2016, but PostgreSQL added support
several years earlier, starting with version 9.2. PostgreSQL currently
implements several functions found in the SQL standard but offers its own
additional JSON functions and operators. We’ll cover these as well as both
types more extensively in Chapter 16.

Using Miscellaneous Types
Character, number, and date/time types will likely comprise the bulk of the
work you do with SQL. But PostgreSQL supports many additional types,
including but not limited to the following:
A Boolean type that stores a value of true or false
Geometric types that include points, lines, circles, and other two-
dimensional objects
Text search types for PostgreSQL’s full-text search engine
Network address types, such as IP or MAC addresses
A universally unique identifier (UUID) type, sometimes used as a unique
key value in tables

https://jsonlint.com/

Range types, which let you specify a range of values, such as integers or
timestamps
Types for storing binary data
An XML data type that stores information in that structured format

I’ll cover these types as required throughout the book.

Transforming Values from One Type to
Another with CAST
Occasionally, you may need to transform a value from its stored data type
to another type. For example, you may want to retrieve a number as a
character so you can combine it with text. Or you might need to convert
dates stored as characters into an actual date type so you can sort them in
date order or perform interval calculations. You can perform these
conversions using the CAST() function.

The CAST() function succeeds only when the target data type can
accommodate the original value. Casting an integer as text is possible,
because the character types can include numbers. Casting text with letters
of the alphabet as a number is not.

Listing 4-6 has three examples using the three data type tables we just
created. The first two examples work, but the third will try to perform an
invalid type conversion so you can see what a type casting error looks like.

1 SELECT timestamp_column, CAST(timestamp_column AS varchar(10))
FROM date_time_types;

2 SELECT numeric_column,
 CAST(numeric_column AS integer),
 CAST(numeric_column AS text)
FROM number_data_types;

3 SELECT CAST(char_column AS integer) FROM char_data_types;

Listing 4-6: Three CAST() examples

The first SELECT statement 1 returns the timestamp_column value as a
varchar, which you’ll recall is a variable-length character column. In this
case, I’ve set the character length to 10, which means when converted to a
character string, only the first 10 characters are kept. That’s handy in this
case, because that just gives us the date segment of the column and
excludes the time. Of course, there are better ways to remove the time from
a timestamp, and I’ll cover those in “Extracting the Components of a
timestamp Value” in Chapter 12.

The second SELECT statement 2 returns the numeric_column value three
times: in its original form and then as an integer and as text. Upon
conversion to an integer, PostgreSQL rounds the value to a whole number.
But with the text conversion, no rounding occurs.

The final SELECT3 doesn’t work: it returns an error of invalid input
syntax for type integer because letters can’t become integers!

Using CAST Shortcut Notation
It’s always best to write SQL that can be read by another person who might
pick it up later, and the way CAST() is written makes what you intended
when you used it fairly obvious. However, PostgreSQL also offers a less-
obvious shortcut notation that takes less space: the double colon.

Insert the double colon in between the name of the column and the data
type you want to convert it to. For example, these two statements cast
timestamp_column as a varchar:

SELECT timestamp_column, CAST(timestamp_column AS
varchar(10))
FROM date_time_types;

SELECT timestamp_column::varchar(10)
FROM date_time_types;

Use whichever suits you, but be aware that the double colon is a
PostgreSQL-only implementation not found in other SQL variants, and so
won’t port.

Wrapping Up
You’re now equipped to better understand the nuances of the data formats
you encounter while digging into databases. If you come across monetary
values stored as floating-point numbers, you’ll be sure to convert them to
decimals before performing any math. And you’ll know how to use the
right kind of text column to keep your database from growing too big.

Next, I’ll continue with SQL foundations and show you how to import
external data into your database.

TRY IT YOURSELF

Continue exploring data types with these exercises:
Your company delivers fruit and vegetables to local grocery stores, and you need to
track the mileage driven by each driver each day to a tenth of a mile. Assuming no

driver would ever travel more than 999 miles in a day, what would be an appropriate
data type for the mileage column in your table? Why?

In the table listing each driver in your company, what are appropriate data types for the
drivers’ first and last names? Why is it a good idea to separate first and last names into

two columns rather than having one larger name column?
Assume you have a text column that includes strings formatted as dates. One of the

strings is written as '4//2021'. What will happen when you try to convert that string to
the timestamp data type?

5
IMPORTING AND EXPORTING DATA

So far, you’ve learned how to add a
handful of rows to a table using SQL
INSERT statements. A row-by-row insert
is useful for making quick test tables or
adding a few rows to an existing table.

But it’s more likely you’ll need to load hundreds,
thousands, or even millions of rows, and no one
wants to write separate INSERT statements in those
situations. Fortunately, you don’t have to.

If your data exists in a delimited text file, with one table row per line of
text and each column value separated by a comma or other character,
PostgreSQL can import the data in bulk via its COPY command. This
command is a PostgreSQL-specific implementation with options for
including or excluding columns and handling various delimited text types.

In the opposite direction, COPY will also export data from PostgreSQL
tables or from the result of a query to a delimited text file. This technique is
handy when you want to share data with colleagues or move it into another
format, such as an Excel file.

I briefly touched on COPY for export in the “Understanding Characters”
section of Chapter 4, but in this chapter, I’ll discuss import and export in

more depth. For importing, I’ll start by introducing you to one of my
favorite datasets: annual US Census population estimates by county.

Three steps form the outline of most of the imports you’ll do:

. Obtain the source data in the form of a delimited text file.

. Create a table to store the data.

. Write a COPY statement to perform the import.

After the import is done, we’ll check the data and look at additional
options for importing and exporting.

A delimited text file is the most common file format that’s portable
across proprietary and open source systems, so we’ll focus on that file type.
If you want to transfer data from another database program’s proprietary
format directly to PostgreSQL—for example, from Microsoft Access or
MySQL—you’ll need to use a third-party tool. Check the PostgreSQL wiki
at https://wiki.postgresql.org/wiki/ and search for “Converting from other
databases to PostgreSQL” for a list of tools and options.

If you’re using SQL with another database manager, check the other
database’s documentation for how it handles bulk imports. The MySQL
database, for example, has a LOAD DATA INFILE statement, and Microsoft’s
SQL Server has its own BULK INSERT command.

Working with Delimited Text Files
Many software applications store data in a unique format, and translating
one data format to another is about as easy as trying to read the Cyrillic
alphabet when one understands only English. Fortunately, most software
can import from and export to a delimited text file, which is a common data
format that serves as a middle ground.

A delimited text file contains rows of data, each of which represents one
row in a table. In each row, each data column is separated, or delimited, by
a particular character. I’ve seen all kinds of characters used as delimiters,
from ampersands to pipes, but the comma is most commonly used; hence

https://wiki.postgresql.org/wiki/

the name of a file type you’ll see often is comma-separated values (CSV).
The terms CSV and comma-delimited are interchangeable.

Here’s a typical data row you might see in a comma-delimited file:

John,Doe,123 Main St.,Hyde Park,NY,845-555-1212

Notice that a comma separates each piece of data—first name, last name,
street, town, state, and phone—without any spaces. The commas tell the
software to treat each item as a separate column, upon either import or
export. Simple enough.

Handling Header Rows
A feature you’ll often find inside a delimited text file is a header row. As
the name implies, it’s a single row at the top, or head, of the file that lists
the name of each data column. Often, a header is added when data is
exported from a database or a spreadsheet. Here’s an example with the
delimited row I’ve been using. Each item in a header row corresponds to its
respective column:

FIRSTNAME,LASTNAME,STREET,CITY,STATE,PHONE
John,Doe,123 Main St.,Hyde Park,NY,845-555-1212

Header rows serve a few purposes. For one, the values in the header row
identify the data in each column, which is particularly useful when you’re
deciphering a file’s contents. Second, some database managers (although
not PostgreSQL) use the header row to map columns in the delimited file to
the correct columns in the import table. PostgreSQL doesn’t use the header
row, so we don’t want to import that row to a table. We use the HEADER
option in the COPY command to exclude it. I’ll cover this with all COPY
options in the next section.

Quoting Columns That Contain Delimiters
Using commas as a column delimiter leads to a potential dilemma: what if
the value in a column includes a comma? For example, sometimes people
combine an apartment number with a street address, as in 123 Main St.,
Apartment 200. Unless the system for delimiting accounts for that extra

comma, during import the line will appear to have an extra column and
cause the import to fail.

To handle such cases, delimited files use an arbitrary character called a
text qualifier to enclose a column that includes the delimiter character. This
acts as a signal to ignore that delimiter and treat everything between the text
qualifiers as a single column. Most of the time in comma-delimited files the
text qualifier used is the double quote. Here’s the example data again, but
with the street name column surrounded by double quotes:

FIRSTNAME,LASTNAME,STREET,CITY,STATE,PHONE
John,Doe,"123 Main St., Apartment 200",Hyde Park,NY,845-555-
1212

On import, the database will recognize that double quotes signify one
column regardless of whether it finds a delimiter within the quotes. When
importing CSV files, PostgreSQL by default ignores delimiters inside
double-quoted columns, but you can specify a different text qualifier if your
import requires it. (And, given the sometimes-odd choices made by IT
professionals, you may indeed need to employ a different character.)

Finally, in CSV mode, if PostgreSQL finds two consecutive text
qualifiers inside a double-quoted column, it will remove one. For example,
let’s say PostgreSQL finds this:

"123 Main St."" Apartment 200"

If so, it will treat that text as a single column upon import, leaving just
one of the qualifiers:

123 Main St." Apartment 200

A situation like that could indicate an error in the formatting of your CSV
file, which is why, as you’ll see later, it’s always a good idea to review your
data after importing.

Using COPY to Import Data

To import data from an external file into our database, we first create a table
in our database that matches the columns and data types in our source file.
Once that’s done, the COPY statement for the import is just the three lines of
code in Listing 5-1.

1 COPY table_name
2 FROM 'C:\YourDirectory\your_file.csv'
3 WITH (FORMAT CSV, HEADER);

Listing 5-1: Using COPY for data import

We start the block of code with the COPY keyword 1 followed by the
name of the target table, which must already exist in your database. Think
of this syntax as meaning, “Copy data to my table called table_name.”

The FROM keyword 2 identifies the full path to the source file, and we
enclose the path in single quotes. The way you designate the path depends
on your operating system. For Windows, begin with the drive letter, colon,
backslash, and directory names. For example, to import a file located on my
Windows desktop, the FROM line would read as follows:

FROM 'C:\Users\Anthony\Desktop\my_file.csv'

On macOS or Linux, start at the system root directory with a forward
slash and proceed from there. Here’s what the FROM line might look like
when importing a file located on my macOS desktop:

FROM '/Users/anthony/Desktop/my_file.csv'

For the examples in the book, I use the Windows-style path
C:\YourDirectory\ as a placeholder. Replace that with the path where you
stored the CSV file you downloaded from GitHub.

The WITH keyword 3 lets you specify options, surrounded by parentheses,
that you use to tailor your input or output file. Here we specify that the
external file should be comma-delimited and that we should exclude the
file’s header row in the import. It’s worth examining all the options in the
official PostgreSQL documentation at

https://www.postgresql.org/docs/current/sql-copy.html, but here is a list of
the options you’ll commonly use:

Input and output file format
Use the FORMAT format_name option to specify the type of file you’re
reading or writing. Format names are CSV, TEXT, or BINARY. Unless you’re
deep into building technical systems, you’ll rarely encounter a need to work
with BINARY, where data is stored as a sequence of bytes. More often, you’ll
work with standard CSV files. In the TEXT format, a tab character is the
delimiter by default (although you can specify another character), and
backslash characters such as \r are recognized as their ASCII equivalents—
in this case, a carriage return. The TEXT format is used mainly by
PostgreSQL’s built-in backup programs.

Presence of a header row
On import, use HEADER to specify that the source file has a header row that
you want to exclude. The database will start importing with the second line
of the file so that the column names in the header don’t become part of the
data in the table. (Be sure to check your source CSV to make sure this is
what you want; not every CSV comes with a header row!) On export, using
HEADER tells the database to include the column names as a header row in
the output file, which helps a user understand the file’s contents.

Delimiter
The DELIMITER 'character' option lets you specify which character your
import or export file uses as a delimiter. The delimiter must be a single
character and cannot be a carriage return. If you use FORMAT CSV, the
assumed delimiter is a comma. I include DELIMITER here to show that you
have the option to specify a different delimiter if that’s how your data
arrived. For example, if you received pipe-delimited data, you would treat
the option this way: DELIMITER '|'.

Quote character

https://www.postgresql.org/docs/current/sql-copy.html

Earlier, you learned that in a CSV file, commas inside a single column
value will mess up your import unless the column value is surrounded by a
character that serves as a text qualifier, telling the database to handle the
value within as one column. By default, PostgreSQL uses the double quote,
but if the CSV you’re importing uses a different character for the text
qualifier, you can specify it with the QUOTE 'quote_character' option.

Now that you better understand delimited files, you’re ready to import
one.

Importing Census Data Describing Counties
The dataset you’ll work with in this import exercise is considerably larger
than the teachers table you made in Chapter 2. It contains census
population estimates for every county in the United States and is 3,142 rows
deep and 16 columns wide. (Census counties include some geographies
with other names: parishes in Louisiana, boroughs and census areas in
Alaska, and cities, particularly in Virginia.)

To understand the data, it helps to know a little about the US Census
Bureau, a federal agency that tracks the nation’s demographics. Its best-
known program is a full count of the population it undertakes every 10
years, most recently in 2020. That data, which enumerates the age, gender,
race, and ethnicity of each person in the country, is used to determine how
many members from each state make up the 435-member US House of
Representatives. In recent decades, faster-growing states such as Texas and
Florida have gained seats, while slower-growing states such as New York
and Ohio have lost representatives in the House.

The data we’ll work with are the census’ annual population estimates.
These use the most recent 10-year census count as a base, and they factor in
births, deaths, and domestic and international migration to produce
population estimates each year for the nation, states, counties, and other
geographies. In lieu of an annual physical count, it’s the best way to get an
updated measure on how many people live where in the United States. For
this exercise, I compiled select columns from the 2019 US Census county-
level population estimates (plus a few descriptive columns from census
geographic data) into a file named us_counties_pop_est_2019.csv. You

should have this file on your computer if you followed the directions in the
section “Downloading Code and Data from GitHub” in Chapter 1. If not, go
back and do that now.

NOTE

The 2019-vintage population estimates we’re using do not reflect
the split in 2019 of the former Valdez-Cordova census area into two
new Alaska county equivalents. That change increased the number
of US counties to 3,143.

Open the file with a text editor. You should see a header row that begins
with these columns:

state_fips,county_fips,region,state_name,county_name, --snip-
-

Let’s explore the columns by examining the code for creating the import
table.

Creating the us_counties_pop_est_2019 Table
The code in Listing 5-2 shows the CREATE TABLE script. In pgAdmin click
the analysis database that you created in Chapter 2. (It’s best to store the
data in this book in analysis because we’ll reuse some of it in later
chapters.) From the pgAdmin menu bar, select Tools▶Query Tool. You can
type the code into the tool or copy and paste it from the files you
downloaded from GitHub. Once you have the script in the window, run it.

CREATE TABLE us_counties_pop_est_2019 (

 1 state_fips text,
 county_fips text,

 2 region smallint,
 3 state_name text,
 county_name text,

 4 area_land bigint,
 area_water bigint,

 5 internal_point_lat numeric(10,7),

 internal_point_lon numeric(10,7),

 6 pop_est_2018 integer,
 pop_est_2019 integer,
 births_2019 integer,
 deaths_2019 integer,
 international_migr_2019 integer,
 domestic_migr_2019 integer,
 residual_2019 integer,

 7 CONSTRAINT counties_2019_key PRIMARY KEY (state_fips,
county_fips)
);

Listing 5-2: CREATE TABLE statement for census county population
estimates

Return to the main pgAdmin window, and in the object browser, right-
click and refresh the analysis database. Choose Schemas▶public▶Tables
to see the new table. Although it’s empty, you can see the structure by
running a basic SELECT query in pgAdmin’s Query Tool:

SELECT * FROM us_counties_pop_est_2019;

When you run the SELECT query, you’ll see the columns in the table you
created appear in the pgAdmin Data Output pane. No data rows exist yet.
We need to import them.

Understanding Census Columns and Data Types
Before we import the CSV file into the table, let’s walk through several of
the columns and the data types I chose in Listing 5-2. As my guide, I used
two official census data dictionaries: one for the estimates found at
https://www2.census.gov/programs-surveys/popest/technical-
documentation/file-layouts/2010-2019/co-est2019-alldata.pdf and one for
the decennial count that includes the geographic columns at
http://www.census.gov/prod/cen2010/doc/pl94-171.pdf. I’ve given some
columns more readable names in the table definition. Relying on a data
dictionary when possible is good practice, because it helps you avoid
misconfiguring columns or potentially losing data. Always ask if one is
available, or do an online search if the data is public.

https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2010-2019/co-est2019-alldata.pdf
http://www.census.gov/prod/cen2010/doc/pl94-171.pdf

In this set of census data, and thus the table you just made, each row
displays the population estimates and components of annual change (births,
deaths, and migration) for one county. The first two columns are the
county’s state_fips 1 and county_fips, which are the standard federal
codes for those entities. We use text for both because those codes can
contain leading zeros that would be lost if we stored the values as integers.
For example, Alaska’s state_fips is 02. If we used an integer type, that
leading 0 would be stripped on import, leaving 2, which is the wrong code
for the state. Also, we won’t be doing any math with this value, so don’t
need integers. It’s always important to distinguish codes from numbers;
these state and county values are actually labels as opposed to numbers
used for math.

Numbers from 1 to 4 in region 2 represent the general location of a
county in the United States: the Northeast, Midwest, South, or West. No
number is higher than 4, so we define the columns with type smallint. The
state_name 3 and county_name columns contain the complete name of both
the state and county, stored as text.

The number of square meters for land and water in the county are
recorded in area_land 4 and area_water, respectively. The two, combined,
comprise a county’s total area. In certain places—such as Alaska, where
there’s lots of land to go with all that snow—some values easily surpass the
integer type’s maximum of 2,147,483,647. For that reason, we’re using
bigint, which will handle the 377,038,836,685 square meters of land in the
Yukon-Koyukuk census area with room to spare.

The latitude and longitude of a point near the center of the county, called
an internal point, are specified in internal_point_lat and
internal_point_lon 5, respectively. The Census Bureau—along with
many mapping systems—expresses latitude and longitude coordinates using
a decimal degrees system. Latitude represents positions north and south on
the globe, with the equator at 0 degrees, the North Pole at 90 degrees, and
the South Pole at −90 degrees.

Longitude represents locations east and west, with the Prime Meridian
that passes through Greenwich in London at 0 degrees longitude. From
there, longitude increases both east and west (positive numbers to the east
and negative to the west) until they meet at 180 degrees on the opposite side

of the globe. The location there, known as the antimeridian, is used as the
basis for the International Date Line.

When reporting interior points, the Census Bureau uses up to seven
decimal places. With a value up to 180 to the left of the decimal, we need to
account for a maximum of 10 digits total. So, we’re using numeric with a
precision of 10 and a scale of 7.

NOTE

PostgreSQL, through the PostGIS extension, can store geometric
data, which includes points that represent latitude and longitude in
a single column. We’ll explore geometric data when we cover
geographical queries in Chapter 15.

Next, we reach a series of columns 6 that contain the county’s population
estimates and components of change. Table 5-1 lists their definitions.

Table 5-1: Census Population Estimate Columns

Column name Description
pop_est_2018 Estimated population on July 1, 2018
pop_est_2019 Estimated population on July 1, 2019
births_2019 Number of births from July 1, 2018, to June 30, 2019
deaths_2019 Number of deaths from July 1, 2018, to June 30, 2019
international_migr_2019 Net international migration from July 1, 2018, to June 30, 2019
domestic_migr_2019 Net domestic migration from July 1, 2018, to June 30, 2019
residual_2019 Number used to adjust estimates for consistency

Finally, the CREATE TABLE statement ends with a CONSTRAINT clause 7
specifying that the columns state_fips and county_fips will serve as the
table’s primary key. This means that the combination of those columns is
unique for every row in the table, a concept we’ll cover extensively in
Chapter 8. For now, let’s run the import.

Performing the Census Import with COPY

Now you’re ready to bring the census data into the table. Run the code in
Listing 5-3, remembering to change the path to the file to match the location
of the data on your computer.

COPY us_counties_pop_est_2019
FROM 'C:\YourDirectory\us_counties_pop_est_2019.csv'
WITH (FORMAT CSV, HEADER);

Listing 5-3: Importing census data using COPY

When the code executes, you should see the following message in
pgAdmin:

COPY 3142
Query returned successfully in 75 msec.

That’s good news: the import CSV has the same number of rows. If you
have an issue with the source CSV or your import statement, the database
will throw an error. For example, if one of the rows in the CSV had more
columns than in the target table, you’d see an error message in the Data
Output pane of pgAdmin that provides a hint as to how to fix it:

ERROR: extra data after last expected column
Context: COPY us_counties_pop_est_2019, line 2:
"01,001,3,Alabama, ..."

Even if no errors are reported, it’s always a good idea to visually scan the
data you just imported to ensure everything looks as expected.

Inspecting the Import
Start with a SELECT query of all columns and rows:

SELECT * FROM us_counties_pop_est_2019;

There should be 3,142 rows displayed in pgAdmin, and as you scroll left
and right through the result set, each column should have the expected
values. Let’s review some columns that we took particular care to define
with the appropriate data types. For example, run the following query to

show the counties with the largest area_land values. We’ll use a LIMIT
clause, which will cause the query to return only the number of rows we
want; here, we’ll ask for three:

SELECT county_name, state_name, area_land
FROM us_counties_pop_est_2019
ORDER BY area_land DESC
LIMIT 3;

This query ranks county-level geographies from largest land area to
smallest in square meters. We defined area_land as bigint because the
largest values in the field are bigger than the upper range provided by
regular integer. As you might expect, big Alaskan geographies are at the
top:

county_name state_name area_land
------------------------- ---------- ------------
Yukon-Koyukuk Census Area Alaska 377038836685
North Slope Borough Alaska 230054247231
Bethel Census Area Alaska 105232821617

Next, let’s check the latitude and longitude columns of
internal_point_lat and internal_point_lon, which we defined with
numeric(10,7). This code sorts the counties by longitude from the greatest
to smallest value. This time, we’ll use LIMIT to retrieve five rows:

SELECT county_name, state_name, internal_point_lat,
internal_point_lon
FROM us_counties_pop_est_2019
ORDER BY internal_point_lon DESC
LIMIT 5;

Longitude measures locations from east to west, with locations west of
the Prime Meridian in England represented as negative numbers starting
with −1, −2, −3, and so on, the farther west you go. We sorted in
descending order, so we’d expect the easternmost counties of the United
States to show at the top of the query result. Instead—surprise!—there’s a
lone Alaska geography at the top:

 county_name state_name internal_point_lat
internal_point_lon
-------------------------- ---------- ------------------ --

Aleutians West Census Area Alaska 51.9489640
179.6211882
Washington County Maine 44.9670088
-67.6093542
Hancock County Maine 44.5649063
-68.3707034
Aroostook County Maine 46.7091929
-68.6124095
Penobscot County Maine 45.4092843
-68.6666160

Here’s why: the Alaskan Aleutian Islands extend so far west (farther west
than Hawaii) that they cross the antimeridian at 180 degrees longitude.
Once past the antimeridian, longitude turns positive, counting back down to
0. Fortunately, it’s not a mistake in the data; however, it’s a fact you can
tuck away for your next trivia team competition.

Congratulations! You have a legitimate set of government demographic
data in your database. I’ll use it to demonstrate exporting data with COPY
later in this chapter, and then you’ll use it to learn math functions in Chapter
6. Before we move on to exporting data, let’s examine a few additional
importing techniques.

Importing a Subset of Columns with COPY
If a CSV file doesn’t have data for all the columns in your target database
table, you can still import the data you have by specifying which columns
are present in the data. Consider this scenario: you’re researching the
salaries of all town supervisors in your state so you can analyze government
spending trends by geography. To get started, you create a table called
supervisor_salaries with the code in Listing 5-4.

CREATE TABLE supervisor_salaries (
 id integer GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 town text,
 county text,
 supervisor text,

 start_date date,
 salary numeric(10,2),
 benefits numeric(10,2)
);

Listing 5-4: Creating a table to track supervisor salaries

You want columns for the town and county, the supervisor’s name, the
date they started, and salary and benefits (assuming you just care about
current levels). You’re also adding an auto-incrementing id column as a
primary key. However, the first county clerk you contact says, “Sorry, we
only have town, supervisor, and salary. You’ll need to get the rest from
elsewhere.” You tell them to send a CSV anyway. You’ll import what you
can.

I’ve included such a sample CSV you can download via the book’s
resources at https://www.nostarch.com/practical-sql-2nd-edition/, called
supervisor_salaries.csv. If you view the file with a text editor, you should
see these two lines at the top:

town,supervisor,salary
Anytown,Jones,67000

You could try to import it using this basic COPY syntax:

COPY supervisor_salaries
FROM 'C:\YourDirectory\supervisor_salaries.csv'
WITH (FORMAT CSV, HEADER);

But if you do, PostgreSQL will return an error:

ERROR: invalid input syntax for type integer: "Anytown"
Context: COPY supervisor_salaries, line 2, column id:
"Anytown"
SQL state: 22P04

The problem is that your table’s first column is the auto-incrementing id,
but your CSV file begins with the text column town. Even if your CSV file
had an integer present in its first column, the GENERATED ALWAYS AS
IDENTITY keywords would prevent you from adding a value to id. The

https://www.nostarch.com/practical-sql-2nd-edition/

workaround for this situation is to tell the database which columns in the
table are present in the CSV, as shown in Listing 5-5.

COPY supervisor_salaries 1 (town, supervisor, salary)
FROM 'C:\YourDirectory\supervisor_salaries.csv'
WITH (FORMAT CSV, HEADER);

Listing 5-5: Importing salaries data from CSV to three table columns

By noting in parentheses 1 the three present columns after the table
name, we tell PostgreSQL to only look for data to fill those columns when
it reads the CSV. Now, if you select the first couple of rows from the table,
you’ll see those columns filled with the appropriate values:

id town county supervisor start_date
salary benefits
-- -------- ------ ---------- ---------- ------
---- --------
1 Anytown Jones
67000.00
2 Bumblyburg Larry
74999.00

Importing a Subset of Rows with COPY
Starting with PostgreSQL version 12, you can add a WHERE clause to a COPY
statement to filter which rows from the source CSV you import into a table.
You can see how this works using the supervisor salaries data.

Start by clearing all the data you already imported into
supervisor_salaries using a DELETE query.

DELETE FROM supervisor_salaries;

This will remove data from the table, but it will not reset the id column’s
IDENTITY column sequence. We’ll cover how to do that when we discuss
table design in Chapter 8. When that query finishes, run the COPY statement
in Listing 5-6, which adds a WHERE clause that filters the import to include
only rows in which the town column in the CSV input matches New Brillig.

COPY supervisor_salaries (town, supervisor, salary)
FROM 'C:\YourDirectory\supervisor_salaries.csv'
WITH (FORMAT CSV, HEADER)
WHERE town = 'New Brillig';

Listing 5-6: Importing a subset of rows with WHERE

Next, run SELECT * FROM supervisor_salaries; to view the contents
of the table. You should see just one row:

id town county supervisor start_date salary
benefits
-- ----------- ------ ---------- ---------- --------- -------
-
10 New Brillig Carroll 102690.00

This is a handy shortcut. Now, let’s see how to use a temporary table to
do even more data wrangling during an import.

Adding a Value to a Column During Import
What if you know that “Mills” is the name that should be added to the
county column during the import, even though that value is missing from
the CSV file? One way to modify your import to include the name is by
loading your CSV into a temporary table before adding it to
supervisors_salary. Temporary tables exist only until you end your
database session. When you reopen the database (or lose your connection),
those tables disappear. They’re handy for performing intermediary
operations on data as part of your processing pipeline; we’ll use one to add
the county name to the supervisor_salaries table as we import the CSV.

Again, clear the data you’ve imported into supervisor_salaries using a
DELETE query. When it completes, run the code in Listing 5-7, which will
make a temporary table and import your CSV. Then, we will query data
from that table and include the county name for an insert into the
supervisor_salaries table.

1 CREATE TEMPORARY TABLE supervisor_salaries_temp
 (LIKE supervisor_salaries INCLUDING ALL);

2 COPY supervisor_salaries_temp (town, supervisor, salary)
FROM 'C:\YourDirectory\supervisor_salaries.csv'
WITH (FORMAT CSV, HEADER);

3 INSERT INTO supervisor_salaries (town, county, supervisor,
salary)
SELECT town, 'Mills', supervisor, salary
FROM supervisor_salaries_temp;

4 DROP TABLE supervisor_salaries_temp;

Listing 5-7: Using a temporary table to add a default value to a column
during import

This script performs four tasks. First, we create a temporary table called
supervisor_salaries_temp 1 based on the original supervisor_salaries
table by passing as an argument the LIKE keyword followed by the source
table name. The keywords INCLUDING ALL tell PostgreSQL to not only copy
the table rows and columns but also components such as indexes and the
IDENTITY settings. Then we import the supervisor_salaries.csv file 2 into
the temporary table using the now-familiar COPY syntax.

Next, we use an INSERT statement 3 to fill the salaries table. Instead of
specifying values, we employ a SELECT statement to query the temporary
table. That query specifies Mills as the value for the second column, not as
a column name, but as a string inside single quotes.

Finally, we use DROP TABLE to erase the temporary table 4 since we’re
done using it for this import. The temporary table will automatically
disappear when you disconnect from the PostgreSQL session, but this
removes it now in case we want to do another import and use a fresh
temporary table for another CSV.

After you run the query, run a SELECT statement on the first couple of
rows to see the effect:

id town county supervisor start_date
salary benefits
-- -------- --------- ---------- ---------- ------
--- --------

11 Anytown Mills Jones
67000.00
12 Bumblyburg Mills Larry
74999.00

You’ve filled the county field with a value even though your source CSV
didn’t have one. The path to this import might seem laborious, but it’s
instructive to see how data processing can require multiple steps to get the
desired results. The good news is that this temporary table demo is an apt
indicator of the flexibility SQL offers to control data handling.

Using COPY to Export Data
When exporting data with COPY, rather than using FROM to identify the
source data, you use TO for the path and name of the output file. You control
how much data to export—an entire table, just a few columns, or the results
of a query.

Let’s look at three quick examples.

Exporting All Data
The simplest export sends everything in a table to a file. Earlier, you created
the table us_counties_pop_est_2019 with 16 columns and 3,142 rows of
census data. The SQL statement in Listing 5-8 exports all the data to a text
file named us_counties_export.txt. To demonstrate the flexibility you have
in choosing output options, the WITH keyword tells PostgreSQL to include a
header row and use the pipe symbol instead of a comma for a delimiter. I’ve
used the .txt file extension here for two reasons. First, it demonstrates that
you can name your file with an extension other than .csv; second, we’re
using a pipe for a delimiter, not a comma, so I want to avoid calling the file
.csv unless it truly has commas as a separator.

Remember to change the output directory to your preferred save location.

COPY us_counties_pop_est_2019
TO 'C:\YourDirectory\us_counties_export.txt'
WITH (FORMAT CSV, HEADER, DELIMITER '|');

Listing 5-8: Exporting an entire table with COPY

View the export file with a text editor to see the data in this format (I’ve
truncated the results):

state_fips|county_fips|region|state_name|county_name| --snip-
-
01|001|3|Alabama|Autauga County --snip--

The file includes a header row with column names, and all columns are
separated by the pipe delimiter.

Exporting Particular Columns
You don’t always need (or want) to export all your data: you might have
sensitive information, such as Social Security numbers or birthdates, that
need to remain private. Or, in the case of the census county data, maybe
you’re working with a mapping program and only need the county name
and its geographic coordinates to plot the locations. We can export only
these three columns by listing them in parentheses after the table name, as
shown in Listing 5-9. Of course, you must enter these column names
precisely as they’re listed in the data for PostgreSQL to recognize them.

COPY us_counties_pop_est_2019
 (county_name, internal_point_lat, internal_point_lon)
TO 'C:\YourDirectory\us_counties_latlon_export.txt'
WITH (FORMAT CSV, HEADER, DELIMITER '|');

Listing 5-9: Exporting selected columns from a table with COPY

Exporting Query Results
Additionally, you can add a query to COPY to fine-tune your output. In
Listing 5-10 we export the name and state of only those counties whose
names contain the letters mill, catching it in either uppercase or lowercase
by using the case-insensitive ILIKE and the % wildcard character we covered
in “Using LIKE and ILIKE with WHERE” in Chapter 3. Also note that for
this example, I’ve removed the DELIMITER keyword from the WITH clause.
As a result, the output will default to comma-separated values.

COPY (
 SELECT county_name, state_name
 FROM us_counties_pop_est_2019
 WHERE county_name ILIKE '%mill%'
)
TO 'C:\YourDirectory\us_counties_mill_export.csv'
WITH (FORMAT CSV, HEADER);

Listing 5-10: Exporting query results with COPY

After running the code, your output file should have nine rows with
county names including Miller, Roger Mills, and Vermillion:

county_name,state_name
Miller County,Arkansas
Miller County,Georgia
Vermillion County,Indiana
--snip--

Importing and Exporting Through pgAdmin
At times, the SQL COPY command won’t be able to handle certain imports
and exports. This typically happens when you’re connected to a
PostgreSQL instance running on a computer other than yours. A machine in
a cloud computing environment such as Amazon Web Services is a good
example. In that scenario, PostgreSQL’s COPY command will look for files
and file paths that exist on that remote machine; it can’t find files on your
local computer. To use COPY, you’d need to transfer your data to the remote
server, but you might not always have the rights to do that.

One workaround is to use pgAdmin’s built-in import/export wizard. In
pgAdmin’s object browser (the left vertical pane), locate the list of tables in
your analysis database by choosing
Databases▶analysis▶Schemas▶public▶Tables.

Next, right-click the table you want to import to or export from, and
select Import/Export. A dialog appears that lets you choose to either
import or export from that table, as shown in Figure 5-1.

Figure 5-1: The pgAdmin Import/Export dialog

To import, move the Import/Export slider to Import. Then click the three
dots to the right of the Filename box to locate your CSV file. From the
Format drop-down list, choose csv. Then adjust the header, delimiter,
quoting, and other options as needed. Click OK to import the data.

To export, use the same dialog and follow similar steps.
In Chapter 18, when we discuss using PostgreSQL from your computer’s

command line, we’ll explore another way to accomplish this using a utility
called psql and its \copy command. pgAdmin’s import/export wizard
actually uses \copy in the background but gives it a friendlier face.

Wrapping Up

Now that you’ve learned how to bring external data into your database, you
can start digging into a myriad of datasets, whether you want to explore one
of the thousands of publicly available datasets, or data related to your own
career or studies. Plenty of data is available in CSV format or a format
easily convertible to CSV. Look for data dictionaries to help you understand
the data and choose the right data type for each field.

The census data you imported as part of this chapter’s exercises will play
a starring role in the next chapter, in which we explore math functions with
SQL.

TRY IT YOURSELF

Continue your exploration of data import and export with these exercises. Remember
to consult the PostgreSQL documentation at
https://www.postgresql.org/docs/current/sql-copy.html for hints:
Write a WITH statement to include with COPY to handle the import of an imaginary text file

whose first couple of rows look like this:

id:movie:actor
50:#Mission: Impossible#:Tom Cruise

Using the table us_counties_pop_est_2019 you created and filled in this chapter, export
to a CSV file the 20 counties in the United States that had the most births. Make sure

you export only each county’s name, state, and number of births. (Hint: births are
totaled for each county in the column births_2019.)

Imagine you’re importing a file that contains a column with these values:

17519.668
20084.461
18976.335

Will a column in your target table with data type numeric(3,8) work for these values?
Why or why not?

https://www.postgresql.org/docs/current/sql-copy.html

6
BASIC MATH AND STATS WITH SQL

If your data includes any of the number
data types we explored in Chapter 4—
integers, decimals, or floating points—
sooner or later your analysis will
include some calculations. You might

want to know the average of all the dollar values in a
column or add values in two columns to produce a
total for each row. SQL can handle those calculations
and more, from basic math through advanced
statistics.

In this chapter, I’ll start with the basics and progress to math functions
and beginning statistics. I’ll also discuss calculations related to percentages
and percent change. For several of the exercises, we’ll use the 2019 US
Census population estimates data you imported in Chapter 5.

Understanding Math Operators and
Functions
Let’s start with the basic math you learned in grade school (all’s forgiven if
you’ve forgotten some of it). Table 6-1 shows nine math operators you’ll
use most often in your calculations. The first four (addition, subtraction,

multiplication, and division) are part of the ANSI SQL standard and are
implemented in all database systems. The others are PostgreSQL-specific
operators, although most other database managers likely have functions or
operators to perform those operations too. For example, the modulo
operator (%) works in Microsoft SQL Server and MySQL as well as with
PostgreSQL. If you’re using another database system, check its
documentation.

Table 6-1: Basic Math Operators

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division (returns the quotient only, no remainder)
% Modulo (returns just the remainder)
^ Exponentiation
|/ Square root
||/ Cube root
! Factorial

We’ll step through each of these operators by executing simple SQL
queries on plain numbers rather than operating on a table or another
database object. You can either enter the statements separately into the
pgAdmin query tool and execute them one at a time, or if you copied the
code for this chapter from the resources at
https://www.nostarch.com/practical-sql-2nd-edition/, you can highlight
each line and execute it.

Understanding Math and Data Types
As you work through the examples, note the data type of each result, which
is listed beneath each column name in the pgAdmin results grid. The type
returned for a calculation will vary depending on the operation and the data
type of the input numbers. When using an operator between two numbers—
addition, subtraction, multiplication, or division—the data type returned
follows this pattern:

https://www.nostarch.com/practical-sql-2nd-edition/

Two integers return an integer.
A numeric on either side or both sides of the operator returns a numeric.
Anything with a floating-point number returns a floating-point number of
type double precision.

However, the exponentiation, root, and factorial functions are different.
Each takes just one number, either before or after the operator, and returns
numeric and floating-point types, even when the input is an integer.

Sometimes the result’s data type will suit your needs; other times, you
may need to use CAST to change the data type, as mentioned in
“Transforming Values from One Type to Another with CAST” in Chapter 4,
such as if you need to feed the result into a function that takes a certain
type. I’ll note those times as we work through the book.

NOTE

PostgreSQL defines the arguments that operators accept, the
internal functions they call, and the data types they return in a table
called pg_operator. For example, the + operator is defined once for
accepting integers, again for accepting numerics, and so on.

Adding, Subtracting, and Multiplying
Let’s start with simple integer addition, subtraction, and multiplication.
Listing 6-1 shows three examples, each with the SELECT keyword followed
by the math formula. Since Chapter 3, we’ve used SELECT for its main
purpose: to retrieve data from a table. But with PostgreSQL, Microsoft’s
SQL Server, MySQL, and some other database management systems, you
can omit the table name and perform simple math and string operations, as
we do here. For readability’s sake, I recommend you use a single space
before and after the math operator; although using spaces isn’t strictly
necessary for your code to work, it is good practice.

1 SELECT 2 + 2;
2 SELECT 9 - 1;
3 SELECT 3 * 4;

Listing 6-1: Basic addition, subtraction, and multiplication with SQL

None of these statements is rocket science, so you shouldn’t be surprised
that running SELECT 2 + 2; 1 in the Query Tool shows a result of 4.
Similarly, the examples for subtraction 2 and multiplication 3 yield what
you’d expect: 8 and 12. The output displays in a column, as with any query
result. But because we’re not querying a table and specifying a column, the
results appear beneath a ?column? name, signifying an unknown column:

?column?

 4

That’s okay. We’re not affecting any data in a table, just displaying a
result. If you want to display a column name, you can provide an alias, as in
SELECT 3 * 4 AS result;.

Performing Division and Modulo
Division with SQL gets a little trickier because of the difference between
math with integers and math with decimals. Add in modulo, an operator that
returns just the remainder in a division operation, and the results can be
confusing. So, to make it clear, Listing 6-2 shows four examples.

1 SELECT 11 / 6;
2 SELECT 11 % 6;
3 SELECT 11.0 / 6;
4 SELECT CAST(11 AS numeric(3,1)) / 6;

Listing 6-2: Integer and decimal division with SQL

The / operator 1 divides the integer 11 by another integer, 6. If you do
that math in your head, you know the answer is 1 with a remainder of 5.
However, running this query yields 1, which is how SQL handles division
of one integer by another—by reporting only the integer quotient without
any remainder. If you want to retrieve the remainder as an integer, you must
perform the same calculation using the modulo operator %, as in 2. That

statement returns just the remainder, in this case 5. No single operation
today will provide you with both the quotient and the remainder as integers,
though an enterprising developer could add that functionality in the future.

Modulo is useful for more than just fetching a remainder: you can also
use it as a test condition. For example, to check whether a number is even,
you can test it using the % 2 operation. If the result is 0 with no remainder,
the number is even.

There are two ways to divide two numbers and have the result return as a
numeric type. First, if one or both of the numbers is a numeric, the result
will by default be expressed as a numeric. That’s what happens when I
divide 11.0 by 6 3. Execute that query, and the result is 1.83333. The
number of decimal digits displayed may vary according to your
PostgreSQL and system settings.

Second, if you’re working with data stored only as integers and need to
force decimal division, you can use CAST to convert one of the integers to a
numeric type 4. Executing this also returns 1.83333.

Using Exponents, Roots, and Factorials
Beyond the basics, PostgreSQL-flavored SQL also provides operators and
functions to square, cube, or otherwise raise a base number to an exponent,
as well as find roots or the factorial of a number. Listing 6-3 shows these
operations in action.

1 SELECT 3 ^ 4;
2 SELECT |/ 10;

SELECT sqrt(10);

3 SELECT ||/ 10;
4 SELECT factorial(4);

SELECT 4 !;

Listing 6-3: Exponents, roots, and factorials with SQL

The exponentiation operator (^) allows you to raise a given base number
to an exponent, as in 1, where 3 ^ 4 (colloquially, we’d call that three to
the fourth power) returns 81.

You can find the square root of a number in two ways: using the |/
operator 2 or the sqrt(n) function. For a cube root, use the ||/ operator 3.
Both are prefix operators, named because they come before a single value.

To find the factorial of a number, you can use the factorial(n) function
or the ! operator. The !, available only in PostgreSQL versions 13 and
earlier, is a suffix operator, coming after a single value. You’ll use factorials
in many places in math, but perhaps the most common is to determine how
many ways a number of items can be ordered. Say you have four
photographs. How many ways could you order them on a wall? To find the
answer, you’d calculate the factorial by starting with the number of items
and multiplying it by all the smaller positive integers. So, at 4, the function
factorial(4) is equivalent to 4 × 3 × 2 × 1. That’s 24 ways to order four
photos. No wonder decorating takes so long sometimes!

Again, these operators are specific to PostgreSQL; they’re not part of the
SQL standard. If you’re using another database application, check its
documentation for how it implements these operations.

Minding the Order of Operations
You may recall from early math lessons what the order of operations, or
operator precedence, is on a mathematical expression. Which calculations
does SQL execute first? Not surprisingly, SQL follows the established math
standard. For the PostgreSQL operators discussed so far, the order is as
follows:

. Exponents and roots

. Multiplication, division, modulo

. Addition and subtraction

Given these rules, you’ll need to encase an operation in parentheses if
you want to calculate it in a different order. For example, the following two
expressions yield different results:

SELECT 7 + 8 * 9;
SELECT (7 + 8) * 9;

The first expression returns 79 because the multiplication operation
receives precedence and is processed before the addition. The second
returns 135 because the parentheses force the addition operation to occur
first.

Here’s a second example using exponents:

SELECT 3 ^ 3 - 1;
SELECT 3 ^ (3 - 1);

Exponent operations take precedence over subtraction, so without
parentheses the entire expression is evaluated left to right and the operation
to find 3 to the power of 3 happens first. Then 1 is subtracted, returning 26.
In the second example, the parentheses force the subtraction to happen first,
so the operation results in 9, which is 3 to the power of 2.

Keep operator precedence in mind to avoid having to correct your
analysis later!

Doing Math Across Census Table Columns
Let’s try to use the most frequently used SQL math operators on real data
by digging into the 2019 US Census population estimates table,
us_counties_pop_est_2019, that you imported in Chapter 5. Instead of
using numbers in queries, we’ll use the names of the columns that contain
the numbers. When we execute the query, the calculation will occur on each
row of the table.

To refresh your memory about the data, run the script in Listing 6-4. It
should return 3,142 rows showing the name and state of each county in the
United States plus the 2019 components of population change: births,
deaths, and international and domestic migration.

SELECT county_name AS1 county,
 state_name AS state,
 pop_est_2019 AS pop,
 births_2019 AS births,
 deaths_2019 AS deaths,
 international_migr_2019 AS int_migr,
 domestic_migr_2019 AS dom_migr,

 residual_2019 AS residual
FROM us_counties_pop_est_2019;

Listing 6-4: Selecting census population estimate columns with aliases

This query doesn’t return all columns in the table, just the ones with data
related to the population estimates. In addition, I employ the AS keyword 1
to give each column a shorter alias in the result set. Because all the data in
this query is from 2019, I’m eliminating the year from the names of the
results columns to reduce scrolling in the pgAdmin output. It’s an arbitrary
decision that you can adjust.

Adding and Subtracting Columns
Now, let’s try a simple calculation using two of the columns. Listing 6-5
subtracts the number of deaths from the number of births in each county, a
measure the census refers to as natural increase. Let’s see what this shows.

SELECT county_name AS county,
 state_name AS state,
 births_2019 AS births,
 deaths_2019 AS deaths,

 1 births_2019 - deaths_2019 AS natural_increase
FROM us_counties_pop_est_2019
ORDER BY state_name, county_name;

Listing 6-5: Subtracting two columns in us_counties_pop_est_2019

Providing births_2019 - deaths_2019 1 as one of the columns in the
SELECT statement handles the calculation. Again, I use the AS keyword to
provide a readable alias for the column. If you don’t provide an alias,
PostgreSQL uses the label ?column?, which is far less than helpful.

Run the query to see the results. The first few rows should resemble this
output:

county state births deaths
natural_increase
-------------- ------- ------ ------ ---------------
-
Autauga County Alabama 624 541 83

Baldwin County Alabama 2304 2326 -22
Barbour County Alabama 256 312 -56
Bibb County Alabama 240 252 -12

A quick check with a calculator or pencil and paper confirms that the
natural_increase column equals the difference between the two columns
you subtracted. Excellent! Notice as you scroll through the output that some
counties have more births than deaths, while others have the opposite.
Typically, counties with a younger mix of residents see births outpace
deaths; those with an older set of people—think rural areas and retirement
hotspots—tend to see a greater number of deaths than births.

Now, let’s build on this to test our data and validate that we imported
columns correctly. The population estimate for 2019 should equal the sum
of the 2018 estimate and the columns about births, deaths, migration, and
residual factor. The code in Listing 6-6 should show that it does.

SELECT county_name AS county,
 state_name AS state,

 1 pop_est_2019 AS pop,
 2 pop_est_2018 + births_2019 - deaths_2019 +
 international_migr_2019 + domestic_migr_2019 +
 residual_2019 AS components_total,

 3 pop_est_2019 - (pop_est_2018 + births_2019 -
deaths_2019 +
 international_migr_2019 + domestic_migr_2019 +
 residual_2019) AS difference
FROM us_counties_pop_est_2019

4 ORDER BY difference DESC;

Listing 6-6: Checking census data totals

This query includes the 2019 population estimate 1, followed by a
calculation adding the components to the 2018 population estimate as
component_total 2. The 2018 estimate plus the components should equal
the 2019 estimate. Rather than manually check, we also add a column that
subtracts the components total from the 2019 estimate 3. That column,
named difference, should contain a zero in each row if all the data is in
the right place. To avoid having to scan all 3,142 rows, we add an ORDER BY

clause 4 on the named column. Any rows showing a difference should
appear at the top or bottom of the query result.

Run the query; the first few rows should provide this result:

 county state pop components_total difference
-------------- ------- ------ ---------------- ----------
Autauga County Alabama 55869 55869 0
Baldwin County Alabama 223234 223234 0
Barbour County Alabama 24686 24686 0

With the difference column showing zeros, we can be confident that
our import was clean. Whenever I encounter or import a new dataset, I like
to perform little tests like this. They help me better understand the data and
head off any potential issues before I dig into analysis.

Finding Percentages of the Whole
One way to spot differences in the items in a dataset is to calculate the
percentage of the whole that a particular data point represents. Then, you
can glean meaningful insights—and sometimes surprises—by comparing
that percentage across all the items in your dataset.

To figure out the percentage of the whole, divide the number in question
by the total. For example, if you had a basket of 12 apples and used 9 in a
pie, that would be 9 / 12 or 0.75—commonly expressed as 75 percent.

We’ll try this on the census population estimates using the two columns
that represent the size of each county’s geographical features. The columns
area_land and area_water show a county’s land and water measurement in
square meters. Using the code in Listing 6-7, we can calculate for each
county the percentage of its area that is made up of water.

SELECT county_name AS county,
 state_name AS state,

 1 area_water::numeric / (area_land + area_water) * 100 AS
pct_water
FROM us_counties_pop_est_2019
ORDER BY pct_water DESC;

Listing 6-7: Calculating the percent of a county’s area that is water

The key piece of this query divides area_water by the sum of area_land
and area_water, which together represent the total area of the county 1.

If we use the data as their original integer types, we won’t get the
fractional result we need: every row will display a result of 0, the quotient.
Instead, we force decimal division by casting one of the integers to the
numeric type. Here, for brevity, we use the PostgreSQL-specific double-
colon notation after the first reference to area_water, but you can also use
the ANSI SQL standard CAST function covered in Chapter 4. Finally, we
multiply the result by 100 to present the result as a fraction of 100—the
way most people understand percentages.

By sorting from highest to lowest percentage, the top of the output is as
follows:

 county state pct_water
------------------ ------------- -----------------------
Keweenaw County Michigan 90.94723747453215452900
Leelanau County Michigan 86.28858968116583102500
Nantucket County Massachusetts 84.79692499185512352300
St. Bernard Parish Louisiana 82.48371149202893908400
Alger County Michigan 81.87221940647501072300

If you check the Wikipedia entry for Keweenaw County, you’ll discover
the reason why its total area is more than 90 percent water: its land area
includes an island in Lake Superior, and the lake’s waters are included in
the total reported by the census. Add that to your trivia collection!

Tracking Percent Change
Another key indicator in data analysis is percent change: how much bigger,
or smaller, is one number than another? Percent change calculations are
often employed when analyzing change over time, and they’re particularly
useful for comparing change among similar items.

Some examples include the following:
The year-over-year change in the number of vehicles sold by each
automobile maker
The monthly change in subscriptions to each email list owned by a
marketing firm

The annual increase or decrease in enrollment at schools across a nation
The formula to calculate percent change can be expressed like this:

(new number – old number) / old number

So, if you own a lemonade stand and sold 73 glasses of lemonade today
and 59 glasses yesterday, you’d figure the day-to-day percent change like
this:

(73 – 59) / 59 = .237 = 23.7%

Let’s try this with a small collection of test data related to spending in
departments of a hypothetical local government. Listing 6-8 calculates
which departments had the greatest percentage increase and decrease.

1 CREATE TABLE percent_change (
 department text,
 spend_2019 numeric(10,2),
 spend_2022 numeric(10,2)
);

2 INSERT INTO percent_change
VALUES
 ('Assessor', 178556, 179500),
 ('Building', 250000, 289000),
 ('Clerk', 451980, 650000),
 ('Library', 87777, 90001),
 ('Parks', 250000, 223000),
 ('Water', 199000, 195000);

SELECT department,
 spend_2019,
 spend_2022,

 3 round((spend_2022 - spend_2019) /
 spend_2019 * 100, 1) AS pct_change
FROM percent_change;

Listing 6-8: Calculating percent change

We create a small table called percent_change 1 and insert six rows 2
with data on department spending for the years 2019 and 2022. The percent

change formula 3 subtracts spend_2019 from spend_2022 and then divides
by spend_2019. We multiply by 100 to express the result as a portion of
100.

To simplify the output, this time I’ve added the round() function to
remove all but one decimal place. The function takes two arguments: the
column or expression to be rounded and the number of decimal places to
display. Because both numbers are type numeric, the result will also be a
numeric.

The script creates this result:

department spend_2019 spend_2022 pct_change
---------- ---------- ---------- ----------
Assessor 178556.00 179500.00 0.5
Building 250000.00 289000.00 15.6
Clerk 451980.00 650000.00 43.8
Library 87777.00 90001.00 2.5
Parks 250000.00 223000.00 -10.8
Water 199000.00 195000.00 -2.0

Now, it’s just a matter of finding out why the Clerk department’s
spending has outpaced others in the town.

Using Aggregate Functions for Averages and
Sums
So far, we’ve performed math operations across columns in each row of a
table. SQL also lets you calculate a result from values within the same
column using aggregate functions. You can see a full list of PostgreSQL
aggregates, which calculate a single result from multiple inputs, at
https://www.postgresql.org/docs/current/functions-aggregate.html. Two of
the most-used aggregate functions in data analysis are avg() and sum().

Returning to the us_counties_pop_est_2019 census table, it’s
reasonable to want to calculate the total population of all counties plus the
average population of all counties. Using avg() and sum() on column
pop_est_2019 (the population estimate for 2019) makes it easy, as shown in

https://www.postgresql.org/docs/current/functions-aggregate.html

Listing 6-9. Again, we use the round() function to remove numbers after
the decimal point in the average calculation.

SELECT sum(pop_est_2019) AS county_sum,
 round(avg(pop_est_2019), 0) AS county_average
FROM us_counties_pop_est_2019;

Listing 6-9: Using the sum() and avg() aggregate functions

This calculation produces the following result:

county_sum county_average
---------- --------------
 328239523 104468

The estimated population for all counties in the United States in 2019
added up to approximately 328.2 million, and the average of the county
population estimates was 104,468.

Finding the Median
The median value in a set of numbers is as important an indicator, if not
more so, than the average. Here’s the difference between median and
average:
Average The sum of all the values divided by the number of values
Median The “middle” value in an ordered set of values

Median is important in data analysis because it reduces the effect of
outliers. Consider this example: let’s say six kids, ages 10, 11, 10, 9, 13, and
12, go on a field trip. It’s easy to add the ages and divide by six to get the
group’s average age:

(10 + 11 + 10 + 9 + 13 + 12) / 6 = 10.8

Because the ages fall within a narrow range, the 10.8 average is a good
representation of the group. But averages are less helpful when the values
are bunched, or skewed, toward one end of the distribution, or if the group
includes outliers.

For example, say an older chaperone joins the field trip. With ages of 10,
11, 10, 9, 13, 12, and 46, the average age increases considerably:

(10 + 11 + 10 + 9 + 13 + 12 + 46) / 7 = 15.9

Now the average doesn’t represent the group well because the outlier
skews it, making it an unreliable indicator.

It’s better in this case to find the median, the midpoint in an ordered list
of values—the point at which half the values are more and half are less.
Using the field trip, we order the attendees’ ages from lowest to highest:

9, 10, 10, 11, 12, 13, 46

The middle (median) value is 11. Given this group, the median of 11 is a
better picture of the typical age than the average of 15.9.

If the set of values is an even number, you take the average of the two
middle numbers to find the median. Let’s add another student (age 12) to
the field trip:

9, 10, 10, 11, 12, 12, 13, 46

Now, the two middle values are 11 and 12. To find the median, we
average them: 11.5.

Medians are reported frequently in financial news. Reports on housing
prices often use medians because a few sales of McMansions in a ZIP code
that is otherwise modest can make averages useless. The same goes for
sports player salaries: one or two superstars can skew a team’s average.

A good test is to calculate the average and the median for a group of
values. If they’re close, the group is probably normally distributed (the
familiar bell curve), and the average is useful. If they’re far apart, the values
are not normally distributed, and the median is the better representation.

Finding the Median with Percentile Functions
PostgreSQL (as with most relational databases) does not have a built-in
median() function like you’d find in Excel or other spreadsheet programs.

It’s also not included in the ANSI SQL standard. Instead we can use a SQL
percentile function to find the median and use quantiles or cut points to
divide a group of numbers into equal sizes. Percentile functions are part of
standard ANSI SQL.

In statistics, percentiles indicate the point in an ordered set of data below
which a certain percentage of the data is found. For example, a doctor might
tell you that your height places you in the 60th percentile for an adult in
your age group. That means 60 percent of people are shorter than you.

The median is equivalent to the 50th percentile—again, half the values
are below and half above. There are two versions of the percentile function
—percentile_cont(n) and percentile_disc(n). Both functions are part
of the ANSI SQL standard and are present in PostgreSQL, Microsoft SQL
Server, and other databases.

The percentile_cont(n) function calculates percentiles as continuous
values. That is, the result does not have to be one of the numbers in the
dataset but can be a decimal value in between two of the numbers. This
follows the methodology for calculating medians on an even number of
values, where the median is the average of the two middle numbers. The
percentile_disc(n) function returns only discrete values, meaning the
result will be rounded to one of the numbers in the set.

In Listing 6-10 we make a test table with six numbers and find the
percentiles.

CREATE TABLE percentile_test (
 numbers integer
);

INSERT INTO percentile_test (numbers) VALUES
 (1), (2), (3), (4), (5), (6);

SELECT

 1 percentile_cont(.5)
 WITHIN GROUP (ORDER BY numbers),

 2 percentile_disc(.5)
 WITHIN GROUP (ORDER BY numbers)
FROM percentile_test;

Listing 6-10: Testing SQL percentile functions

In both the continuous 1 and discrete 2 percentile functions, we enter .5
to represent the 50th percentile, equivalent to the median. Running the code
returns the following:

percentile_cont percentile_disc
--------------- ---------------
 3.5 3

The percentile_cont() function returned what we’d expect the median
to be: 3.5. But because percentile_disc() calculates discrete values, it
reports 3, the last value in the first 50 percent of the numbers. Because the
accepted method of calculating medians is to average the two middle values
in an even-numbered set, use percentile_cont(.5) to find a median.

Finding Median and Percentiles with Census Data
Our census data can show how a median tells a different story than an
average. Listing 6-11 adds percentile_cont() alongside the sum() and
avg() aggregates we’ve used so far to find the sum, average, and median
population of all counties.

SELECT sum(pop_est_2019) AS county_sum,
 round(avg(pop_est_2019), 0) AS county_average,
 percentile_cont(.5)
 WITHIN GROUP (ORDER BY pop_est_2019) AS county_median
FROM us_counties_pop_est_2019;

Listing 6-11: Using sum(), avg(), and percentile_cont() aggregate
functions

Your result should equal the following:

county_sum county_avg county_median
---------- ---------- -------------
 328239523 104468 25726

The median and average are far apart, which shows that averages can
mislead. As of 2019 estimates, half the counties in America had fewer than
25,726 people, whereas half had more. If you gave a presentation on US
demographics and told the audience that the “average county in America

has 104,468 people,” they’d walk away with a skewed picture of reality.
More than 40 counties were estimated to have a million or more people in
2019, and Los Angeles County had more than 10 million. That pushed the
average higher.

Finding Other Quantiles with Percentile Functions
You can also slice data into smaller equal groups for analysis. Most
common are quartiles (four equal groups), quintiles (five groups), and
deciles (10 groups). To find any individual value, you can just plug it into a
percentile function. To find the value marking the first quartile or the lowest
25 percent of data, you’d use a value of .25:

percentile_cont(.25)

However, entering values one at a time is laborious if you want to
generate multiple cut points. Instead, you can pass values into
percentile_cont() using an array, a list of items.

Listing 6-12 shows how to calculate all four quartiles at once.

SELECT percentile_cont(1ARRAY[.25,.5,.75])
 WITHIN GROUP (ORDER BY pop_est_2019) AS quartiles
FROM us_counties_pop_est_2019;

Listing 6-12: Passing an array of values to percentile_cont()

In this example, we create our cut points by enclosing values in an array
constructor 1 called ARRAY[]. An array constructor is an expression that
builds an array from the elements included between the square brackets.
Inside the brackets, we provide comma-separated values representing the
three points at which to cut to create four quartiles. Run the query, and you
should see this output:

quartiles

{10902.5,25726,68072.75}

Because we passed in an array, PostgreSQL returns an array, denoted in
the results by curly brackets. Each quartile is separated by commas. The
first quartile is 10,902.5, which means 25 percent of counties have a
population that is equal to or lower than this value. The second quartile is
the same as the median: 25,726. The third quartile is 68,072.75, meaning
the largest 25 percent of counties have at least this large of a population.
(When reporting these, we’d of course round up or down, as we don’t deal
in fractions when talking about people.)

Arrays are defined in the ANSI SQL standard, and our use here is just
one of several ways you work with arrays in PostgreSQL. You can, for
example, define a table column as an array of a particular data type. That’s
useful if you want store multiple values in a single database column, such
as a collection of tags for a blog post, instead of storing them in a separate
table. See the PostgreSQL documentation at
https://www.postgresql.org/docs/current/arrays.html for examples of
declaring, searching, and modifying arrays.

Arrays also come with a host of functions (noted for PostgreSQL at
https://www.postgresql.org/docs/current/functions-array.html) that allow
you to perform tasks such as adding or removing values or counting the
elements. A handy function for working with the result returned in Listing
6-12 is unnest(), which makes the array easier to read by turning it into
rows. Listing 6-13 shows the code.

SELECT unnest(
 percentile_cont(ARRAY[.25,.5,.75])
 WITHIN GROUP (ORDER BY pop_est_2019)
) AS quartiles
FROM us_counties_pop_est_2019;

Listing 6-13: Using unnest() to turn an array into rows

Now the output should be in rows:

quartiles

 10902.5
 25726
 68072.75

https://www.postgresql.org/docs/current/arrays.html
https://www.postgresql.org/docs/current/functions-array.html

If we were computing deciles, pulling them from the resulting array and
displaying them in rows would be especially helpful.

Finding the Mode
We can find the mode, the value that appears most often, using the
PostgreSQL mode() function. The function is not part of standard SQL and
has a syntax similar to the percentile functions. Listing 6-14 shows a mode()
calculation on births_2019, the column showing the number of babies
born.

SELECT mode() WITHIN GROUP (ORDER BY births_2019)
FROM us_counties_pop_est_2019;

Listing 6-14: Finding the most frequent value with mode()

The result is 86, a number of births shared by 16 counties.

Wrapping Up
Working with numbers is a key step in acquiring meaning from your data,
and with the math skills covered in this chapter, you’re ready to handle the
foundations of numerical analysis with SQL. Later in the book, you’ll learn
about deeper statistical concepts including regression and correlation, but at
this point you’ve mastered the basics of sums, averages, and percentiles.
You’ve also learned how a median can be a fairer assessment of a group of
values than an average. That alone can help you avoid inaccurate
conclusions.

In the next chapter, I’ll introduce you to the power of joining data in two
or more tables to increase your options for data analysis. We’ll use the 2019
US Census data you’ve already loaded into the analysis database and
explore additional datasets.

TRY IT YOURSELF

Here are three exercises to test your SQL math skills:
Write a SQL statement for calculating the area of a circle whose radius is 5 inches. (If

you don’t remember the formula, it’s an easy web search.) Do you need parentheses in
your calculation? Why or why not?

Using the 2019 US Census county estimates data, calculate a ratio of births to deaths
for each county in New York state. Which region of the state generally saw a higher

ratio of births to deaths in 2019?
Was the 2019 median county population estimate higher in California or New York?

7
JOINING TABLES IN A RELATIONAL

DATABASE

In Chapter 2, I introduced the concept
of a relational database, an application
that supports data stored across
multiple, related tables. In a relational
model, each table typically holds data

on a single entity—such as students, cars, purchases,
houses—and each row in the table describes one of
those entities. A process known as a table join allows
us to link rows in one table to rows in other tables.

The concept of relational databases came from the British computer
scientist Edgar F. Codd. While working for IBM in 1970, he published a
paper called “A Relational Model of Data for Large Shared Data Banks.”
His ideas revolutionized database design and led to the development of
SQL. With the relational model, you can build tables that eliminate
duplicate data, are easier to maintain, and provide for increased flexibility
in writing queries to get just the data you want.

Linking Tables Using JOIN

To connect tables in a query, we use a JOIN ... ON construct (or one of the
other JOIN variants I’ll cover in this chapter). A JOIN, which is part of the
ANSI SQL standard, links one table to another in the database using a
Boolean value expression in the ON clause. A commonly used syntax tests
for equality and commonly takes this form:

SELECT *
FROM table_a JOIN table_b
ON table_a.key_column = table_b.foreign_key_column

This is similar to the basic SELECT you’ve already learned, but instead of
naming one table in the FROM clause, we name a table, give the JOIN
keyword, and then name a second table. The ON clause follows, where we
place an expression using the equals comparison operator. When the query
runs, it returns rows from both tables where the expression in the ON clause
evaluates to true, meaning values in the specified columns are equal.

You can use any expression that evaluates to the Boolean results true or
false. For example, you could match where values from one column are
greater than or equal to values in the other:

ON table_a.key_column >= table_b.foreign_key_column

That’s rare, but it’s an option if your analysis requires it.

Relating Tables with Key Columns
Consider this example of relating tables with key columns: imagine you’re
a data analyst with the task of checking on a public agency’s payroll
spending by department. You file a Freedom of Information Act request for
that agency’s salary data, expecting to receive a simple spreadsheet listing
each employee and their salary, arranged like this:

dept location first_name last_name salary
---- -------- ---------- --------- ------
IT Boston Julia Reyes 115300
IT Boston Janet King 98000
Tax Atlanta Arthur Pappas 72700
Tax Atlanta Michael Taylor 89500

But that’s not what arrives. Instead, the agency sends you a data dump
from its payroll system: a dozen CSV files, each representing one table in
its database. You read the document explaining the data layout (be sure to
always ask for it!) and start to make sense of the columns in each table. Two
tables stand out: one named employees and another named departments.

Using the code in Listing 7-1, let’s create versions of these tables, insert
rows, and examine how to join the data in both tables. Using the analysis
database you’ve created for these exercises, run all the code, and then look
at the data either by using a basic SELECT statement or by clicking the table
name in pgAdmin and selecting View/Edit Data▶All Rows.

CREATE TABLE departments (
 dept_id integer,
 dept text,
 city text,

 1 CONSTRAINT dept_key PRIMARY KEY (dept_id),
 2 CONSTRAINT dept_city_unique UNIQUE (dept, city)
);

CREATE TABLE employees (
 emp_id integer,
 first_name text,
 last_name text,
 salary numeric(10,2),

 3 dept_id integer REFERENCES departments (dept_id),
 4 CONSTRAINT emp_key PRIMARY KEY (emp_id)
);

INSERT INTO departments
VALUES
 (1, 'Tax', 'Atlanta'),
 (2, 'IT', 'Boston');

INSERT INTO employees
VALUES
 (1, 'Julia', 'Reyes', 115300, 1),
 (2, 'Janet', 'King', 98000, 1),
 (3, 'Arthur', 'Pappas', 72700, 2),
 (4, 'Michael', 'Taylor', 89500, 2);

Listing 7-1: Creating the departments and employees tables

The two tables follow Codd’s relational model in that each describes
attributes about a single entity: the agency’s departments and employees. In
the departments table, you should see the following contents:

dept_id dept city
------- ---- -------
 1 Tax Atlanta
 2 IT Boston

The dept_id column is the table’s primary key. A primary key is a
column or collection of columns whose values uniquely identify each row
in a table. A valid primary key column enforces certain constraints:
The column or collection of columns must have a unique value for each
row.
The column or collection of columns can’t have missing values.

You define the primary key for departments 1 and employees 4 using a
CONSTRAINT keyword, which I’ll cover in depth with additional constraint
types in Chapter 8. The values in dept_id uniquely identify each row in
departments, and although this example contains only a department name
and city, this table would likely include additional information, such as an
address or contact information.

The employees table should have the following contents:

emp_id first_name last_name salary dept_id
------ ---------- --------- --------- -------
 1 Julia Reyes 115300.00 1
 2 Janet King 98000.00 1
 3 Arthur Pappas 72700.00 2
 4 Michael Taylor 89500.00 2

The values in emp_id uniquely identify each row in the employees table.
To identify which department each employee works in, the table includes a
dept_id column. The values in this column refer to values in the
departments table’s primary key. We call this a foreign key, which you add
as a constraint 3 when creating the table. A foreign key constraint requires
that its values already exist in the columns it references. Often, that’s
another table’s primary key, but it can reference any columns that have

unique values for each row. So, values in dept_id in the employees table
must exist in dept_id in the departments table; otherwise, you can’t add
them. This helps enforce the integrity of the data. Unlike a primary key, a
foreign key column can be empty, and it can contain duplicate values.

In this example, the dept_id associated with the employee Julia Reyes
is 1; this refers to the value of 1 in the departments table’s primary key,
dept_id. That tells us that Julia Reyes is part of the Tax department
located in Atlanta.

NOTE

Primary key values need to be unique only within a table. That’s
why it’s okay for both the employees table and the departments
table to have primary key values using the same numbers.

The departments table also includes a UNIQUE constraint, which I’ll
discuss in more depth in “The UNIQUE Constraint” in the next chapter.
Briefly, it guarantees that values in a column, or a combination of values in
more than one column, are unique. Here, it requires that each row have a
unique pair of values for dept and city 2, which helps avoid duplicate data
—the table won’t have two departments in Atlanta named Tax, for example.
Often, you can use such unique combinations to create a natural key for a
primary key, which we’ll also discuss in the next chapter.

You might ask: what’s the advantage of breaking data into components
like this? Well, consider what this sample of data would look like if you had
received it the way you initially thought you would, all in one table:

dept location first_name last_name salary
---- -------- ---------- --------- ------
IT Boston Julia Reyes 115300
IT Boston Janet King 98000
Tax Atlanta Arthur Pappas 72700
Tax Atlanta Michael Taylor 89500

First, when you combine data from various entities in one table,
inevitably you have to repeat information. This happens here: the
department name and location are spelled out for each employee. This may

be acceptable when the table consists of four rows like this, or even 4,000.
But when a table holds millions of rows, repeating lengthy strings is
redundant and wastes precious space.

Second, cramming all that data into one table makes managing the data
difficult. What if the Marketing department changes its name to Brand
Marketing? Each row in the table would require an update, which can
introduce errors if someone mistakenly updates some but not all the rows.
In this model, an update to a department name is much simpler—just
change one row in a table.

Finally, the fact that information is organized, or normalized, across
several tables doesn’t prevent us from viewing it as a whole. We can always
query the data using JOIN to bring columns from tables together.

Now that you know the basics of how tables can relate, let’s look at how
to join them in a query.

Querying Multiple Tables Using JOIN
When you join tables in a query, the database connects rows in both tables
where the columns you specified for the join have values that result in the
ON clause expression returning true. The query results then include
columns from both tables if you requested them as part of the query. You
also can use columns from the joined tables to filter results using a WHERE
clause.

Queries that join tables are similar in syntax to basic SELECT statements.
The difference is that the query also specifies the following:
The tables and columns to join, using a SQL JOIN ... ON construct
The type of join to perform using variations of the JOIN keyword

Let’s look at the JOIN ... ON construct syntax first and then explore
various types of joins. To join the example employees and departments
tables and see all the related data from both, start by writing a query like the
one in Listing 7-2.

1 SELECT *
2 FROM employees JOIN departments
3 ON employees.dept_id = departments.dept_id

ORDER BY employees.dept_id;

Listing 7-2: Joining the employees and departments tables

In the example, you include an asterisk wildcard with the SELECT
statement to include all columns from all tables used in the query 1. Next,
in the FROM clause, you place the JOIN keyword 2 between the two tables
you want to link. Finally, you specify the expression to evaluate using the
ON clause 3. For each table, you provide the table name, a period, and the
column that contains the key values. An equal sign goes between the two
table and column names.

When you run the query, the results include all values from both tables
where values in the dept_id columns match. In fact, even the dept_id
column appears twice because you selected all columns of both tables:

emp_id first_name last_name salary dept_id
dept_id dept city
------ ---------- --------- --------- ------- -----
-- ---- -------
 1 Julia Reyes 115300.00 1
1 Tax Atlanta
 2 Janet King 98000.00 1
1 Tax Atlanta
 3 Arthur Pappas 72700.00 2
2 IT Boston
 4 Michael Taylor 89500.00 2
2 IT Boston

So, even though the data lives in two tables, each with a focused set of
columns, you can query those tables to pull the relevant data back together.
In “Selecting Specific Columns in a Join” later in this chapter, I’ll show you
how to retrieve only the columns you want from both tables.

Understanding JOIN Types

There’s more than one way to join tables in SQL, and the type of join you’ll
use depends on how you want to retrieve data. The following list describes
the different types of joins. While reviewing each, it’s helpful to think of
two tables side by side, one on the left of the JOIN keyword and the other on
the right. A data-driven example of each join follows the list:
JOIN Returns rows from both tables where matching values are found in the
joined columns of both tables. Alternate syntax is INNER JOIN.
LEFT JOIN Returns every row from the left table. When SQL finds a row
with a matching value in the right table, values from that row are included
in the results. Otherwise, no values from the right table are displayed.
RIGHT JOIN Returns every row from the right table. When SQL finds a row
with a matching value in the left table, values from that row are included in
the results. Otherwise, no values from the left table are displayed.
FULL OUTER JOIN Returns every row from both tables and joins the rows
where values in the joined columns match. If there’s no match for a value in
either the left or right table, the query result contains no values for that
table.
CROSS JOIN Returns every possible combination of rows from both tables.

Let’s use data to see these joins in action. Say you have two simple tables
that hold names of schools for a district that is planning future enrollments:
district_2020 and district_2035. There are four rows in
district_2020:

id school_2020
-- ------------------------
 1 Oak Street School
 2 Roosevelt High School
 5 Dover Middle School
 6 Webutuck High School

There are five rows in district_2035:

id school_2035
-- ---------------------
 1 Oak Street School
 2 Roosevelt High School
 3 Morrison Elementary

 4 Chase Magnet Academy
 6 Webutuck High School

Notice that the district expects changes over time. Only schools with an
id of 1, 2, and 6 exist in both tables, while others appear in just one of them.
This scenario is common, and a common first task for a data analyst—
especially if you have tables with many more rows than these—is to use
SQL to identify which schools are present in both tables. Using different
joins can help you find those schools, plus other details.

Again, using your analysis database, run the code in Listing 7-3 to build
and populate these two tables.

CREATE TABLE district_2020 (

 1 id integer CONSTRAINT id_key_2020 PRIMARY KEY,
 school_2020 text
);

CREATE TABLE district_2035 (

 2 id integer CONSTRAINT id_key_2035 PRIMARY KEY,
 school_2035 text
);

3 INSERT INTO district_2020 VALUES
 (1, 'Oak Street School'),
 (2, 'Roosevelt High School'),
 (5, 'Dover Middle School'),
 (6, 'Webutuck High School');

INSERT INTO district_2035 VALUES
 (1, 'Oak Street School'),
 (2, 'Roosevelt High School'),
 (3, 'Morrison Elementary'),
 (4, 'Chase Magnet Academy'),
 (6, 'Webutuck High School');

Listing 7-3: Creating two tables to explore JOIN types

We create and fill two tables: the declarations for these should by now
look familiar, but there’s one new element: we add a primary key to each
table. After the declaration for the district_2020 id column 1 and the
district_2035 id column 2, the keywords CONSTRAINT key_name PRIMARY

KEY indicate that those columns will serve as the primary key for their table.
That means for each row in both tables, the id column must be filled and
contain a value that is unique for each row in that table. Finally, we use the
familiar INSERT statements 3 to add the data to the tables.

JOIN
We use JOIN, or INNER JOIN, when we want to return only rows from both
tables where values match in the columns we used for the join. To see an
example of this, run the code in Listing 7-4, which joins the two tables you
just made.

SELECT *
FROM district_2020 JOIN district_2035
ON district_2020.id = district_2035.id
ORDER BY district_2020.id;

Listing 7-4: Using JOIN

Similar to the method we used in Listing 7-2, we name the two tables to
join on both sides of the JOIN keyword. Then, in the ON clause, we specify
the expression we’re using for the join, in this case equality in the id
columns of both tables. Three school IDs exist in both tables, so the query
returns only the three rows where those IDs match. Schools that exist in
only one of the two tables don’t appear in the result. Notice also that the
columns from the table on the left side of the JOIN keyword display on the
left of the result table:

id school_2020 id school_2035
-- --------------------- -- ---------------------
 1 Oak Street School 1 Oak Street School
 2 Roosevelt High School 2 Roosevelt High School
 6 Webutuck High School 6 Webutuck High School

When should you use JOIN? Typically, when you’re working with well-
structured, well-maintained datasets and need to find rows that exist in all
the tables you’re joining. Because JOIN doesn’t provide rows that exist in
only one of the tables, if you want to see all the data in one or more of the
tables, use one of the other join types.

JOIN with USING
If you’re using identical names for columns in a join’s ON clause, you can
reduce redundant output and simplify the query syntax by substituting a
USING clause in place of the ON clause, as in Listing 7-5.

SELECT *
FROM district_2020 JOIN district_2035

1 USING (id)
ORDER BY district_2020.id;

Listing 7-5: JOIN with USING

After naming the tables to join, we add USING 1 followed by, in
parentheses, the name of the column for the join in both tables—in this
case, id. If we’re joining on more than one column, we separate them by
commas in the parentheses. Run the query, and you should see these results:

id school_2020 school_2035
-- --------------------- ---------------------
 1 Oak Street School Oak Street School
 2 Roosevelt High School Roosevelt High School
 6 Webutuck High School Webutuck High School

Note that id, which in the case of this JOIN is present in both tables and
has identical values, is displayed just once. It’s a simple, handy shorthand.

LEFT JOIN and RIGHT JOIN
In contrast to JOIN, the LEFT JOIN and RIGHT JOIN keywords each return
all rows from one table and, when a row with a matching value in the other
table exists, values from that row are included in the results. Otherwise, no
values from the other table are displayed.

Let’s look at LEFT JOIN in action first. Execute the code in Listing 7-6.

SELECT *
FROM district_2020 LEFT JOIN district_2035
ON district_2020.id = district_2035.id
ORDER BY district_2020.id;

Listing 7-6: Using LEFT JOIN

The result of the query shows all four rows from district_2020, which
is on the left side of the join, as well as the three rows in district_2035
where values match in the id columns. Because district_2035 doesn’t
contain a value of 5 in its id column, there’s no match, so LEFT JOIN returns
an empty row on the right rather than omitting the entire row from the left
table as with JOIN. Finally, the rows from district_2035 that don’t match
any values in district_2020 are omitted from the results:

id school_2020 id school_2035
-- --------------------- -- ---------------------
 1 Oak Street School 1 Oak Street School
 2 Roosevelt High School 2 Roosevelt High School
 5 Dover Middle School
 6 Webutuck High School 6 Webutuck High School

We see similar but opposite behavior by running RIGHT JOIN, as in
Listing 7-7.

SELECT *
FROM district_2020 RIGHT JOIN district_2035
ON district_2020.id = district_2035.id
ORDER BY district_2035.id;

Listing 7-7: Using RIGHT JOIN

This time, the query returns all rows from district_2035, which is on
the right side of the join, plus rows from district_2020 where the id
columns have matching values. The query result omits the row of
district_2020 where there’s no match with district_2035 on id:

id school_2020 id school_2035
-- --------------------- -- ---------------------
 1 Oak Street School 1 Oak Street School
 2 Roosevelt High School 2 Roosevelt High School
 3 Morrison Elementary
 4 Chase Magnet Academy
 6 Webutuck High School 6 Webutuck High School

You’d use either of these join types in a few circumstances:

You want your query results to contain all the rows from one of the tables.
You want to look for missing values in one of the tables. An example is
when you’re comparing data about an entity representing two different time
periods.
When you know some rows in a joined table won’t have matching values.

As with JOIN, you can substitute the USING clause for the ON clause if the
tables meet the criteria.

FULL OUTER JOIN
When you want to see all rows from both tables in a join, regardless of
whether any match, use the FULL OUTER JOIN option. To see it in action,
run Listing 7-8.

SELECT *
FROM district_2020 FULL OUTER JOIN district_2035
ON district_2020.id = district_2035.id
ORDER BY district_2020.id;

Listing 7-8: Using FULL OUTER JOIN

The result gives every row from the left table, including matching rows
and blanks for missing rows from the right table, followed by any leftover
missing rows from the right table:

id school_2020 id school_2035
-- --------------------- -- ---------------------
 1 Oak Street School 1 Oak Street School
 2 Roosevelt High School 2 Roosevelt High School
 5 Dover Middle School
 6 Webutuck High School 6 Webutuck High School
 3 Morrison Elementary
 4 Chase Magnet Academy

A full outer join is admittedly less useful and used less often than inner
and left or right joins. Still, you can use it for a couple of tasks: to link two
data sources that partially overlap or to visualize the degree to which tables
share matching values.

CROSS JOIN
In a CROSS JOIN query, the result (also known as a Cartesian product) lines
up each row in the left table with each row in the right table to present all
possible combinations of rows. Listing 7-9 shows the CROSS JOIN syntax;
because the join doesn’t need to find matches between key columns, there’s
no need to provide an ON clause.

SELECT *
FROM district_2020 CROSS JOIN district_2035
ORDER BY district_2020.id, district_2035.id;

Listing 7-9: Using CROSS JOIN

The result has 20 rows—the product of four rows in the left table times
five rows in the right:

id school_2020 id school_2035
-- --------------------- -- ---------------------
 1 Oak Street School 1 Oak Street School
 1 Oak Street School 2 Roosevelt High School
 1 Oak Street School 3 Morrison Elementary
 1 Oak Street School 4 Chase Magnet Academy
 1 Oak Street School 6 Webutuck High School
 2 Roosevelt High School 1 Oak Street School
 2 Roosevelt High School 2 Roosevelt High School
 2 Roosevelt High School 3 Morrison Elementary
 2 Roosevelt High School 4 Chase Magnet Academy
 2 Roosevelt High School 6 Webutuck High School
 5 Dover Middle School 1 Oak Street School
 5 Dover Middle School 2 Roosevelt High School
 5 Dover Middle School 3 Morrison Elementary
 5 Dover Middle School 4 Chase Magnet Academy
 5 Dover Middle School 6 Webutuck High School
 6 Webutuck High School 1 Oak Street School
 6 Webutuck High School 2 Roosevelt High School
 6 Webutuck High School 3 Morrison Elementary
 6 Webutuck High School 4 Chase Magnet Academy
 6 Webutuck High School 6 Webutuck High School

Unless you want to take an extra-long coffee break, I suggest avoiding a
CROSS JOIN query on large tables. Two tables with 250,000 records each
would produce a result set of 62.5 billion rows and tax even the hardiest

server. A more practical use would be generating data to create a checklist,
such as all colors you’d want to offer for each of a handful of shirt styles in
a store.

Using NULL to Find Rows with Missing
Values
Any time you join tables, it’s wise to investigate whether the key values in
one table appear in the other, and which values are missing, if any.
Discrepancies happen for all sorts of reasons. Some data may have changed
over time. For example, a table of new products will likely contain codes
that aren’t present in an older product table. Or there could be problems
such as a clerical errors or incomplete output from the database. All this is
important context for making correct inferences about the data.

When you have only a handful of rows, eyeballing the data is an easy
way to look for rows with missing data, as we did in the previous join
examples. For large tables, you need a better strategy: filtering to show all
rows without a match. To do this, we employ the keyword NULL.

In SQL, NULL is a special value that represents a condition in which
there’s no data present or where the data is unknown because it wasn’t
included. For example, if a person filling out an address form skips the
“Middle Initial” field, rather than storing an empty string in the database,
we’d use NULL to represent the unknown value. It’s important to keep in
mind that NULL is different from 0 or an empty string that you’d place in a
text column using two quotes (''). Both those values could have some
unintended meaning that’s open to misinterpretation, so you use NULL to
show that the value is unknown. And unlike 0 or an empty string, you can
use NULL across data types.

When a SQL join returns empty rows in one of the tables, those columns
don’t come back empty but instead come back with the value NULL. In
Listing 7-10, we’ll find those rows by adding a WHERE clause to filter for
NULL by using the phrase IS NULL on the id column of the district_2035
table. If we wanted to look for columns with data, we’d use IS NOT NULL.

SELECT *
FROM district_2020 LEFT JOIN district_2035
ON district_2020.id = district_2035.id
WHERE district_2035.id IS NULL;

Listing 7-10: Filtering to show missing values with IS NULL

Now the result of the join shows only the one row from the table on the
left of the join that didn’t have a match in the table on the right. This is
commonly referred to as an anti-join.

id school_2020 id school_2035
-- ------------------- ------ ---------------------
 5 Dover Middle School

It’s easy to reverse the output to see rows on the table on the right of the
join that have no matches with the table on the left. You’d change the query
to use a RIGHT JOIN and modify the WHERE clause to filter on
district_2020.id IS NULL.

NOTE

pgAdmin displays NULL values in results tables with the designation
[null]. If you’re using the psql command-line tool that we’ll
discuss in Chapter 18, by default NULL values are displayed as
blanks. You can change that behavior to mimic pgAdmin by running
the command \pset null '[null]' at the psql prompt.

Understanding the Three Types of Table
Relationships
Part of the science (or art, some may say) of joining tables involves
understanding how the database designer intends for the tables to relate,
also known as the database’s relational model. There are three types of
table relationships: one to one, one to many, and many to many.

One-to-One Relationship
In our JOIN example in Listing 7-4, there are no duplicate id values in
either table: only one row in the district_2020 table exists with an id of 1,
and only one row in the district_2035 table has an id of 1. That means
any given id in either table will find no more than one match in the other
table. In database parlance, this is called a one-to-one relationship. Consider
another example: joining two tables with state-by-state census data. One
table might contain household income data and the other data is about
educational attainment. Both tables would have 51 rows (one for each state
plus Washington, D.C.), and if we joined them on a key such as state name,
state abbreviation, or a standard geography code, we’d have only one match
for each key value in each table.

One-to-Many Relationship
In a one-to-many relationship, a key value in one table will have multiple
matching values in another table’s joined column. Consider a database that
tracks automobiles. One table would hold data on manufacturers, with one
row each for Ford, Honda, Tesla, and so on. A second table with model
names, such as Mustang, Civic, Model 3, and Accord, would have several
rows matching each row in the manufacturers’ table.

Many-to-Many Relationship
A many-to-many relationship exists when multiple items in one table can
relate to multiple items in another table, and vice versa. For example, in a
baseball league, each player can be assigned to multiple positions, and each
position can be played by multiple players. Because of this complexity,
many-to-many relationships usually feature a third, intermediate table in
between the two. In the case of the baseball league, a database might have a
players table, a positions table, and a third called players_positions
that has two columns that support the many-to-many relationship: the id
from the players table and the id from the positions table.

Understanding these relationships is essential because it helps us discern
whether the results of queries accurately reflect the structure of the
database.

Selecting Specific Columns in a Join
So far, we’ve used the asterisk wildcard to select all columns from both
tables. That’s okay for quick data checks, but more often you’ll want to
specify a subset of columns. You can focus on just the data you want and
avoid inadvertently changing the query results if someone adds a new
column to a table.

As you learned in single-table queries, to select particular columns you
use the SELECT keyword followed by the desired column names. When
joining tables, it’s a best practice to include the table name along with the
column. The reason is that more than one table can contain columns with
the same name, which is certainly true of our joined tables so far.

Consider the following query, which tries to fetch an id column without
naming the table:

SELECT id
FROM district_2020 LEFT JOIN district_2035
ON district_2020.id = district_2035.id;

Because id exists in both district_2020 and district_2035, the server
throws an error that appears in pgAdmin’s results pane: column reference
"id" is ambiguous. It’s not clear which table id belongs to.

To fix the error, we need to add the table name in front of each column
we’re querying, as we do in the ON clause. Listing 7-11 shows the syntax,
specifying that we want the id column from district_2020. We’re also
fetching the school names from both tables.

SELECT district_2020.id,
 district_2020.school_2020,
 district_2035.school_2035
FROM district_2020 LEFT JOIN district_2035
ON district_2020.id = district_2035.id
ORDER BY district_2020.id;

Listing 7-11: Querying specific columns in a join

We simply prefix each column name with the table it comes from, and
the rest of the query syntax is the same. The result returns the requested

columns from each table:

id school_2020 school_2035
-- --------------------- ----------------------
 1 Oak Street School Oak Street School
 2 Roosevelt High School Roosevelt High School
 5 Dover Middle School
 6 Webutuck High School Webutuck High School

We can also add the AS keyword we used previously with census data to
make it clear in the results that the id column is from district_2020. The
syntax would look like this:

SELECT district_2020.id AS d20_id, ...

This would display the name of the district_2020 id column as d20_id
in the results.

Simplifying JOIN Syntax with Table Aliases
Specifying the table for a column is easy enough, but repeating a lengthy
table name for multiple columns clutters your code. One of the best ways to
serve your colleagues is to write code that’s readable, which should
generally not involve making them wade through a table name repeated
over 25 columns! One way to write more concise code is to use a shorthand
approach called table aliases.

To create a table alias, we place a character or two after the table name
when we declare it in the FROM clause. (You can use more than a couple of
characters for an alias, but if the goal is to simplify code, don’t go
overboard.) Those characters then serve as an alias we can use instead of
the full table name anywhere we reference the table in the code. Listing 7-
12 demonstrates how this works.

SELECT d20.id,
 d20.school_2020,
 d35.school_2035

1 FROM district_2020 AS d20 LEFT JOIN district_2035 AS d35

ON d20.id = d35.id
ORDER BY d20.id;

Listing 7-12: Simplifying code with table aliases

In the FROM clause, we declare the alias d20 to represent district_2020
and the alias d35 to represent district_2035 1 using the AS keyword. Both
aliases are shorter than the table names but still meaningful. Once that’s in
place, we can use the aliases instead of the full table names everywhere else
in the code. Immediately, our SQL looks more compact, and that’s ideal.
Note that the AS keyword is optional here; you can omit it when declaring
an alias for both table names and column names.

Joining Multiple Tables
Of course, SQL joins aren’t limited to two tables. We can continue adding
tables to the query as long as we have columns with matching values to join
on. Let’s say we obtain two more school-related tables and want to join
them to district_2020 in a three-table join. The
district_2020_enrollment table has the number of students per school:

id enrollment
-- ----------
 1 360
 2 1001
 5 450
 6 927

The district_2020_grades table contains the grade levels housed in
each building:

id grades
-- ------
 1 K-3
 2 9-12
 5 6-8
 6 9-12

To write the query, we’ll use Listing 7-13 to create the tables, load the
data, and run a query to join them to district_2020.

CREATE TABLE district_2020_enrollment (
 id integer,
 enrollment integer
);

CREATE TABLE district_2020_grades (
 id integer,
 grades varchar(10)
);

INSERT INTO district_2020_enrollment
VALUES
 (1, 360),
 (2, 1001),
 (5, 450),
 (6, 927);

INSERT INTO district_2020_grades
VALUES
 (1, 'K-3'),
 (2, '9-12'),
 (5, '6-8'),
 (6, '9-12');

SELECT d20.id,
 d20.school_2020,
 en.enrollment,
 gr.grades

1 FROM district_2020 AS d20 JOIN district_2020_enrollment AS en
 ON d20.id = en.id

2 JOIN district_2020_grades AS gr
 ON d20.id = gr.id
ORDER BY d20.id;

Listing 7-13: Joining multiple tables

After we run the CREATE TABLE and INSERT portions of the script, we
have new district_2020_enrollment and district_2020_grades tables,
each with records that relate to district_2020 from earlier in the chapter.
We then connect all three tables.

In the SELECT query, we join district_2020 to
district_2020_enrollment 1 using the tables’ id columns. We also
declare table aliases to keep the code compact. Next, the query joins
district_2020 to district_2020_grades, again on the id columns 2.

Our result now includes columns from all three tables:

id school_2020 enrollment grades
-- --------------------- ---------- ------
 1 Oak Street School 360 K-3
 2 Roosevelt High School 1001 9-12
 5 Dover Middle School 450 6-8
 6 Webutuck High School 927 9-12

If you need to, you can add even more tables to the query using
additional joins. You can also join on different columns, depending on the
tables’ relationships. Although there is no hard limit in SQL to the number
of tables you can join in a single query, some database systems might
impose one. Check the documentation.

Combining Query Results with Set Operators
Certain instances require us to re-order our data so that columns from
various tables aren’t returned side by side, as a join produces, but brought
together into one result. Examples include required input formats for
JavaScript-based data visualizations or analysis with libraries used in the R
and Python programming languages. One way to manipulate our data this
way is to use the ANSI standard SQL set operators UNION, INTERSECT, and
EXCEPT. Set operators combine the results of multiple SELECT queries.
Here’s a quick look at what each does:
UNION Given two queries, it appends the rows in the results of the second
query to the rows returned by the first query and removes duplicates,
producing a combined set of distinct rows. Modifying the syntax to UNION
ALL will return all rows, including duplicates.
INTERSECT Returns only rows that exist in the results of both queries and
removes duplicates.

EXCEPT Returns rows that exist in the results of the first query but not in the
results of the second query. Duplicates are removed.

For each of these, both queries must produce the same number of
columns, and the resulting columns from both queries must have
compatible data types. Let’s continue using our school district tables for
brief examples of how they work.

UNION and UNION ALL
In Listing 7-14, we use UNION to combine queries that retrieve all rows from
both district_2020 and district_2035.

SELECT * FROM district_2020

1 UNION
SELECT * FROM district_2035

2 ORDER BY id;

Listing 7-14: Combining query results with UNION

The query consists of two complete SELECT statements with the UNION
keyword 1 placed between them. The ORDER BY 2 on the id column
happens after the set operation occurs and thus can’t be listed as part of
each SELECT. From our work with this data already, you know that these
queries will return several rows that are identical in both tables. But by
merging the queries with UNION, our results eliminate duplicates:

id school_2020
-- ---------------------
 1 Oak Street School
 2 Roosevelt High School
 3 Morrison Elementary
 4 Chase Magnet Academy
 5 Dover Middle School
 6 Webutuck High School

Notice that the names of the schools are in the column school_2020,
which is part of the first query’s results. The school names in the second
query’s column school_2035 from the district_2035 table were simply
appended to the results from the first query. For that reason, the columns in

the second query must match those in the first and have compatible data
types.

If we want the results to include duplicate rows, we substitute UNION ALL
for UNION in the query, as in Listing 7-15.

SELECT * FROM district_2020
UNION ALL
SELECT * FROM district_2035
ORDER BY id;

Listing 7-15: Combining query results with UNION ALL

That produces all rows, with duplicates included:

id school_2020
-- ---------------------
 1 Oak Street School
 1 Oak Street School
 2 Roosevelt High School
 2 Roosevelt High School
 3 Morrison Elementary
 4 Chase Magnet Academy
 5 Dover Middle School
 6 Webutuck High School
 6 Webutuck High School

Finally, it’s often helpful to customize merged results. You may want to
know, for example, which table values in each row came from, or you may
want to include or exclude certain columns. Listing 7-16 shows one
example using UNION ALL.

1 SELECT '2020' AS year,
 2 school_2020 AS school
FROM district_2020

UNION ALL

SELECT '2035' AS year,
 school_2035
FROM district_2035
ORDER BY school, year;

Listing 7-16: Customizing a UNION query

In the first query’s SELECT statement 1, we designate the string 2020 as
the value to fill a column named year. We also do this in the second query
using 2035 as the string. This is similar to the technique you employed in
the section “Adding a Value to a Column During Import” in Chapter 5.
Then, we rename the school_2020 column 2 as school because it will show
schools from both years.

Execute the query to see the results:

year school
---- --------------------
2035 Chase Magnet Academy
2020 Dover Middle School
2035 Morrison Elementary
2020 Oak Street School
2035 Oak Street School
2020 Roosevelt High School
2035 Roosevelt High School
2020 Webutuck High School
2035 Webutuck High School

Now our query produces a year designation for each school, and we can
see, for example, that the row with Dover Middle School comes from the
result of querying the district_2020 table.

INTERSECT and EXCEPT
Now that you know how to use UNION, you can apply the same concepts to
INTERSECT and EXCEPT. Listing 7-17 shows both, which you can run
separately to see how the results differ.

SELECT * FROM district_2020

1 INTERSECT
SELECT * FROM district_2035
ORDER BY id;

SELECT * FROM district_2020

2 EXCEPT
SELECT * FROM district_2035
ORDER BY id;

Listing 7-17: Combining query results with INTERSECT and EXCEPT

The query using INTERSECT 1 returns just the rows that exist in the results
of both queries and eliminates duplicates:

id school_2020
-- --------------
 1 Oak Street School
 2 Roosevelt High School
 6 Webutuck High School

The query using EXCEPT 2 returns rows that exist in the first query but not
in the second, also eliminating duplicates if present:

id school_2020
-- -------------------
 5 Dover Middle School

Along with UNION, queries using INTERSECT and EXCEPT give you plenty
of ability to arrange and examine your data.

Finally, let’s return briefly to joins to see how you can perform
calculations on numbers in different tables.

Performing Math on Joined Table Columns
The math functions we explored in Chapter 6 are just as usable when
working with joined tables. We need to include the table name when
referencing a column in an operation, as we did when selecting table
columns. If you work with any data that has a new release at regular
intervals, you’ll find this concept useful for joining a newly released table
to an older one and exploring how values have changed.

That’s certainly what I and many journalists do each time a new set of
census data is released. We’ll load the new data and try to find patterns in
the growth or decline of the population, income, education, and other
indicators. Let’s look at how to do this by revisiting the
us_counties_pop_est_2019 table we created in Chapter 5 and loading

similar county data that shows 2010 county population estimates into a new
table. To make the table, import the data, and join it to the 2019 estimates,
run the code in Listing 7-18.

1 CREATE TABLE us_counties_pop_est_2010 (
 state_fips text,
 county_fips text,
 region smallint,
 state_name text,
 county_name text,
 estimates_base_2010 integer,
 CONSTRAINT counties_2010_key PRIMARY KEY (state_fips,
county_fips)
);

2 COPY us_counties_pop_est_2010
FROM 'C:\YourDirectory\us_counties_pop_est_2010.csv'
WITH (FORMAT CSV, HEADER);

3 SELECT c2019.county_name,
 c2019.state_name,
 c2019.pop_est_2019 AS pop_2019,
 c2010.estimates_base_2010 AS pop_2010,
 c2019.pop_est_2019 - c2010.estimates_base_2010 AS
raw_change,

 4 round((c2019.pop_est_2019::numeric -
c2010.estimates_base_2010)
 / c2010.estimates_base_2010 * 100, 1) AS
pct_change
FROM us_counties_pop_est_2019 AS c2019
 JOIN us_counties_pop_est_2010 AS c2010

5 ON c2019.state_fips = c2010.state_fips
 AND c2019.county_fips = c2010.county_fips

6 ORDER BY pct_change DESC;

Listing 7-18: Performing math on joined census tables

In this code, we’re building on earlier foundations. We have the familiar
CREATE TABLE statement 1, which for this exercise includes state, county,
and region codes, and we have columns with the names of the states and
counties. It also includes an estimates_base_2010 column that has the
Census Bureau’s estimated 2010 population for each county (the Census

Bureau modifies its complete, every-10-year count to create a base number
for comparisons with estimates later in the decade). The COPY statement 2
imports a CSV file with the census data; you can find
us_counties_pop_est_2010.csv along with all of the book’s resources at
https://nostarch.com/practical-sql-2nd-edition/. After you’ve downloaded
the file, you’ll need to change the file path to the location where you saved
it.

When you’ve finished the import, you should have a table named
us_counties_pop_est_2010 with 3,142 rows. Now that we have tables
with population estimates for 2010 and 2019, it makes sense to calculate the
percent change in population for each county between those years. Which
counties have led the nation in growth? Which ones have seen a decline in
population?

We’ll use the percent change formula we used in Chapter 6 to get the
answer. The SELECT statement 3 includes the county and state names from
the 2019 table, which is aliased with c2019. Next are the population
estimate columns from the 2019 and 2010 tables, both renamed using AS to
simplify their names in the results. To get the raw change in population, we
subtract the 2010 estimates base from the 2019 estimates, and to find the
percent change, we employ the formula 4 and round the result to one
decimal point.

We join by matching values in two columns in both tables: state_fips
and county_fips 5. The reason to join on two columns instead of one is
that in both tables, the combination of a state code and a county code
represents a unique county. We combine the two conditions using the AND
logical operator. Using that syntax, rows are joined when both conditions
are satisfied. Finally, we sort the results in descending order by percent
change 6 so we can see the fastest growers at the top.

That’s a lot of work, but it’s worth it. Here’s what the first five rows of
the results indicate:

county_name state_name pop_2019 pop_2010
raw_change pct_change
--------------- ---------- -------- -------- ---------
- ----------
McKenzie County North Dakota 15024 6359

https://nostarch.com/practical-sql-2nd-edition/

8665 136.3
Loving County Texas 169 82
87 106.1
Williams County North Dakota 37589 22399
15190 67.8
Hays County Texas 230191 157103
73088 46.5
Wasatch County Utah 34091 23525
10566 44.9

Two counties, McKenzie in North Dakota and Loving in Texas, more
than doubled their populations from 2010 to 2019, with other North Dakota
and Texas counties showing substantial gains. Each of these places has its
own story. For McKenzie County and others in North Dakota, a boom in oil
and gas exploration in the Bakken geological formation is behind the surge.
That’s just one valuable insight we’ve extracted from this analysis and a
starting point for understanding national population trends.

Wrapping Up
Given that table relationships are foundational to database architecture,
learning to join tables in queries allows you to handle many of the more
complex datasets you’ll encounter. Experimenting with the different types
of joins on tables can tell you a great deal about how data has been gathered
and reveal when there’s a quality issue. Make trying various joins a routine
part of your exploration of a new dataset.

Moving forward, we’ll continue building on these bigger concepts as we
drill deeper into finding information in datasets and working with the
nuances of handling data types and making sure we have quality data. But
first, we’ll look at one more foundational element: employing best practices
to build reliable, speedy databases with SQL.

TRY IT YOURSELF

Continue your exploration of joins and set operators with these exercises:
According to the census population estimates, which county had the greatest

percentage loss of population between 2010 and 2019? Try an internet search to find
out what happened. (Hint: The decrease is related to a particular type of facility.)

Apply the concepts you learned about UNION to create query results that merge queries
of the census county population estimates for 2010 and 2019. Your results should

include a column called year that specifies the year of the estimate for each row in the
results.

Using the percentile_cont() function from Chapter 6, determine the median of the
percent change in estimated county population between 2010 and 2019.

8
TABLE DESIGN THAT WORKS FOR

YOU

Obsession with order and detail can be
a good thing. When you’re running out
the door, it’s reassuring to see your keys
hanging on the hook where you always
leave them. The same holds true for

database design. When you need to excavate a nugget
of information from dozens of tables and millions of
rows, you’ll appreciate a dose of that same detail
obsession. With data organized into a finely tuned,
smartly named set of tables, the analysis experience
becomes much more manageable.

In this chapter, I’ll build on Chapter 7 by introducing best practices for
organizing and speeding up SQL databases, whether they’re yours or ones
you inherit for analysis. We’ll dig deeper into table design by exploring
naming rules and conventions, ways to maintain the integrity of your data,
and how to add indexes to tables to speed up queries.

Following Naming Conventions

Programming languages tend to have their own style patterns, and even
various factions of SQL coders prefer certain conventions when naming
tables, columns, and other objects (called identifiers). Some like camel
case, as in berrySmoothie, where words are strung together and the first
letter of each word is capitalized except for the first word. Pascal case, as
in BerrySmoothie, follows a similar pattern but capitalizes the first letter
too. With snake case, as in berry_smoothie, all the words are lowercase
and separated by underscores.

You’ll find passionate supporters of each naming convention, with some
preferences tied to individual database applications or programming
languages. For example, Microsoft uses Pascal case in the documentation
for its SQL Server database. In this book, for PostgreSQL-related reasons
I’ll explain in a moment, we’re using snake case, as in the table
us_counties_pop_est_2019. Whichever convention you prefer or find
yourself required to use, it’s important to apply it consistently. Be sure to
check whether your organization has a style guide or offer to collaborate on
one, and then follow it religiously.

Mixing styles or following none generally leads to a mess. For example,
imagine connecting to a database and finding the following collection of
tables:
Customers

customers

custBackup

customer_analysis

customer_test2

customer_testMarch2012

customeranalysis

You would have questions. For one, which table actually holds the
current data on customers? A disorganized naming scheme—and a general
lack of tidiness—makes it hard for others to dive into your data and makes
it challenging for you to pick up where you left off.

Let’s explore considerations related to naming identifiers and suggestions
for best practices.

Quoting Identifiers Enables Mixed Case
Regardless of any capitalization you supply, PostgreSQL treats identifiers
as lowercase unless you place double quotes around the identifier. Consider
these two CREATE TABLE statements for PostgreSQL:

CREATE TABLE customers (
 customer_id text,
 --snip--
);

CREATE TABLE Customers (
 customer_id text,
 --snip--
);

When you execute these statements in order, the first command creates a
table called customers. The second statement, rather than creating a
separate table called Customers, will throw an error: relation
"customers" already exists. Because you didn’t quote the identifier,
PostgreSQL treats customers and Customers as the same identifier,
disregarding the case. To preserve the uppercase letter and create a separate
table named Customers, you must surround the identifier with quotes, like
this:

CREATE TABLE "Customers" (
 customer_id serial,
 --snip--
);

However, because this requires that to query Customers rather than
customers, you have to quote its name in the SELECT statement:

SELECT * FROM "Customers";

That can be a chore to remember and makes a user vulnerable to a mix-
up. Make sure your tables have names that are clear and distinct from other

tables in the database.

Pitfalls with Quoting Identifiers
Quoting identifiers also allows you to use characters not otherwise allowed,
including spaces. That may appeal to some folks, but there are negatives.
You may want to throw quotes around "trees planted" as a column name
in a reforestation database, but then all users will have to provide quotes on
every reference to that column. Omit the quotes in a query, and the database
will respond with an error, identifying trees and planted as separate
columns and responding that trees does not exist. A more readable and
reliable option is to use snake case, as in trees_planted.

Quotes also let you use SQL reserved keywords, which are words that
have special meaning in SQL. You’ve already encountered several, such as
TABLE, WHERE, or SELECT. Most database developers frown on using
reserved keywords as identifiers. At a minimum it’s confusing, and at worst
neglecting or forgetting to quote that keyword later may result in an error
because the database will interpret the word as a command instead of an
identifier.

NOTE

For PostgreSQL, you can find a list of keywords documented at
https://www.postgresql.org/docs/current/sql-keywords-
appendix.html. In addition, many code editors and database tools,
including pgAdmin, automatically highlight keywords in a
particular color.

Guidelines for Naming Identifiers
Given the extra burden of quoting and its potential problems, it’s best to
keep your identifier names simple, unquoted, and consistent. Here are my
recommendations:
Use snake case. Snake case is readable and reliable, as shown in the earlier
trees_planted example. It’s used throughout the official PostgreSQL

https://www.postgresql.org/docs/current/sql-keywords-appendix.html

documentation and helps make multiword names easy to understand:
video_on_demand makes more sense at a glance than videoondemand.
Make names easy to understand and avoid cryptic abbreviations. If
you’re building a database related to travel, arrival_time is a clearer
column name than arv_tm.
For table names, use plurals. Tables hold rows, and each row represents
one instance of an entity. So, use plural names for tables, such as teachers,
vehicles, or departments. I do make exceptions at times. For example, to
preserve the names of imported CSV files, I use them as a table name,
especially when they are one-off imports.
Mind the length. The maximum number of characters allowed for an
identifier name varies by database application: the SQL standard is 128
characters, but PostgreSQL limits you to 63, and older Oracle systems have
a maximum of 30. If you’re writing code that may get reused in another
database system, lean toward shorter identifier names.
When making copies of tables, use names that will help you manage
them later. One method is to append a _YYYY_MM_DD date to the table name
when you create the copy, such as vehicle_parts_2021_04_08. An
additional benefit is that the table names will sort in date order.

Controlling Column Values with Constraints
You can maintain further control over the data a column will accept by
using certain constraints. A column’s data type broadly defines the kind of
data it will accept: integers versus characters, for example. Additional
constraints let us further specify acceptable values based on rules and
logical tests. With constraints, we can avoid the “garbage in, garbage out”
phenomenon, which happens when poor-quality data results in inaccurate or
incomplete analysis. Well-designed constraints help maintain the quality of
the data and ensure the integrity of the relationships among tables.

In Chapter 7, you learned about primary and foreign keys, which are two
of the most commonly used constraints. SQL also has the following
constraint types:

CHECK Allows only those rows where a supplied Boolean expression
evaluates to true
UNIQUE Ensures that values in a column or group of columns are unique in
each row in the table
NOT NULL Prevents NULL values in a column

We can add constraints in two ways: as a column constraint or as a table
constraint. A column constraint applies only to that column. We declare it
with the column name and data type in the CREATE TABLE statement, and it
gets checked whenever a change is made to the column. With a table
constraint, we can supply criteria that apply to one or more columns. We
declare it in the CREATE TABLE statement immediately after defining all the
table columns, and it gets checked whenever a change is made to a row in
the table.

Let’s explore these constraints, their syntax, and their usefulness in table
design.

Primary Keys: Natural vs. Surrogate
As explored in Chapter 7, a primary key is a column or collection of
columns whose values uniquely identify each row in a table. A primary key
is a constraint, and it imposes two rules on the column or columns that
make up the key:
Values must be unique for each row.
No column can have missing values.

In a table of products stored in a warehouse, the primary key could be a
column of unique product codes. In the simple primary key examples in
“Relating Tables with Key Columns” in Chapter 7, our tables had a primary
key made from a single ID column with an integer inserted by us, the user.
Often, the data will suggest the best path and help us decide whether to use
a natural key or a surrogate key as the primary key.

Using Existing Columns for Natural Keys
A natural key uses one or more of the table’s existing columns that meet the
criteria for a primary key: unique for every row and never empty. Values in

the columns can change as long as the new value doesn’t cause a violation
of the constraint.

A natural key might be a driver’s license identification number issued by
a local Department of Motor Vehicles. Within a governmental jurisdiction,
such as a state in the United States, we’d reasonably expect that all drivers
would receive a unique ID on their licenses, which we could store as
driver_id. However, if we were compiling a national driver’s license
database, we might not be able to make that assumption; several states
could independently issue the same ID code. In that case, the driver_id
column may not have unique values and cannot be used as the natural key.
As a solution, we could create a composite primary key by combining
driver_id with a column holding the state name, which would give us a
unique combination for each row. For example, both rows in this table have
a unique combination of the driver_id and st columns:

driver_id st first_name last_name
---------- -- ---------- ---------
10302019 NY Patrick Corbin
10302019 FL Howard Kendrick

We’ll visit both approaches in this chapter, and as you work with data,
keep an eye out for values suitable for natural keys. A part number, a serial
number, or a book’s ISBN are all good examples.

Introducing Columns for Surrogate Keys
A surrogate key is a single column that you fill with artificial values; we
might use it when a table doesn’t have data that supports creating a natural
primary key. The surrogate key might be a sequential number autogenerated
by the database. We’ve already done this with the serial data type and the
IDENTITY syntax (covered in “Auto-Incrementing Integers” in Chapter 4). A
table using an autogenerated integer for a surrogate key might look like
this:

id first_name last_name
-- ---------- ---------
 1 Patrick Corbin
 2 Howard Kendrick
 3 David Martinez

Some developers like to use a universally unique identifier (UUID),
which is a code comprised of 32 hexadecimal digits in groups separated by
hyphens. Often, UUIDs are used to identify computer hardware or software
and look like the following:

2911d8a8-6dea-4a46-af23-d64175a08237

PostgreSQL offers a UUID data type as well as two modules that
generate UUIDs: uuid-ossp and pgcrypto. The PostgreSQL
documentation at https://www.postgresql.org/docs/current/datatype-
uuid.html is a good starting point for diving deeper.

NOTE

Exercise caution when considering UUIDs for a surrogate key.
Because of their size, they are inefficient compared with options
such as bigint.

Evaluating the Pros and Cons of Key Types
There are well-reasoned arguments for using either type of primary key, but
both have drawbacks. Points to consider about natural keys include the
following:
The data already exists in the table, so you don’t need to add a column to
create a key.
Because the natural key data has meaning, it can reduce the need to join
tables when querying.
If your data changes in a way that violates the requirements for a key—the
sudden appearance of duplicate values, for instance—you’ll be forced to
change the setup of the table.

Here are points to consider about surrogate keys:
Because a surrogate key doesn’t have any meaning in itself and its values
are independent of the data in the table, you’re not limited by the key
structure if your data changes later.

https://www.postgresql.org/docs/current/datatype-uuid.html

Key values are guaranteed to be unique.
Adding a column for a surrogate key requires more space.

In a perfect world, a table should have one or more columns that can
serve as a natural key, such as a unique product code in a table of products.
But real-world limitations arise all the time. In a table of employees, it
might be difficult to find any single column, or even multiple columns, that
would be unique on a row-by-row basis to serve as a primary key. In such
cases where you can’t reconsider the table structure, you may need to use a
surrogate key.

Creating a Single-Column Primary Key
Let’s work through several primary key examples. In “Understanding JOIN
Types” in Chapter 7, you created primary keys on the district_2020 and
district_2035 tables to try JOIN types. In fact, these were surrogate keys:
in both tables, you created columns called id to use as the key and used the
keywords CONSTRAINT key_name PRIMARY KEY to declare them as primary
keys.

There are two ways to declare constraints: as a column constraint or as a
table constraint. In Listing 8-1, we try both methods, declaring a primary
key on a table similar to the driver’s license example mentioned earlier.
Because we expect the driver’s license IDs to always be unique, we’ll use
that column as a natural key.

CREATE TABLE natural_key_example (

 1 license_id text CONSTRAINT license_key PRIMARY KEY,
 first_name text,
 last_name text
);

2 DROP TABLE natural_key_example;

CREATE TABLE natural_key_example (
 license_id text,
 first_name text,
 last_name text,

 3 CONSTRAINT license_key PRIMARY KEY (license_id)
);

Listing 8-1: Declaring a single-column natural key as a primary key

We first create a table called natural_key_example and use the column
constraint syntax CONSTRAINT to declare license_id as the primary key 1
followed by a name for the constraint and the keywords PRIMARY KEY. This
syntax makes it easy to understand at a glance which column is designated
as the primary key. Note that you can omit the CONSTRAINT keyword and
name for the key and simply use PRIMARY KEY:

license_id text PRIMARY KEY

In that case, PostgreSQL will name the primary key on its own, using the
convention of the table name followed by _pkey.

Next, we delete the table from the database with DROP TABLE 2 to prepare
for the table constraint example.

To add a table constraint, we declare the CONSTRAINT after listing all the
columns 3, with the column we want to use as the key in parentheses.
(Again, you can omit the CONSTRAINT keyword and key name.) In this
example, we end up with the same license_id column for the primary key.
You must use the table constraint syntax when you want to create a primary
key using more than one column; in that case, you would list the columns in
parentheses, separated by commas. We’ll explore that in a moment.

First, let’s look at how the qualities of a primary key—unique for every
row and no NULL values—protect you from harming your data’s integrity.
Listing 8-2 has two INSERT statements.

INSERT INTO natural_key_example (license_id, first_name,
last_name)
VALUES ('T229901', 'Gem', 'Godfrey');

INSERT INTO natural_key_example (license_id, first_name,
last_name)
VALUES ('T229901', 'John', 'Mitchell');

Listing 8-2: An example of a primary key violation

When you execute the first INSERT statement on its own, the server loads
a row into the natural_key_example table without any issue. When you

attempt to execute the second, the server replies with an error:

ERROR: duplicate key value violates unique constraint
"license_key"
DETAIL: Key (license_id)=(T229901) already exists.

Before adding the row, the server checked whether a license_id of
T229901 was already present in the table. Because it was and because a
primary key by definition must be unique for each row, the server rejected
the operation. The rules of the fictional DMV state that no two drivers can
have the same license ID, so checking for and rejecting duplicate data is
one way for the database to enforce that rule.

Creating a Composite Primary Key
If a single column doesn’t meet the requirements for a primary key, we can
create a composite primary key.

We’ll make a table that tracks student school attendance. The
combination of student_id and school_day columns gives us a unique
value for each row, which records whether a student was in school on that
day in a column called present. To create a composite primary key, you
must declare it using the table constraint syntax, as shown in Listing 8-3.

CREATE TABLE natural_key_composite_example (
 student_id text,
 school_day date,
 present boolean,
 CONSTRAINT student_key PRIMARY KEY (student_id,
school_day)
);

Listing 8-3: Declaring a composite primary key as a natural key

Here we pass two (or more) columns as arguments rather than one. We’ll
simulate a key violation by attempting to insert a row where the
combination of values in the two key columns—student_id and
school_day—is not unique to the table. Run the INSERT statements in
Listing 8-4 one at a time (by highlighting them in pgAdmin before clicking
Execute/Refresh).

INSERT INTO natural_key_composite_example (student_id,
school_day, present)
VALUES(775, '2022-01-22', 'Y');

INSERT INTO natural_key_composite_example (student_id,
school_day, present)
VALUES(775, '2022-01-23', 'Y');

INSERT INTO natural_key_composite_example (student_id,
school_day, present)
VALUES(775, '2022-01-23', 'N');

Listing 8-4: Example of a composite primary key violation

The first two INSERT statements execute fine because there’s no
duplication of values in the combination of the key columns. But the third
statement causes an error because the student_id and school_day values it
contains match a combination that already exists in the table:

ERROR: duplicate key value violates unique constraint
"student_key"
DETAIL: Key (student_id, school_day)=(775, 2022-01-23)
already exists.

You can create composite keys with more than two columns. The limit to
the number of columns you can use depends on your database.

Creating an Auto-Incrementing Surrogate Key
As you learned in “Auto-Incrementing Integers” in Chapter 4, there are two
ways to have a PostgreSQL database add an automatically increasing
unique value to a column. The first is to set the column to one of the
PostgreSQL-specific serial data types: smallserial, serial, and
bigserial. The second is to use the IDENTITY syntax; because it is part of
the ANSI SQL standard, we’ll employ this for our examples.

Use IDENTITY with one of the integer types smallint, integer, and
bigint. For a primary key, it may be tempting to try to save disk space by
using integer, which handles numbers as large as 2,147,483,647. But many
a database developer has received a late-night call from a user frantic to
know why an application is broken, only to discover that the database is

trying to generate a number one greater than the data type’s maximum. So,
if it’s remotely possible that your table will grow past 2.147 billion rows,
it’s wise to use bigint, which accepts numbers as high as 9.2 quintillion.
You can set it and forget it, as shown in the first column defined in Listing
8-5.

CREATE TABLE surrogate_key_example (

 1 order_number bigint GENERATED ALWAYS AS IDENTITY,
 product_name text,
 order_time timestamp with time zone,

 2 CONSTRAINT order_number_key PRIMARY KEY (order_number)
);

3 INSERT INTO surrogate_key_example (product_name, order_time)
VALUES ('Beachball Polish', '2020-03-15 09:21-07'),
 ('Wrinkle De-Atomizer', '2017-05-22 14:00-07'),
 ('Flux Capacitor', '1985-10-26 01:18:00-07');

SELECT * FROM surrogate_key_example;

Listing 8-5: Declaring a bigint column as a surrogate key using
IDENTITY

Listing 8-5 shows how to declare an auto-incrementing bigint 1 column
called order_number using the IDENTITY syntax and then set the column as
the primary key 2. When you insert data into the table 3, you omit
order_number from the list of columns and values. The database will create
a new value for that column as each row is inserted, and that value will be
one greater than the largest already created for the column.

Run SELECT * FROM surrogate_key_example; to see how the column
fills in automatically:

order_number product_name order_time
------------ ------------------- ----------------------
 1 Beachball Polish 2020-03-15 09:21:00-07
 2 Wrinkle De-Atomizer 2017-05-22 14:00:00-07
 3 Flux Capacitor 1985-10-26 01:18:00-07

We see these sorts of auto-incrementing order numbers reflected in the
receipts for the purchases we make every day. Now you know how it’s

done.

NOTE

In your query results, the timestamps in the order_time column will
vary based on the time zone configuration of your PostgreSQL
installation, as discussed in Chapter 4.

A few details worth noting: if you delete a row, the database won’t fill
the gap in the order_number sequence, nor will it change any of the existing
values in that column. It will generally add one to the largest existing value
in the sequence (though there are exceptions related to operations, including
restoring a database from a backup). Also, we used the syntax GENERATED
ALWAYS AS IDENTITY. As discussed in Chapter 4, this prevents a user from
inserting a value in order_number without manually overriding the setting.
Generally, you want to prevent such meddling to avoid problems. Let’s say
a user were to manually insert a value of 4 into the order_number column
of your existing surrogate_key_example table. That manual insert will not
increment the IDENTITY sequence for the order_number column; that occurs
only when the database generates a new value. Thus, on the next row insert,
the database also would try to also insert a 4, as that’s the next number in
the sequence. The result will be an error, because a duplicate value violates
the primary key constraint.

You can, however, allow manual insertions by restarting the IDENTITY
sequence. You might allow this in case you need to insert a row that was
mistakenly deleted. Listing 8-6 shows how to add a row to the table that has
an order_number of 4, which is the next value in the sequence.

INSERT INTO surrogate_key_example

1 OVERRIDING SYSTEM VALUE
VALUES (4, 'Chicken Coop', '2021-09-03 10:33-07');

2 ALTER TABLE surrogate_key_example ALTER COLUMN order_number
RESTART WITH 5;

3 INSERT INTO surrogate_key_example (product_name, order_time)
VALUES ('Aloe Plant', '2020-03-15 10:09-07');

Listing 8-6: Restarting an IDENTITY sequence

You start with an INSERT statement that includes the keywords
OVERRIDING SYSTEM VALUE 1. Next we include the VALUES clause and
specify the integer 4 for the first column, order_number, in the VALUES list,
which overrides the IDENTITY restriction. We’re using 4, but we could
choose any number that’s not already present in the column.

After the insert, you need to reset the IDENTITY sequence so that it begins
at a number larger than the 4 you just inserted. To do this, use an ALTER
TABLE ... ALTER COLUMN statement 2 that includes the keywords RESTART
WITH 5. An ALTER TABLE modifies tables and columns in various ways,
which we’ll explore more thoroughly in Chapter 10, “Inspecting and
Modifying Data.” Here, you use it to change the beginning number of the
IDENTITY sequence; so, when the next row gets added to the table, the value
for order_number will be 5. Finally, insert a new row 3 and omit a value for
the order_number, as you did in Listing 8-5.

If you select all rows again from the surrogate_key_example table,
you’ll see that the order_number column populated as intended:

order_number product_name order_time
------------ ------------------- ----------------------
 1 Beachball Polish 2020-03-15 09:21:00-07
 2 Wrinkle De-Atomizer 2017-05-22 14:00:00-07
 3 Flux Capacitor 1985-10-26 01:18:00-07
 4 Chicken Coop 2021-09-03 10:33:00-07
 5 Aloe Plant 2020-03-15 10:09:00-07

This task isn’t one you necessarily want to tackle often, but it’s good to
know if the need arises.

Foreign Keys
We use foreign keys to establish relationships between tables. A foreign key
is one or more columns whose values match those in another table’s
primary key or other unique key. Foreign key values must already exist in
the primary key or other unique key of the table it references. If not, the
value is rejected. With this constraint, SQL enforces referential integrity—
ensuring that data in related tables doesn’t end up unrelated, or orphaned.

We won’t end up with rows in one table that have no relation to rows in the
other tables we can join them to.

Listing 8-7 shows two tables from a hypothetical database tracking motor
vehicle activity.

CREATE TABLE licenses (
 license_id text,
 first_name text,
 last_name text,

 1 CONSTRAINT licenses_key PRIMARY KEY (license_id)
);

CREATE TABLE registrations (
 registration_id text,
 registration_date timestamp with time zone,

 2 license_id text REFERENCES licenses (license_id),
 CONSTRAINT registration_key PRIMARY KEY (registration_id,
license_id)
);

3 INSERT INTO licenses (license_id, first_name, last_name)
VALUES ('T229901', 'Steve', 'Rothery');

4 INSERT INTO registrations (registration_id, registration_date,
license_id)
VALUES ('A203391', '2022-03-17', 'T229901');

5 INSERT INTO registrations (registration_id, registration_date,
license_id)
VALUES ('A75772', '2022-03-17', 'T000001');

Listing 8-7: A foreign key example

The first table, licenses, uses a driver’s unique license_id 1 as a
natural primary key. The second table, registrations, is for tracking
vehicle registrations. A single license ID might be connected to multiple
vehicle registrations, because each licensed driver can register multiple
vehicles—this is called a one-to-many relationship (Chapter 7).

Here’s how that relationship is expressed via SQL: in the registrations
table, we designate the column license_id 2 as a foreign key by adding the

REFERENCES keyword, followed by the table name and column for it to
reference.

Now, when we insert a row into registrations, the database will test
whether the value inserted into license_id already exists in the
license_id primary key column of the licenses table. If it doesn’t, the
database returns an error, which is important. If any rows in registrations
didn’t correspond to a row in licenses, we’d have no way to write a query
to find the person who registered the vehicle.

To see this constraint in action, create the two tables and execute the
INSERT statements one at a time. The first adds a row to licenses 3 that
includes the value T229901 for the license_id. The second adds a row to
registrations 4 where the foreign key contains the same value. So far, so
good, because the value exists in both tables. But we encounter an error
with the third insert, which tries to add a row to registrations 5 with a
value for license_id that’s not in licenses:

ERROR: insert or update on table "registrations" violates
foreign key constraint "registrations_license_id_fkey"
DETAIL: Key (license_id)=(T000001) is not present in table
"licenses".

The resulting error is actually helpful: the database is enforcing
referential integrity by preventing a registration for a nonexistent license
holder. But it also indicates a few practical implications. First, it affects the
order in which we insert data. We cannot add data to a table that contains a
foreign key before the other table referenced by the key has the related
records, or we’ll get an error. In this example, we’d have to create a driver’s
license record before inserting a related registration record (if you think
about it, that’s what your local department of motor vehicles probably
does).

Second, the reverse applies when we delete data. To maintain referential
integrity, the foreign key constraint prevents us from deleting a row from
licenses before removing any related rows in registrations, because
doing so would leave an orphaned record. We would have to delete the
related row in registrations first and then delete the row in licenses.

However, ANSI SQL provides a way to handle this order of operations
automatically using the ON DELETE CASCADE keywords.

How to Automatically Delete Related Records with
CASCADE
To delete a row in licenses and have that action automatically delete any
related rows in registrations, we can specify that behavior by adding ON
DELETE CASCADE when defining the foreign key constraint.

Here’s how we would modify the Listing 8-7 CREATE TABLE statement for
registrations, adding the keywords at the end of the definition of the
license_id column:

CREATE TABLE registrations (
 registration_id text,
 registration_date date,
 license_id text REFERENCES licenses (license_id) ON
DELETE CASCADE,
 CONSTRAINT registration_key PRIMARY KEY (registration_id,
license_id)
);

Deleting a row in licenses should also delete all related rows in
registrations. This allows us to delete a driver’s license without first
having to manually remove any registrations linked to it. It also maintains
data integrity by ensuring deleting a license doesn’t leave orphaned rows in
registrations.

The CHECK Constraint
A CHECK constraint evaluates whether data added to a column meets the
expected criteria, which we specify with a logical test. If the criteria aren’t
met, the database returns an error. The CHECK constraint is extremely
valuable because it can prevent columns from getting loaded with
nonsensical data. For example, a baseball player’s total number of hits
shouldn’t be negative, so you should limit that data to values of zero or
greater. Or, in most schools, Z isn’t a valid letter grade for a course
(although my barely passing algebra grade felt like it), so we might insert
constraints that only accept the values A–F.

As with primary keys, we can implement a CHECK constraint at the
column or table level. For a column constraint, declare it in the CREATE
TABLE statement after the column name and data type: CHECK (logical
expression). As a table constraint, use the syntax CONSTRAINT
constraint_name CHECK (logical expression) after all columns are
defined.

Listing 8-8 shows a CHECK constraint applied to two columns in a table
we might use to track the user role and salary of employees within an
organization. It uses the table constraint syntax for the primary key and the
CHECK constraint.

CREATE TABLE check_constraint_example (
 user_id bigint GENERATED ALWAYS AS IDENTITY,
 user_role text,
 salary numeric(10,2),
 CONSTRAINT user_id_key PRIMARY KEY (user_id),

 1 CONSTRAINT check_role_in_list CHECK (user_role IN('Admin',
'Staff')),

 2 CONSTRAINT check_salary_not_below_zero CHECK (salary >= 0)
);

Listing 8-8: Examples of CHECK constraints

We create the table and set the user_id column as an auto-incrementing
surrogate primary key. The first CHECK 1 tests whether values entered into
the user_role column match one of two predefined strings, Admin or
Staff, by using the SQL IN operator. The second CHECK 2 tests whether
values entered in the salary column are greater than or equal to 0, because
a negative amount wouldn’t make sense. Both tests are an example of a
Boolean expression, a statement that evaluates as either true or false. If a
value tested by the constraint evaluates as true, the check passes.

NOTE

Developers may differ on whether check logic belongs in the
database, in the application in front of the database, such as a
human resources system, or both. One advantage of checks in the
database is that the database will maintain data integrity in the case
of changes to the application, new applications that use the
database, or users directly accessing the database.

When values are inserted or updated, the database checks them against
the constraint. If the values in either column violate the constraint—or, for
that matter, if the primary key constraint is violated—the database will
reject the change.

If we use the table constraint syntax, we also can combine more than one
test in a single CHECK statement. Say we have a table related to student
achievement. We could add the following:

CONSTRAINT grad_check CHECK (credits >= 120 AND tuition =
'Paid')

Notice that we combine two logical tests by enclosing them in
parentheses and connecting them with AND. Here, both Boolean expressions
must evaluate as true for the entire check to pass. You can also test values
across columns, as in the following example where we want to make sure
an item’s sale price is a discount on the original, assuming we have columns
for both values:

CONSTRAINT sale_check CHECK (sale_price < retail_price)

Inside the parentheses, the logical expression checks that the sale price is
less than the retail price.

The UNIQUE Constraint
We can also ensure that a column has a unique value in each row by using
the UNIQUE constraint. If ensuring unique values sounds similar to the
purpose of a primary key, it is. But UNIQUE has one important difference. In

a primary key, no values can be NULL, but a UNIQUE constraint permits
multiple NULL values in a column. This is useful in cases where we won’t
always have values but want to ensure that the ones we do have are unique.

To show the usefulness of UNIQUE, look at the code in Listing 8-9, which
is a table for tracking contact info.

CREATE TABLE unique_constraint_example (
 contact_id bigint GENERATED ALWAYS AS IDENTITY,
 first_name text,
 last_name text,
 email text,
 CONSTRAINT contact_id_key PRIMARY KEY (contact_id),

 1 CONSTRAINT email_unique UNIQUE (email)
);

INSERT INTO unique_constraint_example (first_name, last_name,
email)
VALUES ('Samantha', 'Lee', 'slee@example.org');

INSERT INTO unique_constraint_example (first_name, last_name,
email)
VALUES ('Betty', 'Diaz', 'bdiaz@example.org');

INSERT INTO unique_constraint_example (first_name, last_name,
email)

2 VALUES ('Sasha', 'Lee', 'slee@example.org');

Listing 8-9: A UNIQUE constraint example

In this table, contact_id serves as a surrogate primary key, uniquely
identifying each row. But we also have an email column, the main point of
contact with each person. We’d expect this column to contain only unique
email addresses, but those addresses might change over time. So, we use
UNIQUE 1 to ensure that any time we add or update a contact’s email, we’re
not providing one that already exists. If we try to insert an email that
already exists 2, the database will return an error:

ERROR: duplicate key value violates unique constraint
"email_unique"
DETAIL: Key (email)=(slee@example.org) already exists.

Again, the error shows the database is working for us.

The NOT NULL Constraint
In Chapter 7, you learned about NULL, a special SQL value that represents
missing data or unknown values. We know that NULL is not allowed for
primary key values because they need to uniquely identify each row in a
table. But there may be other times when you’ll want to disallow empty
values in a column. For example, in a table listing each student in a school,
requiring that columns containing first and last names be filled for each row
makes sense. To require a value in a column, SQL provides the NOT NULL
constraint, which simply prevents a column from accepting empty values.

Listing 8-10 demonstrates the NOT NULL syntax.

CREATE TABLE not_null_example (
 student_id bigint GENERATED ALWAYS AS IDENTITY,
 first_name text NOT NULL,
 last_name text NOT NULL,
 CONSTRAINT student_id_key PRIMARY KEY (student_id)
);

Listing 8-10: A NOT NULL constraint example

Here, we declare NOT NULL for the first_name and last_name columns
because it’s likely we’d require those pieces of information in a table
tracking student information. If we attempt an INSERT on the table and don’t
include values for those columns, the database will notify us of the
violation.

How to Remove Constraints or Add Them Later
You can remove a constraint or later add one to an existing table using
ALTER TABLE, the command you used earlier in the chapter in “Creating an
Auto-incrementing Surrogate Key” to reset the IDENTITY sequence.

To remove a primary key, foreign key, or UNIQUE constraint, you write an
ALTER TABLE statement in this format:

ALTER TABLE table_name DROP CONSTRAINT constraint_name;

To drop a NOT NULL constraint, the statement operates on the column, so
you must use the additional ALTER COLUMN keywords, like so:

ALTER TABLE table_name ALTER COLUMN column_name DROP NOT
NULL;

Let’s use these statements to modify the not_null_example table you
just made, as shown in Listing 8-11.

ALTER TABLE not_null_example DROP CONSTRAINT student_id_key;
ALTER TABLE not_null_example ADD CONSTRAINT student_id_key
PRIMARY KEY (student_id);
ALTER TABLE not_null_example ALTER COLUMN first_name DROP NOT
NULL;
ALTER TABLE not_null_example ALTER COLUMN first_name SET NOT
NULL;

Listing 8-11: Dropping and adding a primary key and a NOT NULL
constraint

Execute the statements one at a time. Each time, you can view the
changes to the table definition in pgAdmin by clicking the table name once
and then clicking the SQL tab above the query window. (Note that it will
display a more verbose syntax for the table definition than what you used
when creating the table.)

With the first ALTER TABLE statement, we use DROP CONSTRAINT to
remove the primary key named student_id_key. We then add the primary
key back using ADD CONSTRAINT. We’d use that same syntax to add a
constraint to any existing table.

NOTE

You can add a constraint to an existing table only if the data in the
target column obeys the limits of the constraint. For example, you
can’t place a primary key constraint on a column that has duplicate
or empty values.

In the third statement, ALTER COLUMN and DROP NOT NULL remove the NOT
NULL constraint from the first_name column. Finally, SET NOT NULL adds
the constraint.

Speeding Up Queries with Indexes
In the same way that a book’s index helps you find information more
quickly, you can speed up queries by adding an index—a separate data
structure the database manages—to one or more columns in a table. The
database uses the index as a shortcut rather than scanning each row to find
data. That’s admittedly a simplistic picture of what, in SQL databases, is a
nontrivial topic. We could spend several chapters delving into the workings
of SQL indexes and tuning databases for performance, but instead I’ll offer
general guidance on using indexes and a PostgreSQL-specific example that
demonstrates their benefits.

NOTE

The ANSI SQL standard doesn’t specify a syntax for creating
indexes, nor does it specify how a database system should
implement them. Nevertheless, indexes are a feature of all major
database systems, including Microsoft SQL Server, MySQL, Oracle,
and SQLite, with similarities to the syntax and behavior described
here.

B-Tree: PostgreSQL’s Default Index
You’ve already created several indexes, perhaps without knowing. Each
time you add a primary key or UNIQUE constraint, PostgreSQL (as well as
most database systems) creates an index on the column or columns included
in the constraint. Indexes are stored separately from the table data and are
accessed automatically (if needed) when you run a query and updated every
time a row is added, removed, or updated.

In PostgreSQL, the default index type is the B-tree index. It’s created
automatically on the columns designated for the primary key or a UNIQUE
constraint, and it’s also the type created by default with the CREATE INDEX

statement. B-tree, short for balanced tree, is so named because when you
search for a value, the structure looks from the top of the tree down through
branches until it locates the value. (Of course, the process is a lot more
complicated than that.) A B-tree index is useful for data that can be ordered
and searched using equality and range operators, such as <, <=, =, >=, >, and
BETWEEN. It also works with LIKE if there’s no wildcard in the pattern at the
beginning of the search string. An example is WHERE chips LIKE
'Dorito%'.

PostgreSQL also supports additional index types, such as the Generalized
Inverted Index (GIN) and the Generalized Search Tree (GiST). Each has
distinct uses, and I’ll incorporate them in later chapters on full-text search
and queries using geometry types.

For now, let’s see a B-tree index speed up a simple search query. For this
exercise, we’ll use a large dataset comprising more than 900,000 New York
City street addresses, compiled by the OpenAddresses project at
https://openaddresses.io/. The file with the data, city_of_new_york.csv, is
available for you to download along with all the resources for this book
from https://nostarch.com/practical-sql-2nd-edition/.

After you’ve downloaded the file, use the code in Listing 8-12 to create a
new_york_addresses table and import the address data. The import will
take longer than the tiny datasets you’ve loaded so far because the CSV file
is about 50MB.

CREATE TABLE new_york_addresses (
 longitude numeric(9,6),
 latitude numeric(9,6),
 street_number text,
 street text,
 unit text,
 postcode text,
 id integer CONSTRAINT new_york_key PRIMARY KEY
);

COPY new_york_addresses
FROM 'C:\YourDirectory\city_of_new_york.csv'
WITH (FORMAT CSV, HEADER);

Listing 8-12: Importing New York City address data

https://openaddresses.io/
https://nostarch.com/practical-sql-2nd-edition/

When the data loads, run a quick SELECT query to visually check that you
have 940,374 rows and seven columns. A common use for this data might
be to search for matches in the street column, so we’ll use that example
for exploring index performance.

Benchmarking Query Performance with EXPLAIN
We’ll measure the performance before and after adding an index by using
the PostgreSQL-specific EXPLAIN command, which lists the query plan for
a specific database query. The query plan might include how the database
plans to scan the table, whether or not it will use indexes, and so on. When
we add the ANALYZE keyword, EXPLAIN will carry out the query and show
the actual execution time.

Recording Some Control Execution Times
We’ll use the three queries in Listing 8-13 to analyze query performance
before and after adding an index. We’re using typical SELECT queries with a
WHERE clause with EXPLAIN ANALYZE included at the beginning. These
keywords tell the database to execute the query and display statistics about
the query process and how long it took to execute, rather than show the
results.

EXPLAIN ANALYZE SELECT * FROM new_york_addresses
WHERE street = 'BROADWAY';

EXPLAIN ANALYZE SELECT * FROM new_york_addresses
WHERE street = '52 STREET';

EXPLAIN ANALYZE SELECT * FROM new_york_addresses
WHERE street = 'ZWICKY AVENUE';

Listing 8-13: Benchmark queries for index performance

On my system, the first query returns these stats in the pgAdmin output
pane:

Gather (cost=1000.00..15184.08 rows=3103 width=46) (actual
time=9.000..388.448 rows=3336 loops=1)
 Workers Planned: 2
 Workers Launched: 2

 -> Parallel Seq Scan on new_york_addresses

(cost=0.00..13873.78 1
 rows=1293 width=46) (actual time=2.362..367.258
rows=1112 loops=3)
 Filter: (street = 'BROADWAY'::text)
 Rows Removed by Filter: 312346
Planning Time: 0.401 ms

Execution Time: 389.232 ms 2

Not all the output is relevant here, so I won’t decode it all, but two lines
are pertinent. The first indicates that to find any rows where street =
'BROADWAY', the database will conduct a sequential scan 1 of the table.
That’s a synonym for a full table scan: the database will examine each row
and remove any where street doesn’t match BROADWAY. The execution time
(on my computer about 389 milliseconds) 2 is how long the query took to
run. Your time will depend on factors including your computer hardware.

For the test, run each query in Listing 8-13 several times and record the
fastest execution time for each. You’ll notice that execution times for the
same query will vary slightly on each run. That can be the result of several
factors, from other processes running on the server to the effect of data
being held in memory after a prior run of the query.

Adding the Index
Now, let’s see how adding an index changes the query’s search method and
execution time. Listing 8-14 shows the SQL statement for creating the
index with PostgreSQL.

CREATE INDEX street_idx ON new_york_addresses (street);

Listing 8-14: Creating a B-tree index on the new_york_addresses table

Notice that it’s similar to the commands for creating constraints. We give
the CREATE INDEX keywords followed by a name we choose for the index,
in this case street_idx. Then ON is added, followed by the target table and
column.

Execute the CREATE INDEX statement, and PostgreSQL will scan the
values in the street column and build the index from them. We need to

create the index only once. When the task finishes, rerun each of the three
queries in Listing 8-13 and record the execution times reported by EXPLAIN
ANALYZE. Here’s an example:

Bitmap Heap Scan on new_york_addresses (cost=76.47..6389.39
rows=3103 width=46) (actual time=1.355..4.802 rows=3336
loops=1)
 Recheck Cond: (street = 'BROADWAY'::text)
 Heap Blocks: exact=2157
 -> Bitmap Index Scan on street_idx (cost=0.00..75.70

rows=3103 width=0) 1
 (actual time=0.950..0.950 rows=3336 loops=1)
 Index Cond: (street = 'BROADWAY'::text)
Planning Time: 0.109 ms

Execution Time: 5.113 ms 2

Do you notice a change? First, we see that the database is now using an
index scan on street_idx 1 instead of visiting each row in a sequential
scan. Also, the query speed is now markedly faster 2. Table 8-1 shows the
fastest execution times (rounded) from my computer before and after
adding the index.

Table 8-1: Measuring Index Performance

Query filter Before index After index
WHERE street = 'BROADWAY' 92 ms 5 ms
WHERE street = '52 STREET' 94 ms 1 ms
WHERE street = 'ZWICKY AVENUE' 93 ms <1 ms

The execution times are much, much better, nearly a tenth of a second
faster or more per query. Is a tenth of a second that impressive? Well,
whether you’re seeking answers in data using repeated querying or creating
a database system for thousands of users, the time savings adds up.

If you ever need to remove an index from a table—perhaps if you’re
testing the performance of several index types—use the DROP INDEX
command followed by the name of the index to remove.

Considerations When Using Indexes

You’ve seen that indexes have significant performance benefits, so does that
mean you should add an index to every column in a table? Not so fast!
Indexes are valuable, but they’re not always needed. In addition, they do
enlarge the database and impose a maintenance cost on writing data. Here
are a few tips for judging when to uses indexes:
Consult the documentation for the database system you’re using to learn
about the kinds of indexes available and which to use on particular data
types. PostgreSQL, for example, has five more index types in addition to B-
tree. One, called GiST, is particularly suited to the geometry data types
discussed later in the book. Full-text search, which you’ll learn in Chapter
14, also benefits from indexing.
Consider adding indexes to columns you’ll use in table joins. Primary keys
are indexed by default in PostgreSQL, but foreign key columns in related
tables are not and are a good target for indexes.
An index on a foreign key will help avoid an expensive sequential scan
during a cascading delete.
Add indexes to columns that will frequently end up in a query WHERE clause.
As you’ve seen, search performance is significantly improved via indexes.
Use EXPLAIN ANALYZE to test the performance under a variety of
configurations. Optimization is a process! If an index isn’t being used by
the database—and it’s not backing up a primary key or other constraint—
you can drop it to reduce the size of your database and speed up inserts,
updates, and deletes.

Wrapping Up
With the tools you’ve added to your toolbox in this chapter, you’re ready to
ensure that the databases you build or inherit are best suited for your
collection and exploration of data. It’s crucial to define constraints that
match the data and the expectation of users by not allowing values that
don’t make sense, making sure values are filled in, and setting up proper
relationships between tables. You’ve also learned how to make your queries
run faster and how to consistently organize your database objects. That’s a
boon for you and for others who share your data.

This chapter concludes the first part of the book, which focused on giving
you the essentials to dig into SQL databases. We’ll continue building on
these foundations as we explore more complex queries and strategies for
data analysis. In the next chapter, we’ll use SQL aggregate functions to
assess the quality of a dataset and get usable information from it.

TRY IT YOURSELF

Are you ready to test yourself on the concepts covered in this chapter? Consider the
following two tables from a database you’re making to keep track of your vinyl LP
collection. Start by reviewing these CREATE TABLE statements:

CREATE TABLE albums (
 album_id bigint GENERATED ALWAYS AS IDENTITY,
 catalog_code text,
 title text,
 artist text,
 release_date date,
 genre text,
 description text
);

CREATE TABLE songs (
 song_id bigint GENERATED ALWAYS AS IDENTITY,
 title text,
 composers text,
 album_id bigint
);

The albums table includes information specific to the overall collection of songs on
the disc. The songs table catalogs each track on the album. Each song has a title and a
column for its composers, who might be different than the album artist.

Use the tables to answer these questions:
Modify these CREATE TABLE statements to include primary and foreign keys plus

additional constraints on both tables. Explain why you made your choices.
Instead of using album_id as a surrogate key for your primary key, are there any

columns in albums that could be useful as a natural key? What would you have to know
to decide?

To speed up queries, which columns are good candidates for indexes?

9
EXTRACTING INFORMATION BY
GROUPING AND SUMMARIZING

Every dataset tells a story, and it’s the
data analyst’s job to find it. In Chapter
3, you learned about interviewing data
using SELECT statements by sorting
columns, finding distinct values, and

filtering results. You’ve also learned the
fundamentals of SQL math, data types, table design,
and joining tables. With these tools under your belt,
you’re ready to glean more insights by using
grouping and aggregate functions to summarize your
data.

By summarizing data, we can identify useful information we wouldn’t
see just by scanning the rows of a table. In this chapter, we’ll use the well-
known institution of your local library as our example.

Libraries remain a vital part of communities worldwide, but the internet
and advancements in library technology have changed how we use them.
For example, ebooks and online access to digital materials now have a
permanent place in libraries along with books and periodicals.

In the United States, the Institute of Museum and Library Services
(IMLS) measures library activity as part of its annual Public Libraries
Survey. The survey collects data from about 9,000 library administrative
entities, defined by the survey as agencies that provide library services to a
particular locality. Some agencies are county library systems, and others are
part of school districts. Data on each agency includes the number of
branches, staff, books, hours open per year, and so on. The IMLS has been
collecting data each year since 1988 and includes all public library agencies
in the 50 states plus the District of Columbia and US territories such as
American Samoa. (Read more about the program at
https://www.imls.gov/research-evaluation/data-collection/public-libraries-
survey/.)

For this exercise, we’ll assume the role of an analyst who just received a
fresh copy of the library dataset to produce a report describing trends from
the data. We’ll create three tables to hold data from the 2018, 2017, and
2016 surveys. (Often, it’s helpful to assess multiple years of data to discern
trends.) Then we’ll summarize the more interesting data in each table and
join the tables to see how measures changed over time.

Creating the Library Survey Tables
Let’s create the three library survey tables and import the data. We’ll use
appropriate data types and constraints for each column and add indexes
where appropriate. The code and three CSV files are available in the book’s
resources.

Creating the 2018 Library Data Table
We’ll start by creating the table for the 2018 library data. Using the CREATE
TABLE statement, Listing 9-1 builds pls_fy2018_libraries, a table for the
fiscal year 2018 Public Library System Data File from the Public Libraries
Survey. The Public Library System Data File summarizes data at the agency
level, counting activity at all agency outlets, which include central libraries,
branch libraries, and bookmobiles. The annual survey generates two
additional files we won’t use: one summarizes data at the state level, and
the other has data on individual outlets. For this exercise, those files are

https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey/

redundant, but you can read about the data they contain at
https://www.imls.gov/sites/default/files/2018_pls_data_file_documentation.
pdf.

For convenience, I’ve created a naming scheme for the tables: pls refers
to the survey title, fy2018 is the fiscal year the data covers, and libraries
is the name of the particular file from the survey. For simplicity, I’ve
selected 47 of the more relevant columns from the 166 in the original
survey file to fill the pls_fy2018_libraries table, excluding data such as
the codes that explain the source of individual responses. When a library
didn’t provide data, the agency derived the data using other means, but we
don’t need that information for this exercise.

Listing 9-1 is abbreviated for convenience, as indicated by the --snip--
noted in the code, but the full version is included with the book’s resources.

CREATE TABLE pls_fy2018_libraries (
 stabr text NOT NULL,

 1 fscskey text CONSTRAINT fscskey_2018_pkey PRIMARY KEY,
 libid text NOT NULL,
 libname text NOT NULL,
 address text NOT NULL,
 city text NOT NULL,
 zip text NOT NULL,
 --snip--
 longitude numeric(10,7) NOT NULL,
 latitude numeric(10,7) NOT NULL
);

2 COPY pls_fy2018_libraries
FROM 'C:\YourDirectory\pls_fy2018_libraries.csv'
WITH (FORMAT CSV, HEADER);

3 CREATE INDEX libname_2018_idx ON pls_fy2018_libraries
(libname);

Listing 9-1: Creating and filling the 2018 Public Libraries Survey table

After finding the code and data file for Listing 9-1, connect to your
analysis database in pgAdmin and run it. Make sure you remember to
change C:\YourDirectory\ to the path where you saved the
pls_fy2018_libraries.csv file.

https://www.imls.gov/sites/default/files/2018_pls_data_file_documentation.pdf

First, the code makes the table via CREATE TABLE. We assign a primary
key constraint to the column named fscskey 1, a unique code the data
dictionary says is assigned to each library. Because it’s unique, present in
each row, and unlikely to change, it can serve as a natural primary key.

The definition for each column includes the appropriate data type and
NOT NULL constraints where the columns have no missing values. The
startdate and enddate columns contain dates, but we’ve set their data
type to text in the code; in the CSV file, those columns include nondate
values, and our import will fail if we try to use a date data type. In Chapter
10, you’ll learn how to clean up cases like these. For now, those columns
are fine as is.

After creating the table, the COPY statement 2 imports the data from a
CSV file named pls_fy2018_libraries.csv using the file path you provide.
We add an index 3 to the libname column to provide faster results when we
search for a particular library.

Creating the 2017 and 2016 Library Data Tables
Creating the tables for the 2017 and 2016 library surveys follows similar
steps. I’ve combined the code to create and fill both tables in Listing 9-2.
Note again that the listing shown is truncated, but the full code is in the
book’s resources at https://nostarch.com/practical-sql-2nd-edition/.

Update the file paths in the COPY statements for both imports and execute
the code.

CREATE TABLE pls_fy2017_libraries (
 stabr text NOT NULL,

 1 fscskey text CONSTRAINT fscskey_17_pkey PRIMARY KEY,
 libid text NOT NULL,
 libname text NOT NULL,
 address text NOT NULL,
 city text NOT NULL,
 zip text NOT NULL,
 --snip--
 longitude numeric(10,7) NOT NULL,
 latitude numeric(10,7) NOT NULL
);

CREATE TABLE pls_fy2016_libraries (

https://nostarch.com/practical-sql-2nd-edition/

 stabr text NOT NULL,
 fscskey text CONSTRAINT fscskey_16_pkey PRIMARY KEY,
 libid text NOT NULL,
 libname text NOT NULL,
 address text NOT NULL,
 city text NOT NULL,
 zip text NOT NULL,
 --snip--
 longitude numeric(10,7) NOT NULL,
 latitude numeric(10,7) NOT NULL
);

2 COPY pls_fy2017_libraries
FROM 'C:\YourDirectory\pls_fy2017_libraries.csv'
WITH (FORMAT CSV, HEADER);

COPY pls_fy2016_libraries
FROM 'C:\YourDirectory\pls_fy2016_libraries.csv'
WITH (FORMAT CSV, HEADER);

3 CREATE INDEX libname_2017_idx ON pls_fy2017_libraries
(libname);
CREATE INDEX libname_2016_idx ON pls_fy2016_libraries
(libname);

Listing 9-2: Creating and filling the 2017 and 2016 Public Libraries
Survey tables

We start by creating the two tables, and in both we again use fscskey 1
as the primary key. Next, we run COPY commands 2 to import the CSV files
to the tables, and, finally, we create an index on the libname column 3 in
both tables.

As you review the code, you’ll notice that the three tables have an
identical structure. Most ongoing surveys will have a handful of year-to-
year changes because the makers of the survey either think of new
questions or modify existing ones, but the columns I’ve selected for these
three tables are consistent. The documentation for the survey years is at
https://www.imls.gov/research-evaluation/data-collection/public-libraries-
survey/. Now, let’s mine this data to discover its story.

https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey/

Exploring the Library Data Using Aggregate
Functions
Aggregate functions combine values from multiple rows, perform an
operation on those values, and return a single result. For example, you
might return the average of values with the avg() aggregate function, as
you learned in Chapter 6. Some aggregate functions are part of the SQL
standard, and others are specific to PostgreSQL and other database
managers. Most of the aggregate functions used in this chapter are part of
standard SQL (a full list of PostgreSQL aggregates is at
https://www.postgresql.org/docs/current/functions-aggregate.html).

In this section, we’ll work through the library data using aggregates on
single and multiple columns and then explore how you can expand their use
by grouping the results they return with values from additional columns.

Counting Rows and Values Using count()
After importing a dataset, a sensible first step is to make sure the table has
the expected number of rows. The IMLS documentation says the file we
imported for the 2018 data has 9,261 rows; 2017 has 9,245; and 2016 has
9,252. The difference likely reflects library openings, closings, or mergers.
When we count the number of rows in those tables, the results should match
those counts.

The count() aggregate function, which is part of the ANSI SQL
standard, makes it easy to check the number of rows and perform other
counting tasks. If we supply an asterisk as an input, such as count(*), the
asterisk acts as a wildcard, so the function returns the number of table rows
regardless of whether they include NULL values. We do this in all three
statements in Listing 9-3.

SELECT count(*)
FROM pls_fy2018_libraries;

SELECT count(*)
FROM pls_fy2017_libraries;

SELECT count(*)
FROM pls_fy2016_libraries;

https://www.postgresql.org/docs/current/functions-aggregate.html

Listing 9-3: Using count() for table row counts

Run each of the commands in Listing 9-3 one at a time to see the table
row counts. For pls_fy2018_libraries, the result should be as follows:

count

 9261

For pls_fy2017_libraries, you should see the following:

count

 9245

Finally, the result for pls_fy2016_libraries should be this:

count

 9252

All three results match the number of rows we expected. This is a good
first step because it will alert us to issues such as missing rows or a case
where we might have imported the wrong file.

NOTE

You can also check the row count using the pgAdmin interface, but
it’s clunky. Right-clicking the table name in pgAdmin’s object
browser and selecting View/Edit Data▶All Rows executes a SQL
query for all rows. Then, a pop-up message in the results pane
shows the row count, but it disappears after a few seconds.

Counting Values Present in a Column
If we supply a column name instead of an asterisk to count(), it will return
the number of rows that are not NULL. For example, we can count the

number of non-NULL values in the phone column of the
pls_fy2018_libraries table using count() as in Listing 9-4.

SELECT count(phone)
FROM pls_fy2018_libraries;

Listing 9-4: Using count() for the number of values in a column

The result shows 9,261 rows have a value in phone, the same as the total
rows we found earlier.

count

 9261

This means every row in the phone column has a value. You may have
suspected this already, given that the column has a NOT NULL constraint in
the CREATE TABLE statement. But running this check is worthwhile because
the absence of values might influence your decision on whether to proceed
with analysis at all. To fully vet the data, checking with topical experts and
digging deeper into the data is usually a good idea; I recommend seeking
expert advice as part of a broader analysis methodology (for more on this
topic, see Chapter 20).

Counting Distinct Values in a Column
In Chapter 3, I covered the DISTINCT keyword—part of the SQL standard—
which with SELECT returns a list of unique values. We can use it to see
unique values in a single column, or we can see unique combinations of
values from multiple columns. We also can add DISTINCT to the count()
function to return a count of distinct values from a column.

Listing 9-5 shows two queries. The first counts all values in the 2018
table’s libname column. The second does the same but includes DISTINCT
in front of the column name. Run them both, one at a time.

SELECT count(libname)
FROM pls_fy2018_libraries;

SELECT count(DISTINCT libname)
FROM pls_fy2018_libraries;

Listing 9-5: Using count() for the number of distinct values in a column

The first query returns a row count that matches the number of rows in
the table that we found using Listing 9-3:

count

 9261

That’s good. We expect to have the library agency name listed in every
row. But the second query returns a smaller number:

count

 8478

Using DISTINCT to remove duplicates reduces the number of library
names to the 8,478 that are unique. Closer inspection of the data shows that
526 library agencies in the 2018 survey shared their name with one or more
other agencies. Ten library agencies are named OXFORD PUBLIC LIBRARY,
each one in a city or town named Oxford in different states, including
Alabama, Connecticut, Kansas, and Pennsylvania, among others. We’ll
write a query to see combinations of distinct values in the “Aggregating
Data Using GROUP BY” section.

Finding Maximum and Minimum Values Using max() and
min()
The max() and min() functions give us the largest and smallest values in a
column and are useful for a couple of reasons. First, they help us get a sense
of the scope of the values reported. Second, the functions can reveal
unexpected issues with data, as you’ll see now.

Both max() and min() work the same way, with the name of a column as
input. Listing 9-6 uses max() and min() on the 2018 table, taking the
visits column that records the number of annual visits to the library
agency and all of its branches. Run the code.

SELECT max(visits), min(visits)
FROM pls_fy2018_libraries;

Listing 9-6: Finding the most and fewest visits using max() and min()

The query returns the following results:

max min
-------- ---
16686945 -3

Well, that’s interesting. The maximum value of more than 16.6 million is
reasonable for a large city library system, but -3 as the minimum? On the
surface, that result seems like a mistake, but it turns out that the creators of
the library survey are employing a common but potentially problematic
convention in data collection by placing a negative number or some
artificially high value in a column to indicate some condition.

In this case, negative values in number columns indicate the following:
A value of -1 indicates a “nonresponse” to that question.
A value of -3 indicates “not applicable” and is used when a library agency
has closed either temporarily or permanently.

We’ll need to account for and exclude negative values as we explore the
data, because summing a column and including the negative values will
result in an incorrect total. We can do this using a WHERE clause to filter
them. It’s a good reminder to always read the documentation for the data to
get ahead of the issue instead of having to backtrack after spending a lot of
time on deeper analysis!

NOTE

A better alternative for this negative value scenario is to use NULL in
rows in the visits column where response data is absent and then
create a separate visits_flag column to hold codes explaining
why.

Aggregating Data Using GROUP BY
When you use the GROUP BY clause with aggregate functions, you can group
results according to the values in one or more columns. This allows us to
perform operations such as sum() or count() for every state in the table or
for every type of library agency.

Let’s explore how using GROUP BY with aggregate functions works. On its
own, GROUP BY, which is also part of standard ANSI SQL, eliminates
duplicate values from the results, similar to DISTINCT. Listing 9-7 shows the
GROUP BY clause in action.

SELECT stabr
FROM pls_fy2018_libraries

1 GROUP BY stabr
ORDER BY stabr;

Listing 9-7: Using GROUP BY on the stabr column

We add the GROUP BY clause 1 after the FROM clause and include the
column name to group. In this case, we’re selecting stabr, which contains
the state abbreviation, and grouping by that same column. We then use
ORDER BY stabr as well so that the grouped results are in alphabetical order.
This will yield a result with unique state abbreviations from the 2018 table.
Here’s a portion of the results:

stabr

AK
AL
AR
AS
AZ
CA
--snip--
WV
WY

Notice that there are no duplicates in the 55 rows returned. These
standard two-letter postal abbreviations include the 50 states plus

Washington, DC, and several US territories, such as Guam and the US
Virgin Islands.

You’re not limited to grouping just one column. In Listing 9-8, we use
the GROUP BY clause on the 2018 data to specify the city and stabr
columns for grouping.

SELECT city, stabr
FROM pls_fy2018_libraries
GROUP BY city, stabr
ORDER BY city, stabr;

Listing 9-8: Using GROUP BY on the city and stabr columns

The results get sorted by city and then by state, and the output shows
unique combinations in that order:

city stabr
---------- -----
ABBEVILLE AL
ABBEVILLE LA
ABBEVILLE SC
ABBOTSFORD WI
ABERDEEN ID
ABERDEEN SD
ABERNATHY TX
--snip--

This grouping returns 9,013 rows, 248 fewer than the total table rows.
The result indicates that the file includes multiple instances where there’s
more than one library agency for a particular city and state combination.

Combining GROUP BY with count()
If we combine GROUP BY with an aggregate function, such as count(), we
can pull more descriptive information from our data. For example, we know
9,261 library agencies are in the 2018 table. We can get a count of agencies
by state and sort them to see which states have the most. Listing 9-9 shows
how to do this.

1 SELECT stabr, count(*)
FROM pls_fy2018_libraries

2 GROUP BY stabr
3 ORDER BY count(*) DESC;

Listing 9-9: Using GROUP BY with count() on the stabr column

We’re now asking for the values in the stabr column and a count of how
many rows have a given stabr value. In the list of columns to query 1, we
specify stabr and count() with an asterisk as its input, which will cause
count() to include NULL values. Also, when we select individual columns
along with an aggregate function, we must include the columns in a GROUP
BY clause 2. If we don’t, the database will return an error telling us to do so,
because you can’t group values by aggregating and have ungrouped column
values in the same query.

To sort the results and have the state with the largest number of agencies
at the top, we can use an ORDER BY clause 3 that includes the count()
function and the DESC keyword.

Run the code in Listing 9-9. The results show New York, Illinois, and
Texas as the states with the greatest number of library agencies in 2018:

stabr count
----- -----
NY 756
IL 623
TX 560
IA 544
PA 451
MI 398
WI 381
MA 369
--snip--

Remember that our table represents library agencies that serve a locality.
Just because New York, Illinois, and Texas have the greatest number of
library agencies doesn’t mean they have the greatest number of outlets
where you can walk in and peruse the shelves. An agency might have one
central library only, or it might have no central libraries but 23 branches

spread around a county. To count outlets, each row in the table also has
values in the columns centlib and branlib, which record the number of
central and branch libraries, respectively. To find totals, we would use the
sum() aggregate function on both columns.

Using GROUP BY on Multiple Columns with count()
We can glean yet more information from our data by combining GROUP BY
with count() and multiple columns. For example, the stataddr column in
all three tables contains a code indicating whether the agency’s address
changed in the last year. The values in stataddr are as follows:
00 No change from last year
07 Moved to a new location
15 Minor address change

Listing 9-10 shows the code for counting the number of agencies in each
state that moved, had a minor address change, or had no change using
GROUP BY with stabr and stataddr and adding count().

1 SELECT stabr, stataddr, count(*)
FROM pls_fy2018_libraries

2 GROUP BY stabr, stataddr
3 ORDER BY stabr, stataddr;

Listing 9-10: Using GROUP BY with count() of the stabr and stataddr
columns

The key sections of the query are the column names and the count()
function after SELECT 1, and making sure both columns are reflected in the
GROUP BY clause 2 to ensure that count() will show the number of unique
combinations of stabr and stataddr.

To make the output easier to read, let’s sort first by the state and address
status codes in ascending order 3. Here are the results:

stabr stataddr count
----- -------- -----
AK 00 82

AL 00 220
AL 07 3
AL 15 1
AR 00 58
AR 07 1
AR 15 1
AS 00 1
--snip--

The first few rows show that code 00 (no change in address) is the most
common value for each state. We’d expect that because it’s likely there are
more library agencies that haven’t changed address than those that have.
The result helps assure us that we’re analyzing the data in a sound way. If
code 07 (moved to a new location) was the most frequent in each state, that
would raise a question about whether we’ve written the query correctly or
whether there’s an issue with the data.

Revisiting sum() to Examine Library Activity
Now let’s expand our techniques to include grouping and aggregating
across joined tables using the 2018, 2017, and 2016 libraries data. Our goal
is to identify trends in library visits spanning that three-year period. To do
this, we need to calculate totals using the sum() aggregate function.

Before we dig into these queries, let’s address the values -3 and -1,
which indicate “not applicable” and “nonresponse.” To prevent these
negative numbers from affecting the analysis, we’ll filter them out using a
WHERE clause to limit the queries to rows where values in visits are zero or
greater.

Let’s start by calculating the sum of annual visits to libraries from the
individual tables. Run each SELECT statement in Listing 9-11 separately.

SELECT sum(visits) AS visits_2018
FROM pls_fy2018_libraries
WHERE visits >= 0;

SELECT sum(visits) AS visits_2017
FROM pls_fy2017_libraries
WHERE visits >= 0;

SELECT sum(visits) AS visits_2016

FROM pls_fy2016_libraries
WHERE visits >= 0;

Listing 9-11: Using the sum() aggregate function to total visits to
libraries in 2016, 2017, and 2018

For 2018, visits totaled approximately 1.29 billion:

visits_2018

 1292348697

For 2017, visits totaled approximately 1.32 billion:

visits_2017

 1319803999

And for 2016, visits totaled approximately 1.36 billion:

visits_2016

 1355648987

We’re onto something here, but it may not be good news for libraries.
The trend seems to point downward with visits dropping about 5 percent
from 2016 to 2018.

Let’s refine this approach. These queries sum visits recorded in each
table. But from the row counts we ran earlier in the chapter, we know that
each table contains a different number of library agencies: 9,261 in 2018;
9,245 in 2017; and 9,252 in 2016. The differences are likely due to agencies
opening, closing, or merging. So, let’s determine how the sum of visits will
differ if we limit the analysis to library agencies that exist in all three tables
and have a non-negative value for visits. We can do that by joining the
tables, as shown in Listing 9-12.

1 SELECT sum(pls18.visits) AS visits_2018,
 sum(pls17.visits) AS visits_2017,
 sum(pls16.visits) AS visits_2016

2 FROM pls_fy2018_libraries pls18
 JOIN pls_fy2017_libraries pls17 ON pls18.fscskey =
pls17.fscskey
 JOIN pls_fy2016_libraries pls16 ON pls18.fscskey =
pls16.fscskey

3 WHERE pls18.visits >= 0
 AND pls17.visits >= 0
 AND pls16.visits >= 0;

Listing 9-12: Using sum() to total visits on joined 2018, 2017, and 2016
tables

This query pulls together a few concepts we covered in earlier chapters,
including table joins. At the top, we use the sum() aggregate function 1 to
total the visits columns from each of the three tables. When we join the
tables on the tables’ primary keys, we’re declaring table aliases 2 as we
explored in Chapter 7—and here, we’re omitting the optional AS keyword in
front of each alias. For example, we declare pls18 as the alias for the 2018
table to avoid having to write its lengthier full name throughout the query.

Note that we use a standard JOIN, also known as an INNER JOIN,
meaning the query results will only include rows where the values in the
fscskey primary key match in all three tables.

As we did in Listing 9-11, we specify with a WHERE clause 3 that the result
should include only those rows where visits are greater than or equal to 0
in the tables. This will prevent the artificial negative values from impacting
the sums.

Run the query. The results should look like this:

visits_2018 visits_2017 visits_2016
----------- ----------- -----------
 1278148838 1319325387 1355078384

The results are similar to what we found by querying the tables
separately, although these totals are as much as 14 million smaller in 2018.
Still, the downward trend holds.

For a full picture of how library use is changing, we’d want to run a
similar query on all of the columns that contain performance indicators to

chronicle the trend in each. For example, the column wifisess shows how
many times users connected to the library’s wireless internet. If we use
wifisess instead of visits in Listing 9-11, we get this result:

wifi_2018 wifi_2017 wifi_2016
--------- --------- ---------
349767271 311336231 234926102

So, though visits were down, libraries saw a sharp increase in Wi-Fi
network use. That provides a keen insight into how the role of libraries is
changing.

NOTE

Although we joined the tables on fscskey, it’s entirely possible that
some library agencies that appear in all three tables merged or split
during the three years. A call to the IMLS asking about caveats for
working with this data is a good idea.

Grouping Visit Sums by State
Now that we know library visits dropped for the United States as a whole
between 2016 and 2018, you might ask yourself, “Did every part of the
country see a decrease, or did the degree of the trend vary by region?” We
can answer this question by modifying our preceding query to group by the
state code. Let’s also use a percent-change calculation to compare the trend
by state. Listing 9-13 contains the full code.

1 SELECT pls18.stabr,
 sum(pls18.visits) AS visits_2018,
 sum(pls17.visits) AS visits_2017,
 sum(pls16.visits) AS visits_2016,
 round((sum(pls18.visits::numeric) -
sum(pls17.visits)) /

 2 sum(pls17.visits) * 100, 1) AS chg_2018_17,
 round((sum(pls17.visits::numeric) -
sum(pls16.visits)) /
 sum(pls16.visits) * 100, 1) AS chg_2017_16
FROM pls_fy2018_libraries pls18

 JOIN pls_fy2017_libraries pls17 ON pls18.fscskey =
pls17.fscskey
 JOIN pls_fy2016_libraries pls16 ON pls18.fscskey =
pls16.fscskey
WHERE pls18.visits >= 0
 AND pls17.visits >= 0
 AND pls16.visits >= 0

3 GROUP BY pls18.stabr
4 ORDER BY chg_2018_17 DESC;

Listing 9-13: Using GROUP BY to track percent change in library visits by
state

We follow the SELECT keyword with the stabr column 1 from the 2018
table; that same column appears in the GROUP BY clause 3. It doesn’t matter
which table’s stabr column we use because we’re only querying agencies
that appear in all three tables. After the visits columns, we include the
now-familiar percent-change calculation you learned in Chapter 6. We use
this twice, giving the aliases chg_2018_17 2 and chg_2017_16 for clarity.
We end the query with an ORDER BY clause 4, sorting by the chg_2018_17
column alias.

When you run the query, the top of the results shows 10 states with an
increase in visits from 2017 to 2018. The rest of the results show a decline.
American Samoa, at the bottom of the ranking, had a 28 percent drop!

stabr visits_2018 visits_2017 visits_2016 chg_2018_17
chg_2017_16
----- ----------- ----------- ----------- ----------- -------

SD 3824804 3699212 3722376 3.4
-0.6
MT 4332900 4215484 4298268 2.8
-1.9
FL 68423689 66697122 70991029 2.6
-6.0
ND 2216377 2162189 2201730 2.5
-1.8
ID 8179077 8029503 8597955 1.9
-6.6
DC 3632539 3593201 3930763 1.1
-8.6
ME 6746380 6731768 6811441 0.2

-1.2
NH 7045010 7028800 7236567 0.2
-2.9
UT 15326963 15295494 16096911 0.2
-5.0
DE 4122181 4117904 4125899 0.1
-0.2
OK 13399265 13491194 13112511 -0.7
2.9
WY 3338772 3367413 3536788 -0.9
-4.8
MA 39926583 40453003 40427356 -1.3
0.1
WA 37338635 37916034 38634499 -1.5
-1.9
MN 22952388 23326303 24033731 -1.6
-2.9
--snip--
GA 26835701 28816233 27987249 -6.9
3.0
AR 9551686 10358181 10596035 -7.8
-2.2
GU 75119 81572 71813 -7.9
13.6
MS 7602710 8581994 8915406 -11.4
-3.7
HI 3456131 4135229 4490320 -16.4
-7.9
AS 48828 67848 63166 -28.0
7.4

It’s helpful, for context, to also see the percent change in visits from
2016 to 2017. Many of the states, such as Minnesota, show consecutive
declines. Others, including several at the top of the list, show gains after
substantial decreases the year prior.

This is when it’s a good idea investigate what’s driving the changes. Data
analysis can sometimes raise as many questions as it answers, but that’s part
of the process. It’s always worth a phone call to a person who works closely
with the data to review your findings. Sometimes, they’ll have a good
explanation. Other times, an expert will say, “That doesn’t sound right.”
That answer might send you back to the keeper of the data or the
documentation to find out if you overlooked a code or a nuance with the
data.

Filtering an Aggregate Query Using HAVING
To refine our analysis, we can examine a subset of states and territories that
share similar characteristics. With percent change in visits, it makes sense to
separate large states from small states. In a small state like Rhode Island, a
single library closing for six months for repairs could have a significant
effect. A single closure in California might be scarcely noticed in a
statewide count. To look at states with a similar volume in visits, we could
sort the results by either of the visits columns, but it would be cleaner to
get a smaller result set by filtering our query.

To filter the results of aggregate functions, we need to use the HAVING
clause that’s part of standard ANSI SQL. You’re already familiar with using
WHERE for filtering, but aggregate functions, such as sum(), can’t be used
within a WHERE clause because they operate at the row level, and aggregate
functions work across rows. The HAVING clause places conditions on groups
created by aggregating. The code in Listing 9-14 modifies the query in
Listing 9-13 by inserting the HAVING clause after GROUP BY.

SELECT pls18.stabr,
 sum(pls18.visits) AS visits_2018,
 sum(pls17.visits) AS visits_2017,
 sum(pls16.visits) AS visits_2016,
 round((sum(pls18.visits::numeric) -
sum(pls17.visits)) /
 sum(pls17.visits) * 100, 1) AS chg_2018_17,
 round((sum(pls17.visits::numeric) -
sum(pls16.visits)) /
 sum(pls16.visits) * 100, 1) AS chg_2017_16
FROM pls_fy2018_libraries pls18
 JOIN pls_fy2017_libraries pls17 ON pls18.fscskey =
pls17.fscskey
 JOIN pls_fy2016_libraries pls16 ON pls18.fscskey =
pls16.fscskey
WHERE pls18.visits >= 0
 AND pls17.visits >= 0
 AND pls16.visits >= 0
GROUP BY pls18.stabr

1 HAVING sum(pls18.visits) > 50000000
ORDER BY chg_2018_17 DESC;

Listing 9-14: Using a HAVING clause to filter the results of an aggregate
query

In this case, we’ve set our query results to include only rows with a sum
of visits in 2018 greater than 50 million. That’s an arbitrary value I chose to
show only the very largest states. Adding the HAVING clause 1 reduces the
number of rows in the output to just six. In practice, you might experiment
with various values. Here are the results:

stabr visits_2018 visits_2017 visits_2016 chg_2018_17
chg_2017_16
----- ----------- ----------- ----------- ----------- -------

FL 68423689 66697122 70991029 2.6
-6.0
NY 97921323 100012193 103081304 -2.1
-3.0
CA 146656984 151056672 155613529 -2.9
-2.9
IL 63466887 66166082 67336230 -4.1
-1.7
OH 68176967 71895854 74119719 -5.2
-3.0
TX 66168387 70514138 70975901 -6.2
-0.7

All but one of the six states experienced a decline in visits, but notice that
the percent-change variation isn’t as wide as in the full set of states and
territories. Depending on what we learn from library experts, looking at the
states with the most activity as a group might be helpful in describing
trends, as would looking at other groupings. Think of a sentence you might
write that would say, “Among states with the most library visits, Florida
was the only one to see an increase in activity between 2017 and 2018; the
rest saw visits decrease between 2 percent and 6 percent.” You could write
similar sentences about medium-sized states and small states.

Wrapping Up
If you’re now inspired to visit your local library and check out a couple of
books, ask a librarian whether their branch has seen a rise or drop in visits

over the last few years. You can probably guess the answer. In this chapter,
you learned how to use standard SQL techniques to summarize data in a
table by grouping values and using a handful of aggregate functions. By
joining datasets, you were able to identify some interesting trends.

You also learned that data doesn’t always come perfectly packaged. The
presence of negative values in columns, used as an indicator rather than as
an actual numeric value, forced us to filter out those rows. Unfortunately,
those sorts of challenges are part of the data analyst’s everyday world, so
we’ll spend the next chapter learning how to clean up a dataset that has a
number of issues. Later in the book, you’ll also discover more aggregate
functions to help you find the stories in your data.

TRY IT YOURSELF

Put your grouping and aggregating skills to the test with these challenges:
We saw that library visits have declined recently in most places. But what is the pattern

in library employment? All three library survey tables contain the column totstaff,
which is the number of paid full-time equivalent employees. Modify the code in Listings

9-13 and 9-14 to calculate the percent change in the sum of the column over time,
examining all states as well as states with the most visitors. Watch out for negative

values!
The library survey tables contain a column called obereg, a two-digit Bureau of

Economic Analysis Code that classifies each library agency according to a region of
the United States, such as New England, Rocky Mountains, and so on. Just as we

calculated the percent change in visits grouped by state, do the same to group percent
changes in visits by US region using obereg. Consult the survey documentation to find

the meaning of each region code. For a bonus challenge, create a table with the obereg
code as the primary key and the region name as text, and join it to the summary query

to group by the region name rather than the code.
Thinking back to the types of joins you learned in Chapter 7, which join type will show

you all the rows in all three tables, including those without a match? Write such a query
and add an IS NULL filter in a WHERE clause to show agencies not included in one or

more of the tables.

10
INSPECTING AND MODIFYING DATA

If I were to propose a toast to a newly
minted class of data analysts, I’d raise
my glass and say, “May your data arrive
perfectly structured and free of errors!”
In reality, you’ll sometimes receive data

in such a sorry state that it’s hard to analyze without
modifying it. This is called dirty data, a general label
for data with errors, missing values, or poor
organization that makes standard queries ineffective.
In this chapter, you’ll use SQL to clean a set of dirty
data and perform other useful maintenance tasks to
make data workable.

Dirty data can have multiple origins. Converting data from one file type
to another or giving a column the wrong data type can cause information to
be lost. People also can be careless when inputting or editing data, leaving
behind typos and spelling inconsistencies. Whatever the cause may be, dirty
data is the bane of the data analyst.

You’ll learn how to examine data to assess its quality and how to modify
data and tables to make analysis easier. But the techniques you’ll learn will
be useful for more than just cleaning data. The ability to make changes to
data and tables gives you options for updating or adding new information to

your database as it becomes available, elevating your database from a static
collection to a living record.

Let’s begin by importing our data.

Importing Data on Meat, Poultry, and Egg
Producers
For this example, we’ll use a directory of US meat, poultry, and egg
producers. The Food Safety and Inspection Service (FSIS), an agency
within the US Department of Agriculture, compiles and updates this
database regularly. The FSIS is responsible for inspecting animals and food
at more than 6,000 meat processing plants, slaughterhouses, farms, and the
like. If inspectors find a problem, such as bacterial contamination or
mislabeled food, the agency can issue a recall. Anyone interested in
agriculture business, food supply chain, or outbreaks of foodborne illnesses
will find the directory useful. Read more about the agency on its site at
https://www.fsis.usda.gov/.

The data we’ll use comes from https://www.data.gov/, a website run by
the US federal government that catalogs thousands of datasets from various
federal agencies (https://catalog.data.gov/dataset/fsis-meat-poultry-and-
egg-inspection-directory-by-establishment-name/). I’ve converted the Excel
file posted on the site to CSV format, and you’ll find a link to the file
MPI_Directory_by_Establishment_Name.csv along with other resources for
this book at https://nostarch.com/practical-sql-2nd-edition/.

NOTE

Because FSIS updates the data regularly, you will see different
results than those shown in this chapter if you download directly
from https://www.data.gov/.

To import the file into PostgreSQL, use the code in Listing 10-1 to create
a table called meat_poultry_egg_establishments and use COPY to add the
CSV file to the table. As in previous examples, use pgAdmin to connect to

https://www.fsis.usda.gov/
https://www.data.gov/
https://catalog.data.gov/dataset/fsis-meat-poultry-and-egg-inspection-directory-by-establishment-name/
https://nostarch.com/practical-sql-2nd-edition/
https://www.data.gov/

your analysis database, and then open the Query Tool to run the code.
Remember to change the path in the COPY statement to reflect the location
of your CSV file.

CREATE TABLE meat_poultry_egg_establishments (

 1 establishment_number text CONSTRAINT est_number_key
PRIMARY KEY,
 company text,
 street text,
 city text,
 st text,
 zip text,
 phone text,
 grant_date date,

 2 activities text,
 dbas text
);

3 COPY meat_poultry_egg_establishments
FROM
'C:\YourDirectory\MPI_Directory_by_Establishment_Name.csv'
WITH (FORMAT CSV, HEADER);

4 CREATE INDEX company_idx ON meat_poultry_egg_establishments
(company);

Listing 10-1: Importing the FSIS Meat, Poultry, and Egg Inspection
Directory

The table has 10 columns. We add a natural primary key constraint to the
establishment_number column 1, which will hold unique values that
identify each establishment. Most of the remaining columns relate to the
company’s name and location. You’ll use the activities column 2, which
describes activities at the company, in the “Try It Yourself” exercise at the
end of this chapter. We set most columns to text. In PostgreSQL, text is a
varying length data type that affords us up to 1GB of data (see Chapter 4).
The column dbas contains strings of more than 1,000 characters in its rows,
so we’re prepared to handle that. We import the CSV file 3 and then create
an index on the company column 4 to speed up searches for particular
companies.

For practice, let’s use the count() aggregate function introduced in
Chapter 9 to check how many rows are in the
meat_poultry_egg_establishments table:

SELECT count(*) FROM meat_poultry_egg_establishments;

The result should show 6,287 rows. Now let’s find out what the data
contains and determine whether we can glean useful information from it as
is, or if we need to modify it in some way.

Interviewing the Dataset
Interviewing data is my favorite part of analysis. We interview a dataset to
discover its details—what it holds, what questions it can answer, and how
suitable it is for our purposes—the same way a job interview reveals
whether a candidate has the skills required.

The aggregate queries from Chapter 9 are a useful interviewing tool
because they often expose the limitations of a dataset or raise questions you
may want to ask before drawing conclusions and assuming the validity of
your findings.

For example, the meat_poultry_egg_establishments table’s rows
describe food producers. At first glance, we might assume that each
company in each row operates at a distinct address. But it’s never safe to
assume in data analysis, so let’s check using the code in Listing 10-2.

SELECT company,
 street,
 city,
 st,
 count(*) AS address_count
FROM meat_poultry_egg_establishments
GROUP BY company, street, city, st
HAVING count(*) > 1
ORDER BY company, street, city, st;

Listing 10-2: Finding multiple companies at the same address

Here, we group companies by unique combinations of the company,
street, city, and st columns. Then we use count(*), which returns the
number of rows for each combination of those columns and gives it the
alias address_count. Using the HAVING clause introduced in Chapter 9, we
filter the results to show only cases where more than one row has the same
combination of values. This should return all duplicate addresses for a
company.

The query returns 23 rows, which means there are close to two dozen
cases where the same company is listed multiple times at the same address:

company street city
st address_count
----------------------- ----------------------- -------
--- -- -------------
Acre Station Meat Farm 17076 Hwy 32 N
Pinetown NC 2
Beltex Corporation 3801 North Grove Street Fort
Worth TX 2
Cloverleaf Cold Storage 111 Imperial Drive Sanford
NC 2
--snip--

This is not necessarily a problem. There may be valid reasons for a
company to appear multiple times at the same address. For example, two
types of processing plants could exist with the same name. On the other
hand, we may have found data entry errors. Either way, it’s a wise practice
to eliminate concerns about the validity of a dataset before relying on it, and
this result should prompt us to investigate individual cases before we draw
conclusions. However, this dataset has other issues that we need to look at
before we can get meaningful information from it. Let’s work through a few
examples.

Checking for Missing Values
Next, we’ll check whether we have values from all states and whether any
rows are missing a state code by asking a basic question: How many meat,
poultry, and egg processing companies are there in each state? We’ll use the
aggregate function count() along with GROUP BY to determine this, as
shown in Listing 10-3.

SELECT st,
 count(*) AS st_count
FROM meat_poultry_egg_establishments
GROUP BY st
ORDER BY st;

Listing 10-3: Grouping and counting states

The query is a simple count that tallies the number of times each state
postal code (st) appears in the table. Your result should include 57 rows,
grouped by the state postal code in the column st. Why more than the 50
US states? Because the data includes Puerto Rico and other unincorporated
US territories, such as Guam and American Samoa. Alaska (AK) is at the top
of the results with a count of 17 establishments:

st st_count
-- --------
AK 17
AL 93
AR 87
AS 1
--snip--
WA 139
WI 184
WV 23
WY 1
 3

However, the row at the bottom of the list has a NULL value in the st
column and a 3 in st_count. That means three rows have a NULL in st. To
see the details of those facilities, let’s query those rows.

NOTE

Depending on the database implementation, NULL values will
appear either first or last in a sorted column. In PostgreSQL, they
appear last by default. The ANSI SQL standard doesn’t specify one
or the other, but it lets you add NULLS FIRST or NULLS LAST to an
ORDER BY clause to specify a preference. For example, to make NULL
values appear first in the preceding query, the clause would read
ORDER BY st NULLS FIRST.

In Listing 10-4, we add a WHERE clause with the st column and the IS
NULL keywords to find which rows are missing a state code.

SELECT establishment_number,
 company,
 city,
 st,
 zip
FROM meat_poultry_egg_establishments
WHERE st IS NULL;

Listing 10-4: Using IS NULL to find missing values in the st column

This query returns three rows that don’t have a value in the st column:

est_number company city
st zip
----------------- ------------------------------- -----
- -- -----
V18677A Atlas Inspection, Inc.
Blaine 55449
M45319+P45319 Hall-Namie Packing Company, Inc
36671
M263A+P263A+V263A Jones Dairy Farm
53538

That’s a problem, because any counts that include the st column will be
incorrect, such as the number of establishments per state. When you spot an
error such as this, it’s worth making a quick visual check of the original file
you downloaded. Unless you’re working with files in the gigabyte range,

you can usually open a CSV file in one of the text editors I noted in Chapter
1 and search for the row. If you’re working with larger files, you might be
able to examine the source data using utilities such as grep (on Linux and
macOS) or findstr (on Windows). In this case, a visual check of the file
from https://www.data.gov/ confirms that, indeed, there was no state listed
in those rows in the file, so the error is organic to the data, not one
introduced during import.

In our interview of the data so far, we’ve discovered that we’ll need to
add missing values to the st column to clean up this table. Let’s look at
what other issues exist in our dataset and make a list of cleanup tasks.

Checking for Inconsistent Data Values
Inconsistent data is another factor that can hamper our analysis. We can
check for inconsistently entered data within a column by using GROUP BY
with count(). When you scan the unduplicated values in the results, you
might be able to spot variations in the spelling of names or other attributes.

For example, many of the 6,200 companies in our table are multiple
locations owned by just a few multinational food corporations, such as
Cargill or Tyson Foods. To find out how many locations each company
owns, we count the values in the company column. Let’s see what happens
when we do, using the query in Listing 10-5.

SELECT company,
 count(*) AS company_count
FROM meat_poultry_egg_establishments
GROUP BY company
ORDER BY company ASC;

Listing 10-5: Using GROUP BY and count() to find inconsistent company
names

Scrolling through the results reveals a number of cases in which a
company’s name is spelled in several different ways. For example, notice
the entries for the Armour-Eckrich brand:

company company_count
--------------------------- -------------

https://www.data.gov/

--snip--
Armour - Eckrich Meats, LLC 1
Armour-Eckrich Meats LLC 3
Armour-Eckrich Meats, Inc. 1
Armour-Eckrich Meats, LLC 2
--snip--

At least four different spellings are shown for seven establishments that
are likely owned by the same company. If we later perform any aggregation
by company, it would help to standardize the names so all the items counted
or summed are grouped properly. Let’s add that to our list of items to fix.

Checking for Malformed Values Using length()
It’s a good idea to check for unexpected values in a column that should be
consistently formatted. For example, each entry in the zip column in the
meat_poultry_egg_establishments table should be formatted in the style of
US ZIP codes with five digits. However, that’s not what is in our dataset.

Solely for the purpose of this example, I replicated a common error I’ve
committed before. When I converted the original Excel file to a CSV file, I
stored the ZIP code in the default “General” number format instead of as a
text value, and any ZIP code that begins with a zero lost its leading zero
because an integer can’t start with a zero. As a result, 07502 appears in the
table as 7502. You can make this error in a variety of ways, including by
copying and pasting data into Excel columns set to “General.” After being
burned a few times, I learned to take extra caution with numbers that should
be formatted as text.

My deliberate error appears when we run the code in Listing 10-6. The
example introduces length(), a string function that counts the number of
characters in a string. We combine length() with count() and GROUP BY to
determine how many rows have five characters in the zip field and how
many have a value other than five. To make it easy to scan the results, we
use length() in the ORDER BY clause.

SELECT length(zip),
 count(*) AS length_count
FROM meat_poultry_egg_establishments
GROUP BY length(zip)
ORDER BY length(zip) ASC;

Listing 10-6: Using length() and count() to test the zip column

The results confirm the formatting error. As you can see, 496 of the ZIP
codes are four characters long, and 86 are three characters long, which
likely means these numbers originally had two leading zeros that my
conversion erroneously eliminated:

length length_count
------ ------------
 3 86
 4 496
 5 5705

Using the WHERE clause, we can see which states these shortened ZIP
codes correspond to, as shown in Listing 10-7.

SELECT st,
 count(*) AS st_count
FROM meat_poultry_egg_establishments

1 WHERE length(zip) < 5
GROUP BY st
ORDER BY st ASC;

Listing 10-7: Filtering with length() to find short zip values

We use the length() function inside the WHERE clause 1 to return a count
of rows where the ZIP code is less than five characters for each state code.
The result is what we would expect. The states are largely in the Northeast
region of the United States where ZIP codes often start with a zero:

st st_count
-- --------
CT 55
MA 101
ME 24
NH 18
NJ 244
PR 84
RI 27
VI 2
VT 27

Obviously, we don’t want this error to persist, so we’ll add it to our list of
items to correct. So far, we need to correct the following issues in our
dataset:
Missing values for three rows in the st column
Inconsistent spelling of at least one company’s name
Inaccurate ZIP codes due to file conversion

Next, we’ll look at how to use SQL to fix these issues by modifying your
data.

Modifying Tables, Columns, and Data
Almost nothing in a database, from tables to columns and the data types and
values they contain, is set in concrete after it’s created. As your needs
change, you can use SQL to add columns to a table, change data types on
existing columns, and edit values. Given the issues we discovered in the
meat_poultry_egg_establishments table, being able to modify our
database will come in handy.

We’ll use two SQL commands. The first, ALTER TABLE, is part of the
ANSI SQL standard and provides options to ADD COLUMN, ALTER COLUMN,
and DROP COLUMN, among others.

NOTE

Typically, PostgreSQL and other databases include implementation-
specific extensions to ALTER TABLE that provide an array of options
for managing database objects (see
https://www.postgresql.org/docs/current/sql-altertable.html). For
our exercises, we’ll stick with the core options.

The second command, UPDATE, also included in the SQL standard, allows
you to change values in a table’s columns. You can supply criteria using
WHERE to choose which rows to update.

https://www.postgresql.org/docs/current/sql-altertable.html

Let’s explore the basic syntax and options for both commands and then
use them to fix the issues in our dataset.

WHEN TO TOSS YOUR DATA

If your interview of the data reveals too many missing values or values that defy
common sense—such as numbers ranging in the billions when you expected
thousands—it’s time to reevaluate your use of it. The data may not be reliable enough
to serve as the foundation of your analysis.

If you suspect as much, the first step is to revisit the original data file. Make sure you
imported it correctly and that values in all the source columns are located in the same
columns in the table. You might need to open the original spreadsheet or CSV file and
do a visual comparison. The second step is to call the agency or company that
produced the data to confirm what you see and seek an explanation. You might also
ask for advice from others who have used the same data.

More than once I’ve had to toss a dataset after determining that it was poorly
assembled or simply incomplete. Sometimes, the amount of work required to make a
dataset usable undermines its usefulness. These situations require you to make a
tough judgment call. But it’s better to start over or find an alternative than to use bad
data that can lead to faulty conclusions.

Modifying Tables with ALTER TABLE
We can use the ALTER TABLE statement to modify the structure of tables.
The following examples show standard ANSI SQL syntax for common
operations, starting with the code for adding a column to a table:

ALTER TABLE table ADD COLUMN column data_type;

We can remove a column with the following syntax:

ALTER TABLE table DROP COLUMN column;

To change the data type of a column, we would use this code:

ALTER TABLE table ALTER COLUMN column SET DATA TYPE
data_type;

We add a NOT NULL constraint to a column like so:

ALTER TABLE table ALTER COLUMN column SET NOT NULL;

Note that in PostgreSQL and some other systems, adding a constraint to
the table causes all rows to be checked to see whether they comply with the
constraint. If the table has millions of rows, this could take a while.

Removing the NOT NULL constraint looks like this:

ALTER TABLE table ALTER COLUMN column DROP NOT NULL;

When you execute ALTER TABLE with the placeholders filled in, you
should see a message that reads ALTER TABLE in the pgAdmin output
screen. If an operation violates a constraint or if you attempt to change a
column’s data type and the existing values in the column won’t conform to
the new data type, PostgreSQL returns an error. But PostgreSQL won’t give
you any warning about deleting data when you drop a column, so use extra
caution before dropping a column.

Modifying Values with UPDATE
The UPDATE statement, part of the ANSI SQL standard, modifies the data in
a column that meets a condition. It can be applied to all rows or a subset of
rows. Its basic syntax for updating the data in every row in a column
follows this form:

UPDATE table
SET column = value;

We first pass UPDATE the name of the table. Then to SET we pass the
column we want to update. The new value to place in the column can be a
string, number, the name of another column, or even a query or expression
that generates a value. The new value must be compatible with the column
data type.

We can update values in multiple columns by adding additional columns
and source values and separating each with a comma:

UPDATE table
SET column_a = value,
 column_b = value;

To restrict the update to particular rows, we add a WHERE clause with
some criteria that must be met before the update can happen, such as rows
where values equal a date or match a string:

UPDATE table
SET column = value
WHERE criteria;

We can also update one table with values from another table. Standard
ANSI SQL requires that we use a subquery, a query inside a query, to
specify which values and rows to update:

UPDATE table
SET column = (SELECT column
 FROM table_b
 WHERE table.column = table_b.column)
WHERE EXISTS (SELECT column
 FROM table_b
 WHERE table.column = table_b.column);

The value portion of SET, inside the parentheses, is a subquery. A SELECT
statement inside parentheses generates the values for the update by joining
columns in both tables on matching row values. Similarly, the WHERE
EXISTS clause uses a SELECT statement to ensure that we only update rows
where both tables have matching values. If we didn’t use WHERE EXISTS, we
might inadvertently set some values to NULL without planning to. (If this
syntax looks somewhat complicated, that’s okay. I’ll cover subqueries in
detail in Chapter 13.)

Some database managers offer additional syntax for updating across
tables. PostgreSQL supports the ANSI standard but also a simpler syntax
using a FROM clause:

UPDATE table
SET column = table_b.column
FROM table_b
WHERE table.column = table_b.column;

When you execute an UPDATE statement, you’ll get a message stating
UPDATE along with the number of rows affected.

Viewing Modified Data with RETURNING
If you add an optional RETURNING clause to UPDATE, you can view the values
that were modified without having to run a second, separate query. The
syntax of the clause uses the RETURNING keyword followed by a list of
columns or a wildcard in the same manner that we name columns following
SELECT. Here’s an example:

UPDATE table
SET column_a = value
RETURNING column_a, column_b, column_c;

Instead of just noting the number of rows modified, RETURNING directs
the database to show the columns you specify for the rows modified. This is
a PostgreSQL-specific implementation that you also can use with INSERT
and DELETE FROM. We’ll try it with some of our examples.

Creating Backup Tables
Before modifying a table, it’s a good idea to make a copy for reference and
backup in case you accidentally destroy some data. Listing 10-8 shows how
to use a variation of the familiar CREATE TABLE statement to make a new
table from the table we want to duplicate.

CREATE TABLE meat_poultry_egg_establishments_backup AS
SELECT * FROM meat_poultry_egg_establishments;

Listing 10-8: Backing up a table

The result should be a pristine copy of your table with the new specified
name. You can confirm this by counting the number of records in both
tables at once:

SELECT
 (SELECT count(*) FROM meat_poultry_egg_establishments) AS
original,
 (SELECT count(*) FROM
meat_poultry_egg_establishments_backup) AS backup;

The results should return the same count from both tables, like this:

original backup
-------- ------
 6287 6287

If the counts match, you can be sure your backup table is an exact copy
of the structure and contents of the original table. As an added measure and
for easy reference, we’ll use ALTER TABLE to make copies of column data
within the table we’re updating.

NOTE

Indexes are not copied when creating a table backup using the
CREATE TABLE statement. If you decide to run queries on the backup,
be sure to create a separate index on that table.

Restoring Missing Column Values
The query in Listing 10-4 earlier revealed that three rows in the
meat_poultry_egg_establishments table don’t have a value in the st
column:

est_number company city
st zip
----------------- ------------------------------- -----
- -- -----
V18677A Atlas Inspection, Inc.
Blaine 55449
M45319+P45319 Hall-Namie Packing Company, Inc
36671
M263A+P263A+V263A Jones Dairy Farm
53538

To get a complete count of establishments in each state, we need to fill
those missing values using an UPDATE statement.

Creating a Column Copy
Even though we’ve backed up this table, let’s take extra caution and make a
copy of the st column within the table so we still have the original data if

we make some dire error somewhere. Let’s create the copy and fill it with
the existing st column values as in Listing 10-9.

1 ALTER TABLE meat_poultry_egg_establishments ADD COLUMN st_copy
text;

UPDATE meat_poultry_egg_establishments

2 SET st_copy = st;

Listing 10-9: Creating and filling the st_copy column with ALTER TABLE
and UPDATE

The ALTER TABLE statement 1 adds a column called st_copy using the
same text data type as the original st column. Next, the SET clause 2 in
UPDATE fills our new st_copy column with the values in column st.
Because we don’t specify any criteria using WHERE, values in every row are
updated, and PostgreSQL returns the message UPDATE 6287. Again, it’s
worth noting that on a very large table, this operation could take some time
and also substantially increase the table’s size. Making a column copy in
addition to a table backup isn’t entirely necessary, but if you’re the patient,
cautious type, it can be worthwhile.

We can confirm the values were copied properly with a simple SELECT
query on both columns, as in Listing 10-10.

SELECT st,
 st_copy
FROM meat_poultry_egg_establishments
WHERE st IS DISTINCT FROM st_copy
ORDER BY st;

Listing 10-10: Checking values in the st and st_copy columns

To check for differences between values in the columns, we use IS
DISTINCT FROM in the WHERE clause. You’ve used DISTINCT before to find
unique values in a column (Chapter 3); in this context, IS DISTINCT FROM
tests whether values in st and st_copy are different. This keeps us from
having to scan every row ourselves. Running this query will return zero
rows, meaning the values match throughout the table.

NOTE

Because IS DISTINCT FROM treats NULL as a known value,
comparisons between values always will evaluate to true or false.
That’s different than the <> operator, in which a comparison that
includes a NULL will return NULL. Run SELECT 'a' <> NULL; to see
this behavior.

Now, with our original data safely stored, we can update the three rows
with missing state codes. This is now our in-table backup, so if something
goes drastically wrong while we’re updating the original column, we can
easily copy the original data back in. I’ll show you how after we apply the
first updates.

Updating Rows Where Values Are Missing
To update those rows’ missing values, we first find the values we need with
a quick online search: Atlas Inspection is located in Minnesota; Hall-Namie
Packing is in Alabama; and Jones Dairy is in Wisconsin. We add those
states to the appropriate rows in Listing 10-11.

UPDATE meat_poultry_egg_establishments
SET st = 'MN'

1 WHERE establishment_number = 'V18677A';

UPDATE meat_poultry_egg_establishments
SET st = 'AL'
WHERE establishment_number = 'M45319+P45319';

UPDATE meat_poultry_egg_establishments
SET st = 'WI'
WHERE establishment_number = 'M263A+P263A+V263A'

2 RETURNING establishment_number, company, city, st, zip;

Listing 10-11: Updating the st column for three establishments

Because we want each UPDATE statement to affect a single row, we
include a WHERE clause 1 for each that identifies the company’s unique
establishment_number, which is the table’s primary key. When we run the

first two queries, PostgreSQL responds with the message UPDATE 1,
showing that only one row was updated for each query. When we run the
third, the RETURNING clause 2 directs the database to show several columns
from the row that was updated:

establishment_number company city st zip
-------------------- ---------------- -------- -- ----
-
M263A+P263A+V263A Jones Dairy Farm WI
53538

If we rerun the code in Listing 10-4 to find rows where st is NULL, the
query should return nothing. Success! Our count of establishments by state
is now complete.

Restoring Original Values
What happens if we botch an update by providing the wrong values or
updating the wrong rows? We’ll just copy the data back from either the full
table backup or the column backup. Listing 10-12 shows the two options.

1 UPDATE meat_poultry_egg_establishments
SET st = st_copy;

2 UPDATE meat_poultry_egg_establishments original
SET st = backup.st
FROM meat_poultry_egg_establishments_backup backup
WHERE original.establishment_number =
backup.establishment_number;

Listing 10-12: Restoring original st column values

To restore the values from the backup column in
meat_poultry_egg_establishments, run an UPDATE query 1 that sets st to
the values in st_copy. Both columns should again have the identical
original values. Alternatively, you can create an UPDATE 2 that sets st to
values in the st column from the
meat_poultry_egg_establishments_backup table you made in Listing 10-
8. This will obviate the fixes you made to add missing state values, so if
you want to try this query, you’ll need to redo the fixes using Listing 10-11.

Updating Values for Consistency
In Listing 10-5, we discovered several cases where a single company’s
name was entered inconsistently. These inconsistencies will hinder us if we
want to aggregate data by company name, so we’ll fix them.

Here are the spelling variations of Armour-Eckrich Meats in Listing 10-5:

--snip--
Armour - Eckrich Meats, LLC
Armour-Eckrich Meats LLC
Armour-Eckrich Meats, Inc.
Armour-Eckrich Meats, LLC
--snip--

We can standardize the spelling using an UPDATE statement. To protect
our data, we’ll create a new column for the standardized spellings, copy the
names in company into the new column, and work in the new column.
Listing 10-13 has the code for both actions.

ALTER TABLE meat_poultry_egg_establishments ADD COLUMN
company_standard text;

UPDATE meat_poultry_egg_establishments
SET company_standard = company;

Listing 10-13: Creating and filling the company_standard column

Now, let’s say we want any name in company that starts with the string
Armour to appear in company_standard as Armour-Eckrich Meats. (This
assumes we’ve checked all Armour entries and want to standardize them.)
With Listing 10-14, we can update all the rows matching the string Armour
using WHERE.

UPDATE meat_poultry_egg_establishments
SET company_standard = 'Armour-Eckrich Meats'

1 WHERE company LIKE 'Armour%'
2 RETURNING company, company_standard;

Listing 10-14: Using an UPDATE statement to modify column values that
match a string

The important piece of this query is the WHERE clause that uses the LIKE
keyword 1 for case-sensitive pattern matching introduced in Chapter 3.
Including the wildcard syntax % at the end of the string Armour updates all
rows that start with those characters regardless of what comes after them.
The clause lets us target all the varied spellings used for the company’s
name. The RETURNING clause 2 causes the statement to provide the results of
the updated company_standard column next to the original company
column:

company company_standard
--------------------------- --------------------
Armour-Eckrich Meats LLC Armour-Eckrich Meats
Armour - Eckrich Meats, LLC Armour-Eckrich Meats
Armour-Eckrich Meats LLC Armour-Eckrich Meats
Armour-Eckrich Meats LLC Armour-Eckrich Meats
Armour-Eckrich Meats, Inc. Armour-Eckrich Meats
Armour-Eckrich Meats, LLC Armour-Eckrich Meats
Armour-Eckrich Meats, LLC Armour-Eckrich Meats

The values for Armour-Eckrich in company_standard are now
standardized with consistent spelling. To standardize other company names
in the table, we would create an UPDATE statement for each case. We would
also keep the original company column for reference.

Repairing ZIP Codes Using Concatenation
Our final fix repairs values in the zip column that lost leading zeros. Zip
codes in Puerto Rico and the US Virgin Islands begin with two zeros, so we
need to restore two leading zeros to the values in zip. For the other states,
located mostly in New England, we’ll restore a single leading zero.

We’ll use UPDATE in conjunction with the double-pipe string
concatenation operator (||). Concatenation combines two string values
into one (it will also combine a string and a number into a string). For
example, inserting || between the strings abc and xyz results in abcxyz.
The double-pipe operator is a SQL standard for concatenation supported by
PostgreSQL. You can use it in many contexts, such as UPDATE queries and
SELECT, to provide custom output from existing as well as new data.

First, Listing 10-15 makes a backup copy of the zip column as we did
earlier.

ALTER TABLE meat_poultry_egg_establishments ADD COLUMN
zip_copy text;

UPDATE meat_poultry_egg_establishments
SET zip_copy = zip;

Listing 10-15: Creating and filling the zip_copy column

Next, we use the code in Listing 10-16 to perform the first update.

UPDATE meat_poultry_egg_establishments

1 SET zip = '00' || zip
2 WHERE st IN('PR','VI') AND length(zip) = 3;

Listing 10-16: Modifying codes in the zip column missing two leading
zeros

We use SET to set the value in the zip column 1 to the result of the
concatenation of 00 and the existing value. We limit the UPDATE to only
those rows where the st column has the state codes PR and VI 2 using the
IN comparison operator from Chapter 3 and add a test for rows where the
length of zip is 3. This entire statement will then only update the zip values
for Puerto Rico and the Virgin Islands. Run the query; PostgreSQL should
return the message UPDATE 86, which is the number of rows we expect to
change based on our earlier count in Listing 10-6.

Let’s repair the remaining ZIP codes using a similar query in Listing 10-
17.

UPDATE meat_poultry_egg_establishments
SET zip = '0' || zip
WHERE st IN('CT','MA','ME','NH','NJ','RI','VT') AND
length(zip) = 4;

Listing 10-17: Modifying codes in the zip column missing one leading
zero

PostgreSQL should return the message UPDATE 496. Now, let’s check our
progress. Earlier in Listing 10-6, when we aggregated rows in the zip
column by length, we found 86 rows with three characters and 496 with
four.

Using the same query now returns a more desirable result: all the rows
have a five-digit ZIP code.

length count
------ -----
 5 6287

I’ll discuss additional string functions in Chapter 14 when we consider
advanced techniques for working with text.

Updating Values Across Tables
In “Modifying Values with UPDATE” earlier in the chapter, I showed the
standard ANSI SQL and PostgreSQL-specific syntax for updating values in
one table based on values in another. This syntax is particularly valuable in
a relational database where primary keys and foreign keys establish table
relationships. In those cases, we may need information in one table to
update values in another table.

Let’s say we’re setting an inspection deadline for each of the companies
in our table. We want to do this by US regions, such as Northeast, Pacific,
and so on, but those regional designations don’t exist in our table. However,
they do exist in the file state_regions.csv, included with the book’s
resources, that contains matching st state codes. Once we load that file into
a table, we can use that data in an UPDATE statement. Let’s begin with the
New England region to see how this works.

Enter the code in Listing 10-18, which contains the SQL statements to
create a state_regions table and fill the table with data:

CREATE TABLE state_regions (
 st text CONSTRAINT st_key PRIMARY KEY,
 region text NOT NULL
);

COPY state_regions

FROM 'C:\YourDirectory\state_regions.csv'
WITH (FORMAT CSV, HEADER);

Listing 10-18: Creating and filling a state_regions table

We’ll create two columns in a state_regions table: one containing the
two-character state code st and the other containing the region name. We
set the primary key constraint to the st column, which holds a unique
st_key value to identify each state. In the data you’re importing, each state
is present and assigned to a census region, and territories outside the United
States are labeled as outlying areas. We’ll update the table one region at a
time.

Next, let’s return to the meat_poultry_egg_establishments table, add a
column for inspection dates, and then fill in that column with the New
England states. Listing 10-19 shows the code.

ALTER TABLE meat_poultry_egg_establishments
 ADD COLUMN inspection_deadline timestamp with time zone;

1 UPDATE meat_poultry_egg_establishments establishments
2 SET inspection_deadline = '2022-12-01 00:00 EST'
3 WHERE EXISTS (SELECT state_regions.region

 FROM state_regions
 WHERE establishments.st = state_regions.st
 AND state_regions.region = 'New
England');

Listing 10-19: Adding and updating an inspection_deadline column

The ALTER TABLE statement creates the inspection_deadline column in
the meat_poultry_egg_establishments table. In the UPDATE statement, we
give the table an alias of establishments to make the code easier to read 1
(and do so omitting the optional AS keyword). Next, SET assigns a
timestamp value of 2022-12-01 00:00 EST to the new
inspection_deadline column 2. Finally, WHERE EXISTS includes a
subquery that connects the meat_poultry_egg_establishments table to the
state_regions table we created in Listing 10-18 and specifies which rows
to update 3. The subquery (in parentheses, beginning with SELECT) looks for
rows in the state_regions table where the region column matches the

string New England. At the same time, it joins the
meat_poultry_egg_establishments table with the state_regions table
using the st column from both tables. In effect, the query is telling the
database to find all the st codes that correspond to the New England region
and use those codes to filter the update.

When you run the code, you should receive a message of UPDATE 252,
which is the number of companies in New England states. You can use the
code in Listing 10-20 to see the effect of the change.

SELECT st, inspection_deadline
FROM meat_poultry_egg_establishments
GROUP BY st, inspection_deadline
ORDER BY st;

Listing 10-20: Viewing updated inspection_date values

The results should show the updated inspection deadlines for all New
England companies. The top of the output shows Connecticut has received
a deadline timestamp, for example, but states outside New England remain
NULL because we haven’t updated them yet:

st inspection_deadline
-- ---------------------
--snip--
CA
CO
CT 2022-12-01 00:00:00-05
DC
--snip--

To fill in deadlines for additional regions, substitute a different region for
New England in Listing 10-19 and rerun the query.

Deleting Unneeded Data
The most irrevocable way to modify data is to remove it entirely. SQL
includes options to remove rows and columns along with options to delete
an entire table or database. We want to perform these operations with

caution, removing only data or tables we don’t need. Without a backup,
your data is gone for good.

NOTE

It’s easy to exclude unwanted data in queries using a WHERE clause,
so decide whether you truly need to delete the data or can just filter
it out. Cases where deleting may be the best solution include data
with errors, data imported incorrectly, or almost no disk space.

In this section, we’ll use a variety of SQL statements to delete data. If
you didn’t back up the meat_poultry_egg_establishments table using
Listing 10-8, now is a good time to do so.

Writing and executing these statements is fairly simple, but doing so
comes with a caveat. If deleting rows, a column, or a table would cause a
violation of a constraint, such as the foreign key constraint covered in
Chapter 8, you need to deal with that constraint first. That might involve
removing the constraint, deleting data in another table, or deleting another
table. Each case is unique and will require a different way to work around
the constraint.

Deleting Rows from a Table
To remove rows from a table, we can use either DELETE FROM or TRUNCATE,
which are both part of the ANSI SQL standard. Each offers options that are
useful depending on your goals.

Using DELETE FROM, we can remove all rows from a table, or we can add
a WHERE clause to delete only the portion that matches an expression we
supply. To delete all rows from a table, use the following syntax:

DELETE FROM table_name;

To remove only selected rows, add a WHERE clause along with the
matching value or pattern to specify which ones you want to delete:

DELETE FROM table_name WHERE expression;

For example, to exclude US territories from our processors table, we can
remove the companies in those locations using the code in Listing 10-21.

DELETE FROM meat_poultry_egg_establishments
WHERE st IN('AS','GU','MP','PR','VI');

Listing 10-21: Deleting rows matching an expression

Run the code; PostgreSQL should return the message DELETE 105. This
means the 105 rows where the st column held any of the codes designating
a territory that you supplied via the IN keyword have been removed from
the table.

With large tables, using DELETE FROM to remove all rows can be
inefficient because it scans the entire table as part of the process. In that
case, you can use TRUNCATE, which skips the scan. To empty the table using
TRUNCATE, use the following syntax:

TRUNCATE table_name;

A handy feature of TRUNCATE is the ability to reset an IDENTITY sequence,
such as one you may have created to serve as a surrogate primary key, as
part of the operation. To do that, add the RESTART IDENTITY keywords to
the statement:

TRUNCATE table_name RESTART IDENTITY;

We’ll skip truncating any tables for now as we need the data for the rest
of the chapter.

Deleting a Column from a Table
Earlier we created a backup zip column called zip_copy. Now that we’ve
finished working on fixing the issues in zip, we no longer need zip_copy.
We can remove the backup column, including all the data within the
column, from the table using the DROP keyword in the ALTER TABLE
statement.

The syntax for removing a column is similar to other ALTER TABLE
statements:

ALTER TABLE table_name DROP COLUMN column_name;

The code in Listing 10-22 removes the zip_copy column:

ALTER TABLE meat_poultry_egg_establishments DROP COLUMN
zip_copy;

Listing 10-22: Removing a column from a table using DROP

PostgreSQL returns the message ALTER TABLE, and the zip_copy column
should be deleted. The database doesn’t actually rewrite the table to remove
the column; it just marks the column as deleted in its internal catalog and no
longer shows it or adds data to it when new rows are added.

Deleting a Table from a Database
The DROP TABLE statement is a standard ANSI SQL feature that deletes a
table from the database. This statement might come in handy if, for
example, you have a collection of backups, or working tables, that have
outlived their usefulness. It’s also useful when you need to change the
structure of a table significantly; in that case, rather than using too many
ALTER TABLE statements, you can just remove the table and create a fresh
one by running a new CREATE TABLE statement and re-importing the data.

The syntax for the DROP TABLE command is simple:

DROP TABLE table_name;

For example, Listing 10-23 deletes the backup version of the
meat_poultry_egg_establishments table.

DROP TABLE meat_poultry_egg_establishments_backup;

Listing 10-23: Removing a table from a database using DROP

Run the query; PostgreSQL should respond with the message DROP
TABLE to indicate the table has been removed.

Using Transactions to Save or Revert
Changes
So far, our alterations in this chapter have been final. That is, after you run a
DELETE or UPDATE query (or any other query that alters your data or database
structure), the only way to undo the change is to restore from a backup.
However, there is a way to check your changes before finalizing them and
cancel the change if it’s not what you intended. You do this by enclosing the
SQL statement within a transaction, which includes keywords that allow
you to commit your changes if they are successful or roll them back if not.
You define a transaction using the following keywords at the beginning and
end of the query:
START TRANSACTION Signals the start of the transaction block. In
PostgreSQL, you can also use the non-ANSI SQL BEGIN keyword.
COMMIT Signals the end of the block and saves all changes.
ROLLBACK Signals the end of the block and reverts all changes.

You can include multiple statements between BEGIN and COMMIT to define
a sequence of operations that perform one unit of work in a database. An
example is when you buy concert tickets, which might involve two steps:
charging your credit card and reserving your seats so someone else can’t
buy them. A database programmer would want either both steps in the
transaction to happen (say, when your card charge goes through) or neither
to happen (if you cancel at checkout). Defining both steps as one
transaction—also called a transaction block—keeps them as a unit; if one
step is canceled or throws an error, the other gets canceled too. You can
learn more details about transactions and PostgreSQL at
https://www.postgresql.org/docs/current/tutorial-transactions.html.

We can use a transaction block to review changes a query makes and then
decide whether to keep or discard them. In our table, let’s say we’re
cleaning dirty data related to the company AGRO Merchants Oakland LLC.

https://www.postgresql.org/docs/current/tutorial-transactions.html

The table has three rows listing the company, but one row has an extra
comma in the name:

Company

AGRO Merchants Oakland LLC
AGRO Merchants Oakland LLC
AGRO Merchants Oakland, LLC

We want the name to be consistent, so we’ll remove the comma from the
third row using an UPDATE query, as we did earlier. But this time we’ll check
the result of our update before we make it final (and we’ll purposely make a
mistake we want to discard). Listing 10-24 shows how to do this using a
transaction block.

1 START TRANSACTION;

UPDATE meat_poultry_egg_establishments

2 SET company = 'AGRO Merchantss Oakland LLC'
WHERE company = 'AGRO Merchants Oakland, LLC';

3 SELECT company
FROM meat_poultry_egg_establishments
WHERE company LIKE 'AGRO%'
ORDER BY company;

4 ROLLBACK;

Listing 10-24: Demonstrating a transaction block

Beginning with START TRANSACTION; 1, we’ll run each statement
separately. The database responds with the message START TRANSACTION,
letting you know that any succeeding changes you make to data will not be
made permanent unless you issue a COMMIT command. Next, we run the
UPDATE statement, which changes the company name in the row where it
has an extra comma. I intentionally added an extra s in the name used in the
SET clause 2 to introduce a mistake.

When we view the names of companies starting with the letters AGRO
using the SELECT statement 3, we see that, oops, one company name is

misspelled now.

Company

AGRO Merchants Oakland LLC
AGRO Merchants Oakland LLC
AGRO Merchantss Oakland LLC

Instead of rerunning the UPDATE statement to fix the typo, we can simply
discard the change by running the ROLLBACK; 4 command. When we rerun
the SELECT statement to view the company names, we’re back to where we
started:

Company

AGRO Merchants Oakland LLC
AGRO Merchants Oakland LLC
AGRO Merchants Oakland, LLC

From here, you correct your UPDATE statement by removing the extra s
and rerun it, beginning with the START TRANSACTION statement again. If
you’re happy with the changes, run COMMIT; to make them permanent.

NOTE

When you start a transaction in PostgreSQL, any changes you make
to the data aren’t visible to other database users until you execute
COMMIT. Other databases may behave differently depending on their
settings.

Transaction blocks are often used for more complex situations rather than
checking simple changes. Here you’ve used them to test whether a query
behaves as desired, saving you time and headaches. Next, let’s look at
another way to save time when updating lots of data.

Improving Performance When Updating
Large Tables

With PostgreSQL, adding a column to a table and filling it with values can
quickly inflate the table’s size because the database creates a new version of
the existing row each time a value is updated, but it doesn’t delete the old
row version. That essentially doubles the table’s size. (You’ll learn how to
clean up these old rows when I discuss database maintenance in
“Recovering Unused Space with VACUUM” in Chapter 19.) For small
datasets, the increase is negligible, but for tables with hundreds of
thousands or millions of rows, the time required to update rows and the
resulting extra disk usage can be substantial.

Instead of adding a column and filling it with values, we can save disk
space by copying the entire table and adding a populated column during the
operation. Then, we rename the tables so the copy replaces the original, and
the original becomes a backup. Thus, we have a fresh table without the
added old rows.

Listing 10-25 shows how to copy meat_poultry_egg_establishments
into a new table while adding a populated column. To do this, if you didn’t
already drop the meat_poultry_egg_establishments_backup table as
shown in Listing 10-23, go ahead and drop it. Then run the CREATE TABLE
statement.

CREATE TABLE meat_poultry_egg_establishments_backup AS

1 SELECT *,
 2 '2023-02-14 00:00 EST'::timestamp with time zone AS
reviewed_date
FROM meat_poultry_egg_establishments;

Listing 10-25: Backing up a table while adding and filling a new column

The query is a modified version of the backup script in Listing 10-8.
Here, in addition to selecting all the columns using the asterisk wildcard 1,
we also add a column called reviewed_date by providing a value cast as a
timestamp data type 2 and the AS keyword. That syntax adds and fills
reviewed_date, which we might use to track the last time we checked the
status of each plant.

Then we use Listing 10-26 to swap the table names.

1 ALTER TABLE meat_poultry_egg_establishments
 RENAME TO meat_poultry_egg_establishments_temp;

2 ALTER TABLE meat_poultry_egg_establishments_backup
 RENAME TO meat_poultry_egg_establishments;

3 ALTER TABLE meat_poultry_egg_establishments_temp
 RENAME TO meat_poultry_egg_establishments_backup;

Listing 10-26: Swapping table names using ALTER TABLE

Here we use ALTER TABLE with a RENAME TO clause to change a table
name. The first statement changes the original table name to one that ends
with _temp 1. The second statement renames the copy we made with Listing
10-24 to the original name of the table 2. Finally, we rename the table that
ends with _temp to the ending _backup 3. The original table is now called
meat_poultry_egg_establishments_backup, and the copy with the added
column is called meat_poultry_egg_establishments. This process avoids
updating rows and thus inflating the table.

Wrapping Up
Gleaning useful information from data sometimes requires modifying the
data to remove inconsistencies, fix errors, and make it more suitable for
supporting an accurate analysis. In this chapter you learned some useful
tools to help you assess dirty data and clean it up. In a perfect world, all
datasets would arrive with everything clean and complete. But such a
perfect world doesn’t exist, so the ability to alter, update, and delete data is
indispensable.

Let me restate the important tasks of working safely. Be sure to back up
your tables before you start making changes. Make copies of your columns,
too, for an extra level of protection. When I discuss database maintenance
for PostgreSQL later in the book, you’ll learn how to back up entire
databases. These few steps of precaution will save you a world of pain.

In the next chapter, we’ll return to math to explore some of SQL’s
advanced statistical functions and techniques for analysis.

TRY IT YOURSELF

In this exercise, you’ll turn the meat_poultry_egg_establishments table into useful
information. You need to answer two questions: how many of the plants in the table
process meat, and how many process poultry?

The answers to these two questions lie in the activities column. Unfortunately, the
column contains an assortment of text with inconsistent input. Here’s an example of the
kind of text you’ll find in the activities column:

Poultry Processing, Poultry Slaughter
Meat Processing, Poultry Processing
Poultry Processing, Poultry Slaughter

The mishmash of text makes it impossible to perform a typical count that would allow
you to group processing plants by activity. However, you can make some modifications
to fix this data. Your tasks are as follows:
Create two new columns called meat_processing and poultry_processing in your table.

Each can be of the type boolean.
Using UPDATE, set meat_processing = TRUE on any row in which the activities column

contains the text Meat Processing. Do the same update on the poultry_processing
column, but this time look for the text Poultry Processing in activities.

Use the data from the new, updated columns to count how many plants perform each
type of activity. For a bonus challenge, count how many plants perform both activities.

11
STATISTICAL FUNCTIONS IN SQL

In this chapter, we’ll explore SQL
statistical functions along with
guidelines for using them. A SQL
database usually isn’t the first tool a
data analyst chooses when they need to

do more than calculate sums and averages. Typically,
the software of choice is a full-featured statistics
package, such as SPSS or SAS, the programming
languages R or Python, or even Excel. But you don’t
have to discount your database. Standard ANSI SQL,
including PostgreSQL’s implementation, offers
powerful stats functions and capabilities that reveal a
lot about your data without having to export your
dataset to another program.

Statistics is a vast subject worthy of its own book, so we’ll only skim the
surface here. Nevertheless, you’ll learn how to apply high-level statistical
concepts to help you derive meaning from your data using a new dataset
from the US Census Bureau. You’ll also learn to use SQL to create
rankings, calculate rates using data about business establishments, and
smooth out time-series data using rolling averages and sums.

Creating a Census Stats Table
Let’s return to one of my favorite data sources, the US Census Bureau. This
time, you’ll use county data from the 2014–2018 American Community
Survey (ACS) 5-Year Estimates, another product from the bureau.

Use the code in Listing 11-1 to create the table acs_2014_2018_stats
and import the CSV file acs_2014_2018_stats.csv. The code and data are
available with all the book’s resources via https://nostarch.com/practical-
sql-2nd-edition/. Remember to change C:\YourDirectory\ to the location
of the CSV file.

CREATE TABLE acs_2014_2018_stats (

 1 geoid text CONSTRAINT geoid_key PRIMARY KEY,
 county text NOT NULL,
 st text NOT NULL,

 2 pct_travel_60_min numeric(5,2),
 pct_bachelors_higher numeric(5,2),
 pct_masters_higher numeric(5,2),
 median_hh_income integer,

 3 CHECK (pct_masters_higher <= pct_bachelors_higher)
);

COPY acs_2014_2018_stats
FROM 'C:\YourDirectory\acs_2014_2018_stats.csv'
WITH (FORMAT CSV, HEADER);

4 SELECT * FROM acs_2014_2018_stats;

Listing 11-1: Creating a 2014–2018 ACS 5-Year Estimates table and
importing data

The acs_2014_2018_stats table has seven columns. The first three 1
include a unique geoid that serves as the primary key, the name of the
county, and the state name st. Both county and st carry the NOT NULL
constraint because each row should contain a value. The next four columns
display certain percentages 2 I derived for each county from estimates in
the ACS release, plus one more economic indicator:

pct_travel_60_min

https://nostarch.com/practical-sql-2nd-edition/

The percentage of workers ages 16 and older who commute more than 60
minutes to work.

pct_bachelors_higher

The percentage of people ages 25 and older whose level of education is a
bachelor’s degree or higher. (In the United States, a bachelor’s degree is
usually awarded upon completing a four-year college education.)

pct_masters_higher

The percentage of people ages 25 and older whose level of education is a
master’s degree or higher. (In the United States, a master’s degree is the
first advanced degree earned after completing a bachelor’s degree.)

median_hh_income

The county’s median household income in 2018 inflation-adjusted dollars.
As you learned in Chapter 6, a median value is the midpoint in an ordered
set of numbers, where half the values are larger than the midpoint and half
are smaller. Because averages can be skewed by a few very large or very
small values, government reporting on economic data, such as income,
tends to use medians.

We include a CHECK constraint 3 to ensure that the figures for the
bachelor’s degree are equal to or higher than those for the master’s degree,
because in the United States, a bachelor’s degree is earned before or
concurrently with a master’s degree. A county showing the opposite could
indicate data imported incorrectly or a column mislabeled. Our data checks
out: upon import, there are no errors showing a violation of the CHECK
constraint.

We use the SELECT statement 4 to view all 3,142 rows imported, each
corresponding to a county surveyed in this census release.

Next, we’ll use statistics functions in SQL to better understand the
relationships among the percentages.

THE US CENSUS: ESTIMATES VS. THE COMPLETE COUNT

Each US Census Bureau data product has its own methodology. The Decennial
Census, the most well-known, is a full count of the US population conducted every 10
years using forms mailed to each household in the country and visits by census
workers. One of its primary purposes is to determine the number of seats each state
holds in the US House of Representatives. The census population estimates we’ve
used build off the decennial count and use births, deaths, migration, and other factors
to create population totals for the years between the decennial counts.

In contrast, the American Community Survey is an ongoing annual survey of about
3.5 million US households. It asks about topics including income, education,
employment, ancestry, and housing. Private and public organizations use ACS data to
track trends that drive decision-making. Currently, the US Census Bureau packages
ACS data into two releases: a one-year dataset with estimates for geographies with
populations of 65,000 or more, and a five-year dataset that includes all geographies.
Because it’s a survey, ACS results are estimates and have a margin of error, which I’ve
omitted for brevity but which you’ll see included in a full ACS dataset.

Measuring Correlation with corr(Y, X)
Correlation describes the statistical relationship between two variables,
measuring the extent to which a change in one is associated with a change
in the other. In this section, we’ll use the SQL corr(Y, X) function to
measure what relationship exists, if any, between the percentage of people
in a county who’ve attained a bachelor’s degree and the median household
income in that county. We’ll also determine whether, according to our data,
a better-educated population typically equates to higher income and, if it
does, the strength of that relationship.

First, some background. The Pearson correlation coefficient (generally
denoted as r) measures the strength and direction of a linear relationship
between two variables. Variables that have a strong linear relationship
cluster along a line when graphed on a scatterplot. The Pearson value of r
falls between −1 and 1; either end of the range indicates a perfect
correlation, whereas values near zero indicate a random distribution with
little correlation. A positive r value indicates a direct relationship: as one
variable increases, the other does too. When graphed, the data points
representing each pair of values in a direct relationship would slope upward
from left to right. A negative r value indicates an inverse relationship: as

one variable increases, the other decreases. Dots representing an inverse
relationship would slope downward from left to right on a scatterplot.

Table 11-1 provides general guidelines for interpreting positive and
negative r values, although different statisticians may offer different
interpretations.

Table 11-1: Interpreting Correlation Coefficients

Correlation coefficient (+/−) What it could mean
0 No relationship
.01 to .29 Weak relationship
.3 to .59 Moderate relationship
.6 to .99 Strong to nearly perfect relationship
1 Perfect relationship

In standard ANSI SQL and PostgreSQL, we calculate the Pearson
correlation coefficient using corr(Y, X). It’s one of several binary
aggregate functions in SQL and is so named because these functions accept
two inputs. The input Y is the dependent variable whose variation depends
on the value of another variable, and X is the independent variable whose
value doesn’t depend on another variable.

NOTE

Even though SQL specifies the Y and X inputs for the corr()
function, correlation calculations don’t distinguish between
dependent and independent variables. Switching the order of inputs
in corr() produces the same result. However, for convenience and
readability, these examples order the input variables according to
dependent and independent.

We’ll use corr(Y, X) to discover the relationship between education
level and income, with income as our dependent variable and education as
our independent variable. Enter the code in Listing 11-2 to use corr(Y, X)
with median_hh_income and pct_bachelors_higher as inputs.

SELECT corr(median_hh_income, pct_bachelors_higher)
 AS bachelors_income_r
FROM acs_2014_2018_stats;

Listing 11-2: Using corr(Y, X) to measure the relationship between
education and income

Run the query; your result should be an r value of just below 0.70 given
as the floating-point double precision data type:

bachelors_income_r

0.6999086502599159

This positive r value indicates that as a county’s educational attainment
increases, household income tends to increase. The relationship isn’t
perfect, but the r value shows the relationship is fairly strong. We can
visualize this pattern by plotting the variables on a scatterplot using Excel,
as shown in Figure 11-1. Each data point represents one US county; the
data point’s position on the x-axis shows the percentage of the population
ages 25 and older that has a bachelor’s degree or higher. The data point’s
position on the y-axis represents the county’s median household income.

Figure 11-1: A scatterplot showing the relationship between education and income

Notice that although most of the data points are grouped together in the
bottom-left corner of the graph, they do generally slope upward from left to
right. Also, the points spread out rather than strictly follow a straight line. If
they were in a straight line sloping up from left to right, the r value would
be 1, indicating a perfect positive linear relationship.

Checking Additional Correlations
Now let’s calculate the correlation coefficients for the remaining variable
pairs using the code in Listing 11-3.

SELECT

 1 round(
 corr(median_hh_income, pct_bachelors_higher)::numeric,
2

) AS bachelors_income_r,
 round(
 corr(pct_travel_60_min, median_hh_income)::numeric, 2
) AS income_travel_r,
 round(
 corr(pct_travel_60_min, pct_bachelors_higher)::numeric,
2
) AS bachelors_travel_r
FROM acs_2014_2018_stats;

Listing 11-3: Using corr(Y, X) on additional variables

This time we’ll round off the decimal values to make the output more
readable by wrapping the corr(Y, X) function inside SQL’s round()
function 1, which takes two inputs: the numeric value to be rounded and an
integer value indicating the number of decimal places to round the first
value. If the second parameter is omitted, the value is rounded to the nearest
whole integer. Because corr(Y, X) returns a floating-point value by
default, we cast it to the numeric type using the :: notation you learned in
Chapter 4. Here’s the output:

bachelors_income_r income_travel_r bachelors_travel_r
------------------ --------------- ------------------
 0.70 0.06 -0.14

The bachelors_income_r value is 0.70, which is the same as our first
run but rounded up to two decimal places. Compared to
bachelors_income_r, the other two correlations are weak.

The income_travel_r value shows that the correlation between income
and the percentage of those who commute more than an hour to work is
practically zero. This indicates that a county’s median household income
bears little connection to how long it takes people to get to work.

The bachelors_travel_r value shows that the correlation of bachelor’s
degrees and lengthy commutes is also low at -0.14. The negative value
indicates an inverse relationship: as education increases, the percentage of
the population that travels more than an hour to work decreases. Although
this is interesting, a correlation coefficient that is this close to zero indicates
a weak relationship.

When testing for correlation, we need to note some caveats. The first is
that even a strong correlation does not imply causality. We can’t say that a
change in one variable causes a change in the other, only that the changes
move together. The second is that correlations should be subject to testing
to determine whether they’re statistically significant. Those tests are beyond
the scope of this book but worth studying on your own.

Nevertheless, the SQL corr(Y, X) function is a handy tool for quickly
checking correlations between variables.

Predicting Values with Regression Analysis
Researchers also want to predict values using available data. For example,
let’s say 30 percent of a county’s population has a bachelor’s degree or
higher. Given the trend in our data, what would we expect that county’s
median household income to be? Likewise, for each percent increase in
education, how much increase, on average, would we expect in income?

We can answer both questions using linear regression. Simply put, the
regression method finds the best linear equation, or straight line, that
describes the relationship between an independent variable (such as
education) and a dependent variable (such as income). We can then look at
points along this line to predict values where we don’t have observations.
Standard ANSI SQL and PostgreSQL include functions that perform linear
regression.

Figure 11-2 shows our previous scatterplot with a regression line added.

Figure 11-2: Scatterplot with least squares regression line showing the relationship between
education and income

The straight line running through the middle of all the data points is
called the least squares regression line, which approximates the “best fit”
for a straight line that best describes the relationship between the variables.
The equation for the regression line is like the slope-intercept formula you
might remember from high school math but written using differently named
variables: Y = bX + a. Here are the formula’s components:
Y is the predicted value, which is also the value on the y-axis, or dependent
variable.
b is the slope of the line, which can be positive or negative. It measures
how many units the y-axis value will increase or decrease for each unit of
the x-axis value.
X represents a value on the x-axis, or independent variable.

a is the y-intercept, the value at which the line crosses the y-axis when the
X value is zero.

Let’s apply this formula using SQL. Earlier, we questioned the expected
median household income in a county where than 30 percent or more of the
population had a bachelor’s degree. In our scatterplot, the percentage with
bachelor’s degrees falls along the x-axis, represented by X in the
calculation. Let’s plug that value into the regression line formula in place of
X:

Y = b(30) + a

To calculate Y, which represents the predicted median household income,
we need the line’s slope, b, and the y-intercept, a. To get these values, we’ll
use the SQL functions regr_slope(Y, X) and regr_intercept(Y, X), as
shown in Listing 11-4.

SELECT
 round(
 regr_slope(median_hh_income,
pct_bachelors_higher)::numeric, 2
) AS slope,
 round(
 regr_intercept(median_hh_income,
pct_bachelors_higher)::numeric, 2
) AS y_intercept
FROM acs_2014_2018_stats;

Listing 11-4: Regression slope and intercept functions

Using the median_hh_income and pct_bachelors_higher variables as
inputs for both functions, we’ll set the resulting value of the regr_slope(Y,
X) function as slope and the output for the regr_intercept(Y, X)
function as y_intercept.

Run the query; the result should show the following:

slope y_intercept
------- -----------
1016.55 29651.42

The slope value shows that for every one-unit increase in bachelor’s
degree percentage, we can expect a county’s median household income will
increase by $1,016.55. The y_intercept value shows that when the
regression line crosses the y-axis, where the percentage with bachelor’s
degrees is at 0, the y-axis value is 29,651.42. Now let’s plug both values
into the equation to get our predicted value Y:

Y = 1016.55(30) + 29651.42
Y = 60147.92

Based on our calculation, in a county in which 30 percent of people age
25 and older have a bachelor’s degree or higher, we can expect a median
household income to be about $60,148. Of course, our data includes
counties whose median income falls above and below that predicted value,
but we expect this to be the case because our data points in the scatterplot
don’t line up perfectly along the regression line. Recall that the correlation
coefficient we calculated was 0.70, indicating a strong but not perfect
relationship between education and income. Other factors likely contributed
to variations in income, such as the types of jobs available in each county.

Finding the Effect of an Independent Variable with r-
Squared
Beyond determining the direction and strength of the relationship between
two variables, we can also calculate the extent that the variation in the x
(independent) variable explains the variation in the y (dependent) variable.
To do this we square the r value to find the coefficient of determination,
better known as r-squared. An r-squared indicates the percentage of the
variation that is explained by the independent variable, and is a value
between zero and one. For example, if r-squared equals 0.1, we would say
that the independent variable explains 10 percent of the variation in the
dependent variable, or not much at all.

To find r-squared, we use the regr_r2(Y, X) function in SQL. Let’s
apply it to our education and income variables using the code in Listing 11-
5.

SELECT round(
 regr_r2(median_hh_income,
pct_bachelors_higher)::numeric, 3
) AS r_squared
FROM acs_2014_2018_stats;

Listing 11-5: Calculating the coefficient of determination, or r-squared

This time we’ll round off the output to the nearest thousandth place and
alias the result to r_squared. The query should return the following result:

r_squared

 0.490

The r-squared value of 0.490 indicates that about 49 percent of the
variation in median household income among counties can be explained by
the percentage of people with a bachelor’s degree or higher in that county.
Any number of factors could explain the other 51 percent, and statisticians
will typically test numerous combinations of variables to determine what
they are.

Before you use these numbers in a headline or presentation, it’s worth
revisiting the following points:
Correlation doesn’t prove causality. For verification, do a Google search on
“correlation and causality.” Many variables correlate well but have no
meaning. (See https://www.tylervigen.com/spurious-correlations for
examples of correlations that don’t prove causality, including the correlation
between divorce rate in Maine and margarine consumption.) Statisticians
usually perform significance testing on the results to make sure values are
not simply the result of randomness.
Statisticians also apply additional tests to data before accepting the results
of a regression analysis, including whether the variables follow the standard
bell curve distribution and meet other criteria for a valid result.

Let’s explore two additional concepts before wrapping up our look at
statistical functions.

Finding Variance and Standard Deviation

https://www.tylervigen.com/spurious-correlations

Variance and standard deviation describe the degree to which a set of
values varies from the average of those values. Variance, often used in
finance, is the average of each number’s squared distance from the average.
The more dispersion in a set of values, the greater the variance. A stock
market trader can use variance to measure the volatility of a particular stock
—how much its daily closing values tend to vary from the average. That
could indicate how risky an investment the stock might be.

Standard deviation is the square root of the variance and is most useful
for assessing data whose values form a normal distribution, usually
visualized as a symmetrical bell curve. In a normal distribution, about two-
thirds of values fall within one standard deviation of the average; 95 percent
are within two standard deviations. The standard deviation of a set of
values, therefore, helps us understand how close most of our values are to
the average. For example, consider a study that found the average height of
adult US women is about 65.5 inches with a standard deviation of 2.5
inches. Given that heights are normally distributed, that means about two-
thirds of women are within 2.5 inches of the average, or 63 inches to 68
inches tall.

When calculating variance and standard deviation, note that they report
different units. Standard deviation is expressed in the same units as the
values, while variance is not—it reports a number that is larger than the
units, on a scale of its own.

These are the functions for calculating variance:
var_pop(numeric) Calculates the population variance of the input values.
In this context, population refers to a dataset that contains all possible
values, as opposed to a sample that just contains a portion of all possible
values.
var_samp(numeric) Calculates the sample variance of the input values. Use
this with data that is sampled from a population, as in a random sample
survey.

For calculating standard deviation, we use these:
stddev_pop(numeric) Calculates the population standard deviation.
stddev_samp(numeric) Calculates the sample standard deviation.

With functions covering correlation, regression, and other descriptive
statistics, you have a basic toolkit for obtaining a preliminary survey of
your data before doing more rigorous analysis. All these topics are worth
in-depth study to better understand when you might use them and what they
measure. A classic, easy-to-understand resource I recommend is the book
Statistics by David Freedman, Robert Pisani, and Roger Purves.

Creating Rankings with SQL
Rankings make the news often. You’ll see them used anywhere from
weekend box-office charts to sports teams’ league standings. With SQL you
can create numbered rankings in your query results, which are useful for
tasks such as tracking changes over several years. You can also simply use a
ranking as a fact on its own in a report. Let’s explore how to create rankings
using SQL.

Ranking with rank() and dense_rank()
Standard ANSI SQL includes several ranking functions, but we’ll just focus
on two: rank() and dense_rank(). Both are window functions, which are
defined as functions that perform calculations across a set of rows relative
to the current row. Unlike aggregate functions, which combine rows to
calculate values, with window functions the query first generates a set of
rows, and then the window function runs across the result set to calculate
the value it will return.

The difference between rank() and dense_rank() is the way they handle
the next rank value after a tie: rank() includes a gap in the rank order, but
dense_rank() does not. This concept is easier to understand in action, so
let’s look at an example. Consider a Wall Street analyst who covers the
highly competitive widget manufacturing market. The analyst wants to rank
companies by their annual output. The SQL statements in Listing 11-6
create and fill a table with this data and then rank the companies by widget
output.

CREATE TABLE widget_companies (
 id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 company text NOT NULL,

 widget_output integer NOT NULL
);

INSERT INTO widget_companies (company, widget_output)
VALUES
 ('Dom Widgets', 125000),
 ('Ariadne Widget Masters', 143000),
 ('Saito Widget Co.', 201000),
 ('Mal Inc.', 133000),
 ('Dream Widget Inc.', 196000),
 ('Miles Amalgamated', 620000),
 ('Arthur Industries', 244000),
 ('Fischer Worldwide', 201000);

SELECT
 company,
 widget_output,

 1 rank() OVER (ORDER BY widget_output DESC),
 2 dense_rank() OVER (ORDER BY widget_output DESC)
FROM widget_companies
ORDER BY widget_output DESC;

Listing 11-6: Using the rank() and dense_rank() window functions

Notice the syntax in the SELECT statement that includes rank() 1 and
dense_rank() 2. After the function names, we use the OVER clause and in
parentheses place an expression that specifies the “window” of rows the
function should operate on. The window is the set of rows relative to the
current row, and in this case, we want both functions to work on all rows of
the widget_output column, sorted in descending order. Here’s the output:

company widget_output rank
dense_rank
-------------------------- ------------- ---- ------

Miles Amalgamated 620000 1 1
Arthur Industries 244000 2 2
Fischer Worldwide 201000 3 3
Saito Widget Co. 201000 3 3
Dream Widget Inc. 196000 5 4
Ariadne Widget Masters 143000 6 5
Mal Inc. 133000 7 6
Dom Widgets 125000 8 7

The columns produced by rank() and dense_rank() show each
company’s ranking based on the widget_output value from highest to
lowest, with Miles Amalgamated at number one. To see how rank() and
dense_rank() differ, check the fifth-row listing, Dream Widget Inc.

With rank(), Dream Widget Inc. is the fifth-highest-ranking company.
Because rank() allows a gap in the order when a tie occurs, Dream placing
fifth tells us there are four companies with more output. In contrast,
dense_rank() doesn’t allow a gap in the rank order so it places Dream
Widget Inc. in fourth place. This reflects the fact that Dream has the fourth-
highest widget output regardless of how many companies produced more.

Both ways of handling ties have merit, but in practice rank() is used
most often. It’s also what I recommend using, because it more accurately
reflects the total number of companies ranked, shown by the fact that
Dream Widget Inc. has four companies ahead of it in total output, not three.

Let’s look at a more complex ranking example.

Ranking Within Subgroups with PARTITION BY
The ranking we just did was a simple overall ranking based on widget
output. But sometimes you’ll want to produce ranks within groups of rows
in a table. For example, you might want to rank government employees by
salary within each department or rank movies by box-office earnings within
each genre.

To use window functions in this way, we’ll add PARTITION BY to the
OVER clause. A PARTITION BY clause divides table rows according to values
in a column we specify.

Here’s an example using made-up data about grocery stores. Enter the
code in Listing 11-7 to fill a table called store_sales.

CREATE TABLE store_sales (
 store text NOT NULL,
 category text NOT NULL,
 unit_sales bigint NOT NULL,
 CONSTRAINT store_category_key PRIMARY KEY (store,
category)
);

INSERT INTO store_sales (store, category, unit_sales)
VALUES
 ('Broders', 'Cereal', 1104),
 ('Wallace', 'Ice Cream', 1863),
 ('Broders', 'Ice Cream', 2517),
 ('Cramers', 'Ice Cream', 2112),
 ('Broders', 'Beer', 641),
 ('Cramers', 'Cereal', 1003),
 ('Cramers', 'Beer', 640),
 ('Wallace', 'Cereal', 980),
 ('Wallace', 'Beer', 988);

SELECT
 category,
 store,
 unit_sales,

 1 rank() OVER (PARTITION BY category ORDER BY unit_sales
DESC)
FROM store_sales

2 ORDER BY category, rank() OVER (PARTITION BY category
 ORDER BY unit_sales DESC);

Listing 11-7: Applying rank() within groups using PARTITION BY

In the table, each row includes a store’s product category and sales for
that category. The final SELECT statement creates a result set showing how
each store’s sales ranks within each category. The new element is the
addition of PARTITION BY in the OVER clause 1. In effect, the clause tells the
program to create rankings one category at a time, using the store’s unit
sales in descending order.

To display the results by category and rank, we add an ORDER BY clause 2
that includes the category column and the same rank() function syntax.
Here’s the output:

category store unit_sales rank
--------- ------- ---------- ----
Beer Wallace 988 1
Beer Broders 641 2
Beer Cramers 640 3
Cereal Broders 1104 1
Cereal Cramers 1003 2
Cereal Wallace 980 3
Ice Cream Broders 2517 1

Ice Cream Cramers 2112 2
Ice Cream Wallace 1863 3

Rows for each category are ordered by category unit sales with the rank
column displaying the ranking.

Using this table, we can see at a glance how each store ranks in a food
category. For instance, Broders tops sales for cereal and ice cream, but
Wallace wins in the beer category. You can apply this concept to many other
scenarios: for each auto manufacturer, finding the vehicle with the most
consumer complaints; figuring out which month had the most rainfall in
each of the last 20 years; finding the team with the most wins against left-
handed pitchers; and so on.

Calculating Rates for Meaningful
Comparisons
Rankings based on raw counts aren’t always meaningful; in fact, they can
be misleading. Consider birth statistics: the US National Center for Health
Statistics (NCHS) reported that in 2019, there were 377,599 babies born in
the state of Texas and 46,826 born in the state of Utah. So, women in Texas
are more likely to have babies, right? Not so fast. In 2019, Texas’ estimated
population was nine times as much as Utah’s. Given that context,
comparing the plain number of births in the two states isn’t very
meaningful.

A more accurate way to compare these numbers is to convert them to
rates. Analysts often calculate a rate per 1,000 people, or some multiple of
that number, to allow an apples-to-apples comparison. For example, the
fertility rate—the number of births per 1,000 women ages 15 to 44—was
62.5 for Texas in 2019 and 66.7 for Utah, according to the NCHS. So,
despite the smaller number of births, on a per-1,000 rate, women in Utah
actually had more children.

The math behind this is simple. Let’s say your town had 115 births and a
population of 2,200 women ages 15 to 44. You can find the per-1,000 rate
as follows:

(115 / 2,200) × 1,000 = 52.3

In your town, there were 52.3 births per 1,000 women ages 15 to 44,
which you can now compare to other places regardless of their size.

Finding Rates of Tourism-Related Businesses
Let’s try calculating rates using SQL and census data. We’ll join two tables:
the census population estimates you imported in Chapter 5 plus data I
compiled about tourism-related businesses from the census’ County
Business Patterns program. (You can read about the program methodology
at https://www.census.gov/programs-surveys/cbp/about.html.)

Listing 11-8 contains the code to create and fill the business patterns
table. Remember to point the script to the location in which you’ve saved
the CSV file cbp_naics_72_establishments.csv, which you can download
from GitHub via the link at https://nostarch.com/practical-sql-2nd-edition/.

CREATE TABLE cbp_naics_72_establishments (
 state_fips text,
 county_fips text,
 county text NOT NULL,
 st text NOT NULL,
 naics_2017 text NOT NULL,
 naics_2017_label text NOT NULL,
 year smallint NOT NULL,
 establishments integer NOT NULL,
 CONSTRAINT cbp_fips_key PRIMARY KEY (state_fips,
county_fips)
);

COPY cbp_naics_72_establishments
FROM 'C:\YourDirectory\cbp_naics_72_establishments.csv'
WITH (FORMAT CSV, HEADER);

SELECT *
FROM cbp_naics_72_establishments
ORDER BY state_fips, county_fips
LIMIT 5;

Listing 11-8: Creating and filling a table for census county business
pattern data

https://www.census.gov/programs-surveys/cbp/about.html
https://nostarch.com/practical-sql-2nd-edition/

Once you’ve imported the data, run the final SELECT statement to view
the first few rows of the table. Each row contains descriptive information
about a county along with the number of business establishments that fall
under code 72 of the North American Industry Classification System
(NAICS). Code 72 covers “Accommodation and Food Services”
establishments, mainly hotels, inns, bars, and restaurants. The number of
those businesses in a county is a good proxy for the amount of tourist and
recreation activity in the area.

Let’s find out which counties have the highest concentration of such
businesses per 1,000 population, using the code in Listing 11-9.

SELECT
 cbp.county,
 cbp.st,
 cbp.establishments,
 pop.pop_est_2018,

 1 round((cbp.establishments::numeric / pop.pop_est_2018) *
1000, 1)
 AS estabs_per_1000
FROM cbp_naics_72_establishments cbp JOIN
us_counties_pop_est_2019 pop
 ON cbp.state_fips = pop.state_fips
 AND cbp.county_fips = pop.county_fips

2 WHERE pop.pop_est_2018 >= 50000
ORDER BY cbp.establishments::numeric / pop.pop_est_2018 DESC;

Listing 11-9: Finding business rates per thousand population in counties
with 50,000 or more people

Overall, this syntax should look familiar. In Chapter 5, you learned that
when dividing an integer by an integer, one of the values must be a numeric
or decimal for the result to include decimal places. We do that in the rate
calculation 1 with PostgreSQL’s double-colon shorthand. Because we don’t
need many decimal places, we wrap the statement in the round() function
to round off the output to the nearest tenth. Then we give the calculated
column an alias of estabs_per_1000 for easy reference.

Also, we use a WHERE clause 2 to limit our results to counties with 50,000
or more people. That’s an arbitrary value that lets us see how rates compare

within a group of more-populous, better-known counties. Here’s a portion
of the results, sorted with highest rates at top:

 county st establishments pop_est_2018
estabs_per_1000
------------------ ----------- --------------- -------------

Cape May County New Jersey 925 92446
10.0
Worcester County Maryland 453 51960
8.7
Monroe County Florida 540 74757
7.2
Warren County New York 427 64215
6.6
New York County New York 10428 1629055
6.4
Hancock County Maine 337 54734
6.2
Sevier County Tennessee 570 97895
5.8
Eagle County Colorado 309 54943
5.6
--snip--

The counties that have the highest rates make sense. Cape May County,
New Jersey, is home to numerous beach resort towns on the Atlantic Ocean
and Delaware Bay. Worcester County, Maryland, contains Ocean City and
other beach attractions. And Monroe County, Florida, is best known for its
vacation hotspot, the Florida Keys. Sense a pattern?

Smoothing Uneven Data
A rolling average is an average calculated for each time period in a dataset,
using a moving window of rows as input each time. Think of a hardware
store: it might sell 20 hammers on Monday, 15 hammers on Tuesday, and
just a few the rest of the week. The next week, hammer sales might spike on
Friday. To find the big-picture story in such uneven data, we can smooth
numbers by calculating the rolling average, sometimes called a moving
average.

Here are two weeks of hammer sales at that hypothetical hardware store:

Date Hammer sales Seven-day average
---------- ------------ -----------------
2022-05-01 0
2022-05-02 20
2022-05-03 15
2022-05-04 3
2022-05-05 6
2022-05-06 1

1 2022-05-07 1 6.6
2 2022-05-08 2 6.9

2022-05-09 18 6.6
2022-05-10 13 6.3
2022-05-11 2 6.1
2022-05-12 4 5.9
2022-05-13 12 7.4
2022-05-14 2 7.6

Let’s say that for every day we want to know the average sales over the
last seven days (we can choose any period, but a week is an intuitive unit).
Once we have seven days of data 1, we calculate the average of sales over
the seven-day period that includes the current day. The average of hammer
sales from May 1 to May 7, 2022, is 6.6 per day.

The next day 2, we again average sales over the most recent seven days,
from May 2 to May 8, 2022. The result is 6.9 per day. As we continue each
day, despite the ups and downs in the daily sales, the seven-day average
remains fairly steady. Over a long period of time, we’ll be able to better
discern a trend.

Let’s use the window function syntax again to perform this calculation
using the code in Listing 11-10. The code and data are available with all the
book’s resources in GitHub, available via https://nostarch.com/practical-
sql-2nd-edition/. Remember to change C:\YourDirectory\ to the location
of the CSV file.

1 CREATE TABLE us_exports (
 year smallint,
 month smallint,
 citrus_export_value bigint,
 soybeans_export_value bigint
);

https://nostarch.com/practical-sql-2nd-edition/

2 COPY us_exports
FROM 'C:\YourDirectory\us_exports.csv'
WITH (FORMAT CSV, HEADER);

3 SELECT year, month, citrus_export_value
FROM us_exports
ORDER BY year, month;

4 SELECT year, month, citrus_export_value,
 round(

 5 avg(citrus_export_value)
 6 OVER(ORDER BY year, month
 7 ROWS BETWEEN 11 PRECEDING AND CURRENT
ROW), 0)
 AS twelve_month_avg
FROM us_exports
ORDER BY year, month;

Listing 11-10: Creating a rolling average for export data

We create a table 1 and use COPY 2 to insert data from us_exports.csv.
This file contains data showing the monthly dollar value of US exports of
citrus fruit and soybeans, two commodities whose sales are tied to the
growing season. The data comes from the US Census Bureau’s international
trade division at https://usatrade.census.gov/.

The first SELECT statement 3 lets you view the monthly citrus export data,
which covers every month from 2002 through summer 2020. The last dozen
rows should look like this:

year month citrus_export_value
---- ----- -------------------
--snip--
2019 9 14012305
2019 10 26308151
2019 11 60885676
2019 12 84873954
2020 1 110924836
2020 2 171767821
2020 3 201231998
2020 4 122708243
2020 5 75644260
2020 6 36090558

https://usatrade.census.gov/

2020 7 20561815
2020 8 15510692

Notice the pattern: the value of citrus fruit exports is highest in winter
months, when the growing season is paused in the northern hemisphere and
countries need imports to meet demand. We’ll use the second SELECT
statement 4 to compute a 12-month rolling average so we can see, for each
month, the annual trend in exports.

In the SELECT values list, we place an avg() 5 function to calculate the
average of the values in the citrus_export_value column. We follow the
function with an OVER clause 6 that has two elements in parentheses: an
ORDER BY clause that sorts the data for the period we plan to average, and
the number of rows to average, using the keywords ROWS BETWEEN 11
PRECEDING AND CURRENT ROW 7. This tells PostgreSQL to limit the window
to the current row and the 11 rows before it—12 total.

We wrap the entire statement, from the avg() function through the OVER
clause, in a round() function to limit the output to whole numbers. The last
dozen rows of your query result should be as follows:

year month citrus_export_value twelve_month_avg
---- ----- ------------------- ----------------
--snip--
2019 9 14012305 74465440
2019 10 26308151 74756757
2019 11 60885676 74853312
2019 12 84873954 74871644
2020 1 110924836 75099275
2020 2 171767821 78874520
2020 3 201231998 79593712
2020 4 122708243 78278945
2020 5 75644260 77999174
2020 6 36090558 78045059
2020 7 20561815 78343206
2020 8 15510692 78376692

Notice the 12-month average is far more consistent. If we want to see the
trend, it’s helpful to graph the results using Excel or a stats program. Figure
11-3 shows the monthly totals from 2015 through August 2020 in bars, with
the 12-month average as a line.

Figure 11-3: Monthly citrus fruit exports with 12-month rolling average

Based on the rolling average, citrus fruit exports were generally steady
until 2019 and then trended down before recovering slightly in 2020. It’s
difficult to discern that movement from the monthly data, but the rolling
average makes it apparent.

The window function syntax offers multiple options for analysis. For
example, instead of calculating a rolling average, you could substitute the
sum() function to find the rolling total over a time period. If you calculated
a seven-day rolling sum, you’d know the weekly total ending on any day in
your dataset.

NOTE

Calculating rolling averages or sums works best when there are no
breaks in the time periods in your data. A missing month, for
example, will turn a 12-month sum into a 13-month sum because the
window function pays attention to rows, not dates.

SQL offers additional window functions. Check the official PostgreSQL
documentation at https://www.postgresql.org/docs/current/tutorial-
window.html for an overview of window functions, and check
https://www.postgresql.org/docs/current/functions-window.html for a listing
of window functions.

Wrapping Up
Now your SQL analysis toolkit includes ways to find relationships among
variables using statistical functions, create rankings from ordered data,
smooth spiky data to find trends, and properly compare raw numbers by
turning them into rates. That toolkit is starting to look impressive!

Next, we’ll dive deeper into date and time data, using SQL functions to
extract the information we need.

TRY IT YOURSELF

Test your new skills with the following questions:
In Listing 11-2, the correlation coefficient, or r value, of the variables

pct_bachelors_higher and median_hh_income was about 0.70. Write a query using the
same dataset to show the correlation between pct_masters_higher and

median_hh_income. Is the r value higher or lower? What might explain the difference?

Using the exports data, create a 12-month rolling sum using the values in the column
soybeans_export_value and the query pattern from Listing 11-8. Copy and paste the

results from the pgAdmin output pane and graph the values using Excel. What trend do
you see?

As a bonus challenge, revisit the libraries data in the table pls_fy2018_libraries in
Chapter 9. Rank library agencies based on the rate of visits per 1,000 population

(column popu_lsa), and limit the query to agencies serving 250,000 people or more.

https://www.postgresql.org/docs/current/tutorial-window.html
https://www.postgresql.org/docs/current/functions-window.html

12
WORKING WITH DATES AND TIMES

Columns filled with dates and times can
indicate when events happened or how
long they took, and that can lead to
interesting lines of inquiry. What
patterns exist in the moments on a

timeline? Which events were shortest or longest?
What relationships exist between a particular activity
and the time of day or season in which it occurred?

In this chapter, we’ll explore these kinds of questions using SQL data
types for dates and times and their related functions. We’ll start with a
closer look at data types and functions related to dates and times. Then
we’ll explore a dataset on trips by New York City taxicabs to look for
patterns and try to discover what, if any, story the data tells. We’ll also
explore time zones using Amtrak data to calculate the duration of train trips
across the United States.

Understanding Data Types and Functions for
Dates and Times
Chapter 4 explored primary SQL data types, but to review, here are the four
data types related to dates and times:

timestamp Records date and time. You will almost always want to add the
keywords with time zone to ensure that times stored include time zone
information. Otherwise, times recorded around the globe become
impossible to compare. The format timestamp with time zone is part of
the SQL standard; with PostgreSQL you can specify the same data type
using timestamptz. You can specify time zones in three different formats:
its UTC offset, an area/location designator, or a standard abbreviation. If
you supply a time without a time zone to a timestamptz column, the
database will add time zone information using your server’s default setting.
date Records only the date and is part of the SQL standard. PostgreSQL
accepts several date formats. For example, valid formats for adding the 21st
day of September 2022 are September 21, 2022 or 9/21/2022. I
recommend using YYYY-MM-DD (or 2022-09-21), which is the ISO 8601
international standard format and also the default PostgreSQL date output.
Using the ISO format helps avoid confusion when sharing data
internationally.
time Records only the time and is part of the SQL standard. Adding with
time zone makes the column time zone aware, but without a date the time
zone will be meaningless. Given that, using time with time zone and its
PostgreSQL shortcut timetz is strongly discouraged. The ISO 8601 format
is HH:MM:SS, where HH represents the hour, MM the minutes, and SS the
seconds.
interval Holds a value that represents a unit of time expressed in the
format quantity unit. It doesn’t record the start or end of a period, only its
duration. Examples include 12 days or 8 hours. It’s also part of the SQL
standard, although PostgreSQL-specific syntax offers more options.

The first three data types, date, time, and timestamp with time zone
(or timestamptz), are known as datetime types whose values are called
datetimes. The interval value is an interval type whose values are
intervals. All four data types can track the system clock and the nuances of
the calendar. For example, date and timestamp with time zone recognize
that June has 30 days. If you try to use June 31, PostgreSQL will display an
error: date/time field value out of range. Likewise, the date February
29 is valid only in a leap year, such as 2024.

Manipulating Dates and Times
We can use SQL functions to perform calculations on dates and times or
extract their components. For example, we can retrieve the day of the week
from a timestamp or extract just the month from a date. ANSI SQL outlines
a handful of functions for this purpose, but many database managers
(including MySQL and Microsoft SQL Server) deviate from the standard to
implement their own date and time data types, syntax, and function names.
If you’re using a database other than PostgreSQL, check its documentation.

Let’s review how to manipulate dates and times using PostgreSQL
functions.

Extracting the Components of a timestamp Value
It’s not unusual to need just one piece of a date or time value for analysis,
particularly when you’re aggregating results by month, year, or even
minute. We can extract these components using the PostgreSQL
date_part() function. Its format looks like this:

date_part(text, value)

The function takes two inputs. The first is a string in text format that
represents the part of the date or time to extract, such as hour, minute, or
week. The second is the date, time, or timestamp value. To see the
date_part() function in action, we’ll execute it multiple times on the same
value using the code in Listing 12-1.

SELECT
 date_part('year', '2022-12-01 18:37:12 EST'::timestamptz)
AS year,
 date_part('month', '2022-12-01 18:37:12 EST'::timestamptz)
AS month,
 date_part('day', '2022-12-01 18:37:12 EST'::timestamptz) AS
day,
 date_part('hour', '2022-12-01 18:37:12 EST'::timestamptz)
AS hour,
 date_part('minute', '2022-12-01 18:37:12 EST'::timestamptz)
AS minute,
 date_part('seconds', '2022-12-01 18:37:12
EST'::timestamptz) AS seconds,

 date_part('timezone_hour', '2022-12-01 18:37:12
EST'::timestamptz) AS tz,
 date_part('week', '2022-12-01 18:37:12 EST'::timestamptz)
AS week,
 date_part('quarter', '2022-12-01 18:37:12
EST'::timestamptz) AS quarter,
 date_part('epoch', '2022-12-01 18:37:12 EST'::timestamptz)
AS epoch;

Listing 12-1: Extracting components of a timestamp value using
date_part()

Each column statement in this SELECT query first uses a string to name
the component we want to extract: year, month, day, and so on. The second
input uses the string 2022-12-01 18:37:12 EST cast as a timestamp with
time zone with the PostgreSQL double-colon syntax and the timestamptz
shorthand. We specify that this timestamp occurs in the Eastern time zone
using the Eastern Standard Time (EST) designation.

Here’s the output as shown on my computer. The database converts the
values to reflect your PostgreSQL time zone setting, so your output might
be different; for example, if it’s set to the US Pacific time zone, the hour
will show as 15:

year month day hour minute seconds tz
week quarter epoch
---- ----- --- ---- ------ ------- -- --
-- ------- ----------
2022 12 1 18 37 12 -5
48 4 1669937832

Each column contains a single component of the timestamp that
represents 6:37:12 PM on December 1, 2022. The first six values are easy
to recognize from the original timestamp, but the last four deserve an
explanation.

In the tz column, PostgreSQL reports back the hours difference, or
offset, from Coordinated Universal Time (UTC), the time standard for the
world. The value of UTC is +/− 00:00, so -5 specifies a time zone five
hours behind UTC. From November through early March, UTC -5
represents the Eastern time zone. In March, when the Eastern time zone

moves to daylight saving time and clocks “spring forward” an hour, its
UTC offset changes to -4. (For a map of UTC time zones, see
https://en.wikipedia.org/wiki/Coordinated_Universal_Time#/media/File:Sta
ndard_World_Time_Zones.tif.)

NOTE

You can derive the UTC offset from the time zone but not vice versa.
Each UTC offset can refer to multiple named time zones plus
standard and daylight saving time variants.

The week column shows that December 1, 2022, falls in the 48th week of
the year. This number is determined by ISO 8601 standards, which start
each week on a Monday. A week at the end of a year can extend from
December into January of the following year.

The quarter column shows that our test date is part of the fourth quarter
of the year. The epoch column shows a measurement, which is used in
computer systems and programming languages, that represents the number
of seconds elapsed before or after 12 AM, January 1, 1970, at UTC 0. A
positive value designates a time since that point; a negative value designates
a time before it. In this example, 1,669,937,832 seconds elapsed between
January 1, 1970, and the timestamp. Epoch can be useful for comparing two
timestamps mathematically on an absolute scale.

NOTE

Proceed with caution with epoch times. PostgreSQL’s date_part()
returns epoch time as a double precision type, which is subject to
floating-point computational errors (see Chapter 4). Epoch time
also faces the so-called Year 2038 problem, when epoch values will
grow too large for some computer systems to store.

PostgreSQL also supports the SQL-standard extract() function, which
parses datetimes in the same way as the date_part() function. I’ve
featured date_part() here instead for two reasons. First, its name helpfully

https://en.wikipedia.org/wiki/Coordinated_Universal_Time#/media/File:Standard_World_Time_Zones.tif

reminds us what it does. Second, extract() isn’t widely supported by other
database managers. Most notably, it’s absent in Microsoft’s SQL Server.
Nevertheless, if you need to use extract(), the syntax takes this form:

extract(text from value)

To replicate the first date_part() example in Listing 12-1 where we pull
the year from the timestamp, we’d set up extract() like this (note that we
don’t need single quotes around the time unit, in this case year):

extract(year from '2022-12-01 18:37:12 EST'::timestamptz)

PostgreSQL provides additional components you can extract or calculate
from dates and times. For the full list of functions, see the documentation at
https://www.postgresql.org/docs/current/functions-datetime.html.

Creating Datetime Values from timestamp Components
It’s not unusual to come across a dataset in which the year, month, and day
exist in separate columns, and you might want to create a datetime value
from these components. To perform calculations on a date, it’s helpful to
combine and format those pieces correctly into one column.

You can use the following PostgreSQL functions to make datetime
objects:
make_date(year, month, day) Returns a value of type date.
make_time(hour, minute, seconds) Returns a value of type time without
time zone.
make_timestamptz(year, month, day, hour, minute, second, time
zone) Returns a timestamp with time zone.

The variables for these three functions take integer types as input, with
two exceptions: seconds are of the type double precision because you can
supply fractions of seconds, and time zones must be specified with a text
string that names the time zone.

Listing 12-2 shows examples of the three functions in action using
components of February 22, 2022, for the date, and 6:04:30.3 PM in

https://www.postgresql.org/docs/current/functions-datetime.html

Lisbon, Portugal for the time.

SELECT make_date(2022, 2, 22);
SELECT make_time(18, 4, 30.3);
SELECT make_timestamptz(2022, 2, 22, 18, 4, 30.3,
'Europe/Lisbon');

Listing 12-2: Three functions for making datetimes from components

When I run each query in order, the output on my computer is as follows.
Again, yours may differ depending on your PostgreSQL time zone setting:

2022-02-22
18:04:30.3
2022-02-22 13:04:30.3-05

Notice that on my computer the timestamp in the third line shows
13:04:30.3, which is five hours behind the time input to the function:
18:04:30.3. That output is appropriate because Lisbon’s time zone is at
UTC 0, and my PostgreSQL is set to the Eastern time zone, which is UTC –
5 in winter months. We’ll explore working with time zones in more detail,
and you’ll learn to adjust its display, in the “Working with Time Zones”
section.

Retrieving the Current Date and Time
If you need to record the current date or time as part of a query—when
updating a row, for example—standard SQL provides functions for that too.
The following functions record the time as of the start of the query:
current_timestamp Returns the current timestamp with time zone. A
shorthand PostgreSQL-specific version is now().
localtimestamp Returns the current timestamp without time zone. Avoid
using localtimestamp, as a timestamp without a time zone can’t be placed
in a global location and is thus meaningless.
current_date Returns the date.
current_time Returns the current time with time zone. Remember, though,
without a date, the time alone with a time zone is useless.

localtime Returns the current time without time zone.
Because these functions record the time at the start of the query (or a

collection of queries grouped under a transaction—see Chapter 10), they’ll
provide that same time throughout the execution of a query regardless of
how long the query runs. So, if your query updates 100,000 rows and takes
15 seconds to run, any timestamp recorded at the start of the query will be
applied to each row, and so each row will receive the same timestamp.

If, instead, you want the date and time to reflect how the clock changes
during the execution of the query, you can use the PostgreSQL-specific
clock_timestamp() function to record the current time as it elapses. That
way, if you’re updating 100,000 rows and inserting a timestamp each time,
each row gets the time the row updated rather than the time at the start of
the query. Note that clock_timestamp() can slow large queries and may be
subject to system limitations.

Listing 12-3 shows current_timestamp and clock_timestamp() in
action when inserting a row in a table.

CREATE TABLE current_time_example (
 time_id integer GENERATED ALWAYS AS IDENTITY,

 1 current_timestamp_col timestamptz,
 2 clock_timestamp_col timestamptz
);

INSERT INTO current_time_example
 (current_timestamp_col, clock_timestamp_col)

 3 (SELECT current_timestamp,
 clock_timestamp()
 FROM generate_series(1,1000));

SELECT * FROM current_time_example;

Listing 12-3: Comparing current_timestamp and clock_timestamp()
during row insert

The code creates a table that includes two timestamptz columns (the
PostgreSQL shorthand for timestamp with time zone). The first holds the
result of the current_timestamp function 1, which records the time at the
start of the INSERT statement that adds 1,000 rows to the table. To do that,

we use the generate_series() function, which returns a set of integers
starting with 1 and ending with 1,000. The second column holds the result
of the clock_timestamp() function 2, which records the time of insertion
of each row. You call both functions as part of the INSERT statement 3. Run
the query, and the result from the final SELECT statement should show that
the time in the current_timestamp_col is the same for all rows, whereas
the time in clock_timestamp_col increases with each row inserted.

Working with Time Zones
Recording a timestamp is most useful when you know where on the globe
that time occurred—whether in Asia, Eastern Europe, or one of the 12 time
zones of Antarctica.

Sometimes, however, datasets contain no time zone data in their datetime
columns. This isn’t always a deal-breaker in terms of analyzing the data. If
you know that every event happened in the same location—for example,
readings from a temperature sensor in Bar Harbor, Maine—you can factor
that into your analysis. Better, though, during import is to set your session
time zone to represent the time zone of the data and load the datetimes into
a timestamptz column. That strategy helps ward off dangerous
misinterpretation of the data later.

Let’s look at some strategies for managing how we work with time zones.

Finding Your Time Zone Setting
When working with timestamps that contain time zones, it’s important to
know your current time zone setting. If you installed PostgreSQL on your
own computer, the server’s default will be your local time zone. If you’re
connecting to a PostgreSQL database elsewhere, perhaps on a cloud
provider such as Amazon Web Services, its time zone setting may be
different than your own. To help avoid confusion, database administrators
often set a shared server’s time zone to UTC.

Listing 12-4 shows two ways to view your current time zone setting: the
SHOW command with timezone keyword and the current_setting()
function with a timezone argument.

SHOW timezone;
SELECT current_setting('timezone');

Listing 12-4: Viewing your current time zone setting

Running either statement will display your time zone setting, which will
vary according to your operating system and locale. Entering the statements
in Listing 12-4 into pgAdmin and running both my macOS and Linux
computers returns America/New_York, one of several location names that
falls into the Eastern time zone, which encompasses eastern Canada and the
United States, the Caribbean, and parts of Mexico. On my Windows
machine, the setting shows as US/Eastern.

NOTE

You can use SHOW ALL; to see the settings of every parameter on
your PostgreSQL server.

Though both statements provide the same information, you may find
current_setting() extra handy as an input to another function such as
make_timestamptz():

 SELECT make_timestamptz(2022, 2, 22, 18, 4, 30.3,
current_setting('timezone'));

Listing 12-5 shows how to retrieve all time zone names, abbreviations,
and their UTC offsets.

SELECT * FROM pg_timezone_abbrevs ORDER BY abbrev;
SELECT * FROM pg_timezone_names ORDER BY name;

Listing 12-5: Showing time zone abbreviations and names

You can easily filter either of these SELECT statements with a WHERE
clause to look up specific location names or time zones:

SELECT * FROM pg_timezone_names
WHERE name LIKE 'Europe%'

ORDER BY name;

This code should return a table listing that includes the time zone name,
abbreviation, UTC offset, and a boolean column is_dst that notes whether
the time zone is currently observing daylight saving time:

name abbrev utc_offset is_dst
---------------- ------ ---------- ------
Europe/Amsterdam CEST 02:00:00 true
Europe/Andorra CEST 02:00:00 true
Europe/Astrakhan +04 04:00:00 false
Europe/Athens EEST 03:00:00 true
Europe/Belfast BST 01:00:00 true
--snip--

This is a faster way of looking up time zones than using Wikipedia. Now
let’s look at how to set the time zone to a particular value.

Setting the Time Zone
When you installed PostgreSQL, the server’s default time zone was set as a
parameter in postgresql.conf, a file that contains dozens of values read by
PostgreSQL each time it starts. The location of postgresql.conf in your file
system varies depending on your operating system and sometimes on the
way you installed PostgreSQL. To make permanent changes to
postgresql.conf, such as changing your time zone, you need to edit the file
and restart the server, which might be impossible if you’re not the owner of
the machine. Changes to configurations might also have unintended
consequences for other users or applications. Instead, we’ll look at setting
the time zone on a per-session basis, which should last as long as you’re
connected to the server, and then I’ll cover working with postgresql.conf in
more depth in Chapter 19. This solution is handy when you want to specify
how you view a particular table or handle timestamps in a query.

To set the time zone for the current session while using pgAdmin, we use
the command SET TIME ZONE, as shown in Listing 12-6.

1 SET TIME ZONE 'US/Pacific';

2 CREATE TABLE time_zone_test (

 test_date timestamptz
);

3 INSERT INTO time_zone_test VALUES ('2023-01-01 4:00');

4 SELECT test_date
FROM time_zone_test;

5 SET TIME ZONE 'US/Eastern';

6 SELECT test_date
FROM time_zone_test;

7 SELECT test_date AT TIME ZONE 'Asia/Seoul'
FROM time_zone_test;

Listing 12-6: Setting the time zone for a client session

First, we set the time zone to US/Pacific 1, which designates the Pacific
time zone that covers western Canada and the United States along with Baja
California in Mexico. The syntax SET TIME ZONE is part of the ANSI SQL
standard. PostgreSQL also supports the nonstandard syntax SET timezone
TO.

Second, we create a one-column table 2 with a data type of timestamptz
and insert a single row to display a test result. Notice that the value inserted,
2023-01-01 4:00, is a timestamp with no time zone 3. You’ll encounter
timestamps with no time zone often, particularly when you acquire datasets
restricted to a specific location.

When executed, the first SELECT statement 4 returns 2023-01-01 4:00 as
a timestamp that now contains time zone data:

test_date

2023-01-01 04:00:00-08

Here, the -08 shows that the Pacific time zone is eight hours behind UTC
in January, when standard time is in effect. Because we set the pgAdmin
client’s time zone to US/Pacific for this session, any value without a time
zone entered into a column that is time zone-aware will be set to Pacific

time. If we had entered a date that falls during daylight saving time, the
UTC offset would be -07.

NOTE

On the server, the timestamp with time zone (or timestamptz
shorthand) data type always stores data as UTC internally; the time
zone setting governs how it’s displayed.

Now comes some fun. We change the time zone for this session to the
Eastern time zone using the SET command 5 and the US/Eastern
designation. Then, when we execute the SELECT statement 6 again, the
result should be as follows:

test_date

2023-01-01 07:00:00-05

In this example, two components of the timestamp have changed: the
time is now 07:00, and the UTC offset is -05 because we’re viewing the
timestamp from the perspective of the Eastern time zone: 4 AM Pacific is 7
AM Eastern. The database converts the original Pacific time value to
whatever time zone we set at 5.

Even more convenient is that we can view a timestamp through the lens
of any time zone without changing the session setting. The final SELECT
statement uses the AT TIME ZONE keywords 7 to display the timestamp in
our session as the Korea standard time (KST) zone by specifying
Asia/Seoul:

timezone

2023-01-01 21:00:00

Now we know that the value of 4 AM in US/Pacific on January 1, 2023,
is equivalent to 9 PM that same day in Asia/Seoul. Again, this syntax
changes the output data, but the data on the server remains unchanged.
When using the AT TIME ZONE keywords, also note this quirk: if the original

value is a timestamp with time zone, the output is a timestamp with no
time zone. If the original value has no time zone, the output is timestamp
with time zone.

The ability of databases to track time zones is extremely important for
accurate calculations of intervals, as you’ll see next.

Performing Calculations with Dates and
Times
We can perform simple arithmetic on datetime and interval types the same
way we can on numbers. Addition, subtraction, multiplication, and division
are all possible in PostgreSQL using the math operators +, -, *, and /. For
example, you can subtract one date from another date to get an integer that
represents the difference in days between the two dates. The following code
returns an integer of 3:

SELECT '1929-09-30'::date - '1929-09-27'::date;

The result indicates that these two dates are exactly three days apart.
Likewise, you can use the following code to add a time interval to a date

to return a new date:

SELECT '1929-09-30'::date + '5 years'::interval;

This code adds five years to the date 1929-09-30 to return a timestamp
value of 1934-09-30.

More examples of math functions you can use with dates and times are
available in the PostgreSQL documentation at
https://www.postgresql.org/docs/current/functions-datetime.html. Let’s
explore some more practical examples using actual transportation data.

Finding Patterns in New York City Taxi Data
When I visit New York City, I usually take at least one ride in one of the
thousands of iconic yellow cars that ferry hundreds of thousands of people

https://www.postgresql.org/docs/current/functions-datetime.html

across the city’s five boroughs each day. The New York City Taxi and
Limousine Commission releases data on monthly yellow taxi trips plus
other for-hire vehicles. We’ll use this large, rich dataset to put date
functions to practical use.

The nyc_yellow_taxi_trips.csv file available from the book’s resources on
GitHub (via the link at https://nostarch.com/practical-sql-2nd-edition/)
holds one day of yellow taxi trip records from June 1, 2016. Save the file to
your computer and execute the code in Listing 12-7 to build the
nyc_yellow_taxi_trips table. Remember to change the file path in the
COPY command to the location where you’ve saved the file and adjust the
path format to reflect whether you’re using Windows, macOS, or Linux.

1 CREATE TABLE nyc_yellow_taxi_trips (
 trip_id bigint GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 vendor_id text NOT NULL,
 tpep_pickup_datetime timestamptz NOT NULL,
 tpep_dropoff_datetime timestamptz NOT NULL,
 passenger_count integer NOT NULL,
 trip_distance numeric(8,2) NOT NULL,
 pickup_longitude numeric(18,15) NOT NULL,
 pickup_latitude numeric(18,15) NOT NULL,
 rate_code_id text NOT NULL,
 store_and_fwd_flag text NOT NULL,
 dropoff_longitude numeric(18,15) NOT NULL,
 dropoff_latitude numeric(18,15) NOT NULL,
 payment_type text NOT NULL,
 fare_amount numeric(9,2) NOT NULL,
 extra numeric(9,2) NOT NULL,
 mta_tax numeric(5,2) NOT NULL,
 tip_amount numeric(9,2) NOT NULL,
 tolls_amount numeric(9,2) NOT NULL,
 improvement_surcharge numeric(9,2) NOT NULL,
 total_amount numeric(9,2) NOT NULL
);

2 COPY nyc_yellow_taxi_trips (
 vendor_id,
 tpep_pickup_datetime,
 tpep_dropoff_datetime,
 passenger_count,
 trip_distance,
 pickup_longitude,
 pickup_latitude,

https://nostarch.com/practical-sql-2nd-edition/

 rate_code_id,
 store_and_fwd_flag,
 dropoff_longitude,
 dropoff_latitude,
 payment_type,
 fare_amount,
 extra,
 mta_tax,
 tip_amount,
 tolls_amount,
 improvement_surcharge,
 total_amount
)
FROM 'C:\YourDirectory\nyc_yellow_taxi_trips.csv'
WITH (FORMAT CSV, HEADER);

3 CREATE INDEX tpep_pickup_idx
ON nyc_yellow_taxi_trips (tpep_pickup_datetime);

Listing 12-7: Creating a table and importing NYC yellow taxi data

The code in Listing 12-7 builds the table 1, imports the rows 2, and
creates an index 3. In the COPY statement, we provide the names of columns
because the input CSV file doesn’t include the trip_id column that exists
in the target table. That column is of type bigint and set as an auto-
incrementing surrogate primary key. After your import is complete, you
should have 368,774 rows, one for each yellow cab ride on June 1, 2016.
You can count the rows in your table using the following code:

SELECT count(*) FROM nyc_yellow_taxi_trips;

Each row includes data on the number of passengers, the location of
pickup and drop-off in latitude and longitude, and the fare and tips in US
dollars. The data dictionary that describes all columns and codes is
available at
https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_record
s_yellow.pdf. For these exercises, we’re most interested in the timestamp
columns tpep_pickup_datetime and tpep_dropoff_datetime, which
represent the start and end times of the ride. (The Technology Passenger
Enhancements Project [TPEP] is a program that in part includes automated
collection of data about taxi rides.)

https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf

The values in both timestamp columns include the time zone: -4. That’s
the UTC offset for the Eastern time zone during summer, when daylight
saving time is observed. If your PostgreSQL server isn’t set to default to
Eastern time, I suggest setting your time zone using the following code so
your results will match mine:

SET TIME ZONE 'US/Eastern';

Now let’s explore the patterns in these timestamps.

The Busiest Time of Day
One question you might ask of this data is when taxis provide the most
rides. Is it morning or evening rush hour, or is there another time when
ridership spikes? You can find the answer with a simple aggregation query
that uses date_part().

Listing 12-8 contains the query to count rides by hour using the pickup
time as the input.

SELECT

 1 date_part('hour', tpep_pickup_datetime) AS trip_hour,
 2 count(*)
FROM nyc_yellow_taxi_trips
GROUP BY trip_hour
ORDER BY trip_hour;

Listing 12-8: Counting taxi trips by hour

In the query’s first column 1, date_part() extracts the hour from
tpep_pickup_datetime so we can group the number of rides by hour. Then
we aggregate the number of rides in the second column via the count()
function 2. The rest of the query follows the standard patterns for grouping
and ordering the results, which should return 24 rows, one for each hour of
the day:

trip_hour count
--------- -----
 0 8182
 1 5003

 2 3070
 3 2275
 4 2229
 5 3925
 6 10825
 7 18287
 8 21062
 9 18975
 10 17367
 11 17383
 12 18031
 13 17998
 14 19125
 15 18053
 16 15069
 17 18513
 18 22689
 19 23190
 20 23098
 21 24106
 22 22554
 23 17765

Eyeballing the numbers, it’s apparent that on June 1, 2016, New York
City taxis had the most passengers between 6 PM and 10 PM, possibly
reflecting commutes home plus the plethora of city activities on a summer
evening. But to see the overall pattern, it’s best to visualize the data. Let’s
do this next.

Exporting to CSV for Visualization in Excel
Charting data with a tool such as Microsoft Excel makes it easier to
understand patterns, so I often export query results to a CSV file and work
up a quick chart. Listing 12-9 uses the query from the preceding example
within a COPY ... TO statement, similar to Listing 5-9 in Chapter 5.

COPY
 (SELECT
 date_part('hour', tpep_pickup_datetime) AS trip_hour,
 count(*)
 FROM nyc_yellow_taxi_trips
 GROUP BY trip_hour
 ORDER BY trip_hour
)

TO 'C:\YourDirectory\hourly_taxi_pickups.csv'
WITH (FORMAT CSV, HEADER);

Listing 12-9: Exporting taxi pickups per hour to a CSV file

When I load the data into Excel and build a line graph, the day’s pattern
becomes more obvious and thought-provoking, as shown in Figure 12-1.

Figure 12-1: NYC yellow taxi pickups by hour

Rides bottomed out in the wee hours of the morning before rising sharply
between 5 AM and 8 AM. Volume remained relatively steady throughout
the day and increased again for evening rush hour after 5 PM. But there was
a dip between 3 PM and 4 PM—why?

To answer that question, we would need to dig deeper to analyze data that
spanned several days or even several months to see whether our data from
June 1, 2016, is typical. We could use the date_part() function to compare
trip volume on weekdays versus weekends by extracting the day of the
week. To be even more ambitious, we could check weather reports and
compare trips on rainy days versus sunny days. You can slice a dataset
many ways to reach conclusions.

When Do Trips Take the Longest?

Let’s investigate another interesting question: at which hour did taxi trips
take the longest? One way to find an answer is to calculate the median trip
time for each hour. The median is the middle value in an ordered set of
values; it’s often more accurate than an average for making comparisons
because a few very small or very large values in the set won’t skew the
results as they would with the average.

In Chapter 6, we used the percentile_cont() function to find medians.
We use it again in Listing 12-10 to calculate median trip times.

SELECT

 1 date_part('hour', tpep_pickup_datetime) AS trip_hour,
 2 percentile_cont(.5)
 3 WITHIN GROUP (ORDER BY
 tpep_dropoff_datetime - tpep_pickup_datetime)
AS median_trip
FROM nyc_yellow_taxi_trips
GROUP BY trip_hour
ORDER BY trip_hour;

Listing 12-10: Calculating median trip time by hour

We’re aggregating data by the hour portion of the timestamp column
tpep_pickup_datetime again, which we extract using date_part() 1. For
the input to the percentile_cont() function 2, we subtract the pickup time
from the drop-off time in the WITHIN GROUP clause 3. The results show that
the 1 PM hour has the highest median trip time of 15 minutes:

date_part median_trip
--------- -----------
 0 00:10:04
 1 00:09:27
 2 00:08:59
 3 00:09:57
 4 00:10:06
 5 00:07:37
 6 00:07:54
 7 00:10:23
 8 00:12:28
 9 00:13:11
 10 00:13:46
 11 00:14:20

 12 00:14:49
 13 00:15:00
 14 00:14:35
 15 00:14:43
 16 00:14:42
 17 00:14:15
 18 00:13:19
 19 00:12:25
 20 00:11:46
 21 00:11:54
 22 00:11:37
 23 00:11:14

As we would expect, trip times are shortest in the early morning. This
makes sense because less traffic early in the day means passengers are more
likely to get to their destinations faster.

Now that we’ve explored ways to extract portions of the timestamp for
analysis, let’s dig deeper into analysis that involves intervals.

Finding Patterns in Amtrak Data
Amtrak, the nationwide rail service in America, offers several packaged
trips across the United States. The All American, for example, is a train that
departs from Chicago and stops in New York, New Orleans, Los Angeles,
San Francisco, and Denver before returning to Chicago. Using data from
the Amtrak website (https://www.amtrak.com/), we’ll build a table with
information for each segment of the trip. The trip spans four time zones, so
we’ll track the time zone with each arrival and departure. Then we’ll
calculate the duration of the journey at each segment and figure out the
length of the entire trip.

Calculating the Duration of Train Trips
Using Listing 12-11, let’s create a table that tracks the six segments of the
All American route.

CREATE TABLE train_rides (
 trip_id bigint GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 segment text NOT NULL,

 departure timestamptz NOT NULL, 1
 arrival timestamptz NOT NULL

https://www.amtrak.com/

);

INSERT INTO train_rides (segment, departure, arrival) 2
VALUES
 ('Chicago to New York', '2020-11-13 21:30 CST', '2020-11-
14 18:23 EST'),
 ('New York to New Orleans', '2020-11-15 14:15 EST',
'2020-11-16 19:32 CST'),
 ('New Orleans to Los Angeles', '2020-11-17 13:45 CST',
'2020-11-18 9:00 PST'),
 ('Los Angeles to San Francisco', '2020-11-19 10:10 PST',
'2020-11-19 21:24 PST'),
 ('San Francisco to Denver', '2020-11-20 9:10 PST', '2020-
11-21 18:38 MST'),
 ('Denver to Chicago', '2020-11-22 19:10 MST', '2020-11-23
14:50 CST');

SET TIME ZONE 'US/Central'; 3

SELECT * FROM train_rides;

Listing 12-11: Creating a table to hold train trip data

First, we use the standard CREATE TABLE statement. Note that columns for
departure and arrival times are set to timestamptz 1. Next, we insert rows
that represent the six legs of the trip 2. Each timestamp input reflects the
time zone of the city of departure or arrival. Specifying the city’s time zone
is the key to getting an accurate calculation of trip duration and accounting
for time zone changes. It also accounts for annual changes to and from
daylight saving time if they were to occur during the time span you’re
examining.

Next, we set the session to the Central time zone, the value for Chicago,
using the US/Central designator 3. We’ll use Central time as our reference
when viewing the timestamps so that regardless of your and my machine’s
default time zones, we’ll share the same view of the data.

The final SELECT statement should return the contents of the table like
this:

trip_id segment departure
arrival
------- ---------------------------- --------------------

-- ----------------------
 1 Chicago to New York 2020-11-13 21:30:00-
06 2020-11-14 17:23:00-06
 2 New York to New Orleans 2020-11-15 13:15:00-
06 2020-11-16 19:32:00-06
 3 New Orleans to Los Angeles 2020-11-17 13:45:00-
06 2020-11-18 11:00:00-06
 4 Los Angeles to San Francisco 2020-11-19 12:10:00-
06 2020-11-19 23:24:00-06
 5 San Francisco to Denver 2020-11-20 11:10:00-
06 2020-11-21 19:38:00-06
 6 Denver to Chicago 2020-11-22 20:10:00-
06 2020-11-23 14:50:00-06

All timestamps should now carry a UTC offset of -06, reflecting the
Central time zone in the United States during November, when standard
time is in effect. All time values display in their Central time equivalents.

Now that we’ve created segments corresponding to each leg of the trip,
we’ll use Listing 12-12 to calculate the duration of each segment.

SELECT segment,

 1 to_char(departure, 'YYYY-MM-DD HH12:MI a.m. TZ') AS
departure,

 2 arrival - departure AS segment_duration
FROM train_rides;

Listing 12-12: Calculating the length of each trip segment

This query lists the trip segment, the departure time, and the duration of
the segment journey. Before we look at the calculation, notice the additional
code around the departure column 1. These are PostgreSQL-specific
formatting functions that specify how to format different components of the
timestamp. In this case, the to_char() function turns the departure
timestamp column into a string of characters formatted as YYYY-MM-DD
HH12:MI a.m. TZ. The YYYY-MM-DD portion specifies the ISO format for the
date, and the HH12:MI a.m. portion presents the time in hours and minutes.
The HH12 portion specifies the use of a 12-hour clock rather than 24-hour
military time. The a.m. portion specifies that we want to show morning or
night times using lowercase characters separated by periods, and the TZ
portion denotes the time zone.

For a complete list of formatting functions, check out the PostgreSQL
documentation at https://www.postgresql.org/docs/current/functions-
formatting.html.

Last, we subtract departure from arrival to determine the
segment_duration 2. When you run the query, the output should look like
this:

segment departure
segment_duration
---------------------------- -------------------------

Chicago to New York 2020-11-13 09:30 p.m. CST
19:53:00
New York to New Orleans 2020-11-15 01:15 p.m. CST
1 day 06:17:00
New Orleans to Los Angeles 2020-11-17 01:45 p.m. CST
21:15:00
Los Angeles to San Francisco 2020-11-19 12:10 p.m. CST
11:14:00
San Francisco to Denver 2020-11-20 11:10 a.m. CST
1 day 08:28:00
Denver to Chicago 2020-11-22 08:10 p.m. CST
18:40:00

Subtracting one timestamp from another produces an interval data type,
which was introduced in Chapter 4. As long as the value is less than 24
hours, PostgreSQL presents the interval in the HH:MM:SS format. For values
greater than 24 hours, it returns the format 1 day 08:28:00, as shown in
the San Francisco to Denver segment.

In each calculation, PostgreSQL accounts for the changes in time zones
so we don’t inadvertently add or lose hours when subtracting. If we used a
timestamp without time zone data type, we would end up with an
incorrect trip length if a segment spanned multiple time zones.

Calculating Cumulative Trip Time
As it turns out, San Francisco to Denver is the longest leg of the All
American train trip. But how long does the entire trip take? To answer this
question, we’ll revisit window functions, which you first learned about in
“Ranking with rank() and dense_rank()” in Chapter 11.

https://www.postgresql.org/docs/current/functions-formatting.html

Our prior query produced an interval, which we labeled
segment_duration. The next natural next step would be to write a query to
add those values, creating a cumulative interval after each segment. And
indeed, we can use sum() as a window function, combined with the OVER
clause used in Chapter 11, to create running totals. But when we do, the
resulting values are odd. To see what I mean, run the code in Listing 12-13.

SELECT segment,
 arrival - departure AS segment_duration,
 sum(arrival - departure) OVER (ORDER BY trip_id) AS
cume_duration
FROM train_rides;

Listing 12-13: Calculating cumulative intervals using OVER

In the third column, we sum the intervals generated when we subtract
departure from arrival. The resulting running total in the cume_duration
column is accurate but formatted in an unhelpful way:

segment segment_duration
cume_duration
---------------------------- ---------------- -----------

Chicago to New York 19:53:00 19:53:00
New York to New Orleans 1 day 06:17:00 1 day
26:10:00
New Orleans to Los Angeles 21:15:00 1 day
47:25:00
Los Angeles to San Francisco 11:14:00 1 day
58:39:00
San Francisco to Denver 1 day 08:28:00 2 days
67:07:00
Denver to Chicago 18:40:00 2 days
85:47:00

PostgreSQL creates one sum for the day portion of the interval and
another for the hours and minutes. So, instead of a more understandable
cumulative time of 5 days 13:47:00, the database reports 2 days
85:47:00. Both results amount to the same length of time, but 2 days
85:47:00 is harder to decipher. This is an unfortunate limitation of
summing the database intervals using this syntax.

To get around the limitation, we’ll wrap the window function calculation
for the cumulative duration inside the justify_interval() function,
shown in Listing 12-14.

SELECT segment,
 arrival - departure AS segment_duration,

 1 justify_interval(sum(arrival - departure)
 OVER (ORDER BY trip_id)) AS
cume_duration
FROM train_rides;

Listing 12-14: Using justify_interval() to better format cumulative
trip duration

The justify_interval() function 1 standardizes output of interval
calculations so that groups of 24 hours are rolled up to days, and groups of
30 days are rolled up to months. So, instead of returning a cumulative
duration of 2 days 85:47:00, as in the previous listing,
justify_interval() converts 72 of those 85 hours to three days and adds
them to the days value. The output is easier to understand:

 segment segment_duration cume_duration
---------------------------- ---------------- --------------
Chicago to New York 19:53:00 19:53:00
New York to New Orleans 1 day 06:17:00 2 days 02:10:00
New Orleans to Los Angeles 21:15:00 2 days 23:25:00
Los Angeles to San Francisco 11:14:00 3 days 10:39:00
San Francisco to Denver 1 day 08:28:00 4 days 19:07:00
Denver to Chicago 18:40:00 5 days 13:47:00

The final cume_duration adds all the segments to return the total trip
duration of 5 days 13:47:00. That’s a long time to spend on a train, but
I’m sure the scenery is well worth the ride.

Wrapping Up
Handling times and dates in SQL databases adds an intriguing dimension to
your analysis, letting you answer questions about when an event occurred
along with other temporal concerns in your data. With a solid grasp of time

and date formats, time zones, and functions to dissect the components of a
timestamp, you can analyze just about any dataset you come across.

Next, we’ll look at advanced query techniques that help answer more
complex questions.

TRY IT YOURSELF

Try these exercises to test your skills on dates and times:
Using the New York City taxi data, calculate the length of each ride using the pickup

and drop-off timestamps. Sort the query results from the longest ride to the shortest. Do
you notice anything about the longest or shortest trips that you might want to ask city

officials about?
Using the AT TIME ZONE keywords, write a query that displays the date and time for

London, Johannesburg, Moscow, and Melbourne the moment January 1, 2100, arrives
in New York City. Use the code in Listing 12-5 to find time zone names.

As a bonus challenge, use the statistics functions in Chapter 11 to calculate the
correlation coefficient and r-squared values using trip time and the total_amount

column in the New York City taxi data, which represents the total amount charged to
passengers. Do the same with the trip_distance and total_amount columns. Limit the

query to rides that last three hours or less.

13
ADVANCED QUERY TECHNIQUES

Sometimes data analysis requires
advanced SQL techniques that go
beyond a table join or basic SELECT
query. In this chapter, we’ll cover
techniques that include writing a query

that uses the results of other queries as inputs and
reclassifying numerical values into categories before
counting them.

For the exercises, I’ll introduce a dataset of temperatures recorded in
select US cities, and we’ll revisit datasets you’ve created in previous
chapters. The code for the exercises is available, along with all the book’s
resources, at https://nostarch.com/practical-sql-2nd-edition/. You’ll
continue to use the analysis database you’ve already built. Let’s get
started.

Using Subqueries
A subquery is a query nested inside another query. Typically, it performs a
calculation or a logical test or generates rows to be passed into the main
outer query. Subqueries are part of standard ANSI SQL, and the syntax is
not unusual: we just enclose a query in parentheses. For example, we can
write a subquery that returns multiple rows and treat those results as a table

https://nostarch.com/practical-sql-2nd-edition/

in the FROM clause of the main outer query. Or we can create a scalar
subquery that returns a single value and use it as part of an expression to
filter rows via WHERE, IN, and HAVING clauses. A correlated subquery is one
that depends on a value or table name from the outer query to execute.
Conversely, an uncorrelated subquery has no reference to objects in the
main query.

It’s easier to understand these concepts by working with data, so let’s
revisit several datasets from earlier chapters, including the census county-
level population estimates table us_counties_pop_est_2019 and the
business patterns table cbp_naics_72_establishments.

Filtering with Subqueries in a WHERE Clause
A WHERE clause lets you filter query results based on criteria you provide,
using an expression such as WHERE quantity > 1000. But this requires that
you already know the value to use for comparison. What if you don’t?
That’s one way a subquery comes in handy: it lets you write a query that
generates one or more values to use as part of an expression in a WHERE
clause.

Generating Values for a Query Expression
Say you wanted to write a query to show which US counties are at or above
the 90th percentile, or top 10 percent, for population. Rather than writing
two separate queries—one to calculate the 90th percentile and another to
find counties with populations at or higher—you can do both at once using
a subquery as part of a WHERE clause, as shown in Listing 13-1.

SELECT county_name,
 state_name,
 pop_est_2019
FROM us_counties_pop_est_2019

1 WHERE pop_est_2019 >= (
 SELECT percentile_cont(.9) WITHIN GROUP (ORDER BY
pop_est_2019)
 FROM us_counties_pop_est_2019
)
ORDER BY pop_est_2019 DESC;

Listing 13-1: Using a subquery in a WHERE clause

The WHERE clause 1, which filters by the total population column
pop_est_2019, doesn’t include a value as it normally would. Instead, after
the >= comparison operators, we provide a subquery in parentheses. This
subquery uses the percentile_cont() function to generate one value: the
90th percentile cutoff point in the pop_est_2019 column.

NOTE

Using percentile_cont() to filter with a subquery works only if
you pass in a single input, as shown. If you pass in an array, as in
Listing 6-12 on page 90, percentile_cont() returns an array, and
the query will fail to evaluate the >= against an array type.

This is an example of an uncorrelated subquery. It does not depend on
any values in the outer query, and it will be executed just once to generate
the requested value. If you run the subquery portion only, by highlighting it
in pgAdmin, it will execute, and you should see a result of 213707.3. But
you won’t see that number when you run the entire query in Listing 13-1,
because the subquery result is passed directly to the outer query’s WHERE
clause.

The entire query should return 315 rows, or about 10 percent of the 3,142
rows in us_counties_pop_est_2019.

 county_name state_name pop_est_2019
----------------------- -------------------- ------------
Los Angeles County California 10039107
Cook County Illinois 5150233
Harris County Texas 4713325
Maricopa County Arizona 4485414
San Diego County California 3338330
--snip--
Cabarrus County North Carolina 216453
Yuma County Arizona 213787

The result includes all counties with a population greater than or equal to
213707.3, the value the subquery generated.

Using a Subquery to Identify Rows to Delete
We can use the same subquery in a DELETE statement to specify what to
remove from a table. In Listing 13-2, we make a copy of the census table
using the method you learned in Chapter 10 and then delete everything
from that backup except the 315 counties in the top 10 percent of
population.

CREATE TABLE us_counties_2019_top10 AS
SELECT * FROM us_counties_pop_est_2019;

DELETE FROM us_counties_2019_top10
WHERE pop_est_2019 < (
 SELECT percentile_cont(.9) WITHIN GROUP (ORDER BY
pop_est_2019)
 FROM us_counties_2019_top10
);

Listing 13-2: Using a subquery in a WHERE clause with DELETE

Run the code in Listing 13-2, and then execute SELECT count(*) FROM
us_counties_2019_top10; to count the remaining rows. The result should
be 315 rows, which is the original 3,142 minus the 2,827 below the value
identified by the subquery.

Creating Derived Tables with Subqueries
If your subquery returns rows and columns, you can place it in a FROM
clause to create a new table known as a derived table that you can query or
join with other tables, just as you would a regular table. It’s another
example of an uncorrelated subquery.

Let’s look at a simple example. In Chapter 6, you learned the difference
between average and median. A median often better indicates a dataset’s
central value because a few very large or small values (or outliers) can skew
an average. For that reason, I often compare the two. If they’re close, the
data more likely falls in a normal distribution (the familiar bell curve), and
the average is a good representation of the central value. If the average and
median are far apart, some outliers might be having an effect or the
distribution is skewed, not normal.

Finding the average and median population of US counties as well as the
difference between them is a two-step process. We need to calculate the
average and the median and then subtract the two. We can do both
operations in one fell swoop with a subquery in the FROM clause, as shown
in Listing 13-3.

SELECT round(calcs.average, 0) AS average,
 calcs.median,
 round(calcs.average - calcs.median, 0) AS
median_average_diff
FROM (

 1 SELECT avg(pop_est_2019) AS average,
 percentile_cont(.5)
 WITHIN GROUP (ORDER BY pop_est_2019)::numeric
AS median
 FROM us_counties_pop_est_2019
)

2 AS calcs;

Listing 13-3: Subquery as a derived table in a FROM clause

The subquery 1 that produces a derived table is straightforward. We use
the avg() and percentile_cont() functions to find the average and
median of the census table’s pop_est_2019 column and name each column
with an alias. Then we name the derived table calcs 2 so we can reference
it in the main query.

In the main query, we subtract the median from the average, both of
which are returned by the subquery. The result is rounded and labeled with
the alias median_average_diff. Run the query, and the result should be the
following:

average median median_average_diff
------- ------- -------------------
 104468 25726 78742

The difference between the median and average, 78,742, is nearly three
times the size of the median. That indicates we have some high-population
counties inflating the average.

Joining Derived Tables
Joining multiple derived tables lets you perform several preprocessing steps
before final calculations in a main query. For example, in Chapter 11, we
calculated the rate of tourism-related businesses per 1,000 population in
each county. Let’s say we want to do the same at the state level. Before we
can calculate that rate, we need to know the number of tourism businesses
in each state and the population of each state. Listing 13-4 shows how to
write subqueries for both tasks and join them to calculate the overall rate.

SELECT census.state_name AS st,
 census.pop_est_2018,
 est.establishment_count,

 1
round((est.establishment_count/census.pop_est_2018::numeric)
* 1000, 1)
 AS estabs_per_thousand
FROM
 (

 2 SELECT st,
 sum(establishments) AS establishment_count
 FROM cbp_naics_72_establishments
 GROUP BY st
)
 AS est
JOIN
 (

 3 SELECT state_name,
 sum(pop_est_2018) AS pop_est_2018
 FROM us_counties_pop_est_2019
 GROUP BY state_name
)
 AS census

4 ON est.st = census.state_name
ORDER BY estabs_per_thousand DESC;

Listing 13-4: Joining two derived tables

You learned how to calculate rates in Chapter 11, so the math and syntax
in the outer query for finding estabs_per_thousand 1 should be familiar.
We divide the number of establishments by the population and then

multiply that quotient by a thousand. For the inputs, we use the values
generated from two derived tables.

The first 2 finds the number of establishments in each state using the
sum() aggregate function. We give this derived table the alias est for
reference in the main part of the query. The second 3 finds the 2018
estimated population by state by using sum() on the pop_est_2018 column.
We alias this derived table as census.

Next, we join the derived tables 4 by linking the st column in est to the
state_name column in census. We then list the results in descending order
based on the rate. Here’s a sample of the 51 rows showing the highest and
lowest rates:

 st pop_est_2018 establishment_count
estabs_per_thousand
-------------------- ------------ ------------------- -------

District of Columbia 701547 2754
3.9
Montana 1060665 3569
3.4
Vermont 624358 1991
3.2
Maine 1339057 4282
3.2
Wyoming 577601 1808
3.1
--snip--
Arizona 7158024 13288
1.9
Alabama 4887681 9140
1.9
Utah 3153550 6062
1.9
Mississippi 2981020 5645
1.9
Kentucky 4461153 8251
1.8

At the top is Washington, DC, unsurprising given the tourist activity
generated by the museums, monuments, and other attractions in the nation’s
capital. Montana may seem like a surprise in second place, but it’s a low-

population state with major tourist destinations including Glacier and
Yellowstone national parks. Mississippi and Kentucky are among those
states with the fewest tourism-related businesses per 1,000 population.

Generating Columns with Subqueries
You can also place a subquery in the column list after SELECT to generate a
value for that column in the query result. The subquery must generate only
a single row. For example, the query in Listing 13-5 selects the geography
and population information from us_counties_pop_est_2019 and then
adds an uncorrelated subquery to add the median of all counties to each row
in the new column us_median.

SELECT county_name,
 state_name AS st,
 pop_est_2019,
 (SELECT percentile_cont(.5) WITHIN GROUP (ORDER BY
pop_est_2019)
 FROM us_counties_pop_est_2019) AS us_median
FROM us_counties_pop_est_2019;

Listing 13-5: Adding a subquery to a column list

The first rows of the result set should look like this:

 county_name st
pop_est_2019 us_median
--------------------------------- -------------------- ------
------ ---------
Autauga County Alabama
55869 25726
Baldwin County Alabama
223234 25726
Barbour County Alabama
24686 25726
Bibb County Alabama
22394 25726
Blount County Alabama
57826 25726
--snip--

On its own, that repeating us_median value isn’t very helpful. It would be
more interesting and useful to generate values that indicate how much each
county’s population deviates from the median value. Let’s look at how we
can use the same subquery technique to do that. Listing 13-6 builds on
Listing 13-5 by substituting a subquery after SELECT that calculates the
difference between the population and the median for each county.

SELECT county_name,
 state_name AS st,
 pop_est_2019,
 pop_est_2019 - (SELECT percentile_cont(.5) WITHIN

GROUP (ORDER BY pop_est_2019) 1
 FROM us_counties_pop_est_2019) AS
diff_from_median
FROM us_counties_pop_est_2019
WHERE (pop_est_2019 - (SELECT percentile_cont(.5) WITHIN

GROUP (ORDER BY pop_est_2019) 2
 FROM us_counties_pop_est_2019))
 BETWEEN -1000 AND 1000;

Listing 13-6: Using a subquery in a calculation

The subquery 1 is now part of a calculation that subtracts the subquery’s
result from pop_est_2019, the total population, giving the column an alias
of diff_from_median. To make this query even more useful, we can filter
results to show counties whose population is close to the median. To do
this, we repeat the calculation with the subquery in the WHERE clause 2 and
filter results using the BETWEEN -1000 AND 1000 expression.

The outcome should reveal 78 counties. Here are the first five rows:

 county_name st pop_est_2019
diff_from_median
----------------------- -------------- ------------ ---------

Cherokee County Alabama 26196
470
Geneva County Alabama 26271
545
Cleburne County Arkansas 24919
-807
Johnson County Arkansas 26578

852
St. Francis County Arkansas 24994
-732
--snip--

Bear in mind that subqueries can add to overall query execution time. In
Listing 13-6, I removed the subquery from Listing 13-5 that displays the
column us_median to avoid repeating the subquery a third time. With our
data set, the impact is minimal; if we were working with millions of rows,
winnowing some unneeded subqueries might provide a significant speed
boost.

Understanding Subquery Expressions
You can also use subqueries to filter rows by evaluating whether a condition
evaluates as true or false. For this, we can use subquery expressions,
which are a combination of a keyword with a subquery and are generally
used in WHERE clauses to filter rows based on the existence of values in
another table.

The PostgreSQL documentation at
https://www.postgresql.org/docs/current/functions-subquery.html lists
available subquery expressions, but here we’ll examine the syntax for two
that tend to be used most often: IN and EXISTS. To prep, run the code in
Listing 13-7 to create a small table called retirees that we’ll query along
with the employees table you built in Chapter 7. We’ll imagine that we’ve
received this data from a vendor listing people who’ve applied for
retirement benefits.

CREATE TABLE retirees (
 id int,
 first_name text,
 last_name text
);

INSERT INTO retirees
VALUES (2, 'Janet', 'King'),
 (4, 'Michael', 'Taylor');

Listing 13-7: Creating and filling a retirees table

https://www.postgresql.org/docs/current/functions-subquery.html

Now let’s use this table in some subquery expressions.

Generating Values for the IN Operator
The subquery expression IN (subquery) works like the IN operator
example in Chapter 3 except we employ a subquery to provide the list of
values to check against rather than manually entering one. In Listing 13-8,
we use an uncorrelated subquery, which will be executed one time, to
generate id values from the retirees table. The values it returns become
the list for the IN operator in the WHERE clause. This lets us find employees
who are also present in the table of retirees.

SELECT first_name, last_name
FROM employees
WHERE emp_id IN (
 SELECT id
 FROM retirees)
ORDER BY emp_id;

Listing 13-8: Generating values for the IN operator

Run the query, and the output shows the two people in employees whose
emp_id have a matching id in the retirees table:

first_name last_name
---------- ---------
Janet King
Michael Taylor

NOTE

Avoid using NOT IN. The presence of NULL values in a subquery
result set will cause a query with a NOT IN expression to return no
rows. The PostgreSQL wiki recommends using NOT EXISTS instead,
described in the next section.

Checking Whether Values Exist

The subquery expression EXISTS (subquery) returns a value of true if the
subquery in parentheses returns at least one row. If it returns no rows,
EXISTS evaluates to false.

The EXISTS subquery expression in Listing 13-9 shows an example of a
correlated subquery—it includes an expression in its WHERE clause that
requires data from the outer query. Also, because the subquery is correlated,
it will execute once for each row returned by the outer query, each time
checking whether there’s an id in retirees that matches emp_id in
employees. If there is a match, the EXISTS expression returns true.

SELECT first_name, last_name
FROM employees
WHERE EXISTS (
 SELECT id
 FROM retirees
 WHERE id = employees.emp_id);

Listing 13-9: Using a correlated subquery with WHERE EXISTS

When you run the code, it should return the same result as it did in
Listing 13-8. Using this approach is particularly helpful if you need to join
on more than one column, which you can’t do with the IN expression. You
also can add the NOT keyword with EXISTS to perform the opposite function
and find rows in the employees table with no corresponding record in
retirees, as in Listing 13-10.

SELECT first_name, last_name
FROM employees
WHERE NOT EXISTS (
 SELECT id
 FROM retirees
 WHERE id = employees.emp_id);

Listing 13-10: Using a correlated subquery with WHERE NOT EXISTS

That should produce these results:

first_name last_name
---------- ---------

Julia Reyes
Arthur Pappas

The technique of using NOT with EXISTS is helpful for finding missing
values or assessing whether a dataset is complete.

Using Subqueries with LATERAL
Placing the keyword LATERAL before subqueries in a FROM clause adds
several bits of functionality that help simplify otherwise complicated
queries.

LATERAL with FROM
First, a subquery preceded by LATERAL can reference tables and other
subqueries that appear before it in the FROM clause, which can reduce
redundant code by making it easy to reuse calculations.

Listing 13-11 calculates the change in county population from 2018 to
2019 two ways: raw change in numbers and percent change.

SELECT county_name,
 state_name,
 pop_est_2018,
 pop_est_2019,
 raw_chg,
 round(pct_chg * 100, 2) AS pct_chg
FROM us_counties_pop_est_2019,

 1 LATERAL (SELECT pop_est_2019 - pop_est_2018 AS
raw_chg) rc,

 2 LATERAL (SELECT raw_chg / pop_est_2018::numeric AS
pct_chg) pc
ORDER BY pct_chg DESC;

Listing 13-11: Using LATERAL subqueries in the FROM clause

In the FROM clause, after naming the us_counties_pop_est_2019 table,
we add the first LATERAL subquery 1. In parentheses, we place a query that
subtracts the 2018 population estimate from the 2019 estimate and alias the
result as raw_chg. Because a LATERAL subquery can reference a table listed
before it in the FROM clause without needing to specify its name, we can

omit the us_counties_pop_est_2019 table from the subquery. Subqueries
in FROM must have an alias, so we label this one rc.

The second LATERAL subquery 2 calculates the percent change in
population from 2018 to 2019. To find percent change, we must know the
raw change. Rather than re-calculate it, we can reference the raw_chg value
from the previous subquery. That helps make our code shorter and easier to
read.

The query results should look like this:

 county_name state_name pop_est_2018 pop_est_2019
raw_chg pct_chg
---------------- ------------ ------------ ------------ -----
-- -------
Loving County Texas 148 169
21 14.19
McKenzie County North Dakota 13594 15024
1430 10.52
Loup County Nebraska 617 664
47 7.62
Kaufman County Texas 128279 136154
7875 6.14
Williams County North Dakota 35469 37589
2120 5.98
--snip--

LATERAL with JOIN
Combining LATERAL with JOIN creates functionality similar to a for loop in
a programming language: for each row generated by the query in front of
the LATERAL join, a subquery or function after the LATERAL join will be
evaluated once.

We’ll reuse the teachers table from Chapter 2 and create a new table to
record each time a teacher swipes a badge to unlock a lab door. Our task is
to find the two most recent times a teacher accessed a lab. Listing 13-12
shows the code.

1 ALTER TABLE teachers ADD CONSTRAINT id_key PRIMARY KEY (id);

2 CREATE TABLE teachers_lab_access (

 access_id bigint PRIMARY KEY GENERATED ALWAYS AS
IDENTITY,
 access_time timestamp with time zone,
 lab_name text,
 teacher_id bigint REFERENCES teachers (id)
);

3 INSERT INTO teachers_lab_access (access_time, lab_name,
teacher_id)
VALUES ('2022-11-30 08:59:00-05', 'Science A', 2),
 ('2022-12-01 08:58:00-05', 'Chemistry B', 2),
 ('2022-12-21 09:01:00-05', 'Chemistry A', 2),
 ('2022-12-02 11:01:00-05', 'Science B', 6),
 ('2022-12-07 10:02:00-05', 'Science A', 6),
 ('2022-12-17 16:00:00-05', 'Science B', 6);

SELECT t.first_name, t.last_name, a.access_time, a.lab_name
FROM teachers t

4 LEFT JOIN LATERAL (SELECT *
 FROM teachers_lab_access

 5 WHERE teacher_id = t.id
 ORDER BY access_time DESC

 LIMIT 2)6 a
7 ON true

ORDER BY t.id;

Listing 13-12: Using a subquery with a LATERAL join

First, we add a primary key 1 to the teachers table using ALTER TABLE
(we didn’t place a constraint on this table in Chapter 2 because we were just
covering the basics about creating tables). Next, we make a simple
teachers_lab_access table 2 with columns to record the lab name and
access timestamp. The table has a surrogate primary key access_id and a
foreign key teacher_id that references id in teachers. Finally, we add six
rows to the table using an INSERT 3 statement.

Now we’re ready to query the data. In our SELECT statement, we join
teachers to a subquery using LEFT JOIN. We add the LATERAL 4 keyword,
which means for each row returned from teachers, the subquery will
execute, returning the two most recent labs accessed by that particular
teacher and the times they were accessed. Using LEFT JOIN will return all

rows from teachers regardless of whether the subquery finds a matching
teacher in teachers_lab_access.

In the WHERE 5 clause, the subquery references the outer query using the
foreign key of teacher_lab_access. This LATERAL join syntax requires that
the subquery have an alias 6, which here is a, and the value true in the ON
portion 7 of the JOIN clause. In this case, true lets us create the join without
naming specific columns to join upon.

Run the query, and the results should look like this:

first_name last_name access_time lab_name
---------- --------- ---------------------- ------------
Janet Smith
Lee Reynolds 2022-12-21 09:01:00-05 Chemistry A
Lee Reynolds 2022-12-01 08:58:00-05 Chemistry B
Samuel Cole
Samantha Bush
Betty Diaz
Kathleen Roush 2022-12-17 16:00:00-05 Science B
Kathleen Roush 2022-12-07 10:02:00-05 Science A

The two teachers with IDs in the access table have their two most recent
lab access times shown. Teachers who didn’t access a lab display NULL
values; if we want to remove those from the results, we could substitute
INNER JOIN (or just JOIN) for LEFT JOIN.

Next, let’s explore another syntax for working with subqueries.

Using Common Table Expressions
The common table expression (CTE), a relatively recent addition to
standard SQL, allows you to use one or more SELECT queries to predefine
temporary tables that you can reference as often as needed in your main
query. CTEs are informally called WITH queries because you define them
using a WITH ... AS statement. The following examples show some
advantages of using them, including cleaner code and less redundancy.

Listing 13-13 shows a simple CTE based on our census estimates data.
The code determines how many counties in each state have 100,000 people
or more. Let’s walk through the example.

1 WITH large_counties (county_name, state_name, pop_est_2019)
AS (

 2 SELECT county_name, state_name, pop_est_2019
 FROM us_counties_pop_est_2019
 WHERE pop_est_2019 >= 100000
)

3 SELECT state_name, count(*)
FROM large_counties
GROUP BY state_name
ORDER BY count(*) DESC;

Listing 13-13: Using a simple CTE to count large counties

The WITH ... AS statement 1 defines the temporary table
large_counties. After WITH, we name the table and list its column names
in parentheses. Unlike column definitions in a CREATE TABLE statement, we
don’t need to provide data types, because the temporary table inherits those
from the subquery 2, which is enclosed in parentheses after AS. The
subquery must return the same number of columns as defined in the
temporary table, but the column names don’t need to match. The column
list is optional if you’re not renaming columns; I’ve included it here so you
can see the syntax.

The main query 3 counts and groups the rows in large_counties by
state_name and then orders by the count in descending order. The top six
rows of the results should look like this:

 state_name count
-------------------- -----
Texas 40
Florida 36
California 35
Pennsylvania 31
New York 28
North Carolina 28
--snip--

Texas, Florida, and California are among the states that had the most
counties with a 2019 population of 100,000 or more.

Listing 13-14 uses a CTE to rewrite the join of derived tables in Listing
13-4 (finding the rate of tourism-related businesses per 1,000 population in
each state) into a more readable format.

WITH

 1 counties (st, pop_est_2018) AS
 (SELECT state_name, sum(pop_est_2018)
 FROM us_counties_pop_est_2019
 GROUP BY state_name),

 2 establishments (st, establishment_count) AS
 (SELECT st, sum(establishments) AS establishment_count
 FROM cbp_naics_72_establishments
 GROUP BY st)

SELECT counties.st,
 pop_est_2018,
 establishment_count,
 round((establishments.establishment_count /
 counties.pop_est_2018::numeric(10,1)) * 1000,
1)
 AS estabs_per_thousand

3 FROM counties JOIN establishments
ON counties.st = establishments.st
ORDER BY estabs_per_thousand DESC;

Listing 13-14: Using CTEs in a table join

Following the WITH keyword, we define two tables using subqueries. The
first subquery, counties 1, returns the 2018 population of each state. The
second, establishments 2, returns the number of tourism-related
businesses per state. With those tables defined, we join them 3 on the st
column in each table and calculate the rate per thousand. The results are
identical to the joined derived tables in Listing 13-4, but Listing 13-14 is
easier to comprehend.

As another example, you can use a CTE to simplify queries that have
redundant code. For example, in Listing 13-6, we used a subquery with the
percentile_cont() function in two locations to find median county
population. In Listing 13-15, we can write that subquery just once as a CTE.

1 WITH us_median AS
 (SELECT percentile_cont(.5)
 WITHIN GROUP (ORDER BY pop_est_2019) AS us_median_pop
 FROM us_counties_pop_est_2019)

SELECT county_name,
 state_name AS st,
 pop_est_2019,

 2 us_median_pop,
 3 pop_est_2019 - us_median_pop AS diff_from_median

4 FROM us_counties_pop_est_2019 CROSS JOIN us_median
5 WHERE (pop_est_2019 - us_median_pop)

 BETWEEN -1000 AND 1000;

Listing 13-15: Using CTEs to minimize redundant code

After the WITH keyword, we define us_median 1 as the result of the same
subquery used in Listing 13-6, which finds the median population using
percentile_cont(). Then we reference the us_median_pop column on its
own 2, as part of a calculated column 3, and in a WHERE clause 5. To make
the value available to every row in the us_counties_pop_est_2019 table
during SELECT, we use the CROSS JOIN 4 you learned in Chapter 7.

This query provides identical results to those in Listing 13-6, but we had
to write the subquery that finds the median only once. Another bonus is that
you can more easily revise the query. For example, to find counties whose
population is close to the 90th percentile, you need to substitute .9 for .5 as
input to percentile_cont() in only one place.

Readable code, less redundancy, and easier modifications are often-cited
reasons for using CTEs. Another, beyond the scope of this book, is the
ability to add a RECURSIVE keyword that lets a CTE loop through query
results within the CTE itself—a task useful when dealing with data
organized in a hierarchy. An example is a company’s personnel listing,
where you might want to find all the people who report to a particular
executive. The recursive CTE will start with the executive and then loop
down through rows finding her direct reports and then the people who
report to those people. You can learn more about recursive query syntax via

the PostgreSQL documentation at
https://www.postgresql.org/docs/current/queries-with.html.

Performing Cross Tabulations
Cross tabulations provide a simple way to summarize and compare
variables by displaying them in a table layout, or matrix. Rows in the matrix
represent one variable, columns represent another variable, and each cell
where a row and column intersect holds a value, such as a count or
percentage.

You’ll often see cross tabulations, also called pivot tables or crosstabs,
used to report summaries of survey results or to compare pairs of variables.
A frequent example happens during elections when candidates’ votes are
tallied by geography:

candidate ward 1 ward 2 ward 3
--------- ------ ------ ------
Collins 602 1,799 2,112
Banks 599 1,398 1,616
Rutherford 911 902 1,114

In this case, the candidates’ names are one variable, the wards (or city
districts) are another variable, and the cells at the intersection of the two
hold the vote totals for that candidate in that ward. Let’s look at how to
generate cross tabulations.

Installing the crosstab() Function
Standard ANSI SQL doesn’t have a crosstab function, but PostgreSQL does
as part of a module you can install easily. Modules are PostgreSQL extras
that aren’t part of the core application; they include functions related to
security, text search, and more. You can find a list of PostgreSQL modules
at https://www.postgresql.org/docs/current/contrib.html.

PostgreSQL’s crosstab() function is part of the tablefunc module. To
install tablefunc, execute this command in pgAdmin:

CREATE EXTENSION tablefunc;

https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/current/contrib.html

PostgreSQL should return the message CREATE EXTENSION. (If you’re
working with another database management system, check its
documentation for a similar functionality. For example, Microsoft SQL
Server has the PIVOT command.)

Next, we’ll create a basic crosstab so you can learn the syntax, and then
we’ll handle a more complex case.

Tabulating Survey Results
Let’s say your company needs a fun employee activity so you coordinate an
ice cream social at each of your three offices. The trouble is that people are
particular about ice cream flavors. To choose flavors people will like in
each office, you decide to conduct a survey.

The CSV file ice_cream_survey.csv contains 200 responses to your
survey. You can download this file, along with all the book’s resources, at
https://nostarch.com/practical-sql-2nd-edition/. Each row includes a
response_id, office, and flavor. You’ll need to count how many people
chose each flavor at each office and share the results in a readable way.

In your analysis database, use the code in Listing 13-16 to create a table
and load the data. Make sure you change the file path to the location on
your computer where you saved the CSV file.

CREATE TABLE ice_cream_survey (
 response_id integer PRIMARY KEY,
 office text,
 flavor text
);

COPY ice_cream_survey
FROM 'C:\YourDirectory\ice_cream_survey.csv'
WITH (FORMAT CSV, HEADER);

Listing 13-16: Creating and filling the ice_cream_survey table

If you want to inspect the data, run the following to view the first five
rows:

SELECT *
FROM ice_cream_survey

https://nostarch.com/practical-sql-2nd-edition/

ORDER BY response_id
LIMIT 5;

The data should look like this:

response_id office flavor
----------- -------- ----------
 1 Uptown Chocolate
 2 Midtown Chocolate
 3 Downtown Strawberry
 4 Uptown Chocolate
 5 Midtown Chocolate

It looks like chocolate is in the lead! But let’s confirm this choice by
using the code in Listing 13-17 to generate a crosstab.

SELECT *

1 FROM crosstab('SELECT 2 office,
 3 flavor,
 4 count(*)
 FROM ice_cream_survey
 GROUP BY office, flavor
 ORDER BY office',

 5 'SELECT flavor
 FROM ice_cream_survey
 GROUP BY flavor
 ORDER BY flavor')

6 AS (office text,
 chocolate bigint,
 strawberry bigint,
 vanilla bigint);

Listing 13-17: Generating the ice cream survey crosstab

The query begins with a SELECT * statement that selects everything from
the contents of the crosstab() function 1. We supply two queries as
parameters to the crosstab() function; note that because these queries are
parameters, we place them inside single quotes. The first query generates
the data for the crosstab and has three required columns. The first column,

office 2, supplies the row names for the crosstab. The second column,
flavor 3, supplies the category (or column) name to be associated with the
value provided in the third column. Those values will display in each cell
where a row and a column intersect in the table. In this case, we want the
intersecting cells to show a count() 4 of each flavor selected at each office.
This first query on its own creates a simple aggregated list.

The second query parameter 5 produces the category names for the
columns. The crosstab() function requires that the second subquery
returns only one column, so we use SELECT to retrieve flavor and GROUP BY
to return that column’s unique values.

Then we specify the names and data types of the crosstab’s output
columns following the AS keyword 6. The list must match the row and
column names in the order the queries generate them. For example, because
the second query that supplies the category columns orders the flavors
alphabetically, the output column list must as well.

When we run the code, our data displays in a clean, readable crosstab:

office chocolate strawberry vanilla
-------- --------- ---------- -------
Downtown 23 32 19
Midtown 41 23
Uptown 22 17 23

It’s easy to see at a glance that the Midtown office favors chocolate but
has no interest in strawberry, which is represented by a NULL value showing
that strawberry received no votes. But strawberry is the top choice
Downtown, and the Uptown office is more evenly split among the three
flavors.

Tabulating City Temperature Readings
Let’s create another crosstab, but this time we’ll use real data. The
temperature_readings.csv file, also available with all the book’s resources
at https://nostarch.com/practical-sql-2nd-edition/, contains a year’s worth
of daily temperature readings from three observation stations around the
United States: Chicago, Seattle, and Waikiki, a neighborhood on the south
shore of the city of Honolulu. The data come from the US National Oceanic

https://nostarch.com/practical-sql-2nd-edition/

and Atmospheric Administration (NOAA) at
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation/.

Each row in the CSV file contains four values: the station name, the date,
and the day’s maximum and minimum temperatures. All temperatures are in
Fahrenheit. For each month in each city, we want to compare climates using
the median high temperature. Listing 13-18 has the code to create the
temperature_readings table and import the CSV file.

CREATE TABLE temperature_readings (
 station_name text,
 observation_date date,
 max_temp integer,
 min_temp integer,
 CONSTRAINT temp_key PRIMARY KEY (station_name,
observation_date)
);

COPY temperature_readings
FROM 'C:\YourDirectory\temperature_readings.csv'
WITH (FORMAT CSV, HEADER);

Listing 13-18: Creating and filling a temperature_readings table

The table contains the four columns from the CSV file; we add a natural
primary key using the station name and observation date. A quick count
should return 1,077 rows. Now, let’s see what cross tabulating the data does
using Listing 13-19.

SELECT *
FROM crosstab('SELECT

 1 station_name,
 2 date_part(''month'', observation_date),
 3 percentile_cont(.5)
 WITHIN GROUP (ORDER BY max_temp)
 FROM temperature_readings
 GROUP BY station_name,
 date_part(''month'',
observation_date)
 ORDER BY station_name',

 'SELECT month

https://www.ncdc.noaa.gov/cdo-web/datatools/findstation/

 FROM 4 generate_series(1,12) month')

AS (station text,
 jan numeric(3,0),
 feb numeric(3,0),
 mar numeric(3,0),
 apr numeric(3,0),
 may numeric(3,0),
 jun numeric(3,0),
 jul numeric(3,0),
 aug numeric(3,0),
 sep numeric(3,0),
 oct numeric(3,0),
 nov numeric(3,0),
 dec numeric(3,0)
);

Listing 13-19: Generating the temperature readings crosstab

The crosstab structure is the same as in Listing 13-18. The first subquery
inside crosstab() generates the data for the crosstab, finding the median
maximum temperature for each month. It supplies three required columns.
The first, station_name 1, names the rows. The second column uses the
date_part() function 2 from Chapter 12 to extract the month from
observation_date, which provides the crosstab columns. Then we use
percentile_cont(.5) 3 to find the 50th percentile, or the median, of the
max_temp. We group by station name and month so we have a median
max_temp for each month at each station.

As in Listing 13-18, the second subquery produces the set of category
names for the columns. I’m using a function called generate_series() 4
in a manner noted in the official PostgreSQL documentation to create a list
of numbers from 1 to 12 that match the month numbers date_part()
extracts from observation_date.

Following AS, we provide the names and data types for the crosstab’s
output columns. Each is a numeric type, matching the output of the
percentile function. The following output is practically poetry:

station jan feb mar apr may jun
jul aug sep oct nov dec
------------------------------ --- --- --- --- --- ---

--- --- --- --- --- ---
CHICAGO NORTHERLY ISLAND IL US 34 36 46 50 66 77
81 80 77 65 57 35
SEATTLE BOEING FIELD WA US 50 54 56 64 66 71
76 77 69 62 55 42
WAIKIKI 717.2 HI US 83 84 84 86 87 87
88 87 87 86 84 82

We’ve transformed a raw set of daily readings into a compact table
showing the median maximum temperature each month for each station. At
a glance, we can see that the temperature in Waikiki is consistently balmy,
whereas Chicago’s median high temperatures vary from just above freezing
to downright pleasant. Seattle falls between the two.

Crosstabs do take time to set up, but viewing datasets in a matrix often
makes comparisons easier than viewing the same data in a vertical list.
Keep in mind that the crosstab() function is resource-intensive, so tread
carefully when querying sets that have millions or billions of rows.

Reclassifying Values with CASE
The ANSI Standard SQL CASE statement is a conditional expression,
meaning it lets you add some “if this, then . . .” logic to a query. You can
use CASE in multiple ways, but for data analysis, it’s handy for reclassifying
values into categories. You can create categories based on ranges in your
data and classify values according to those categories.

The CASE syntax follows this pattern:

1 CASE WHEN condition THEN result
 2 WHEN another_condition THEN result
 3 ELSE result

4 END

We give the CASE keyword 1 and then provide at least one WHEN
condition THEN result clause, where condition is any expression the
database can evaluate as true or false, such as county = 'Dutchess
County' or date > '1995-08-09'. If the condition is true, the CASE
statement returns the result and stops checking any further conditions. The

result can be any valid data type. If the condition is false, the database
moves on to evaluate the next condition.

To evaluate more conditions, we can add optional WHEN ... THEN clauses
2. We can also provide an optional ELSE clause 3 to return a result in case
no condition evaluates as true. Without an ELSE clause, the statement
would return a NULL when no conditions are true. The statement finishes
with an END keyword 4.

Listing 13-20 shows how to use the CASE statement to reclassify the
temperature readings into descriptive groups (named according to my own
bias against cold weather).

SELECT max_temp,
 CASE WHEN max_temp >= 90 THEN 'Hot'
 WHEN max_temp >= 70 AND max_temp < 90 THEN 'Warm'
 WHEN max_temp >= 50 AND max_temp < 70 THEN
'Pleasant'
 WHEN max_temp >= 33 AND max_temp < 50 THEN 'Cold'
 WHEN max_temp >= 20 AND max_temp < 33 THEN
'Frigid'
 WHEN max_temp < 20 THEN 'Inhumane'
 ELSE 'No reading'
 END AS temperature_group
FROM temperature_readings
ORDER BY station_name, observation_date;

Listing 13-20: Reclassifying temperature data with CASE

We create six ranges for the max_temp column in
temperature_readings, which we define using comparison operators. The
CASE statement evaluates each value to find whether any of the six
expressions are true. If so, the statement outputs the appropriate text. Note
that the ranges account for all possible values in the column, leaving no
gaps. If none of the statements is true, then the ELSE clause assigns the
value to the category No reading.

Run the code; the first five rows of output should look like this:

max_temp temperature_group
-------- -----------------
 31 Frigid

 34 Cold
 32 Frigid
 32 Frigid
 34 Cold
 --snip--

Now that we’ve collapsed the dataset into six categories, let’s use those
categories to compare climate among the three cities in the table.

Using CASE in a Common Table Expression
The operation we performed with CASE on the temperature data in the
previous section is a good example of a preprocessing step you could use in
a CTE. Now that we’ve grouped the temperatures in categories, let’s count
the groups by city in a CTE to see how many days of the year fall into each
temperature category.

Listing 13-21 shows the code for reclassifying the daily maximum
temperatures recast to generate a temps_collapsed CTE and then use it for
an analysis.

1 WITH temps_collapsed (station_name, max_temperature_group) AS
 (SELECT station_name,
 CASE WHEN max_temp >= 90 THEN 'Hot'
 WHEN max_temp >= 70 AND max_temp < 90 THEN
'Warm'
 WHEN max_temp >= 50 AND max_temp < 70 THEN
'Pleasant'
 WHEN max_temp >= 33 AND max_temp < 50 THEN
'Cold'
 WHEN max_temp >= 20 AND max_temp < 33 THEN
'Frigid'
 WHEN max_temp < 20 THEN 'Inhumane'
 ELSE 'No reading'
 END
 FROM temperature_readings)

2 SELECT station_name, max_temperature_group, count(*)
FROM temps_collapsed
GROUP BY station_name, max_temperature_group
ORDER BY station_name, count(*) DESC;

Listing 13-21: Using CASE in a CTE

This code reclassifies the temperatures and then counts and groups by
station name to find general climate classifications of each city. The WITH
keyword defines the CTE of temps_collapsed 1, which has two columns:
station_name and max_temperature_group. We then run a SELECT query
on the CTE 2, performing straightforward count(*) and GROUP BY
operations on both columns. The results should look like this:

station_name max_temperature_group
count
------------------------------ --------------------- --

CHICAGO NORTHERLY ISLAND IL US Warm
133
CHICAGO NORTHERLY ISLAND IL US Cold
92
CHICAGO NORTHERLY ISLAND IL US Pleasant
91
CHICAGO NORTHERLY ISLAND IL US Frigid
30
CHICAGO NORTHERLY ISLAND IL US Inhumane
8
CHICAGO NORTHERLY ISLAND IL US Hot
8
SEATTLE BOEING FIELD WA US Pleasant
198
SEATTLE BOEING FIELD WA US Warm
98
SEATTLE BOEING FIELD WA US Cold
50
SEATTLE BOEING FIELD WA US Hot
3
WAIKIKI 717.2 HI US Warm
361
WAIKIKI 717.2 HI US Hot
5

Using this classification scheme, the amazingly consistent Waikiki
weather, with Warm maximum temperatures 361 days of the year, confirms
its appeal as a vacation destination. From a temperature standpoint, Seattle
looks good too, with nearly 300 days of Pleasant or Warm high temps

(although this belies Seattle’s legendary rainfall). Chicago, with 30 days of
Frigid max temps and 8 days Inhumane, probably isn’t for me.

Wrapping Up
In this chapter, you learned to make queries work harder for you. You can
now add subqueries in multiple locations to provide finer control over
filtering or preprocessing data before analyzing it in a main query. You also
can visualize data in a matrix using cross tabulations and reclassify data
into groups; both techniques give you more ways to find and tell stories
using your data. Great work!

Throughout the next chapters, we’ll dive into SQL techniques that are
more specific to PostgreSQL. We’ll begin by working with and searching
text and strings.

TRY IT YOURSELF

Perform the following two tasks to help you become more familiar with the concepts
introduced in the chapter:

Revise the code in Listing 13-21 to dig deeper into the nuances of Waikiki’s high
temperatures. Limit the temps_collapsed table to the Waikiki maximum daily

temperature observations. Then use the WHEN clauses in the CASE statement to
reclassify the temperatures into seven groups that would result in the following text

output:

'90 or more'
'88-89'
'86-87'
'84-85'
'82-83'
'80-81'
'79 or less'

In which of those groups does Waikiki’s daily maximum temperature fall most often?
Revise the ice cream survey crosstab in Listing 13-17 to flip the table. In other words,
make flavor the rows and office the columns. Which elements of the query do you

need to change? Are the counts different?

14
MINING TEXT TO FIND MEANINGFUL DATA

Next, you’ll learn how to use SQL to transform,
search, and analyze text. You’ll start with simple
text wrangling using string formatting and pattern
matching before moving on to more advanced
analysis. We’ll use two data-sets: a small

collection of crime reports from a sheriff’s department near
Washington, DC, and a set of speeches delivered by US
presidents.

Text offers plenty of possibilities for analysis. You can extract meaning from unstructured
data—paragraphs of text in speeches, reports, press releases, and other documents—by
transforming it into structured data, in rows and columns in a table. Or you can use
advanced text analysis features, such as PostgreSQL’s full-text search. With these
techniques, ordinary text can reveal facts or trends that might otherwise remain hidden.

Formatting Text Using String Functions
PostgreSQL has more than 50 built-in string functions that handle routine but necessary
tasks, such as capitalizing letters, combining strings, and removing unwanted spaces. Some
are part of the ANSI SQL standard, and others are specific to PostgreSQL. You’ll find a
complete list of string functions at https://www.postgresql.org/docs/current/functions-
string.html, but in this section we’ll examine several you might use often.

You can try each of these in a simple query that places a function after SELECT, like this:
SELECT upper('hello');. Examples of each function plus code for all the listings in this
chapter are available at https://nostarch.com/practical-sql-2nd-edition/.

Case Formatting
The capitalization functions format the text’s case. The upper(string) function capitalizes
all alphabetical characters of a string passed to it. Nonalphabetic characters, such as
numbers, remain unchanged. For example, upper('Neal7') returns NEAL7. The

https://www.postgresql.org/docs/current/functions-string.html
https://nostarch.com/practical-sql-2nd-edition/

lower(string) function lowercases all alphabetical characters while keeping nonalphabetic
characters unchanged. For example, lower('Randy') returns randy.

The initcap(string) function capitalizes the first letter of each word. For example,
initcap('at the end of the day') returns At The End Of The Day. This function can
be handy for formatting titles of books or movies, but because it doesn’t recognize
acronyms, it’s not always the perfect solution. For example, initcap('Practical SQL')
returns Practical Sql, because it doesn’t recognize SQL as an acronym.

The upper() and lower() functions are ANSI SQL standard commands, but initcap() is
PostgreSQL-specific. These three functions give you enough options to rework a column of
text into the case you prefer. Note that capitalization does not work with all locales or
languages.

Character Information
Several functions return data about the string and are helpful on their own or combined with
other functions. The char_length(string) function returns the number of characters in a
string, including any spaces. For example, char_length(' Pat ') returns a value of 5,
because the three letters in Pat and the spaces on either end total five characters. You can
also use the non-ANSI SQL function length(string) to count strings, which has a variant
that lets you count the length of binary strings.

NOTE

The length() function can return a different value than char_length() when used
with multibyte encodings, such as character sets covering the Chinese, Japanese,
or Korean languages.

The position(substring in string) function returns the location of the substring
characters in the string. For example, position(', ' in 'Tan, Bella') returns 4, because
the comma and space characters (,) specified in the substring passed as the first parameter
starting at the fourth index position in the main string Tan, Bella.

Both char_length() and position() are in the ANSI SQL standard.

Removing Characters
The trim(characters from string) function removes characters from the beginning and
end of a string. To declare one or more characters to remove, add them to the function
followed by the keyword from and the string you want to change. Options to remove
leading characters (at the front of the string), trailing characters (at the end of the string),
or both make this function super flexible.

For example, trim('s' from 'socks') removes s characters at the beginning and end,
returning ock. To remove only the s at the end of the string, add the trailing keyword
before the character to trim: trim(trailing 's' from 'socks') returns sock.

If you don’t specify any characters to remove, trim() removes spaces at either end of the
string by default. For example, trim(' Pat ') returns Pat without the leading or trailing
spaces. To confirm the length of the trimmed string, we can nest trim() inside
char_length() like this:

SELECT char_length(trim(' Pat '));

This query should return 3, the number of letters in Pat, which is the result of trim(' Pat
').

The ltrim(string, characters) and rtrim(string, characters) functions are
PostgreSQL-specific variations of the trim() function. They remove characters from the left
or right ends of a string. For example, rtrim('socks', 's') returns sock by removing only
the s on the right end of the string.

Extracting and Replacing Characters
The left(string, number) and right(string, number) functions, both ANSI SQL
standard, extract and return selected characters from a string. For example, to get just the 703
area code from the phone number 703-555-1212, use left('703-555-1212', 3) to specify
that you want the first three characters of the string starting from the left. Likewise,
right('703-555-1212', 8) returns eight characters from the right: 555-1212.

To substitute characters in a string, use the replace(string, from, to) function. To
change bat to cat, for example, you would use replace('bat', 'b', 'c') to specify that
you want to replace the b in bat with a c.

Now that you know basic functions for manipulating strings, let’s look at how to match
more complex patterns in text and turn those patterns into data we can analyze.

Matching Text Patterns with Regular Expressions
Regular expressions (or regex) are a type of notational language that describes text patterns.
If you have a string with a noticeable pattern (say, four digits followed by a hyphen and then
two more digits), you can write a regular expression that matches the pattern. You can then
use the notation in a WHERE clause to filter rows by the pattern or use regular expression
functions to extract and wrangle text that contains the same pattern.

Regular expressions can seem inscrutable to beginning programmers; they take practice to
comprehend because they use single-character symbols that aren’t intuitive. Getting an
expression to match a pattern can involve trial and error, and each programming language
has subtle differences in the way it handles regular expressions. Still, learning regular
expressions is a good investment because you gain superpower-like abilities to search text
using many programming languages, text editors, and other applications.

In this section, I’ll provide enough regular expression basics to work through the
exercises. To learn more, I recommend interactive online code testers, such as
https://regexr.com/ or https://www.regexpal.com/, which have notation references.

https://regexr.com/
https://www.regexpal.com/

Regular Expression Notation
Matching letters and numbers using regular expression notation is straightforward because
letters and numbers (and certain symbols) are literals that indicate the same characters. For
example, Al matches the first two characters in Alicia.

For more complex patterns, you’ll use combinations of the regular expression elements in
Table 14-1.

Table 14-1: Regular Expression Notation Basics

Expression Description
. A dot is a wildcard that finds any character except a newline.
[FGz] Any character in the square brackets. Here, F, G, or z.
[a-z] A range of characters. Here, lowercase a to z.
[^a-z] The caret negates the match. Here, not lowercase a to z.
\w Any word character or underscore. Same as [A-Za-z0-9_].
\d Any digit.
\s A space.
\t Tab character.
\n Newline character.
\r Carriage return character.
^ Match at the start of a string.
$ Match at the end of a string.
? Get the preceding match zero or one time.
* Get the preceding match zero or more times.
+ Get the preceding match one or more times.
{m} Get the preceding match exactly m times.
{m,n} Get the preceding match between m and n times.
a|b The pipe denotes alternation. Find either a or b.
() Create and report a capture group or set precedence.
(?:) Negate the reporting of a capture group.

Using these regular expressions, you can match various characters and indicate how many
times and where to match them. For example, placing characters inside square brackets ([])
lets you match any single character or a range. So, [FGz] matches a single F, G, or z, whereas
[A-Za-z] will match any uppercase or lowercase letter.

The backslash (\) precedes a designator for special characters, such as a tab (\t), digit
(\d), or newline (\n), which is a line ending character in text files.

There are several ways to indicate how many times to match a character. Placing a number
inside curly brackets indicates you want to match it that many times. For example, \d{4}
matches four digits in a row, and \d{1,4} matches one to four digits.

The ?, *, and + characters provide a useful shorthand notation for the number of matches
you want. The plus sign (+) after a character indicates to match it one or more times, for

example. So, the expression a+ would find the aa characters in the string aardvark.
Additionally, parentheses indicate a capture group, which you can use to identify a portion

of the entire matched expression. For example, if you were hunting for an HH:MM:SS time
format in text and wanted to report only the hour, you could use an expression such as
(\d{2}):\d{2}:\d{2}. This looks for two digits (\d{2}) of the hour followed by a colon,
another two digits for the minutes and a colon, and then the two-digit seconds. By placing
the first \d{2} inside parentheses, you can extract only those two digits, even though the
entire expression matches the full time.

Table 14-2 shows examples of combining regular expressions to capture different portions
of the sentence “The game starts at 7 p.m. on May 2, 2024.”

Table 14-2: Regular Expression Matching Examples

Expression What it matches Result
.+ Any character one or more times The game starts at 7 p.m. on

May 2, 2024.

\d{1,2}

(?:a.m.|p.m.)

One or two digits followed by a space and a.m. or p.m. in
a noncapture group

7 p.m.

^\w+ One or more word characters at the start The

\w+.$ One or more word characters followed by any character at
the end

2024.

May|June Either of the words May or June May

\d{4} Four digits 2024

May \d, \d{4} May followed by a space, digit, comma, space, and four
digits

May 2, 2024

These results show the usefulness of regular expressions for matching the parts of the
string that interest us. For example, to find the time, we use the expression \d{1,2}
(?:a.m.|p.m.) to look for either one or two digits because the time could be a single or
double digit followed by a space. Then we look for either a.m. or p.m.; the pipe symbol
separating the terms indicates the either-or condition, and placing them in parentheses
separates the logic from the rest of the expression. We need the ?: symbol to indicate that we
don’t want to treat the terms inside the parentheses as a capture group, which would report
a.m. or p.m. only. The ?: ensures that the full match will be returned.

You can use any of these regular expressions by placing the text and regular expression
inside the substring(string from pattern) function to return the matched text. For
example, to find the four-digit year, use the following query:

SELECT substring('The game starts at 7 p.m. on May 2, 2024.' from '\d{4}');

This query should return 2024, because we specified that the pattern should look for four
digits in a row, and 2024 is the only portion of this string that matches these criteria. You can
check out sample substring() queries for all the examples in Table 14-2 in the book’s code
resources at https://nostarch.com/practical-sql-2nd-edition/.

https://nostarch.com/practical-sql-2nd-edition/

Using Regular Expressions with WHERE
You’ve filtered queries using LIKE and ILIKE in WHERE clauses. In this section, you’ll learn to
use regular expressions in WHERE clauses so you can perform more complex matches.

We use a tilde (~) to make a case-sensitive match on a regular expression and a tilde-
asterisk (~*) to perform a case-insensitive match. You can negate either expression by
adding an exclamation point in front. For example, !~* indicates to not match a regular
expression that is case-insensitive. Listing 14-1 shows how this works using the 2019 US
Census estimates us_counties_pop_est_2019 table from previous exercises.

SELECT county_name
FROM us_counties_pop_est_2019

1 WHERE county_name ~* '(lade|lare)'
ORDER BY county_name;

SELECT county_name
FROM us_counties_pop_est_2019

2 WHERE county_name ~* 'ash' AND county_name !~ 'Wash'
ORDER BY county_name;

Listing 14-1: Using regular expressions in a WHERE clause

The first WHERE clause 1 uses the tilde-asterisk (~*) to perform a case-insensitive match on
the regular expression (lade|lare) to find any county names that contain either the letters
lade or lare. The results should show eight rows:

county_name

Bladen County
Clare County
Clarendon County
Glades County
Langlade County
Philadelphia County
Talladega County
Tulare County

As you can see, each county name includes the letters lade or lare.

The second WHERE clause 2 uses the tilde-asterisk (~*) as well as a negated tilde (!~) to
find county names containing the letters ash but excluding those that include Wash. This
query should return the following:

county_name

Ashe County
Ashland County
Ashland County
Ashley County
Ashtabula County
Nash County

Wabash County
Wabash County
Wabasha County

All nine counties in this output have names that contain the letters ash, but none have
Wash.

These are fairly simple examples, but you can do more complex matches using regular
expressions that you wouldn’t be able to perform with the wildcards available with just LIKE
and ILIKE.

Regular Expression Functions to Replace or Split Text
Listing 14-2 shows three regular expression functions that replace and split text.

1 SELECT regexp_replace('05/12/2024', '\d{4}', '2023');

2 SELECT regexp_split_to_table('Four,score,and,seven,years,ago', ',');

3 SELECT regexp_split_to_array('Phil Mike Tony Steve', ' ');

Listing 14-2: Regular expression functions to replace and split text

The regexp_replace(string, pattern, replacement text) function lets you
substitute a matched pattern with replacement text. In the example at 1, we’re searching the
date string 05/12/2024 for any set of four digits in a row using \d{4}. When found, we
replace them with the replacement text 2023. The result of that query is 05/12/2023 returned
as text.

The regexp_split_to_table(string, pattern) function splits delimited text into rows.
Listing 14-2 uses this function to split the string 'Four,score,and,seven,years,ago' on
commas 2, resulting in a set of rows that has one word in each row:

regexp_split_to_table

Four
score
and
seven
years
ago

Keep this function in mind as you tackle the “Try It Yourself” exercises at the end of the
chapter.

The regexp_split_to_array(string, pattern) function splits delimited text into an
array. The example splits the string Phil Mike Tony Steve on spaces 3, returning a text
array that should look like this in pgAdmin:

regexp_split_to_array

{Phil,Mike,Tony,Steve}

The text[] notation in pgAdmin’s column header along with curly brackets around the
results confirms that this is indeed an array type, which provides another means of analysis.
For example, you could then use a function such as array_length() to count the number of
words, as shown in Listing 14-3.

SELECT array_length(regexp_split_to_array('Phil Mike Tony Steve', ' '), 1

1);

Listing 14-3: Finding an array length

The array that regexp_split_to_array() produces is one-dimensional; that is, the result
contains one list of names. Arrays can have additional dimensions—for example, a two-
dimensional array can represent a matrix with rows and columns. Thus, here we pass 1 as a
second argument 1 to array_length(), indicating we want the length of the first (and only)
dimension of the array. The query should return 4 because the array has four elements. You
can read more about array_length() and other array functions at
https://www.postgresql.org/docs/current/functions-array.html.

If you can identify a pattern in the text, you can use a combination of regular expression
symbols to locate it. This technique is particularly useful when you have repeating patterns
in text that you want to turn into a set of data to analyze. Let’s practice how to use regular
expression functions using a real-world example.

Turning Text to Data with Regular Expression Functions
A sheriff’s department in one of the Washington, DC, suburbs publishes daily reports that
detail the date, time, location, and description of incidents the department investigates. These
reports would be great to analyze, except they post the information in Microsoft Word
documents saved as PDF files, which is not the friendliest format for importing into a
database.

If I copy and paste incidents from the PDF into a text editor, the result is blocks of text
that look something like Listing 14-4.

1 4/16/17-4/17/17
2 2100-0900 hrs.
3 46000 Block Ashmere Sq.
4 Sterling
5 Larceny: 6 The victim reported that a

bicycle was stolen from their opened
garage door during the overnight hours.

7 C0170006614

04/10/17

https://www.postgresql.org/docs/current/functions-array.html

1605 hrs.
21800 block Newlin Mill Rd.
Middleburg
Larceny: A license plate was reported
stolen from a vehicle.
SO170006250

Listing 14-4: Crime reports text

Each block of text includes dates 1, times 2, a street address 3, city or town 4, the type of
crime 5, and a description of the incident 6. The last piece of information is a code 7 that
might be a unique ID for the incident, although we’d have to check with the sheriff’s
department to be sure. There are slight inconsistencies. For example, the first block of text
has two dates (4/16/17-4/17/17) and two times (2100-0900 hrs.), meaning the exact time
of the incident is unknown and likely occurred within that time span. The second block has
one date and time.

If you compile these reports regularly, you can expect to find some good insights that
could answer important questions: Where do crimes tend to occur? Which crime types occur
most frequently? Do they happen more often on weekends or weekdays? Before you can
start answering these questions, you’ll need to extract the text into table columns using
regular expressions.

NOTE

Extracting elements from text is labor-intensive, so it’s a good idea to ask the
owner of the data whether the text was produced from a database. If it was and you
can obtain a structured export such as a CSV file from that database, you’ll save
considerable time.

Creating a Table for Crime Reports
I’ve collected five of the crime incidents into a file named crime_reports.csv that you can
download via the link to the book’s resources at https://nostarch.com/practical-sql-2nd-
edition/. Download the file and save it on your computer. Then use the code in Listing 14-5
to build a table that has a column for each data element you can parse from the text using a
regular expression.

CREATE TABLE crime_reports (
 crime_id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 case_number text,
 date_1 timestamptz,
 date_2 timestamptz,
 street text,
 city text,
 crime_type text,
 description text,
 original_text text NOT NULL
);

https://nostarch.com/practical-sql-2nd-edition/

COPY crime_reports (original_text)
FROM 'C:\YourDirectory\crime_reports.csv'
WITH (FORMAT CSV, HEADER OFF, QUOTE '"');

Listing 14-5: Creating and loading the crime_reports table

Run the CREATE TABLE statement in Listing 14-5 and then use COPY to load the text into
the column original_text. The rest of the columns will be NULL until we fill them.

When you run SELECT original_text FROM crime_reports; in pgAdmin, the results
grid should display five rows and the first several words of each report. When you double-
click any cell, pgAdmin shows all the text in that row, as shown in Figure 14-1.

Figure 14-1: Displaying additional text in the pgAdmin results grid

Now that you’ve loaded the text you’ll be parsing, let’s explore this data using
PostgreSQL regular expression functions.

Matching Crime Report Date Patterns
The first piece of data we want to extract from original_text is the date or dates of the
crime. Most reports have one date, although one has two. The reports also have associated
times, and we’ll combine the extracted date and time into a timestamp. We’ll fill date_1
with each report’s first (or only) date and time. If a second date or second time exists, we’ll
add it to date_2.

We’ll use the regexp_match(string, pattern) function, which is similar to
substring() with a few exceptions. One is that it returns each match as text in an array.
Also, if there are no matches, it returns NULL. As you might recall from Chapter 6, you use
an array to pass a list of values into the percentile_cont() function to calculate quartiles.
I’ll show you how to work with results that come back as an array when we parse the crime
reports.

NOTE

The regexp_match() function was introduced in PostgreSQL 10 and is not
available in earlier versions.

To start, let’s use regexp_match() to find dates in each of the five incidents. The general
pattern to match is MM/DD/YY, although there may be one or two digits for both the month
and date. Here’s a regular expression that matches the pattern:

\d{1,2}\/\d{1,2}\/\d{2}

In this expression, the first \d{1,2} indicates the month. The numbers inside the curly
brackets specify that you want at least one digit and at most two digits. Next, you want to
look for a forward slash (/), but because a forward slash can have special meaning in regular
expressions, you must escape that character by placing a backslash (\) in front of it, like this
\/. Escaping a character in this context simply means we want to treat it as a literal rather
than letting it take on special meaning. So, the combination of the backslash and forward
slash (\/) indicates you want a forward slash.

Another \d{1,2} follows for a single- or double-digit day of the month. The expression
ends with a second escaped forward slash and \d{2} to indicate the two-digit year. Let’s pass
the expression \d{1,2}\/\d{1,2}\/\d{2} to regexp_match(), as shown in Listing 14-6.

SELECT crime_id,
 regexp_match(original_text, '\d{1,2}\/\d{1,2}\/\d{2}')
FROM crime_reports
ORDER BY crime_id;

Listing 14-6: Using regexp_match() to find the first date

Run that code in pgAdmin, and the results should look like this:

crime_id regexp_match
-------- ------------
 1 {4/16/17}
 2 {4/8/17}
 3 {4/4/17}
 4 {04/10/17}
 5 {04/09/17}

Note that each row shows the first date listed for the incident, because regexp_match()
returns the first match it finds by default. Also note that each date is enclosed in curly
brackets. That’s PostgreSQL indicating that regexp_match() returns each result as an array
type, or list of elements. Later, in the “Extracting Text from the regexp_match() Result”
section, I’ll show you how to access elements in the array. You also can read more about
arrays in PostgreSQL at https://www.postgresql.org/docs/current/arrays.html.

https://www.postgresql.org/docs/current/arrays.html

Matching the Second Date When Present
We’ve successfully matched the first date from each report. But recall that one of the five
incidents has a second date. To find and display all the dates in the text, you must use the
related regexp_matches() function and pass in an option in the form of the flag g, as shown
in Listing 14-7.

SELECT crime_id,

 regexp_matches(original_text, '\d{1,2}\/\d{1,2}\/\d{2}', 'g'1)
FROM crime_reports
ORDER BY crime_id;

Listing 14-7: Using the regexp_matches() function with the g flag

The regexp_matches() function, when supplied the g flag 1, differs from
regexp_match() by returning each match the expression finds as a row in the results rather
than returning just the first match.

Run the code again with this revision; you should now see two dates for the incident that
has a crime_id of 1, like this:

crime_id regexp_matches
-------- --------------
 1 {4/16/17}
 1 {4/17/17}
 2 {4/8/17}
 3 {4/4/17}
 4 {04/10/17}
 5 {04/09/17}

Any time a crime report has a second date, we want to load it and the associated time into
the date_2 column. Although adding the g flag shows us all the dates, to extract just the
second date in a report, we can use the pattern we always see when two dates exist. In
Listing 14-4, the first block of text showed the two dates separated by a hyphen, like this:

4/16/17-4/17/17

This means you can switch back to regexp_match() and write a regular expression to
look for a hyphen followed by a date, as shown in Listing 14-8.

SELECT crime_id,
 regexp_match(original_text, '-\d{1,2}\/\d{1,2}\/\d{2}')
FROM crime_reports
ORDER BY crime_id;

Listing 14-8: Using regexp_match() to find the second date

Although this query finds the second date in the first item (and returns a NULL for the rest),
there’s an unintended consequence: it displays the hyphen along with it.

crime_id regexp_match
-------- ------------
 1 {-4/17/17}
 2
 3
 4
 5

You don’t want to include the hyphen, because it’s an invalid format for the timestamp
data type. Fortunately, you can specify the exact part of the regular expression you want to
return by placing parentheses around it to create a capture group, like this:

-(\d{1,2}/\d{1,2}/\d{1,2})

This notation returns only the part of the regular expression you want. Run the modified
query in Listing 14-9 to report only the data in parentheses.

SELECT crime_id,
 regexp_match(original_text, '-(\d{1,2}\/\d{1,2}\/\d{2})')
FROM crime_reports
ORDER BY crime_id;

Listing 14-9: Using a capture group to return only the date

The query in Listing 14-9 should return just the second date without the leading hyphen,
as shown here:

crime_id regexp_match
-------- ------------
 1 {4/17/17}
 2
 3
 4
 5

The process you’ve just completed is typical. You start with text to analyze and then write
and refine the regular expression until it finds the data you want. So far, we’ve created
regular expressions to match the first date and a second date, if it exists. Now, let’s use
regular expressions to extract additional data elements.

Matching Additional Crime Report Elements
In this section, we’ll capture times, addresses, crime type, description, and case number from
the crime reports. Here are the expressions for capturing this information:

First hour \/\d{2}\n(\d{4})
The first hour, which is the hour the crime was committed or the start of the time range,
always follows the date in each crime report, like this:

4/16/17-4/17/17
2100-0900 hrs.

To find the first hour, we start with an escaped forward slash and \d{2}, which represents the
two-digit year preceding the first date (17). The \n character indicates the newline because
the hour always starts on a new line, and \d{4} represents the four-digit hour (2100).
Because we just want to return the four digits, we put \d{4} inside parentheses as a capture
group.

Second hour \/\d{2}\n\d{4}-(\d{4})
If the second hour exists, it will follow a hyphen, so we add a hyphen and another \d{4} to
the expression we just created for the first hour. Again, the second \d{4} goes inside a
capture group, because 0900 is the only hour we want to return.

Street hrs.\n(\d+ .+(?:Sq.|Plz.|Dr.|Ter.|Rd.))
In this data, the street always follows the time’s hrs. designation and a newline (\n), like
this:

04/10/17
1605 hrs.
21800 block Newlin Mill Rd.

The street address always starts with some number that varies in length and ends with an
abbreviated suffix of some kind. To describe this pattern, we use \d+ to match any digit that
appears one or more times. Then we specify a space and look for any character one or more
times using the dot wildcard and plus sign (.+) notation. The expression ends with a series of
terms separated by the alternation pipe symbol that looks like this:
(?:Sq.|Plz.|Dr.|Ter.|Rd.). The terms are inside parentheses, so the expression will
match one or another of those terms. When we group terms like this, if we don’t want the
parentheses to act as a capture group, we need to add ?: to negate that effect.

NOTE

In a large dataset, it’s likely roadway names would end with suffixes beyond the five
in our regular expression. After making an initial pass at extracting the street, you
can run a query to check for unmatched rows to find additional suffixes to match.

City (?:Sq.|Plz.|Dr.|Ter.|Rd.)\n(\w+ \w+|\w+)\n
Because the city always follows the street suffix, we reuse the terms separated by the
alternation symbol we just created for the street. We follow that with a newline (\n) and then
use a capture group to look for two words or one word (\w+ \w+|\w+) before a final
newline, because a town or city name can be more than a single word.

Crime type \n(?:\w+ \w+|\w+)\n(.*):
The type of crime always precedes a colon (the only time a colon is used in each report) and
might consist of one or more words, like this:

--snip--
Middleburg
Larceny: A license plate was reported
stolen from a vehicle.
SO170006250
--snip--

To create an expression that matches this pattern, we follow a newline with a nonreporting
capture group that looks for the one- or two-word city. Then we add another newline and
match any character that occurs zero or more times before a colon using (.*):.

Description :\s(.+)(?:C0|SO)
The crime description always comes between the colon after the crime type and the case
number. The expression starts with the colon, a space character (\s), and then a capture
group to find any character that appears one or more times using the .+ notation. The
nonreporting capture group (?:C0|SO) tells the program to stop looking when it encounters
either C0 or SO, the two character pairs that start each case number (a C followed by a zero,
and an S followed by a capital O). We have to do this because the description might have one
or more line breaks.

Case number (?:C0|SO)[0-9]+
The case number starts with either C0 or SO, followed by a set of digits. To match this
pattern, the expression looks for either C0 or SO in a nonreporting capture group followed by
any digit from 0 to 9 that occurs one or more times using the [0-9] range notation.

Now let’s pass some of these regular expressions to regexp_match() to see them in
action. Listing 14-10 shows a sample regexp_match() query that retrieves the case number,
first date, crime type, and city.

SELECT
 regexp_match(original_text, '(?:C0|SO)[0-9]+') AS case_number,
 regexp_match(original_text, '\d{1,2}\/\d{1,2}\/\d{2}') AS date_1,
 regexp_match(original_text, '\n(?:\w+ \w+|\w+)\n(.*):') AS crime_type,
 regexp_match(original_text, '(?:Sq.|Plz.|Dr.|Ter.|Rd.)\n(\w+
\w+|\w+)\n')
 AS city
FROM crime_reports
ORDER BY crime_id;

Listing 14-10: Matching case number, date, crime type, and city

Run the code, and the results should look like this:

 case_number date_1 crime_type city
------------- ---------- ------------------------- ------------
{C0170006614} {4/16/17} {Larceny} {Sterling}
{C0170006162} {4/8/17} {"Destruction of Property"} {Sterling}
{C0170006079} {4/4/17} {Larceny} {Sterling}
{SO170006250} {04/10/17} {Larceny} {Middleburg}
{SO170006211} {04/09/17} {"Destruction of Property"} {Sterling}

After all that wrangling, we’ve transformed the text into a structure that is more suitable
for analysis. Of course, you would have to include many more incidents to count the
frequency of crime type by city or by the number of crimes per month to identify any trends.

To load each parsed element into the table’s columns, we’ll create an UPDATE query. But
before you can insert the text into a column, you’ll need to learn how to extract the text from
the array that regexp_match() returns.

Extracting Text from the regexp_match() Result
In “Matching Crime Report Date Patterns,” I mentioned that regexp_match() returns data in
an array type containing text. Two clues reveal that these are array types. The first is that the
data type designation in the column header shows text[] instead of text. The second is that
each result is surrounded by curly brackets. Figure 14-2 shows how pgAdmin displays the
results of the query in Listing 14-10.

Figure 14-2: Array values in the pgAdmin results grid

The crime_reports columns we want to update are not array types, so rather than passing
in the array values returned by regexp_match(), we need to extract the values from the array
first. We do this by using array notation, as shown in Listing 14-11.

SELECT
 crime_id,

 1 (regexp_match(original_text, '(?:C0|SO)[0-9]+'))[1] 2
 AS case_number
FROM crime_reports
ORDER BY crime_id;

Listing 14-11: Retrieving a value from within an array

First, we wrap the regexp_match() function 1 in parentheses. Then, at the end, we
provide a value of 1, which represents the first element in the array, enclosed in square
brackets 2. The query should produce the following results:

crime_id case_number
-------- -----------
 1 C0170006614
 2 C0170006162
 3 C0170006079
 4 SO170006250
 5 SO170006211

Now the data type designation in the pgAdmin column header should show text instead
of text[], and the values are no longer enclosed in curly brackets. We can now insert these
values into crime_reports using an UPDATE query.

Updating the crime_reports Table with Extracted Data
To start updating columns in crime_reports, Listing 14-12 combines the extracted first date
and time into a single timestamp value for the column date_1.

UPDATE crime_reports

1 SET date_1 =
(

 2 (regexp_match(original_text, '\d{1,2}\/\d{1,2}\/\d{2}'))[1]
 3 || ' ' ||
 4 (regexp_match(original_text, '\/\d{2}\n(\d{4})'))[1]
 5 ||' US/Eastern'

6)::timestamptz
RETURNING crime_id, date_1, original_text;

Listing 14-12: Updating the crime_reports date_1 column

Because the date_1 column is of type timestamp, we must provide an input in that data
type. To do that, we’ll use the PostgreSQL double-pipe (||) concatenation operator to
combine the extracted date and time in a format that’s acceptable for timestamp with time
zone input. In the SET clause 1, we start with the regex pattern that matches the first date 2.
Next, we concatenate the date with a space using two single quotes 3 and repeat the
concatenation operator. This step combines the date with a space before connecting it to the
regex pattern that matches the time 4. Then we include the time zone for the Washington,
DC, area by concatenating that at the end of the string 5 using the US/Eastern designation.
Concatenating these elements creates a string in the pattern of MM/DD/YY HH:MM TIMEZONE,
which is acceptable as a timestamp input. We cast the string to a timestamp with time
zone data type 6 using the PostgreSQL double-colon shorthand and the timestamptz
abbreviation.

When you run the UPDATE, the RETURNING clause will display the columns we specify from
the updated rows, including the now-filled date_1 column alongside a portion of the

original_text column, like this:

crime_id date_1 original_text
-------- ---------------------- ---
-
 1 2017-04-16 21:00:00-04 4/16/17-4/17/17
 2100-0900 hrs.
 46000 Block Ashmere Sq.

 Sterling
 Larceny: The victim reported that a

 bicycle was stolen from their opened
 garage door during the overnight hours.
 C0170006614
 2 2017-04-08 16:00:00-04 4/8/17
 1600 hrs.

 46000 Block Potomac Run Plz.
 Sterling

 Destruction of Property: The victim
 reported that their vehicle was spray
 painted and the trim was ripped off while
 it was parked at this location.
 C0170006162
--snip--

At a glance, you can see that date_1 accurately captures the first date and time that
appears in the original text and puts it into a format that we can analyze—quantifying, for
example, which times of day crimes most often occur. Note that if you’re not in the Eastern
time zone, the timestamps will instead reflect your pgAdmin client’s time zone. Also, in
pgAdmin, you may need to double-click a cell in the original_text column to see the full
text.

Using CASE to Handle Special Instances
You could write an UPDATE statement for each remaining data element, but combining those
statements into one would be more efficient. Listing 14-13 updates all the crime_reports
columns using a single statement while handling inconsistent values in the data.

UPDATE crime_reports

SET date_11 =
 (
 (regexp_match(original_text, '\d{1,2}\/\d{1,2}\/\d{2}'))[1]
 || ' ' ||
 (regexp_match(original_text, '\/\d{2}\n(\d{4})'))[1]
 ||' US/Eastern'
)::timestamptz,

 date_22 =
 CASE3
 WHEN4 (SELECT regexp_match(original_text, '-
(\d{1,2}\/\d{1,2}\/\d{2})') IS NULL5)
 AND (SELECT regexp_match(original_text, '\/\d{2}\n\d{4}-

(\d{4})') IS NOT NULL6)
 THEN7
 ((regexp_match(original_text, '\d{1,2}\/\d{1,2}\/\d{2}'))[1]
 || ' ' ||
 (regexp_match(original_text, '\/\d{2}\n\d{4}-(\d{4})'))[1]
 ||' US/Eastern'
)::timestamptz

 WHEN8 (SELECT regexp_match(original_text, '-
(\d{1,2}\/\d{1,2}\/\d{2})') IS NOT NULL)
 AND (SELECT regexp_match(original_text, '\/\d{2}\n\d{4}-
(\d{4})') IS NOT NULL)
 THEN
 ((regexp_match(original_text, '-(\d{1,2}\/\d{1,2}\/\d{1,2})'))[1]
 || ' ' ||
 (regexp_match(original_text, '\/\d{2}\n\d{4}-(\d{4})'))[1]
 ||' US/Eastern'
)::timestamptz
 END,
 street = (regexp_match(original_text, 'hrs.\n(\d+ .+
(?:Sq.|Plz.|Dr.|Ter.|Rd.))'))[1],
 city = (regexp_match(original_text,
 '(?:Sq.|Plz.|Dr.|Ter.|Rd.)\n(\w+ \w+|\w+)\n'))
[1],
 crime_type = (regexp_match(original_text, '\n(?:\w+ \w+|\w+)\n(.*):'))
[1],
 description = (regexp_match(original_text, ':\s(.+)(?:C0|SO)'))[1],
 case_number = (regexp_match(original_text, '(?:C0|SO)[0-9]+'))[1];

Listing 14-13: Updating all crime_reports columns

This UPDATE statement might look intimidating, but it’s not if we break it down by
column. First, we use the same code from Listing 14-9 to update the date_1 column 1. But
to update date_2 2, we need to account for the inconsistent presence of a second date and
time. In our limited dataset, there are three possibilities:
A second hour exists but not a second date. This occurs when a report covers a range of
hours on one date.
A second date and second hour exist. This occurs when a report covers more than one date.
Neither a second date nor a second hour exists.

To insert the correct value in date_2 for each scenario, we use a CASE statement to test for
each possibility. After the CASE keyword 3, we use a series of WHEN ... THEN statements to
check for the first two conditions and provide the value to insert; if neither condition exists,
the CASE statement will by default return a NULL.

The first WHEN statement 4 checks whether regexp_match() returns a NULL 5 for the
second date and a value for the second hour (using IS NOT NULL 6). If that condition
evaluates as true, the THEN statement 7 concatenates the first date with the second hour to
create a timestamp for the update.

The second WHEN statement 8 checks that regexp_match() returns a value for the second
hour and second date. If true, the THEN statement concatenates the second date with the
second hour to create a timestamp.

If neither of the two WHEN statements returns true, the CASE statement will return a NULL
because there is only a first date and first time.

NOTE

The WHEN statements handle the possibilities that exist in our small sample dataset.
If you are working with more data, you might need to handle additional variations,
such as a second date but not a second time.

When we run the full query in Listing 14-13, PostgreSQL should report UPDATE 5.
Success! Now that we’ve updated all the columns with the appropriate data while accounting
for elements that have additional data, we can examine all the columns of the table and find
the parsed elements from original_text. Listing 14-14 queries four of the columns.

SELECT date_1,
 street,
 city,
 crime_type
FROM crime_reports
ORDER BY crime_id;

Listing 14-14: Viewing selected crime data

The results of the query should show a nicely organized set of data that looks something
like this:

date_1 street city
crime_type
---------------------- --------------------------------- ---------- --

2017-04-16 21:00:00-04 46000 Block Ashmere Sq. Sterling
Larceny
2017-04-08 16:00:00-04 46000 Block Potomac Run Plz. Sterling
Destruction of ...
2017-04-04 14:00:00-04 24000 Block Hawthorn Thicket Ter. Sterling
Larceny
2017-04-10 16:05:00-04 21800 block Newlin Mill Rd. Middleburg
Larceny
2017-04-09 12:00:00-04 470000 block Fairway Dr. Sterling
Destruction of ...

You’ve successfully transformed raw text into a table that can answer questions and reveal
storylines about crime in this area.

The Value of the Process

Writing regular expressions and coding a query to update a table can take time, but there is
value to identifying and collecting data this way. In fact, some of the best datasets you’ll
encounter are those you build yourself. Everyone can download the same datasets, but the
ones you build are yours alone. You get to be first person to find and tell the story behind the
data.

Also, after you set up your database and queries, you can use them again and again. In this
example, you could collect crime reports every day (either by hand or by automating
downloads using a programming language such as Python) for an ongoing dataset that you
can mine continually for trends.

In the next section, we’ll continue our exploration of text by implementing a search
engine using PostgreSQL.

Full-Text Search in PostgreSQL
PostgreSQL comes with a powerful full-text search engine that adds capabilities for
searching large amounts of text, similar to online search tools and technology that powers
search on research databases, such as Factiva. Let’s walk through a simple example of
setting up a table for text search and associated search functions.

For this example, I assembled 79 speeches by US presidents since World War II.
Consisting mostly of State of the Union addresses, these public texts are available through
the Internet Archive at https://archive.org/ and the University of California’s American
Presidency Project at https://www.presidency.ucsb.edu/. You can find the data in the
president_speeches.csv file along with the book’s resources at
https://nostarch.com/practical-sql-2nd-edition/.

Let’s start with the data types unique to full-text search.

Text Search Data Types
PostgreSQL’s implementation of text search includes two data types. The tsvector data type
represents the text to be searched and to be stored in a normalized form. The tsquery data
type represents the search query terms and operators. Let’s look at the details of both.

Storing Text as Lexemes with tsvector
The tsvector data type reduces text to a sorted list of lexemes, which are linguistic units in a
given language. It’s helpful to think of lexemes as word roots without the variations created
by suffixes. For example, a tsvector type column would store the words washes, washed,
and washing as the lexeme wash while noting each word’s position in the original text.
Converting text to tsvector also removes small stop words that usually don’t play a role in
search, such as the or it.

To see how this data type works, let’s convert a string to tsvector format. Listing 14-15
uses the PostgreSQL search function to_tsvector(), which normalizes the text “I am

https://archive.org/
https://www.presidency.ucsb.edu/
https://nostarch.com/practical-sql-2nd-edition/

walking across the sitting room to sit with you” to lexemes using the english language
search configuration.

SELECT to_tsvector('english', 'I am walking across the sitting room to sit
with you.');

Listing 14-15: Converting text to tsvector data

Execute the code, and it should return the following output in the tsvector data type:

'across':4 'room':7 'sit':6,9 'walk':3

The to_tsvector() function reduces the number of words from eleven to four,
eliminating words such as I, am, and the, which are not helpful search terms. The function
removes suffixes, changing walking to walk and sitting to sit. It orders the words
alphabetically, and the number following each colon indicates its position in the original
string, taking stop words into account. Note that sit is recognized as being in two positions,
one for sitting and one for sit.

NOTE

To see additional search language configurations installed with PostgreSQL, you
can run the query SELECT cfgname FROM pg_ts_config;.

Creating the Search Terms with tsquery
The tsquery data type represents the full-text search query, again optimized as lexemes. It
also provides operators for controlling the search. Examples of operators include the
ampersand (&) for AND, the pipe symbol (|) for OR, and the exclamation point (!) for NOT.
The <-> followed by operator lets you search for adjacent words or words a certain distance
apart.

Listing 14-16 shows how the to_tsquery() function converts search terms to the tsquery
data type.

SELECT to_tsquery('english', 'walking & sitting');

Listing 14-16: Converting search terms to tsquery data

After running the code, you should see that the resulting tsquery data type has
normalized the terms into lexemes, which match the format of the data to search:

'walk' & 'sit'

Now you can use terms stored as tsquery to search text optimized as tsvector.

Using the @@ Match Operator for Searching
With the text and search terms converted to the full-text search data types, you can use the
double at sign (@@) match operator to check whether a query matches text. The first query in
Listing 14-17 uses to_tsquery() to evaluate whether the text contains both walking and
sitting, which we combine with the & operator. It returns a Boolean value of true because the
lexemes of both walking and sitting are present in the text converted by to_tsvector().

SELECT to_tsvector('english', 'I am walking across the sitting room') @@
 to_tsquery('english', 'walking & sitting');

SELECT to_tsvector('english', 'I am walking across the sitting room') @@
 to_tsquery('english', 'walking & running');

Listing 14-17: Querying a tsvector type with a tsquery

However, the second query returns false because both walking and running are not
present in the text. Now let’s build a table for searching the speeches.

Creating a Table for Full-Text Search
The code in Listing 14-18 creates and fills president_speeches with a column for the
original text as well as a column of type tsvector. After the import, we’ll convert the
speech text to the tsvector data type. Note that to accommodate how I set up the CSV file,
the WITH clause in COPY has a different set of parameters than what we’ve generally used. It’s
pipe-delimited and uses an ampersand for quoting.

CREATE TABLE president_speeches (
 president text NOT NULL,
 title text NOT NULL,
 speech_date date NOT NULL,
 speech_text text NOT NULL,
 search_speech_text tsvector,
 CONSTRAINT speech_key PRIMARY KEY (president, speech_date)
);

COPY president_speeches (president, title, speech_date, speech_text)
FROM 'C:\YourDirectory\president_speeches.csv'
WITH (FORMAT CSV, DELIMITER '|', HEADER OFF, QUOTE '@');

Listing 14-18: Creating and filling the president_speeches table

After executing the query, run SELECT * FROM president_speeches; to see the data. In
pgAdmin, double-click any cell to see extra words not visible in the results grid. You should
see a sizable amount of text in each row of the speech_text column.

Next, we use the UPDATE query in Listing 14-19 to copy the contents of speech_text to
the tsvector column search_speech_text and transform it to that data type at the same
time:

UPDATE president_speeches

1 SET search_speech_text = to_tsvector('english', speech_text);

Listing 14-19: Converting speeches to tsvector in the search_speech_text column

The SET clause 1 fills search_speech_text with the output of to_tsvector(). The first
argument in the function specifies the language for parsing the lexemes. We’re using
english here, but you can substitute spanish, german, french, and other languages (some
languages may require you to find and install additional dictionaries). Using simple for the
language will remove stop words but not reduce words to lexemes. The second argument is
the name of the input column. Run the code to fill the column.

Finally, we want to index the search_speech_text column to speed up searches. You
learned about indexing in Chapter 8, which focused on PostgreSQL’s default index type, B-
tree. For full-text search, the PostgreSQL documentation recommends using the generalized
inverted index (GIN). A GIN index, according to the documentation, contains “an index
entry for each word (lexeme), with a compressed list of matching locations.” See
https://www.postgresql.org/docs/current/textsearch-indexes.html for details.

You can add a GIN index using CREATE INDEX in Listing 14-20.

CREATE INDEX search_idx ON president_speeches USING
gin(search_speech_text);

Listing 14-20: Creating a GIN index for text search

Now you’re ready to use search functions.

NOTE

Another way to set up a column for search is to create an index on a text column
using the to_tsvector() function. See
https://www.postgresql.org/docs/current/textsearch-tables.html for details.

Searching Speech Text
Nearly 80 years’ worth of presidential speeches is fertile ground for exploring history. For
example, the query in Listing 14-21 lists the speeches in which the president discussed
Vietnam.

SELECT president, speech_date
FROM president_speeches

1 WHERE search_speech_text @@ to_tsquery('english', 'Vietnam')
ORDER BY speech_date;

Listing 14-21: Finding speeches containing the word Vietnam

https://www.postgresql.org/docs/current/textsearch-indexes.html
https://www.postgresql.org/docs/current/textsearch-tables.html

In the WHERE clause, the query uses the double at sign (@@) match operator 1 between the
search_speech_text column (of data type tsvector) and the query term Vietnam, which
to_tsquery() transforms into tsquery data. The results should list 19 speeches, showing
that the first mention of Vietnam came up in a 1961 special message to Congress by John F.
Kennedy and became a recurring topic starting in 1966 as America’s involvement in the
Vietnam War escalated.

president speech_date
----------------- -----------
John F. Kennedy 1961-05-25
Lyndon B. Johnson 1966-01-12
Lyndon B. Johnson 1967-01-10
Lyndon B. Johnson 1968-01-17
Lyndon B. Johnson 1969-01-14
Richard M. Nixon 1970-01-22
Richard M. Nixon 1972-01-20
Richard M. Nixon 1973-02-02
Gerald R. Ford 1975-01-15
--snip--

Before we try more searches, let’s add a method for showing the location of our search
term in the text.

Showing Search Result Locations
To see where our search terms appear in text, we can use the ts_headline() function. It
displays one or more highlighted search terms surrounded by adjacent words with options to
format the display, the number of words to show around the matched search term, and how
many matched results to show from each row of text. Listing 14-22 highlights how to display
a search for a specific instance of the word tax using ts_headline().

SELECT president,
 speech_date,

 1 ts_headline(speech_text, to_tsquery('english', 'tax'),
 2 'StartSel = <,
 StopSel = >,
 MinWords=5,
 MaxWords=7,
 MaxFragments=1')
FROM president_speeches
WHERE search_speech_text @@ to_tsquery('english', 'tax')
ORDER BY speech_date;

Listing 14-22: Displaying search results with ts_headline()

To declare ts_headline() 1, we pass the original speech_text column rather than the
tsvector column we used in the search function as the first argument. Then, as the second
argument, we pass a to_tsquery() function that specifies the word to highlight. We follow
this with a third argument that lists optional formatting parameters 2 separated by commas.
Here, we specify characters that will identify the start and end of the matched search term or

terms (StartSel and StopSel). We also set the minimum and maximum number of total
words to display, including the matched terms (MinWords and MaxWords), plus the maximum
number of fragments (or instances of a match) to show using MaxFragments. These settings
are optional, and you can adjust them according to your needs.

The results of this query should show at most seven words per speech, highlighting words
in which tax is the root:

 president speech_date ts_headline
-------------------- ----------- --

Harry S. Truman 1946-01-21 price controls, increased <taxes>, savings
bond campaigns
Harry S. Truman 1947-01-06 excise <tax> rates which, under the
present
Harry S. Truman 1948-01-07 increased-after <taxes>-by more than
Harry S. Truman 1949-01-05 Congress enact new <tax> legislation to
bring
Harry S. Truman 1950-01-04 considered <tax> reduction of the 80th
Congress
Harry S. Truman 1951-01-08 major increase in <taxes> to meet
Harry S. Truman 1952-01-09 This means high <taxes> over the next
Dwight D. Eisenhower 1953-02-02 reduction of the <tax> burden;
Dwight D. Eisenhower 1954-01-07 brought under control. <Taxes> have begun
Dwight D. Eisenhower 1955-01-06 prices and materials. <Tax> revisions
encouraged increased
--snip--

Now, we can quickly see the context of the term we searched. You might also use this
function to provide flexible display options for a search feature on a web application. And
notice that we didn’t just find exact matches. The search engine identified tax along with
taxes, Tax, and Taxes—words with tax as the root and regardless of case.

Let’s continue trying forms of searches.

Using Multiple Search Terms
As another example, we could look for speeches in which a president mentioned the word
transportation but didn’t discuss roads. We might want to do this to find speeches that
focused on broader policy rather than a specific roads program. To do this, we use the syntax
in Listing 14-23.

SELECT president,
 speech_date,

 1 ts_headline(speech_text,
 to_tsquery('english', 'transportation & !roads'),
 'StartSel = <,
 StopSel = >,
 MinWords=5,
 MaxWords=7,
 MaxFragments=1')
FROM president_speeches

2 WHERE search_speech_text @@

 to_tsquery('english', 'transportation & !roads')
ORDER BY speech_date;

Listing 14-23: Finding speeches with the word transportation but not roads

Again, we use ts_headline() 1 to highlight the terms our search finds. In the
to_tsquery() function in the WHERE clause 2, we pass transportation and roads,
combining them with the ampersand (&) operator. We use the exclamation point (!) in front
of roads to indicate that we want speeches that do not contain this word. This query should
find 15 speeches that fit the criteria. Here are the first four rows:

president speech_date ts_headline
----------------- ----------- ---

Harry S. Truman 1947-01-06 such industries as <transportation>, coal,
oil, steel
Harry S. Truman 1949-01-05 field of <transportation>.
John F. Kennedy 1961-01-30 Obtaining additional air <transport>
mobility--and obtaining
Lyndon B. Johnson 1964-01-08 reformed our tangled <transportation> and
transit policies
--snip--

Notice that the highlighted words in the ts_headline column include transportation
and transport. Again, to_tsquery() converted transportation to the lexeme transport
for the search term. This database behavior is extremely useful in helping to find relevant
related words.

Searching for Adjacent Words
Finally, we’ll use the distance (<->) operator, which consists of a hyphen between the less-
than and greater-than signs, to find adjacent words. Alternatively, you can place a number
between the signs to find terms that many words apart. For example, Listing 14-24 searches
for any speeches that include the word military immediately followed by defense.

SELECT president,
 speech_date,
 ts_headline(speech_text,
 to_tsquery('english', 'military <-> defense'),
 'StartSel = <,
 StopSel = >,
 MinWords=5,
 MaxWords=7,
 MaxFragments=1')
FROM president_speeches
WHERE search_speech_text @@
 to_tsquery('english', 'military <-> defense')
ORDER BY speech_date;

Listing 14-24: Finding speeches where defense follows military

This query should find five speeches, and because to_tsquery() converts the search
terms to lexemes, the words identified in the speeches should include plurals, such as
military defenses. The following shows the speeches that have the adjacent terms:

president speech_date ts_headline
-------------------- ----------- ------------------------------------

Dwight D. Eisenhower 1956-01-05 system our <military> <defenses> are
designed
Dwight D. Eisenhower 1958-01-09 direct <military> <defense> efforts,
but likewise
Dwight D. Eisenhower 1959-01-09 survival--the <military> <defense>
of national life
Richard M. Nixon 1972-01-20 <defense> spending. Strong
<military> <defenses>
Jimmy Carter 1979-01-23 secure. Our <military> <defenses>
are strong

If you changed the query terms to military <2> defense, the database would return
matches where the terms are exactly two words apart, as in the phrase “our military and
defense commitments.”

Ranking Query Matches by Relevance
You can also rank search results by relevance using two of PostgreSQL’s full-text search
functions. These functions are helpful when you’re trying to understand which piece of text,
or speech in this case, is most relevant to your particular search terms.

One function, ts_rank(), generates a rank value (returned as a variable-precision real
data type) based on how often the lexemes you’re searching for appear in the text. The other
function, ts_rank_cd(), considers how close the lexemes searched are to each other. Both
functions can take optional arguments to consider document length and other factors. The
rank value they generate is an arbitrary decimal that’s useful for sorting but doesn’t have any
inherent meaning. For example, a value of 0.375 generated during one query isn’t directly
comparable to the same value generated during a different query.

As an example, Listing 14-25 uses ts_rank() to rank speeches containing all the words
war, security, threat, and enemy.

SELECT president,
 speech_date,

 1 ts_rank(search_speech_text,
 to_tsquery('english', 'war & security & threat & enemy'))
 AS score
FROM president_speeches

2 WHERE search_speech_text @@
 to_tsquery('english', 'war & security & threat & enemy')
ORDER BY score DESC
LIMIT 5;

Listing 14-25: Scoring relevance with ts_rank()

In this query, the ts_rank() function 1 takes two arguments: the search_speech_text
column and the output of a to_tsquery() function containing the search terms. The output
of the function receives the alias score. In the WHERE clause 2 we filter the results to only
those speeches that contain the search terms specified. Then we order the results in score in
descending order and return just five of the highest-ranking speeches. The results should be
as follows:

 president speech_date score
------------------ ----------- ----------
William J. Clinton 1997-02-04 0.35810584
George W. Bush 2004-01-20 0.29587495
George W. Bush 2003-01-28 0.28381455
Harry S. Truman 1946-01-21 0.25752166
William J. Clinton 2000-01-27 0.22214262

Bill Clinton’s 1997 State of the Union message contains the words war, security, threat,
and enemy more often than the other speeches, as he discussed the Cold War and other
topics. However, it also happens to be one of the longer speeches in the table (which you can
determine by using char_length(), as you learned earlier in the chapter). The lengths of
speeches influences these rankings because ts_rank() factors in the number of matching
terms in a given text. Two speeches by George W. Bush, delivered in the years before and
after the start of the Iraq War, rank next.

It would be ideal to compare frequencies between speeches of identical lengths to get a
more accurate ranking, but this isn’t always possible. However, we can factor in the length
of each speech by adding a normalization code as a third parameter of the ts_rank()
function, as shown in Listing 14-26.

SELECT president,
 speech_date,
 ts_rank(search_speech_text,
 to_tsquery('english', 'war & security & threat & enemy'),

21)::numeric
 AS score
FROM president_speeches
WHERE search_speech_text @@
 to_tsquery('english', 'war & security & threat & enemy')
ORDER BY score DESC
LIMIT 5;

Listing 14-26: Normalizing ts_rank() by speech length

Adding the optional code 2 1 instructs the function to divide the score by the length of the
data in the search_speech_text column. This quotient then represents a score normalized
by the document length, giving an apples-to-apples comparison among the speeches. The
PostgreSQL documentation at https://www.postgresql.org/docs/current/textsearch-
controls.html lists all the options available for text search, including using the document
length and dividing by the number of unique words.

After running the code in Listing 14-26, the rankings should change:

https://www.postgresql.org/docs/current/textsearch-controls.html

 president speech_date score
------------------ ----------- ----------
George W. Bush 2004-01-20 0.0001028060
William J. Clinton 1997-02-04 0.0000982188
George W. Bush 2003-01-28 0.0000957216
Jimmy Carter 1979-01-23 0.0000898701
Lyndon B. Johnson 1968-01-17 0.0000728288

In contrast to the ranking results in Listing 14-25, George W. Bush’s 2004 speech now
tops the rankings, and Truman’s 1946 message falls out of the top five. This might be a more
meaningful ranking than the first sample output, because we normalized it by length. But
three of the five top-ranked speeches are the same between the two sets, and you can be
reasonably certain that each of these three is worthy of closer examination to understand
more about presidential speeches that include wartime terminology.

Wrapping Up
Far from being boring, text offers abundant opportunities for data analysis. In this chapter,
you’ve learned techniques for turning ordinary text into data you can extract, quantify,
search, and rank. In your work or studies, keep an eye out for routine reports that have facts
buried inside chunks of text. You can use regular expressions to dig them out, turn them into
structured data, and analyze them to find trends. You can also use search functions to
analyze the text.

In the next chapter, you’ll learn how PostgreSQL can help you analyze geographic
information.

TRY IT YOURSELF

Use your new text-wrangling skills to tackle these tasks:
The style guide of a publishing company you’re writing for wants you to avoid commas before suffixes in

names. But there are several names like Alvarez, Jr. and Williams, Sr. in your database. Which
functions can you use to remove the comma? Would a regular expression function help? How would you

capture just the suffixes to place them into a separate column?
Using any one of the presidents’ speeches, count the number of unique words that are five characters or

more. (Hint: You can use regexp_split_to_table() in a subquery to create a table of words to count.)
Bonus: Remove commas and periods at the end of each word.

Rewrite the query in Listing 14-25 using the ts_rank_cd() function instead of ts_rank(). According to the
PostgreSQL documentation, ts_rank_cd() computes cover density, which takes into account how close the

lexeme search terms are to each other. Does using the ts_rank_cd() function significantly change the
results?

15
ANALYZING SPATIAL DATA WITH

POSTGIS

We now turn to spatial data, defined as
information about the location, shape,
and attributes of objects—points, lines,
or polygons, for example—within a
geographical space. In this chapter,

you’ll learn how to construct and query spatial data
using SQL, and you’ll be introduced to the PostGIS
extension for PostgreSQL that enables support for
spatial data types and functions.

Spatial data has become a critical piece of our world’s data ecosystem. A
phone app can find nearby coffee shops because it queries a spatial
database, asking it to return a list of shops within a certain distance of your
location. Governments use spatial data to track the footprints of residential
and business parcels; epidemiologists use it to visualize the spread of
diseases.

For our exercises, we’ll analyze the location of farmers’ markets across
the United States as well as roads and waterways in Santa Fe, New Mexico.
You’ll learn how to construct and query spatial data types and incorporate
map projections and grid systems. You’ll receive tools to glean information
from spatial data, similar to how you’ve analyzed numbers and text.

We’ll start by setting up PostGIS. All code and data for the exercises are
available with the book’s resources at https://nostarch.com/practical-sql-
2nd-edition/.

Enabling PostGIS and Creating a Spatial
Database
PostGIS is a free, open source project created by the Canadian geospatial
company Refractions Research and maintained by an international team of
developers under the Open Source Geospatial Foundation (OSGeo). The
GIS portion of its name refers to geographic information system, defined as
a system that allows for storing, editing, analyzing, and displaying spatial
data. You’ll find documentation and updates at https://postgis.net/.

If you installed PostgreSQL following the steps for Windows, macOS, or
the Ubuntu flavor of Linux in Chapter 1, PostGIS should be on your
machine. If you installed PostgreSQL some other way on Windows or
macOS or if you’re on another Linux distribution, follow the installation
instructions at https://postgis.net/install/.

To enable PostGIS on your analysis database, open pgAdmin’s Query
Tool and run the statement in Listing 15-1.

CREATE EXTENSION postgis;

Listing 15-1: Loading the PostGIS extension

You’ll see the message CREATE EXTENSION, advising that your database
has been updated to include spatial data types and analysis functions. Run
SELECT postgis_full_version(); to display the version number of
PostGIS along with the versions of its installed components. The version
won’t match your installed PostgreSQL version, and that’s okay.

Understanding the Building Blocks of Spatial
Data

https://nostarch.com/practical-sql-2nd-edition/
https://postgis.net/
https://postgis.net/install/

Before you learn to query spatial data, let’s look at how it’s described in
GIS and related data formats. This is important background, but if you want
to dive straight into queries, you can skip to “Understanding PostGIS Data
Types” later in the chapter and return here afterward.

A point on a grid is the smallest building block of spatial data. The grid
might be marked with x- and y-axes, or longitude and latitude if we’re
using a map. A grid could be flat with two dimensions, or it could describe
a three-dimensional space such as a cube. In some data formats, such as the
JavaScript-based GeoJSON, a point may have attributes in addition to its
location. We could describe a grocery store with a point containing its
longitude and latitude as well as attributes for the store’s name and hours of
operation.

Understanding Two-Dimensional Geometries
The Open Geospatial Consortium (OGC) and International Organization for
Standardization (ISO) have created a simple features access model that
describes standards for building and querying two- and three-dimensional
shapes, sometimes referred to as geometries. PostGIS supports the standard.

The following are the more common features, starting with points and
building in complexity:

Point
A single location in a two- or three-dimensional plane. On maps, a Point is
usually a dot marking a longitude and latitude.

LineString
Two or more Points, each connected by straight lines. A LineString can
represent features such as a road, biking trail, or stream.

Polygon
A two-dimensional shape with three or more straight sides, each
constructed from a LineString. On maps, Polygons represent objects such as

nations, states, buildings, and bodies of water. A Polygon can have one or
more interior Polygons that act as holes inside the larger Polygon.

MultiPoint
A set of Points. A single MultiPoint object could represent multiple
locations of a retailer with each store’s latitude and longitude.

MultiLineString
A set of LineStrings. An example is a road that has several noncontinuous
segments.

MultiPolygon
A set of Polygons. A parcel of land that’s divided into parts by a road could
be grouped in one MultiPolygon object instead of separate polygons.

Figure 15-1 shows an example of each feature. PostGIS enables
functions to build, edit, and analyze these objects. These functions take a
variety of inputs depending on their purpose, including latitude and
longitude, specialized text and binary formats, and simple features. Some
functions also take an optional spatial reference system identifier (SRID)
that specifies the grid on which to place the objects.

Figure 15-1: Visual examples of geometries

I’ll explain the SRID shortly, but first, let’s look at examples of an input
used by PostGIS functions called well-known text (WKT)—a text-based
format that represents a geometry.

Well-Known Text Formats
The OGC standard’s WKT format specifies a geometry type and its
coordinates inside one or more sets of parentheses. The number of
coordinates and parentheses varies depending on the type of geometry.
Table 15-1 shows examples of frequently used geometry types and their
WKT formats. Longitude/latitude pairs are shown for the coordinates, but
you might encounter grid systems that use other measures.

NOTE

WKT accepts coordinates in the order of (longitude, latitude), which
is backward from Google Maps and some other software. Tom
MacWright, formerly of the Mapbox software company, notes at
https://macwright.com/lonlat/ that neither order is “right” and
catalogs the “frustrating inconsistency” in which mapping-related
code handles the order of coordinates.

Table 15-1: Well-Known Text Formats for Geometries

Ge
om
etr
y

Format Notes

Poi
nt

POINT (-74.9 42.7) A coordinate pair marking a point at −74.9
longitude and 42.7 latitude.

Lin
eSt
rin
g

LINESTRING (-74.9 42.7, -75.1 42.7) A straight line with endpoints marked by
two coordinate pairs.

Pol
yg
on

POLYGON ((-74.9 42.7, -75.1 42.7, -75.1

42.6, -74.9 42.7))

A triangle outlined by three different pairs
of coordinates. Although listed twice, the
first and last pair are the same coordinates
where we close the shape.

Mu
ltiP
oin
t

MULTIPOINT (-74.9 42.7, -75.1 42.7) Two Points, one for each pair of
coordinates.

Mu
ltiLi
ne
Stri
ng

MULTILINESTRING ((-76.27 43.1, -76.06

43.08), (-76.2 43.3, -76.2 43.4, -76.4

43.1))

Two LineStrings. The first has two points;
the second has three.

Mu
ltiP
oly
go
n

MULTIPOLYGON (((-74.92 42.7, -75.06

42.71, -75.07 42.64, -74.92 42.7),

(-75.0 42.66, -75.0 42.64, -74.98

42.64, -74.98 42.66, -75.0 42.66)))

Two Polygons. The first is a triangle, and
the second is a rectangle.

These examples create simple shapes, as you’ll see when we construct
them using PostGIS later in the chapter. In practice, complex geometries

https://macwright.com/lonlat/

will comprise thousands of coordinates.

Projections and Coordinate Systems
Representing Earth’s spherical surface on a two-dimensional map is not
easy. Imagine peeling the outer layer of Earth from the globe and trying to
spread it on a table while keeping all pieces of the continents and oceans
connected. Inevitably, you’d have to stretch some parts of the map. That’s
what happens when cartographers create a map projection with its own
projected coordinate system. A projection is simply a flattened
representation of the globe with its own two-dimensional coordinate
system.

Some projections represent the entire world; others are specific to regions
or purposes. The Mercator projection has properties useful for navigation;
Google Maps and other online maps use a variant of called Web Mercator.
The math behind its transformation distorts land areas close to the North
and South Poles, making them appear much larger than reality. The US
Census Bureau uses the Albers projection, which minimizes distortion and
is the one you see on TV in the United States as votes are tallied on election
night.

Projections are derived from geographic coordinate systems, which
define the grid of latitude, longitude, and height of any point on the globe
along with factors including Earth’s shape. Whenever you obtain
geographic data, it’s critical to know the coordinate systems it references so
you provide the correct information when writing queries. Often, user
documentation will name the coordinate system. Next, let’s look at how to
specify the coordinate system in PostGIS.

Spatial Reference System Identifier
When using PostGIS (and many GIS applications), you specify the
coordinate system via its unique SRID. When you enabled the PostGIS
extension at the beginning of this chapter, the process created the table
spatial_ref_sys, which contains SRIDs as its primary key. The table also
contains the column srtext, which includes a WKT representation of the
spatial reference system plus other metadata.

In this chapter, we’ll frequently use SRID 4326, the ID for the geographic
coordinate system WGS 84. That’s the most recent World Geodetic System
(WGS) standard used by GPS, and you’ll encounter it often in spatial data.
You can see the WKT representation for WGS 84 by running the code in
Listing 15-2 that looks for its SRID, 4326:

SELECT srtext
FROM spatial_ref_sys
WHERE srid = 4326;

Listing 15-2: Retrieving the WKT for SRID 4326

Run the query and you should get the following result, indented for
readability:

GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4326"]]

You don’t need to use this information for any of this chapter’s exercises,
but it’s helpful to know some of the variables and how they define the
projection. The GEOGCS keyword provides the geographic coordinate system
in use. Keyword PRIMEM specifies the location of the prime meridian, or
longitude 0. To see definitions of all the variables, check the reference at
https://docs.geotools.org/stable/javadocs/org/opengis/referencing/doc-
files/WKT.html.

Conversely, if you ever need to find the SRID associated with a
coordinate system, you can query the srtext column in spatial_ref_sys
to find it.

Understanding PostGIS Data Types

https://docs.geotools.org/stable/javadocs/org/opengis/referencing/doc-files/WKT.html

Installing PostGIS adds several data types to your database. We’ll use two:
geography and geometry. Both types can store spatial data, such as the
points, lines, polygons, and SRIDs you just learned about, but they have
important distinctions:
geography A data type based on a sphere, using the round-Earth coordinate
system (longitude and latitude). All calculations occur on the globe, taking
its curvature into account. This makes the math complex and limits the
number of functions available to work with the geography type. But
because Earth’s curvature is factored in, calculations for distance are more
precise; you should use the geography data type when handling data that
spans large areas. The results from calculations on the geography type will
be expressed in meters.
geometry A data type based on a plane, using the Euclidean coordinate
system. Calculations occur on straight lines as opposed to along the
curvature of a sphere, making calculations for geographical distance less
precise than with the geography data type; the results of calculations are
expressed in units of whichever coordinate system you’ve designated.

The PostGIS documentation at
https://postgis.net/docs/using_postgis_dbmanagement.html offers guidance
on when to use one or the other type. In short, if you’re working strictly
with longitude/latitude data or if your data covers a large area, such as a
continent or the globe, use the geography type, even though it limits the
functions you can use. If your data covers a smaller area, the geometry type
provides more functions and better performance. You can also convert one
type to the other using CAST.

With the background you have now, we can start working with spatial
objects.

Creating Spatial Objects with PostGIS
Functions
PostGIS has more than three dozen constructor functions that build spatial
objects using WKT or coordinates. You can find a list at
https://postgis.net/docs/reference.html#Geometry_Constructors, but the

https://postgis.net/docs/using_postgis_dbmanagement.html
https://postgis.net/docs/reference.html#Geometry_Constructors

following sections explain several that you’ll use in the exercises. Most
PostGIS functions begin with the letters ST, which is an ISO naming
standard that means spatial type.

Creating a Geometry Type from Well-Known Text
The ST_GeomFromText(WKT, SRID) function creates a geometry data type
from an input of a WKT string and an optional SRID. Listing 15-3 shows
simple SELECT statements that generate geometry data types for each of the
simple features described in Table 15-1.

SELECT ST_GeomFromText(1'POINT(-74.9233606 42.699992)',
24326);

SELECT ST_GeomFromText('LINESTRING(-74.9 42.7, -75.1 42.7)',
4326);

SELECT ST_GeomFromText('POLYGON((-74.9 42.7, -75.1 42.7,
 -75.1 42.6, -74.9 42.7))',
4326);

SELECT ST_GeomFromText('MULTIPOINT (-74.9 42.7, -75.1 42.7)',
4326);

SELECT ST_GeomFromText('MULTILINESTRING((-76.27 43.1, -76.06
43.08),
 (-76.2 43.3, -76.2
43.4,
 -76.4 43.1))',
4326);

SELECT ST_GeomFromText('MULTIPOLYGON3((
 (-74.92 42.7, -75.06
42.71,
 -75.07 42.64, -74.92

42.7)4,
 (-75.0 42.66, -75.0
42.64,
 -74.98 42.64, -74.98
42.66,
 -75.0 42.66)))',
4326);

Listing 15-3: Using ST_GeomFromText() to create spatial objects

For each example, we give a WKT string as the first input and the SRID
4326 as the second. In the first example, we create a Point by inserting the
WKT POINT string 1 as the first argument to ST_GeomFromText() with the
SRID 2 as the optional second argument. We use the same format in the rest
of the examples. Note that we don’t have to indent the coordinates. I do so
here only to make the coordinate pairs more readable.

Be sure to mind the number of parentheses that segregate objects,
particularly in complex structures such as the MultiPolygon. For example,
we need to use two opening parentheses 3 and enclose each polygon’s
coordinates within another set of parentheses 4.

If you run each statement separately in pgAdmin, you can view both its
data output and visual representation. Upon execution, each statement
should return a single column of the geometry data type displayed as a
string of characters that looks something like this truncated example:

0101000020E61000008EDA0E5718BB52C017BB7D5699594540 ...

The string is of the format extended well-known binary (EWKB), which
you typically won’t need to interpret directly. Instead, you’ll use columns of
geometry (or geography) data as inputs to other functions. To see the visual
representation, click the eye icon in the pgAdmin result column header.
That should open a Geometry Viewer pane in pgAdmin that displays the
geometry atop a map that uses OpenStreetMap as the base layer. For
example, the MULTIPOLYGON example in Listing 15-3 should look like Figure
15-2, with a triangle and a rectangle.

Figure 15-2: Viewing geometries in pgAdmin

Try viewing each example in Listing 15-3 to get to know the differences
between objects.

Creating a Geography Type from Well-Known Text
To create a geography data type, you can use ST_GeogFromText(WKT) to
convert a WKT or ST_GeogFromText(EWKT) to convert a PostGIS-specific
variation called extended WKT that includes the SRID. Listing 15-4 shows
how to pass in the SRID as part of the extended WKT string to create a
MultiPoint geography object with three points.

SELECT
ST_GeogFromText('SRID=4326;MULTIPOINT(-74.9 42.7, -75.1 42.7,
-74.924 42.6)')

Listing 15-4: Using ST_GeogFromText() to create spatial objects

Again, you can view the Points on a map by clicking the eye icon in the
geography column in the pgAdmin results grid.

Along with the all-purpose ST_GeomFromText() and ST_GeogFromText()
functions, PostGIS includes several that are specific to creating certain
spatial objects. I’ll cover those briefly next.

Using Point Functions
The ST_PointFromText() and ST_MakePoint() functions will turn a WKT
POINT or a collection of coordinates, respectively, into a geometry data
type. Points mark coordinates, such as longitude and latitude, which you
would use to identify locations or use as building blocks of other objects,
such as LineStrings.

Listing 15-5 shows how these functions work.

SELECT 1ST_PointFromText('POINT(-74.9233606 42.699992)',
4326);

SELECT 2ST_MakePoint(-74.9233606, 42.699992);
SELECT 3ST_SetSRID(ST_MakePoint(-74.9233606, 42.699992),
4326);

Listing 15-5: Functions specific to making Points

The ST_PointFromText(WKT, SRID) 1 function creates a point geometry
type from a WKT POINT and an optional SRID as the second input. The
PostGIS docs note that the function includes validation of coordinates that
makes it slower than the ST_GeomFromText() function.

The ST_MakePoint(x, y, z, m) 2 function creates a point geometry
type on a two-, three-, and four-dimensional grid. The first two parameters,
x and y in the example, represent longitude and latitude coordinates. You
can use the optional z to represent altitude and m to represent a measure.
That would allow you, for example, to mark a water fountain on a bike trail
at a certain altitude and certain distance from the start of the trail. The
ST_MakePoint() function is faster than ST_GeomFromText() and
ST_PointFromText(), but if you want to specify an SRID, you’ll need to
designate one by wrapping it inside the ST_SetSRID() 3 function.

Using LineString Functions

Now let’s examine some functions we use specifically for creating
LineString geometry data types. Listing 15-6 shows how they work.

SELECT 1ST_LineFromText('LINESTRING(-105.90 35.67,-105.91
35.67)', 4326);

SELECT 2ST_MakeLine(ST_MakePoint(-74.9, 42.7),
ST_MakePoint(-74.1, 42.4));

Listing 15-6: Functions specific to making LineStrings

The ST_LineFromText(WKT, SRID) 1 function creates a LineString from
a WKT LINESTRING and an optional SRID as its second input. Like
ST_PointFromText() earlier, this function includes validation of
coordinates that makes it slower than ST_GeomFromText().

The ST_MakeLine(geom, geom) 2 function creates a LineString from
inputs that must be of the geometry data type. In Listing 15-6, the example
uses two ST_MakePoint() functions as inputs to create the start and
endpoint of the line. You can also pass in an ARRAY object with multiple
points, perhaps generated by a subquery, to generate a more complex line.

Using Polygon Functions
Let’s look at three Polygon functions: ST_PolygonFromText(),
ST_MakePolygon(), and ST_MPolyFromText(). All create geometry data
types. Listing 15-7 shows how you can create Polygons with each.

SELECT 1ST_PolygonFromText('POLYGON((-74.9 42.7, -75.1 42.7,
 -75.1 42.6, -74.9
42.7))', 4326);

SELECT 2ST_MakePolygon(
 ST_GeomFromText('LINESTRING(-74.92 42.7, -75.06
42.71,
 -75.07 42.64, -74.92
42.7)', 4326));

SELECT 3ST_MPolyFromText('MULTIPOLYGON((
 (-74.92 42.7, -75.06
42.71,
 -75.07 42.64,

-74.92 42.7),
 (-75.0 42.66, -75.0
42.64,
 -74.98 42.64,
-74.98 42.66,
 -75.0 42.66)
))', 4326);

Listing 15-7: Functions specific to making Polygons

The ST_PolygonFromText(WKT, SRID) 1 function creates a Polygon
from a WKT POLYGON and an optional SRID. As with the similarly named
functions for creating points and lines, it includes a validation step that
makes it slower than ST_GeomFromText().

The ST_MakePolygon(linestring) 2 function creates a Polygon from a
LineString that must open and close with the same coordinates, ensuring the
object is closed. This example uses ST_GeomFromText() to create the
LineString geometry using a WKT LINESTRING.

The ST_MPolyFromText(WKT, SRID) 3 function creates a MultiPolygon
from a WKT and an optional SRID.

Now you have the building blocks to analyze spatial data. Next, we’ll use
them to explore a set of data.

Analyzing Farmers’ Markets Data
The National Farmers’ Market Directory from the US Department of
Agriculture catalogs the location and offerings of more than 8,600 “markets
that feature two or more farm vendors selling agricultural products directly
to customers at a common, recurrent physical location,” according to the
update page linked from the main directory site at
https://www.ams.usda.gov/local-food-directories/farmersmarkets/.
Attending these markets is a fun weekend activity, so let’s use SQL spatial
queries to find the closest markets.

The farmers_markets.csv file contains a portion of the USDA data on
each market, and it’s available along with the book’s resources at
https://nostarch.com/practical-sql-2nd-edition/. Save the file to your

https://www.ams.usda.gov/local-food-directories/farmersmarkets/
https://nostarch.com/practical-sql-2nd-edition/

computer and run the code in Listing 15-8 to create and load a
farmers_markets table.

CREATE TABLE farmers_markets (
 fmid bigint PRIMARY KEY,
 market_name text NOT NULL,
 street text,
 city text,
 county text,
 st text NOT NULL,
 zip text,
 longitude numeric(10,7),
 latitude numeric(10,7),
 organic text NOT NULL
);

COPY farmers_markets
FROM 'C:\YourDirectory\farmers_markets.csv'
WITH (FORMAT CSV, HEADER);

Listing 15-8: Creating and loading the farmers_markets table

The table contains routine address data plus the longitude and latitude
for most markets. Twenty-nine of the markets were missing those values
when I downloaded the file from the USDA. An organic column indicates
whether the market offers organic products; a hyphen (-) in that column
indicates an unknown value. After you import the data, count the rows
using SELECT count(*) FROM farmers_markets;. If everything imported
correctly, you should have 8,681 rows.

Creating and Filling a Geography Column
To perform spatial queries on the markets’ longitude and latitude, we need
to convert those coordinates into a single column with a spatial data type.
Because we’re working with locations spanning the entire United States and
an accurate measurement of a large spherical distance is important, we’ll
use the geography type. After creating the column, we can update it using
Points derived from the coordinates and then apply an index to speed up
queries. Listing 15-9 contains the statements for doing these tasks.

ALTER TABLE farmers_markets ADD COLUMN geog_point

geography(POINT,4326); 1

UPDATE farmers_markets
SET geog_point =

 2 ST_SetSRID(
 3
ST_MakePoint(longitude,latitude)4::geography,4326
);

CREATE INDEX market_pts_idx ON farmers_markets USING GIST

(geog_point); 5

SELECT longitude,
 latitude,
 geog_point,

 6 ST_AsEWKT(geog_point)
FROM farmers_markets
WHERE longitude IS NOT NULL
LIMIT 5;

Listing 15-9: Creating and indexing a geography column

The ALTER TABLE statement 1 you learned in Chapter 10 with the ADD
COLUMN option creates a column of the geography type called geog_point
that will hold points and reference the WGS 84 coordinate system, which
we denote using SRID 4326.

Next, we run a standard UPDATE statement to fill the geog_point column.
Nested inside an ST_SetSRID() 2 function, the ST_MakePoint() 3 function
takes as input the longitude and latitude columns from the table. The
output, which is the geometry type by default, must be cast to geography to
match the geog_point column type. To do this, we add the PostgreSQL-
specific double-colon syntax (::) 4 to the output of ST_MakePoint().

Adding a Spatial Index
Before you start analysis, it’s wise to add an index to the new column to
speed up queries. In Chapter 8, you learned about PostgreSQL’s default
index, the B-tree. A B-tree index is useful for data that you can order and

search using equality and range operators, but it’s less useful for spatial
objects. The reason is that you cannot easily sort GIS data along one axis.
For example, the application has no way to determine which of these
coordinate pairs is greatest: (0,0), (0,1), or (1,0).

Instead, the makers of PostGIS include support for an index designed for
spatial data called R-tree. In an R-tree index, each spatial item is
represented in the index as a rectangle that surrounds its boundaries, and the
index itself is a hierarchy of rectangles. (Find a good overview at
https://postgis.net/workshops/postgis-intro/indexing.html.)

We add a spatial index to the geog_point column by including the
keywords USING GIST in the CREATE INDEX statement 5 in Listing 15-9.
GIST refers to a generalized search tree (GiST), an interface to facilitate
incorporating specialized indexes to the database. PostgreSQL core team
member Bruce Momjian describes GiST as “a general indexing framework
designed to allow indexing of complex data types.”

With the index in place, we use the SELECT statement to view the
geography data to show the newly encoded geog_points column. To view
the extended WKT version of geog_point, we wrap it in a ST_AsEWKT()
function 6 to show the extended well-known text coordinates and SRID.
The results should look similar to this, with geog_point truncated for
brevity:

 longitude latitude geog_point st_asewkt
------------ ---------- ------------ ------------------------

-105.5890000 47.4154000 01010000... SRID=4326;POINT(-105.589
47.4154)
 -98.9530000 40.4998000 01010000... SRID=4326;POINT(-98.953
40.4998)
-119.4280000 35.7610000 01010000... SRID=4326;POINT(-119.428
35.761)
 -92.3063000 42.1718000 01010000... SRID=4326;POINT(-92.3063
42.1718)
 -70.6868160 44.1129600 01010000...
SRID=4326;POINT(-70.686816 44.11296))

Now we’re ready to perform calculations on the points.

https://postgis.net/workshops/postgis-intro/indexing.html

Finding Geographies Within a Given Distance
Several years ago, while reporting a story on farming in Iowa, I visited the
massive Downtown Farmers’ Market in Des Moines. With hundreds of
vendors, the market spanned several city blocks in the Iowa capital.
Farming is big business there, and even though the downtown market is
huge, it’s not the only one in the area. Let’s use PostGIS to find more
farmers’ markets near downtown Des Moines.

The PostGIS function ST_DWithin() returns a Boolean value of true if
one spatial object is within a specified distance of another object. If you’re
working with the geography data type, as we are here, you need to use
meters as the distance unit. If you’re using the geometry type, use the
distance unit specified by the SRID.

NOTE

PostGIS distance measurements are on a straight line for geometry
data, and on a sphere for geography data. Be careful not to confuse
either with driving distance along roads, which is usually farther
from point to point. To perform calculations related to driving
distances, check out the extension pgRouting at
https://pgrouting.org/.

Listing 15-10 uses the ST_DWithin() function to filter farmers_markets
to show markets within 10 kilometers of the Downtown Farmers’ Market in
Des Moines.

SELECT market_name,
 city,
 st,
 geog_point
FROM farmers_markets

WHERE ST_DWithin(1 geog_point,
 2 ST_GeogFromText('POINT(-93.6204386
41.5853202)'),

 3 10000)
ORDER BY market_name;

https://pgrouting.org/

Listing 15-10: Using ST_DWithin() to locate farmers’ markets within 10
km of a point

The first input for ST_DWithin() is geog_point 1, which holds the
location of each row’s market in the geography data type. The second input
is the ST_GeogFromText() function 2 that returns a Point geography from
WKT. The coordinates -93.6204386 and 41.5853202 represent the
longitude and latitude of the Downtown Farmers’ Market. The final input is
10000 3, which is the number of meters in 10 kilometers. The database
calculates the distance between each market in the table and the downtown
market. If a market is within 10 kilometers, it is included in the results.

We’re using Points here, but this function works with any geography or
geometry type. If you’re working with objects such as polygons, you can
use the related ST_DFullyWithin() function to find objects that are
completely within a specified distance.

Run the query; it should return nine rows (I’ve omitted the geog_point
column for brevity):

market_name city
st
--------------------------------------- ---------------

Beaverdale Farmers Market Des Moines
Iowa
Capitol Hill Farmers Market Des Moines
Iowa
Downtown Farmers' Market - Des Moines Des Moines
Iowa
Drake Neighborhood Farmers Market Des Moines
Iowa
Eastside Farmers Market Des Moines
Iowa
Highland Park Farmers Market Des Moines
Iowa
Historic Valley Junction Farmers Market West Des Moines
Iowa
LSI Global Greens Farmers' Market Des Moines
Iowa
Valley Junction Farmers Market West Des Moines
Iowa

One of these nine markets is the Downtown Farmers’ Market in Des
Moines, which makes sense because its location is at the point used for
comparison. The rest are other markets in Des Moines or in nearby West
Des Moines.

To see these points on a map, in pgAdmin’s results grid, click the eye
icon in the geog_point column header. The geography viewer should
display a map as shown in Figure 15-3.

Figure 15-3: Farmers’ markets near downtown Des Moines, Iowa

This operation should be familiar: it’s a standard feature on many online
maps and product apps that let you locate stores or points of interest near
you.

Although this list of nearby markets is helpful, it would be even better to
know the exact distance of markets from downtown. We’ll use another
function to report that.

Finding the Distance Between Geographies

The ST_Distance() function returns the minimum distance between two
geometries, providing meters for geographies and SRID units for
geometries. For example, Listing 15-11 finds the distance in miles from
Yankee Stadium in New York City’s Bronx borough to Citi Field in Queens,
home of the New York Mets.

SELECT ST_Distance(
 ST_GeogFromText('POINT(-73.9283685
40.8296466)'),
 ST_GeogFromText('POINT(-73.8480153
40.7570917)')
) / 1609.344 AS mets_to_yanks;

Listing 15-11: Using ST_Distance() to calculate the miles between
Yankee Stadium and Citi Field

To convert the distance units from meters to miles, we divide the result of
ST_Distance() by 1609.344 (the number of meters in a mile) The result is
about 6.5 miles.

mets_to_yanks

6.543861827875209

Let’s apply this technique to the farmers’ market data using the code in
Listing 15-12. We’ll again find all farmers’ markets within 10 kilometers of
the Downtown Farmers’ Market in Des Moines and show the distance in
miles.

SELECT market_name,
 city,

 1 round(
 (ST_Distance(geog_point,
 ST_GeogFromText('POINT(-93.6204386
41.5853202)')

) / 1609.344)2::numeric, 2
) AS miles_from_dt
FROM farmers_markets

WHERE3 ST_DWithin(geog_point,
 ST_GeogFromText('POINT(-93.6204386
41.5853202)'),

 10000)
ORDER BY miles_from_dt ASC;

Listing 15-12: Using ST_Distance() for each row in farmers_markets

The query is similar to Listing 15-10, which used ST_DWithin() to find
markets 10 kilometers or closer to downtown, but adds the ST_Distance()
function as a column to calculate and display the distance from downtown.
I’ve wrapped the function inside round() 1 to trim the output.

We provide ST_Distance() with the same two inputs we gave
ST_DWithin() in Listing 15-10: geog_point and the ST_GeogFromText()
function. The ST_Distance() function then calculates the distance between
the points specified by both inputs, returning the result in meters. To
convert to miles, we divide by 1609.344 2, the approximate number of
meters in a mile. Then, to provide the round() function with the correct
input data type, we cast the column result to type numeric.

The WHERE clause 3 uses the same ST_DWithin() function and inputs as
in Listing 15-10. You should see the following results, ordered by distance
in ascending order:

market_name city
miles_from_dt
------------------------------------- --------------- --

Downtown Farmers' Market - Des Moines Des Moines
0.00
Capitol Hill Farmers Market Des Moines
1.15
Drake Neighborhood Farmers Market Des Moines
1.70
LSI Global Greens Farmers' Market Des Moines
2.30
Highland Park Farmers Market Des Moines
2.93
Eastside Farmers Market Des Moines
3.40
Beaverdale Farmers Market Des Moines
3.74
Historic Valley Junction Farmers Market West Des Moines
4.68

Valley Junction Farmers Market West Des Moines
4.70

Again, you see this type of result often when you’re searching online for
a store or address. You might also find the technique helpful for other
analysis scenarios, such as finding all the schools within a certain distance
of a known source of pollution or all the homes within five miles of an
airport.

Finding the Nearest Geographies
Sometimes it’s helpful to have the database simply return the spatial objects
that are in closest proximity to another object without specifying some
arbitrary distance in which to search. For example, we may want to find the
closest farmers’ market regardless of whether it’s 10 kilometers away or
100. To do that, we can instruct PostGIS to implement a K-nearest
neighbors search algorithm by using the <-> distance operator in the ORDER
BY clause of a query. Nearest neighbors algorithms solve a range of
classification problems by identifying similar items—text recognition is an
example. In this case, PostGIS will identify some number of spatial objects,
represented by K, nearest to an object we specify.

For example, let’s say we’re planning to visit the vacation spot of Bar
Harbor, Maine, and want to find the three farmer’s markets closest to town.
We can use the code in Listing 15-13.

SELECT market_name,
 city,
 st,
 round(
 (ST_Distance(geog_point,
 ST_GeogFromText('POINT(-68.2041607
44.3876414)')
) / 1609.344)::numeric, 2
) AS miles_from_bh
FROM farmers_markets

ORDER BY geog_point <->1 ST_GeogFromText('POINT(-68.2041607
44.3876414)')
LIMIT 3;

Listing 15-13: Using the <-> distance operator for a nearest neighbors
search

The query is similar to Listing 15-12, but instead of using a WHERE clause
with ST_DWithin(), we provide an ORDER BY clause that contains the <-> 1
distance operator. To the left of the operator, we place the geog_point
column; to the right we supply the WKT for the Point locating downtown
Bar Harbor inside ST_GeogFromText(). In effect, this syntax says, “Order
the results by the distance from the geography to the Point.”

Adding LIMIT 3 restricts the results to the three closest markets (the
three nearest neighbors):

 market_name city st
miles_from_bh
-------------------------------- ---------------- ----- ---

Bar Harbor Eden Farmers' Market Bar Harbor Maine
0.32
Northeast Harbor Farmers' Market Northeast Harbor Maine
7.65
Southwest Harbor Farmers' Market Southwest Harbor Maine
9.56

You can, of course, change the number in the LIMIT clause to return more
or fewer results. Using LIMIT 1, for example, will return only the closest
market.

So far, you’ve learned how to work with spatial objects constructed from
WKT. Next, I’ll show you a common data format used in GIS called the
shapefile and how to bring it into PostGIS for analysis.

Working with Census Shapefiles
A shapefile is a GIS data file format developed by Esri, a US company
known for its ArcGIS mapping visualization and analysis platform.
Shapefiles are a standard file format for GIS platforms—such as ArcGIS
and the open source QGIS—and are used by governments, corporations,
nonprofits, and technical organizations to display, analyze, and distribute
data with geographic features.

Shapefiles hold information describing the shape of a feature (such as a
county, a road, or a lake) plus a database with each feature’s attributes.
Those attributes might include their name and other demographic
descriptors. A single shapefile can contain only one type of shape, such as
polygons or points, and when you load a shapefile into a GIS platform that
supports visualization, you can view the shapes and query their attributes.
PostgreSQL, with the PostGIS extension, lets you query the spatial data in
the shapefile, which we’ll do in “Exploring the Census 2019 Counties
Shapefile” and “Performing Spatial Joins” later in the chapter.

First, let’s examine the structure and contents of shapefiles.

Understanding the Contents of a Shapefile
A shapefile comprises a collection of files with different extensions, each
with a different purpose. Often, when you download a shapefile, it comes in
a compressed archive, such as .zip. You’ll need to unzip it to access the
individual files.

Per ArcGIS documentation, these are the most common extensions you’ll
encounter:
.shp Main file that stores the feature geometry.
.shx Index file that stores the index of the feature geometry.
.dbf Database table (in dBASE format) that stores the attribute information
of features.
.xml XML-format file that stores metadata about the shapefile.
.prj Projection file that stores the coordinate system information. You can
open this file with a text editor to view the geographic coordinate system
and projection.

According to the documentation, files with the first three extensions
include necessary data required for working with a shapefile. The other file
types are optional. You can load a shapefile into PostGIS to access its
spatial objects and the attributes for each. Let’s do that next and explore
some additional analysis functions.

I’ve included several shapefiles with the resources for this chapter at
https://nostarch.com/practical-sql-2nd-edition/. We’ll start with
TIGER/Line Shapefiles from the US Census that contain the boundaries for
each county or county equivalent, such as parish or borough, as of 2019.
You can learn more about this series of shapefiles at
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-
line-file.html.

NOTE

Many organizations provide data in shapefile format. Start with
your national or local government agencies or check the Wikipedia
entry “List of GIS data sources.”

Save tl_2019_us_county.zip from the book’s resources for this chapter to
your computer and unzip it; the archive should contain files including those
with the extensions I listed earlier.

Loading Shapefiles
If you’re using Windows, the PostGIS suite includes a Shapefile
Import/Export Manager with a simple graphical user interface (GUI). In
recent years, builds of that GUI have become harder to find on macOS and
Linux distributions, so for those operating systems we’ll instead use the
command line application shp2pgsql.

We’ll start with the Windows GUI. If you’re on macOS or Linux, skip
ahead to “Importing Shapefiles Using shp2pgsql.”

Windows Shapefile Importer/Exporter
On Windows, if you followed the installation steps in Chapter 1, you should
find the Shapefile Import/Export Manager by selecting Start▶PostGIS
Bundle x.y for PostgreSQL x64 x.y▶ PostGIS Bundle x.y for
PostgreSQL x64 x.y Shapefile and DBF Loader Exporter.

Whatever you see in place of x.y should match your PostgreSQL and
PostGIS versions. Click to launch the application.

https://nostarch.com/practical-sql-2nd-edition/
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html

To establish a connection between the app and your analysis database,
follow these steps:

. Click View connection details.

. In the dialog that opens, enter postgres for the username, and enter a
password if you added one for the server during initial setup.

. Ensure that Server Host has localhost and 5432 by default. Leave those as
is unless you’re connecting to a different server or port.

. Enter analysis for the database name. Figure 15-4 shows a screenshot of
what the connection should look like.

Figure 15-4: Establishing the PostGIS connection in the shapefile loader

. Click OK. You should see the message Connection Succeeded in the log
window. Now that you’ve successfully established the PostGIS connection,
you can load your shapefile.

. Under Options, change DBF file character encoding to Latin1—we do
this because the shapefile attributes include county names with characters

that require this encoding. Keep the default checked boxes, including the
one to create an index on the spatial column. Click OK.

. Click Add File and select tl_2019_us_county.shp from the location you
saved it. Click Open. The file should appear in the Shapefile list in the
loader, as shown in Figure 15-5.

Figure 15-5: Specifying upload details in the shapefile loader

. In the Table column, double-click to select the table name. Replace it with
us_counties_2019_shp. Press ENTER to accept the value.

. In the SRID column, double-click and enter 4269. That’s the ID for the
North American Datum 1983 coordinate system, which is often used by US
federal agencies including the US Census Bureau. Again, press ENTER to
accept the value.

. Click Import.

In the log window, you should see a message that ends with the following
message:

Shapefile type: Polygon
PostGIS type: MULTIPOLYGON[2]

Shapefile import completed.

Switch to pgAdmin, and in the object browser, expand the analysis
node and continue expanding by selecting Schemas▶public▶Tables.
Refresh your tables by right-clicking Tables and selecting Refresh from the
pop-up menu. You should see us_counties_2019_shp listed. Congrats!
You’ve loaded your shapefile into a table. As part of the import, the
shapefile loader also indexed the geom column. You can move ahead to the
section “Exploring the Census 2019 Counties Shapefile.”

Importing Shapefiles using shp2pgsql
The Shapefile Import/Export Manager isn’t available on all PostGIS
distributions for macOS and Linux. For that reason, I’ll show you how to
import shapefiles using the PostGIS command line tool shp2pgsql, which
lets you accomplish the same thing using a single text command.

On macOS and Linux, you execute command line tools in the Terminal
application. If you’re not familiar with working on the command line, you
may want to pause here and read Chapter 18, “Using PostgreSQL from the
Command Line,” to get set up. Otherwise, on macOS launch Terminal from
your Applications folder (under Utilities); on Linux, open your
distribution’s terminal.

At the command line, you use the following syntax to import a shapefile
into a new table; the italicized code here are placeholders:

shp2pgsql -I -s SRID -W encoding shapefile_name table_name |
psql -d database -U user

A lot’s happening here. Let’s look at each argument following the
command:
-I adds an index on the new table’s geometry column using GiST.
-s lets you specify an SRID for the geometric data.
-W lets you specify file encoding, if necessary.
shapefile_name is the name (including full path) of the file ending with the
.shp extension.

table_name indicates the new table you want the shapefile imported to.
Following these arguments, you place a pipe symbol (|) to direct the

output of shp2pgsql to psql, the PostgreSQL command line utility. That’s
followed by arguments for naming the database and user. For example, to
load the tl_2019_us_county.shp shapefile from the book’s resources into a
us_counties_2019_shp table in the analysis database, in your terminal
you would move to the directory containing the shapefile and run the
following command (all on one line):

shp2pgsql -I -s 4269 -W LATIN1 tl_2019_us_county.shp
us_counties_2019_shp | psql -d analysis -U postgres

The server should respond with a number of SQL INSERT statements
before creating the index and returning you to the command line. It might
take some time to construct the entire set of arguments the first time around.
But after you’ve done one, subsequent imports should take less time
because you can simply substitute file and table names into the syntax you
already wrote.

Load your shapefile, and then you’ll be ready to explore the data with
queries.

Exploring the Census 2019 Counties Shapefile
Your new us_counties_2019_shp table contains columns including each
county’s name as well as the Federal Information Processing Standards
(FIPS) codes uniquely assigned to each state and county. The geom column
contains the spatial data for each county’s boundary. To start, let’s check
what kind of spatial object geom contains using the ST_AsText() function.
Use the code in Listing 15-14 to show the WKT representation of the first
geom value in the table.

SELECT ST_AsText(geom)
FROM us_counties_2019_shp
ORDER BY gid
LIMIT 1;

Listing 15-14: Checking the geom column’s WKT representation

The result is a MultiPolygon with hundreds of coordinate pairs. Here’s a
portion of the output:

MULTIPOLYGON(((-97.019516 42.004097,-97.019519
42.004933,-97.019527 42.007501,-97.019529
42.009755,-97.019529 42.009776,-97.019529
42.009939,-97.019529 42.010163,-97.019538 42.013931,-97.01955
42.014546,-97.01955 42.014565,-97.019551 42.014608,-97.019551
42.014632,-97.01958 42.016158,-97.019622 42.018384,-97.019629
42.018545,-97.01963 42.019475,-97.01963 42.019553,-97.019644
42.020927, --snip--)))

Each coordinate pair marks a Point on the boundary of the county, and
remember that a MULTIPOLYGON object can contain a set of polygons. In the
case of US counties, that will enable storage of counties whose boundaries
contain more than one distinct, separated area. Now, you’re ready to
analyze the data.

Finding the Largest Counties in Square Miles
Which county can claim the title of largest in area? To find the answer,
Listing 15-15 uses the ST_Area() function, which returns the area of a
Polygon or MultiPolygon object. If you’re working with a geography data
type, ST_Area() returns the result in square meters. With a geometry data
type—as used with this shapefile—the function returns the area in SRID
units. Typically, those units are not useful for practical analysis, so we’ll
cast the geometry type to geography to obtain square meters. It’s an
intensive calculation, so expect extra time for this query to complete.

SELECT name,
 statefp AS st,
 round(

 (ST_Area(1geom::geography) / 22589988.110336
)::numeric, 2

) AS 3square_miles
FROM us_counties_2019_shp

ORDER BY square_miles 4DESC
LIMIT 5;

Listing 15-15: Finding the largest counties by area using ST_Area()

The geom column is data type geometry, so to find the area in square
meters, we cast the geom column to a geography data type using the double-
colon syntax 1. Then, to get square miles, we divide the area by
2589988.110336, which is the number of square meters in a square mile 2.
To make the result easier to read, I’ve wrapped it in a round() function and
named the resulting column square_miles 3. Finally, we list the results in
descending order from the largest area to the smallest 4 and use LIMIT 5 to
show the first five results, which should look like this:

name st square_miles
---------------- -- ------------
Yukon-Koyukuk 02 147871.00
North Slope 02 94827.92
Bethel 02 45559.08
Northwest Arctic 02 40619.78
Valdez-Cordova 02 40305.54

Congratulations to Alaska, where the boroughs (the name for county
equivalents up there) are big. The five largest are all in Alaska, denoted by
the state FIPS code 02. Yukon-Koyukuk, located in the heart of Alaska, is
more than 147,800 square miles. (Keep that information in mind for the
“Try It Yourself” exercise at the end of the chapter.)

Note that the shapefile doesn’t include a state name, just its FIPS code.
Because the spatial data resides in a table, in the next section we’ll join to
another census table to obtain the state name.

Finding a County by Longitude and Latitude
If you’ve ever wondered how spammy online ads seem to know where you
live (“This one trick helped a Boston man fix his old shoes!”), it’s thanks to
geolocation services that use various means, such as your phone’s GPS, to
find your longitude and latitude. Given your coordinates, a spatial query can
then determine which geography (a city or town, for example) that point
falls into.

You can replicate this technique using your census shapefile and the
ST_Within() function, which returns true if one geometry is inside another
on the coordinate grid. Listing 15-16 shows an example using the longitude
and latitude of downtown Hollywood, California.

SELECT sh.name,
 c.state_name
FROM us_counties_2019_shp sh JOIN us_counties_pop_est_2019 c
 ON sh.statefp = c.state_fips AND sh.countyfp =
c.county_fips

WHERE 1ST_Within(
 'SRID=4269;POINT(-118.3419063
34.0977076)'::geometry, geom
);

Listing 15-16: Using ST_Within() to find the county belonging to a pair
of coordinates

The ST_Within() function 1 inside the WHERE clause requires two
geometry inputs and evaluates whether the first is inside the second. For the
function to work properly, both geometry inputs must have the same SRID.
In this example, the first input is an extended WKT representation of a
Point that includes the SRID 4269 (same as the census data), which is cast
as a geometry type. The ST_Within() function doesn’t accept a separate
SRID input, so to set it for the supplied WKT, you must prefix it to the
string like this: 'SRID=4269;POINT(-118.3419063 34.0977076)'. The
second input is the geom column from the table.

Run the query; you should see the following result:

name state_name
----------- -----------
Los Angeles California

It shows that the Point you supplied is within Los Angeles county in
California. We also see how this technique can gain value (or raise privacy
concerns) by relating a Point to data about its surrounding area—as we did
here by joining to county population estimates. Suddenly, we can tell a lot
about someone based on data describing where they spend time.

Try supplying other longitude and latitude pairs to see which US county
they fall in. If you provide coordinates outside the United States, the query
should return no results because the shapefile contains only US areas.

Examining Demographics Within a Distance

A fundamental metric for planners trying to locate a new school, business,
or other community amenity is the number of people who live within a
certain distance of it. Will there be enough people nearby to make
construction worthwhile? To find the answer, we can use spatial and
demographics data to estimate the population contained in the geographies
within a certain distance of the planned location.

Say we’re considering building a restaurant in downtown Lincoln,
Nebraska, and we want to understand how many people live within 50
miles of the potential location. The code in Listing 15-17 uses the
ST_DWithin() function to find counties that have any portion of their
boundary within 50 miles of downtown Lincoln and sum their estimated
2019 population.

SELECT sum(c.pop_est_2019) AS pop_est_2019
FROM us_counties_2019_shp sh JOIN us_counties_pop_est_2019 c
 ON sh.statefp = c.state_fips AND sh.countyfp =
c.county_fips
WHERE ST_DWithin(sh.geom::geography,
 ST_GeogFromText('SRID=4269;POINT(-96.699656
40.811567)'),
 80467);

Listing 15-17: Using ST_DWithin() to count people near Lincoln,
Nebraska

In Listing 15-10, we used ST_DWithin() to find farmers’ markets close to
Des Moines, Iowa. Here, we apply the same technique. We pass three
arguments to ST_DWithin(): the census shapefile’s geom column cast to the
geography type; a point representing downtown Lincoln; and the distance
of 50 miles using its equivalent in meters, 80,467.

The query should return a sum of 1,470,295, using the data from the
joined census estimates table’s pop_est_2019 column.

Say we want to list the county names and visualize their borders in
pgAdmin; we can modify our query, as in Listing 15-18.

SELECT sh.name,
 c.state_name,
 c.pop_est_2019,

 1 ST_Transform(sh.geom, 4326) AS geom
FROM us_counties_2019_shp sh JOIN us_counties_pop_est_2019 c
 ON sh.statefp = c.state_fips AND sh.countyfp =
c.county_fips
WHERE ST_DWithin(geom::geography,
 ST_GeogFromText('SRID=4269;POINT(-96.699656
40.811567)'),
 80467);

Listing 15-18: Displaying counties near Lincoln, Nebraska

This query should return 25 rows with the county name and its
population. If you click the eye icon in the header of the geom column, you
should see the counties displayed on a map in pgAdmin’s Geometry
Viewer, as in Figure 15-6.

Figure 15-6: Counties that have a portion of their boundaries within 50 miles of Lincoln

These queries show counties that have any portion of their boundaries
within 50 miles of Lincoln. Because counties tend to be large in area,
they’re a bit crude for determining an exact number of people within the
distance of the point. For a more precise count, we could use smaller census
geographies such as tracts or block groups, both of which are
subcomponents of counties.

Finally, note that the pgAdmin Geometry Viewer’s base map is the free
OpenStreetMap, which uses the WGS 84 coordinate system. Our census
shapefiles use a different coordinate system: North American Datum 83.
For our data to display properly against the base map, we must use the
ST_Transform() function 1 to convert the census geometry to the SRID of
4326. If we omit that function, the geographies will display on a blank
canvas in the viewer because the coordinate systems don’t match.

Performing Spatial Joins
Joining tables with spatial data opens up interesting opportunities for
analysis. For example, you could join a table of coffee shops (which
includes their longitude and latitude) to the counties table to find out how
many shops exist in each county based on their location. In this section,
we’ll explore spatial joins with a detailed look at roads and waterways
using census data.

Exploring Roads and Waterways Data
Much of the year, the Santa Fe River, which cuts through the New Mexico
state capital, is a dry riverbed better described as an intermittent stream.
According to the Santa Fe city website, the river is susceptible to flash
flooding and was named the nation’s most endangered river in 2007. If you
were an urban planner, it would help to know where the river intersects
roadways so you could plan for emergency response when it floods.

You can find these locations using another set of US Census TIGER/Line
shapefiles that has details on roads and waterways in Santa Fe County.
These shapefiles are also included with the book’s resources. Download and
unzip tl_2019_35049_linearwater.zip and tl_2019_35049_roads.zip, and
then import both using the same steps from earlier in the chapter. Name the
water table santafe_linearwater_2019 and the roads table
santafe_roads_2019.

Next, refresh your database and run a quick SELECT * FROM query on
both tables to view the data. You should have 11,655 rows in the roads table
and 1,148 in the linear water table.

As with the counties shapefile, both tables have an indexed geom column
of type geometry. It’s helpful to check the type of spatial object in the
column so you know the type of spatial feature you’re querying. You can do
that using the ST_AsText() function or ST_GeometryType(), as shown in
Listing 15-19.

SELECT ST_GeometryType(geom)
FROM santafe_linearwater_2019
LIMIT 1;

SELECT ST_GeometryType(geom)
FROM santafe_roads_2019
LIMIT 1;

Listing 15-19: Using ST_GeometryType() to determine geometry

Both queries should return one row with the same value:
ST_MultiLineString. That tell us that waterways and roads are stored as
MultiLineString objects, a set of LineStrings that can be noncontinuous.

Joining the Census Roads and Water Tables
To find all the roads in Santa Fe that intersect the Santa Fe River, we’ll join
the roads and waterway tables with a query that tells us where the objects
touch. We’ll do this using the ST_Intersects() function, which returns a
Boolean true if two spatial objects contact each other. Inputs can be either
geometry or geography types. Listing 15-20 joins the tables.

SELECT water.fullname AS waterway, 1
 roads.rttyp,
 roads.fullname AS road
FROM santafe_linearwater_2019 water JOIN santafe_roads_2019

roads 2
 3 ON ST_Intersects(water.geom, roads.geom)
WHERE water.fullname = 4'Santa Fe Riv'
 AND roads.fullname IS NOT NULL
ORDER BY roads.fullname;

Listing 15-20: Spatial join with ST_Intersects() to find roads crossing
the Santa Fe River

The SELECT column list 1 includes the fullname column from the
santafe_linearwater_2019 table, which gets water as its alias in the FROM
2 clause. The column list includes the rttyp code, which represents the
route type, and fullname columns from the santafe_roads_2019 table,
aliased as roads.

In the ON portion 3 of the JOIN construct, we use the ST_Intersects()
function with the geom columns from both tables as inputs. Here, the
expression evaluates as true if the geometries intersect. We use fullname
to filter the results to show only those that have the full string 'Santa Fe
Riv' 4, which is how the Santa Fe River is listed in the water table. We also
eliminate instances where road names are NULL. The query should return 37
rows; here are the first five:

waterway rttyp road
------------ ----- ----------------
Santa Fe Riv M Baca Ranch Ln
Santa Fe Riv M Baca Ranch Ln
Santa Fe Riv M Caja del Oro Grant Rd
Santa Fe Riv M Caja del Oro Grant Rd
Santa Fe Riv M Cam Carlos Rael
--snip--

Each road in the results intersects with a portion of the Santa Fe River.
The route type code for each of the first results is M, which indicates that the
road name shown is its common name as opposed to a county or state
recognized name, for example. Other road names in the complete results
carry route types of C, S, or U (for unknown). The full route type code list is
available at https://www.census.gov/library/reference/code-lists/route-type-
codes.html.

Finding the Location Where Objects Intersect
We successfully identified roads that intersect the Santa Fe River. That’s
good, but it would really help to know the precise location of each
intersection. We can modify the query to include the ST_Intersection()
function, which returns the location of the place where objects touch. I’ve
added it as a column in Listing 15-21.

https://www.census.gov/library/reference/code-lists/route-type-codes.html

SELECT water.fullname AS waterway,
 roads.rttyp,
 roads.fullname AS road,

 1 ST_AsText(ST_Intersection(2water.geom, roads.geom))
FROM santafe_linearwater_2019 water JOIN santafe_roads_2019
roads
 ON ST_Intersects(water.geom, roads.geom)
WHERE water.fullname = 'Santa Fe Riv'
 AND roads.fullname IS NOT NULL
ORDER BY roads.fullname;

Listing 15-21: Using ST_Intersection() to show where roads cross the
river

The function returns a geometry object, so to view its WKT
representation, we must wrap it in ST_AsText() 1. The ST_Intersection()
function takes two inputs: the geom columns 2 from both the water and
roads tables. Run the query, and the results should now include the exact
coordinate location, or locations, where the river crosses the roads (I’ve
rounded the Point coordinates for brevity).

waterway rttyp road st_astext
------------ ----- ---------------- ----------------

Santa Fe Riv M Baca Ranch Ln
POINT(-106.049802 35.642638)
Santa Fe Riv M Baca Ranch Ln
POINT(-106.049743 35.643126)
Santa Fe Riv M Caja del Oro Grant Rd
POINT(-106.024674 35.657624)
Santa Fe Riv M Caja del Oro Grant Rd
POINT(-106.024692 35.657644)
Santa Fe Riv M Cam Carlos Rael
POINT(-105.986934 35.672342)
--snip--

Much better than poring over a map with a pencil, and this might prompt
more ideas for analyzing spatial data. For example, if you have a shapefile
of building footprints, you could find buildings near the river and in danger
of flooding during heavy rains. Governments and private organizations
regularly use these techniques as part of their planning process.

Wrapping Up
Mapping is a powerful analysis tool, and the techniques you learned in this
chapter give you a strong start toward exploring more with PostGIS. You
may indeed want to visualize this data, and that’s entirely possible with a
GIS application such as Esri’s ArcGIS (https://www.esri.com/) or the free
open source QGIS (https://qgis.org/). Both can use a PostGIS-enabled
PostgreSQL database as a data source, allowing you to visualize shapefile
data in your tables or the results of queries.

You’ve now added working with geographic data to your analysis skills.
Next, we’ll explore another widely used data type called JavaScript Object
Notation (JSON) and how PostgreSQL enables storing and querying it.

TRY IT YOURSELF

Use the spatial data you’ve imported in this chapter to try additional analysis:
Earlier, you found which US county has the largest area. Now, aggregate the county
data to find the area of each state in square miles. (Use the statefp column in the
us_counties_2019_shp table.) How many states are bigger than the Yukon-Koyukuk

area?
Using ST_Distance(), determine how many miles separate these two farmers’ markets:

The Oakleaf Greenmarket (9700 Argyle Forest Blvd, Jacksonville, Florida) and
Columbia Farmers Market (1701 West Ash Street, Columbia, Missouri). You’ll need to
first find the coordinates for both in the farmers_markets table. Tip: you can also write

this query using the Common Table Expression syntax you learned in Chapter 13.
More than 500 rows in the farmers_markets table are missing a value in the county

column, which is an example of dirty government data. Using the us_counties_2019_shp
table and the ST_Intersects() function, perform a spatial join to find the missing county

names based on the longitude and latitude of each market. Because geog_point in
farmers_markets is of the geography type and its SRID is 4326, you’ll need to cast geom in

the census table to the geography type and change its SRID using ST_SetSRID().
The nyc_yellow_taxi_trips table you created in Chapter 12 contains the longitude and
latitude where each trip began and ended. Use PostGIS functions to turn the drop-off
coordinates into a geometry type and count the state/county pairs where each drop-off
occurred. As with the previous exercise, you’ll need to join to the us_counties_2019_shp

table and use its geom column for the spatial join.

https://www.esri.com/
https://qgis.org/

16
WORKING WITH JSON DATA

JavaScript Object Notation (JSON) is a
widely used text format for storing data
in a platform-independent way so it can
be shared between computer systems. In
this chapter, you’ll learn the structure of

JSON as well as how to store and query JSON data
types in PostgreSQL. After we explore PostgreSQL’s
JSON query operators, we’ll analyze a month’s worth
of data about earthquakes.

The American National Standards Institute (ANSI) SQL standard added
syntax definitions for JSON and specified functions for creating and
accessing JSON objects in 2016. Major database systems have added JSON
support in recent years as well, although implementations vary.
PostgreSQL, for example, supports some of the ANSI standard while
implementing a number of nonstandard operators. I’ll note which aspects of
PostgreSQL’s JSON support are part of standard SQL as we work through
exercises.

Understanding JSON Structure
JSON data primarily comprises two structures: an object, which is an
unordered set of name/value pairs, and an array, which is an ordered

collection of values. If you’ve used programming languages such as
JavaScript, Python, or C#, these aspects of JSON should look familiar.

Inside an object, we use name/value pairs as a structure for storing and
referencing individual data items. The object in its entirety is enclosed
within curly brackets, and each name, more often referred to as a key, is
enclosed in double quotes, followed by a colon and its corresponding value.
The object can encapsulate multiple key/value pairs, separated by commas.
Here’s an example using movie information:

{"title": "The Incredibles", "year": 2004}

The keys are title and year, and their values are "The Incredibles"
and 2004. If the value is a string, it goes in double quotes. If it’s a number, a
Boolean value, or a null, we omit the quotes. If you’re familiar with the
Python language, you’ll recognize this structure as a dictionary.

An array is an ordered list of values enclosed in square brackets. We
separate each value in the array with a comma. For example, we might list
movie genres like so:

["animation", "action"]

Arrays are common in programming languages, and we’ve used them
already in SQL queries. In Python, this structure is called a list.

We can create many permutations of these structures, including nesting
objects and arrays inside each other. For example, we can create an array of
objects or use an array as the value of a key. We can add or omit key/value
pairs or create additional arrays of objects without violating a preset
schema. This flexibility—in contrast to the strict definition of a SQL table
—is both part of the appeal of using JSON as a data store as well as one of
the biggest difficulties in working with JSON data.

As an example, Listing 16-1 shows information about two of my favorite
films stored as JSON. The outermost structure is an array with two elements
—one object for each film. We know the outermost structure is an array
because the entire JSON begins and ends with square brackets.

[{1
 "title": "The Incredibles",
 "year": 2004,

 2"rating": {
 "MPAA": "PG"
 },

 3"characters": [{
 "name": "Mr. Incredible",
 "actor": "Craig T. Nelson"
 }, {
 "name": "Elastigirl",
 "actor": "Holly Hunter"
 }, {
 "name": "Frozone",
 "actor": "Samuel L. Jackson"
 }],

 4"genre": ["animation", "action", "sci-fi"]
}, {
 "title": "Cinema Paradiso",
 "year": 1988,
 "characters": [{
 "name": "Salvatore",
 "actor": "Salvatore Cascio"
 }, {
 "name": "Alfredo",
 "actor": "Philippe Noiret"
 }],
 "genre": ["romance", "drama"]
}]

Listing 16-1: JSON with information about two films

Inside the outermost array, each film object is surrounded by curly
brackets. The open brace at 1 starts the object for the first film The
Incredibles. For both films, we store the title and year as key/value pairs,
and they have string and integer values, respectively. The third key, rating
2, has a JSON object for its value. That object contains a single key/value
pair showing the film’s rating from the Motion Picture Association of
America.

Here we can see the flexibility JSON affords us as a storage medium.
First, if we later wanted to add another country’s rating for the film, we
could easily add a second key/value pair to the rating value object.

Second, we’re not required to include rating—or any key/value pair—in
every film object. In fact, I omitted a rating for Cinema Paradiso. If a
particular piece of data isn’t available, in this case a rating, some systems
that generate JSON might simply exclude that pair. Other systems might
include rating but with a null value. Both are valid, and that flexibility is
one of JSON’s advantages: its data definition, or schema, can flex as
needed.

The final two key/value pairs show other ways to structure JSON. For
characters 3, the value is an array of objects, with each object surrounded
by curly brackets and separated by a comma. The value for genre 4 is an
array of strings.

Considering When to Use JSON with SQL
There are advantages to using NoSQL or document databases that store data
in JSON or other text-based data formats, as opposed to the relational tables
SQL uses. Document databases are flexible in terms of data definitions. You
can redefine a data structure on the fly if needed. Document databases are
often also used for high-volume applications because they can be scaled by
adding servers. On the flip side, you may give up SQL advantages such as
easily added constraints that enforce data integrity and support for
transactions.

The arrival of JSON support in SQL has made it possible to enjoy the
best of both worlds by adding JSON data as columns in relational tables.
The decision to use a SQL or NoSQL database should be multifaceted.
PostgreSQL performs favorably relative to NoSQL in terms of speed, but
we must also consider the kinds and volume of data being stored, the
applications being served, and more.

That said, some cases where you might want to take advantage of JSON
in SQL include the following:
When users or applications need to arbitrarily create key/value pairs. For
example, if tagging a collection of medical research papers, one user might
want to add a key to track chemical names, and another user might want a
key to track food names.

When storing related data in a JSON column instead of a separate table. An
employees table could have the usual columns for name and contact
information plus a JSON column with a flexible collection of key/value
pairs that might hold additional attributes that don’t apply to every
employee, such as company awards or performance metrics.
When saving time by analyzing JSON data fetched from other systems
without first parsing it into a set of tables.

Keep in mind that using JSON in PostgreSQL or other SQL databases
can also present challenges. Constraints that are trivial to set up on regular
SQL tables can be more difficult to set and enforce on JSON data. JSON
data can consume more space as key names get repeated in text along with
the quotes, commas, and braces that define its structure. Finally, the
flexibility of JSON can create issues for the code that interacts with it—
whether SQL or another language—if keys unexpectedly disappear or the
data type of a value changes.

Keeping all this in mind, let’s review PostgreSQL’s two JSON data types
and load some JSON into a table.

Using json and jsonb Data Types
PostgreSQL provides two data types for storing JSON. Both allow insertion
of valid JSON only—text that includes required elements of the JSON
specification, such as open and closing curly brackets around an object,
commas separating objects, and proper quoting of keys. If you try to insert
invalid JSON, the database will generate an error.

The main difference between the two is that one stores JSON as text and
the other as binary data. The binary implementation is newer to PostgreSQL
and generally preferred because it’s faster at querying and has indexing
capabilities.

The two types are as follows:

json

Stores JSON as text, keeping white space and maintaining the order of
keys. If a single JSON object contains a particular key more than once
(which is valid), the json type will preserve each of the repeated key/value
pairs. Finally, each time a database function processes json-stored text, it
must parse the object to interpret its structure. This can make reads from the
database slower than with the jsonb type. Indexing is not supported.
Typically, the json type is useful when an application has duplicate keys or
needs to preserve the order of keys.

jsonb
Stores JSON in a binary format, removing white space and not maintaining
the order of keys. If a single JSON object contains a particular key more
than once, the jsonb type will preserve only the last of the key/value pairs.
The binary format adds some overhead to writing data to the table, but
processing is faster. Indexing is supported.

Neither json nor jsonb is part of the ANSI SQL standard, which doesn’t
specify a JSON data type and leaves it to database makers to decide how to
implement support. The PostgreSQL documentation at
https://www.postgresql.org/docs/current/datatype-json.html recommends
using jsonb unless there’s a need to preserve the order of key/value pairs.

We’ll use jsonb exclusively in the remainder of the chapter, both because
of speed considerations but also because many of PostgreSQL’s JSON
functions work the same way with both json and jsonb—and there are
more functions available for jsonb. We’ll continue by adding the films
JSON from Listing 16-1 to a table and exploring JSON query syntax.

Importing and Indexing JSON Data
The file films.json in the Chapter 16 folder of the book’s resources at
https://nostarch.com/practical-sql-2nd-edition/ contains a modified form of
the JSON in Listing 16-1. View the file with a text editor, and you’ll see
each film’s JSON object is placed on a single line, with no line breaks
between elements. I’ve also removed the outermost square brackets and the
comma separating the two film objects. Each remains a valid JSON object:

https://www.postgresql.org/docs/current/datatype-json.html
https://nostarch.com/practical-sql-2nd-edition/

{"title": "The Incredibles", "year": 2004, --snip-- }
{"title": "Cinema Paradiso", "year": 1988, --snip-- }

I set up the file this way so that PostgreSQL’s COPY command will
interpret each film’s JSON object as a separate row on import, the same
way it does when importing a CSV file. The code in Listing 16-2 makes a
simple films table with a surrogate primary key and a jsonb column called
film.

CREATE TABLE films (
 id integer GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 film jsonb NOT NULL
);

COPY films (film)

1 FROM C:\YourDirectory\films.json';

2 CREATE INDEX idx_film ON films USING GIN (film);

Listing 16-2: Creating a table to hold JSON data and adding an index

Note that the COPY statement ends with the FROM clause 1 instead of
continuing to include a WITH statement as in previous examples. The reason
we no longer need the WITH statement, which we’ve used to specify options
for file headers and CSV formatting, is that this file has no header and isn’t
delimited. We just want the database to read each line and process it.

After import, we add an index 2 to the jsonb column using the GIN
index type. We discussed the generalized inverted index (GIN) with full-
text search in Chapter 14. GIN’s implementation of indexing the location of
words or key values within text is particularly suited to JSON data. Note
that because index entries point to rows in a table, jsonb column indexing
works best when each row contains a relatively small chunk of JSON—as
opposed to a table with one row that has a single, enormous JSON value
and repeated keys.

Execute the commands to create and fill the table and add the index. Run
SELECT * FROM films; and you should see two rows containing the
autogenerated id and the JSON object text. Now you’re ready to explore
querying the data using with PostgreSQL’s JSON operators.

Using json and jsonb Extraction Operators
To retrieve values from our stored JSON, we can use PostgreSQL-specific
extraction operators, which return either a JSON object, an element of an
array, or an element that exists at a path in the JSON structure we specify.
Table 16-1 shows the operators and their functions, which can vary based
on the data type of the input. Each works with json and jsonb data types.

Table 16-1: json and jsonb Extraction Operators

Operator,
syntax

Function Returns

json -> text

jsonb -> text

Extracts a key value, specified as text json or jsonb
(matching the input)

json ->> text

jsonb ->>

text

Extracts a key value, specified as text text

json ->

integer

jsonb ->

integer

Extracts an array element, specified as an integer
denoting its array position

json or jsonb
(matching the input)

json ->>

integer

jsonb ->>

integer

Extracts an array element, specified as an integer
denoting its array position

text

json #> text

array

jsonb #> text

array

Extracts a JSON object at a specified path json or jsonb
(matching the input)

json #>> text

array

jsonb #>>

text array

Extracts a JSON object at a specified path text

Let’s try the operators with our films JSON to learn more about how they
vary in function.

Key Value Extraction
In Listing 16-3 we use the -> and ->> operators followed by text naming the
key value to retrieve. In that context, with text input, these are called field
extraction operators because they extract a field, or key value, from the
JSON. The difference between the two is that -> returns the key value as
JSON in the same type as stored, and ->> returns the key value as text.

SELECT id, film ->1 'title' AS title
FROM films
ORDER BY id;

SELECT id, film ->>2 'title' AS title
FROM films
ORDER BY id;

SELECT id, film ->3 'genre' AS genre
FROM films
ORDER BY id;

Listing 16-3: Retrieving a JSON key value with field extraction operators

In the SELECT list, we specify our JSON column name followed by the
operator and the key name in single quotes. In the first example, the syntax
-> 'title' 1 returns the value of the title key as JSON in the same data
type as stored, jsonb. Run the first query, and you should see the output like
this:

id title
-- -----------------
 1 "The Incredibles"
 2 "Cinema Paradiso"

In pgAdmin, the data type listed in the title column header should
indicate jsonb, and the film titles remain quoted, as they are in the JSON
object.

Changing the field extraction operator to ->> 2 returns the film titles as
text instead:

id title
-- ---------------
 1 The Incredibles
 2 Cinema Paradiso

Finally, we’ll return an array. In our films JSON, the value of the key
genre is an array of values. Using the field extraction operator -> 3 returns
the array as jsonb:

id genre
-- ---------------------------------
 1 ["animation", "action", "sci-fi"]
 2 ["romance", "drama"]

If we used ->> here, we’d return the arrays as text. Let’s look at how to
extract elements from an array.

Array Element Extraction
To retrieve a specific value from an array, we follow the -> and ->>
operators with an integer specifying the value’s position, or index, in the
array. We call these element extraction operators because they retrieve an
element from a JSON array. As with field extraction, -> returns the value as
JSON in the same type as stored, and ->> returns it as text.

Listing 16-4 shows four examples using the array values of "genre".

SELECT id, film -> 'genre' -> 01 AS genres
FROM films
ORDER BY id;

SELECT id, film -> 'genre' -> -12 AS genres
FROM films
ORDER BY id;

SELECT id, film -> 'genre' -> 23 AS genres
FROM films
ORDER BY id;

SELECT id, film -> 'genre' ->> 04 AS genres

FROM films
ORDER BY id;

Listing 16-4: Retrieving a JSON array value with element extraction
operators

We must first retrieve the array value from the key as JSON and then
retrieve the desired element from the array. In the first example, we specify
the JSON column film, followed by the field extraction operator -> and the
genre key name in single quotes. This returns the genre value as jsonb. We
follow the key name with -> and the integer 0 1 to get the first element.

Why not use 1 for the first value in the array? In many languages,
including Python and JavaScript, index values start at zero, and that’s also
true when accessing JSON arrays with SQL.

NOTE

SQL arrays have a different ordering scheme than JSON arrays in
PostgreSQL. The first element in a SQL array is at position 1; in a
JSON array, the first element is at position 0.

Run the first query, and your results should look like this, showing the
first element in each film’s genre array, returned as jsonb:

id genres
-- -----------
 1 "animation"
 2 "romance"

We can also access the last element of the array, even if we aren’t sure of
its index, because the number of genres per film can vary. We count
backward from the end of the list using a negative index number. Supplying
-1 2 tells -> to get the first element from the end of the list:

id genres
-- --------
 1 "sci-fi"
 2 "drama"

We can count back further if we want—an index of -2 will get the next-
to-last element.

Note that PostgreSQL won’t return an error if there’s no element at the
supplied index position; it will simply return a NULL for that row. For
example, if we supply 2 3 for the index, we see results for one of our films
and a NULL for the other:

id genres
-- --------
 1 "sci-fi"
 2

We get a NULL back for Cinema Paradiso because it has only two
elements in its genre value array, and index 2 (since we count up starting
with zero) represents the third element. Later in the chapter, we’ll learn how
to count array lengths.

Finally, changing the element extraction operator to ->> 4 returns the
desired element as a text data type rather than JSON:

id genres
-- ---------
 1 animation
 2 romance

This is the same pattern as we saw when extracting key values: -> returns
a JSON data type, and ->> returns text.

Path Extraction
Both #> and #>> are path extraction operators that return an object located
at a JSON path. A path is a series of keys or array indices that lead to the
location of a value. In our example JSON, it might be just the title key if
we want the name of the film. Or it could be more complex, such as the
characters key followed by an index value of 1, then the actor key; this
would provide the path to the name of the actor at index 1. The #> path
extraction operator returns a JSON data type matching the stored data, and
#>> returns text.

Consider the MPAA rating for the film The Incredibles, which appears in
our JSON like this:

"rating": {
 "MPAA": "PG"
}

The structure is a key named rating with an object for its value; inside
that object is a key/value pair with MPAA as the key name. Thus, the path to
the film’s MPAA rating begins with the rating key and ends with the MPAA
key. To denote the path’s elements, we use the PostgreSQL string syntax for
arrays, creating a comma-separated list inside curly brackets and single
quotes. We then feed that string to the path extraction operators. Listing 16-
5 shows three examples of setting paths.

SELECT id, film #> '{rating, MPAA}'1 AS mpaa_rating
FROM films
ORDER BY id;

SELECT id, film #> '{characters, 0, name}'2 AS name
FROM films
ORDER BY id;

SELECT id, film #>> '{characters, 0, name}'3 AS name
FROM films
ORDER BY id;

Listing 16-5: Retrieving a JSON key value with path extraction operators

To get each film’s MPAA rating, we specify the path in an array:
{rating, MPAA} 1 with each item separated by commas. Run the query, and
you should see these results:

id mpaa_rating
-- -----------
 1 "PG"
 2

The query returns the PG rating for The Incredibles and a NULL for
Cinema Paradiso because, in our data, the latter film has no MPAA rating

present.
The second example works with the array of characters, which in our

JSON looks like this:

"characters": [{
 "name": "Salvatore",
 "actor": "Salvatore Cascio"
}, {
 "name": "Alfredo",
 "actor": "Philippe Noiret"
}]

The characters array shown is for the second movie, but both films
have a similar structure. Array objects each represent a character and the
name and the actor who played them. To locate the name of the first
character in the array, we specify a path 2 that starts at the characters key,
continues to the first element of the array using the index 0, and ends at the
name key. The query results should look like this:

id name
-- ----------------
 1 "Mr. Incredible"
 2 "Salvatore"

The #> operator returns results as a JSON data type, in our case jsonb. If
we want the results as text, we use #>> 3 with the same path.

Containment and Existence
The final collection of operators we’ll explore performs two kinds of
evaluations. The first concerns containment and checks whether a specified
JSON value contains a second specified JSON value. The second tests for
existence: whether a string of text within a JSON object exists as a top-level
key (or as an element of an array nested inside a deeper object). Both kinds
of operators return a Boolean value, which means we can use them in a
WHERE clause to filter query results.

This set of operators works only with the jsonb data type—another good
reason to favor jsonb over json—and can make use of our GIN index for

efficient searching. Table 16-2 lists the operators with their syntax and
function.

Table 16-2: jsonb Containment and Existence Operators

Operator,
syntax

Function Retu
rns

jsonb @>

jsonb

Tests whether the first JSON value contains the second JSON value boole

an

jsonb <@

jsonb

Tests whether the second JSON value contains the first JSON value boole

an

jsonb ? text Tests whether the text exists as a top-level (not nested) key or an
array value

boole

an

jsonb ?|

text array

Tests whether any of the text elements in the array exist as a top-level
(not nested) key or as an array value

boole

an

jsonb ?&

text array

Tests whether all of the text elements in the array exist as a top-level
(not nested) key or as an array value

boole

an

Using Containment Operators
In Listing 16-6, we use @> to evaluate whether one JSON value contains a
second JSON value.

SELECT id, film ->> 'title' AS title,

 film @>1 '{"title": "The Incredibles"}'::jsonb AS
is_incredible
FROM films
ORDER BY id;

Listing 16-6: Demonstrating the @> containment operator

In our SELECT list, we check whether the JSON stored in the film column
in each row contains the key/value pair for The Incredibles. We use the @>
containment operator 1 in an expression that generates a column with the
Boolean result true if film contains "title": "The Incredibles". We
give the name of our JSON column, film, then the @> operator, and then a
string (cast to jsonb) specifying the key/value pair. In our SELECT list, we
also return the text of the film title as a column. Running the query should
produce these results:

id title is_incredible
-- --------------- -------------
 1 The Incredibles true
 2 Cinema Paradiso false

As expected, the expression evaluates to true for The Incredibles and
false for Cinema Paradiso.

Because the expression evaluates to a Boolean result, we can use it in a
query’s WHERE 2 clause, as shown in Listing 16-7.

SELECT film ->> 'title' AS title,
 film ->> 'year' AS year
FROM films

2 WHERE film @> '{"title": "The Incredibles"}'::jsonb;

Listing 16-7: Using a containment operator in a WHERE clause

Here we again check that the JSON in the film column contains the
key/value pair for the title of The Incredibles. By placing the evaluation in a
WHERE clause, the query should return just the row where the expression
returns true:

 title year
--------------- ----
The Incredibles 2004

Finally, in Listing 16-8, we flip the order of evaluation to check whether
the key/value pair specified is contained within the film column.

SELECT film ->> 'title' AS title,
 film ->> 'year' AS year
FROM films

WHERE '{"title": "The Incredibles"}'::jsonb <@3 film;

Listing 16-8: Demonstrating the <@ containment operator

Here we use the <@ operator 3 instead of @> to flip the order of
evaluation. This expression also evaluates to true, returning the same result
as the previous query.

Using Existence Operators
Next, in Listing 16-9, we explore three existence operators. These check
whether the text we supply exists as a top-level key or as an element of an
array. All return a Boolean value.

SELECT film ->> 'title' AS title
FROM films

WHERE film ?1 'rating';

SELECT film ->> 'title' AS title,
 film ->> 'rating' AS rating,
 film ->> 'genre' AS genre
FROM films

WHERE film ?|2 '{rating, genre}';

SELECT film ->> 'title' AS title,
 film ->> 'rating' AS rating,
 film ->> 'genre' AS genre
FROM films

WHERE film ?&3 '{rating, genre}';

Listing 16-9: Demonstrating existence operators

The ? operator checks for the existence of a single key or array element.
In the first query’s WHERE clause, we give the film column, the ? operator 1,
and then the string rating. This syntax says, “In each row, does rating
exist as a key in the JSON in the film column?” When we run the query,
the results show the one film that has a rating key, The Incredibles.

The ?| and ?& operators act as or and and. For example, using ?| 2 tests
whether either rating or genre exist as top-level keys. Running that second
query returns both films, because both have at least one of those keys.
Using ?& 3, however, tests whether both rating and genre exist as keys,
and that’s true for only The Incredibles.

All these operators provide options for fine-tuning your exploration of
your JSON data. Now, let’s use some of them on a larger dataset.

Analyzing Earthquake Data

In this section, we’ll analyze a collection of JSON data about earthquakes
compiled by the US Geological Survey, an agency of the US Department of
the Interior that monitors natural phenomenon including volcanoes,
landslides, and water quality. The USGS uses a network of seismographs
that record the earth’s vibrations, compiling data on each seismic event’s
location and intensity. Minor earthquakes occur around the world many
times a day; the big ones are less frequent but potentially devastating.

For our exercise, I fetched a month’s worth of JSON-formatted
earthquake data from a USGS application programming interface, better
known as an API. An API is a resource for transmitting data and commands
between computers, and JSON is often used for APIs. You’ll find the data
in the file earthquakes.json in the folder for this chapter included in the
book’s resources.

Exploring and Loading the Earthquake Data
Listing 16-10 shows the data structure for each earthquake record in the file,
along with a selection of its key/value pairs (your Chapter_16.sql file has
the nonsnipped version).

{

 "type": "Feature", 1
 "properties":2 {
 "mag": 1.44,
 "place": "134 km W of Adak, Alaska",
 "time": 1612051063470,
 "updated": 1612139465880,
 "tz": null,
 --snip--
 "felt": null,
 "cdi": null,
 "mmi": null,
 "alert": null,
 "status": "reviewed",
 "tsunami": 0,
 "sig": 32,
 "net": "av",
 "code": "91018173",
 "ids": ",av91018173,",
 "sources": ",av,",
 "types": ",origin,phase-data,",

 "nst": 10,
 "dmin": null,
 "rms": 0.15,
 "gap": 174,
 "magType": "ml",
 "type": "earthquake",
 "title": "M 1.4 - 134 km W of Adak, Alaska"
 },

 "geometry":3 {
 "type": "Point",
 "coordinates": [-178.581, 51.8418333333333, 22.48]
 },
 "id": "av91018173"
}

Listing 16-10: JSON with data on one earthquake

This data is in GeoJSON format, a JSON-based specification for spatial
data. GeoJSON will include one or more Feature objects, denoted by
inclusion of the key/value pair "type": "Feature" 1. Each Feature
describes a single spatial object and contains both descriptive attributes
(such as event time or related codes) under properties 2 plus a geometry 3
key that includes the coordinates of the spatial object. In our data, each
geometry is a Point, a simple feature with the coordinates of one
earthquake’s longitude, latitude, and depth in kilometers. We discussed
Points and simple features in Chapter 15 when working with PostGIS;
GeoJSON incorporates it and other spatial simple features. You can read
more about the GeoJSON specification at https://geojson.org/ and see
definitions of the keys in the USGS documentation at
https://earthquake.usgs.gov/data/comcat/data-eventterms.php/.

Let’s load our data into a table called earthquakes using the code in
Listing 16-11.

CREATE TABLE earthquakes (
 id integer GENERATED ALWAYS AS IDENTITY PRIMARY KEY,

 earthquake jsonb1 NOT NULL
);

COPY earthquakes (earthquake)
FROM C:\YourDirectory\earthquakes.json';

https://geojson.org/
https://earthquake.usgs.gov/data/comcat/data-eventterms.php/

2 CREATE INDEX idx_earthquakes ON earthquakes USING GIN
(earthquake);

Listing 16-11: Creating and loading an earthquakes table

As with our films table, we use COPY to copy the data into a single jsonb
column 1 and add a GIN index 2. Running SELECT * FROM earthquakes;
should return 12,899 rows. Now let’s see what we can learn from the data.

Working with Earthquake Times
The time key/value pair represents the moment the earthquake occurred. In
Listing 16-12, we retrieve the value of time using a path extraction
operator.

SELECT id, earthquake #>> '{properties, time}'1 AS time
FROM earthquakes
ORDER BY id LIMIT 5;

Listing 16-12: Retrieving the earthquake time

In the SELECT list, we give the earthquake column followed by a #>>
path extraction operator and the path 1 to the time value denoted as an
array. The #>> operator will return our value as text. Running the query
should return five rows:

id time
-- -------------
 1 1612137592990
 2 1612137479762
 3 1612136740672
 4 1612136207600
 5 1612135893550

If those values don’t look like times to you, that’s not surprising. By
default, the USGS represents time as milliseconds since the Unix epoch at
00:00 UTC on January 1, 1970. That’s a variant of the standard epoch time
we covered in Chapter 12, which measures seconds since the epoch. We can
convert this USGS time value to something understandable using
to_timestamp() and a little math, as shown in Listing 16-13.

SELECT id, earthquake #>> '{properties, time}' as time,

 1 to_timestamp(
 (earthquake #>> '{properties, time}')::bigint /

10002
) AS time_formatted
FROM earthquakes
ORDER BY id LIMIT 5;

Listing 16-13: Converting the time value to a timestamp

Inside the parentheses of the to_timestamp() 1 function, we repeat the
code to extract the time value. The to_timestamp() function requires a
number representing seconds, but the extracted value is text and in
milliseconds, so we also cast the extracted text to bigint and divide by
1,000 2 to convert it to seconds.

On my machine, the query generates the following results showing the
extracted time value and its converted timestamp (your values will vary
depending on your PostgreSQL server’s time zone, so time_formatted will
show when the earthquake occurred in your server’s time zone time):

id time time_formatted
-- ------------- ----------------------
 1 1612137592990 2021-01-31 18:59:52-05
 2 1612137479762 2021-01-31 18:57:59-05
 3 1612136740672 2021-01-31 18:45:40-05
 4 1612136207600 2021-01-31 18:36:47-05
 5 1612135893550 2021-01-31 18:31:33-05

Now that we have an understandable timestamp, let’s find the oldest and
newest earthquake times using the min() and max() aggregate functions in
Listing 16-14.

SELECT min1(to_timestamp(
 (earthquake #>> '{properties, time}')::bigint /
1000

)) AT TIME ZONE 'UTC'2 AS
min_timestamp,

 max3(to_timestamp(
 (earthquake #>> '{properties, time}')::bigint /
1000

)) AT TIME ZONE 'UTC' AS
max_timestamp
FROM earthquakes;

Listing 16-14: Finding the minimum and maximum earthquake times

We place to_timestamp() and our milliseconds-to-seconds conversion
inside both the min() 1 and max() 3 functions in our SELECT list. This time,
we add the keywords AT TIME ZONE 'UTC' 2 after both functions;
regardless of our server time zone settings, the results will display the
timestamps in UTC, as USGS records them. Your results should look like
this:

 min_timestamp max_timestamp
------------------- -------------------
2021-01-01 00:01:39 2021-01-31 23:59:52

This collection of earthquakes spans a month—from early morning
January 1, 2021, through the end of day on January 31. That’s helpful
context as we continue to dig for usable information.

Finding the Largest and Most-Reported Earthquakes
Next, we’ll look at two data points that measure an earthquake’s size and
the degree to which citizens reported feeling it and apply JSON extraction
techniques to simple sorting of results.

Extracting by Magnitude
The USGS reports each earthquake’s magnitude in the mag key, beneath
properties. Magnitude, according to the USGS, is a number representing
the size of an earthquake at its source. Its scale is logarithmic: a magnitude
4 earthquake has seismic waves whose amplitude is about 10 times bigger
than a quake with a magnitude of 3. With that context, let’s find the five
largest earthquakes in our data using the code in Listing 16-15.

SELECT earthquake #>> '{properties, place}'1 AS place,
 to_timestamp((earthquake #>> '{properties,
time}')::bigint / 1000)
 AT TIME ZONE 'UTC' AS time,

 (earthquake #>> '{properties, mag}')::numeric AS
magnitude
FROM earthquakes

2 ORDER BY (earthquake #>> '{properties, mag}')::numeric3 DESC
NULLS LAST
LIMIT 5;

Listing 16-15: Finding the five earthquakes with the largest magnitude

We again use path extraction operators to retrieve our desired elements,
including values for place 1 and mag. To show the largest five in our
results, we add an ORDER BY clause 2 with mag. We cast the value to numeric
3 here and in the SELECT because we want to display and sort the value as a
number rather than as text. We also add the DESC NULLS LAST keywords,
which sorts the results in descending order and places NULL values (of
which there are two) last. Your results should look like this:

 place time
magnitude
------------------------------------- ------------------- ---

211 km SE of Pondaguitan, Philippines 2021-01-21 12:23:04
7
South Shetland Islands 2021-01-23 23:36:50
6.9
30 km SSW of Turt, Mongolia 2021-01-11 21:32:59
6.7
28 km SW of Pocito, Argentina 2021-01-19 02:46:21
6.4
Kermadec Islands, New Zealand 2021-01-08 00:28:50
6.3

The largest, of magnitude 7, was located beneath the ocean southeast of
the small city of Pondaguitan in the Philippines. The second was in the
Antarctic near the South Shetland Islands.

Extracting by Citizen Reports
The USGS operates a Did You Feel It? website at
https://earthquake.usgs.gov/data/dyfi/ where people can report their
earthquake experiences. Our JSON includes the number of reports for each
earthquake under the key felt, beneath properties. Let’s see which

https://earthquake.usgs.gov/data/dyfi/

earthquakes in our data generated the most reports using the code in Listing
16-16.

SELECT earthquake #>> '{properties, place}' AS place,
 to_timestamp((earthquake #>> '{properties,
time}')::bigint / 1000)
 AT TIME ZONE 'UTC' AS time,
 (earthquake #>> '{properties, mag}')::numeric AS
magnitude,

 (earthquake #>> '{properties, felt}')::integer1 AS
felt
FROM earthquakes

ORDER BY (earthquake #>> '{properties, felt}')::integer2 DESC
NULLS LAST
LIMIT 5;

Listing 16-16: Finding earthquakes with the most Did You Feel It?
reports

Structurally, this query is similar to Listing 16-15 that found the largest
quakes. We add a path extraction operator for the felt 1 key, casting the
returned text value to an integer type. We cast to integer so the extracted
text is treated as a number for sorting and display. Finally, we place the
extraction code in ORDER BY 2, using NULLS LAST because there are many
earthquakes with no reports and we want those to appear last in the list. You
should see these results:

 place time magnitude felt
------------------------- ------------------- --------- -----
4km SE of Aromas, CA 2021-01-17 04:01:27 4.2 19907
2km W of Concord, CA 2021-01-14 19:18:10 3.63 5101
10km NW of Pinnacles, CA 2021-01-02 14:42:23 4.32 3076
2km W of Willowbrook, CA 2021-01-20 16:31:58 3.52 2086
3km NNW of Santa Rosa, CA 2021-01-19 04:22:20 2.68 1765

The top five are in California, which makes sense. Did You Feel It? is a
US government-run system, so we’d expect more US reports—particularly
in earthquake-prone California. Also, some of the largest quakes in our data
occurred beneath oceans or in remote regions. The quake with more than
19,900 reports was moderate, but its nearness to cities meant more chance
for people to notice it.

Converting Earthquake JSON to Spatial Data
Our JSON data has longitude and latitude values for each earthquake,
meaning we can perform spatial analysis using the GIS techniques
discussed in Chapter 15. For example, we’ll use a PostGIS distance
function to locate earthquakes that occurred within 50 miles from a city.
First, though, we must convert the coordinates stored in JSON to a PostGIS
data type.

The longitude and latitude values are found in the array of the
coordinates key, under geometry. Here’s an example:

 "geometry": {
 "type": "Point",
 "coordinates": [-178.581, 51.8418333333333, 22.48]
 }

The first coordinate, at position 0 in the array, represents longitude; the
second, at position 1, is latitude. The third value denotes depth in
kilometers, which we won’t use. To extract these elements as text, we make
use of a #>> path operator, as in Listing 16-17.

SELECT id,
 earthquake #>> '{geometry, coordinates}' AS
coordinates,
 earthquake #>> '{geometry, coordinates, 0}' AS
longitude,
 earthquake #>> '{geometry, coordinates, 1}' AS
latitude
FROM earthquakes
ORDER BY id
LIMIT 5;

Listing 16-17: Extracting the earthquake’s location data

The query should return five rows:

id coordinates longitude latitude
-- -------------------------------- ------------ ----------
 1 [-122.852, 38.8228333, 2.48] -122.852 38.8228333
 2 [-148.3859, 64.2762, 16.2] -148.3859 64.2762
 3 [-152.489, 59.0143, 73] -152.489 59.0143

 4 [-115.82, 32.7493333, 9.85] -115.82 32.7493333
 5 [-115.6446667, 33.1711667, 5.89] -115.6446667 33.1711667

A quick visual compare of our result to the JSON longitude and
latitude values tells us we’ve extracted the values properly. Next, we’ll
use a PostGIS function to convert those values to a Point in the geography
data type.

NOTE

Your analysis database must have PostGIS enabled for this part of
the chapter. If you skipped Chapter 15, you can enable PostGIS by
running CREATE EXTENSION postgis; in pgAdmin.

Listing 16-18 generates a Point of type geography for each earthquake,
which we can use as input for PostGIS spatial functions.

SELECT ST_SetSRID(

 ST_MakePoint1(
 (earthquake #>> '{geometry, coordinates,
0}')::numeric,
 (earthquake #>> '{geometry, coordinates,
1}')::numeric
),

 43262)::geography AS earthquake_point
FROM earthquakes
ORDER BY id;

Listing 16-18: Converting JSON location data to PostGIS geography

Inside ST_MakePoint()1, we place our code to extract longitude and
latitude, casting both values to type numeric as required by the function.
We nest that function inside ST_SetSRID() to set a spatial reference system
identifier (SRID) for the resulting Point. In Chapter 15, you learned that the
SRID specifies a coordinate grid for plotting spatial objects. The SRID
value 4326 2 denotes the commonly used WGS 84 coordinate system.
Finally, we cast the entire output to the geography type. The first several
rows should look like this:

 earthquake_point
--
0101000020E61000004A0C022B87B65EC0A6C7009A52694340
0101000020E6100000D8F0F44A598C62C0EFC9C342AD115040
0101000020E6100000CFF753E3A50F63C0992A1895D4814D40
--snip--

We can’t interpret those strings of digits and letters directly, but we can
use pgAdmin’s Geometry Viewer to see the Points plotted on a map. With
your query results visible in the pgAdmin Data Output pane, click the eye
icon in the earthquake_point result header. You should see the
earthquakes plotted on a map that uses OpenStreetMap as the base layer, as
in Figure 16-1.

Even with only a month of data, it’s easy to see the abundance of
earthquakes concentrated around the edges of the Pacific Ocean, in the so-
called Ring of Fire where tectonic plates meet and volcanos are more
active.

Figure 16-1: Viewing earthquake locations in pgAdmin

Finding Earthquakes Within a Distance
Next, let’s narrow our study to earthquakes that occurred near Tulsa,
Oklahoma—a part of the country that has seen increased seismic activity
since 2009 as a result of oil and gas processing, according to the USGS.

To perform more complex GIS tasks like this, it’s easier if we
permanently convert the JSON coordinates to a column of PostGIS type
geography in the earthquakes table. That allows us to avoid the clutter of
adding conversion code in each query.

Listing 16-19 adds a column called earthquake_point to the
earthquakes table and fills the new column with the JSON coordinates
converted to type geography.

1 ALTER TABLE earthquakes ADD COLUMN earthquake_point
geography(POINT, 4326);

2 UPDATE earthquakes
SET earthquake_point =
 ST_SetSRID(
 ST_MakePoint(
 (earthquake #>> '{geometry, coordinates,
0}')::numeric,
 (earthquake #>> '{geometry, coordinates,
1}')::numeric
),
 4326)::geography;

3 CREATE INDEX quake_pt_idx ON earthquakes USING GIST
(earthquake_point);

Listing 16-19: Converting JSON coordinates to a PostGIS geometry
column

We use ALTER TABLE 1 to add a column earthquake_point of type
geography, specifying that the column will hold Points with an SRID of
4326. Next, we UPDATE 2 the table, setting the earthquake_point column
using the same syntax as in Listing 16-18, and add a spatial index using
GIST 3 to the new column.

That done, we can use Listing 16-20 to find earthquakes within 50 miles
of Tulsa.

SELECT earthquake #>> '{properties, place}' AS place,
 to_timestamp((earthquake -> 'properties' ->>
'time')::bigint / 1000)
 AT TIME ZONE 'UTC' AS time,
 (earthquake #>> '{properties, mag}')::numeric AS
magnitude,
 earthquake_point
FROM earthquakes

1 WHERE ST_DWithin(earthquake_point,
 2 ST_GeogFromText('POINT(-95.989505
36.155007)'),
 80468)
ORDER BY time;

Listing 16-20: Finding earthquakes within 50 miles of downtown Tulsa,
Oklahoma

In the WHERE clause 1, we employ the ST_DWithin() function, which
returns a Boolean value of true if one spatial object is within a specified
distance of another object. Here, we want to evaluate each earthquake Point
to check whether it’s within 50 miles of downtown Tulsa. We designate the
city’s coordinates in ST_GeogFromText() 2 and supply the value of 50 miles
using its meters equivalent, 80468, as meters is the required input. The
query should return 19 rows (I’ve omitted the earthquake_point column
and truncated the results for brevity):

 place time magnitude
------------------------------ ------------------- ---------
4 km SE of Owasso, Oklahoma 2021-01-04 19:46:58 1.53
6 km SSE of Cushing, Oklahoma 2021-01-05 08:04:42 0.91
2 km SW of Hulbert, Oklahoma 2021-01-05 21:08:28 1.95
--snip--

View the earthquake locations by clicking the eye icon atop the
earthquake_point column in the results in pgAdmin. You should see 19
dots around the city, as in Figure 16-2 (and you can adjust the underlying
map style by clicking the layer icon at top right).

Achieving these results required some coding gymnastics that would
have been unnecessary if the data had arrived in a shapefile or in a typical
SQL table. Nevertheless, it’s possible to extract meaningful insights from
JSON data using PostgreSQL’s support for the format. In the last part of the
chapter, we’ll cover useful PostgreSQL functions for generating and
manipulating JSON.

Figure 16-2: Viewing earthquakes near Tulsa, Oklahoma, in pgAdmin

Generating and Manipulating JSON
We can use PostgreSQL functions to create JSON from existing rows in a
SQL table or to modify JSON stored in a table to add, subtract, or change
keys and values. The PostgreSQL documentation at
https://www.postgresql.org/docs/current/functions-json.html lists several
dozen JSON-related functions—we’ll work through a few you might find
handy.

Turning Query Results into JSON
Because JSON is primarily a format for sharing data, it’s useful to be able
to quickly convert the results of a SQL query into JSON for delivery to

https://www.postgresql.org/docs/current/functions-json.html

another computer system. Listing 16-21 uses the PostgreSQL-specific
to_json() function to turn rows from the employees table you made in
Chapter 7 into JSON.

1 SELECT to_json(employees) AS json_rows
FROM employees;

Listing 16-21: Turning query results into JSON with to_json()

The to_json() function does what it says: transforms a supplied SQL
value to JSON. To convert all values in each row of the employees table,
we use to_json() in a SELECT 1 and supply the table name as the function’s
argument; that returns each row as a JSON object with column names as
keys:

 json_rows

{"emp_id":1,"first_name":"Julia","last_name":"Reyes","salary"
:115300.00,"dept_id":1}
{"emp_id":2,"first_name":"Janet","last_name":"King","salary":
98000.00,"dept_id":1}
{"emp_id":3,"first_name":"Arthur","last_name":"Pappas","salar
y":72700.00,"dept_id":2}
{"emp_id":4,"first_name":"Michael","last_name":"Taylor","sala
ry":89500.00,"dept_id":2}

We can modify our query a few ways to limit which columns to include
in the results. In Listing 16-22, we use a row() constructor as the argument
for to_json().

SELECT to_json(row(emp_id, last_name))1 AS json_rows
FROM employees;

Listing 16-22: Specifying columns to convert to JSON

A row() constructor (which is ANSI SQL compliant) builds a row value
from the arguments passed to it. In this case, we supply the column names
emp_id and last_name 1 and place row() inside to_json(). This syntax
returns just those columns in the JSON result:

 json_rows

{"f1":1,"f2":"Reyes"}
{"f1":2,"f2":"King"}
{"f1":3,"f2":"Pappas"}
{"f1":4,"f2":"Taylor"}

Notice, however, that the keys are named f1 and f2 instead of their
source column names. That’s a side effect of row(), which doesn’t preserve
column names when it builds the row record. We can set the names of the
keys, which is often done to keep the names short and reduce JSON file
size, improving transfer speeds. Listing 16-23 shows how via a subquery.

SELECT to_json(employees) AS json_rows
FROM (

 1 SELECT emp_id, last_name AS ln2 FROM employees
) AS employees;

Listing 16-23: Generating key names with a subquery

We write a subquery 1 that grabs the columns we want and alias the
result as employees. In the process, we alias a column name 2 to shorten its
appearance as a key in the JSON.

The results should look like this:

 json_rows

{"emp_id":1,"ln":"Reyes"}
{"emp_id":2,"ln":"King"}
{"emp_id":3,"ln":"Pappas"}
{"emp_id":4,"ln":"Taylor"}

Finally, Listing 16-24 shows how to compile all the rows of JSON into a
single array of objects. You may want to do this if you’re providing this
data to another application that will iterate over the array of objects to
perform a task, such as a calculation, or to render data on a device.

1 SELECT json_agg(to_json(employees)) AS json
FROM (

 SELECT emp_id, last_name AS ln FROM employees
) AS employees;

Listing 16-24: Aggregating the rows and converting to JSON

We wrap to_json() in the PostgreSQL-specific json_agg() 1 function,
which aggregates values, including NULL, into a JSON array. Its output
should look like this:

 json

[{"emp_id":1,"ln":"Reyes"}, {"emp_id":2,"ln":"King"},
{"emp_id":3,"ln":"Pappas"}, --snip--]

These are simple examples, but you can build more complex JSON
structures using subqueries to generate nested objects. We’ll consider one
way to do that as part of our “Try It Yourself” exercises at the end of the
chapter.

Adding, Updating, and Deleting Keys and Values
We can add to, update, and delete from JSON with a combination of
concatenation and PostgreSQL-specific functions. Let’s work through some
examples.

Adding or Updating a Top-Level Key/Value Pair
In Listing 16-25, we return to our films table and add a top-level key/value
pair "studio": "Pixar" to the film The Incredibles using two different
techniques:

UPDATE films

SET film = film ||1 '{"studio": "Pixar"}'::jsonb
WHERE film @> '{"title": "The Incredibles"}'::jsonb;

UPDATE films

SET film = film || jsonb_build_object('studio', 'Pixar')2
WHERE film @> '{"title": "The Incredibles"}'::jsonb;

Listing 16-25: Adding a top-level key/value pair via concatenation

Both examples use UPDATE statements to set new values for the jsonb
column film. In the first, we use the PostgreSQL concatenation operator ||
1 to combine the existing film JSON with the new key value/pair that we
cast to jsonb. In the second, we use concatenation again but with
jsonb_build_object(). This function takes a series of key and value
names as arguments and returns a jsonb object, letting us concatenate
several key/value pairs at a time if we wanted.

Both statements will insert the new key/value pair if the key doesn’t exist
in the JSON being concatenated; it will overwrite a key that’s present.
There’s no functional difference between the two statements, so feel free to
use whichever you prefer. Note that this behavior is specific to jsonb,
which doesn’t allow duplicate key names.

If you SELECT * FROM films; and double-click the updated data in the
film column, you should see the new key/value pair:

--snip--
 "rating": {
 "MPAA": "PG"
 },
 "studio": "Pixar",
 "characters": [
--snip--

Updating a Value at a Path
Currently we have two entries for the genre key for Cinema Paradiso:

"genre": ["romance", "drama"]

To add a third entry to the array, we use the function jsonb_set(), which
allows us to specify a value to update at a specific JSON path. In Listing
16-26, we use the UPDATE statement and jsonb_set() to add the genre
World War II.

UPDATE films

SET film = jsonb_set(film, 1

 '{genre}', 2
 film #> '{genre}' || '["World War II"]', 3
 true4)
WHERE film @> '{"title": "Cinema Paradiso"}'::jsonb;

Listing 16-26: Adding an array value at a path with jsonb_set()

In UPDATE, we SET the value of film to the result of jsonb_set() and use
WHERE to limit the update to just the row with Cinema Paradiso. The
function’s first argument 1 is the target JSON we want to modify, here film.
The second argument is the path 2 to the array value—the genre key. Third,
we give the new value for genre, which we specify as the current value of
genre concatenated with an array 3 with one value, "World War II". That
concatenation will produce an array with three elements. The final
argument is an optional Boolean value 4 that dictates whether jsonb_set()
should create the value if it’s not already present. It’s redundant here since
genre already exists; I’ve shown it for reference.

Run the query and then perform a quick SELECT to check the updated
JSON. You should see the genre array including three values: ["romance",
"drama", "World War II"].

Deleting a Value
We can remove keys and values from a JSON object by pairing two
operators. Listing 16-27 shows two UPDATE examples.

UPDATE films

SET film = film -1 'studio'
WHERE film @> '{"title": "The Incredibles"}'::jsonb;

UPDATE films

SET film = film #-2 '{genre, 2}'
WHERE film @> '{"title": "Cinema Paradiso"}'::jsonb;

Listing 16-27: Deleting values from JSON

The minus sign 1 acts as a deletion operator, removing the key studio
and its value, which we added earlier for The Incredibles. Supplying a text

string after the minus sign indicates we want to remove a key and its value;
supplying an integer will remove the element at that index.

The #- 2 sign is a path deletion operator that removes the JSON element
that exists at a path we specify. The syntax is similar to that of the path
extraction operators #> and #>>. Here, we use {genre, 2} to indicate the
third element of the array for genre (remember, JSON array indexes begin
counting at zero). This will remove the value World War II that we added
earlier to Cinema Paradiso.

Run both statements and then use SELECT to view the altered film JSON.
You should see both elements removed.

Using JSON Processing Functions
To finish our JSON studies, we’ll review a selection of PostgreSQL-specific
functions for processing JSON data, including expanding array values into
table rows and formatting output. You can find a complete listing of
functions in the PostgreSQL documentation at
https://www.postgresql.org/docs/current/functions-json.html.

Finding the Length of an Array
Counting the number of items in an array is a routine programming and
analysis task. We might, for example, want to know how many actors are
stored for each film in our JSON. To do this, we can use the
jsonb_array_length() function in Listing 16-28.

SELECT id,
 film ->> 'title' AS title,

 1 jsonb_array_length(film -> 'characters') AS
num_characters
FROM films
ORDER BY id;

Listing 16-28: Finding the length of an array

As its only argument, the function 1 takes an expression that extracts the
value of the character key from film. Running the query should produce

https://www.postgresql.org/docs/current/functions-json.html

these results:

id title num_characters
-- --------------- --------------
 1 The Incredibles 3
 2 Cinema Paradiso 2

The output correctly shows that we have three characters for The
Incredibles and two for Cinema Paradiso. Note there’s a similar
json_array_length() function for the json type.

Returning Array Elements as Rows
The jsonb_array_elements() and jsonb_array_elements_text()
functions convert array elements into rows, with one row per element. This
is a useful tool for data processing. To convert JSON into structured SQL
data, for example, we could use this function to generate the rows to INSERT
into a table or to generate rows that we can aggregate by grouping and
counting.

Listing 16-29 uses both functions to turn the genre key’s array values
into rows. Each function takes a jsonb array as an argument. The difference
between the two is that jsonb_array_elements() returns the array
elements as rows of jsonb values, while jsonb_array_elements_text()
returns elements as, you guessed it, text.

SELECT id,
 jsonb_array_elements(film -> 'genre') AS genre_jsonb,
 jsonb_array_elements_text(film -> 'genre') AS
genre_text
FROM films
ORDER BY id;

Listing 16-29: Returning array elements as rows

Running the code should produce these results:

id genre_jsonb genre_text
-- ----------- ----------
 1 "animation" animation
 1 "action" action

 1 "sci-fi" sci-fi
 2 "romance" romance
 2 "drama" drama

On an array with a simple list of values, that works nicely, but if an array
contains a collection of JSON objects with their own key/value pairs, like
character in our film JSON, we need additional processing to unpack the
values first. Listing 16-30 walks through the process.

SELECT id,

 jsonb_array_elements(film -> 'characters') 1
FROM films
ORDER BY id;

2 WITH characters (id, json) AS (
 SELECT id,
 jsonb_array_elements(film -> 'characters')
 FROM films
)

3 SELECT id,
 json ->> 'name' AS name,
 json ->> 'actor' AS actor
FROM characters
ORDER BY id;

Listing 16-30: Returning key values from each item in an array

We use jsonb_array_elements() to return the elements of the
characters 1 array, which should return each JSON object in the array as a
row:

id jsonb_array_elements
-- --
 1 {"name": "Mr. Incredible", "actor": "Craig T. Nelson"}
 1 {"name": "Elastigirl", "actor": "Holly Hunter"}
 1 {"name": "Frozone", "actor": "Samuel L. Jackson"}
 2 {"name": "Salvatore", "actor": "Salvatore Cascio"}
 2 {"name": "Alfredo", "actor": "Philippe Noiret"}

To convert the name and actor values to columns, we employ a common
table expression (CTE) as covered in Chapter 13. Our CTE 2 uses
jsonb_array_elements() to generate a simple temporary characters table

with two columns: the film’s id and the unpacked array values in a column
called json. We follow with a SELECT statement 3 that queries the
temporary table, extracting the values of name and actor from the json
column:

id name actor
-- -------------- -----------------
 1 Mr. Incredible Craig T. Nelson
 1 Elastigirl Holly Hunter
 1 Frozone Samuel L. Jackson
 2 Salvatore Cascio
 2 Alfredo Philippe Noiret

Those values are neatly parsed into a standard SQL structure and suitable
for further analysis using standard SQL.

Wrapping Up
JSON is such a ubiquitous format that it’s likely you’ll encounter it often in
your journey analyzing data. You’ve learned that PostgreSQL easily
handles loading, indexing, and parsing JSON, but JSON sometimes requires
extra steps to process that aren’t needed with data handled via standard SQL
conventions. As with many areas of coding, your decision on whether to
make use of JSON will depend on your specific circumstances. Now, you’re
equipped to understand the context.

JSON itself is a standard, but the data types and the majority of functions
and syntax in this chapter were PostgreSQL-specific. That’s because the
ANSI SQL standard leaves it to database vendors to decide how to
implement most JSON support. If your work involves using Microsoft SQL
Server, MySQL, SQLite, or another system, consult their documentation.
You’ll find many similarities in capabilities even if the function names
differ.

TRY IT YOURSELF

Use your new JSON skills to answer these questions:
The earthquakes JSON has a key tsunami that’s set to a value of 1 for large

earthquakes in oceanic regions (though it doesn’t mean a tsunami actually happened).
Using either path or field extraction operators, find earthquakes with a tsunami value of

1 and include their location, time, and magnitude in your results.

Use the following CREATE TABLE statement to add the table earthquakes_from_json to
your analysis database:

CREATE TABLE earthquakes_from_json (
 id text PRIMARY KEY,
 title text,
 type text,
 quake_date timestamp with time zone,
 mag numeric,
 place text,
 earthquake_point geography(POINT, 4326),
 url text
);

Using field and path extraction operators, write an INSERT statement to fill the table with
the correct values for each earthquake. Refer to the full sample earthquake JSON in
your Chapter_16.sql file for any key names and paths you need.
Bonus (difficult) question: Try writing a query to generate the following JSON using the

data in the teachers and teachers_lab_access tables from Chapter 13:

{
 "id": 6,
 "fn": "Kathleen",
 "ln": "Roush",
 "lab_access": [{
 "lab_name": "Science B",
 "access_time": "2022-12-17T16:00:00-05:00"
 }, {
 "lab_name": "Science A",
 "access_time": "2022-12-07T10:02:00-05:00"
 }]
}

It’s helpful to remember that the teachers table has a one-to-many relationship with
teachers_lab_access; the first three keys must come from teachers, and the JSON
objects in the array of lab_access will come from teachers_lab_access. Hint: you’ll need
to use a subquery in your SELECT list and a function called json_agg() to create the
lab_access array. If you’re stumped, take a peek in your Try_It_Yourself.sql file included
with the book’s resources, where I’ve placed the answers to all these exercises.

17
SAVING TIME WITH VIEWS,

FUNCTIONS, AND TRIGGERS

One advantage of using a programming
language is that we can automate
repetitive, boring tasks. That’s what this
chapter is about: taking the queries or
steps you might do over and over and

turning them into reusable database objects that you
code once and can call later to let the database do the
work. Programmers call this the DRY principle:
Don’t Repeat Yourself.

You’ll start by learning to store queries as reusable database views. Next,
you’ll explore how to create database functions you can use to operate on
your data, the same way you’ve used built-in functions like round() and
upper(). Then you’ll set up triggers to run your functions automatically
when certain events occur on a table. All these techniques are useful not
only for reducing repetitive work but for ensuring data integrity too.

We’ll practice these techniques on tables created from examples in earlier
chapters. All the code for this chapter is available for download along with
the book’s resources at https://nostarch.com/practical-sql-2nd-edition/.

https://nostarch.com/practical-sql-2nd-edition/

Using Views to Simplify Queries
A view is essentially a stored query with a name that you can work with as
if it were a table. For example, a view might store a query that calculates
total population by state. As with a table, you could query that view, join
the view to tables (or to other views), and use the view to update or insert
data into a table it’s based on, albeit with some caveats. The stored query in
a view can be simple, referencing just one table, or complex, with multiple
table joins.

Views are especially useful in the following scenarios:
Avoiding duplicate effort: They let you write a complex query once and
access the results when needed.
Reducing clutter: They can trim the amount of information you need to
wade through by showing only columns relevant to your needs.
Providing security: Views can limit access to only certain columns in a
table.

In this section, we’ll look at two kinds of views. The first—a standard
view—contains PostgreSQL syntax that’s largely in line with the ANSI
SQL standard for views. Every time you access a standard view, the stored
query runs and generates a temporary set of results. The second is a
materialized view, which is specific to PostgreSQL, Oracle, and a limited
number of other database systems. When you create a materialized view,
the data returned by its query is stored permanently in the database like a
table; you can refresh the view to update the stored data if needed.

NOTE

To ensure data security and prevent users from seeing sensitive
information, you must restrict access by setting account permissions
in PostgreSQL and also define the view using a security_barrier
attribute. Typically, a database administrator handles these tasks,
but if you want to explore this issue further, read the PostgreSQL
documentation on user roles at
https://www.postgresql.org/docs/current/sql-createrole.html, on the
GRANT command at https://www.postgresql.org/docs/current/sql-
grant.html, and on security_barrier at
https://www.postgresql.org/docs/current/rules-privileges.html.

Views are easy to create and maintain. Let’s work through several
examples to see how they work.

Creating and Querying Views
In this section, we’ll return to the census estimates table
us_counties_pop_est_2019 you imported in Chapter 5. Listing 17-1
creates a standard view that returns just the population of Nevada counties.
The original table has sixteen columns; the view will return just four of
them. This would be useful for making a subset of Nevada census data
quickly accessible when we’re referring to it often or using the data in an
application.

1 CREATE OR REPLACE VIEW nevada_counties_pop_2019 AS
 2 SELECT county_name,
 state_fips,
 county_fips,
 pop_est_2019
 FROM us_counties_pop_est_2019
 WHERE state_name = 'Nevada';

Listing 17-1: Creating a view that displays Nevada 2019 counties

We define the view using the keywords CREATE OR REPLACE VIEW 1
followed by the view’s name, nevada_counties_pop_2019, and then AS.

https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/current/sql-grant.html
https://www.postgresql.org/docs/current/rules-privileges.html

(We can name the view any way we’d like; I prefer a name that’s
descriptive of the view’s results.) Next, we use a standard SQL SELECT 2 to
fetch the 2019 population estimate (the pop_est_2019 column) for each
Nevada county from the us_counties_pop_est_2019 table.

Notice the OR REPLACE keywords after CREATE. These are optional and
tell the database that if a view with this name already exists, then replace it
with the new definition. It’s helpful to include these keywords if you’re
iterating on creating a view and want to refine the query. There is one
caveat: if you’re replacing an existing view, the new query 2 must generate
the same column names with the same data types and in the same order as
the one it’s replacing. You can add columns, but they must be placed at the
end of the column list. If you try to do otherwise, the database will respond
with an error message.

Run the code in Listing 17-1 using pgAdmin. The database should
respond with the message CREATE VIEW. To find the new view, in
pgAdmin’s object browser, right-click the analysis database and click
Refresh. Choose Schemas▶public▶Views to see all views. When you
right-click your new view and click Properties, you should see a more
verbose version of the query (with the table name prepended to each
column name) on the Code tab in the dialog that opens. That’s a handy way
to inspect views you might find in a database.

NOTE

As with other database objects, you can delete a view using the DROP
command. In this example, the syntax would be DROP VIEW
nevada_counties_pop_2019;.

This type of view—one that isn’t materialized—holds no data at this
point; instead, the stored SELECT query it contains will run when you access
the view from another query. For example, the code in Listing 17-2 returns
all columns in the view. As with a typical SELECT query, we can use ORDER
BY to sort results, this time using the county’s Federal Information
Processing Standards (FIPS) code—the standard designator the US Census

Bureau and other federal agencies use to specify each county and state. We
also add a LIMIT clause to display just five rows.

SELECT *
FROM nevada_counties_pop_2019
ORDER BY county_fips
LIMIT 5;

Listing 17-2: Querying the nevada_counties_pop_2010 view

Aside from the five-row limit, the result should be the same as if you had
run the SELECT query used to create the view in Listing 17-1:

 geo_name | state_fips | county_fips | pop_2010
------------------+------------+-------------+----------
 Churchill County | 32 | 001 | 24909
 Clark County | 32 | 003 | 2266715
 Douglas County | 32 | 005 | 48905
 Elko County | 32 | 007 | 52778
 Esmeralda County | 32 | 009 | 873

This simple example isn’t useful unless quickly listing Nevada county
population is a task you’ll perform frequently. So, let’s imagine a question
data-minded analysts in a political research organization might ask often:
what was the percent change in population for each county in Nevada (or
any other state) from 2010 to 2019?

We wrote a query to answer this question in Chapter 7, and though it
wasn’t onerous to create, it did require joining tables on two columns and
using a percent change formula that involved rounding and type casting. To
avoid repeating that work, we can create a view that stores a query similar
to the one in Chapter 7 as a view, as shown in Listing 17-3.

1 CREATE OR REPLACE VIEW county_pop_change_2019_2010 AS
 2 SELECT c2019.county_name,
 c2019.state_name,
 c2019.state_fips,
 c2019.county_fips,
 c2019.pop_est_2019 AS pop_2019,
 c2010.estimates_base_2010 AS pop_2010,

 3 round((c2019.pop_est_2019::numeric -

c2010.estimates_base_2010)
 / c2010.estimates_base_2010 * 100, 1) AS
pct_change_2019_2010

 4 FROM us_counties_pop_est_2019 AS c2019
 JOIN us_counties_pop_est_2010 AS c2010
 ON c2019.state_fips = c2010.state_fips
 AND c2019.county_fips = c2010.county_fips;

Listing 17-3: Creating a view showing population change for US
counties

We start the view definition with CREATE OR REPLACE VIEW 1, followed
by the name of the view and AS. The SELECT query 2 names columns from
the census tables and includes a column definition with a percent change
calculation 3 that you learned about in Chapter 6. Then we join the 2019
and 2010 census tables 4 using the state and county FIPS codes. Run the
code, and the database should again respond with CREATE VIEW.

Now that we’ve created the view, we can use the code in Listing 17-4 to
run a simple query using the new view that retrieves data for Nevada
counties.

SELECT county_name,
 state_name,
 pop_2019,

 1 pct_change_2019_2010
FROM county_pop_change_2019_2010

2 WHERE state_name = 'Nevada'
ORDER BY county_fips
LIMIT 5;

Listing 17-4: Selecting columns from the county_pop_change_2019_2010
view

In Listing 17-2, in the query that referenced our
nevada_counties_pop_2019 view, we retrieved every column in the view
by using the asterisk wildcard after SELECT. Listing 17-4 shows that, as with
a query on a table, we can name specific columns when querying a view.
Here, we specify four of the county_pop_change_2019_2010 view’s seven
columns. One is pct_change_2019_2010 1, which returns the result of the

percent change calculation we’re looking for. As you can see, it’s much
simpler to write the column name like this than the whole formula. We’re
also filtering the results using a WHERE clause 2, similar to how we’d filter
any query.

After querying the four columns from the view, the results should look
like this:

 county_name state_name pop_2019 pct_change_2019_2010
---------------- ---------- -------- --------------------
Churchill County Nevada 24909 0.1
Clark County Nevada 2266715 16.2
Douglas County Nevada 48905 4.1
Elko County Nevada 52778 7.8
Esmeralda County Nevada 873 11.4

Now we can revisit this view as often as we like to pull data for
presentations or to answer questions about the percent change in population
for any county in America from 2010 to 2019.

Looking at just these five rows, you can see a couple of interesting
stories emerge: the continued rapid growth of Clark County, which includes
the city of Las Vegas, as well as a strong percent increase in Esmeralda
County, one of the smallest counties in the United States and home to
several ghost towns.

Creating and Refreshing a Materialized View
A materialized view differs from a standard view in that upon its creation,
the materialized view’s stored query is executed, and the results it generates
are saved in the database. In effect, this creates a new table. The view
retains its stored query, so you can update the saved data by issuing a
command to refresh the view. A good use for materialized views is to
preprocess complex queries that take a while to run and make those results
available for faster querying.

Let’s drop the nevada_counties_pop_2019 view and re-create it as a
materialized view using the code in Listing 17-5.

1 DROP VIEW nevada_counties_pop_2019;

2 CREATE MATERIALIZED VIEW nevada_counties_pop_2019 AS
 SELECT county_name,
 state_fips,
 county_fips,
 pop_est_2019
 FROM us_counties_pop_est_2019
 WHERE state_name = 'Nevada';

Listing 17-5: Creating a materialized view

First, we use a DROP VIEW 1 statement to remove the
nevada_counties_pop_2019 view from the database. Then, we run CREATE
MATERIALIZED VIEW 2 to make the view. Notice that the syntax is the same
as the one for making a standard view, except for the added MATERIALIZED
keyword and the omission of OR REPLACE, which is not available in the
materialized view syntax. After running the statement, the database should
respond with the message SELECT 17, telling you that the view’s query
produced 17 rows to be stored in the view. We can now query this data as
with a standard view.

Let’s say that the population estimates stored in
us_counties_pop_est_2019 are revised. To update the data stored in the
materialized view, we can use the REFRESH keyword, as in Listing 17-6.

REFRESH MATERIALIZED VIEW nevada_counties_pop_2019;

Listing 17-6: Refreshing a materialized view

Executing this statement reruns the query stored in the
nevada_counties_pop_2019 view; the server will respond with the message
REFRESH MATERIALIZED VIEW. The view will now reflect any updates to the
data referenced by the view’s query. When you have a query that takes
some time to run, you can save time by storing its results in a materialized
view that’s refreshed periodically, letting users quickly access the stored
data rather than run a lengthy query.

NOTE

Using REFRESH MATERIALIZED VIEW CONCURRENTLY will prevent
locking out SELECT statements that are executed against the view
during the refresh. See https://www.postgresql.org/docs/current/sql-
refreshmaterializedview.html for details.

To delete a materialized view, we use a DROP MATERIALIZED VIEW
statement. Also, note that materialized views appear in a different part of
pgAdmin’s object browser, under Schemas▶public▶Materialized Views.

Inserting, Updating, and Deleting Data Using a View
With nonmaterialized views, you can update or insert data in the underlying
table being queried as long as the view meets certain conditions. One
requirement is that the view must reference a single table or updatable view.
If the view’s query joins tables, as with the population change view we just
built in the previous section, you can’t perform inserts or updates to the
original table directly. Also, the view’s query can’t contain DISTINCT, WITH,
GROUP BY, or other clauses. (See a complete list of restrictions at
https://www.postgresql.org/docs/current/sql-createview.html.)

You already know how to directly insert and update data on a table, so
why do it through a view? One reason is that a view is one way you can
exercise control over which data a user can update. Let’s work through an
example to see how this works.

Creating a View of Employees
In the Chapter 7 lesson on joins, we created and filled the departments and
employees tables with four rows about people and where they work (if you
skipped that section, you can revisit Listing 7-1). Running a quick SELECT *
FROM employees ORDER BY emp_id; query shows the table’s contents, as
you can see here:

emp_id first_name last_name salary dept_id
------ ---------- --------- --------- -------
 1 Julia Reyes 115300.00 1

https://www.postgresql.org/docs/current/sql-refreshmaterializedview.html
https://www.postgresql.org/docs/current/sql-createview.html

 2 Janet King 98000.00 1
 3 Arthur Pappas 72700.00 2
 4 Michael Taylor 89500.00 2

Let’s say we want to use a view to give users in the Tax Department (its
dept_id is 1) the ability to add, remove, or update their employees’ names
without letting them change salary information or the data of employees in
another department. To do this, we can set up a view using Listing 17-7.

CREATE OR REPLACE VIEW employees_tax_dept WITH

(security_barrier)1 AS
 SELECT emp_id,
 first_name,
 last_name,
 dept_id
 FROM employees

 2 WHERE dept_id = 1
 3 WITH LOCAL CHECK OPTION;

Listing 17-7: Creating a view on the employees table

This view is similar to others we’ve created so far, but with a few
additions. First, in the CREATE OR REPLACE VIEW statement, we add the
keywords WITH (security_barrier) 1. This enables a level of database
security to prevent a malicious user from getting around restrictions that the
view places on rows and columns. (See
https://www.postgresql.org/docs/current/rules-privileges.html for how
someone might subvert a view if you omit this type of security.)

In the view’s SELECT query, we pick the columns we want to show from
the employees table and use WHERE to filter the results on dept_id = 1 2 to
list only Tax Department staff. The view itself will restrict updates or
deletes to rows matching the condition in the WHERE clause. Adding the
keywords WITH LOCAL CHECK OPTION 3 restricts inserts as well, allowing
users to add new Tax Department employees only (if the view definition
omitted those keywords, you could use it to insert a row with a dept_id of
3, for example). The LOCAL CHECK OPTION also prevents a user from
changing an employee’s dept_id to a value other than 1.

https://www.postgresql.org/docs/current/rules-privileges.html

Create the employees_tax_dept view by running the code in Listing 17-
7. Then run SELECT * FROM employees_tax_dept ORDER BY emp_id;,
which should provide these two rows:

emp_id first_name last_name dept_id
------ ---------- --------- -------
 1 Julia Reyes 1
 2 Janet King 1

The result shows the employees who work in the Tax Department;
they’re two of the four rows in the entire employees table.

Now, let’s look at how inserts and updates work via this view.

Inserting Rows Using the employees_tax_dept View
We can use a view to insert or update data, but instead of using the table
name in the INSERT or UPDATE statement, we substitute the view name. After
we add or change data using a view, the change is applied to the underlying
table, which in this case is employees. The view then reflects the change via
the query it runs.

Listing 17-8 shows two examples that attempt to add new employee
records via the employees_tax_dept view. The first succeeds, but the
second fails.

1 INSERT INTO employees_tax_dept (emp_id, first_name, last_name,
dept_id)
VALUES (5, 'Suzanne', 'Legere', 1);

2 INSERT INTO employees_tax_dept (emp_id, first_name, last_name,
dept_id)
VALUES (6, 'Jamil', 'White', 2);

3 SELECT * FROM employees_tax_dept ORDER BY emp_id;

4 SELECT * FROM employees ORDER BY emp_id;

Listing 17-8: Successful and rejected inserts via the
employees_tax_dept view

In the first INSERT 1, which uses the insert syntax you learned in Chapter
2, we supply the first and last names of Suzanne Legere plus her emp_id
and dept_id. Because the new row will satisfy the LOCAL CHECK in the view
—it contains the same columns and dept_id is 1—the insert succeeds when
it executes.

But when we run the second INSERT 2 to add an employee named Jamil
White using a dept_id of 2, the operation fails with the error message new
row violates check option for view "employees_tax_dept". The
reason is that when we created the view, we used a WHERE clause to return
only rows with dept_id = 1. The dept_id of 2 doesn’t pass the LOCAL
CHECK, so it’s prevented from being inserted.

Run the SELECT statement 3 on the view to check that Suzanne Legere
was successfully added:

emp_id first_name last_name dept_id
------ ---------- --------- -------
 1 Julia Reyes 1
 2 Janet King 1
 5 Suzanne Legere 1

We also query the employees table 4 to see that, in fact, Suzanne Legere
was added to the full table. The view queries the employees table each time
we access it.

emp_id first_name last_name salary dept_id
------ ---------- --------- --------- -------
 1 Julia Reyes 115300.00 1
 2 Janet King 98000.00 1
 3 Arthur Pappas 72700.00 2
 4 Michael Taylor 89500.00 2
 5 Suzanne Legere 1

As you can see from the addition of Suzanne Legere, the data we add
using a view is also added to the underlying table. However, because the
view doesn’t include the salary column, the value in her row is NULL. If
you attempt to insert a salary value using this view, you would receive the
error message column "salary" of relation "employees_tax_dept"
does not exist. The reason is that even though the salary column exists
in the underlying employees table, it’s not referenced in the view. Again,

this is one way to limit access to sensitive data. Check the links I provided
in the note in the section “Using Views to Simplify Queries” to learn more
about granting permissions to users and adding WITH (security_barrier)
if you plan to take on database administrator responsibilities.

Updating Rows Using the employees_tax_dept View
The same restrictions on accessing data in an underlying table apply when
we update data using the employees_tax_dept view. Listing 17-9 shows a
standard query to change the spelling of Suzanne’s last name using UPDATE
(as a person with more than one uppercase letter in their last name, I can
confirm such corrections aren’t unusual).

UPDATE employees_tax_dept
SET last_name = 'Le Gere'
WHERE emp_id = 5;

SELECT * FROM employees_tax_dept ORDER BY emp_id;

Listing 17-9: Updating a row via the employees_tax_dept view

Run the code, and the result from the SELECT query should show the
updated last name, which occurs in the underlying employees table:

emp_id first_name last_name dept_id
------ ---------- --------- -------
 1 Julia Reyes 1
 2 Janet King 1
 5 Suzanne Le Gere 1

Suzanne’s last name is now correctly spelled as Le Gere, not Legere.
However, if we try to update the name of an employee who’s not in the

Tax Department, the query fails just as it did when we tried to insert Jamil
White in Listing 17-8. Trying to use this view to update the salary of an
employee—even one in the Tax Department—will also fail. If the view
doesn’t reference a column in the underlying table, you can’t access that
column through the view. Again, the fact that updates on views are
restricted in this way offers ways to secure and hide certain pieces of data.

Deleting Rows Using the employees_tax_dept View
Now, let’s explore how to delete rows using a view. The restrictions on
which data you can affect apply here as well. For example, if Suzanne Le
Gere gets a better offer from another firm and decides to leave, you could
remove her from employees through the employees_tax_dept view. Listing
17-10 shows the query in the standard DELETE syntax.

DELETE FROM employees_tax_dept
WHERE emp_id = 5;

Listing 17-10: Deleting a row via the employees_tax_dept view

Run the query, and PostgreSQL should respond with DELETE 1. However,
when you try to delete a row for an employee in a department other than the
Tax Department, PostgreSQL won’t allow it and will report DELETE 0.

In summary, views not only give you control over access to data, but also
give you shortcuts for working with data. Next, let’s explore how to use
functions to save keystrokes and time.

Creating Your Own Functions and
Procedures
You’ve used functions throughout the book, such as to capitalize letters
with upper() or add numbers with sum(). Behind these functions is a
significant amount of (sometimes complex) programming that executes a
series of actions and may, depending on the job of the function, return a
response. We’ll avoid complicated code here, but we’ll build some basic
functions that you can use as a launchpad for your own ideas. Even simple
functions can help you avoid repeating code.

Much of the syntax in this section is specific to PostgreSQL, which
supports both user-defined functions and procedures (the difference
between the two is subtle, and I’ll give examples of both). You can define
functions and procedures using plain SQL, but you also can choose from
other options. One is a PostgreSQL-specific procedural language called
PL/pgSQL that adds features not found in standard SQL, such as logical

control structures (IF ... THEN ... ELSE). Other options include
PL/Python and PL/R for the Python and R programming languages.

Note that major database systems including Microsoft SQL Server,
Oracle, and MySQL implement their own variations of functions and
procedures. If you’re using another database management system, this
section will be useful for understanding concepts related to functions, but
you’ll need to check your database’s documentation for specifics on its
implementation of functions.

Creating the percent_change() Function
A function processes data and returns a value. As an example, let’s write a
function to simplify a staple of data analysis: calculating the percent change
between two values. In Chapter 6, you learned that we express the percent
change formula this way:

percent change = (New Number – Old Number) / Old Number

Rather than writing that formula each time we need it, we can create a
function called percent_change() that takes the new and old numbers as
inputs and returns the result rounded to a user-specified number of decimal
places. Let’s walk through the code in Listing 17-11 to see how to declare a
simple function that uses SQL.

1 CREATE OR REPLACE FUNCTION
2 percent_change(new_value numeric,

 old_value numeric,

 decimal_places integer 3DEFAULT 1)
4 RETURNS numeric AS
5 'SELECT round(

 ((new_value - old_value) / old_value) * 100,
decimal_places
);'

6 LANGUAGE SQL
7 IMMUTABLE
8 RETURNS NULL ON NULL INPUT;

Listing 17-11: Creating a percent_change() function

A lot is happening in this code, but it’s not as complicated as it looks. We
start with the command CREATE OR REPLACE FUNCTION 1. As with the
syntax to create a view, the OR REPLACE keywords are optional. We then
give the name of the function 2 and, in parentheses, a list of arguments that
determine the function’s inputs. Each argument will serve as an input to the
function and gets a name and data type. For example, new_value and
old_value are numeric and require that the user of the function supply
input values matching that type, whereas decimal_places (which specifies
the number of places to round results) is integer. For decimal_places, we
specify 1 as the DEFAULT 3 value—this makes the argument optional and, if
it’s omitted by the user, will set the argument to 1 by default.

We then use the keywords RETURNS numeric AS 4 to tell the function to
return its calculation as type numeric. If this were a function to concatenate
strings, we might return text.

Next, we write the meat of the function that performs the calculation.
Inside single quotes, we place a SELECT query 5 that includes the percent
change calculation nested inside a round() function. In the formula, we use
the function’s argument names instead of numbers.

We then supply a series of keywords that define the function’s attributes
and behavior. The LANGUAGE 6 keyword specifies that we’ve written this
function using plain SQL as opposed to one of other languages PostgreSQL
supports for creating functions. Next, the IMMUTABLE keyword 7 indicates
that the function cannot modify the database and will always return the
same result for a given set of arguments. The line RETURNS NULL ON NULL
INPUT 8 guarantees that the function will supply a NULL response if any
input that is not supplied by default is a NULL.

Run the code using pgAdmin to create the percent_change() function.
The server should respond with the message CREATE FUNCTION.

Using the percent_change() Function
To test the new percent_change() function, run it by itself using SELECT,
as shown in Listing 17-12.

SELECT percent_change(110, 108, 2);

Listing 17-12: Testing the percent_change() function

This example uses a value of 110 for the new number, 108 for the old
number, and 2 as the desired number of decimal places to round the result.

Run the code; the result should look like this:

 percent_change

 1.85

The result tells us there’s a 1.85 percent increase between 108 and 110.
Experiment with other numbers to see how the results change. Also, try
changing the decimal_places argument to values including 0, or omit it, to
see how that affects the output. You should see results that have more or
fewer numbers after the decimal point, based on your input.

We created this function to avoid writing the full percent change formula
in queries. Let’s use it to calculate percent change using a version of the
census estimates population change query we wrote in Chapter 7, as shown
in Listing 17-13.

SELECT c2019.county_name,
 c2019.state_name,
 c2019.pop_est_2019 AS pop_2019,

 1 percent_change(c2019.pop_est_2019,
 c2010.estimates_base_2010) AS
pct_chg_func,

 2 round((c2019.pop_est_2019::numeric -
c2010.estimates_base_2010)
 / c2010.estimates_base_2010 * 100, 1) AS
pct_change_formula
FROM us_counties_pop_est_2019 AS c2019
 JOIN us_counties_pop_est_2010 AS c2010
ON c2019.state_fips = c2010.state_fips
 AND c2019.county_fips = c2010.county_fips
ORDER BY pct_chg_func DESC
LIMIT 5;

Listing 17-13: Testing percent_change() on census data

Listing 17-13 modifies the original query from Chapter 7 to add the
percent_change() function 1 as a column in SELECT. We also include the
explicit percent change formula 2 so we can compare results. As inputs, we
use the 2019 population estimate column (c2019.pop_est_2019) as the new
number and the 2010 estimates base as the old
(c2010.estimates_base_2010).

The query results should display the five counties with the greatest
percent change in population, and the results from the function should
match the results from the formula entered directly into the query. Note that
each value in the pct_chg_func column has one decimal place, the
function’s default value, because we didn’t provide the optional third
argument. Here’s the result with both the function and the formula:

 county_name state_name pop_2019 pct_chg_func
pct_chg_formula
--------------- ------------ -------- ------------ ----------

McKenzie County North Dakota 15024 136.3
136.3
Loving County Texas 169 106.1
106.1
Williams County North Dakota 37589 67.8
67.8
Hays County Texas 230191 46.5
46.5
Wasatch County Utah 34091 44.9
44.9

Now that we know the function works as intended, we can use
percent_change() any time we need to solve that calculation—and that’s
much faster than writing out the formula!

Updating Data with a Procedure
As implemented in PostgreSQL, a procedure is a close relative of a
function, albeit with some significant differences. Both procedures and
functions can perform data operations that don’t return a value, such as an
update. Procedures, on the other hand, don’t have a clause to return a value,
while functions do. Also, procedures can incorporate the transaction
commands we covered in Chapter 10 such as COMMIT and ROLLBACK, and

functions cannot. Many database managers implement procedures, which
are sometimes referred to as stored procedures. PostgreSQL added
procedures as of version 11 and are part of the SQL standard, though
PostgreSQL syntax is not fully compatible.

We can simplify routine updates to data using procedures. In this section,
we’ll write a procedure that updates a record of the correct number of
personal days off a teacher gets (in addition to vacation days) based on the
time elapsed since their hire date.

For this exercise, we’ll return to the teachers table from the first lesson
in Chapter 2. If you skipped “Creating a Table” in that chapter, create the
teachers table and insert the data now using the example code in Listings
2-2 and 2-3.

Let’s add a column to teachers to hold the teachers’ personal days using
the code in Listing 17-14. The new column will be empty until we fill it
later using a procedure.

ALTER TABLE teachers ADD COLUMN personal_days integer;

SELECT first_name,
 last_name,
 hire_date,
 personal_days
FROM teachers;

Listing 17-14: Adding a column to the teachers table and seeing the
data

Listing 17-14 updates the teachers table using ALTER and adds the
personal_days column using the keywords ADD COLUMN. We then run the
SELECT statement to view the data, in which we also include the names and
hire dates of each teacher. When both queries finish, you should see the
following six rows:

first_name last_name hire_date personal_days
---------- --------- ---------- -------------
Janet Smith 2011-10-30
Lee Reynolds 1993-05-22
Samuel Cole 2005-08-01
Samantha Bush 2011-10-30

Betty Diaz 2005-08-30
Kathleen Roush 2010-10-22

The personal_days column contains only NULL values because we
haven’t inserted anything yet.

Now, let’s create a procedure called update_personal_days() that
populates the personal_days column with their earned personal days (in
addition to vacation days). We’ll use the following criteria:
Less than 10 years since hire: 3 personal days
10 to less than 15 years since hire: 4 personal days
15 to less than 20 years since hire: 5 personal days
20 years to less than 25 years since hire: 6 personal days
25 years or more since hire: 7 personal days

The code in Listing 17-15 creates a procedure. This time, instead of using
plain SQL, we’ll incorporate elements of the PL/pgSQL procedural
language, which is an additional language PostgreSQL supports for writing
functions. Let’s walk through some differences.

CREATE OR REPLACE PROCEDURE update_personal_days()

AS 1$$
2 BEGIN

 UPDATE teachers
 SET personal_days =

 3 CASE WHEN (now() - hire_date) >= '10 years'::interval
 AND (now() - hire_date) < '15
years'::interval THEN 4
 WHEN (now() - hire_date) >= '15 years'::interval
 AND (now() - hire_date) < '20
years'::interval THEN 5
 WHEN (now() - hire_date) >= '20 years'::interval
 AND (now() - hire_date) < '25
years'::interval THEN 6
 WHEN (now() - hire_date) >= '25 years'::interval
THEN 7
 ELSE 3
 END;

 4 RAISE NOTICE 'personal_days updated!';
END;

5 $$
6 LANGUAGE plpgsql;

Listing 17-15: Creating an update_personal_days() function

We begin with CREATE OR REPLACE PROCEDURE and give the procedure a
name. This time, we provide no arguments because no user input is required
—the procedure operates on predetermined columns with set values for
calculating intervals.

Often, when writing PL/pgSQL-based functions, the PostgreSQL
convention is to use the non-ANSI SQL standard dollar-quote ($$) to mark
the start 1 and end 5 of the string that contains all the function’s commands.
(As with the percent_change() SQL function earlier, you could use single
quote marks to enclose the string, but then any single quotes in the string
would need to be doubled, and that not only looks messy but can be
confusing.) So, everything between the pair of $$ is the code that does the
work. You can also add some text between the dollar signs, like
$namestring$, to create a unique pair of beginning and ending quotes. This
is useful, for example, if you need to quote a query inside the function.

Right after the first $$ we start a BEGIN ... END; 2 block. This is a
PL/pgSQL convention that delineates the start and end of a section of code
within a function or procedure; as with dollar quotes, it is possible to nest
one BEGIN ... END; inside another to facilitate logical groupings of code.
Inside that block, we place an UPDATE statement that uses a CASE statement 3
to determine the number of days each teacher gets. We subtract the
hire_date from the current date, which is retrieved from the server by the
now() function. Depending on which range now() - hire_date falls into,
the CASE statement returns the number of personal days corresponding to
the range. We use the PL/pgSQL keywords RAISE NOTICE 4 to display a
message that the procedure is done. Finally, we use the LANGUAGE keyword
6 so the database knows to interpret what we’ve written according to the
syntax specific to PL/pgSQL.

Run the code in Listing 17-15 to create the update_personal_days()
procedure. To invoke the procedure, we use the CALL command, which is
part of the ANSI SQL standard:

CALL update_personal_days();

When the procedure runs, the server responds with the notice it raises,
which is personal_days updated!.

When you rerun the SELECT statement in Listing 17-14, you should see
that each row of the personal_days column is filled with the appropriate
values. Note that results will vary depending on when you run this function,
because calculations using now() change as time passes.

first_name last_name hire_date personal_days
---------- --------- ---------- -------------
Janet Smith 2011-10-30 3
Lee Reynolds 1993-05-22 7
Samuel Cole 2005-08-01 5
Samantha Bush 2011-10-30 3
Betty Diaz 2005-08-30 5
Kathleen Roush 2010-10-22 4

You could use the update_personal_days() function to regularly update
data manually after performing certain tasks, or you could use a task
scheduler such as pgAgent (a separate open source tool) to run it
automatically. You can learn about pgAgent and other tools in “PostgreSQL
Utilities, Tools, and Extensions” in the appendix.

Using the Python Language in a Function
Previously, I mentioned that PL/pgSQL is the default procedural language
within PostgreSQL, but the database also supports creating functions using
open source languages, such as Python and R. This support allows you to
take advantage of features and modules from those languages within
functions you create. For example, with Python, you can use the pandas
library for analysis. The documentation at
https://www.postgresql.org/docs/current/server-programming.html provides
a comprehensive review of the languages included with PostgreSQL, but
here I’ll show you a simple function using Python.

To enable PL/Python, you must create the extension using the code in
Listing 17-16.

https://www.postgresql.org/docs/current/server-programming.html

CREATE EXTENSION plpython3u;

Listing 17-16: Enabling the PL/Python procedural language

If you get an error, such as image not found, that means the PL/Python
extension is not installed on your system. Depending on the operating
system, installation of PL/Python typically requires installation of Python
and additional configuration beyond the basic PostgreSQL install. For this,
refer to the installation instructions for your operating system in Chapter 1.

After enabling the extension, we can create a function using syntax
similar to the examples you’ve tried so far, but using Python for the body of
the function. Listing 17-17 shows how to use PL/Python to create a function
called trim_county() that removes the word County from the end of a
string. We’ll use this function to clean up names of counties in the census
data.

CREATE OR REPLACE FUNCTION trim_county(input_string text)

1 RETURNS text AS $$
 import re2
 3 cleaned = re.sub(r' County', '', input_string)
 return cleaned
$$

4 LANGUAGE plpython3u;

Listing 17-17: Using PL/Python to create the trim_county() function

The structure should look familiar. After naming the function and its text
input, we use the RETURNS keyword 1 to specify that the function will send
text back. After the opening $$ quotes, we get straight to the Python code,
starting with a statement to import the Python regular expressions module,
re 2. Even if you don’t know much about Python, you can probably deduce
that the next two lines of code 3 set a variable called cleaned to the results
of a Python regular expression function called sub(). That function looks
for a space followed by the word County in the input_string passed into
the function and substitutes an empty string, which is denoted by two
apostrophes. Then the function returns the content of the variable cleaned.

To end, we specify LANGUAGE plpython3u 4 to note we’re writing the
function with PL/Python.

Run the code to create the function, and then execute the SELECT
statement in Listing 17-18 to see it in action.

SELECT county_name,
 trim_county(county_name)
FROM us_counties_pop_est_2019
ORDER BY state_fips, county_fips
LIMIT 5;

Listing 17-18: Testing the trim_county() function

We use the county_name column in the us_counties_pop_est_2019
table as input to trim_county(). That should return these results:

 county_name trim_county
---------------- -------------
 Autauga County Autauga
 Baldwin County Baldwin
 Barbour County Barbour
 Bibb County Bibb
 Blount County Blount

As you can see, the trim_county() function evaluated each value in the
county_name column and removed a space and the word County when
present. Although this is a trivial example, it shows how easy it is to use
Python—or one of the other supported procedural languages—inside a
function.

Next, you’ll learn how to use triggers to automate your database.

Automating Database Actions with Triggers
A database trigger executes a function whenever a specified event, such as
an INSERT, UPDATE, or DELETE, occurs on a table or a view. You can set a
trigger to fire before, after, or instead of the event, and you can also set it to
fire once for each row affected by the event or just once per operation. For

example, let’s say you delete 20 rows from a table. You could set the trigger
to fire once for each of the 20 rows deleted or just one time.

We’ll work through two examples. The first example keeps a log of
changes made to grades at a school. The second automatically classifies
temperatures each time we collect a reading.

Logging Grade Updates to a Table
Let’s say we want to automatically track changes made to a student grades
table in our school’s database. Every time a row is updated, we want to
record the old and new grade plus the time the change occurred (search
online for David Lightman and grades and you’ll see why this might be
worth tracking). To handle this task automatically, we’ll need three items:
A grades_history table to record the changes to grades in a grades table
A trigger to run a function every time a change occurs in the grades table,
which we’ll name grades_update
The function the trigger will execute, which we’ll call
record_if_grade_changed()

Creating Tables to Track Grades and Updates
Let’s start by making the tables we need. Listing 17-19 includes the code to
first create and fill grades and then create grades_history.

1 CREATE TABLE grades (
 student_id bigint,
 course_id bigint,
 course text NOT NULL,
 grade text NOT NULL,
PRIMARY KEY (student_id, course_id)
);

2 INSERT INTO grades
VALUES
 (1, 1, 'Biology 2', 'F'),
 (1, 2, 'English 11B', 'D'),
 (1, 3, 'World History 11B', 'C'),
 (1, 4, 'Trig 2', 'B');

3 CREATE TABLE grades_history (
 student_id bigint NOT NULL,
 course_id bigint NOT NULL,
 change_time timestamp with time zone NOT NULL,
 course text NOT NULL,
 old_grade text NOT NULL,
 new_grade text NOT NULL,
PRIMARY KEY (student_id, course_id, change_time)
);

Listing 17-19: Creating the grades and grades_history tables

These commands are straightforward. We use CREATE to make a grades
table 1 and add four rows using INSERT 2, where each row represents a
student’s grade in a class. Then we use CREATE TABLE to make the
grades_history table 3 to hold the data we log each time an existing grade
is altered. The grades_history table has columns for the new grade, old
grade, and the time of the change. Run the code to create the tables and fill
the grades table. We insert no data into grades_history here because the
trigger process will handle that task.

Creating the Function and Trigger
Next, let’s write the record_if_grade_changed() function that the trigger
will execute (note that the PostgreSQL documentation refers to such
functions as trigger procedures). We must write the function before naming
it in the trigger. Let’s go through the code in Listing 17-20.

CREATE OR REPLACE FUNCTION record_if_grade_changed()

 1 RETURNS trigger AS
$$
BEGIN

 2 IF NEW.grade <> OLD.grade THEN
 INSERT INTO grades_history (
 student_id,
 course_id,
 change_time,
 course,
 old_grade,
 new_grade)
 VALUES
 (OLD.student_id,

 OLD.course_id,
 now(),
 OLD.course,

 3 OLD.grade,
 4 NEW.grade);
 END IF;

 5 RETURN NULL;
END;
$$ LANGUAGE plpgsql;

Listing 17-20: Creating the record_if_grade_changed() function

The record_if_grade_changed() function follows the pattern of earlier
examples but with differences specific to working with triggers. First, we
specify RETURNS trigger 1 instead of a data type. We use dollar-quotes to
delineate the code portion of the function, and because
record_if_grade_changed() is a PL/pgSQL function, we also place the
code to execute inside a BEGIN ... END; block. Next, we start the
procedure using an IF ... THEN statement 2, which is one of the control
structures PL/pgSQL provides. We use it here to run the INSERT statement
only if the updated grade is different from the old grade, which we check
using the <> operator.

When a change occurs to the grades table, the trigger (which we’ll create
next) will execute. For each row that’s changed, the trigger will pass two
collections of data into record_if_grade_changed(). The first is the row
values before they were changed, noted with the prefix OLD. The second is
the row values after they were changed, noted with the prefix NEW. The
function can access the original row values and the updated row values,
which it will use for a comparison. If the IF ... THEN statement evaluates
as true, indicating that the old and new grade values are different, we use
INSERT to add a row to grades_history that contains both OLD.grade 3 and
NEW.grade 4. Finally, we include a RETURN statement 5 with a value of NULL;
the trigger procedure performs a database INSERT, so we do not need a
value returned.

NOTE

Sometimes a RETURN value is ignored; the PostgreSQL
documentation at https://www.postgresql.org/docs/current/plpgsql-
trigger.html details the scenarios in which this occurs.

Run the code in Listing 17-20 to create the function. Then, add the
grades_update trigger to the grades table using Listing 17-21.

1 CREATE TRIGGER grades_update
2 AFTER UPDATE
 ON grades

3 FOR EACH ROW
4 EXECUTE PROCEDURE record_if_grade_changed();

Listing 17-21: Creating the grades_update trigger

In PostgreSQL, the syntax for creating a trigger follows the ANSI SQL
standard (although not all aspects of the standard are supported, per the
documentation at https://www.postgresql.org/docs/current/sql-
createtrigger.html). The code begins with a CREATE TRIGGER 1 statement,
followed by clauses that control when the trigger runs and how it behaves.
We use AFTER UPDATE 2 to specify that we want the trigger to fire after the
update occurs on the grades row. We could also use the BEFORE or INSTEAD
OF keywords depending on the need.

We write FOR EACH ROW 3 to tell the trigger to execute the procedure once
for each row updated in the table. For example, if someone runs an update
that affects three rows, the procedure will run three times. The alternate
(and default) is FOR EACH STATEMENT, which runs the procedure once. If we
didn’t care about capturing changes to each row and simply wanted to
record that grades were changed at a certain time, we could use that option.
Finally, we use EXECUTE PROCEDURE 4 to name
record_if_grade_changed() as the function the trigger should run.

Create the trigger by running the code in Listing 17-21 in pgAdmin. The
database should respond with the message CREATE TRIGGER.

https://www.postgresql.org/docs/current/plpgsql-trigger.html
https://www.postgresql.org/docs/current/sql-createtrigger.html

Testing the Trigger
Now that we’ve created the trigger and the function, it should run when
data in the grades table changes; let’s see what the process does. First, let’s
check the current status of our data. When you run SELECT * FROM
grades_history;, you’ll see that the table is empty because we haven’t
made any changes to the grades table yet and there’s nothing to track. Next,
when you run SELECT * FROM grades ORDER BY student_id,
course_id;, you should see the grade data that you inserted in Listing 17-
19, as shown here:

student_id course_id course grade
---------- --------- ----------------- -----
 1 1 Biology 2 F
 1 2 English 11B D
 1 3 World History 11B C
 1 4 Trig 2 B

That Biology 2 grade doesn’t look very good. Let’s update it using the
code in Listing 17-22.

UPDATE grades
SET grade = 'C'
WHERE student_id = 1 AND course_id = 1;

Listing 17-22: Testing the grades_update trigger

When you run the UPDATE, pgAdmin doesn’t display anything to let you
know that the trigger executed in the background. It just reports UPDATE 1,
meaning a row was updated. But our trigger did run, which we can confirm
by examining columns in grades_history using this SELECT query:

SELECT student_id,
 change_time,
 course,
 old_grade,
 new_grade
FROM grades_history;

When you run this query, you should see that the grades_history table,
which contains all changes to grades, now has one row:

student_id change_time course
old_grade new_grade
---------- ----------------------------- --------- -------
-- ---------
 1 2023-09-01 15:50:43.291164-04 Biology 2 F
C

This row displays the old Biology 2 grade of F, the new value C, and
change_time, showing the time of update (your result should reflect your
date and time). Note that the addition of this row to grades_history
happened in the background without the knowledge of the person making
the update. But the UPDATE event on the table caused the trigger to fire,
which executed the record_if_grade_changed() function.

If you’ve ever used a content management system, such as WordPress or
Drupal, this sort of revision tracking might be familiar. It provides a helpful
record of changes made to content for reference, auditing, and,
unfortunately, occasional finger-pointing. Regardless, the ability to trigger
actions on a database automatically gives you more control over your data.

Automatically Classifying Temperatures
In Chapter 13, we used the SQL CASE statement to reclassify temperature
readings into descriptive categories. The CASE statement is also part of the
PL/pgSQL procedural language, and we can use its capability to assign
values to variables to automatically store those category names in a table
each time we add a temperature reading. If we’re routinely collecting
temperature readings, using this technique to automate the classification
spares us from having to handle the task manually.

We’ll follow the same steps we used for logging the grade changes: we
first create a function to classify the temperatures and then create a trigger
to run the function each time the table is updated. Use Listing 17-23 to
create a temperature_test table for the exercise.

CREATE TABLE temperature_test (
 station_name text,
 observation_date date,
 max_temp integer,
 min_temp integer,
 max_temp_group text,

PRIMARY KEY (station_name, observation_date)
);

Listing 17-23: Creating a temperature_test table

The temperature_test table contains columns to hold the name of the
station and date of the temperature observation. Let’s imagine that we have
some process to insert a row once a day that provides the maximum and
minimum temperature for that location, and we need to fill the
max_temp_group column with a descriptive classification of the day’s high
reading to provide text to a weather forecast we’re distributing.

To do this, we first make a function called classify_max_temp(), as
shown in Listing 17-24.

CREATE OR REPLACE FUNCTION classify_max_temp()
 RETURNS trigger AS
$$
BEGIN

 1 CASE
 WHEN NEW.max_temp >= 90 THEN
 NEW.max_temp_group := 'Hot';
 WHEN NEW.max_temp >= 70 AND NEW.max_temp < 90 THEN
 NEW.max_temp_group := 'Warm';
 WHEN NEW.max_temp >= 50 AND NEW.max_temp < 70 THEN
 NEW.max_temp_group := 'Pleasant';
 WHEN NEW.max_temp >= 33 AND NEW.max_temp < 50 THEN
 NEW.max_temp_group := 'Cold';
 WHEN NEW.max_temp >= 20 AND NEW.max_temp < 33 THEN
 NEW.max_temp_group := 'Frigid';
 WHEN NEW.max_temp < 20 THEN
 NEW.max_temp_group := 'Inhumane';
 ELSE NEW.max_temp_group := 'No reading';
 END CASE;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

Listing 17-24: Creating the classify_max_temp() function

By now, these functions should look familiar. What’s new here is the
PL/pgSQL version of the CASE syntax 1, which differs slightly from the
SQL syntax. The PL/pgSQL syntax includes a semicolon after each WHEN

... THEN clause. Also new is the assignment operator :=, which we use to
assign the descriptive name to the NEW.max_temp_group column based on
the outcome of the CASE function. For example, the statement
NEW.max_temp_group := 'Cold' assigns the string 'Cold' to
NEW.max_temp_group when the temperature value is greater than or equal to
33 degrees but less than 50 degrees Fahrenheit. When the function returns
the NEW row to be inserted in the table, it will include the string value Cold.
Run the code to create the function.

Next, using the code in Listing 17-25, create a trigger to execute the
function each time a row is added to temperature_test.

CREATE TRIGGER temperature_insert

 1 BEFORE INSERT
 ON temperature_test

 2 FOR EACH ROW
 3 EXECUTE PROCEDURE classify_max_temp();

Listing 17-25: Creating the temperature_insert trigger

In this example, we classify max_temp and create a value for
max_temp_group prior to inserting the row into the table. Doing so is more
efficient than performing a separate update after the row is inserted. To
specify that behavior, we set the temperature_insert trigger to fire BEFORE
INSERT 1.

We also want the trigger to fire FOR EACH ROW 2 because we want each
max_temp recorded in the table to get a descriptive classification. The final
EXECUTE PROCEDURE statement names the classify_max_temp() function 3
we just created. Run the CREATE TRIGGER statement in pgAdmin, and then
test the setup using Listing 17-26.

INSERT INTO temperature_test
VALUES
 ('North Station', '1/19/2023', 10, -3),
 ('North Station', '3/20/2023', 28, 19),
 ('North Station', '5/2/2023', 65, 42),
 ('North Station', '8/9/2023', 93, 74),
 ('North Station', '12/14/2023', NULL, NULL);

SELECT * FROM temperature_test ORDER BY observation_date;

Listing 17-26: Inserting rows to test the temperature_insert trigger

Here we insert five rows into temperature_test, and we expect the
temperature_insert trigger to fire for each row—and it does! The SELECT
statement in the listing should display these results:

station_name observation_date max_temp min_temp
max_temp_group
------------- ---------------- -------- -------- ------------
--
North Station 2023-01-19 10 -3 Inhumane
North Station 2023-03-20 28 19 Frigid
North Station 2023-05-02 65 42 Pleasant
North Station 2023-08-09 93 74 Hot
North Station 2023-12-14 No reading

Thanks to the trigger and function, each max_temp inserted automatically
receives the appropriate classification in the max_temp_group column—
including the instance where we had no reading for that value. Note that the
trigger’s update of the column will override any user-supplied values during
insert.

This temperature example and the earlier grade-change auditing example
are rudimentary, but they give you a glimpse of how useful triggers and
functions can be in simplifying data maintenance.

Wrapping Up
Although the techniques you learned in this chapter begin to merge with
those of a database administrator, you can apply the concepts to reduce the
amount of time you spend repeating certain tasks. I hope these approaches
will help you free up more time to find interesting stories in your data.

This chapter concludes our discussion of analysis techniques and the
SQL language. The next two chapters offer workflow tips to help you
increase your command of PostgreSQL. They include how to connect to a

database and run queries from your computer’s command line and how to
maintain your database.

TRY IT YOURSELF

Review the concepts in the chapter with these exercises:
Create a materialized view that displays the number of New York City taxi trips per
hour. Use the taxi data from Chapter 12 and the query in Listing 12-8. How do you

refresh the view if you need to?
In Chapter 11, you learned how to calculate a rate per thousand. Turn that formula into

a rate_per_thousand() function that takes three arguments to calculate the result:
observed_number, base_number, and decimal_places.

In Chapter 10, you worked with the meat_poultry_egg_establishments table that listed
food processing facilities. Write a trigger that automatically adds an inspection deadline

timestamp six months in the future whenever you insert a new facility into the table.
Use the inspection_deadline column added in Listing 10-19. You should be able to
describe the steps needed to implement a trigger and how the steps relate to each

other.

18
USING POSTGRESQL FROM THE

COMMAND LINE

In this chapter, you’ll learn how to work
with PostgreSQL from the command
line, a text-based interface where you
enter names of programs or other
commands to perform tasks, such as

editing files or listing the contents of a file directory.
The command line—also called a command line interface, a console, a

shell, or the terminal—existed long before computers had a graphical user
interface (GUI) with menus, icons, and buttons you could click for
navigation. Back in college, to edit a file, I had to enter commands into a
terminal connected to an IBM mainframe computer. Working that way felt
mysterious, as though I’d attained new powers—and I had! Today, even in a
GUI world, familiarity with the command line is essential for a programmer
moving toward expert-level skills. Perhaps that’s why when a movie wants
to convey that a character really knows what they’re doing on a computer,
they’re shown typing cryptic, text-only commands.

As we learn about this text-only world, pay attention to these advantages
of mastering working from the command line instead of a GUI, such as
pgAdmin:
You can often work faster by entering short commands instead of clicking
through layers of menu items.

You gain access to functions that only the command line provides.
If command line access is all you have to work with (for example, when
you’ve connected to a remote computer), you can still get work done.

We’ll use psql, a command-line tool included with PostgreSQL that lets
you run queries, manage database objects, and interact with the computer’s
operating system via text command. You’ll learn how to set up and access
your computer’s command line and then launch psql. Along the way, we’ll
cover general command line syntax and additional commands for database
tasks. Patience is key: even experienced experts often resort to
documentation to recall the available command line options.

Setting Up the Command Line for psql
To start, we’ll access the command line on our operating system and, if
needed, set an environment variable called PATH that tells our system where
to find psql. Environment variables hold parameters that specify system or
application configurations, such as where to store temporary files; they also
allow you to enable or disable options. The PATH environment variable
stores the names of one or more directories containing executable programs,
and in this instance will tell the command line interface the location of
psql, avoiding the hassle of having to enter its full directory path each time
you launch it.

Windows psql Setup
On Windows, you’ll run psql within the Command Prompt, the application
that provides that system’s command line interface. Before we do that, we
need to tell Command Prompt where to find psql.exe—the full name of the
psql application on Windows.

Adding psql and Utilities to the Windows PATH
The following steps assume that you installed PostgreSQL according to the
instructions described in “Windows Installation” in Chapter 1. (If you
installed PostgreSQL another way, use the Windows File Explorer to search
your C: drive to find the directory that holds psql.exe, and then replace

C:\Program Files\PostgreSQL\x\bin in the following steps with your own
path.)

. Open the Windows Control Panel by clicking the Search icon on the
Windows taskbar, entering Control Panel, and then clicking the Control
Panel icon.

. Inside the Control Panel app, enter Environment in the search box. In the
list of search results displayed, click Edit the System Environment
Variables. A System Properties dialog should appear.

. In the System Properties dialog, on the Advanced tab, click Environment
Variables. The dialog that opens should have two sections: User variables
and System variables. In the User variables section, if you don’t see a PATH
variable, continue to step a to create a new one. If you do see an existing
PATH variable, continue to step b to modify it.

 If you don’t see PATH in the User variables section, click New to open a
New User Variable dialog, shown in Figure 18-1.

Figure 18-1: Creating a new PATH environment variable in Windows 10

In the Variable name box, enter PATH. In the Variable value box, enter
C:\Program Files\PostgreSQL\x\bin, where x is the version of
PostgreSQL you’re using. (Instead of typing, you can click Browse
Directory and navigate to the directory in the Browse For Folder dialog.)
When you’ve either entered the path manually or browsed to it, click OK in
all dialogs to close them.

. If you do see an existing PATH variable in the User variables section,
highlight it and click Edit. In the list of variables that displays, click New
and enter C:\Program Files\PostgreSQL\x\bin, where x is the version of
PostgreSQL you’re using. (Instead of typing, you can click Browse
Directory and navigate to the directory in the Browse For Folder dialog.)

The result should look like the highlighted line in Figure 18-2. When
you’re finished, click OK in all dialogs to close them.

Now when you launch Command Prompt, the PATH should include the
directory. Note that any time you make changes to the PATH, you must close
and reopen Command Prompt for the changes to take effect. Next, let’s set
up Command Prompt.

Figure 18-2: Editing existing PATH environment variables in Windows 10

Launching and Configuring Windows Command Prompt
Command Prompt is an executable file named cmd.exe. To launch it, select
Start▶Windows System▶Command Prompt or enter cmd into the search
bar. When the application opens, you should see a window with a black
background that displays version and copyright information along with a
prompt showing your current directory. On my Windows 10 system,
Command Prompt opens to my default user directory and displays
C:\Users\adeba>, as shown in Figure 18-3.

This line is known as the prompt, and it shows the current working
directory. For me, this is my C: drive, which is typically the main hard drive
on a Windows system, and the \Users\adeba directory on that drive. The
greater-than sign > indicates the area where you enter your commands.

NOTE

For fast access to Command Prompt, you can add it to your
Windows taskbar. When Command Prompt is running, right-click its
icon on the taskbar and then click Pin to taskbar.

Figure 18-3: My Command Prompt in Windows 10

You can customize the font and colors plus access other settings by
clicking the Command Prompt icon at the left of its window bar and
selecting Properties from the menu. To make Command Prompt more
suited for query output, I recommend setting the window size (on the
Layout tab) to a width of at least 80 and a height of 25. For the font, the
official PostgreSQL documentation recommends using Lucida Console to
properly display all the characters.

Entering Instructions on Windows Command Prompt
Now you’re ready to enter instructions in Command Prompt. Enter help at
the prompt, and press ENTER on your keyboard to see a list of available
Windows system commands. You can view information about a command
by including its name after help. For example, enter help time to display
information about using the time command to set or view the system time.

Exploring the full workings of Command Prompt is an enormous topic
beyond the scope of this book; however, I encourage you to try some of the
commands in Table 18-1, which contains useful frequently used commands
that aren’t actually necessary for the exercises in this chapter.

Table 18-1: Useful Windows Commands

Co
m
ma
nd

Function Example Action

cd Change directory cd C:\my-stuff Changes to the my-stuff directory on
the C: drive

cop

y

Copy a file copy C:\my-

stuff\song.mp3

C:\Music\song_favori

te.mp3

Copies the song.mp3 file from my-stuff
to a new file called song_favorite.mp3
in the Music directory

del Delete del *.jpg Deletes all files with a .jpg extension in
the current directory (asterisk wildcard)

dir List directory
contents

dir /p Shows directory contents one screen at
a time (using the /p option)

fin

dst

r

Find strings in text
files matching a
regular expression

findstr "peach"

*.txt

Searches for the text peach in all .txt
files in the current directory

mkd

ir

Make a new
directory

makedir C:\my-

stuff\Salad

Creates a Salad directory inside the
my-stuff directory

mov

e

Move a file move C:\my-

stuff\song.mp3

C:\Music\

Moves the file song.mp3 to the
C:\Music directory

With your Command Prompt open and configured, you’re ready to roll.
Skip ahead to the section “Working with psql.”

macOS psql Setup
On macOS, you’ll run psql within Terminal, the application that provides
access to that system’s command line via one of several shell programs
such as bash or zsh. Shell programs on Unix- or Linux-based systems,
including macOS, provide not only the command prompt where users enter
instructions, but also their own programming language for automating
tasks. For example, you can use bash commands to write a program to log
in to a remote computer, transfer files, and log out.

If you followed the Postgres.app setup instructions for macOS in Chapter
1—including running the commands at your Terminal—you shouldn’t need

additional configuration to use psql and associated commands. Instead,
we’ll proceed to launching Terminal.

Launching and Configuring the macOS Terminal
Launch Terminal by navigating to Applications▶Utilities▶Terminal.
When it opens, you should see a window that displays the date and time of
your last login followed by a prompt that includes your computer name,
current working directory, and username. On my Mac, which is set to the
bash shell, the prompt displays as ad:~ anthony$ and ends with a dollar
sign ($), as shown in Figure 18-4.

The tilde (~) represents the system’s home directory, which is
/Users/anthony. Terminal doesn’t display the full directory path, but you
can see that information at any time by entering the pwd command (short for
print working directory) and pressing ENTER on your keyboard. The area
after the dollar sign is where you enter commands.

If your Mac is set to another shell such as zsh, your prompt may look
different. With zsh, for example, the prompt ends with a percent sign. The
particular shell you’re using does not make a difference for these exercises.

Figure 18-4: Terminal command line in macOS

NOTE

For fast access to Terminal, add it to your macOS Dock. While
Terminal is running, right-click its icon and select Options▶Keep in
Dock.

If you’ve never used Terminal, its default black-and-white color scheme
might seem boring. You can change fonts, colors, and other settings by
selecting Terminal▶Preferences. To make Terminal bigger to better fit the
query output display, I recommend setting the window size (on the Window
tab under Profiles) to a width of at least 80 columns and a height of 25
rows. My preferred font (on the Text tab) is Monaco 14, but experiment to
find one you like.

Exploring the full workings of Terminal and related commands is an
enormous topic beyond the scope of this book, but take some time to try
several commands. Table 18-2 lists some useful commonly used commands
that aren’t actually necessary for the exercises in this chapter. Enter man

(short for manual) followed by a command name to get help on any
command. For example, you can use man ls to find out how to use the ls
command to list directory contents.

Table 18-2: Useful Terminal Commands

Co
mm
and

Function Example Action

cd Change directory cd

/Users/pparker

/my-stuff/

Changes to the my-stuff directory

cp Copy files cp song.mp3

song_backup.mp

3

Copies the file song.mp3 to
song_backup.mp3 in the current directory

grep Find strings in a text file
matching a regular
expression

grep

'us_counties_2

010' *.sql

Finds all lines in files with a .sql extension
that have the text us_counties_2010

ls List directory contents ls -al Lists all files and directories (including
hidden) in “long” format

mkdi

r

Make a new directory mkdir resumes Makes a directory named resumes under
the current working directory

mv Move a file mv song.mp3

/Users/pparker

/songs

Moves the file song.mp3 from the current
directory to a /songs directory under a
user directory

rm Remove (delete) files rm *.jpg Deletes all files with a .jpg extension in the
current directory (asterisk wildcard)

With your Terminal open and configured, you’re ready to roll. Skip ahead
to the section “Working with psql.”

Linux psql Setup
Recall from “Linux Installation” in Chapter 1 that methods for installing
PostgreSQL vary according to your Linux distribution. Nevertheless, psql
is part of the standard PostgreSQL install, and you probably already ran
psql commands as part of the installation process via your distribution’s
command line terminal application. Even if you didn’t, standard Linux
installations of PostgreSQL will automatically add psql to your PATH, so
you should be able to access it.

Launch a terminal application and proceed to the next section, “Working
with psql.” On some distributions, such as Ubuntu, you can open a terminal
by pressing CTRL-ALT-T. Also note that the Mac Terminal commands in
Table 18-2 apply to Linux as well and may be useful to you.

Working with psql
Now that you’ve identified your command line interface and set it up to
recognize the location of psql, let’s launch psql and connect to a database
on your local installation of PostgreSQL. Then we’ll explore executing
queries and special commands for retrieving database information.

Launching psql and Connecting to a Database
Regardless of the operating system you’re using, you start psql in the same
way. Open your command line interface (Command Prompt on Windows,
Terminal on macOS or Linux). To launch psql and connect to a database,
we use the following pattern at the command prompt:

psql -d database_name -U user_name

Following the psql application name, we provide the database name after
a -d database argument and a username after the -U username argument.

For the database name, we’ll use analysis, which is where we created
our tables and other objects for the book’s exercises. For username, we’ll
use postgres, which is the default user created during installation. So, to
connect to the analysis database on your local server, enter this at the
command line:

psql -d analysis -U postgres

Note that you can connect to a database on a remote server by specifying
the –h argument followed by the hostname. For example, you would use the
following line if you were connecting to a database named analysis on a
server called example.com:

psql -d analysis -U postgres -h example.com

Either way, if you set a password during installation, you should receive
a password prompt when psql launches. If so, enter your password. After
psql connects to the database, you should then see a prompt that looks like
this:

psql (13.3)
Type "help" for help.

analysis=#

Here, the first line lists the version number of psql and the server you’re
connected to. Your version will vary depending on when you installed
PostgreSQL. The prompt where you’ll enter commands is analysis=#,
which refers to the name of the database, followed by an equal sign (=) and
a hash mark (#). The hash mark indicates that you’re logged in with
superuser privileges, which give you unlimited ability to access and create
objects and set up accounts and security. If you’re logged in as a user
without superuser privileges, the last character of the prompt will be a
greater-than sign (>). As you can see, the user account you logged in with
here (postgres) is a superuser.

NOTE

PostgreSQL installations create a default superuser account called
postgres. If you’re running Postgres.app on macOS, that
installation created an additional superuser account that has your
system username and no password.

Finally, on Windows systems, you may see a warning message after
launching psql about the console code page differing from the Windows
code page. This is related to a mismatch in character sets between
Command Prompt and the rest of the Windows system. For the exercises in
this book, you can safely ignore that warning. If you prefer, you can
eliminate it on a per-session basis by entering the command cmd.exe /c
chcp 1252 in your Windows Command Prompt before launching psql.

Getting Help or Exiting

At the psql prompt, you can get help for both psql and general SQL with a
set of meta-commands, detailed in Table 18-3. Meta-commands, which
begin with a backslash (\), go beyond offering help—we’ll cover several
that return information about the database, let you adjust settings, or process
data.

Table 18-3: Help Commands Within psql

Comman
d

Displays

\? Commands available within psql, such as \dt to list tables.
\?

options

Options for use with the psql command, such as -U to specify username.

\?

variables

Variables for use with psql, such as VERSION for the current psql version.

\h List of SQL commands. Add a command name to see detailed help for it (for
example, \h INSERT).

Even experienced users often need a refresher on commands and options,
so having the details in the psql application is handy. To exit psql, use the
meta-command \q (for quit).

Changing the Database Connection
When working with SQL, it’s not unusual to be working with multiple
databases, so you need a way to switch between databases. You can do this
easily at the psql prompt using the \c meta-command.

For example, while connected to your analysis database, at the psql
prompt enter the following command to create a database named test:

analysis=# CREATE DATABASE test;

Then, to connect to the new test database you just created, enter \c
followed by the name of the database at the psql prompt (and provide your
PostgreSQL password if asked):

analysis=# \c test

The application should respond with the following message:

You are now connected to database "test" as user "postgres".
test=#

The prompt will show you which database you’re connected to. To log in
as a different user—for example, using a username the macOS installation
created—you could add that username after the database name. On my
Mac, the syntax looks like this:

analysis-# \c test anthony

The response would be as follows:

You are now connected to database "test" as user "anthony".
test=#

To reduce clutter, you can remove the test database you created. First,
use \c to disconnect from test and connect to the analysis database (we
can remove a database only if no one is connected to it). Once you’ve
connected to analysis, enter DROP DATABASE test; at the psql prompt.

Setting Up a Password File
If you’d rather not see a password prompt when starting psql, you can set
up a file to store database connection information that includes the server
name, your username, and password. On startup, psql will read the file and
bypass the password prompt if the file contains an entry that matches the
database connection and username.

On Windows 10, the file must be named pgpass.conf and must reside in
the following directory:
C:\USERS\YourUsername\AppData\Roaming\postgresql\. You may need to
create the postgresql directory. On macOS and Linux, the file must be
named .pgpass and must reside in your user home directory. The
documentation at https://www.postgresql.org/docs/current/libpq-
pgpass.html notes that on macOS and Linux, you may need to set file
permissions after creating the file by running chmod 0600 ~/.pgpass at the
command line.

https://www.postgresql.org/docs/current/libpq-pgpass.html

Create the file using a text editor and save it with the correct name and
location for your system. Inside, you’ll need to add a line for each database
connection in the following format:

hostname:port:database:username:password

For example, to set up a connection for the analysis database and
postgres username, enter this line, substituting your password:

localhost:5432:analysis:postgres:password

You can substitute an asterisk in any of the first four parameters to serve
as a wildcard. For example, to supply a password for any local database
with the postgres username, substitute an asterisk for the database name:

localhost:5432:*:postgres:password

Saving your password will save you some typing, but be mindful of best
practices regarding security. Always secure your computer with a strong
password and/or physical security key, and don’t create a password file on
any public or shared system.

Running SQL Queries on psql
We’ve configured psql and connected to a database, so now let’s run some
SQL queries. We’ll start with a single-line query and then run a multiple-
line query.

You enter SQL into psql directly at the prompt. For example, to see a
few rows from the 2019 census table we’ve used throughout the book, enter
a query at the prompt, as shown in Listing 18-1.

analysis=# SELECT county_name FROM us_counties_pop_est_2019
ORDER BY county_name LIMIT 3;

Listing 18-1: Entering a single-line query in psql

Press ENTER to execute the query, and psql should display the
following results in your terminal in text including the number of rows

returned:

 county_name

 Abbeville County
 Acadia Parish
 Accomack County
(3 rows)

analysis=#

Below the result, you can see the analysis=# prompt again, ready for
further input. You can use the up and down arrows on your keyboard to
scroll through recent queries and press ENTER to execute them again,
avoiding having to retype them.

Entering a Multiline Query
You’re not limited to single-line queries. If you have a query that spans
multiple lines, you can enter lines one at a time, pressing ENTER after
each, and psql knows not execute the query until you provide a semicolon.
Let’s reenter the query in Listing 18-1 over multiple lines, shown in Listing
18-2.

analysis=# SELECT county_name
analysis-# FROM us_counties_pop_est_2019
analysis-# ORDER BY county_name
analysis-# LIMIT 3;

Listing 18-2: Entering a multiline query in psql

Note that when your query extends past one line, the symbol between the
database name and the hash mark changes from an equal sign to a hyphen.
This multiline query executes only when you press ENTER after the final
line, which ends with a semicolon.

Checking for Open Parentheses in the psql Prompt
Another helpful feature of psql is that it shows when you haven’t closed a
pair of parentheses. Listing 18-3 shows this in action.

analysis=# CREATE TABLE wineries (
analysis(# id bigint,
analysis(# winery_name text
analysis(#);
CREATE TABLE

Listing 18-3: Showing open parentheses in the psql prompt

Here, you create a simple table called wineries that has two columns.
After entering the first line of the CREATE TABLE statement and an open
parenthesis ((), the prompt then changes from analysis=# to analysis(#
to include an open parenthesis. This reminds you an open parenthesis needs
closing. The prompt maintains that configuration until you add the closing
parenthesis.

NOTE

If you have a lengthy query saved in a text file, such as one from this
book’s resources, you can copy it to your computer clipboard and
paste it into psql (CTRL-V on Windows, COMMAND-V on macOS,
and SHIFT-CTRL-V on Linux). That saves you from typing the
whole query. After you paste the query text into psql, press ENTER
to execute it.

Editing Queries
To modify the most recent query you’ve executed in psql, you can edit it
using the \e or \edit meta-command. Enter \e to open the last-executed
query in a text editor. The editor psql uses by default depends on your
operating system.

On Windows, psql will open Notepad, a simple GUI text editor. Edit
your query, save it by choosing File▶Save, and then exit Notepad using
File▶Exit. When Notepad closes, psql should execute your revised query.

On macOS and Linux, psql uses a command line application called vim,
which is a favorite among programmers but can seem inscrutable for
beginners. Check out a helpful vim cheat sheet at https://vim.rtorr.com/. For
now, you can use the following steps to make simple edits:

https://vim.rtorr.com/

. When vim opens the query in your terminal, press I to activate insert mode.

. Make your edits to the query.

. Press ESC and then SHIFT-: to display a colon command prompt at the
bottom left of the vim screen, which is where you enter commands to
control vim.

. Enter wq (for write, quit) and press ENTER to save your changes.

Now when vim exits, the psql prompt should execute your revised query.
Press the up-arrow key to see the revised text.

Navigating and Formatting Results
The query you ran in Listings 18-1 and 18-2 returned only one column and
a handful of rows, so its output was contained nicely in your command line
interface. But for queries with more columns or rows, the output can fill
more than one screen, making it difficult to navigate. Fortunately, you have
several ways to customize the display style of the output using the \pset
meta-command.

Setting Paging of Results
One way to adjust the output format is to specify how psql handles
scrolling through lengthy query results, known as paging. By default, if
your results return more rows than will fit on one screen, psql will display
the first screen’s worth of rows and then let you scroll through the rest. For
example, Listing 18-4 shows what happens at the psql prompt when we
remove the LIMIT clause from the query in Listing 18-1.

analysis=# SELECT county_name FROM us_counties_pop_est_2019
ORDER BY county_name;

 county_name

 Abbeville County
 Acadia Parish
 Accomack County
 Ada County
 Adair County
 Adair County

 Adair County
 Adair County
 Adams County
 Adams County
 Adams County
 Adams County
-- More --

Listing 18-4: A query with scrolling results

Recall that this table has 3,142 rows. Listing 18-4 shows only the first 12
on the current screen (the number of visible rows depends on your terminal
configuration). On Windows, the indicator -- More -- tells you that
additional results are available, and you can press ENTER to scroll through
them. On macOS and Linux, the indicator will be a colon. Scrolling through
a few thousand rows will take a while. Press Q to exit the results and return
to the psql prompt.

To bypass manual scrolling and have all your results immediately
display, you can change the pager setting using the \pset pager meta-
command. Run that command at your psql prompt, and it should return the
message Pager usage is off. Now when you rerun the query in Listing
18-3 with the pager setting turned off, you should see results like this:

 --snip--
 York County
 York County
 York County
 York County
 Young County
 Yuba County
 Yukon-Koyukuk Census Area
 Yuma County
 Yuma County
 Zapata County
 Zavala County
 Ziebach County
(3142 rows)

analysis=#

You’re immediately taken to the end of the results without having to
scroll. To turn paging back on, run \pset pager again.

Formatting the Results Grid
You also can use \pset with the following options to format the results:

border int
Use this option to specify whether the results grid has no border (0), internal
lines dividing columns (1), or lines around all cells (2). For example, \pset
border 2 sets lines around all cells.

format unaligned
Use the option \pset format unaligned to display the results in lines
separated by a delimiter rather than in columns, similar to what you would
see in a CSV file. The separator defaults to a pipe symbol (|). You can set a
different separator using the fieldsep command. For example, to set a
comma as the separator, run \pset fieldsep ','. To revert to a column
view, run \pset format aligned. You can use the psql meta-command \a
to toggle between aligned and unaligned views.

footer
Use this option to toggle the results footer, which displays the result row
count, on or off.

null
Use this option to set how psql displays NULL values. By default, they show
as blanks. You can run \pset null '(null)' to replace blanks with
(null) when the column value is NULL.

You can explore additional options in the PostgreSQL documentation at
https://www.postgresql.org/docs/current/app-psql.html. In addition, it’s
possible to set up a .psqlrc file on macOS or Linux or a psqlrc.conf file on
Windows to hold your configuration preferences and load them each time
psql starts. A good example is provided at
https://www.citusdata.com/blog/2017/07/16/customizing-my-postgres-shell-
using-psqlrc/.

https://www.postgresql.org/docs/current/app-psql.html
https://www.citusdata.com/blog/2017/07/16/customizing-my-postgres-shell-using-psqlrc/

Viewing Expanded Results
Sometimes, it’s helpful to view results arranged not in the typical table style
of rows and columns, but instead in a vertical list. This is useful when the
number of columns is too big to fit on-screen in the normal horizontal
results grid and also for scanning values in columns row by row. In psql,
you can switch to a vertical list view using the \x (for expanded) meta-
command. The best way to understand the difference between normal and
expanded view is by looking at an example. Listing 18-5 shows the normal
display you see when querying the grades table in Chapter 17 using psql.

analysis=# SELECT * FROM grades ORDER BY student_id,
course_id;
 student_id | course_id | course | grade
------------+-----------+-------------------+-------
 1 | 1 | Biology 2 | C
 1 | 2 | English 11B | D
 1 | 3 | World History 11B | C
 1 | 4 | Trig 2 | B
(4 rows)

Listing 18-5: Normal display of the grades table query

To change to the expanded view, enter \x at the psql prompt, which
should display the message Expanded display is on. Then, when you run
the same query again, you should see the expanded results, as shown in
Listing 18-6.

analysis=# SELECT * FROM grades ORDER BY student_id,
course_id;
-[RECORD 1]-----------------
student_id | 1
course_id | 1
course | Biology 2
grade | C
-[RECORD 2]-----------------
student_id | 1
course_id | 2
course | English 11B
grade | D
-[RECORD 3]-----------------
student_id | 1
course_id | 3

course | World History 11B
grade | C
-[RECORD 4]-----------------
student_id | 1
course_id | 4
course | Trig 2
grade | B

Listing 18-6: Expanded display of the grades table query

The results appear in vertical blocks separated by record numbers.
Depending on your needs and the type of data you’re working with, this
format might be easier to read. You can revert to column display by
entering \x again at the psql prompt. In addition, setting \x auto will make
PostgreSQL automatically display the results in a table or expanded view
based on the size of the output.

Next, let’s explore how to use psql to dig into database information.

Meta-Commands for Database Information
You can have psql display details about databases, tables, and other objects
via a particular set of meta-commands. To see how these work, we’ll
explore the meta-command that displays the tables in your database,
including how to append a plus sign (+) to the command to expand the
output and add an optional pattern to filter the output.

To see a list of tables, you can enter \dt at the psql prompt. Here’s a
snippet of the output on my system:

 List of relations
 Schema | Name | Type |
Owner
--------+--+-------+---

 public | acs_2014_2018_stats | table |
anthony
 public | cbp_naics_72_establishments | table |
anthony
 public | char_data_types | table |
anthony
 public | check_constraint_example | table |
anthony

 public | crime_reports | table |
anthony
 --snip--

This result lists all tables in the current database alphabetically.
You can filter the output by adding a pattern the database object name

must match. For example, use \dt us* to show only tables whose names
begin with us (the asterisk acts as a wildcard). The results should look like
this:

 List of relations
 Schema | Name | Type | Owner
--------+--------------------------+-------+-----------
 public | us_counties_2019_shp | table | anthony
 public | us_counties_2019_top10 | table | anthony
 public | us_counties_pop_est_2010 | table | anthony
 public | us_counties_pop_est_2019 | table | anthony
 public | us_exports | table | anthony

Table 18-4 shows several additional commands you might find helpful,
including \l, which lists the databases on your server. Adding a plus sign to
each command, as in \dt+, adds more information to the output, including
object sizes.

Table 18-4: Example of psql \d Commands

Command Displays
\d [pattern] Columns, data types, plus other information on objects
\di [pattern] Indexes and their associated tables
\dt [pattern] Tables and the account that owns them
\du [pattern] User accounts and their attributes
\dv [pattern] Views and the account that owns them
\dx [pattern] Installed extensions
\l [pattern] Databases

The entire list of commands is available in the PostgreSQL
documentation at https://www.postgresql.org/docs/current/app-psql.html, or
you can see details by using the \? command noted earlier.

https://www.postgresql.org/docs/current/app-psql.html

Importing, Exporting, and Using Files
In this section, we’ll explore how to use psql to import and export data
from the command line, which can be necessary when you’re connected to
remote servers, such as Amazon Web Services instances of PostgreSQL.
We’ll also use psql to read and execute SQL commands stored in a file and
learn the syntax for sending psql output to a file.

Using \copy for Import and Export
In Chapter 5, you learned how to use the PostgreSQL COPY command to
import and export data. It’s a straightforward process, but it has one
significant limitation: the file you’re importing or exporting must be on the
same machine as the PostgreSQL server. That’s fine if you’re working on
your local machine, as you’ve been doing with these exercises. But if
you’re connecting to a database on a remote computer, you might not have
access to its file system. You can get around this restriction by using the
\copy meta-command in psql.

The \copy meta-command works just like the PostgreSQL COPY, except
when you execute it at the psql prompt, it will route data from your
machine to the server you’re connected to, whether local or remote. We
won’t actually connect to a remote server to try this since it’s rare to find a
public remote server we could connect to, but you can still learn the syntax
by using the commands on our local analysis database.

In Listing 18-7, at the psql prompt we use a DELETE statement to remove
all the rows from the small state_regions table you created in Chapter 10
and then import data using \copy. You’ll need to change the file path to
match the location of the file on your computer.

analysis=# DELETE FROM state_regions;
DELETE 56
analysis=# \copy state_regions FROM
'C:\YourDirectory\state_regions.csv' WITH (FORMAT CSV,
HEADER);
COPY 56

Listing 18-7: Importing data using \copy

Next, to import the data, we use \copy with the same syntax used with
PostgreSQL COPY, including a FROM clause with the file path on your
machine, and a WITH clause that specifies the file is a CSV and has a header
row. When you execute the statement, the server should respond with COPY
56, letting you know the rows have been successfully imported.

If you’re connected to a remote server via psql, you would use the same
\copy syntax, and the command would route your local file to the remote
server for importing. In this example, we used \copy FROM to import a file.
We could also use \copy TO for exporting. Let’s look at an alternate way to
import or export data (or run other SQL commands) via psql.

Passing SQL Commands to psql
By placing a command in quotes after the -c argument, we can send it to
our connected server, local or remote. The command can be a single SQL
statement, multiple SQL statements separated by semicolons, or a meta-
command. This can allow us to run psql, connect to a server, and execute a
command in a single command line statement—handy if we want to
incorporate psql statements into shell scripts to automate tasks.

For example, we can import data to the state_regions table with the
statement in Listing 18-8, which must be entered on one line at your
command prompt (and not inside psql).

psql -d analysis -U postgres -c1 'COPY state_regions FROM
STDIN2 WITH (FORMAT CSV, HEADER);' <3
C:\YourDirectory\state_regions.csv

Listing 18-8: Importing data using psql with COPY

To try it, you’ll need to first run DELETE FROM state_regions; inside
psql to clear the table. Then exit psql by typing the meta-command \q.

At your command prompt, enter the statement in Listing 18-8. We first
use psql and the -d and -U commands to connect to your analysis
database. Then comes the -c command 1, which we follow with the
PostgreSQL statement for importing the data. The statement is similar to
COPY statements we’ve used with one exception: after FROM, we use the

keyword STDIN 2 instead of the complete file path and filename. STDIN
means “standard input,” which is a stream of input data that can come from
a device, a keyboard, or in this case the file state_regions.csv, which we
direct 3 to psql using the less-than (<) symbol. You’ll need to supply the
full path to the file.

Running this entire command at your command prompt should import
the CSV file and generate the message COPY 56.

Saving Query Output to a File
It’s sometimes helpful to save the query results and messages generated
during a psql session to a file, such as to keep a history of your work or to
use the output in a spreadsheet or other application. To send query output to
a file, you can use the \o meta-command along with the full path and name
of an output file that psql will create.

NOTE

On Windows, file paths for the \o command must use either Linux-
style forward slashes, such as C:/my-stuff/my-file.txt, or
double backslashes, such as C:\\my-stuff\\my-file.txt.

For example, in Listing 18-9 we change the psql format style from a
table to CSV and then output query results directly to a file.

1 analysis=# \pset format csv
Output format is csv.

analysis=# SELECT * FROM grades ORDER BY student_id,
course_id;

2 student_id,course_id,course,grade
1,1,Biology 2,F
1,2,English 11B,D
1,3,World History 11B,C
1,4,Trig 2,B

3 analysis=# \o 'C:/YourDirectory/query_output.csv'

analysis=# SELECT * FROM grades ORDER BY student_id,
course_id;

4 analysis=#

Listing 18-9: Saving query output to a file

First, we set the output format 1 using the meta-command \pset format
csv. When you run a simple SELECT on the grades table, the output 2
should return as values separated by commas. Next, to send that data to a
file the next time you run the query, use the \o meta-command and then
provide a complete path to a file called query_output.csv 3. When you run
the SELECT query again, there should be no output to the screen 4. Instead,
you’ll find a file with the contents of the query in the directory specified at
3.

Note that every time you run a query from this point, the output is
appended to the same file specified after the \o (for output) command. To
stop saving output to that file, you can either specify a new file or enter \o
with no filename to resume having results output to the screen.

Reading and Executing SQL Stored in a File
To run SQL stored in a text file, you execute psql on the command line and
supply the filename after an -f (for file) argument. This syntax lets you
quickly run a query or table update from the command line or in
conjunction with a system scheduler to run a job at regular intervals.

Let’s say you saved the SELECT query from Listing 18-9 in a file called
display-grades.sql. To run the saved query, use the following psql syntax at
your command line:

psql -d analysis -U postgres -f C:\YourDirectory\display-
grades.sql

When you press ENTER, psql should launch, run the stored query in the
file, display the results, and exit. For repetitive tasks, this workflow can
save considerable time because you avoid launching pgAdmin or rewriting
a query. You also can stack multiple queries in the file so they run in

succession, which, for example, you might do if you want to run several
updates on your database.

Additional Command Line Utilities to
Expedite Tasks
PostgreSQL also has its own set of command line utilities that you can enter
in your command line interface without launching psql. A listing is
available at https://www.postgresql.org/docs/current/reference-client.html,
and I’ll explain several in Chapter 19 that are specific to database
maintenance. Here I’ll cover two that are particularly useful: creating a
database at the command line with the createdb utility and loading
shapefiles into a PostGIS database via the shp2pgsql utility.

Adding a Database with createdb
Earlier in the chapter, you used CREATE DATABASE to add the database test
to your PostgreSQL server. We can achieve the same thing using createdb
at the command line. For example, to create a new database on your server
named box_office, run the following at your command line:

createdb -U postgres -e box_office

The -U argument tells the command to connect to the PostgreSQL server
using the postgres account. The -e argument (for echo) prints the
commands generated by createdb as output. Running this command
creates the database and prints output to the screen ending with CREATE
DATABASE box_office;. You can then connect to the new database via psql
using the following line:

psql -d box_office -U postgres

The createdb command accepts arguments to connect to a remote server
(just like psql does) and to set options for the new database. A full list of
arguments is available at https://www.postgresql.org/docs/current/app-
createdb.html. Again, the createdb command is a time-saver that comes in
handy when you don’t have access to a GUI.

https://www.postgresql.org/docs/current/reference-client.html
https://www.postgresql.org/docs/current/app-createdb.html

Loading Shapefiles with shp2pgsql
In Chapter 15, you learned about shapefiles, which contain data describing
spatial objects. On Windows and some Linux distributions, you can import
shapefiles into a PostGIS-enabled database using the Shapefile
Import/Export Manager GUI tool (generally) included with PostGIS.
However, the Shapefile Import/Export Manager is not always included with
PostGIS on macOS or some flavors of Linux. In those cases (or if you’d
rather work at the command line), you can import a shapefile using the
PostGIS command line tool shp2pgsql.

To import a shapefile into a new table from the command line, use the
following syntax:

shp2pgsql -I -s SRID -W encoding shapefile_name table_name |
psql -d database -U user

A lot is happening in this single line. Here’s a breakdown of the
arguments (if you skipped Chapter 15, you might need to review it now):
-I Uses GiST to add an index on the new table’s geometry column.
-s Lets you specify an SRID for the geometric data.
-W Lets you specify encoding. (Recall that we used Latin1 for census
shapefiles.)
shapefile_name The name (including full path) of the file ending with the
.shp extension.
table_name The name of the table the shapefile is imported to.

Following these arguments, you place a pipe symbol (|) to direct the
output of shp2pgsql to psql, which has the arguments for naming the
database and user. For example, to load the tl_2019_us_county.shp
shapefile into a us_counties_2019_shp table in the analysis database, you
can run the following command. Note that although this command wraps
onto two lines here, it should be entered as one line in the command line:

shp2pgsql -I -s 4269 -W Latin1 tl_2019_us_county.shp
us_counties_2019_shp | psql -d analysis -U postgres

The server should respond with a number of SQL INSERT statements
before creating the index and returning you to the command line. It might
take some time to construct the entire set of arguments the first time around,
but after you’ve done one, subsequent imports should take less time. You
can simply substitute file and table names into the syntax you already
wrote.

Wrapping Up
Feeling mysterious and powerful yet? Indeed, when you delve into a
command line interface and make the computer do your bidding using text
commands, you enter a world of computing that resembles a sci-fi movie
sequence. Not only does working from the command line save you time, it
also helps you overcome barriers you might hit when working in
environments that don’t support graphical tools. In this chapter, you learned
the basics of working with the command line plus PostgreSQL specifics.
You discovered your operating system’s command line application and set it
up to work with psql. Then you connected psql to a database and learned
how to run SQL queries via the command line. Many experienced computer
users prefer to use the command line for its simplicity and speed once they
become familiar with using it. You might, too.

In Chapter 19, we’ll review common database maintenance tasks
including backing up data, changing server settings, and managing the
growth of your database. These tasks will give you more control over your
working environment and help you better manage your data analysis
projects.

TRY IT YOURSELF

To reinforce the techniques in this chapter, choose an example from an earlier chapter
and try working through it using only the command line. Chapter 15, “Analyzing Spatial
Data with PostGIS,” is a good choice because it gives you the opportunity to work with
psql and the shapefile loader shp2pgsql. That said, I encourage you to choose any
example that you think you would benefit from reviewing.

19
MAINTAINING YOUR DATABASE

To wrap up our exploration of SQL,
we’ll look at key database maintenance
tasks and options for customizing
PostgreSQL. In this chapter, you’ll
learn how to track and conserve space

in your databases, how to change system settings, and
how to back up and restore databases. How often
you’ll need to perform these tasks depends on your
current role and interests. If you want to be a
database administrator or a backend developer, the
topics covered here are vital.

It’s worth noting that database maintenance and performance tuning are
large enough topics that they often occupy entire books, and this chapter
mainly serves as an introduction to a handful of essentials. If you want to
learn more, a good place to begin is with the resources in the appendix.

Let’s start with the PostgreSQL VACUUM feature, which lets you shrink the
size of tables by removing unused rows.

Recovering Unused Space with VACUUM

The PostgreSQL VACUUM command helps manage the size of a database,
which—as discussed in “Improving Performance When Updating Large
Tables” in Chapter 10—can grow as a result of routine operations.

For example, when you update a row value, the database creates a new
version of that row with the updated value and retains (but hides) the old
version of the row. The PostgreSQL documentation refers to these rows that
you can’t see as dead tuples, with tuples—an ordered list of elements—
being the name for the internal implementation of rows in a PostgreSQL
database. The same thing happens when you delete a row. Though the row
is no longer visible to you, it lives on as a dead row in the table.

This is by design so the database can provide certain features in
environments where multiple transactions are occurring, and an old version
of a row might be needed by transactions other than the current one.

The VACUUM command cleans up these dead rows. Running VACUUM on its
own designates the space occupied by dead rows as available for the
database to use again (assuming that any transactions using the rows have
been completed). In most cases, VACUUM doesn’t return the space to your
system’s disk; it just flags that space as available for new data. To actually
shrink the size of the data file, you can run VACUUM FULL, which rewrites the
table to a new version that doesn’t include the dead row space. It drops the
old version.

Although VACUUM FULL frees space on your system’s disk, there are a
couple of caveats to keep in mind. First, VACUUM FULL takes more time to
complete than VACUUM. Second, it must have exclusive access to the table
while rewriting it, which means that no one can update data during the
operation. The regular VACUUM command can run while updates and other
operations are happening. Finally, not all dead space in a table is bad. In
many cases, having available space to put new tuples instead of needing to
ask the operating system for more disk space can improve performance.

You can run either VACUUM or VACUUM FULL on demand, but PostgreSQL
by default runs an autovacuum background process that monitors the
database and runs VACUUM as needed. Later in this chapter, I’ll show you
how to monitor autovacuum as well as run the VACUUM command manually.
But first, let’s look at how a table grows as a result of updates and how you
can track this growth.

Tracking Table Size
We’ll create a small test table and monitor its growth as we fill it with data
and perform an update. The code for this exercise, as with all resources for
the book, is available at https://nostarch.com/practical-sql-2nd-edition/.

Creating a Table and Checking Its Size
Listing 19-1 creates a vacuum_test table with a single column to hold an
integer. Run the code, and then we’ll measure the table’s size.

CREATE TABLE vacuum_test (
 integer_column integer
);

Listing 19-1: Creating a table to test vacuuming

Before we fill the table with test data, let’s check how much space it
occupies on disk to establish a reference point. We can do so in two ways:
check the table properties via the pgAdmin interface or run queries using
PostgreSQL administrative functions. In pgAdmin, click once on a table to
highlight it, and then click the Statistics tab. Table size is one of about two
dozen indicators in the list.

I’ll focus on the running queries technique here because knowing these
queries is helpful if for some reason pgAdmin isn’t available or you’re
using another graphical user interface (GUI). Listing 19-2 shows how to
check the vacuum_test table size using PostgreSQL functions.

SELECT 1pg_size_pretty(
 2pg_total_relation_size('vacuum_test')
);

Listing 19-2: Determining the size of vacuum_test

The outermost function, pg_size_pretty() 1, converts bytes to a more
easily understandable format in kilobytes, megabytes, or gigabytes.
Wrapped inside is the pg_total_relation_size() function 2, which
reports how many bytes a table, its indexes, and any offline compressed

https://nostarch.com/practical-sql-2nd-edition/

data takes up on disk. Because the table is empty at this point, running the
code in pgAdmin should return a value of 0 bytes, like this:

 pg_size_pretty

 0 bytes

You can get the same information using the command line. Launch psql
as you learned in Chapter 18. Then, at the prompt, enter the meta-command
\dt+ vacuum_test, which should display the following information
including table size (I’ve omitted one column for space):

 List of relations
 Schema | Name | Type | Owner | Persistence |
Size
--------+-------------+-------+----------+-------------+-----

 public | vacuum_test | table | postgres | permanent | 0
bytes

Again, the current size of the vacuum_test table should display 0 bytes.

Checking Table Size After Adding New Data
Let’s add some data to the table and then check its size again. We’ll use the
generate_series() function introduced in Chapter 12 to fill the table’s
integer_column with 500,000 rows. Run the code in Listing 19-3 to do
this.

INSERT INTO vacuum_test
SELECT * FROM generate_series(1,500000);

Listing 19-3: Inserting 500,000 rows into vacuum_test

This standard INSERT INTO statement adds the results of
generate_series(), which is a series of values from 1 to 500,000, as rows
to the table. After the query completes, rerun the query in Listing 19-2 to
check the table size. You should see the following output:

 pg_size_pretty

 17 MB

The query reports that the vacuum_test table, now with a single column
of 500,000 integers, uses 17MB of disk space.

Checking Table Size After Updates
Now, let’s update the data to see how that affects the table size. We’ll use
the code in Listing 19-4 to update every row in the vacuum_test table by
adding 1 to the integer_column values, replacing the existing value with a
number that’s one greater.

UPDATE vacuum_test
SET integer_column = integer_column + 1;

Listing 19-4: Updating all rows in vacuum_test

Run the code, and then test the table size again.

 pg_size_pretty

 35 MB

The table size doubled from 17MB to 35MB! The increase seems
excessive, because the UPDATE simply replaced existing numbers with
values of a similar size. As you might have guessed, the reason for this
increase in table size is that for every updated value, PostgreSQL creates a
new row, and the dead row remains in the table. Even though you see only
500,000 rows, the table has double that number. This behavior can lead to
surprises for database owners who don’t monitor disk space.

Before looking at how using VACUUM and VACUUM FULL affects the table’s
size on disk, let’s review the process that runs VACUUM automatically as well
as how to check on statistics related to table vacuums.

Monitoring the Autovacuum Process
PostgreSQL’s autovacuum process monitors the database and launches
VACUUM automatically when it detects a large number of dead rows in a
table. Although autovacuum is enabled by default, you can turn it on or off

and configure it using the settings I’ll cover later in “Changing Server
Settings.” Because autovacuum runs in the background, you won’t see any
immediately visible indication that it’s working, but you can check its
activity by querying data that PostgreSQL collects about system
performance.

PostgreSQL has its own statistics collector that tracks database activity
and usage. You can look at the statistics by querying one of several views
the system provides. (See a complete list of views for monitoring the state
of the system in the PostgreSQL documentation under “The Statistics
Collector”: https://www.postgresql.org/docs/current/monitoring-stats.html.)
To check the activity of autovacuum, we query the pg_stat_all_tables
view, as shown in Listing 19-5.

SELECT 1relname,
 2last_vacuum,
 3last_autovacuum,
 4vacuum_count,
 5autovacuum_count
FROM pg_stat_all_tables
WHERE relname = 'vacuum_test';

Listing 19-5: Viewing autovacuum statistics for vacuum_test

As you learned in Chapter 17, a view provides the results of a stored
query. The query stored by the view pg_stat_all_tables returns a column
called relname1, which is the name of the table, plus columns with statistics
related to index scans, rows inserted and deleted, and other data. For this
query, we’re interested in last_vacuum 2 and last_autovacuum 3, which
contain the last time the table was vacuumed manually and automatically,
respectively. We also ask for vacuum_count 4 and autovacuum_count 5,
which show the number of times the vacuum was run manually and
automatically.

By default, autovacuum checks tables every minute. So, if a minute has
passed since you last updated vacuum_test, you should see details of
vacuum activity when you run the query in Listing 19-5. Here’s what my

https://www.postgresql.org/docs/current/monitoring-stats.html

system shows (note that I’ve removed the seconds from the time to save
space here):

 relname | last_vacuum | last_autovacuum | vacuum_count
| autovacuum_count
-------------+-------------+------------------+--------------
+------------------
 vacuum_test | | 2021-09-02 14:46 | 0
| 1

The table shows the date and time of the last autovacuum, and the
autovacuum_count column shows one occurrence. This result indicates that
autovacuum executed a VACUUM command on the table once. However,
because we’ve not vacuumed manually, the last_vacuum column is empty,
and the vacuum_count is 0.

NOTE

The autovacuum process also runs the ANALYZE command, which
gathers data on the contents of tables. PostgreSQL stores this
information and uses it to execute queries efficiently in the future.
You can run ANALYZE manually if needed.

Recall that VACUUM designates dead rows as available for the database to
reuse but typically doesn’t reduce the size of the table on disk. You can
confirm this by rerunning the code in Listing 17-2, which shows the table
remains at 35MB even after the automatic vacuum.

Running VACUUM Manually
To run VACUUM manually, you can use the single line of code in Listing 19-6.

VACUUM vacuum_test;

Listing 19-6: Running VACUUM manually

This command should return the message VACUUM from the server. Now
when you fetch statistics again using the query in Listing 17-5, you should

see that the last_vacuum column reflects the date and time of the manual
vacuum you just ran, and the number in the vacuum_count column should
increase by one.

In this example, we executed VACUUM on our test table, but you can also
run VACUUM on the entire database by omitting the table name. In addition,
you can add the VERBOSE keyword to return information such as the number
of rows found in a table and the number of rows removed, among other
information.

Reducing Table Size with VACUUM FULL
Next, we’ll run VACUUM with the FULL option, which actually returns the
space taken up by dead tuples back to disk. It does this by creating a new
version of a table with the dead rows discarded.

To see how VACUUM FULL works, run the command in Listing 19-7.

VACUUM FULL vacuum_test;

Listing 19-7: Using VACUUM FULL to reclaim disk space

After the command executes, test the table size again. It should be back
down to 17MB, the size it was when we first inserted data.

It’s never prudent or safe to run out of disk space, so minding the size of
your database files as well as your overall system space is a worthwhile
routine to establish. Using VACUUM to prevent database files from growing
bigger than they have to is a good start.

Changing Server Settings
You can alter the settings for your PostgreSQL server by editing values in
postgresql.conf, one of several configuration text files that control server
settings. Other files include pg_hba.conf, which controls connections to the
server, and pg_ident.conf, which database administrators can use to map
usernames on a network to usernames in PostgreSQL. See the PostgreSQL
documentation on these files for details; here we’ll just cover
postgresql.conf because it contains settings you may likely want to change.

Most of the values in the file are set to defaults you may never need to
adjust, but it’s worth exploring in case you’re fine-tuning your system. Let’s
start with the basics.

Locating and Editing postgresql.conf
The location of postgresql.conf varies depending on your operating system
and install method. You can run the command in Listing 19-8 to locate the
file.

SHOW config_file;

Listing 19-8: Showing the location of postgresql.conf

When I run the command on macOS, it shows the path to the file, as
shown here:

/Users/anthony/Library/Application Support/Postgres/var-
13/postgresql.conf

To edit postgresql.conf, navigate in your file system to the directory
displayed by SHOW config_file; and open the file using a text editor.
Don’t use a rich-text editor like Microsoft Word, as it may add additional
formatting to the file.

NOTE

It’s a good idea to save an unaltered copy of postgresql.conf for
reference in case you make a change that breaks the system and you
need to revert to the original version.

When you open the file, the first several lines should read as follows:

PostgreSQL configuration file

This file consists of lines of the form:

name = value
--snip--

The postgresql.conf file is organized into sections that specify settings for
file locations, security, logging of information, and other processes. Many
lines begin with a hash mark (#), which indicates the line is commented out
and the setting shown is the active default.

For example, in the postgresql.conf file section “Autovacuum
Parameters,” the default is for autovacuum to be turned on (which is a good,
standard practice). The hash mark (#) in front of the line means that the line
is commented out and the default value is in effect:

#autovacuum = on # Enable autovacuum
subprocess? 'on'

To change this or other default settings, you would remove the hash
mark, adjust the setting value, and save postgresql.conf. Some changes,
such as to memory allocations, require a restart of the server; they’re noted
in postgresql.conf. Other changes require only a reload of settings files. You
can reload settings files by running the function pg_reload_conf() under
an account with superuser permissions or by executing the pg_ctl
command, which we’ll cover in the next section.

Listing 19-9 shows settings you may want to change, excerpted from the
postgresql.conf section “Client Connection Defaults.” Use your text editor
to search the file for the following.

1 datestyle = 'iso, mdy'

2 timezone = 'America/New_York'

3 default_text_search_config = 'pg_catalog.english'

Listing 19-9: Sample postgresql.conf settings

You can use the datestyle setting 1 to specify how PostgreSQL displays
dates in query results. This setting takes two parameters separated by a
comma: the output format and the ordering of month, day, and year. The

default for the output format is the ISO format YYYY-MM-DD we’ve used
throughout this book, which I recommend for its cross-national portability.
However, you can also use the traditional SQL format MM/DD/YYYY, the
expanded Postgres format Sun Nov 12 22:30:00 2023 EST, or the German
format DD.MM.YYYY with dots between the date, month, and year
(12.11.2023). To specify the format using the second parameter, arrange m,
d, and y in the order you prefer.

The timezone 2 parameter sets the server time zone. Listing 19-9 shows
the value America/New_York, which reflects the time zone on my machine
when I installed PostgreSQL. Yours should vary based on your location.
When setting up PostgreSQL for use as the backend to a database
application or on a network, administrators often set this value to UTC and
use that as a standard on machines across multiple locations.

The default_text_search_config 3 value sets the language used by the
full-text search operations. Here, mine is set to english. Depending on your
needs, you can set this to spanish, german, russian, or another language of
your choice.

These three examples represent only a handful of settings available for
adjustment. Unless you end up deep in system tuning, you probably won’t
have to tweak much else. Also, use caution when changing settings on a
network server used by multiple people or applications; changes can have
unintended consequences, so it’s worth communicating with colleagues
first.

Next, let’s look at how to use pg_ctl to make changes take effect.

NOTE

The PostgreSQL ALTER SYSTEM command can also be used to
update settings. The command creates settings in the file
postgresql.auto.conf that will override values in postgresql.conf. See
https://www.postgresql.org/docs/current/sql-altersystem.html for
details.

Reloading Settings with pg_ctl

https://www.postgresql.org/docs/current/sql-altersystem.html

The command line utility pg_ctl allows you to perform actions on a
PostgreSQL server, such as starting and stopping it and checking its status.
Here, we’ll use the utility to reload the settings files so the changes we
make will take effect. Running the command reloads all settings files at
once.

You’ll need to open and configure a command line prompt the same way
you did in Chapter 18 when you learned how to set up and use psql. After
you launch a command prompt, use one of the following commands to
reload, replacing the path with the path to the PostgreSQL data directory:
On Windows, use pg_ctl reload -D "C:\path\to\data\directory\".
On macOS or Linux, use pg_ctl reload -D
'/path/to/data/directory/'.

To find the location of your PostgreSQL data directory, run the query in
Listing 19-10.

SHOW data_directory;

Listing 19-10: Showing the location of the data directory

Place the path after the -D argument, between double quotes on Windows
and single quotes on macOS or Linux. You run this command on your
system’s command prompt, not inside the psql application. Enter the
command and press ENTER; it should respond with the message server
signaled. The settings files will be reloaded, and changes should take
effect.

If you’ve changed settings that require a server restart, replace reload in
Listing 19-10 with restart.

NOTE

On Windows, you may need to run Command Prompt with
administrator privileges to execute pg_ctl statements. Navigate to
Command Prompt in your Start menu, right-click, and select Run as
Administrator.

Backing Up and Restoring Your Database
You might want to back up your entire database either for safekeeping or
for transferring data to a new or upgraded server. PostgreSQL offers
command line tools that make backup and restore operations easy. The next
few sections show examples of how to export data from a database or a
single table to a file, as well as how to restore data from an export files.

Using pg_dump to Export a Database or Table
The PostgreSQL command line tool pg_dump creates an output file that
contains all the data from your database; SQL commands for re-creating
tables, views, functions, and other database objects; and commands for
loading the data into tables. You can also use pg_dump to save only selected
tables in your database. By default, pg_dump outputs a text file; I’ll discuss
an alternate custom compressed format first and then discuss other options.

To export the analysis database we’ve used for our exercises to a file,
run the command in Listing 19-11 at your system’s command prompt (not in
psql).

pg_dump -d analysis -U user_name -Fc -v -f
analysis_backup.dump

Listing 19-11: Exporting the analysis database with pg_dump

Here, we start the command with pg_dump and use similar connection
arguments as with psql. We specify the database to export with the -d
argument, followed by the -U argument and your username. Next, we use
the -Fc argument to specify that we want to generate this export in a custom
PostgreSQL compressed format and the -v argument to generate verbose
output. Then we use the -f argument to direct the output of pg_dump to a
text file named analysis_backup.dump. To place the file in a directory other
than the one your terminal prompt is currently open to, you can specify the
complete directory path before the filename.

When you execute the command, depending on your installation, you
might see a password prompt. Fill in that password, if prompted. Then,
depending on the size of your database, the command could take a few

minutes to complete. You’ll see a series of messages about the objects the
command is reading and outputting. When it’s done, it should return you to
a new command prompt, and you should see a file named
analysis_backup.dump in your current directory.

To limit the export to one or more tables that match a particular name,
use the -t argument followed by the name of the table in single quotes. For
example, to back up just the train_rides table, use the following
command:

pg_dump -t 'train_rides' -d analysis -U user_name -Fc -v -f
train_backup.dump

Now let’s look at how to restore the data from the export file, and then
we’ll explore additional pg_dump options.

Restoring a Database Export with pg_restore
The pg_restore utility restores data from your exported database file. You
might need to restore your database when migrating data to a new server or
when upgrading to a new major version of PostgreSQL. To restore the
analysis database (assuming you’re on a server where analysis doesn’t
exist), at the command prompt, run the command in Listing 19-12.

pg_restore -C -v -d postgres -U user_name
analysis_backup.dump

Listing 19-12: Restoring the analysis database with pg_restore

After pg_restore, you add the -C argument, which tells the utility to
create the analysis database on the server. (It gets the database name from
the export file.) Then, as you saw previously, the -v argument provides
verbose output, and -d specifies the name of the database to connect to,
followed by the -U argument and your username. Press ENTER, and the
restore will begin. When it’s done, you should be able to view your restored
database via psql or in pgAdmin.

Exploring Additional Backup and Restore Options

You can configure pg_dump with multiple options to include or exclude
certain database objects, such as tables matching a name pattern, or to
specify the output format. For example, when we backed up the analysis
database, we specified the -Fc argument with pg_dump to generate the
backup in a custom PostgreSQL compressed format. By excluding the -Fc
argument, the utility will output in plain text, and you can view the contents
of the backup with a text editor. For details, check the full pg_dump
documentation at https://www.postgresql.org/docs/current/app-
pgdump.html. For corresponding restore options, check the pg_restore
documentation at https://www.postgresql.org/docs/current/app-
pgrestore.html.

You also may want to explore the pg_basebackup command, which can
back up multiple databases running on a PostgreSQL server. See
https://www.postgresql.org/docs/current/app-pgbasebackup.html for details.
An even more robust backup solution is pgBackRest
(https://pgbackrest.org/), a free, open source application with options such
as cloud integration for storage and the ability to create full, incremental, or
differential backups.

Wrapping Up
In this chapter, you learned how to track and conserve space in your
databases using the VACUUM feature in PostgreSQL. You also learned how to
change system settings as well as back up and restore databases using other
command line tools. You may not need to perform these tasks every day,
but the maintenance tricks you learned here can help enhance the
performance of your databases. Note that this is not a comprehensive
overview of the topic; see the appendix for more resources on database
maintenance.

In the next and final chapter of this book, I’ll share guidelines for
identifying hidden trends and telling an effective story using your data.

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://pgbackrest.org/

TRY IT YOURSELF

Using the techniques you learned in this chapter and earlier in the book, create a
database and add a small table and some data. Then back up the database, delete it,
and restore it using pg_dump and pg_restore.

If you make your backup using the default text format instead of compressed, you
can use a text editor to explore the file created by pg_dump to examine how it organizes
the statements to create objects and insert data.

20
TELLING YOUR DATA’S STORY

Learning SQL can be fun in and of
itself, but it serves a greater purpose: it
helps unearth the stories in your data.
As you’ve learned, SQL gives you the
tools to find interesting trends, insights,

or anomalies in your data and then make smart
decisions based on what you’ve learned. But how do
you identify these trends from just a collection of
rows and columns? And how can you glean
meaningful insights from these trends after
identifying them?

In this chapter, I outline a process I’ve used as a journalist and product
developer to discover stories in data and communicate my findings. I’ll start
with how to generate ideas by asking good questions and gathering and
exploring data. Then I explain the analysis process, which culminates in
presenting your findings clearly. Identifying trends in your dataset and
creating a narrative of your findings sometimes requires considerable
experimentation and enough fortitude to weather the occasional dead end.
Regard these tips as less of a checklist and more of a guideline to help
ensure a thorough analysis that minimizes mistakes.

Start with a Question
Curiosity, intuition, or sometimes just dumb luck can often spark ideas for
data analysis. If you’re a keen observer of your surroundings, you might
notice changes in your community over time and wonder if you can
measure that change. Consider your local real estate market. If you see “For
Sale” signs popping up around town more than usual, you might start
asking questions. Is there a dramatic increase in home sales this year
compared with last year? If so, by how much? Which neighborhoods are
riding the wave? These questions create a great opportunity for data
analysis. If you’re a journalist, you might find a story. If you run a business,
you might see a marketing opportunity.

Likewise, if you surmise that a trend is occurring in your industry,
confirming it might provide you with a business opportunity. For example,
if you suspect that sales of a particular product are sluggish, you can
analyze data to confirm the hunch and adjust inventory or marketing efforts
appropriately.

Keep track of these ideas and prioritize them according to their potential
value. Analyzing data to satisfy your curiosity is perfectly fine, but if the
answers can make your institution more effective or your company more
profitable, that’s a sign they’re worth pursuing.

Document Your Process
Before you delve into analysis, consider how to make your process
transparent and reproducible. For the sake of credibility, others in your
organization as well as those outside it should be able to reproduce your
work. In addition, make sure you document enough of your process so that
if you set the project aside for several weeks, you won’t have trouble
getting up to speed when you return to it.

There isn’t one right way to document your work. Taking notes on
research or creating step-by-step SQL queries that another person could
follow to replicate your data import, cleaning, and analysis can make it
easier for others to verify your findings. Some analysts store notes and code
in a text file. Others use version control systems, such as GitHub, or work

in code notebooks. What’s important is you create a system of
documentation and use it consistently.

Gather Your Data
After you’ve hatched an idea for analysis, the next step is to find data that
relates to the trend or question. If you’re working in an organization that
already has its own data on the topic, lucky you—you’re set! In that case,
you might be able to tap internal marketing or sales databases, customer
relationship management (CRM) systems, or subscriber or event
registration data. But if your topic encompasses broader issues involving
demographics, the economy, or industry-specific subjects, you’ll need to do
some digging.

A good place to start is to ask experts about the sources they use.
Analysts, government decision-makers, and academics can point you to
available data and describe its usefulness. Federal, state, and local
governments, as you’ve seen throughout the book, produce volumes of data
on all kinds of topics. In the United States, check out the federal
government’s data catalog site at https://www.data.gov/ or individual federal
agency sites, such as the National Center for Education Statistics (NCES) at
https://nces.ed.gov/ or the Bureau of Labor Statistics at
https://www.bls.gov/.

You can also browse local government websites. Any time you see a
form for users to fill out or a report formatted in rows and columns, those
are signs that structured data might be available for analysis. All is not lost
if you have access only to unstructured data, though—as you learned in
Chapter 14, you can even mine unstructured data, such as text files, for
analysis.

If the data you want to analyze was collected over multiple years, I
recommend examining five or ten years or more, instead of just one or two,
if possible. Analyzing a snapshot of data collected over a month or a year
can yield interesting results, but many trends play out over a longer period
of time and may not be evident if you look at a single year of data. I’ll
discuss this further in the section “Identify Key Indicators and Trends over
Time.”

https://www.data.gov/
https://nces.ed.gov/
https://www.bls.gov/

No Data? Build Your Own Database
Sometimes, no one has the data you need in a format you can use. If you
have time, patience, and a methodology, you might be able to build your
own dataset. That is what my USA Today colleague Robert Davis and I did
when we wanted to study issues related to the deaths of college students on
campuses in the United States. Not a single organization—not the schools
or state or federal officials—could tell us how many college students were
dying each year from accidents, overdoses, or illnesses on campus. We
decided to collect our own data and structure the information into tables in a
database.

We started by researching news articles, police reports, and lawsuits
related to student deaths. After finding reports of more than 600 student
deaths from 2000 to 2005, we followed up with interviews with education
experts, police, school officials, and parents. From each report, we
cataloged details such as each student’s age, school, cause of death, year in
school, and whether drugs or alcohol played a role. Our findings led to the
publication of the article “In College, First Year Is by Far the Riskiest” in
USA Today in 2006. The story featured the key finding from the analysis of
our SQL database: freshmen were particularly vulnerable and accounted for
the highest percentage of the student deaths we studied.

You too can create a database if you lack the data you need. The key is to
identify the pieces of information that matter and then systematically collect
them.

Assess the Data’s Origins
After you’ve identified a dataset, find as much information about its origins
and maintenance methods as you can. Governments and institutions gather
data in all sorts of ways, and some methods produce data that is more
credible and standardized than others.

For example, you’ve already seen that US Department of Agriculture
(USDA) food producer data included the same company names spelled in
multiple ways. It’s worth knowing why. (Perhaps the data is manually
copied from a written form to a computer.) Similarly, the New York City

taxi data you analyzed in Chapter 12 records the start and end times of each
trip. This begs the question of when the timer starts and stops—when the
passenger gets in and out of the vehicle, or is there some other trigger? You
should know these details not only to draw better conclusions from analysis
but also to pass them along to others who might be interpreting your
analysis.

The origins of a dataset might also affect how you analyze the data and
report your findings. For example, with US Census Bureau data, it’s
important to know that the decennial census conducted every 10 years is a
complete count of the population, whereas the American Community
Survey (ACS) is drawn from only a sample of households. As a result, ACS
counts have a margin of error, but the decennial census doesn’t. It would be
irresponsible to report on the ACS without considering that the margin of
error could render differences between numbers insignificant.

Interview the Data with Queries
Once you have your data, understand its origins, and have it loaded into
your database, you can explore it with queries. Throughout the book, I call
this step interviewing data, which is what you should do to find out more
about the contents of your data and whether they contain any red flags.

A good place to start is with aggregates. Counts, sums, sorting, and
grouping by column values should reveal minimum and maximum values,
potential issues with duplicate entries, and a sense of the general scope of
your data. If your database contains multiple, related tables, try joins to
make sure you understand how the tables relate. Using LEFT JOIN and
RIGHT JOIN, as you learned in Chapter 7, should show whether key values
from one table are missing in another. That may or may not be a concern,
but at least you’ll be able to identify potential problems to address. Jot
down a list of questions or concerns you have, and then move on to the next
step.

Consult the Data’s Owner

After exploring your database and forming early conclusions about the
quality and trends you observed, take time to bring questions or concerns to
a person who knows the data well. That person could work at the
government agency or firm that gave you the data, or the person might be
an analyst who has worked with the data before. This step is your chance to
clarify your understanding of the data, verify initial findings, and discover
whether the data has any issues that make it unsuitable for your needs.

For example, if you’re querying a table and notice values in columns that
seem to be gross outliers (such as dates in the future for events that were
supposed to have happened in the past), you should ask about that
discrepancy. If you expect to find someone’s name in a table (perhaps even
your own name) and it’s not there, that should prompt another question. Is it
possible you don’t have the whole dataset, or is there a problem with data
collection?

The goal is to get expert help to do the following:
Understand the limits of the data. Make sure you know what the data
includes, what it excludes, and any caveats about content that might affect
how you perform your analysis.
Make sure you have a complete dataset. Verify that you have all the
records you should expect to see and that if any data is missing, you
understand why.
Determine whether the dataset suits your needs. Consider looking
elsewhere for more reliable data if your source acknowledges problems
with the data’s quality.

Every dataset and situation is unique, but consulting another user or
owner of the data can help you avoid unnecessary missteps.

Identify Key Indicators and Trends over Time
When you’re satisfied that you understand the data and are confident in its
trustworthiness, completeness, and appropriateness to your analysis, the
next step is to run queries to identify key indicators and, if possible, trends
over time.

Your goal is to unearth data that you can summarize in a sentence or
present as a slide in a presentation. An example of a finding would be
something like this: “After five years of declines, the number of people
enrolling in Widget University has increased by 5 percent for two
consecutive semesters.”

To identify this type of trend, you’ll follow a two-step process:

. Choose an indicator to track. In census data, it might be the percentage of
the population that is over age 60. Or in the New York City taxi data, it
could be the median number of weekday trips over the span of one year.

. Track that indicator over multiple years to see how it has changed, if at all.

In fact, these are the steps we used in Chapter 7 to apply percent change
calculations to multiple years of census data contained in joined tables. In
that case, we looked at the change in population in counties between 2010
and 2019. The population estimate was the key indicator, and the percent
change showed the trend over the nine-year span for each county.

One caveat about measuring change over time: even when you see a
dramatic change between any two years, it’s worth digging into as many
years’ worth of data as possible to understand the shorter-term change in the
context of a long-term trend. Any year-to-year change might seem dramatic,
but seeing it in context of multiyear activity can help you assess its true
significance.

For example, the US National Center for Health Statistics releases data
on the number of babies born each year. As a data nerd, this is one of the
indicators I like to keep tabs on, because births often reflect broader trends
in culture or the economy. Figure 20-1 shows the annual number of births
from 1910 to 2020.

Figure 20-1: US births from 1910 to 2020. Source: US National Center for Health Statistics

Looking at only the last five years of this graph (shaded in gray), we see
that the number of births has declined steadily, to 3.61 million in 2020 from
3.95 million in 2016. The recent drops are indeed noteworthy (reflecting
continuing decreases in birth rates and an aging population). But in the
long-term context, we see that the nation has experienced several baby
booms and busts in the past 100 years. One example you can see in Figure
20-1 is the major rise in the mid-1940s following World War II, which
signaled the start of the Baby Boom generation.

By identifying key indicators and looking at change over time, both short
term and long term, you might uncover one or more findings worth
presenting to others or acting on.

NOTE

Any time you work with data from a survey, poll, or other sample,
it’s important to test for statistical significance. Are the results
actually a trend or just the result of chance? Significance testing is a
statistical concept beyond the scope of this book but one that data
analysts should know. See the appendix for PostgreSQL resources
for advanced statistics.

Ask Why
Data analysis can tell you what happened, but it doesn’t always indicate
why something happened. To learn the why, it’s worth revisiting the data
with experts in the topic or the owners of the data. In the US births data, it’s
easy to calculate year-to-year percent change from those numbers. But the
data doesn’t tell us why births steadily increased from the early 1980s to
1990. For that information, you could consult a demographer who would
most likely explain that the rise in births during those years coincided with
more Baby Boomers entering their child-bearing years.

As you share your findings and methodology with experts, ask them to
note anything that seems unlikely or worthy of further examination. For the
findings that they can corroborate, ask them to help you understand the
forces behind those findings. If they’re willing to be cited, you can use their
comments to supplement your report or presentation. Quoting experts’
insights about trends in this way is a standard approach journalists use.

Communicate Your Findings
How you share the results of your analysis depends on your role. A student
might present their results in a paper or dissertation. A person who works in
a corporate setting might present their findings using PowerPoint, Keynote,
or Google Slides. A journalist might write a story or produce a data
visualization. Regardless of the end product, here are tips for presenting the
information well, using a fictional home sales analysis as an example:

Identify an overarching theme based on your findings. Make the theme
the title of your presentation, paper, or visualization. For example, you
might title a presentation on real estate “Home Sales Rise in Suburban
Neighborhoods, Fall in Cities.”
Present overall numbers to show the general trend. Highlight the key
findings from your analysis. For example, “All suburban neighborhoods
saw sales rise 5 percent each of the last two years, reversing three years of
declines. Meanwhile, city neighborhoods saw a 2 percent decline.”
Highlight specific examples that support the trend. Describe one or two
relevant cases. For example, “In Smithtown, home sales increased 15
percent following the relocation of XYZ Corporation’s headquarters last
year.”
Acknowledge examples counter to the overall trend. Use one or two
relevant cases here as well. For example, “Two city neighborhoods did
show growth in home sales: Arvis (up 4.5%) and Zuma (up 3%).”
Stick to the facts. Never distort or exaggerate any findings.
Provide expert insights. Use quotes or citations.
Visualize numbers using bar charts. line charts, or maps. Tables are
helpful for giving your audience specific numbers, but it’s easier to
understand trends from a visualization.
Cite the source of the data and what your analysis includes or omits.
Provide dates covered, the name of the provider, and any distinctions that
affect the analysis, for example, “Based on Walton County tax filings in
2022 and 2023. Excludes commercial properties.”
Share your data. Post data online for download, including a description of
the steps you took to analyze it. Nothing says transparency more than
sharing your data with others so they can perform their own analysis and
corroborate your findings.

Generally, a short presentation that communicates your findings clearly
and succinctly, and then invites dialogue from your audience, works best.
Of course, you can follow your own preferred pattern for working with data
and presenting your conclusions. But over the years, these steps have
helped me avoid data errors and mistaken assumptions.

Wrapping Up
At last, you’ve reached the end of our practical exploration of SQL! Thank
you for reading this book, and I welcome your suggestions and feedback via
email at practicalsqlbook@gmail.com. At the end of this book is an
appendix that lists additional PostgreSQL-related tools you might want to
try.

I hope you’ve come away with data analysis skills you can start using
immediately on the everyday data you encounter. More importantly, I hope
you’ve seen that each dataset has a story, or several stories, to tell.
Identifying and telling these stories is what makes working with data
worthwhile; it’s more than just combing through a collection of rows and
columns. I look forward to hearing about what you discover!

TRY IT YOURSELF

It’s your turn to find and tell a story using the SQL techniques we’ve covered. Using the
process outlined in this chapter, consider a local or national topic and search for
available data. Assess its quality, the questions it might answer, and its timeliness.
Consult with an expert who knows the data and the topic well. Load the data into
PostgreSQL and interview it using aggregate queries and filters. What trends can you
discover? Summarize your findings in a short presentation.

http://mailto:practicalsqlbook@gmail.com/

APPENDIX
ADDITIONAL POSTGRESQL

RESOURCES

This appendix contains resources to
help you stay informed about
PostgreSQL developments, find
additional software, and get help.
Because software resources are likely to

change, I’ll maintain a copy of this appendix at the
GitHub repository that contains all the book’s
resources. You can find a link to GitHub via
https://nostarch.com/practical-sql-2nd-edition/.

PostgreSQL Development Environments
Throughout the book, we’ve used the graphical user interface pgAdmin to
connect to PostgreSQL, run queries, and view database objects. Although
pgAdmin is free, open source, and popular, it’s not your only choice for
working with PostgreSQL. The wiki entry “PostgreSQL Clients” at
https://wiki.postgresql.org/wiki/PostgreSQL_Clients catalogs many
alternatives.

The following list shows several tools I’ve tried, including free and paid
options. The free tools work well for general analysis work. If you wade

https://nostarch.com/practical-sql-2nd-edition/
https://wiki.postgresql.org/wiki/PostgreSQL_Clients

deeper into database development, you might want to upgrade to the paid
options, which typically offer advanced features and support.
Beekeeper Studio Free and open source GUI for PostgreSQL, MySQL,
Microsoft SQL Server, SQLite, and other platforms. Beekeeper works on
Windows, macOS, and Linux and features one of the more refined app
designs among database GUIs (see https://www.beekeeperstudio.io/).
DBeaver Described as a “universal database tool” that works with
PostgreSQL, MySQL, and many other databases, DBeaver includes a visual
query builder, code autocompletion, and other advanced features. There are
paid and free versions for Windows, macOS, and Linux (see
https://dbeaver.com/).
DataGrip A SQL development environment that offers code completion,
bug detection, and suggestions for streamlining code, among many other
features. It’s a paid product, but the company, JetBrains, offers discounts
and free versions for students, educators, and nonprofits (see
https://www.jetbrains.com/datagrip/).
Navicat A richly featured SQL development environment with versions
that support PostgreSQL as well as other databases, including MySQL,
Oracle, MongoDB, and Microsoft SQL Server. There is no free version of
Navicat, but the company offers a 14-day free trial (see
https://www.navicat.com/).
Postbird A simple cross-platform PostgreSQL GUI for writing queries and
viewing objects. Free and open source (see
https://github.com/Paxa/postbird/).
Postico A macOS-only client from the maker of Postgres.app that takes its
cues from Apple design. The full version is paid, but a restricted-feature
version is available with no time limit (see https://eggerapps.at/postico/).

A trial version can help you decide whether the product is right for you.

PostgreSQL Utilities, Tools, and Extensions
You can expand the capabilities of PostgreSQL via numerous third-party
utilities, tools, and extensions. These range from additional backup and

https://www.beekeeperstudio.io/
https://dbeaver.com/
https://www.jetbrains.com/datagrip/
https://www.navicat.com/
https://github.com/Paxa/postbird/
https://eggerapps.at/postico/

import/export options to improved formatting for the command line to
powerful statistics packages. You’ll find a curated list online at
https://github.com/dhamaniasad/awesome-postgres/, but here are several to
highlight:
Devart Excel Add-in for PostgreSQL An Excel add-in that lets you load
and edit data from PostgreSQL directly in Excel workbooks (see
https://www.devart.com/excel-addins/postgresql.html).
MADlib A machine learning and analytics library for large data sets that
integrates with PostgreSQL (see https://madlib.apache.org/).
pgAgent A job manager that lets you run queries at scheduled times, among
other tasks (see
https://www.pgadmin.org/docs/pgadmin4/latest/pgagent.html).
pgBackRest An advanced database backup and restore management tool
(see https://pgbackrest.org/).
pgcli A substitute command-line interface for psql that includes
autocompletion and syntax highlighting (see
https://github.com/dbcli/pgcli/).
pgRouting Enables a PostGIS-enabled PostgreSQL database to perform
network analysis tasks, such as finding driving distance along roadways
(see https://pgrouting.org/).
PL/R A loadable procedural language that provides the ability to use the R
statistical programming language within PostgreSQL functions and triggers
(see https://www.joeconway.com/plr.html).
pspg Formats the output of psql into sortable, scrollable tables with support
for several color themes (see https://github.com/okbob/pspg/).

PostgreSQL News and Community
Now that you’re a bona fide PostgreSQL user, it’s wise to stay on top of
community news. The PostgreSQL development team updates the software
on a regular basis, and changes might affect code you’ve written or tools
you’re using. You might even find new opportunities for analysis.

Here’s a collection of online resources to help you stay informed:

https://github.com/dhamaniasad/awesome-postgres/
https://www.devart.com/excel-addins/postgresql.html
https://madlib.apache.org/
https://www.pgadmin.org/docs/pgadmin4/latest/pgagent.html
https://pgbackrest.org/
https://github.com/dbcli/pgcli/
https://pgrouting.org/
https://www.joeconway.com/plr.html
https://github.com/okbob/pspg/

Crunchy Data blog Posts from the team at Crunchy Data, which provides
enterprise PostgreSQL support and solutions (see
https://blog.crunchydata.com/blog/).
The EDB Blog Posts from the team at EDB, a PostgreSQL services
company that provides the Windows installer referenced in this book and
also leads development of pgAdmin (see
https://www.enterprisedb.com/blog/).
Planet PostgreSQL Aggregates blog posts and announcements from the
database community (see https://planet.postgresql.org/).
Postgres Weekly An email newsletter that rounds up announcements, blog
posts, and product announcements (see https://postgresweekly.com/).
PostgreSQL mailing lists These lists are useful for asking questions of
community experts. The pgsql-novice and pgsql-general lists are
particularly good for beginners, although note that email volume can be
heavy (see https://www.postgresql.org/list/).
PostgreSQL news archive Official news from the PostgreSQL team (see
https://www.postgresql.org/about/newsarchive/).
PostgreSQL nonprofits PostgreSQL-related charitable organizations
include the United States PostgreSQL Association and PostgreSQL Europe.
Both provide education, events, and advocacy around the product (see
https://postgresql.us/ and https://www.postgresql.eu/).
PostgreSQL user groups A list of community groups that offer meetups
and other activities (see https://www.postgresql.org/community/user-
groups/).
PostGIS blog Announcements and updates about the PostGIS extension
(see https://postgis.net/blog/).

Additionally, I recommend paying attention to developer notes for any of
the PostgreSQL-related software you use, such as pgAdmin.

Documentation
Throughout this book, I’ve made frequent reference to pages in the official
PostgreSQL documentation. You can find documentation for each version

https://blog.crunchydata.com/blog/
https://www.enterprisedb.com/blog/
https://planet.postgresql.org/
https://postgresweekly.com/
https://www.postgresql.org/list/
https://www.postgresql.org/about/newsarchive/
https://postgresql.us/
https://www.postgresql.eu/
https://www.postgresql.org/community/user-groups/
https://postgis.net/blog/

of the software along with an FAQ and wiki on the main page at
https://www.postgresql.org/docs/. It’s worth reading sections of the manual
as you learn more about a topic, such as indexes, or search for all the
options that come with functions. In particular, the “Preface,” “Tutorial,”
and “SQL Language” sections cover much of the material presented in the
book’s chapters.

Other good resources for documentation are the Postgres Guide at
http://postgresguide.com/ and Stack Overflow, where you can find
questions and answers posted by developers at
https://stackoverflow.com/questions/tagged/postgresql/. You can also check
out the Q&A site for PostGIS at
https://gis.stackexchange.com/questions/tagged/postgis/.

https://www.postgresql.org/docs/
http://postgresguide.com/
https://stackoverflow.com/questions/tagged/postgresql/
https://gis.stackexchange.com/questions/tagged/postgis/

Index

Please note that index links to approximate location of each term.

Symbols
+ (addition operator), 79
& (ampersand operator), 270
:= (assignment operator), 359
* (asterisk)

as multiplication operator, 79
as wildcard in SELECT statement, 30

\ (backslash), 249
escaping characters with, 255

, (comma), 60
||/ (cube root operator), 81
{} (curly brackets), 249

denoting an array in query output, 90
<-> (distance operator), 271
@@ (double at sign match operator), 266
:: (double-colon CAST operator), 56
$$ (double-dollar quoting), 351
|| (double-pipe concatenation operator), 172, 261, 329

" (double quote), 61, 118
! (exclamation point)

as factorial operator, 81
as negation, 250, 270

^ (exponentiation operator), 80
/ (forward slash)

as division operator, 80
in macOS file paths, 44

> (greater-than comparison operator), 35
>= (greater-than or equals comparison operator), 35
- (hyphen subtraction operator), 79, 331
@> and <@ (JSON containment operators), 315
? and ?| (JSON existence operators), 315
-> and - (JSON field and element extraction operators), 310, 310–311
#- (JSON path deletion operator), 331
#> and ##> (JSON path extraction operators), 310, 314
< (less-than comparison operator), 35
<= (less-than or equals comparison operator), 35
<> (not-equal comparison operator), 35
!= (not-equal comparison operator), 35
() (parentheses)

to designate order of operations, 38
to specify columns for importing, 70

% (percent sign)
as modulo operator, 80
wildcard for pattern matching, 37

| (pipe character)
as delimiter, 44, 63, 72
to redirect output, 295

; (semicolon), 19
|/ (square root operator), 81
~* (tilde-asterisk case-insensitive matching operator), 250
~ (tilde case-sensitive matching operator), 250
_ (underscore wildcard for pattern matching), 37

A
adding numbers, 79

across columns, 82
addition operator (+), 79
aggregate functions, 86, 142

avg(), 86, 200
binary (two-input), 186
count(), 143, 159
filtering with HAVING, 153
GROUP BY requirement, 146
interviewing data, 159
max(), 145
min(), 145
PostgreSQL documentation, 143
sum(), 86, 149

aliases for table names, 107, 151
ALTER COLUMN statement, 133

ALTER SYSTEM command, 394
ALTER TABLE statement, 165

ADD COLUMN, 165, 169, 286
ADD CONSTRAINT, 133
ALTER COLUMN, 165
DROP COLUMN, 165, 176
RENAME TO, 180
to restart sequence, 127
table constraints, adding and removing, 132

American National Standards Institute (ANSI), 305
SQL standard, xxiv

ampersand operator (&), 270
Amtrak trip data, 218
ANALYZE keyword

with EXPLAIN statement, 135
with VACUUM, 391

AND logical operator combining comparison operators, 38, 114
antimeridian, 66
API (application programming interface), 318
array, 90, 256

array_length() function, 252
constructor example, 90
denoted by curly brackets in query output, 90, 256
extracting element with JSON operators, 312
functions, 91
index positions, 313

in JSON, 306, 332
notation in query, 260
passing into ST_MakePoint(), 284
returned from regexp_match(), 255
unnest() function, 91

array_length() function, 252
ASC keyword in ORDER BY clause, 32
AS keyword

declaring table aliases with, 107, 113
renaming columns in query results with, 82, 106

assignment operator (:=), 359
asterisk (*)

as multiplication operator, 79
as wildcard in SELECT statement, 30

attribute, 22
auto-incrementing integers, 23, 31, 46

gaps in sequence, 47, 126
identity column SQL standard, 46
overriding values, 127
restarting sequence, 127
as surrogate primary key, 125
using IDENTITY, 46, 122, 125

autovacuum, 390
editing server setting, 393
time of last vacuum, 391

avg() function, 86, 200, 226

B
backslash (\), 249

escaping characters with, 255
backups

column, 168
improving performance when updating tables, 179
restoring values from another table, 170
tables, 167

bell curve. See normal distribution
BETWEEN comparison operator, 35, 229

inclusive property, 36
BINARY file format, 63
birth data, US, 404
Boolean expression

in constraint, 131
in table join, 94

Boolean value, 94
used in table join, 94

B-tree index, 134
Bureau of Labor Statistics, 401

C
CALL command, 352
camel case, 27, 118
carriage return in text files, 63
Cartesian product as result of CROSS JOIN, 103

CASCADE keyword, 129
case sensitivity

with ILIKE operator, 37
with LIKE operator, 37

CASE statement, 241
in common table expression, 242
ELSE clause, 242
syntax, 241
with trigger, 358
in UPDATE statement, 262
WHEN clause, 241, 359

CAST() function, 55
shortcut notation, 56

categorizing data, 241
char, 42
character string types, 42

char, 42
functional difference from number types, 45
performance in PostgreSQL, 43
text, 42
varchar, 42

char_length() function, 246
CHECK constraint, 130
classify_max_temp() user function, 358
clock_timestamp() function, 208
Codd, Edgar F., xxiv, 93

codes, distinguishing from numbers, 65
column, 22

adding numbers in, 86
alias, 82
alter data type, 165
avoiding spaces in name, 119
deleting, 176
indexes, 136
populating new during backup, 179
retrieving in queries, 31
updating values, 166

comma (,), 60
command line, 363

advantages of using, 364
createdb command, 383
psql, 370
setup, 364

macOS, 368
PATH environment variable, 364
Windows, 364

shell programs, 368
COMMIT statement in transaction block, 177
common table expression (CTE), 234

with CASE statement, 242
defining, 234

comparison operators, 35

combining with AND and OR, 38
composite primary key, 121
concatenation, 172
conditional expression, 241
constraints, 23, 120

adding and removing, 132
CHECK, 130, 185
column vs. table, 121, 123
CONSTRAINT keyword, 95, 123, 130
foreign key, 128
NOT NULL, 132
primary key, 95, 121, 123
UNIQUE, 96, 131
violations when altering table, 166

constructor, 90
Coordinated Universal Time (UTC), 52, 206

UTC offset, 52, 206, 219
COPY statement

DELIMITER option, 63
description of, 59
exporting data, 43, 72
FORMAT option, 63
FROM keyword, 62
HEADER option, 63
importing data, 62
JSON import, 310

naming file paths, 44
QUOTE option, 63
specifying columns to import, 68
specifying file formats, 63
specifying rows to import, 70
TO keyword, 72, 216
WHERE clause, 70
WITH keyword, 62

corr() function, 186
correlation does not imply causality, 189, 192
interpreting correlation coefficients, 186

correlated subquery, 224
count() function, 143, 159, 227

distinct values, 144
with GROUP BY, 147
on multiple columns, 148
values present in a column, 144

counting
distinct values, 144
missing values displayed, 161
rows, 143
using pgAdmin, 144

CREATE DATABASE statement, 19
createdb utility, 383
CREATE EXTENSION statement, 237, 276, 352
CREATE FUNCTION statement, 347

CREATE INDEX statement, 134, 136
CREATE TABLE statement, 22

backing up a table with, 167
declaring data types, 41
temporary table, 71

CREATE TRIGGER statement, 356
CREATE VIEW statement, 339
CROSS JOIN keyword, 103, 236
crosstab() function, 240

syntax example, 239
cross tabulations, 236

installing the tablefunc module, 237
CSV (comma-separated values), 60

export using COPY, 72
header row, 61
opening with text editor, 2

cube root operator (||/), 81
curly brackets ({}), 249

denoting an array in query output, 90
current_date function, 208
current_time function, 208
current_timestamp function, 208
cut points, 88

D
data

structured and unstructured, 245
telling its story, 399

database
backup and restore, 395
connecting to, 20, 22
create from command line, 383
creating, 17, 19
maintenance, 387

database management system, 12, 19
database server, 12, 19
data dictionary, 41
data types, 41

bigint, 45
bigserial, 23, 45, 46
boolean, 55
char, 42
character string types, 42
date, 22, 51
date and time types, 51
decimal, 47
declaring with CREATE TABLE, 41
double precision, 48
full-text search, 265
geography, 280
geometry, 281
importance of using appropriate type, 41

integer, 45
interval, 51
json, 54
jsonb, 54
modifying with ALTER COLUMN, 165
number types, 44
numeric, 23, 47
real, 48
returned by math operations, 78
serial, 31, 45, 46
serial types, 46
smallint, 45
smallserial, 45, 46
text, 42
time, 51
timestamp, 51, 204
transforming values with CAST(), 55
tsquery, 266
tsvector, 265
varchar, 23, 42

date data types
date, 51
interval, 51

date_part() function, 205, 215, 241
dates

calculations with, 212

input format, 22, 25, 36, 52, 204, 205
matching with regular expressions, 253
setting default style, 394

Davis, Robert, 401
daylight saving time, 210
deciles, 90
decimal data types, 47
decimal degrees, 66
DELETE CASCADE statement with foreign key constraint, 129
DELETE statement, 70

removing rows matching criteria, 175
with subquery, 225

delimited text files, 59
text qualifiers, 61

delimiter, comma as most common, 60
DELIMITER keyword with COPY statement, 63
dense_rank() function, 193
derived table, 225

joining, 226
DESC keyword in ORDER BY clause, 32
dirty data, 29, 157

cleaning, 157
foreign keys help to avoid, 129
when to discard, 165

distance operator (<->), 271
DISTINCT keyword, 33

with count(), 144
in IS DISTINCT FROM clause, 169
on multiple columns, 34

division, 79
finding the remainder, 80
integer vs. decimal, 79, 80

documenting code, 41
double at sign match operator (@@), 266
double-colon CAST operator (::), 56
double-dollar quoting ($$), 351
double-pipe concatenation operator (||), 172, 261, 329
double quote ("), 61, 118
DROP statement

COLUMN, 176
INDEX, 137
TABLE, 71, 176

duplicate data created by spelling variations, 160

E
Eastern Standard Time (EST), 52
eliminating duplicate values in query, 34
ELSE clause in CASE statement, 242
entity, 19
environment variables, 364
epoch, 206, 320
equals comparison operator (=), 35

error messages
CSV import failure, 67, 69
foreign key violation, 129
out of range, 46
primary key violation, 124
relation already exists, 119
UNIQUE constraint violation, 132
when using CAST(), 56

escaping characters, 255
EST (Eastern Standard Time), 52
exclamation point (!)

as factorial operator, 81
as negation, 250, 270

EXISTS operator, 229
with subquery, 230
in WHERE clause, 167

EXPLAIN statement, 135
output of command, 135

exponentiation operator (^), 80
exporting data

all data in table, 72
header row, including, 63
limiting columns, 73
from query results, 73, 216
using COPY statement, 59, 72, 216
using pgAdmin wizard, 74

using the command line, 380
expressions, 53, 224

conditional, 241
subquery, 229

extract() datetime function, 206

F
factorial() function, 81
factorials, 80
false as Boolean value, 94
Federal Information Processing Standards (FIPS), 65, 295
field, 22
file paths

import and export file locations, 62
naming conventions for operating systems, 44, 62

filtering rows
HAVING clause, 153, 160
with subquery, 224
WHERE clause, 35, 224

findstr Windows command, 162
FIPS (Federal Information Processing Standards), 65, 295
fixed-point numbers, 47
floating-point numbers, 48

inexact math calculations, 49
Food Safety Inspection Service, 158
foreign key

creating with REFERENCES keyword, 128
definition, 96, 128

formatting SQL for readability, 27
forward slash (/)

as division operator, 80
in macOS file paths, 44

FROM keyword with COPY, 62
FULL OUTER JOIN keywords, 102
full-text search, 265

adjacent words, locating, 271
data types, 265
highlighting terms, 269
language configurations, 266
lexemes, 265
multiple terms in query, 270
querying, 268
ranking results, 271
setting default language, 394
table and column setup, 267
to_tsquery() function, 266
to_tsvector() function, 265
ts_headline() function, 269
ts_rank() function, 272
ts_rank_cd() function, 272
using GIN index with, 268

functions, 337

difference with procedures, 349
creating, 346
full-text search, 265
IMMUTABLE keyword, 348
RAISE NOTICE keywords, 351
RETURNS keyword, 348
specifying language, 348
string, 246
structure of, 348

G
generalized inverted index (GIN), 134, 268, 310
generalized search tree (GiST), 134, 286
generate_series() function, 209, 241, 389
GeoJSON, 276, 319
getting help when code goes bad, 26
GIN (generalized inverted index), 134, 268, 310
GIS (geographic information systems), 276

decimal degrees, 66
GiST (generalized search tree), 134, 286
GitHub, downloading code resources from, 3
graphical user interface (GUI), 292

list of tools, 407
greater-than comparison operator (>), 35
greater-than or equals comparison operator (>=), 35
grep Linux command, 162

GROUP BY clause
with aggregate functions, 146
eliminating duplicate values, 146
on multiple columns, 147

H
HAVING clause, 153, 160
HEADER keyword, 63
header row

in CSV file, 61, 64
ignoring during import, 61

hyphen subtraction operator (-), 79, 331

I
identifiers

avoiding reserved keywords, 119
enabling mixed case, 118
naming, 27, 118
quoting, 119

IDENTITY keyword, 46, 125
ILIKE comparison operator, 35, 37

case-insensitive search, 37
importing data, 59, 62

adding default column value, 71
choosing a subset of columns, 68
choosing a subset of rows, 70
ignoring header row in text files, 61, 63

from non-text sources, 60
from text file format, 62
using COPY statement, 59
using pgAdmin wizard, 74
using the command line, 380

IN comparison operator, 35, 172, 229
with subquery, 230

indexes, 133
and ANSI SQL standard, 133
B-tree, 134
considerations before adding, 137
creating on columns, 136
dropping, 137
effect on performance, 135
GIN, 134
GiST, 134, 286
not included with table backups, 168
syntax for creating, 134

initcap() function, 246
inserting rows into a table, 25
INSERT statement, 25
Institute of Museum and Library Services, 140
integer data types, 45

auto-incrementing, 46
basic math operations, 79
bigint, 45

bigserial, 46
difference in integer type capacities, 45
integer, 45
serial, 46
smallint, 45
smallserial , 46

International Date Line, 66
International Organization for Standardization (ISO), 52, 277

SQL standard, xxiv
time format, 204

interval data type
calculations with, 53, 219
cumulative, 220
value options, 53

interviewing data, 29, 159
across joined tables, 151
artificial values as indicators, 146, 150
checking for missing values, 32, 160
correlations, 185
counting rows and values, 143
determining correct format, 32
finding inconsistent values, 162
malformed values, 162
maximum and minimum values, 145
rankings, 193
rates calculations, 196

statistics, 183
summing grouped values, 149
unique combinations of values, 34

ISO (International Organization for Standardization), 52, 277
SQL standard, xxiv
time format, 204

J
JOIN keyword, 94

example of using, 100
in FROM clause, 94
with USING clause, 100

join types
CROSS JOIN, 103, 236
FULL OUTER JOIN, 102
JOIN (INNER JOIN), 100, 151
LEFT JOIN, 101
list of, 98
RIGHT JOIN, 101

joining tables, 93
derived tables, 226
multiple-table joins, 107
naming tables in column list, 106, 151
performing calculations across tables, 112
with set operators, 109
spatial joins, 300

specifying columns to query, 106
using JOIN keyword, 94, 97

json_agg() function, 329
jsonb_array_elements() function, 332
jsonb_array_elements_text() function, 332
jsonb_array_length() function, 331
jsonb_build_object() function, 329
jsonb_set() function, 330
JSON (JavaScript Object Notation), 54, 305

array, 306
considerations for using in database, 307
containment operators (@> and <@), 315
data types, 308

json, 309
jsonb, 309

existence operators (? and ?|), 315, 317
extraction operators, 310
field and element extraction operators (-> and -), 310, 310–311
functions

json_agg(), 329
jsonb_array_elements(), 332
jsonb_array_elements_text(), 332
jsonb_array_length(), 331
jsonb_build_object(), 329
jsonb_set(), 330
to_json(), 327

generating, 327
GeoJSON format, 319
importing, 309
indexing, 310, 319
json and jsonb data types, 54
key/value pairs, 54, 306
manipulating, 327
modifying key/value pairs, 329
object, 306
path extraction operators (#> and ##>), 310, 314
processing functions, 331
schema flexibility, 306
structure of, 54, 306

justify_interval() function, 221

K
key columns

foreign key, 96
primary key, 95
relating tables with, 94

key/value pairs, 306
extracting from JSON, 311

Korea standard time, 212

L
LATERAL subquery, 231

with FROM keyword, 231

with JOIN keyword, 232
latitude

in US Census data, 66
in well-known text, 278

least squares regression line, 190
left() function, 247
LEFT JOIN keywords, 101
length() string function, 163, 246
less-than comparison operator (<), 35
less-than or equals comparison operator (<=), 35
lexemes, 265
LIKE comparison operator, 35

case-sensitive search, 37
LIKE expression in UPDATE statement, 171
LIMIT clause, 67
limiting number of rows query returns, 67
linear regression, 189

least squares regression line, 190
linear relationship, 186
Linux

file path declaration, 44, 62
grep command, 162
system permissions, 44
Terminal setup, 370

literals, 25
localhost, 13, 20

localtime function, 208
logical operators, 38
longitude

positive and negative values, 68
in US Census data, 66
in well-known text, 278

lower() string function, 246

M
macOS

file path declaration, 44, 62
Terminal, 368

bash shell, 368
entering instructions, 369
setup, 368
useful commands, 369

make_date() function, 207
make_time() function, 207
make_timestamptz() function, 207
many-to-many table relationship, 105
map projection, 279
matching operators, 37
math

across joined table columns, 112
across table columns, 82
order of operations, 81

math operators, 78
addition (+), 79
division (/), 79
exponentiation (^), 80
factorial (!), 80
modulo (%), 79
multiplication (*), 79
square root (|/), 80
subtraction (-), 79

max() function, 145
median, 87

compared to average, 87, 217, 226
with percentile_cont() function, 89

Microsoft Access, xxv
Microsoft Excel, xxv
Microsoft SQL Server, 118, 237

BULK INSERT command, 60
Transact-SQL, xxiv

Microsoft Windows
Command Prompt

entering instructions, 366
setup, 364, 366
useful commands, 367

file path declaration, 43, 62
findstr command, 162
folder permissions, 3

min() function, 145
mode, 91
mode() function, 91
modifying data, 164

for consistency, 170
updating column values, 169

modulo, 79
testing for even numbers, 80

multiplying numbers, 79
MySQL, xxv

LOAD DATA INFILE statement, 60

N
NAICS (North American Industry Classification System), 197
naming conventions

camel case, 118
Pascal case, 118
snake case, 118, 120

National Center for Education Statistics, 401
National Center for Health Statistics, 404
natural primary key, 121, 159
New York City taxi data, 213

creating table, 213
exporting results, 216
finding busiest hour of day, 215
importing, 214

longest trip duration, 217
normal distribution, 192, 226
North American Industry Classification System (NAICS), 197
NoSQL databases, 307
NOT comparison operator, 35
not-equal comparison operator

<> syntax, 35
!= syntax, 35

NOT NULL keywords, 132
adding to column, 165
removing from column, 133, 165

now() function, 52, 208
NULL keyword

comparisons using IS DISTINCT FROM, 169
definition, 104
display in query results, 105
ordering with FIRST and LAST, 161
using in table joins, 104
using in WHERE clause, 104

number data types, 44
decimal types, 47

decimal, 47
double precision, 48
fixed-point type, 47
fixed-point vs. floating-point types, 48
floating-point types, 48

numeric, 47
real, 48

integer types, 45
bigint, 45
bigserial, 45
integer, 45
serial, 45
smallint, 45
smallserial, 45

usage considerations, 50

O
OGC (Open Geospatial Consortium), 277
ON clause used with JOIN, 94
one-to-many table relationship, 105, 128
one-to-one table relationship, 105
ON keyword used with DELETE CASCADE, 129
Open Geospatial Consortium (OGC), 277
operators

addition (+), 79
comparisons with, 35
division (/), 79
exponentiation (^), 80
factorial (!), 80
JSON, 310
modulo (%), 79

multiplication (*), 79
precedence, 81
prefix, 81
square root (|/), 80
subtraction (-), 79
suffix, 81

Oracle, xxiv
ORDER BY clause, 32

ASC, DESC options, 32
with count() function, 148
on multiple columns, 33
specifying columns to sort, 32
specifying NULLS first or last, 161

OR logical operator combining comparison operators, 38
OVER clause with window functions, 193

P
Pacific time zone, 52, 211
padding character columns with spaces, 42, 44
parentheses ()

to designate order of operations, 38
to specify columns for importing, 70

Pascal case, 118
path deletion operator, JSON (#-), 331
pattern matching

using LIKE and ILIKE, 37, 171

with wildcards, 37
Pearson correlation coefficient (r), 186
percentage

percent change, 85
creating user function, 347
formula, 85, 113, 347

of the whole, 84
percent_change() user function, 347

using with census data, 348
percentile, 88, 224

continuous vs. discrete values, 88
definition of, 88

percentile_cont() function, 88
finding median with, 217
in subquery, 224
using an array to enter multiple values, 90

percentile_disc() function, 88
percent sign (%)

as modulo operator, 80
wildcard for pattern matching, 37

pgAdmin, 11
alternatives to, 407
connecting to database, 20, 22
connecting to server, 12
drag and drop objects, 32
executing SQL, 20, 21

geometry viewer, 324
importing and exporting data, 74
installation

Linux, 9
macOS, 8
Windows, 4

keyword highlighting, 119
launching, 11
localhost, 13, 20
master password, 11
object browser, 12, 21, 24
preferences, 15
Query Tool, 14, 20
.sql files, 3
viewing data, 26, 31, 95, 144
viewing tables, 65
viewing table SQL statements, 24
viewing text in results grid, 254
views, 339

pg_ctl utility, 395
pg_dump utility, 395
pg_reload_conf() function, 394
pg_restore utility, 396
pg_size_pretty() function, 389
pg_total_relation_size() function, 389
pipe character (|)

as delimiter, 44, 63, 72
to redirect output, 295

PL/pgSQL, 347, 350
BEGIN ... END block, 356
IF ... THEN statement, 356

point, 66
position() string function, 246
PostGIS

creating spatial objects, 281
data types, 280, 281
displaying version, 276
functions

ST_AsText(), 295
ST_DFullyWithin(), 288
ST_Distance(), 289
ST_DWithin(), 287, 326
ST_GeogFromText(), 283, 288, 326
ST_GeometryType(), 300
ST_GeomFromText(), 281
ST_Intersection(), 301
ST_Intersects(), 301
ST_LineFromText(), 284
ST_MakeLine(), 284
ST_MakePoint(), 283, 324
ST_MakePolygon(), 284
ST_MpolyFromText(), 284

ST_PointFromText(), 283
ST_PolygonFromText(), 284
ST_SetSRID(), 286, 324

installation, 276
Linux, 11
macOS, 8
Windows, 5

loading extension, 276, 324
shapefile, 292, 295, 383
spatial joins, 300

Postgres.app, 20
PostgreSQL

backup and restore, 395
pg_dump, 395
pg_restore, 396

command line usage, 363
comparison operators, 36
configuration, 387
creating functions, 346
default postgres database, 19
description of, 12, 19
documentation, 410
functions, 337
GUI tools, 407
importing from other database managers, 60
installation, 1, 3

Linux, 9
macOS, 8
Windows, 4

JSON support, 308
maintenance, 387
modules, 237
news and community, 409
pg_operator table, 79
postgresql.conf settings file, 393
procedure, 349
recovering unused space, 388
settings, 392
spatial data analysis, 275, 287, 289
starting and stopping, 395
statistics collector, 391
table size, 388
triggers, 337, 354
utilities, tools, and extensions, 408
version() function, 14
views, 337

postgresql.conf settings file, 210, 393
editing, 393
location of, 393
reloading settings, 395

precision input for numeric and decimal types, 47
primary key, 18, 31

composite, 121, 124
definition of, 95, 121
natural, 96, 121, 159
surrogate, 122, 126

auto-incrementing, 125
syntax, 99, 123, 124
uniqueness, 96
using auto-incrementing serial type, 46, 122
violation, 124

Prime Meridian, 66, 280
procedural language, 347
procedures

CALL command, 352
difference with functions, 349
updating data with, 349

projection (map), 279
Albers, 279

psql command line application, 364
connecting to database, 370, 372
displaying table info, 379
editing queries, 375
executing queries from a file, 382
formatting results, 375
help commands, 372
importing and exporting files, 380
meta-commands, 379, 389

multiline queries, 374
NULL value display, 105
paging results, 376
parentheses in queries, 374
passing in SQL commands, 381
password file, 373
running queries, 374
saving query output, 381
setup

Linux, 370
macOS, 368
Microsoft Windows, 364

Public Libraries Survey, 140
creating tables, 140–141

Python programming language, xxv
creating PL/Python extension, 352
in PostgreSQL function, 347, 352
installation

macOS, 9
Windows, 5

Q
quantiles, 88
quartiles, 90
query

choosing order of columns, 31

definition of, 17
eliminating duplicate values, 34
execution time, 135
exporting results of, 73
limiting number of rows returned, 67
measuring performance with EXPLAIN, 135
order of clauses, 39
retrieving a subset of columns, 31
selecting all rows and columns, 30

quintiles, 90
quotes, single vs. double, 25

R
r (Pearson correlation coefficient), 186
rank() function, 193
ranking data, 193

rank() and dense_rank() functions, 193
by subgroup, 195

rates calculations, 196, 227, 235
record_if_grade_changed() user function, 356
REFERENCES keyword declaring foreign key, 128
referential integrity

cascading deletes, 129
foreign keys, 128
primary key, 124

regexp_match() function, 255

extracting text from result, 260
regexp_matches() function, 256
regexp_replace() function, 252
regexp_split_to_array() function, 252
regexp_split_to_table() function, 252
regular expressions, 247

capture group, 249, 257
escaping characters, 255
examples, 250
notation, 248
parsing unstructured data, 253, 258
regexp_match() function, 255
regexp_matches() function, 256
regexp_replace() function, 252
regexp_split_to_array() function, 252
regexp_split_to_table() function, 252
with substring() function , 250
in WHERE clause, 250

relational database, 93
related tables, 18

relational model, 93
reducing redundant data, 97
table relationships, 105

replace() string function, 247
reserved keywords, 119
RETURNING clause, 170

with UPDATE statement, 167
right() function, 247
RIGHT JOIN keyword, 101
ROLLBACK statement in transaction block, 177
roots, square and cube, 80
round() function, 86, 188
row

constructor, 328
counting, 143
in CSV file, 60
definition, 93
deleting, 175
generating from JSON array, 332
inserting, 25
recovering unused, 388
specifying in window function, 200
updating specific, 169

row() function, 328
R programming language, xxv
r-squared (coefficient of determination), 191

S
scalar subquery, 224
scale input for numeric and decimal types, 47
scatterplot, 186, 188
selecting all rows and columns, 30

SELECT statement
definition, 30
order of clauses, 39

semicolon (;), 19
server

localhost, 20
postgresql.conf file, 210
setting time zone, 210

SET keyword
clause in UPDATE statement, 166
TIME ZONE, 211

set operators, 109
EXCEPT, 111
INTERSECT, 111
UNION, 109
UNION ALL, 109

setting up your coding environment, 1
shapefile, 291

contents of, 292
loading into database, 292
shp2pgsql command line utility, 383
US Census TIGER/Line, 292, 300

SHOW command
config_file, 393
data_directory, 395
timezone, 209

view all server settings with, 210
shp2pgsql command line utility, 383
simple feature standard, 277
slope-intercept formula, 190
snake case, 118
sorting data, 32

on aggregate results, 149
by multiple columns, 33

spatial data
area analysis, 296
building blocks of, 276
converting JSON to, 323
data types, 280
distance analysis, 287, 289
finding location, 297
geographic coordinate system, 276, 279
geometries, 277, 281, 283, 284, 319
intersection analysis, 301
joins, 300
projection, 279
shapefile, 291
simple feature standard, 277
spatial reference system identifier (SRID), 277, 279
well-known text (WKT), 278
WGS 84 coordinate system, 280

spatial reference system identifier (SRID), 277, 279

setting with ST_SetSRID(), 286
SQL

history of, xxiv
indenting code, 27
math operators, 78
relational model, 93
reserved keywords, 119
style conventions, 23, 27, 56
using with external programming languages, xxvi
value of using, xxiv, xxv
variations among databases, xxiv

sqrt() function, 81
square root operator (|/), 81
SRID (spatial reference system identifier), 277, 279

setting with ST_SetSRID(), 286
START TRANSACTION statement, 177
statistical functions, 183

correlation with corr(), 186
dependent and independent variables, 186
linear regression, 189–190

regr_intercept() function, 190
regr_slope() function, 190

rates calculations, 196
rolling average, 198
standard deviation, 192
variance, 192

string functions, 246
case formatting, 246
character information, 246
char_length(), 246
extracting and replacing characters, 247
initcap(), 246
left(), 247
length(), 246
lower(), 246
position(), 246
removing characters, 247
replace(), 247
right(), 247
to_char(), 219
trim(), 247
upper(), 246

subquery
correlated, 224
with crosstab() function, 239
definition, 223
in DELETE statement, 225
expressions, 229
generating column with, 228
IN operator expression, 230
with LATERAL, 231
scalar, 224

uncorrelated, 224
in WHERE clause, 224

substring() function, 250
subtracting numbers, 79

across columns, 82
sum() function, 86

example on joined tables, 149
grouping by column value, 152

summarizing data, 139
surrogate primary key, 122

creating, 126

T
tab character as delimiter, 63
table

add column, 165, 168
aliases, 107, 226
alter column, 165
autovacuum, 390
constraints, 23
creating, 22
dead tuples, 388
definition of, 17
deleting column, 165, 176
deleting data, 175
derived table, 225

design best practices, 117
dropping, 176
holds data on one entity, 93
indexes, 133
inserting rows, 25
key columns, 94
modifying with ALTER statement, 164
naming, 120
querying multiple tables using joins, 97
relationships, 17
size, 388
temporary tables, 71
viewing data, 26

tablefunc module, installing for crosstab(), 237
table relationships

many to many, 105
one to many, 105, 128
one to one, 105

TABLE statement, 31
telling your data’s story, 399

asking why, 405
assessing the data’s origins, 402
building your own database, 401
communicating your findings, 405
consulting the data’s owner, 403
documenting your process, 400

gathering your data, 400
identifying trends over time, 403
interviewing the data with queries, 402
starting with a question, 400

temporary table
declaring, 71
removing with DROP TABLE, 71

text
case formatting, 246
concatenation, 172
editors, 2
escaping characters, 255
extracting and replacing characters, 247
formatting with functions, 246
matching patterns with regular expressions, 247
removing characters, 247

text data type, 42
text editors, 2
TEXT file format, 63
text qualifier

ignoring delimiters with, 61
specifying with QUOTE option in COPY, 63

tilde-asterisk case-insensitive matching operator (~*), 250
tilde case-sensitive matching operator (~), 250
time, matching with regular expression, 249
time data types

interval, 51
time, 51
timestamp, 51, 204

timestamp, 51, 204
calculations with, 212
creating from components, 207, 261
extracting components from, 205
formatting display, 219
retrieving current date and time, 208
subtracting to find interval, 219
with time zone, 51
within transaction, 208

time zones
AT TIME ZONE keywords, 212
automatic conversion of, 205
including in timestamp, 51, 204, 262
setting, 210
setting server default, 394
standard name database, 52
viewing names of, 210
viewing server setting, 209
working with, 209

to_char() function, 219
to_json() function, 327
to_timestamp() function, 320
to_tsquery() function, 266

to_tsvector() function, 265
transaction block

COMMIT, 177
definition of, 177
ROLLBACK, 177
START TRANSACTION, 177
with time functions, 208
visibility to other users, 179

triggers, 337, 354
BEFORE INSERT statement, 359
CREATE TRIGGER statement, 356
EXECUTE PROCEDURE statement, 357
FOR EACH ROW statement, 356
FOR EACH STATEMENT statement, 356
NEW and OLD variables, 356
testing, 357, 360

trim_county() user function, 353
trim() function, 247
true as Boolean value, 94
TRUNCATE statement, 176

restarting identity sequence with, 176
ts_headline() function, 269
tsquery data type, 266
ts_rank() function, 272
ts_rank_cd() function, 272
tsvector data type, 265

U
uncorrelated subquery, 224
underscore wildcard for pattern matching (_), 37
UNIQUE constraint, 96, 131
universally unique identifier (UUID), 55, 122

as primary key, 122
unnest() function, 91
unstructured data, 245

parsing with regular expressions, 253, 258
update_personal_days() user function, 350
UPDATE statement

with CASE, 262
definition, 166
PostgreSQL-specific syntax, 167
with RETURNING clause, 167, 170, 262
with SET clause, 166
using across tables, 166, 173

upper() function, 246
USA Today, xxiii
US Census

American Community Survey, 2014–2018, 184
description of columns, 184
importing data, 184

County Business Patterns, 197
county population estimates, 63, 295

adding and subtracting columns, 82

description of columns, 65
finding average county population, 87
finding median county population, 89
importing data, 64
percent calculations with, 84
performing calculations across tables, 112

methodologies compared, 185, 402
trade data, 200

US Department of Agriculture, 158, 402
farmers’ market data, 285

US Geological Survey, 318
UTC (Coordinated Universal Time), 52, 206

UTC offset, 52, 206, 219
UUID (universally unique identifier), 55, 122

as primary key, 122

V
VACUUM command, 388

ANALYZE option, 391
autovacuum process, 390
editing server setting, 393
FULL option, 392
monitoring table size, 388
purpose of, 388
running manually, 392
time of last vacuum, 391

VERBOSE option, 392
VALUES clause with INSERT, 25
varchar, 23, 42

also specified as character varying, 42
version() function, 14
views, 337

advantage of using, 338
creating, 338
deleting data with, 346
dropping, 339
inserting data with, 342, 344
LOCAL CHECK OPTION, 344
materialized, 338
queries in, 339
retrieving specific columns, 341
security_barrier option, 343
updating data with, 342, 345

W
Wall Street Journal, xxiv
well-known text (WKT), 278

extended, 283
order of coordinates, 278

WHEN clause in CASE statement, 241
WHERE clause, 35

in COPY statement, 70

with DELETE statement, 175
with EXISTS operator, 167
with IS NULL keywords, 161
with JSON operators, 316
with LIKE expression, 171
with regular expressions, 250
in UPDATE statement, 166

whole numbers, 45
wildcard

percent sign (%), 37
underscore (_), 37

window functions
definition of, 193
OVER clause, 193, 220
PARTITION BY clause, 195
specifying rows, 200

WITH keyword
defining common table expression, 234
options with COPY, 44, 62

WKT (well-known text), 278
extended, 283
order of coordinates, 278

working tables, 176

X
XML, 55

Z
ZIP codes, 163

loss of leading zeros, 163

	Title Page
	Copyright
	About the Author
	Preface to the Second Edition
	Acknowledgments
	Introduction
	What Is SQL?
	Why SQL?
	Who Is This Book For?
	What You’ll Learn

	Chapter 1: Setting Up Your Coding Environment
	Installing a Text Editor
	Downloading Code and Data from GitHub
	Installing PostgreSQL and pgAdmin
	Windows Installation
	macOS Installation
	Linux Installation

	Working with pgAdmin
	Launching pgAdmin and Setting a Master Password
	Connecting to the Default postgres Database
	Exploring the Query Tool
	Customizing pgAdmin

	Alternatives to pgAdmin
	Wrapping Up

	Chapter 2: Creating Your First Database and Table
	Understanding Tables
	Creating a Database
	Executing SQL in pgAdmin
	Connecting to the analysis Database

	Creating a Table
	Using the CREATE TABLE Statement
	Making the teachers Table

	Inserting Rows into a Table
	Using the INSERT Statement
	Viewing the Data

	Getting Help When Code Goes Bad
	Formatting SQL for Readability
	Wrapping Up

	Chapter 3: Beginning Data Exploration with SELECT
	Basic SELECT Syntax
	Querying a Subset of Columns

	Sorting Data with ORDER BY
	Using DISTINCT to Find Unique Values
	Filtering Rows with WHERE
	Using LIKE and ILIKE with WHERE
	Combining Operators with AND and OR

	Putting It All Together
	Wrapping Up

	Chapter 4: Understanding Data Types
	Understanding Characters
	Understanding Numbers
	Using Integers
	Auto-Incrementing Integers
	Using Decimal Numbers
	Choosing Your Number Data Type

	Understanding Dates and Times
	Using the interval Data Type in Calculations
	Understanding JSON and JSONB
	Using Miscellaneous Types
	Transforming Values from One Type to Another with CAST
	Using CAST Shortcut Notation
	Wrapping Up

	Chapter 5: Importing and Exporting Data
	Working with Delimited Text Files
	Handling Header Rows
	Quoting Columns That Contain Delimiters

	Using COPY to Import Data
	Importing Census Data Describing Counties
	Creating the us_counties_pop_est_2019 Table
	Understanding Census Columns and Data Types
	Performing the Census Import with COPY
	Inspecting the Import

	Importing a Subset of Columns with COPY
	Importing a Subset of Rows with COPY
	Adding a Value to a Column During Import
	Using COPY to Export Data
	Exporting All Data
	Exporting Particular Columns
	Exporting Query Results

	Importing and Exporting Through pgAdmin
	Wrapping Up

	Chapter 6: Basic Math and Stats with SQL
	Understanding Math Operators and Functions
	Understanding Math and Data Types
	Adding, Subtracting, and Multiplying
	Performing Division and Modulo
	Using Exponents, Roots, and Factorials
	Minding the Order of Operations

	Doing Math Across Census Table Columns
	Adding and Subtracting Columns
	Finding Percentages of the Whole
	Tracking Percent Change

	Using Aggregate Functions for Averages and Sums
	Finding the Median
	Finding the Median with Percentile Functions
	Finding Median and Percentiles with Census Data
	Finding Other Quantiles with Percentile Functions

	Finding the Mode
	Wrapping Up

	Chapter 7: Joining Tables in a Relational Database
	Linking Tables Using JOIN
	Relating Tables with Key Columns
	Querying Multiple Tables Using JOIN
	Understanding JOIN Types
	JOIN
	LEFT JOIN and RIGHT JOIN
	FULL OUTER JOIN
	CROSS JOIN

	Using NULL to Find Rows with Missing Values
	Understanding the Three Types of Table Relationships
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship

	Selecting Specific Columns in a Join
	Simplifying JOIN Syntax with Table Aliases
	Joining Multiple Tables
	Combining Query Results with Set Operators
	UNION and UNION ALL
	INTERSECT and EXCEPT

	Performing Math on Joined Table Columns
	Wrapping Up

	Chapter 8: Table Design That Works for You
	Following Naming Conventions
	Quoting Identifiers Enables Mixed Case
	Pitfalls with Quoting Identifiers
	Guidelines for Naming Identifiers

	Controlling Column Values with Constraints
	Primary Keys: Natural vs. Surrogate
	Foreign Keys
	How to Automatically Delete Related Records with CASCADE
	The CHECK Constraint
	The UNIQUE Constraint
	The NOT NULL Constraint
	How to Remove Constraints or Add Them Later

	Speeding Up Queries with Indexes
	B-Tree: PostgreSQL’s Default Index
	Considerations When Using Indexes

	Wrapping Up

	Chapter 9: Extracting Information by Grouping and Summarizing
	Creating the Library Survey Tables
	Creating the 2018 Library Data Table
	Creating the 2017 and 2016 Library Data Tables

	Exploring the Library Data Using Aggregate Functions
	Counting Rows and Values Using count()
	Finding Maximum and Minimum Values Using max() and min()
	Aggregating Data Using GROUP BY

	Wrapping Up

	Chapter 10: Inspecting and Modifying Data
	Importing Data on Meat, Poultry, and Egg Producers
	Interviewing the Dataset
	Checking for Missing Values
	Checking for Inconsistent Data Values
	Checking for Malformed Values Using length()

	Modifying Tables, Columns, and Data
	Modifying Tables with ALTER TABLE
	Modifying Values with UPDATE
	Viewing Modified Data with RETURNING
	Creating Backup Tables
	Restoring Missing Column Values
	Updating Values for Consistency
	Repairing ZIP Codes Using Concatenation
	Updating Values Across Tables

	Deleting Unneeded Data
	Deleting Rows from a Table
	Deleting a Column from a Table
	Deleting a Table from a Database

	Using Transactions to Save or Revert Changes
	Improving Performance When Updating Large Tables
	Wrapping Up

	Chapter 11: Statistical Functions in SQL
	Creating a Census Stats Table
	Measuring Correlation with corr(Y, X)
	Checking Additional Correlations
	Predicting Values with Regression Analysis
	Finding the Effect of an Independent Variable with r-Squared
	Finding Variance and Standard Deviation

	Creating Rankings with SQL
	Ranking with rank() and dense_rank()
	Ranking Within Subgroups with PARTITION BY

	Calculating Rates for Meaningful Comparisons
	Finding Rates of Tourism-Related Businesses

	Smoothing Uneven Data
	Wrapping Up

	Chapter 12: Working with Dates and Times
	Understanding Data Types and Functions for Dates and Times
	Manipulating Dates and Times
	Extracting the Components of a timestamp Value
	Creating Datetime Values from timestamp Components
	Retrieving the Current Date and Time

	Working with Time Zones
	Finding Your Time Zone Setting
	Setting the Time Zone

	Performing Calculations with Dates and Times
	Finding Patterns in New York City Taxi Data
	Finding Patterns in Amtrak Data

	Wrapping Up

	Chapter 13: Advanced Query Techniques
	Using Subqueries
	Filtering with Subqueries in a WHERE Clause
	Creating Derived Tables with Subqueries
	Joining Derived Tables
	Generating Columns with Subqueries
	Understanding Subquery Expressions
	Using Subqueries with LATERAL

	Using Common Table Expressions
	Performing Cross Tabulations
	Installing the crosstab() Function
	Tabulating Survey Results
	Tabulating City Temperature Readings

	Reclassifying Values with CASE
	Using CASE in a Common Table Expression
	Wrapping Up

	Chapter 14: Mining Text to Find Meaningful Data
	Formatting Text Using String Functions
	Case Formatting
	Character Information
	Removing Characters
	Extracting and Replacing Characters

	Matching Text Patterns with Regular Expressions
	Regular Expression Notation
	Using Regular Expressions with WHERE
	Regular Expression Functions to Replace or Split Text
	Turning Text to Data with Regular Expression Functions

	Full-Text Search in PostgreSQL
	Text Search Data Types
	Creating a Table for Full-Text Search
	Searching Speech Text
	Ranking Query Matches by Relevance

	Wrapping Up

	Chapter 15: Analyzing Spatial Data with PostGIS
	Enabling PostGIS and Creating a Spatial Database
	Understanding the Building Blocks of Spatial Data
	Understanding Two-Dimensional Geometries
	Well-Known Text Formats
	Projections and Coordinate Systems
	Spatial Reference System Identifier

	Understanding PostGIS Data Types
	Creating Spatial Objects with PostGIS Functions
	Creating a Geometry Type from Well-Known Text
	Creating a Geography Type from Well-Known Text
	Using Point Functions
	Using LineString Functions
	Using Polygon Functions

	Analyzing Farmers’ Markets Data
	Creating and Filling a Geography Column
	Adding a Spatial Index
	Finding Geographies Within a Given Distance
	Finding the Distance Between Geographies
	Finding the Nearest Geographies

	Working with Census Shapefiles
	Understanding the Contents of a Shapefile
	Loading Shapefiles
	Exploring the Census 2019 Counties Shapefile
	Examining Demographics Within a Distance

	Performing Spatial Joins
	Exploring Roads and Waterways Data
	Joining the Census Roads and Water Tables
	Finding the Location Where Objects Intersect

	Wrapping Up

	Chapter 16: Working with JSON Data
	Understanding JSON Structure
	Considering When to Use JSON with SQL
	Using json and jsonb Data Types
	Importing and Indexing JSON Data
	Using json and jsonb Extraction Operators
	Key Value Extraction
	Array Element Extraction
	Path Extraction
	Containment and Existence

	Analyzing Earthquake Data
	Exploring and Loading the Earthquake Data
	Working with Earthquake Times
	Finding the Largest and Most-Reported Earthquakes
	Converting Earthquake JSON to Spatial Data

	Generating and Manipulating JSON
	Turning Query Results into JSON
	Adding, Updating, and Deleting Keys and Values

	Using JSON Processing Functions
	Finding the Length of an Array
	Returning Array Elements as Rows

	Wrapping Up

	Chapter 17: Saving Time with Views, Functions, and Triggers
	Using Views to Simplify Queries
	Creating and Querying Views
	Creating and Refreshing a Materialized View
	Inserting, Updating, and Deleting Data Using a View

	Creating Your Own Functions and Procedures
	Creating the percent_change() Function
	Using the percent_change() Function
	Updating Data with a Procedure
	Using the Python Language in a Function

	Automating Database Actions with Triggers
	Logging Grade Updates to a Table
	Automatically Classifying Temperatures

	Wrapping Up

	Chapter 18: Using PostgreSQL from the Command Line
	Setting Up the Command Line for psql
	Windows psql Setup
	macOS psql Setup
	Linux psql Setup

	Working with psql
	Launching psql and Connecting to a Database
	Running SQL Queries on psql
	Navigating and Formatting Results
	Meta-Commands for Database Information
	Importing, Exporting, and Using Files

	Additional Command Line Utilities to Expedite Tasks
	Adding a Database with createdb
	Loading Shapefiles with shp2pgsql

	Wrapping Up

	Chapter 19: Maintaining Your Database
	Recovering Unused Space with VACUUM
	Tracking Table Size
	Monitoring the Autovacuum Process
	Running VACUUM Manually
	Reducing Table Size with VACUUM FULL

	Changing Server Settings
	Locating and Editing postgresql.conf
	Reloading Settings with pg_ctl

	Backing Up and Restoring Your Database
	Using pg_dump to Export a Database or Table
	Restoring a Database Export with pg_restore
	Exploring Additional Backup and Restore Options

	Wrapping Up

	Chapter 20: Telling Your Data’s Story
	Start with a Question
	Document Your Process
	Gather Your Data
	No Data? Build Your Own Database
	Assess the Data’s Origins
	Interview the Data with Queries
	Consult the Data’s Owner
	Identify Key Indicators and Trends over Time
	Ask Why
	Communicate Your Findings
	Wrapping Up

	Appendix: Additional PostgreSQL Resources
	PostgreSQL Development Environments
	PostgreSQL Utilities, Tools, and Extensions
	PostgreSQL News and Community
	Documentation

	Index

