

Angular Design Patterns and Best Practices
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar

Publishing Product Manager: Kushal Dave

Book Project Manager: Shagun Saini

Senior Editor: Rakhi Patel

Technical Editor: K Bimala Singha

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Ponraj Dhandapani

DevRel Marketing Coordinators: Namita Velgekar and Nivedita Pandey

First published: February 2024

Production reference: 2120124

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83763-197-1

www.packtpub.com

http://www.packtpub.com/

To my wife, Luciana Gonçalo Balardini Camillo, for being my wonderful beloved partner who
did the most important work of taking care of our beloved children, Mario and Gabriel, while I
worked on the book. I love you so much my Linda.

– Alvaro Camillo Neto

Foreword
In the ever-evolving landscape of the web, Angular continues to emerge as a beacon of innovation
and efficiency, in a continual era of renaissance, and I am thrilled to introduce you to a
comprehensive guide authored by a true enthusiast and expert, Alvaro.

This book is a testament to Alvaro’s tireless efforts to share his knowledge in the most exciting and
up-to-date manner possible. Whether you are a seasoned developer seeking to sharpen your skills or a
newcomer eager to dive into the world of Angular, this guide promises to be your trusted companion.

So, embark on this adventure with this book as your guide. May the knowledge within these pages
inspire you and empower your journey into the universe of web development, with batteries included
for this awesome JavaScript framework, which will always have a module and patterns for what you
need.

Happy coding!

William Grasel (https://www.linkedin.com/in/willgm/?originalSubdomain=br)

Principal Software Engineer, Stone Inc

With great excitement and admiration, I write this foreword for my dear friend Alvaro’s book,
Angular Design Patterns and Best Practices. For anyone familiar with the Angular framework and
seeking to elevate their skills and projects, this book is an invaluable resource.

Alvaro, a Google Developer Expert in Angular and a friend, has poured his wealth of knowledge and
practical experience into this comprehensive guide. In Part 1, Reinforcing the Foundations, he
skilfully navigates essential topics, starting by reinforcing the foundations of Angular development
by delving into project setup, application organization, TypeScript patterns, and service
implementation, including the Singleton pattern.

Then, Part 2, Leveraging Angular’s Capabilities equips you with advanced techniques to handle user
input through forms, enhance backend integration through the Interceptor pattern, and master
reactivity with RxJS. This section empowers developers to create dynamic and interactive
experiences for their users.

In the final stretch, that is, Part 3, Architecture and Deployment, Alvaro delves into designing
applications for testability, exploring the possibilities of micro-frontends with Angular elements, and
sharing best practices for deployment. This part lays the groundwork for robust, scalable, and
maintainable applications.

https://www.linkedin.com/in/willgm/?originalSubdomain=br

Finally, the Angular Renaissance chapter paints a vibrant picture of the future of modern Angular
applications, highlighting the latest advancements and trends shaping the framework. This glimpse
into the future inspires and motivates developers to stay ahead of the curve and continually improve
their craft.

Alvaro’s writing style is clear, concise, and engaging. He seamlessly blends theoretical concepts with
practical examples, making even the most complex topics easily understandable. Additionally, his
passion for Angular shines through every page, further igniting your desire to delve deeper into the
framework’s capabilities.

So, buckle up, fellow Angular enthusiast, and prepare to embark on a journey of knowledge and
growth. With Alvaro as your guide, you’ll be crafting elegant, robust, and future-proof Angular
applications in no time.

Happy coding!

Loiane Groner

Published Author and Vice-President – Software Development at CitiBank

Contributors

About the author
Alvaro Camillo Neto is a software engineer, speaker, and instructor in Brazil. He has worked in the
technology industry for over 10 years and is dedicated to the development of business solutions at a
large company. Alvaro is a technology enthusiast, and he sees knowledge sharing as an opportunity to
help the community that helped him so much and the best way of learning. He believes in technology
as a tool to empower people. He has performed at small meetups and large events, focusing on the
themes of developing web solutions. He also shares knowledge on his blog
(https://alvarocamillont.dev/) and participates in the organization of AngularSP.

About the reviewer
Anu Nagan G has worked at various corporate organizations, starting at a SaaS startup (GenDeep)
and moving on to midsize (GAVS) and Fortune 500 companies (DXC). There, he had various roles,
such as technical product manager, full stack product lead (in Angular, Java, Python, and AWS), and
delivery lead, respectively, in his 10.3 years of tenure. Currently, he is with Bounteous as a technical
manager, leading global delivery projects such as migrating legacy WordPress apps to Adobe AEM.

https://alvarocamillont.dev/

Prior to that, he led parallel projects, such as the advanced AI and analytics product CortexAI,
clinical mobile app development, and Salesforce automation into B2B business. He previously
contributed to various AIOps products, such as ZIF and Gcare. He is an avid reader and cinephile,
loves to play guitar, and makes short films with his friends.

I would like to thank my wife and daughter, A Chekhov H, who celebrated her first birthday on
21 December, 2023.

Table of Contents

Preface

Part 1: Reinforcing the Foundations

1

Starting Projects the Right Way

Technical requirements
Why choose Angular?
Batteries included
Google support
Community
Tooling
What technologies are present in the ecosystem?
TypeScript
RXJS
Karma and Jasmine
Webpack
Configuring your development environment
VS Code
VS Code settings
Fira Code font and ligatures
Standardizing the extensions and settings in the project
Angular DevTools
Starting an Angular project
Project structure
Using the Angular CLI for your productivity
ng add
ng update
ng serve

ng build
ng deploy
ng generate
Summary

2

Organizing Your Application

Technical requirements
Organizing the application with Angular modules
declarations
providers
imports
exports
The first module – AppModule
What is the difference between Angular and JavaScript
modules?
Modules type
Avoiding anti-pattern – single module app
Optimizing the usage of common modules – the SharedModule
pattern
Improving the size of your app – lazy loading
Summary

3

TypeScript Patterns for Angular

Technical requirements
Creating classes and types
Primitive and basic types

Classes
Interfaces
Type aliases
When to use classes, interfaces, or types
Creating methods and functions
Working with null values
Decreasing verbosity – type inference
Validating types – type guards
Using a better alternative to the any type
Summary

4

Components and Pages

Technical requirements
Creating components
Communication between components – inputs and outputs
Best practice – using the TrackBy property
Separating responsibilities – Smart and Presentation
components
Communication from the child component – using @Output
Propagating events from nested components
Summary

5

Angular Services and the Singleton Pattern

Technical requirements
Creating services

Understanding the dependency injection pattern
Using the inject() function
Communication between components using services
REST API consumption
Summary

Part 2: Leveraging Angular ’s Capabilit ies

6

Handling User Inputs: Forms

Technical requirements
Template-driven forms
Reactive forms
Data validation
Custom validations
Typed reactive forms
Summary

7

Routes and Routers

Technical requirements
Routes and navigation
Defining an error page and title
Dynamic routes – wildcards and parameters
Securing routes – guards
Optimizing the experience – Resolve
Summary

8

Improving Backend Integrations: the Interceptor
Pattern

Technical requirements
Attaching the token to the request with an interceptor
Changing the request route
Creating a loader
Notifying success
Measuring the performance of a request
Summary

9

Exploring Reactivity with RxJS

Technical requirements
Observables and operators
Handling data – transformation operators
Another way to subscribe – the async pipe
Connecting information flows – high-order operators
Optimizing data consumption – filter operators
How to choose the correct operator
Summary

Part 3: Architecture and Deployment

10

Design for Tests: Best Practices

Technical requirements
What to test
Service tests
Fixing the tests and understanding TestBed
Component testing
E2E tests with Cypress
Summary

11

Micro Frontend with Angular Elements

Technical requirements
Micro frontend – concepts and application
When to use a micro frontend
When not to use a micro frontend project
Slicing your application into micro frontends
Creating a micro frontend application with standalone
components
Preparing a page to be loaded by the base application
Dynamically loading micro frontends
Summary

12

Packaging Everything – Best Practices for Deployment

Technical requirements
Deploying the backend
Differentiating environments
Preparing the production bundle
Mounting a Docker image with Nginx
Deploying a page to Azure Static Web Apps
Summary

13

The Angular Renaissance

Technical requirements
Updating your project with the Angular CLI
Using a new way to create templates – control flow
Improving the user experience using the defer command
Creating transitions between pages – view transactions
Simplifying application states – Angular Signals
Summary

Index

Other Books You May Enjoy

Preface
The Angular framework has been helping development teams since 2009, with a robust structure and
practically everything a web application needs. Angular, with its “batteries included” philosophy, has
mechanisms for state management, route administration, and the injection of dependencies among
other tools for you to create the most incredible experiences for your users.

This book aims to help you navigate this incredible list of features and learn how to orchestrate it for
you and your team to get the most out of Angular and its entire ecosystem.

We will discover what types of patterns exist in the framework and what lessons we can learn from
these patterns to apply to our applications.

We will also explore Angular development and architecture best practices based on its
documentation, and community advice around the Angular ecosystem.

Angular is widely used by companies of different sizes and sectors. The company that sponsors this
open source framework, Google, has thousands of internal applications that use Angular,
guaranteeing great stability, which is one of the biggest reasons for using it.

There is a huge demand for developers who have mastered Angular and architects who can organize
and get the best out of Angular, and the framework is currently in its best form, dubbed by the
community as the Angular Renaissance.

Who this book is for
This book is for frontend developers and architects with experience in Angular or any other web
framework who want to delve into the best that Angular can offer.

The main personas that this book is aimed toward are the following:

Developers who already work with Angular and want to be more productive in delivering their tasks

Technical leaders who want to bring best practices to their teams to increase the quality and productivity of their deliveries

Software architects who want to explore the possibilities that Angular can offer applications and thus design resilient and secure
systems

What this book covers
Chapter 1, Starting Projects the Right Way, reinforces the fundamentals of Angular, its principles,
and how to configure your project and development environment to be as productive as possible.

Chapter 2, Organizing Your Application, explores best practices in organizing an Angular project and
how to optimize your application’s performance by lazy loading Angular modules.

Chapter 3, TypeScript Patterns for Angular, delves into the framework’s base language, TypeScript,
and helps you understand why it was chosen by the Angular team and how we can apply to our
projects.

Chapter 4, Components and Pages, works with the base element of the framework, the component,
and how we can structure our project to create concise and efficient applications.

Chapter 5, Angular Services and the Singleton Pattern, analyzes Angular services to separate
business logic from presentation logic and best practices for communicating with the backend.

Chapter 6, Handling User Inputs: Forms, is where we will study the main way users interact with our
applications, through forms, and how we can create reactive and easy-to-maintain forms.

Chapter 7, Routes and Routers, is where we will work with Angular’s routing mechanism and how to
manage our applications’ routes in a secure and optimized way.

Chapter 8, Improving Backend Integrations: the Interceptor Pattern, is where we will apply the
Interceptor design pattern to common tasks when dealing with backend communication, such as
token management and user notification.

Chapter 9, Exploring Reactivity with RxJS, delves deeper into the RxJS library and how we can make
the most of it for managing information flows and interactions in our projects.

Chapter 10, Design for Tests: Best Practices, discusses automated testing and how to prepare our
project for this process, as well as exploring unit testing with the Jasmine and Karma libraries and
end-to-end testing with the open source tool Cypress.

Chapter 11, Micro Frontend with Angular Elements, explores the micro frontend architecture and
discusses when to use it and how to implement it in Angular using the Angular Elements library.

Chapter 12, Packaging Everything: Best Practices for Deployment, looks at the best practices for
building and deploying our Angular applications to cloud environments. Using an example project,
we will explore the Microsoft Azure cloud.

Chapter 13, The Angular Renaissance, explores how to keep ourselves and our applications up to
date with the constant evolution of Angular and looks at incredible features such as Angular Signals,
standalone components, and lazy loading components using the defer instruction.

To get the most out of this book
You will need to have a basic understanding of HTML, CSS, and JavaScript and how a web
application works.

Software/hardware covered in the book Operating system requirements

Angular 16 and 17 Windows, macOS, or Linux

TypeScript 5.2

RxJS 7

Azure

Download the example code fi les
You can download the example code files for this book from GitHub at . If there’s an update to the
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In this
test case, we don't need to worry about the login because the beforeEach function performs this
function and we work directly on the form.”

A block of code is set as follows:

describe('My First Test', () => {

 it('Visits the initial project page', () => {

 cy.visit('/')

https://github.com/PacktPublishing/

 cy.contains('app is running!')

 })

})

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

<button

 type="submit"

 class="w-full rounded bg-blue-500 px-4 py-2 text-white"

 [disabled]="loginForm.invalid"

 [class.opacity-50]="loginForm.invalid"

 data-cy="submit"

>

 Login

</button>

Any command-line input or output is written as follows:

ng test

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Select the desired browser and click
on Start E2E Testing and we will have the test execution interface.”

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this to us.
Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

http://customercare@packtpub.com/
mailto:copyright%40packt.com?subject=

Once you’ve read From PHP to Ruby on Rails, we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837631971

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/r/1837631972
https://packt.link/free-ebook/9781837631971

Part 1: Reinforcing the Foundations
In this part you will delve deeper into the fundamentals of the Angular framework and its basic
concepts such as why to use Angular, how to organize your project and set up a productive
development environment. In addition, you will learn about best practices in the tasks of component
creation and communication with the backend.

This part has the following chapters:

Chapter 1, Starting Projects the Tight Way

Chapter 2, Organizing Your Application

Chapter 3, TypeScript Patterns for Angular

Chapter 4, Components and Pages

Chapter 5, Angular Services and the Singleton Pattern

1

Starting Projects the Right Way
Angular is a framework that has the motto “batteries included” as a development philosophy. This
means that practically all the resources you need for your frontend application needs are already
available as soon as you create a new project.

In this chapter, you will understand why choose Angular for your web application, what its main
characteristics and design are, and why companies, especially the biggest ones, choose Angular as the
main framework for developing single-page applications.

You will explore the technologies that make up the framework and thus take greater advantage of
possible alternatives if you need them for a specific case. You’ll also set up your workspace with the
best tools to help you and your team’s productivity.

In this chapter, we’re going to cover the following topics:

Why choose Angular?

What technologies are present in the ecosystem?

Configuring your development environment

Starting an Angular project

Using the Angular Command-Line Interface (CLI) for your productivity

By the end of this chapter, you will have arguments for using Angular in your project and be more
productive in your development workspace.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (VS Code) (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at .

Why choose Angular?
The choice of technology to be used in a given project is critical to its success. You, as a project
developer or architect, must help your team in this mission by choosing the best tool for the job.

https://code.visualstudio.com/Download
https://nodejs.org/en/download/

The Angular framework is one of the most used tools for building a single-page application, along
with React and Vue. When choosing the right tool for the job, you need to answer why.

The following are some arguments for choosing Angular.

Batteries included

Angular is an opinionated framework, which means that the Angular development team has already
made several choices of tools and solutions for every challenge that a web application can have. This
way, you and your team don’t have to research which route engine or state management library you
should use; it’s all included and configured for your project.

This feature also simplifies the onboarding of new developers in your team. Following the guidelines
proposed by the documentation and using the best practices, Angular projects usually have the same
structure and method of development. Knowing Angular you can quickly locate yourself in any
ongoing project.

Google support

Angular was created and maintained by the Angular team at Google. Although excellent frameworks
such as Vue.js and Svelte are maintained only by their communities, having such a big tech company
supporting the framework brings security to the choice of technology, especially for large companies.

In addition, Angular is used in more than 300 internal applications and Google products, which
means stability and quality because, before each new version of the framework is released, it is
validated in all these applications.

The Angular team has strived since version 13 to increase transparency within the community by
releasing a roadmap (https://angular.io/guide/roadmap) detailing all the improvements in progress
and what to expect for the future of the framework, giving you peace of mind that it will be supported
for years to come.

Community

Technology is only as alive as the community that supports it, and Angular has a huge one. Meetups,
podcasts, events, articles, and videos – the Angular community has many resources to help
developers.

https://angular.io/guide/roadmap

The people who make up this community also have the important contribution of giving feedback,
creating and correcting issues in Angular. As it is an open source project, everyone is invited to
evaluate and contribute to the code.

The Angular team also asks the community for help with major framework decisions through
Requests for Comment (RFCs).

In addition, the community creates many libraries that expand the possibilities of the framework,
such as NgRx (https://ngrx.io/) for advanced state management and Transloco
(https://ngneat.github.io/transloco/) to support internationalization, among others.

Tooling

One of the differentiating factors of Angular compared to its competitors is the focus from the
beginning on tooling and developer experience. The Angular CLI tool is a powerful productivity tool
that we will explore in this chapter, which is used far beyond the simple creation and setup of a
project.

From a testing point of view, Angular is already equipped and configured with Karma as a test runner
and Jasmine as a configuration tool. Angular’s tooling already configures the project build using
webpack and already has a dev server.

The tool is also extensible, allowing the community to create routines for configuring and updating
their libraries.

With these arguments, you will be able to base your choice of Angular on your project; let’s see now
which technologies make up the framework’s ecosystem.

What technologies are present in the ecosystem?
The Angular team, when creating the solution for the growing complexity of web application
development, decided to unite the best tools and libraries in an opinionated package with the
maximum number of configurations made by default.

We then have the following libraries that make up the core of Angular.

TypeScript

TypeScript is a superset of the JavaScript language that adds type checking and other features to the
language, ensuring a better developer experience and security for web development.

https://ngrx.io/
https://ngneat.github.io/transloco/

It has been present in Angular since its first version and is the cornerstone of the framework that
enables several features such as dependency injection, typed forms and Angular’s tooling.

TypeScript is currently the preferred tool for backend development in Node.js and is encouraged by
communities of other frameworks such as React and Vue.js.

RXJS

RXJS is a library that implements the reactive paradigm (https://www.reactivemanifesto.org/) in the
JavaScript language.

Since the first version of Angular, reactivity was a core theme that the framework wanted to achieve
and so it uses the RXJS library to help with it.

HTTP requests, routes, forms, and other Angular elements use the concepts of observables and their
operators to provide Angular developers with the tools to create more fluid and dynamic applications
with less boilerplate code.

RXJS also provides mechanisms for state management in a frontend application without the need to
use more complex patterns such as Redux.

Karma and Jasmine

Quality should be the top priority in any application and this is especially important in frontend
applications as for the user, it is the application.

One of the ways to attest to quality is through testing, and with that in mind, Angular already comes
by default with the tool duo of Jasmine and Karma.

Jasmine is a framework for unit-testing JavaScript and TypeScript applications with several functions
for assertion and test assembly.

Karma is the test runner, that is, the environment where the unit test setup is executed with the help of
Jasmine. This environment, configured in its configuration file, runs in browsers, making the test
more realistic in comparison to customers’ daily lives.

Many people in the community switch these tools for the Jest framework due to performance in the
execution of the tests, which is totally fine and even facilitated by the Angular CLI; however, it
should be noted that this tool does not run in a browser, which really improves the performance of the
test execution but may hide some particularity that only testing in a browser would provide.

https://www.reactivemanifesto.org/

Webpack

After the development of an application, it is necessary to create the bundle to send it to production,
and Webpack is the tool that the Angular team chose for this task.

Webpack is a very powerful and versatile bundler, and it is thanks to it that the framework manages
to make some interesting optimizations such as tree shaking and lazy loading of bundles.

However, Webpack is complex in its configuration, and with that in mind, the Angular team has
already set up and created some abstractions for fine-tuning the tool, such as the angular.json file.

We understand what pieces make up the framework and how they relate to delivering rich and fluid
interfaces. We will now set up our development environment.

Configuring your development environment
A well-organized environment with the right tools is the first step toward excellence and productivity;
now, let’s set this environment up in your workspace.

After installing Node.js following the instructions in the Technical requirements section, the
following tools and their plugins will help you in your workflow.

VS Code

VS Code (https://code.visualstudio.com/) is currently the default tool for most developers, especially
for frontend projects.

There are other very good ones such as WebStorm (https://www.jetbrains.com/webstorm), but VS
Code, with its plugins especially for Angular projects, facilitates great productivity and ergonomics.

To install the plugins listed here, in the code editor, click on Extensions or use the shortcut Ctrl +
Shift + X (Windows) or Cmd + Shift + X (macOS).

The following are the VS Code plugins recommended for developing Angular applications.
Git Extension Pack
Git Extension Pack (https://marketplace.visualstudio.com/items?itemName=donjayamanne.git-
extension-pack) is not specifically for developing Angular applications but it is useful for any kind of
work.

Git is the default tool for version control and VS Code has native support for it. This set of plugins
improves this support even further, adding the ability to read comments and changes made in

https://code.visualstudio.com/
https://www.jetbrains.com/webstorm
https://marketplace.visualstudio.com/items?itemName=donjayamanne.git-extension-pack

previous commits in the editor, support for multiple projects, and a better view of your repository
history and logs.

Angular Language Service
The Angular Language Service (https://marketplace.visualstudio.com/items?
itemName=Angular.ng-template) extension is maintained by the Angular team and adds support for
most of the framework’s functionality right from the code editor.

By adding this extension to your editor, it will have the following features:

Autocomplete in the HTML template file, allowing you to use component methods without having to consult the TypeScript file

Checking for possible compilation errors in HTML template files and TypeScript files

Quick navigation between HTML and TypeScript templates, allowing you to consult the definition of methods and objects

This extension is also available for other IDEs such as WebStorm and Eclipse.

Prettier
Prettier (https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode) is a
JavaScript tool that solves the code formatting problem. It is opinionated on formatting settings
although some customization is possible.

In addition to TypeScript, Prettier formats HTML, CSS, JSON, and JavaScript files, making this
extension useful also for backend development using Node.js.

To standardize formatting across your entire team, you can install Prettier as a package for your
project and run it on the project’s CI/CD track, which we’ll see in Chapter 12, Packaging Everything
– Best Practices for Deployment.

ESLint
When creating an application, the use of a linter is highly recommended to ensure good language
practices and avoid errors from the beginning of development.

In the past, the default tool for linting TypeScript projects was TSLint, but the project has been
absorbed by ESLint (https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-
eslint), which allows you to verify JavaScript and TypeScript projects.

With this extension, verification occurs quickly while you type the code of your project. ESLint can
be installed as a package in your Angular project and thus performs this validation on the CI/CD
conveyor of your project, which we will see in Chapter 12, Packaging Everything – Best Practices
for Deployment.

EditorConfig

https://marketplace.visualstudio.com/items?itemName=Angular.ng-template
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode

The EditorConfig (https://marketplace.visualstudio.com/items?
itemName=EditorConfig.EditorConfig) plugin has the function of creating a default configuration
file for not only VS Code but also any IDE that supports this format.

This plugin is useful for standardizing things for your project and your team – for example, the
number of spaces that each Tab key represents, or whether your project will use single quotes or
double quotes to represent strings.

To use it, just create or have a file named .editorconfig at the root of your project and VS Code will
respect the settings described in the file.

VS Code settings

VS Code, in addition to extensions, has several native settings that can help in your day-to-day work.
By accessing the File menu, we can activate the automatic saving flag so you don’t have to worry
about pressing Ctrl + S all the time (although this habit is already engraved in stone in our brains...).

Another interesting setting is Zen mode, where all windows and menus are hidden so you can just
focus on your code. To activate it, go to View | Appearance | Zen Mode, or use the keyboard
shortcut Ctrl + K + Z for Windows/Linux systems and Cmd + K + Z for macOS.

To improve the readability of your code during editing, an interesting setting is Bracket coloring,
which will give each parenthesis and bracket in your code a different color.

To enable this setting, open the configuration file using the shortcut Ctrl + Shift + P for
Windows/Linux or Cmd + Shift + P for macOS and type Open User Settings (JSON).

In the file, add the following elements:

{

 "editor.bracketPairColorization.enabled": true,

 "editor.guides.bracketPairs": true

}

VS Code also has the Inlay Hints feature, which shows details of parameter types and return
methods, as well as other useful information on the line you are reading in the code.

To configure it in the Settings menu, look for Inlay Hints and activate it if it is not already
configured. For the development of your Angular application, you can also perform specific
configurations by selecting TypeScript.

It is also possible to turn on this functionality by directly configuring the settings.json file with the
following elements:

https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig

{

 "typescript.inlayHints.parameterNames.enabled": "all",

 "typescript.inlayHints.functionLikeReturnTypes.enabled": true,

 "typescript.inlayHints.parameterTypes.enabled": true,

 "typescript.inlayHints.propertyDeclarationTypes.enabled": true,

 "typescript.inlayHints.variableTypes.enabled": true,

 "editor.inlayHints.enabled": "on"

}

Fira Code font and ligatures

An important detail that not every developer pays attention to is the type of font they use in their code
editor. A confusing font can make it difficult to read code and tire your eyes.

The ideal option is to use monospaced fonts, that is, fonts where the characters occupy the same
horizontal space.

A very popular font is Fira Code (https://github.com/tonsky/FiraCode), which, in addition to being
monospaced, has ligatures for programming – that is, joining or changing characters that represent
symbols such as ==, >=, and =>, as shown in the following figure:

Figure 1.1 – Example of symbols with font ligatures

After installing the font on your operating system, to enable ligatures in the font in VS Code, access
the configuration file as in the previous section and add the following elements:

{

 "editor.fontFamily": "Fira Code",

 "editor.fontLigatures": true,

}

Standardizing the extensions and settings in the
project

https://github.com/tonsky/FiraCode

In the Why choose Angular? section, we learned that one of the advantages of choosing this
framework for your project is the standardization it provides to development and the team.

You can also standardize your VS Code settings and record them in your Git repository so that not
only you but also our team can have that leap in productivity.

To do this, in your repository, create a folder called .vscode, and inside that folder, create two files.
The extensions.json file will have all the extensions recommended by the project. In this example,
we will use the extensions we saw earlier:

{

 "recommendations": [

 "dbaeumer.vscode-eslint",

 "esbenp.prettier-vscode",

 "Angular.ng-template",

 "donjayamanne.git-extension-pack",

 "editorconfig.editorconfig"

]

 }

Let’s also create the settings.json file, which allows you to add VS Code settings to your
workspace. These settings take precedence over user settings and VS Code’s default settings.

This file will have the previously suggested settings:

{

 "editor.bracketPairColorization.enabled": true,

 "editor.guides.bracketPairs": true

 "editor.fontFamily": "Fira Code",

 "editor.fontLigatures": true,

 "typescript.inlayHints.parameterNames.enabled": "all",

 "typescript.inlayHints.functionLikeReturnTypes.enabled": true,

 "typescript.inlayHints.parameterTypes.enabled": true,

 "typescript.inlayHints.propertyDeclarationTypes.enabled": true,

 "typescript.inlayHints.variableTypes.enabled": true,

 "editor.inlayHints.enabled": "on"

}

By synchronizing these files in your repository, when your team members download the project and
open VS Code for the first time, the following message will appear:

Figure 1.2 – VS Code prompt for recommended extensions

Once confirmed, all the extensions configured in the file will be installed in the VS Code
development environment of your team members, thus automating the task of standardizing the
team’s work environment.

Angular DevTools

One tool missing from the Angular framework was a way to drill down into an application in the
browser. Browsers such as Chrome and Firefox have greatly improved the developer experience over
the years, broadly for all types of websites.

With that in mind, the Angular team, starting from version 12, created the Angular DevTools
extension for Chrome and Firefox.

To install it, you need to go to the extension store of the browser (Chrome or Firefox) and click on
Install.

With it installed, access to the site built with Angular, and with the build set up for development, the
Angular tab will appear in the developer tools:

Figure 1.3 – Angular DevTools Chrome extension example

This tool allows you to browse the structure of your app, locate the code of the components on the
screen, and profile your application to detect possible performance problems.

Now you have a productive development environment for developing Angular applications, we are
ready to start our application.

Starting an Angular project

We have our tools installed and configured and now we are going to start our Angular application.
First, we are going to install the Angular CLI, which will be responsible for creating and building our
application. In your terminal, type the following command:

npm install -g @angular/cli@16

After installing the CLI, use the following command to confirm the installation:

ng version

The following figure should appear in your terminal (the Angular version may be newer):

Figure 1.4 – Angular CLI prompt confirming you have correctly installed the tool

If the ng command is not recognized, restart the terminal. This ng command is the CLI call and will
be used in this and other chapters of the book.

Let’s start our project using the ng new command. The Angular CLI will ask for some definitions of
your project:

1. The first is the name of the project; for this example, enter angular-start.

2. The second prompt is whether you’d like to configure your project’s routing, for which we’ll input Yes. This request will tell the

CLI to create the base files for the route, which is recommended for most applications; an exception could be an Angular library
you would like to create.

3. The next prompt will tell you which CSS format your project will use. Angular by default supports conventional CSS and the
SCSS, Sass, and Less tools. For this and other examples in the book, we will use CSS.

4. Confirming the Angular CLI will create the entire initial structure of the project and will install the dependencies using the npm i

command, leaving everything ready for the start of development, as in the following example.

Figure 1.5 – Prompt of files generated by angular-cli

To verify that the project was successfully installed, in your operating system’s terminal, type the
following command:

ng serve

This command will start the development web server and load the example project page, as shown in
Figure 1.6:

Figure 1.6 – Example page generated by angular-cli on project creation

The ng new command has other options that can be used for specific needs in your project. They are
listed in the official documentation (https://angular.io/cli/new), and here are some that may be
interesting:

Parameter '—package-manager': With this parameter, it is possible to choose another node package manager such as

yarn (https://yarnpkg.com/).

Parameter '--skip-install': With this parameter, the CLI does not perform the package installation step, which can be

useful for creating automation tools for your team.

Parameter '--strict': This parameter is set to true by default, but it is important to mention it because it configures

your project in strict mode, which configures the TypeScript and Angular mechanisms to improve type and template

validations. For more details, see Chapter 3, TypeScript Patterns for Angular.

Project structure

The Angular CLI creates the project in the structure recommended by the Angular team with all files
configured by default. To deepen our knowledge of the framework, we need to know the main files,
their functions, and available customizations as follows:

src: This is the folder where your project will be, including all components, modules, and services.

assets: Contains the static files you will need in your project, such as images and icons. In the build process, by default, it will

export the files from this folder without any changes to the production build.

index.html: This is the initial file of your application. This file will be used in the build process, and it is recommended not to

change it unless there is a very specific need. The title information must be changed with an Angular feature and not directly in

https://angular.io/cli/new

this file.

main.ts: This is the first JavaScript file that will be loaded in your application. You shouldn’t change it unless your project has

a very specific need for it to be changed.

styles.css: This is the file that can contain the global CSS of your application, that is, the CSS that can be read by all

components since Angular by default isolates the CSS of each component. This file is usually modified when your project uses a
design system such as Material (https://material.angular.io/).

.editorconfig: As described in the VS Code section of this chapter, this file, together with the extension that interprets and

configures the IDE, allows standardization in your code conventions, such as the use of double or single quotes and the use of tabs
or indentation spaces.

angular.json: This is the most important configuration file for an Angular application. In it, you can customize the way your

project is built, and define budgets for the size of bundles (more details in Chapter 12, Packaging Everything – Best Practices for
Deployment), among other settings.

package.json and package-lock.json: These files refer to the dependencies of the npm packages of your project and

also the place to create the npm scripts that will be used in the creation of the CI/CD pipes of the Angular application (more

details in Chapter 12, Packaging Everything – Best Practices for Deployment).

As of version 15 of Angular, the CLI hides Karma configuration files and environment variables files
(enviroment.ts) by default with the justification of simplifying the project structure. It is still
possible to create these files for fine-tuning your application build, test, and environment processes
(more details in Chapter 8, Improving Backend Integrations: the Interceptor Pattern).

We created our project using the angular-cli tool, but this tool can help us even more, as we will
learn next.

Using the Angular CLI for your productivity
We learned how to create a project with all its options, but the Angular CLI is far from being just a
project creation tool. It is a very important tool for the productivity and workflow of an Angular
application. All available options are described using the following command:

ng --help

We will detail some of the most interesting options here, and in the next chapters, we will continue to
use them, given the practicality of this tool.

ng add

This command has the function of adding an Angular library to your project. You might be
wondering, Doesn’t npm install do the same thing? and you’d be right. However, when you need to
install Angular Material as a library, installing the dependency is just the first step.

https://material.angular.io/

Many libraries such as Angular Material itself need the configuration of the angular.json file and the
creation of some other lib file, among other tasks. The ng add command allows the library creator to
automate these steps and simplify their workflow.

To exemplify this in the project that we created, we will use the following command:

ng add @angular/material

Executing the preceding command, the library will make some prompts (in the same format as we
saw for the ng new command) and in the end, it will configure our project with the library, as shown
in Figure 1.7.

Figure 1.7 – Installation of Angular Material using angular-cli

ng update

In the development of our projects, updating the version of something often takes more time than
adding a new library. The ng update command makes this task almost trivial, being one of the
greatest allies when it comes to updating the Angular version of our application.

On the Angular update website (https://update.angular.io/), the Angular team details how to update a
project in old versions. Larger and more complex projects may have their quirks (which are usually
described on the website), but all applications start with the following command (in this case, version
15):

ng update @angular/core@15 @angular/cli@15

The Angular CLI will take care of updating the package and even making possible automation-
breaking changes; often, only this is enough to completely update your application.

This command, like ng add, is also available for libraries that have been configured by their authors
and can benefit from this automation.

ng serve

https://update.angular.io/

This command is used by every Angular developer (it’s the first thing you should do after creating a
project) and its function is to upload a development web server.

One of the most interesting and productive features of this command is the hot-reload capability; that
is, the server restarts every time a project file is updated, allowing you to see its modification in real
time in the interface.

A productivity tip for this command is to use the open parameter as follows:

ng serve --open

With this parameter, as soon as Angular loads your application, the CLI will open the default browser
of your operating system with the application you are working on.

ng build

The ng build command is intended to prepare your application bundle to be executed by the
production web server of your choice.

It performs a series of optimizations to guarantee the delivery of the smallest possible bundle of your
application.

This results in a performance gain since with a smaller bundle, your client downloads faster, which is
important, especially in environments with slow internet.

We will discuss this command in more detail in Chapter 12, Packaging Everything – Best Practices
for Deployment.

ng deploy

The ng deploy command allows you to fully deploy your application to a cloud provider such as
Microsoft Azure.

This command works together with the Angular library of the provider you want to use, so for it to
work, you need to install it.

We will discuss this command in more detail in Chapter 12, Packaging Everything – Best Practices
for Deployment.

ng generate

The ng generate command has the function to generate almost all types of Angular components that
your application can use. This function brings a productivity gain in your workflow as it generates all
the necessary files.

Let’s generate our about page in our example project with the following command:

ng generate component about

We can analyze in our project folders that the Angular CLI created the TypeScript, HTML, and CSS
files necessary for rendering the component.

However, it also generated the unit test file for this component and updated the module for its use. All
these files already have the minimum boilerplate for the development of the component.

In addition to generating practically all standard Angular components, this command can be used by
external libraries that want to provide this development experience, as in the following example of
Angular Material:

ng generate @angular/material:navigation home

In almost every chapter of the book, we’ll use this command to generate the components we’re going
to study and the best practices and patterns for them.

Summary
In this chapter, we covered the features and philosophy of Angular and how to start a project in the
most productive way. We learned which technologies make up its ecosystem and how to configure its
desktop with the best VS Code extensions and settings. Finally, we learned how to start a project with
the Angular CLI and what other features this powerful tool can provide us with.

Now you’ll be able to argue why to use Angular in your team’s project and you’ll be able to help it
set up a productive work environment. You’ll also be able to use the Angular CLI to create and
maintain your project.

In the next chapter, we will learn how to organize the components of an Angular application.

2

Organizing Your Application
A messed-up project is a bug’s nest waiting to spoil your user experience. In addition to quality, good
organization of your project from the beginning will give your team productivity and, in the case of
Angular, potential improvement in the performance of your application.

In this chapter, you will learn about the function of Angular modules, the difference between these
and JavaScript modules, and how to use them in the best way for your project.

You will learn about the single module app anti-pattern and how and why to avoid it. You will also
use Angular modules to optimize the import of common components to your application using the
SharedModule pattern. Finally, you will understand how to use lazy loading to optimize your
application’s performance.

In this chapter, we’re going to cover the following topics:

Organizing the application with Angular modules

The first module: AppModule

Avoiding anti-pattern: single module app

Optimizing the usage of common modules: the SharedModule pattern

Improving the size of your app: lazy loading

By the end of this chapter, you will be able to organize your Angular application into functional and
optimized modules.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch2.

Organizing the application with Angular modules

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch2

The basis for organizing the components of an application using the framework is the Angular
modules, more recognized in the documentation and the community by the name NgModules.

An Angular module is a TypeScript class marked with the @NgModule decorator that contains
metadata, as in this example:

import { NgModule } from '@angular/core';

@NgModule({

 declarations: [SimulationComponent],

 providers:[],

 imports: [

 CommonModule,

 SharedModule,

 MatCardModule,

 MatButtonModule,

 MatSelectModule,

 MatRadioModule,ReactiveFormsModule,

],

 exports: [SimulationComponent],

})

export class SimulationModule {}

Let’s detail each of these types of metadata in the following subsections.

declarations

This metadata contains an array of components, directives, and pipes that make up the module. These
components must belong to only one module, otherwise, the Angular compiler will throw an error, as
shown in Figure 2.1:

Figure 2.1 – Error message when declaring a component in more than one module

providers

In this attribute, we can register the classes we want to inject using Angular’s dependency injector
system, normally used for services (which will be detailed in Chapter 5, Angular Services and the
Singleton Pattern.

imports

In this metadata, we inform the modules that we want to import and use their components and
services. For example, if we want to use Angular’s HTTP request services, we must declare the
HttpClientModule module here.

It is important to know that, here, we should not import components or services, only Ngmodules.

exports

By default, all items in the declarations attribute are private. This means that if a module contains
the StateSelectorComponent component and another module, for example, importing the module to
use this component will cause the following error to occur:

Figure 2.2 – Error message when using a component not exported correctly

To inform Angular that the component can be used, it is necessary to declare it in the exports
metadata.

Unlike the imports metadata, here, you can declare components, pipes, directives, and other modules
(as we’ll see in the Optimizing the usage of common modules – the SharedModule pattern section).

Now that we know how to declare a module, let’s study the module that is generated when creating
an Angular project.

The first module – AppModule

The modules in Angular are so important to the framework that when you start a project, it
automatically creates a module called AppModule.

This module contains all the parameters we studied in the previous section (declarations, providers,
imports, and exports), plus one additional parameter: bootstrap. This module contains the first
component to be injected into the application’s index.html file and will be the root of your Angular
application’s component tree.

You may be wondering which index.html file and which tree this is.

As we described in Chapter 1, Starting Projects the Right Way, Angular is a framework for single-
page applications (SPAs), and the index.html file is in fact the only page delivered by the web
server to its user.

All interfaces rendered by the Angular engine (called Ivy) are built from this index.html file and the
first component is described in the bootstrap metadata. This rendering obeys a data structure of the
logical tree type, and the root of this tree is this first component.

What is the difference between Angular and JavaScript
modules?

Almost all programming languages offer a way for their developers to organize functions, classes,
and variables in one or more files, allowing greater maintainability and separation of concerns.

In JavaScript, sometime after its creation and several proposals, the concept of language modules was
consolidated. The best way to explain this concept is to demonstrate it with an example. First, we
create a sum.mjs file – the sum function that receives two numbers and returns their sum. The
important thing here is that we use the export keyword to indicate that we want to use it in a scope
outside of its source file:

export function sum(numberA,numberB){

 return numberA + numberB;

}

In the index.mjs file, we will use the created function and, for that, we make the declaration in the
first line of the file. Using the reserved word import, we indicate which function and which file it is
from:

import {sum} from './sum.mjs';

const numberA = 5;

const numberB = 10;

console.log(sum(numberA,numberB));

You may be wondering why the .mjs extension is used. It’s because, in the example, we are using
Node.js to execute, and this type of module – ECMAScript modules (ESM), as the official name of
the Javascript language is ECMAScript – was introduced in version 14.

Angular, as well as all other SPA frameworks, uses JavaScript modules in its development, and we
can notice in any Angular component or service that we export the classes and import using the ESM:

import { Component } from '@angular/core';

@Component({

 selector: 'app-home',

 templateUrl: './home.component.html',

 styleUrls: ['./home.component.css']

})

export class HomeComponent {

In the preceding code snippet, we are importing the Component decorator from the @angular/core
library and exporting the HomeComponent class to use in other parts of our project.

Modules type

Now that we understand and have reinforced the concept of modules in the Angular framework, let’s
divide our application and make better use of this feature. There is no fixed rule for organizing the
modules of an application, but the Angular team and the community suggest the separation of
modules based on the grouping of functionalities with common characteristics.

Based on this thought, we can have the following types of Angular modules:

Business domain modules

Component modules

Business domain modules
An application will serve one or more user workflows. This type of module aims to group these flows
based on the affinity of the interfaces that compose them. For example, in an application for resource
management, we can have the accounting module and the inventory module.

In the application available in the ch2 folder, there is the talktalk application that we will use in this
and other chapters to put our knowledge into practice. In the project folder, let’s create the home
module with the following command:

ng g m home

In this command, we use the Angular CLI, ng, and the abbreviations g for generate and m for module.
Then we give the name of the module, home.

Let’s create the Page component that will represent the application’s home page and, since we are
using Angular material, we will use the Angular CLI to generate a page with a side menu using the
following command:

ng generate @angular/material:navigation home/home

The Angular CLI, besides creating the component, also edited the home.module.ts file by adding it to
the declarations attribute. Change this file as shown in the following example:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { HomeComponent } from './home/home.component';

import { LayoutModule } from '@angular/cdk/layout';

import { MatToolbarModule } from '@angular/material/toolbar';

import { MatButtonModule } from '@angular/material/button';

import { MatSidenavModule } from '@angular/material/sidenav';

import { MatIconModule } from '@angular/material/icon';

import { MatListModule } from '@angular/material/list';

@NgModule({

 declarations: [HomeComponent],

 imports: [

 CommonModule,

 LayoutModule,

 MatToolbarModule,

 MatButtonModule,

 MatSidenavModule,

 MatIconModule,

 MatListModule,

],

 exports: [HomeComponent],

})

export class HomeModule {}

In this module, we will export the HomeComponent component to use in the application’s route. In the
app.module.ts file, import the module as follows:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { HomeModule } from './home/home.module';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 BrowserAnimationsModule,

 HomeModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

With the module in the import attribute of the NgModule metadata, we can change the route in the app-
routing.module.ts file:

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home/home/home.component';

const routes: Routes = [

 { path: '', pathMatch: 'full', redirectTo: 'home' },

 {

 path: 'home',

 component: HomeComponent

 },

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule],

})

export class AppRoutingModule {}

The routes component is also NgModule, however, it is specialized in organizing routes, and imports
and exports only RouterModule from Angular. Here, in the routes array, we create the direction for
HomeComponent.

Running the ng serve --o command, we get the application’s home page:

Figure 2.3 – talktalk sample application menu page

Component modules
The purpose of this module is to group directive components and pipes that will be reused by
business domain components and even other components. Even using a component library such as
Angular Material, your system will need custom components according to the business rules of your
business domain.

This type of component has components, directives, and pipes declared in the declaration attribute
and exported in the exports attribute, as shown in the following example:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { StatesSelectorComponent } from './states-selector/states-selector.component';

import { MatSelectModule } from '@angular/material/select';

@NgModule({

 declarations: [StatesSelectorComponent],

 imports: [CommonModule, MatSelectModule],

 exports: [StatesSelectorComponent],

})

export class ComponentsModule {}

Separating the project into business domain modules and components will organize your code and
improve its maintainability. Let’s analyze a common anti-pattern in Angular applications.

Avoiding anti-pattern – single module app
When we are starting to study and develop with Angular, it is very common not to pay much
attention to the organization and use of the application modules. As we studied at the beginning of
this chapter, NgModules are so fundamental to Angular that as soon as we start a project, the Angular
CLI creates the first module for the project, AppModule.

In theory, only this module is necessary for your application to work. From there, we can declare all
the components and directives, and import all the libraries that the project might need, as we can see
in the following example:

import { NgModule } from '@angular/core';

. . .

@NgModule({

 declarations: [

 AppComponent,

 StatesSelectorComponent,

 HomeComponent,

 SimulationComponent

],

 imports: [

 BrowserModule,AppRoutingModule,

 BrowserAnimationsModule,HttpClientModule,

 ReactiveFormsModule,LayoutModule,

 MatToolbarModule,MatButtonModule,

 MatSidenavModule,MatIconModule,

 MatListModule,

],

 bootstrap: [AppComponent]

})

export class AppModule { }

This approach has some problems and is an anti-pattern that we’ll call a single-module app.

The problems we have here are as follows:

Disorganized folder structure: The team will soon not know which components belong to which area of the project. As the
project grows, this file will get bigger and more confusing.

Bundle size and build time: Angular has several build and bundle optimizations that depend on the definition of application
modules. Staying in just one module, these optimizations are not very effective.

Component maintainability and update issues: As this file grows, the team will have difficulties deprecating no longer used
components or updating those components where the Angular CLI is unable to update automatically.

The solution to this anti-pattern is to apply what we learned in this chapter: separating modules into
business domain (or feature) and component modules.

We can use NgModel to reduce the repetition of importing common components in the application, as
we will see in the next section about the SharedModule pattern.

Optimizing the usage of common modules – the
SharedModule pattern
If we look at Angular projects, we will see patterns of use of modules such as HttpModule, as in the
following example:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { HomeComponent } from './home/home.component';

import { LayoutModule } from '@angular/cdk/layout';

import { MatToolbarModule } from '@angular/material/toolbar';

import { MatButtonModule } from '@angular/material/button';

import { MatSidenavModule } from '@angular/material/sidenav';

import { MatIconModule } from '@angular/material/icon';

import { MatListModule } from '@angular/material/list';

@NgModule({

 declarations: [HomeComponent],

 imports: [

 CommonModule,

 LayoutModule,

 MatToolbarModule,

 MatButtonModule,

 MatSidenavModule,

 MatIconModule,

 MatListModule,

],

 exports: [HomeComponent],

})

export class HomeModule {}

To avoid code duplication and also make it easier for new team members, don’t forget to add an
important module to the project; we can create the SharedModule call to centralize the common
dependencies of an Angular project.

Let’s do this in our project using the Angular CLI:

ng generate module shared

In the newly generated file, we will place the Angular Material dependencies:

import { NgModule } from '@angular/core';

...

@NgModule({

 imports: [

 CommonModule,

 LayoutModule,

 MatToolbarModule,

 MatButtonModule,

 MatSidenavModule,

 MatIconModule,

 MatListModule,

],

 exports: [

 CommonModule,

 LayoutModule,

 MatToolbarModule,

 MatButtonModule,

 MatSidenavModule,

 MatIconModule,

 MatListModule,

]

})

export class SharedModule { }

In this module, we are importing Angular Material’s dependencies and exporting the same
dependencies, without declaring any component, directive, or pipe.

In the home.module.ts file, we can refactor to use SharedModule:

import { NgModule } from '@angular/core';

import { HomeComponent } from './home/home.component';

import { SharedModule } from '../shared/shared.module';

@NgModule({

 declarations: [HomeComponent],

 imports: [

 SharedModule

],

 exports: [HomeComponent],

})

export class HomeModule {}

Notice how the file has become much more succinct and easier to read using SharedModule.

IMPORTANT
The modules present in SharedModule must be modules common to the majority of modules in your project, as this can

increase the size of the module’s bundle. If the module needs some specific dependency, you must declare it in that
dependency and not in SharedModule.

In the next topic, we’ll see a feature that will improve your user’s experience and is based on
organizing the application into modules.

Improving the size of your app – lazy loading
A good strategy for separating modules from your Angular application will increase your team’s
productivity and improve code organization. But another advantage that will impact the quality for
your user is the use of the lazy loading technique for modules.

If we run the build process of the sample application using the ng build command, we can see the
following message:

Figure 2.4 – Sample application bundle size

The size of our application’s initial bundle (the main.ts file) is 94.73 kB, which may seem small, but
for the size of our application with few features, it is a considerable size.

As the project has more features, the tendency is for this initial bundle to increase considerably,
harming our users’ experience as they will initially need to download a larger file. This problem
particularly manifests itself in environments where the internet is not very good, such as 3G
networks.

To reduce this file and consequently improve our user experience, the ideal is to have smaller
packages and for these packages to be loaded only when necessary – that is, in a lazy way.

We are going to refactor our project, and the first step we have already taken is to separate the
functionalities into feature modules (in the Avoiding anti-pattern – single module app section, we
explained the danger of not separating the application modules, and without a doubt, the size of the
bundle is the most impactful for the user).

Now, let’s create a route file for the Home module. As the module already exists, let’s manually create
the home-routing.module.ts file in the same folder as the home.module.ts file.

In this file, we will add the following code:

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home/home.component';

const routes: Routes = [

 {

 path: '',

 component: HomeComponent,

 },

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule],

})

export class HomeRoutingModule {}

This route file is similar to the application’s main route file, with the difference that @NgModule’s
import uses the forChild method instead of forRoot. This is because this module is a subroute of the
main route.

Another important detail to note is that the chosen path for the HomeComponent component is empty.
We can explain this because the main route file that defines the /home route and how this module
represents the /home component is already defined.

In the home.module.ts file, let’s change it to import the route file:

import { NgModule } from '@angular/core';

import { HomeComponent } from './home/home.component';

import { SharedModule } from '../shared/shared.module';

import { HomeRoutingModule } from './home-routing.module';

@NgModule({

 declarations: [HomeComponent],

 imports: [

 SharedModule,HomeRoutingModule

]

})

export class HomeModule {}

In this file, we also removed the export of the HomeComponent component because the Home module
route file will load it.

In the project’s main route file, app-routing.module.ts, let’s refactor it as follows:

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router';

const routes: Routes = [

 { path: '', pathMatch: 'full', redirectTo: 'home' },

 {

 path: 'home',

 loadChildren: () =>

 import('./home/home.module').then((file) => file.HomeModule),

 },

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule],

})

export class AppRoutingModule {}

In this code, the most important part is the loadChildren attribute. This is where we configure the
lazy load, as we pass to Angular’s route mechanism a function that returns an import promise.

Note that the import function is not an Angular function, but a standard JavaScript function that
allows dynamic loading of code. Angular’s route engine uses this language feature to bring this
functionality.

Finally, in the main module, AppModule, let’s remove the HomeModule import:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 BrowserAnimationsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Running our application with the ng serve command, we didn’t notice any difference. However,
when executing the ng build command, we can notice the following diagnosis:

Figure 2.5 – Application bundle size after refactoring with lazy loading

The Angular build process has separated the Home module into its own bundle and the main.ts bundle
has been made smaller. The difference may seem small but note that, this way, our application can
scale and grow in complexity and the initial bundle will remain small or grow very little.

The new features continue to exist and be loaded by the application, but the initial loading will be
faster, and these new features will be downloaded on demand only when the user accesses the route

they want, giving a very positive fluidity and responsiveness.

Summary
In this chapter, we studied the Angular modules in detail and how we can use them for the
organization and performance of our applications. We learned the difference between Angular
modules and JavaScript modules, and we saw each attribute of a module definition and the types that
we can create in the project. Finally, we learned how to avoid the single module app anti-pattern and
how to create the SharedModule.

We reiterated our example application to use lazy loading of bundles, which demonstrates that good
module organization reflects performance and fluidity for our users. Now, you are able to organize
your application in such a way that it can scale and increase in complexity and features without
compromising the maintainability of the project.

In the next chapter, we will learn how to use TypeScript effectively and productively for our Angular
projects.

3

TypeScript Patterns for Angular
Since version 2 of the framework, Angular is based on TypeScript for its development, both
internally and for those who use it to build applications.

This was a controversial decision at the time, as this JavaScript superset, created by Microsoft, was
new. Nowadays, most web frameworks, such as React, Vue.js, and Svelte, support TypeScript, and
some web frameworks actively recommend TypeScript as the language to use.

In this chapter, we will study the best practices and patterns for using TypeScript with Angular and
beyond; these techniques can be applied to Node.js backend development and even other web
frameworks, such as React and Vue.js.

We’ll learn how to better declare our application’s methods and functions and how to leverage
TypeScript’s type inference mechanism to make our classes less verbose.

In this chapter, we’re going to cover the following topics:

Creating classes and types

Creating methods and functions

Decreasing verbosity: type inference

Validating types: type guards

Using a better alternative to the any type

By the end of the chapter, you will be able to better apply TypeScript resources in your projects,
improving the quality of your code and the productivity of your team.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (VS Code) (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch3.

Creating classes and types

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch3

The basis of application development using Angular is object-oriented programming, so it is
important for us to delve into how to create classes and instantiate objects. Using TypeScript instead
of pure JavaScript, we have another powerful element in our toolbox of types.

By typifying variables and objects, the TypeScript transpiler is able to carry out checks and alerts,
preventing errors that could occur at runtime during development if this process did not exist.

Bear in mind that after transpiling (a process that transforms TypeScript code into JavaScript), the
code delivered to the client’s browser is pure JavaScript, including some optimizations; that is, code
written in TypeScript is no less performant than code written directly in JavaScript.

To start with the fundamentals, let’s explore primitive and basic types.

Primitive and basic types

JavaScript, despite not being a strongly typed language, has three types called primitives:

boolean: Represents the two binary values false and true

string: Represents a set of characters such as words

number: Represents numerical values

For each of these primitive types, TypeScript already has a datatype that represents them, namely,
Boolean, String, and Number, respectively.

IMPORTANT
The first letter of the primitive types in TypeScript is in uppercase to differentiate it from the primitive JavaScript types. If
you want to check a type at runtime using the typeof function, use the names of the primitives in lowercase.

To declare the variables of these types, just use the : symbol in front of the variable declaration, as in
the following example:

export function primitive_example() {

 let name: string;

 let age: number;

 let isAlive: boolean;

 name = "Mario";

 age = 9;

 isAlive = true;

 console.log(`Name:${name} Age:${age} is alive:${isAlive ? "yes" : "no"}`);

}

In the preceding example, we declare the name, age, and isAlive variables as string, number, and
boolean, respectively. Note that we can use JavaScript type names in TypeScript because TypeScript
allows both forms for these primitive types.

In JavaScript, it is very common to use the array data structure. This structure allows us to store and
manipulate a list of values for our applications. TypeScript has a type for this structure called Array,
where it is possible not only to create a variable with that type but also to typify what kind of values
the array will contain:

export function array_example() {

 let names: Array<string>;

 let surnames: string[];

 names = ["Mario", "Gabriel", "Lucy"];

 surnames = ["Camillo", "Smith"];

 names.forEach((name) => console.log(`Name:${name}`));

 surnames.forEach((surname) => console.log(`Surname:${surname}`));

}

In this function, we declare the names array using the Array type and declare that it is a string list
because we are informing it between square braquets.. In the surnames array declaration, we make the
same declaration but use a TypeScript syntax sugar using [] after the string type. This way of
declaring has the same effect; it’s just more succinct.

At the end of the example, we use Array’s foreach method to print the elements of the array. Finally,
another basic type that is widely used is the any type. This type tells the TypeScript transpiler not to
perform any type checking on it, and its content can be type-changed anywhere in the code, as in the
following example:

export function any_example(){

 let information:any;

 information = 'Mario';

 console.log(`Name: ${information}`);

 information = 7;

 console.log(`Age: ${information}`);

}

The information variable is declared as any and then we put the Mario string in it. We subsequently
redefine the variable with the value 5.

By default, in TypeScript, every variable that does not have its type declared, or that has its value
defined in its declaration, is of type any.

This language rule allows, for example, a project with JavaScript code to be incrementally converted
to TypeScript by initially declaring all variables of the any type. Another use of the any type is when
your code needs the flexibility of JavaScript for some more general algorithm types.

However, it is recommended that Angular developers avoid using any because it partially disables the
checks that TypeScript performs in your code, without taking advantage of its power.

We’ll see alternatives throughout the chapter, should you need the flexibility of the any type, without
sacrificing type checking and TypeScript inference.

Classes

Building on our knowledge of basic types, let’s now create more complex data types. The first one
we’re going to explore is classes. An essential element of object-oriented programming, the class
represents a model, which can be real, such as a person or vehicle, or abstract, such as a text box on a
web page.

From the class, we create the objects that are the elements that our systems will manipulate to
execute a business rule, as in the following example:

class Person {

 name: string;

 age: number;

 constructor(name: string, age: number) {

 this.name = name;

 this.age = age;

 }

}

export function basic_class() {

 let client: Person = new Person("Mario", 7);

 console.log(`Name:${client.name} Age:${client.age}`);

}

First, we declare the Person class with the name and age properties by typing the properties, and then
we create a method for the class called constructor. This method is special because it defines the rule
for how the object will be instantiated from this class.

In the basic_class function, we instantiate an object called client, which is of the Person type with
the new keyword. To retrieve the properties of this instantiated object, we use the notation
client.name and client.age.

This declaration and use of class in TypeScript is almost the same as JavaScript except for typing the
attributes of the class.

The same example in pure JavaScript would be as follows:

class Person {

 constructor(name, age) {

 this.name = name;

 this.age = age;

 }

}

function basic_class() {

 let client = new Person("Mario", 7);

 console.log(`Name:${client.name} Age:${client.age}`);

}

Notice that the process of declaring the class and instantiating an object from it changes very little
from TypeScript. However, as we will see in the following code block, TypeScript provides more
resources for the use of the class in our projects.

In addition to attributes, classes also define methods, which are functions that an object can perform.
In the example we are working on, we are now going to add a method:

class Person {

 name: string;

 age: number;

 constructor(name: string, age: number) {

 this.name = name;

 this.age = age;

 }

 toString(){

 return `Name:${this.name} Age:${this.age}`;

 }

}

The toString method returns a string that represents the object, so it accesses the attribute of the
object instance using the reserved JavaScript word this.

There is a concept in object-oriented programming called the encapsulation of attributes. This
consists of defining which attributes are accessible to the function that instantiates a given object.

This concept, important for the correct use of some design patterns, does not exist in its entirety in
JavaScript. Every class attribute is public, but in TypeScript it is implemented and validated by the
transpiler, as in the following example:

class Person {

 name: string;

 age: number;

 private id:number;

 constructor(name: string, age: number) {

 this.name = name;

 this.age = age;

 this.id =Math.floor(Math.random() * 1000);

 }

 toString(){

 return `Name:${this.name} Age:${this.age} ID: ${this.id}`;

 }

}

Here, we create a property called id that is generated when the object is instantiated, and we use the
reserved word private, indicating that it should not be accessed from outside the class. Note that in
class methods, this attribute is accessed normally.

Let’s try to force access from outside as in the following example to see what happens:

export function basic_class() {

 let client: Person = new Person("Mario", 7);

 console.log(client.toString());

 client.id = 100;

}

In this function, we instantiate a client object of the Person class and then we try to modify the id
attribute. When trying to run the code, the TypeScript will indicate the following error:

Figure 3.1 – Error message when accessing a private attribute

Another object-oriented programming concept is inheritance. It defines an is a relationship between
classes, as in, a customer is a person.

In practice, it makes a class have all the attributes and methods of the extended class, as in the
following example:

class Client extends Person {

 address: string;

 constructor(name: string, age: number, address: string) {

 super(name, age);

 this.address = address;

 }

 toString(): string {

 return `${super.toString()} Address: ${this.address}`;

 }

}

Here, we are creating the Client class, which extends from the Person class. We add an attribute
called address and create the constructor. As it is a class derived from Person, it is necessary to call
the super method, which is the way we access the methods and attributes of the original class.

When using inheritance, we can optionally rewrite a method of the original class as we do with the
toString method. This concept exists in JavaScript, but with TypeScript, the rules for the constructor
and method rewrite are checked at compile time, giving us more confidence in our development.

Interfaces

In TypeScript, we have another way of typifying the structure of an object called an interface. The
following example demonstrates its use:

export interface Animal {

 species: string;

 kingdom: string;

 class: string;

 }

To declare an interface, we use the reserved word interface and declare its properties as a class as
we saw earlier.

To use interface, we can proceed as follows:

import { Animal } from "./animals";

export function basic_interface() {

 let chicken: Animal = {

 kingdom: "Animalia",

 species: "Gallus",

 class: "birds",

 };

 console.log(

 `kingdom:${chicken.kingdom} species:${chicken.species} class:${chicken.class}`

);

}

Note that to use a class, we just type the variable and declare its values, without using the reserved
word new. This happens because the interface is not a JavaScript element and is only used by the
TypeScript transpiler to check whether the object contains the defined properties.

To prove that the interface does not exist, if we transpile the interface file, a blank file will be
generated by TypeScript!

We can also make use of interfaces to create contracts for classes, should a class require certain
methods and attributes. Let’s see the following example:

export interface Animal {

 species: string;

 kingdom: string;

 class: string;

}

export interface DoSound {

 doASound: () => string;

}

export class Duck implements DoSound {

 public doASound(){

 return 'quack';

 }

}

export class Dog implements DoSound {

 public doASound(){

 return 'bark';

 }

}

To define that a certain class follows the DoSound contract, we use the reserved word implements.
TypeScript then requires that a method called doASound be defined and that this method returns a
string.

This feature of the interface facilitates the use of a very important capability of the object-oriented
language, which is polymorphism. Let’s see the example:

export function animalDoSound() {

 let duck = new Duck();

 let dog = new Dog();

 makeSound(duck);

 makeSound(dog);

}

function makeSound(animal: DoSound) {

 console.log(`The animal make this sound:${animal.doASound()}`);

}

We create the makeSound function, which receives an animal that implements the DoSound contract.
The function is not concerned with the type of animal or its attributes; it just needs to follow the
DoSound interface contract, as it will invoke one of its methods.

Angular uses this characteristic of TypeScript interfaces a lot, as we can see in the declaration of a
component:

export class SimulationComponent implements OnInit {

When we inform Angular that the component implements the OnInit interface, it will execute the
ngOnInit method required at the beginning of the component’s lifecycle (we will study this in more
detail in Chapter 4, Components and Pages).

Type aliases

The last way to type a variable that we will see in this chapter is the simplest one, which is to create
type aliases. Like interfaces, type aliases only exist in TypeScript, and we can use them as in the
following example:

type Machine = {

 id: number;

 description: string;

 energyOutput: number;

};

export function basic_type() {

 let car: Machine = {

 id: 123,

 description: "Car",

 energyOutput: 1000,

 };

 console.log(

 `ID:${car.id} Description:${car.description} Energy Output:${car.energyOutput} `

);

}

In this code, we create the Machine type, describing the object we want to represent, and in the
basic_type function, we instantiate a variable with that type.

Note that we use the attributes of this variable just like the previous examples. This demonstrates
how much TypeScript maintains the flexibility of JavaScript while giving more possibilities to the
developer.

A well-used feature of type aliases is the creation of a type from other types. One of the most
common is the union of types, as we can see in the following code:

type ID = string | number;

type Machine = {

 id: ID;

 description: string;

 energyOutput: number;

};

Here, we are creating a type called id, which can be string or number. For this, we use the | symbol,
which is the same as used in JavaScript to indicate the conditional OR.

This feature was important for the use of more advanced techniques, such as the guard type, which
we will see in this chapter.

When to use classes, interfaces, or types

With all these ways of creating typed objects, you must be wondering in which situations we should
use each one. Based on the characteristics of each form, we can categorize the use of each one:

Type alias: The simplest form of creation, recommended for typing input parameters and function returns.

Interfaces: Recommended for representing JSON data objects, where we won’t have methods, just the data representation. An
example is the return of an API that we will use in our Angular project. The interface can also be used to define class contracts
using the implements keyword.

Classes: The basis of object orientation, also present in JavaScript. We should use it whenever we need an object with methods
and attributes. In Angular, all components and services are ultimately objects created from classes.

Remember that in TypeScript, it is possible to create an alias type that behaves as an interface, as
well as indicate an interface as a parameter and return of a function, but the recommendations here
advise you to use the best for each type of situation and also explain how they are normally used in
Angular apps.

Now that we have a good understanding of the different ways of creating more complex variables as
objects, let’s get to know how to create functions and methods with TypeScript.

Creating methods and functions
One of the best ways used by TypeScript to improve the developer experience in Angular application
development is through the ability to type parameters and return functions and methods.

Both for developers who create libraries and frameworks and for those who consume these software
components, knowing what a function expects and what the expected return is allows us to reduce the
time spent reading and looking for documentation, especially the runtime bugs that our system may
encounter.

To carry out the typing of the parameters and the return of a function, let’s consider the following
example:

interface invoiceItem {

 product: string;

 quantity: number;

 price: number;

}

type Invoice = Array<invoiceItem>;

function getTotalInvoice(invoice: Invoice): number {

 let invoiceTotal = invoice.reduce(

 (total, item) => total + item.quantity * item.price,

 0

);

 return invoiceTotal;

}

export function invoiceExample() {

 let example: Invoice = [

 { product: "banana", price: 1.5, quantity: 3 },

 { product: "apple", price: 0.5, quantity: 5 },

 { product: "pinaple", price: 3, quantity: 12 },

];

 console.log(`Invoice Total:${getTotalInvoice(example)}`);

}

In this example, we start by defining an interface that represents an invoice item and then we create a
type that will represent an invoice, which in this simplification is an array of items.

This demonstrates how we can use interfaces and types to better express our TypeScript code. Soon
after, we create a function that returns the total value of the invoice; as an input parameter, we receive
a value with the invoice type, and the return of the function will be a number.

Finally, we create an example function to use the getTotalInvoice function. Here, in addition to type
checking, if we use an editor with TypeScript support such as VS Code, we have basic documentation
and autocomplete, as shown in the following screenshot:

Figure 3.2 – Documentation generated by TypeScript and visualized by VS Code

In addition to primitive types and objects, functions must also be prepared to handle null data or
undefined variables. In the next section, we will explore how to implement this.

Working with null values

In TypeScript, by default, all function and method parameters are required and checked by the
transpiler.

If any parameter is optional, we can define it in the type it represents, as in the following example:

function applyDiscount(

 invoice: Invoice,

 discountValue: number,

 productOfDiscount?: string

) {

 discountValue = discountValue / 100;

 let newInvoice = invoice.map((item) => {

 if (productOfDiscount === undefined || item.product === productOfDiscount) {

 item.price = item.price - item.price * discountValue;

 }

 return item;

 });

 return newInvoice;

 }

Within this function of applying a discount to the invoice, we created an optional parameter that
allows the user of the function to determine a product to apply the discount. If the parameter is not
defined, the discount is applied to the entire invoice.

To define an optional parameter, we use the ? character. In TypeScript, optional parameters must be
the last to be defined in a function. If we change the position of the function parameters the following
error is thrown by the transpiler:

error TS1016: A required parameter cannot follow an optional parameter.

Additionally, TypeScript allows you to define a default value for the parameter:

function applyDiscount(

 invoice: Invoice,

 discountValue = 10,

 productOfDiscount?: string

)

When assigning a value in the parameter declaration, if the function user does not use the parameter,
a 10% discount will be applied to the invoice items.

We’ve seen how we can use TypeScript to typify function parameters and returns. Now let’s discuss
type inference and how we can use it to reduce the verbosity of our code.

Decreasing verbosity – type inference
In this chapter, we saw the best TypeScript capabilities that help in the development of our Angular
projects. We were typing all the variables and relying on the TypeScript transpiler to avoid errors that
would otherwise occur in our user’s runtime.

Let’s now explore TypeScript’s powerful inference mechanisms. Through it, TypeScript identifies the
types of variables by content, not requiring you to define the type explicitly. Let’s observe the
following example:

export function primitive_example() {

 let name = "Mario";

 let age = 9;

 let isAlive = true;

 console.log(`Name:${name} Age:${age} is alive:${isAlive ? "yes" : "no"}`);

}

This example is the same as in Primitive and basic types, but we directly inform the values in the
variables. This way of declaring the variable has the same effect as the explicit method. If you change
the value of a variable to another type, TypeScript will perform the validation as in the following
example:

TSError: ⨯ Unable to compile TypeScript:
src/basic_types/primitive.ts:6:3 - error TS2322: Type 'number' is not assignable to type

'string'.

TypeScript can also infer complex types, such as arrays and function returns. A good practice here is
to use the inference capability to write less code and type only objects from interfaces, for example.

Validating types – type guards

Now that we know the TypeScript inference mechanism, we can understand another feature present
in it, type guards. Let’s consider these in the following example:

function getDiscount(value: string | number) {

 if (typeof value === "number") {

 return value;

 } else {

 return parseInt(value);

 }

}

In this function, we can receive a value that can be of the primitive types string or number.

As they are primitive types, we can use the typeof function to define whether the variable is numeric;
otherwise, it is a string and we must convert it to numeric.

The TypeScript transpiler can interpret the context of this conditional and within each one, it treats
the value as a number or string, including in VS Code’s autocomplete.

Figure 3.3 – Inside the conditional TypeScript, which recognizes the variable as a number

The VS Code plugin in the figure is running the transpiler in the background and identifies that the
variable inside the if statement can only be a number.

Figure 3.4 – Inside the conditional else TypeScript, which recognizes the variable as a string

As they are primitive types, we can use the typeof function to define whether the variable is numeric;
otherwise, it is a string, and we must convert it to numeric.

For more complex data types such as objects, this guard using the typeof function is not possible
because it will always recognize the variable of the object type. However, we can create our own
custom type guard functions:

interface Person {

 socialSecurityNumber: number;

 name: string;

}

interface Company {

 corporateNumber: number;

 name: string;

}

type Client = Person | Company;

function isPerson(client: Client): client is Person {

 return (client as Person).socialSecurityNumber !== undefined;

}

function getID(client: Client) {

 if (isPerson(client)) {

 return client.socialSecurityNumber;

 } else {

 return client.corporateNumber;

 }

}

Here we have two interfaces, Person and Company, and we create a type called Client. For each type
of object that follows the interfaces, we have an id type socialSecurityNumber for people and
corporateNumber for companies.

To carry out the guard type, we created the isPerson function. The difference regarding this function
is that we put the client is Person expression in the definition of the return of the function.

In it, we define the rule to consider an object as a person and use it in the getID function. Not only do
we have a function that checks the object at runtime, but in this way, the TypeScript transpiler checks
at compile time whether the operation has reported an error.

Using a better alternative to the any type

In the development of TypeScript applications, we may have situations where we do not know which
type of parameter we are going to receive, such as the return of an API.

What is trafficked can be defined by creating an interface that represents the data, (for more details,
see Chapter 5, Angular Services and the Singleton Pattern). It is not possible to guarantee this
because pure text is trafficked on the internet.

In these cases, we can use the any type, which prevents TypeScript from doing the type checking.

In this example, we can see the use of any:

interface Products {

 id: number;

 description: string;

}

type ListOfProducts = Array<Products>;

const exampleList: ListOfProducts = [

 { id: 1, description: "banana" },

 { id: 2, description: "apple" },

 { id: 3, description: "pear" },

];

function getProductById(id: any) {

 return exampleList.find((product) => product.id === id);

}

In the preceding code sample, we create an interface that represents a product and a type that
represents a list of products. We then create a function that receives an id of the any type and searches
the Array, returning an item from the list of products.

In these simple examples, we can assume that there is no bug, but let’s create a function that will use
this snippet and see what happens:

export function getProductTest() {

 const id = '2';

 const item = getProductById(id);

 if (item !== undefined) {

 console.log(`ID:${item.id} Description:${item.description}`);

 } else {

 console.log("No product found");

 }

}

In this example, the item was not found because the variable we passed was a string. This could
happen if the data we are passing to the function came from an API or external call, and the data was
not properly formatted.

Running the code, we get the following result:

Figure 3.5 – Function returned No product found due to the id variable typing

When we use the any type, we give up the advantage of type checking and this type of bug can occur
in our application. But how can we have the flexibility of the any type without losing TypeScript’s
type checking?

In these cases, we use the unknown type. This type has the same flexibility as the any type, but with
one detail: TypeScript forces you to perform type guarding before using the variable.

Let’s refactor our example function:

function getProductById(id: unknown) {

 if (typeof id === 'string'){

 id = parseInt(id);

 } else if (typeof id !== 'number'){

 return

 }

 return exampleList.find((product) => product.id === id);

}

Here we declare that id will be of an unknown type and, right after that, we make a guard type in this
variable, dealing with the possible scenario of the variable being numerical.

The any type will still be used in your application, but consider using the unknown type to ensure
correct type handling when you are not sure who will call your function.

Summary
In this chapter, we saw how we can use TypeScript to create better-quality code with less effort,
increasing our productivity. We learned about basic TypeScript types, such as number, string, and
Array.

We also studied creating classes, interfaces, and type aliases, and how we can choose and mix these
types of structures to make our code cleaner and more maintainable.

Finally, we learned about TypeScript’s type inference mechanism and how we can use the concept of
type guards to further improve the type-checking mechanism. With these concepts, we also became
familiar with the unknown type, which provides a better alternative to the any type.

In the next chapter we will learn about the basics of the interfaces of an Angular project, that is, the
Components.

4

Components and Pages
The main building blocks of an Angular application are the components. It is by using them that we
assemble our user interfaces and define the flow of the experience. In Angular architecture,
components organize an application into reusable parts, making it easy to maintain and scale.

In this chapter, we will explore the communication between components and thus assemble our pages
using component composition, avoiding the anti-pattern of creating monolithic interfaces.

In this chapter, we’re going to cover the following topics:

Creating components

Communication between components – inputs and outputs

Best practice – using the TrackBy property

Separating responsibilities – smart and presentation components

Communication from the child component – using @Output

By the end of this chapter, you will be able to create reusable and easy-to-maintain components and
pages, streamlining the development of your project and increasing your productivity and that of your
team.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch4.

Creating components
Every interface created with Angular is a component in the architecture of the framework; therefore,
theoretically, we could have our entire application in a single component.

As we studied in Chapter 2, Organizing Your Application, it is best to separate your application into
modules, and with components, we use the same reasoning by separating our interfaces into and

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch4

composing them with different components, maximizing reuse and maintainability.

In this chapter, we will illustrate this with a gym diary application, as shown in the following figure –
to focus on Angular, we will not use Angular Material, only HTML, CSS (in this case, Tailwind
CSS), and TypeScript.

Figure 4.1 – Gym diary application UI

In this initial example, we created a component with just the HTML template and the CSS and
TypeScript files are as they were created by Angular CLI. Here’s the top of the page first:

<div class="min-h-screen bg-gray-200">

 <header class="bg-blue-500 py-4 text-white">

 <div class="mx-auto max-w-6xl px-4">

 <h1 class="text-2xl font-bold">Workout diary</h1>

 </div>

 </header>

Using good HTML semantic practices, let’s create a main section:

 <main class="mx-auto mt-8 max-w-6xl px-4">

 <section class="mb-8">

 <h2 class="mb-4 text-xl font-bold">List of entries</h2>

 <ul class="rounded border shadow">

 <li class="mb-4 border-b bg-white p-4">

 Date: 2023-03-20

 Exercise: Bench press

 Sets: 3

 Reps: 10

 <!-- more entries here -->

 </section>

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 >

 Add new entry

 </button>

 </main>

</div>

We can see that in the preceding example, the interface is designed and stylized, but it is not
functional because the diary entries are fixed in HTML, and in our application, the user should be
able to add as many entries as they want.

We can identify here that this part of the diary entry could be a component for the page to use, so let’s
create a component called entry. As we learned in Chapter 1, Starting Projects the Right Way, we are
going to use the Angular CLI to create this new component in the module we need:

ng g c diary/entry-item

With this command, the Angular CLI will create a folder with the following four files in addition to
updating the diary module with the new component.

entry-item.component.css: This file will contain the component’s style sheet. Angular manages to solve a big pain point

of a web application, which is the CSS scope of each component. With this feature, we can specify the component’s styling
without having to worry about whether it will affect an application’s CSS even using the same property or selector name.

entry-item.component.html: This file contains the component’s HTML template and, although the extension seems to

indicate that we can only use HTML tags, in the template file, we can use Angular directives, as we will study in this chapter.

entry-item.component.spec.ts: This file contains the unit test for the component, which we will detail in Chapter 10,

Design for Tests: Best Practices.

entry-item.component.ts: This is the TypeScript file that represents the component itself. All other files are optional,

making it possible for you to create a component with just this file, although this is not a practice widely applied in Angular
projects and is only recommended for very small components.

In the entry-item.component.ts file, the Angular CLI created the following structure:

import { Component } from '@angular/core';

@Component({

 selector: 'app-entry-item',

 templateUrl: './entry-item.component.html',

 styleUrls: ['./entry-item.component.css']

})

export class EntryItemComponent {

}

With this example, we reinforce the definition that a component is a TypeScript class, and by using
the @Component decorator, we indicate to Angular where the parts to assemble it are.

The main properties are as follows:

selector: This is an optional property that defines what the component’s selector will be if it is used in the template of another

component. Components that represent a page do not need to have a selector defined as they are instantiated from a route. The
Angular CLI suggests the selector based on your application’s prefix defined in the prefix property of the angular.json

file, along with the name you defined in the ng g command.

templateUrl: This defines the path of the HTML file that contains the component’s template. Alternatively, we can use the

template property to define a string with all the component’s HTML.

styleUrls: This defines the path of the CSS files that contain the component’s styling. A detail of this property is that it is an

array, so it is possible to have more than one CSS file linked to the component. Alternatively, we can use the style property to

define a string containing the component’s CSS.

In the entry-item.component.html file, we will place the snippet that represents an item in a list of
exercises in our gym diary:

<div class="mb-4 border-b bg-white p-4">

 Date: 2023-03-20

 Exercise: Bench press

 Sets: 3

 Reps: 10

</div>

Here, we have the representation of an item, with the difference being that we are using the <div>
element instead of because we want our component to be as reusable as possible here – it may
not necessarily be used within a list and within an element.

Let’s put our component to use. In the diary.component component, let’s refactor the
diary.component.html file as follows:

<div class="min-h-screen bg-gray-200">

 <header class="bg-blue-500 py-4 text-white">

 <div class="mx-auto max-w-6xl px-4">

 <h1 class="text-2xl font-bold">Workout diary</h1>

 </div>

 </header>

 <main class="mx-auto mt-8 max-w-6xl px-4">

 <section class="mb-8">

 <h2 class="mb-4 text-xl font-bold">List of entries</h2>

 <ul class="rounded border shadow">

 <app-entry-item />

 <app-entry-item />

 <!-- more entries here -->

 </section>

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 >

 Add new entry

 </button>

 </main>

</div>

Using the app-entry-item selector, we are consuming our new component on the page. From version
15 of Angular, we can use self-closing tags for components, so we have used <app-entry-item />
here, but if you prefer the previous way, <app-entry-item> </app-entry- item> also still works.

Running our project, we can see that it continues to work. However, the data is the same in both
items. We now need a way to pass information between components, and we’ll see how to do that in

the next section.

Communication between components – inputs and
outputs
In our gym diary application, we now need the workout list page component, DiaryComponent, to
communicate with the list item component, EntryItemComponent.

The simplest way to accomplish this communication is with Angular’s Property Binding concept.
Despite the complicated name, in practice, we annotate a component object’s property with the
@Input annotation, so Angular creates a custom HTML attribute on the component.

Let’s see this concept in practice; first, let’s create an interface that will represent an item in our
diary:

ng g interface diary/interfaces/exercise-set

With the preceding command, we create the file and, as an organized practice, we create a folder to
store the module’s interfaces. In the generated file, we will define the object we want to communicate
with:

export interface ExerciseSet {

 id?: string;

 date: Date;

 exercise: string;

 sets: number;

 reps: number;

}

export type ExerciseSetList = Array<ExerciseSet>;

We create an interface defining the object and a type to define a list of exercises, improving the future
readability of our implementation.

Now, in the entry-item.component.ts file, let’s add the new property:

import { Component, Input } from '@angular/core';

import { ExerciseSet } from '../interfaces/exercise-set';

@Component({

 selector: 'app-entry-item',

 templateUrl: './entry-item.component.html',

 styleUrls: ['./entry-item.component.css']

})

export class EntryItemComponent {

 @Input('exercise-set') exerciseSet!:ExerciseSet;

}

Here we create a property called exerciseSet of type ExerciseSet that we just defined. We use the !
symbol in the type definition because we are going to define its value at runtime.

The @Input annotation receives the exercise-set string as a parameter. With this, we define the name
of the custom HTML attribute to be used in the template. This parameter is optional; if it's not used,
the name of the attribute will be the name of the property. Here, it would be exerciseSet.

Let’s now change our template to use this property:

<div class="mb-4 border-b bg-white p-4">

 Date: {{ exerciseSet.date | date }}

 Exercise: {{ exerciseSet.exercise }}

 Sets: {{ exerciseSet.sets }}

 Reps: {{ exerciseSet.reps }}

</div>

To use the component’s properties inside the template, we use the {{ }} syntax. Here, we can see an
advantage of using VS Code with the Angular Language Service extension enabled because we have
type-checking in the HTML template, avoiding typos, for example.

Something to highlight in this example is the Date attribute. Here, we are using an Angular feature
called pipe, which allows the formatting of a template element. In this case, we are formatting a date.

Let’s now configure a list of exercises in the diary.component.ts file:

import { Component } from '@angular/core';

import { ExerciseSetList } from '../interfaces/exercise-set';

@Component({

 templateUrl: './diary.component.html',

 styleUrls: ['./diary.component.css'],

})

export class DiaryComponent {

 exerciseList: ExerciseSetList = [

 { id: '1', date: new Date(), exercise: 'Deadlift', reps: 15, sets: 3 },

 { id: '2', date: new Date(), exercise: 'Squat', reps: 15, sets: 3 },

 { id: '3', date: new Date(), exercise: 'Barbell row', reps: 15, sets: 3 },

];

}

For this example, we create a property called exerciseListExample and fill it with objects from the
ExerciseSet interface. Now, let’s change the list template in the diary.component.html file:

. . .

 <section class="mb-8">

 <h2 class="mb-4 text-xl font-bold">List of entries</h2>

 <ul class="rounded border shadow">

 <li *ngFor="let item of exerciseList">

 <app-entry-item [exercise-set]="item" />

 </section>

. . .

In the template, we are using the ngFor directive, which has the function of iterating over a list and
rendering the element we want to define in the template. For each list item, we are going to create a
new app-entry-item component and now we want to assign an item to it.

To do that, we use the [exercise-set] attribute to pass the item provided by ngFor. When we run our
project, we have the list, as shown in the following figure:

Figure 4.2 – Gym diary application UI after refactoring

With this, we understand how to pass information from one component to another, but we can
improve this project by introducing a good performance practice, the TrackBy property.

Best practice – using the TrackBy property
After the *ngIf directive, the ngFor directive will probably be the directive that you will use the most
in your Angular projects. Although simple, this directive can hide a performance and perception
problem in the frontend that will occur for your user.

To demonstrate this, let’s add a new list button, simulating a list update coming from the backend.

In the diary.component.ts file, add the following method:

 newList() {

 this.exerciseList = [

 { id: '1', date: new Date(), exercise: 'Deadlift', reps: 15, sets: 3 },

 { id: '2', date: new Date(), exercise: 'Squat', reps: 15, sets: 3 },

 { id: '3', date: new Date(), exercise: 'Barbell row', reps: 15, sets: 3 },

 { id: '4', date: new Date(), exercise: 'Leg Press', reps: 15, sets: 3 },

];

 }

This method replaces the array with this new array, which contains the same elements but with one
more item.

Let’s add the button to the list template:

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 (click)="newList()"

 >

 Server Sync

 </button>

When we click on the Server Sync button, the entire item list is rendered, even though the new list is
identical to the original except for the addition of a new item.

Figure 4.3 – Chrome DevTools

For a few items, this may not necessarily be a problem, but for a larger list, this unnecessary
rendering may offend the performance perception our user will have of our application.

To improve this kind of case, the ngFor directive has the TrackBy option. Let’s refactor our code to
demonstrate this option; first, let’s create a method for the exercise list component:

 itemTrackBy(index: number, item: ExerciseSet) {

 return item.id;

 }

This method tells Angular how to identify the single element in a collection that it will iterate through
the *ngFor directive. Think of it as the primary key of the collection.

In the component’s template, let’s change the ngFor configuration:

<section class="mb-8">

 <h2 class="mb-4 text-xl font-bold">List of entries</h2>

 <ul class="rounded border shadow">

 <li *ngFor="let item of exerciseList; index as i; trackBy: itemTrackBy">

 <app-entry-item [exercise-set]="item" />

</section>

Here, we are telling ngFor to render based on the id property of the object. Running it again in the
browser with Chrome DevTools, we see that now only the item with the id attribute is rendered on
the page.

The TrackBy attribute, in addition to avoiding unnecessary rendering, has the following advantages:

Enables animations when removing and adding items from the collection

Retains any DOM-specific UI state, such as focus and text selection, when the collection changes

Now that we’ve learned about the use of this ngFor property, let’s study how we can architect the
composition of our components and pages.

Separating responsibil it ies – Smart and Presentation
components
The information flow of a single-page application (SPA) can be quite complex and, if you don’t
think about this flow from the beginning of your design, it can affect the productivity and quality of
your project over time.

The simpler the better; therefore, a very common design pattern not only in Angular applications but
also in SPAs in general is the composition of interfaces using Smart and Presentation components. In
literature and in the community, you will also find this pattern under the name of Smart and Dumb
components or Container and Presentation components.

A Smart component has the UI business rule; it is where we will have injected the services that will
communicate with the backend and where the interface with the Presentation components will be
composed.

A Presentation component is a component that has the sole purpose of showing the data passed by the
Smart component, normally via input. A Presentation component in turn can contain one or more
components of the Presentation type.

To illustrate this pattern, we will use the following diagram:

Figure 4.4 – Smart and Presentation components

Notice that we have a source of truth, which is the Smart component, and the communication occurs
in only one direction, this is what we call a Unidirectional Data Flow. The purpose of this pattern is
to isolate all states within a component and thereby simplify state management.

Let’s refactor our project to fit this design pattern. Let’s create a new presentation component using
the Angular CLI:

ng g c diary/list-entries

In this new component, we are going to move the part that renders the list of diary entries into your
template. In the list-entries.component.html file, add the following code:

<section class="mb-8">

 <h2 class="mb-4 text-xl font-bold">List of entries</h2>

 <ul class="rounded border shadow">

 <li *ngFor="let item of exerciseList; index as i; trackBy: itemTrackBy">

 <app-entry-item [exercise-set]="item" />

</section>

The list that will be displayed will come ready from the DiaryComponent component, so in the list-
entries.component.ts file, we will add the following code:

import { Component, Input } from '@angular/core';

import { ExerciseSet, ExerciseSetList } from '../interfaces/exercise-set';

@Component({

 selector: 'app-list-entries',

 templateUrl: './list-entries.component.html',

 styleUrls: ['./list-entries.component.css'],

})

export class ListEntriesComponent {

 @Input() exerciseList!: ExerciseSetList;

 itemTrackBy(index: number, item: ExerciseSet) {

 return item.id;

 }

}

Here, we move the itemTrackBy function into the component, as it will be its function to display the
list, and we include the exerciseList attribute with the @Input decorator. In this example, we didn’t
specify any parameters, so the name of the template’s attribute will be the same as the attribute of the
exerciseList class.

Let’s change the Diary template in the diary.component.html file to use the new presentation
component we have created:

<main class="mx-auto mt-8 max-w-6xl px-4">

 <app-list-entries [exerciseList]="exerciseList" />

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 >

 Add new entry

 </button>

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 (click)="newList()"

 >

 erver Sync

 </button>

 </main>

The DiaryComponent Smart component just passes the list to the ListEntriesComponent Presentation
component, which iterates over the list by calling the EntryItemComponent Presentation component.
With this structure, only the DiaryComponent component needs to worry about the list of exercises,
respecting SOLID’s Single Responsibility concept.

We’ve studied how to structure our pages and components, but how do child components
communicate with their parents? Let’s learn about the output attributes of Angular components next.

Communication from the child component – using  
@Output
We studied how parent components, which can be either smart or presentational, can communicate
with their child components by using attributes marked with the @Input decorator.

However, when we need the opposite, the child component passes some information to the parent. As
we saw in the previous section, business rule processing should ideally happen in the Smart

component. For this type of communication, we mark attributes with the @Output decorator.

Let’s create a button for adding an item to our diary. We’ll see the use of forms in Chapter 6,
Handling User Input: Forms, but here we want to focus on the interaction between components.

Using the Angular CLI, we will create the new component using this command:

ng g c diary/new-item-button

In the new component’s template, let’s move the diary button template into the component:

<button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

>

 Add new entry

</button>

In the new-item-button.component.ts file, we will add the new attribute:

import { Component, EventEmitter, Output } from '@angular/core';

import { ExerciseSet } from '../interfaces/exercise-set';

@Component({

 selector: 'app-new-item-button',

 templateUrl: './new-item-button.component.html',

 styleUrls: ['./new-item-button.component.css'],

})

export class NewItemButtonComponent {

 @Output() newExerciseEvent = new EventEmitter<ExerciseSet>();

 addNewExercise() {

 const id = Date.now().toString();

 const date = new Date();

 const reps = 10;

 const sets = 4;

 const exercise = 'Leg Press';

 const newExerciseSet: ExerciseSet = { id, date, reps, sets, exercise };

 this.newExerciseEvent.emit(newExerciseSet);

 }

}

Here, we first create the newExerciseEvent attribute and add the @Output decorator to define that it
will be an attribute present in the component’s template.

Here, there is a difference from the @Input attribute; in this case, we are already assigning an object
of the EventEmitter class to the variable. This Angular class aims to emit events when a certain
action takes place.

This is necessary because, unlike @Input, the value of which is assigned when the component is
structured and rendered, @Output communication can occur at any time, depending on the user’s
action.

The EventEmitter class uses TypeScript’s type-checking capability, making it possible for us to
determine what type of object we are going to emit to the parent component.

In the addNewExercise method, we create an object of type ExerciseSet, and using the emit method
of the EventEmitter class, we pass this object to the parent component.

Back to the template – let’s add the method call to the button’s click action:

<button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 (click)="addNewExercise()"

>

 Add new entry

</button>

Now let’s refactor DiaryComponent to consume the new button:

. . .

<main class="mx-auto mt-8 max-w-6xl px-4">

 <app-list-entries [exerciseList]="exerciseList" />

 <app-new-item-button (newExerciseEvent)="addExercise($event)" />

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 (click)="newList()"

 >

 Server Sync

 </button>

 </main>

. . .

In the template, we are using the app-new-item-button component to pass the addExercise function
to the newExerciseEvent attribute.

Here, we can highlight that the binding of an @Output attribute must be done with parentheses – () –
and this $event parameter represents the object that the child component will emit. If you highlight
this parameter in VS Code, we can verify that it is of type ExerciseSet.

Finally, let’s create the addExercise method in the component:

. . .

addExercise(newSet: ExerciseSet) {

 this.exerciseList.push(newSet);

 }

. . .

Our method receives the emitted value and adds it to the exercises array. Running our project, we
can see that the items are successfully added.

In this example, we can see in practice the whole flow of the design pattern of the Smart and
presentation components. When clicking on the Add Exercises button, the Diary Smart component
receives the new exercise from the NewItemButtonComponent presentation component.

By updating the list, the list is automatically passed to the ListEntriesComponent component, which
renders the list on the screen. Now we are going to implement actions for the items of the list of

exercises – we will see how to emit events of these items and how to identify these elements.

Propagating events from nested components
We will add the options to delete an item from the list and increase the number of repetitions to our
diary. First, let’s add the buttons to the list item template. In the entry-item.component.html file, we
will edit the template:

<div class="mb-4 flex items-center justify-between border-b bg-white p-4">

 <div>

 Date: {{ exerciseSet.date | date }}

 Exercise: {{ exerciseSet.exercise }}

 Sets: {{ exerciseSet.sets }}

 Reps: {{ exerciseSet.reps }}

 </div>

 <div class="flex items-center">

 <button

 class="mr-2 rounded bg-red-500 py-2 px-4 font-bold text-white hover:bg-red-700"

 >

 Delete

 </button>

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 >

 New Rep

 </button>

 </div>

</div>

The challenge here is to ensure that the action that will happen on each item in the list if correctly
identified to be applied correctly – that is, the Diary Smart component that handles the list will find
the corresponding item and change it.

For this, we will apply the Angular output feature to the item component:

 @Output() newRepEvent = new EventEmitter<ExerciseSet>();

 @Output() deleteEvent = new EventEmitter<string>();

 delete() {

 this.deleteEvent.emit(this.exerciseSet.id);

 }

 newRep() {

 const reps = ++this.exerciseSet.reps;

 const newItem: ExerciseSet = {

 ...this.exerciseSet,

 reps,

 };

 this.newRepEvent.emit(newItem);

 }

We create two outputs, each one for a different event that we want to emit, and we type them because
we need different actions.

We then create the delete method, which will emit the id value of the item we want to delete, and the
newRep method, with which we will add repetitions to the item of the exercise that will be performed

and emit that item.

We will return to the template to associate the methods with the buttons created:

 <button

 class="mr-2 rounded bg-red-500 py-2 px-4 font-bold text-white hover:bg-red-700"

 (click)="delete()"

 >

 Delete

 </button>

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 (click)="newRep()"

 >

 New Rep

 </button>

Now let’s change the list-entries.component presentation component for creating the output, which
here, for simplicity, will have the same name as the item’s output:

export class ListEntriesComponent {

 @Input() exerciseList!: ExerciseSetList;

 @Output() newRepEvent = new EventEmitter<ExerciseSet>();

 @Output() deleteEvent = new EventEmitter<string>();

. . .

}

To propagate the item’s events, we will change the list template:

 <li *ngFor="let item of exerciseList; index as i; trackBy: itemTrackBy">

 <app-entry-item

 [exercise-set]="item"

 (deleteEvent)="deleteEvent.emit($event)"

 (newRepEvent)="newRepEvent.emit($event)"

 />

We can see that we only emit the item’s event using the emit method of the outputs.

Finally, we will refactor the DiaryComponent Smart component to react to the item’s event. First, let’s
see the template:

<main class="mx-auto mt-8 max-w-6xl px-4">

 <app-list-entries

 [exerciseList]="exerciseList"

 (deleteEvent)="deleteItem($event)"

 (newRepEvent)="newRep($event)"

 />

 . . .

 </main>

As in the previous example, we used parentheses to associate it with a method, which will handle the
event and receive the element emitted by the parameter of that method using the $event variable.

We will now refactor the component by creating two new methods – one to delete a journal entry and
one to create a new repetition for an exercise:

. . .

deleteItem(id: string) {

 this.exerciseList = this.exerciseList.filter((item) => item.id !== id);

}

 newRep(exerciseSet: ExerciseSet) {

 const id = exerciseSet.id;

 const i = this.exerciseList.findIndex((item) => item.id === id);

 if (i >= 0) {

 this.exerciseList[i] = { ...exerciseSet };

 }

 }

. . .

We are using the TypeScript array methods to simulate deleting and changing the array of items. We
can see that the method already receives the deletion item or id automatically due to Angular’s event
emission mechanism.

We are taking advantage of the smart and presentation component pattern here to leverage its usage
with a slightly more complex requirement.

Summary
In this chapter, we studied the elements responsible for rendering the interface of our project, the
components. We saw how to create and organize the components in a granular way, resulting in our
project being more maintainable.

We also studied how to communicate between components using the @Input and @Output attributes,
using the capabilities of Angular that facilitate this communication.

We saw the good practice of using TrackBy to iterate lists in templates using the ngFor directive,
improving performance specifically for lists with many items.

Finally, we study the design pattern of the Smart and Presentation components, a way of organizing
components and their interactions in order to simplify this orchestration with a unidirectional
information flow.

In the next chapter, we will study the Angular elements responsible for the business rules and
interaction with the backend – the services.

5

Angular Services and the Singleton Pattern
One of the great differences between a static web page and a single-page application is the processing
capacity and interaction in the user’s browser, giving the feeling of an application installed on the
device. In the Angular framework, the elements for this processing and interaction, not only with the
backend but with the user, are the services.

This element is so important to Angular that the team created a dependency management system,
which allows a simplified way of creating, composing, and using services in components.

In this chapter, we will explore this element and learn about the design patterns it uses and the best
practices to use in your project.

Here we will cover the following topics:

Creating services

Understanding the dependency injection pattern

Communication between components using services

REST API consumption

By the end of the chapter, you will be able to create reusable and maintainable services, in addition to
understanding practices that will improve your productivity.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch5.

Creating services
Services in Angular are TypeScript classes that aim to implement business logic for our interfaces.
Business logic in a frontend project can seem like a controversial issue because ideally, all logic and
processing should take place on the backend, which is correct.

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch5

Here we are using business rules; these rules are generic behaviors that do not depend on a visual
component and can be reused in other components.

Examples of frontend business rules could be as follows:

Application state control

Communication with the backend

Information validations with a fixed rule, such as the number of digits in a telephone number

We are going to put this concept into practice, and in our gym diary application, we are going to
create the first service. In the command line we will use the Angular CLI:

ng generate service diary/services/ExerciseSets

Unlike the component, we can see that the element created by the Angular CLI is composed only of a
TypeScript file (and its corresponding unit test file).

In this file, we will see the boilerplate that the Angular CLI generated:

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class ExerciseSetsService {

 constructor() { }

}

Here we have a TypeScript class called ExerciseSetsService with a decorator called @Injectable. It
is this decorator that characterizes a service in Angular; we will see more details about it later in this
chapter.

Let’s refactor our project and place the initial series of sets for our diary in this service.

First, we’ll create the methods that will get the initial list and refresh it in the backend:

private setList?: ExerciseSetList;

getInitialList(): ExerciseSetList {

 this.setList = [

 { id: 1, date: new Date(), exercise: 'Deadlift', reps: 15, sets: 3 },

 { id: 2, date: new Date(), exercise: 'Squat', reps: 15, sets: 3 },

 { id: 3, date: new Date(), exercise: 'Barbell row', reps: 15, sets: 3 },

];

 return this.setList;

}

refreshList(): ExerciseSetList {

 this.setList = [

 { id: 1, date: new Date(), exercise: 'Deadlift', reps: 15, sets: 3 },

 { id: 2, date: new Date(), exercise: 'Squat', reps: 15, sets: 3 },

 { id: 3, date: new Date(), exercise: 'Barbell row', reps: 15, sets: 3 },

 { id: 4, date: new Date(), exercise: 'Leg Press', reps: 15, sets: 3 },

];

 return this.setList;

}

In the service, we move the initialization and refresh of the journal component into the service, using
the getInitialList and refreshList methods.

These methods will be improved when we see the communication with the backend, but here, we are
already decoupling the exercise list management business rule from the component that renders the
user interface, creating a specific service.

Let’s now consider the method that adds an item to the exercise list:

addNewItem(item: ExerciseSet): ExerciseSetList {

 if (this.setList) {

 this.setList = [...this.setList, item];

 } else {

 this.setList = [item];

 }

 return this.setList;

}

The setList attribute of the service can be null, so here we use the TypeScript type guard concept
(more details in Chapter 3, TypeScript Patterns for Angular) to manipulate the array. Here, we also
use the concept of immutability by returning a new array after adding the new element.

In the DiaryComponent component, we will use the service we created:

export class DiaryComponent {

 constructor(private exerciseSetsService: ExerciseSetsService) {}

 exerciseList = this.exerciseSetsService.getInitialList();

 newList() {

 this.exerciseList = this.exerciseSetsService.refreshList();

 }

 addExercise(newSet: ExerciseSet) {

 this.exerciseList = this.exerciseSetsService.addNewItem(newSet);

 }

}

In the component, the first thing we can observe is the use of the class constructor, declaring an
exerciseSetsService private attribute of type ExerciseSetsService. With this declaration, we have
an object instantiated and we refactor our component, replacing the initialization of the list and the
refresh action with service methods.

From now on, it is no longer a concern of the component how the exercise list is obtained and
managed; this is the responsibility of the service, and we can now use this service in other
components if necessary. In this piece of code, you may be wondering why we are using the
ExerciseSetsService service if we did not instantiate an object of that class.

Here, we have a great feature of Angular, which is the dependency injection mechanism, and we will
delve into this topic next.

Understanding the dependency injection pattern
In object-oriented software development, it is good practice to prioritize composition over
inheritance, meaning that a class should be composed of other classes (preferably interfaces).

In our previous example, we can see that the service class comprises the DiaryComponent component.
Another way to use this service would be as follows:

. . .

export class DiaryComponent {

 private exerciseSetsService: ExerciseSetsService;

 exerciseList: ExerciseSetList;

 constructor() {

 this.exerciseSetsService = new ExerciseSetsService();

 this.exerciseList = this.exerciseSetsService.getInitialList();

 }

. . .

}

Here we modify our code, leaving the creation of the service class object expressly in the
component’s constructor method. Running our code again, we can see that the interface remains the
same.

This approach, although functional, has some problems, such as the following:

High coupling between the component and the service, which means that we may encounter problems if we need to change the
implementation of the service, for example, for the construction of unit tests

If the service depends on another class, as we will see with Angular’s HTTP request service, the HttpClient class, we will

have to implement this dependency in our component, increasing its complexity

To simplify development and solve the problems we’ve described, Angular has a dependency
injection mechanism. This feature allows us to compose a class just by declaring the object we need
in its constructor.

Angular, leveraging TypeScript, will use the types defined in this declaration to assemble the
dependency tree of the class we need and create the object we require.

Let’s return to our code and analyze how this mechanism works:

. . .

export class DiaryComponent {

 constructor(private exerciseSetsService: ExerciseSetsService) {}

 exerciseList = this.exerciseSetsService.getInitialList();

. . .

}

In the code, we declare the dependency of our class in the constructor, creating the
exerciseSetsService attribute. With this, we can initialize the exerciseList attribute in its
declaration.

In Chapter 10, Design for Tests: Best Practices, we will replace the implementation of this service in
the test runtime. All this is possible thanks to Angular’s dependency injection feature.

From version 14 of Angular, we have an alternative for dependency injection that we can use, which
we will see next.

Using the inject() function

The inject() function allows you to use the same dependency injection feature but in a simpler way.

Let’s refactor our component’s code:

import { Component, inject } from '@angular/core';

import { ExerciseSet } from '../interfaces/exercise-set';

import { ExerciseSetsService } from '../services/exercise-sets.service';

. . .

export class DiaryComponent {

 private exerciseSetsService = inject(ExerciseSetsService);

 exerciseList = this.exerciseSetsService.getInitialList();

. . .

}

Here we remove the constructor declaration for the dependency injection and directly declare the
exerciseSetsService service. For the creation of the object, we use the inject function.

A point of note is that we are using the inject function of the @angular/core module and not the
function present in the @angular/core/testing module, which will be used for another purpose.

This method, in addition to being simpler and clearer (the service is being injected by the function),
allows the simplification of development, if it is necessary to use inheritance for a specific
component. Remembering that good practice says we should prefer composition over inheritance, but
especially in libraries, this feature can be interesting.

A point of note for the use of the inject function is that it can only be used in the component’s
construction phase, that is, in the declaration of the method’s property or in the class’s constructor
method.

Any use in another context will generate the following compilation error:

inject() must be called from an injection context

such as a constructor, a factory function, a field initializer,

or a function used with `runInInjectionContext`.

Let’s now delve into another aspect of Angular services, which is the use of the singleton design
pattern, and how we can use this capability for communication between components.

Communication between components using services

A characteristic that we must understand about Angular services is that, by default, every service
instantiated by the dependency injection mechanism has the same reference; that is, a new object is
not created, but reused.

This is because the dependency injection mechanism implements the singleton design pattern to
create and deliver the objects. The singleton pattern is a design pattern of the creational type and
allows the creation of objects whose access will be global in the system.

This characteristic is important for the service because, as the service deal with reusable business
rules, we can use the same instance between components, without having to rebuild the entire object.
In addition, we can take advantage of this characteristic and use services as an alternative for
communication between components.

Let’s change our gym diary so that the ListEntriesComponent component receives the initial list by
service instead of @Input:

export class ListEntriesComponent {

 private exerciseSetsService = inject(ExerciseSetsService);

 exerciseList = this.exerciseSetsService.getInitialList();

 itemTrackBy(index: number, item: ExerciseSet) {

 return item.id;

 }

}

In the DiaryComponent component, we will remove the list from the input:

<main class="mx-auto mt-8 max-w-6xl px-4">

 <app-list-entries />

 <app-new-item-button (newExerciseEvent)="addExercise($event)" />

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 (click)="newList()"

 >

 Server Sync

 </button>

</main>

Running it again we can see that the list continues to appear. This is because the instance of the
service used in both components is the same. However, this form of communication requires us to
use RxJS to update the values with the buttons on the diary screen. We will go deeper into this topic
in Chapter 9, Exploring Reactivity with RxJS.

We saw that, by default, the services are singleton, but in Angular, it is possible to change this
configuration for another service if you need to solve some corner cases in your application.

When we create a service, it has an @Injectable decorator, as in our example:

@Injectable({

 providedIn: 'root',

})

export class ExerciseSetsService {

The provideIn metadata determines the scope of the service. The value 'root' means that the
instance of the service will be unique for every application; that’s why, by default, Angular services
are singleton.

To change this behavior, let’s first return to the ListEntriesComponent component to receive @Input:

export class ListEntriesComponent {

 @Input() exerciseList!: ExerciseSetList;

 itemTrackBy(index: number, item: ExerciseSet) {

 return item.id;

 }

}

Let’s go back to inform the attribute in the DiaryComponent component:

<main class="mx-auto mt-8 max-w-6xl px-4">

 <app-list-entries [exerciseList]="exerciseList" />

 <app-new-item-button (newExerciseEvent)="addExercise($event)" />

 <button

 class="rounded bg-blue-500 py-2 px-4 font-bold text-white hover:bg-blue-700"

 (click)="newList()"

 >

 Server Sync

 </button>

</main>

In the ExerciseSetsService service, we will remove the provideIn metadata:

@Injectable()

export class ExerciseSetsService {

If we run our application now, the following error will occur:

ERROR Error: Uncaught (in promise): NullInjectorError: R3InjectorError(DiaryModule)

[ExerciseSetsService -> ExerciseSetsService -> ExerciseSetsService ->

ExerciseSetsService]: NullInjectorError: No provider for ExerciseSetsService!

This error happens when we inform Angular that the service should not be instantiated in the
application scope. To resolve this error, let’s declare the use of the service directly in the
DiaryComponent component:

@Component({

 templateUrl: './diary.component.html',

 styleUrls: ['./diary.component.css'],

 providers: [ExerciseSetsService],

})

export class DiaryComponent {

So, our system works again, and the component has its own instance of the service.

This technique, however, must be used in specific cases where the component must have its own
instance of the services it uses; it is recommended to leave the provideIn in the services.

Let’s now start exploring our application’s communication with the backend using Angular.

REST API consumption
One of the main uses of Angular services is undoubtedly communication with the backend of the
application, using the Representational State Transfer (REST) protocol.

Let’s learn about this feature in practice by preparing our project to consume its backend.

First, let’s upload the backend locally by accessing the gym-diary-backend folder and using the
following command in your command-line prompt:

npm start

We can leave this command running and can now create the services for the consumption of the API.

To carry out this consumption, Angular has a specialized service – HttpClient. To use it, we will first
import its module into the app.module.ts file:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { HttpClientModule } from '@angular/common/http';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [AppComponent],

 imports: [BrowserModule, AppRoutingModule, HttpClientModule],

 providers: [],

 bootstrap: [AppComponent],

})

export class AppModule {}

Our project’s backend API returns some JSON, containing the list of exercises for the day. As good
practice, we should create an interface to facilitate typing and the manipulation of the results in our
frontend application. In the exercise-set.ts file, we will add the following interface:

export interface ExerciseSetListAPI {

 hasNext: boolean;

 items: ExerciseSetList;

}

Now we can refactor our ExerciseSetsService service to use HttpClient:

export class ExerciseSetsService {

 private httpClient = inject(HttpClient);

 private url = 'http://localhost:3000/diary';

 getInitialList(): Observable<ExerciseSetListAPI> {

 return this.httpClient.get<ExerciseSetListAPI>(this.url);

 }

 refreshList(): Observable<ExerciseSetListAPI> {

 return this.httpClient.get<ExerciseSetListAPI>(this.url);

 }

}

First, we inject the HttpClient service into our class using the inject function. We then create the url
variable to contain the endpoint of this service that will be used in the service’s methods.

Finally, we refactor the getInitialList and refreshList methods to consume the project’s API.
Initially, they have the same implementation, but we will improve this code throughout the book.

An important change was made so that the method does not return the list of exercises, but an
Observable that contains the list of exercises. This occurs because the operation involving consuming
a REST API happens asynchronously, and through the use of RxJS and its Observables, Angular
handles this asynchronicity. We will go deeper into this topic in Chapter 9, Exploring Reactivity with
RxJS.

Using the HttpClient service to consume a GET-type API, we declare the return type represented
here by the ExerciseSetListAPI type and the service’s get method, passing the URL of the endpoint
that we are going to consume as a parameter.

Let’s now add the other methods to complete our service:

addNewItem(item: ExerciseSet): Observable<ExerciseSet> {

 return this.httpClient.post<ExerciseSet>(this.url, item);

 }

updateItem(id: string, item: ExerciseSet): Observable<ExerciseSet> {

 return this.httpClient.put<ExerciseSet>(`${this.url}/${id}`, item);

 deleteItem(id: string): Observable<boolean> {

 return this.httpClient.delete<boolean>(`${this.url}/${id}`);

 }

}

For the inclusion of a new set, we are using the POST method of the service that calls the API with the
verb of the same name. We always pass the URL and, in this case, the body of the request will be a
new set of exercises.

To update the set, we use the PUT method passing the body, and for the URL, we use the string
interpolation to pass the id value that the API demands in your contract. Finally, to delete, we use the
DELETE method, and also using interpolation, we pass the id value of the element we want to delete.

Let’s tailor our DiaryComponent component to consume the refactored service. Our challenge here is
to deal with the asynchrony of consuming a REST API via an HTTP request.

First, let’s adjust the initialization of the list of exercises:

@Component({

 templateUrl: './diary.component.html',

 styleUrls: ['./diary.component.css'],

})

export class DiaryComponent implements OnInit {

 private exerciseSetsService = inject(ExerciseSetsService);

 exerciseList!: ExerciseSetList;

 ngOnInit(): void {

 this.exerciseSetsService

 .getInitialList()

 .subscribe((dataApi) => (this.exerciseList = dataApi.items));

 }

}

In the DiaryComponent class, we will implement the OnInit interface and create the onInit method.
This method is one of the lifecycle events of Angular components, which means that it will be called
at some point by Angular when building and rendering the interface.

The onInit method is called after building the component, but before rendering the component. We
need to implement this method because the filling of the list of exercises will occur asynchronously.
Implementing this initialization in the onInit method will ensure that the data will be there when
Angular starts rendering the screen.

In this method, we are using the service, but as it now returns an Observable, we need to call the
subscribe method and, within it, implement the initialization of the list. As we are using the smart
and presentation component architecture, we can implement the button methods in the
DiaryComponent smart component as follows:

newList() {

 this.exerciseSetsService

 .refreshList()

 .subscribe((dataApi) => (this.exerciseList = dataApi.items));

}

addExercise(newSet: ExerciseSet) {

 this.exerciseSetsService

 .addNewItem(newSet)

 .subscribe((_) => this.newList());

}

deleteItem(id: string) {

 this.exerciseSetsService.deleteItem(id).subscribe(() => {

 this.exerciseList = this.exerciseList.filter(

 (exerciseSet) => exerciseSet.id !== id

);

 });

}

newRep(updateSet: ExerciseSet) {

 const id = updateSet.id ?? '';

 this.exerciseSetsService

 .updateItem(id, updateSet)

 .subscribe();

}

In the newList method, we refactored this to fetch the list elements through the refreshList method.

In the addExercise, deleteItem, and newRep methods, we refactored the previous logic to use the
exerciseSetsService service.

Summary
In this chapter, we learned about Angular services and how to correctly isolate the business rule from
our applications in a simple and reusable way, as well as how Angular services use the singleton
pattern for memory and performance optimization.

We worked with and studied Angular’s dependency injection mechanism and noticed how important
it is to be able to organize and reuse services between components and other services. We also
learned how to use the inject function for Angular services as an alternative to dependency injection
via Angular’s constructor.

Finally, we worked with one of the main uses of services, communication with the backend, and in
this chapter, we began to explore the integration of our frontend applications with the backend.

In the next chapter, we will study the best practices for using forms, the main way that our users enter
information into our systems.

Part 2: Leveraging Angular ’s Capabilit ies
In this part, you will work with more advanced aspects of Angular and see how you can use the
features of this framework for the most common tasks in your applications. You will learn about best
practices for forms, how to correctly use Angular’s routing mechanism, and finally, how to optimize
API consumption using the Interceptor design pattern and the RxJS library.

This part has the following chapters:

Chapter 6, Handling User Inputs: Forms

Chapter 7, Routes and Routers

Chapter 8, Improving Backend Integrations: the Interceptor Pattern

Chapter 9, Exploring Reactivity with RXJS

6

Handling User Inputs: Forms
Since the early days of web applications, before the concept of Single Page Applications (SPAs), in
HTML 2, the <form> tag has been used to create, organize, and send forms to the backend.

In common applications, such as banking systems and health applications, we use forms to organize
the inputs that our users need to perform in our systems. With such a common element in web
applications, it is natural that Angular, a framework whose philosophy is batteries included, offers
this feature to its developers.

In this chapter, we will delve into the following forms features in Angular:

Template-driven forms

Reactive forms

Data validation

Custom validations

Typed reactive forms

By the end of this chapter, you will be able to create maintainable and fluid forms for your user, in
addition to improving your productivity with this type of task.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch6.

During the study of this chapter, remember to run the backend of the application found in the gym-
diary-backend folder with the npm start command.

Template-driven forms
Angular has two different ways of working with forms: template-driven and reactive. First, let’s
explore template-driven forms. As we can see by the name, we maximize the use of the capabilities

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch6

of the HTML template to create and manage the data model linked to the form.

We will evolve our Gym Diary application to better exemplify this concept. In the following
command line, we use the Angular CLI to create the new page component:

ng g c diary/new-entry-form-template

To access the new assignment form, we’ll refactor the journal page component so the Add New
Entry button takes the user to the component we created.

Let’s add to the DiaryModule module the import of the framework module responsible for managing
the application’s routes:

. . .

import { RouterModule } from '@angular/router';

@NgModule({

 declarations: [

 DiaryComponent,

 EntryItemComponent,

 ListEntriesComponent,

 NewItemButtonComponent,

 NewEntryFormTemplateComponent,

],

 imports: [CommonModule, DiaryRoutingModule, RouterModule],

})

export class DiaryModule {}

With the RouterModule module imported, we will be able to use Angular’s route services. For more
details on routing, see Chapter 7, Routes and Routers. We will add the new component to a route in
the DiaryRoutingModule module:

. . .

import { NewEntryFormTemplateComponent } from './new-entry-form-template/new-entry-form-

template.component';

const routes: Routes = [

 {

 path: '',

 component: DiaryComponent,

 },

 {

 path: 'new-template',

 component: NewEntryFormTemplateComponent,

 },

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule],

})

export class DiaryRoutingModule {}

To be able to compare the two form creation approaches, we will create a route for each example
component that we are going to create. Here, the URL /home/new-template will direct us to the
template-driven form route.

We will now refactor DiaryComponent to modify the behavior of the Add New Entry button:

. . .

import { Router } from '@angular/router';

@Component({

 templateUrl: './diary.component.html',

 styleUrls: ['./diary.component.css'],

})

export class DiaryComponent implements OnInit {

 private exerciseSetsService = inject(ExerciseSetsService);

 private router = inject(Router)

. . .

 addExercise(newSet: ExerciseSet) {

 this.router.navigate(['/home/new-template'])

 }

. . .

}

First, we need to inject Angular’s router service.We change the addExercise method to use the
service and, using the navigate method, direct to the page.

We can proceed to the HTML template of our form in the new-entry-form-template.component.html
file and place only the elements of the form:

<div class="flex h-screen items-center justify-center bg-gray-200">

 <form class="mx-auto max-w-sm rounded bg-gray-200 p-4">

 . . .

 <input

 type="date"

 id="date"

 name="date"

 />

. . .

 <input

 type="text"

 id="exercise"

 name="exercise"

 />

. . .

 <input

 type="number"

 id="sets"

 name="sets"

 />

 </div>

 <input

 type="number"

 id="reps"

 name="reps"

 />

 </div>

 <div class="flex items-center justify-center">

 <button

 type="submit"

 >

 Add Entry

 </button>

...

Angular uses HTML best practices, so we will now create the form fields under the HTML <form>
tag. In the input fields, we are respecting the HTML semantics and creating the fields as <input> with
the correct types for the type of information the client needs.

Let’s run our application with the ng serve command. By clicking on the New Entry button, we will
be able to notice our diary entry addition form.

Figure 6.1 – Gym Diary Form UI

Here, we have the structure and template of our form. Now, we are going to prepare for Angular to
manage the state of the fields via user input in the template. To use the template-driven form, we need
to import the FormModule module to our feature module, DiaryModule:

import { FormsModule } from '@angular/forms';

@NgModule({

 declarations: [

 DiaryComponent,

 EntryItemComponent,

 ListEntriesComponent,

 NewItemButtonComponent,

 NewEntryFormTemplateComponent,

],

 imports: [CommonModule, DiaryRoutingModule, RouterModule, FormsModule],

})

export class DiaryModule {}

In our form template, we will add the directives that will create and link the form information to its
data model:

. . .

<form

 (ngSubmit)="newEntry()"

 class="mx-auto max-w-sm rounded bg-gray-200 p-4">

 <div class="mb-4">

 . . .

 <input type="date" id="date" name="date"

 . . .

 [(ngModel)]="entry.date"

 />

 </div>

 <div class="mb-4">

 . . .

 <input type="text" id="exercise" name="exercise"

[(ngModel)]="entry.exercise"

 . . . />

 </div>

 <div class="mb-4">

. . .

 <input type="number" id="sets" name="sets" [(ngModel)]="entry.sets"

. . ./>

 </div>

 <div class="mb-4">

. . .

 <input type="number" id="reps" name="reps" [(ngModel)]="entry.reps"

 . . ./>

. . .

</form>

</div>

{{ entry | json }}

The first change we need to make to our template is to use the ngSubmit parameter to state which
method will be called by Angular when the user submits the form. Then, we link the HTML input
elements with the data model that will represent the form. We do this through the [(ngModel)]
directive.

ngModel is an object managed by the FormModule module that represents the form’s data model. The
use of square brackets and parentheses signals to Angular that we are performing a two-way data
binding on the property.

This means that the ngModel property will both receive the form property and emit events. Finally, for
development and debugging purposes, we are placing the content of the entry object in the footer and
formatting it with the JSON pipe.

Let’s finish the form by changing the component’s TypeScript file:

export class NewEntryFormTemplateComponent {

private exerciseSetsService = inject(ExerciseSetsService);

private router = inject(Router);

entry: ExerciseSet = { date: new Date(), exercise: '', reps: 0, sets: 0 };

 newEntry() {

 const newEntry = { ...this.entry };

 this.exerciseSetsService

 .addNewItem(newEntry)

 .subscribe((entry) => this.router.navigate(['/home']));

 }

}

First, we inject the ExerciseSetsService service for the backend communication and the router
service because we want to return to the diary as soon as the user creates a new entry.

Soon after we create the entry object that represents the form’s data model, it is important that we
start it with an empty object because Angular makes the binding as soon as the form is loaded.
Finally, we create the newEntry method, which will send the form data to the backend through the
ExerciseSetsService service.

For more details about Angular services, see Chapter 5, Angular Services and the Singleton Pattern.
If we run our project and fill in the data, we can see that we are back to the diary screen with the new
entry in it.

Notice that at no point did we need to interact with the entry object, as Angular’s form template
engine took care of that for us! This type of form can be used for simpler situations, but now we will
see the way recommended by the Angular team to create all types of forms: reactive forms!

Reactive forms
Reactive forms use a declarative and explicit approach to creating and manipulating form data. Let’s
put this concept into practice by creating a new form for our project.

First, on the command line, let’s use the Angular CLI to generate the new component:

ng g c diary/new-entry-form-reactive

In the same way as we did with the template-driven form, let’s add this new component to the
DiaryRoutingModule routing module:

import { NewEntryFormReactiveComponent } from './new-entry-form-reactive/new-entry-form-

reactive.component';

const routes: Routes = [

 {

 path: '',

 component: DiaryComponent,

 },

 {

 path: 'new-template',

 component: NewEntryFormTemplateComponent,

 },

 {

 path: 'new-reactive',

 component: NewEntryFormReactiveComponent,

 },

];

In the DiaryModule module, we need to add the ReactiveFormsModule module responsible for all the
functionality that Angular makes available to us for this type of form:

@NgModule({

 declarations: [

 . . .

],

 imports: [

 . . .

 ReactiveFormsModule,

],

})

To finalize the component’s route, let’s change the main screen of our application, replacing the route
that the New Entry button will call:

addExercise(newSet: ExerciseSet) {

 this.router.navigate(['/home/new-reactive']);

}

We will now start creating the reactive form. First, let’s configure the component elements in the new-
entry-form-reactive.component.ts TypeScript file:

export class NewEntryFormReactiveComponent implements OnInit {

 public entryForm!: FormGroup;

 private formBuilder = inject(FormBuilder);

 ngOnInit() {

 this.entryForm = this.formBuilder.group({

 date: [''],

 exercise: [''],

 sets: [''],

 reps: [''],

 });

 }

}

Note that the first attribute is entryForm of type FormGroup. It will represent our form—not just the
data model, but the whole form—as validations, field structure, and so on.

Then, we inject the FormBuilder service responsible for assembling the entryForm object. Note the
name of the service that Angular uses from the Builder design pattern, which has the objective of
creating complex objects, such as a reactive form.

To initialize the entryForm attribute, we’ll use the onInit component lifecycle hook. Here, we’ll use
the group method to define the form’s data model. This method receives the object, and each attribute

receives an array that contains the characteristics of that attribute in the form. The first element of the
array is the initial value of the attribute.

In the component’s template, we will create the structure of the form, which, in relation to the
template-driven form example, is very similar:

<div class="flex h-screen items-center justify-center bg-gray-200">

 <form

 [formGroup]="entryForm"

 >

 <input

 type="date"

 id="date"

 name="date"

 formControlName="date"

 />

 <input

 type="text"

 id="exercise"

 name="exercise"

 formControlName="exercise"

 />

 <input

 type="number"

 id="sets"

 name="sets"

 formControlName="sets"

 />

 <input

 type="number"

 id="reps"

 name="reps"

 formControlName="reps"

 />

 <button type="submit">

 Add Entry

 </button>

{{ entryForm.value | json }}

The first difference is the use of the formGroup attribute to associate the template with the object we
created earlier. To associate each template field to the FormGroup attribute, we use the
formControlName element.

To debug the data model, we are also using the JSON pipe, but note that to get the data model filled
in by the user, we use the value attribute of the entryForm object. Finally, we will complement the
form with functionality and record the input using the project’s API.

The next step is to change the component:

export class NewEntryFormReactiveComponent implements OnInit {

 . . .

 private exerciseSetsService = inject(ExerciseSetsService);

 private router = inject(Router);

 . . .

 newEntry() {

 const newEntry = { ...this.entryForm.value };

 this.exerciseSetsService

 .addNewItem(newEntry)

 .subscribe((entry) => this.router.navigate(['/home']));

 }

}

Here, we inject the consumer services of the ExerciseSetsService API and the Angular route service
router.

In the newEntry method, as in the previous example, we capture the data that the user typed.
However, in the reactive form, it is in the value attribute, and we send this attribute to the API using
the service.

Running the project, we can see that the interface works like its counterpart written for the template-
driven form.

Figure 6.2 – Gym Diary Form UI using a reactive -form

You may be wondering, what is the advantage of using the reactive form and why is it recommended
by the Angular community and team? Next, we’ll see how to use the form’s built-in validations and
how to integrate them into our reactive form.

Data validation
A good UX practice is to validate the information that users enter in the form as soon as it leaves the
filled field. This minimizes user frustration while improving the information that will be sent to the
backend.

Using reactive forms, we can use utility classes created by the Angular team to add validations that
are commonly used in forms. Let’s improve our project, first in the NewEntryFormReactiveComponent
component:

. . .

import { FormBuilder, FormGroup, Validators } from '@angular/forms';

. . .

export class NewEntryFormReactiveComponent implements OnInit {

. . .

 ngOnInit() {

 this.entryForm = this.formBuilder.group({

 date: ['', Validators.required],

 exercise: ['', Validators.required],

 sets: ['', [Validators.required, Validators.min(0)]],

 reps: ['', [Validators.required, Validators.min(0)]],

 });

 }

newEntry() {

 if (this.entryForm.valid) {

 const newEntry = { ...this.entryForm.value };

 this.exerciseSetsService

 .addNewItem(newEntry)

 .subscribe((entry) => this.router.navigate(['/home']));

 }

 }

}

In the preceding example, we are importing the Validators package from Angular that will provide
the utility class for the basic validations of our report. In the ngOnInit method where we create the
reactive form object, the validations are in the second position of the array that defines the form’s
fields.

We use the required validation in all fields of the form, and in the sets and reps fields, we add
another validation to guarantee that the number is positive. To add more than one validation, we can
add another array with the validations.

Another change we made to our component is that it now checks whether the form is valid before
starting the interaction with the backend. We do this by checking the valid attribute of the object.
Angular automatically updates this field as the user enters data.

In the template file, let’s add the error messages for the user:

 <div

 *ngIf="entryForm.get('date')?.invalid && entryForm.get('date')?.touched"

 class="mt-1 text-red-500"

 >

 Date is required.

 </div>

 <div

 *ngIf="

 entryForm.get('exercise')?.invalid &&

 entryForm.get('exercise')?.touched

 "

 class="mt-1 text-red-500"

 >

 Exercise is required.

 </div>

 . . .

 <div

 *ngIf="entryForm.get('sets')?.invalid && entryForm.get('sets')?.touched"

 class="mt-1 text-red-500"

 >

 Sets is required and must be a positive number.

 </div>

 <div

 *ngIf="entryForm.get('reps')?.invalid && entryForm.get('reps')?.touched"

 class="mt-1 text-red-500"

 >

 Reps is required and must be a positive number.

 </div>

 <button

 type="submit"

 [disabled]="entryForm.invalid"

 [class.opacity-50]="entryForm.invalid"

 >

 Add Entry

 </button>

To show validation in the template, we use div elements with the message we want. To decide
whether or not the message will appear, we use the ngIf directive, checking the status of the field.

For this, we first get the field using the GET method and check the following two properties:

The invalid property checks whether the field is invalid according to what was configured in the component.

The touched property checks whether the user has accessed the field. It is recommended not to show all the validations when

the interface is loaded.

In addition to the validations in each field, to improve usability, we changed the Submission button
by disabling it while the form was invalid and applying the CSS to make it clear to the user.

Running the project, we can see the validations accessing all fields without filling any field.

Figure 6.3 – Gym Diary Form UI validations

We’ve learned how to use Angular’s utility classes to perform validation, so let’s explore how we can
create our own custom validations.

Custom validations
We can expand the use of validations and create custom functions that can even receive parameters to
maximize reuse in our projects. To illustrate this, let’s create a custom validation to evaluate whether
the number of repetitions or sets are multiples of two and three, respectively.

Let’s create a new file called custom-validation.ts and add the following function:

import { AbstractControl, ValidationErrors, ValidatorFn } from '@angular/forms';

export function multipleValidator(multiple: number): ValidatorFn {

 return (control: AbstractControl): ValidationErrors | null => {

 const isNotMultiple = control.value % multiple !== 0;

 return isNotMultiple ? { isNotMultiple: { value: control.value } } : null;

 };

}

For Angular to recognize the form validation function, it must return a new function with the
signature described in the ValidatorFn interface. This signature defines that it will receive

AbstractControl and must return an object of type ValidationErrors that allows the template to
interpret the new type of validation.

Here, we get the input value using control.value, and if it is not a multiple of three, we will return
the error object. Otherwise, we will return null, which will indicate to Angular that the value is
correct.

To use this function, we are going to refactor our form component as follows:

. . .

ngOnInit() {

 this.entryForm = this.formBuilder.group({

 date: ['', Validators.required],

 exercise: ['', Validators.required],

 sets: [

 '',

 [Validators.required, Validators.min(0), multipleValidator(2)],

],

 reps: [

 '',

 [Validators.required, Validators.min(0), multipleValidator(3)],

],

 });

}

. . .

To use our custom function, we import it from the new file we created and use it in the validation
array in the construction of the form object in the same way as standard Angular validations.

Finally, let’s change the form template to add the error message:

. . .

 <div

 *ngIf="

 entryForm.get('sets')?.errors?.['isNotMultiple'] &&

 entryForm.get('sets')?.touched

 "

 class="mt-1 text-red-500"

 >

 sets is required and must be multiple of 2.

 </div>

. . .

 <div

 *ngIf="

 entryForm.get('reps')?.errors?.['isNotMultiple'] &&

 entryForm.get('reps')?.touched

 "

 class="mt-1 text-red-500"

 >

 Reps is required and must be multiple of 3.

 </div>

. . .

We include the new div elements, but to specifically validate the error of multiples of the input, we
use the error attribute and in it the new isNotMultiple attribute of our custom function.

We are using this parameter in square brackets because it is defined at runtime and Angular will warn
at compile time that it does not exist.

Running our project, we can see the new validations:

Figure 6.4 – Gym Diary Form UI custom validations

In addition to validations, reactive forms from version 14 of Angular can be better typed to ensure
higher productivity and security in the development of your project. We will go over this function in
the next section.

Typed reactive forms
In our project, if we look at the types of objects and values, we can see that they are all of the any
type. Although functional, it is possible to improve this development experience by better using
TypeScript’s type checking.

Let’s refactor our code in the component as follows:

export class NewEntryFormReactiveComponent {

 private formBuilder = inject(FormBuilder);

 private exerciseSetsService = inject(ExerciseSetsService);

 private router = inject(Router);

 public entryForm = this.formBuilder.group({

 date: [new Date(), Validators.required],

 exercise: ['', Validators.required],

 sets: [0, [Validators.required, Validators.min(0), multipleValidator(2)]],

 reps: [0, [Validators.required, Validators.min(0), multipleValidator(3)]],

 });

 newEntry() {

 if (this.entryForm.valid) {

 const newEntry = { ...this.entryForm.value };

 this.exerciseSetsService

 .addNewItem(newEntry)

 .subscribe((entry) => this.router.navigate(['/home']));

 }

 }

}

We moved the creation of the form object to the construction of the component and set the
initialization of the fields with the types that will be accepted by the API. Using Visual Studio Code’s
IntelliSense, we can see that Angular infers the types and now we have an object very close to the
ExerciseSet type.

With this change, however, the addNewItem method threw an error, which is actually a good thing, as
it means that we are now using TypeScript’s type checking to discover possible bugs that could only
appear at runtime. To resolve this issue, we first need to change the service to receive an object that
can contain some of the attributes of ExerciseSet.

In the service, change the addNewItem method:

addNewItem(item: Partial<ExerciseSet>): Observable<ExerciseSet> {

 return this.httpClient.post<ExerciseSet>(this.url, item);

}

Here, we use the Partial type of TypeScript to inform the function that it can receive an object with
part of the interface attributes. Returning to our component, we can see that it still has an error. This
happens because it can receive null values in the form’s attributes.

To resolve this, let’s change the FormBuilder service to the NonNullableFormBuilder type as follows:

export class NewEntryFormReactiveComponent {

. . .

 private formBuilder = inject(NonNullableFormBuilder);

. . .

}

With this change, Angular itself performs this verification. The only requirement is that all the form
fields are initialized, which we have already done here.

With that, we have our reactive form working and can now use TypeScript’s type-checking more
effectively!

Summary

In this chapter, we explored Angular forms and how to use them to improve our user experience and
our team’s productivity. We learned how to use template forms for simpler requirements and explored
how Angular performs the binding between the HTML and the data model using the ngModel object.

We also work with reactive forms, which opens up many possibilities for creating and manipulating
forms. Regarding reactive forms, we studied how to apply validations to fields and how to create our
own custom validation functions. Finally, we refactored our reactive form to use TypeScript type
checking using typed forms.

In the next chapter, we will explore Angular’s routing mechanism and the possibilities it can have for
our applications.

7

Routes and Routers
A single-page application (SPA) is one in which the user originally receives only one index.html
page and, from there, all the content of the web application is rendered using JavaScript.

From the user’s perspective, however, they are interacting with the application on different interfaces
(or pages) such as the login screen, the home page, and the purchase form. Technically, they are all
rendered on the index.html page but, for the user, they are different experiences.

The mechanism responsible for this flow of interfaces that the client interacts with in a SPA is the
routing engine. The Angular framework has this feature out of the box and, in this chapter, we will
explore it in detail.

We will cover the following topics in this chapter:

Routes and navigation

Defining an error page and title

Dynamic routes – wildcards and parameters

Securing routes – guards

Optimizing the experience – Resolve

By the end of the chapter, you will be able to use Angular’s routing mechanisms to create navigation
flows that will improve your users’ experience.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch7.

While following this chapter, remember to run the backend of the application found in the gym-diary-
backend folder with the npm start command.

Routes and navigation

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch7

Let’s improve our project by creating a home page with a simplified menu for our interface, thereby
exploring the possibilities we can have with Angular routes. In the command line, we’ll use the
Angular CLI to create a new module and the component page:

ng g m home --routing

In the preceding snippet, we first create a new module, and by using the --routing parameter, we
instruct the Angular CLI to create the module along with the routing file. The following command
creates the component we are working on:

ng g c home

For more details about the Angular CLI and modules, you can refer to Chapter 2, Organizing Your
Application.

First, let’s create the template in the HTML file of the component we just created:

<div class="flex h-screen">

 <aside class="w-1/6 bg-blue-500 text-white">

 <nav class="mt-8">

 <ul class="flex flex-col items-center space-y-4">

 Diary

 New Entry

 </nav>

 </aside>

 <main class="flex-1 bg-gray-200 p-4">

 <router-outlet></router-outlet>

 </main>

</div>

In this template example, we are using the <aside> and <main> HTML elements to create the menu
and the area where the selected pages will be projected. For this purpose, we are using the <router-
outlet> directive to indicate the correct area to Angular.

To make the home page the main page, we need to modify the main routing module of our
application in the app-routing.module.ts file:

. . .

const routes: Routes = [

 { path: '', pathMatch: 'full', redirectTo: 'home' },

 {

 path: 'home',

 loadChildren: () =>

 import('./home/home.module').then((file) => file.HomeModule),

 },

];

. . .

export class AppRoutingModule {}

The routes array is the main element of the Angular routing mechanism. We define objects in it that
correspond to the routes our users will have access to. In this example, we defined that the root route
("/") of our application will redirect the user to the home route using the redirectTo property.

Here, we should use the pathMatch property with the "full" value. This is because it determines
whether the Angular route engine will match the first route that matches the pattern (the default
behavior, which is "prefix"), or whether it will match the entire route.

In the second object, we are defining the home route and loading the Home module lazily. For more
details about lazy loading, you can refer to Chapter 2, Organizing Your Application.

When running our application, we have the menu and the area where the pages of our workout diary
will be displayed.

To include the workout diary on the home page, we need to modify the HomeRoutingModule module:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { HomeComponent } from './home.component';

const routes: Routes = [

 {

 path: '',

 component: HomeComponent,

 children: [

 {

 path: 'diary',

 loadChildren: () =>

 import('../diary/diary.module').then((file) => file.DiaryModule),

 },

 {

 path: '',

 redirectTo: 'diary',

 pathMatch: 'full',

 },

],

 },

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule],

})

export class HomeRoutingModule {}

In this routes file, similar to the previous one, we define that the main route will direct to the
HomeComponent component. However, here, we want the routes and modules to be rendered in the
router outlet of the component instead of AppModule.

Here, the children property comes into play in which we will define the nested routes for this
module. Since we want to use DiaryComponent, we are performing lazy loading of its module. This

follows the Angular best practice of separating functional modules in the application.

Now, when running our application again, we have the diary page back.

Figure 7.1 – Gym Diary home page with Diary

To conclude this session, let’s add the links for the new exercise entry in the Home template. Make the
following modification:

 Diary

 New Entry

We are using the Angular routerLink directive to create the link in the template, specifying the URL
it should navigate to.

An important detail to note is that we are using the relative path of the project to create the link using
./. Since the entry form route is located in the diary module, Angular interprets that the module has
already been loaded and allows the link without requiring an additional declaration in the
HomeRoutingModule component.

In the next section, let’s explore how to handle a scenario in which the user enters a date that does not
exist.

Defining an error page and tit le
In our current project, if the user enters a path that does not have a mapped route, they will be faced
with a blank screen. This is not a good user experience (UX) practice; ideally, we need to handle this
error by presenting an error page for it to be redirected to the correct page.

First, let’s create the component using the Angular CLI:

ng generate component ErrorPage

Here, we are creating the component directly in AppModule because we want to give this treatment to
our entire system and not to a specific functional module.

Let’s create the template for this component with the error message:

<div class="flex h-screen flex-col items-center justify-center">

 <h1 class="mb-4 text-6xl font-bold text-red-500">Oops!</h1>

 <h2 class="mb-2 text-3xl font-bold text-gray-800">Looks like you're lost!</h2>

 <p class="mb-6 text-gray-600">

 We couldn't find the page you're looking for.

 </p>

 <p class="text-gray-600">

 But don't worry! Go back to the Gym Diary and continue your progress!

 </p>

 <a

 routerLink="/home"

 class="mt-4 rounded bg-blue-500 px-4 py-2 font-bold text-white hover:bg-blue-600"

 >

 Go back to the Gym Diary

</div>

Note that we have the link to the home page as a call to action for the user to return to the home page.

The next step is to update the AppRoutingModule routes file:

. . .

import { ErrorPageComponent } from './error-page/error-page.component';

const routes: Routes = [

 { path: '', pathMatch: 'full', redirectTo: 'home' },

 {

 path: 'home',

 loadChildren: () =>

 import('./home/home.module').then((file) => file.HomeModule),

 },

 { path: 'error', component: ErrorPageComponent },

 { path: '**', redirectTo: '/error' },

];

. . .

At this point, Angular will do its job. Just by defining the error page route and then creating another
entry in the array, we have defined the '**' path and redirected it to the error route.

When we run our project, if the user enters an incorrect page, the following message will be
displayed:

Figure 7.2 – Incorrect route error page

Another point that we can improve in our application is the title of the page in the Browser tab.

For this, we can once again use Angular’s routing mechanisms. In DiaryRoutingModule, we need to
change the following code snippet:

. . .

const routes: Routes = [

 {

 path: '',

 component: DiaryComponent,

 title: 'Diary',

 },

 {

 path: 'new-template',

 component: NewEntryFormTemplateComponent,

 },

 {

 path: 'new-reactive',

 component: NewEntryFormReactiveComponent,

 title: 'Entry Form',

 },

];

. . .

To change the title, we just need to inform the title property in the route definition. Another
approach that is possible (but longer) is to use Angular’s Title service.

Let’s exemplify this in the NewEntryFormTemplateComponent component:

import { Title } from '@angular/platform-browser';

. . .

export class NewEntryFormTemplateComponent implements OnInit {

. . .

 private titleService = inject(Title);

. . .

 ngOnInit(): void {

 this.titleService.setTitle('Template Form');

 }

. . .

}

After injecting the Title service, we are using it in the OnInit lifecycle hook. Although the route
approach is much simpler and more intuitive, the Title service can be used if the title can change
dynamically.

We will now learn how to pass information from one route to another in the next section.

Dynamic routes – wildcards and parameters
We want to change the function of the New Rep button so that instead of adding a rep to the entry,
the user can actually edit the entry, opening the form with the data filled in.

First, let’s add a new method to the ExerciseSetsService service:

export class ExerciseSetsService {

 . . .

 updateItem(id: string, item: Partial<ExerciseSet>): Observable<ExerciseSet> {

 return this.httpClient.put<ExerciseSet>(`${this.url}/${id}`, item);

 }

 getItem(id: string): Observable<ExerciseSet> {

 return this.httpClient.get<ExerciseSet>(`${this.url}/${id}`);

 }

}

In addition to creating the new method by getting a specific item, we also prepared the update
method to accept Partial of the ExerciseSet object.

The form for editing the diary entry will be the same as for adding a new entry, with the difference
that it will be filled in and will call the update method. So, let’s reuse the
NewEntryFormReactiveComponent component for this.

We’ll start by editing the DiaryRoutingModule routes file:

const routes: Routes = [

. . .

. . .

 {

 path: 'entry',

 component: NewEntryFormReactiveComponent,

 title: 'Entry Form',

 },

 {

 path: 'entry/:id',

 component: NewEntryFormReactiveComponent,

 title: 'Edit Entry',

 },

];

In the route array, we change the route of the new form to entry and create the entry/:id route.

This route is pointing to the same component, but note that :id tells Angular that it is a dynamic route
– that is, it will receive a variable value that must be directed to the route.

With this change, we need to refactor some parts of our application. In the HomeComponent menu, let’s
adjust the application route:

 <a

 routerLink="./diary/entry"

 class="flex items-center space-x-2 text-white"

 >

 New Entry

We also need to adjust the journal and input components to call the new route instead of increasing
the number of repetitions. In the EntryItemComponent component, we are going to adjust the
component’s method and Output instances:

export class EntryItemComponent {

 @Input('exercise-set') exerciseSet!: ExerciseSet;

 @Output() editEvent = new EventEmitter<ExerciseSet>();

 @Output() deleteEvent = new EventEmitter<string>();

 delete() {

 this.deleteEvent.emit(this.exerciseSet.id);

 }

 editEntry() {

 this.editEvent.emit(this.exerciseSet);

 }

}

Here, we remove the treatment and just emit the event. In the template, we will adjust the HTML
content:

. . .

<button

 class="rounded bg-blue-500 px-4 py-2 font-bold text-white hover:bg-blue-700"

 (click)="editEntry()"

>

 Edit

</button>

. . .

We will also adjust the ListEntriesComponent component to properly propagate editEvent:

export class ListEntriesComponent {

 @Input() exerciseList!: ExerciseSetList;

 @Output() editEvent = new EventEmitter<ExerciseSet>();

 @Output() deleteEvent = new EventEmitter<string>();

. . .

}

<app-entry-item

 [exercise-set]="item"

 (deleteEvent)="deleteEvent.emit($event)"

 (editEvent)="editEvent.emit($event)"

/>

We’ll make a small change to the diary to reflect the new route. We’ll do this in the template first:

<app-list-entries

 [exerciseList]="exerciseList"

 (deleteEvent)="deleteItem($event)"

 (editEvent)="editEntry($event)"

/>

In the component, we will change the newRep method, which, in addition to the name change, will
redirect to the new route:

addExercise(newSet: ExerciseSet) {

 this.router.navigate(['/home/diary/entry']);

}

deleteItem(id: string) {

 this.exerciseSetsService.deleteItem(id).subscribe();

}

editEntry(updateSet: ExerciseSet) {

 const id = updateSet.id ?? '';

 this.router.navigate([`/home/diary/entry/${id}`]);

}

To redirect to the new route, we are doing string interpolation to include id that was emitted by the
output of the list item. Finally, let’s focus our attention on the form. In the
NewEntryFormReactiveComponent component, let’s adjust the button label in the template:

<button

 type="submit"

 [disabled]="entryForm.invalid"

 [class.opacity-50]="entryForm.invalid"

 class="rounded bg-blue-500 px-4 py-2 font-bold text-white hover:bg-blue-700"

>

 Add Entry

</button>

In the NewEntryFormReactiveComponent component, we will adapt it to now be the form for creating
and editing entries in our application:

. . .

export class NewEntryFormReactiveComponent implements OnInit {

. . .

 private route = inject(ActivatedRoute);

 private entryId?: string | null;

. . .

 ngOnInit(): void {

 this.entryId = this.route.snapshot.paramMap.get('id');

 if (this.entryId) {

 this.exerciseSetsService

 .getItem(this.entryId)

 .subscribe((entry) => this.updateForm(entry));

 }

 }

 updateForm(entry: ExerciseSet): void {

 let { id: _, ...entryForm } = entry;

 this.entryForm.setValue(entryForm);

 }

. . .

}

In the example, we use the OnInit lifecycle hook to configure the form according to the route it was
called. For this, Angular has a service called ActivatedRoute.

In the ngOnInit method, we capture the parameter of the route that called our application and, if the
component receives the ID, it will fetch the entry from the backend and update the form according to
the return.

One detail here is that we are using the destructuring assignment to remove the id field from the
object because it does not exist in the form’s data model.

In the same component, we need to change the recording of the diary entry:

newEntry() {

 if (this.entryForm.valid) {

 const newEntry = { ...this.entryForm.value };

 if (this.entryId) {

 this.exerciseSetsService

 .updateItem(this.entryId, newEntry)

 .subscribe((entry) => this.router.navigate(['/home']));

 } else {

 this.exerciseSetsService

 .addNewItem(newEntry)

 .subscribe((entry) => this.router.navigate(['/home']));

 }

 }

}

In the newEntry method, if the component has received the object’s id via the route, it will behave as
an edition and call the corresponding method of the exerciseSetsService service.

When we run the project, we now have the input edit form.

Figure 7.3 – Gym Diary edit entry form

From version 16 of Angular, we have an improvement in the use of route parameters. In addition to
the ActivatedRoute service, we can map the inputs of page components directly to route variables in
our applications.

Let’s refactor our example to this; first, change the main routing module, AppRoutingModule:

. . .

@NgModule({

 imports: [

 RouterModule.forRoot(routes, {

 bindToComponentInputs: true,

 }),

],

 exports: [RouterModule],

})

export class AppRoutingModule {}

To use this resource, we need to add the bindToComponentInputs attribute in the general configuration
of the application’s route.

In our form page, we will refactor as follows:

export class NewEntryFormReactiveComponent implements OnInit {

 @Input('id') entryId?: string;

. . .

 ngOnInit(): void {

 if (this.entryId) {

 this.exerciseSetsService

 .getItem(this.entryId)

 .subscribe((entry) => this.updateForm(entry));

 }

 }

. . .

}

We create Input for the entryId property and define that the route’s wildcard variable will be id. We
did this to prevent needing to refactor the rest of the component, but we could also change the
property name to also be id, as in this example:

 @Input() id?: string;

The important thing here is that Angular automatically binds the information that comes from the
route in the attribute, simplifying even more the passing of parameters via the URL to the component.

In the next section, we will learn how to protect the route from being incorrectly accessed by
studying route guards.

Securing routes – guards
So far, we’ve seen how to take data through the route to determine the behavior of a page component.
However, the routing created in Angular is versatile and also allows you to shape the customer’s
journey by conditioning resources based on a business rule.

To illustrate this feature, we are going to create a login screen with a simplified authentication
mechanism. To create the components, we are going to use the Angular CLI.

At the command prompt of your operating system, use the following commands:

ng g m login --routing

ng g c login

ng g s login/auth

The first command creates a Login module with the routes file. The second creates the login page
component and, finally, we have the service that will manage the interaction with the authentication
of our backend.

In the Login module, we will configure the dependencies of the new module:

. . .

@NgModule({

 declarations: [

 LoginComponent

],

 imports: [

 CommonModule,

 LoginRoutingModule,

 ReactiveFormsModule

]

})

export class LoginModule { }

Next, let’s add the new module to AppRoutingModule:

const routes: Routes = [

 { path: '', pathMatch: 'full', redirectTo: 'home' },

 {

 path: 'home',

 loadChildren: () =>

 import('./home/home.module').then((file) => file.HomeModule),

 },

 {

 path: 'login',

 loadChildren: () =>

 import('./login/login.module').then((file) => file.LoginModule),

 },

 { path: 'error', component: ErrorPageComponent },

 { path: '**', redirectTo: '/error' },

];

In the LoginRoutingModule module, we will configure the component we created:

const routes: Routes = [

 { path: '', component: LoginComponent },

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule]

})

export class LoginRoutingModule { }

To simplify the handling of the request and response payload of our authentication service, let’s
create an interface with the new types:

export interface LoginForm {

 username: string;

 password: string;

}

export interface Token {

 access_token: string;

}

The LoginForm interface corresponds to the data that we are going to send and the Token interface is
the API return, which is basically the access token that the application will send the client’s JWT.

With the interface created, let’s create a service that will orchestrate the interaction with the backend:

export class AuthService {

 private httpClient = inject(HttpClient);

 private url = 'http://localhost:3000/auth/login';

 private token?: Token;

 login(loginForm: Partial<LoginForm>): Observable<Token> {

 return this.httpClient

 .post<Token>(this.url, loginForm)

 .pipe(tap((token) => (this.token = token)));

 }

 get isLogged() {

 return this.token ? true : false;

 }

 logout() {

 this.token = undefined;

 }

}

In this service, we make the request to the backend using the HttpClient service (for more details,
read Chapter 5, Angular Services and the Singleton Pattern). We are using the RxJS tap operator so
that as soon as the request is successful, it saves the token in a service variable.

It is through this variable that we create the isLogged property, which will be important for
controlling the route. With the services created, we can develop the Login page template:

<div class="flex justify-center items-center h-screen bg-blue-500">

 <div class="bg-blue-200 rounded shadow p-6">

 <h2 class="text-2xl font-bold text-gray-800 mb-6">Login</h2>

 <form class="space-y-4"

 [formGroup]="loginForm"

 (ngSubmit)="login()"

 >

 <div>

 <label for="username" class="text-gray-700">Username</label>

 <input type="text" id="username" class="block w-full rounded border-gray-300 p-2

focus:border-blue-500 focus:outline-none" formControlName="username">

 </div>

 <div>

 <label for="password" class="text-gray-700">Password</label>

 <input type="password" id="password" class="block w-full rounded border-gray-300 p-2

focus:border-blue-500 focus:outline-none" formControlName="password">

 </div>

 <div>

 <button

 type="submit"

 class="bg-blue-500 text-white rounded px-4 py-2 w-full"

 [disabled]="loginForm.invalid"

 [class.opacity-50]="loginForm.invalid"

 >Login</button>

 </div>

 </form>

 </div>

</div>

When creating Login pages, an important point is to correctly use the HTML input field types for the
correct UX treatment and accessibility.

With the template completed, let’s develop the component:

export class LoginComponent {

 private formBuilder = inject(NonNullableFormBuilder);

 private loginService = inject(AuthService);

 private router = inject(Router);

 public loginForm = this.formBuilder.group({

 username: ['', [Validators.required]],

 password: ['', [Validators.required]],

 });

 login() {

 const loginValue = { ...this.loginForm.value };

 this.loginService.login(loginValue).subscribe({

 next: (_) => {

 this.router.navigate(['/home']);

 },

 error: (e) => alert('User not Found'),

 });

 }

}

In this example, we are creating the reactive form, and in the login method, we are using the
AuthService service. Run the project and, in url /login, we will have our login screen. To use the
screen, we have the username mario and password 1234:

Figure 7.4 – Login page

To create the logout treatment, we will create a link in the HomeComponent component menu and create
the logout method in it, redirecting to the login page:

 <a

 (click)="logout()"

 class="flex items-center space-x-2 text-white"

 >

 Logout

export class HomeComponent {

 private authService = inject(AuthService);

 private router = inject(Router);

 logout() {

 this.authService.logout();

 this.router.navigate(['./login']);

 }

}

With the page created, now we need a way to guarantee access to the diary only if the user is logged
in. For this type of route checking, we should use Angular’s route guard feature.

To create it, we can count on the help of the Angular CLI; in the command line, use the following
command:

ng g guard login/auth

A selection list will be presented; choose CanActivate. In the new file, let’s create the following
function:

export const authGuard: CanActivateFn = (route, state) => {

 const authService = inject(AuthService);

 const router = inject(Router);

 if (authService.isLogged) {

 return true;

 } else {

 return router.parseUrl('/login');

 }

};

Since version 14, the recommended way to create route guards is through functions and not classes.

We are creating the authGuard function that has the CanActivateFn interface, which is a function that
expects a Boolean return or an object of the UrlTree class to redirect the user to the indicated route.

In the function, we first inject the AuthService and Router services; notice that the inject function in
this context is mandatory because, in a function, we don’t have a constructor to inject the services.

With the services configured, we make an if statement evaluating the isLogged service property. We
return true if the user is logged in, allowing the route to be navigated. Otherwise, we return an object
of the UrlTree class with the login page route.

To use the guard, let’s change DiaryRoutingModule:

const routes: Routes = [

 {

 path: '',

 component: DiaryComponent,

 title: 'Diary',

 canActivate: [authGuard],

 },

 {

 path: 'new-template',

 component: NewEntryFormTemplateComponent,

 },

 {

 path: 'entry',

 component: NewEntryFormReactiveComponent,

 title: 'Entry Form',

 },

 {

 path: 'entry/:id',

 component: NewEntryFormReactiveComponent,

 title: 'Edit Entry',

 },

];

By using the canActivate attribute, we can pass one or more route guards.

Running the application, we can see that we are directed to the login page. But if we directly call the
/home/diary/entry route, we realize that it is not protected. This happens because we set guard only
on the /diary route.

To fix this, we can set the canActivate attribute on all routes, but a more effective way would be to
change the type of the route to CanActivateChild.

Going back to the route function, let’s change its type:

export const authGuard: CanActivateChildFn = (route, state) => {

. . .

};

We now need to refactor DiaryRoutingModule:

const routes: Routes = [

 {

 path: '',

 children: [

 {

 path: '',

 component: DiaryComponent,

 title: 'Diary',

 },

 {

 path: 'new-template',

 component: NewEntryFormTemplateComponent,

 },

 {

 path: 'entry',

 component: NewEntryFormReactiveComponent,

 title: 'Entry Form',

 },

 {

 path: 'entry/:id',

 component: NewEntryFormReactiveComponent,

 title: 'Edit Entry',

 },

],

 canActivateChild: [authGuard],

 },

];

Here, we are using a component-less route pattern; basically, we create a route without a component
and put all the routes as children of it.

Then, we use the canActivateChild attribute to call the route’s guard, so we don’t need to repeat all
the routes in this module.

The route guard feature can do more for your application than flow control; we can improve its
perceived performance, as we’ll see in the next section.

Optimizing the experience – Resolve
Performance is one of the biggest variables that impact the experience and satisfaction of our users;
therefore, optimal performance should be a constant goal for the web developer.

Perceived perception is the game we want to win, and we have plenty of options in the Angular
ecosystem. We can load the information that our page will require before it renders and, for that, we
will use the Resolveroute saver resource.

Unlike the guard we studied earlier, its purpose is to return information needed by the page being
directed by the route.

We will create this guard using the Angular CLI. In your command prompt, use the following
command:

ng g resolver diary/diary

In the new file created, let’s change the function that the Angular CLI generated:

export const diaryResolver: ResolveFn<ExerciseSetListAPI> = (route, state) => {

 const exerciseSetsService = inject(ExerciseSetsService);

 return exerciseSetsService.getInitialList();

};

The function injects the ExerciseSetsService service and returns the observable returned by the
getInitialList method.

We will configure DiaryRoutingModule with this new resolver:

{

 path: '',

 component: DiaryComponent,

 title: 'Diary',

 resolve: { diaryApi: diaryResolver },

},

We are using the resolve property, much like configuring a route guide, with the difference that we
associate an object with the function, which will be important for the component to consume the data
generated by it.

In the DiaryComponent component, we will refactor the component to consume data from the resolver
instead of fetching the information from the service directly:

. . .

private route = inject(ActivatedRoute);

. . .

 ngOnInit(): void {

 this.route.data.subscribe(({ diaryApi }) => {

 this.exerciseList = diaryApi.items;

 });

 }

. . .

The component is now consuming the data attribute of the route. It returns an observable that has an
object with the diaryApi attribute – the same one we configured in the routes module.

When we run our project again, we see that the behavior of the screen does not change externally;
however, internally, we are fetching information from the gym diary before the component is loaded.
This change in our example may have been imperceptible, but in a larger and more complex
application, it could be the difference that you and your team are looking for.

It is important to bear in mind that this will not speed up the request to the backend. It will take the
same time as before, but the performance perception that your user will have may be impacted.

We will do this same treatment to load the diary entry edit page; in the same resolve file, we will
create a new function:

export const entryResolver: ResolveFn<ExerciseSet> = (route, state) => {

 const entryId = route.paramMap.get('id')!;

 const exerciseSetsService = inject(ExerciseSetsService);

 return exerciseSetsService.getItem(entryId);

};

The function injects the service but, this time, we are using the route parameter to extract the id of
the entry to load it. This parameter is offered by Angular so that you can extract any attribute from
the route in which you will configure the resolver.

In the route module, we will add the resolve function to the edit route:

{

 path: 'entry/:id',

 component: NewEntryFormReactiveComponent,

 title: 'Edit Entry',

 resolve: { entry: entryResolver },

},

Now, we need to refactor the component to use the route guard information:

 private route = inject(ActivatedRoute);

. . .

 ngOnInit(): void {

 if (this.entryId) {

 this.route.data.subscribe(({ entry }) => {

 this.updateForm(entry);

 });

 }

 }

In the same way as we did with the diary page, here, we are replacing the consumption of the service
with the consumption of the route.

Summary
In this chapter, we worked with routes and their resources to guide and organize user flows in our
application. We learned about the router concept in the Angular framework and created an error page
in case a user uses a route that does not exist. We created our edit diary entry page by reusing a form
and, with the dynamic route feature, we learned how to capture route data for page setup.

Finally, we learned about the route guards feature, created our simplified login flow, and saw how to
optimize the user experience by loading the backend information before the page loads using the
guard resolve feature.

In the next chapter, we will learn how to use a resource to streamline our requests to the backend
using the interceptor design pattern.

8

Improving Backend Integrations: the Interceptor
Pattern
In a single-page application (SPA), communication with the backend is one of the most common
tasks. In Chapter 5, Angular Services and the Singleton Pattern, we learned that the Angular
component that makes this communication is called Service. However, many side tasks are common
to all communications with the backend, such as header processing, authentication, and loading.

We could do this sides task on a service-by-service basis, but in addition to being an unproductive
activity, the team might not be able to implement some control on the request due to the carelessness
or ignorance of a new member of the team.

In order to simplify the development of side tasks for communicating with the backend, the Angular
framework implements the interceptor design pattern, which we will explore in this chapter. Here, we
will cover the following topics:

Attaching the token to the request with an interceptor

Changing the request route

Creating a loader

Notifying success

Measuring the performance of a request

By the end of this chapter, you will be able to create interceptors capable of implicitly performing
tasks necessary for your backend communication.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch8.

While following this chapter, remember to run the backend of the application found in the gym-diary-
backend folder with the npm start command.

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch8

Attaching the token to the request with an interceptor
So far, our backend doesn’t have any kind of authentication control, which doesn’t happen (or at least
it shouldn’t happen) in the real world. The backend was modified to perform authentication, but this
was reflected in the frontend because, if we tried to log in, the following error would occur:

ERROR Error: Uncaught (in promise): HttpErrorResponse:

{"headers":{"normalizedNames":

{},"lazyUpdate":null},"status":401,"statusText":"Unauthorized","url":"http://localhost:300

0/diary","ok":false,"name":"HttpErrorResponse","message":"Http failure response for

http://localhost:3000/diary: 401 Unauthorized","error":

{"message":"Unauthorized","statusCode":401}}

This error means that our request was rejected by the server because it was not authorized. That’s
because our server implements a very common form of security that consists of asking for an
authorization token in every request.

This token is created when the user logs in to the application and it must be passed in the header of
the HTTP request.

We’ll fix this problem first by making a change to the AuthService service:

export class AuthService {

 private httpClient = inject(HttpClient);

 private url = 'http://localhost:3000/auth/login';

 #token?: Token;

 login(loginForm: Partial<LoginForm>): Observable<Token> {

 return this.httpClient

 .post<Token>(this.url, loginForm)

 .pipe(tap((token) => (this.#token = token)));

 }

 get isLogged() {

 return this.#token ? true : false;

 }

 logout() {

 this.#token = undefined;

 }

 get token() {

 return this.#token?.access_token;

 }

}

First, we change the access mode of the token attribute. We are using the # symbol, which is the way
to declare a private attribute in standard JavaScript. We want the token to be read by the other
component but never overwritten, and using the token ensures that this happens even if the consumer
class forces manipulation.

We change the class to the new attribute name and, at the end, we create the token() accessor method
to return the token stored by the service.

We’ll refactor the ExerciseSetsService service to send the token in the request that returns the diary
items:

. . .

private authService = inject(AuthService);

private url = 'http://localhost:3000/diary';

getInitialList(): Observable<ExerciseSetListAPI> {

 const headers = new HttpHeaders({

 Authorization: `Bearer ${this.authService.token}`,

 });

 return this.httpClient.get<ExerciseSetListAPI>(this.url, { headers });

}

. . .

Here, we create a header using the accessory class of Angular, HttpHeaders, passing the token in the
Authorization attribute. Then, we pass this header in the get method of Angular’s HttpClient
service.

When we run our application again, it works again (Username is mario, and Password is 1234):

Figure 8.1 – Gym diary home page

This approach has a problem, as we would need to replicate this operation for all of the service’s
methods, and as our application grows, we would need to remember to do this token handling.

A good software architecture should think about new team members with different backgrounds and
even the creation of new teams as the project grows. Therefore, this type of transversal requirement
of our system must be treated in a more intelligent way.

Enter Angular Interceptor, which is a service of a specific type to handle the HTTP request flow.
This component is based on the design pattern of the same name, which aims to change a processing
cycle.

Let’s illustrate this pattern with the following diagram:

Figure 8.2 – Interceptor design pattern

In this diagram, we have the Angular application that makes an HTTP request to the backend; in the
interceptor pattern, we have an Angular service in the middle of the request that can change both the
request and the return from the backend.

We will refactor our previous solution to see this pattern in practice. We’ll clean up the
ExerciseSetsService service by removing the handling from the Authorization header:

export class ExerciseSetsService {

 private httpClient = inject(HttpClient);

 private url = 'http://localhost:3000/diary';

 getInitialList(): Observable<ExerciseSetListAPI> {

 return this.httpClient.get<ExerciseSetListAPI>(this.url);

 }

 . . .

}

To create the interceptor, we are going to use the Angular CLI for Angular to create the entire
boilerplate of the service:

ng g interceptor login/auth

With the AuthInterceptor service created, let’s create our logic to attach the Authorization header:

@Injectable()

export class AuthInterceptor implements HttpInterceptor {

 private authService = inject(AuthService);

 intercept(

 request: HttpRequest<unknown>,

 next: HttpHandler

): Observable<HttpEvent<unknown>> {

 const token = this.authService.token;

 if (request.url.includes('auth')) {

 return next.handle(request);

 }

 if (token) {

 const reqAuth = request.clone({

 headers: request.headers.set(`Authorization`, `Bearer ${token}`),

 });

 return next.handle(reqAuth);

 }

 return next.handle(request);

 }

}

The first thing we can notice is that the interceptor is a common Angular service, so it has the
@Injectable notation; for more details about Angular services, see Chapter 5, Angular Services and
the Singleton Pattern.

This service implements the HttpInterceptor interface, which requires the class to have the inject
method. This method receives the request we want to handle and expects an observable as a return.
This signature indicates the characteristic of the interceptor because this class is always in the middle
of a flow between the component making the request and the backend.

Therefore, the service receives information from the flow and must return the flow represented by the
observable. In our case, we use the AuthService service to get the token. The service cannot attach
the token to the login endpoint because that is where we will get the token, so we make an if
statement by analyzing which URL the request is using.

If we have a token, we clone the request, but this time, we inform the header with the token. The
reason we need to use the clone method to get a new object is that the request object is immutable –
that is, it is not possible to change it; we need to create a new one, identical to the old one, but this
time, we put the header.

Finally, the flow is returned but, this time, with the new request object. To configure the interceptor,
we need to change the AppModule module:

@NgModule({

 declarations: [AppComponent, ErrorPageComponent],

 imports: [BrowserModule, AppRoutingModule, HttpClientModule],

 providers: [

 { provide: HTTP_INTERCEPTORS, useClass: AuthInterceptor, multi: true },

],

 bootstrap: [AppComponent],

})

export class AppModule {}

We’re including the AuthInterceptor service in the HTTP_INTERCEPTORS token. This tells the
framework to call the service whenever a component uses Angular’s HttpClient service. The multi

attribute informs the framework that we can have more than one interceptor because, by default,
Angular adds only one.

Running the application again, we can see that it is working now with the addition that all the
resources are attaching the header, but implicitly, without the need to change each HttpClient call.

Let’s explore this feature further with a very common task in our project, which is URL routing in the
API call.

Changing the request route
In our project so far, we have two services that make requests to the backend. If we analyze them, we
see that they both point directly to the backend URL. This is not a good practice since, as the project
scales and grows in complexity, errors can occur by pointing to the wrong URL. In addition to the
need to change the host, we will need to change numerous files.

There are a few ways to handle this problem, but a very useful tool for this is the Angular interceptor.
Let’s see it in practice starting with the Angular CLI, where we are going to create the new
interceptor:

ng g interceptor shared/host

With the generated file, let’s create the intercept function:

@Injectable()

export class HostInterceptor implements HttpInterceptor {

 intercept(

 request: HttpRequest<unknown>,

 next: HttpHandler

): Observable<HttpEvent<unknown>> {

 const url = 'http://localhost:3000';

 const resource = request.url;

 if (request.url.includes('http')) {

 return next.handle(request);

 }

 const urlsReq = request.clone({

 url: `${url}/${resource}`,

 });

 return next.handle(urlsReq);

 }

}

In this function, we have the URL of the backend and, in the resource variable, we receive the
original URL of the request that we want to intercept and modify. We use an if statement next
because we want to avoid errors in case some service needs to call another API directly.

Finally, we create a new request object (this time, with the URL changed) and we pass this new
object to the request flow. For this interceptor to be triggered by Angular, we need to add it to the

providers array of the AppModule module:

@NgModule({

 declarations: [AppComponent, ErrorPageComponent],

 imports: [BrowserModule, AppRoutingModule, HttpClientModule],

 providers: [

 { provide: HTTP_INTERCEPTORS, useClass: AuthInterceptor, multi: true },

 { provide: HTTP_INTERCEPTORS, useClass: HostInterceptor, multi: true },

],

 bootstrap: [AppComponent],

})

export class AppModule {}

We will refactor our service to only care about the features they need, starting with the
ExerciseSetsService service:

export class ExerciseSetsService {

 private httpClient = inject(HttpClient);

 private url = 'diary';

 . . .

}

We follow this with the Authentication service:

export class AuthService {

 private httpClient = inject(HttpClient);

 private url = 'auth/login';

. . .

}

We can see that if we needed new services or changed the URL, the HTTP requests would not need
to be refactored, as we created an interceptor to work on that.

Next, we’ll learn how to give our users a better experience if a request takes too long.

Creating a loader
In a frontend project, performance is not only about having faster requests but also improving the
user’s perception of the application. A blank screen without any feedback signals to the user that the
page did not load, that their internet is having a problem, or any other type of negative perception.

That’s why we always need to signal that the action the user expects is being performed. One way to
show this is a loading indicator, and that’s what we’re going to do in this session. In the command
line of our operating system, we will use the Angular CLI:

 ng generate component loading-overlay

 ng generate service loading-overlay/load

 ng generate interceptor loading-overlay/load

With that, we created the overlay component, the service that will control the loading state, and the
interceptor that will control the beginning and end of the loading based on HTTP requests.

Let’s create the loading overlay screen in the HTML template of the LoadingOverlayComponent
component:

<div class="fixed inset-0 flex items-center justify-center bg-gray-800 bg-opacity-75 z-

50">

 <div class="text-white text-xl">

 Loading...

 </div>

</div>

We will implement the LoadService service, which will maintain and control the loading state:

@Injectable({

 providedIn: 'root',

})

export class LoadService {

 #showLoader = false;

 showLoader() {

 this.#showLoader = true;

 }

 hideLoader() {

 this.#showLoader = false;

 }

 get isLoading() {

 return this.#showLoader;

 }

}

We create two methods to turn the loading state on and off and a property to expose this state.

In the load interceptor, we will implement the following:

@Injectable()

export class LoadInterceptor implements HttpInterceptor {

 private loadService = inject(LoadService);

 intercept(

 request: HttpRequest<unknown>,

 next: HttpHandler

): Observable<HttpEvent<unknown>> {

 if (request.headers.get('X-LOADING') === 'false') {

 return next.handle(request);

 }

 this.loadService.showLoader();

 return next

 .handle(request)

 .pipe(finalize(() => this.loadService.hideLoader()));

 }

}

The intercept method starts by turning on the loading state and returning requests without
modifying anything in them.

However, in the flow of the request, we placed the finalize operator from RxJs, which has the
characteristic of executing a function when an observable arrives in the complete state – here, turning
off the loading state. For more details about RxJS, read Chapter 9, Exploring Reactivity with RxJS.

To activate the interceptor, we will add it to AppModule:

@NgModule({

 declarations: [AppComponent, ErrorPageComponent, LoadingOverlayComponent],

 imports: [BrowserModule, AppRoutingModule, HttpClientModule],

 providers: [

 { provide: HTTP_INTERCEPTORS, useClass: AuthInterceptor, multi: true },

 { provide: HTTP_INTERCEPTORS, useClass: HostInterceptor, multi: true },

 { provide: HTTP_INTERCEPTORS, useClass: LoadInterceptor, multi: true },

],

 bootstrap: [AppComponent],

})

export class AppModule {}

We want the overlay to be executed in the application as a whole, so we will include the overlay
component in the AppComponent component:

export class AppComponent {

 loadService = inject(LoadService);

 title = 'gym-diary';

}

We just need to inject the LoadService service because that’s where we’ll have the loading state.

Finally, let’s place the overlay component in the HTML template:

<app-loading-overlay *ngIf="loadService.isLoading"></app-loading-overlay>

<router-outlet></router-outlet>

Running our application, as we are running it with a backend on our machine, we may not notice the
loading screen. However, for these cases, we can use a Chrome feature that simulates a slow 3G
network.

Open Chrome DevTools and, in the Network tab, use the throttling option, as shown in the
following figure:

Figure 8.3 – Simulation of a slow 3G network to notice the loading screen

In the next section, we will learn how to notify the success of a backend request to the user.

Notifying success
In addition to the loading screen to inform the user that the system is looking for the information they
want, it is important to notify the user after processing an item. We can handle this notification
directly from the service or component, but we can also implement it generically and implicitly using
interceptors.

We will refactor our application to add this treatment. But first, let’s install a library to show the
toaster component on the screen with an animation. In the command line of our operating system,
we will use the following command in the main folder of our frontend project:

 npm install ngx-toastr

In order for the package to work, we need to add our CSS to our project by editing the angular.json
file:

. . .

 "build": {

 . . .

 "assets": [

 "src/favicon.ico",

 "src/assets"

],

 "styles": ["src/styles.css", "node_modules/ngx-toastr/toastr.css"],

 . . .

 },

For the toaster animations to work, we need to change the AppModule module:

imports: [

 BrowserAnimationsModule,

 AppRoutingModule,

 HttpClientModule,

 ToastrModule.forRoot(),

],

In the main module of our application, we are adding the ToastrModule module from the library and
changing BrowserModule to BrowserAnimationsModule, which adds Angular animation services used
by the library.

With the new package configured, we can proceed with creating the new interceptor using the
Angular CLI:

ng interceptor notification/notification

With the interceptor created, we will change the file with the treatment for the notification:

. . .

import { ToastrService } from 'ngx-toastr';

@Injectable()

export class NotificationInterceptor implements HttpInterceptor {

 private toaster = inject(ToastrService);

 intercept(

 request: HttpRequest<unknown>,

 next: HttpHandler

): Observable<HttpEvent<unknown>> {

 return next.handle(request).pipe(

 tap((event: HttpEvent<any>) => {

 if (event instanceof HttpResponse && event.status === 201) {

 this.toaster.success('Item Created!');

 }

 })

);

 }

}

As in the Creating a loader section, we are using the fact that the request is treated as a flow to use
RxJS and its observables to verify the request’s characteristics. We are using the tap operator, which
aims to perform side effects on the request without changing it.

This operator will execute an anonymous function that will check the HTTP event, which brings us to
an interesting point. As we are interested in the return of the request, we only select the event of type
HttpResponse and the event code is 201-Created.

When we develop an interceptor, we have to remember that it is called in the request and the
response, so it is important to use conditionals to execute what we need when we need it.

The last point we need to configure is the main AppModule module:

 providers: [

. . .

 {

 provide: HTTP_INTERCEPTORS,

 useClass: NotificationInterceptor,

 multi: true,

 },

. . .

]

Running our project and creating an entry, we notice that the toast appears on the screen with the
configured message.

Figure 8.4 – Success notification

Another use for interceptors is to instrument our application to measure performance and stability,
which we’ll learn about in the next section.

Measuring the performance of a request
As a development team, we must always seek to offer the best experience for our users, and, in
addition to developing quality products, we must allow the application to be monitored to maintain
quality during production.

There are several tools available on the market, and many of them need some level of instrumentation
to accurately measure the user experience. We will develop a simpler telemetry example, but it can be
applied to the monitoring tool your team uses.

Using the Angular CLI, we will create a new interceptor:

ng g interceptor telemetry/telemetry

In the file generated by the Angular CLI, we will develop our interceptor:

@Injectable()

export class TelemetryInterceptor implements HttpInterceptor {

 intercept(

 request: HttpRequest<unknown>,

 next: HttpHandler

): Observable<HttpEvent<unknown>> {

 if (request.headers.get('X-TELEMETRY') !== 'true') {

 return next.handle(request);

 }

 const started = Date.now();

 return next.handle(request).pipe(

 finalize(() => {

 const elapsed = Date.now() - started;

 const message = `${request.method} "${request.urlWithParams}" in ${elapsed} ms.`;

 console.log(message);

 })

);

 }

}

To illustrate the ability to customize an interceptor, we agree that telemetry will only be used if the
request made has a custom header called X-TELEMETRY, and right at the beginning of the function, we
do this verification.

As we did in the loader example, we used the finalize operator to measure the performance of the
request in a simplified way and presented it in console.log. You could put your telemetry provider
call or even your custom backend here.

To exemplify, we use console.log to show the information. As in the other sections, we need to
configure the interceptor in the main AppModule module:

. . .

providers: [

. . .

 {

 provide: HTTP_INTERCEPTORS,

 useClass: TelemetryInterceptor,

 multi: true,

 },

],

. . .

Finally, in the ExerciseSetsService service, we will send the customized header to carry out the
telemetry of this request only:

. . .

getInitialList(): Observable<ExerciseSetListAPI> {

 const headers = new HttpHeaders().set('X-TELEMETRY', 'true');

 return this.httpClient.get<ExerciseSetListAPI>(this.url, { headers });

}

. . .

Header passing is a way to configure an interceptor to behave differently depending on the situation.

Running our project, we can see the messages in the browser log:

GET "http://localhost:3000/diary" in 5 ms. telemetry.interceptor.ts:25:16

With this development, HTTP requests with the configured header will be logged in console.log.
You can replace this interceptor with an integration to a telemetry service, improving the monitoring
of your application.

Summary

In this chapter, we explored the interceptor feature in Angular and the possibilities that this feature
can give our team. We learned how to attach the authentication token to the requests without having
to change all the services in our project. We also worked on changing the URL of the request, making
our project more flexible to its execution environment.

We also improved our users’ experience by creating a loader in case their internet is slow and
notifying them on the screen when a new entry is registered in their gym diary. Finally, we created a
simple example of telemetry using a custom header to give the team the ability to select which
requests are telemetry capable.

In the next chapter, we’ll explore RxJS, the most powerful library in the Angular utility belt.

9

Exploring Reactivity with RxJS
In a web application, one of the most challenging tasks is dealing with the asynchronous nature of the
web. An application cannot predict when events such as requests to the backend, changing routes,
and simple user interactions will happen. Imperative programming in these cases is more complex
and susceptible to errors.

The RxJS library that makes up the Angular ecosystem aims to make controlling asynchronous flows
simpler using declarative and reactive programming.

In this chapter, we will cover the following topics:

Observables and operators

Handling data – transformation operators

Another way to subscribe – the async pipe

Connecting information flows – high-order operators

Optimizing data consumption – filter operators

How to choose the correct operator

By the end of the chapter, you will be able to create better experiences for your users by integrating
their actions with backend requests.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at .

During this chapter, remember to run the backend of the application found in the gym-diary-backend
folder with the npm start command.

Observables and operators
Up until this point, we’ve used observables as a way to capture the data that came from the backend
API using the subscribe method, but let’s take a step back and ask what an observable is and why we

https://code.visualstudio.com/Download
https://nodejs.org/en/download/

don’t just use JavaScript promises.

Let’s use a table to organize our explanation:

Single Multiple

Synchronous Function Iterator

Asynchronous Promise Observable

Table 9.1 – Types of objects by requirement

When we need to perform synchronous processing and expect a return value, we use a function. If we
need a collection of synchronous values, we use an object of the Iterator type. We use promises
when we need the return value of a function, but its processing is asynchronous.

But what can we use for asynchronous processing that does not return a value but a collection of
values that can be distributed over time as events? The answer to that need is an observable! With
this data structure, we can capture a series of events in time and declaratively make our application
react to these events.

Regarding the use of promises for HTTP requests, we can use them, but tasks that are verbose and
complex to perform when using promises can be done using observables and RxJS instead. We can
say that everything a promise can do, an observable is also capable of doing, but vice versa, this
becomes complex.

In Angular, most asynchronous events are mapped and controlled by observables. In addition to
HTTP requests, user typing, the exchange of routes by the application, and even the life cycle of
components are controlled by observables as they are events that occur over time.

We can think of these events as flows of information, and RxJS and the concept of observables can
manipulate these flows and make our application react to them. The main resources for manipulating
this flow are the RxJS operators, which are functions that receive and return data to this flow.

In the next section, we’ll start with the operator that will transform the stream data.

Handling data – transformation operators
In our DiaryComponent application component, which renders a list of diary entries, we can notice that
our component needs to know the details of the return value taken from the API, in which case the
detail is returned in an attribute called item.

Let’s refactor the service to return just what the component needs already formatted, abstracting the
structure of the API.

In the ExerciseSetsService service, we will refactor the following methods:

import { Observable, map } from 'rxjs';

. . .

export class ExerciseSetsService {

. . .

 getInitialList(): Observable<ExerciseSetList> {

 const headers = new HttpHeaders().set('X-TELEMETRY', 'true');

 return this.httpClient

 .get<ExerciseSetListAPI>(this.url, { headers })

 .pipe(map((api) => api?.items));

 }

 refreshList(): Observable<ExerciseSetList> {

 return this.httpClient

 .get<ExerciseSetListAPI>(this.url)

 .pipe(map((api) => api?.items));

 }

. . .

}

In the getInitialList and refreshList methods of the service, we are calling the pipe method of the
Observable object. This method is fundamental to understanding RxJS since, through it, we can
define which operators will act in the flow of information that the observable is enveloping.

The pipe method also returns an observable, and when the component calls the subscribe method, its
result will go through all the operators and deliver the result. For our needs, we are using the map
operator, which receives the data that the observable is processing and returns the other data that will
be used by the next operator or, at the end, by the component that made the subscription.

In this case, the operator receives an object of the ExerciseSetListAPI type and we will return the
item element that is contained in it to the component, which is of the ExerciseSetList type. With this
change, VS Code, together with Angular’s Language Server (for more details on how to configure
this, read Chapter 1, Starting Projects the Right Way), will point out errors in the diary.resolver.ts
file. We will correct it as follows:

export const diaryResolver: ResolveFn<ExerciseSetList> = (route, state) => {

 const exerciseSetsService = inject(ExerciseSetsService);

 return exerciseSetsService.getInitialList();

};

As the service now returns journal entries and no longer the entire structure of the API return, we
change the type that the function returns. Note that RxJS uses TypeScript to improve the developer’s
experience.

In the DiaryRoutingModule module, let’s refactor the use of the resolver that we fixed:

const routes: Routes = [

 {

 path: '',

 children: [

 {

 path: '',

 component: DiaryComponent,

 title: 'Diary',

 resolve: { exerciseList: diaryResolver },

 },

. . .

 },

];

It is important to name your project variables as clearly as possible; in this case, we have changed the
route attribute to exerciseList. What we need to do to finish this task is to refactor the
DiaryComponent component:

export class DiaryComponent implements OnInit {

 . . .

 ngOnInit(): void {

 this.route.data.subscribe(({ exerciseList }) => {

 this.exerciseList = exerciseList;

 });

 }

 newList() {

 this.exerciseSetsService

 .refreshList()

 .subscribe((exerciseList) => (this.exerciseList = exerciseList));

 }

. . .

}

With the use of the map operator in the service, now, in the component, we only pass the list of
exercises, so the component does not need to know the implementation and the details of the API.

In the next section, we will see another way to subscribe.

Another way to subscribe – the async pipe
To demonstrate the versatility of RxJS in an Angular application, we will perform the task of adding a
search for exercises in our backend to the diary entry inclusion form.

Following the good practices of an Angular application, we will create an interface that will represent
the exercises. From the command line of the operating system, we will use the Angular CLI:

ng g interface diary/interfaces/exercise

In the file generated by the Angular CLI, we define the structure of the API return:

export interface Exercise {

 id?: string;

 description: string;

}

export type ExerciseList = Array<Exercise>;

export interface ExerciseListAPI {

 hasNext: boolean;

 items: ExerciseList;

}

We are using interfaces to define the return of the API and a type to define a list of exercises. The
next step is to create the service that will fetch this information, again using the Angular CLI:

ng g service diary/services/exercises

With the structure of the service created by the Angular CLI, we will complete the logic of the
service:

export class ExercisesService {

 private httpClient = inject(HttpClient);

 private url = 'exercises';

 getExercises(filter?: string): Observable<ExerciseList> {

 const headers = new HttpHeaders().set('X-LOADING', 'false');

 filter = filter ? `?filter=${filter}` : '';

 return this.httpClient

 .get<ExerciseListAPI>(`${this.url}${filter}`, { headers })

 .pipe(map((api) => api?.items));

 }

}

In the service, we are using the HttpClient Angular service because we are going to query an API,
and we are adding the X-LOADING header with false to the request because, here, we don’t want the
loading screen to search for exercises.

If the component passes a filter, we will add the get URL. Finally, we are using the map operator that
we saw in the previous section because we don’t want the component to worry about knowing the
structure of the API.

With the service created, we can change the NewEntryFormReactiveComponent form:

export class NewEntryFormReactiveComponent implements OnInit {

. . .

 private exerciseService = inject(ExercisesService);

 public showSuggestions: boolean = false;

 public exercises$ = this.exerciseService.getExercises();

 selectExercise(suggestion: string) {

 this.entryForm.get('exercise')?.setValue(suggestion);

 this.toggleSuggestions(false);

 }

 toggleSuggestions(turnOn: boolean) {

 this.showSuggestions = turnOn;

 }

}

Here we are first injecting the service we created and creating an attribute to control when to show
the exercises list or not.

The exercises$ attribute will contain the observable that the service will return. One detail that you
may have noticed is the $ symbol here. Using this postfix for variables and attributes that are

observables is a community convention. It is not an obligation, but you will often see this symbol in
code bases that use RxJS.

We also created two methods that will be triggered when the user selects an exercise from the list.
Let’s change the form template:

. . .

 <input

 type="text"

 id="exercise"

 name="exercise"

 class="w-full appearance-none rounded border px-3 py-2 leading-tight text-gray-700

shadow"

 formControlName="exercise"

 (focus)="toggleSuggestions(true)"

 />

 <ul

 class="absolute z-10 mt-2 w-auto rounded border border-gray-300 bg-white"

 *ngIf="showSuggestions"

 >

 <li

 *ngFor="let suggestion of exercises$ | async"

 class="cursor-pointer px-3 py-2 hover:bg-blue-500 hover:text-white"

 (click)="selectExercise(suggestion.description)"

 >

 {{ suggestion.description }}

. . .

In the exercise field, we are adding a list with the ul HTML element, and this list will be presented
by the showSuggestions attribute. The focus event of the field will trigger this variable and clicking
on the element will call the selectExercise method.

The attention in this code will be on the following directive:

*ngFor="let suggestion of exercises$ | async"

With the *ngFor directive, we want to iterate over a list, but here, we don’t have a list but an
observable. How is that possible?

This is the responsibility of the async pipe! What this pipe does in the template is perform a
subscription in the observable, take the result of it, which is a list of exercises, and offer the *ngFor
directive to the iteration.

Notice that we only got such concise code because, in the service, we are using the map operator to
prepare the return of the observable for exactly what the component needs. Another advantage that
the async pipe provides is that the framework controls the life cycle of the observable; that is, when
the component is destroyed, Angular automatically triggers the unsubscribe method.

We haven’t done this treatment so far in the book because the observable generated by an HTTP
request is not open after the request is completed, but here we will use observables for other cases
that may leave the flow with the observable still open.

It is very important to control the life cycle of the observables that we use; otherwise, we can
generate bugs and performance degradation caused by memory leaks. Using the async pipe, this
subscription management is done by Angular itself!

In the next section, we will connect different streams using RxJS and the async pipe.

Connecting information flows – high-order operators
As we saw at the beginning of the chapter, there are many uses of observables besides an HTTP
request. In our task, we will exemplify this use. In a reactive form, a user typing into a field is treated
as an observable.

In our example, let’s change the NewEntryFormReactiveComponent component:

ngOnInit(): void {

 this.entryForm.valueChanges.subscribe((model) => console.log(model));

 . . .

}

Running our application, we can see in the browser’s console that typing into any form field triggers
an event captured by the subscribe method.

Knowing that we can react to user typing events, how do we connect this event to the search for
exercise information in the API? We use an operator!

Back in our component, we will refactor the code:

public exercises$ = this.entryForm.valueChanges.pipe(

 switchMap((model) => this.exerciseService.getExercises(model?.exercise))

);

We remove the subscription of the ngOnInit method from the component and put in the assignment of
the exercises$ observable. However, if we do this, TypeScript and Angular type validation show an
error because the template is waiting for a list to perform the iteration.

Enter the switchMap operator. We exchange the first flow of events for typing the form with the
exercise request flow, passing the exercise field of the form model as a filter for the exerciseService
service.

The result of this is that the exercises$ observable continues to receive a list of exercises. Executing
our project, we notice that we have a list with a typeahead search making the request as we fill in the
field, as shown in the following figure.

Figure 9.1 – Selection of exercises

The switchMap operator is a higher-order observable because it takes an observable as input and
returns an observable as output. This is in contrast to the map operator, which takes an observable as
input and returns a value as output.

With a command, we have our search field, but if we look at our browser’s Network tab, we can see
that a request is triggered for every letter we type. We can improve our application’s data
consumption without harming our user experience, which we will do in the next section.

Optimizing data consumption – fi lter operators
Our task of creating a typeahead type search field is complete, but we can make this functionality
more efficient from the point of view of consuming HTTP requests. Here, in our case, if the user
types just one letter, we have already started the search for information, but just one letter still results
in a very open list.

It would be more interesting for our application to start looking for exercises from the third letter that
the user types onward, and we can make the following modification for this behavior:

public exercises$ = this.entryForm.valueChanges.pipe(

 map((model) => model?.exercise ?? ''),

 filter((exercise) => exercise.length >= 3),

 switchMap((exercise) => this.exerciseService.getExercises(exercise))

);

Here, we start using one of the most versatile features of RxJS, which is chaining operators for a
certain action. We always need to keep in mind that the order of operators is very important, and the
output of an operator is the input of the next one:

1. We use the map operator that we already know to extract only the exercise field from the form model and treat the data as if

the field value is undefined.

2. The filter operator works similarly to the method of the same name for the Array object in JavaScript. It receives the

exercise string and we validate that its length must be greater than or equal to three to go to the next operator.

3. Finally, we run the switchMap high-order operator to switch the form typing observable to the service’s HTTP request

observable.

We can also, with another operator, add a waiting time for starting the flow of the observable, as in
the following example:

const DEBOUNCE_TIME = 300;

. . .

public exercises$ = this.entryForm.valueChanges.pipe(

 debounceTime(DEBOUNCE_TIME),

 map((model) => model?.exercise ?? ''),

 filter((exercise) => exercise.length >= 3),

 switchMap((exercise) => this.exerciseService.getExercises(exercise))

);

. . .

We added the debounceTime operator to create a delay time for the beginning of the flow, defining the
time in milliseconds and with the good practice of using a constant to make the code clearer.

Let’s add one last optimization to our code with a new operator:

public exercises$ = this.entryForm.valueChanges.pipe(

 debounceTime(DEBOUNCE_TIME),

 map((model) => model?.exercise ?? ''),

 filter((exercise) => exercise.length >= 3),

 distinctUntilChanged(),

 switchMap((exercise) => this.exerciseService.getExercises(exercise))

);

The distinctUntilChanged operator checks whether the stream’s data, here exercise, has changed
from one iteration to another and triggers the next operator only if the value is different, saving even
more unnecessary calls to the backend.

We’ve learned about a few operators, but the library has over 80. In the next section, we’ll learn how
to navigate the library’s documentation.

How to choose the correct operator

The RxJS library has an extensive number of operators that can help simplify your code and handle
corner cases of asynchrony and even performance.

You don’t need to memorize all the operators and the ones we’ve seen so far will help you with the
most common cases.

The library documentation has a Decision Tree page, and we’ll learn how to navigate that.

Enter the site (https://rxjs.dev/operator-decision-tree) and, here, we will navigate to an operator that
we have already studied to exemplify the use of this tool.

Figure 9.2 – Operator Decision Tree

Let’s go back to our form example. We need to fetch the exercise information from what the user’s
typing – let’s assume that we don’t know which operator to choose.

We already have an observable, which is the valueChanges event in the Angular form, so on the first
screen, we will choose the I have one existing Observable, and option.

The request to our API is represented by an observable, so on the next screen, we will choose the I
want to start a new Observable for each value option.

As we want to make a new request for each letter the user types, we want to change one stream for
another, so on the next screen, we’ll choose and cancel the previous nested Observable when a

https://rxjs.dev/operator-decision-tree

new value arrives.

The exercise search depends on the value that is in the Angular form, so on the final page, we will
choose where the nested Observable is calculated for each value.

Confirming the selection, the decision tree indicates that the correct operator for this situation is the
switchMap operator that we are using!

Another thing we need to understand in the RxJS documentation is the marble graph. For this, let’s
take as an example another operator that we studied in the chapter, the map operator here:
https://rxjs.dev/api/index/function/map.

In addition to the textual explanation, we have the following figure:

Figure 9.3 – Map operator marble graph (source: https://rxjs.dev/api/index/function/map, MIT license)

As we learned at the beginning of this chapter, RxJS works on information flows, where operators
have the function of handling information.

The graph that illustrates this flow uses arrows to represent the passage of time and marbles to
represent values.

In the documentation here, then, we see that the map operator takes each value emitted and, based on a
function, results in a flow with the values transformed by it.

These values are exchanged one by one as soon as they are issued so, in the graph, we can see that
the positions of the marbles are same.

This understanding is fundamental to understanding other more complex operators in the library.

Summary

In this chapter, we explored the RxJS library and its basic elements, observables.

We learned what an observable is and how it differs from a promise or a function. With that
knowledge, we refactored our project to handle data with the map operator, abstracting the
implementation details of the component that will consume the service. We also learned about
Angular’s async pipe and how it simplifies the management of subscription to an observable, leaving
this task to the framework itself to manage.

Finally, we created a typeahead search field using RxJS to search for exercises based on the user’s
typing event, using operators in order to optimize HTTP calls from our frontend. In the next chapter,
we will explore the possibilities of the automated tests that we can do in our Angular application.

Part 3: Architecture and Deployment
In this part, you will learn how to build the architecture of your Angular project to meet the
challenges and demands of your users. We will explore the best practices for automated testing using
the libraries that the framework uses and we will install Cypress for end-to-end testing. We will
understand the micro frontend architecture and how to implement it with Angular. We will use the
Azure cloud service to perform the build and deploy our example application and finally understand
how to update an Angular application and use features from version 17 onwards such as Angular
Signals

This part has the following chapters:

Chapter 10, Design for Tests: Best Practices

Chapter 11, Micro Frontend with Angular Elements

Chapter 12, Packaging Everything: Best Practices for Deployment

Chapter 13, The Angular Renaissance

10

Design for Tests: Best Practices
One of the best practices in a software project, be it a frontend or backend project, is testing. After all,
if you and your team don’t rigorously test your system, the people who will inevitably test the system
and find possible bugs are the users, and we don’t want that.

For this reason, it is no wonder that the Angular team has, since the first versions of the framework,
been concerned with creating and integrating automated testing tools.

We can notice this with the fact that, by default, the Angular CLI always generates, together with the
component, its test files as if saying, “Hey, buddy, don’t forget the unit test!”

In this chapter, we will explore this topic by covering the following:

What to test

Service tests

Understanding TestBed

Component testing

E2E tests with Cypress

At the end of the chapter, you will be able to create tests for your components and service, improving
the quality of your delivery and your team.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch10.

During the study of this chapter, remember to run the backend of the application found in the gym-
diary-backend folder with the npm start command.

What to test

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch10

Within a software project, we can do several types of tests to ensure the quality of the product. In this
discipline, it is very common to categorize tests using a pyramid.

Figure 10.1 – Test pyramid

At the base of the pyramid, we have unit tests, whose objective is to verify the quality of the smallest
elements within a software project, such as functions or methods of a class. Due to their narrow scope
and atomic nature, they are quickly executed by tools and should ideally make up the majority of an
application’s tests.

In the middle layer, we have integration tests, which are focused on verifying how the project
components interact with each other, being able, for example, to test an API through an HTTP
request. Because these tests use more elements and need certain environmental requirements, they are
less performant and have a higher execution cost, which is why we see them in smaller quantities
compared to unit tests.

At the top of the pyramid, we have end-to-end tests (E2E tests), which validate the system from the
user’s point of view, emulating their actions and behaviors. These tests require an almost complete
environment, including a database and servers. In addition, they are slower and therefore there are
fewer of them compared to the previous ones.

Finally, we have manual and exploratory tests, which are tests performed by quality analysts. Ideally,
these tests will serve as a basis for the creation of E2E tests, mainly on new features. As they are run

by humans, they are the most expensive, but they are the best for discovering new bugs in new
features.

It is important to highlight that no test is better or more important than another. Here, we have the
classification by volume of test executions in a period of time. You and your team must identify
which tests to prioritize based on the capacity and resources available for your project. These types of
tests can be applied to any type of software project, but you must be wondering how we fit this
concept into an Angular project.

The concept of manual testing can be applied without tools because what we need is a quality analyst
and an application with a complete environment, that is, the backend services responding to our
application.

E2E tests are performed by specific tools that simulate user behavior. Up to version 14, Angular
already had a built-in tool called Protractor, but the Angular team no longer recommends it because
there are more modern, faster alternatives. In this chapter, we are going to use Cypress for this
purpose.

Finally, unit tests are performed on the methods of our services and components, verifying their
behavior.

In the Angular toolbox, we have two tools for creating and running these tests: Jasmine and Karma.
These tools are installed by default when we start a new project.

Jasmine is a testing framework that has several checking functions, in addition to providing the
ability to change the functionality of a method or class at runtime with an element called a spy. For
the execution of unit tests, the Karma tool is used, which has the characteristic of running tests in a
browser, giving the team the ability to analyze the behavior of the application in different types of
environments. Although rare nowadays, we may have some bugs depending on the browser it runs
on.

To use these two tools, we don’t need any configuration of our project; we just need to execute the
following command in the command line of our operating system:

ng test

Once we execute the preceding command, we get a compilation error. This happens because, until
then, Angular only compiled the files of our components and ignored the test files because they will
not be deployed to users in the final version.

Running the test, we notice that we have an error in the diary.resolver.spec.ts test file, so let’s
make a correction:

describe('diaryResolver', () => {

 const executeResolver: ResolveFn<ExerciseSetList> = (...resolverParameters) =>

 TestBed.runInInjectionContext(() => diaryResolver(...resolverParameters));

 beforeEach(() => {

 TestBed.configureTestingModule({});

 });

 it('should be created', () => {

 expect(executeResolver).toBeTruthy();

 });

});

The test generated by the Angular CLI contains all of Jasmine’s boilerplate. In the describe function,
we define our test case, which is a test group that we will create.

This function has, in the first parameter, a string that represents the name of the test case and will
even identify it in reports.

In the second parameter, we have the function where we will have the preparation and the tests. Here,
we made a correction because the resolver we want to test returns an object of type ExerciseSetList
and not a Boolean as it was before.

On the next line, we have the TestBed class, which is the most fundamental element of Angular tests.

This framework class has the function of preparing the Angular execution environment for the tests to
run. We will see in the following sections its use in different situations.

The beforeEach function has the objective of performing some common action before executing the
tests.

Finally, the it function is where we will create the tests. Inside a describe function, we can have
numerous functions of the it type.

If we run Karma again, the browser will open, and we can follow the execution of the tests:

Figure 10.2 – Execution of tests by Karma

As this project already had the tests when we created the elements of our application, we have some
broken tests that we will correct in the next sections, but the important thing now is for us to
understand how to run the unit tests of our application.

In the next section, we’ll learn how to create tests for our project’s services.

Service tests
As we studied in detail in Chapter 5, Angular Services and the Singleton Pattern, the service that
works as a repository of business rules in an Angular application. Consequently, it is crucial for us to
develop unit tests for these services. In this section, we will focus on the ExerciseSetsService
service to illustrate the Angular unit testing techniques in our project. Let’s begin.

In the exercise-sets.service.spec.ts test file, let’s start by fixing the tests automatically created by
the Angular CLI that are not running correctly:

import { TestBed } from '@angular/core/testing';

import { ExerciseSetsService } from './exercise-sets.service';

import { HttpClientTestingModule } from '@angular/common/http/testing';

 fdescribe('ExerciseSetsService', () => {

 let service: ExerciseSetsService;

 let httpMock: HttpTestingController;

 beforeEach(() => {

 TestBed.configureTestingModule({ imports: [HttpClientTestingModule] });

 service = TestBed.inject(ExerciseSetsService);

 httpMock = TestBed.inject(HttpTestingController);

 });

 it('should be created', () => {

 expect(service).toBeTruthy();

 });

});

As we want to work on service testing, at this time, we replace the describe function with the
fdescribe function, so the Karma test runner will only execute this test case. The fdescribe feature is
also available for isolating a specific test, in this case replacing the it function with the fit function.
To fix the error identified by the Angular compiler, we import the 'HttpClientTestingModule'
module in the TestBed component.

We need to understand how Karma, Jasmine, and Angular work together to run tests. Before each test
case is defined in it functions, Angular sets up an isolated environment for the tests. This
environment has virtually no module configuration at first, as your real application has, and the
TestBed component comes into play, where we configure the minimum necessary dependencies for
your test to run.

In this service, as it depends on HttpClient to perform HTTP requests, we need to import the
HttpClientModule module to have this dependency. You might be wondering, “But here you are using
HttpClientTestingModule. Is this correct?” As we will see in the following code, not only will we
want to use HttpClient but we will also need to simulate HTTP calls, and to make this task easier, the
Angular team has prepared a specific module for this type of testing.

With our basic “should be created” test case in place, let’s test the methods of the class:

it('should use the method getInitialList to return the list of entries', fakeAsync(() => {

 const fakeBody: ExerciseSetListAPI = {

 hasNext: false,

 items: [

 {

 id: '1',

 date: new Date(),

 exercise: 'Deadlift',

 reps: 15,

 sets: 4,

 },

],

 };

 service.getInitialList().subscribe((response) => {

 expect(response).toEqual(fakeBody.items);

 });

 const request = httpMock.expectOne((req) => {

 return req.method === 'GET';

 });

 request.flush(fakeBody);

 tick();

}));

As you can see from the preceding code, this service is designed to handle requests related to gym
diary entries. In the initial method, getInitialList, our objective is to verify whether the service
accurately initiates an HTTP request to the backend using the GET method. By creating a new case
with the it function in the first parameter, we place a description of the test case that will be
important for viewing during test execution. The test function, unlike the “should be created” test
case, is contained within the fakeAsync function created by the Angular team to facilitate the testing
of asynchronous methods, such as an HTTP request. Inside the function, we begin to assemble our
test. Here, we need to define what the structure of a unit test looks like.

A unit test consists of three parts:

The test setup, where we prepare all the elements for the tests to take place

The execution of the method to be executed

The test assertion, where we compare the execution result with the expected return

In this test case, part of the setup was done in the beforeEach function, but note that, instead, we must
put the setup common to all test cases that will be executed to avoid slowdowns in the test cases. In
the test in question, we defined a fake return from our server, since the unit tests must be executed

independently of the backend service. In the execution phase, we call the service with the
getInitialList method.

We call the subscribe method of the observable that the service returns, and inside it, we make the
assertion that we expect the return to be equal to the item element of the fakeBody object. Here, the
assertion phase can be tricky because, to check the return of this observable, we need to simulate the
backend processing of the project.

Enter the Angular HttpTestingController service, with which we can emulate a response from our
backend service. Here, we also create an assertion to ensure that our method is calling the API with
the GET HTTP verb. In order to simulate the HTTP request , we use the flush method of the service
and what we want to send – in this case, the fakebody object. But we need to remember that an HTTP
operation is asynchronous so we use the tick function, available within the context of the fakeAsync
function, to simulate the time that would pass for an asynchronous execution.

We will create a test for the same service to simulate the creation of a new entry:

it('should use the method addNewItem to add a new Entry', fakeAsync(() => {

 const fakeBody: ExerciseSet = {

 id: '1',

 date: new Date(),

 exercise: 'Deadlift',

 reps: 15,

 sets: 4,

 };

 service.addNewItem(fakeBody).subscribe((response) => {

 expect(response).toEqual(fakeBody);

 });

 const request = httpMock.expectOne((req) => {

 return req.method === 'POST';

 });

 request.flush(fakeBody);

 tick();

}));

We start with the definition of the new test that will appear in Karma and then we create the test
function, again within the context of the fakeAsync function.

In the test setup, we define an object called fakeBody with the payload we want to send and make the
assertion. In the execution phase of the method we want to test, we call the addNewItem method and
place the assertion inside the subscribe function. We perform the assertion of the POST verb, and
finally, we simulate the request using the flush and tick functions.

To end this session, let’s switch the fdescribe function to the describe function. In the test file of the
ExercisesService, AuthInterceptor, and AuthService services, let’s make the following change:

beforeEach(() => {

 TestBed.configureTestingModule({ imports: [HttpClientTestingModule] });

 . . .

});

As we saw in this section, we need to inform Angular of the test’s dependency, that is, declaring
HttpClientTestingModule in the configuration of the TestBed component.

We still have to correct the test of the NotificationInterceptor service, which uses an external
library as a dependency. We will refactor the notification.interceptor.spec.ts file as follows:

describe('NotificationInterceptor', () => {

 beforeEach(() =>

 TestBed.configureTestingModule({

 providers: [

 NotificationInterceptor,

 {

 provide: ToastrService,

 useValue: jasmine.createSpyObj('ToastrService', ['success']),

 },

],

 })

);

. . .

});

In the case of general dependencies that we need to simulate in our tests, we can define the service in
the providers property in the TestBed class definition. But instead of offering the original
ToastrService class, we declare an object and, using the useValue property, it tells Angular which
class to provide for the test.

Here, we could create a class that has the same original methods, but better than that, we are using a
feature of the Jasmine test framework, which is the spy objects. With them, we can mock entire
classes for our tests, thus managing to simulate unit test dependencies.

In the next section, we’ll fix all the tests and understand how Angular’s TestBed component works.

Fixing the tests and understanding TestBed
To better understand the use of TestBed, we’ll fix the rest of our project’s tests by adding
dependencies to the test files. We’ll start with the app.component.spec.ts file and make the fixes as
follows:

describe('AppComponent', () => {

 beforeEach(async () => {

 await TestBed.configureTestingModule({

 declarations: [AppComponent],

 imports: [RouterTestingModule],

 }).compileComponents();

 });

 it('should create the app', () => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.componentInstance;

 expect(app).toBeTruthy();

 });

});

In this test, we cleaned up the test cases that had already been created by the Angular CLI when we
started the project. It has the router-outlet component so we need to mock Angular’s route services.
Like the HttpClient service, the Angular team has also prepared a specific module for testing, and so
we are importing the RouterTestingModule module here.

We’ll change the test in the login.component.spec.ts file next:

beforeEach(() => {

 TestBed.configureTestingModule({

 declarations: [LoginComponent],

 imports: [ReactiveFormsModule],

 providers: [

 AuthService,

 {

 provide: AuthService,

 useValue: jasmine.createSpyObj('AuthService', ['login']),

 },

],

 });

 fixture = TestBed.createComponent(LoginComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

});

Since the Login component relies on the ReactiveFormsModule module, we also need to import it into
our test. Furthermore, the component utilizes the AuthService service, and for our mocking purposes,
we employ the useValue property, as demonstrated earlier. In unit testing, it’s crucial to concentrate
on the component itself, and we achieve this by isolating it through the mocking of its dependencies.

The next test to tune will be for the home.component.spec.ts file:

beforeEach(() => {

 TestBed.configureTestingModule({

 declarations: [HomeComponent],

 imports: [RouterTestingModule],

 providers: [

 AuthService,

 {

 provide: AuthService,

 useValue: jasmine.createSpyObj('AuthService', ['logout']),

 },

],

 });

 fixture = TestBed.createComponent(HomeComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

});

When testing the Home component, we need to include the 'RouterTestingModule' dependency
because we are using route services and we are mocking the 'AuthService' service due to the
application’s logout action.

Next, let’s fix the test for the new-entry-form-template.component.spec.ts file:

beforeEach(() => {

 TestBed.configureTestingModule({

 declarations: [NewEntryFormTemplateComponent],

 imports: [FormsModule],

 providers: [

 ExerciseSetsService,

 {

 provide: ExerciseSetsService,

 useValue: jasmine.createSpyObj('ExerciseSetsService', ['addNewItem']),

 },

],

 });

 fixture = TestBed.createComponent(NewEntryFormTemplateComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

});

This page employs template-driven form techniques, so for the test run, we include the
'FormsModule' module by importing it. As it only uses the 'ExerciseSetsService' service, we
mocked it with the help of the Jasmine framework.

We’ll work on testing the new-entry-form-reactive.component.spec page next:

beforeEach(() => {

 TestBed.configureTestingModule({

 declarations: [NewEntryFormReactiveComponent],

 imports: [ReactiveFormsModule, RouterTestingModule],

 providers: [

 ExerciseSetsService,

 {

 provide: ExerciseSetsService,

 useValue: jasmine.createSpyObj('ExerciseSetsService', [

 'addNewItem',

 'updateItem',

]),

 },

 ExercisesService,

 {

 provide: ExercisesService,

 useValue: jasmine.createSpyObj('ExercisesService', ['getExercises']),

 },

],

 });

 fixture = TestBed.createComponent(NewEntryFormReactiveComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

});

In Chapter 9, Exploring Reactivity with RxJS, we incorporated the search exercise into the form, so in
this test case, we need to import the 'ReactiveFormsModule' and 'RouterTestingModule' modules. In
addition, we need to mock the 'ExerciseSetsService' and 'ExercisesService' services.

With this test set, let’s go to the last component, diary.component.spec.ts:

describe('DiaryComponent', () => {

. . .

 beforeEach(async () => {

 await TestBed.configureTestingModule({

 declarations: [

 DiaryComponent,

 ListEntriesComponent,

 NewItemButtonComponent,

],

 imports: [RouterTestingModule],

 providers: [

 ExerciseSetsService,

 {

 provide: ExerciseSetsService,

 useValue: jasmine.createSpyObj('ExerciseSetsService', [

 'deleteItem'

]),

 },

],

 }).compileComponents();

 fixture = TestBed.createComponent(DiaryComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

 });

});

This component, as it is a smart component in our suggested architecture, needs to declare the
components that compose it in your test. Here, they are DiaryComponent, ListEntriesComponent, and
NewItemButtonComponent. Finally, we imported the RouterTestingModule module into the test setup
and mocked up the ExerciseSetsService service, thus correcting all the tests in our project.

To understand how TestBed works, let’s create a test case for our component.

Component testing
Angular component unit tests not only examine logic but also assess the values that will be presented
on the screen.

If your application follows the component architecture recommended by the Angular team (more
details in Chapter 4, Components and Pages), you probably won’t have much business logic in your
components, delegating it to services.

To exemplify, in this section, we will create tests for some methods of the DiaryComponent
component.

We will create the test case for the gym diary entry deletion operation and check whether the
service’s delete method is called:

describe('DiaryComponent', () => {

 . . .

 let exerciseSetsService: ExerciseSetsService;

 beforeEach(async () => {

 await TestBed.configureTestingModule({

 . . .

 }).compileComponents();

 . . .

 exerciseSetsService = TestBed.inject(ExerciseSetsService);

 });

 it('should call delete method when the button delete is clicked', fakeAsync(() => {

 exerciseSetsService.deleteItem = jasmine.createSpy().and.returnValue(of());

 component.deleteItem('1');

 tick();

 expect(exerciseSetsService.deleteItem).toHaveBeenCalledOnceWith('1');

 }));

});

In the preceding code block, we are testing the DiaryComponent component, so we mock the service it
depends on with TestBed. But for this test, we need a reference to this service, and for that, we
declare a variable called exerciseSetsService. With the TestBed.inject method, we assign the value
to this variable.

In the test setup, we need to use the createSpy function to assign the service’s deleteItem method
because the mock generated by the Jasmine framework does not have the full implementation of the
service and therefore does not return the observable that the component is expecting.

In the execution phase, we call the deleteItem method of the component.

As this operation is asynchronous, we use the tick function to simulate the passage of time.

In the assertion phase, we check that the exerciseSetsService service method was called once and
with the expected parameter.

Let’s test the editEntry method next:

import { Location } from '@angular/common';

describe('DiaryComponent', () => {

 let location: Location;

 beforeEach(async () => {

 await TestBed.configureTestingModule({

. . .

 imports: [

 RouterTestingModule.withRoutes([

 {

 path: 'home/diary/entry/:id',

 component: NewEntryFormReactiveComponent, },

]),

]

 }).compileComponents();

 location = TestBed.inject(Location);

 });

 it('should direct to diary entry edit route', fakeAsync(() => {

 const set: ExerciseSet = { date: new Date(), exercise: 'test', reps: 6, sets: 6, id:

'1' };

 component.editEntry(set);

 tick();

 expect(location.path()).toBe('/home/diary/entry/1');

 }));

});

To perform the assertion of the route, we are going to use an object of type Location – that’s why we
declare it at the beginning of the test and assign it using the TestBed component. Note that we want
the @angular/common library object and not the browser’s default Location object. Also, in TestBed,
we need to declare a route, because as we are in the context of unit testing, Angular does not know
the routes available for use.

In the test case, we first create a dummy ExerciseSet object and call the editEntry method. Again,
we use the tick function to simulate the passage of time. Finally, in the assertion, we verify that the
path is correct. Note that, here, we don’t need to create any mock for the router as the
RouterTestingModule module creates it for us.

In the next section, we will explore E2E testing with the Cypress framework.

E2E tests with Cypress
E2E tests aim to evaluate the system from the user’s point of view, simulating operations such as
typing in a field, clicking on a button, carrying out the assertion, and evaluating the messages on the
screen, just as a user would evaluate whether the action was successful or not.

In the Angular ecosystem, in the past, there was a tool called Protractor to help with this type of
testing, but it was discontinued by the Angular team in favor of other, more focused open source
tools.

Among these new tools, we are going to use one of the most popular ones, called Cypress.

The Cypress framework is a tool that aims to help developers create and run all types of tests in the
test pyramid, from unitary to E2E.

Let’s see it in action in our project. For that, we need to install and configure it. Follow these steps to
install and configure Cypress:

1. We will use the Angular CLI to install and configure Cypress. In the command line of your operating system, run the following
command:

ng add @cypress/schematic

2. Following the prompt’s instructions, we have created the Cypress files, in addition to adapting angular.json with the settings

it needs.

3. To run the tool, run the following command at the operating system prompt:

ng e2e

4. The preceding command will run our application as we would with the ng serve command and open the tool’s interface.

Figure 10.3 – Execution of tests by Cypress

5. Select the desired browser and click on Start E2E Testing and we will have the test execution interface.

Notice that we already have a file called spec.cy.ts. It was generated by Cypress to exemplify the
creation of the test script. Let’s go back to Visual Studio Code and check this file:

describe('My First Test', () => {

 it('Visits the initial project page', () => {

 cy.visit('/')

 cy.contains('app is running!')

 })

})

Unlike Angular, Cypress uses Mocha (https://mochajs.org/) as a testing framework. However, in
practice, as we can see in the preceding example, it is very similar to the Jasmine framework.

We have the describe function to create the test suite and the it function to create the test cases. The
difference here is the cy object, which represents the browser’s interface, and with this object, we can
perform actions and evaluate the state of the page, from the user’s point of view. Here, we use the
visit method to go to the initial endpoint and we use the contains method to evaluate whether the
text app is running appears on the page. We are going to delete this file because we are going to
create the scripts for our application.

In the same folder as where the previous file was, we will create the login.cy.ts file and add the
following code:

describe('Login Page:', () => {

 it('should login to the diary with the correct credentials.', () => {

 cy.visit('/');

 cy.get('#username').type('mario');

 cy.get('#password').type('1234');

 cy.get(':nth-child(3) > .w-full').click();

 cy.contains('Workout diary');

https://mochajs.org/

 });

});

In this test, we used the get method to obtain the page element through CSS queries so that we could
act on them. First, we take the username and password fields and use the type method to simulate the
user typing in these fields. Then we locate the Confirm button and use the click method to simulate
the mouse click action.

To assert the test, we used the contains method to assess whether the diary screen was displayed.

The tricky part of creating this script is the CSS queries needed to get the elements we need. But at
this point, Cypress helps us a lot.

By running the test, we can see that there is a target icon at the top of the screen. By clicking on it
and selecting the element we want, Cypress will generate the necessary command ready to copy and
paste into our script.

Figure 10.4 – Cypress helping with the CSS query

In this script, however, there is a problem in selecting the button, in addition to the query not being
clear to another person reading the test script. If the team needs to change the layout, the test could
break unduly.

To avoid this error, let’s change the login component template:

<button

 type="submit"

 class="w-full rounded bg-blue-500 px-4 py-2 text-white"

 [disabled]="loginForm.invalid"

 [class.opacity-50]="loginForm.invalid"

 data-cy="submit"

>

 Login

</button>

With this custom HTML element, we can use the element marked with the data-cy attribute for our
test:

describe('Login Page:', () => {

 it('should login to the diary with the correct credentials.', () => {

 cy.visit('/');

 cy.get('#username').type('mario');

 cy.get('#password').type('1234');

 cy.get('[data-cy="submit"]').click();

 cy.contains('Workout diary');

 });

});

We replaced the previous CSS query with a simpler one that does not depend on layout elements. Use
this good practice in your project templates to facilitate E2E testing and make the test less likely to
break.

We’ll create an E2E test for the new journal entry form, but first, let’s apply the best practice to the
templates we’ll be using in this test. In the Home component template, we will refactor as follows:

 <a

 routerLink="./diary"

 class="flex items-center space-x-2 text-white"

 data-cy="home-menu"

 >

 Diary

 <a

 routerLink="./diary/entry"

 class="flex items-center space-x-2 text-white"

 data-cy="new-entry-menu"

 >

 New Entry

 <a

 (click)="logout()"

 class="flex items-center space-x-2 text-white"

 data-cy="logout-menu"

 >

 Logout

In the template, we add the data-cy HTML element to the items of the menu. Note that as the test is
from the user’s point of view, we need to simulate how they get to the form.

In the new-entry-form-reactive.component.html template, we will change the submit button like so:

<button

 type="submit"

 [disabled]="entryForm.invalid"

 [class.opacity-50]="entryForm.invalid"

 class="rounded bg-blue-500 px-4 py-2 font-bold text-white hover:bg-blue-700"

 data-cy="submit"

>

 Confirm

</button>

As with the login screen, we mark the button with the data-cy element to facilitate the development
of the E2E test.

With our application better adapted for testing, we will create the new-entry-form.cy.ts file in the
cypress/e2e folder of our workspace and add the following code:

describe('New Entry Form:', () => {

 beforeEach(() => {

 cy.visit('/');

 cy.get('#username').type('mario');

 cy.get('#password').type('1234');

 cy.get('[data-cy="submit"]').click();

 });

 it('Should register a new entry in the workout diary', () => {

 cy.get('[data-cy="new-entry-menu"]').click();

 cy.contains('Date');

 cy.get('#date').type('2023-08-08');

 cy.get('#exercise').type('Front Squat');

 cy.get('#sets').type('4');

 cy.get('#reps').type('6');

 cy.get('[data-cy="submit"]').click();

 cy.contains('Item Created!');

 });

});

Like Jasmine, the Mocha.js framework also has the beforeEach function, but here, instead of setting
up the environment with TestBed, we use the function to perform the login, since each test where we
are simulating the user is necessary for this action.

In the test case of the form, since we are already logged in, we click on the menu of the input form
and check whether there is a Date label. From then on, we fill in the form fields with data and click
on the button. In the assertion phase, we check whether the Item created message appears on the
screen.

One thing to note is that at no point do we tell the script how long to wait for the backend response,
which can vary. This happens because the Cypress framework does this work for us and makes this

waiting process transparent to our development.

We will create a test case to evaluate the form validations:

it('should validate field information and show the validation message', () => {

 cy.get('[data-cy="new-entry-menu"]').click();

 cy.contains('Date');

 cy.get('#date').type('2023-08-08');

 cy.get('#exercise').type('Front Squat');

 cy.get('#sets').type('3');

 cy.get('#reps').type('6');

 cy.contains('Sets is required and must be a positive number.');

 cy.contains('sets is required and must be multiple of 2.');

 });

In this test case, we don’t need to worry about the login because the beforeEach function performs
this function and we work directly on the form. We fill in the fields, but this time, with information
that is not valid. In the assertion phase, we check whether the validation messages appear correctly
with the contains method.

With that, you’ve learned about Cypress and E2E testing in an Angular application, so let’s
summarize what we looked at in the chapter.

Summary
In this chapter, we learned how to perform tests in an Angular project. We studied what types of tests
there are, their importance, and how to apply them in our daily lives. We worked on our project by
first creating tests for the services and looking at how to isolate the dependencies for a unit test.
Furthermore, we explored testing HTTP requests using the HttpClientTestingModule module. We
learned about the TestBed component and its important task of setting up the environment for each
unit test to run. We also looked at component testing and how to assert components that use routes.
Finally, we explored E2E tests with the Cypress tool, which simplifies the creation of scripts that
simulate the behavior of our application from the client’s point of view.

In the next chapter, we will explore the concept of the micro frontend using the Angular framework.

11

Micro Frontend with Angular Elements
As your application grows and becomes more complex, one team alone is not enough to maintain the
growth rate, and new people are needed to handle other parts of the application as they appear. At this
point, the architecture of your project needs to evolve, and one possibility is to divide your
application into several projects that are integrated as one. This practice was born in the world of
backend services and appears in the frontend world under the name of micro frontends. In this
chapter, we will learn how to apply this principle in an Angular project.

In this chapter, we will cover the following topics:

Micro frontend – concepts and application

Slicing your application in the micro frontend

Creating a micro frontend application with standalone components

Preparing a page to be loaded by the base application

Dynamically loading micro frontends

By the end of this chapter, you will be able to assess when it is necessary to use a micro frontend,
how to organize your Angular projects, and how to integrate it into a cohesive application.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch11.

Before you start reading this chapter, remember to run the backend of the application found in the
gym-diary-backend folder with the npm start command.

Micro frontend – concepts and application
In 2014, an article by Martin Fowler and James Lewis
(https://martinfowler.com/articles/microservices.html) shook the world of development with the

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch11
https://martinfowler.com/articles/microservices.html

formalization of the concept of microservices. Focused on the development of backend services, the
idea of dividing a large system (known as a monolith) into small, independent services focused on
just one aspect of the business was undoubtedly a milestone for system architecture.

Not long after, this concept was applied to the frontend world, with one of the main articles written
by Cam Jackson (https://martinfowler.com/articles/micro-frontends.html). The basic idea of the micro
frontend is the same as its sibling, microservices, which consists of dividing a large frontend project
(monolith) into small, independent projects focused on one aspect of the business. However, the
concerns are different, of course. In microservices, we worry about databases and communication
protocols, whereas on the frontend, we need to worry about packet size, accessibility, and user
experience.

Let’s start by analyzing whether you need to use this type of architecture for your project.

When to use a micro frontend

A big but very true cliché in systems architecture is that there is no silver bullet – that is, there is no
one-size-fits-all solution for all problems – and micro frontends cannot escape this cliché. The main
advantage of this architecture, before any technical aspect, is its organizational aspect.

When we use the micro frontend, we are separating an independent part focused on one aspect of the
business that will be handled by a team specializing in that aspect. With this, your project can scale
across different teams dealing with specific subjects that will be integrated into an experience for
your user. Each team has autonomy in the delivery cycle of this project, with independence from
build, deployment, and testing. Independence can reach a level where teams can work with different
versions of Angular and even different frameworks such as React and Vue, although this is not highly
recommended, as we will discuss in the next section.

When not to use a micro frontend project

Another software engineering cliché is that there is no free lunch, and choosing to use micro
frontends has its costs and challenges.

The first challenge is the performance issue of your frontend. As we saw in Chapter 1, Starting
Projects the Right Way, in a single-page application (SPA), the user’s browser downloads the
application bundle containing the Angular framework code, in addition to the code that your team
produced. After this download, the browser interprets the bundle and renders the pages for the user.

https://martinfowler.com/articles/micro-frontends.html

This entire process must be as quick and efficient as possible because, while it is occurring, the user
cannot interact with the screen, causing frustration.

Now imagine this process happening in every part of your system because, to guarantee version and
even framework independence, each micro frontend carries its framework engine in the specific
version. There are techniques and tools such as webpack’s module federation
(https://webpack.js.org/concepts/module-federation/), but you and your team must evaluate this
challenge.

Another care we must take is concerning the user experience and the design of the components on
screen because, for them, the components between interfaces must be fundamentally the same to
guarantee cohesion in their experience.

This challenge can be overcome by implementing a design system – that is, a single design guide for
your company’s components, preferably with a library that supports it. An example of a design
system is Google’s Material Design.

Now that we have a basic understanding of micro frontends, let’s move on to the next section, where
we will explore how to split our application into micro frontends.

Slicing your application into micro frontends
To maximize gains from the micro frontend architecture and minimize the risks defined in the
previous section, we need to create microservices that are as independent as possible and that make
sense for your team’s organization.

The most common type of project organization is the verticalization of functionalities – that is, for
one project you might have an entire user journey, such as a product purchase screen, another project
for product registration, and another for the administration module of the application.

https://webpack.js.org/concepts/module-federation/

Figure 11.1 – Micro frontend division

This diagram exemplifies the concept of division using an Angular application. In each project, we
have all the components for the user experience.

You may be wondering, “Can I achieve this same separation using Angular modules?” and the
answer is yes, you can. If a team takes care of all the modules for your company’s organization or the
teams can organize themselves into just one project, you can (and even should) do this.

We need to keep in mind that the reason for dividing your project into micro frontends is to meet an
organizational requirement of your project, and teams want to have deployment and development
independence.

With the basic concepts in mind, we will exemplify how to implement them in our gym diary project.

Creating a micro frontend application with standalone
components
To exemplify the use of the micro frontend architecture in our gym diary, we will create a form to
define new exercises for our users. Let’s create another Angular project, simulating a new team that
will specifically take care of this functionality. In your operating system’s command line, use the
following command:

ng new gym_exercises --skip-git --standalone --routing false --style css

We learned about the ng new command in Chapter 1, Starting Projects the Right Way, but here we are
using some parameters that we haven’t seen before. We are using the skip-git parameter because, in
this example, we are creating it in the same Git project (which already has the gym-diary and gym-
backend projects). The routing parameter is set to false because our project will be loaded in the

diary application route, and the style parameter is set to CSS so the Angular CLI does not need to ask
what type of styling our project will have.

The biggest difference in this command is standalone, which parameterized our project to create all
components as standalone by default. But you might be wondering what a standalone component is.
Created from version 15 of Angular, this feature allows you to create a component without using
Angular modules (NgModule). Although modules are very important, as we saw in Chapter 2,
Organizing Your Application, there are cases in which they are not very useful and make the project
unnecessarily complicated. A good example of this is in small projects with a limited scope, such as
this micro frontend, where we will not have multiple routes or lazy loading.

Before we start creating the exercise form, let’s add and configure the Tailwind CSS framework, as
we want to have a style compatible with our main application. Inside the created project folder, run
the following command from the command line of your operating system:

npm install -D tailwindcss postcss autoprefixer

npx tailwindcss init

This command will add development dependencies to the project and create configuration files in the
Tailwind CSS framework.

In the tailwind.config.js file, make the following changes:

/** @type {import('tailwindcss').Config} */

module.exports = {

 content: [

 "./src/**/*.{html,ts}",

],

 theme: {

 extend: {},

 },

 plugins: [],

}

In this file, we are telling Angular that it will apply the Tailwind CSS framework to all HTML files in
the src folder.

Finally, add the following lines of code to the app.component.css file:

@tailwind base;

@tailwind components;

@tailwind utilities;

With these CSS variables, the component will have access to the tailwindcss class.

We will then create a service that will be responsible for interacting with our backend’s exercise API.
On the command line, we will use the following:

ng g service service/Exercises

ng g interface exercise

Note a detail of our architecture: we already have a service that queries the exercise API in our main
project, but we cannot reuse it here because they are independent projects, and certain code
duplication is a cost of this architecture.

Following the best practices, we will create our API as follows:

Export interface Exercise {

 id?: string;

 description: string;

}

export type ExerciseList = Array<Exercise>;

export interface ExerciseListAPI {

 hasNext: boolean;

 items: ExerciseList;

};

Here, we are recreating the types that represent the API data. For more details about TypeScript
interfaces, you can consult Chapter 3, TypeScript Patterns for Angular.

In the created service, we will add interaction with the backend:

@Injectable({

 providedIn: 'root',

})

export class ExercisesService {

 private httpClient = inject(HttpClient);

 private url = 'http://localhost:3000/exercises';

 getExercises(): Observable<ExerciseList> {

 return this.httpClient

 .get<ExerciseListAPI>(`${this.url}`)

 .pipe(map((api) => api?.items));

 }

 addExercises(exercises: Partial<Exercise>): Observable<Exercise> {

 return this.httpClient.post<Exercise>(this.url, exercises);

 }

}

In the service, we are making HTTP requests to consult exercises and add new ones. For more details
about Angular services, you can consult Chapter 5, Angular Services and the Singleton Pattern, and
Chapter 9, Exploring Reactivity with RxJS.

However, we are experiencing an error because we are not importing the HttpClientModule module.
But how can we import it if we don’t have a module in a standalone component?

In a project without modules, the import happens in the component itself; for services, we have the
app.config.ts file, and we will add the import to it:

import { ApplicationConfig } from '@angular/core';

import { provideHttpClient } from '@angular/common/http';

export const appConfig: ApplicationConfig = {

 providers: [provideHttpClient()],

};

Note that we are importing the provideHttpClient provider and not the module. This happens
because this provider was created by the Angular team to handle these standalone application cases.

In the main components of the application, we will code its behavior as follows:

@Component({

 selector: 'app-root',

 standalone: true,

 imports: [CommonModule, ReactiveFormsModule],

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css'],

})

export class AppComponent {

 private formBuilder = inject(NonNullableFormBuilder);

 private exerciseService = inject(ExercisesService);

 exerciseList$ = this.exerciseService.getExercises();

 public entryForm = this.formBuilder.group({

 description: ['', Validators.required],

 });

 newExercise() {

 if (this.entryForm.valid) {

 const newExercise = { ...this.entryForm.value };

 this.exerciseService

 .addExercises(newExercise)

 .subscribe(

 (_) => (this.exerciseList$ = this.exerciseService.getExercises())

);

 }

 }

}

Let’s first highlight the component configuration in the @Component decorator metadata. The
standalone property means that this component can be used directly without being declared in any
module. In the imports property, we declare its dependencies, which are CommonModule, the basis for
any Angular component, and ReactiveFormsModule, as we will be developing a reactive form (for
more details about the form, read Chapter 6, Handling User Input: Forms). In the component, we are
injecting NonNullableFormBuilder and ExercisesService and we take the initial list and assign it to
the exerciseList$ attribute. We create the form object with the formBuilder service, and finally, we
create the newExercise method responsible for the Submit button.

As we will have the list of exercises in the same form, in the subscribe method, we assign the
exerciseList$ attribute again to refresh the list.

To finish the component, let’s create its template as follows:

<div class="bg-gray-100 flex justify-center items-center min-h-screen">

 <div class="max-w-md w-full p-6 bg-white rounded-lg shadow-md">

 <h1 class="text-2xl font-bold mb-4">Exercise List</h1>

 <div class="max-h-40 overflow-y-auto mb-4">

 <li class="mb-2" *ngFor="let exercise of exerciseList$ | async">

 {{ exercise.description }}

 </div>

 </div>

</div>

In the first part, we have the list of exercises, and here we are using Angular’s async pipe to subscribe
and search the list (for more details, read Chapter 9, Exploring Reactivity with RxJS).

In the same template file, we will add the form:

<h2 class="text-xl font-semibold mt-6 mb-2">Add Exercise</h2>

 <form [formGroup]="entryForm" (ngSubmit)="newExercise()" class="space-y-2">

 <div class="mb-4">

 <label for="description" class="mb-2 block font-bold text-gray-700">Description:

</label>

 <input type="text" id="description" name="description" class="w-full appearance-none

rounded border px-3 py-2 leading-tight text-gray-700 shadow"

formControlName="description"/>

 <div *ngIf="entryForm.get('exercise')?.invalid &&

entryForm.get('exercise')?.touched" class="mt-1 text-red-500">

 Exercise is required.

 </div>

 </div>

 <div class="flex items-center justify-center">

 <button type="submit" [disabled]="entryForm.invalid" [class.opacity-

50]="entryForm.invalid" class="rounded bg-blue-500 px-4 py-2 font-bold text-white

hover:bg-blue-700" >

 Confirm

 </button>

 </div>

 </form>

We created a reactive form with just the Description field and added simple validation.

By running our application with the ng serve command, we will have the following interface:

Figure 11.2 – Exercise form

With our micro frontend project ready, we can prepare it to be consumed by our main application.

Preparing a page to be loaded by the base application
With our micro frontend project ready, we need to prepare it to be consumed by another application.
There are several ways to share micro frontends, from the simplest (and obsolete), with the use of
iframes, to more modern, but complex, solutions such as module federation.

In this section, we will use an approach widely used in the market, which is the use of Web
Components. Web Components is a specification that aims to standardize components created by
different frameworks into a model that can be consumed between them. In other words, by creating
an Angular component following this specification, an application created in React or Vue could
consume this component. Although Web Components was not created with micro frontend projects in
mind, we can see that its definition fits perfectly for what we need.

Like almost everything in the Angular framework, to create this type of component, we don’t need to
do it manually, as the Angular team created a tool for this: Angular elements. An Angular element
component is a common component but transpiled to the Web Components standard, packaging not
only our code but also the Angular rendering engine, making it framework agnostic.

Let’s add it to our gym_exercises project on the command line of our operating system with the
following command:

npm i @angular/elements

With the preceding command, we add the angular/elements dependency to our project, and to use it,
we will make a change to the angular.json file:

{

 "type": "anyComponentStyle",

 "maximumWarning": "50kb",

 "maximumError": "50kb"

}

The component generated by Angular elements will encapsulate the Tailwind CSS framework, so we
need to increase the component size budget a little to avoid errors when building the project.

The next change we must make is to the project’s main.ts file:

import {

 bootstrapApplication,

 createApplication,

} from '@angular/platform-browser';

import { appConfig } from './app/app.config';

import { AppComponent } from './app/app.component';

import { createCustomElement } from '@angular/elements';

(async () => {

 const app = await createApplication(appConfig);

 const element = createCustomElement(AppComponent, {

 injector: app.injector,

 });

 customElements.define('exercise-form', element);

})();

This file is responsible for configuring the initialization of an Angular project, and we normally do
not change it as we want standard SPA build and execution behavior. However, here, we need to
change it to inform Angular that the result of this project will be a web component generated by the
Angular elements package. Here, we are configuring the project so that the application will generate
a web component whose tag name will be exercise-form.

We now need to change the index.html file to understand this new tag so that we can render our
micro frontend for testing:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <title>GymExercises</title>

 <base href="/" />

 <meta name="viewport" content="width=device-width, initial-scale=1" />

 <link rel="icon" type="image/x-icon" href="favicon.ico" />

 </head>

 <body>

 <exercise-form></exercise-form>

 </body>

</html>

Here, we change the default <app-root> Angular component with the Web Components <exercise-
form> tag. Our main application will be our micro frontend JavaScript, but the change to index.html
will allow you and your team to maintain the micro frontend without needing to load the main
project.

We now have a challenge in that, despite creating a web component, the project build is creating it in
three files and with hashes, which is correct if our application is not a micro frontend, but in our case,
we would like to have all the code in a single file and without the hash. We can do this manually, but
the community has a package that automates this treatment: the ngx-build-plus package.

Let’s add it to the command line with the help of the Angular CLI:

ng add ngx-build-plus

To serve this micro frontend, we will use the http-server package, and add it with npm on the
command line:

npm i http-server

Finally, let’s create some npm scripts to make running mfe easier. In the package.json file, we will
make the following change:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build --single-bundle --bundle-styles --keep-styles --output-

hashing=none",

 "serve-mfe": "http-server dist/gym_exercises",

}

In the build script, we specify our intention to run it, resulting in a single generated file (--single-
bundle). We also instruct it to retain and encapsulate the CSS (--bundle-styles --keep-styles)
while ensuring that the generated file’s name does not include any type of hash (--output-
hashing=none).

The serve-mfe script uses the http-server service to publish the contents of the dist folder that will
contain the compiled micro frontend.

Let’s run our project with the following command and check the micro frontend we created:

npm run build

npm run serve-mfe

By accessing http://127.0.0.1:8080, we can see that our micro frontend application is being
generated successfully.

With our micro frontend ready to be consumed, in the next section, we will consume it in the main
application.

Dynamically loading micro frontends
Let’s prepare our main application gym diary to consume the micro frontend that we prepared
previously. To do this, let’s start by creating a new module in the application. On the command line,
we will use the following Angular CLI commands:

ng g m exercise --routing

ng g c exercise/exercise

With the preceding commands, we create the module with the generated route file and a component
that will be responsible for loading mfe.

Let’s adjust the exercise-routing.module.ts file to target the component:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { ExerciseComponent } from './exercise/exercise.component';

const routes: Routes = [

 {

 path: '',

 component: ExerciseComponent,

 title: 'Exercise Registry',

 },

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule],

})

export class ExerciseRoutingModule {}

In the routes array, we define a base route for the exercise registration component as it will be loaded
via lazy loading.

Next, we will refactor the home-routing.module.ts file as follows:

. . .

const routes: Routes = [

 {

 path: '',

 component: HomeComponent,

 children: [

 {

 path: 'diary',

 loadChildren: () =>

 import('../diary/diary.module').then((file) => file.DiaryModule),

 },

 {

 path: 'exercise',

 loadChildren: () =>

 import('../exercise/exercise.module').then(

 (file) => file.ExerciseModule

),

 },

 {

 path: '',

 redirectTo: 'diary',

 pathMatch: 'full',

 },

],

 },

];

. . .

Our HomePage module contains the menu, and in this section, we are adding the new module to be
loaded in the correct area of the interface.

To finish adding this new module, let’s change the home.component.html file:

. . .

 <a

 routerLink="./exercise"

 class="flex items-center space-x-2 text-white"

 >

 Exercise Registry

. . .

With the new menu item added to the home template, we now have the task of including the micro
frontend generated in the other project in our interface.

For this, we have a community package called @angular-extensions that allows us to load our micro
frontend simply using a directive, as we will see later. But first, let’s install this dependency in our
project using the following command:

npm i @angular-extensions/elements

Once installed, we can change the ExerciseModule module:

import { CUSTOM_ELEMENTS_SCHEMA, NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { ExerciseRoutingModule } from './exercise-routing.module';

import { ExerciseComponent } from './exercise/exercise.component';

import { LazyElementsModule } from '@angular-extensions/elements';

@NgModule({

 declarations: [ExerciseComponent],

 imports: [CommonModule, LazyElementsModule, ExerciseRoutingModule],

 schemas: [CUSTOM_ELEMENTS_SCHEMA],

})

export class ExerciseModule {}

In this file, we are first adding the library module called LazyElementsModule to have access to the
directive that we will use in the component. Furthermore, we have a new property in the metadata
called schemas. In it, we are informing Angular with the CUSTOM_ELEMENTS_SCHEMA token that this

module will receive elements from outside the project. By default, Angular checks whether the tag
used in the template exists in the project or in the HTML standard, such as the input tag.

As we are going to import the exercise-form tag defined by our micro frontend here, this attribute
will prevent Angular from carrying out this check at the project compile time.

In the exercise.component.ts file, we will add a new attribute:

import { Component } from '@angular/core';

@Component({

 selector: 'app-exercise',

 templateUrl: './exercise.component.html',

 styleUrls: ['./exercise.component.css'],

})

export class ExerciseComponent {

 elementUrl = 'http://localhost:8080/main.js';

}

Here, we are defining the address where the micro frontend’s main files will be served.

Finally, let’s change the component template:

<exercise-form *axLazyElement="elementUrl"> </exercise-form >

Here, we are declaring the new exercise-form element, and to load it, we use the axLazyElement
directive assigning the micro frontend address.

To run our project, make sure the micro frontend is being served with the npm run serve-mfe
command. With everything configured, we can see the result of our work:

Figure 11.3 – Exercise form dynamically loaded into the main application

Summary
In this chapter, we explored the architecture of micro frontends and how to apply one to an Angular
project.

We learned about the concept of the architecture, its advantages, and its trade-offs. We explored how
the main reason for opting for this architecture is its flexibility in relation to the organizational
structure of each team, as several teams can work on different parts of the frontend project
independently.

We also learned how we can ideally divide our application into micro frontends.

With all these concepts, we applied our project by creating a small application using Angular’s
standalone components feature and preparing it to be loaded by another project using the Angular
elements library.

Finally, we performed dynamic loading in our main application with the help of the @angular-
extensions/elements library.

In the next chapter, we will explore the best practices for deploying an Angular application.

12

Packaging Everything – Best Practices for Deployment
After architecting, developing, and testing your application, it’s time to deploy it to your users.

In this chapter, we will learn the best practices for generating production packages and how to use
automation tools to maximize the team’s productivity and effectiveness at this point in the project.

In this chapter, we will cover the following topics:

Deploying the backend

Differentiating environments

Preparing the production bundle

Mounting a Docker image with Nginx

Deploying a page to Azure Static Web Apps

By the end of this chapter, you will be able to use the Angular CLI to generate a package optimized
for production and CI/CD tools to automate this process for your team.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (VSCode) (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

Docker (https://www.docker.com/)

Docker for VSCode (https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker)

An Azure account (https://azure.microsoft.com)

The Azure CLI (https://learn.microsoft.com/en-us/cli/azure/)

Azure Functions Core Tools (https://learn.microsoft.com/en-us/azure/azure-functions/functions-run-local)

Azure Tools for VSCode (https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-node-azure-pack)

The NestJS CLI (https://docs.nestjs.com/cli/overview)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch12.

Deploying the backend

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://www.docker.com/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://azure.microsoft.com/
https://learn.microsoft.com/en-us/cli/azure/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-run-local
https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-node-azure-pack
https://docs.nestjs.com/cli/overview
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch12

Before preparing our gym diary project for production, let’s first upload the backend to a cloud
service so that our page has access to the data.

We chose the Azure service for this book, but the concepts in this chapter can also be applied to other
cloud services, such as AWS (https://aws.amazon.com) and GCP (https://cloud.google.com).

The backend of this example does not use a database and was built using the NestJS framework
(https://nestjs.com/), which actually has an architecture completely inspired by Angular, but for the
backend! This framework allows you to add cloud deployment capabilities with Azure. To prepare
your backend for deployment, in the command line of your operating system, in the project folder
(/gym-diary-backend), run the following commands:

npm install @schematics/angular

nest add @nestjs/azure-func-http

The first command installs the Angular Schematic package, which will be used to build the
application.

The nest add command has the same functionality as Angular’s ng add command, and here, in
addition to installing the dependencies for deployment on Azure, it also configures and creates the
necessary files for this task.

With the tools from the Technical requirements section installed, we first need to create an Azure
Functions project. To do this, let’s go to the Azure portal in the Function App menu option:

Figure 12.1 – Function App menu option

Azure has several ways to run a backend service, and one of the simplest is through Azure Functions.
With it, we can upload our service without needing to configure a server, as the provider will take
care of these details.

We then need to perform some basic configurations. To do this, we will click on + Create. Once
done, we will be presented with the following screen:

https://aws.amazon.com/
https://cloud.google.com/
https://nestjs.com/

Figure 12.2 – Azure Functions service configuration

In the Subscription field, you need to choose your Azure subscription. In the Resource Group field,
you can select a group that you already have; if you don’t have one, you can create a new one and
enter its name. The Function App name field is important as it will initially be the address of your
endpoint. It is possible to buy a specific URL or place this API behind an Azure API gateway
(https://azure.microsoft.com/en-us/products/api-management), although this is not required for our
example. We will deploy directly from the code, so leave Do you want to deploy code or container
image? as Code. The project’s runtime stack should be set to NodeJS, version 18 LTS. For the
project region, select one close to you, or East US, which is the default option. Finally, Operating
System should be set to Linux. The Hosting options and plans option should be set to
Consumption (Serverless) as we do not need any more specific features in this case.

Figure 12.3 – Hosting options and plans

Once we are done filling in all the necessary information, click on Review + Create. On the next
screen, confirm your information and execute the creation:

Figure 12.4 – Azure Functions service created

To publish our backend to the created service, we will use the VS plugin. Open the backend project,
left-click, and select Deploy to Function App…, as shown in the following figure:

Figure 12.5 – VSCode extension for publishing Azure Functions

The extension will get the list of services created from your account, so select the one we created
from the AZURE panel.

Figure 12.6 – VSCode AZURE panel

After publication, the Azure service will point you to a public URL with your service. Access it in a
browser with the /exercise endpoint to check whether the service is live.

The return of the published URL should be a list similar to the following:

{"items":id":"30","description":"Plank"},{"id":"29","description":"Dumbbell Bench

Press"},{"id":"28","description":"Seated Leg Curl"},{"id":"27","description":"Cable

Curl"},{"id":"26","description":"Glute Bridge"},{"id":"25","description":"Skull

Crusher"},{"id":"24","description":"Arnold Press"},{"id":"23","description":"Inverted

Row"},{"id":"22","description":"Chest Fly"},{"id":"21","description":"Hanging Leg

Raise"},{"id":"20","description":"Side Lateral Raise"},{"id":"19","description":"Front

Squat"},{"id":"18","description":"Seated Row"},{"id":"17","description":"Romanian

Deadlift"},{"id":"16","description":"Bicep Curl"},{"id":"15","description":"Calf Raise"},

{"id":"14","description":"Tricep Dip"},{"id":"13","description":"Push-up"},

{"id":"12","description":"Leg Curl"},{"id":"11","description":"Incline Bench Press"},

{"id":"10","description":"Hammer Curl"}, {"id":"9","description":"Lunges"},

{"id":"8","description":"Dumbbell Curl"},{"id":"7","description":"Pull-up"},

{"id":"6","description":"Shoulder Press"},{"id":"5","description":"Bench Press"},

{"id":"4","description":"Leg Press"},{"id":"3","description":"Barbell

Row"},{"id":"2","description":"Squat"},

{"id":"1","description":"Deadlift"}],"hasNext":false}

One last configuration we must do is configure the service’s CORS to enable our local application to
connect to the cloud service. In the Azure console, click on the created service and then on the CORS
tab and set the Allowed Origins field to *:

Figure 12.7 – CORS configuration

With our backend service online, we will focus on how to access it from our application in the next
section. An important point is to always remember to turn off the service in Azure so as not to incur
unnecessary costs when going through this book’s examples in your Azure account.

Differentiating environments
After finishing the task of deploying our backend, we need to change our frontend project to make
requests to our cloud infrastructure. But here, a problem arises. We want to access our published
backend when we are in production, but the team needs to continue accessing the API locally to
develop new features in a more practical way. How can we have the best of both worlds?

The answer to this, once again, was thought up by the Angular team and is the creation of
configuration files for each development environment.

Until version 14 of Angular, these files were already standard when creating the project (the ng new
command). However, to simplify new projects and reduce the learning curve, these files were
removed for new projects.

But we shouldn’t worry because to add them, we can use the Angular CLI. On the command line, use
the following command:

ng generate environments

After executing the preceding command, the Angular CLI creates the environments folder, and inside
it, we have the environment.development.ts and environment.ts files.

These TypeScript files have only one object, and this object is where we will place all the settings
that we need to differentiate between production and development environments. We will first change
the environment.development.ts file like so:

export const environment = {

 production: false,

 apiUrl: 'http://localhost:3000'

};

In these objects, we declare a flag to indicate that this is a configuration of the development
environment and the URL of our local backend service. We will now change the environment.ts file
like so:

export const environment = {

 production: true,

 apiUrl: 'https://gymdiaryangularboook.azurewebsites.net/api',

};

Here, we are doing the same but indicating the production environment of our application. The
backend address will be the one created in the previous section.

To use these files, we must import them and refactor the HostInterceptor service to use it:

. . .

import { environment } from 'src/environments/environment';

@Injectable()

export class HostInterceptor implements HttpInterceptor {

 intercept(

 request: HttpRequest<unknown>,

 next: HttpHandler

): Observable<HttpEvent<unknown>> {

 const url = environment.apiUrl;

. . .

}

In our interceptor service, which is responsible for adding the URL to our requests (for more details,
see Chapter 8, Improving Backend Integrations: the Interceptor Pattern), we use the environment
object property to determine the URL.

A point of attention here is that we must import the environment.ts file for this variable because
Angular makes the change when generating the build.

To make it clear which environment we are in, we will change the AppComponent component like so:

. . .

import { environment } from 'src/environments/environment';

import { ToastrService } from 'ngx-toastr';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css'],

})

export class AppComponent implements OnInit {

 loadService = inject(LoadService);

 toaster = inject(ToastrService);

 title = 'gym-diary';

 ngOnInit(): void {

 if (environment.production) {

 this.toaster.info('Production Build!');

 } else {

 this.toaster.info('Development Build!');

 }

 }

}

In this change, we are using the toaster service (for more details, refer to Chapter 8, Improving
Backend Integrations: the Interceptor Pattern) to indicate, when the user enters the page, which
environment they are in.

Let’s run our application using the ng serve command, and we will get the following result:

Figure 12.8 – Application in development mode

If we log in to our application, we can see, by looking at the developer tools in the Networks tab, that
the application is making requests to our local backend. To run our Angular project as a production
build, we can use the following command:

ng serve --configuration production

When accessing our application, we can see in the message on the screen that requests are made to
the service published in our cloud service:

Figure 12.9 – Application in production mode

With our service prepared for multiple environments, we can now see how we can better prepare it
for deployment in the next section.

Preparing the production bundle
The environmental needs of a frontend application running in production are different from the
development environment we have seen so far in the book.

When we are developing, we look for speed in compilation, powerful debugging, and profiling tools
to analyze our code, as well as generating boilerplate code, among other features.

Even though it costs more to process on our local machine, requires more space to generate
instrumented bundles to be able to perform debugging, and requires greater network consumption to
download development tools, all of this is important for the team’s productivity, and the Angular
framework delivers it in a robust ecosystem.

When we are talking about frontend web code running in production, the objective is almost the
opposite. We want our code to be as small and optimized as possible, to be downloaded and executed

by our users in the most performant way possible.

With this objective in mind, the Angular framework has a robust and simple build tool for generating
the production package.

To run it, we need to use the following command in our project folder:

ng build

This command will create the package that we will run in production in the dist folder of our project.

But to deepen our knowledge of the Angular framework, let’s understand what the basis for this build
process is. The answer is in the angular.json file. Let’s analyze some important properties of the
build:

"configurations": {

 "production": {

 "budgets": [

 {

 "type": "initial",

 "maximumWarning": "500kb",

 "maximumError": "1mb"

 },

 {

 "type": "anyComponentStyle",

 "maximumWarning": "2kb",

 "maximumError": "4kb"

 }

],

 "outputHashing": "all"

 },

 . . .

 "defaultConfiguration": "production"

}

In the configurations property, we have definitions of the types of environments that we can have in
our project. Initially, the Angular CLI creates two configurations: production and development.

In the production configuration, we have the budgets property, which determines the maximum size
that our package must have in addition to defining the maximum size that a unitary component must
have.

If your project exceeds this size, Angular may show a warning in the production console or even not
build your project.

This is important because we need to generate the smallest file possible as this results in a greater
perception of performance for our users, especially if they are using a device on a 3G network.

One way to reduce file sizes is to use Angular’s lazy-loading capabilities (for more details on this
feature, see Chapter 2, Organizing Your Application).

The outputHashing attribute ensures that the files generated by the application have their names
added to a hash.

This is important because most public clouds and Content Delivery Networks (CDNs) cache the
application based on the name of the files. When we generate a new version of our app, we want this
cache to be invalidated to deliver the new version to our users.

Finally, the defaultConfiguration property determines that if no parameter is passed, the ng build
command will execute with the configuration indicated in it, in this case, production.

These configurations can be expanded and new ones created depending on your project needs. In our
case, we will leave it with the default configuration.

When running the build in production configurations, Angular performs the following processes:

Ahead-of-Time (AOT) compilation: Angular compiles templates and CSS files in addition to TypeScript files.

Production mode: The application has some validations optimized for running in production.

Bundling: It bundles all component files, templates, services and libraries in files separated by modules.

Minification: From the files generated by TypeScript, it concatenates and eliminates whitespace and comments to generate the
smallest files possible.

Uglification: It rewrites generated code for variables, function names, and small, cryptic modules to make it difficult to reverse
engineer the frontend code delivered to the user’s browser.

Dead code elimination: Also known as tree shaking, this is the process of not including components in bundles that are not
referenced in the code and do not need to be present in the production package.

All these processes are done with the ng build command and with the configuration that was set
when your project was created. It is important to note that this process improves with each new
version of Angular and is another reason to always keep your project up to date with the latest
versions.

In the next section, we will create a Docker image with our code built and run by the Nginx web
server.

Mounting a Docker image with Nginx
Until this chapter, we have been using the web server included in the Angular package to run our
application locally. Although very competent, it focuses purely on the developer’s experience and
does not have the performance and scalability capabilities required by the production environment.

For this purpose, we use production-grade web servers. One of the most popular is Nginx
(pronounced Engine X).

To configure it, we need to create a file in the root of our project called nginx.default.conf and add
the following to it:

server {

 listen 80;

 sendfile on;

 default_type application/octet-stream;

 gzip on;

 gzip_http_version 1.1;

 gzip_disable "MSIE [1-6]\.";

 gzip_min_length 1100;

 gzip_vary on;

 gzip_proxied expired no-cache no-store private auth;

 gzip_types text/plain text/css application/json application/javascript

application/x-javascript text/xml application/xml application/xml+rss text/javascript;

 gzip_comp_level 9;

 root /usr/share/nginx/html;

 location / {

 try_files $uri $uri/ /index.html =404;

 }

}

In this configuration file, the first three properties (listen, sendfile, and default_type) aim to
configure the exposed port and prepare the server to send our project’s package files.

The properties starting with gzip configure the delivery of files with the native web compression data
gzip, further reducing the files delivered to our user’s browser.

The last part of the file determines the first page to be served. As we are in a Single-Page
Application (SPA), the first file to be delivered is index.html.

With this configuration, we can run Nginx, but instead of installing it natively on our local machine,
we will use Docker to run it.

Docker is a tool widely used in today’s modern systems and aims to compartmentalize an
application’s environment. In other words, by configuring a file, we can create an environment for
our application where it can be run both on our local machine and on a cloud provider with the same
dependencies and versions.

Let’s exemplify its use by first creating a file called .dockerignore in our project’s root and adding
the following to it:

node_modules

Using the .gitignore file as an example, we are ensuring that the node_modules folder will not be
copied to the image . Keep in mind that the image and the service that will be run from it (called a
container in the Docker ecosystem) is as if it were a new machine and we will only copy what our
application needs to run.

The next step is to create the dockerfile file and add the following code to it:

FROM node:18-alpine as build

COPY package.json package-lock.json ./

RUN npm ci && mkdir /gym-app && mv ./node_modules ./gym-app/

WORKDIR /gym-app

COPY . .

RUN npm run build

FROM nginx:1.25-alpine

COPY nginx.default.conf /etc/nginx/conf.d/default.conf

RUN rm -rf /usr/share/nginx/html/*

COPY --from=build /gym-app/dist/gym-diary /usr/share/nginx/html

CMD ["nginx", "-g", "daemon off;"]

In this file, we are using the multi-stage build technique to create our image. First, we build the
application and then use the result of this build to create the final image. This way, our image
becomes smaller and more optimized.

The first stage, which we call build here, is based on the node:18-alpine image, which is a minimal
image with the Alpine Linux distribution and version 18 of Node.js included.

Then, the package.json and package-lock.json files are copied and the npm ci command is run to
install the package.

Then, with the COPY . . command, all project code is copied (except the node_module folder).

At the end of this stage, our application bundle is generated using the npm run build command.

The next stage, which will be production, is based on the nginx:1.25-alpine image because to run
the web server, we only need a Linux distribution such as Nginx installed.

The next task is to copy the configuration file for the Nginx installation, delete the example file that
comes with the tool, and copy the files generated in the previous stage to this one.

The line ["nginx", "-g", "daemon off;"] runs Nginx and makes it ready to deliver our application.

To mount the image, right-click on the dockerfile file in VSCode and select the Build Image option.

To run the Docker container locally, use the following command:

docker run -p 8080:80 gymdiary

By accessing the http://localhost:8080 URL, we have our application running in production mode.
Another way to put our project on the web is by using Azure Static Web Apps. We will work on this
in the next section.

Deploying a page to Azure Static Web Apps
With the Docker image we created, we can run our project on any cloud provider that offers container
services. However, there are other ways to deploy our Angular project.

One of these alternatives is Azure Static Web Apps, a service that specializes in web page design and
allows automatic integration with GitHub. Let’s see it in practice in our project.

The first requirement is that your project is on GitHub, as shown in the following screenshot:

Figure 12.10 – GitHub repository for frontend project

If you have copied the project repository, place the gym-diary folder in your own GitHub project.

To configure the Azure service, go to the account portal and search for Static Web Apps.

Click on the Create Static Web App button and the service form will be presented to you.

In the first part, we have the following fields:

Subscription: Select your Azure subscription.

Resource Group: Create or define a group for this service. In Azure, every resource must be linked to a resource group.

Name: Provide a name for your frontend project.

Plan type: Select the tier of your environment. The more resources, the higher the cost, but for our example, we will just use the
free plan.

Figure 12.11 – Azure Static Web App creation

Source: In this field, we identify whether our project is on GitHub or in the Azure repository.

Organization: The name of the GitHub user or organization that you want to select the repository from. It is important that your
user has high access permission, such as maintainer or admin.

Repository: Azure will list all the repositories that you have access to in the selected organization..

Branch: The branch of the repository that you want to deploy.

Figure 12.12 – Deployment details configuration

In the second part, we have the specific configuration for our project using Angular:

Build Presets: The Azure service supports several frontend technologies. Here, in this case, we will choose Angular.

App location: We must indicate within GitHub which folder contains the Angular project, as our project is in the root of the repo.
We can leave it as /.

Api location: This is an optional field if you want to point to a backend service deployed in Azure. Here, in this example, we are
going to leave it blank.

Output location: We must place the location where the build is generated within the repository. In the case of our project, we will
set dist/gym-diary/.

Figure 12.13 – Preset settings

Once done, click on Review and Create, and on the next screen, confirm the operation. Azure will
begin processing, and once ready, it will display the created service dashboard:

Figure 12.14 – Service dashboard created

In the URL field, you will see the URL created by Azure for our project. Select it and our system will
be presented as soon as the deploy status is Ready. So, we have our project up and running in the
cloud. You can configure other settings, such as adding your own URL, although remember that some
settings are not available in the free plan.

The most interesting thing about this feature is that it implements a GitHub action in our repository:

Figure 12.15 – GitHub action

What is a GitHub action? It is a GitHub feature that allows the creation and execution of scripts to
automate tasks, such as, in our example, deploying to the Azure service.

With our configuration, the Azure wizard created and ran the script in our GitHub repository.

A bonus is that our generated script is configured to execute and deploy with each push we make to
the repository, updating our application deployed in the cloud.

Summary

In this chapter, we explored the techniques and capabilities of Angular when deploying our
application to production.

We started by uploading our backend to the cloud, where it will be available for our frontend
application.

Then, we adapted our application to differentiate the development environment and the production
environment using the Angular feature of environment.ts files.

We explored the ng build command and all the tasks that Angular performs for us to make our
application as lean as possible to be faster for our users.

We learned about Docker and how we can package our Angular application to run on a web server
such as Nginx regardless of the type of machine our application runs on.

Finally, we learned about another way to deploy to the cloud with the Azure Static Web Apps service
and saw how it automates this process by creating a GitHub action script.

In the next chapter, we will explore the latest Angular innovations, including Angular Signals.

13

The Angular Renaissance
Our applications need to continually evolve, and to meet this need, the Angular framework and its
ecosystem also continue to evolve.

In this chapter, we will learn about the latest features of Angular. While many of them are still in the
developer preview phase, it is important for us to get a glimpse of what the future holds for this
incredible framework.

In this chapter, we will cover the following topics:

Updating your project with the Angular CLI

Using a new way to create templates – control flow

Improving the user experience using the defer command

Creating transitions between pages – view transactions

Simplifying application states – Angular Signals

By the end of this chapter, you will have learned how to stay up to date with future versions of the
framework and how to update your project.

Technical requirements
To follow the instructions in this chapter, you’ll need the following:

Visual Studio Code (https://code.visualstudio.com/Download)

Node.js 18 or higher (https://nodejs.org/en/download/)

The code files for this chapter are available at https://github.com/PacktPublishing/Angular-Design-
Patterns-and-Best-Practices/tree/main/ch13.

During the course of this chapter, remember to run the backend of the application found in the gym-
diary-backend folder with the npm start command.

Updating your project with the Angular CLI
The Angular framework is continually evolving with new features and optimizations, but to help
communities and developers keep organized and their applications up to date, the Angular team uses
semantic versioning to number their releases.

https://code.visualstudio.com/Download
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Angular-Design-Patterns-and-Best-Practices/tree/main/ch13

A semantic version number is composed of three parts and each part has the following representation:

Major: A number that is increased every time there is a change in the framework, which in turn requires us to change something
in our application so that it continues to work, also known as a breaking change

Minor: A number that is increased when the new version has a new functionality that we can use, but if we don’t use it, we don’t
need to change our application

Patch: A number that is increased when there is a correction to the framework and we do not need to change our code; this is
widely used for versions that have security corrections

In this book, we are working with version 16.2.0 of Angular, and the next version will be 17.0.0,
which will bring new functionality and also some breaking changes. While the the term “breaking
changes” is used, we should note that the Angular team has taken more and more care with these
changes and currently, they only affect very specific cases that the vast majority of applications are
not affected by.

In addition to rigorous versioning, the Angular team takes care to release major releases every six
months, allowing the team to plan application updates. You may ask, should I always update the
Angular version of my application? The answer is yes, and here are some reasons:

Every new version brings internal improvements to the framework that improve the rendering engines, which can make your
application faster and the build time and the bundle size smaller and more optimized

New features give you more possibilities to create better experiences for your users

It provides security updates and framework vulnerability fixes

It is important to highlight that the Angular team is committed to making corrections (long-term
support) for up to two major versions before the current one, which means that using old versions of
Angular can leave your application vulnerable to new security breaches. However, the task of
updating the Angular version of an application is not that complex as the Angular CLI helps to
automate the entire process. Let’s update our project to version 17 of Angular to use the new features
in this chapter.

On your operating system’s command line, in the gym-diary project folder, use the following
command:

ng update @angular/core@17 @angular/cli@17

With this command, the Angular CLI will update all Angular packages from the package.json file.
Furthermore, it will analyze all your code in search of situations where it needs to be changed due to
a breaking change. Also, if possible, it will update your code for you. If this is not possible, it will
indicate what type of correction should be made, but again this only happens in very specific corner
cases.

After the update is complete, to ensure that the application continues to work after the process, we
can run unit tests and end-to-end tests. For more details about the tests, see Chapter 10, Design for
Tests: Best Practices.

With our updated project, we can explore the new syntax for HTML templates, which we will see in
the next section.

Using a new way to create templates – control f low
Since version 2 of the framework, the HTML template syntax has remained relatively stable and
without much evolution. By using custom properties, we can evaluate conditions and iterate over lists
and other forms of flow control to create visualization logic in components. The *ngIf, *ngFor, and
*ngSwitch directives are used to improve the developer experience, internally generating the elements
in the HTML. You can read more about this in Chapter 4, Components and Pages.

Starting with version 17, the Angular team introduced a new form of control flow in HTML. The
syntax in this version is in developer preview, which means that it is stable for production but may
have changes in future versions. Let’s refactor our code to use the syntax and see the difference in
practice.

In the app.component.html file, we will change the following:

@if (loadService.isLoading) {

 <app-loading-overlay />

}

<router-outlet></router-outlet>

Here, we can notice the first new structure of the new control flow, if. Using the command in the
HTML template with the @ symbol, we apply the conditional statement as in TypeScript, evaluating
whether the function or variable is true or false.

The novelty of the syntax is that we now have the @else instruction facilitating the chaining of
conditionals, without the need to use the ng-template directive for this purpose.

We will refactor the list-entries.component.html file as follows:

<section class="mb-8">

 <h2 class="mb-4 text-xl font-bold">List of entries</h2>

 <ul class="rounded border shadow">

 @for (item of exerciseList; track item.id) {

 <app-entry-item

 [exercise-set]="item"

 (deleteEvent)="deleteEvent.emit($event)"

 (editEvent)="editEvent.emit($event)"

 />

 } @empty {

 <div>

 No Items!

 </div>

 }

</section>

In this example, we are using the @for instruction to replace the *ngFor directive. We provide the
name of the variable that will receive the list iteration, in this case, item, and the list itself, in this
component, named exerciseList.

In Chapter 4, Components and Pages, we learned the good practice of using the trackBy property of
the *ngFor directive to improve list rendering performance. This good practice is now mandatory in
the new @for syntax, and in this case, it is even simpler as we can simply pass the attribute that
Angular should check.

A new element is the @empty instruction, which indicates what should be shown if the list in question
is empty.

The new @for instruction, in addition to improving the development experience, is also 90% faster,
according to the Angular team, when rendering lists than the previous solution. That’s because
control statements aren’t just sugar syntax for directives; the template engine has been redesigned and
the instructions manipulate Angular’s internal DOM rendering elements.

Finally, let’s refactor the new-entry-form-reactive.component.html file as follows:

. . .

@if (entryForm.get('date')?.invalid && entryForm.get('date')?.touched) {

 <div class="mt-1 text-red-500">Date is required.</div>

 }

. . .

@if (showSuggestions) {

 <ul

 class="absolute z-10 mt-2 w-auto rounded border border-gray-300 bg-white"

 >

 @for (suggestion of exercises$ | async; track suggestion.id) {

 <li

 class="cursor-pointer px-3 py-2 hover:bg-blue-500 hover:text-white"

 (click)="selectExercise(suggestion.description)"

 >

 {{ suggestion.description }}

 }

 } @if (entryForm.get('exercise')?.invalid &&

 entryForm.get('exercise')?.touched) {

 <div class="mt-1 text-red-500">Exercise is required.</div>

 }

. . .

@if (entryForm.get('reps')?.invalid && entryForm.get('reps')?.touched) {

 <div class="mt-1 text-red-500">

 Reps is required and must be a positive number.

 </div>

 }@else if (entryForm.get('reps')?.errors?.['isNotMultiple'] &&

 entryForm.get('reps')?.touched) {

 <div class="mt-1 text-red-500">

 Reps is required and must be multiple of 3.

 </div>

 }

In this file, we are replacing the conditionals that evaluate form errors with the @if statement. For the
@for instruction that we use to render the list of exercises, we can notice that the use of the async pipe
remains very similar to the *ngFor directive, and we added track to further improve the rendering of
the list. Finally, we are using the @else if command to chain two conditionals.

We can note that we do not need to perform any additional configuration to use the flow control
syntax because this functionality is fully compatible with the previous mechanics and they can
coexist in the same project and even in the same file.

The Angular team even created a migration command in the Angular CLI, as follows:

ng g @angular/core:control-flow

In the next section, we will see a new possibility that this template refactoring provides to our
application, the option of lazy loading components in our HTML templates.

Improving the user experience using the defer
command
The main intention behind the new HTML template flow control syntax was to have a new basis for
building new possibilities in the framework’s templates. The first new feature made possible by the
syntax is the defer instruction, with which it is possible to lazy load components directly from the
HTML template.

We learned in Chapter 2, Organizing Your Application, that the best practice is to separate your
application into functionality modules and configure Angular to load these modules in a lazy way.
This means that the module and its components would only be loaded if the user accessed a certain
route, resulting in smaller bundles and better performance of your application, especially if your user
does not have a good internet connection (such as 3G).

The defer command has the same purpose but instead of working for modules, it works for
standalone components. We studied standalone components in Chapter 11, Micro Frontend with
Angular Elements.

We will start our refactoring by transforming the exercise list components into a standalone
component. In the diary.component.ts file, make the following changes:

@Component({

 standalone: true,

 templateUrl: './diary.component.html',

 styleUrls: ['./diary.component.css'],

 imports: [ListEntriesComponent, NewItemButtonComponent],

})

In the preceding code, we have included the standalone attribute set to true and added the
components it depends on directly using the imports attribute.

We will do the same procedure in the EntryItemComponent component:

@Component({

 selector: 'app-entry-item',

 standalone: true,

 templateUrl: './entry-item.component.html',

 styleUrls: ['./entry-item.component.css'],

 imports: [DatePipe],

})

In this component, in addition to the standalone property, we need to add the dependency so that the
date pipe works. It is necessary to note that the standalone component needs to have its dependencies
declaratively in the imports attribute, since it is not linked to any Angular module.

To lazy load the template, we will also convert the NewItemButtonComponent component into a
standalone one:

@Component({

 selector: 'app-new-item-button',

 templateUrl: './new-item-button.component.html',

 styleUrls: ['./new-item-button.component.css'],

 standalone: true,

})

The last component to be converted into a standalone component is ListEntriesComponent, changing
it as follows:

@Component({

 selector: 'app-list-entries',

 standalone: true,

 templateUrl: './list-entries.component.html',

 styleUrls: ['./list-entries.component.css'],

 imports: [EntryItemComponent],

})

In this example, we added the EntryItemComponent dependency to the import attribute.

IMPORTANT NOTE
The unit tests were also adjusted to consider the component dependencies in the TestBed definition, and you can find the

test code in the GitHub repository of this chapter.

The last adjustment must be made in the DiaryModule module:

@NgModule({

 declarations: [

 NewEntryFormTemplateComponent,

 NewEntryFormReactiveComponent,

],

 imports: [

 CommonModule,

 DiaryRoutingModule,

 RouterModule,

 FormsModule,

 ReactiveFormsModule,

],

})

export class DiaryModule {}

As we will dynamically load the components that were converted to standalone, we have to remove
these components from the declarations attribute of the module.

After this preparation, we can use the defer command in the diary.component.html file:

@defer {

 <app-list-entries

 [exerciseList]="exerciseList"

 (deleteEvent)="deleteItem($event)"

 (editEvent)="editEntry($event)"

 />

}

To use the defer command, we must create a block that includes the components that we want to lazy
load.

If we run our application and analyze the Networks tab, we will notice that specific bundles are
loaded when the screen is rendered:

Figure 12.1 – Lazy-loaded bundle

We can see that the effect is similar to the lazy loading of a route module, but defer has other
interesting options. Let’s see this in practice by changing our code:

. . .

@defer (on hover(trigger)){

 <app-list-entries

 [exerciseList]="exerciseList"

 (deleteEvent)="deleteItem($event)"

 (editEvent)="editEntry($event)"

 />

}

. . .

 <button

 #trigger

 class="rounded bg-blue-500 px-4 py-2 font-bold text-white hover:bg-blue-700"

 (click)="newList()"

 >

 Server Sync

 </button>

. . .

With the on hover(trigger) condition, the list is loaded when we hover over the Server Sync button.
This is just an example; the defer command opens up a range of opportunities for fine-tuning the
user experience. The defer command has the following conditions:

on immediate: The component will be loaded the moment the screen is rendered.

on idle: The component will be loaded on the first call to the browser requestIdleCallback API. This API allows non-

blocking processing in the browser and is the default behavior of the defer command.

on hover(target): We can define another interface component and loading will occur when the user hovers over this

component.

on timer(time): Allows us to define in milliseconds when the component will be loaded after the interface is rendered.

on viewport(target): When the target component is in the browser’s viewport, the child components will be loaded. This

behavior is ideal for loading a component that is located after the user has scrolled to the end of the page.

on interaction(target): It has a similar behavior to on hover, but it will be triggered by some interaction, such as a

click.

when (condition): Allows us to control the loading of the component imperatively, through a Boolean attribute, or a

function that returns a Boolean.

Complementing the defer command, we have other commands that we can use. Returning to our
code, we will change it as follows:

@defer {

 <app-list-entries

 [exerciseList]="exerciseList"

 (deleteEvent)="deleteItem($event)"

 (editEvent)="editEntry($event)"

 />

 } @loading {

 <div>Loading</div>

 } @placeholder {

 <div>PlaceHolder</div>

 } @error {

 <div>Error</div>

 }

These complementary commands have the following functions:

@loading: Presents the content of the block while the components of the defer block are loaded

@placeholder: Displays the content of the block, while the components of the defer block do not start loading, for example,

if the user does not hover over the given target

@error: Displays the content of the block if an error occurs when loading the components of the defer block

There are many possibilities that we have with this defer command in our templates, and we should
explore them to improve our users’ experience. But note that we should not lazy load all the

components of a screen. We need to use the defer command on large components or components that
are not essential for the page we are building.

In the next section, we will explore how to improve the experience of transitions between routes in
our application.

Creating transitions between pages – view transactions
As frontend developers, we need to worry about the technical performance of our applications. Small
UI details, such as the loading screen that we created in Chapter 8, Improving Backend Integrations:
the Interceptor Pattern, improve our users’ perception of the application’s performance. One of these
UI details is the transition between pages of our application. Instead of dry loading from one route to
another, we can create an animation that smooths this transition, making the user experience more
pleasant.

Until version 17 of Angular, it was possible to make this animation using the standard Angular
Animation package that we used earlier in the book, in the toaster animation created in Chapter 8,
Improving Backend Integrations: the Interceptor Pattern. The way to create this animation is specific
to Angular and is not very simple for designers specializing in CSS.

As of version 17 of Angular, there is support for the View Transitions API, a specific web API for
this use case that allows you to create transition animations using pure CSS. To use it in our project,
we will change the app-routing.module.ts file:

@NgModule({

 imports: [

 RouterModule.forRoot(routes, {

 bindToComponentInputs: true,

 enableViewTransitions: true,

 }),

],

 exports: [RouterModule],

})

export class AppRoutingModule {}

We are configuring Angular so that the route mechanisms will use view transitions written in CSS
with the enableViewTransitions property. With just this change, we can notice in our application that
the transition between pages has a pleasant fade-in and fade-out animation. This default animation
was created by the Angular team to make developers’ lives easier. But we can also customize this
animation with a little CSS. In the styles.css file, we will create the following classes:

@keyframes slide-right {

 from {

 transform: translateX(40px);

 }

}

@keyframes slide-left {

 to {

 transform: translateX(-40px);

 }

}

@keyframes fade-in {

 from {

 opacity: 0;

 }

}

@keyframes fade-out {

 to {

 opacity: 0;

 }

}

For CSS animations, we need to define an initial and final state that we want the element to be in, in
this case, the entire screen. For our example, we define a state where the screen goes to the right in
the slide-right keyframe and goes to the left in the slide-left keyframe. Finally, we define the
keyframes for the fade-in and fade-out effects.

Note that when we define the transition animation, we completely replace Angular’s default transition
animation, so we are defining the fade-in and fade-out keyframes here.

To set up the animation, let’s add the following to the styles.css file:

::view-transition-old(root) {

 animation: 100ms cubic-bezier(0.4, 0, 1, 1) both fade-out,

 400ms cubic-bezier(0.4, 0, 0.2, 1) both slide-left;

}

::view-transition-new(root) {

 animation: 250ms cubic-bezier(0, 0, 0.2, 1) 90ms both fade-in,

 400ms cubic-bezier(0.4, 0, 0.2, 1) both slide-right;

}

The View Transitions API creates pseudo-elements in the CSS where we define the exit animation of
the old page (::view-transition-old) and the entrance animation of the new page (::view-
transition-old). In this case, we define that the old screen will fade out and move to the left and the
new page will fade in and slide in from the right.

IMPORTANT NOTE
The View Transitions API was created in 2023 and is being gradually adopted by browsers. Go to https://caniuse.com/ and
check whether the browsers your users will use have support for this API.

In the next section, we will explore Angular Signals and how we can use it to simplify state control in
our application.

Simplifying application states – Angular Signals

https://caniuse.com/

Controlling the state of a frontend application is one of the biggest challenges for a developer, as by
nature, the interface is dynamic and needs to react to various user actions. Angular, with its stacks
included philosophy, already had tools suitable for this task, and we studied in Chapters 5, Angular
Services and the Singleton Pattern, and Chapter 9, Exploring Reactivity with RxJS, how to use these
tools. However, despite being effective, the Angular community and team recognize that they are a
bit complex for new developers and for simple cases of reactivity in frontend projects. To fill this
gap, the Angular team introduced, from version 17 onward, a new element to the framework, called
Signals.

According to the Angular documentation, a signal is a wrapper around a value that notifies
consumers when that value changes. An analogy that you can associate with a signal is a cell in a
spreadsheet. It can contain a value and we can create formulas in other cells that use its value to
create other values.

Before refactoring our application, let’s illustrate this with a simpler example:

let a = signal<number>(2);

let b = signal<number>(3);

let sum = computed(() => a() + b());

console.log(sum());

To create a signal, we use the signal function, where we define what type of value it will store and
declare an initial value for it. A signal can be writable or read-only; in this case, the variables a and b
are writable. The variable c is also a signal but of a specific type, called computed. The computed
type is, in our analogy of a spreadsheet, a cell that contains a formula where you can read the values
of other cells to determine its value. Finally, we are reading the value of the signal by simply calling
it as a function. The result of this code snippet is the value 5.

We will now change the example:

let a = signal<number>(2);

let b = signal<number>(3);

let sum = computed(() => a() + b());

console.log(sum());

a.set(9);

console.log(sum());

In this change, we are updating the value of signal a using the set method. When reading the sum
signal, we can notice that the value was updated to 12. Notice that the calculation reacts in real time
just like it would in a spreadsheet..

Another way to update the value of a writable signal is by using the update method:

let a = signal<number>(2);

let b = signal<number>(3);

let sum = computed(() => a() + b());

console.log(sum());

a.set(9);

console.log(sum());

b.update((oldValue) => oldValue * 2);

console.log(sum());

The update method allows you to update the signal based on the last value contained there.

Despite being simple, signal allows many possibilities as it can contain any type of value, from
primitive ones such as numeric, string, and Boolean to complex objects.

We will refactor our project to use signals, starting with the LoadService service:

export class LoadService {

 isLoading = signal<Boolean>(false);

 showLoader() {

 this.isLoading.set(true);

 }

 hideLoader() {

 this.isLoading.set(false);

 }

}

Here, we are exchanging the isLoading attribute for the isLoading signal, simplifying the service. We
will change the AppComponent component template as follows:

@if (loadService.isLoading()) {

 <app-loading-overlay />

}

<router-outlet></router-outlet>

To read the contents of the signal, we call it as if it were a function. Normally, it is not a good
practice to call a function in a template, due to unnecessary processing. However, the signal was
created and optimized to be read in the template, so in this case, there is no problem.

The next task will be to refactor the list of journal entries so that we no longer manage the list but
leave everything to the ExerciseSetsService service. We’ll start by changing the
ExerciseSetsService service as follows:

export class ExerciseSetsService {

. . .

 exerciseList = signal<ExerciseSetList>([] as ExerciseSetList);

 getInitialList() {

 const headers = new HttpHeaders().set('X-TELEMETRY', 'true');

 this.httpClient

 .get<ExerciseSetListAPI>(this.url, { headers })

 .pipe(map((api) => api?.items))

 .subscribe((list) => this.exerciseList.set(list));

 }

 deleteItem(id: string) {

 this.httpClient.delete<boolean>(`${this.url}/${id}`).subscribe(() => {

 this.exerciseList.update((list) =>

 list.filter((exerciseSet) => exerciseSet.id !== id)

);

 });

 }

. . .

}

In the preceding code block, we created the exerciseList signal by declaring it to contain
ExerciseSetList and initializing it with an empty list. Then, we changed the getInitialList method
toupdate the exerciseList signal based on the API return. We also changed the delete method to
update the signal after deleting the diary entry.

As we are changing the behavior of the function, we also need to exclude the diaryResolver function
as now, the service will manage the query in the API and the component will consume the created
signal.

In the ListEntriesComponent component, we will refactor to consume the signal list we created:

export class ListEntriesComponent {

 @Output() editEvent = new EventEmitter<ExerciseSet>();

 @Output() deleteEvent = new EventEmitter<string>();

 private exerciseSetsService = inject(ExerciseSetsService);

 exerciseList = this.exerciseSetsService.exerciseList;

}

In the preceding code block, we replace the component’s input with the ExerciseSetsService service
and receive the exerciseList signal from it.

We will change the ListEntriesComponent component template as follows:

<section class="mb-8">

 <h2 class="mb-4 text-xl font-bold">List of entries</h2>

 <ul class="rounded border shadow">

 @for (item of exerciseList(); track item.id) {

 <app-entry-item

 [exercise-set]="item"

 (deleteEvent)="deleteEvent.emit($event)"

 (editEvent)="editEvent.emit($event)"

 />

 } @empty {

 <div>

 No Items!

 </div>

 }

</section>

The @for command is prepared to read the content of a signal, including checking the type of value
contained in it.

To finish this refactoring, we will change the template of the 'DiaryComponent' component:

<app-list-entries

 (deleteEvent)="deleteItem($event)"

 (editEvent)="editEntry($event)"

/>

We removed the exercise list from the app-list-entries component as it will manage the state itself.

After changing the template, we can change the DiaryComponent component:

ngOnInit(): void {

 this.exerciseSetsService.getInitialList();

}

deleteItem(id: string) {

 this.exerciseSetsService.deleteItem(id);

}

As the state is now managed by the ExerciseSetsService service, we are simplifying the component
by just calling the service’s methods, without having to manage subscriptions to observables.

With the state managed by Signals, we can add a new feature here on this screen. Let’s assume that
we need to inform the total training volume in the diary, that is, the total amount of exercise
performed.

To have this information and react to events such as the deletion or inclusion of an entry, we can use
Angular Signals!

In the DiaryComponent component, we will make the following change:

volume = computed<number>(() =>

 this.exerciseSetsService

 .exerciseList()

 .reduce(

 (volume, exerciseSet) => volume + exerciseSet.reps * exerciseSet.sets,

 0

)

);

We create a new computed signal called 'volume' and perform the calculation in it based on the value
contained in the 'exerciseList' signal.

To use this new signal, let’s change the template:

<header class="bg-blue-500 py-4 text-white">

 <div class="mx-auto max-w-6xl px-4">

 <h1 class="text-2xl font-bold">Workout diary - Total Volume: {{volume()}} </h1>

 </div>

</header>

We are consuming the volume signal by calling the signal directly in the template. By running our
project, we can notice that this volume signal reacts to the changes we make in our list of exercises.

Figure 12.2 – Lazy-loaded bundle

Signals are elements that will be increasingly improved by the Angular team, giving more control
over the reactivity of our applications. An important point that we need to pay attention to is that
Signals will not replace RxJS; in fact, they complement each other as we still need observables to
control asynchronous flows and more complex flows, as we studied in Chapter 9, Exploring
Reactivity with RxJS.

Summary
In this chapter, we explored the possibilities that the future of the Angular framework can offer us.
We learned how to update our project to new versions of Angular, an ongoing activity as the
framework continues to evolve. We understood how Angular versioning works and the importance of
continually updating our project, from the point of view of security, performance, and new features.
Then, we changed our application to use the new template expressions, which, in addition to
simplifying, can, depending on the case, improve the performance of our applications. With this
improvement in template expressions, we looked at the defer expression, which allows for the lazy
loading of components within templates, giving us new options for optimizing interfaces with
complex components. We also learned how to use the View Transactions API to improve our users’
experience with animations between page changes. Finally, we explored Angular Signals and

simplified the state management of our application with this new element that complements RxJs.
Angular is a framework that never stops evolving, as our users never stop demanding new features. In
this chapter, we learned how to stay up to date with Angular.

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for
reference only, based on the printed edition of this book.

A

Ahead-of-Time (AOT) compilation 212

Angular CLI 5, 16, 110

project, updating with 222, 223

Angular DevTools 11, 12

Angular Language Service 7

URL 7

Angular module 22

business domain modules 25-28

component modules 28

usage, optimizing 30-32

versus JavaScript module 24, 25

Angular project

starting 12-15

structure 15, 16

Angular, selecting reasons 4

batteries included 4

community 4

Google support 4

tooling 5

Angular update website

URL 18

anti-pattern

avoiding 29, 30

any type 40

alternative 52, 53

application

size, improving 32-35

slicing, in micro frontend 187, 188

application, organizing with Angular module 22

declarations 22

exports 23, 24

imports 23

providers 23

application states

simplifying 232-237

AppModule 24

array data structure 39

async pipe

subscription ways, managing with 153-155

AWS

URL 202

Azure Static Web Apps

page, deploying to 215-218

B
backend

deploying 202-206

bundling 212

business domain modules 25-28

business rules 76

C
child component

communication from 68-70

classes 40-46

component modules 28

components 55

communication between 60-62

creating 56-59

properties 58

component testing 177, 178

Container component 65

Content Delivery Networks (CDNs) 212

control flow 223

custom validations 104-107

Cypress 167

for end-to-end (E2E) tests 179-184

D

data consumption

optimizing 157, 158

data handling

operators transformation 151, 152

data validation 101-103

dead code elimination 212

defer command

used, for improving user experience 226-230

dependency injection pattern 78, 79

development environment

configuring 7

Docker image

mounting, with Nginx 213-215

Dumb component 65

dynamic routes 116

E
ECMAScript modules (ESM) 25

EditorConfig 8

URL 8

encapsulation of attributes 41

end-to-end tests (E2E tests) 166, 167

with Cypress 179-184

environments

differentiating 207-210

ESLint 8

URL 8

events

propagating, from nested components 70-73

exploratory tests 167

F

filter operators 157, 158

Fira Code font 9

URL 10

frontend business rules

examples 76

functions

creating 47, 48

G
GCP

URL 202

Git Extension Pack 7

URL 7

GitHub action 218

Gym Diary application 112

dynamic routes 116-122

error page and title, defining 113-116

experience, optimizing 129-131

interceptor, used for attaching token to request 134-139

loader, creating 141-143

performance of request, measuring 146-148

request route, modifying 139, 140

routes, securing 122-129

success, notifying of backend request to user 144, 145

H

high-order operators 156, 157

I

information flows

connecting 156, 157

inject() function

using 80

@Input annotation 60, 61

integration tests 166

interceptor

token, attaching to request 134-139

interfaces 43-46

Ivy 24

J
Jasmine 6, 167

using 167-169

JavaScript module

versus Angular module 24, 25

K

Karma 6, 167

using 167-169

L
lazy loading 32-35

libraries, Angular 5

Jasmine 6

Karma 6

RXJS 6

TypeScript 5

Webpack 6

Ligatures 9

loader

creating 141-143

M

manual tests 167

Material

URL 15

methods

creating 47, 48

micro frontend 185, 186

application, slicing in 187, 188

loading, dynamically 196-199

micro frontend application

creating, with standalone components 188-193

microservices 186

minification 212

Mocha

URL 180

module federation

reference link 187

modules 110

N
navigation 113

nested components

events, propagating from 70-73

NestJS framework

URL 202

ng add command 17, 18

ng build command 19

ng deploy command 19

ng generate command 19

Nginx

Docker image, mounting with 213-215

NgModules 22

ng new command 15

NgRx

URL 5

ng serve command 18

ng update command 18

null values

working with 48, 49

O
observables 150

operators 150

decision tree 159

filter operators 157, 158

selecting 159, 160

transformation 151, 152

@Output annotation

using 68-70

P

page

deploying, to Azure Static Web Apps 215-218

preparing, to be loaded by base application 193-196

performance 129

polymorphism 45

Presentation component 65, 68

creating, with Angular CLI 66, 67

Prettier 8

URL 8

primitive types 38

Boolean 38

Number 38

String 38

production bundle

preparing 210-212

production mode 212

project

updating, with Angular CLI 222, 223

Protractor 167, 179

R
reactive forms 92, 97-101

Reactive Manifesto

URL 6

Representational State Transfer (REST) protocol 83

request route

modifying 139, 140

Requests for Comment (RFCs) 5

resolve property

using 130, 131

REST API

consumption 83-86

route guard feature

using 122-129

routes 110-112

RXJS library 6

S
semantic version number

major 222

minor 222

patch 222

services 75, 76

creating 76-78

used, for communicating between components 80-83

service tests 169-173

SharedModule pattern 30-32

signal 232

single module app 29, 30

single-page application (SPA) 24, 65, 109, 133, 186, 213

singleton pattern 81

Smart component 65, 68

spy 167

standalone components

micro frontend application, creating with 188-193

T
template-driven forms 92-97

templates

creating 223-225

TestBed 173-176

test pyramid 166

tests

fixing 173-176

TrackBy property

advantages 65

using 63-65

transitions

creating, between pages 230-232

Transloco

URL 5

tree shaking 212

TSLint 8

type aliases 45, 46

typed reactive forms 107, 108

type guards 50-52

type inference 49

TypeScript 5

U
uglification 212

unit tests 166, 167

V

View Transitions API 230

VS Code 7

extensions and settings, standardizing in project 10, 11

settings 9

URL 7

VS Code plugins, for Angular applications

Angular Language Service 7

EditorConfig 8

ESLint 8

Git Extension Pack 7

Prettier 8

W
Webpack 6

WebStorm

reference link 7

Y

yarn 15

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

http://www.packtpub.com/
http://packtpub.com/
http://customercare@packtpub.com/
http://www.packtpub.com/

Reactive Patterns with RxJS for Angular

Lamis Chebbi

ISBN: 978-1-80181-151-4

https://www.packtpub.com/product/reactive-patterns-with-rxjs-for-angular/9781801811514

Understand how to use the marble diagram and read it for designing reactive applications

Work with the latest features of RxJS 7

Build a complete Angular app reactively, from requirement gathering to deploying it

Become well-versed with the concepts of streams, including transforming, combining, and composing them

Explore the different testing strategies for RxJS apps, their advantages, and drawbacks

Understand memory leak problems in web apps and techniques to avoid them

Discover multicasting in RxJS and how it can resolve complex problems

Learning Angular, Fourth Edition

Aristeidis Bampakos, Pablo Deeleman

ISBN: 978-1-80324-060-2

https://www.packtpub.com/product/learning-angular-fourth-edition/9781803240602

Use the Angular CLI to scaffold, build, and deploy a new Angular application

Build components, the basic building blocks of an Angular application

Discover new Angular Material components such as Google Maps, YouTube, and multi-select dropdowns

Understand the different types of templates supported by Angular

Create HTTP data services to access APIs and provide data to components

Learn how to build Angular apps without modules in Angular 15.x with standalone APIs

Improve your debugging and error handling skills during runtime and development

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Hi,

I am Alvaro Camillo Neto, author of Angular Design Patterns and Best Practices. I really hope you
enjoyed reading this book and found it useful for increasing your productivity and applications using
Angular.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on this book.

Go to the link below to leave your review:

https://packt.link/r/1837631972

Your review will help me to understand what’s worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best Wishes,

Alvaro Camillo Neto

http://authors.packtpub.com/
https://packt.link/r/1837631972

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837631971

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837631971

	Angular Design Patterns and Best Practices
	Foreword
	Contributors
	About the author
	About the reviewer
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1: Reinforcing the Foundations
	Chapter 1: Starting Projects the Right Way
	Technical requirements
	Why choose Angular?
	Batteries included
	Google support
	Community
	Tooling

	What technologies are present in the ecosystem?
	TypeScript
	RXJS
	Karma and Jasmine
	Webpack

	Configuring your development environment
	VS Code
	VS Code settings
	Fira Code font and ligatures
	Standardizing the extensions and settings in the project
	Angular DevTools

	Starting an Angular project
	Project structure

	Using the Angular CLI for your productivity
	ng add
	ng update
	ng serve
	ng build
	ng deploy
	ng generate

	Summary

	Chapter 2: Organizing Your Application
	Technical requirements
	Organizing the application with Angular modules
	declarations
	providers
	imports
	exports

	The first module – AppModule
	What is the difference between Angular and JavaScript modules?
	Modules type

	Avoiding anti-pattern – single module app
	Optimizing the usage of common modules – the SharedModule pattern
	Improving the size of your app – lazy loading
	Summary

	Chapter 3: TypeScript Patterns for Angular
	Technical requirements
	Creating classes and types
	Primitive and basic types
	Classes
	Interfaces
	Type aliases
	When to use classes, interfaces, or types

	Creating methods and functions
	Working with null values

	Decreasing verbosity – type inference
	Validating types – type guards
	Using a better alternative to the any type

	Summary

	Chapter 4: Components and Pages
	Technical requirements
	Creating components
	Communication between components – inputs and outputs
	Best practice – using the TrackBy property
	Separating responsibilities – Smart and Presentation components
	Communication from the child component – using @Output
	Propagating events from nested components
	Summary

	Chapter 5: Angular Services and the Singleton Pattern
	Technical requirements
	Creating services
	Understanding the dependency injection pattern
	Using the inject() function

	Communication between components using services
	REST API consumption
	Summary

	Part 2: Leveraging Angular’s Capabilities
	Chapter 6: Handling User Inputs: Forms
	Technical requirements
	Template-driven forms
	Reactive forms
	Data validation
	Custom validations
	Typed reactive forms
	Summary

	Chapter 7: Routes and Routers
	Technical requirements
	Routes and navigation
	Defining an error page and title
	Dynamic routes – wildcards and parameters
	Securing routes – guards
	Optimizing the experience – Resolve
	Summary

	Chapter 8: Improving Backend Integrations: the Interceptor Pattern
	Technical requirements
	Attaching the token to the request with an interceptor
	Changing the request route
	Creating a loader
	Notifying success
	Measuring the performance of a request
	Summary

	Chapter 9: Exploring Reactivity with RxJS
	Technical requirements
	Observables and operators
	Handling data – transformation operators
	Another way to subscribe – the async pipe
	Connecting information flows – high-order operators
	Optimizing data consumption – filter operators
	How to choose the correct operator
	Summary

	Part 3: Architecture and Deployment
	Chapter 10: Design for Tests: Best Practices
	Technical requirements
	What to test
	Service tests
	Fixing the tests and understanding TestBed
	Component testing
	E2E tests with Cypress
	Summary

	Chapter 11: Micro Frontend with Angular Elements
	Technical requirements
	Micro frontend – concepts and application
	When to use a micro frontend
	When not to use a micro frontend project

	Slicing your application into micro frontends
	Creating a micro frontend application with standalone components
	Preparing a page to be loaded by the base application
	Dynamically loading micro frontends
	Summary

	Chapter 12: Packaging Everything – Best Practices for Deployment
	Technical requirements
	Deploying the backend
	Differentiating environments
	Preparing the production bundle
	Mounting a Docker image with Nginx
	Deploying a page to Azure Static Web Apps
	Summary

	Chapter 13: The Angular Renaissance
	Technical requirements
	Updating your project with the Angular CLI
	Using a new way to create templates – control flow
	Improving the user experience using the defer command
	Creating transitions between pages – view transactions
	Simplifying application states – Angular Signals
	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

